
Chapter 8

Introduction to the Douglas Problem

In this chapter we present an introduction to the general problem of Plateau
that, justifiedly, is often called the Douglas problem. This is the question
whether a configuration Γ := 〈Γ1, . . . , Γk 〉 of k nonintersecting closed Jordan
curves Γj in R

3 may bound multiply connected minimal surfaces of prescribed
Euler characteristic and prescribed character of orientability. Here we treat
only the simplest form of the Douglas problem, to find a minimal surface
X : Ω → R

3 whose parameter domain Ω is a k-fold connected, bounded, open
set in R

2 whose boundary consists of k closed, nonintersecting Jordan curves.
Since any such domain can be mapped conformally onto a domain B bounded
by k circles, we may choose such k-circle domains as parameter domains for
the desired minimal surfaces. However, different from the case k = 1 where
all parameter domains are conformally equivalent, two admissible parameter
domains will in general be of different conformal type if k ≥ 2. Therefore we
are no longer allowed to fix a k-circle domain B a priori as the parameter
domain of any solution of the Douglas problem; instead, the determination of
B is part of the problem since X has to fulfill the conformality relations.

After discussing some examples in Section 8.1, we state the main result. In
Section 8.2 we show that from ∂D(X, η) = 0 for all C1-vector fields η : B → R

2

on the domain B of X one can derive the conformality relation 〈Xw, Xw 〉 = 0.
The proof of this fact is a quite nontrivial generalization of the method used
in Section 4.5.

Different from the Plateau problem (k = 1), the Douglas problem (k ≥ 2)
has in general no “connected” solution. For example, two parallel circles Γ1

and Γ2 contained in distinct planes do not bound a connected minimal surface
if they are “too far apart”. This phenomenon is discussed in Chapter 4 of
Vol. 2. Douglas has exhibited a sufficient condition ensuring the existence of
connected minimal surfaces bounded by Γ1, . . . , Γk. However, this condition
is somewhat difficult to deal with, while Courant’s condition of cohesion is
much easier to handle. This condition is described in Section 8.3, and it is
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shown that it leads to sequences of parameter domains which converge towards
nondegenerate domains.

In Section 8.4 we solve the Douglas problem for k-fold connected minimal
surfaces, assuming that the condition of cohesion is satisfied. Then, in Sec-
tion 8.5, we prepare two useful tools which later on will be used to modify
surfaces in a suitable way. These modifications were invented by Courant.

The main result is contained in Section 8.6 where we solve the Douglas
problem, assuming the so-called Douglas condition. The solution is seen to be
a simultaneous minimizer of the area A and the energy D in the class C(Γ )
of admissible surfaces, which implies

inf
C(Γ )

A = inf
C(Γ )

D.

The “necessary Douglas condition”

a(Γ ) ≤ a+(Γ )

and the “sufficient Douglas condition”

a(Γ ) < a+(Γ )

are studied in some detail in Sections 8.7 and 8.8; in particular, we present sev-
eral examples. As a generalization of Riemann’s mapping theorem to multiply
connected planar domains we obtain Koebe’s mapping theorem.

The Scholia (Section 8.9) contain some historical remarks and references
to the literature.

8.1 The Douglas Problem. Examples and Main Result

In Chapter 4 we discussed the classical problem of Plateau as it was solved
by Douglas and Radó, and we presented the solution found by Courant and,
independently, by Tonelli. In the restricted sense formulated in Definition 1
of Section 4.2, Plateau’s problem consists in finding a “disk-type” minimal
surface spanning a prescribed closed Jordan curve Γ . This is to say, given Γ ,
we have to find a mapping X : B → R

3 of the closure of the disk B := {w ∈
R

2 : |w| < 1} into R
3 which is harmonic and conformal in B, continuous on B,

and maps ∂B topologically (i.e. homeomorphically) onto Γ .
As mentioned before, this is neither the most general nor the most nat-

ural way to formulate Plateau’s problem, but merely the simplest and most
convenient one, as we do not run into the difficulty that parameter domains
of the same topological type may be of different conformal type. However,
there is no need to restrict ourselves to minimal surfaces bounded by a single
closed curve since boundary configurations consisting of several closed curves
may bound multiply connected minimal surfaces. A classical example is the
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Fig. 1. A soap film experiment: Catenoids held by two coaxial circles

Fig. 2. Minimal surfaces bounded by two closed curves

catenoid, the minimal surface of revolution, which is bounded by two coaxial
circles in parallel planes. Moreover, soap film experiments show that certain
configurations may bound minimal surfaces of higher topological structure,
even nonorientable ones such as surfaces of the type of the Möbius strip. Fig-
ures 1–5 depict several such contours as well as minimal surfaces spanning
them. In certain cases it is not difficult to see that a topologically more com-
plicated minimal surface may have a smaller area than any disk-type surface
bounded by the same contour.

The first to state Plateau’s problem in a general form was Jesse Douglas
who attacked this question in a series of profound and pioneering papers.
Hence many authors speak of the Douglas problem instead of what Douglas
himself called the

General problem of Plateau. Given a configuration Γ = 〈Γ1, Γ2, . . . , Γk 〉
in R

3 consisting of k mutually disjoint Jordan curves Γj, find a minimal
surface of prescribed topological type that spans Γ .
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Fig. 3. An annulus-type minimal surface spanned by two interlocking curves

Fig. 4. Two views of a minimal surface of genus zero bounded by three closed curves.

Courtesy of K. Polthier

Fig. 5. A closed curve bounding a one-sided minimal surface. This curve also spans a

disk-type minimal surface

What is a surface, and what is its topological type? One might think of a
surface as a two-dimensional submanifold of R

3, or better as an embedding
X : M → R

3 of a two-dimensional manifold M with (or without) boundary
into R

3. This definition is too restrictive as we want to consider “surfaces”
S = X(M) with selfintersections; thus we might think of local embeddings
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such as immersions X : M → R
3. But even this class is too narrow as we want

to study minimal surfaces with branch points. Moreover, in order to be able
to use functional analytic arguments, we would like to operate with mappings
X contained in a Sobolev space, which are in fact only equivalence classes of
mappings X : M → R

3, and every representative of X is only determined up
to a set of two-dimensional measure zero.

In such general cases we cannot define the topological type of the surface
S = X(M) in the usual way. Instead we use the following preliminary def-
inition: A surface in R

3 is a mapping X : M → R
3 of a two-dimensional

manifold M (with or without boundary), and the topological type of X is de-
fined as the topological type of the “parameter manifold” M . The image set
S := X(M) is called the trace of X in R

3; occasionally one calls S instead
of X a surface in R

3, and S is said to be an embedded or immersed surface
respectively if X is an embedding or an immersion. We note that X might be
defined only up to a null set in M .

Suppose that M is a compact two-dimensional C1-manifold whose bound-
ary ∂M consists of k closed Jordan curves, and which is oriented (ε(M) := 1)
or nonoriented (ε(M) := −1). Let χ(M) := α0 − α1 +α2 be the Euler charac-
teristic of M , with α0, α1, α2 the number of edges, wedges, and faces of any
regular triangulation of M . Then the topological type of M , denoted by [M ],
is defined as

[M ] := {ε(M), r(M), χ(M)} with r(M) := k,

and the genus of M , denoted by g(M), is defined by

χ(M) + r(M) =:

{
2 − 2g(M) if ε(M) = 1,

2 − g(M) if ε(M) = −1.

For instance, if M is a k-fold connected, compact region in R
2, then ε(M) = 1,

r(M) = k, χ(M) = 2 − k, and [M ] = {1, k, 2 − k}, g(M) = 0. In the present
chapter we want to consider surfaces X : M → R

3, whose parameter sets M
have this topological type. The more general case [M ] = {1, r(M), χ(M)} is
treated in Chapter 4 of Vol. 3, while [M ] = { −1, r(M), χ(M)} can be handled
by passing to the double cover of M .

The General Douglas Problem then reads as follows:

Given a configuration Γ = 〈Γ1, . . . , Γk 〉 of k mutually disjoint Jordan curves
Γ1, . . . , Γk, find a minimal surface X : M → R

3 of prescribed topological type
[M ] = {ε(M), k, χ(M)} that spans Γ .

The idea to solve this task is to minimize Dirichlet’s integral D(X) among
all surfaces X : M → R

3 bounded by Γ , and of given topological type [M ].
For technical reasons it is inconvenient to allow all parameter sets M of fixed
topological type for competition. Since D is invariant with respect to confor-
mal mappings τ : int M ∗ → int M , it is sufficient to minimize D in a class of



536 8 Introduction to the Douglas Problem

mappings X : M → R
3 with M ∈ N where N denotes a set of parameter man-

ifolds M containing all conformal types with the fixed topological type [M ].
In fact, it is not necessary to know a priori what all conformal representations
for a given type [M ] are; it suffices to make a good guess and to verify that the
method works. However, choosing a sequence {Xj } of surfaces Xj : Mj → R

3,
bounded by Γ , with Mj ∈ N and

D(Xj) → inf{D(X) : X : M → R
3, ∂X = Γ, M ∈ N}

as j → ∞ such that Xj converges in some sense to a mapping X : M → R
3,

it is by no means clear that the limit set M = limj→∞ Mj will belong to N; in
fact, M might very well jump out of the class N. To prevent this, one has to
take suitable precautions such as assuming the condition of cohesion or the
Douglas condition.

Here we shall solve the simple kind of Douglas problem, namely: Determine
a minimal surface X : M → R

3, spanning Γ = 〈Γ1, . . . , Γk 〉, defined on a
schlicht parameter region M ⊂ R

2 of type [M ] = {1, k, 2 − k}. To obtain a
solution, we minimize D in a suitable class C(Γ ) of mappings X : B → R

3

with B ∈ N(k) where N(k) is the class of k-circle domains B in R
2. Let us

give a precise definition of this kind of domains.
As usual we identify the point w = (u, v) ∈ R

2 with w = u + iv ∈ C, and
correspondingly R

2 is identified with C. For q ∈ C and r > 0 we define the
disk Br(q) as

Br(q) := {w ∈ C : |w − q| < r};

it is a 1-circle domain. If q = 0 and r = 1, we call the unit disk B1(0)
the normed 1-circle domain. For k > 1, a k-circle domain B(q, r) with q =
(q1, . . . , qk) ∈ C

k and r = (r1, . . . , rk) ∈ R
k, r1 > 0, . . . , rk > 0, is a disk

Br1(q1), from which k −1 closed disks Br2(q2), . . . , Brk
(qk) are removed which

are contained in Br1(q1) and which do not intersect. That is,

B(q, r) = Br1(q1) \ {Br2(q2) ∪̇ · · · ∪̇ Brk
(qk)},

and |q1 − qj | + rj > r1 for 1 < j ≤ k as well as

rj + r� < |qj − q�| for j �= 
 with 2 ≤ j, 
 ≤ r.

If, in addition q1 = q2 = 0 and r1 = 1, then B(q, r) is called a normed k-circle
domain. We set Cj := ∂Brj (qj).

Let N(k) be the class of k-circle domains, and N1(k) be the class of normed
k-circle domains.

For X ∈ H1
2 (B, R3) with B = dom(X) ∈ N(k) we define the area func-

tional A(X) and the Dirichlet integral D(X) as

A(X) :=
∫

B

|Xu ∧ Xv | du dv =
∫

B

√
|Xu|2|Xv |2 − 〈Xu, Xv 〉2 du dv,

D(X) :=
1
2

∫
B

[|Xu|2 + |Xv |2] du dv.
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Note that these integrals are extended over the domain B of X which may
vary with X. If B′ is a subdomain of dom(X) = B we write

AB′ (X) :=
∫

B′
|Xu ∧ Xv | du dv, DB′ (X) :=

1
2

∫
B′

| ∇X|2 du dv.

Recall that
A(X) ≤ D(X) for any X ∈ H1

2 (B, R3)

and
A(X) = D(X) if and only if 〈Xw, Xw 〉 = 0

where
Xw :=

1
2
(Xu − iXv), Xw :=

1
2
(Xu + iXv).

The real form of the conformality relation 〈Xw, Xw 〉 = 0 is

(1) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0.

For a boundary contour Γ = 〈Γ1, . . . , Γk 〉 of k mutually disjoint, closed Jordan
curves Γ1, . . . , Γk we define the Douglas class C(Γ ) of admissible mappings
X : B → R

3 for the variational procedure that we are going to set up:

Definition 1. A mapping X ∈ H1
2 (B, R3) ∩ C0(∂B, R3) with B = dom(X) ∈

N(k) belongs to C(Γ ) if the Sobolev trace X|∂B maps ∂B in a weakly mono-
tonic way onto Γ = 〈Γ1, . . . , Γk 〉. By this we mean the following : There is an
enumeration C1, . . . , Ck of the boundary circles of B such that X|Cj maps Cj

in a weakly monotonic way onto Γj, j = 1, . . . , k.

If in the sequel we consider a mapping X ∈ C(Γ ) with B = dom(X)
and ∂B = C1 ∪̇ · · · ∪̇ Ck, we tacitly assume the boundary circles Cj to be
enumerated in such a way that

Γ1 = X(C1), . . . , Γk = X(Ck).

We note that C(Γ ) is nonempty if Γ = 〈Γ1, . . . , Γk 〉 is rectifiable, which means
that each of the curves Γ1, . . . , Γk is rectifiable.

Now we can formulate the principal result of this chapter.

Theorem 1. Let Γ = 〈Γ1, . . . , Γk 〉 be a boundary contour consisting of k
mutually disjoint, closed, rectifiable Jordan curves in R

3, and suppose that
Γ satisfies either Courant’s condition of cohesion or the Douglas condition.
Then the following holds true:

(i) There is a minimizer X ∈ C(Γ ) of Dirichlet’s integral in C(Γ ), that is,

(2) D(X) = inf
C(Γ )

D.

Every such minimizer X is a minimal surface, i.e. X is harmonic in B
and satisfies the conformality relations (1); moreover, X is continuous
on B and yields a topological mapping from ∂B onto Γ .
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(ii) In addition, we have

(3) inf
C(Γ )

D = inf
C(Γ )

A.

This implies that every minimizer of D in C(Γ ) is also a minimizer of A
in C(Γ ). Conversely, every conformally parametrized minimizer of A in
C(Γ ) is also a minimizer of D in C(Γ ).

(iii) Set C(Γ ) := C(Γ ) ∩ C0(B, R3). Then we even have

(4) inf
C(Γ )

D = inf
C(Γ )

D = inf
C(Γ )

A = inf
C(Γ )

A.

Courant’s condition of cohesion and the Douglas condition will be stated
in Sections 8.3 and 8.6 respectively.

Without proof we mention the following result that will be derived in
Vol. 2, Section 2.3 (for k ≥ 2):

Theorem 2. Suppose that Γ = 〈Γ1, . . . , Γk 〉 is of class Ck,α, k ≥ 1, α ∈
(0, 1). Then each minimal surface X : B → R

3 of class C(Γ ) is also of class
Ck,α(B, R3).

8.2 Conformality of Minimizers of D in C(Γ )

Following ideas of R. Courant and H. Lewy we shall prove:

Theorem 1. If X ∈ C(Γ ) is a minimizer of D in C(Γ ) then it satisfies

(1) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0.

We first recall the following result that was proved in Section 4.5:

Lemma 1. If X ∈ C(Γ ) minimizes D in C(Γ ) then its inner variation
∂D(X, η) vanishes for all vector fields η ∈ C1(B, R2) with B = dom(X).

Therefore Theorem 1 follows from

Theorem 2. If X ∈ C(Γ ) with B = dom(X) satisfies

(2) ∂D(X, η) = 0 for all η ∈ C1(B, R2),

then the conformality relations (1) hold true.

Before we begin with the proof of this theorem, we will derive some aux-
iliary results. The first one was proved in Section 4.5:
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Lemma 2. If X ∈ C(Γ ) with B = dom(X) then

(3) a := |Xu|2 − |Xv |2, b := 2〈Xu, Xv 〉

are of class L1(B), and for any η = (η1, η2) ∈ C1(B, R2) we have

(4) ∂D(X, η) =
1
2

∫
B

[a(η1
u − η2

v) + b(η2
u + η1

v)] du dv.

Let X be of class H1
2 (B, R3), and consider a conformal mapping ν : B∗ →

B from B∗ ⊂ C onto B. Then X∗ := X ◦ ν satisfies D(X) = D(X∗), i.e.∫
B

| ∇X|2 du dv =
∫

B∗
| ∇X∗ |2 du dv.

Since

∂D(X, η) =
d

dε
D(X ◦ τε)

∣∣∣∣
ε=0

where τε denotes an “inner variation” of the form

τε(w) = w − ελ(w) + o(ε), |ε| � 1

we obtain

Lemma 3. Let ν be a conformal mapping from B
∗

onto B and X ∈ H1
2 (B, R2),

X∗ = X ◦ τ . Then

∂D(X, η) = 0 for all η ∈ C1(B, R2)

is equivalent to

∂D(X, ζ) = 0 for all ζ ∈ C1(B
∗
, R2).

Lemma 4. For any B ∈ N(k) there is a Möbius transformation f such that
f(B) ∈ N1(k).

Proof. For k = 1, f is given by f(w) := 1
r1

(w − q1) if B = Br1(q1). If k ≥ 2
and B = Br1(q1) \ {Br2(q2) ∪ · · · ∪ Brk

(qk)} then f := ϕ ◦ ψ with

ϕ(w) :=
w1 − q1

r1
, ψ(z) :=

z − p2

p2z − 1
with p2 := ϕ(q2)

solves the task. �

Lemma 5. If X ∈ C(Γ ) with B = dom(X) and

φ := 4〈Xw, Xw 〉 = a − ib, a = |Xu|2 − |Xv |2, b = 2〈Xu, Xv 〉,

then (2) is equivalent to
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(5)
∫

B

ηwφ du dv = 0 for all η ∈ C1(B, C).

Furthermore, if ν is a Möbius transformation and B = ν(B∗), B, B∗ ∈ N(k)
as well as X∗ = X ◦ ν, φ∗ := 〈X∗

w, X∗
w 〉, then X∗ ∈ C(Γ ) with B∗ = dom(X∗)

satisfies

(5′)
∫

B∗
ζwφ∗ du dv = 0 for all ζ ∈ C1(B

∗
, C).

(Here and in the sequel, C1 means continuously differentiable in the “real”
sense, i.e. C1(B, C) is identified with C1(B, R2), etc.)

Proof. The equivalence of (2) and (5) follows from (4) and the identity

Re(ηwφ) = 1
2 [(η1

u − η2
v)a + (η2

u + η1
v)b].

Furthermore, equation (5) implies (5′) on account of Lemmas 2 and 3, using
the first assertion of Lemma 5. �

Lemma 6. If X ∈ C(Γ ) with B = dom(X) satisfies

(6)
∫

B

[a(η1
u − η2

v) + b(η2
u + η1

v)] du dv = 0 for all η ∈ C∞
c (B, R2),

then φ := 4〈Xw, Xw 〉 = a − ib with a, b given by (3) is holomorphic in B, i.e.
φw(w) = 0 for all w ∈ B.

Proof. Let μ = (μ1, μ2) ∈ C∞
c (B, R2) and set η := Sδμ = kδ ∗ μ where Sδ is a

mollifier with a symmetric kernel kδ. Then η ∈ C∞
c (B, R2) if 0 < δ � 1, and

aδ := Sδa, bδ := Sδb are of class C∞(B), and we infer from (6) the relation∫
B

[aδ(μ1
u − μ2

v) + bδ(μ2
u + μ1

v)] du dv = 0.

An integration by parts yields∫
B

[−(aδ
u + bδ

v)μ
1 + (aδ

v − bδ
u)μ2] du dv = 0

for all μ ∈ C∞
c (B′, R2) with B′ ⊂⊂ B and 0 < δ < δ0(B′) ≤ dist(B′, ∂B).

Hence aδ, −bδ satisfy

aδ
u = (−bδ)v, aδ

v = −(−bδ)u in B′

and so φδ := aδ − ibδ is holomorphic in B′ ⊂⊂ B for 0 < δ < δ0(B′). Since
φδ → φ in L1(B′, C) as δ → 0 for B′ ⊂⊂ B, we infer that φ is holomorphic in
any B′ ⊂⊂ B and therefore also in B. �
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Proof of Theorem 2. We have to show that the holomorphic function φ(w)
vanishes identically in B. We shall proceed in five steps. First we prove:

(i) Let α be a closed C1-Jordan curve in B which partitions B \ α into two
disjoint open sets B1 and B2, i.e. B = B1 ∪̇ α ∪̇ B2. Suppose also that
η = (η1, η2) ∈ C1(B, R2), written in the complex form η = η1 + iη2, is
holomorphic in B1 and satisfies η(w) = 0 for any w ∈ ∂B2 \ α. Then we
have

(7) Im
∫

β

η(w)φ(w) dw = 0

for any closed C1-curve β in B1 that is homologous to α (where
∫

β
. . . dw

is the complex line integral along β).

In fact, ηw = 0 on B1 and (6) imply

Re
∫

B2

ηwφ du dv = 0,

whence ∫
B2

[a(η1
u − η2

v) + b(η2
u + η1

v)] du dv = 0.

Since η = 0 on ∂B2 \ α, an integration by parts yields

0 =
∫

α

(aη2 − bη1)du + (aη1 + bη2) dv

−
∫

B2

[(auη1 + buη2) + (bvη1 − avη2)] du dv.

Furthermore,

2 Re(ηφw) = (auη1 + buη2) + (bvη
1 − avη

2),

and
Im(φη dw) = (aη2 − bη1) du + (aη1 + bη2) dv.

Since φw = 0 in B it follows

Im
∫

α

φη dw = 0.

As φη is holomorphic in B1 we also have∫
α

φη dw =
∫

β

φη dw

and so we obtain (7). Thus assertion (i) is proved.
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For any M in C we define the “thickening” Bδ(M) by

Bδ(M) := {w ∈ C : dist(w, M) < δ},

and then the annuli Aj(δ) of width δ > 0 about the circles Cj = ∂Brj (qj)
which bound the domain B ∈ N(k) given by

B = Br1(q1)
∖ k⋃

j=2

Brj (qj)

with Brj (qj) ⊂ Br1(q1) and Brj (qj) ∩ Br�
(q�) = ∅ for 2 ≤ j, 
 ≤ k, j �= 
:

Aj(δ) := B ∩ Bδ(Cj), j = 1, . . . , k.

We have
Aj(δ) ∩ A�(δ) = ∅ for j �= 
, 1 ≤ j, 
 ≤ k,

provided that

δ < δ0 := 1
2 min{dist(Cj , C�) : j �= 
, 1 ≤ j, 
 ≤ k}.

Now we turn to the second step in the proof of Theorem 2, which consists in
proving the following result:

(ii) For any closed C1-curve in Aj(δ), 0 < δ < δ0, which is homologous to
Cj, we have

(8)
∫

βj

φ(w) dw = 0

and

(9)
∫

βj

(w − qj)φ(w) dw = 0

for j = 1, . . . , k.

To prove this result, we fix some j ∈ {1, . . . , k} and consider three vector
fields η1, η2, η3 ∈ C∞

c (B ∪ Cj , C) with

∂

∂w
η�(w) = 0 in Aj(δ), 
 = 1, 2, 3,

satisfying

η1(w) :=

{
ζ for w ∈ Aj(δ),
0 for w ∈ B \ Aj(2δ),

where ζ is an arbitrary complex number,
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η2(w) :=

{
w − qj for w ∈ Aj(δ),
0 for w ∈ B \ Aj(2δ),

η3(w) :=

{
−i(w − qj) for w ∈ Aj(δ),
0 for w ∈ B \ Aj(2δ).

Let C ′
j be the circle ∂Aj(δ) \ Cj and apply step (i) to α := C ′

j and η :=
η1. Then, for any closed curve βj in Aj(δ) homologous to α and therefore
homologous to Cj , it follows that

Im
[
ζ

∫
βj

φ(w) dw

]
= 0 for all ζ ∈ C.

This yields formula (8).
Applying the same reasoning to η := η2 and η := η3 respectively, we obtain

Im
∫

βj

(w − qj)φ(w) dw = 0 and Re
∫

βj

(w − qj)φ(w) dw = 0,

which proves formula (9).

Remark. One can as well choose

η2(w) := (w − qj)n and η3(w) := −i(w − qj)n on Aj(δ)

with n ∈ Z \ {0} and

η2(w) := 0 and η3(w) := 0 on B \ Aj(2δ).

Then one obtains

(10)
∫

βj

(w − qj)nφ(w) dw = 0 for all n ∈ Z

and βj ⊂ Aj(δ), 0 < δ < δ0. If k = 2 and

B = {w ∈ C : 0 < r < |w| < 1} ∈ N1(2),

then φ(w) is holomorphic in B, and thus it can be expanded into a convergent
Laurent series:

φ(w) =
∞∑

n=− ∞
anwn for w ∈ B.

Formula (10) then becomes∫
β

wnφ(w) dw = 0 for all n ∈ Z
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and β = {w ∈ C : |w| = ρ} with r < ρ < 1, and we obtain an = 0 for all
n ∈ Z, i.e. φ(w) ≡ 0. Since every B̃ ∈ N(2) is equivalent to some B ∈ N1(2),
the assertion of Theorem 2 is proved in case that k = 2, and for k = 1 the
proof follows in the same way. Thus the proof becomes really interesting for
k ≥ 3.

On account of Lemmas 4 and 5, it suffices to prove Theorem 2 under the
additional assumption

(11) B ∈ N1(k)

which from now on will be required. In other words, we assume that

(11′) r1 = 1, q1 = q2 = 0.

Now we turn to the third step of the proof. We are going to show

(iii) One has: (w − qj)2φ(w) is continuous on B ∪ Cj, and

(12) Im[(w − qj)2φ(w)] = 0 for w ∈ Cj , 1 ≤ j ≤ k.

We will first verify (12) for the case j = 1 where q1 = 0 and r1 = 1; by a
suitable Möbius transformation any of the cases j = 2, . . . , k will be reduced
to j = 1.

Fix some δ ∈ (0, δ0), and let ψ be an arbitrary real valued function with
ψ ∈ C1(B) and

ψ(w) = 0 for w ∈ B with |w| ≤ 1 − 2δ.

Set
η(w) := −i[wψ(w)] for w ∈ B.

By (6) we have

0 = Re
∫

B

ηwφ du dv = lim
R→1−0

Re
∫

B∩BR(0)

ηwφ du dv.

As in the proof of step (i) it follows that

0 = − lim
R→1−0

Im
∫

∂BR(0)

iwψ(w)φ(w) dw.

With w = Reiθ and dw = iw dθ we obtain

(13) 0 = lim
R→1−0

∫ 2π

0

ψ(Reiθ)h(Reiθ) dθ

if we denote by h : B → R the harmonic function

h(w) := Im[w2φ(w)], w ∈ B.



8.2 Conformality of Minimizers of D in C(Γ ) 545

Suppose now that ψ depends also on a further parameter z ∈ Bρ(0) such that
ψ(w, z) is of class C1 for (w, z) satisfying 1 − δ ≤ |w| ≤ 1, |z| ≤ ρ ≤ 1 − σ for
σ ∈ (0, 2δ). Then we obtain for f := Re[ηw(·, z)φ] that∣∣∣∣

∫
B∩BR(0)

f du dv

∣∣∣∣ =
∣∣∣∣
∫

B

f du dv −
∫

B\BR(0)

f du dv

∣∣∣∣
=

∣∣∣∣
∫

B\BR(0)

f du dv

∣∣∣∣
≤ M ·

∫
B\BR(0)

|φ| du dv for R > 1 − σ

where
M := sup{ |ηw(w, z)| : 1 − δ ≤ |w| ≤ 1, |z| ≤ ρ} < ∞.

Thus we achieve the uniform convergence of
∫

B∩BR(0)
f(w, z) du dv to zero as

R → 1 − 0 for z ∈ Bρ(0), i.e.

Re
∫

B∩BR(0)

ηw(w, z)φ(w) du dv → 0 uniformly in z ∈ Bρ(0) as R → 1 − 0,

since |φ| ∈ L1(B). This implies that the convergence in (13) is uniform with
respect to z ∈ Bρ(0), i.e.

(14)
∫ 2π

0

ψ(Reiθ, z)h(Reiθ) dθ → 0 uniformly in z ∈ Bρ(0) as R → 1 − 0.

For 0 ≤ r ≤ ρ < 1 − σ < R < 1 and w = Reiθ, z = reiϑ we introduce the
Poisson kernel K(w, z) of the ball BR(0) with respect to w ∈ ∂BR(0) and
z ∈ Bρ(0),

K(w, z) :=
R2 − r2

2π[R2 − 2rR cos(θ − ϑ) + r2]
.

Furthermore let ξ be a radial cut-off function of class C∞(R) with ξ(r) = 1
for r ≥ 1 − σ/2 and ξ(r) = 0 for r ≤ 1 − σ, 0 < σ < 2δ, and set

ψ(w, z) := ξ(|w|)K(w, z)

for z ∈ Bρ(0), 0 < ρ < 1 − σ, and 1 − 2δ < 1 − σ ≤ |w| ≤ 1. Then ψ(w, z) has
the properties required above, and for R = |w| ≥ 1 − σ/2 one has ξ(|w|) = 1.
Consequently it follows from (14) that

HR(z) :=
∫ 2π

0

K(Reiθ, z)h(Reiθ)dθ, z ∈ BR(0),

satisfies

(15) ‖HR‖C0(Bρ(0)) → 0 as R → 1 − 0 for any ρ < 1 − σ, 0 < σ < 2δ.
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By Poisson’s formula and Schwarz’s theorem it follows that HR is harmonic
in the disk BR(0) and can be extended to a continuous function on BR(0)
satisfying

(16) HR(w) = h(w) for w ∈ ∂BR(0).

In the sequel, A(r, r′) denotes the annulus

A(r, r′) := {w ∈ C : r < |w| < r′ } for 0 < r < r′ < ∞.

For R0 := 1 − 2δ < R < 1 we now consider the excess function ER :
A(R0, R) → R defined by

ER(w) := h(w) − HR(w) for w ∈ A(R0, R),

which is continuous on A(R0, R), harmonic in A(R0, R), and vanishes on the
circle ∂BR(0) according to (16). By reflection in this circle we can extend ER

to a continuous function on A(R0, R
′) with R′ := R2/R0 which is harmonic

in A(R0, R
′) and satisfies

(17) max
∂BR0 (0)

|ER| = max
∂BR′ (0)

|ER|.

Set
C = C(R0) := 2 max

∂BR0 (0)
|h|, R0 = 1 − 2δ,

and for arbitrarily chosen ε > 0 we pick a number σ with

(18) 0 < σ < min
{

δ

2
,

εδ

2C

}
.

Because of (15) there is a number R1 ∈ (1 − (σ/2), 1) such that

max
∂BR0 (0)

|HR| < C/2 for all R ∈ (R1, 1),

and so ER = h − HR satisfies

max
∂BR0 (0)

|ER| < C for all R ∈ (R1, 1).

In conjunction with (17) the maximum principle then implies

(19) max
A(R0,R′)

|ER| < C for all R ∈ (R1, 1)

where R0 = 1 − 2δ and R′ = R2/R0.
For R ∈ (R1, 1) we have 1 − σ/2 < R < 1 and therefore R − (1 − σ) >

σ/2 > 0. For any w ∈ A(1 − σ, R) it follows that
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dist(w, ∂A(R0, R
′)) > (1 − σ) − R0 = 2δ − σ > δ.

Applying Cauchy’s estimate to ∇ER on A(1 − σ, R) we then infer from (19)
that

max
A(1−σ,R)

| ∇ER| ≤ C(R0)
δ

for R ∈ (R1, 1).

Since ER(w) = 0 for |w| = R, we can write

|ER((1 − σ)eiθ)| ≤
∫ R

1−σ

|∂rER(reiθ)| dr ≤ σ
C

δ
<

εδ

2C
· C

δ

whence
|ER(w)| <

ε

2
for |w| = 1 − σ and R1 < R < 1,

where R1 ∈ (1 − σ/2, 1) was chosen above and σ is a fixed number satisfying
(18).

Applying once more (15) it follows that for the chosen σ there is a number
R2 ∈ [R1, 1) such that

max
B1−σ(0)

|HR| <
ε

2
for all R ∈ (R2, 1).

Because of
h(w) = ER(w) + HR(w) for w ∈ A(R0, R)

and R0 = 1 − 2δ < 1 − σ < 1 − σ/2 < R1 ≤ R2 < R < 1 we arrive at

|h(w)| < ε/2 + ε/2 = ε for |w| = 1 − σ.

This implies for the harmonic function h(w) = Im[w2φ(w)] that

lim
σ→+0

max
∂B1−σ(0)

|h| = 0,

and so we can extend h continuously to B ∪ C1 with C1 = ∂B1(0) by setting

h(w) = 0 for w ∈ C1,

which completes the proof of (12) for j = 1.
Note that for the proof of (12) in the case j = 1 we only have used q1 = 0,

r1 = 1 and the fact that C1 = ∂B1(0) contains the other boundary circles
C2, . . . , Ck in its interior domain B1(0). Therefore we can reduce the cases
j = 2, . . . , k to j = 1 by applying the Möbius transformation μ : Ĉ → Ĉ,
Ĉ := C ∪ {∞}, defined by

z = μ(w) :=
rj

w − qj
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where Cj = ∂Brj (qj) = {w ∈ C : |w − qj | = rj }. The mapping μ maps B
into another k-circle domain B∗ whose exterior circle is C1 = ∂B1(0), and
C1 = μ(Cj). Let ν := μ−1 be the inverse of μ, and set

X∗ := X ◦ ν with dom(X∗) = B∗.

Then by Lemma 5 we have∫
B∗

ζwφ∗ du dv = 0 for all ζ ∈ C1(B
∗
, R2),

and the above reasoning yields

Im[z2φ∗(z)] = 0 for z ∈ C1

and φ∗(z) = 4〈X∗
z , X∗

z 〉 = a∗(z) − ib∗(z). A straight-forward computation
yields

(w − qj)2φ(w) = z2φ∗(z) for z ∈ C1 and w = ν(z) ∈ Cj .

Thus we have shown that (w − qj)2φ(w) is continuous on B ∪ Cj and

Im[(w − qj)2φ(w)] = 0 for w ∈ Cj , 2 ≤ j ≤ k,

and so the proof of assertion (iii) is complete. �

Let us review the assertion of (iii). We have shown that each of the holo-
morphic functions

Fj(w) := (w − qj)2φ(w), w ∈ B,

1 ≤ j ≤ k, has a harmonic imaginary part hj := ImFj which can continuously
be extended to B ∪ Cj by setting hj = 0 on Cj . Then the reflection principle
for harmonic functions yields that hj can be extended as a harmonic func-
tion beyond Cj . Inspecting the Cauchy–Riemann equations, it follows that Fj

can be extended holomorphically across Cj , and therefore φ can be extended
holomorphically to some domain G with B ⊂ G ⊂ C. This implies that either
φ(w) ≡ 0 in B, or else φ has finitely many zeros in B. Employing a method
due to Hans Lewy we will show that the second case is impossible, thus veri-
fying the assertion of Theorem 2. To this end we turn to the next step of the
proof:

(iv) If φ(w) �≡ 0 in B then φ has at least four zeros on each boundary circle
Cj of B.

To prove this, let r, θ be polar coordinates around qj defined by w =
qj + reiθ, and introduce the 2π-periodic functions

fj(θ) := r2
j ei2θφ(qj + rje

iθ), j = 1, . . . , k,
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that are real analytic in θ and satisfy fj(θ) ∈ R for θ ∈ R on account of (12).
By step (ii) applied to βj := Cj it follows that

i

∫ 2π

0

fj(θ) dθ = 0 and ir−1
j

∫ 2π

0

e−iθfj(θ) dθ = 0,

whence

(20)
∫ 2π

0

fj(θ) dθ = 0,

∫ 2π

0

fj(θ) cos θ dθ = 0,

∫ 2π

0

fj(θ) sin θ dθ = 0.

Then fj(θ) �≡ const, because the first equation would imply fj(θ) ≡ 0 and
therefore φ(w) ≡ 0 on ∂Brj (qj) which is impossible since φ(w) has only finitely
many zeros in B. Moreover

∫ 2π

0
fj(θ) dθ = 0 shows that fj(θ) must change

its sign in [0, 2π) at least once, and so it has a positive maximum and a
negative minimum. Correspondingly fj(θ) possesses two zeros θ0, θ1 ∈ [0, 2π),
i.e. |θ0 − θ1| < 2π since fj is periodic. By choosing the polar angle θ suitably
we can assume that fj(θ) has the two zeros θ0 and −θ0 with some θ0 ∈ (0, π),
while the three equations (20) remain valid. This yields

(21)
∫ π

−π

fj(θ)[cos θ − cos θ0] dθ = 0,

and so the function fj(θ)[cos θ − cos θ0] changes its sign in (−π, π). Since
g(θ) := cos θ − cos θ0 with g′(θ) = − sin θ satisfies g′(θ) > 0 for −π < θ < 0,
g′(θ) < 0 for 0 < θ < π, it follows that

g(θ) < 0 on (−π, −θ0) ∪ (θ0, π), g(θ) > 0 on (−θ0, θ0).

If fj(θ) would have no other zero than θ0 and −θ0 then fj(θ)g(θ) did not
change its sign in (−π, π), but this contradicts (21). Thus there is a third zero
θ3 of fj(θ) in (−π, π). We claim that there is even a fourth zero θ4 of fj in
(−π, π). In fact suppose that fj(θ) �= 0 for θ ∈ (−π, π) with θ �= ±θ0, θ3. If
θ3 ∈ (−θ0, θ0) then again fj(θ)g(θ) would not change its sign, a contradiction
to (21). The other two cases θ3 < −θ0 and θ0 < θ3 can be transformed to the
case −θ0 < θ3 < θ0 by a shift of θ which keeps (21) fixed because of (20). This
completes the proof of assertion (iv). �

Now we turn to the final step in the proof of Theorem 2:

(v) We have φ(w) ≡ 0 in B.

Suppose that this were false. Then φ(w) had only finitely many zeros in
B as we have observed before. Let wm ∈ B be the interior zeros of φ with
the multiplicities μm, m = 1, . . . , M , and ζ� ∈ ∂B be the boundary zeros of φ
with the multiplicities ν�, 
 = 1, . . . , L. Set N := μ1 + · · · + μM , and choose
ρ > 0 sufficiently small. Then, by Rouché’s formula, the number N ≥ 0 is
given by
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N =
1

2πi

∫
∂Gρ

φ′(w)
φ(w)

dw, Gρ := B
∖ L⋃

�=1

Bρ(ζ�).

The boundary ∂Gρ consists of βj(ρ) := Cj ∩ ∂Gρ, j = 1, . . . , k, and of the
circular arcs γ�(ρ) := ∂Bρ(ζ�) ∩ B, 
 = 1, . . . , L. Recall also that Fj(w) =
(w − qj)2φ(w) is holomorphic in B ∪ Cj and real valued on Cj . Then we have

d log Fj(w) = d log(w − qj)2 + d log φ(w) on βj ,

whence
φ′(w)
φ(w)

dw =
F ′

j(w)
Fj(w)

dw − 2
w − qj

dw for w ∈ βj .

This implies
1

2πi

∫
βj(ρ)

φ′(w)
φ(w)

dw = Ij(ρ) \ Kj(ρ)

with

Ij(ρ) :=
1

2πi

∫
βj(ρ)

F ′
j(w)

Fj(w)
dw

and
Kj(ρ) := 2

1
2πi

∫
βj(ρ)

dw

w − qj
.

We have

lim
ρ→+0

Kj(ρ) =

⎧⎨
⎩

2 for j = 1,

−2 for j = 2, . . . , k,

and it will be proved below that

(22) lim
ρ→+0

Ij(ρ) = 0.

Thus

N = lim
ρ→+0

k∑
j=1

[Ij(ρ) − Kj(ρ)] + lim
ρ→+0

L∑
�=1

P�(ρ)

with

P�(ρ) :=
1

2πi

∫
γ�(ρ)

φ′(w)
φ(w)

dw.

Since φ is mirror symmetric with respect to the inversion at Cj it follows that
(for γ∗

� (ρ) as reflection of γ�(ρ) at Cj)

lim
ρ→+0

P�(ρ) =
1

4πi
lim

ρ→+0

∫
γ�(ρ)∪γ∗

� (ρ)

φ′(w)
φ(w)

dw

=
1

4πi
lim

ρ→+0

∫
−∂Bρ(ζ�)

φ′(w)
φ(w)

dw = − ν�

2
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since the positive orientation of Gρ implies that the circles ∂Bρ(ζ�) are to be
taken as negatively oriented. Since L ≥ 4k and ν� ≥ 1 it follows that

N = −2 + 2(k − 1) − 1
2

L∑
�=1

ν� ≤ −4 + 2k − 1
2

· 4k = −4,

a contradiction to N ≥ 0. Therefore we obtain φ(w) ≡ 0 on B.
It remains to prove (22). Since

2πiIj(ρ) =
∫

βj(ρ)

d log |Fj(w)| =
∫

β′
j(ρ)

d log |ψ(θ)|

with ψ(θ) := Fj(qj + rje
iθ) and

β′
j(ρ) = [0, θ1 − ε(ρ)] ∪

p−1⋃
s=1

[θs + ε(ρ), θs+1 − ε(ρ)] ∪ [θp + ε(ρ), 2π],

where ε = ε(ρ) → +0 as ρ → +0, and ζs := eiθs are the zeros of Fj on Cj , we
obtain ∫

β′
j(ρ)

d log |ψ(θ)| =
p+1∑
s=1

[log |ψ(θ)|]bs(ρ)
as(ρ)

with

a1(ρ) = 0, a2(ρ) = θ1 + ε(ρ), . . . , ap(ρ) = θp−1 + ε(ρ),
ap+1(ρ) = θp + ε(ρ),
b1(ρ) = θ1 − ε(ρ), b2(ρ) = θ2 − ε(ρ), . . . , bp(ρ) = θp − ε(ρ),
bp+1(ρ) = 2π.

Thus we infer from ψ(0) = ψ(2π)

∫
β′

j(ρ)

d log |ψ(θ)| =
p∑

s=1

[
log |ψ(bs(ρ))| − log |ψ(as+1(ρ))|

]

=
p∑

s=1

log
∣∣∣∣ψ(θs − ε(ρ))
ψ(θs + ε(ρ))

∣∣∣∣ → 0 for ρ → +0

since
ψ(θs − ε(ρ))
ψ(θs + ε(ρ))

→ 1 as ρ → +0.

Thus we conclude Ij(ρ) → 0 as ρ → +0, and we have verified (22).
This completes the proof of Theorem 2. �
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8.3 Cohesive Sequences of Mappings

Let {Bm} be a sequence of k-circle domains

Bm = B(q(m), r(m)) ∈ N(k)

with q(m) = (q(m)
1 , . . . , q

(m)
k ) ∈ C

k, r(m) = (r(m)
1 , . . . , r

(m)
k ) ∈ R

k, r
(m)
j > 0.

We say that {Bm} converges to the domain B := Br1(q1) \
⋃k

j=2 Brj (qj),
symbol :

Bm → B as m → ∞, or lim
m→∞

Bm = B,

if q(m) → q in C
k and r(m) → r in R

k.
By N(k) and N1(k) we denote the set of domains B in C that are limits

of converging sequences {Bm} in N(k) and N1(k) respectively.
Clearly the limit B of a sequence {Bm} ⊂ N(k) need not be a k-circle

domain again, i.e. B might be “degenerate” in the sense that B ∈ N(k) \ N(k).
Let us investigate how the boundary circles

C
(m)
j := ∂B

r
(m)
j

(q(m)
j ) of Bm = B

r
(m)
1

(q(m)
1 )

∖ k⋃
j=2

B
r
(m)
j

(q(m)
j )

behave if the Bm converge to a degenerate domain with the “boundary circles”
Cj = ∂Brj (qj). Here rj might be zero; then Cj is just the point qj , i.e.
C

(m)
j → qj . Another form of degeneration is that two limit circles Cj and C�,

j �= 
, are true circles which “touch” each other (this includes the possibility
Cj = C�).

We distinguish three kinds of degeneration:

Type 1. Two limits Cj and C�, j �= 
, are true circles which touch each other,
i.e. either Cj = C� or Cj ∩ C� = {w0} for some w0 ∈ B.

Type 2. One limit C� is a point p which lies on a true limit circle Cj .

Type 3. One limit C� is a point p which does not lie on any true limit circle.

For our purposes it suffices to consider degenerate limits B of domains
Bm ∈ N1(k). Here we have for all m ∈ N that

C
(m)
1 = C := ∂B1(0), C

(m)
2 = ∂B

r
(m)
2

(0), 0 < r
(m)
2 < 1.

Case (a): k = 2. Then either r
(m)
2 → 1 or r

(m)
2 → 0, i.e. C1 = C2 = C

(type 1) or C2 = {0} (type 3), whereas type 2 cannot occur for a degenerate
limit B.

Case (b): k ≥ 3. Then either r
(m)
2 → 1 or r

(m)
2 → r ∈ [0, 1).
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(b1) If r
(m)
2 → 1 then C1 = C2 = C and Cj = {qj } with j = 3, . . . , k. Thus

B is both of type 1 and 2.

(b2) If r
(m)
2 → r2 with 0 ≤ r2 < 1, then C1 = C and either C2 = ∂Br2(0)

with 0 < r2 < 1 or C2 = {0}. Here we have at least one of the following
possibilities:

(i) B is of type 1 with Cj ∩ C� = {w0} for some w0 ∈ B, and possibly also
of type 2 or type 3 or both.

(ii) B is not of type 1, but of type 2, or of type 3, or both of type 2 and 3.

The following result is obvious:

Lemma 1. From any sequence of domains Bm ∈ N1(k) we can extract a
subsequence {Bmj } with Bmj → B ∈ N1(k) as j → ∞.

We now want to state conditions ensuring that the limit B of domains
Bm ∈ N1(k) is nondegenerate, that is B ∈ N1(k). A first result in this direction
is

Proposition 1. Let {Xm} be a sequence of mappings Xm ∈ C(Γ ) with Bm =
dom(Xm) ∈ N1(k), k ≥ 2, where Γ = 〈Γ1, . . . , Γk 〉 is a contour consisting
of k rectifiable, mutually disjoint Jordan curves Γ1, . . . , Γk and suppose that
Bm → B for m → ∞ as well as

D(Xm) ≤ M for all m ∈ N

and some constant M > 0. Then B ∈ N1(k) cannot be degenerate of type 1.

Proof. Let μ(Γ ) be the minimal distance of the curves Γ1, . . . , Γk from each
other, i.e.

(1) μ(Γ ) := min{dist(Γj , Γ�) : 1 ≤ j, 
 ≤ k, j �= 
} > 0.

If B were of type 1, there would be j, 
 ∈ {1, . . . , k} with j �= 
 such that
C

(m)
j → Cj and C

(m)
� → C� as m → ∞, where Cj and C� are true circles with

Cj ∩ C� �= ∅. Let w0 ∈ Cj ∩ C�, and introduce polar coordinates ρ, θ about
w0 : w = w0 + ρeiθ. There is a representative

Zm(ρ, θ) := Xm(w0 + ρeiθ)

of Xm which, for almost all ρ ∈ (0, 1), is absolutely continuous in θ ∈ [θ1, θ2]
along each arc γ(ρ) := {w0 +ρeiθ : θ1 ≤ θ ≤ θ2} contained in Bm; we call γ(ρ)
Xm-admissible. The Courant–Lebesgue lemma yields: For each m ∈ N and
each δ ∈ (0, 1) there is an Xm-admissible arc γm(ρ) = {w0 + ρeiθ : θm

1 ≤ θ ≤
θm
2 } in Bm with δ < ρ <

√
δ such that

(2) osc(Zm, γm(ρ)) ≤ 2
{

2πM

(
log

1
δ

)−1}1/2

.
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Furthermore, there is an R > 0 such that ∂Br(w0) intersects Cj and C�

for 0 < r < 2R. Let δ be an arbitrary number with 0 <
√

δ < R. Since
C

(m)
j → Cj and C

(m)
� → C� as m → ∞, there is a number N(δ, R) ∈ N such

that the following holds:
For m > N(δ, R) and δ < ρ < R the circle ∂Bρ(w0) intersects C

(m)
j and

C
(m)
� .

Then there is an Xm-admissible subarc γm(ρ) of ∂Bρ(w0) ∩ Bm satisfying
δ < ρ <

√
δ which has its endpoints on two circles C

(m)
j′ and C

(m)
�′ (which

might be different from C
(m)
j and C

(m)
� ), and, moreover, which satisfies (2).

It follows that

μ(Γ ) ≤ dist(Γj′ , Γ�′ ) ≤ 2

√
2πM

log 1
δ

for 0 < δ � 1

whence we obtain μ(Γ ) = 0 letting δ → +0, a contradiction to (1). �

Corollary 1. Under the assumptions of Proposition 1, the limit B ∈ N1(k) of
the domains Bm ∈ N1(k) can only be degenerate of type 3 if k = 2. Moreover,
if k ≥ 3 then B can only be degenerate of type 2, or of type 3, or both.

These two types of degeneration may indeed occur if we do not impose a
further condition, namely a condition of cohesion.

If we operate with sequences in the class C(Γ ), defined by

C(Γ ) := C(Γ ) ∩ C0(B, R3)

one can conveniently use Courant’s condition of cohesion. In this way one can
solve the minimum problem

“D → min in C(Γ )”.

In the same way one could also solve the problem

“Aε → min in C(Γ )”

where Aε = (1−ε)A+εD, 0 < ε ≤ 1, but this would require a strong regularity
theorem, which we here want to avoid in order to make the minimization
procedure as transparent as possible. The prize for this is that we have to
work with another condition of cohesion which is a bit more cumbersome
to formulate than Courant’s condition. This second condition is a simplified
version of a stipulation introduced by M. Kurzke [1]; cf. also Kurzke and
von der Mosel [1].

Definition 1. A sequence {Xm} of mappings Xm ∈ H
1

2(Bm, R3) with Bm ∈
N(k), k ≥ 2, is said to be C-cohesive if there is an ε > 0 such that, for each
m ∈ N, any closed continuous curve c : S1 → R

2 with γ := c(S1) ⊂ Bm and
diamXm|γ < ε is homotopic to zero in Bm.
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For X ∈ H1
2 (B, R3), the composition X ◦ c of X with a closed curve

c ∈ C0(S1, B) is not defined in the usual sense. In order to give it a well-defined
meaning we restrict ourselves to special curves c. Suppose that γ is a closed
Jordan curve in B, i.e. the image γ = c(S1) of S1 under a homeomorphism
c : S1 → γ ⊂ B. If the inner domain G of γ is strong Lipschitz (i.e. G ∈ C0,1)
then X has a well-defined trace Z = “X|γ” on γ = ∂G, which is of class
L2(γ, R3). If Z has a continuous representative γ → R

3 we denote it again by
Z and call it the continuous representative of X on γ. Then Z ◦ c : S1 → R

3

is a well-defined, closed, continuous curve in R
3. (Note that G need not be a

subdomain of B.)
In applications G will be either (i) a disk, or (ii) a two-gon bounded by two

circular arcs γ1 and γ2. In case (i), X is represented by a mapping X∗(r, θ)
with respect to polar coordinates r, θ about the origin of the disk G of radius
R ∈ (0, 1) such that X∗(r, θ) is absolutely continuous with respect to θ ∈ R

for all r ∈ (0, 1) \ N1 where N1 is a 1-dimensional null set and R /∈ N1, and
similarly X∗(r, θ) is absolutely continuous with respect to r ∈ (ε, 1 − ε), 0 <
ε � 1, for almost all θ ∈ R. Then the continuous representative Z = “X|γ” of
X on the circle γ = ∂G is given by Z = X∗(R, ·). In case (ii), γ1 is a subarc of
∂B, B = dom(X), and γ2 is a circular subarc in B with the same endpoints
as γ1. Here the continuous representative Z = “X|γ” is the continuous trace
of X on γ1 (recall that for X ∈ C(Γ ) we have “X|∂B” ∈ C0(∂B, R3)), while
on γ2 the trace Z = “X|γ” is given as in (i) by

Z(w0 + Reiθ) = X∗(R, θ) for θ1 ≤ θ ≤ θ2,

where X∗(r, θ) is a representation of X in polar coordinates around a point
w0 such that X∗(R, θ) is absolutely continuous in θ ∈ [θ1, θ2].

Definition 2. A sequence {Xm} of mappings Xm ∈ H1
2 (Bm, R3) with Bm =

dom(Xm) ∈ N(k) is called separating if the following holds: For any ε > 0
there is an m0(ε) ∈ N such that for any m > m0(ε) there exists a closed
Jordan curve γm in Bm bounding a strong Lipschitz interior B∗

m such that :

(i) Xm possesses a well-defined continuous trace Zm := “Xm|γm” on γm =
∂B∗

m;
(ii) diamZm(γm) < ε;
(iii) A homeomorphic representation cm : S1 → γm of γm is not homotopic

to zero in Bm.

Definition 3. A sequence {Xm} of mappings Xm ∈ H1
2 (Bm, R3) with Bm =

dom(Xm) ∈ N(k) is said to be cohesive if none of its subsequences is sepa-
rating.

An immediate consequence of these two definitions is

Proposition 2. A sequence {Xm} of mappings Xm ∈ H1
2 (Bm, R3) with

Bm = dom(Xm) ∈ N(k) is cohesive if and only if the following holds: For
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every subsequence {Xmj } of {Xm} there is an ε > 0 and a further subsequence
{Xmj�

} such that for each closed Jordan curve γ in Bmj�
with a strong Lip-

schitz interior G the continuous trace Z� := “Xmj�
|γ” satisfies diamZ� < ε,

but a homeomorphic representation c : S1 → γ of γ is homotopic to zero in
Bmj�

.

Comparing Proposition 2 with Definition 1 we obtain

Proposition 3. Any C-cohesive sequence {Xm} of mappings Xm of class
H

1

2(Bm, R3) with Bm = dom(Xm) ∈ N(k) is also cohesive.

Because of this, we in the sequel investigate only cohesive sequences.

Proposition 4. Let {Xm} be a sequence of mappings Xm ∈ H1
2 (Bm, R3) with

Bm = dom(Xm) ∈ N(k), and {σm} be a sequence of Möbius transformations
from B

∗
m onto Bm, B∗

m ∈ N(k). Then we have:

(i) If {Xm} is separating, then also {Xm ◦ σm}.
(ii) If {Xm} is cohesive, then also {Xm ◦ σm}.

Proof. We only have to observe that every σm is a diffeomorphism from B
∗
m

onto Bm; hence Xm ◦ σm ∈ H1
2 (B

∗
m, R3); furthermore, if γ is a Jordan curve

in Bm bounding a strong Lipschitz domain, then σ−1
m (γ) is a Jordan curve

in B
∗
m bounding a strong Lipschitz domain. (We also note: If γ consists of

circular arcs, then the same holds for σ−1
m (γ).) �

Theorem 1. Let {Xm} be a cohesive sequence of mappings Xm ∈ C(Γ ) with
Bm = dom(Xm) ∈ N1(k), k ≥ 2, whose contour Γ = 〈Γ1, . . . , Γk 〉 consists
of k rectifiable, mutually disjoint Jordan curves Γ1, . . . , Γk. Suppose also that
there is a constant M > 0 such that

D(Xm) ≤ M for all m ∈ N,

and that Bm → B. Then B is of class N1(k).

Proof. Clearly, B ∈ N1(k). If B were degenerate, it could not be of type 1 on
account of Proposition 1; so we have to show that B can neither be of type 2
nor of type 3. �

Suppose first that B were of type 3, that is: One or several circles shrink
to a point p ∈ B which stays away from other limit points or limit circles.
Since C

(m)
1 ≡ C := ∂B1(0) for all m ∈ N, we have C1 = C, and therefore

p �∈ C, i.e. p ∈ B \ C. Thus the index set I := {
 ∈ N : 2 ≤ 
 ≤ k} consists of
two disjoint, nonempty sets I1 and I2 such that
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C
(m)
j → {p} as m → ∞ for j ∈ I1,

C
(m)
� → C� (= point or circle) as m → ∞ with p /∈ C� for 
 ∈ I2.

Then we can find a number ρ0 ∈ (0, 1) and an index m0 ∈ N such that for
m ≥ m0 the following holds true:

(3)
C

(m)
j ⊂ Bρ0(p) for j ∈ I1,

C
(m)
� ∩ Bρ0(p) = ∅ for 
 ∈ I2.

Secondly, for any ρ1 ∈ (0, ρ0) there is an m1 = m1(ρ1) ∈ N with m1(ρ1) ≥ m0

such that

C
(m)
j ⊂ Bρ1(p) for j ∈ I1 and m > m1(ρ1).

We clearly have

{w ∈ C : ρ1 ≤ |w − p| ≤ ρ0} ⊂ Bm for m > m1(ρ1).

Furthermore, by virtue of a well-known extension theorem, there are Sobolev
functions Ym ∈ H1

2 (B1(0), R3) on the unit disk B1(0) satisfying

Ym|Bm = Xm for all m ∈ N.

We introduce polar coordinates r, θ about p, and choose representations
Z̃m(r, θ) of Xm, restricted to Bρ0(p) \ Bρ1(p), for m > m1(ρ1) which are
absolutely continuous in θ for a.a. r ∈ (ρ1, ρ0), and absolutely continuous in
r ∈ (ρ1, ρ0) for a.a. θ ∈ R. By the Courant–Lebesgue lemma we have:

(4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For any ε > 0 there is a number δ∗(ε, M, ρ0) ∈ (0, 1), depending only
on ε, M, ρ0, which has the following properties :
(i) δ∗ <

√
δ∗ ≤ ρ0;

(ii) for any ρ1 ∈ (0, δ∗), any δ with ρ1 < δ < δ∗, and all m >
m1(ρ1), there is a subset Jm(δ) of (δ,

√
δ) with meas Jm(δ) > 0 and

osc Z̃m(r, ·) < ε for all r ∈ Jm(δ);
(iii) Z̃m(r, ·) is the trace of Xm on ∂Br(p) for any r ∈ (ρ1, ρ0) \ Sm

where Sm is a one-dimensional null set, and so we can assume that
Jm(δ) ⊂ (ρ1, ρ0) \ Sm.

Let us now fix some ε > 0 and then some ρ1 > 0 with ρ1 < δ∗(ε, M, ρ0).
Furthermore we choose some δ > 0 satisfying

ρ1 < δ < δ∗(ε, M, ρ0).
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Then

{w ∈ C : δ < |w − p| <
√

δ} ⊂ Bρ0(p) \ Bρ1(p) ⊂ Bm for all m > m1(ρ1).

For any m > m1(ρ1) we choose some rm ∈ Jm(δ) and set γm := ∂Brm(p).
Then γm is a Jordan curve in Bm which bounds the strong Lipschitz domain
B∗

m := Brm(p). By construction, Ym is defined on B∗
m, and Xm(w) = Ym(w)

for w ∈ Bρ0(p) \ Bρ1(p). Thus Xm possesses an absolutely continuous repre-
sentation Zm := Z̃m(rm, ·) = “Xm|γm” with diam Zm(γm) < ε. Furthermore
we have C

(m)
j ⊂ B∗

m for j ∈ I1. Therefore no homeomorphic representation
cm : S1 → γm of γm is homotopic to zero in Bm.

Since ε > 0 can be chosen arbitrarily, we see that {Xm} contains a sepa-
rating subsequence, a contradiction, since {Xm} was assumed to be cohesive.

Now we turn to the last possibility: Suppose that B := limm→∞ Bm is of
type 2. Then we have k ≥ 3, see Corollary 1. Here we again have C

(m)
1 ≡ C =

∂B1(0) for all m ∈ N, whence C1 = C, and either C2 = {0} or C2 = ∂Br2(0)
with 0 < r2 < 1. Furthermore, type 2 means that one sequence of circles,
say {C

(m)
j }, converges to a true circle Cj, 1 ≤ j ≤ k, while one or several

other sequences {C
(m)
� } shrink to a point p of Cj. Here we can decompose

I ′ := {
 ∈ N : 1 ≤ 
 ≤ k, 
 �= j} into I ′
1 := {
 ∈ I ′ : C

(m)
� → {p} as m → ∞}

and I ′
2 := I ′ \ I ′

1; then the limits C� of C
(m)
� for m → ∞ and 
 ∈ I ′

2 are either
points or circles which stay away from p.

We can find a number ρ0 ∈ (0, 1) and an index m0 ∈ N such that for
m ≥ m0 the following holds true:

(∗)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂Bρ0(p) intersects C
(m)
j in exactly two points;

C
(m)
� ⊂ Bρ0(p) ∩ Bm := Sm

ρ0
(p) for 
 ∈ I ′

1;

C
(m)
� ∩ Bρ0(p) = ∅ for 
 ∈ I ′

2.

Checking the three cases j = 1, j = 2, and 3 ≤ j ≤ k, one realizes that both
I ′
1 and I ′

2 are nonempty.
For any ρ1 ∈ (0, ρ0) there is an m1 = m1(ρ1) ∈ N with m1(ρ1) ≥ m0 such

that

C
(m)
� ⊂ Bρ1(p) ∩ Bm =: Sm

ρ1
(p) for 
 ∈ I ′

1 and m > m1(ρ1).

As in the preceding discussion we choose extensions Ym ∈ H1
2 (B1(0), R3) of

Xm from Bm to B1(0). Then we introduce polar coordinates r, θ about p,
and choose representations Z̃m(r, θ) of Xm, restricted to Sm

ρ0
(p) \ Sm

ρ1
(p) for

m > m1(ρ1) which are absolutely continuous in θ for a.a. r ∈ (ρ1, ρ0), and
absolutely continuous in r ∈ (ρ1, ρ0) for a.a. θ such that w = p + reiθ ∈
Sm

ρ0
(p) \ Sm

ρ1
(p).

Applying the Courant–Lebesgue lemma, we obtain analogously to (4):
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(4′)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For any ε > 0 there is a number δ∗(ε, M, ρ0) ∈ (0, 1), depending only
on ε, M, ρ0, which has the following properties :
(i) δ∗ <

√
δ∗ ≤ ρ0;

(ii) for any ρ1 ∈ (0, δ∗), any δ with ρ1 < δ < δ∗, and all m >
m1(ρ1), there is a subset Jm(δ) of (δ,

√
δ) with measJm(δ) > 0, and

osc Z̃m(r, ·) < ε/2 for all r ∈ Jm(δ);
(iii) Z̃m(r, ·) is the trace of Xm on ∂Br(p) ∩ Bm for any r ∈
(ρ1, ρ0) \ Sm where 1-meas Sm = 0, and so we can assume that
Jm(δ) ⊂ (ρ1, ρ0) \ Sm.

Let us now fix some ε > 0 and then ρ1 > 0 with ρ1 < δ∗(ε, M, ρ0). Further-
more, choose some δ > 0 satisfying

ρ1 < δ < δ∗(ε, M, ρ0).

Then it follows that, for ρ ∈ (δ,
√

δ) and m > m1(ρ1), the circle ∂Bρ(p) meets
C

(m)
j in exactly two points w′

m(ρ) and w′ ′
m(ρ), and that γ′

m(ρ) := ∂Bρ(p) ∩ Bm

is a connected circular arc in Bm with the endpoints w′
m(ρ) and w′ ′

m(ρ). Their
image points Q′

m(ρ) and Q′ ′
m(ρ) under Z̃m(ρ, ·) lie on Γj and decompose this

curve into two arcs; denote the “smaller one” by Γ ∗(m, ρ). Then there is a
function η : (0, ∞) → (0, ∞) with η(t) → +0 as t → +0 such that

diamΓ ∗(m, ρ) < η(ρ) for m > m1(ρ1) and ρ ∈ Jm(δ).

We can arrange for

diam Γ ∗(m, ρ) < ε/2 for m > m1(ρ1) and ρ ∈ Jm(δ)

by choosing the number δ∗(ε, M, ρ0) > 0 even smaller if necessary (see the
application of the Courant–Lebesgue lemma in Section 4.3).

Instead of (∗), we even have

(∗∗)

⎧⎪⎨
⎪⎩

C
(m)
� ⊂ Bρ(p) ∩ Bm =: Sm

ρ (p) for 
 ∈ I ′
1,

C
(m)
� ∩ Bρ(p) = ∅ for 
 ∈ I ′

2,

provided that m > m1(ρ1) and ρ ∈ Jm(δ).

Choose some rm ∈ Jm(δ) ⊂ (δ,
√

δ) and set

Γ ′
m := image of γ′

m(rm) under the mapping Z̃m;
Γ ′ ′

m := Γ ∗(m, rm) = image of γ′ ′
m(rm) under Xm;

here γ′ ′
m(rm) is the connected arc on C

(m)
j , bounded by w′

m(rm), w′ ′
m(rm),

which is mapped by the Sobolev trace Xm|
C

(m)
j

in a continuous way onto Γ ′ ′
m.

Then we have

diamΓ ′
m + diam Γ ′ ′

m <
ε

2
+

ε

2
= ε for m > m1(ρ1).
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Consider the closed Jordan curve γm := γ′
m(rm) ∪ γ′ ′

m(rm) in Bm, which
bounds a two-gon B∗

m in B1(0); B∗
m is a strong Lipschitz domain. Because of

(∗∗), one realizes that no homeomorphic representation cm : S1 → γm of γm

is homotopic to zero in Bm. There is a continuous representation Zm of Xm

on γm given by
Zm := Xm(rm, ·) on γ′

m

and
Zm := trace of Xm on γ′ ′

m.

Then it follows

diamZm(γm) ≤ diam Γ ′
m + diam Γ ′ ′

m < ε for m > m1(ρ1).

Since ε > 0 is arbitrary, we obtain that {Xm} contains a separating sub-
sequence, and so it cannot be cohesive, a contradiction to the assumption.

Thus we have shown that B cannot be degenerate, i.e. B ∈ N1(k). �

Proposition 5. Let {Xm} be a sequence of mappings Xm ∈ H1
2 (Bm, R3) with

Bm = dom (Xm) ∈ N1(k), and suppose that Bm → B ∈ N1(k) and D(Xm) →
L as m → ∞. Then there is a sequence of diffeomorphisms σm from B onto
Bm such that the following holds true:

(i) X∗
m := Xm ◦ σm ∈ H1

2 (B, R3) for all m ∈ N, and if Xm ∈ C(Γ ) then
X∗

m ∈ C(Γ );
(ii) D(X∗

m) → L as m → ∞;
(iii) {X∗

m} is cohesive if and only if {Xm} is cohesive;
(iv) If Xm ∈ C(Γ ) then X∗

m ∈ C(Γ ), and {X∗
m} is C-cohesive if and only if

{Xm} is C-cohesive.

Proof. Since the limit domain is nondegenerate, it is not difficult to prove that
there is a sequence {σm} of diffeomorphisms from B onto Bm which converges
to the identity idB on B with respect to the C1(B, R2)-norm. (This would
not be true if B ∈ N1(k) \ N1(k)). Setting X∗

m := Xm ◦ σm, the assertions
follow at once. �

Theorem 2. Let {Xm} be a cohesive sequence of mappings Xm ∈ C(Γ ) with
dom(Xm) ≡ B ∈ N1(k) for all m ∈ N, k ≥ 2, whose boundary contour
Γ = 〈Γ1, . . . , Γk 〉 consists of k rectifiable, closed, mutually disjoint Jordan
curves Γ1, . . . , Γk. Suppose also that there is a constant M > 0 such that

D(Xm) ≤ M for all m ∈ N.

Then the boundary traces Xm|∂B are equicontinuous on ∂B, and there is a
subsequence {Xm�

} of {Xm} such that the traces Xm�
|∂B converge uniformly

on ∂B.
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Proof. We can essentially proceed as in the proof of Theorem 1 of Section 4.3
noting that Xm|Cj maps Cj continuously and in a weakly monotonic way
onto Γj . One only has to ensure that small arcs on Cj are mapped onto small
subarcs of Γj . In the case k = 1 this was achieved by imposing a three-
point condition upon {Xm}; for k ≥ 2 the same will be attained by the
cohesivity condition. In fact, mapping small arcs on Cj onto large arcs on Γj

corresponds to mapping large arcs on Cj onto small arcs of Γj , and by the
Courant-Lebesgue Lemma one would obtain Jordan curves γm in B bounding
strong Lipschitz domains B∗

m such that the continuous trace Zm := “Xm|γm”
of Xm on γm satisfies “diamZm(γm) = small”, but γm cannot be contracted
continuously in B to some point of B since B ∩ B

∗
m possesses at least one

hole. �

Corresponding to Theorem 3 of Section 4.3 we obtain the following gener-
alizations of Theorems 1 and 2 above:

Theorem 3. The assertions of Theorems 1 and 2 remain valid if we replace
the assumption “Xm ∈ C(Γ )” by “Xm ∈ C(Γm)” where Γm = 〈Γm

1 , . . . , Γm
k 〉

are boundary contours converging in the sense of Fréchet (“Γm → Γ as
m → ∞”) to some contour Γ = 〈Γ1, . . . , Γk 〉 consisting of k rectifiable, closed,
mutually disjoint Jordan curves.

8.4 Solution of the Douglas Problem

Using the results obtained in Sections 8.2 and 8.3 we can now solve the Dou-
glas problem under the assumption that Γ = 〈Γ1, . . . , Γk 〉, k ≥ 2, bounds a
cohesive minimizing sequence in C(Γ ) for the Dirichlet integral.

Theorem 1. Let Γ = 〈Γ1, . . . , Γk 〉, k ≥ 2, be a boundary configuration con-
sisting of rectifiable, closed, mutually disjoint Jordan curves Γ1, . . . , Γk in R

3,
and suppose that Γ fulfills the following condition of cohesion: There is a
cohesive sequence {Xm} of surfaces Xm ∈ C(Γ ) with

D(Xm) → d(Γ ) := inf
C(Γ )

D.

Then there exists a minimizer X of the energy D in C(Γ ) which is of class
C0(B, R3) ∩ C2(B, R3) and satisfies

(1) ΔX = 0 in B

as well as

(2) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0 in B.
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Proof. Consider a cohesive sequence of Xm ∈ C(Γ ) with D(Xm) → d(Γ ) and
Bm = dom(Xm) ∈ N(k). By Lemma 4 of Section 8.2 there are Möbius trans-
formations fm mapping B

∗
m ∈ N1(k) onto Bm. Set X∗

m := Xm ◦ fm ∈ C(Γ );
then B∗

m = dom(X∗
m) ∈ N1(k), D(X∗

m) → d(Γ ), and {X∗
m} is cohesive too

on account of Proposition 4 in Section 8.3. Furthermore, there is a constant
M0 > 0 such that D(X∗

m) ≤ M0 for all m ∈ N. By Lemma 1 of Section 8.3
we can extract a subsequence {B∗

mj
} of {B∗

m} such that B∗
mj

→ B ∈ N1(k).
Applying Theorem 1 of Section 8.3 we infer that B is nondegenerate, i.e.
B ∈ N1(k), and by Proposition 5 of the same section we find diffeomorphisms
σmj from B onto B

∗
mj

such that X∗ ∗
mj

:= X∗
mj

◦ σmj , j ∈ N, defines a cohesive
sequence of mappings X∗ ∗

mj
∈ C(Γ ) with D(X∗ ∗

mj
) → d(Γ ). In virtue of Theo-

rem 2 of Section 8.3, the boundary traces X∗ ∗
mj

|∂B are compact in C0(∂B, R3),
and so we can assume without loss of generality that the cohesive minimizing
sequence we have started with, satisfies also

(i) dom(Xm) ≡ B for all m ∈ N;
(ii) Xm|∂B → φ in C0(∂B, R3).

If we replace Xm by the solution Hm ∈ C0(B, R3) ∩ C2(B, R2) of the
Dirichlet problem

ΔHm = 0 in B, Hm|∂B = Xm|∂B

the sequence {Hm} possesses all properties of {Xm}. Renaming Hm as Xm,
we therefore obtain also

(iii) Xm ∈ C0(B, R3) ∩ C2(B, R3) and ΔXm = 0 in B.

Because of (ii) and (iii) there is a mapping X ∈ C0(B, R3) ∩ C2(B, R3)
which is harmonic in B and satisfies

(3) Xm → X in C0(B, R3).

Because of D(Xm) ≤ M0 and Xm ∈ C(Γ ) as well as (i) we can also assume that
Xm converges weakly in H1

2 (B, R3) to X, whence X ∈ C(Γ ), and therefore

d(Γ ) ≤ D(X).

Furthermore, the weak lower semicontinuity of D in H1
2 (B, R3) yields

D(X) ≤ lim
n→∞

D(Xn) = d(Γ ),

and so we obtain
D(X) = d(Γ ).

That is, X minimizes D in C(Γ ) and satisfies (1). Finally, Theorem 1 of
Section 8.2 leads to the conformality relations (2), and so the proof is
complete. �
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Remark 1. If we assume the existence of a C-cohesive sequence of surfaces
Xm ∈ C(Γ ) with

D(Xm) → d(Γ ) := inf
C(Γ )

D,

a similar reasoning as above leads to a minimal surface X ∈ C(Γ ) minimizing
D in C(Γ ). This is the original approach of Courant [15].

Remark 2. As we have noted earlier, C-cohesiveness implies cohesiveness.
Using Theorem 1 one can also show the converse. Thus the two conditions
actually are equivalent, and so they lead to the same result. Hence it seems
superfluous to work with cohesiveness instead of C-cohesiveness, as it is more
troublesome to work with. Its usefulness will become apparent when we will
minimize

Aε = (1 − ε)A + εD

for some ε ∈ [0, 1], in order to prove

(4) inf
C(Γ )

A = inf
C(Γ )

A = inf
C(Γ )

D = inf
C(Γ )

D.

Then it seems impossible, or at least much more cumbersome, to operate in
C(Γ ), and it appears to be more natural to work in C(Γ ).

The same holds true if one wants to minimize a Cartan functional under
Plateau boundary conditions.

In the sequel we want to solve the Douglas problem assuming the (“suffi-
cient”) condition of Douglas, thereby verifying also (4). For this purpose we
need two technical results that will be provided in the next section.

8.5 Useful Modifications of Surfaces

First we will show that we can replace small parts of a surface by the constant
surface X0(w) ≡ 0 without gaining much energy. This argument works for
general functionals

F(X) :=
∫

B

F (X, ∇X) du dv

and surfaces X ∈ H1
2 (B, R3), B = dom(X) ∈ N(k), with a Lagrangian

F (x, p) ∈ C0(R3 × R
6) satisfying

0 ≤ F (x, p) ≤ 1
2μ|p|2

for some constant μ > 0. For Ω ⊂ B we set

FΩ(X) :=
∫

Ω

F (X, ∇X) du dv.
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Proposition 1. Suppose that X ∈ C(Γ ) with B = dom(X) ∈ N(k). Then, for
any δ > 0 and any point p ∈ B, there exists a number r0 ∈ (0, dist(p, ∂B)),
depending on X, δ, p, and μ, such that for any r ∈ (0, r0) there is a surface
Zr ∈ C(Γ ) with dom(Zr) = B and

F(Zr) < F(X) + δ as well as Zr(w) ≡ 0 on Br(p).

Proof. Choose any δ > 0 and p ∈ B; then there is some R ∈ (0, 1) with
R < dist(p, ∂B) such that

(1)
∫

Bρ(p)

| ∇X|2 du dv < δ0 :=
δ

2μ
for all ρ ∈ (0, R).

Then we take some ρ ∈ (0, R) such that the trace X|∂Bρ(p) is absolutely
continuous on ∂Bρ(p). Set

M := sup
∂Bρ(p)

|X|,

and choose some H ∈ H1
2 (Bρ(p), R3) with

ΔH = 0 in Bρ(p), H = X on ∂Bρ(p).

Then H − X ∈ H̊1
2 (Bρ(p), R3), and the maximum principle implies

(2) sup
Bρ(p)

|H| = M.

Furthermore, Dirichlet’s principle yields

(3)
∫

Bρ(p)

| ∇H|2 du dv ≤
∫

Bρ(p)

| ∇X|2 du dv < δ0.

For some constant ε ∈ (0, ρ) to be fixed later we set

(4) ϕ(s, ε2) :=

{
1 for ε < s,

0 for 0 ≤ s ≤ ε2

and

(5) ϕ(s, ε2) := 1 +
log ε − log s

log ε
for ε2 ≤ s ≤ ε.

By means of ϕ(·, ε2) ∈ Lip([0, ∞)) we define Y (·, ε2) as

Y (w, ε2) :=

{
X(w) for |w − p| ≥ ρ,

ϕ(|w − p|, ε2)H(w) for |w − p| < ρ.
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Writing
φ(w) := ϕ(|w − p|, ε2),

we obtain ∫
Bρ(p)

| ∇φ|2 du dv = |log ε| −2

∫ 2π

0

∫ ε

ε2
r−2r dr dθ

= − 2π

log ε
=: δ1(ε) > 0

and then∫
Bρ(p)

| ∇Y (·, ε2)|2 du dv =
∫

Bρ(p)

{ |φuH + φHu|2 + |φvH + φHv |2} du dv

≤ 2M2

∫
Bρ(p)

| ∇φ|2 du dv + 2
∫

Bρ(p)

| ∇H|2 du dv

≤ 2M2δ1(ε) + 2δ0 < 4δ0 for 0 < ε < ε0

if we choose ε0 ∈ (0, ρ) so small that M2δ1(ε) < δ0 for 0 < ε < ε0. Set r := ε2

with 0 < ε < ε0 and Zr := Y (·, ε2); then

F(Zr) = FB\Bρ(p)(X) + FBρ(p)(Zr)

≤ F(X) +
μ

2

∫
Bρ(p)

| ∇Zr |2 du dv

< F(X) + 2δ0μ = F(X) + δ for r ∈ (0, ε20),

and similarly ∫
B

| ∇Zr |2 du dv ≤
∫

B

| ∇X|2 du dv + 4δ0.

Since |Zr | ≤ |X|, it follows Zr ∈ H1
2 (B, R3). Furthermore, B√

r(p) ⊂⊂ B, and

Zr(w) ≡ 0 on Br(p), Zr(w) ≡ X(w) on B \ B√
r(p).

This implies Zr ∈ C(Γ ) since X ∈ C(Γ ). Setting r0 := ε20, the assertion is
proved. �

Proposition 2 (Pinching method). Let Γ̃ be a boundary configuration
consisting of k rectifiable, closed, mutually disjoint Jordan curves in R

3. Then,
for given K > 0 and δ > 0, there is a constant η0 ∈ (0, 1) depending only on
Γ̃ , K, δ, such that for every point Q ∈ R

3 and any η ∈ (0, η0) there is a
Lipschitz mapping Φ = Φη,Q from R

3 onto R
3 with the following properties: If

X is an arbitrary mapping of class C(Γ̃ ) with dom(X) = B and D(X) ≤ K,
then we have

(i) Γ ∗ := Φ(Γ̃ ) consists of k rectifiable, closed, mutually disjoint Jordan
curves such that the Fréchet distance Δ(Γ̃ , Γ ∗) of Γ̃ and Γ ∗ satisfies
Δ(Γ̃ , Γ ∗) < δ;
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(ii) Φ ◦ X ∈ C(Γ ∗), and dom(Φ ◦ X) = B;
(iii) Φ(x) ≡ x for x ∈ R

3 with |x − Q| ≥ η;
(iv) Φ(x) ≡ Q for x ∈ R

3 with |x − Q| ≤ η2;
(v) For Aε := (1 − ε)A + εD, 0 ≤ ε ≤ 1, we have

Aε(Φ ◦ X) ≤ Aε(X) + δ.

Proof. Choose η0 ∈ (0, 1/3) so small that

(6) 3|log η0| −1 < δ/K

and
η0 < 1

2 min{dist(Γ̃j , Γ̃�) : j �= 
, j, 
 = 1, . . . , k}

where Γ̃ = 〈Γ̃1, . . . , Γ̃k 〉. For η ∈ (0, η0) we define the Lipschitz function
ϕη : [0, ∞) → R by

ϕη(s) :=

⎧⎪⎨
⎪⎩

1 for η < s,

2 − log s
log η for η2 ≤ s ≤ η,

0 for 0 ≤ s < η2.

Then, fixing an arbitrary point Q ∈ R
3, we define the mapping Φη,Q ≡ Φη :

R
3 → R

3 by

Φη(x) := Q + ϕη(|x − Q|){x − Q} for x ∈ R
3.

Clearly, Φη is a Lipschitz map from R
3 onto itself which “pinches” the ball

Kη2(Q) := {x ∈ R
3 : |x − Q| ≤ η2} to the point Q and maps R

3 \ Kη2(Q) in a
1 − 1 way onto R

3 \ {Q}. This immediately implies the properties (i)–(iv) of
X∗ := Φη(X). It remains to show (v). We first note that

X∗(w) = Q and ∇X∗(w) = 0 a.e. on B′ := {w ∈ B : |X(w) − Q| ≤ η2},

X∗(w) = X(w) and ∇X∗(w) = ∇X(w)
a.e. on B′ ′ := {w ∈ B : |X(w) − Q| ≥ η}.

Thus we have to compute ∇X∗ on R := {w ∈ B : η2 < |X(w) − Q| < η}. Set

e(w) := |X(w) − Q| −1{X(w) − Q} for w ∈ R;

then |e(w)| = 1 on R. Furthermore, we have on R:

X∗ = Q + ϕη(|X − Q|){X − Q}, ϕη(|X − Q|) = 2 − log |X − Q|
log η

,

∂

∂u
ϕη(|X − Q|) =

−e · Xu

(log η)|X − Q| ,
∂

∂v
ϕη(|X − Q|) =

−e · Xv

(log η)|X − Q| .
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Then,

(7)
X∗

u = ϕη(|X − Q|)Xu − 1
log η

(e · Xu)e,

X∗
v = ϕη(|X − Q|)Xv − 1

log η
(e · Xv)e on R,

whence by 0 ≤ ϕη(|X − Q|) ≤ 1, |e| = 1, − log η = |log η| > 1 we obtain on R:

|X∗
u |2 ≤ |Xu|2 − 2(log η)−1|Xu|2 + |log η|2|Xu|2

≤ (1 + 3|log η| −1)|Xu|2,
|X∗

v |2 ≤ (1 + 3|log η| −1)|Xv |2.

On account of (6), this leads to

(8) DR(X∗) ≤ DR(X) + (δ/K)D(X) ≤ DR(X) + δ.

Now we are going to estimate AR(X∗). From (7) we infer by setting ψ :=
ϕη(|X − Q|) that

X∗
u ∧ X∗

v = ψ2Xu ∧ Xv + ψ|log η| −1{(e · Xv)(e ∧ Xu) + (e · Xu)(e ∧ Xv)}

whence

|X∗
u ∧ X∗

v | ≤ |Xu ∧ Xv | + |log η| −12|Xu| |Xv |
≤ |Xu ∧ Xv | + |log η| −1| ∇X|2 on R.

This implies

AR(X∗) ≤ AR(X) + |log η| −12DR(X)(9)
≤ AR(X) + (δ/K)D(X) ≤ AR(X) + δ.

From (8), (9), and Aε
R = (1 − ε)AR + εDR we infer

Aε
R(X∗) ≤ Aε

R(X) + δ for any ε ∈ [0, 1].

Furthermore,
Aε

B′ (X∗) = 0, Aε
B′ ′ (X∗) = Aε

B′ ′ (X).

Since B = B′ ∪̇ R ∪̇ B′ ′, we arrive at

Aε(X∗) = Aε
B′ (X∗) + Aε

R(X∗) + Aε
B′ ′ (X∗)

≤ 0 + Aε
R(X) + δ + Aε

B′ ′ (X) ≤ Aε(X)

for any ε ∈ [0, 1]. This completes the proof. �
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8.6 Douglas Condition and Douglas Problem

For ε ∈ [0, 1] we consider the conformally invariant functionals

Aε(X) := (1 − ε)A(X) + εD(X)

which satisfy
A0(X) = A(X), A1(X) = D(X)

and

(1) A(X) ≤ Aε(X) ≤ D(X) for any ε ∈ [0, 1].

Furthermore, for 0 < ε ≤ 1 we have

(2) A(X) = Aε(X) = D(X) if and only if 〈Xw, Xw 〉 = 0,

and
〈Xw, Xw 〉 = 0 ⇔ |Xu|2 = |Xv |2 and 〈Xu, Xv 〉 = 0.

As a first result we shall prove that the problem

Aε → min in C(Γ )

has a solution Xε ∈ C(Γ ) for any ε ∈ (0, ε0] with 0 < ε0 � 1 provided that
Γ = 〈Γ1, . . . , Γk 〉, k ≥ 2, satisfies the Douglas condition. The proof follows
essentially the same lines as in Section 8.4, but it is somewhat more involved.

In order to define the Douglas condition for k > 1 we have to consider the
class of mappings X : B → R

3 whose domains B are disconnected. Precisely
speaking we assume that B is a set {B1, . . . , Bs}, s > 1, of kν-circle domains
Bν ∈ N(kν) with

k = k1 + k2 + · · · + ks,

and X is a collection {X(1), . . . , X(s)} of mappings

X(ν) ∈ H1,2(Bν , R3) ∩ C0(∂Bν , R3)

such that X(ν)|∂Bν is a weakly monotonic mapping of ∂Bν onto a configura-
tion of kν disjoint closed, rectifiable Jordan curves Γ1, . . . , Γkν . The set C+(Γ )
of such maps X is called the class of splitting mappings bounded by Γ .

Now we define Aε(X) for X = {X(1), . . . , X(s)} ∈ C+(Γ ) by

Aε(X) := Aε(X(1)) + · · · + Aε(X(s)),

and then
d(Γ, ε) := inf

C(Γ )
Aε, d+(Γ, ε) := inf

C+(Γ )
Aε,

in particular
a(Γ ) := inf

C(Γ )
A, a+(Γ ) := inf

C+(Γ )
A,

that is, a(Γ ) = d(Γ, 0) and a+(Γ ) = d+(Γ, 0).
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Definition 1. The Douglas condition is the hypothesis

a(Γ ) < a+(Γ ).

In the following discussion we need a third function of ε besides d(Γ, ε) and
d+(Γ, ε), namely

d∗(Γ, ε) := inf
{

lim inf
m→∞

Aε(Xm) : {Xm} = separating sequence

of Xm ∈ C(Γ )
}

.

Lemma 1. The infima d(Γ, ε), d+(Γ, ε), d∗(Γ, ε) are nondecreasing functions
of ε ∈ [0, 1], and

(3) d(Γ, 0) = lim
ε→+0

d(Γ, ε), d+(Γ, 0) = lim
ε→+0

d+(Γ, ε).

Proof. Since A ≤ D we obtain for 0 < ε ≤ ε′ that

Aε(X) = A(X) + ε[D(X) − A(X)]

≤ A(X) + ε′[D(X) − A(X)] = Aε′
(X),

which shows that d(Γ, ·), d+(Γ, ·), d∗(Γ, ·) are nondecreasing, whence in par-
ticular

d(Γ, 0) ≤ lim
ε→+0

d(Γ, ε).

Suppose that
δ := lim

ε→+0
d(Γ, ε) − d(Γ, 0) > 0.

Then there is a mapping X ∈ C(Γ ) such that

A(X) ≤ d(Γ, 0) +
δ

2
= lim

ε→+0
d(Γ, ε) − δ

2
.

Choosing ε∗ ∈ (0, 1) so small that

0 ≤ ε∗[D(X) − A(X)] ≤ δ

4
,

it follows

Aε∗
(X) = A(X) + ε∗[D(X) − A(X)] ≤ A(X) +

δ

4

≤ lim
ε→+0

d(Γ, ε) − δ

2
+

δ

4

≤ d(Γ, ε∗) − δ

4
≤ Aε∗

(X) − δ

4
,

a contradiction. Thus we have δ = 0 and therefore d(Γ, ε) → d(Γ, 0) as ε → 0.
Analogously, the second relation in (3) is proved. �
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Lemma 2. Let ε ∈ (0, 1] and M ≥ 0, and consider a sequence {Γm} of bound-
ary configurations converging to the configuration Γ in the sense of Fréchet
(Γm → Γ ) as m → ∞, where Γm and Γ consist of k closed, disjoint, rec-
tifiable Jordan curves. Then for any cohesive sequence {Xm} of mappings
Xm ∈ C(Γm) with

(4) D(Xm) ≤ M for all m ∈ N

there exists a mapping X ∈ C(Γ ) with B = dom(X) ∈ N1(k) such that

(5) d(Γ, ε) ≤ Aε(X) ≤ lim inf
m→∞

Aε(Xm).

Proof. For k = 1 each sequence of mappings Xm ∈ C(Γm) is cohesive, and the
assertion follows using the results of Chapter 4. Thus we now suppose k ≥ 2.
There is a subsequence {Xmj } such that {Aε(Xmj )} converges and

(6) lim
j→∞

Aε(Xmj ) = lim inf
m→∞

Aε(Xm).

Because of (4) we can also achieve that

(6′) D(Xmj ) → L ∈ [0, M0] as j → ∞.

Applying the results of Section 8.3 (and using Theorem 3 of that section
instead of Theorems 1 and 2), we obtain by the reasoning used in the proof of
Theorem 1 of Section 8.4 that we can also assume that {Xmj } is a cohesive
sequence with dom(Xmj ) = B ∈ N1(k) for all j ∈ N, while (6) and (6′) remain
unaltered.

Using (4) and a suitable variant of Poincaré’s theorem we can in addition
assume that

Xmj ⇀ X in H1
2 (B, R3)

and
Xmj |∂B → X|∂B in L2(B, R3)

as j → ∞, and by Theorem 3 of Section 8.3 also

Xmj |∂B → X|∂B in C0(∂B, R3).

Since Xm ∈ C(Γm) and Γm → Γ it follows X ∈ C(Γ ) with dom(X) = B ∈
N1(k), and the lower semicontinuity of Aε with respect to weak convergence
of sequences in H1

2 (B, R3) yields

(7) Aε(X) ≤ lim inf
j→∞

Aε(Xmj ).

Then we infer (5) from (6), (7), and the fact that X ∈ C(Γ ) implies d(Γ, ε) ≤
Aε(X). �
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Lemma 3. For all ε ∈ [0, 1] we have

d(Γ, ε) ≤ d∗(Γ, ε) ≤ d+(Γ, ε).

Proof. For any separating sequence {Xm} in C(Γ ) we have

d(Γ, ε) ≤ Aε(Xm) for all m ∈ N,

which implies
d(Γ, ε) ≤ d∗(Γ, ε).

Thus we have to prove

(8) d∗(Γ, ε) ≤ d+(Γ, ε).

For k = 1, nothing is to be proved since then d+(Γ, ε) = ∞ as C+(Γ ) = ∅.
Thus we assume k ≥ 2. We have to show: For any partition {Γ 1, . . . , Γ s} of
Γ = 〈Γ1, . . . , Γk 〉 with s ≥ 2 one has

d∗(Γ, ε) ≤
s∑

j=1

d(Γ j , ε).

This is equivalent to the following assertion:
For every number η > 0 there is a separating sequence {Xm} of mappings

Xm ∈ C(Γ ) such that

(9) lim inf
m→∞

Aε(Xm) ≤
s∑

j=1

d(Γ j , ε) + η.

We begin with s = 2 and an arbitrary partition {Γ 1, Γ 2} of Γ . For an arbitrary
chosen δ > 0 there are X(ν) ∈ C(Γ ν) with Bν = dom(Xν) ∈ N(kν), ν = 1, 2,
k1 + k2 = k, such that

Aε(X(ν)) ≤ d(Γ ν , ε) + δ for ν = 1, 2.

Applying Proposition 1 of Section 8.5 to F := Aε we construct new mappings
Zν ∈ C(Γ ν) with dom(Zν) = Bν ∈ N(kν) and

Zν |B2r(pν) = 0 for some disks B2r(pν) ⊂⊂ Bν

such that
Aε(Zν) ≤ Aε(X(ν)) + δ for ν = 1, 2.

Shifting B2 suitably we may assume that p1 = p2; set

p := p1 = p2.

Let ρ be the inversion with respect to the circle ∂B2r(p) and set
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B∗
2 := ρ(B2 \ B2r(p)).

Furthermore, let C∗ be the “outer” boundary circle of B∗
2 , and B∗ be the disk

bounded by C∗. Set
B∗

1 := B1 \ B∗

and
Z∗

1 := Z1|B∗
1
, Z∗

2 := Z2 ◦ ρ−1|B∗
2
.

Then

X∗ :=

{
Z∗

1 on B∗
1 ,

Z∗
2 on B∗

2

defines a mapping X∗ ∈ C(Γ ) with

dom(X∗) = B∗
1 ∪ B∗

2 ∈ N(k).

Since Aε is conformally invariant, it follows that

Aε(X∗) = Aε(Z∗
1 ) + Aε(Z∗

2 )
= Aε(Z1|B∗

1
) + Aε(Z2|B2\B2r(p))

= Aε(Z1) + Aε(Z2)
= Aε(X(1)) + δ + Aε(X(2)) + δ

≤ d(Γ 1, ε) + d(Γ 2, ε) + 4δ.

Given η > 0 we choose δ := η/4 and Xm := X∗ for all m ∈ N. Then {Xm} is
a separating sequence satisfying (9) for a partition {Γ 1, Γ 2} of Γ .

Similarly, if Γ is partitioned as {Γ 1, . . . , Γ s}, we fix δ > 0 and choose
X(ν) ∈ C(Γ ν) with Bν = dom(X(ν)) ∈ N(kν), k1 + · · · + ks = k, such that

Aε(X(ν)) ≤ d(Γ ν , ε) + δ, ν = 1, . . . , s.

By the above procedure, carried out (s − 1) times, we find a mapping
X∗ ∈ C(Γ ) with dom(X∗) ∈ N(k) satisfying

Aε(X∗) ≤
s∑

ν=1

Aε(Xν) + 2sδ

whence

Aε(X∗) ≤
s∑

ν=1

d(Γ ν , ε) + (s + 2s)δ.

Choosing δ := (s + 2s)−1η and considering the separating sequence {Xm} in
C(Γ ) with Xm := X∗ for all m ∈ N, we obtain (9), and the proof of (8) is
complete. �
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Lemma 4. (a) Let Γm → Γ as m → ∞ in the Fréchet sense, and {Xm} be
a sequence of mappings Xm ∈ C(Γm) with

Γm = 〈Γ (m)
1 , . . . , Γ

(m)
k 〉, Γ = 〈Γ1, . . . , Γk 〉

consisting of k rectifiable, closed, mutually disjoint Jordan curves. Then

(10) d(Γ, ε) ≤ lim inf
m→∞

Aε(Xm) for any ε ∈ (0, 1].

(b) For any ε ∈ (0, 1] we have

(11) d∗(Γ, ε) = d+(Γ, ε).

Proof. We fix ε with 0 < ε ≤ 1.
(a) Inequality (10) is trivially satisfied if the right-hand side is = ∞. Thus

we may assume that {Aε(Xm)} converges as m → ∞, i.e.

(12) lim inf
m→∞

Aε(Xm) = lim
m→∞

Aε(Xm) < ∞.

Since D(Xm) ≤ ε−1Aε(Xm) we have

(13) D(Xm) ≤ M0 for all m ∈ N

and some constant M0 = M0(ε) < ∞. Then (10) follows from Lemma 2 if
{Xm} is cohesive, k ≥ 2, and for k = 1 one infers (10) for any sequence on
account of Chapter 4.

Now we are going to prove (10) by induction over k where we can restrict
ourselves to noncohesive sequences {Xm}.

Induction hypothesis. Suppose that (10) is satisfied for boundary config-
urations consisting of at most k − 1 closed curves.

Consider now a noncohesive sequence {Xm} of Xm ∈ C(Γm) with dom(Xm)
∈ N(k) satisfying (12) and therefore also (13). As {Xm} is noncohesive,
it possesses a separating subsequence which we may again call {Xm}. By
Lemma 4 of Section 8.2 and Proposition 4 of Section 8.3 we can also assume
that Bm ∈ N1(k). Then there exist points Qm ∈ R

3, numbers ηm > 0 with
ηm → 0, and closed rectifiable Jordan curves γm in Bm bounding a strong
Lipschitz interior B∗

m in R
2 such that Xm possesses a well-defined continuous

trace Zm = “Xm|γm” on γm = ∂B∗
m with

sup
γm

|Zm − Qm| ≤ η2
m,

and any topological representation cm : S1 → γm of γm is not homotopic to
zero in Bm.

Then we choose a sequence of numbers δj > 0 with δj → 0 and apply
Proposition 2 of Section 8.5 with δ := δj and K := M0(ε). Let η0,j be the
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corresponding numbers η0 ∈ (0, 1). For a suitable sequence {mj } of mj ∈ N

with m1 < m2 < m3 < · · · we have ηmj < η0,j for all j ∈ N. Renaming
Xmj , Qmj , Zmj , ηmj as Xj , Qj , Zj , ηj respectively, it follows

ηj < η0,j for all j ∈ N,

and there are mappings

Φj := Φηj ,Qj = Φηj : R
3 → R

3

with the following properties:

(i) Γ j∗ := Φj(Γ j) is a configuration of k closed, disjoint Jordan curves such
that the Fréchet distance Δ(Γ j , Γ j∗) of Γ j and Γ j∗ satisfies

Δ(Γ j , Γ j∗) < δj for all j ∈ N;

(ii) Φj ◦ Xj ∈ C(Γ j∗) and dom(Φj ◦ Xj) = Bj ;
(iii) Φj(x) ≡ x for x ∈ R

3 with |x − Qj | ≥ ηj ;
(iv) Φj(x) ≡ Qj for x ∈ R

3 with |x − Qj | ≤ η2
j ;

(v) Aε(Φj ◦ Xj) ≤ Aε(Xj) + δj .

In particular we have

Φj ◦ Zj = Qj for all j ∈ N.

Then we define
B1

j := Bj ∩ B∗
j , B2

j := Bj \ B
1

j

where B∗
j is the “inner domain” of γj . This means: Cutting along γj we

decompose Bj into
Bj = B1

j ∪̇ γj ∪̇ B2
j ,

where B1
j , B2

j are disjoint subdomains of Bj . Since γj cannot be contracted in
Bj to a point, both B1

j and B2
j contain at least one of the boundary circles

of Bj . Thus there is a circle βj in B1
j whose center does not lie in Bj . Let ρj

be the inversion with respect to βj , and set

E1
j := B

∗ ∗
j ∪ ρj(B1

j ) with B∗ ∗
j := “inner domain” of ρj(γj),

E2
j := B

∗
j ∪ B2

j .

We note that E1
j ∈ N(k′), E2

j ∈ N(k′ ′) with 1 ≤ k′, k′ ′ < k and k = k′ + k′ ′.
Now we define new mappings X1

j ∈ H1
2 (E1

j , R3), X2
j ∈ H1

2 (E2
j , R3) by

X1
j :=

{
Φj ◦ Xj ◦ ρ−1

j on ρj(B1
j ),

Qj on B
∗ ∗
j ,

X2
j :=

{
Φj ◦ Xj on B2

j ,

Qj on B
∗
j .
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Roughly speaking, this process amounts to “pinching” Xj to a point in the
neighborhood of the closed curve γj and to decomposing the resulting surface
into two surfaces of “lower topological type” by cutting through γj .

Then there is a decomposition Γ = {Γ̃ 1, Γ̃ 2} of Γ and correspondingly a
decomposition Γ j = {Γ̃ j,1, Γ̃ j,2} of Γ j such that

X1
j ∈ C(Φj(Γ̃ j,1)), X2

j ∈ C(Φj(Γ̃ j,2))

and
Φj(Γ̃ j,1) → Γ̃ 1, Φj(Γ̃ j,2) → Γ̃ 2 in the sense of Fréchet.

Furthermore, the construction yields

Aε(X1
j ) + Aε(X2

j ) = Aε(Φj ◦ Xj |B1
j
) + Aε(Φj ◦ Xj |B2

j
)

= Aε(Φj ◦ Xj),

and the induction hypothesis implies

d(Γ �, ε) ≤ lim inf
j→∞

Aε(X�
j ) for 
 = 1, 2.

The partition Γ = {Γ̃ 1, Γ̃ 2} leads to

d+(Γ, ε) ≤ d(Γ̃ 1, ε) + d(Γ̃ 2, ε).

Therefore

d(Γ, ε) ≤ d+(Γ, ε) ≤ d(Γ̃ 1, ε) + d(Γ̃ 2, ε)
≤ lim inf

j→∞
Aε(X1

j ) + lim inf
j→∞

Aε(X2
j )

≤ lim inf
j→∞

[Aε(X1
j ) + Aε(X2

j )]

= lim inf
j→∞

Aε(Φj ◦ Xj)

≤ lim inf
j→∞

[Aε(Xj) + δj ].

Since δj → 0, we arrive at

(14) d(Γ, ε) ≤ d+(Γ, ε) ≤ lim inf
m→∞

Aε(Xm),

which completes the proof by induction, and so we have verified assertion (a).
(b) For k = 1 we have d∗(Γ, ε) = d+(Γ, ε) = ∞, and so (11) holds true.
If k ≥ 2 then Lemma 3 yields d∗(Γ, ε) ≤ d+(Γ, ε) < ∞. Thus it suffices to

show d+(Γ, ε) ≤ d∗(Γ, ε). In fact, for given δ > 0 there is a separating sequence
{Xm} in C(Γ ) with

lim inf
m→∞

Aε(Xm) ≤ d∗(Γ, ε) + δ.
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By the same proof as in (a) we obtain (14) for this sequence. Thus,

d+(Γ, ε) ≤ d∗(Γ, ε) + δ for any δ > 0,

whence
d+(Γ, ε) ≤ d∗(Γ, ε),

which finishes the proof of (b). �

Theorem 1. If the Douglas condition a(Γ ) < a+(Γ ) is satisfied, k ≥ 2, then
there is an ε0 ∈ (0, 1] such that for each ε ∈ (0, ε0] there exists a mapping
Xε ∈ C(Γ ) with

(15) Aε(Xε) = d(Γ, ε)

and

(16) |Xε
u|2 = |Xε

v |2, 〈Xε
u, Xε

v 〉 = 0.

Proof. Since

lim
ε→+0

d(Γ, ε) = d(Γ, 0) = a(Γ ) < a+(Γ ) = d+(Γ, 0) = lim
ε→+0

d+(Γ, ε),

there is an ε0 with 0 < ε0 ≤ 1 such that

(17) d(Γ, ε) < d+(Γ, ε) for 0 < ε ≤ ε0.

Fix some ε ∈ (0, ε0] and choose a sequence {Xm} in C(Γ ) with

Aε(Xm) → d(Γ, ε) as m → ∞.

If {Xm} were not cohesive, there would exist a separating subsequence {Xmj },
whence

d∗(Γ, ε) ≤ lim
j→∞

Aε(Xmj ) = d(Γ, ε),

and by (11) we would have

d+(Γ, ε) = d∗(Γ, ε) ≤ d(Γ, ε),

a contradiction to (17). Thus {Xm} has to be cohesive, and D(Xm) ≤ M0(ε)
for all m ∈ N since Aε(Xm) ≤ const and εD(Xm) ≤ Aε(Xm). Hence we
can apply Lemma 2 to Γm ≡ Γ for all m ∈ N, and consequently there is a
Xε ∈ C(Γ ) such that

d(Γ, ε) ≤ Aε(Xε) ≤ lim inf
m→∞

Aε(Xm) = d(Γ, ε),

which yields (15), i.e.

Aε(Xε) ≤ Aε(X) for all X ∈ C(Γ ).

By Theorem 1 of Section 8.2 this implies (16). �
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Now we can prove the main result (cf. Theorem 1 in Section 8.2):

Theorem 2. Suppose that the Douglas condition a(Γ ) < a+(Γ ) holds. Then
there is a mapping X ∈ C(Γ ) with

(18) A(X) = inf
C(Γ )

A = inf
C(Γ )

D = D(X)

satisfying the conformality relations

|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0 in B

as well as X ∈ C2(B, R3) and

(19) ΔX = 0 in B.

Furthermore, X maps ∂B homeomorphically onto Γ .

Proof. Let ε0 > 0 be as in Theorem 1 and consider the mapping Xε ∈ C(Γ ),
0 < ε ≤ ε0, satisfying (15) and (16). Then A(Xε) = D(Xε), and consequently

d(Γ, ε) = Aε(Xε) = A(Xε) = D(Xε) for 0 < ε ≤ ε0.

For an arbitrary Y ∈ C(Γ ) we have

Aε(Xε) ≤ Aε(Y ) ≤ D(Y ),

whence

d(Γ ) ≤ D(Xε) = Aε(Xε) ≤ Aε(Y ) ≤ D(Y ) for all Y ∈ C(Γ ).

This yields
d(Γ ) ≤ D(Xε) ≤ d(Γ )

and therefore
d(Γ ) = D(Xε) for all ε ∈ (0, ε0].

Then it follows for all Y ∈ C(Γ ) and any ε, ε′ ∈ (0, ε0]:

a(Γ ) ≤ A(Xε) = Aε(Xε) = Aε′
(Xε′

) ≤ Aε′
(Y ).

Since Aε′
(Y ) → A(Y ) as ε′ → +0, we arrive at

a(Γ ) ≤ A(Xε) ≤ a(Γ ),

which implies
a(Γ ) = A(Xε).

Thus we have

A(Xε) = D(Xε) = a(Γ ) = d(Γ ) for 0 < ε ≤ ε0,
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that is,

(20) A(Xε) = inf
C(Γ )

A = inf
C(Γ )

D = D(Xε).

Fix some ε ∈ (0, ε0] and set X = Xε. From

D(X) = inf
C(Γ )

D

it follows that X is harmonic in B, and by virtue of X ∈ H1
2 (B, R3) and

X|∂B ∈ C0(∂B, R3) we conclude that X ∈ C0(B, R3), i.e. X ∈ C(Γ ). On
account of (20) we obtain

A(X) = inf
C(Γ )

A = inf
C(Γ )

A = inf
C(Γ )

D = inf
C(Γ )

D = D(X).

Finally one proves in the same way as for Theorem 3 in Section 4.5 that X
maps ∂B homeomorphically onto Γ . This completes the proof of the theorem.
�

8.7 Further Discussion of the Douglas Condition

We had formulated the Douglas condition as the assumption that

(1) a(Γ ) < a+(Γ )

holds true. Jesse Douglas [28] noted that (1) is equivalent to the assumption

(2) d(Γ ) < d+(Γ )

where d(Γ ) and d+(Γ ) are defined by

d(Γ ) := inf
C(Γ )

D, d+(Γ ) := inf
C+(Γ )

D.

Using the notation of the previous section, this means

d(Γ ) = d(Γ, 1), d+(Γ ) = d+(Γ, 1).

In fact, Douglas pointed out that the gist of his method to find a minimal sur-
face X bounded by Γ = 〈Γ1, . . . , Γk 〉 consisted in using exclusively Dirichlet’s
integral D instead of the area, replacing condition (1) by (2), cf. [28], p. 232,
and all later authors proceeded in the same way. In order to prove that his
solution is area minimizing, Douglas showed

(3) a(Γ ) = d(Γ ),

and the proof of this identity he based on a theorem by P. Koebe, according
to which every polyhedral surface possesses an a.e.-conformal representation
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of the same topological type. Our proof of (3) in Theorem 2 of Section 8.6
required no such tool, but was based on the assumption (1). Now we want to
show that a(Γ ) = d(Γ ) and a+(Γ ) = d+(Γ ) holds for any contour Γ , without
using any conformal mapping theorem. This in turn will yield the equivalence
of the conditions (1) and (2) which are often called the sufficient condition of
Douglas.

First, however, we note that for any contour Γ = 〈Γ1, . . . , Γk 〉 one has the
two inequalities

(4) a(Γ ) ≤ a+(Γ ) and d(Γ ) ≤ d+(Γ ),

which are sometimes denoted as necessary condition of Douglas. Clearly,
(4) follows from the inequality

(5) d(Γ, ε) ≤ d+(Γ, ε) for ε ∈ [0, 1],

which was established in Lemma 3 of Section 8.6.
Furthermore we recall (cf. Theorem 2 of Section 8.6):

(6) Inequality (1) implies a(Γ ) = d(Γ ).

Theorem 1. We have

(7) a(Γ ) = d(Γ ) for k ≥ 1

and

(8) a+(Γ ) = d+(Γ ) for k ≥ 2

Proof. (i) For k = 1, the identity (7) was proved in Chapter 4.
(ii) Let k = 2 and Γ = 〈Γ1, Γ2〉.

(α) a+(Γ ) = a(Γ1) + a(Γ2)
(i)
= d(Γ1) + d(Γ2) = d+(Γ ).

(β) If a(Γ ) < a+(Γ ) then a(Γ ) = d(Γ ) by (6).

(γ) If a(Γ ) = a+(Γ ) then a(Γ )
(α)
= d+(Γ )

(4)

≥ d(Γ ), and trivially we have

(9) a(Γ ) ≤ d(Γ ) for any k ≥ 1

because of A ≤ D. Thus a(Γ ) = d(Γ ) also in case (γ), and by (4) it follows
a(Γ ) = d(Γ ) in any case if k = 2.

(iii) Let k = 3 and Γ = 〈Γ1, Γ2, Γ3〉.

(α) a+(Γ ) = min{a(Γμ) + a(Γν) + a(Γρ), a(Γμ, Γν) + a(Γρ) :
(μ, ν, ρ) ∼ (1, 2, 3)}

= min{d(Γμ) + d(Γν) + d(Γρ), d(Γμ, Γν) + d(Γρ) :
(μ, ν, ρ) ∼ (1, 2, 3)}

= d+(Γ ).



580 8 Introduction to the Douglas Problem

(β) If a(Γ ) < a+(Γ ) then a(Γ ) = d(Γ ) by (6).

(γ) If a(Γ ) = a+(Γ ), then by (α), (4) and (9) it follows

a(Γ ) = d+(Γ ) ≥ d(Γ ) ≥ a(Γ ),

whence a(Γ ) = d(Γ ) in any case on account of (4), if k = 3.
(iv) The general case is proved by induction: Suppose that (7) is verified

for k ≤ N . Then we obtain for k = N + 1:

(α) a+(Γ ) = d+(Γ ). In fact,

a+(Γ ) = min{a(Γ 1) + · · · + a(Γ s) :
{Γ 1, . . . , Γ s} = partition of Γ with s ≥ 2},

d+(Γ ) = min{d(Γ 1) + · · · + d(Γ s) :
{Γ 1, . . . , Γ s} = partition of Γ with s ≥ 2},

and Γ � consists of k� closed curves, k1 + · · · + ks = N + 1, whence k� ≤ N for

 = 1, . . . , s, and since (7) holds for k ≤ N , we obtain a(Γ 1) = d(Γ 1), . . . ,
a(Γ s) = d(Γ s); therefore we have (8) for k = N + 1.

(β) If a(Γ ) < a+(Γ ) then a(Γ ) = d(Γ ).

(γ) If a(Γ ) = a+(Γ ), then by (α), (4), and (9):

a(Γ ) = d+(Γ ) ≥ d(Γ ) ≥ a(Γ )

whence a(Γ ) = d(Γ ) in any case on account of a(Γ ) ≤ a+(Γ ). �

Similarly one proves

Theorem 2. For any ε ∈ [0, 1] we have

(10) a(Γ, ε) = d(Γ, ε) = a(Γ ) = d(Γ ) if k ≥ 1

and

(11) a+(Γ, ε) = d+(Γ, ε) = a+(Γ ) = d+(Γ ) if k ≥ 2;

therefore also

(12) a+(Γ ) − a(Γ ) = d+(Γ ) − d(Γ ) = d+(Γ, ε) − d(Γ, ε) if k ≥ 2.

Corollary 1. The conditions (1) and (2) are equivalent.

Corollary 2. In Theorem 1 of Section 8.6 we can choose ε0 = 1.
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8.8 Examples

We now exhibit some examples when the sufficient Douglas condition a(Γ ) <
a+(Γ ) is satisfied.

1 Let k = 2, and consider two closed, rectifiable, disjoint Jordan curves Γ1

and Γ2 that lie in planes Π1 and Π2 which intersect in a straight line L. By
S1 and S2 we denote the two bounded planar domains in Π1 and Π2 with the
boundary contours Γ1 and Γ2 respectively. Then

a(Γ1) = area(S1), a(Γ2) = area(S2).

Suppose that S1 ∩ S2 is nonempty. Then S1 and S2 intersect in a closed interval
I contained in L. The line L decomposes S1 and S2 into the pieces S+

1 , S−
1 and

S+
2 , S−

2 respectively with S+
1 ∩ S−

1 := I1 ⊂ L and S+
2 ∩ S−

2 =: I2 ⊂ L. Take
an interior point P ∈ L, a bisectrix L′ of one of the angles between Π1 and
Π2 meeting L at P perpendicularly, and consider a sufficiently small circular
cylinder Z with the axis L′. Then Z intersects S+

1 , S−
1 , S+

2 , S−
2 in closed curves

γ+
1 , γ−

1 , γ+
2 , γ−

2 consisting of semi-ellipses ε+1 , ε−
1 , ε+2 , ε−

2 and an interval j ⊂ I.
Let E+

1 , E−
1 , E+

2 , E−
2 be the “full” semi-ellipses bounded by γ+

1 , γ−
1 , γ+

2 , γ−
2

respectively. Then γ1 := γ+
1 ∪ γ+

2 spans a nonparametric minimal surface M1

with
area(M1) < area(E+

1 ∪ E+
2 ),

and γ2 := γ−
1 ∪ γ−

2 spans a nonparametric minimal surface M2 with

area(M2) < area(E−
1 ∪ E−

2 ).

Then the set

Σ := (S1 ∪ S2 ∪ M1 ∪ M2) \ (E+
1 ∪ E+

2 ∪ E−
1 ∪ E−

2 )

has an area less than that of S1 ∪ S2, i.e.

area(Σ) < area(S1 ∪ S2) = area(S1) + area(S2).

We can construct a mapping X ∈ C(Γ ), Γ := 〈Γ1, Γ2〉, such that

Σ = X(B), B = dom(X) ∈ N(2),

and thus we have

a(Γ ) ≤ A(X) = area(Σ) < a(Γ1) + a(Γ2) = a+(Γ ).

Hence we have

Proposition 1. Γ = 〈Γ1, Γ2〉 satisfies the Douglas condition if Γ1 and Γ2

fulfill the assumptions stated above. In particular, we have a(Γ ) < a+(Γ ) for
Γ = 〈Γ1, Γ2〉 if Γ1 and Γ2 are closed, rectifiable, disjoint planar Jordan curves
in R

3 which are linked.
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Fig. 1. An annulus-type minimal surface bounded by two interlocking closed curves

Actually, it is irrelevant that Γ1 and Γ2 are planar, and a similar reasoning
as above yields

Theorem 1. Suppose that the contour Γ = 〈Γ1, Γ2〉 consists of two closed,
rectifiable, disjoint Jordan curves in R

3 which are linked. Then a(Γ ) <
a+(Γ ) = a(Γ1) + a(Γ2), and so there is a minimal surface X ∈ C(Γ ) with
B = dom(X) ∈ N(2) and A(X) = a(Γ ), i.e. X is an area-minimizing mini-
mal surface of annulus type bounded by two linked closed curves Γ1 and Γ2.

J. Douglas (cf. [13], p. 351) obtained Theorem 1 as a corollary of the
following

Theorem 2. Let Γ1 and Γ2 be two nonintersecting, closed, rectifiable Jordan
curves in R

3, and suppose that there are minimal surfaces X1 ∈ C(Γ1), X2 ∈
C(Γ2) with A(X1) = a(Γ1), A(X2) = a(Γ2) such that X1(w1) = X2(w2)
for some w1, w2 ∈ B = B1(0) = dom(X1) = dom(X2). Then Γ = 〈Γ1, Γ2〉
satisfies the Douglas condition a(Γ ) < a+(Γ ) = a(Γ1) + a(Γ2), and so there
is an annulus-type minimal surface X ∈ C(Γ ) with A(X) = a(Γ ).

Remark 1. Instead of giving a geometric proof for a(Γ ) < a+(Γ ), Douglas
derived the inequality d(Γ ) < d+(Γ ) in an analytic way working with the
Dirichlet integral and arranging for w1 = w2 = 0. Using the harmonic mapping
H : {r < |w| < 1} → R

3, 0 < r < 1, with the boundary values H(w) = X1(w)
for |w| = 1, H(w) = X2(w) for |w| = r. Then it can be shown that

D(H) < D(X1) + D(X2) = d(Γ1) + d(Γ2) for 0 < r � 1,

which implies d(Γ ) < d+(Γ ) for Γ = 〈Γ1, Γ2〉, and we know that this inequal-
ity is equivalent to a(Γ ) < a+(Γ ).

Essentially the same proof can be found in J.C.C. Nitsche [28], pp. 531–
533.

Remark 2. Both Douglas and Nitsche assumed in addition that w1 is not a
branch point of X1 and w2 is not a branch point of X2. These requirements
are now superfluous because of the Osserman–Alt–Gulliver result.
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Remark 3. Note that for planar Γ1 and Γ2 the result of Theorem 2 is essen-
tially contained in Proposition 1. Furthermore, the proof of this proposition
can be modified to yield Theorem 2.

2 Obviously the Douglas condition a(Γ ) < a+(Γ ) = a(Γ1) + a(Γ2) for Γ =
〈Γ1, Γ2〉 is satisfied if Γ1 and Γ2 bound a doubly connected surface S with

area(S) < a(Γ1) + a(Γ2),

say, the lateral surfaces of a conical frustum, or a cylindrical surface. This
simple observation was used in the construction of a one-parameter family of
triply-connected minimal surfaces bounded by three coaxial circles Γ1, Γ2, Γ3;
see Section 4.15.

3 Finally we note that the Douglas condition a(Γ ) < a+(Γ ) is satisfied for
Γ = 〈Γ1, Γ2, . . . , Γk 〉, k ≥ 2, if the distinct, closed, rectifiable Jordan curves
Γ1, Γ2, . . . , Γk form the boundary of a bounded, k-fold connected domain Ω
in R

2:
∂Ω = Γ1 ∪̇ Γ2 ∪̇ · · · ∪̇ Γk.

In fact, each contour Γj bounds a simply connected, bounded domain Ωj in
R

2, and we may assume that

Ω = Ω1 \ {Ω2 ∪ · · · ∪ Ωk },

i.e. Γ1 is the “exterior” boundary curve of Ω. Then

(1) area(Ω) = area(Ω1) −
{

k∑
j=2

area(Ωj)

}
.

Let Γ = {Γ 1, . . . , Γ s} be an arbitrary partition of the boundary curves
Γ1, . . . , Γk, s ≥ 2. We may assume that Γ1 belongs to Γ 1, i.e. Γ 1 =
〈Γ1, Γj2 , . . . , Γj�

〉 with 1 < j2 < · · · < j� and 1 ≤ 
 < k. Then

a+(Γ ) := inf{a(Γ 1) + · · · + a(Γ s) : {Γ 1, . . . , Γ s} = partition of Γ }

whence

(2) a+(Γ ) ≥ a(Γ 1) = area(Ω1) −
�∑

ν=2

area(Ωjν )

(
∑�

ν=2 = 0 if 
 = 1). From (1) and (2) we infer

a+(Γ ) > area(Ω) = a(Γ ).

Thus we can apply Theorem 2 of Section 8.6. Combining this with the rea-
soning that was used in Section 4.11 to prove Riemann’s mapping theorem
(cf. Theorem 1 in Section 4.11), we obtain Koebe’s mapping theorem:
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Theorem 3. Let Ω be a k-fold connected domain in C whose boundary con-
sists of k closed, mutually disjoint Jordan curves Γ1, . . . , Γk. Then there exists
a homeomorphism f from B onto Ω, B ∈ N(k), which is holomorphic in B
and satisfies f ′(w) �= 0 for all w ∈ B.

P. Koebe also proved that f is uniquely determined up to a Möbius trans-
formation, i.e. if f ∗ is another mapping like f from B

∗
onto Ω, B∗ ∈ N(k),

then there is a Möbius transformation τ from B
∗

onto B with f ∗ = f ◦ τ . An
elegant proof of this fact can be found in Courant and Hurwitz [1], pp. 517–
519. In another form, a uniqueness result is stated and proved in R. Courant
[15], pp. 187–191: f ∗ = f if f, f ∗ ∈ N1(k) and f(ζ) = f ∗(ζ) for a fixed point
ζ ∈ ∂B1(0).

8.9 Scholia

1. The first to study general Plateau problems for minimal surfaces of higher
topological type was Jesse Douglas; his work was truly pioneering, and his
ideas and insights are as exciting and important nowadays as at the time when
they were published, more than half a century ago. It seems that Douglas was
the first to grasp the idea that a minimizing sequence could be degenerating
in topological type, and he interpreted such a conceivable degeneration as a
change in the conformal structure. He based his notion of degeneration on the
representation of Riemann surfaces as branched coverings of the sphere. Then
degeneration meant “disappearance of branch cuts”. The intuitive meaning
of degeneration is the shrinking of handles and the tendency to separate the
Riemann surface into several components. Since degeneration is unavoidable
in general, Douglas had the idea of minimizing not over surfaces of a fixed
topological type but also over all possible reductions of the given type. In
this set of Riemann surfaces of varying topological type, Douglas introduced
a notion of convergence as convergence of branch points in the representation
of the surfaces as branched coverings of the sphere. The compactness of this
set of Riemann surfaces seemed to be a trivial matter to him since his whole
argument reads: “This is because the set can be referred to a finite number
of parameters, e.g., the position of the branch points . . .”. This reasoning
is, however, rather inaccurate since the position of branch points alone does
not determine the structure of the surface. Douglas also argued on a rather
intuitive level when it came to the lower semicontinuity of Dirichlet’s integral
with respect to the convergence of surfaces. Taking the compactness of the
above set of Riemann surfaces and the lower semicontinuity of Dirichlet’s
integral for granted, it is then obvious that an absolute minimum of Dirichlet’s
integral in the class of surfaces considered by Douglas must be achieved, either
in a surface of desired (highest) topological type or in one of reduced type. In
this way Douglas was led to his celebrated solution of the general Plateau
problem:
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Given a boundary configuration Γ = 〈Γ1, . . . , Γk 〉 consisting of k ≥ 1 closed,
rectifiable, mutually disjoint Jordan curves Γ1, . . . , Γk in R

3, there is a con-
nected minimal surface X of prescribed Euler characteristic and prescribed
character of orientability, bounded by Γ , provided that the infimum a(Γ ) of
area for all admissible surfaces is less than the infimum a+(Γ ) of Dirichlet’s
integral or of the sum of Dirichlet integrals for surfaces of lower type bounded
by Γ .

Here a possibly disconnected surface Y bounded by Γ is called of lower
type if at least one of the following degenerations occurs:

(i) Y has a smaller Euler characteristic than prescribed;
(ii) Y is disconnected and consists of several connected pieces of total charac-

teristic (= sum of the characteristics of the connected pieces) not greater
than prescribed, and each piece is bounded by complementary subsets of
{Γ1, . . . , Γk } which together make up Γ .

J. Douglas published this most general result in his 1939 paper [28]. Al-
ready in 1931 he had treated the case Γ = 〈Γ1, Γ2〉 for annulus-type minimal
surfaces (cf. [18]), and one-sided minimal surfaces in a given contour he had
discussed 1932 in his paper [15]. Further work dealing with the general Plateau
problem are his papers [27,29] and [31].

2. R. Courant [9,11], and M. Shiffman [3,5] put the pioneering work of Douglas
on a solid basis by solving the variational problem “D → min” within a class
of surfaces of fixed topological type. In this context we also mention H. Lewy’s
lecture notes [3] from 1939.

Courant gave a very clear exposition of his method in his treatise [15]
from 1950 for minimal surfaces X : B → R

3 with B ∈ N , where the class
N of parameter domains comprises either (a) schlicht k-circle domains, or
(b) slit domains, or (c) Riemann domains over the w-plane bounded by k unit
circles and having branch points of total multiplicity 2k − 2 (cf. Courant [15],
pp. 144–145, 149); other types are briefly discussed in [15], pp. 164–166.

3. Douglas has based his investigations on the use of symmetric Riemann
surfaces without boundary which are obtained as doubles of Riemann surfaces
of genus g with k boundary curves. This idea is also employed in the study
of the general Plateau problem by F. Tomi and A. Tromba [5], which will be
presented in Chapter 4 of Vol. 3.

An exposition of how to solve the Douglas problem for surfaces of higher
topological type or for nonorientable surfaces is presented in Courant [15],
pp. 160–164. In particular, the existence proof for surfaces of the topological
type of the Möbius strip with one boundary contour is worked out in detail.
For the general case, Courant refers to Shiffman [3].

Another presentation of the work of Douglas is given in the treatise [6]
of J. Jost. In Nitsche’s Vorlesungen [28], the Douglas problem for annulus-
type minimal surfaces with two boundary curves is treated. C.B. Morrey [8],
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Chapter 9, described a solution of the Douglas problem for k-fold connected
minimal surfaces.

The Douglas problem for H-surfaces was studied by H. Werner [1] for
H = const, and for variable H by S. Luckhaus [1].

Beautiful soap film experiments with minimal surfaces are described in
papers by Courant [10] and by Almgren and Taylor [1].
4. Douglas also treated the case of configurations Γ = 〈Γ1, . . . , Γk 〉 with non-
rectifiable curves. In this regard we refer to Section 17 of his paper [28],
pp. 279–287.
5. The idea to prove Koebe’s mapping theorem via the solution of the general
Plateau problem was also conceived by Douglas in [11] and [28]. Courant
presented an elaboration of this approach in Chapter 5, pp. 167–198, of his
treatise [15].

A generalization of Lichtenstein’s mapping theorem to Riemannian metrics
on multiply connected domains is due to J. Jost [6] and [17]; the original
approach by Morrey [8] is incorrect. A new proof in the spirit of Section
4.11 was given in the paper [8] by Hildebrandt and von der Mosel. Jost [6]
treated the Douglas problem for orientable minimal surfaces in a Riemannian
manifold; see also Morrey [3] and [8]. The nonorientable case was worked out
by F. Bernatzki [1].
6. The presentation of this chapter is based on the work of Courant [15] and
on the papers of Kurzke [1], Kurzke and von der Mosel [1], and Hildebrandt
and von der Mosel [6,8].
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