
Chapter 7

Graphs with Prescribed Mean Curvature

This chapter is devoted to nonparametric surfaces of prescribed mean cur-
vature H, that is, to H-surfaces which can be represented as graphs over
planar domains. Nonparametric minimal surfaces, i.e. graphs with H = 0,
were already considered in Section 2.2, and the celebrated two-dimensional
Bernstein theorem was described in Section 2.4. Generalizations of this result
are presented in Volume 3 of this treatise.

One can find a wealth of theorems on nonparametric minimal surfaces
and H-surfaces in the monographs of J.C.C. Nitsche [28], D. Gilbarg and
N. Trudinger [1], U. Massari and M. Miranda [1], E. Giusti [4], as well as in
the notes [8] of L. Simon, in his survey paper [9], and in his encyclopaedia
article [17], IV. Clearly the abundance of this material deserves a thorough
and comprehensive presentation which exceeds the scope of the present book.
For this reason we merely describe some existence and uniqueness results for
the nonparametric Plateau problem (i.e. the Dirichlet problem) for minimal
surfaces and, more generally, for H-surfaces, which can be derived from the
solution of the parametric Plateau problem for minimal surfaces, studied in
Chapter 4, and for H-surfaces that will be treated in Vol. 2.

We shall base our investigations on the results of Chapter 5 concerning
stable minimal- and H-surfaces, and so we will use the same notations as in
Chapter 5. The discussion ends in Section 7.3 with a presentation of some
basic estimates for nonparametric H-surfaces, namely Heinz’s maximal ra-
dius theorem, Serrin’s maximal height theorem, and Finn’s area estimate. Fur-
thermore a gradient estimate for nonparametric H-surfaces is derived. The
section closes with an energy estimate for the difference of two solutions of
the H-surface equation, which can be used to prove unique solvability of the
H-surface equation even in cases when the classical maximum principle fails.
An application of this estimate is a theorem about the removability of isolated
singularities of nonparametric H-surfaces which generalizes Bers’s celebrated
result that isolated singularities of solutions for the minimal surface equation
can be removed.
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The basic feature of this chapter is the Gaussian approach viewing graphs
as regular parametric surfaces whose normals N = (N1, N2, N3) point into
the upper hemisphere

S2
+ := {x ∈ R

3 : 〈x, e〉 > 0}

where e denotes some unit vector in R
3. Applying a rotation we can assume

that e = e3 = (0, 0, 1), and then N(B) ⊂ S2
+ means N3 > 0.

7.1 H-Surfaces with a One-to-One Projection onto a Plane,
and the Nonparametric Dirichlet Problem

In Section 4.9 Radó’s result on minimal surfaces with a 1–1 projection onto
a plane was presented, using H. Kneser’s lemma. Now we take up these con-
siderations following F. Sauvigny [1,2], and the textbook [16], where in Chap-
ter XII, §9, the Dirichlet problem for the nonparametric H-surface equation
is solved by a continuity method.

For the following we assume that H(x, y, z) is a real-valued function on
R

3 of class C1,α(R3), 0 < α < 1, satisfying

(1) sup
R3

|H| ≤ h0 and Hz(x, y, z) ≥ 0 on R
3

for some h0 ∈ (0, ∞). Set

(2) r0 =
1

2h0
.

Let R
2 be the x, y-plane with the points p = (x, y). The Euclidean distance

of two points p = (x, y) and p′ = (x′, y′) is denoted by

|p − p′ | :=
√

(x − x′)2 + (y − y′)2.

The disk with radius r > 0 and center p0 = (x0, y0) is

Br(p0) := {p ∈ R
2 : |p − p0| < r}.

Specifically we introduce the disk

(3) Ω0 := Br0(0) = {p ∈ R
2 : |p| < r0}

of radius r0 about the origin, and the closed circular cylinder

(4) Z := Ω0 × R = {(x, y, z) ∈ R
3 : (x, y) ∈ Ω0, z ∈ R}.
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Definition 1. (i) A bounded open set Ω of R
2 is called a Jordan domain if

it is bounded by a closed Jordan curve.
(ii) A Jordan domain Ω in R

2 with 0 ∈ Ω ⊂ Ω0 is said to be 2h0-convex
if for every point p′ ∈ ∂Ω there is a closed disk S0 := Br0(p0) such that

(5) Ω ⊂ S0 and p′ ∈ ∂Ω ∩ ∂S0.

We call S0 a support disk of Ω at the point p′ ∈ ∂Ω.

Remark 1. A Jordan domain Ω with 0 ∈ Ω ⊂ Ω0 with ∂Ω ∈ C2,α, 0 < α < 1,
is 2h0-convex if and only if the curvature κ of the positive-oriented boundary
∂Ω satisfies κ(p) ≥ 1/r0 = 2h0 at each point p ∈ ∂Ω.

Let Γ be a rectifiable closed Jordan curve in R
3, and recall that C(Γ )

denotes the class of surfaces X : B → R
3 bounded by Γ . We fix a three-point

condition

(∗) X(ζk) = Qk for k = 1, 2, 3,

with ζk = exp( 2πk
3 i) and three given distinct points Qk ∈ Γ , thereby express-

ing the orientation of Γ . As usual we denote by C∗(Γ ) the class of surfaces
X ∈ C(Γ ) satisfying (∗).

Now we consider regular curves Γ ∈ C3,α which lie as graphs above the
boundary ∂Ω of a 2h0-convex Jordan domain. This means the following: There
is a function γ ∈ C3,α(∂Ω) above the boundary ∂Ω ∈ C3,α such that

(6) Γ = {(p, γ(p)) ∈ R
3 : p ∈ ∂Ω}.

Then we write:

(7) Γ = graph γ.

Furthermore we assume that Qk = (qk, γ(qk)), qk ∈ ∂Ω, holds where q1, q2, q3

induce a positive orientation of ∂Ω.

Theorem 1. Let Ω be a Jordan domain in R
2 with 0 ∈ Ω ⊂ Ω0 which is

2h0-convex, ∂Ω ∈ C3,α, and suppose that Γ ∈ C3,α is given as a graph γ
for some γ ∈ C3,α(∂Ω), whereas H ∈ C1,α satisfies (1). Then there exists
exactly one stable H-surface X ∈ C∗(Γ ). This surface is an immersion and
even an embedding of Ω into R

3, and it can be represented nonparametrically
as graph ζ, where ζ ∈ C3,α(Ω) is a solution of the boundary value problem

(8)
Mζ = 2H(·, ζ)(1 + | ∇ζ|2)3/2 in Ω,

ζ = γ on ∂Ω,

and Mζ denotes the minimal surface operator

(9) Mζ := (1 + ζ2
y )ζxx − 2ζxζyζxy + (1 + ζ2

x)ζyy.
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Proof. (i) Consider the vector field

Q(x, y, z) :=
1
2

(∫ x

0

H(t, y, z) dt,
∫ y

0

H(x, t, z) dt, 0
)
,

satisfying divQ = H on Z, and the associated functional

E(X) :=
∫

B

(
1
2

| ∇X|2 + 2[Q(X), Xu, Xv]
)

du dv

defined by formula (4) of Section 5.3.
By minimizing E among all X ∈ C∗(Γ ) with X(B) ⊂ Z one obtains an

H-surface X contained in C∗(Γ )∩C3,α(B,R3) with X(B) ⊂ int Z (cf. Gulliver
and Spruck [1], Hildebrandt [10]; these results are described in Chapter 4 of
Vol. 2). On account of 5.3, Theorem 1, the H-surface X is stable since it also
minimizes

F (X) :=
∫

B

(|Xu ∧ Xv | + 2[Q(X), Xu, Xv]) du dv

in the class {X ∈ C∗(Γ ) : X(B) ⊂ Z} and satisfies X(B) ⊂ int Z.
(ii) Now we consider an arbitrary stable H-surface X of class C∗(Γ ) ∩

C3,α(B,R3) with X(B) ⊂ Z. We write

X(w) = (X1(w), X2(w), X3(w)) = (f(w), X3(w))

where f : B → R
2 denotes the associated planar mapping

(10) f(w) := (X1(w), X2(w)), w ∈ B.

One realizes that f |∂B maps ∂B homeomorphically onto ∂Ω. We claim that

(11) f(B) ⊂ Ω. �

Otherwise we could find a point w̃ ∈ B with f(w̃) �∈ Ω. Then there is
a support disk S0 of Ω at some p′ ∈ ∂Ω ∩ ∂S0 such that f(w̃) /∈ intS0,
and Ω ⊂ intS0. Let S0 = Br0(p0) and consider the family Φ(w, λ), w ∈ B,
λ ∈ [0, 1], of functions

Φ(w, λ) := |f(w) − λp0|2, w ∈ B,

which satisfy
Φ(w, λ) ≤ r2

0 for w ∈ ∂B and 0 ≤ λ ≤ 1.

On account of X(B) ⊂ intZ we have

Φ(w, 0) < r2
0 for w ∈ B
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whereas Φ(w̃, 1) > r2
0. Then there is a λ∗ ∈ (0, 1) and a point w∗ ∈ B with

(12) Φ(w∗, λ∗) = r2
0 and Φ(w, λ∗) ≤ r2

0 on B.

The conformality relation Xw · Xw = 0 implies | ∇X3|2 ≤ | ∇f |2, and so

ΔΦ(·, λ∗) = 2| ∇f |2 + 2〈f − λ∗p0, Δf 〉
≥ 2| ∇f |2 − 2|f − λ∗p0| |Δf | ≥ 2| ∇f |2 − 2r0|ΔX|
≥ 2| ∇f |2 − 2r0 · 2h0|Xu ∧ Xv | ≥ 2| ∇f |2 − 2|Xu| |Xv |
= 2| ∇f |2 − | ∇X|2 ≥ 2| ∇f |2 − | ∇f |2 − | ∇X3|2 ≥ 0,

that is,

(13) ΔΦ(·, λ∗) ≥ 0 in B.

By virtue of the maximum principle we infer from (12) and (13) that
Φ(w, λ∗) ≡ r2

0 for w ∈ B, which evidently is not true. Thus (11) is valid.
(iii) For each point w′ ∈ ∂B with the image p′ := f(w′) ∈ ∂Ω we consider

the support disk S0 = Br0(p0) and define the auxiliary function Φ : B → R
2

defined by
Φ(w) := |f(w) − p0|2

which satisfies
Φ(w) ≤ r2

0 in B and Φ(w′) = r2
0.

By the same reasoning as before we have

ΔΦ ≥ 0 in B.

Then the boundary point lemma of E. Hopf yields

(14)
∂Φ

∂ν
(w′) = 2

〈
f(w′) − p0,

∂f

∂ν
(w′)

〉
> 0

for the derivative in direction of the exterior normal ν to ∂B at w′ ∈ ∂B. This
immediately implies

(15)
∂X

∂ν
(w′) �= 0 for all w′ ∈ ∂B,

and consequently the H-surface X has no boundary branch points.
Furthermore, Φ assumes its maximum at w′ ∈ ∂B. Therefore

(16)
∂Φ

∂τ
(w′) = 0

holds true where ∂
∂τ denotes the tangential derivative to ∂B at w′.
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Equation (16) implies
〈
f(w′) − p0,

∂f

∂τ
(w′)

〉
= 0, p0 = (x1

0, x
2
0),

whence

(17) X1
τ (w′) = −λ[X2(w′) − x2

0], X2
τ (w′) = λ[X1(w′) − x1

0]

for some λ ∈ R.
Because of

|Xτ (w′)|2 = |Xν(w′)|2 > 0

and
|X3

τ (w′)|2 ≤ c|fτ (w′)|2

for some constant c we arrive at

(18) |fτ (w′)|2 > 0.

Since f is positive-oriented it follows that (17) holds with some λ > 0, and
we infer from (14) that the Jacobian

Jf = det(fu, fv) = det(fν , fτ )

satisfies
Jf (w′) = (X1

νX
2
τ − X1

τX
2
ν )(w′) =

λ

2
Φν(w′) > 0.

Thus we have found

(19) Jf (w′) > 0 for all w′ ∈ ∂B

which is equivalent to

(20) N3(w′) = 〈N(w′), e3〉 > 0 for all w′ ∈ ∂B.

Invoking the fundamental Theorem 2 of Section 5.3 on stable H-surfaces, we
arrive at

(21) N3(w) = 〈N(w), e3〉 > 0 for all w ∈ B.

(iv) Now we want to show that X has no branch points in B, using formula
(21) and applying an index-sum argument to the mapping f : B → R

2 (see
Sauvigny [16], Chapter III).

We use the asymptotic expansion of an H-surface X at an interior branch
point w0 ∈ B which is obtained by the Hartmann–Wintner technique (cf.
Vol. 2, Chapter 3) and has the same form as for minimal surfaces: There is a
vector A ∈ C

3 with A �= 0 and A · A = 0, and an integer n ≥ 1 such that
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(22) Xw(w) = A(w − w0)n + o(|w − w0|n) as w → w0.

If w0 is a regular point of X, i.e. if Xw(w0) �= 0, then the same formula holds
with n = 0. As explained in Section 5.1, the normal

N = |Xu ∧ Xv | −1(Xu ∧ Xv)

satisfies
lim

w→w0
N(w) = |a ∧ b| −1(a ∧ b) = |a| −2(a ∧ b),

where A = a − ib; a, b ∈ R
3 \ {0}, |a| = |b|, 〈a, b〉 = 0. Since H ∈ C1,α, it

follows X ∈ C3,α(B,R3), and by 5.1, Theorem 1, we have: N is of the class
C3,α(B,R3) and satisfies equation (12) of 5.1. Set

a := (a1, a2, a3), b = (b1, b2, b3).

Then (21) yields

(23) a1b2 − a2b1 > 0.

We integrate the first two equations of (22),

X1
w(w) = A1(w − w0)n + o(|w − w0|n)

X2
w(w) = A2(w − w0)n + o(|w − w0|n)

as w → w0,

A1 = a1 − ib1, A2 = a2 − ib2. This leads to

X1(w) = X1(w0) +
1

n + 1
[A1(w − w0)n+1 + A

1
(w − w0)n+1]

+ o(|w − w0|n+1),

X2(w) = X2(w0) +
1

n + 1
[A2(w − w0)n+1 + A

2
(w − w0)n+1]

+ o(|w − w0|n+1)

as w → w0. Using polar coordinates r, ϕ with w = w0 + reiϕ, it follows

X1(w0 + reiϕ) = X1(w0) +
2

n + 1
[a1 cos(n + 1)ϕ + b1 sin(n + 1)ϕ]rn+1

+ o(rn+1),

X2(w0 + reiϕ) = X2(w0) +
2

n + 1
[a2 cos(n + 1)ϕ + b2 sin(n + 1)ϕ]rn+1

+ o(rn+1)

as r → 0.
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When l : C → C denotes the mapping given by the matrix

(24)
2

n + 1

(
a1 b1

a2 b2

)
,

we obtain for f(w) = X1(w) + iX2(w) the expansion

(25) f(w) = f(w0) + l((w − w0)n+1) + o(|w − w0|n+1) as w → w0.

From (23)–(25) we infer that

f(w) �= f(w0) for 0 < |w − w0| < ε � 1.

Furthermore, the “topological index” i(f, w0) of f at w0 is given by

(26) i(f, w0) = n + 1.

The mapping f : B → C is open and satisfies (11): f(B) ⊂ Ω. Since f |∂B

yields a homeomorphism of ∂B onto ∂Ω and f ∈ C0(B,R2), R
2=̂C, it follows

that f(B) = Ω. Then an arbitrarily chosen point z∗ ∈ Ω has at least one and
at most finitely many pre-images w1, . . . , wk in B, i.e.

f(wν) = z∗ for ν = 1, . . . , k.

As f |∂B is positive-oriented, the index-sum formula yields

k∑

ν=1

i(f, wν) = 1

which together with (26) implies k = 1 and i(f, w∗) = 1 for w∗ := w1.
Therefore f |B is a one-to-one mapping of B onto Ω, and (23)–(25) imply
that the Jacobian Jf (w∗) of f at w∗ ∈ B satisfies Jf (w∗) > 0. Thus f |B is
a diffeomorphism from B onto Ω with Jf (w) > 0 for all w ∈ B, i.e. f |B is
orientation preserving.

(v) Now we introduce ζ ∈ C3,α(Ω) by

(27) ζ := X3 ◦ f −1,

which solves the Dirichlet problem (8). Using (1): Hz ≥ 0, the maximum prin-
ciple implies that the solution of (8) is uniquely determined; see e.g. F. Sauvi-
gny [16], Chapter VI, pp. 365–370, or Gilbarg–Trudinger [1]. Therefore, any
two stable H-surfaces within the class {X ∈ C∗(Γ ) : X(B) ⊂ Z} coincide.

Remark 2. Mutatis mutandis, Theorem 1 remains valid if the bounding con-
tour Γ is allowed to creep vertically along the z-axis finitely many times.
The planar map f then possesses finitely many intervals of constancy on ∂B
which correspond to the creeping intervals of X|∂B . However, the parametric
H-surface X has no branch points on B and is uniquely determined within
the class of stable H-surfaces ∈ C∗(Γ ). The Dirichlet boundary values of
ζ := X3 ◦ f −1 on ∂Ω jump finitely often. Even in this case one can verify the
unique solvability of the Dirichlet problem (8) by an “energy method” due to
J.C.C. Nitsche.
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Remark 3. S. Hildebrandt and F. Sauvigny [4–7] have studied the phe-
nomenon that minimal surfaces with a free boundary on a surface S having
edges that may creep along such edges. This work is described in Vol. 3. Gen-
eralizations of these results to H-surfaces can be found in papers by F. Müller
[5–11].

Via a simultaneous approximation of the “projection domain Ω” and the
boundary values one can derive the following result from Theorem 1:

Theorem 2 (Nonparametric Dirichlet problem). Let γ ∈ C0(∂Ω) be pre-
scribed boundary values on a 2h0-convex Jordan domain Ω with 0 ∈ Ω ⊂ Ω0.
Then the Dirichlet problem (8) possesses exactly one solution ζ ∈ C0(Ω) ∩
C3,α(Ω).

Proof. The uniqueness of a solution of (8) is proved in the same way as before,
using the maximum principle. Another way to establish unique solvability
of (8) is to apply Corollary 1 of Section 7.3.

Hence we only have to show the existence of a solution. This will be
achieved with the aid of a suitable approximation procedure, approximating Ω
by smoothly bounded Ωn and γ : ∂Ω → R by smooth functions γn : ∂Ωn → R,
and applying Theorem 1 to the “approximating problems”

(28)
Mζn = 2H(·, ζn)(1 + | ∇ζn|2)3/2 in Ωn,

ζn = γn on ∂Ωn.

Let us sketch this approach.
(i) First we construct a sequence {Ωn} of 2h0-convex domains Ωn with

∂Ωn ∈ C3,α and 0 ∈ Ωn ⊂ Ω such that

(29) dist(∂Ωn, ∂Ω) → 0 as n → ∞

and
length(∂Ωn) ↗ length(∂Ω) as n → ∞

(see F. Sauvigny [1,2] for details). We can write

∂Ω = ω(I), ∂Ωn = ωn(I), I := [0, 2π]

where ω and ωn are 2π-periodic mappings R → R
2 which provide mono-

tonic, positive-oriented representations of ∂Ω and ∂Ωn respectively such that
ω ∈ Lip(R,R2), ωn ∈ C3,α(R,R2). Using polar coordinates about the origin,
we can write ωn and ω in the form

(30) ωn(θ) = (rn(θ) cos θ, rn(θ) sin θ), ω(θ) = (r(θ) cos θ, r(θ) sin θ),

where rn(θ) and r(θ) are 2π-periodic. Because of (29) we can assume that

(31) ωn(θ) ⇒ ω(θ) on R as n → ∞; equivalently: rn(θ) ⇒ r(θ). �
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Since the 2h0-convex curve ω fulfills a chord-arc condition, we can choose
the ωn in such a way that the ωn satisfy a uniform chord-arc condition, i.e.
there is an ε > 0 and an M0 > 0 such that

(32)
∫ θ2

θ1

|ω̇n(θ)|dθ ≤ M0|ωn(θ2) − ωn(θ1)| for all n ∈ N

and all θ1, θ2 ∈ R with θ1 ≤ θ2 and |ωn(θ1) − ωn(θ2)| ≤ ε.

Now we interpret the boundary values γ : ∂Ω → R as a continuous, 2π-
periodic function γ(θ) of the polar angle θ, and we approximate γ uniformly
on R by 2π-periodic functions γn(θ), θ ∈ R, which are of class C3,α(R):

(33) γn(θ) ⇒ γ(θ) on R as n → ∞.

Set

(34) ψn(θ) := (ωn(θ), γn(θ)), ψ(θ) := (ω(θ), γ(θ)), θ ∈ R.

Then we obtain the Jordan contours

(35) Γn := ψn(I) ∈ C3,α, Γ := ψ(I), I = [0, 2π],

whose representations ψn and ψ satisfy

(36) ψn(θ) ⇒ ψ(θ) on R as n → ∞.

This yields the following auxiliary statement : For each ε > 0 there is δ(ε) > 0
such that

(37) |ψn(θ1) − ψn(θ2)| ≤ ε for all θ1, θ2 ∈ R with |θ1 − θ2| ≤ δ(ε), n ∈ N.

(ii) On account of Theorem 1 we obtain: For each n ∈ N there is an
Xn ∈ C∗(Γ ) ∩ C3,α(B,R3), satisfying

(38) ΔXn = 2H(Xn)Xn,u ∧ Xn,v and Xn,w · Xn,w = 0,

which admits an equivalent representation

Zn(x, y) = (x, y, ζn(x, y)), (x, y) ∈ Ωn.

Here ζn ∈ C3,α(Ωn) is a solution of the equation

(39) Mζn = 2H(·, ζn)(1 + | ∇ζn|2)3/2 in Ωn,

which is obtained by

(40) ζn = X3
n ◦ f −1

n ,

where fn : B → R
2 is a diffeomorphism from B onto Ωn with fn ∈

C3,α(B,R2). By (33) we have
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m0 := sup{ |γn(θ)| : θ ∈ R, n ∈ N} < ∞.

Then it follows from Theorem 4 in Section 7.3 that

(41) sup
Ωn

|ζn| ≤ m0 + h−1
0 for all n ∈ N,

and

D(Xn) = A(Xn) = A(Zn)(42)
≤ 3 measΩ + m0[2h0 measΩ + length(∂Ω)] =: c0.

(iii) Now we want to prove a result that will be used to prove equicontinuity
of the sequence {Xn}. To this end we consider an arbitrary mapping X =
(X1, X2, X3) ∈ C0(B,R3) ∩ C2(B,R3) satisfying X(B) ⊂ Ω0 × R = int Z,
Z = Ω0 × R, Ω0 = Br0(0), r0 = (2h0)−1, and

ΔX = 2H(X)Xu ∧ Xv and Xw · Xw = 0 in B

with sup
R3 |H| ≤ h0. Let f := (X1, X2) be the associated planar mapping; it

satisfies
f(B) ⊂ Ω0

and
| ∇X|2 ≤ 2| ∇f |2 in B.

Lemma 1. Let 0 < ε < r0, p∗ ∈ Ω0, Ω := Ω0 ∩ Bε(p∗), G a subdomain of B,
and suppose that f(∂G) ⊂ Bε(p∗) = {p ∈ R

2 : |p − p∗ | ≤ ε}. Then we have

f(G) ⊂ Ω.

Proof. We essentially apply the same reasoning as in part (ii) of the proof
of Theorem 1. Suppose that the assertion is not valid. Then there is a point
w̃ ∈ G with f(w̃) /∈ Ω. Since Ω is 2h0-convex, there exists a support disk
S0 = Br0(p0) at some point p′ ∈ ∂Ω ∩ ∂S0 such that f(w̃) �∈ Br0(p0) and
Ω ⊂ Br0(p0). Set

Φ(w, λ) := |f(w) − λp0|2 for w ∈ G and 0 ≤ λ ≤ 1.

For w ∈ ∂G it follows that |f(w) − p0| ≤ r0 and |f(w)| ≤ ε whence

|f(w) − λp0| ≤ λ|f(w) − p0| + (1 − λ)|f(w)| ≤ λr0 + (1 − λ)ε < r0,

and therefore

Φ(w, λ) < r2
0 for all w ∈ ∂G and λ ∈ [0, 1].
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Furthermore, f(G) ⊂ f(B) ⊂ Ω0 = Br0(0) implies

Φ(w, 0) < r2
0 for all w ∈ G,

and f(w̃) /∈ Br0(p0) yields
Φ(w̃, 1) > r2

0.

Then there exists some λ∗ ∈ (0, 1) and some w∗ ∈ G with

Φ(w∗, λ∗) = r2
0 and Φ(w, λ∗) ≤ r2

0 for all w ∈ G.

By virtue of

ΔΦ(·, λ∗) = 2| ∇f |2 + 2〈f − λ∗p0, Δf 〉
≥ 2{ | ∇f |2 − |f − λ∗p0| |Δf | } ≥ 2{ | ∇f |2 − r0|ΔX| }
≥ 2{ | ∇f |2 − 2h0r0|Xu ∧ Xv | }
≥ 2{ | ∇f |2 − |Xu| |Xv | } ≥ 2{ | ∇f |2 − 1

2 | ∇X|2} ≥ 0,

the function Φ(·, λ∗) is subharmonic in G and assumes its maximum at some
point w∗ ∈ G. This yields Φ(w, λ∗) ≡ r2

0 for all w ∈ G, a contradiction to
Φ(w, λ∗) < r2

0 for all w ∈ ∂G. �

The next result is evident:

Lemma 2. Let G be a subdomain of B such that osc∂GX ≤ ε. Then there is
a point P ∗ = (p∗, z∗) ∈ Z such that

X(∂G) ⊂ Kε(P ∗) := {P ∈ R
3 : |P − P ∗ | ≤ ε},

and, in particular, f(∂G) ⊂ Bε(p∗).

For P ∗ = (p∗, z∗) ∈ R
2 × R we introduce the spherical box Nε,μ(P ∗) with

0 < ε < h−1
0 and μ > 0 by

Nε,μ(P ∗) := {P = (p, z) ∈ R
2 × R : |p − p∗ | ≤ ε, |z − z∗ | ≤ μ + η(p − p∗, ε)}

with
η(p − p∗, ε) :=

√
h−2

0 − |p − p∗ |2 −
√

h−2
0 − ε2 for h0 > 0

and η := 0 for h0 = 0.
If h0 > 0, the boundary of Nε,μ(P ∗) consists of the cylinder

{(p, z) ∈ R
3 : |p − p∗ | = ε, |z − z∗ | ≤ μ}

and the two spherical caps

F+
ε,μ(P ∗) := {(p, z) ∈ R

3 : |p − p∗ | ≤ ε, z = z∗ + μ + η(p − p∗, ε)},
F −

ε,μ(P ∗) := {(p, z) ∈ R
3 : |p − p∗ | ≤ ε, z = z∗ − μ − η(p − p∗, ε)}.
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Lemma 3. We have

Kε(P ∗) ⊂ Nε,ε(P ∗) ⊂ K2ε(P ∗)

for h0 = 0 as well as for h0 > 0 provided that ε < r0 = 1
2h

−1
0 .

Proof. The first inclusion is evident, and the second is evident for h0 = 0,
hence we have to verify it for h0 > 0. We may assume that P ∗ = 0.

Suppose now P = (p, z) ∈ Nε,ε(0), i.e. |p|2 ≤ ε2 and |z| ≤ ε+ η(p, ε). Then

|z| ≤ ε +
√

h−2
0 − |p|2 −

√
h−2

0 − ε2 ≤ ε +
√

h−2
0 −

√
h−2

0 − ε2

≤ ε +
h−2

0 − (h−2
0 − ε2)

√
h−2

0

= (1 + εh0)ε <
3
2
ε.

Therefore,
|p|2 + z2 ≤ ε2 + 9

4ε
2 < 4ε2,

and so P ∈ K2ε(0). �

Lemma 4. Let 0 < ε < r0 = (2h0)−1, and suppose that osc∂GX ≤ ε holds
true for some subdomain G of B. Then we have:

(i) There is a point P ∗ = (p∗, z∗) ∈ Z such that

X(∂G) ⊂ Kε(P ∗) and f(∂G) ⊂ Bε(p∗).

(ii) We have f(G) ⊂ Bε(p∗).
(iii) Finally we obtain

X(G) ⊂ Nε,ε(P ∗) ⊂ K2ε(P ∗).

Proof. Assertion (i) follows from Lemma 2, and (ii) is a consequence of
Lemma 1. Because of Lemma 3 it suffices to prove X(G) ⊂ Nε,ε(P ∗). If
h0 = 0, this is implied by the maximum principle for harmonic mappings.
Thus we may assume h0 > 0. By (ii) we have |f(w) − p∗ | < ε for w ∈ G;
therefore we only have to show

|X3(w) − z∗ | ≤ ε + η(f(w) − p∗, ε) for all w ∈ G.

If this were not true, we could find a number μ > ε and some point w′ ∈ G
such that

|X3(w′) − z∗ | = μ + η(f(w′) − p∗, ε)

and
|X3(w) − z∗ | ≤ μ + η(f(w) − p∗, ε) for all w ∈ G.
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Furthermore, we infer from X(∂G) ⊂ Kε(P ∗) ⊂ Nε,ε(P ∗) that

(43) |X3(w) − z∗ | ≤ ε + η(f(w) − p∗, ε) for w ∈ ∂G.

Thus we obtain w′ ∈ G. Consequently, X(G) either lies entirely below
F+

ε,μ(P ∗) or above F −
ε,μ(P ∗) and touches the corresponding cap at some point

X(w′) with w′ ∈ G. It suffices to consider the first case. Then we have

X3(w) − z∗ ≤ μ +
√

h−2
0 − |f(w) − p∗ |2 −

√
h−2

0 − ε2 for w ∈ G

and equality for w = w′. Setting

Φ(w) := |f(w) − p∗ |2 +
∣∣∣X3(w) − z∗ − μ +

√
h−2

0 − ε2
∣∣∣
2

,

this means

Φ(w) ≤ h−2
0 for all w ∈ G and Φ(w′) = h−2

0 , w′ ∈ G.

We have
|ΔX| ≤ 2h0|Xu ∧ Xv | ≤ h0| ∇X|2

and
ΔΦ = 2| ∇X|2 + 2〈Y,ΔX〉

with
Y :=

(
f − p∗, X3 − z∗ − μ +

√
h−2

0 − ε2
)
.

This yields
|Y (w)| =

√
Φ(w) ≤ h−1

0 for w ∈ G,

whence

ΔΦ ≥ 2| ∇X|2 − 2|Y | |ΔX|
≥ 2| ∇X|2 − 2h−1

0 h0| ∇X|2 = 0 in G.

Thus Φ is subharmonic in G and satisfies

Φ(w′) = h−2
0 = max

G
Φ for some w′ ∈ G,

whence Φ(w) ≡ h−2
0 holds true for all w ∈ G. This, however, is a contradiction

to the property (43) which implies Φ(w) < h−2
0 for w ∈ ∂G on account of

ε < μ. �

(iv) Now we use (37), (42), and the Courant–Lebesgue lemma to make the
oscillation osc∂GXn of the Xn uniformly small for appropriate subdomains
G of B whose boundaries are either circles or two-gons. By Lemma 4(iii), it
follows that the Xn, n ∈ N, are equicontinuous on B. Furthermore, the fn are
uniformly bounded on B since fn(B) ⊂ Ω0, and (40), (41) imply
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sup
B

|X3
n| ≤ m0 + h−1

0 for all n ∈ N.

(This can also be proved by a reasoning similar to (iii).) Thus the Xn are also
uniformly bounded on B. By Arzelà–Ascoli’s theorem we may then assume
that the Xn converge uniformly on B to some X ∈ C0(B,R3), and on account
of (42) we may also assume that

Xn ⇀ X in H1
2 (B,R3).

This implies X ∈ C(Γ ).
(v) From (38) we infer

|ΔXn| ≤ h0| ∇Xn|2 in B for all n ∈ N.

In conjunction with Xn(w) ⇒ X(w) on B, an a priori estimate due to E. Heinz
yields:

For any B′ ⊂⊂ B there is a number c(B′) > 0 such that

(44) sup
B′

| ∇Xn| ≤ c(B′) for all n ∈ N

holds true; cf. Vol. II, Section 2.2, Proposition 1.

Then we infer from (38) and (44) by a standard reasoning that

‖Xn‖C3,α(B′,R3) ≤ c∗(B′, α) for all n ∈ N

and all B′ ⊂⊂ B, and we obtain X ∈ C0(B,R3) ∩ C3,α(B,R3) as well as
Xn → X in C3,β(B′,R3), 0 < β < α, for all B′ ⊂⊂ B and

ΔX = 2H(X)Xu ∧ Xv in B.

Moreover, (38) yields also

Xw · Xw = 0 in B.

Thus X is an H-surface of class C(Γ ).
Let N and Nn be the normals of X and Xn respectively. From N3

n(w) > 0
on B we infer

(45) N3(w) ≥ 0 in B,

and Theorem 1 in Section 5.1 yields

ΔN + 2pN = −2Λ gradH(X).

Since Hz ≥ 0 it follows

(46) ΔN3 + 2pN3 ≤ 0.
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Invoking a reasoning due to E. Heinz [5], Lemma 6, we infer from (45) and
(46) that

(47) N3(w) > 0 in B.

Another possibility to verify (47) is to invoke Moser’s inequality (cf. Sauvigny
[16], vol. 2, p. 369).

Now we proceed as in the proof of Theorem 1 and conclude that X
has no branch points in B and that f := (X1, X2) furnishes a homeomor-
phic mapping from B onto Ω which is diffeomorphic from B onto Ω, and
f ∈ C3,α(B,R2). Then ζ := X3 ◦ f −1 is of class C0(Ω) ∩ C3,α(Ω) and solves
the Dirichlet problem (8).

Remark 4. Since Z3
n := X3

n ◦ f −1
n and fn ⇒ f in B, one can derive the

equicontinuity of the X3
n from formula (9) in Section 7.3.

7.2 Unique Solvability of Plateau’s Problem for Contours
with a Nonconvex Projection onto a Plane

In this section we consider closed Jordan curves Γ in R
3 which possess a

one-to-one projection onto a closed Jordan curve Γ lying in a plane Π, which
we identify with R

2. The points in R
2 are described by p = (x, y), and P =

(x, y, z) denote the points in R
3.

Radó’s theorem states: If Γ is convex then there exists exactly one mini-
mal surface of class C∗(Γ ), and this surface is nonparametric. The existence
follows from Theorem 2 in Section 7.1, and the uniqueness was proved in
Section 4.9. Inspecting this proof, we realize that only planes were used as
comparison surfaces for a given minimal surface X ∈ C(Γ ) in order to derive
a nonparametric representation

Z(x, y) = (x, y, ζ(x, y)), (x, y) ∈ Ω,

of X. Now we shall substitute the plane by Scherk’s first surface from Sec-
tion 3.5.6, restricted to its fundamental domain (see also Sauvigny [16],
pp. 272–273). This comparison surface leads to a new uniqueness theorem
for Plateau’s problem in the case that H = 0, established by F. Sauvigny [12].
To formulate this result we first repeat the definition of Scherk’s surface in
a form that we will use, and then we define the Scherkian tongs which will
replace the ordinary half-space in our considerations.

Definition 1. For each parameter value a > 0 we consider the open square
Q(a) := {(x, y) ∈ R

2 : |x|, |y| < π/(2a)}, where Scherk’s surface S(a) is defined
as the minimal graph

S(a) := {(x, y, σ(x, y)) : (x, y) ∈ Q(a)}(1)

with σ(x, y) :=
1
a
[log cos(ax) − log cos(ay)].
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Then σx(x, y) = − tan(ax), σy(x, y) = tan(ay); the surface element

(2) ω :=
√

1 + σ2
x + σ2

y

and the upwards pointing unit normal

(3) Σ := (−σx/ω, −σy/ω, 1/ω)

are given by

(4)
ω(x, y) = {1 + tan2(ax) + tan2(ay)}1/2

Σ(x, y) = ω−1(x, y)(tan(ax), − tan(ay), 1)
for (x, y) ∈ Q(a).

The intersection of S(a) and the x, z-plane is a principal-curvature line

(5)
(
x, 0,

1
a

log cos(ax)
)
, |x| <

π

2a
,

with the oriented curvature

(6) κ(x) = −a cos(ax), |x| <
π

2a
.

In the limit a → +0 we obtain σ(x, y) = 0 and Q(0) = R
2, i.e. the Scherkian

surface tends to the x, y-plane {z = 0}.

Definition 2. For all parameter values a ≥ 0 we define the Scherkian half-
space (or Scherkian tongs) S+(a) as the set

S+(a) := {(x, y, z) ∈ R
3 : (x, y) ∈ Q(a), x > σ(y, z)}

whose boundary is the Scherk surface

∂S+(a) = {(σ(y, z), y, z) : (y, z) ∈ Q(a)}

with σ(y, z) =
1
a
[log cos(ay) − log cos(az)],

which lies over the y, z-plane.
Rotating S+(a) about the z-axis such that the plane vector e1 = (1, 0, 0) is

transformed into the vector

ν = (ν1, ν2, 0) ∈ S1 × {0},

and translating the origin 0 ∈ R
3 into the point P0 = (x0, y0, z0) of R

3, we
obtain the general Scherkian halfspace (or tongs)

S+(a, P0, ν) ⊂ R
3.
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Fig. 1. Scherkian tongs

Note that the open set S+(a, P0, ν) “emanates” from its boundary point
P0 ∈ ∂S+(a, P0, ν) “in the direction ν” and possesses a square of side-length
π/a as projection domain perpendicular to ν.

Now we can formulate the main result of this section, Sauvigny’s unique-
ness theorem.

Theorem 1. Let Ω be a Jordan domain in R
2 with Γ := ∂Ω ∈ C3,α. Further-

more, consider boundary values γ ∈ C3,α(Γ ) and define the Jordan contour
Γ in R

3 by

(7) Γ := {(p, γ(p)) ∈ R
3 : p ∈ Γ },

which has a 1–1 projection onto Γ = ∂Ω. Let ν : ∂Ω → S1 × {0} be the
interior unit normal to ∂Ω, and suppose that for each point p0 ∈ ∂Ω there
is a parameter value a0 = a(p0) such that for P0 := (p0, γ(p0)) ∈ Γ and
ν0 := ν(p0) we have

(8) Γ \ {P0} ⊂ S+(a0, P0, ν0).

As usual we fix a three-point condition (∗) on Γ and denote by C∗(Γ ) the class
of admissible surfaces X : B → R

3 satisfying (∗).
Then there exists exactly one minimal surface X ∈ C∗(Γ ). This surface is

a C3,α-immersion of B into R
3 and possesses a nonparametric representation

(x, y, ζ(x, y)), (x, y) ∈ Ω, as graph of a solution ζ ∈ C3,α(Ω) of the Dirichlet
problem

(9) Mζ = 0 in Ω, ζ(p) = γ(p) on ∂Ω,

for the minimal surface equation.

The basic tool to be used in the proof of Theorem 1 is a comparison prin-
ciple that will allow us to compare an arbitrary parametric minimal surface
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with one of Scherk’s minimal graphs ∂S+(a0, P0, ν0) as well as with other
minimal graphs.

Theorem 2. Let X = (X1, X2, X3) : B → R
3 be a minimal surface with the

associate planar mapping f := (X1, X2) : B → R
2, satisfying f(B) ⊂ Ω, and

the surface normal N : B → S2. Secondly, consider a solution η ∈ C2(Ω)
of the minimal surface equation Mη = 0 in some domain Ω of R

2 with the
normal Ξ : Ω → S2

+ (= open upper hemisphere of S2) and its pull-back

(10) T = (T 1, T 2, T 3) := Ξ ◦ f : B → S2
+.

Then the auxiliary function

(11) Φ := X3 − η(X1, X2) = X3 − η ◦ f

satisfies the elliptic differential equation

(12)
∂

∂u
(T 3Φu) +

∂

∂v
(T 3Φv) − [e3, Tv, N ]Φu − [Tu, e3, N ]Φv = 0 in B,

where e3 := (0, 0, 1), T 3 = 〈T, e3〉, and [a, b, c] denotes the triple product
〈a, b ∧ c〉.

Proof. (i) We have

(13) ΔX = 0 in B

as well as

(14) N ∧ Xu = Xv, N ∧ Xv = −Xu in B.

Now we consider the reparametrization

(15) Y := (f, η ◦ f) = (X1, X2, η(X1, X2))

of the minimal graph (x, y, η(x, y)), (x, y) ∈ Ω. Since the mean curvature of Y
is identically zero on B, we obtain the parameter-invariant equation

(16) Yu ∧ Tv + Tu ∧ Yv = 0 in B,

whatever the sign and the zero set of the Jacobian Jf = X1
uX

2
v − X2

uX
1
v might

be.
(ii) Set W :=

√
1 + η2

x ◦ f + η2
y ◦ f . Because of

Ξ = {1 + η2
x + η2

y } −1/2(−ηx, −ηy, 1)

we have
T = W −1 · (−ηx ◦ f, −ηy ◦ f, 1), i.e. T 3 = 1/W.
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This leads to

(17)
Φu = −(ηx ◦ f)X1

u − (ηy ◦ f)X2
u + X3

u = W 〈T,Xu〉,
Φv = −(ηx ◦ f)X1

v − (ηy ◦ f)X2
v + X3

v = W 〈T,Xv 〉.

Differentiating Y = (f,X3 + [η ◦ f − X3]) we obtain

Yu = Xu + [(ηx ◦ f)X1
u + (ηy ◦ f)X2

u − X3
u]e3,

Yv = Xv + [(ηx ◦ f)X1
v + (ηy ◦ f)X2

v − X3
v ]e3.

On account of (17), we then arrive at

(18)
Yu = Xu − Φue3,

Yv = Xv − Φve3.

From (17) we infer that the expression

(19) LΦ :=
∂

∂u
(W −1Φu) +

∂

∂v
(W −1Φv)

satisfies

LΦ =
∂

∂u
〈T,Xu〉 +

∂

∂v
〈T,Xv 〉

= 〈T,ΔX〉 + 〈Tu, Xu〉 + 〈Tv, Xv 〉.

In virtue of (13) and (14) we get

LΦ = [Xu, Tv, N ] + [Tu, Xv, N ],

and (18) then yields

LΦ = [Yu + Φue3, Tv, N ] + [Tu, Yv + Φve3, N ]
= 〈Yu ∧ Tv + Tu ∧ Yv, N 〉 + [e3, Tv, N ]Φu + [Tu, e3, N ]Φv.

By (16) it follows that

(20) LΦ = [e3, Tv, N ]Φu + [Tu, e3, N ]Φv.

From (19), (20), and T 3 = 1/W we finally obtain (12). �

If we apply Theorem 2 to η := σ, defined by (1), we find:

Corollary 1. If X = (f,X3) : B → R
3, is a minimal surface with the normal

N satisfying f(B) ⊂ Q(a), then Φ := X3 − σ ◦ f satisfies

(21)
∂

∂u
(Σ3Φu) +

∂

∂v
(Σ3Φv) − [e3, Σv, N ]Φu − [Σu, e3, N ]Φv = 0 in B.
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Now we turn to the

Proof of Theorem 1. We proceed in four steps. First we show that any min-
imal surface X ∈ C∗(Γ ) “lies above Ω”, that means, f(B) ⊂ Ω. Secondly
we prove that X meets the bounding Scherkian graphs transversally. In the
third step we show that a minimizer of D in C∗(Γ ) possesses a nonparametric
representation above Ω. Finally we use the comparison principle of Theorem 2
to identify any minimal surface X ∈ C∗(Γ ) with this minimal graph.

(i) Step 1 (Inclusion Principle). We claim that

(22) f(B) ⊂ Ω.

To verify this assertion we pick an arbitrary point p0 = (x0, y0) ∈ ∂Ω, set
P0 = (p0, γ(p0)), a0 = a(p0), ν0 = ν(p0), and note that

Γ \ {P0} ⊂ S+(a0, P0, ν0)

an account of assumption (8). We want to show that

(23) X(B) ⊂ S+(a0, P0, v0).

By a translation in z-direction and a rotation about the z-axis we arrange for
P0 = 0 and ν0 = e1 = (1, 0, 0), and so (8) in combination with the boundary
condition X(∂B) = Γ takes on the form

(24) X(∂B \ {w0}) ⊂ S+(a0) with p0 = f(w0), w0 ∈ ∂B.

Consider the auxiliary function Ψ ∈ C3,α(B) which is defined by

(25) Ψ(w) := X1(w) − σ(X2(w), X3(w)) for w ∈ B.

This function is built in the same way as the function Φ in Corollary 1, only
that the z-direction is interchanged with the x-direction. Therefore it satisfies
an elliptic differential equation in B since the Scherk surface S+(a0) lies as a
graph over a square {(y, z) : |y|, |z| < π/(2a0)} in the y, z-plane. This equation
is of the same kind as (21), and by (24) we have

(26) Ψ(w) > 0 for all w ∈ ∂B \ {w0}, and Ψ(w0) = 0.

Then the maximum (or, rather, the minimum) principle yields

(27) Ψ(w) > 0 for all w ∈ B.

Thus the assumption (24) implies

X(B) ⊂ S+(a0).

If we return to the original assumption (8), we obtain (23) for all p0 ∈ ∂Ω,
and so we arrive at (22).
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(ii) Step 2 (Transversality at the Boundary). In the situation (26) and
(27), the boundary point lemma of E. Hopf implies

(28)
∂

∂n0
Ψ(w0) < 0 for w0 ∈ ∂B and n0 = w0,

and we also have X(w0) = P0 = 0. Without loss of generality we may assume
that w0 = (0, 1). Then (28) states that the function Ψ(u, v) satisfies

Ψv(0, 1) < 0.

Furthermore, we have

Ψv(0, 1) = X1
v (0, 1) − σy(0, 0)X2

v (0, 1) − σz(0, 0)X3
v (0, 1)

= X1
v (0, 1),

and therefore
X1

v (0, 1) < 0,

whence
|Xu(0, 1)| = |Xv(0, 1)| > 0,

and a reasoning analogous to that in the proof of Theorem 1 in Section 7.1
yields

(X1
uX

2
v − X1

vX
2
u)(0, 1) > 0.

Performing a rotation of B we finally obtain

(29) |Xu(w0)| = |Xv(w0)| > 0 for all w0 ∈ ∂B

and

(30) Jf (w0) = (X1
uX

2
v − X1

vX
2
u)(w0) > 0 for all w0 ∈ ∂B.

This implies for the normal N = (N1, N2, N3) of X the inequality

(31) N3(w0) = 〈N(w0), e3〉 > 0 for all w0 ∈ ∂B.

Consequently, X meets the bounding Scherkian graphs transversally.
(iii) Step 3. Now we take a minimizer X̃ of D, and therefore also of A, in

C∗(Γ ). Then its normal Ñ satisfies

〈Ñ(w), e3〉 = Ñ3(w) > 0 on B

on account of Section 5.3, Theorem 2. Via the arguments in parts (iv) and
(v) of the proof the Theorem 1 in Section 7.1, we see that the plane mapping
f̃ = (X̃1, X̃2) yields a positive-oriented diffeomorphism from B onto Ω, and
ζ̃ := X̃3 ◦ f̃ −1 solves the boundary value problem (9).
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(iv) Step 4. At last, we consider an arbitrary minimal surface X ∈ C∗(Γ ),
which might be nonstable, and compare it with the minimal graph

{(x, y, ζ̃(x, y)) : (x, y) ∈ Ω}

that was obtained in (iii). It satisfies as well the inclusion property (22) and
the transversality relations (29)–(31). To identify X with X̃ we consider the
auxiliary function

Φ := X3 − ζ̃(X1, X2) ∈ C2(B)

from Theorem 2, which fulfills the boundary condition

Φ(w) = 0 for all w ∈ ∂B.

Since Φ satisfies the elliptic equation (12), we conclude that

(32) Φ(w) ≡ 0 on B ⇔ X3 = ζ̃(X1, X2).

This implies in particular for f = (X1, X2) that

X3
u = ζ̃x(f)X1

u + ζ̃y(f)X2
u, X3

v = ζ̃x(f)X1
v + ζ̃y(f)X2

v ,

from which we infer in virtue of (31) that

N = {(1 + ζ̃2
x + ζ̃2

y )−1/2(−ζ̃x, −ζ̃y, 1)} ◦ f

and therefore N3(w) > 0 on B. Now we conclude as in Step 4 that f =
(X1, X2) yields a positive-oriented diffeomorphism from B onto Ω, and ζ :=
X3 ◦ f −1 solves (9). On the other hand, the identity (32) is equivalent to
X3 = ζ̃ ◦ f whence ζ̃ = X3 ◦ f −1 = ζ. Consequently X and X̃ can only differ
by a conformal mapping ϕ from B onto itself, i.e. X = X̃ ◦ ϕ, and this implies
X = X̃ since both surfaces fulfill the same three-point condition (∗). This
completes the proof of the theorem. �

Remark 1. In the paper [12] by Sauvigny, boundary values γ : ∂Ω → R are
explicitly investigated for nonconvex domains with ∂Ω ∈ C3,α such that (9) is
solvable. These boundary values satisfy a Lipschitz condition with a Lipschitz
constant less than one.

We note that, according to a result by Osserman and Finn (see Finn [9]),
(9) cannot be solved for all boundary values γ ∈ C0(∂Ω) if Ω is nonconvex;
a detailed discussion of the pertinent results can be found in the treatise
by J.C.C. Nitsche [28], §§406–411, and also §§648–653. For special classes of
boundary values, a solution of the nonparametric problem (9) for nonconvex
Ω was also provided by C.P. Lau [1], F. Schulz and G. Williams [1], and
G. Williams [1].

Remark 2. H. Wenk [1] improved the results of this section substituting
Scherk’s surface by the catenoid as comparison surface. This approach is more
intricate; however, multiply connected minimal surfaces are then accessible.



516 7 Graphs with Prescribed Mean Curvature

7.3 Miscellaneous Estimates for Nonparametric H-Surfaces

In the sequel we assume that Ω is a bounded Jordan domain in R
2, and that

H : R
3 → R denotes a mean curvature function of class C1,α(R3).

We consider solutions ζ ∈ C3,α of the nonparametric mean curvature equa-
tion where the mean curvature is the prescribed curvature function H(x, y, z),
i.e. we consider nonparametric surfaces

S := graph ζ = {(x, y, ζ(x, y)) ∈ R
3 : (x, y)) ∈ Ω},

the height function z = ζ(x, y) of which satisfies

(1) Mζ(x, y) = 2H(x, y, ζ(x, y))[1 + | ∇ζ(x, y)|2]3/2 in Ω,

where M denotes the minimal surface operator

(2) Mζ = (1 + ζ2
y )ζxx − 2ζxζyζxy + (1 + ζ2

x)ζyy.

(Sometimes, weaker assumptions on H and X suffice.) We begin with the
Maximal Radius Theorem due to E. Heinz [26] whose proof is almost elemen-
tary.

Theorem 1. If there is a solution ζ ∈ C2(Ω) of (1) for a disk Ω = BR(p0)
of radius R > 0, satisfying

(3) inf
Ω

|H(x, y, ζ(x, y))| ≥ β > 0

then it follows R ≤ 1/β.

Proof. Condition (3) implies that either H(·, ζ) > 0 or H(·, ζ) < 0. The second
case can be reduced to the first one by the reflection (x, y, z) �→ (x, y, −z),
and so we can assume that

H(x, y, ζ(x, y)) ≥ β > 0 for (x, y) ∈ Ω.

Let us write (1) in the form

(4)
∂

∂x

(
ζx

W

)
+

∂

∂y

(
ζy

W

)
= 2H(·, ζ) in Ω, W :=

√
1 + ζ2

x + ζ2
y .

Integrating both sides over the disk Br := Br(p0), 0 < r < R, we obtain

2πr2β ≤
∫

Br

2H(x, y, ζ(x, y)) dx dy

=
∫

∂Br

(
ζx

W
dy − ζy

W
dx

)

≤
∫

∂Br

W−1| ∇ζ|
√

dx2 + dy2 ≤
∫

∂Br

ds = 2πr

whence r ≤ 1/β for all r ∈ (0, R). Letting r → R − 0 we arrive at R ≤ 1/β.
�
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One can estimate the supremum of |ζ| for solutions ζ of (1) by their bound-
ary values on sufficiently small disks; cf. F. Sauvigny [16], Vol. 2, Chap. XII,
§9, Proposition 1. This is achieved by comparing the solution with a spherical
cap, a technique proposed by S. Bernstein. With the aid of Bonnet’s parallel
surface from Section 5.2 we now estimate the height of solutions of (1), even
on arbitrary domains, by their boundary values assuming that H = const.
This device was used earlier by H. Liebmann to show that ovaloids of con-
stant mean curvature are necessarily spheres. J. Serrin rediscovered Bonnet’s
surface in his investigation of the so-called large solutions to Plateau’s prob-
lem with constant H > 0. We now derive Serrin’s Maximal Height Theorem
(cf. J. Serrin [5]).

Theorem 2. Let ζ ∈ C0(Ω) ∩ C2(Ω) be a solution of (1) for H = const > 0
which satisfies

(5) |ζ(x, y)| ≤ m for all (x, y) ∈ ∂Ω

with a constant m > 0. Then ζ is estimated by

(6) −m − 1
H

≤ ζ(x, y) ≤ m for all (x, y) ∈ Ω.

Proof. (i) we introduce conformal parameters into Z : Ω → R
3, given by

Z(x, y) := (x, y, ζ(x, y)), (x, y) ∈ Ω, using a positive-oriented uniformization
map f : B → Ω which is a homeomorphism from B onto Ω and furnishes
a conformal mapping from B onto Ω; see Section 4.11, or Sauvigny [16],
Chapter VII, §§7–8. Set X = (X1, X2, X3) := Z ◦ f , and let N be the unit
normal of X and Λ its surface element. Then N3 ≥ 0, and so the equation
ΔX = 2HXu ∧ Xv implies

ΔX3 = 2H(X1
uX

2
v − X1

vX
2
u) ≥ 0 in B.

Thus X3 is subharmonic, and therefore X3 = ζ ◦ f ≤ m on ∂B satisfies
X3 ≤ m on B whence ζ = X3 ◦ f −1 ≤ m on Ω.

(ii) By Theorem 2 of Section 5.2, the parallel surface Y := X + 1
H N is

again an H-surface satisfying

ΔY = 2HYu ∧ Yv = −2HΛ(H2 − K)N in B.

The auxiliary function Φ := Y 3 = 〈Y, e3〉 satisfies

ΔΦ = −2HΛ(H2 − K)N3 ≤ 0 in B,

and so it is superharmonic in B. Since

Φ(w) ≥ −m +
1
H

N3(w) ≥ −m for w ∈ ∂B,

we obtain Φ(w) ≥ −m for w ∈ B, which means that
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X3(w) ≥ −m − 1
H

N3(w) ≥ −m − 1
H

for all w ∈ B

holds true. �

Next we derive an Area Estimate for nonparametric H-surfaces that re-
peatedly appears in the work of R. Finn.

Theorem 3. The area A(Z) :=
∫

Ω

√
1 + | ∇ζ|2 dx dy of an H-surface Z(x, y)

= (x, y, ζ(x, y)), corresponding to a solution ζ ∈ C0(Ω) ∩ C2(Ω) of (1) with
supΩ |H(x, y, ζ(x, y))| ≤ h0, is bounded by

(7) A(Z) ≤ sup
∂Ω

|ζ| · length(∂Ω) + [1 + 2h0 sup
Ω

|ζ|] · measΩ.

Proof. We shall verify (7) for domains Ω with a smooth boundary. Then the
general result follows by approximation. Let us multiply (4) by ζ and integrate
over Ω. Then

2
∫

Ω

ζH(·, ζ) dx dy =
∫

Ω

ζ[(W−1ζx)x + (W−1ζy)y] dx dy

=
∫

Ω

[(W−1ζζx)x + (W−1ζζy)y] dx dy −
∫

Ω

W−1| ∇ζ|2 dx dy

=
∫

∂Ω

W−1ζ(ζx dy − ζy dx) −
∫

Ω

W dx dy +
∫

Ω

W−1 dx dy.

This leads to

(8)
∫

Ω

W dx dy ≤
∫

∂Ω

|ζ| ds + measΩ + 2h0

∫

Ω

|ζ| dx dy

whence
∫

Ω

W dx dy ≤ sup
∂Ω

|ζ| · length(∂Ω) +
[
1 + 2h0 sup

Ω
|ζ|

]
measΩ. �

Let μ := sup∂Ω |ζ| and

η± := ±μ ±
√

h−2
0 − (x2 + y2) ±

√
h−2

0 − r2
0 with 0 < r0 ≤ h−1

0 .

The functions η+ and η− are spherical caps over Ω0 := Br0(0). If 0 ∈ Ω ⊂
Br0(0) then

Mη+ = −2h0(1 + | ∇η+|2)3/2 ≤ 2H(·, η+)(1 + | ∇η+|2)3/2

Mη− = 2h0(1 + | ∇η− |2)3/2 ≥ 2H(·, η−)(1 + | ∇η− |2)3/2
in Ω.

Assuming Hz ≥ 0 we can deduce differential inequalities in Ω for φ+ := ζ −η+

and φ− := ζ − η− (see e.g. Sauvigny [16], Vol. 1, Chapter VI, §2). Then the
maximum principle yields
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η−(w) ≤ ζ(w) ≤ η+(w) for w ∈ Ω.

Therefore

(9) |ζ(w)| ≤ sup
∂Ω

|ζ| + h−1
0 +

√
h−2

0 − r2
0 for all w ∈ Ω.

In the maximal situation r0 = h−1
0 we attain

|ζ(w)| ≤ sup
∂Ω

|ζ| + h−1
0 in Ω.

In conjunction with Theorem 3 we obtain:

Theorem 4. Suppose that 0 ∈ Ω ⊂ Ω0 = Br0(0), r0 = 1/h0, Hz(x, y, z) ≥ 0,
|H| ≤ h0, and let ζ ∈ C0(Ω) ∩ C2(Ω) be a solution of (1). Then we have

(10) sup
Ω

|ζ| ≤ sup
∂Ω

|ζ| + h−1
0

and

(11)
∫

Ω

√
1 + | ∇ζ|2 dx dy ≤ 3 measΩ + [2h0 measΩ + length(∂Ω)] sup

∂Ω
|ζ|.

Theorem 5 (Gradient estimates for H-graphs). Suppose that H ∈ C1,α(R3)
satisfies

(12) Hz(x, y, z) ≥ 0 in R
3, sup

R3
|H| ≤ h0, sup

R3
| ∇H| ≤ h1,

with positive constants h0 and h1. Furthermore let ζ be a solution of (1)
with supΩ |ζ| ≤ M for constant M > 0. Then there is a constant M1 =
M1(h0R, h1R

2,MR−1) > 0, depending only on the quantities h0R, h1R
2,

MR−1, such that

(13) | ∇ζ(p0)| ≤ M1

holds true for any p0 ∈ Ω with BR(p0) ⊂⊂ Ω.

Proof. (i) Let BR := BR(p0) ⊂⊂ Ω; then by (7)

(14)
∫

BR

√
1 + | ∇ζ| dx dy ≤ 2πRM + πR2 + 2h0MπR2.

Introduce conformal parameters for Y (x, y) := (x, y, ζ(x, y)), p = (x, y) ∈
BR(p0), via a uniformizing mapping f ∈ C3,α(B,BR) with f(0) = p0 =
(x0, y0), and set X := Y ◦ f ∈ C3,α(B,R3). Then the resulting H-surface X
satisfies

D(X) = A(X) = A(Y ) =
∫

BR

√
1 + | ∇ζ|2 dx dy,
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and by (14) we obtain

(15) 2D(X) ≤ 4πRM + 2πR2 + 4πh0MR2.

(ii) Now we consider the normalized plane mapping

(16) F (w) := R−1(X1(w) − x0, X
2(w) − y0), w ∈ B,

corresponding to X(w) = (X1(w), X2(w), X3(w)). Clearly, F ∈ C3,α(B,B),
F (0) = 0, and F is a diffeomorphism of B onto itself, which by (16) satisfies

2D(F ) ≤ 2R−2D(X)(17)
≤ 4πMR−1 + 2π + 4π(MR−1)(h0R) =: τ(h0R,MR−1).

Furthermore,

|ΔF | ≤ R−1|ΔX| ≤ h0R
−1| ∇X|2 = h0R

−1(| ∇X1|2 + | ∇X2|2 + | ∇X3|2),

and Xw · Xw = 0 implies

| ∇X3|2 ≤ | ∇X1|2 + | ∇X2|2 = R2| ∇F |2.

This leads to

(18) |ΔF | ≤ 2h0R| ∇F |2 in B.

Now we can apply a distortion estimate due to E. Heinz in the form derived
in F. Sauvigny [16], Chap. XII, §5, formulae (29) and (28), using (17) and
(18). This yields a number δ = δ(h0R,MR−1) ∈ (0, 1) such that

(19) |F (w)| ≥ 1/2 for all w ∈ ∂B1−δ(0),

and numbers ϑ(h0R,MR−1) and λ(h0R,MR−1) such that

(20) 0 < ϑ ≤ | ∇F (w)| ≤ λ for all w ∈ B1−δ(0).

(iii) Next we consider the auxiliary function Φ ∈ C2,α(B) defined by

(21) Φ := N3 = 〈N, e3〉 = Λ−1(X1
uX

2
v − X2

uX
1
v ).

Since

Λ = 2−1| ∇X|2 ≤ R2| ∇F |2 and X1
uX

2
v − X2

uX
1
v = R2JF ,

we obtain

(22) Φ ≥ | ∇F | −2JF > 0 in B,

where JF is the Jacobian of F . On account of (19) it follows that F (B1−δ(0)) ⊃
B1/2(0); therefore
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∫

B1−δ(0)

JF du dv = measF (B1−δ(0)) ≥ 1
4
π.

Furthermore, (20) yields | ∇F (w)| −2 ≥ λ−2 on B1−δ(0), and so (22) implies

(23)
∫

B1−δ(0)

Φdu dv ≥ π

4
λ−2(h0R,MR−1).

By Theorem 1 of Section 5.1 we have

ΔΦ = −2pΦ − 2ΛHz(X)

with
p = 2ΛH2(X) − ΛK − Λ〈gradH(X), N 〉.

Then,

−2p = −2Λ[2H2(X) − K] + 2Λ〈gradH(X), N 〉 ≤ 0 + 2Λh1

and
−2ΛHz(X) ≤ 0.

Consequently we have

ΔΦ ≤ 2(R−2Λ)(h1R
2)Φ ≤ 2| ∇F |2(h1R

2)Φ
(20)

≤ 2λ2(h0R,MR−1)(h1R
2)Φ on B1−δ(0).

Setting
σ(h0R,MR−1, h1R

2) := 2λ2(h0R,MR−1)(h1R
2),

we arrive at
ΔΦ ≤ σΦ in B1−δ(0).

(iv) Now we apply a quantitative version of Moser’s inequality that in two
dimensions had already been proved by E. Heinz [5], Lemma 6′ on p. 216; see
also F. Sauvigny [16], Chap. X, §5, Theorem 1. This yields

Φ(0) ≥ exp
(

− 1
4
(1 − δ)2σ

)
[π(1 − δ)2]−1

∫

B1−δ(0)

Φdu dv.

If we use (23) and define M1(h0R, h1R
2,MR−1) by

M −1
1 := exp

(
− 1

4
(1 − δ)2σ

)
[π(1 − δ)2]−1π

4
λ−2(h0R,MR−1),

it follows that
Φ(0) ≥ 1/M1.

On account of
Φ(0) = N3(0) = (1 + | ∇ζ(p0)|2)−1/2

we obtain
| ∇ζ(p0)| ≤

√
1 + | ∇ζ(p0)|2 = 1/Φ(0) ≤ M1,

which gives the desired gradient estimate (13). �
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Remark 1. This proof of the gradient estimate is due to F. Sauvigny [11].
We note that only the estimate of | ∇F | from above by λ in (20) was used to
derive a bound for | ∇ζ(p0)|. If one wants to obtain curvature estimates then
the lower bound by ϑ in (20) is needed as well. In Sauvigny [7,8], curvature
estimates are derived for solutions ζ of (1), without assuming the monotonicity
condition Hz ≥ 0.

Remark 2. If H(x, y, z) ≡ const, then the graph of a solution ζ of (1) repre-
sents a stable cmc-surface, and Section 5.5 yields an estimate for the principal
curvatures in this class.

Now we prove an estimate for the difference of two solutions of (1), using a
similar idea as in the proof of Theorem 2. For H = 0, the estimate was derived
by J.C.C. Nitsche (see [28], §585). It can be applied to prove uniqueness of
solutions to the Dirichlet problem for (1) with discontinuous boundary values.

Theorem 6. Let Ω be a Jordan domain in R
2 with a rectifiable boundary ∂Ω,

and suppose that ζ1, ζ2 ∈ C0(Ω) ∩ C2(Ω) are two solutions of (1). Then, for
any compact subset Q of Ω and with

(24) μ(Q) := max
{

max
Q

√
1 + | ∇ζ1|2,max

Q

√
1 + | ∇ζ2|2

}

we have

(25)
∫

Q

| ∇ζ1 − ∇ζ2|2 dx dy ≤ 2μ3(Q)
∫

∂Ω

|ζ1 − ζ2| ds,

provided that Hz(x, y, z) ≥ 0 on R
3.

Proof. (i) Let ζ1, ζ2 ∈ C0(Ω) ∩ C2(Ω) be two solutions of (1), and set

pj :=
∂ζj

∂x
, qj :=

∂ζj

∂y
, Wj =

√
1 + p2

j + q2
j , j = 1, 2.

By (4) we have

∂

∂x

(
pj

Wj

)
+

∂

∂y

(
qj

Wj

)
= 2H(·, ζj) in Ω, j = 1, 2.

This leads to

∂

∂x

(
p2

W2
− p1

W1

)
+

∂

∂y

(
q2

W2
− q1

W1

)
= 2H(·, ζ2) − 2H(·, ζ1).

If we multiply this equation by ζ2 − ζ1, integrate over Ω′ ⊂⊂ Ω, and perform
an integration by parts, we obtain
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−
∫

Ω′

[
(p2 − p1)

(
p2

W2
− p1

W1

)
+ (q2 − q1)

(
q2

W2
− q1

W1

)]
dx dy

+
∫

∂Ω′
(ζ2 − ζ1)

[(
p2

W2
− p1

W1

)
dy −

(
q2

W2
− q1

W1

)
dx

]

=
∫

Ω′
2(ζ2 − ζ1)[H(·, ζ2) − H(·, ζ1)]dx dy,

provided that ∂Ω′ is piecewise smooth.
(ii) The boundary integral is estimated by

∣∣∣∣

∫

∂Ω′
(ζ2 − ζ1)[. . .]

∣∣∣∣ ≤ 2
∫

∂Ω′
|ζ2 − ζ1| ds,

and we observe

H(x, y, z2) − H(x, y, z1) = Hz(x, y, z̃)(z2 − z1)

with an intermediate value z̃. Since Hz ≥ 0, we obtain

(z2 − z1) · [H(x, y, z2) − H(x, y, z1)] = Hz(x, y, z̃)(z2 − z1)2 ≥ 0,

and therefore
∫

Ω′
2(ζ2 − ζ1)[H(·, ζ2) − H(·, ζ1)] dx dy ≥ 0.

Thus we arrive at
∫

Ω′

[
(p2 −p1)

(
p2

W2
− p1

W1

)
+(q2 −q1)

(
q2

W2
− q1

W1

)]
dx dy ≤ 2

∫

∂Ω′
|ζ2 −ζ1| ds.

(iii) For 0 ≤ t ≤ 1 we set

p(t) := p1+t(p2 −p1), q(t) := q1+t(q2 −q1), W (t) := {1+p(t)2+q(t)2}1/2,

f(t) := (p2 − p1)
[

p(t)
W (t)

− p1

W1

]
+ (q2 − q1)

[
q(t)
W (t)

− q1

W1

]
.

Note that f(0) = 0. By the mean value theorem there is a value t = t(x, y) ∈
(0, 1) with f(1) = f ′(t), and a brief calculation yields

W ′ ′(t) = W −3(t){ |p′(t)|2 + |q′(t)|2 + [p(t)q′(t) − q(t)p′(t)]2} = f ′(t),

whence
f ′(t) ≥ W −3(t)[(p2 − p1)2 + (q2 − q1)2]

and
W ′ ′(t) ≥ 0.
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Therefore
W (t) ≤ max{W1,W2} for 0 ≤ t ≤ 1,

and consequently

f(1) = f ′(t) ≥ (max{W1,W2})−3[(p2 − p1)2 + (q2 − q1)2].

(iv) Now we choose an arbitrary compact set Q in Ω and then an open set
Ω′ with ∂Ω′ ∈ C1 and Q ⊂ Ω′ ⊂⊂ Ω; set

μ(Q) := max{W1(x, y),W2(x, y) : (x, y) ∈ Q}.

Then DQ(ζ2 − ζ1) := 1
2

∫
Q

| ∇ζ2 − ∇ζ1|2 dx dy is estimated by

DQ(ζ2 − ζ1) ≤ 1
2
μ3(Q)

∫

Q

f(1) dx dy ≤ μ3(Q)
∫

∂Ω′
|ζ2 − ζ1| ds.

Approximating Ω from the interior by domains Ω′ ⊂⊂ Ω such that Ω′ ↗ Ω
and length (∂Ω′) → length(∂Ω), we find

DQ(ζ2 − ζ1) ≤ μ3(Q)
∫

∂Ω

|ζ2 − ζ1| ds. �

Corollary 1. If ζ1, ζ2 ∈ C0(Ω) ∩ C2(Ω) are two solutions of (1) in a Jordan
domain Ω with a rectifiable boundary which satisfy ζ1 = ζ2 on ∂Ω, then we
have ζ1 = ζ2.

Proof. The estimate (25) implies ∇ζ1|Q = ∇ζ2|Q for any compact Q in Ω,
whence ∇ζ1(p) = ∇ζ2(p) for all p ∈ Ω, and therefore ζ1 − ζ2 = const. Since
ζ1(p) = ζ2(p) for p ∈ ∂Ω, we obtain ζ1 = ζ2. �

Remark 3. J.C.C. Nitsche (see [28], §586) has used the technique of the proof
for Theorem 6 to establish a

General Maximum Principle. Let ζ1, ζ2 ∈ C2(Ω \ A), Ω ⊂ R
2, be two

solutions of Mζ = 0 in Ω \ A where A is a compact set in R
2 with H1(A) = 0,

H1 = one-dimensional Hausdorff measure. Furthermore, suppose that

lim
p→p0

[ζ1(p) − ζ2(p)] ≤ M for all p0 ∈ ∂Ω \ A.

Then we obtain ζ1 − ζ2 ≤ M in Ω \ A. Furthermore, if ζ1(p′) − ζ2(p′) = M
for a single point p′ ∈ Ω \ A, it follows ζ1(p) − ζ2(p) ≡ M .

Independently and at the same time, an n-dimensional version of the max-
imum principle was proved by De Giorgi and Stampacchia [1] in 1965. These
authors as well as Nitsche also established the following result.

General Removability Theorem. Let Ω be a domain in R
2, A a compact

subset of Ω with H1(A) = 0, and ζ ∈ C2(Ω \ A) be a solution of Mζ = 0 in
Ω \A. Then there is exactly one extension ζ∗ ∈ C2(Ω) of ζ such that Mζ∗ = 0
in Ω.
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For a proof, see J.C.C. Nitsche [28], §§591–593. This result is a powerful
generalization of a celebrated theorem by L. Bers [2], published in 1951: An
isolated singularity of a solution of the minimal surface equation Mζ = 0 is
removable.

We shall now generalize this to nonparametric H-surfaces. We will remove
sets of exemption points which are specified in

Definition 1. A subset A of a domain Ω in R
2 is called admissible singular

subset of Ω, if it is compact and has the following covering property : For each
ε > 0 there exist N = N(ε) open disks Bk := {p ∈ R

2 : |p − pk | < rk } with
0 < rk < ε, Bk ⊂⊂ Ω,

(26) A ⊂
N⋃

k=1

Bk, Bk ∩ B
 = ∅ for k �=  

and

(27)
N∑

k=1

length(∂Bk) ≤ 2πε.

We call {Bk }1≤k≤N an ε-covering of A.

Remark 4. Obviously, an admissible singular A in Ω is a two-dimensional
null set in R

2 which even satisfies H1(A) = 0; but in addition we require
Bk ∩ B
 = ∅. We note that, the regular part Ω′ := Ω \ A is connected, and
thus Ω′ is a domain. For example, any finite subset A of Ω is admissible.
Also, any compact, denumerable subset A of Ω with at most finitely many
accumulation points is admissible.

We can generalize Theorem 6 in the following way:

Theorem 7. Let A be an admissible singular subset of a Jordan domain Ω
with a rectifiable boundary, Hz(x, y, z) ≥ 0 on R

3, and suppose that ζ1, ζ2 ∈
C0(Ω \ A) ∩ C2(Ω \ A) are solutions of

(28) Mζj = 2H(·, ζj)W 3
j in Ω \ A, Wj :=

√
1 + | ∇ζj |2.

Then we have the weighted energy estimate

(29)
∫

Ω\A

μ| ∇ζ1 − ∇ζ2|2 dx dy ≤ 2
∫

∂Ω

|ζ1 − ζ2| ds

with the positive, continuous weight function μ : Ω \ A → R defined by

(30) μ(x, y) := [max{W1(x, y),W2(x, y)]−3 for (x, y) ∈ Ω \ A.
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Corollary 2. Let the assumptions of Theorem 7 be satisfied and suppose also
that ζ1 = ζ2 on ∂Ω. Then we have

(31) ζ1 = ζ2 on Ω \ A.

Proof. The weighted estimate (29) together with (30) imply that ∇ζ1 = ∇ζ2
in Ω \ A. Since Ω \ A is connected we infer ζ1 − ζ2 = const on Ω \ A, and the
boundary condition ζ1|∂Ω = ζ2|∂Ω finally yields (31). �

As an immediate application of Corollary 2 and of Theorem 1 in Sec-
tion 7.1 we obtain the following Theorem on Removable Singularities
for H-Graphs.

Theorem 8. Let A be an admissible singular subset of the domain Ω in R
2,

and ζ ∈ C2(Ω \ A) be a solution of

(32) Mζ = 2H(·, ζ){1 + | ∇ζ|2}3/2 in Ω \ A,

where H satisfies sup
R3 |H| ≤ h0 and Hz(x, y, z) ≥ 0 on R

3.
Then ζ can be extended to a function of class C2(Ω) which satisfies (1).

Proof. Choose 0 < ε < h0, and let {Bk }1≤k≤N be an ε-covering of A. With
the aid of Theorem 2 in Section 7.1 we obtain solutions ζk ∈ C0(Bk) ∩ C2(Bk)
of

Mζk = 2H(·, ζk){1 + | ∇ζk |2}3/2 in Bk,

ζk = ζ on ∂Bk.

Corollary 2 can be applied to the pair {ζ|Bk
, ζk }, and we obtain ζ = ζk

on Bk \ A, k = 1, . . . , N(ε). Thus it follows ζ ∈ C2(Ω), and (1) is now an
immediate consequence of (32). �

It remains to establish Theorem 7.

Proof of Theorem 7. (i) We first assume that ∂Ω ∈ C1. Then we write (28)
in the form

div(W −1
j ∇ζj) = 2H(·, ζj) in Ω′ := Ω \ A, j = 1, 2.

Subtracting the two equations from each other we obtain

1
2

div[(W −1
1 ∇ζ1) − (W −1

2 ∇ζ2)] = H(·, ζ1) − H(·, ζ2)(33)

= (ζ1 − ζ2)
∫ 1

0

Hz(·, ζ2 + t(ζ1 − ζ2)) dt on Ω′.

For any ζ ∈ C2(Ω \ A) we define the truncated function [ζ]M , 0 < M < ∞,
by
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[ζ]M (x, y) :=

⎧
⎪⎨

⎪⎩

M for ζ(x, y) ≥ M,

ζ(x, y) for |ζ(x, y)| < M,

−M for ζ(x, y) ≤ −M,

(x, y) ∈ Ω \ A.

Clearly, [ζ1 − ζ2]M ∈ H1
2,loc(Ω

′) ∩ L∞(Ω′). Moreover we infer from (33) that

0 ≤ 2[ζ1 − ζ2]M [ζ1 − ζ2]
∫ 1

0

Hz(·, ζ2 + t(ζ1 − ζ2)) dt(34)

= [ζ1 − ζ2]M div[W −1
1 ∇ζ1 − W −1

2 ∇ζ2]
= div{[ζ1 − ζ2]M [W −1

1 ∇ζ1 − W −1
2 ∇ζ2]

− 〈∇[ζ1 − ζ2]M ,W −1
1 ∇ζ1 − W −1

2 ∇ζ2〉 on Ω′.

We note that the open sets

ΩM := {(x, y) ∈ Ω′ : |ζ1(x, y) − ζ2(x, y)| < M }, M > 0,

exhaust Ω′ monotonically, i.e. ΩM ↗ Ω′ as M → ∞, in the sense that
ΩM ⊂ ΩM̃ for M < M̃ and Ω′ =

⋃∞
M=1 ΩM .

(ii) Let ε > 0, and choose an ε-covering {Bk }1≤k≤N of A. Define the
subdomain Ωε of Ω′ by

Ωε := Ω \ {B1 ∪ · · · ∪ BN }.

The Ωε exhaust the regular domain Ω′ = Ω \ A, i.e. Ωε → Ω′ for ε → +0, but
the exhaustion need not be monotonic.

For any ε > 0, the vector field η := [ζ1 −ζ2]M [W −1
1 ∇ζ1 −W −1

2 ∇ζ2] belongs
to the class H1

2 (Ωε,R
2) ∩ C0(Ωε,R

2). Thus we may apply an integration by
parts to (34) integrated over Ωε, thereby obtaining

∫

Ωε ∩ΩM

〈∇ζ1 − ∇ζ2,W
−1
1 ∇ζ1 − W −1

2 ∇ζ2〉 dx dy(35)

≤
∫

∂Ωε

〈[ζ1 − ζ2]M [W −1
1 ∇ζ1 − W −1

2 ∇ζ2], ν〉 ds,

where ν denotes the exterior unit normal to the domain Ωε, which is of
class C1. Since η ∈ L∞(Ω′) and

N(ε)∑

k=1

length(∂Bk) ≤ 2πε,

we infer from (35) for ε → 0 that
∫

ΩM

〈∇ζ1 − ∇ζ2,W
−1
1 ∇ζ1 − W −1

2 ∇ζ2〉 dx dy(36)

≤ 2
∫

∂Ω

|ζ1 − ζ2| ds for all M > 0.
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Now we could use the reasoning from part (iii) in the proof of Theorem 6 to
derive the following estimate from (36):

(37)
∫

ΩM

μ| ∇ζ1 − ∇ζ2| dx dy ≤ 2
∫

∂Ω

|ζ1 − ζ2| ds for all M > 0.

Instead it might be welcome to the reader if we present the following detailed
computation, because it gives some geometric insight. Consider the function
F (p) =

√
1 + |p|2 on R

2. Setting p = (α, β), we have F (p) =
√

1 + α2 + β2,
and the Hessian Fpp(p) of F is given by

Fpp(p) = F −3(p)C(p) with C(p) :=
(

1 + β2 −αβ
−αβ 1 + α2

)
.

With γ = (ξ, η) ∈ R
2 we obtain for the quadratic form associated with C(p)

that

〈γ, C(p)γ〉 = ξ2 + β2ξ2 − 2αβξη + η2 + α2η2

= ξ2 + η2 + (αη − βξ)2 ≥ ξ2 + η2 = |γ|2.

Therefore,

(38) 〈γ, Fpp(p)γ〉 ≥ F −3(p)|γ|2.

For p1, p2 ∈ R
2 we obtain

Fp(p1) − Fp(p2) =
∫ 1

0

Fpp(p2 + t(p1 − p2))(p1 − p2) dt,

whence by (38),

〈p1 − p2, Fp(p1) − Fp(p2)〉

=
∫ 1

0

〈p1 − p2, Fpp(p2 + t(p1 − p2))(p1 − p2)〉 dt

≥
(∫ 1

0

F −3(p2 + t(p1 − p2)) dt
)

|p1 − p2|2.

By (38), the function F (p) is convex; hence

F (p2 + t(p1 − p2)) ≤ max{F (p1), F (p2)} for 0 ≤ t ≤ 1.

Then it follows

(39) 〈p1 − p2, Fp(p1) − Fp(p2)〉 ≥ [max{F (p1), F (p2)}]−3|p1 − p2|2.

With p1 := ∇ζ1(x, y) and p2 := ∇ζ2(x, y) we obtain

Fp(p1) = W −1
1 (x, y)∇ζ1(x, y), Fp(p2) = W −1

2 (x, y)∇ζ2(x, y),
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and then

〈∇ζ1 − ∇ζ2,W
−1
1 ∇ζ1 − W −1

2 ∇ζ2〉 ≥ μ| ∇ζ1 − ∇ζ2|2.

In conjunction with (36), this implies (37).
Letting M tend to infinity and recalling ΩM ↗ Ω′, we infer with the aid

of B. Levi’s theorem on monotone convergence the desired inequality (29)
with μ given by (30), provided that ∂Ω ∈ C1.

(ii) If ∂Ω is merely a rectifiable Jordan curve, we exhaust Ω by domains
Ωj with A ⊂ Ωj ⊂⊂ Ω, ∂Ωj ∈ C1, and length (∂Ωj) → length (∂Ω) as
j → ∞. Then the desired estimate is obtained from the estimate for Ωj in the
limit j → ∞. �

7.4 Scholia

1. In this chapter we presented an approach to the Dirichlet problem for the
minimal surface equation Mζ = 0 and, more generally, for the nonparametric
H-surface equation

(1) Mζ = 2H(·, ζ)[1 + | ∇ζ|2]3/2 in Ω

in two dimensions. The special feature of our method is to start with a solution
X of the Plateau problem for the parametric equation

(2) ΔX = 2H(X)Xu ∧ Xv in B

and then to show that X possesses an equivalent nonparametric representation
Y (x, y) = (x, y, ζ(x, y)) with ζ solving (1), provided that Γ is a graph above
the boundary of a 2h0-convex domain Ω in R

2 and that |H| ≤ h0 as well as
Hz ≥ 0. The transition from the parametric problem to the nonparametric
one is based on the projection theorem by F. Sauvigny [1,2]. For the minimal
surface equation this idea was invented by T. Radó [21] in the proof of his
uniqueness theorem for Plateau’s problem, see Section 4.9. For the general
case, the uniqueness is restricted to stable H-surfaces. Sauvigny’s ideas were
generalized to the study of free boundary value problems for minimal surfaces
(cf. S. Hildebrandt and F. Sauvigny [1–7]; see Vol. 3) and also for H-surfaces
(F. Müller [5–11]).

Besides the treatises of Nitsche [28], Gilbarg and Trudinger [1], and Sauvi-
gny [16] we also refer to the monograph on capillarity problems by R. Finn
[11] as well as to later work by this author.

2. An independent proof of the removability theorem of Bers was given by
R. Finn [1]. Finn’s result extends to isolated singularities of solutions to equa-
tions of the minimal surface type. L. Bers [5] gave another proof of Finn’s
theorem using the uniformization theorem, and eventually Finn [6] strength-
ened Bers’s method, thereby obtaining a removability for a more general type
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of nonlinear elliptic equations. Nitsche’s removability theorem appeared first
in his paper [12]. De Giorgi and Stampacchia [1] proved: If ζ ∈ C2(Ω \ K) is
a solution of the n-dimensional minimal surface equation in Ω \ K where Ω
is an open set in R

n and K a compact subset of Ω with Hn−1(K) = 0, then u
extends to a C2-solution on the whole of Ω. L. Simon [3] showed that it is in
fact only necessary for K to be a locally compact subset of Ω, and therefore K
can extend to the boundary of Ω. Furthermore, Simon’s method carries over
to equations of the form

n∑

j=1

DjFpj (x, −Dζ, 1) = H(x),

where F (x, p) is a positive definite, elliptic Lagrangian satisfying λF (x, p) =
F (x, λp) for λ > 0. We also refer to work of M. Miranda [1], G. Anzellotti [1],
and Hildebrandt and Sauvigny [8].
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