
Chapter 5

Stable Minimal- and H-Surfaces

Solving Plateau’s problem in the preceding chapter we concentrated our at-
tention to a solution X of this problem, and we somewhat neglected its Gauss
mapping N , the surface normal of X. However, the mapping N turns out to
be continuous even in case of a branched solution X, and so it is seen to be a
real analytic surface of constant mean curvature one. As it will be very useful
to study the pair (X, N) together and not X alone, we are invited to enlarge
our spectrum and to investigate directly surfaces of prescribed mean curva-
ture. This will enable us in Chapter 7 to solve the nonparametric equation
of prescribed mean curvature via the solution of Plateau’s problem for para-
metric surfaces of prescribed mean curvature. Using and extending the ideas
presented in Chapter 4, this more general Plateau problem for H-surfaces will
be solved in Vol. 2, Chapter 4. In order to shorten the presentation of this
chapter we shall strongly rely on the treatise of F. Sauvigny [16] as well as on
Vol. 2. Especially the control of the boundary regularity will be indispensable
for our considerations.

In Section 5.1 we derive the basic equation for the Gauss map N of an
H-surface X : B → R

3 and prove that N is a classical—and in particular
continuous solution of this equation. In Section 5.2 we study a substitute
for the Weingarten mapping S introduced in Section 1.2, namely Bonnet’s
mapping R : TwX → TwX, which leads to the definition of Bonnet’s surface
Y : B → R

3 for a constant mean curvature surface (= cmc-surface). This
surface again is a cmc-surface of mean curvature one provided that not all
points of X are umbilical points, and it might give more information than N
if properly exploited.

The stability of H-surfaces is discussed in Section 5.3 by means of the
second variation δ2F (X, ϕN), ϕ ∈ C∞

c (B), of a functional F defined by

(1) F (X) = A(X) + 2V (X), V (X) :=
∫

B

〈Q(X), Xu ∧ Xv 〉 du dv

where the associated vector field Q : R
3 → R

3 is defined by the equation
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(2) div Q(x) = H(x).

Although Q is not uniquely determined by H, the stability condition depends
only on H: X is stable if

(3)
∫

B

| ∇ϕ|2 du dv ≥ μ

∫
B

pϕ2 du dv for all ϕ ∈ C∞
c (B)

and μ = 2 with

(4) p := Λ[2H2(X) − K − 〈Hx(X), N 〉], Λ := |Xu ∧ Xv |,

while strict stability of X means that (3) holds true with μ > 2.
The central result of this section states that the stability of X together

with the monotonicity condition

(5)
∂H

∂e
= 〈Hx, e〉 ≥ 0 for some e ∈ S2

and the boundary condition 〈N, e〉 > 0 on ∂B implies 〈N, e〉 > 0 on B.
In Section 5.4 a kind of converse is proved for immersed cmc-surfaces

satisfying 〈N, e〉 > 0 on B for some e ∈ S2 as they prove to be strictly
stable. Furthermore a cmc-surface X is strictly stable if its density function
p = 2H2 − K satisfies

(6)
∫

B

(2H2 − K)Λdu dv < 2π.

For minimal surfaces (H = 0, K ≤ 0) this condition means

(7)
∫

B

|K| dA < 2π.

Finally Gulliver’s estimate

(8) A(X) ≤ 2μ

2μ − 1
πr2

is established for any μ-stable, immersed cmc-surface X ∈ C2,α(B, R3),
μ > 1/2, representing a geodesic disk Kr(x0) of radius r. This leads to the
curvature estimate

(9) κ2
1(0) + κ2

2(0) ≤ c(h0)r−2

with a universal constant c(h0) proved in Theorems 1 and 2 of Section 5.5.
This estimate holds for all stable, immersed cmc-surfaces X with X(0) = 0
and |H| ≤ h0 which represent a geodesic disk Kr(0) of radius r around the
origin. The estimate (9) implies a “Bernstein-type” result that was first stated
by do Carmo and Peng [1] and by Fischer-Colbrie and Schoen [1].

In Section 5.6 the uniqueness theorem of J.C.C. Nitsche is proved, after
establishing the perturbation equation for a field embedding and constructing
the field immersion of a strictly stable immersed minimal surface that can be
slightly extended beyond its boundary.
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5.1 H-Surfaces and Their Normals

In Theorem 1 of Section 2.6 we have seen that a regular (i.e. immersed) surface
X ∈ C2(Ω, R3), Ω ⊂ R

2, that satisfies the conformality relations

(1) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0

is a surface of mean curvature H(u, v) at (u, v) ∈ Ω if and only if X satisfies
Rellich’s equation

(2) ΔX = 2HXu ∧ Xv.

Suppose now that H(x) is a prescribed scalar-valued function of x ∈ R
3 which

is of class C0,α(R3), 0 < α < 1. Then a C2-solution X of (2) with H := H ◦ X
and satisfying (1) will be called a surface of prescribed mean curvature H
in R

3. As for minimal surfaces we will also consider branched surfaces of this
kind, i.e. we allow points w ∈ Ω where the function Λ, defined by

(3) Λ := |Xu|2 = |Xv |2 = |Xu ∧ Xv | = W,

is vanishing. Such points are again called branch points of X. As usual
we write H(X) for the composed function H ◦ X. Summarizing we give the
following

Definition 1. A nonconstant solution X ∈ C2(Ω, R3), Ω ⊂ R
2, of

(4) ΔX = 2H(X)Xu ∧ Xv,

satisfying the conformality relations (1), will be called an H-surface. We speak
of an immersed H-surface X if Λ given by

|dX|2 = Λ · (du2 + dv2)

satisfies

(5) Λ(u, v) > 0 for all points (u, v) ∈ Ω.

If H(x) ≡ const we may address X as a constant H-surface; also the notation
cmc-surface is common.

All notions of these definitions pertain to the class C2(Ω, R3). Usually we
shall investigate disk-type H-surfaces, i.e. the parameter domain Ω will in
most cases be the unit disk

B := {w = (u, v) ∈ R
2 : |w| < 1},

and often the complex notation w = u + iv ∈ C is used.
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Remark 1. Suppose that H ∈ Cr,α(R3), r ≥ 0, α ∈ (0, 1). Then any solution
X ∈ C2(Ω, R3) of (4) is of class Cr+2,α(Ω, R3). This result follows from elliptic
theory; see e.g. Sauvigny [16], Chapter IX, §4.

Remark 2. Let H ∈ C0,α(R3), 0 < α < 1, and suppose that X is an H-
surface of class C0(B, R3) ∩ C2(B, R3) such that X(∂B) lies on a regular
Jordan curve Γ of class C2,α. Then X ∈ C2,α(B, R3). If H ∈ Cr−2,α(R3) and
Γ ∈ Cr,α, r ≥ 2, it follows that X ∈ Cr,α(B, R3). For a proof see Vol. 2,
Section 7.3.

Remark 3. Let X be an H-surface of class C2,α(B, R3) or C2,α(B, R3) re-
spectively. Then, for each point w0 ∈ B or B, there is a vector A ∈ C

3 with
A �= 0 and 〈A, A〉 = 0, and a nonnegative integer n = n(w0) such that

(6) Xw(w) = A(w − w0)n + o(|w − w0|n) as w → w0.

A proof of this fact by means of the Hartman-Wintner technique is given in
Vol. 2, Section 2.10 (using Section 3.1 of Vol. 2). Another proof can be found in
Sauvigny [16], Chapter XII, §10 which is based on the theory of “generalized
analytic functions” (see Sauvigny [16], Chapter IV). The point w0 is a branch
point of X if and only if n(w0) ≥ 1, and n(w0) ≥ 1 is called the order of the
branch point w0 ∈ B (or B respectively). The point w0 is a regular point of
X if and only if n(w0) = 0.

Formula (6) implies that branch points w0 of an H-surface X ∈ C2,α(B, R3)
or ∈ C2,α(B, R3) are isolated in B or B respectively. In the first case there
are at most finitely many branch points in any Ω ⊂⊂ B, and in the second
case there are at most finitely many branch points w1, . . . , wk+� ∈ B, say,
w1, . . . , wk ∈ B and wk+1, . . . , wk+� ∈ ∂B. The points w1, . . . , wk are the in-
ner branch points of X, and wk+1, . . . , wk+� the boundary branch points
of the H-surface X.

The first fundamental form ds2 of an H-surface X is given by

ds2 = 〈dX, dX〉 = Λ(du2 + dv2)(7)
= 2〈Xw, Xw 〉(du2 + dv2) = 2|Xw |2(du2 + dv2).

The set of regular points of X ∈ C2(B, R3), denoted by B
′
, is given by

(8) B
′
= {w ∈ B : Λ(w) > 0} = B \ {w1, . . . , wk+�}.

An important tool to cope with branch points analytically is the subsequent

Proposition 1. There exists a sequence {χn} of functions χn ∈ C∞
c (B

′
) with

0 ≤ χn ≤ 1 satisfying

(9) lim
n→∞

χn(w) = 1 for all w ∈ B
′

and lim
n→∞

D(χn) = 0.
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Proof. For 0 < r < R we define the functions φ(w) by φ(w) := 1 for |w| ≤ r,
φ(w) := 0 for |w| ≥ R, and

φ(w) :=
log |w| − log R

log r − log R
for r < |w| < R.

Then 0 ≤ φ ≤ 1 and, for any R > 0,∫
R2

| ∇φ|2 du dv =
2π

log(R/r)
→ 0 as r → +0.

By mollifying these functions we can construct a sequence {φn} of functions
φn ∈ C∞(R2) with 0 ≤ φn ≤ 1 such that φn(w) = 0 for |w| ≥ Rn, Rn → 0,
φn(w) = 1 for |w| ≤ rn, 0 < rn < Rn, and

∫
R2 | ∇φn|2 du dv → 0 as n → ∞.

Furthermore we have φn(w) → 0 for all w �= 0.
Finally we define χn ∈ C∞(B) for n ∈ N by

χn(w) :=
k+�∏
ν=1

[1 − φn(w − wν)], w ∈ B.

Obviously the sequence {χn} possesses the desired properties. �

Now we consider the normal N of an H-surface X near a branch point
w0 ∈ B. A straight-forward calculation yields

(10) N = Λ−1Xu ∧ Xv =
−i

〈Xw, Xw 〉 Xw ∧ Xw.

Inserting the asymptotic expansion (6) with A = a − ib, a, b ∈ R
3, |a| = |b|,

〈a, b〉 = 0, we obtain

(11) N(w) → |a| −2a ∧ b ∈ S2 for w ∈ B
′
with w → w0.

Therefore the normal N can be extended continuously from B
′
into the branch

points of X, i.e. N ∈ C0(B, R3) with N(B) ⊂ S2. Furthermore, N is of class
C2,α on B′ and C1,α on B

′
. F. Sauvigny [1,2] proved that N is even of class

C2,α on B and established the following

Theorem 1. The normal N to an H-surface X ∈ C3,α(B, R3) is of class
C2,α(B, R3) and satisfies the differential equation

(12) ΔN + 2pN = −2ΛHx(X)

with

(13) p := 2ΛH2(X) − ΛK − Λ〈Hx(X), N 〉.

For the term ΛK involving the Gaussian curvature K of X we have

ΛK ∈ C1,α(B).
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Proof. (i) Equation (12) with (13) is derived on B′ := B \ {w1, . . . , wk } in
Sauvigny [16], Chapter XII, §9 (see Proposition 2). If the reader wants to
check it, he finds the necessary formulae from classical differential geometry
in Chapter 1 above, particularly in Section 1.3.

Using the Weingarten equations one obtains on B
′
:

| ∇N |2 = |Nu|2 + |Nv |2 = Λ−1(L2 + 2M2 + N2)(14)

= Λ−1[(L + N)2 − 2(LN − M2)]

= 4ΛH2(X) − 2ΛK = 2[2ΛH2(X) − ΛK].

Invoking the evident orthogonal expansion

(15) ΛHx(X) = 〈Hx(X), Xu〉Xu + 〈Hx(X), Xv 〉Xv + Λ〈Hx(X), N 〉N

we transform the differential equation (12) into the following equivalent form:

(16) ΔN + N | ∇N |2 + f(X, ∇X) = 0 in B′,

with

(17) f(X, ∇X) := 2[〈Hx(X), Xu〉Xu + 〈Hx(X), Xv 〉Xv].

(ii) By the Gauss–Bonnet theorem (see Vol. 2, Section 2.11, Theorem 1 and
in particular Remark 2) it follows that

∫
B

|K| dA =
∫

B
Λ|K| du dv is finite.

Then (14) implies that

(18)
∫

B

| ∇N |2 du dv < ∞.

With the aid of a “smoothing sequence” {χn} from Proposition 1 we now
derive a weak differential equation for N in B, using (16). To this end we
choose an arbitrary test function φ ∈ C∞

c (B, R3), multiply (16) by φ · χn, and
perform an integration by parts. Then

∫
B

〈∇N, ∇(φ · χn)〉 du dv(19)

=
∫

B

〈N, φ〉 | ∇N |2χn du dv +
∫

B

〈f(X, ∇X), φ〉χn du dv.

In this identity we want to let n tend to infinity. First we consider the left-hand
side; we have

∫
B

〈 ∇N, ∇(φ · χn)〉 du dv

=
∫

B

〈∇N, ∇φ〉χn du dv +
∫

B

〈 ∇N, φ∇χn〉 du dv,
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and Schwarz’s inequality yields
∣∣∣∣
∫

B

〈∇N, φ∇χn〉 du dv

∣∣∣∣
≤

{∫
B

| ∇N |2 du dv

}1/2{∫
B

|φ∇χn|2 du dv

}1/2

≤ 2 sup
B

|φ|
√

D(N)
√

D(χn) → 0 as n → ∞

on account of (18) and D(χn) → 0. Furthermore, χn(w) → 1 on B′. Then
(18) and Lebesgue’s convergence theorem imply

∫
B

〈∇N, ∇φ〉χn du dv →
∫

B

〈∇N, ∇φ〉 du dv

whence ∫
B

〈∇N, ∇(φ · χn)〉 du dv →
∫

B

〈∇N, ∇φ〉 du dv.

For the same reason the right-hand side of (19) tends to
∫

B

〈N, φ〉 | ∇N |2 du dv +
∫

B

〈f(X, ∇X), φ〉 du dv

as n → ∞, and so we infer from (19) that

(20)
∫

B

〈∇N, ∇φ〉 du dv =
∫

B

{ 〈N, φ〉 | ∇N |2 + 〈f(X, ∇X), φ〉 } du dv.

Since N is already known to be continuous on B (and even on B), and
f(X, ∇X) ∈ Cα(B, R3), a regularity result by Ladyzhenskaya and Uraltseva
[1,2] implies N ∈ C2,α(B, R3); for a simple proof of this fact see F. Tomi [1].

Finally, equation (14) leads to

(21) −ΛK = 1
2 | ∇N |2 − 2ΛH2(X),

and therefore ΛK ∈ C1,α(B). �

Remark 4. Although we know that N ∈ C0(B, R3) ∩ C2,α(B \ Σ′, R3), Σ′ =
{wk+1, . . . , wk+�} = set of boundary branch points, we do not know whether
limw→w′ ∇N(w) or even limw→w′ ∇2N(w) exist for w′ ∈ Σ′. An answer to
this question seems to be complicated but valuable.

5.2 Bonnet’s Mapping and Bonnet’s Surface

In this section we briefly want to discuss Bonnet’s fundamental form asso-
ciated with any H-surface, and the Bonnet surface associated with a cmc-
surface. The Bonnet surface provides valuable information on the umbilical
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points of a cmc-surface and can serve as a useful substitute for the Gauss
mapping N . It might prove to be useful in further investigations.

For the notations to be used in the sequel we refer to Sections 1.1 and 1.2,
and also to the brief introduction to the differential-geometric formulae given
in Sauvigny [16], Chapter XI, §1.

Let S(w) : TwX → TwX be the Weingarten mapping associated with an
arbitrary H-surface X : B → R

3. At each regular point w ∈ B (i.e. for w ∈ B
′
)

this mapping is a selfadjoint linear mapping of the tangent space TwX of X
corresponding to w (or, less precisely, the tangent space of the surface X at
the point X(w)). Secondly, let

I(w) : TwX → TwX with I(w)V = V for V ∈ TwX

be the identity on TwX.

Definition 1. Let X : B → R
3 be an H-surface of class C2,α. Then, for any

regular point w ∈ B of X, we define the Bonnet mapping

R(w) : TwX → TwX

by

(1) R(w) := H(X(w))I(w) − S(w).

Remark 1. Clearly the Bonnet mapping R(w) is a selfadjoint linear operator
on TwX with the two eigenvalues λ1(w) and λ2(w), given by

λ1(w) = H(X(w)) − κ1(w), λ2(w) = H(X(w)) − κ2(w),

where κ1(w) and κ2(w) are the principal curvatures of X at w ∈ B
′
. Since

2H(X(w)) = κ1(w) + κ2(w), we obtain

(2) λ1(w) = 1
2 [κ2(w) − κ1(w)], λ2(w) = 1

2 [κ1(w) − κ2(w)].

Therefore the Bonnet mapping has a vanishing trace,

(3) tr R(w) = 0 for all w ∈ B
′
,

and from

det R = λ1λ2 = − 1
4 [κ2

1 + κ2
2 − 2κ1κ2] = −

[
1
4 (κ1 + κ2)2 − κ1κ2

]

it follows for w ∈ B
′
that

(4) det R(w) = −[H2(X(w)) − K(w)] = −λ2
1(w) = −λ2

2(w).
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Since λ1(w) = −λ2(w), the Bonnet map R(w) is either indefinite or the zero
mapping. Clearly R(w) = 0 if and only if κ1(w) = κ2(w), that is, R(w) van-
ishes exactly at the umbilical points w ∈ B

′
of the H-surface X. Furthermore,

R∗R = λ2
1I since λ2

1 = λ2
2, and so we obtain the fundamental identity

(5) R∗(w)R(w) = [H2(X(w)) − K(w)]I(w) for all w ∈ B
′

with

(6) H2(X(w)) − K(w) = λ2
1(w) = λ2

2(w) ≥ 0.

Since SXu = −Nu, SXv = −Nv, one obtains

RXu = Nu + H(X)Xu, RXv = Nv + H(X)Xv.

Set M := (Xu, Xv) and multiply (5) from the right by M and from the left
by M ∗. Then the right-hand side becomes

[H2(X) − K] ·
(

|Xu|2 〈Xu, Xv 〉
〈Xu, Xv 〉 |Xv |2

)
= Λ[H2(X) − K] · I

whereas the left-hand side becomes

M ∗R∗RM =
(

μ τ
τ ν

)

with

(7)
μ := |Nu + H(X)Xu|2, ν := |Nv + H(X)Xv |2,
τ := 〈Nu + H(X)Xu, Nv + H(X)Xv 〉.

Thus

(8) μ = ν = Λ · [H2(X) − K], τ = 0.

Definition 2. With any H-surface X ∈ C2,α(B, R3) we associate the qua-
dratic form

(9) dσ2 = 〈Nuα + H(X)Xuα , Nuβ + H(X)Xuβ 〉 duα duβ ,

u1 := u, u2 := v, which is called Bonnet’s fundamental form.

The formulae (7)–(9) imply that Bonnet’s fundamental form is conformal
to the first fundamental form |dX|2 = Λ(du2 + dv2). More precisely, since
X, N ∈ C1(B, R3), we obtain:

Theorem 1. Bonnet’s fundamental form dσ2 of an H-surface X with the
Gauss curvature K can be written as

(10) dσ2 = Λ[H2(X) − K](du2 + dv2), Λ = |Xu|2.

This quadratic form is positive semidefinite and vanishes exactly at those
points w ∈ B which are either umbilical or branch points of X.
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Definition 3. With any H-surface X ∈ C3,α(B, R3) of constant mean cur-
vature H and any vector Y0 ∈ R

3 we associate a new surface, the Bonnet
surface Y ∈ C0(B, R3) ∩ C2,α(B, R3) of X, which is defined by

(11) Y (w) := N(w) + HX(w) + Y0 for w ∈ B.

As a consequence of Theorem 1 we obtain the following result:

Corollary 1. The Bonnet surface Y = N + HX + Y0 of any cmc-surface
X ∈ C2(B, R3) satisfies

(12) |dY |2 = Λ(H2 − K)(du2 + dv2) = dσ2 in B

whence in particular

(13) |Yu|2 = |Yv |2, 〈Yu, Yv 〉 = 0 in B

and

(14) |Yu ∧ Yv | = Λ · (H2 − K).

Remark 2. The Bonnet surface Y of a cmc-surface X degenerates exactly on
the set Σ of branch points of X in B and the set Σ∗ of umbilical points of X
in B. Whereas the points of Σ are isolated, the set Σ∗ might have nonisolated
points. Even intΣ∗ can be nonvoid as in the case of a planar surface or a
spherical cap. Note however that, by regularity theory, each cmc-surface X is
real analytic in B, and so int Σ∗ �= ∅ implies H2 − K(w) ≡ 0 on B \ Σ, i.e. all
points w ∈ B \ Σ are umbilical points. This implies that X is either planar or
a spherical surface.

Theorem 2. The Bonnet surface Y of a cmc-surface X is either a constant
mapping or a cmc-surface of mean curvature one. In the first case all points
of X are umbilical, i.e. X is either planar or a spherical surface, while in the
second case X has only isolated umbilical points in B, and the normal Ñ of
Y coincides with −N where N is the normal of X.

Proof. On account of Theorem 1 in Section 5.1 we have

ΔN = −4ΛH2N + 2ΛKN in B,

and furthermore
ΔX = 2HΛN in B.

This implies

(15) ΔY = −2Λ(H2 − K)N in B.



5.2 Bonnet’s Mapping and Bonnet’s Surface 375

In addition, the relations (4) and (6) imply

det R(w) = −(H2 − K(w)) ≤ 0.

Thus, by (4) and Yu = RXu, Yv = RXv it follows that

Yu ∧ Yv = −(H2 − K)Xu ∧ Xv

whence

(16) Yu ∧ Yv = −Λ(H2 − K)N in B.

From (15) and (16) one finally infers

(17) ΔY = 2Yu ∧ Yv in B,

and the formulae (13) of Corollary 1 state that

|Yu|2 = |Yv |2, 〈Yu, Yv 〉 = 0 in B.

Then the Hartman–Wintner theorem states that either (i) Y (w) ≡ const in B,
or (ii) Y (w) is nowhere locally constant in B, and the branch points of Y are
isolated. In case (i) the surface is either planar or spherical, while in case (ii)
the surface X has at most isolated umbilical points, and Y is a cmc-surface
of mean curvature one. Moreover, in this case the surface normal Ñ of Y is
defined by

Ñ :=
1

|Yu ∧ Yv | (Yu ∧ Yv) on B \ (Σ ∪ Σ∗)

and can be extended continuously to all of B.
Note also that (14) and (16) imply

Yu ∧ Yv = −|Yu ∧ Yv |N,

whence Ñ = −N on B. �
Remark 3. For any cmc-surface X, its Bonnet surface Y “realizes” the Bon-
net fundamental form dσ2 of X via the formula (12). For an H-surface X with
variable H one cannot expect to find a similar realization of its dσ2 since the
set of umbilical points of X might be very general.

Remark 4. For a cmc-surface X with H �= 0, the associated Bonnet surface
Y provides a suitable substitute for the Gauss map N of X.

Remark 5. Let Y be the Bonnet map of a cmc-surface X with H �= 0, and
set

(18) Z := X +
1
H

N.

Then Y = HZ, and it follows that

ΔZ = 2HZu ∧ Zv, |Zu|2 = |Zv |2, 〈Zu, Zv 〉 = 0.

Therefore we obtain O. Bonnet’s result that (18) defines a second H-surface
parallel to X, except for a spherical X when Z reduces to a point.
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5.3 The Second Variation of F for H-Surfaces and Their
Stability

As already mentioned in No. 3 of the Supplementary Results to Section 4.5,
H-surfaces are closely related to certain functionals E := D + 2V that gener-
alize Dirichlet’s integral D. In fact if H is a given scalar function on R

3 and
Q : R

3 → R
3 is a C1-vector field on R

3,

Q(x) = (Q1(x), Q2(x), Q3(x)), x = (x1, x2, x3) ∈ R
3,

such that

(1) div Q = H, i.e. Q1
x1 + Q2

x2 + Q3
x3 = H,

then any H-surface X : B → R
3 is a stationary point of the functional

E = D + 2V where

D(X) =
1
2

∫
B

| ∇X|2 du dv

is the Dirichlet integral of X and V denotes a volume integral defined by

(2) V (X) =
∫

B

〈Q(X), Xu ∧ Xv 〉 du dv.

Introducing the trilinear product

[a, b, c] = det(a, b, c) = a · (b ∧ c) = b · (c ∧ a) = c · (a ∧ b)

we can write V as

(3) V (X) =
∫

B

[Q(X), Xu, Xv] du dv.

In Vol. 2, Chapter 4, we shall construct H-surfaces within a prescribed bound-
ary contour Γ by minimizing the functional1

(4) E(X) :=
∫

B

{
1
2

| ∇X|2 + 2[Q(X), Xu, Xv]
}

du dv

in a subset of the class C(Γ ) defined in Section 4.2.
Closely related to E = D + 2V is the functional F := A + 2V where A is

the usual area functional

A(X) =
∫

B

|Xu ∧ Xv | du dv =
∫

B

√
|Xu|2|Xv |2 − 〈Xu, Xv 〉2 du dv,

that is,

(5) F (X) :=
∫

B

{ |Xu ∧ Xv | + 2[Q(X), Xu, Xv]} du dv.

1 However, we shall write E = D + V which changes (1) to div Q = 2H.



5.3 The Second Variation of F for H-Surfaces and Their Stability 377

We have

(6) F (X) ≤ E(X)

and the equality sign holds if and only if

|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0.

Clearly, V (X) (and therefore also E(X) and F (X)) are well-defined if X ∈
H1

2 (B, R3) and either sup
R3 |Q| < ∞ or X ∈ L∞(B, R3).

In Sections 2.1 and 2.8 we have already derived the first variation δA(X, Y )
and the second variation δ2A(X, Y ) of a regular C2-surface X : B → R

3 in
normal direction Y = ϕN , ϕ ∈ C∞

c (B), N being the normal of X. Now we
want to admit also branched surfaces X; for the sake of simplicity we assume
that X is an H-surface of class C3,α(B, R3), 0 < α < 1, that is regular (i.e.
immersed) in B

′
as in 5.1, B

′
= B \ {branch points of X}. For an arbitrary

test function ϕ ∈ C∞
c (B′) with B′ = B

′ ∩ B we consider the normal variation
Z : B × (−ε0, ε0) → R

3, ε0 > 0, which is defined by

(7) Z(w, t) := X(w) + tϕ(w)N(w), w ∈ B, |t| < ε0,

where N is the normal of X. From formula (15) in Section 2.8 we obtain the
following expansion at all regular points w ∈ B of X:

|Zu(w, t) ∧ Zv(w, t)|(8)
= Λ(w) − 2tΛ(w)H(X(w))ϕ(w)

+ 1
2 t2[| ∇ϕ(w)|2 + 2Λ(w)K(w)ϕ2(w)] + O(w, t3)

where Λ = |Xu|2 and K is the Gauss curvature of X. The error term O(w, t3)
vanishes outside of supp ϕ, and we have

(9) |O(w, t3)| ≤ const · t3 for all w ∈ supp ϕ ⊂⊂ B′.

For ϕ ∈ C∞
c (B′), this implies

(10)
d

dt
A(Z(·, t))

∣∣∣∣
t=0

= −
∫

B

2ΛH(X)ϕ du dv

and

(11)
d2

dt2
A(Z(·, t))

∣∣∣∣
t=0

=
∫

B

{ | ∇ϕ|2 + 2ΛKϕ2} du dv.

By Theorem 1 of 5.1, the right-hand sides of (10) and (11) can continuously
be extended onto functions ϕ ∈ C∞

c (B). Therefore we take (10) and (11) as
definitions of the first two derivatives of A(Z(·, t)) at t = 0, i.e. for δA(X, ϕN)
and δ2A(X, ϕN), if ϕ ∈ C∞

c (B). In order to compute d
dtV (Z(·, t))|t=0 and
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d2

dt2 V (Z(·, t))|t=0 for ϕ ∈ C∞
c (B), we introduce P (w, t) := Q(Z(w, t)), w ∈ B,

|t| < ε0. Then

∂

∂t
[P, Zu, Zv] = [Pt, Zu, Zv] + [P, (ϕN)u, Zv] + [P, Zu, (ϕN)v]

= [Pt, Zu, Zv] + [P, ϕN, Zv]u + [P, Zu, ϕN ]v
− [Pu, Zt, Zv] − [Pv, Zu, Zt]

= [Pu, Zv, Zt] + [Pv, Zt, Zu] + [Pt, Zu, Zv]
+ {[P, ϕN, Zv]u + [P, Zu, ϕN ]v }

= [Qx(Z)Zu, Zv, Zt] + [Qx(Z)Zv, Zt, Zu] + [Qx(Z)Zt, Zu, Zv]
+ {. . .}

= [Zu, Zv, Zt] · (div Q)(Z) + {. . .}
= [Zu, Zv, Zt] · H(Z) + {. . .}.

The divergence theorem implies
∫

B
{. . .} du dv = 0 since supp ϕ ⊂ B, and so

(12)
d

dt
V (Z) =

∫
B

H(Z)Zt · (Zu ∧ Zv) du dv.

We have

Zu ∧ Zv = (Xu + tϕuN + tϕNu) ∧ (Xv + tϕvN + tϕNv)
= Xu ∧ Xv + t{ϕvXu ∧ N + ϕuN ∧ Xv + ϕ(Xu ∧ Nv + Nu ∧ Xv)}

+ t2(ϕϕuN ∧ Nv + ϕϕvNu ∧ N + ϕ2Nu ∧ Nv).

Multiplication by Zt = ϕN yields

Zt · (Zu ∧ Zv) = Λϕ − 2ΛH(X)ϕ2t + ΛKϕ3t2.

Then formula (12) and Theorem 1 of 5.1 imply

(13)
d

dt
V (Z) =

∫
B

{ΛH(Z)ϕ − 2ΛH(X)H(Z)ϕ2t + ΛKH(Z)ϕ3t2} du dv.

Therefore

(14)
d

dt
V (Z)

∣∣∣∣
t=0

=
∫

B

ΛH(X)ϕ du dv.

Furthermore we infer from (13) that

(15)
d2V (Z)

dt2

∣∣∣∣
t=0

=
∫

B

{ 〈Hx(X), N 〉 − 2H2(X)}ϕ2Λdu dv.
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Since F = A + 2V , we infer from (10) and (14) that

d

dt
F (Z(·, t))

∣∣∣∣
t=0

=
∫

B

{ −2ΛH(X)ϕ + 2ΛH(X)ϕ} du dv = 0,

and from (11) and (15) that

d2

dt2
F (Z(·, t))

∣∣∣∣
t=0

=
∫

B

{ | ∇ϕ|2 + 2Λ(K − 2H2(X) + 〈Hx(X), N 〉)ϕ2} du dv.

Set

(16) δF (X, ϕN) :=
d

dt
F (Z)

∣∣∣∣
t=0

, δ2F (X, ϕN) :=
d2

dt2
F (Z)

∣∣∣∣
t=0

.

Thus we have proved:

Theorem 1. The first variation δF (X, ϕN) of F = A + 2V with div Q = H
at an H-surface X ∈ C3,α(B, R3) in the normal direction Y = ϕN with
ϕ ∈ C∞

c (B) vanishes, and for the second variation δ2F (X, ϕN) we have

(17) δ2F (X, ϕN) =
∫

B

{ | ∇ϕ|2 − 2pϕ2} du dv,

where the density function p associated with X is defined by

(18) p := Λ · [2H2(X) − K − 〈Hx(X), N 〉].

If Q ∈ C2,α(R3, R3), then p ∈ C0,α(B). Note that p is the same function as
in Section 5.1, Theorem 1, formula (13).

Definition 1. An H-surface X ∈ C3,α(B, R3) is called stable if it satisfies
the stability inequality

(19) δ2F (X, ϕN) ≥ 0 for all ϕ ∈ C∞
c (B)

which can be written as

(20)
∫

B

| ∇ϕ|2 du dv ≥ 2
∫

B

pϕ2 du dv for all ϕ ∈ C∞
c (B).

Remark 1. By means of Proposition 1 in 5.1 it follows easily that the stability
condition (19) is equivalent to

δ2F (X, ϕN) ≥ 0 for all ϕ ∈ C∞
c (B′)

where B′ := B \ {branch points of X}.
We note also that it suffices to assume X ∈ C3,α(B, R3) in Definition 1

and in Theorem 1 since we only consider ϕ with compact support in B.
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Remark 2. When an H-surface is nonstable we can find some ϕ ∈ C∞
c (B)

such that δ2F (X, ϕN) < 0. Obviously, global and local minimizers of F are
stable.

On the other hand, an H-surface is said to be unstable, if it does not
constitute a strong local minimum of F , i.e. in any C0(B, R3)-neighborhood
of X one can find a surface X̃ with F (X̃) < F (X). A nonstable surface is
necessarily unstable while the converse need not be true.

In the next section we shall define the notions μ-stable for μ > 0 and
strictly stable (μ > 2).

Remark 3. The vector field Q is not uniquely determined by the equation
div Q = H, neither is the functional F . Nevertheless the notions “stable and
nonstable” are uniquely defined since in δ2F (X, ϕN) only the expressions H
and Hx enter. Occasionally one prefers the notation δ2F (X, ϕ) which means
the same as δ2F (X, ϕN).

The following central result for stable H-surfaces was found by F. Sauvigny
[1,2]. It is used to prove that under certain assumptions a stable surface is
in fact “nonparametric”, that is, a graph of a function which is defined on a
domain of the x1, x2-plane.

Theorem 2. Suppose that the prescribed mean curvature H(x) = H(x1, x2, x3)
is of class C1,α(R3) and satisfies the monotonicity condition

(21) Hx3(x) ≥ 0 for x ∈ R
3.

Furthermore let X ∈ C3,α(B, R3), 0 < α < 1, be a stable H-surface the
normal N = (N1, N2, N3) of which satisfies the boundary condition

(22) N3(w) > 0 for all w ∈ ∂B.

Then it follows that N3(w) > 0 for all w ∈ B.

Proof. Let e3 = (0, 0, 1) be the unit vector in x3-direction and set

(23) f := N3 = 〈N, e3〉.
Multiplying both sides of equation (12) in 5.1 by e3 and noting −2ΛHx3(X) ≤
0, it follows

(24) Δf + 2pf ≤ 0 in B.

Since, by assumption, f(w) > 0 for w ∈ ∂B holds true, Proposition 1 below
yields f(w) > 0 for all w ∈ B. �
Remark 4. The geometrical content of Theorem 2 is the following: If a stable
H-surface constitutes a positively oriented, branched graph over the x1, x2-
plane at the boundary, then the same property holds true in the interior.

Now we establish the result that was used in the proof of Theorem 2.
It is of independent interest; a similar reasoning will be applied when we
treat partially free boundary value problems for minimal surfaces (cf. Vol. 3,
Section 3).



5.3 The Second Variation of F for H-Surfaces and Their Stability 381

Proposition 1. Suppose that p ∈ C0,α(B) satisfies the stability inequality

(25)
∫

B

| ∇ϕ|2 du dv ≥ 2
∫

B

pϕ2 du dv for all ϕ ∈ C∞
c (B)

and let f ∈ C0(B) ∩ C2(B) be a solution of the boundary value problem

(26) Δf + 2pf ≤ 0 in B, f(w) > 0 on ∂B.

Then one has f(w) > 0 for all w ∈ B.

Remark 5. The assertion would already follow from (26) alone if one had
p(w) ≤ 0 on B, as one could apply the maximum principle. The gist of Propo-
sition 1 is that the assumption p ≤ 0 can be replaced by (25). Note that even
for minimal surfaces one has p = −ΛK ≥ 0.

Proof of Proposition 1. We first show that f(w) ≥ 0 on B. To this end we
consider the “negative part” f − of f , defined by

f −(w) := min{f(w), 0} for w ∈ B,

which is of the class H1
2 (B) with compact support in B and satisfies

∇f −(w) =

{
0 for almost all w ∈ B with f(w) ≥ 0,

∇f(w) for all w ∈ B with f(w) < 0.

Then ∫
B

| ∇f − |2 du dv = −
∫

B

f −Δf du dv

on account of a generalized version of the divergence theorem (see e.g. Sauvi-
gny [16], Chapter VIII, §9, Propositions 1 and 2), and by (26):

−
∫

B

f −Δf du dv ≤ 2
∫

B

pff − du dv = 2
∫

B

p|f − |2 du dv.

Therefore,

(27)
∫

B

| ∇f − |2 du dv ≤ 2
∫

B

p|f − |2 du dv.

Next, with ψ ∈ C∞
c (B), we insert ϕ := f − + εψ ∈ H̊1

2 (B) into (25), which
even holds for test functions of class H̊1

2 (B), |ε| ≤ ε0, ε0 > 0, thus obtaining
∫

B

| ∇f − |2 du dv + 2ε

∫
B

∇f − · ∇ψ du dv + ε2
∫

B

| ∇ψ|2 du dv

≥ 2
∫

B

p|f − |2 du dv + 4ε

∫
B

pf −ψ du dv + 2ε2
∫

B

pψ2 du dv.
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With the aid of (27) we arrive at

2ε

∫
B

(∇f − · ∇ψ − 2pf −ψ) du dv + ε2
∫

B

(| ∇ψ|2 − 2pψ2) du dv ≥ 0

for all ε ∈ (−ε0, ε0), whence we obtain the weak differential equation

(28)
∫

B

(∇f − · ∇ψ − 2pf −ψ) du dv = 0 for all ψ ∈ C∞
c (B).

Applying Moser’s inequality (see Gilbarg–Trudinger [1], or Sauvigny [16],
Chapter X, §5, Theorem 1) we infer from f −(w) ≡ 0 near ∂B, that f −(w) ≡ 0
in B, and therefore f(w) ≥ 0.

Finally, (26) implies
∫

B

(∇f · ∇ϕ − 2pfϕ) du dv ≥ 0 for all ϕ ∈ C∞
c (B) with ϕ ≥ 0,

and we have f ≥ 0. Invoking once more Moser’s inequality (see loc. cit. above)
and recalling the assumption f(w) > 0 on ∂B we arrive at the desired inequal-
ity f(w) > 0 for w ∈ B. �

5.4 On μ-Stable Immersions of Constant Mean Curvature

The density function p associated with an H-surface X might even change its
sign if H(x) is variable. This phenomenon is excluded for constant H since in
this case

(1) p = Λ · (2H2 − K) = 1
2Λ · (κ2

1 + κ2
2) ≥ 0.

Assumption. In this section we consider immersed cmc-surfaces X : B →
R

3 of class C2,α, i.e.

X ∈ C2,α(B, R3), 0 < α < 1, and Λ(w) > 0 on B.

Then X is real analytic on B, H ≡ const, K ∈ C0,α(B) and the density
function p associated with X is of class C0,α(B); in particular, p is continuous
up to the boundary ∂B.

Definition 1. An immersed cmc-surface X is called μ-stable with μ > 0 if

(2)
∫

B

| ∇ϕ|2 du dv ≥ μ

∫
B

pϕ2 du dv for all ϕ ∈ C∞
c (B)

holds true; if even μ > 2, the surface X is said to be strictly stable.
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Remark 1. Since p ∈ L∞(B), relation (2) is equivalent to
∫

B

| ∇ϕ|2 du dv ≥ μ

∫
B

pϕ2 du dv for all ϕ ∈ H̊1
2 (B).

Remark 2. The 2-stable, immersed cmc-surfaces X are stable in the sense of
Section 5.3.

Let us begin with the following instructive result which for minimal sur-
faces is due to H.A. Schwarz.

Theorem 1. If the immersed cmc-surface X with the surface normal N =
(N1, N2, N3) satisfies

(3) N3(w) > 0 for all w ∈ B,

then X is strictly stable.

Proof. We solve the variational problem

(4) D(ϕ) → min in
{

ϕ ∈ H̊1
2 (B) :

∫
B

pϕ2 du dv = 1
}

.

Its solution ϕ0 is an eigenfunction to the least eigenvalue μ > 0 of the eigen-
value problem

(5) −Δϕ0 = μpϕ0 in B, ϕ0 = 0 on ∂B,

where ϕ0 ∈ H̊1
2 (B). Elliptic theory yields ϕ0 ∈ C2,α(B).

Let e3 := (0, 0, 1) and set ψ := N3 = 〈N, e3〉 ∈ C1,α(B). The function
ψ is real analytic on B and satisfies ψ(w) > 0 on B. In order to compare
the eigenfunction ϕ0 with the auxiliary function ψ, we first note that ψ is a
solution of

(6) −Δψ = 2pψ in B,

taking equation (12) of Section 5.1 into account. Obviously we can find a
number λ ∈ R such that the further auxiliary function

(7) χ := ψ + λϕ0

satisfies

(8) χ ≥ 0 in B, χ > 0 on ∂B, χ(w0) = 0 for at least one w0 ∈ B.

From

−Δχ = −Δψ − λΔϕ0 = 2pψ + μpλϕ0

= (2 − μ)pψ + μp · (ψ + λϕ0)
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we infer

(9) Δχ + μpχ = (μ − 2)pψ.

Suppose now that X were not strictly stable. Then we had μ ≤ 2, and (9)
would yield the differential inequality

(10) Δχ + μpχ ≤ 0 in B.

Applying the same reasoning as in the proof of Proposition 1 of Section 5.3
we infer χ(w) ≡ 0 in B, which evidently contradicts (8). Therefore X must
be strictly stable. �

The following profound result will be used in Section 5.6 to prove a unique-
ness result for Plateau’s problem.

Theorem 2. Let X be an immersed cmc-surface whose density function p =
(2H2 − K)Λ satisfies

(11)
∫

B

(2H2 − K)Λdu dv < 2π.

Then X is strictly stable.

Proof. (i) On the northern hemisphere S+
r := {x ∈ R

3 : |x| = r, x3 > 0}
of radius r with the area 2πr2 we consider the eigenvalue problem for the
Laplace–Beltrami operator with zero boundary values on the equator ∂S+

r =
{x ∈ R

3 : |x| = r, x3 = 0}. The least eigenvalue λ1(S+
r ) can explicitly be

determined as

(12) λ1(S+
r ) = 2/r2

in the following way: Via stereographic projection we construct a conformal
mapping

(13) Z : B → S
+

r with Z(∂B) = ∂S+
r ,

which is necessarily a cmc-surface of mean curvature 1/r. Then the auxiliary
function ϕ := Z3 satisfies

(14) ϕ > 0 in B and ϕ = 0 on ∂B.

From the system

ΔZ =
2
r
Zu ∧ Zv = − 2

r2
|Zu|2Z in B,
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which is satisfied by the 1
r -surface Z,we obtain the equation

(15) −Δϕ =
2
r2

ϕ on B

where Δ is the Laplace–Beltrami operator ΔZ on S+
r . From (14) and (15) we

infer that λ1(S+
r ) = 2

r2 , as stated in (12).
(ii) Now we invoke Theorem 2 from Section 5.2. Accordingly the Bonnet

surface Y = N + HX associated with X is either a constant surface or else a
cmc-surface of mean curvature one. Moreover we have Y (w) ≡ const on B if
and only if H2 − K(w) ≡ 0 on B. In this case it follows trivially for all r1 > 0
that ∫

B

| ∇φ|2 du dv ≥ 2
r2
1

∫
B

(H2 − K)Λφ2 du dv for all φ ∈ C∞
c (B).

If H2 − K(w) �≡ 0 on B it makes sense to study the eigenvalue problem for the
Laplace–Beltrami operator on the surface Y with respect to zero boundary
values. Its smallest eigenvalue

λ1(|dY |2) = inf
{

2D(φ) : φ ∈ H̊1
2 (B) with

∫
B

(H2 − K)Λφ2 du dv = 1
}

can be compared with that of all surfaces of equal area, whose Gaussian
curvature is bounded from above by a constant greater than or equal to one.
The smallest eigenvalue is assumed on the spherical cap S+

r1
of radius r1 > 0

with the area
∫

B
(H2 − K)Λdu dv = 2πr2

1. This yields the estimate

(16)
∫

B

| ∇φ|2 du dv ≥ 2
r2
1

∫
B

(H2 − K)Λφ2 du dv for all φ ∈ C∞
c (B).

Consequently X is strictly stable if H = 0.
(iii) In case that H �= 0 we additionally consider the cmc-surface Ỹ := HX

with the area
∫

B
H2Λdu dv = 2πr2

2. By the same arguments as in (ii) we find
that

(17)
∫

B

| ∇φ|2 du dv ≥ 2
r2
2

∫
B

H2Λφ2 du dv for all φ ∈ C∞
c (B)

is valid.
(iv) From (11) we infer

2π >

∫
B

(2H2 − K)Λdu dv = 2π(r2
1 + r2

2)

whence 0 < r2
1 < r2

2 < 1. Addition of (16) and (17) yields

(r2
1 + r2

2)
∫

B

| ∇φ|2 du dv ≥ 2
∫

B

(2H2 − K)Λφ2 du dv for all φ ∈ C∞
c (B).
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Thus the H-surface X is μ-stable with the value

μ :=
2

r2
1 + r2

2

> 2. �

Remark 3. The reasoning used in part (ii) of the preceding proof depends
on isoperimetric inequalities and symmetrization techniques in the class of
surfaces with bounded Gaussian curvature from above. For the methods that
cope with branch points in these surfaces we refer to the paper by Barbosa
and do Carmo [4], especially Proposition (3.13) in Section 3. Here the authors
prove the following result: Let p be a nonnegative C2-function on B vanishing
only at isolated points, and denote by λ1 the first eigenvalue of the problem

Δf + λpf = 0 in B, f ∈ H̊1
2 (B).

Furthermore, suppose that the Gaussian curvature K̂ of the manifold (B, dσ2)
with the singular metric dσ2 = p ds2, ds2 = du2 + dv2 the standard metric on
B, satisfies K̂ ≤ K0 for some constant K0 ∈ [0, ∞). Then we have the inequal-
ity λ1 ≥ λ̃1(B0) where B0 denotes a geodesic disk in the 2-dimensional space
of constant Gaussian curvature K0, and λ̃1(B0) is the smallest eigenvalue of
the Laplace–Beltrami operator on B0 corresponding to this metric.

Remark 4. For minimal surfaces it is advantageous to operate with the nor-
mal N whose image might yield a multiple covering on the sphere. In this
case the original condition of Barbosa and do Carmo [1], namely that the
spherical image N(B) be contained in a spherical domain of area less than
2π, is considerably weaker than the inequality (11).

Remark 5. With the aid of H. Hopf’s quadratic differential, H. Ruchert [1]
established the above result alternatively without using the Bonnet surface.

The following area estimate constitutes the first step to prove a curvature
estimate and subsequent Bernstein results for stable minimal surfaces. The
estimate to be presented here even pertains to nonstable H-surfaces. Applied
to geodesic disks of radius r on complete minimal submanifolds we see that
their areas grow at most quadratically in r as r → ∞.

Theorem 3 (R. Gulliver [15]). Let X ∈ C2,α(B, R3) be an immersed, μ-stable
cmc-surface with μ > 1

2 , and suppose that X(B) = Kr(x0), where Kr(x0)
denotes a geodesic disk of radius r and center x0 := X(0) as described in
(19)–(21) below. Then we have the estimate

(18) A(X) ≤ 2μ

2μ − 1
πr2

for the area of X.



5.4 On μ-Stable Immersions of Constant Mean Curvature 387

Proof. (i) We represent the geodesic disk Kr(x0) = X(B) with respect to
geodesic polar coordinates ρ, ϕ by the mapping

(19)
Z : [0, r] × [0, 2π] → R

3, Z(0, 0) = x0,

X(B) = {Z(ρ, ϕ) : 0 ≤ ρ ≤ r, 0 ≤ ϕ ≤ 2π},

with the first fundamental form

(20) ds2 = |dZ|2 = dρ2 + P (ρ, ϕ) dϕ2

(i.e. |Zρ|2 = 1, 〈Zρ, Zϕ〉 = 0, |Zϕ|2 = P ). Here the function P (ρ, ϕ) > 0 in
(0, r] × [0, 2π) satisfies the asymptotic conditions

(21) lim
ρ→+0

P (ρ, ϕ) = 0 and lim
ρ→+0

∂

∂ρ

√
P (ρ, ϕ) = 1 for 0 ≤ ϕ ≤ 2π.

According to Minding’s formula for the geodesic curvature κg(ρ, ϕ) of the
curve Γρ := {Z(ρ, ϕ) : 0 ≤ ϕ < 2π} we obtain

(22)
∂

∂ρ

√
P (ρ, ϕ) = κg(ρ, ϕ)

√
P (ρ, ϕ) for 0 < ρ ≤ r, 0 ≤ ϕ < 2π,

cf. Section 1.3, and W. Blaschke [1], §83, formula (127).
(ii) We introduce the length of Γρ by

(23) L(ρ) :=
∫ 2π

0

√
P (ρ, ϕ) dϕ, 0 < ρ ≤ r.

Differentiating L(ρ) with the aid of (22) and applying the Gauss–Bonnet the-
orem, we obtain

L′(ρ) =
∫ 2π

0

κg(ρ, ϕ)
√

P (ρ, ϕ) dϕ(24)

= 2π −
∫ ρ

0

∫ 2π

0

K(τ, ϕ)
√

P (τ, ϕ) dτ dϕ

and consequently

(25) L′ ′(ρ) = −
∫ 2π

0

K(ρ, ϕ)
√

P (ρ, ϕ) dϕ.

(iii) In order to apply the stability condition (2) we choose the test function
ϕ(w) as

ϕ(w) = η(ρ) := 1 − ρ/r for 0 ≤ ρ ≤ r if w ↔ (ρ, ϕ).
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By (23) we have

∫ r

0

|η′(ρ)|2L(ρ) dρ =
∫ r

0

∫ 2π

0

|η′(ρ)|2
√

P (ρ, ϕ) dρ dϕ =: J.

Now we use the invariant first Beltrami operator

‖∇φ‖2 := (EG − F2)−1(Gφ2
u − 2Fφuφv + Eφ2

v)

for the metric ds2 = E du2 + 2F du dv + G dv2. Especially for the geodesic
metric ds2 = dσ2 + P (ρ, ϕ) dϕ2 the stability inequality (2) yields

J =
∫ r

0

∫ 2π

0

Pη2
ρ + 1 · η2

ϕ

P

√
P dρ dϕ ≥ μ

∫ r

0

∫ 2π

0

(2H2 − K)η2
√

P dϕdρ

≥ −μ

∫ r

0

η2

(∫ 2π

0

K
√

P dϕ

)
dρ.

Taking (25) into account, we arrive at

J ≥ μ

∫ r

0

L′ ′(ρ)η2(ρ) dρ

= μ[L′(ρ)η2(ρ)]r+0 − 2μ

∫ r

0

L′(ρ)η(ρ)η′(ρ) dρ

after an integration by parts. Since η(0) = 1, η(r) = 0, and L′(+0) = 2π, it
follows that

J ≥ −2πμ − 2μ

∫ r

0

L′ηη′ dρ

and
∫ r

0

L′ηη′ dρ = [Lηη′]r+0 −
∫ r

0

[L(η′)2 + Lηη′ ′] dρ = −
∫ r

0

L(η′)2 dρ

since η′ ′ = 0, L(+0) = 0, and η(r) = 0. Thus we obtain
∫ r

0

L(η′)2 dρ ≥ −2πμ + 2μ

∫ r

0

L(η′)2 dρ

whence, by η′(ρ) = − 1
r it follows that

1
r2

∫ r

0

L(ρ) dρ ≤ 2πμ

2μ − 1

and finally

A(X) = A(Z) =
∫ r

0

∫ 2π

0

√
P (ρ, ϕ) dρ dϕ ≤ 2πμ

2μ − 1
r2. �
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5.5 Curvature Estimates for Stable and Immersed
cmc-Surfaces

The basic result of this section is the following

Theorem 1 (F. Sauvigny [7,8]). Let X ∈ C3,α(B, R3) be a stable, immersed
cmc-surface with X(0) = 0 whose mean curvature H is bounded by a constant
h0 ≥ 0, i.e. |H| ≤ h0. Suppose also that X represents a geodesic disk K1(0)
of radius 1 about X(0) = 0 such that X(B) = K1(0). Furthermore let κ1 and
κ2 be the principal curvatures of X. Then there is a universal constant c(h0)
depending only on the parameter value h0 such that

(1) κ2
1(0) + κ2

2(0) ≤ c(h0).

Proof. (i) Since X is 2-stable, Gulliver’s estimate yields

(2)
∫

B

| ∇X|2 du dv = 2A(X) ≤ 8π

3

(cf. Section 5.4, Theorem 3). In order to effectively use the Courant–Lebesgue
lemma, we fix the number

(3) ν0 := 1
3 exp

(
− 32

3 π2
)

∈
(
0, 1

3

)

and claim the following

Preliminary Statement. There exists a point w∗ = ρ0e
iϕ0 ∈ B with |w∗ | ≤

1 − 3ν0 such that the radial derivative Xρ of X satisfies

(4) |Xρ(w∗)| ≥ λ0 := 1
2 · (1 − 3ν0)−1 > 0.

To verify this claim, we introduce the set Γ (B) of continuous and piece-
wise regular curves γ : [0, 1] → B with γ(0) = 0 and γ(1) ∈ ∂B. From the
properties of the geodesic disk K1(0) = X(B) we infer

(5) inf
γ∈Γ (B)

∫ 1

0

∣∣∣∣ d

dt
X(γ(t))

∣∣∣∣dt = 1.

We fix a point w1 ∈ ∂B, and set δ := 3ν0. By (2) and the Courant–Lebesgue
lemma there is a number δ∗ ∈ (δ,

√
δ) such that for

Cδ∗ (w) := {w ∈ B : |w − w1| = δ∗ }

we can estimate

(6)
∫

Cδ∗ (w1)

|dX| ≤ 2
{

π ·
(

8
3
π

)
1

log 1
δ

} 1
2

= 2
{

8
3
π2 · 1

32
3 π2

} 1
2

= 1.



390 5 Stable Minimal- and H-Surfaces

Denote by γ1 : [0, 1 − δ∗] → B the path

γ1(t) := tw1, 0 ≤ t ≤ 1 − δ∗,

from the origin to the point w2 := (1 − δ∗)w1 on the circle ∂B1−δ∗ (0). For
ε = ±1 we additionally consider the paths

γ2(t) := w1 + (w2 − w1)eiεt, 0 ≤ t ≤ t2(δ∗),

leading within B on the circle Cδ∗ (w1) from w2 to the boundary ∂B. On
account of (6) we conclude that either for ε = 1 or for ε = −1 the inequality

(7)
∫ t2(δ

∗)

0

∣∣∣∣ d

dt
X(γ2(t))

∣∣∣∣dt ≤ 1
2

holds true. We combine γ1 and γ2 to a path γ ∈ Γ (B). By means of (5) and
(7) it follows that

1 ≤
∫ 1

0

|d(X ◦ γ)| =
∫ 1−δ∗

0

∣∣∣∣ d

dt
X(γ1)

∣∣∣∣dt +
∫ t2(δ

∗)

0

∣∣∣∣ d

dt
X(γ2)

∣∣∣∣dt

≤
∫ 1−δ∗

0

∣∣∣∣ d

dt
X(γ1)

∣∣∣∣dt +
1
2
.

Hence there is a value t∗ ∈ [0, 1 − δ∗] such that
∣∣∣∣ d

dt
X(γ1(t∗))

∣∣∣∣ ≥ 1
2(1 − δ)

.

This proves the desired “preliminary statement”.
(ii) Now we choose a test function ϕ ∈ C∞

c (B) with ϕ(w) ≡ 1 for |w| ≤
1−ν0 and | ∇ϕ| ≤ 2/ν0 in B, which will be inserted into the stability condition.
By formula (14) of 5.1 we also have

1
2 | ∇N |2 = (2H2 − K)Λ,

and so ∫
|w|≤1−ν0

| ∇N |2 du dv = 2
∫

|w|≤1−ν0

(2H2 − K)Λdu dv

≤ 2
∫

B

(2H2 − K)Λϕ2 du dv

≤
∫

B

| ∇ϕ|2 du dv ≤ 4πν−2
0 .

Hence we have found the universal bound

(8)
∫

B1−ν0 (0)

| ∇N |2 du dv ≤ 4πν−2
0
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for the energy of the unit normal N of X on the disk B1−ν0(0) of radius 1 − ν0

about the origin.
With the aid of the Courant–Lebesgue lemma we then find a universal

constant δ1 with 0 < δ1 <
√

δ1 ≤ 2ν0, such that to each point w0 ∈ B1−3ν0(0)
there exists a radius δ∗ = δ∗(w0, X) ∈ (δ1,

√
δ1) satisfying

(9)
∫

Cδ∗ (w0)

|dN | ≤ π for Cδ∗ (w0) := {w ∈ B : |w − w0| = δ∗ }.

From this we infer the following result: There is a universal constant τ > 0
with the property that for any w0 ∈ B1−3ν0(0) there exists a “pole vector”
e0 = e0(w0) ∈ S2 such that

〈N(w), e〉 > 0 for all w ∈ Cδ∗ (w0) and all e ∈ S2 with |e − e0| ≤ τ.

Then one derives from Theorem 2 of Section 5.3 the basic

Auxiliary Statement. There is a universal constant τ with the property
that for any w0 ∈ B1−3ν0(0) there is a “pole vector” e0 ∈ S2 such that

(10) 〈N(w), e〉 > 0 for all w ∈ Bδ1(w0) and all e ∈ S2 with |e − e0| ≤ τ.

(iii) The auxiliary statement means geometrically that Bδ1(w0) is mapped
by N into a geodesic disk on S2, i.e. into a spherical cap, with a universal
geodesic radius smaller than π/2 (= geodesic radius of a hemisphere), and
that the center of this disk depends on the point w0 ∈ B1−3ν0(0). Therefore
the set N(Bδ1(w0)) is contained in a closed 3-dimensional ball of a fixed radius
M ∈ (0, 1). Especially at the origin we find a vector N0 ∈ R

3, such that

(11) |N(w) − N0| ≤ M for all w ∈ Bδ1(0)

holds true with a universal constant M ∈ (0, 1).
Furthermore the formulae (16) and (17) of Section 5.1 imply that

(12) ΔN = −N | ∇N |2 in B.

From the gradient estimate of E. Heinz we infer that there is an a priori
constant c1 > 0 such that

(13) | ∇N(0)| ≤ c1

holds true (cf. Vol. 2, Section 2.2, Proposition 1, or F. Sauvigny [16], Chap-
ter XII, §2, Theorem 1).

(iv) For an arbitrary point w0 ∈ B1−3ν0(0) we can achieve that

(14) X(w0) = 0 and e0 = e3 := (0, 0, 1)

applying a suitable translation and rotation in R
3. Consider the planar map-

ping f : Bδ1(w0) → R
2 defined by
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(15) f(w) := (X1(w), X2(w)), w ∈ Bδ1(w0).

By the “auxiliary statement” its Jacobian Jf satisfies

(16) Jf :=
∂(X1, X2)

∂(u, v)
> 0 in Bδ1(w0),

and (2) implies

(17)
∫

Bδ1 (w0)

| ∇f |2 du dv ≤ 8π

3
.

From Xw · Xw = 0 it follows that | ∇X3|2 ≤ | ∇f |2 whence

(18) 1
2 | ∇X|2 ≤ | ∇f |2 ≤ | ∇X|2.

Thus any bound on | ∇f | is equivalent to a bound on | ∇X|. Furthermore

|Δf | ≤ |ΔX| = 2|H| · |Xu ∧ Xv | ≤ h0| ∇X|2,

and so we infer from (18) that

(19) |Δf | ≤ 2h0| ∇f |2 in Bδ1(w0).

With the aid of the Courant–Lebesgue lemma we obtain a further universal
constant δ2 with 0 < δ2 <

√
δ2 ≤ δ1 and an “individual” constant δ∗ ∗ =

δ∗ ∗(w0, X) ∈ (δ2,
√

δ2) satisfying

(20) 4h0

∫
Cδ∗ ∗ (w0)

|df | ≤ 1 for Cδ∗ ∗ (w0) := {w ∈ B : |w − w0| = δ∗ ∗ }.

Therefore, f(Cδ∗ ∗ (w0)) is contained in a closed plane disk of radius (8h0)−1.
Since f has a positive Jacobian Jf in Bδ1(w0) and Bδ∗ ∗ (w0) ⊂ Bδ1(w0), the
mapping f is not allowed to protrude from this disk. Taking f(w0) = 0 into
account, we arrive at the inequality

(21) |f(w)| ≤ 1
4h0

for all w ∈ Bδ2(w0).

(v) We set ν := 1
2δ2; then ν ∈ (0, ν0). Recalling that f : B2ν(w0) → R

2

provides an open mapping of B2ν(w0) onto its image which satisfies

|Δf | ≤ 2h0| ∇f |2 and |f | ≤ 1
4h0

on B2ν(w0),

we are now in the position to apply an inequality of E. Heinz that is based on
the theory of pseudoholomorphic functions (see Sauvigny [16], Chapter XII,
§5, Theorem 2). Thus we obtain a priori constants c′(h0) and c′ ′(h0) with
0 < c′ ≤ c′ ′ such that
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(22) c′(h0)| ∇f(w0)|5 ≤ | ∇f(w)| ≤ c′ ′(h0)| ∇f(w0)| 1
5 for all w ∈ Bν(w0).

Furthermore, by virtue of (18), the surface element Λ = 1
2 | ∇X|2 of X satisfies

1
2 | ∇f |2 ≤ Λ ≤ | ∇f |2 in B2ν(w0),

and so (22) yields the following

Intermediate Statement. There exists a universal constant Θ = Θ(h0) ∈
(0, 1) such that the surface element Λ satisfies the distortion estimate

(23) Θ(h0)Λ5(w) ≤ Λ(w0) for all w ∈ Bν(w0)

holds true for any w0 ∈ B1−3ν0(0).

(vi) In order to estimate Λ(0) from below, we apply the “preliminary
statement” and pick a point w∗ ∈ B1−3ν0(0) satisfying

(24) Λ(w∗) ≥ λ2
0 > 0,

cf. (4). Then we choose n ∈ N in such a way that

1 − 3ν ≤ nν < 1 − 2ν

is fulfilled and introduce the points

wj :=
j

n
w∗ for j = 0, 1, . . . , n.

Then we have

|wj | =
j

n
|w∗ | ≤ |w∗ | ≤ 1 − 3ν0 for j = 0, 1, . . . , n

and

|wj+1 − wj | =
1
n

|w∗ | ≤ 1 − 3ν0

n
≤ 1 − 3ν

n
≤ ν for j = 0, 1, . . . , n − 1.

Applying repeatedly (23) and (24) we obtain

Λ(0) = Λ(w0) ≥ ΘΛ5(w1) ≥ Θ1+5Λ52
(w2) ≥ Θ1+5+52

Λ53
(w3)

≥ · · · ≥ Θ1+5+52+···+5n−1
Λ5n

(wn) ≥ Θ5n

λ2·5n

0 =: c2(h0)

that is,

(25) Λ(0) ≥ c2(h0).

(vii) We have

κ2
1 + κ2

2 = 4H2 − 2K =
| ∇N |2

Λ
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on account of formula (14) in Section 5.1. Setting

c(h0) := c2
1(h0)c−1

2 (h0),

the estimates (13) and (25) yield the desired inequality

κ2
1(0) + κ2

2(0) ≤ c(h0). �

By a scaling argument we immediately obtain the interesting

Theorem 2. Let X ∈ C3,α(B, R3) denote a stable, immersed minimal surface
representing a geodesic disk Kr(x0) of radius r > 0 centered at x0 := X(0),
briefly : X(B) = Kr(x0). Then the principal curvatures κ1 and κ2 of X satisfy

(26) κ2
1(0) + κ2

2(0) ≤ c(0)
r2

where c(0) is the universal constant c(h0) of Theorem 1 for h0 = 0.

Proof. Consider the scaled minimal surface

Y :=
1
r
(X − x0), r > 0.

The normals of X and Y coincide whereas the Weingarten mapping S̃ of
Y differs from the Weingarten mapping S of X by the factor r. Hence the
principal curvatures of Y are rκ1 and rκ2 if κ1, κ2 are the principal curvatures
of X, and Y (B) = K1(0). Then formula (1) of Theorem 1 yields

r2(κ2
1(0) + κ2

2(0)) ≤ c(0),

which is the desired estimate (26). �

As a corollary of Theorem 2 we obtain the following “Bernstein-type”
result proved by do Carmo and Peng [1] and Fischer-Colbrie and Schoen [1].

Theorem 3. Let Y : R
2 → R

3 represent a regular and embedded minimal sur-
face which is geodesically complete and stable (that is, stable on each geodesic
disk). Then Y represents a plane in R

3.

Proof. The set M := Y (R2) is a complete Riemannian manifold of dimension
two, the Gauss curvature of which is nonpositive. A theorem by Hadamard
implies that M is diffeomorphic to R

2. Thus, for each r > 0 and for any point
x0 ∈ M, there is a geodesic disk Kr(x0) on M about the center x0. If Y is
not already conformal, then we introduce conformal parameters on Kr(x0),
obtaining a harmonic mapping X from B onto Kr(x0) such that X(0) = x0.
By Theorem 2, the principal curvatures κ1 and κ2 of M at x0, i.e. the principal
curvatures of X at w = 0, are zero, if we let r tend to ∞. Since x0 can be
chosen arbitrarily on M, it follows that Y represents a plane in R

3. �
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5.6 Nitsche’s Uniqueness Theorem and Field-Immersions

In this section we prove a uniqueness theorem, due to J.C.C. Nitsche [26], for
minimal surfaces solving Plateau’s problem. This result was already stated in
Section 4.9.

Proposition 1. Let X ∈ C3,α(B, R3) denote an immersed minimal surface
with the normal N . For any function ζ ∈ C3,α(B) we consider the varied
surface Y : B → R

3 defined by

(1) Y := X + ζN.

Then Y represents an immersed, but not necessarily conformal, surface of zero
mean curvature if and only if ζ satisfies the perturbation equation

(2) Lζ = Φ(ζ) in B

where L denotes the Schwarzian operator L associated with the minimal sur-
face X, which is defined by

(3) Lζ := −Δζ + 2ΛKζ.

Here Λ is the area element of X, and K is its Gaussian curvature. The
right-hand side Φ in (2) is a sum of homogeneous terms of second till
fifth order in ζ, ∇ζ and ∇2ζ, the coefficient-functions of which depend on
X, ∇X, ∇2X, ∇3X and on 1/Λ. Furthermore, there is a constant c1 > 0 de-
pending only on ‖X‖C3,α(B,R3) and ‖1/Λ‖C0(B) such that Φ satisfies

(4) ‖Φ(ζ) − Φ(η)‖C0,α(B) ≤ c1[‖ζ‖C2,α(B) + ‖η‖C2,α(B)]‖ζ − η‖C2,α(B)

for all ζ, η ∈ C2,α(B) whose C2,α(B)-norms are bounded by one.

Proof. Differentiating (1) we obtain

(5) Yu = Xu + ζuN + ζNu, Yv = Xv + ζvN + ζNv

and

(6)
Yuu = Xuu + ζuuN + 2ζuNu + ζNuu,

Yuv = Xuv + ζuvN + (ζuNv + ζvNu) + ζNuv,

Yvv = Xvv + ζvvN + 2ζvNv + ζNvv.

We write the first fundamental form of Y as

(7) 〈dY, dY 〉 = E∗ du2 + 2F∗ du dv + G∗dv2

and, using (5), evaluate E∗, F∗, G∗. Recall that the coefficients of the second
fundamental form of X are given by
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L = −〈Xu, Nu〉 = 〈Xuu, N 〉, N = −〈Xv, Nv 〉 = 〈Xvv, N 〉,
M = −〈Xu, Nv 〉 = −〈Xv, Nu〉 = 〈Xuv, N 〉.

From (5) we infer

(8)
E∗

Λ
= 1 − 2ζ

L

Λ
+ · · · ,

F∗

Λ
= −2ζ

M

Λ
+ · · · ,

G∗

Λ
= 1 − 2ζ

N

Λ
+ · · ·

where + · · · stands for terms which are quadratic in ζ, ζu, . . . , ζvv.
The surface Y has zero mean curvature if and only if

(9) 0 =
〈

E∗

Λ
Yvv − 2

F∗

Λ
Yuv +

G∗

Λ
Yuu,

1
Λ

(Yu ∧ Yv)
〉

.

From (5), (6), and (8) we obtain the differential equation (2) with the
Schwarzian operator L and a right-hand side Φ that has the properties de-
scribed. Let us sketch the necessary computations: We write (9) as

Linear expression in ζ, ζu, . . . , ζvv + Φ(ζ) = 0

where Φ(ζ) consists of all nonlinear ζ-terms. Now Φ(ζ) is a polynomial of fifth
degree in ζ, ζu, . . . , ζvv with coefficients depending on 1/Λ, X, ∇X, ∇2X, N ,

∇N, ∇2N . Obviously we can estimate these coefficients in the C0,α-norm using
a bound for ‖X‖C3,α and ‖1/Λ‖C0,α on B. The terms of Φ(ζ) are at least
quadratic in ζ and its derivatives up to second order.

Furthermore,

(10)
1
Λ

Yu ∧ Yv = N + (terms in ζ, ζu, . . . , ζvv of at least first order),

and (6) and (8) imply

E∗

Λ
Yvv − 2

F∗

Λ
Yuv +

G∗

Λ
Yuu(11)

= ΔX + Δζ · N + 2ζuNu + 2ζvNv + ζΔN

− 2
ζ

Λ
(LXvv − 2MXuv + NXuu) + · · ·

= (Δζ + 2ΛKζ)N + 2(ζuNu + ζvNv)

− 2
ζ

Λ
(LXvv − 2MXuv + NXuu) + · · ·

where + · · · stands again for terms that are quadratic in ζ, . . . , ζvv.
Here we have used the equation ΔN = 2ΛKN , cf. (11) and (12) of 5.1.

From (9), (10) and (11) it follows that

0 = Δζ + 2ΛKζ − 2
ζ

Λ
(LN − 2M2 + NL) + · · · .

Furthermore, by formula (32) of Section 1.3 we have
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Λ2K = LN − M2

and so we arrive at
0 = Δζ − 2ΛKζ + · · · .

Therefore equation (9) is equivalent to

(12) −Δζ + 2ΛKζ = Φ(ζ)

as it was claimed.
The nonlinearity Φ(ζ) consists of finitely many terms of the form

a(X)∂i1ζ . . . ∂ikζ

with 2 ≤ k ≤ 5 where ∂i� denotes a partial derivative of order i� with
0 ≤ i� ≤ 2, and ‖a(X)‖Cα(B) can be estimated by ‖X‖C3,α(B,R3) and
‖1/Λ‖C0(B). We leave it as an easy exercise to the reader to verify the “con-
dition of contraction” (4). �

With the aid of Schauder’s theory we will now show the fundamental result
that a strictly stable, immersed minimal surface X : B → R

3 can be embedded
into a field of surfaces of zero mean curvature provided that X is extendable
beyond ∂B.

Proposition 2. Let X ∈ C3,α(B, R3) be a strictly stable, immersed mini-
mal surface which can be extended as a minimal surface to a larger disk
Ω := B1+δ(0) with δ > 0. Then there is a one-parameter family

Z : B × [−t0, t0] → R
3

of zero mean curvature surfaces Z(·, t) (not necessarily conformally parametri-
zed) which is of class C2,α(B × [−t0, t0], R3), |t| ≤ t0, and has the following
properties:

(a) Z(w, 0) = X(w) for w ∈ B;
(b) JZ := ∂(Z1,Z2,Z3)

∂(u,v,t) > 0 on B × [−t0, t0];
(c) If N ∗(·, t) denotes the normal to the surface Z(·, t), one has

Zt(w, t) = ρ(w, t)N ∗(w, t) for w ∈ B and |t| < t0

with ρ(w, t) > 0 on B × [−t0, t0].

Definition 1. A mapping Z as described in Proposition 2 is called a field
immersion of the minimal surface X.

Proof of Proposition 2. (i) It is easily seen that also the extension X : Ω → R
3

is strictly stable and immersed for 0 < δ � 1. The strict stability of this
extension implies that the boundary value problem
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Lζ = 0 in Ω, ζ = 0 on ∂Ω

has only the trivial solution ζ(w) ≡ 0 on Ω. Then Schauder’s theory implies
that there is a uniquely determined solution ξ ∈ C2,α(Ω) of the boundary
value problem

(13) Lξ = 0 in Ω, ξ = 1 on ∂Ω

(see e.g. Sauvigny [16], Chapter IX, §6, Theorem 5).
By virtue of Proposition 1 in 5.3 it follows that ξ(w) > 0 for all w ∈ Ω.

Set
C2,α

0 (Ω) := {η ∈ C2,α(Ω) : η(w) = 0 for all w ∈ ∂Ω}
and note that the operator

(14) L0 := L|C2,α
0 (Ω) : C2,α

0 (Ω) → C0,α(Ω)

is an invertible mapping satisfying

(15) ‖L−1
0 f ‖2,α ≤ c2‖f ‖α for all f ∈ C0,α(Ω)

with an a priori constant c2 > 0. Here we have used the abbreviating notation

‖ · ‖m,α := ‖ · ‖Cm,α(Ω).

Finally set
c3 := ‖ξ‖2,α.

(ii) For sufficiently small t1 > 0 we now want to solve the nonlinear Dirich-
let problem

(16) Lζ(·, t) = Φ(ζ(·, t)) in Ω, ζ(·, t) = t on ∂Ω

by ζ(·, t) ∈ C2,α(Ω) and for parameter values with |t| ≤ t1. To this end we
make the “Ansatz”

(17) ζ(w, t) := η(w, t) + tξ(w) for w ∈ Ω, |t| < t1,

where η(·, t) ∈ C2,α
0 (Ω) is to be determined as solution of

(18) Lη(·, t) = Φ(η(·, t) + tξ) in Ω.

This is equivalent to finding a solution η(·, t) ∈ C2,α
0 (Ω) of the fixed point

equation

(19) η(·, t) = L−1
0 Φt(η(·, t)) with Φt(ζ) := Φ(ζ + tξ).

In order to solve (19) by Banach’s fixed point theorem we introduce the balls

B(t) := {ζ ∈ C2,α
0 (Ω) : ‖ζ‖2,α ≤ |t|3/2}
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with |t| ≤ t1 � 1. For ζ ∈ B(t) and |t| � 1 we have ‖ζ + tξ‖2,α ≤ 1. Then by
(15) and (4) (B replaced with Ω) we obtain for ζ ∈ B(t) that

‖L−1
0 Φt(ζ)‖2,α ≤ c2‖Φt(ζ)‖α = c2‖Φ(ζ + tξ)‖α

≤ c2c1‖ζ + tξ‖2
2,α ≤ 2c1c2{‖ζ‖2

2,α + t2‖ξ‖2
2,α}

≤ 2c1c2{ |t|3 + c2
3t

2} = 2c1c2{|t|3/2 + c2
3|t|1/2}|t|3/2.

For |t| ≤ t1 � 1 it follows that

‖L−1
0 Φt(ζ)‖2,α ≤ |t|3/2,

and the operator L−1
0 Φt maps B(t) into itself.

Secondly, for ζ, η ∈ B(t) with |t| � 1 we have ‖ζ + tξ‖2,α ≤ 1 and also
‖η + tξ‖2,α ≤ 1, whence

‖L−1
0 Φt(ζ) − L−1

0 Φt(η)‖2,α = ‖L−1
0 (Φt(ζ) − Φt(η))‖2,α

≤ c2‖Φt(ζ) − Φt(η)‖α = c2‖Φ(ζ + tξ) − Φ(ζ + tη)‖α

≤ c2c1|t| · ‖ζ − η‖2,α ≤ 1
2 ‖ζ − η‖2,α for |t| � 1,

and so

‖L−1
0 Φt(ζ) − L−1

0 Φt(η)‖2,α ≤ 1
2 ‖ζ − η‖2,α

for ζ, η ∈ B(t) and |t| < t1 with 0 < t1 � 1.

Therefore the mapping L−1
0 Φt : B(t) → B(t) is contracting, and so it possesses

a uniquely determined fixed point η(·, t) ∈ C2,α
0 (Ω) for 0 < |t| < t1 with

0 < t1 � 1, and for t = 0 we have L−1
0 Φ0(0) = 0, i.e. η(·, 0) = 0. A slight

modification of the proof shows that η(·, t) is differentiable with respect to
t and that even η ∈ C2,α(Ω × [−t1, t1]) holds true (see e.g. Giaquinta and
Hildebrandt [1], vol. 1, Chapter 6). Moreover, the choice of B(t) shows that

ηt(w, 0) = 0 for w ∈ Ω,

and so the superposition (17) yields a solution ζ ∈ C2(Ω × [−t1, t1]) of (16),
satisfying

ζt(w, 0) = ξ(w) > 0 for all w ∈ Ω.

For 0 < t1 � 1 we then obtain

(20) ζt(w, t) > 0 for w ∈ Ω and |t| ≤ t1.

Hence the family Y : Ω × [−t1, t1] → R
3 constitutes a field of surfaces

(21) Y (·, t) = X + ζ(·, t)N

of zero mean curvature surfaces in R
3 with Y (·, 0) = X. Finally by reparame-

trizing Y via their orthogonal trajectories we obtain for some t0 ∈ [0, t1] a
family
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(22) Z : B × [−t0, t0] → R
3

of zero mean curvature surfaces Z(·, t) satisfying (a)–(c). (The reparametriza-
tion is left to the reader as an exercise in ordinary differential equations.)
�

From Section 2.8 we already know that those minimal surfaces that can be
embedded into a foliation of simply covering surfaces of zero mean curvature
furnish a relative minimum of the area functional. Now we are confronted with
the more intricate problem to prove a similar property for immersed minimal
surfaces that can be embedded into a field of surfaces with H = 0 that might
have selfintersections.

Let Γ be an oriented Jordan curve in R
3, and denote by C(Γ ) the class of

surfaces X ∈ H1
2 (B, R3) bounded by Γ in the sense of Section 4.2. Set

C(Γ ) := C(Γ ) ∩ C0(B, R3),

and define
C

∗
(Γ ) := {X ∈ C(Γ ) : X(wj) = Qj , j = 1, 2, 3}

where Q1, Q2, Q3 are three fixed points on Γ and wj = exp( 2πi
3 j), j = 1, 2, 3.

Proposition 3. Let X ∈ C(Γ ) be a minimal surface that satisfies the assump-
tions of Proposition 2. Then there is a number ε = ε(X) > 0 such that

D(X) < D(Y ) for all Y ∈ C
∗
(Γ ) with 0 < sup

B
|Y (w) − X(w)| < ε.

Proof. (i) We embed X in a field immersion Z : B×[−t0, t0] → R
3 as described

in Proposition 2 and consider the corresponding surface element

W(w, t) := |Zu(w, t) ∧ Zv(w, t)| = [N ∗(w, t), Zu(w, t), Zv(w, t)].

Using the orthogonality condition and (c) we obtain

Wt = [N ∗
t , Zu, Zv] + [N ∗, Ztu, Zv] + [N ∗, Zu, Ztv]

= 0 + [N ∗, (ρN ∗)u, Zv] + [N ∗, Zu, (ρN ∗)v]
= ρ{[N ∗, N ∗

u , Zv] + [N ∗, Zu, N ∗
v ]}

= ρ〈N ∗, N ∗
u ∧ Zv + Zu ∧ N ∗

v 〉.

Furthermore, Theorem 2 of Section 2.5 yields

N ∗
u ∧ Zv + Zu ∧ N ∗

v = 0.

Thus we have

(23) Wt(w, t) = 0 for w ∈ B and |t| ≤ t0.
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(ii) The field immersion of Proposition 2 is constructed even on a larger
disk Ω0 with B ⊂⊂ Ω0 ⊂⊂ Ω. This implies that Z : Ω0 × [−t0, t0] → R

3

furnishes a local diffeomorphism provided that 0 < t0 � 1, but globally the
inverse of Z need not exist. For compactness reasons the local inverse Z−1 is
defined on domains of uniform size. Consequently there is an ε = ε(X) > 0
such that all admissible Y ∈ C

∗
(Γ ) with supB |Y − X| < ε can be written as

(24) Y (w) = Z(f(w), τ(w)), w ∈ B,

with a continuous mapping f from B into R
2 and a continuous function τ :

B → R such that

(25) f maps ∂B monotonically onto itself, f(wj) = wj , j = 1, 2, 3,

and f |∂B is positive-oriented with respect to B, and

(26) τ(w) = 0 for w ∈ ∂B and |τ(w)| ≤ t0 on B.

On account of Dirichlet’s principle, harmonic functions are unique minimizers
of D for given boundary values; thus it suffices to consider Y, f, τ that are real
analytic on B and of class C0 on B.

(iii) Assume for the moment that f furnishes a diffeomorphism from B
onto B with the inverse g, and set σ := τ ◦ g as well as

(27) Ỹ (w) := Y (g(w)) = Z(w, σ(w)).

Then it follows that

Ỹu(w) ∧ Ỹv(w) = Yu(g(w)) ∧ Yv(g(w))Jg(w)
= [(Zu + Ztσu) ∧ (Zv + Ztσv)](w, σ(w))
= [Zu ∧ Zv + σuZt ∧ Zv + σvZu ∧ Zt](w, σ(w)).

Multiplication by N ∗(w, σ(w)) yields by virtue of (23) that

〈N ∗(w, σ(w)), Yu(g(w)) ∧ Yv(g(w))〉Jg(w)
= W(w, σ(w)) = W(w, 0) = |Xu(w) ∧ Xv(w)|.

Integration over B then leads to the Schwarz comparison formula:

(28)
∫

B

〈N ∗(f(w), τ(w)), Yu(w) ∧ Yv(w)〉 du dv =
∫

B

|Xu ∧ Xv | du dv.

(As demonstrated in Section 2.8, this formula can be seen as a precursor of
Hilbert’s independent integral.) The relation (28) implies A(Y ) ≥ A(X), and
the equality sign holds if and only if Yu ∧Yv points in the direction of N ∗(f, τ).
This implies Y = X, and the result is proved.

(iv) In the sequel we have to verify this result even if f is not a global
diffeomorphism of B onto B. We have to deal with the possibility that f(B)



402 5 Stable Minimal- and H-Surfaces

might “overshoot” B, and that f(B) could cover B in several layers. We note
first that, in general, the critical values of the real analytic mapping f : B → B
constitute a Lebesgue null set N in R

2 (see Sauvigny [16], Chapter III, §4).
Combining this observation with arguments using the winding number, we
come to the following

Conclusion. There exist sequences {G�} and {H�} of subdomains of B such
that

(29) f� := f |G�
: G� → R

2 is a positively oriented diffeomorphism
from G� onto H�; τ� := τ |G�

;

and

(30) G� ∩ Gk = ∅, H� ∩ Hk = ∅ for � �= k;

B
∖ ∞⋃

�=1

H� is a Lebesgue null set in R
2.

One obtains the G� and H� as follows: For z0 ∈ B \ N one has pre-images
w0, w

′
0, w

′ ′
0 , . . . such that Jf (w0) �= 0, Jf (w′

0) �= 0, Jf (w′ ′
0 ) �= 0, . . . . Since

f |∂B is positive oriented, at least one of these numbers has to be positive,
say, Jf (w0) > 0. Then there is a neighborhood G of w0 such that f |G is a
positively oriented diffeomorphism of G onto a neighborhood H of z0. A re-
peated application of this argument leads to the selection of diffeomorphisms
f� : G� → H� with the properties (29) and (30). Note that B \

⋃
G� might

have positive measure. This means that we have omitted multiple coverings
of B by f(B) as well as parts of B that are mapped onto f(B) \ (B).

When we apply the arguments of part (iii) to these individual diffeomor-
phisms, the Schwarz comparison formula (28) implies

D(Y ) ≥ A(Y ) =
∫

B

|Yu ∧ Yv | du dv(31)

≥
∞∑

�=1

∫
G�

|Yu ∧ Yv | du dv

≥
∞∑

�=1

∫
G�

〈N ∗(f�, τ�), Yu ∧ Yv 〉 du dv

=
∞∑

�=1

∫
H�

|Xu ∧ Xv | du dv = A(X) = D(X).

(v) If D(X) = D(Y ) then all inequalities in (31) turn into equalities,
and so we have in particular that S := B \

⋃
G� is a two-dimensional null

set. Otherwise we would have ∇Y (w) = 0 for w ∈ S with meas S > 0, and
therefore ∇Y (w) ≡ 0 on B since Y is real analytic. This implies Y (w) ≡ const
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on B, a contradiction to Y ∈ C(Γ ). Thus we obtain Jf (w) = ∂(f1,f2)
∂(u,v) > 0 a.e.

on B. Furthermore, the vectors

Yu ∧ Yv = Zu(f�, τ�) ∧ Zv(f�, τ�)
∂(f1

� , f2
� )

∂(u, v)
+ Zv(f�, τ�) ∧ Zt(f�, τ�)

∂(f2
� , τ�)

∂(u, v)

+ Zt(f�, τ�) ∧ Zu(f�, τ�)
∂(τ�, f

1
� )

∂(u, v)

have to point into the direction of the normals N ∗(f�, τ�) on G�. Thus the two
determinants

∂(f2
� , τ�)

∂(u, v)
and

∂(τ�, f
1
� )

∂(u, v)

have to vanish on G� for � = 1, 2, . . . , since Zv ∧Zt and Zt ∧Zu are two linearly
independent vectors perpendicular to N ∗, and so we obtain

∇τ = 0 in
∞⋃

�=1

G�

because of Jf = ∂(f1,f2)
∂(u,v) > 0 on G�. Since meas S = 0 we obtain ∇τ(w) ≡ 0

in B whence τ(w) ≡ const in B, and τ = 0 on ∂B yields τ(w) = 0 on B. Thus
we arrive at

(32) Y (w) = Z(f(w), 0) = X(f(w)) for w ∈ B.

(vi) We have found: Any Y ∈ C
∗
(Γ ) with maxB |Y − X| < ε � 1 satisfies

D(Y ) ≥ D(X), and D(Y ) = D(X) if and only if Y = X ◦ f . It follows that
D(Y ) ≤ D(Ỹ ) for all Ỹ ∈ C

∗
(Γ ) with maxB |Ỹ − Y | < ε̃ for some ε̃ with

0 < ε̃ � 1. This implies that Y is conformally parametrized in the sense that
Yw · Yw = 0. Hence it follows from (32) that f is a mapping from B onto B
which is conformal (in the generalized sense) in B, monotonic on ∂B with
f(∂B) = ∂B and f(wj) = wj , j = 1, 2, 3. We conclude that f(w) ≡ w on B
and therefore Y (w) = X(w) on B. Thus we have proved

D(X) < D(Y ) for 0 < sup
B

|X − Y | < ε. �

We are now prepared to prove the following

Theorem 1 (J.C.C. Nitsche). Let Γ be a real analytic, regular Jordan curve
with a total curvature κ(Λ) less or equal to 4π. Then there is exactly one disk-
type minimal surface in C

∗
(Γ ), i.e. exactly one solution X ∈ C

∗
(Γ ) solving

Plateau’s problem to the contour Γ . This solution is free of branch points up to
the boundary and can be continued analytically across Γ as a minimal surface.

Proof. (i) If Γ lies in the plane E, any minimal surface X ∈ C
∗
(Γ ) is contained

in this plane as well, due to the convex hull property, and so it reduces to a



404 5 Stable Minimal- and H-Surfaces

strictly conformal or anticonformal mapping from B onto the interior of Γ in
E which is uniquely determined by the three-point condition X(wj) = Qj ,
j = 1, 2, 3 (cf. Section 4.11). By the asymptotic expansion of Xw at w0 ∈ ∂B
it turns out that there are no boundary branch points of X, because otherwise
X(B) would overshoot Γ into R

2\Ω, where Ω is the interior domain of Γ . Thus
the assertion of the theorem holds in this case even without the assumption
κ(Γ ) ≤ 4π; actually it would suffice that Γ ∈ C2,α (or even Γ ∈ C1,α) in
order to prove the uniqueness of X ∈ C

∗
(Γ ).

(ii) Thus from now on we assume that Γ is nonplanar. By H. Lewy’s
regularity theorem [5] we know that any minimal surface X ∈ C(Γ ) can be
continued analytically across Γ onto a larger disk Ω := B1+δ(0), cf. Vol. 2,
Section 2.8. Furthermore, by the Gauss–Bonnet formula established in Vol. 2,
Section 2.11, we have the following: Let w1, . . . , wk ∈ B and wk+1, . . . , wk+� ∈
∂B be the finitely many branch points of a minimal surface X ∈ C

∗
(Γ ) with

the orders ν1, . . . , νk and νk+1, . . . , νk+� respectively (see Vol. 2, Section 2.10),
νj ∈ N. Then

(33) 0 ≤
k∑

j=1

νj +
1
2

k+�∑
j=k+1

νj =
1
2π

{∫
B

KΛdudv +
∫

Γ

κg ds − 2π

}
.

In (iii) we shall see that the integral of the geodesic curvature κg of Γ on X
is bounded by the total curvature of Γ , i.e.

(34)
∫

Γ

κg ds ≤
∫

Γ

κ ds =: κ(Γ ),

and by assumption we have κ(Γ ) ≤ 4π. Therefore we obtain

(35)
∫

Γ

κg ds − 2π ≤ 2π.

The Gaussian curvature K of X satisfies K = κ1κ2 = −κ2
1 ≤ 0 in B′ =

B \ {w1, . . . , wk } since 0 = 2H = κ1 + κ2. If we had K(w) ≡ 0 in B′, it would
follow that the Weingarten mapping of X were everywhere trivial in B′, i.e.
N(w) ≡ const in B′ and then in B. This would imply that X and thus Γ were
planar, which is excluded by the assumption above. Therefore K(w) �≡ 0 on
B′, and consequently

(36)
∫

B

KΛdu dv < 0.

From (33), (35), and (36) it follows that

(37) 0 ≤
k∑

j=1

νj +
1
2

k+�∑
j=k+1

νj < 1.
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Furthermore the orders of the boundary branch points wk+1, . . . , wk+� have
to be even because of the monotonicity of the mapping X|∂B (see Vol. 2,
Section 2.10). Therefore (37) implies

(38) νj = 0 for j = 1, . . . , k + �,

i.e. any minimal surface X ∈ C(Γ ) with κ(Γ ) ≤ 4π is an immersion of B
into R

3, and (33) reduces to the classical Gauss–Bonnet theorem

(39) −
∫

B

KΛdu dv =
∫

Γ

κg ds − 2π

for an immersed minimal surface X.
(iii) Let us parametrize Γ by the arc length parameter s ∈ [0, L], L =

length of Γ , setting

Y (s) := X(cos ϕ(s), sin ϕ(s)), 0 ≤ s ≤ L,

satisfying |Y ′(s)| ≡ 1 for 0 ≤ s ≤ L. Furthermore set

Z(s) := N(cos ϕ(s), sin ϕ(s)), 0 ≤ s ≤ L.

Then κ(s) = |Y ′ ′(s)| is the curvature of the arc Γ at the point Y (s), and

κ(Γ ) =
∫ L

0

κ(s) ds =
∫ L

0

|Y ′ ′(s)| ds

is the total curvature of Γ . Since the geodesic curvature satisfies

|κg(s)| = |[Y ′ ′(s), Z(s), Y ′(s)]|

and the normal curvature κn of Y fulfills

|κn(s)| = | 〈Z(s), Y ′ ′(s)〉 |,

we have the decomposition

κ2(s) = κ2
g(s) + κ2

n(s)

whence indeed
|κg(s)| ≤ κ(s) for 0 ≤ s ≤ L.

For
∫ L

0
κg ds =

∫ L

0
κ ds, then κn(s) ≡ 0 for 0 ≤ s ≤ L. Note that with

w(s) := (cos ϕ(s), sin ϕ(s)) we obtain

Y ′ = [Xu(w)(− sin ϕ) + Xv(w) cos ϕ]ϕ′

and

Y ′ ′ = [Xuu(w)(sin2 ϕ) − 2Xuv(w) sin ϕ cosϕ + Xvv(w) cos2 ϕ]|ϕ′ |2 + · · ·

where + · · · stands for the neglected tangential terms.
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From κn(s) ≡ 0 and |κn(s)| = | 〈Z(s), Y ′ ′(s)〉 | as well as Xuu = −Xvv we
infer that

0 = 〈Z, Xuu(w)[cos2 ϕ − sin2 ϕ] + 2Xuv(w) sin ϕ cos ϕ〉(40)
= L(w)[cos2 ϕ − sin2 ϕ] + 2M sin ϕ cosϕ

= Re {[L(w) − iM(w)](cos ϕ + i sin ϕ)2}.

In Section 1.3 we have seen via the Codazzi equations that

f(w) := [L(w) − iM(w)]w2, w ∈ B,

is holomorphic on B. Then (40) implies Re f |∂B = 0 and therefore Re f(w) ≡ 0
in B, whence f(w) ≡ const in B. Since f(0) = 0 it follows that f(w) ≡ 0 in B.
Thus we arrive at

L(w) ≡ 0, M(w) ≡ 0, N(w) ≡ 0 in B

whence K(w) ≡ 0 in B which contradicts (36). Thus κn(s) ≡ 0 is impossible,
and (35) is strengthened into

∫
Γ

κg ds < 4π.

Combining this with (39) it follows that

(41) −
∫

B

KΛdu dv < 2π.

Because of Theorem 2 in Section 5.4 we infer from (41) that X is strictly stable.
According to Proposition 2 we can therefore embed X into a field immersion
of minimal surfaces, and so Proposition 3 implies that any minimal surface
X ∈ C

∗
(Γ ) furnishes a strict relative minimum for Dirichlet’s integral D in

C
∗
(Γ ).
Suppose now that two different minimal surfaces X1 and X2 existed in

C
∗
(Γ ). Then both would furnish a strict relative minimum of D in C

∗
(Γ ).

Then by Courant’s “Mountain Pass Lemma”, to be presented in the next
chapter, there would exist a third minimal surface X3 ∈ C

∗
(Γ ) which were

unstable in the sense that it were not a local minimizer of D (cf. Theorem 2
in Section 6.7). The existence of such a surface X3 is impossible as we have
seen above, and so there cannot be two different minimal surfaces in C

∗
(Γ ).

However there is always one minimal surface X in C
∗
(Γ ), which proves the

theorem. �

Remark 1. The unique solution in Nitsche’s theorem actually is not only
immersed, but even embedded, according to the following remarkable result
due to T. Ekholm, B. White, and D. Wienholtz [1]:
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Theorem 2. Let Γ be a closed Jordan curve in R
n with total curvature ≤ 4π,

and let X : B → R
n be a minimal surface in C(Γ ). Then X is embedded up

to and including the boundary, with no interior branch points.

In fact Theorem 2 even holds for minimal surfaces X : M → R
n defined

on a compact 2-manifold M with boundary ∂M which is mapped homeomor-
phically onto Γ .

5.7 Some Finiteness Results for Plateau’s Problem

For Plateau’s problem the most challenging question is: “How many minimal
surfaces of the type of the disk, or of general topological type, are bounded
by a preassigned ‘well-behaved’ closed Jordan curve Γ?” The Courant–Levy
examples (cf. No. 4 of Section 4.15) show that Γ may bound infinitely many
solutions even if it is regular and smooth except for one point. Thus a reason-
able answer can only be expected if we interpret the attribute “well-behaved”
in a suitably restricted way, say as regular and real analytic, or as regular and
of class Ck for some k ≥ 1, or as piecewise linear (i.e. Γ is a polygon). More-
over it is interesting to find upper or lower bounds for the number of solutions
bounded by a well-behaved contour Γ . However, even the decision whether or
not a well-behaved Γ spans only finitely many disk-type minimal surfaces is
still open.

We shall prove in this section that stable, immersed surfaces of the type of
the disk bounded by a real analytic, regular contour Γ are isolated; hence only
finitely many of them can be bounded by such a Γ . The possibility to estimate
quantitatively a suitable neighborhood, where no further solution exists, seems
to be out of reach. The pioneering contribution towards isolatedness of stable
solutions for Plateau’s problem is due to F. Tomi [6].

We begin our discussion with the following local uniqueness theorem that
is already contained in the considerations of the last section. To this end we
need the perturbation equation Lζ = Φ(ζ) defined in 5.6, Proposition 1, which
is associated with a given immersed minimal surface X. We have the following
result:

Proposition 1. Let X be an immersed, strictly stable minimal surface of class
C3,α(B, R3) with the normal N . Then there is a number ε(X) > 0 such that
all solutions ζ ∈ C2,α(B) of

(1) L(ζ) = Φ(ζ) in B, ζ = 0 on ∂B,

satisfying |ζ(w)| < ε(X) for all w ∈ B, are identically zero. Consequently, if
Y ∈ C2,α(B, R3) is an immersed zero mean curvature surface with Y (w) =
X(w) for w ∈ ∂B and

(2) |Y (w) − X(w)| < ε(X) for w ∈ B
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which can be written as

(3) Y (w) = X(w) + ζ(w)N(w) for w ∈ B,

ζ as above, then Y = X.

Proof. In Proposition 2 of Section 5.6 we have constructed a one-parameter
family η ∈ C2,α(B × [−t0, t0]) of functions η(w, t), w ∈ B, t ∈ [−t0, t0], t0 > 0,
solving

(4) Lη(·, t) = Φ(η(·, t)) in B, η(·, t) = t on ∂B,

such that the family of surfaces

(5) Z(w, t) := X(w) + η(w, t)N(w), w ∈ B, |t| ≤ t0

yields a field immersion of X, as η(w, 0) ≡ 0 on B. (Note that in 5.6 the
function η was called ζ.) Then there is a number ε = ε(X) > 0 such that any
Y of the form (3) with ζ ∈ C2,α

0 (B) satisfying Lζ = Φ(ζ) and |ζ(w)| < ε(X)
for w ∈ B is covered by the field (5). Then we can write

(6) ζ(w) = η(w, τ(w)) for w ∈ B

where the “height function” τ is of class C2,α(B) and satisfies |τ(w)| ≤ t0 for
w ∈ B as well as

(7) τ(w) = 0 on ∂B.

Now we prove τ(w) ≡ 0 on B which is turn implies

ζ(w) = η(w, 0) ≡ 0 on B

whence Y = X.
In fact, suppose that τ(w) �≡ 0. Then there is a point w0 ∈ B such that

τ(w0) = t0 with
|t0| = max{ |τ(w)| : w ∈ B} > 0.

Then the minimal immersion Y of the form (3), satisfying (1) and (2), touches
the minimal immersion Z(·, t0) at the interior point x0 := X(w0). We repre-
sent both Y and Z(·, t) locally as minimal graphs over the same plane in
a neighborhood of x0. Applying the maximum principle to the difference of
the two equations for these graphs we conclude that the two graphs coincide.
Repeating this reasoning, a continuity argument yields Y (w) ≡ Z(w, t0) for
w ∈ B, whence ζ(w) ≡ η(w, t0) for all w ∈ B, and therefore

(8) ζ(w) = t0 for all w ∈ ∂B.

Since t0 �= 0, this contradicts the assumption ζ|∂B = 0, and so we have verified
τ(w) ≡ 0 on B. �
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Next we modify the reasoning used to prove Proposition 2 of Section 5.6.
This will lead to the following central result due to F. Tomi [6] and J.C.C. Nit-
sche [26].

Proposition 2. Let X ∈ C3,α(B, R3) be an immersed, stable minimal sur-
face, and suppose that {ζj } is a sequence of functions ζj ∈ C2,α(B) satisfying

(9) Lζj = Φ(ζj) in B, ζj = 0 on ∂B

and

(10) 0 < ‖ζj ‖2,α → 0 for j → ∞

(where ‖ · ‖2,α is the C2,α(B)-norm). Then X is weakly stable, and there exists
a real analytic one-parameter family

ζ : B × [−t0, t0] → R, t0 > 0,

of solutions ζ(·, t) ∈ C2,α(B) of

(11) Lζ(·, t) = Φ(ζ(·, t)) in B, ζ(w, t) = 0 for w ∈ ∂B,

|t| ≤ t0, satisfying

(12)
∂

∂t
ζ(w, t)

∣∣∣∣
t=0

> 0 for all w ∈ B.

Proof. Since the stable minimal immersion is not isolated, we infer from
Proposition 1 that X is only “weakly stable” in the sense that the Schwarzian
operator L has zero as its lowest eigenvalue with respect to zero boundary
values. Equivalently this means: There exists a function ξ ∈ C2,α(B) satisfy-
ing

(13) Lξ = 0 in B, ξ|∂B = 0, ξ(w) > 0 for all w ∈ B.

Consider the closed subspace

B̃ :=
{

η ∈ C2,α
0 (B) :

∫
B

ξη du dv = 0
}

of the Banach space (C2,α
0 (B), ‖ · ‖2,α), as well as the restriction

(14) L̃ := L|B̃ : B̃ → C0,α(B).

Next we define the “projection” Φ̃t by

(15) Φ̃t(η) := Φ(tξ + η) −
{∫

B

ξΦ(tξ + η) du dv

}
ξ, η ∈ B̃
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for all t ∈ R. Similarly as in the proof of Propositions 1 and 2 in Section 5.6
one can show that, for any t with |t| ≤ t0 and 0 < t0 � 1 there is exactly one
solution η(·, t) ∈ B̃ of

(16) L̃(η(·, t)) = Φ̃t(η(·, t)) in B,

and the structure of the right-hand side in (16) yields a real analytic depen-
dence of η(·, t) on the parameter t ∈ [−t0, t0]. From the assumptions (9) and
(10) we infer the representations

(17) ζj = tjζ + η(·, tj)

with

(18) tj → 0 as j → ∞ and tj �= 0

for j � 1. Define the real analytic function ψ : (−t0, t0) → R by

(19) ψ(t) :=
∫

B

Φ(tξ(u, v) + η(u, v, t))ξ(u, v) du dv.

With the aid of (9), (17), (13), (16) and (15) we obtain for j � 1 that

Φ(ζj) = L(ζj) = L(η(·, tj)) = L̃(η(·, tj))
= Φ̃tj (η(·, tj)) = Φ(tjξ + η(·, tj)) − ψ(tj)ξ
= Φ(ζj) − ψ(tj)ξ.

This implies
ψ(tj) = 0 for j � 1, tj → 0;

hence the real analytic function ψ satisfies

ψ(t) ≡ 0 on (−t0, t0).

Finally we infer from (16) that

Lζ(·, t) = Φ(ζ(·, t)) in B for |t| ≤ t0

with the family of functions

ζ(w, t) := tξ(w) + η(w, t), w ∈ B, |t| ≤ t0

satisfying
∂

∂t
ξ(w, 0) = ξ(w) +

∂

∂t
η(w, 0) > 0 for w ∈ B

since
∂

∂t
η(w, 0) = 0 for all w ∈ B

(see part (ii) of the proof of Proposition 2 in Section 5.6). �
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The Propositions 1 and 2 motivate the following

Definition 1. An immersed minimal surface X ∈ C(Γ ) is called weakly
stable if it is stable, but not strictly stable.

Remark 1. Let λ1 be the smallest eigenvalue of the Schwarzian operator
L = −Δ + 2ΛK of X on B with respect to zero boundary values, i.e. the
smallest number λ ∈ R such that the boundary value problem

Lζ = λζ in B, ζ = 0 on ∂B

possesses a nontrivial solution ζ. It is well known that λ1 is simple and that
each eigenfunction ζ corresponding to λ1 satisfies ζ(w) �= 0 for all w ∈ B.
Thus the eigenspace to λ1 is one-dimensional and will be spanned by an
eigenfunction ζ satisfying ζ(w) > 0 for all w ∈ B. Hence we have:

X is stable if and only if λ1 ≥ 0, weakly stable if and only if λ1 = 0, strictly
stable if and only if λ1 > 0, nonstable if and only if λ1 < 0.

Furthermore we have:

1. X is weakly stable if and only if there is a ζ ∈ C2,α(B) with Lζ = 0 in B,
ζ = 0 on ∂B, and ζ(w) > 0 for w ∈ B.

2. X is strictly stable if there is a ζ ∈ C2,α(B) with Lζ = 0 in B and ζ > 0
on B.

3. X is nonstable if there is a subdomain Ω of B with Ω �= B such that B \ Ω
is non-empty and “Lζ = 0 in Ω” possesses a solution ζ ∈ C0(Ω) ∩ C2(Ω)
with ζ = 0 on ∂Ω and ζ > 0 on Ω.

Remark 2. Tomi’s original proof of Proposition 2 did not use the “pertur-
bation equation” Lζ = Φ(ζ), but was based on a real analytic version of the
implicit function theorem in Banach spaces.

Proposition 3. With the family ζ(·, t), |t| ≤ t0 from Proposition 2 we define
the real analytic one-parameter family of immersions

(20) Y (·, t) := X + ζ(·, t)N, |t| ≤ t0,

from B into R
3 which have mean curvature zero and satisfy

Y (w, t) = X(w) for w ∈ ∂B

and
|Yt(w, t)| = |ζt(w, t)| > 0 for w ∈ B and |t| ≤ t0.

Furthermore, all surfaces Y (·, t) have the same area, i.e.

(21) A(Y (·, t)) ≡ const for |t| ≤ t0.
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Proof. As at the end of the proof of Proposition 2 in Section 5.6, formula
(22), we reparametrize the surfaces Y (·, t) via their orthogonal trajectories
and obtain (possibly for some smaller t0 > 0) a family Z : B × [−t0, t0] → R

3

of zero mean curvature surfaces Z(·, t), whose area elements W(u, v, t) :=
|Zu(u, v, t) ∧ Zv(u, v, t)| satisfy

(22)
∂

∂t
W(u, v, t) ≡ 0 on B × [−t0, t0]

(cf. the proof of formula (23) in Section 5.6). This implies

A(Z(·t)) ≡ const for |t| ≤ t0.

Since Z(·, t) is a reparametrization of Y (·, t), it follows that

A(Y (·, t)) = A(Z(·, t)) for |t| ≤ t0,

which in conjunction with the preceding identity implies (21). �

The above lense-shaped field of zero mean curvature surfaces Y (·, t) defined
by (20) is defined in a similar way as a field of conjugate geodesics. This
motivates

Definition 2. A family Y (·, t) = X + ζ(·, t)N , |t| ≤ t0, of zero mean cur-
vature immersions B → R

3 and of constant area A(Y (·, t)), as described in
Propositions 2 and 3, is called conjugate field for X. We also say: X is
embedded in the conjugate field {Y (·, t)}|t|≤t0 .

This leads to the question whether a minimal immersion that is sufficiently
close to a surface X and has the properties required in Propositions 2 and 3,
can be “covered” by a conjugate field for X. This might not be the case if we
interpret “close” in the sense of the C0(B, R3)-norm. However, this property
can be proved if we understand “close” in the C2,α-sense. This is a consequence
of the following result due to R. Böhme and F. Tomi [1], §3, pp. 15–20. For
the convenience of the reader we shall provide a proof.

Proposition 4. Let {Xj } be a sequence of immersions B → R
3 with Xj ∈

C(Γ ) ∩ C3,α(B, R) and

lim
j→∞

‖Xj − X‖C3,β(B,R3) = 0 for β ∈ (0, α),

where the limit X is also an immersion B → R
3 of class C(Γ ) ∩ C3,α(B, R3).

Then there are reparametrizations Yj ∈ C(Γ ) ∩ C2,α(B, R3) of Xj which can
be expressed as “generalized graphs above X” in the form

Yj = X + ζjN with ζj ∈ C2,α
0 (B)

and
‖ζj ‖2,β → 0 as j → ∞ for 0 < β < α.
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Proof. First we continue X to an immersion of class C3,α(Ω, R3) for some Ω
with B ⊂ Ω and consider the family of surfaces

Z(w, t) := X(w) + tN(w), w ∈ Ω, |t| < ε,

for some ε with 0 < ε � 1. Then Z ∈ C2,α(Ω × (−ε, ε), R3), and the Jacobian
JZ of Z is everywhere positive on Ω × (−ε, ε). Thus Z is an open mapping
of Ω × (−ε, ε) into R

3, and Z can locally be inverted. In conjunction with a
monodromy argument it follows that, for j � 1, each Xj can be represented
in the form

Xj(w) = Z(fj(w), zj(w)), w ∈ B,

with a mapping fj : B → R
3 of the class C2,α(B, R2) such that fj |∂B maps

∂B monotonically onto itself, and a height function zj ∈ C2,α
0 (B).

Setting f(w) := w and z(w) := 0 for w ∈ B we can write

X(w) = Z(f(w), z(w)).

Then we infer from Xj → X in C2,α(B, R3) and the fact that the local inverse
of Z is of class C2,α:

fj → f in C2,α(B, R2), zj → z = 0 in C2,α(B).

Since f(w) ≡ w on B, the mappings fj satisfy

Jfj (w) > 0 on B for j � 1,

and so every fj |B is an open mapping of B into R
2, j � 1. Since fj ∈

C0(B, R2) and fj |∂B is a homeomorphism of ∂B onto ∂B, we infer fj(B) = B
for j � 1; therefore the fj are C2,α-diffeomorphisms of B onto B for j � 1.
Setting ζj := zj ◦ f −1

j ∈ C2,α
0 (B) and Yj := Xj ◦ f −1

j = Z(idB , ζj) we obtain

Yj(w) = Xj(fj(w)) = X(w) + ζj(w)N(w) for w ∈ B, j � 1,

with
‖ζj ‖C2,α(B) → 0 as j → ∞.

�

Remark 3. Let us interpret the preceding results in a geometric way. Proposi-
tion 1 states that a strictly stable, immersed X ∈ C(Γ ) can be embedded into a
field {Z(·, t)}|t|≤t0 of minimal immersions such that every immersion Y ∈ C(Γ )
with the mean curvature zero, given in the “normal form” Y = X + ζN with
ζ ∈ C2,α

0 (B) satisfying Lζ = Φ(ζ), coincides with X if it is sufficiently close
to X in the C0(B, R3)-norm. This means: A strictly stable minimal immer-
sion is isolated with respect to the C0-norm compared with normal variations
Y = X + ζN , ζ as above.

Yet it is not clear whether every minimal immersions X̃ ∈ C(Γ ) that is
C0-close to X has a normal-form representation Y ; but, by Proposition 4,
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such a reparametrization can be achieved if X̃ is C2,α-close to X. Thus we
obtain: Any strictly stable minimal immersion X ∈ C(Γ ) is isolated in the
C2,α-norm among all minimal immersions of class C(Γ ).

If, however, the stable immersion X ∈ C(Γ ) is the C2,α-limit of stable
immersions Xj ∈ C(Γ ) with Xj �= X, then X is weakly stable and can be em-
bedded into a conjugate field {Y (·, t)}|t|≤t0 which forms a regular, real analytic
curve in C2,α(B, R3).

Now we turn to Tomi’s “finiteness result”. We recall some definitions and
formulate a compactness result.

The class C∗(Γ ) consists of those X ∈ C(Γ ) which satisfy a preassigned
three-point condition ∗, and C

∗
(Γ ) := C∗(Γ ) ∩ C0(B, R3). For X ∈ C(Γ ) the

area A(X) and Dirichlet’s integral D(X) are

A(X) =
∫

B

|Xu ∧ Xv | du dv, D(X) =
1
2

∫
B

| ∇X|2 du dv.

We know that

a(Γ ) = inf
C(Γ )

A = inf
C(Γ )

D = inf
C

∗
(Γ )

A = inf
C

∗
(Γ )

D.

Proposition 5. For any Γ ∈ Ck,α there is a constant c(Γ, k, α, ∗) such that
each minimal surface X ∈ C∗(Γ ) is of class Ck,α(B, R3) and satisfies

‖X‖Ck,α(B,R3) ≤ c(Γ, k, α, ∗), k ∈ N, α ∈ (0, 1),

where c(Γ, k, α, ∗) is a constant which depends only on Γ, k, α, ∗. Hence, from
any sequence of minimal surfaces Xj ∈ C∗(Γ ), we can extract a subsequence
Xjν → X in Ck,β(B, R3) as ν → ∞ for any β ∈ (0, α), where X ∈ C∗(Γ ) ∩
Ck,α(B, R3) is a minimal surface.

Proof. See Vol. 2, Chapter 2. �

Theorem 1 (F. Tomi [6]). Let Γ be a closed Jordan curve in R
3 of class C3,α,

and suppose that every minimal surface X of class C(Γ ) with A(X) = a(Γ )
is an immersion of B into R

3, i.e. X be free both of interior and boundary
branch points. Then Γ spans only finitely many minimal surfaces X ∈ C∗(Γ )
which satisfy A(X) = a(Γ ), i.e. which are area minimizing in C(Γ ).

This immediately implies the following

Corollary 1. If all minimal surfaces X ∈ C(Γ ) with Γ ∈ C3,α are immersed
up to the boundary, i.e. have no branch points on B, then there are only finitely
many minimal surfaces X ∈ C∗(Γ ) with A(X) = a(Γ ).

Remark 4. In Section 4.9 we have exhibited conditions on Γ which ensure
that any X ∈ C(Γ ) is free of branch points, in which case Corollary 1 can be
applied.
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Remark 5. By the papers by R. Osserman, H.W. Alt, R. Gulliver, and Gul-
liver/Osserman/Royden it follows that any minimal surface X ∈ C(Γ ) with
A(X) = a(Γ ) is free of interior branch points. Furthermore, R. Gulliver
and F.D. Lesley [1] have stated that, in addition, every X ∈ C(Γ ) with
A(X) = a(Γ ) has no boundary branch point if Γ is a regular, real analytic
Jordan curve. This result implies

Corollary 2. If Γ is a regular, real analytic, closed Jordan curve, then there
exist only finitely many X ∈ C∗(Γ ) with A(X) = a(Γ ), and all of them are
immersions.

Proof of Theorem 1. Suppose that Γ bounds infinitely many X with A(X) =
a(Γ ). By Proposition 5 there is a sequence {Xj } of minimal surfaces Xj ∈
C∗(Γ ) with A(Xj) = a(Γ ) and

0 < ‖Xj − X‖C3,β(B,R3) → 0 as j → 0

for β ∈ (0, α), and the limit X is a minimal surface of class C∗(Γ )∩C3,α(B, R3)
with A(X) = a(Γ ).

By Propositions 2, 3, 4 we embed X into a conjugate field, with α replaced
by β ∈ (0, α), i.e. there is a regular, real analytic curve {Y (·, t)}|t|≤t0 with
Y (·, 0) = X which lies in the level set

Mc(Γ ) := {X ∈ C∗(Γ ) : D(X) = A(X) = c}, c := a(Γ ).

We equip Mc(Γ ) with the C2(B, R3)-norm and denote by Kc the closed, con-
nected component of Mc(Γ ) containing X. A continuity argument combined
with the above reasoning yields: Through every X0 ∈ Kc there is a real ana-
lytic, regular curve {Y (·, t)} |t|≤t0 contained in Kc such that Y (·, 0) = X0.

Consider now the volume functional V on the “block” Kc which is defined
by

(23) V (X) :=
1
3

∫
B

[X, Xu, Xv] du dv.

Since Kc is a compact subset of C2(B, R3) and V is continuous on Kc, there
is an X0 ∈ Kc such that

V (X0) = max
Kc

V.

Let {Y (·, t)}|t|≤t0 be a regular, real analytic arc with Y (·, 0) = X0. Then

(24)
d

dt
V (Y (·, t))

∣∣∣∣
t=0

= 0.

On the other hand we have

Y (·, t) := X0 + ζ(·, t)N0,
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N0 = normal of X0, with ξ = ζt(·, 0), ξ(w) > 0 on B, and Yt(·, 0) = ξN0. Set

Λ0 := |X0,u ∧ X0,v | = |X0,u|2

with Λ0(w) > 0 on B. The computations in 5.3 show that

(25)
d

dt
V (Y (·, t))

∣∣∣∣
t=0

=
∫

B

Λ0(w)ξ(w) du dv > 0

if we take div 1
3x = 1 into account. Clearly, (25) contradicts (24), and so the

theorem is proved. �

Now we want to generalize Theorem 1 to stable solutions of Plateau’s
problem. So far we can carry out this program only for some special classes
of boundaries, e.g. for extreme curves.

Definition 3. A closed Jordan curve Γ in R
3 is called extreme if for any

point P of Γ there is a plane of support, that is, a plane Π such that Γ lies
on one side of Π but is not completely contained in Π.

Clearly, Γ is extreme if and only if it lies on the boundary of a convex
body. Equivalently we have: Γ is extreme if and only if it lies on the boundary
of its convex hull.

Proposition 6 (Compactness property of stable minimal immersions). Let
Γ be a closed regular Jordan curve of class C3,α which is extreme, and suppose
that {Xj } is a sequence of stable minimal surfaces Xj ∈ C∗(Γ ) free of branch
points on B. Then:

(i) We can extract a subsequence {Xjν } converging in C3,β(B, R3) with β ∈
(0, α) to a minimal surface X ∈ C3,α(B, R3).

(ii) The limit surface X is a stable minimal immersion of B into R
3.

Proof. Statement (i) follows from Proposition 5, and the limit X of the Xjν

has no branch points on ∂B since Γ is extreme. It remains to prove that X
is stable and has no branch points in B. To this end we consider the Gauss
curvature Kν and the surface element Λν = |DuXjν |2 of Xjν as well as the
normal Nν : B → S2 ⊂ R

3 of Xjν . We have

1
2 | ∇Nν |2 = −ΛνKν ,

and the Gauss–Bonnet formula yields

−
∫

B

ΛνKνdu dv =
∫

∂B

(κg)ν ds − 2π ≤ κ(Γ ) − 2π.

Thus the total curvature κ(Γ ) of Γ estimates the Dirichlet integrals D(Nν) =
1
2

∫
B

| ∇Nν |2 du dv of the normals Nν by

(26) D(Nν) ≤ κ(Γ ) − 2π for all ν ∈ N.
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Furthermore the isoperimetric inequality yields

(27) D(Xjν ) ≤ 1
4π

L2(Γ ) for all ν ∈ N.

Thus by the reasoning in (i), (ii), (iii) of the proof of Theorem 1 in Section 5.5
we conclude: For any B′ ⊂⊂ B there is a constant c(B′) > 0 such that

(28) | ∇Nν(w)| ≤ c(B′) for all w ∈ B′.

Since |Nν | ≤ 1 we may assume that the subsequence {jν } also satisfies

(29) Nν(w) ⇒ N(w) for w ∈ B and for any B′ ⊂⊂ B.

(Actually it suffices to apply merely (i) and (ii) of the proof quoted above
since in this way we already obtain a uniform modulus of continuity of the
Nν on any B′ ⊂⊂ B.)

Suppose now that X had an interior branch point w0 ∈ B; we may assume
that w1 = 0, X(0) = 0, N(0) = e3 = (0, 0, 1). Then the associated planar
mapping f : B → C with

f(w) := X1(w) + iX2(w), w ∈ B,

has the asymptotic expansion

f(w) = awn + o(|w|n+1) as w → 0, a ∈ C \ {0}

where n ≥ 2. Thus the winding number i(f, 0) of f about w = 0 is at least 2.
On the other hand the planar mappings fν : B → C associated with Xjν ,

fν(w) := X1
jν

(w) + iX2
jν

, w ∈ B,

satisfy fν(w) ⇒ f(w) for |w| � 1 as well as

fν(w) = aνw + o(|w|2) for |w| ≤ δ, 0 < δ � 1, aν ∈ C \ {0}, ν � 1,

since Xjν (w) ⇒ X(w) and Nν(w) ⇒ N(w) as ν → ∞ for |w| ≤ δ with 0 <
δ � 1. Hence the winding numbers i(fν , 0) of fν about 0 satisfy i(fν , 0) = 1
for ν � 1. Since i(fν , 0) → i(f, 0) as ν → ∞, we obtain i(f, 0) = 1, a
contradiction to i(f, 0) ≥ 2. Thus X has no branch points in B.

Then we conclude

(30) Λν(w)Kν(w) → Λ(w)K(w) as ν → ∞ for w ∈ B,

and Lebesgue’s theorem on dominated convergence yields the stability of X.
�

When we combine the reasoning in the proof of Theorem 1 with Proposi-
tion 6, we obtain
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Theorem 2. An extreme, regular Jordan contour Γ ∈ C3,α bounds at most
finitely many stable minimal immersions B → R

3 of class C∗(Γ ).

Remark 6. The central reason why we can carry over the proof of Theorem 1
to the situation considered in Theorem 2 is the observation stated in Propo-
sition 3 that all elements Y (·, t) of the regular, real analytic family (20) have
the same area A(Y (·, t)).

Remark 7. The arguments used for the proof of Theorem 2 and the subse-
quent Theorem 3 are based on Sauvigny’s paper [10].

Remark 8. The same reasoning holds true if we replace the assumption that
Γ be extreme by the property: No minimal surface X ∈ C(Γ ) has a boundary
branch point on ∂B.

In this context, J.C.C. Nitsche [31] has proved the following result:

Proposition 7. Let Γ be a closed, regular, real analytic Jordan curve in R
3

with the property that there is a straight line in R
3 such that no plane through

this line intersects Γ in more than two distinct points. Then every solution of
Plateau’s problem for Γ is free of branch points.

We now present a modified version of the 6π-finiteness theorem by J.C.C.
Nitsche [31] which considers also nonstable solutions of Plateau’s problem.

Proposition 8. Let Γ ∈ C3,α be a closed, regular, extreme Jordan curve in R
3

with a total curve κ(Γ ) less than 6π. Then from any sequence {Xj } of minimal
immersions Xj : B → R

3 we can extract a subsequence {Xjν } converging in
C3,β(B, R3) for 0 < β < α to a minimal immersion X : B → R

3 of class
C3,α(B, R3).

Proof. We copy the reasoning used for proving Proposition 6, but we have
to replace the stability condition with the subsequent curvatura-integra con-
dition to achieve a uniform modulus of continuity for the normals Nν of the
converging subsequence {Xjν } of {Xj }. The estimate (26) yields

(31) D(Nν) = A(Nν) ≤ κ(Γ ) − 2π =: ω with 0 ≤ ω < 4π.

If ω = 0 then Nν = const for all ν ∈ N, and thus the Nν are certainly uniformly
continuous. Hence we can assume that

0 < ω < 4π.

With the aid of the Courant–Lebesgue lemma we obtain a universal radius
ρ > 0 such that Nν maps the circle ∂Bρ(w0) contained in B into a spherical
cap on S2 with a “sufficiently small” geodesic radius. Since Nν(w) �≡ const on
B, it follows that Nν : B → S2 is an open mapping (because the composition
σ ◦ Nν with a stereographic projection σ : S2 → C is locally holomorphic,
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see Section 3.3). We then conclude that all spherical images Nν(Bρ(w0)) have
to remain within this cap. Otherwise Nν(Bρ(w0)) would entirely cover the
complementary cap, in contradiction to the integral condition (31). Thus we
obtain a modulus of continuity for the mappings Nν , ν ∈ N, in the interior
of B. �

Now we present the following version of Nitsche’s 6π-theorem:

Theorem 3. Let Γ ∈ C3,α be a closed, regular, extreme Jordan curve of
the total curvature κ(Γ ) < 6π. Then there exist only finitely many minimal
immersions X : B → R

3 of class C∗(Γ ).

Proof. If there were infinitely many minimal immersions, Proposition 8 would
yield a sequence of distinct minimal immersions Xj : B → R

3 of class C∗(Γ )
which converge in C2,β(B, R3), 0 < β < α, to some minimal immersion
X ∈ C∗(Γ ) of class C3,α(B, R3) with

Λ(w) := 1
2 | ∇X(w)|2 > 0 in B

and

(32) −
∫

B

KΛdu dv ≤ ω < 4π.

By virtue of Proposition 4 we can represent the surfaces Xj as graphs Yj over
X in the form

Yj(w) = X(w) + ζj(w)N(w) for w ∈ B(33)

with ζj ∈ C2,α
0 (B) and ‖ζj ‖2,β → 0 for 0 < β < α.

For j � 1 the ζj are solutions of

(34) Lζj = Φ(ζj) in B with ζj = 0 on ∂B,

where L is the Schwarzian operator for X. If λ = 0 were not an eigenvalue of
L with respect to the boundary condition ζ = 0 on ∂B, we would obtain

ζj = L−1
0 Φ(ζj), j ∈ N,

with L0 := L|C2,β
0 (B). Since L−1

0 φ is contracting (see Proposition 2 of Sec-
tion 5.6) we obtain a contradiction to the property ‖ζj ‖2,β → 0 as j → ∞.
Thus λ = 0 is an eigenvalue of L.

If λ = 0 is the smallest eigenvalue of L then X is stable, and the arguments
used in the proofs of the Theorems 1 and 2 lead to a contradiction.

Now we show that λ = 0 has to be the smallest eigenvalue of L. Otherwise
there is a ξ ∈ C2,β

0 (B) with

Lξ = 0 in B
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with ∫
B

ξ(w) · ξ1(w) dw = 0,

where ξ1 is an eigenfunction to the smallest eigenvalue of L, i.e.

Lξ1 = λ1ξ1 in B, ξ1 = 0 on ∂B,

satisfying ξ1(w) > 0 in B. Then there are two disjoint and nonempty open
subsets Ω1 and Ω2 of {w ∈ B : ξ(w) �= 0} such that

(35) Lξ = 0 in Ωj , ξ = 0 on ∂Ωj , ξ(w) �= 0 on Ωj for j = 1, 2.

Condition (32) implies that one of the domains Ωj , say Ω1, has the property

(36) −
∫

Ω1

KΛdudv < 2π.

In virtue of the stability theorem by Barbosa–do Carmo (see Section 5.4),
property (36) implies that X|Ω1 is strictly stable, which is a contradiction to
(35) for j = 1.

Therefore, Γ bounds only finitely many minimal immersions of class C∗(Γ ).
�

Remark 9. The last theorem remains true under the weaker assumption
κ(Γ ) ≤ 6π. To cover the case κ(Γ ) = 6π we refer to the proof of Theorem 1
in Section 5.6, estimating the total geodesic curvature by the total curvature.

Remark 10. It would be desirable to establish Theorem 3 for real analytic
contours, renouncing the assumption that Γ be extreme. Nitsche’s 6π-theorem
in [31] states finiteness under the assumption that Γ be real analytic and that
no minimal surface X ∈ C(Γ ) has a branch point on B. We also hint at the
work of Beeson [3–5].

5.8 Scholia

H.A. Schwarz initiated the study of the second variation of area for immersed
minimal surfaces in his celebrated memoir Ueber ein die Flächen kleinsten
Flächeninhalts betreffendes Problem der Variationsrechnung (1885), dedicated
to K. Weierstrass on occasion of his seventieth birthday (cf. Schwarz [2],
Vol. I, pp. 223–269). The main purpose of that paper is to establish a cri-
terion whether or not a given minimal surface furnishes a relative minimum
of area among all surfaces bounded by the same contour. As Schwarz showed,
a minimal surface is a local minimizer if it can be embedded in a field, i.e.
a one-parameter foliation, of minimal surfaces. We have described this idea
in Sections 2.7 and 2.8. When is such an embedding possible? To decide this
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question, Schwarz considered the spherical image Ω of the given surface and
introduced the Schwarz operator L on this image. The desired embedding is
possible if the equation Lζ = 0 in Ω possesses a solution ζ ∈ C0(Ω) ∩ C2(Ω)
which is positive on Ω. In this connection, Schwarz connected the study of
the operator L = Δ + p, p > 0, with the minimum problem for the Rayleigh
quotient J1(ζ)/J0(ζ), where

J1(ζ) :=
∫

Ω

| ∇ζ|2 dx dy, J0(ζ) :=
∫

Ω

pζ2 dx dy.

This led him to the minimum characterization of the smallest eigenvalue for
Δ and L respectively, which can be considered as the beginning of Hilbert’s
theory of eigenvalue problems in the form that later was developed by Courant.
In this paper one also finds Schwarz’s inequality (see Schwarz [2], Vol. I, p. 251)
in the form ∣∣∣∣

∫
Ω

ϕψ dx dy

∣∣∣∣ ≤

√∫
Ω

ϕ2 dx dy

√∫
Ω

ψ2 dx dy.

These ideas were generalized by L. Lichtenstein, and later by many other
mathematicians to study the corresponding minimum problem for general
multiple integrals in the calculus of variations; see Giaquinta and Hildebrandt
[1], Vol. 1, Chapter 6, in particular Section 4.

J.C.C. Nitsche [26] revived Schwarz’s field construction to prove the cel-
ebrated uniqueness theorem presented in Section 5.6. Basic ingredients of
Nitsche’s proof are the results of Chapter 6 concerning the existence of unsta-
ble minimal surfaces, obtained by the mountain-pass lemma, and the stability
theorem of J.L. Barbosa and M. do Carmo [1].

We also note that the renewed interesting and flourishing study of stable
minimal surfaces was, in fact, initiated by the work of Barbosa and do Carmo.

A very careful and comprehensive description of results connected with
the second variation of surface area and stable minimal surfaces can be found
in J.C.C. Nitsche’s treatises [28] and [37], §§98–119; in particular a lucid pre-
sentation of Schwarz’s approach is given.

In Sections 5.1–5.5 we essentially followed the work of F. Sauvigny [1,
2,7–11]. We also mention prior work by R. Schoen [2], who generalized the
fundamental curvature estimate by E. Heinz [1], presented in Section 2.4, to
minimal immersions X : B → N in a three-dimensional oriented Rieman-
nian manifold N . A special case of his Theorem 3 is the following result: Let
M = X(B) be an immersed, stable surface in R

3 which compactly contains
a geodesic ball BR0(P0) for some P0 ∈ M and some r0 > 0. Then there is
an absolute constant c > 0 such that the second fundamental form A of M
at P0 is estimated by |A|2(P0) ≤ cr−2

0 . The corresponding analogue for cmc-
surfaces, due to F. Sauvigny [7,8], is given in Section 5.5, see Theorems 1
and 2. We also refer the reader to the interesting work of S. Fröhlich [1–5] on
curvature estimates for immersions of mean curvature type, even with higher
codimensions, where the notion of μ-stable extremals appears.



422 5 Stable Minimal- and H-Surfaces

Nitsche’s uniqueness result had a predecessor in an unpublished paper by
R. Schneider, who formulated the following beautiful theorem (1968): A closed
polygon in R

3 with a total curvature κ(Γ ) < 4π bounds only one disk-type
minimal surface. Moreover, he conjectured that every Jordan curve with a
total curvature less than 4π spans only one disk-type minimal surface, and
for any ε > 0 he gave an example of a curve Γ with κ(Γ ) < 4π + ε bounding
at least two disk-type minimal immersions.

Schneider’s Example (1968): Consider the minimal surface X : Ω → R
3

defined by

X(u, v) := (−v sin u, v cosu, u), Ω := {(u, v) : |u| < απ, |v| < R}

for R > 0 and 0 < α < 1, which is part of the helicoid given by the equation
x+y tan z = 0. The boundary Γ of X consists of two straight segments Γ1, Γ2

and two parts Γ3, Γ4 of helices meeting Γ1 and Γ2 perpendicularly. The total
curvature of Γ3 as well of Γ4 is 2παR(1+R2)− 1

2 . Adding the contributions of
the four corners of Γ , one obtains

κ(Γ ) = 2π[1 + 2αR(1 + R2)− 1
2 ].

Given ε ∈ (0, 2π) we choose α ∈ ( 1
2 , 1) as α := 1

2 + ε
4π . Then

κ(Γ ) = 2π + (2π + ε)R(1 + R2)− 1
2 .

The right-hand side is an increasing function of R ∈ [0, ∞) which tends to 1
as R → ∞, thus κ(Γ ) < 4π + ε for any R > 0. On the other hand, Schwarz
showed in 1872 (see [1]; and [2], Vol. 1, pp. 161–163) that for α ∈ (1

2 , 1) there
is a value R0(α) ∈ (

√
3, ∞) with R0(α) → ∞ as α → 1

2 + 0, R0(α) →
√

3 as
α → 1 −0, such that X ◦ τ does not furnish a relative minimum of area in C(Γ )
if R ∈ (R0(α), ∞), where τ is a conformal mapping of the unit disk B onto Ω.
We know however that there is a minimal surface X̃ ∈ C(Γ ) which minimizes
area in C(Γ ). This surface is an immersion for the following reason. Since Γ
lies on the boundary of a compact convex set K, X̃ cannot have any boundary
branch points. Furthermore, through every point of K there is a plane which
intersects Γ only in two points. Hence no minimal surface of class C(Γ ) has
an interior branch point (see Radó [21], p. 35). Thus Γ bounds at least two
regular (i.e. immersed) minimal surfaces. We recall that Böhme [6] later on
showed that for any ε > 0 and any N ∈ N there is a real analytic Jordan curve
Γ with κ(Γ ) < 4π + ε which bounds at least N disk-type minimal surfaces.

Schneider’s paper was not published since it depended on fragmentary
results by Marx and Shiffman (cf. Marx [1]) which in 1968 were considered
to be unproved (Oberwolfach meeting on the “Calculus of Variations”). This
desideratum stimulated E. Heinz to write a series of fundamental papers (cf.
Heinz [19–24]) which rigorously dealt with the asymptotic behaviour of mini-
mal surfaces in corners and led to the theory of quasi-minimal surfaces. Some
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of Heinz’s results are described in the Scholia to Chapter 6. Using these re-
sults, F. Sauvigny [3–5] developed a theory of the second variation of the area
for minimal surfaces bounded by polygons, and he rediscovered Schneider’s
unpublished result, thereby also establishing an analog for R

p, p > 3. In addi-
tion, the “finiteness question” for certain polygonal boundaries was answered
affirmatively by R. Jakob [9,10], building on Heinz’s results.

We also mention a paper by H. Ruchert [2] where Nitsche’s uniqueness
theorem is carried over to “small” surfaces of constant mean curvature.

In a fundamental paper by R. Böhme and F. Tomi [1], the structure of
the set of solutions to Plateau’s problems was analyzed with the aid of semi-
analytic sets. This in turn led to F. Tomi’s seminal paper [6] about the finite-
ness of the number of absolute minimizers for Plateau’s problem.

J.C.C. Nitsche proved the 6π-finiteness theorem in his paper [31]. The iso-
latedness of cmc-immersions solving the corresponding Plateau problem was
investigated by F. Sauvigny [10]. His ideas are used in Section 5.7, especially
for the compactness results concerning minimal immersions.
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