
Chapter 4

The Plateau Problem and the Partially Free
Boundary Problem

The remainder of this book is essentially devoted to boundary value problems
for minimal surfaces. The simplest of such problems was named Plateau’s
problem, in honor of the Belgian physicist J.A.F. Plateau, although it had been
formulated much earlier by Lagrange, Meusnier, and other mathematicians.
It is the question of finding a surface of least area spanned by a given closed
Jordan curve Γ .

In his treatise Statique expérimentale et théorétique des liquides soumis aux
seules forces moléculaires from 1873, Plateau described a multitude of experi-
ments connected with the phenomenon of capillarity. Among other things,
Plateau noted that every contour consisting of a single closed wire, whatever
be its geometric form, bounds at least one soap film. Now the mathemati-
cal model of a thin wire is a closed Jordan curve of finite length. Moreover,
the mathematical objects modeling soap films are two-dimensional surfaces
in R

3. To every such surface, the phenomenological theory of capillarity, due
to Gauss, attaches a potential energy that is proportional to its surface area.
Hence, by Johann Bernoulli’s principle of virtual work, soap films in stable
equilibrium correspond to surfaces of minimal area.

Turning this argument around, it stands to reason that every rectifiable
closed Jordan curve bounds at least one surface of least area and that all
possible solutions to Plateau’s problem can be realized by soap film experi-
ments. However, as R. Courant [15] has remarked, empirical evidence can
never establish mathematical existence—nor can the mathematician’s demand
for existence be dismissed by the physicist as useless rigor. Only a mathemat-
ical existence proof can ensure that the mathematical description of a physical
phenomenon is meaningful.

The mathematical question that we have formulated above as Plateau’s
problem was a great challenge to mathematicians. It turned out to be a
formidable task. During the nineteenth century, Plateau’s problem was solved
for many special contours Γ , but a sufficiently general solution was only ob-
tained in 1930 by J. Douglas [11,12] and simultaneously by T. Radó [17,18].
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Fig. 1. A Jordan contour bounding two disk-type minimal surfaces (b), (c) and a minimal

surface of genus one (a)

Fig. 2. A Jordan curve bounding (a) a disk-type minimal surface and (b) a minimal

Möbius strip

A considerable simplification of their methods was found by R. Courant [4,
5] and, independently, by L. Tonelli [1]. In the present chapter we want to
describe the Courant–Tonelli approach to Plateau’s problem.

Recall that regular surfaces of least area are minimal surfaces, in the sense
that their mean curvature vanishes throughout. Thus we can formulate a
somewhat more general version of Plateau’s problem: Given a closed rectifiable
Jordan curve Γ , find a minimal surface spanned by Γ . Then the least area
problem for Γ is more stringent than the Plateau problem: the first question
deals with the (absolute or relative) minimizers of area, whereas the second
is concerned with the stationary points of the area functional.

Note that for a fixed boundary contour Γ the solutions to Plateau’s prob-
lem are by no means uniquely determined. Moreover, there may exist solutions
of different genus within the same boundary curve, and there may exist both
orientable and non-orientable minimal surfaces within the same boundary
frame. This is illustrated by the minimal surfaces depicted in Fig. 2.

Even if we fix the topological type of the solutions to Plateau’s problem,
the unique solvability is, in general, not ensured. For instance, Figs. 1 and 4
depict some boundary configurations which can span several minimal surfaces
of the topological type of the disk. In Section 4.9, we shall give a survey of what
is known about the number of disk-type solutions to Plateau’s problem. In the
Scholia (Section 4.15) as well as in Chapters 5 and 7, the reader will find more
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Fig. 3. A closed Jordan curve (a), bounding a disk-type minimal surface (b), as well as a

Möbius strip (c)

examples and further results on the number of solutions of Plateau’s problem,
and we shall also discuss the question whether solutions are immersed or even
embedded.

Other boundary value problems for minimal surfaces will be considered
in Chapter 8 and in Vols. 2 and 3. For example, the last chapter of this
volume as well as Chapter 4 of Vol. 3 deal with solutions of the general Plateau
problem (also called Douglas problem) where one has to find a minimal surface
of possibly higher topological type spanned by a frame consisting of one or
several curves.

We begin the present chapter by having a closer look at Plateau’s prob-
lem. First we compare Dirichlet’s integral with the area functional, and we
shall explain why it seems to be more profitable to minimize the Dirichlet
integral rather than the area. Then, in Section 4.2, we set up Plateau’s prob-
lem in a form that we shall deal with in Sections 4.3–4.5. In Section 4.2, we
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Fig. 4. Another Jordan curve spanned by two disk-type minimal surfaces

Fig. 5. A Jordan curve bounding a one-sided minimal surface of higher topological type

Fig. 6. Two interlocked Jordan curves spanned by an annulus-type minimal surface

describe the minimization procedure that will lead to a solution of Plateau’s
problem, and in Section 4.3, we prove the uniform convergence of a suitably
chosen minimizing sequence to a harmonic mapping. This is achieved with
the aid of the Courant–Lebesgue lemma proved in Section 4.4. In Section 4.5
we use variations of the independent variables for establishing a variational
formula, from which we can derive that the minimizer X(u, v), constructed in
Section 4.3, also satisfies the conformality relations

|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0.

Hence it follows thatX actually is a minimal surface solving Plateau’s problem
for the prescribed boundary curve Γ . Finally we shall see why X is also
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Fig. 7. (a) A configuration consisting of a planar surface S and a Jordan arc Γ . (b) Solution

of the partially free boundary value problem corresponding to the configuration 〈Γ, S〉,
computed by a finite-element method

a solution of the least area problem, using Morrey’s lemma on ε-conformal
mappings. A self-contained proof of this result is presented in Section 4.10; it
is described below.

A slight modification of Courant’s approach, given in Section 4.6, will lead
to the solution of the partially free boundary problem.

A few results concerning the boundary behavior of minimal surfaces with
rectifiable boundaries are collected in Section 4.7. They will in particular be
needed in Chapter 5 of Vol. 2.

Reflection principles for minimal surfaces will be formulated in Section 4.8.
Essentially we shall prove again two results from Section 3.4, without using
Schwarz’s solution to Björling’s problem.

In 4.9 we give a survey on some results concerning the uniqueness and
nonuniqueness of solutions to Plateau’s problem; in particular Radó’s unique-
ness result is proved. Generalizations of Radó’s theorem to free boundary
problems are studied in Chapters 1 and 2 of Vol. 3.

Another approach to Plateau’s problem, presented in 4.10, proceeds by
minimizing the convex combination (1 −ε)A+εD of the area functional A and
the Dirichlet integral D for any ε ∈ (0, 1] in C(Γ ). It turns out that any min-
imizer yields a conformally parametrized solution of the problem “A → min
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Fig. 8. (a) A boundary configuration 〈Γ, S〉 consisting of a disk S and of a closed Jordan

curve Γ disjoint from S. (b) An annulus-type minimal surface which is stationary in 〈Γ, S〉

Fig. 9. Three more views of the minimal surface described in Fig. 8
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Fig. 10. The general Plateau problem consists in finding minimal surfaces spanning several

closed Jordan curves. Here we show two parallel coaxial circles bounding three minimal

surfaces of rotation

in C(Γ )” which also minimizes D in C(Γ ). This way we arrive at another
proof of Theorem 4 in 4.5 and in particular of the relation (40) in 4.5 stating
that a(Γ ) = e(Γ ). This new approach only applies methods developed in the
present chapter and completely avoids Morrey’s Lemma on ε-conformal map-
pings (see 4.5). Thus no results on quasiconformal mappings nor on conformal
representations of surfaces are needed for solving the minimal-area problem.
Actually, the underlying idea of 4.10 can be used to obtain conformal rep-
resentations of surfaces or of two-dimensional Riemannian metrics. This will
be carried out in 4.11 where we show that the solution of Plateau’s prob-
lem for planar contours provides a proof of the Riemann mapping theorem.
This way we also verify that planar solutions to Plateau’s problem are area-
minimizing, free of branch points, and uniquely determined (up to a conformal
reparametrization).

In a similar manner we derive other mapping theorems such as Lichten-
stein’s mapping theorem.

Nonrectifiable Jordan curves in R
3 no longer need to bound a disk-type

surface of finite Dirichlet integral. Nevertheless J. Douglas proved that any
closed Jordan curve in R

3 bounds a continuous disk-type minimal surface.
A proof of this fact is presented in Section 4.12.

In Section 4.13 it is proved that every oriented closed, rectifiable Jordan
curve bounds a continuous and conformally parametrized disk-type surface
of finite area that minimizes an arbitrarily given regular Cartan functional,
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i.e. a given regular two-dimensional and parameter invariant variational inte-
gral F(X) =

∫
B
F (X,Xu ∧ Xv) du dv. Here no general regularity theory for

the corresponding Euler equation is available; therefore the existence proof is
based on a variational method that resembles the technique of Section 4.10.

Thereafter we derive the basic isoperimetric inequality for disk-type min-
imal surfaces. Generalizations of this inequality are studied in Chapter 6 and
in Chapter 4 of Vol. 2.

Finally the Scholia in Section 4.15 give a brief survey of the history of
Plateau’s problem as well as references to the literature. Moreover some ba-
sic results on the nonexistence of branch points for minimizers are described.
In addition we discuss the question as to whether a contour bounds embed-
ded solutions, the problem of uniqueness and nonuniqueness, index theorems,
generic finiteness, and Morse-theoretic results. These topics will also (and in
more detail) be treated in Chapter 6 and in Vol. 3. Thereafter we review some
results on solutions to obstacle problems, a detailed presentation of which is
given in Chapter 4 of Vol. 2. At last, some results on systems of minimal
surfaces are described.

4.1 Area Functional Versus Dirichlet Integral

If one tries to formulate and to solve Plateau’s problem, cumbersome difficul-
ties may turn up. Among other problems one has to face the fact that there
exist mathematical solutions to Plateau’s problem which cannot be realized
in experiment by soap films. This is, of course, to be expected for merely
stationary solutions which are not minimizing, because they correspond to
unstable soap films, and these will be destroyed by the tiniest perturbation
of the soap lamellae caused by, say, a slight shaking of the boundary frame or
by a breath of air.

However it can also happen that (mathematical) solutions of Plateau’s
problem have branch points, and that they have self-intersections. Both phe-
nomena are unrealistic in the physical sense because Plateau has discovered
the following rule for a stable configuration of soap films:

Three adjacent minimal surfaces of an area-minimizing system of surfaces,
corresponding to a stable system of soap films, meet in a smooth line at an
angle of 120◦. Only four such lines, each being the soul of three soap films,
can meet at a common point. At such a vertex, each pair of liquid edges forms
an angle ϕ of 109◦28′16′ ′ or, more precisely, of cosϕ = −1/3.

Figure 11 in Section 4.15 shows a system of soap films exhibiting these
features.

Solutions of Plateau’s problem, which are absolute minimizers of area, can-
not have interior branch points according to a result by Osserman–Gulliver–
Alt. Their proof of this result is rather difficult and lengthy; thus it will only
be sketched in Sections 1.9 and 5.3 of Vol. 2 (see also the Scholia 4.15 of the
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Fig. 1. The monster surface: a minimal surface of infinite genus

present chapter and the Scholia 6.7 of Vol. 2). A new approach leading to this
result is described in Chapter 6 of Vol. 2.

Yet, despite the absence of branch points for minimizers, self-intersections
of (mathematical) solutions are still conceivable, and so far only a few positive
results are known, for instance:

If Γ is a closed Jordan curve that lies on a convex surface, then Γ bounds a
disk-type minimal surface without self-intersections.

Another positive result, due to Ekholm, White, and Wienholtz [1] is the
following:

If Γ is a closed Jordan curve in R
3 with total curvature less or equal to 4π,

then any minimal surface—independently of its topological type—is embedded
up to and including the boundary, with no interior branch points.

A brief survey on the existence of embedded solutions of Plateau’s problem
is given in the Scholia 4.15, Subsection 3.

To solve Plateau’s problem we would like to use the classical approach,
which consists in minimizing area among surfaces given as mappings from a
two-dimensional parameter domain into R

3, this way fixing the topological
type of the admissible surfaces. However, as we have already seen, it is by
no means clear what the topological type of the surface of least area in a
given configuration Γ will be. In fact, there may be rectifiable boundaries for
which the area-minimizing solution of Plateau’s problem is of infinite genus.
An example for this phenomenon is depicted in Fig. 1.

Let us now restrict ourselves to surfaces X ∈ C0(B̄,R3) which are param-
etrized on the closure of the unit disk B = {w ∈ C : |w| < 1}, and which map
the circle ∂B topologically onto a prescribed closed Jordan curve Γ in R

3. Such
a surface is said to be a solution of Plateau’s problem for Γ if its restriction
to B is a minimal surface. Since minimal surfaces are the critical points of the
area functional

AB(X) =
∫

B

|Xu ∧ Xv | du dv,

one is tempted to look for solutions of Plateau’s problem by minimizing
AB(X) in the class of all surfaces X ∈ C0(B̄,R3) mapping ∂B homeomor-
phically onto Γ . But this method will produce literally hair-raising solutions.
This can be seen as follows. Suppose that Γ is a circle in R

3 contained in the
x, y-plane, say
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Fig. 2. A hairy disk

Fig. 3. A hair C∞-grown on a disk

Γ = {(x, y, z) : x2 + y2 = 1, z = 0},
and let K(Γ ) = {(x, y, z) : x2 + y2 ≤ 1, z = 0} be the disk which is bounded
by Γ . On account of the maximum principle, the only minimal surfaces X of
class C0(B̄,R3) ∩ C2(B,R3) which map ∂B topologically onto Γ and satisfy

(1) ΔX = 0,

(2) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0

in B, are regular conformal mappings of B̄ onto K(Γ ) (cf. Section 4.11).
On the other hand, among the minimizers of the area functional AB(X),

there are mappings X : B̄ → R
3 which parametrize sets K∗(Γ ) which may be

viewed as hairy disks bounded by Γ (see Fig. 2). They occur as additional,
though nonregular, minimizers of AB since hairs do not contribute to surface
area. For example, let us raise just one hair on the disk K(Γ ). To this end,
we consider the set

K∗(Γ ) = K(Γ ) ∪ H
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consisting of the disk K(Γ ) and the hair

H = {(x, y, z) : x = y = 0, 0 ≤ z ≤ 1}

attached to the center of K(Γ ). Then K∗(Γ ) can be parametrized by the
following mapping X(u, v) of class C∞(B̄,R3):

x(u, v) = y(u, v) := 0, z(u, v) := ϕ(r) for 0 ≤ r ≤ 1
2 ,

where r =
√
u2 + v2, and

x(u, v) := ψ(r) cos θ, y(u, v) := ψ(r) sin θ, z(u, v) := 0 for 1
2 ≤ r ≤ 1.

Here, the functions ϕ(r) and ψ(r) are defined by

ϕ(r) := exp 4
(

1 − 1
1 − 4r2

)

, ψ(r) := exp 4
(

1
3

− 1
4r2 − 1

)

.

Note that the surface X(u, v) is irregular for 0 ≤ r ≤ 1
2 which is also evident

from the fact that the whole disk B1/2 = {(u, v) : u2 +v2 < 1
4 } is mapped into

the hair H (cf. Fig. 3).
Consequently, if we would use the variational problem

AB(X) → min,

we would have to cope with a host of nasty solutions. In order to derive a
reasonable solution satisfying equations (1) and (2), we would have to cut
off all the hairs from a hairy solution.1 This is fairly easy in the setting of
geometric measure theory since a two-dimensional measure neglects hairs as
sets of measure zero, whereas in the context of mappings the regularization
of solutions requires quite an elaborate procedure.

In order to avoid this difficulty, we shall proceed similarly as in Riemannian
geometry where one studies the one-dimensional Dirichlet instead of the length
functional, using the fact that the critical points of Dirichlet’s integral are also
critical points of the length functional which are parametrized proportionally
to the arc length, and vice versa. An analogous relation holds between the
stationary surfaces of the two-dimensional Dirichlet integral

(3) DB(X) =
1
2

∫

B

(|Xu|2 + |Xv |2) du dv

and the area functional AB(X). This can be seen as follows: For arbitrary
vectors p, q ∈ R

3 we have
|p ∧ q| ≤ |p| |q|,

1 When David Hilbert had established Dirichlet’s principle, Felix Klein wrote: “Hilbert

schneidet den Flächen die Haare ab” (cf. D. Hilbert, Gesammelte Abhandlungen, Vol. 3,

p. 409).
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and therefore

(4) |p ∧ q| ≤ 1
2 |p|2 + 1

2 |q|2.

The equality sign in (4) holds if and only if p ⊥ q and |p| = |q|. Suppose now
that X ∈ C1(B,R3) has a finite Dirichlet integral DB(X). Then we obtain
the inequality

(5) AB(X) ≤ DB(X),

and the equality sign is satisfied if and only if the conformality relations
(2) are fulfilled on B. In other words, area functional and Dirichlet integral
coincide exactly on the conformally parametrized surfaces X, and, in general,
the Dirichlet integral furnishes a majorant for the area functional.

Moreover, every smooth regular surface X : B → R
3 can, by Lichtenstein’s

theorem, be reparametrized by a regular change τ : B → B of parameters such
that Y := X ◦ τ satisfies the conformality relations

|Yu|2 = |Yv |2, 〈Yu, Yv 〉 = 0,

and we obtain
DB(Y ) = AB(Y ) = AB(X).

This observation makes it plausible that, within a class C of surfaces which is
invariant with respect to parameter changes, minimizers of DB(X) will also
be minimizers of AB(X), and more generally, that stationary points of DB(X)
will be stationary points of AB(X).

Certainly the class C defined by Plateau’s boundary conditionX : ∂B → Γ
has this invariance property. Thus we are led to the idea that we should
minimize Dirichlet’s integral instead of the area functional since we would
also obtain a minimizer for AB(X).

We will presently dispense with putting this idea on solid ground by mak-
ing the above reasoning rigorous. Instead we shall simply use the following
idea: Minimize DB(X) instead of AB(X), and justify it a posteriori by proving
that, in suitable classes C, the stationary points of DB(X) are in fact minimal
surfaces.

The use of Dirichlet’s integral in the minimizing procedure is a advanta-
geous for several reasons:

(i) It is not advisable to carry out the minimization among regular surfaces
only, because the class of such surfaces is not closed with respect to uniform
convergence of B̄ or to H1

2 (B)-convergence, and a better convergence of min-
imizing sequences will be difficult (or even impossible) to obtain. However, if
we admit general surfaces for minimization, the hairy monsters will also turn
up as minimizers when AB(X) is minimized. They are excluded if we instead
minimize DB(X).

(ii) Minimizing sequences of DB(X) have better compactness properties
than those of AB(X).
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The basic reason for (i) and (ii) is that the expression |p|2 + |q|2 only
vanishes if p = 0 and q = 0 holds, whereas |p ∧ q| is zero for any pair of
collinear vectors p and q. Moreover, AB(X) is invariant with respect to arbi-
trary reparametrizations of X, while DB(X) remains unchanged only under
conformal parameter transformations.

Keeping these ideas in mind, we will now proceed to formulate a minimum
problem, the solution of which will turn out to be a solution of Plateau’s
problem.

Notational convention: Occasionally we shall write D(X,B) and A(X,B)
instead of DB(X) and AB(X), and, for two mappings X,Y , we denote by
DB(X,Y ) the polarization of the Dirichlet integral:

(6) DB(X,Y ) :=
1
2

∫

B

(〈Xu, Yu〉 + 〈Xv, Yv 〉) du dv =
1
2

∫

B

〈 ∇X,∇Y 〉 du dv.

4.2 Rigorous Formulation of Plateau’s Problem and of the
Minimization Process

Set
B := {w ∈ C : |w| < 1}

and
C := {w ∈ C : |w| = 1} = ∂B.

A closed Jordan curve Γ in R
3 is a subset of R

3 which is homeomorphic to
∂B. By distinguishing some fixed homeomorphism γ : C → Γ from C onto Γ
we equip Γ with an orientation, and we say that Γ is oriented (by γ).

Definition 1. Given a closed Jordan curve Γ in R
3, we say that X : B̄ → R

3

is a solution of Plateau’s problem for the boundary contour Γ (or : a minimal
surface spanned in Γ ) if it fulfills the following three conditions:

(i) X ∈ C0(B̄,R3) ∩ C2(B,R3);
(ii) The surface X satisfies in B the equations

(1) ΔX = 0,

(2) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0;

(iii) The restriction X|C of X to the boundary C of the parameter domain B
is a homeomorphism of C onto Γ .

If it is necessary to be more precise, we shall denote a minimal surface X
described in this definition as disk-type solution of Plateau’s problem for the
contour Γ .
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Condition (iii) is equivalent to the assumption that X|C is a continuous,
strictly monotonic (i.e. injective) mapping of C onto Γ .

Clearly this condition is not closed with respect to uniform convergence
on C since uniform limits of strictly monotonic functions can be merely weakly
monotonic, that is, they may have arcs of constancy on C. To be precise, we
give the following

Definition 2. Suppose that Γ is a closed Jordan curve in R
3, which is ori-

ented by a homeomorphism γ : C → Γ from C onto Γ . Then a continuous
mapping ϕ : C → Γ of C onto Γ is said to be weakly monotonic if there is
a nondecreasing continuous function τ : [0, 2π] → R with τ(2π) = τ(0) + 2π
such that

(3) ϕ(eiθ) = γ(eiτ(θ)) for 0 ≤ θ ≤ 2π.

In other words, ϕ is weakly monotonic if the image points ϕ(w) traverse
Γ in a constant direction when w moves along C in a constant direction. The
image points may stand still but never move backwards if w moves monoton-
ically on C, and ϕ(w) moves once around Γ if w travels once around C.

Introducing the mapping E : [0, 2π] → C by E(θ) := eiθ, we can write (3)
as

ϕ ◦ E = γ ◦ E ◦ τ
whence we arrive at

(4) E ◦ τ = γ−1 ◦ ϕ ◦ E.

From this formula we obtain at once:

Lemma 1. Let {ϕn} be a sequence of weakly monotonic, continuous mappings
of C onto a closed Jordan curve Γ , and suppose that the mappings ϕn converge
uniformly on C to some mapping ϕ : C → R

3. Then ϕ is a weakly monotonic
continuous mapping of C onto Γ .

Remark. The assertion of Lemma 1 remains true if we assume that the map-
pings ψn are weakly monotonic, continuous mappings of C onto closed Jordan
arcs Γn which converge in the sense of Fréchet to some Jordan arc Γ . That
means, there are homeomorphisms γn and γ of C onto Γn and Γ respectively,
such that γn tends uniformly to γ as n → ∞.

Now we want to set up the variational problem that will lead us to a
solution of Plateau’s problem. First we define the class C(Γ ) of admissible
functions. We have exactly two essentially different orientations of Γ . Corre-
spondingly there will be exactly two possibilities to define C(Γ ) if Γ is not
oriented, while C(Γ ) will be uniquely defined for an oriented contour Γ .

Recall that every function X ∈ H1
2 (B,R3) has a trace X|C on the bound-

ary C = ∂B which is of class L2(C,R3).
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Definition 3. Given a closed Jordan curve Γ in R
3, a mapping X : B → R

3

is said to be of class C(Γ ) with respect to a fixed orientation γ : C → Γ of Γ if
X ∈ H1

2 (B,R3) and if its trace X|C can be represented by a weakly monotonic,
continuous mapping ϕ : C → Γ of C onto Γ (i.e., every L2(C)-representative
of X|C coincides with ϕ except for a subset of zero 1-dimensional Hausdorff
measure).

Let

(5) D(X) = DB(X) :=
1
2

∫

B

(|Xu|2 + |Xv |2) du dv

be the Dirichlet integral of a mapping X ∈ H1
2 (B,R3). Then we define the

variational problem P(Γ ) associated with Plateau’s problem for the oriented
curve Γ as the following task:

Minimize Dirichlet’s integral D(X), defined by (5), in the class C(Γ ).
In other words, setting

(6) e(Γ ) := inf{D(X) : X ∈ C(Γ )},

we have to find a surface X ∈ C(Γ ) such that

(7) D(X) = e(Γ )

is satisfied.
In order to solve the minimum problem P(Γ ), we shall have to find a min-

imizing sequence {Xn} whose boundary values Xn|C contain a subsequence
which is uniformly convergent on C. The selection of such a minimizing se-
quence will be achieved by the following artifice:

Fix three different points w1, w2, w3 on C, an orientation γ : C → Γ of Γ ,
and three different points Q1, Q2, Q3 on Γ such that γ(wk) = Qk, k = 1, 2, 3.
Let C(Γ ) be defined with respect to the orientation γ of Γ , and consider those
mappings X ∈ C(Γ ) which satisfy the three-point condition

(8) X(wk) = Qk, k = 1, 2, 3.

The set of such mappings X will be denoted by C∗(Γ ). Set

(9) e∗(Γ ) := inf{D(X) : X ∈ C∗(Γ )}.

We clearly have
e(Γ ) ≤ e∗(Γ ).

Moreover, if X ∈ C(Γ ), then there exist three different points ζ1, ζ2, ζ3 on C
such that

X(ζk) = Qk, k = 1, 2, 3.
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Let σ be a strictly conformal mapping of B̄ onto itself with the property that

σ(wk) = ζk, k = 1, 2, 3.

Then the mapping Y := X ◦ σ is of class C∗(Γ ) and satisfies D(Y ) = D(X),
because of the conformal invariance of the Dirichlet integral. Hence we even
obtain

(10) e(Γ ) = e∗(Γ ).

Consequently, any solution X of the restricted minimum problem

(11) P∗(Γ ): Minimize D(X) in the class C ∗(Γ )

is also a solution of the original minimum problem P(Γ ). Hence we shall try to
solve P∗(Γ ) instead of P(Γ ), in this way obtaining a convenient compactness
property of the boundary values of any minimizing sequence, as we shall see.

Before we can start with our minimizing process, one final difficulty re-
mains to be solved. Since P∗(Γ ) would not have a solution if C∗(Γ ) were
empty, let us now study under which circumstances C∗(Γ ) or, equivalently,
C(Γ ) is certainly nonempty.

Let ϕ : C → Γ be a homeomorphism representing Γ , and let

(12) ϕ(eiθ) =
A0

2
+

∞∑

n=1

{An cosnθ +Bn sinn θ}

be its Fourier expansion, An, Bn ∈ R
3, which is convergent in L2([0, 2π],R3).

We can assume that ϕ satisfies the prescribed three-point condition, i.e.,

ϕ(wk) = Qk, k = 1, 2, 3.

Let ρ, θ be polar coordinates about the origin of the w-plane, that is,

w = ρeiθ,

and set

(13) X(w) :=
A0

2
+

∞∑

n=1

ρn(An cosnθ +Bn sinnθ).

Since |An| and |Bn| are bounded by 2 supC |ϕ|, the series on the right-hand
side converges uniformly on every compact subset of B, and a well-known
computation shows that its limit is nothing but Poisson’s integral for the
boundary values ϕ(eiθ), i.e.,

(14) X(w) =
1
2π

∫ 2π

0

ϕ(eiψ)
1 − ρ2

1 + ρ2 − 2ρ cos(θ − ψ)
dψ
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for w = ρeiθ, ρ < 1. By the classical result of H.A. Schwarz, the mapping
X(w) is harmonic in B and satisfies X(w) → ϕ(w0) as w → w0, w ∈ B, for
every w0 ∈ ∂B. Hence X can be extended to a continuous function on B̄ with
the boundary values ϕ on C = ∂B. A straight-forward computation yields

(15) D(X) =
π

2

∞∑

n=1

n(|An|2 + |Bn|2).

Consequently the map X : B̄ → R
3 belongs to the class H1

2 (B,R3) if and only
if

(16)
∞∑

n=1

n(|An|2 + |Bn|2) < ∞.

If this is true, then C ∗(Γ ) is nonempty.
Condition (16) is satisfied if and only if φ(θ) := ϕ(eiθ) has half a deriva-

tive which is square-integrable. This is, for example, true if the representation
ϕ : C → Γ of the Jordan curve Γ is Lipschitz continuous. Such a represen-
tation of Γ exists if and only if Γ has finite length. Hence, for any rectifiable
Jordan curve Γ , neither C(Γ ) nor C∗(Γ ) are empty. Note, however, that the
rectifiability of Γ is only sufficient but not necessary for C(Γ ) to be nonempty.

Remark. Since D is invariant under strictly conformal as well as under an-
ticonformal mappings of B, its infimum e(Γ ) in C(Γ ) is independent of the
chosen orientation of Γ . The same holds for the generalized Dirichlet integral
(34) in Section 4.5, whereas the infimum of the integral (36) in 4.5 may depend
on the orientation of Γ , and the same holds for “Cartan functionals”, as con-
sidered in Section 4.13. Thus for conformally invariant integrals in the general
sense, such as D, we may neglect the orientation of the boundary contour Γ ;
both orientations lead to the same solutions of P(Γ ); in the noninvariant cases
we might obtain different solutions for opposite orientations.

Convention. It goes without saying that C(Γ ) always is defined with respect
to a fixed orientation of Γ .

4.3 Existence Proof, Part I: Solution of the Variational
Problem

Let Γ be a closed oriented Jordan curve in R
3, and let C(Γ ) be the class of

admissible surfaces bounded by Γ which we have defined in Section 4.2. The
aim of this section is to find a solution of the minimum problem

P(Γ ): D(X) → min in the class C(Γ ).

We are going to prove the following



256 4 The Plateau Problem and the Partially Free Boundary Problem

Theorem 1. If C(Γ ) is nonempty, then the minimum problem P(Γ ) has at
least one solution which is continuous on B and harmonic in B. In particular,
P(Γ ) has such a solution for every rectifiable curve Γ .

Proof. As we have seen in Section 4.2, the class C(Γ ) is nonempty for every
closed Jordan curve of finite length. Hence it suffices to prove the first part of
the assertion. Recall that we only have to find a solution of

P∗(Γ ): D(X) → min in the class C∗(Γ ),

where C∗(Γ ) denotes the set of surfaces X ∈ C(Γ ) satisfying a fixed three-
point condition

(1) X(wk) = Qk, k = 1, 2, 3.

Here, w1, w2, w3 are three different points on C = ∂B, and Q1, Q2, Q3 denote
three different points on Γ .

Choose a sequence {Xn} of mappings Xn ∈ C ∗(Γ ) such that

(2) lim
n→∞

D(Xn) = e∗(Γ )

holds. We can assume without loss of generality that Xn is a surface of class
C0(B̄,R3) ∩ C2(B,R3) which satisfies

ΔXn = 0 in B,

n = 1, 2, 3, . . . . (Otherwise we replace Xn by the solution Zn of the boundary
value problem

ΔZn = 0 in B,
Zn = Xn on C

which is continuous on B̄ and of class C2(B,R3) ∩H1
2 (B,R3). It is well known

that this problem has exactly one solution. This solution minimizes D(X)
among all X ∈ H1

2 (B,R3) with X −Xn ∈ H̊1
2 (B,R3). Consequently, D(Zn) ≤

D(Xn), and by construction we have Zn ∈ C ∗(Γ ) whence e∗(Γ ) ≤ D(Zn).
Thus we obtain

e∗(Γ ) ≤ D(Zn) ≤ D(Xn) → e∗(Γ ),

and therefore
lim

n→∞
D(Zn) = e∗(Γ ).

Hence we have found a minimizing sequence {Zn} for P∗(Γ ) consisting of
harmonic mappings Zn which are continuous on B̄.)

We now claim that the boundary values Xn|C
of the terms of any min-

imizing sequence {Xn} for P∗(Γ ) are equicontinuous on C. The key to this
crucial result is the so-called Courant–Lebesgue lemma. We defer its proof to
the next section so as not to interrupt our reasoning.
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Courant–Lebesgue lemma. Let X be of class C0(B̄,R3) ∩ C1(B,R3) and
suppose that

(3) D(X) ≤ M

for some M with 0 ≤ M < ∞. Then, for every z0 ∈ C and for each δ ∈
(0, 1), there exists a number ρ ∈ (δ,

√
δ) such that the distance of the images

X(z), X(z′) of the two intersection points z and z′ of C with the circle ∂Bρ(z0)
can be estimated by

(4) |X(z) − X(z′)| ≤
{

4Mπ

log 1/δ

}1/2

.

This lemma will be applied as follows: Since Γ is the topological image
of C, there exists, for every ε > 0, a number λ(ε) > 0 with the following
property:

Any pair of points P,Q ∈ Γ with

(5) 0 < |P − Q| < λ(ε)

decomposes Γ into two arcs Γ1(P,Q) and Γ2(P,Q) such that

(6) diamΓ1(P,Q) < ε

holds. Hence, if 0 < ε < ε0 := minj �=k |Qj −Qk |, then Γ1(P,Q) can contain at
most one of the points Qj appearing in the three-point condition (1).

Let now X be an arbitrary mapping in C ∗(Γ ) that fulfills the assumptions
of the Courant–Lebesgue lemma, and let δ0 ∈ (0, 1) be a fixed number with

(7) 2
√
δ0 < min

j �=k
|wj − wk |

where w1, w2, w3 appear in (1).
For an arbitrary ε ∈ (0, ε0), we choose some number δ = δ(ε) > 0 such

that

(8)
{

4πM
log 1/δ

}1/2

< λ(ε)

and

(9) δ < δ0.

Consider an arbitrary point z0 on C, and let ρ ∈ (δ,
√
δ) be some number such

that the images P := X(z), Q := X(z′) of the two intersection points z, z′ of
C and ∂Bρ(z0) satisfy

|P − Q| ≤
{

4Mπ

log 1/δ

}1/2

.
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Then we infer from (8) that |P − Q| < λ(ε), whence

diamΓ1(P,Q) < ε

holds on account of (6). Because of ε < ε0 the arc Γ1(P,Q) contains at most
one of the points Qj . On the other hand, it follows from X ∈ C ∗(Γ ) and from
(1), (7), (9) that X(C ∩ Bρ(z0)) contains at most one of the points Qj and
must therefore coincide with the arc Γ1(P,Q):

Γ1(P,Q) = X(C ∩ Bρ(z0)).

Consequently we have

|X(w) − X(w′)| < ε for all w,w′ ∈ C ∩ Bρ(z0).

This implies

(10) |X(w) − X(w′)| < ε for all w,w′ ∈ C with |w − w′ | < δ.

Consider now the minimizing sequence {Xn}. By (2), there is some number
M > 0 such that

D(Xn) ≤ M

holds for all n ∈ N. Thus we can apply (10) to X = Xn, n = 1, 2, . . . , and
we conclude that the functions Xn|C are equicontinuous. Moreover, we infer
from Xn(C) = Γ that the functions Xn|C are uniformly bounded. Hence, by
the theorem of Arzelà–Ascoli, we can assume that the Xn|C tend to some
mapping ϕ ∈ C0(C,R3) as n → ∞, uniformly on C, and that ϕ is a weakly
monotonic mapping of C onto Γ . Since the functions Xn are continuous on
B̄ and harmonic in B, it follows that Xn tends uniformly on B̄ to some
function X, which is continuous on B̄, harmonic in B, satisfies (1), and has
the boundary values ϕ. Consequently, X is of class C∗(Γ ), and therefore

e∗(Γ ) ≤ D(X).

Moreover, a classical result for harmonic functions implies that grad Xn tends
to grad X as n → ∞, uniformly on every B′ ⊂⊂ B, whence

lim
n→∞

DB′ (Xn) = DB′ (X)

and therefore
lim inf
n→∞

DB(Xn) ≥ DB′ (X) if B′ ⊂⊂ B.

Thus we finally obtain

e∗(Γ ) = lim
n→∞

D(Xn) ≥ D(X) ≥ e∗(Γ ),

or
D(X) = e∗(Γ ).

Therefore X ∈ C∗(Γ ) is a minimizer of the Dirichlet integral D(X) within the
class C(Γ ). �
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In the previous theorem we have obtained at least one harmonic minimizer
of D(X) in the class C(Γ ). Now we want to show that every solution of P(Γ )
is a harmonic mapping. In fact, we have

Theorem 2. Every minimizer X of the Dirichlet integral within the class
C(Γ ) is continuous in B̄ and harmonic in B.

Proof. Let ϕ = (ϕ1, ϕ2, ϕ3) be an arbitrary test function of class C∞
c (B,R3).

Then we have X + εϕ ∈ C(Γ ) for every ε ∈ R. On account of the minimum
property of X, the quadratic polynomial

f(ε) := D(X + εϕ) = D(X) + 2εD(X,ϕ) + ε2D(ϕ), ε ∈ R,

has an absolute minimum at ε = 0, whence f ′(0) = 0, or

(11) D(X,ϕ) = 0 for all ϕ ∈ C∞
c (B,R3).

By a classical result for harmonic functions (Weyl’s lemma), we obtain from
(11) that X is harmonic in B. Since X ∈ H1

2 (B,R3) and X|C ∈ C0(C,R3), it
also follows that X ∈ C0(B̄,R3). �

By the same reasoning that led to Theorem 1, we also obtain the following
results (cf. Section 4.2, Lemma 1):

Theorem 3. Let {Γn} be a sequence of closed (oriented) Jordan curves in R
3

which converge in the sense of Fréchet to some closed (oriented) Jordan curve
Γ (notation: Γn → Γ as n → ∞), and let {Xn} be a sequence of mappings
Xn ∈ C (Γn) with uniformly bounded Dirichlet integral, i.e.,

(12) D(Xn) ≤ M, n ∈ N.

Then their boundary values ϕn := Xn|C are equicontinuous if they satisfy a
uniform three-point condition

(13) ϕn(wj) = Q
(n)
j , j = 1, 2, 3,

with some points wj ∈ C and Q(n)
j ∈ Γn, j = 1, 2, 3, such that limn→∞ Q

(n)
j =

Qj holds, where Q1, Q2, Q3 denote three different points on the limit curve Γ .
If, moreover, the mappings Xn are continuous on B̄ and harmonic in B,

then we can extract a subsequence {Xnp } that converges uniformly on B̄ to
some mapping X ∈ C(Γ ) which is continuous on B̄ and harmonic in B.

Remark. For minimal surfaces Xn, the isoperimetric inequality (cf. Sec-
tion 4.14) implies that

(14) D(Xn) ≤ 1
4π
L2(Γn)

holds, where L(Γn) denotes the lengths of the curves Γn. Hence condition (12)
is satisfied by every sequence of minimal surfaces Xn ∈ C(Γn), n = 1, 2, . . . ,
spanned by closed Jordan curves Γn of uniformly bounded lengths,

(15) L(Γn) ≤ l for all n ∈ N.
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Theorem 4. Let Γ, Γ1, Γ2, . . . be closed (oriented) Jordan curves in R
3 with

Γn → Γ as n → ∞ (Fréchet convergence) and limn→∞ e(Γn) = e(Γ ). Fur-
thermore, let Xn ∈ C(Γn) be a sequence of solutions for P(Γn) whose boundary
values ϕn = Xn|C satisfy a uniform three-point condition such as in Theo-
rem 3. Then we can extract a subsequence {Xnp } which converges uniformly
on B̄ to some solution X of P(Γ ) as p → ∞, and

(16) lim
n→∞

D(Xn) = D(X).

4.4 The Courant–Lebesgue Lemma

We now want to supply a proof for the Courant–Lebesgue lemma that was
used in the previous section. In fact, this lemma will be an immediate conse-
quence of the next proposition.

Let us introduce the following notations:

B := {w : |w| < 1}, C := ∂B,

Sr(z0) := B ∩ Br(z0), Cr(z0) := B̄ ∩ ∂Br(z0).

If z0 ∈ C, then we can write

Cr(z0) = {z0 + reiθ : θ1(r) ≤ θ ≤ θ2(r)}

with
0 < θ2(r) − θ1(r) < π.

Proposition 1. Suppose that X is of class C0(B̄,Rn)∩C1(B,Rn), n ∈ N, and
satisfies D(X) < ∞. Let z0 be any point on C, and set Z(r, θ) := X(z0 +reiθ)
where r, θ denote polar coordinates about z0. Then, for every δ ∈ (0, R2),
0 < R < 1, there is a number ρ ∈ (δ,

√
δ) such that, for every pair θ, θ′ with

θ1(ρ) ≤ θ ≤ θ′ ≤ θ2(ρ), we obtain the estimate

(1)
∫ θ′

θ

|Zθ(ρ, θ)| dθ ≤ η(δ,R)|θ − θ′ |1/2

with

(2) η(δ,R) :=
{

2
log(1/δ)

∫

SR(z0)

| ∇X|2 du dv
}1/2

,

and in particular

(3) |Z(ρ, θ) − Z(ρ, θ′)| ≤ η(δ,R)|θ − θ′ |1/2.

Remark. The assumption z0 ∈ C is not essential as we shall see from the
proof. We shall leave it to the reader to formulate a corresponding result in
other situations.



4.4 The Courant–Lebesgue Lemma 261

We begin the proof of Proposition 1 by verifying the following

Lemma 1. Let X satisfy the assumptions of Proposition 1, and set

Z(r, θ) := X(z0 + reiθ), z0 ∈ C,

and

(4) p(r) :=
∫ θ2(r)

θ1(r)

|Zθ(r, θ)|2 dθ.

Moreover, let I be a measurable subset of (0, 1), and suppose that both

(5) 0 <
∫

I

dr

r
< ∞ and

∫

I

p(r)
r

dr ≤ M < ∞

are satisfied. Then the set IM := {ρ ∈ I : p(ρ)
∫

I
dr
r ≤ M} has a positive

1-dimensional Lebesgue measure,

(6) L1(IM ) > 0,

and for every ρ ∈ IM and all θ, θ′ with θ1(ρ) ≤ θ ≤ θ′ ≤ θ2(ρ) we obtain the
inequality

(7)
∫ θ′

θ

|Zθ(ρ, θ)| dθ ≤
{

M
/ ∫

I

dr

r

}1/2

|θ − θ′ |1/2.

Proof. (i) If L1(IM ) = 0, then we would obtain

p(ρ) > M
/ ∫

I

dr

r
for almost all ρ ∈ I.

Multiplying by 1/ρ, and integrating over I with respect to ρ, we would arrive
at the inequality ∫

I

p(ρ)
ρ

dρ > M

which is a contradiction to (5). Hence we see that L1(IM ) > 0.
(ii) Let ρ ∈ IM and θ1(ρ) ≤ θ ≤ θ′ ≤ θ2(ρ). Then it follows that

∫ θ′

θ

|Zθ(ρ, θ)| dθ ≤
{∫ θ′

θ

|Zθ(ρ, θ)|2 dθ
}1/2

|θ − θ′ |1/2

≤
{

M
/ ∫

I

dr

r

}1/2

|θ − θ′ |1/2. �

Proof of Proposition 1. Let p(r) be the function defined by (4). Then we ob-
tain
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∫ r

0

p(ρ)
ρ

dρ ≤
∫ r

0

∫ θ2(ρ)

θ1(ρ)

{

|Zρ(ρ, θ)|2 +
1
ρ2

|Zθ(ρ, θ)|2
}

ρ dθ dρ

= 2D(X,Sr(z0)).

For M := 2D(X,SR(z0)) and I = (δ,
√
δ), we infer from Lemma 1 that there

is some ρ with δ < ρ <
√
δ ≤ R such that

∫ θ′

θ

|Zθ(ρ, θ)| dθ ≤
{

M
/ ∫ √

δ

δ

dr

r

}1/2

|θ − θ′ |1/2

=
{

4D(X,SR(z0))
1

log 1/δ

}1/2

|θ − θ′ |1/2

= η(δ,R)|θ − θ′ |1/2,

and from

Z(ρ, θ′) − Z(ρ, θ) =
∫ θ′

θ

Zθ(ρ, θ) dθ

we infer that

|Z(ρ, θ′) − Z(ρ, θ)| ≤
∫ θ′

θ

|Zθ(ρ, θ)| dθ ≤ η(θ,R)|θ − θ′ |1/2. �

There is a generalization of Proposition 1 which holds for functions X(w)
of class H1

2 (B,Rn); see e.g. Morrey [8], Theorem 3.1.2(g). Recall the following
property of such functions:

If Z(r, θ) := X(z0 +reiθ) is the transformation of X into polar coordinates
r, θ about some point z0 ∈ C, then there is representation of Z, again denoted
by Z, such that Z(r, θ) is absolutely continuous with respect to θ for almost all
r ∈ (0, 2), and that Z(r, θ) is absolutely continuous with respect to r ∈ (r0, 2),
for any r0 > 0 and for almost all θ. Moreover, the partial derivatives Zr, Zθ

of Z with respect to r and θ coincide almost everywhere on {(r, θ) : 0 <
r < 2, θ1(r) < θ < θ2(r)} with the corresponding distributional derivatives.
Consequently, the function

p(r) =
∫ θ2(r)

θ1(r)

|Zθ(r, θ)|2 dθ

is defined for almost all r ∈ (0, 2). Moreover, p(r) is measurable on (0, 2), and∫ 2

0
p(r)

r dr < ∞. Instead of Lemma 1, we now obtain

Lemma 2. Let I be a measurable subset of (0, 1) such that

0 <
∫

I

dr

r
< ∞ and

∫

I

p(r)
r

dr ≤ M < ∞.

Then the set IM := {ρ ∈ I : p(ρ)
∫

I
dr
r ≤ M} satisfies L1(IM ) > 0, and for

almost all ρ ∈ IM and all θ, θ′ with θ1(ρ) ≤ θ ≤ θ′ ≤ θ2(ρ) we obtain
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∫ θ′

θ

|Zθ(ρ, θ)| dθ ≤
{

M
/ ∫

I

dr

r

}1/2

|θ − θ′ |1/2.

Consequently we arrive at the following analogue of Proposition 1:

Proposition 2. Every X ∈ H1
2 (B,Rn) possesses a representative Z(r, θ) of

X(z0 + reiθ), z0 ∈ C, which is absolutely continuous with respect to θ for a.a.
r ∈ (0, 2) and which has the following property :

For every δ ∈ (0, R2), 0 < R < 1, there is a measurable subset I of the
interval (δ,

√
δ) with L1(I) > 0 such that

|Z(ρ, θ) − Z(ρ, θ′)| ≤
∫ θ′

θ

|Zθ(ρ, θ)| dθ ≤ η(δ,R)|θ − θ′ |1/2

holds for a.a ρ ∈ I and θ1(ρ) ≤ θ ≤ θ′ ≤ θ2(ρ), where

η(δ,R) :=
{

4
log 1/δ

D(X,SR(z0))
}1/2

.

This and other versions of the Courant–Lebesgue lemma are quite useful
for many purposes, in particular for the treatment of free boundary value
problems.

4.5 Existence Proof, Part II: Conformality of Minimizers
of the Dirichlet Integral

In this section, we want to prove that the solutions X(u, v) of the minimum
problem P(Γ ) satisfy the conformality relations

(1) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0.

To this end, we exploit the minimum property of X by changing the indepen-
dent variables u, v in direction of arbitrarily prescribed vector fields λ(u, v) =
(μ(u, v), ν(u, v)) on B̄. Such variations of X will be called inner variations.

In order to make this variational technique precise, we start with an arbi-
trary vector field λ = (μ, ν) on B̄ which is of class C1(B̄,R2). Without restric-
tion we can assume that λ is defined on all of R

2 and is of class C1(R2,R2).
With λ we associate some 1-parameter family of mappings τε : R

2 → R
2 which

satisfies

(2) τε(w) = τ(w, ε) = w − ελ(w) + o(ε) as ε → 0,

w = (u, v). For instance, we could take τε(w) = w − ελ(w). The function
τ(w, ε) is of class C1 on R

2 × R. Choose some open set B0 with B ⊂⊂ B0.
Then it is easy to see that τε : B0 → τε(B0) furnishes an orientation preserving
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C1-diffeomorphism of B0 onto its image τε(B0) provided that |ε| < ε0, for
some sufficiently small ε0 > 0, because τε(w) is just a perturbation of the
identity map τ0(w) = w.

Clearly the inverse mappings σε = τ−1
ε exist on a common domain of

definition Ω satisfying B∗
ε ⊂⊂ Ω ⊂⊂ B0, where we have set B∗

ε := τε(B). We
write ω = τε(w) = τ(w, ε) and w = σε(ω) = σ(ω, ε). The function σ(ω, ε) is
of class C1 on Ω × (−ε0, ε0) and satisfies both

(3) σ(ω, ε) = ω + ελ(ω) + o(ε)

and

(4) τ(σ(ω, ε), ε) = ω

for all (ω, ε) ∈ Ω × (−ε0, ε0).
Restricting the region of definition of τε = τ(·, ε) and σε = σ(·, ε) to B̄

and B̄∗
ε , respectively, the mapping τε is a diffeomorphism of B̄ onto B̄∗

ε , with
the inverse σε, and we have in particular

(5) B∗
0 = B, σ(w, 0) = w,

∂

∂ε
σ(w, ε)

∣
∣
∣
∣
ε=0

= λ(w) for w ∈ B̄.

Moreover, the Jacobian of the mapping τε(w) is given by

detDτε =
∣
∣
∣
∣
1 − εμu + o(ε) −εμv + o(ε)

−ενu + o(ε) 1 − ενv + o(ε)

∣
∣
∣
∣ = 1 − ε(μu + νv) + o(ε)

whence

(6)
∂

∂ε
detDτε

∣
∣
∣
∣
ε=0

= −(μu + νv) = −div λ.

Consider now an arbitrary function X ∈ C1(B̄,R3). We embed X into the
family of functions

(7) Zε := X ◦ σε, σε : B∗
ε → B̄,

which are obtained from X by the inner variations σε. Let us compute the
rate of change of the Dirichlet integral D(Zε, B

∗
ε ) at ε = 0. Since we later may

want to carry out the same computation for other variational integrals F(X)
of the type

(8) FB(X) = F(X,B) :=
∫

B

F (X,Xu, Xv) du dv

with a C1-Lagrangian F (x, p, q), we shall compute the derivative f ′(0) of the
function
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(9) f(ε) := F(Zε, B
∗
ε ) =

∫

B∗
ε

F

(

Zε,
∂

∂α
Zε,

∂

∂β
Zε

)

dα dβ

where we have set w = (u, v), ω = (α, β). By applying the transformation
theorem to this integral and to the mapping τε : B̄ → B∗

ε , we obtain

(10) f(ε) =
∫

B

F

(

X,

(
∂

∂α
Zε

)

◦ τε,
(
∂

∂β
Zε

)

◦ τε
)

|detDτε| du dv.

Set
σε(ω) = σε(α, β) = (σ1

ε(α, β), σ2
ε(α, β)).

From
Zε(α, β) = X(σ1

ε(α, β), σ2
ε(α, β))

we infer that

∂

∂α
Zε(α, β) = Xu(σε(ω))

∂σ1
ε

∂α
(ω) +Xv(σε(ω))

∂σ2
ε

∂α
(ω),

∂

∂β
Zε(α, β) = Xu(σε(ω))

∂σ1
ε

∂β
(ω) +Xv(σε(ω))

∂σ2
ε

∂β
(ω).

Therefore
(
∂

∂α
Zε

)

(τε(w)) = Xu(w)
∂σ1

ε

∂α
(τε(w)) +Xv(w)

∂σ2
ε

∂α
(τε(w)),

(
∂

∂β
Zε

)

(τε(w)) = Xu(w)
∂σ1

ε

∂β
(τε(w)) +Xv(w)

∂σ2
ε

∂β
(τε(w)).

(11)

Moreover, we have

σ1
ε(α, β) = α+ εμ(α, β) + o(ε)

σ2
ε(α, β) = β + εν(α, β) + o(ε)

as ε → 0,

and therefore

∂

∂α
σ1

ε(α, β) = 1 + ε
∂

∂α
μ(α, β) + o(ε),

∂

∂β
σ1

ε(α, β) = ε
∂

∂β
μ(α, β) + o(ε),

∂

∂α
σ2

ε(α, β) = ε
∂

∂α
ν(α, β) + o(ε),

∂

∂β
σ2

ε(α, β) = 1 + ε
∂

∂β
ν(α, β) + o(ε).

(12)

Replacing α and β by

α = u − εμ(u, v) + o(ε), β = v − εν(u, v) + o(ε),
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differentiating (12) with respect to ε, and setting ε = 0, we arrive at

∂

∂ε

∂σ1
ε

∂α
(τε(w))

∣
∣
∣
∣
ε=0

= μu(u, v),
∂

∂ε

∂σ1
ε

∂β
(τε(w))

∣
∣
∣
∣
ε=0

= μv(u, v),

∂

∂ε

∂σ2
ε

∂α
(τε(w))

∣
∣
∣
∣
ε=0

= νu(u, v),
∂

∂ε

∂σ2
ε

∂β
(τε(w))

∣
∣
∣
∣
ε=0

= νv(u, v).

On account of (11), we then conclude that

∂

∂ε

(
∂

∂α
Zε

)

(τε(w))
∣
∣
∣
∣
ε=0

= Xu(w)μu(w) +Xv(w)νu(w),

∂

∂ε

(
∂

∂β
Zε

)

(τε(w))
∣
∣
∣
∣
ε=0

= Xu(w)μv(w) +Xv(w)νv(w).
(13)

Combining formulas (6) and (10)–(13), we finally obtain

f ′(0) =
∫

B

{
〈Fp(X,Xu, Xv), Xuμu +Xvνu〉(14)

+ 〈Fq(X,Xu, Xv), Xuμv +Xvνv 〉
− F (X,Xu, Xv)[μu + νv]

}
du dv.

Following Giaquinta and Hildebrandt [1], we denote ∂FB(X,λ) := f ′(0)
as (first) inner variation of the functional FB at X in direction of the vector
field λ = (μ, ν), that is,

∂FB(X,λ) :=
∫

B

{ 〈Fp, Xuμu +Xvνu〉 + 〈Fq, Xuμv +Xvνv 〉(15)

− F [μu + νv]} du dv

where the arguments of F, Fp, Fq are to be taken as X,Xu, Xv.
Collecting the previous results, we obtain the following

Proposition 1. If {τε} |ε|<ε0 is a C1-family of C1-diffeomorphisms τε : B̄ →
B∗

ε with the inverses σε : B∗
ε → B̄, such that B∗

0 = B holds and that σ(w, ε) :=
σε(w) satisfies

(16) σ(w, 0) = w,
∂σ

∂ε
(w, 0) = λ(w), and λ ∈ C1(B̄,R2),

then, for every X ∈ C1(B̄,R3), we obtain

(17)
d

dε
F (X ◦ σε, B

∗
ε )

∣
∣
∣
∣
ε=0

= ∂FB(X,λ)

where ∂FB(X,λ) is defined by (15).
Moreover, given any vector field λ ∈ C1(B̄,R2), we can find a 1-parameter

family of diffeomorphisms σε with the above stated properties and, in partic-
ular, with the property (16).
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Let us now consider two important cases:

Examples 1. For the Dirichlet integral

D(X) =
1
2

∫

B

(|Xu|2 + |Xv |2) du dv

and for any vector field λ = (μ, ν) ∈ C1(B̄,R2), the first inner variation
∂D(X,λ) is given by

(18) 2∂D(X,λ) =
∫

B

[a(μu − νv) + b(μv + νu)] du dv,

where a and b denote the functions

(19) a := |Xu|2 − |Xv |2, b := 2〈Xu, Xv 〉.

Note that the expression ∂D(X,λ) is not only defined for surfaces X ∈
C1(B̄,R3), but also for surfaces X ∈ H1

2 (B,R3). In fact, a closer inspection
of the previous computations yields the following result:

Proposition 2. If FB(X) = D(X), then the assertion of Proposition 1 holds
for every X ∈ H1

2 (B,R3), and the inner variation ∂D(X,λ) of the Dirichlet
integral at X in direction of any λ ∈ C1(B̄,R2) is given by formulas (18) and
(19).

Examples 2. For the generalized Dirichlet integral

(20) E(X) =
1
2

∫

B

gjk(X){Xj
uX

k
u +Xj

vX
k
v } du dv

and for any λ = (μ, ν) ∈ C1(B̄,R2), we obtain

2∂E(X,λ) =
∫

B

[a(μu − νv) + b(μv + νu)] du dv

with

a := gjk(X)Xj
uX

k
u − gjk(X)Xj

vX
k
v ,

b := 2gjk(X)Xj
uX

k
v .

(21)

Again we can prove a generalization of Proposition 1 which is similar to
Proposition 2 and holds for E and X ∈ H1

2 (B,R3).
Now we are in a position to prove the main results of this section.

Theorem 1. Let X(u, v) be a surface of class H1
2 (B,R3) such that

(22) ∂D(X,λ) = 0 for all λ ∈ C1(B̄,R2)

is satisfied. Then X fulfills the conformality relations (1) a.e. in B. Con-
versely, if (1) holds a.e. in B for some X ∈ H1

2 (B,R3), then the relation (22)
is satisfied.
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Proof. Choose arbitrary functions ρ, σ ∈ C∞
c (B) and determine functions

h, k ∈ C∞(B̄) with
Δh = ρ, Δk = σ on B,
h = 0, k = 0 on ∂B.

(This is possible on account of well known results of potential theory, cf.
Gilbarg and Trudinger [1].)

Then the functions

μ := hu + kv, ν := −hv + ku

are of class C∞(B̄) and satisfy

μu − νv = ρ, μv + νu = σ.

We now infer from assumption (22) in conjunction with (18) and (19) that
∫

B

{aρ+ bσ} du dv = 0

holds for all ρ, σ ∈ C∞
c (B). By the fundamental lemma of the calculus of

variations we conclude that

a = 0 and b = 0

a.e. on B.
It is a trivial conclusion from (18) and (19) that, conversely, the confor-

mality relations (1) imply (22). �

Corollary 1. If X ∈ H1
2 (B,R3) is harmonic in B and satisfies (22), then X

is a minimal surface.

Theorem 2. Every solution X of the variational problem

P(Γ ): D(X) → min in the class C(Γ )

is of class C0(B̄,R3) ∩ C2(B,R3) and satisfies

ΔX = 0,

|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0

in B, that is, X is a minimal surface.

Proof. By virtue of Section 4.3, Theorem 2, we only have to verify the confor-
mality relations. Let σε : B∗

ε → B̄ be a family of inner variations as described
in Proposition 1, and set Zε := X ◦ σε, where X is a minimizer of DB(·) in
the class C(Γ ). Clearly we have Zε ∈ H1

2 (B∗
ε ,R

3). Since B̄ and B∗
ε are dif-

feomorphic, |ε| < ε0, there is a conformal mapping κε : B → B∗
ε of B onto
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B∗
ε , by virtue of Riemann’s mapping theorem. Moreover, a classical result in

function theory yields that κε can be extended to a homeomorphism of B̄
onto B∗

ε since ∂B∗
ε is a Jordan curve. It follows that Yε := Zε ◦ κε is of class

C(Γ ), whence

(23) D(X,B) ≤ D(Yε, B) for |ε| < ε0,

because of the minimum property of X.
A straightforward computation shows that the Dirichlet integral is invari-

ant with respect to conformal mappings. Therefore we have

D(Yε, B) = D(Zε ◦ κε, B) = D(Zε, B
∗
ε ),

and in conjunction with (23), we arrive at

(24) D(X,B) ≤ D(Zε, B
∗
ε ), |ε| < ε0.

Set f(ε) := D(Zε, B
∗
ε ) and note that X = Z0. Then we can write (24) as

f(0) ≤ f(ε), |ε| < ε0,

and we obtain
0 = f ′(0) = ∂D(X,λ)

for every λ ∈ C1(B̄,R2), on account of (9) and of Proposition 2. Then the
conformality relations (1) are a consequence of Theorem 1. �

Theorem 3. Every solution of P(Γ ) and, more generally, every minimal sur-
face of class C(Γ ) yields a topological mapping of C onto Γ .

Proof. Let X ∈ C(Γ ) be continuous in B̄, harmonic in B, and suppose that
(1) holds in B. It suffices to prove that X provides a one-to-one mapping of
C onto Γ . Suppose that this were not true. Since X|C is weakly monotonic,
we could then find an arc C0 = {eiθ : θ1 < θ < θ2} which is mapped onto a
single point P ∈ R

3:

(25) X(eiθ) = P for all θ ∈ (θ1, θ2).

By Schwarz’s reflection principle we could extend X(w) as a harmonic map-
ping across C0. Differentiating (25) in the tangential direction, we would then
obtain

∂

∂θ
X(eiθ) = 0

and, applying the conformality relations, it would follow that grad X vanishes
identically on C0. This would imply grad X ≡ 0 on B, or X(w) ≡ P , a
contradiction to X ∈ C(Γ ). �

Combining Theorems 1–3 with the results of Section 4.3, we have found
the following
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Main Theorem. Let Γ be a closed curve in R
3 and suppose that C(Γ ) is

nonempty. Then the minimum problem

P(Γ ): D(X) → min in the class C(Γ )

has at least one solution. Every solution X of P(Γ ) is continuous on B̄, har-
monic in B, satisfies the conformality relations (1) in B, and maps C topo-
logically onto Γ . In particular, every closed rectifiable curve Γ in R

3 spans at
least one minimal surface of the type of the disk.

Obviously the proof of Theorem 3 does not use the fact that D(X) < ∞,
and so we have also

Corollary 2. Let X : B → R
3 be a minimal surface which is continuous on

B and maps C = ∂B in a weakly monotonic way onto Γ (as defined in 4.2,
Definition 2). Then X yields a homeomorphism from C onto Γ .

Supplementary Remarks.

1. For the proof of Theorem 2 we have used the Riemann mapping theorem.
This can be avoided as we shall presently see. The advantage of this dif-
ferent proof is that the Main Theorem above can be used to provide an
independent approach to Riemann’s mapping theorem; see Section 4.11.
Let us use the complex notation w = u+ iv, and consider the variations

(26) ω = τε(w) = weiεϕ(r,θ)

with ϕ(r, θ) = ψ(w), w = reiθ, where ψ(u, v) denotes an arbitrary function
of class C1(B̄). Writing

(27) τε(w) = w − ελ(w) + o(ε) as ε → 0

we obtain

(28) λ(w) = μ(u, v) + iv(u, v) = −iwϕ(r, θ).

Clearly, the mappings τε define diffeomorphisms of B̄ onto itself, provided
that |ε| is sufficiently small. Hence, if we set σε := τ−1

ε and Zε := X ◦ σε

for some solution X of P(Γ ), then the functions Zε are of class C(Γ ), and
we obtain

D(Zε) ≥ D(X) for |ε| � 1.

As in the proof of Theorem 2, we now conclude that

(29)
∫

B

[a(μu − νv) + b(μv + νu)] du dv = 0

holds for
a := |Xu|2 − |Xv |2, b := 2〈Xu, Xv 〉.
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One easily verifies the Cauchy–Riemann equations

au = −bv, av = bu

in B, using the relation ΔX = 0 which holds for every solution X of P(Γ ).
Consequently the mapping Φ : B → C defined by Φ(w) := a(u, v)−ib(u, v)
is a holomorphic function of w = u+ iv ∈ B, and only this fact is used in
the sequel. Suppose first that we had X ∈ C1(B̄,R3). Then, by employing
Δa = Δb = 0, we could transform the left-hand side of (29) into a line
integral over C = ∂B, thus obtaining

(30) Im
∫

C

λ(w)Φ(w) dw = 0.

On account of (28), we then arrive at

(31) Im
∫ 2π

0

ϕ(1, θ)w2Φ(w) dθ = 0, w = eiθ.

Let H(r, θ) := Imw2Φ(w), w = reiθ, and choose

(32) ϕ(r, θ) := ζ(r; ρ)K(r, θ; ρ, θ′)

where w′ = ρeiθ′
is some fixed point in B, ζ(r; ρ) is a function of class

C∞(R) with respect to r which satisfies ζ(r; ρ) = 0 for 0 ≤ r ≤ ρ′, and
ζ(r; ρ) = 1 for ρ′ ′ < r, where the numbers ρ′, ρ′ ′ satisfy ρ < ρ′ < ρ′ ′ < 1,
and K denotes the Poisson kernel for the disk Br(0):

K(r, θ; ρ, θ′) :=
1
2π

r2 − ρ2

r2 − 2ρr cos(θ − θ′) + ρ2
.

Then we infer from (31) that
∫ 2π

0

K(1, θ; ρ, θ′)H(1, θ) dθ = 0,

and Poisson’s formula yields

H(ρ, θ′) = 0

for every ρ ∈ (0, 1) and 0 ≤ θ′ ≤ 2π, or Imw2Φ(w) = 0. Hence, Re w2Φ(w)
is constant in B, whence

w2Φ(w) ≡ c

or
Φ(w) ≡ c

w2
.

Since Φ(w) is holomorphic in B, we infer that c = 0 or Φ(w) ≡ 0, that is,
a = 0 and b = 0.
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In general, however, we only know that X ∈ C1(B,R3). Thus we have to
modify our proof slightly. Let

BR := {w : |w| < R}, CR := ∂BR, 0 < R < 1.

Then we infer from (29) that
∫

BR

[a(μu − νv) + b(μv + νu)] du dv → 0 as R → 1 − 0.

Performing the same integration by parts as before, we obtain instead of
(30) the relation

Im
∫

CR

λ(w)Φ(w) dw → 0 as R → 1 − 0

whence

(33) lim
R→1−0

Im
∫ 2π

0

ϕ(R, θ)w2Φ(w) dθ = 0, w = Reiθ .

If we choose ϕ(r, θ) as in (32) and assume that ρ < ρ′ < ρ′ ′ < R < 1, then
Poisson’s formula yields

Im
∫ 2π

0

ϕ(R, θ)w2Φ(w) dθ =
∫ 2π

0

K(R, θ; ρ, θ′)H(R, θ) dθ = H(ρ, θ′)

and (33) implies limR→1−0H(ρ, θ′) = 0, or H(ρ, θ′) = 0. The rest of the
proof is the same as before.

2. Results that are similar to Theorems 1–3 can be obtained for the gener-
alized Dirichlet integral

(34) EB(X) =
1
2

∫

B

gjk(X){Xj
uX

k
u +Xj

vX
k
v } du dv,

where X = (X1, X2, . . . , Xn). The conformality relations for the minimiz-
ers of EB(X) in C(Γ ), which will replace (1), are now of the form

(35) gjk(X)Xj
uX

k
u = gjk(X)Xj

vX
k
v , gjk(X)Xj

uX
k
v = 0.

Using the complex notation w = u+ iv, we can express (35) by the single
complex equation

gjk(X)Xj
wX

k
w = 0.

3. Other functionals FB(X) which can be handled in the same way asDB(X)
or EB(X) are expressions of the type

(36) FB(X) = EB(X) + VB(X)
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where V (X) is invariant with respect to diffeomorphisms of the parameter
domain B which have a positive Jacobian. In fact, if σε : B∗

ε → B̄ is such
a family of diffeomorphisms from B∗

ε onto B̄, then the property

VB(X) = VB∗
ε
(X ◦ σε)

implies that

FB∗
ε
(X ◦ σε) − FB(X) = EB∗

ε
(X ◦ σε) − EB(X).

Hence, a minimum property of X with respect to FB can be translated
into a minimum property with respect to E, and we are in the previously
considered situation. Under suitable assumptions we shall therefore obtain
the conformality relations (35).
If, for instance, VB(X) denotes a volume functional of the type

(37) VB(X) =
∫

B

〈Q(X), Xu ∧ Xv 〉 du dv

where Q = (Q1, Q2, Q3) is a C1-vector field defined on R
3 and X =

(X1, X2, X3), then the Euler equations of the functional FB(X) =
EB(X) + VB(X) are given by

(38) ΔX l + Γ l
jk(X)[Xj

uX
k
u +Xj

vX
k
v ] = divQ(X)[Xu ∧ Xv]mglm(X).

Here (gjk(x)) is assumed to be a positive definite 3×3-matrix, and (gjk(x))
denotes its inverse. Moreover, Γjkl and Γ k

jl denote the Christoffel symbols
of first and second kind:

Γjkl = 1
2 {gjk,l + gkl,j − gjl,k },

Γ l
jk = glmΓjmk

where gjk,l stands for the derivative gjk,xl . Finally, we have used the no-
tation

divQ = Q1
x1 +Q2

x2 +Q3
x3 .

If X is conformal, then the equations (38) express that X is a surface of
mean curvature

(39) H(X) =
1

2
√
g(X)

divQ(X), g := det(gjk),

in the Riemannian manifold (R3, ds2) with the line element ds2 = gjk(x)
dxj dxk. In Chapter 4 of Vol. 2 we give a survey on results concerning
the Plateau problem for functionals F = D + V and present some of the
proofs. The Plateau problem for the general definite parametric integral
(= Cartan functional) F is treated in Section 4.13.
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So far we have proved that every closed rectifiable curve Γ in R
3 bounds

at least one minimal surface X of class C(Γ ), and this solution of the Plateau
problem has been obtained by minimization of the Dirichlet integral among
all (disk-type) surfaces of class C(Γ ). Since any minimizer X is automatically
continuous on B̄, the solution of Plateau’s problem can as well be achieved
by minimizing D(X) within the class

C(Γ ) := C(Γ ) ∩ C0(B̄,R3).

Although every minimizer X satisfies

D(X) = A(X),

it is by no means clear that a minimizer of the Dirichlet integral in C̄(Γ ) also
minimizes the area functional among all surfaces in C̄(Γ ). For this we need to
know that

(40) ā(Γ ) = ē(Γ ),

where ā(Γ ) and ē(Γ ) denote the infimum of A(X) and D(X) respectively,
among all X ∈ C(Γ ). However, the inequality

A(X) ≤ D(X)

only implies that
ā(Γ ) ≤ ē(Γ ).

In fact, the proof of the equality sign is not a trivial matter. Usually it is
based on the fact proved by Carathéodory that polyhedral surfaces can be
represented conformally (in the generalized sense). Equivalently one can apply
a basic result on “ε-conformal mappings” due to C.B. Morrey which is derived
by means of quasiconformal mappings; a somewhat weaker version was already
stated by T. Radó [21]. We only quote Morrey’s lemma without proving it,
because we shall later present a self-contained proof of (40) that uses only
fairly elementary tools (see Section 4.10). Roughly speaking, Morrey’s lemma
says that one can introduce nearly conformal parameters on every reasonable
surface X. To be precise, we need the following

Lemma on ε-conformal mappings. Let X be a mapping B → R
3 of class

C0(B̄,R3) ∩H1
2 (B,R3). Then, for every ε > 0, there exists a homeomorphism

τε of B̄ onto itself which is of class H1
2 on B̄ and satisfies both

Zε := X ◦ τε ∈ C0(B̄,R3) ∩ H1
2 (B,R3)

and
D(Zε) ≤ A(X) + ε.
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(For a proof, we refer to Morrey [1], pp. 141–143, and [3], pp. 814–815.)
Let us turn to the proof of (40): Let X be an arbitrary surface in C(Γ ).

Then, by Morrey’s lemma, we can find homeomorphisms τn of B̄ onto itself
such that Zn := X ◦ τn ∈ C(Γ ) and

D(Zn) ≤ A(X) +
1
n
, n = 1, 2, . . . .

Since
ē(Γ ) ≤ D(Zn) for all n ∈ N,

we obtain
ē(Γ ) ≤ A(X)

and therefore
ē(Γ ) ≤ ā(Γ ).

Thus the relation (40) is proved.
We notice that (40) implies the conformality relations (40). In fact, if X

minimizes the Dirichlet integral in C(Γ ), then X ∈ C0(B̄,R3), and (40) yields
A(X) = D(X). As we have observed in Section 4.1, this equality can only
hold if (1) is satisfied. �

Thus we have proved:

Theorem 4. Every solution X ∈ C(Γ ) of the minimum problem P(Γ ) is a
surface of least area in C(Γ ) ∩ C0(B̄,R3).

Another, completely self-contained proof of this result will be given in
Section 4.10, which even shows

(41) e(Γ ) = e(Γ ) = a(Γ ) = a(Γ ),

where a(Γ ) and a(Γ ) denote the infima of A over C(Γ ) and C(Γ ) respectively,
while e(Γ ) and e(Γ ) are the corresponding infima of D. Note that the relation
e(Γ ) = e(Γ ) follows from Theorem 2 whereas a(Γ ) = a(Γ ) is not immediately
obvious.

4.6 Variant of the Existence Proof. The Partially Free
Boundary Problem

In this section we want to give another existence proof for the minimum
problem P(Γ ) which is of a more functional-analytic nature and can easily be
modified to handle other boundary value problems for minimal surfaces, for
instance, the partially free problem. The Courant–Lebesgue lemma will once
again play an essential role. We shall use it in the following form:
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Proposition 1. Let Γ be a closed (oriented) Jordan curve in R
3, and let

C∗(Γ ) be the class of surfaces bounded by Γ and normalized by a fixed three-
point condition as defined in Section 4.2. Then C∗(Γ ) is a weakly sequentially
closed subset of H1

2(B,R
3).

Proof. Let {Xn} be a sequence of surfaces Xn ∈ C∗(Γ ) which converge weakly
in H1

2(B,R
3) to some element X ∈ H1

2 (B,R3). Then the norms of Xn are
uniformly bounded,

(1) |Xn|H1
2 (B) ≤ c, n = 1, 2, . . . ,

and Rellich’s theorem yields both

|Xn − X|L2(B) → 0 as n → ∞

and

(2) |φn − φ|L2(C) → 0 as n → ∞

where φn and φ denote the L2(C)-traces of Xn and X on C.
By (1) and Theorem 3 in Section 4.3, the functions φn, n ∈ N, are equi-

continuous on C, and φn(C) = Γ implies

(3) sup
C

|φn| ≤ const, n = 1, 2, . . . .

Thus the functions φn are compact in C0(C,R3), and we can extract a sub-
sequence {φnp } which converges uniformly on C to some φ′ ∈ C0(C,R3) as
p → ∞. From (2) we infer that φ′ = φ, and a well-known reasoning yields
that {φn} itself converges to φ as n → ∞. Moreover, Lemma 1 of Section 4.2
implies that φ is a weakly monotonic mapping of C onto Γ which satisfies the
same three-point condition as the φn. Consequently, X is contained in C∗(Γ ),
and the assertion is proved. �

Now we shall give a new proof of the following result:

Theorem 1. The minimum problem P(Γ ) has at least one solution. Any so-
lution of P(Γ ) is harmonic in B, continuous on B, and satisfies

|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0 in B.

Proof. We proceed in four steps:
(i) First we show that there is a minimizing sequence {Xn} for P(Γ ), Xn ∈

C∗(Γ ), which converges weakly in H1
2 (B,R3) to some X ∈ H1

2 (B,R3).
In fact, let {Xn} be a sequence of surface Xn ∈ C∗(Γ ) which satisfy

(4) lim
n→∞

D(Xn) = e(Γ ) := inf{D(X) : X ∈ C(Γ )}.
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Then we have

(5) D(Xn) ≤ const, n = 1, 2, . . . ,

and the boundary values φn := Xn|C satisfy (3). A suitable variant of
Poincaré’s inequality, together with (3) and (5), yields

(6) |Xn|H1
2 (B) ≤ const, n = 1, 2, . . . .

In Hilbert space, any closed ball is weakly sequentially compact. Thus there
is a subsequence {Xnp } which converges weakly in H1

2 (B,R3) to some X ∈
H1

2 (B,R3), and clearly
lim

p→∞
D(Xnp) = e(Γ ).

Renumbering the Xnp and writing Xn instead of Xnp , the assertion (i) is
proved.

(ii) The Dirichlet integral is weakly lower semicontinuous in H1
2 (B,R3).

To verify this, we consider any sequence of elements X1, X2, . . . ∈ H1
2 (B,R3)

which converges weakly in H1
2 (B,R3) to some X ∈ H1

2 (B,R3). Since

F(Z) := D(X,Z)

is a bounded linear functional on H1
2 (B,R3), we obtain

lim
n→∞

F(Xn) = F(X),

and therefore

D(Xn) = D(X − Xn) + 2D(X,Xn) − D(X)

≥ 2D(X,Xn) − D(X) → D(X).

That is,

(7) lim inf
n→∞

D(Xn) ≥ D(X),

and (ii) is verified.
(iii) The set C∗(Γ ) is a weakly (sequentially) closed subset of H1

2 (B,R3).
This assertion is the statement of Proposition 1.
Combining (i)–(iii), we obtain that X is a solution of P(Γ ). In fact, (i) and

(ii) imply
D(X) ≤ lim

n→∞
D(Xn) = e(Γ ),

and (i) and (iii) yield X ∈ C∗(Γ ), whence

e(Γ ) ≤ D(X),
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and therefore
D(X) = e(Γ ).

(iv) Finally, ifX is a solution of P(Γ ), it follows from Weyl’s lemma that X
is harmonic in B, and then a well-known reasoning yields that X is continuous
on B. The conformality relations for X were derived in the previous section.
�

Let us apply this method to another boundary value problem for minimal
surfaces, the semi-free (or: partially free) problem.

Consider a boundary configuration 〈Γ, S〉 consisting of a closed set S in
R

3 (e.g., a smooth surface S with or without boundary, or something more
exotic, see Figs. 4–7), and a Jordan curve Γ the endpoints P1 and P2 of which
lie on S, P1 �= P2, but all other points of Γ are disjoint from S.

Let us denote the arcs of ∂B lying in the half-planes {Imw ≥ 0} and
{Imw ≤ 0} by C and I respectively. The class C(Γ, S) of admissible surfaces
for the semi-free problem is the set of all mapsX ∈ H1

2 (B,R3) whose L2-traces
on C and I satisfy

(i) X(w) ∈ S for H 1-almost all w ∈ I;
(ii) X|C maps C continuously and in a weakly monotonic way onto Γ such

that X(1) = P1 and X(−1) = P2.

We orient Γ and C(Γ, S) by taking P1 as the initial point and P2 as the
endpoint of Γ .

The corresponding variational problem P(Γ, S) reads:

D(X) → min in the class C(Γ, S).

Again, as in the study of the Plateau problem, it is desirable to introduce a
three-point-condition. Since we have already fixed the images of two boundary
points, the image of only one more point needs to be prescribed: Let P3

be some point of Γ different from P1 and P2, and let C∗(Γ, S) denote the
class of all those surfaces X ∈ C(Γ, S) mapping i =

√
−1 ∈ C to P3. The

corresponding variational problem P∗(Γ, S) then requires:

D(X) → min in C∗(Γ, S).

Theorem 2. If C(Γ, S) is nonempty, then there exists a solution of the min-
imum problem P(Γ, S). Moreover, every solution X of P(Γ, S) is of class
C0(B ∪ C ′,R3) ∩ C2(B,R3) for every arc C ′ contained in the interior of C,
and satisfies both

ΔX = 0 in B

and
|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0

in B. Finally, the class C(Γ, S) is nonempty if Γ is rectifiable and if there
exists a rectifiable arc in S which connects P1 and P2.
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Fig. 1. Partially free problems and area minimizing solutions. From S. Hildebrandt and

J.C.C. Nitsche [3]

Proof. The existence of a minimizer can be established more or less in the
same way as for Theorem 1. The steps (i), (ii) and (iv) can be carried out in
the same manner, whereas (iii) is to be replaced by:

(iii′) The class C∗(Γ, S) is closed with respect to weak convergence of se-
quences in H1

2 (B,R3).
In fact, if {Xn} is a sequence of surfaces Xn ∈ C∗(Γ, S) which converge

weakly in H1
2 (B,R3) to some element X ∈ H1

2 (B,R3), then the norms of Xn

are uniformly bounded, and we have

lim
n→∞

|φn − φ|L2(∂B) = 0

for φ = X|∂B, φn = Xn|∂B . Hence there is a subsequence {φnp } such that

φnp(w) → φ(w) as p → ∞,
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Fig. 2. Other partially free problems and area minimizing solutions. From S. Hildebrandt

and J.C.C. Nitsche [3]

for H 1-almost all w ∈ ∂B. Since

Xn(w) ∈ S for H 1-almost allw ∈ I,

we thus obtain that also

X(w) ∈ S for H1-almost all w ∈ I.

Furthermore, a similar reasoning as in the proof of Proposition 1 yields
that X|C maps C continuously and weakly monotonically onto Γ and satisfies
the 3-point condition

X(1) = P1, X(i) = P3, X(−1) = P2,

that is, X ∈ C∗(Γ, S).
In fact, all we have to prove is that the mappings φn|C are equicontinuous

on C. By the Courant–Lebesgue lemma, the φn are equicontinuous on every
closed subarc C ′ lying in the interior of C. Thus we have to investigate how the
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Fig. 3. An irregular support surface for the semifree boundary problem

Fig. 4. Partially free problems can have several solutions

functions φn(eiθ), 0 ≤ θ ≤ π, behave for θ → +0 or θ → π − 0. To this end we
use the assumption that Γ and S have only the points P1 and P2 in common.
Let Γ1 and Γ2 be the subarcs of Γ with the endpoints P1, P3 and P2, P3

respectively. We conclude that, for every ε > 0, there is a number Δ(ε) > 0
such that |P − P1| < ε holds true for every P ∈ Γ1 with dist(P, S) < Δ(ε),
and that |P2 − P | < ε is fulfilled for every P ∈ Γ2 with dist(P, S) < Δ(ε).

Moreover, applying the Courant–Lebesgue lemma to the surfaces Xn (or,
to be precise, Proposition 2 of Section 4.4 to X = Xn and z0 = ±1), we
obtain sequences {w′

n}, {w′ ′
n} of points w′

n, w
′ ′
n ∈ C with w′

n → 1, w′ ′
n → −1

as n → ∞ such that dist(Xn(w′
n), S) → 0, dist(Xn(w′ ′

n), S) → 0, Xn(w′
n) ∈

Γ1, Xn(w′ ′
n) ∈ Γ2. As each Xn furnishes a weakly monotonic map of C onto

Γ , this implies the equicontinuity of the mappings Xn on C. �
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4.7 Boundary Behavior of Minimal Surfaces with Rectifiable
Boundaries

So far we have considered (disk-type) minimal surfaces X of class C(Γ ). They
have continuous boundary values on C = ∂B which are continuously assumed
by X(w), w ∈ B, as w tends to some boundary point. In this section we
want to prove that the first derivatives of X assume boundary values of class
L1(C) on C if Γ is rectifiable, and that we can establish a general formula for
integration by parts.

Throughout this section we shall only make the following

General assumption. Let X : B̄ → R
3 be a surface of class C0(B̄,R3) ∩

C2(B,R3) which has boundary values of finite variation, i.e.,

(1) L(X) :=
∫

C

|dX| < ∞,

and which satisfies in B the equations X(w) �≡ const and

(2) ΔX = 0,

(3) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0.

Moreover let X∗ be any adjoint minimal surface to X, defined by the Cauchy–
Riemann equations

(4) Xu = X∗
v , Xv = −X∗

u in B.

Clearly, the general assumption will be satisfied by the solutions of
Plateau’s problem in C(Γ ), but it will be fulfilled in many other situations
as well.

The main goal of this section is the following

Theorem 1. If the minimal surface X satisfies the general assumption and
if X∗ is an adjoint surface to X, then we have:

(i) X∗ admits a continuous extension to all of B̄, and the boundary values
X∗ |C are likewise rectifiable and satisfy

(5)
∫

C

|dX| =
∫

C

|dX∗ |.

(ii) The boundary values X|C and X∗ |C are absolutely continuous functions
on C.

(iii) Set X(r, θ) := X(reiθ) and X∗(r, θ) := X∗(reiθ). Then the partial deriva-
tives Xr(r, θ), Xθ(r, θ), X∗

r (r, θ), X∗
θ (r, θ), considered as periodic functions

of θ ∈ [0, 2π], tend to limits in L1([0, 2π],R3) as r increases to 1, both in
the L1-norm on [0, 2π] and pointwise almost everywhere on [0, 2π]. The
limits of Xθ and X∗

θ coincide a.e. on ∂B with the pointwise derivatives
of the boundary values X(eiθ) and X∗(eiθ). Moreover, these derivatives
vanish at most on a subset of C of 1-dimensional Hausdorff measure zero.
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An essential step in the proof of the theorem is the following

Proposition 1. The function λ(r), 0 ≤ r ≤ 1, defined by

λ(r) := L(X|Cr ) =
∫

Cr

|dX|, Cr := {reiθ : 0 ≤ θ ≤ 2π},

increases monotonically and is bounded from above by L(X|C). Consequently,
we also have λ(1) = limr→1−0 λ(r).

Proof. We have to show that, if 0 ≤ r < R ≤ 1, then λ(r) ≤ λ(R). It suffices,
however, to assume that R = 1, because the general case will then follow by
considering the minimal surface X(w

R ) : BR → R
3.

Since X is continuous on B̄, Poisson’s formula yields that X(r, θ) :=
X(reiθ) satisfies

(6) X(r, θ) =
∫ 2π

0

K(r, ϕ − θ)X(1, ϕ) dϕ,

where

K(r, α) =
1
2π

1 − r2

1 − 2r cosα+ r2
=

1
2π

1 − |w|2
|1 − w|2 , if w = reiα.

Hence

Xθ(r, θ) =
∫ 2π

0

Kθ(r, ϕ − θ)X(1, ϕ) dϕ = −
∫ 2π

0

Kϕ(r, ϕ − θ)X(1, ϕ) dϕ

=
∫ 2π

0

K(r, ϕ − θ) dX(1, ϕ).

The integration by parts is justified since the total variation of X|∂B , i.e. the
length of X|∂B , is finite (cf. Natanson [1], Chapter VIII). In addition, K(r, α)
is positive throughout; thus

|Xθ(r, θ)| ≤
∫ 2π

0

K(r, ϕ − θ)| dX(1, ϕ)|,

whence

λ(r) =
∫ 2π

0

|Xθ(r, θ)| dθ

≤
∫ 2π

0

∫ 2π

0

K(r, ϕ − θ) dθ| dX(1, ϕ)| ≤ λ(1)

because of ∫ 2π

0

K(r, α) dα = 1.

As λ(r) is lower semicontinuous, we obtain λ(r) → λ(1) as r → 1 − 0. �
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(Note that neither here nor in the proof of the next result the conformality
relations (3) are used.)

Proposition 2. If we write X(r, θ) := X(reiθ), then we obtain

(7)
∫ 1

0

|Xr(r, θ)| dr ≤ 1
2

∫

C

|dX|

for every θ ∈ [0, 2π].

Proof. It suffices to prove the inequality for θ = 0. Applying (6) and an
integration by parts, we obtain

X(r, 0) =
∫ 2π

0

K(r, ϕ)X(1, ϕ) dϕ = X(1, 0) −
∫ 2π

0

h(r, ϕ) dX(1, ϕ)

where

h(r, ϕ) :=
∫ ϕ

0

K(r, α) dα =
ϕ

2π
+

1
2πi

log
1 − w̄

1 − w
, w = reiϕ.

Then it follows that

Xr(r, 0) = −
∫ 2π

0

hr(r, ϕ) dX(1, ϕ)

and therefore

|Xr(r, 0)| ≤
∫ π

0

hr(r, ϕ)| dX(1, ϕ)| −
∫ 2π

π

hr(r, ϕ)| dX(1, ϕ)|

since
hr(r, ϕ) =

1
π

sinϕ
1 − 2r cosϕ+ r2

is positive for 0 < ϕ < π and negative for π < ϕ < 2π. Consequently,
∫ 1

0

|Xr(r, 0)| dr ≤
∫ π

0

{h(1, ϕ) − h(0, ϕ)}| dX(1, ϕ)|

+
∫ 2π

π

{h(0, ϕ) − h(1, ϕ)}| dX(1, ϕ)|.

As |h(1, ϕ) − h(0, ϕ)| ≤ 1
2 , we arrive at the desired inequality.

Proposition 3. The conjugate surface X∗ can be extended continuously to B̄.
Moreover, both X and X∗ are contained in H1

2 (B,R3), and we obtain

(8)
∫

C

|dX| =
∫

C

|dX∗ |, DB(X) = DB(X∗),

and

(9)
∫ 1

0

|X∗
r (r, θ)| dr ≤ 1

2

∫

C

|dX∗ |.
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Proof. (i) Similar to Proposition 2, we have used the notations X(r, θ) =
X(reiθ) and X∗(r, θ) = X∗(reiθ). The Cauchy–Riemann equations read

(10) rXr = X∗
θ , rX∗

r = −Xθ,

and the conformality relations are equivalent to

(11) r2|Xr |2 = |Xθ |2, 〈Xr, Xθ 〉 = 0.

Therefore we also have

(12) |Xr | = |X∗
r |, |Xθ | = |X∗

θ |,

and it follows that

|X∗(r2, θ) − X∗(r1, θ)| ≤
∫ r2

r1

|X∗
r (r, θ)| dr(13)

=
∫ r2

r1

|Xr(r, θ)| dr ≤ 1
2

∫

C

|dX|

for 0 < r1 < r2 < 1, on account of Proposition 2. Hence,
∫ 1

0

|X∗
r (r, θ)| dr < ∞,

and the convergence of this integral implies that limr→1−0X
∗(r, θ) exists for

all θ ∈ [0, 2π].
Consider now points wj = eiθj , 0 ≤ j ≤ n, on C with

0 = θ0 < θ1 < θ2 < · · · < θn = 2π.

Then
n∑

j=1

|X∗(wj) − X∗(wj−1)| = lim
r→1

n∑

j=1

|X∗(rwj) − X∗(rwj−1)|

≤ lim
r→1

∫ 2π

0

|X∗
θ (r, θ)| dθ

= lim
r→1

∫ 2π

0

|Xθ(r, θ)| dθ =
∫

C

|dX|,

and we infer that
∫ 2π

0

|dX∗(1, θ)| ≤
∫ 2π

0

|dX(1, θ)| < ∞.

In other words, X∗(1, θ) is a function of bounded variation for 0 ≤ θ ≤ 2π.
(ii) From X ∈ C0(B̄,R3) we infer that supB |X| < ∞. Moreover, (13)

implies
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|X∗(w)| ≤ |X∗(0)| + |X∗(w) − X∗(0)| ≤ |X∗(0)| +
1
2

∫

C

|dX|

whence also supB |X∗ | < ∞.
Moreover, the Cauchy–Riemann equations (4) yield

DB(X) = DB(X∗).

Hence, in order to prove, X,X∗ ∈ H1
2 (B,R3), we only have to verify that

DB(X) < ∞. Let BR = {reiθ : 0 ≤ r < R}. Then an integration by parts
leads to

∫

BR

| ∇X|2 du dv =
∫

∂BR

〈X,Xr 〉 ds ≤
∫

∂BR

|X| |Xr | ds

=
∫ 2π

0

|X(R, θ)| |Xθ(R, θ)| dθ

≤ sup
B

|X| ·
∫ 2π

0

|Xθ(R, θ)| dθ

≤ sup
B

|X| ·
∫

C

|dX|,

and for R → 1 − 0 we obtain

(14)
∫

B

| ∇X|2 du dv ≤ sup
B

|X| ·
∫

C

|dX| < ∞.

(iii) As we have shown that X∗(1, θ) is a function of bounded variation
with respect to θ, these boundary values can have only denumerably many
discontinuities, and, for every θ0 ∈ R, both one-sided limits

lim
θ→θ0−0

X∗(1, θ), lim
θ→θ0+0

X∗(1, θ)

exist. Because of D(X∗) < ∞ and of the Courant–Lebesgue lemma (cf. Sec-
tion 4.4, Proposition 2), we then conclude that limθ→θ0 X

∗(1, θ) exists for all
θ0 ∈ R, and therefore X∗(1, θ) depends continuously on θ. Hence we can apply
Proposition 2 to X∗ instead of X, and we then obtain

∫ 1

0

|X∗
r (r, θ)| dr ≤ 1

2

∫

C

|dX∗ |.

Finally, Proposition 1, applied to both X and X∗, yields

lim
r→1−0

∫ 2π

0

|Xθ(r, θ)| dθ =
∫

C

|dX|,

lim
r→1−0

∫ 2π

0

|X∗
θ (r, θ)| dθ =

∫

C

|dX∗ |,

and both limits coincide because of (12), whence
∫

C

|dX| =
∫

C

|dX∗ |. �
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Now we turn to the

Proof of Theorem 1. Let us introduce the holomorphic function f : B → C
3

by
f(w) := X(w) + iX∗(w)

with the complex derivative f ′(w). By the conformality relations (3), we infer
that

|f ′(w)| =
√

2|Xr(w)| = r−1
√

2 |Xθ(w)|, w = reiθ,

and Proposition 1 implies that the (increasing) Hardy function

μ(r) :=
1
2π

∫ 2π

0

|f ′(reiθ)| dθ =
1

πr
√

2

∫ 2π

0

|Xθ(reiθ)| dθ

of f ′(w) satisfies

lim
r→1−0

μ(r) ≤
∫

C

|dX| < ∞.

Thus the holomorphic function f ′(w), w ∈ B, belongs to the Hardy class H1,
and a well known theorem by F. Riesz [1] ensures the existence of a function
g(θ) of class L1([0, 2π],C3) such that both

lim
r→1−0

∫ 2π

0

|f ′(reiθ) − g(θ)| dθ = 0

and
lim

r→1−0
f ′(reiθ) = g(θ) a.e. on [0, 2π].

If we write
f(reiθ) = X(r, θ) + iX∗(r, θ),

we see that

Xr(r, θ) + iX∗
r (r, θ) =

∂

∂r
f(reiθ) = eiθf ′(reiθ) → eiθg(θ),

Xθ(r, θ) + iX∗
θ (r, θ) =

∂

∂θ
f(reiθ) = ireiθf ′(reiθ) → ieiθg(θ)

(15)

as r → 1 − 0.
For any r ∈ (0, 1) and for 0 ≤ θ1 ≤ θ2 ≤ 2π, we can write

f(reiθ2) − f(reiθ1) =
∫ θ2

θ1

ireiθf ′(reiθ) dθ.

Letting r → 1 − 0, it follows that

f(eiθ2) − f(eiθ1) =
∫ θ2

θ1

ieiθg(θ) dθ
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for any θ1, θ2 ∈ [0, 2π], where g ∈ L1([0, 2π],C3). This implies that

f(eiθ) = X(1, θ) + iX∗(1, θ)

is an absolutely continuous function of θ ∈ [0, 2π] whose derivative

(16) Xθ(1, θ) + iX∗
θ (1, θ) =

∂

∂θ
f(eiθ) = ieiθf ′(eiθ)

exists a.e. on [0, 2π]. Comparing formulas (15) and (16), we obtain the asser-
tions of (ii) and (iii), except for the fact that Xθ(1, θ) �= 0 and X∗

θ (1, θ) �= 0
a.e. on [0, 2π].

Taking X(w) �≡ const on B into account, it follows that f(w) �≡ const on
B, and a well known theorem by F. and M. Riesz [1] implies that the boundary
values of f ′(w) can only vanish on a subset of C of measure zero.

Finally the assertion of (i) follows from Proposition 3. �
Notice that the proof of Proposition 3 and in particular formula (14) yield

the following result:

Proposition 4. If the minimal surface X is contained in a ball

KR(P0) := {P ∈ R
3 : |P − P0| ≤ R}

of radius R, then

(17) AB(X) = DB(X) ≤ R/2 · L(X|C).

Local versions of Theorem 1 are of course available. For instance, one has

Theorem 1′. If C ′ is an open subarc of C = ∂B, and if X ∈ H1
2 (B,R3) is a

minimal surface in B which is continuous and has rectifiable boundary values
on C ′, i.e.,

L(X|C′ ) =
∫

C′
|dX| < ∞,

then X|C′ ′ is absolutely continuous on any subarc C ′ ′ ⊂⊂ C ′, and the tangen-
tial derivative Xθ of X|C′ ′ is nonzero a.e. on C ′ ′.

The proof can be reduced to the previous case by using the Courant–
Lebesgue lemma (see Proposition 2 of Section 4.4) and suitable conformal
reparametrizations.

Theorem 2 (Integration by parts). If the minimal surface X satisfies the
general assumption of this section, and if Y is an arbitrary function of class
L∞ ∩ H1

2 (B,R3), then we have

(18)
∫

B

〈∇X,∇Y 〉 du dv =
∫

∂B

〈

Y,
∂

∂ν
X

〉

ds

where the line integral on the right-hand side is to be taken with positive ori-
entation of ∂B, and ∂

∂νX denotes the normal derivative of X with respect to
the exterior normal ν to ∂B.



4.8 Reflection Principles 289

Remark. An analogous result holds if the minimal surface X is parametrized
on an arbitrary parameter domain B with piecewise smooth boundary.

Proof of the theorem. Let 0 < R < 1 and BR = {w : |w| < R}. Since

X ∈ C1(BR,R
3),

we have the classical formula
∫

BR

〈∇X,∇Y 〉 du dv =
∫

∂BR

〈Xr, Y 〉 ds.

Letting R → 1 − 0, the left-hand side obviously tends to
∫

B
〈 ∇X,∇Y 〉 du dv,

whereas the right-hand side converges to
∫

C
〈Xr, Y 〉 ds, on account of Theo-

rem 1 and of Lebesgue’s theorem on dominated convergence. �

4.8 Reflection Principles

In this section Ω denotes a domain in the complex plane which is symmetric
with respect to the real axis, i.e., w ∈ Ω if and only if w ∈ Ω. Set

Ω+ := Ω ∩ {w ∈ C : Imw > 0},
Ω− := Ω ∩ {w ∈ C : Imw < 0},

I := Ω ∩ {w ∈ C : Imw = 0},

where I is an open subset of R.
We want to prove two reflection principles for minimal surfaces which

generalize the well known reflection principle for harmonic functions due to
H.A. Schwarz.

Theorem 1. Suppose that X is of class C0(Ω+ ∪ I,R3) ∩ C2(Ω+,R3) and
satisfies both

(1) ΔX = 0

and

(2) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0

in Ω+. Assume also that X maps I into a straight line L0. Then X can be
extended across I onto all of Ω by reflection in L0, and the extended surface X
satisfies (1) and (2) on Ω. To be precise, the extension of X to Ω− is defined
by

X(w) := (X(w))∗, w ∈ Ω−,

where, for P ∈ R
3, we denote by P ∗ the reflection image of P in L0.
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Fig. 1. Reflection of a minimal surface in a plane (Catalan’s surface)

Fig. 2. Reflection of a minimal surface in a straight line (Catalan’s surface)

Theorem 2. Suppose that X is of class C1(Ω+ ∪ I,R3) ∩ C2(Ω+,R3) and
satisfies both (1) and (2) in Ω+. Assume also that X maps I into a plane S
such that X is perpendicular to S along I (i.e., Xv(w) ⊥ S for all w ∈ I).
Then X can be extended across I as a minimal surface on all of Ω if we reflect
X in S. To be precise, the extension of X to Ω− is defined by

X(w) := (X(w))∗, w ∈ Ω−,

where P ∗ denotes the mirror image in S of any point P ∈ R
3.

Note that these two reflection principles are more or less the same as those
formulated in Section 3.4, only that we a priori require less regularity than
before. To solve Björling’s problem, we needed real analyticity of X along I

whereas here it suffices to assume X ∈ C0 and X ∈ C1 respectively along I.
In fact, we shall prove that, under the assumptions of Theorems 1 and 2,
X must be real analytic on I. Thus both theorems provide special cases of
boundary regularity results. In Chapter 2 of Vol. 2 we shall treat the question
of boundary regularity of minimal surfaces in some generality.

Proof of Theorem 1. Let us introduce Cartesian coordinates x, y, z in R
3 such

that L0 becomes the z-axis, and set X(w) = (x(w), y(w), z(w)), w = (u, v) =
u+ iv, w̄ = (u,−v) = u − iv. Then we have
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(3) x(w) = 0 and y(w) = 0 for all w ∈ I.

Now, by Schwarz’s reflection principle, we can extend x and y as harmonic
functions to all of Ω if we set

(4) x(w) := −x(w) and y(w) := −y(w) for w ∈ Ω−.

Moreover (3) implies that

(5) xu(w) = 0, yu(w) = 0 for w ∈ I.

Let {wn} be some sequence of points wn ∈ Ω+ such that wn → w0 ∈ I as
n → ∞. We obtain from (2), (5) and x, y ∈ C∞(Ω) that

(6) lim
n→∞

zu(wn)zv(wn) = 0,

and from

z2u(wn) = |Xu(wn)|2 − x2
u(wn) − y2

u(wn)
= |Xv(wn)|2 − x2

u(wn) − y2
u(wn)

≥ |zv(wn)|2 − x2
u(wn) − y2

u(wn)

together with (5) and (6) we infer that

(7) lim
n→∞

zv(wn) = 0

for all sequences {wn}, wn ∈ Ω+, with wn → w0 ∈ I. Hence the harmonic
function zv(w), w ∈ Ω+, is continuous on Ω+ ∪ I and satisfies

(8) zv(w) = 0 for all w ∈ I.

Schwarz’s reflection principle yields that we can extend z(w) as harmonic
function across I to Ω by setting

(9) z(w) := z(w) for w ∈ Ω−.

Then X is harmonic in Ω, and formulas (4) and (9) together with (2) show
that X fulfills the conformality relations on all of Ω. �

Proof of Theorem 2. We now introduce Cartesian coordinates x, y, z in R
3

such that S is described by the equation z = 0. Then the minimal surface

X(w) = (x(w), y(w), z(w))

satisfies

(10) z(w) = 0 for all w ∈ I.
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Moreover, Xu(w) is tangential to S for all w ∈ I, and Xv is perpendicular to
Xu. Since we have assumed that X(w) meets S along I at a right angle, it
follows that Xv(w) is orthogonal to the two vectors

e1 = (1, 0, 0), e2 = (0, 1, 0)

spanning S, for all w ∈ I, whence we conclude that

(11) xv(w) = 0, yv(w) = 0 for all w ∈ I.

Applying Schwarz’s reflection principle for harmonic functions, we infer from
(10) and (11) that x(w), y(w), z(w) can be continued to Ω as harmonic func-
tions, by setting

(12) x(w) = x(w), y(w) = y(w), z(w) = −z(w) for w ∈ Ω−.

One easily checks that the harmonic vector X(w), w ∈ Ω, satisfies the con-
formality relations on all of Ω. �

Recently, Choe [4] proved that a minimal surface can also be analytically
extended across a plane S if it meets this plane at a constant angle θ with
0 < θ < π, and the extension is again carried out by reflection in S.

4.9 Uniqueness and Nonuniqueness Questions

How many minimal surfaces can be spanned in a given closed Jordan curve?
The answer to this question is not known in general, not even if we fix the
topological type of the solutions of Plateau’s problem. As we have consid-
ered only disk-type minimal surfaces, we want to consider the more modest
question of:

How many minimal surfaces of the type of the disk can be spanned in a given
closed Jordan curve Γ?

The situation would be simple if we could prove that Γ bounds only one
disk-type minimal surface X ∈ C(Γ ) (up to reparametrizations X ◦ τ of X by
conformal mappings τ : B → B of the parameter domain B onto itself; such
reparametrizations would not be counted as different from X and could be
excluded by fixing a three-point condition for the surfaces X ∈ C(Γ ) which are
prospective solutions; in other words: Uniqueness of the solution of Plateau’s
problem in C(Γ ) actually means ‘uniqueness in C∗(Γ )’ ).

However, examples (cf. Figs. 1 and 4 of the Introduction) warn us not
to expect uniqueness for disk-type solutions of Plateau’s problem. Thus we
may ask whether additional geometric conditions for Γ are known which en-
sure this uniqueness. Essentially, we know three results:
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1. Theorem of Radó [16]: If Γ has a one-to-one parallel projection onto a
planar convex curve γ, then Γ bounds at most one disk-type minimal surface.

This result will be proved in the sequel (cf. Theorem 1). By the same
technique, Radó [20] was able to ensure uniqueness in the case of Γ admitting
a one-to-one central projection onto a planar convex curve γ. (See also Nitsche
[28], pp. 360–362.)

For the sake of completeness we mention a result of Tromba [3] which looks
like a corollary to Radó’s theorem but, at closer inspection, turns out not to
be included. Actually it is proved in a completely different way.

Tromba’s observation. If Γ is C2-close to a planar curve γ of class C2,
then Γ bounds a unique minimal surface of the type of the disk.

2. Theorem of Nitsche [26]: If Γ is regular, real analytic and has a total
curvature less than or equal to 4π, then Γ bounds only one disk-type minimal
surface.

A proof of this result is given in Section 5.6. It is based on a “field em-
bedding”. We shall establish this by using a technique due to H.A. Schwarz,
modified by J.C.C. Nitsche. The third uniqueness theorem, due to F. Sauvi-
gny, is described in Section 7.2.

For polygonal Γ of total curvature less than 4π, this result was earlier
conjectured by R. Schneider [2] whose sketch of a proof contained some of the
ideas used in Nitsche’s proof.

In general, however, nothing is known about the number of solutions of
Plateau’s problem which are of class C(Γ ). Actually, the situation seems to
be rather unpromising on account of the following remarkable result due to
Böhme [6]:

For each positive integer N and for each ε > 0, there exists a regular real
analytic Jordan curve Γ in R

3 with total curvature less than 4π + ε which
bounds at least N minimal surfaces of class C∗(Γ ), i.e., of the type of the
disk.

One does not even know whether the number of solutions X ∈ C(Γ ) of
Plateau’s Problem for the curve Γ is finite or not. There are suggestive exam-
ples of P. Levy [2] and Courant [15] which indicate that there might be rec-
tifiable Jordan curves Γ bounding non-denumerably many minimal surfaces.
The validity of these examples, however, depends strictly on the validity of the
strong bridge theorem which recently was rigorously proved by B. White. For
the construction principle of the Levy–Courant examples and for comments
on the bridge principle we refer the reader to the Scholia.

Whatever may be the case, we have two satisfactory partial answers to the
finiteness question:

1. Theorem of Böhme–Tromba [1]. Generically, the number of disk-type
solutions of Plateau’s problem is finite.
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For a proof of this result, see Vol. 3.

2. Theorem of Tomi [6]. There are only finitely many disk-type solutions
of Plateau’s problem which are absolute minimizers of the area functional in
C∗(Γ ) provided that Γ is a regular real-analytic Jordan curve.

3. Theorem of Nitsche [31]. If the regular contour Γ ∈ C3,α is either extreme
or real analytic and has a total curvature of less than 6π, then there exist only
finitely many immersions X : B → R

3 of class C∗(Γ ).

A proof of the results 2 and 3 can be found in Section 5.7.

Doubtless, the number-of-solutions problem is the most exciting and most
challenging question that can be raised in connection with Plateau’s problem.

Now we want to discuss Radó’s result.

Theorem 1. If Γ possesses a one-to-one parallel projection onto a plane con-
vex Jordan curve γ, then Γ bounds at most one minimal surface except, of
course, for conformal reparametrizations. It has no branch points, and it ad-
mits a non-parametric representation.

As an example, let us consider an arbitrary quadrilateral Γ in R
3. By this

we mean a Jordan curve which is a polygon with four edges and four vertices.
If Γ is a planar curve, then it bounds exactly one (planar) minimal surface
on account of the maximum principle. On the other hand it is easy to verify
that any nonplanar quadrilateral admits a one-to-one orthogonal projection
onto a convex plane quadrilateral. Applying Radó’s theorem, we then obtain:

Every quadrilateral bounds a uniquely determined minimal surface of the type
of the disk.

For the proof of Theorem 1 we need the following

Lemma 1 (Monodromy principle). Let Ω be a simply connected, bounded
domain in C and let f ∈ C0(Ω̄,C) ∩ C1(Ω,C) be a mapping whose Jacobian
detDf vanishes nowhere in Ω so that f is an open mapping of Ω onto the do-
main Ω′ = f(Ω). Then f is injective if at least one of the following conditions
is satisfied :

(i) f maps ∂Ω into a closed Jordan curve γ in C;
(ii) f maps Ω into a simply connected domain Ω̂ and ∂Ω into ∂Ω̂.

Proof. First we will show that ∂Ω′ ⊂ f(∂Ω). In fact, for an arbitrary point
z ∈ ∂Ω′ we can find a sequence of points zn ∈ Ω′ converging to z, and another
sequence of points wn ∈ Ω such that f(wn) = zn and wn → w for some w ∈ Ω̄.
Since f is continuous on Ω̄, we obtain f(w) = z, and this implies w ∈ ∂Ω as
the mapping f is open. Thus we have proved that ∂Ω′ ⊂ f(∂Ω).

Let us now assume that (i) holds true. Then C \ γ consists of two compo-
nents, the simply connected interior Ω̂ of γ, and the unbounded exterior Ω̃.
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Because of
∂Ω′ ⊂ f(∂Ω) ⊂ γ = ∂Ω̃

we obtain
Ω′ ∩ Ω̃ = Ω′ ∩ Ω̃,

and this implies Ω′ ∩ Ω̃ = ∅, whence f(Ω) = Ω′ ⊂ Ω̂ and f(∂Ω) ⊂ γ = ∂Ω̂.
Thus we are in the situation described by (ii). Let us now consider this case.
Repeating the previous reasoning, we get Ω′ ∩ Ω̂ = Ω′ ∩ Ω̂, and we conclude
that f(Ω) = Ω′ = Ω̂, and therefore ∂f(Ω) = ∂Ω̂.

The injectivity of f can now be justified by a standard monodromy argu-
ment. Suppose that two points w1 and w2 in Ω were mapped onto the same
image point z ∈ Ω̂. Any arc α in Ω joining w1 and w2 will be mapped by f
onto a closed curve β in Ω̂ since f(w1) = f(w2) = z. By some homotopy in
the simply connected domain Ω̂ we can shrink β to the point z. Since f is
a local diffeomorphism in Ω, each curve of the homotopy is the image of an
arc in Ω which joins w1 and w2, and this curve must be closed as soon as its
image lies in a sufficiently small neighborhood of z. �

For a more detailed proof of the monodromy principle in C we refer the
reader to a suitable text book of complex analysis such as Ahlfors [5] or
Bieberbach [2]. (More general versions of this principle in algebraic topology
can for instance be found in Greenberg [1].)

The next two lemmata contain the essential ideas needed for the proof of
the theorem.

We shall again encounter the reasoning employed in the proof of the fol-
lowing lemma in Chapters 1 and 2 of Vol. 3 where similar uniqueness theorems
for surfaces with semifree boundaries will be proved.

Lemma 2 (Radó’s lemma). If f : B̄ → R is harmonic in B, continuous
on B̄, not identically zero, and if its derivatives of orders 0, 1, . . . ,m vanish
at some point w0 ∈ B, then f changes its sign on ∂B at least 2(m+1) times.

Proof. The function f is the real part of a holomorphic function F : B → C

whose power series expansion close to w0 is given by

F (w) = iβ0 + an(w − w0)n +O(|w − w0|n+1)

for |w − w0| → 0, where n ≥ m+ 1, an �= 0, and β0 is real. Consequently the
set {w ∈ B : f(w) = 0} divides a neighborhood of w0 into 2n open sectors
σ1, σ2, . . . , σ2n by means of 2n analytic arcs emanating from w0 such that f
is positive on σ1, σ3, . . . , σn−1 and negative on σ2, σ4, . . . , σ2n, cf. Fig. 1.

The set {w ∈ B : f(w) �= 0} is open, therefore it has at most denumerably
many connected components. Let Q1, Q2, . . . , Q2n be the components con-
taining the sectors σ1, σ2, . . . , σ2n respectively. We claim that no two of them
coincide.

Suppose for example that Q2k = Q2l, k �= l. Then we can construct a
(piece-wise linear) closed Jordan curve γ starting at w0, running first through
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Fig. 1. Rado’s lemma: Sectors

the sector σ2k and finally traversing σ2l before it returns to w0. Now either
the sector σ2k−1 or σ2k+1 belongs to the bounded component Ω of C \ γ. The
function f is non-positive on γ = ∂Ω but positive on σ2k−1 and on σ2k+1.
The maximum principle applied to the harmonic function f : Ω → R yields
the desired contradiction, and the remaining cases are excluded similarly.

Another application of the maximum principle shows that each of the
components Qj , j = 1, . . . , 2n, has a boundary point wj ∈ ∂Qj lying on
∂B such that f(wj) is positive for j = 1, 3, . . . , 2n − 1 and negative for j =
2, 4, . . . , 2n. Moreover, for any of these wj we can construct a path γj in
Qj starting in the sector σj and ending at wj . Since these paths γj do not
intersect, the pattern of the points wj on ∂B reflects the one of sectors σj close
to w0. Thus between any wj and its successor wj+1 the continuous function
f |∂B has a zero. �

The third lemma is a variant of Lemma 2 and a consequence of the mon-
odromy principle. The conclusions are the same, but the assumptions are dif-
ferent. This result is known as Kneser’s lemma (cf. T. Radó [5], H. Kneser
[1]).

Lemma 3. Suppose that ϕ : B̄ → R
2 is a transformation which is harmonic

in B, continuous in B̄, and which maps ∂B in a weakly monotonic manner
onto the boundary ∂Ω of a convex domain Ω ⊂ R

2. Then ϕ is a diffeomor-
phism from B onto Ω. If in addition ϕ : ∂B → ∂Ω is a homeomorphism, then
so is ϕ : B̄ → Ω̄.

Proof. This lemma will follow immediately from the monodromy principle, if
we can show that the Jacobian det Dϕ of the transformation ϕ has no zeros
in B.

First of all, the maximum principle for harmonic functions implies that
ϕ(B) lies in Ω. Now, if det Dϕ(w0) = 0 for some w0 ∈ B, then the rows of the
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Jacobi matrix Dϕ(w0) are linearly dependent, i.e., there are real constants a
and b, at least one of which is nonzero and such that

axu(w0) + byu(w0) = 0

and
axv(w0) + byv(w0) = 0

where x and y are the real and the imaginary parts of ϕ respectively. Moreover
there is a real number c such that

ax(w0) + by(w0) + c = 0,

which means that ϕ(w0) lies on the straight line

L(w0) = {x+ iy : ax+ by + c = 0}

which intersects ∂Ω in exactly two points P1 and P2. Let us now inspect the
harmonic function

f(w) = ax(w) + by(w) + c

which is continuous on B̄. Note that ϕ maps ∂B onto ∂Ω. Then, for any
w ∈ ∂B, the function f(w) vanishes if and only if ϕ(w) lies on the intersection
of ∂Ω with the straight line L(w0). Furthermore, since ϕ maps ∂B in a weakly
monotonic manner onto ∂Ω, the pre-image

ϕ−1{P1, P2} = ϕ−1(∂Ω ∩ L(w0)) = f−1
|∂B {0}

consists of two closed connected subarcs of ∂B. On the other hand, Radó’s
lemma implies that f has at least four zeros in ∂B which are separated by
points where f does not vanish. This contradiction shows that the assumption
det Dϕ(w0) = 0 is impossible. �

Now we turn to the

Proof of Theorem 1. After a rotation of coordinates we may suppose that
the parallel projection mentioned in the theorem is the orthogonal projection
onto the xy-plane. Then Γ possesses a 1–1 orthogonal projection γ which
is a convex curve contained in the plane {z = 0}. Replacing γ by γ, we may
assume that Γ lies as a graph above a plane convex curve γ which is contained
in the plane {z = 0}. Therefore the preceding lemma shows that the first two
components x and y of any minimal surface X = (x, y, z) ∈ C(Γ ) which solves
Plateau’s problem for Γ determine a diffeomorphism ϕ from B onto the convex
domain Ω enclosed by γ. Denoting the inverse of ϕ by (u(x, y), v(x, y)), the
function

Z(x, y) := z(u(x, y), v(x, y))

defines a nonparametric representation of the surface X(B). Of course, X has
no branch points since its first two components define a diffeomorphism. Con-
sequentlyX(B) is a regular embedded surface whose mean curvature vanishes.



298 4 The Plateau Problem and the Partially Free Boundary Problem

Fig. 2. Rado’s uniqueness theorem (strengthened): The Jordan curve Γ is a generalized

graph over a plane convex curve, the square shown in (a). The solution to Plateau’s problem

for Γ is therefore unique (b), (c)

Thus, as we have seen in Section 2.2, Z(x, y) is a solution of the minimal sur-
face equation with bounded, but not necessarily continuous boundary values.

Suppose now that X and X̂ are two solutions of Plateau’s problem for
Γ , and denote their corresponding non-parametric representations by Z(x, y)
and Ẑ(x, y) respectively. If the projection of Γ onto γ is one-to-one, then ϕ is a
homeomorphism from B̄ onto Ω̄. Consequently, since X and X̂ are continuous
on B̄, the functions Z and Ẑ are continuous on Ω̄, and so is the difference
Z − Ẑ, which vanishes on ∂Ω. Moreover Z − Ẑ satisfies a second order linear
equation in Ω for which the maximum principle holds true (cf. Gilbarg and
Trudinger [1], p. 208). This implies that Z and Ẑ coincide in Ω̄ so that we
have in particular X(B) = X̂(B).

Now since X and X̂ are conformal and invertible, X−1 ◦ X̂ is a conformal
mapping from B onto itself. Thus a three-point-condition guarantees that X
is equal to X̂. �
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Remark to Theorem 1. The uniqueness result of Theorem 1 remains true
under somewhat weaker assumptions on Γ . Instead of requiring the existence
of a 1-to-1 parallel projection of Γ onto a plane convex curve γ, we can allow
vertical segments for Γ which are mapped onto single points of γ. For the proof
of this more general fact one needs a sharpening of the maximum principle
provided by Nitsche [11]; see also Nitsche [28], §401 and §586. This reasoning
is essentially based on an extension of Theorem 6 in Section 7.3.

Concluding this section, we want to draw some further results from Radó’s
lemma.

Theorem 2. If w0 ∈ B is an interior branch point of the minimal surface
X ∈ C(Γ ), then each plane Π through the point X(w0) intersects Γ in at least
four distinct points.

Proof. Let ν ∈ S2 be a vector normal to Π. Then we have

Π = {x ∈ R
3 : 〈x − X(w0), ν〉 = 0}.

Consider the function f : B → R
3 defined by

f(w) := 〈X(w) − X(w0), ν〉, w ∈ B,

which is continuous on B, harmonic in B, and satisfies

f(w0) = 0, fu(w0) = 0, fv(w0) = 0.

On account of Lemma 2 it follows that f has at least four zeros on ∂B. �

Corollary 1. If there is a straight line L in R
3 such that each plane Π through

L intersects Γ in at most three points, then any minimal surface X ∈ C(Γ )
is free of interior branch points.

An immediate consequence of this result is

Corollary 2. A minimal surface X ∈ C(Γ ) has no interior branch points if Γ
possesses a one-to-one parallel or central projection onto a star-shaped planar
curve.

4.10 Another Solution of Plateau’s Problem by Minimizing
Area

In this section we want to present a solution of the minimal area problem
for disk-type surfaces which is obtained by minimizing the functional Aε :=
(1 − ε)A + εD in the class C(Γ ). This will lead to a direct solution of the
simultaneous problem of finding a minimal surface of class C(Γ ) that minimizes
both the area functional
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A(X) =
∫

B

|Xu ∧ Xv | du dv

and the Dirichlet integral

D(X) =
1
2

∫

B

(|Xu|2 + |Xv |2) du dv

among all admissible surfaces X ∈ C(Γ ). Thereby we obtain another proof of
Theorem 4 and of relation (40) in Section 4.5.

We begin by recalling thatD is (sequentially) weakly lower semicontinuous
in H1

2 (B,R3); cf. 4.6. It turns out that A has the same property:

Lemma 1. Let {Xn} be a sequence in H1
2 (B,R3) which converges weakly in

H1
2 (B,R3) to some X ∈ H1

2 (B,R3). Then

(1) A(X) ≤ lim inf
n→∞

A(Xn).

Proof. First we note the identity

(2) A(Z) = sup
{∫

B

φ · (Zu ∧ Zv) du dv : φ ∈ C∞
c (B,R3), |φ| ≤ 1

}

which holds for any Z ∈ H1
2 (B,R3); it can easily be verified.

We claim that for proving (1) it suffices to show

(3) lim
n→∞

∫

B

φ · (Xn,u ∧ Xn,v) du dv =
∫

B

φ · (Xu ∧ Xv) du dv

for any φ ∈ C∞
c (B,R3) satisfying |φ| ≤ 1. In fact, equations (2) and (3) imply

∫

B

φ · (Xu ∧ Xv) du dv = lim
n→∞

∫

B

φ · (Xn,u ∧ Xn,v) du dv

≤ lim inf
n→∞

[

sup
{∫

B

ψ · (Xn,u ∧ Xn,v) du dv : ψ ∈ C∞
c (B,R3), |ψ| ≤ 1

}]

= lim inf
n→∞

A(Xn).

Taking the supremum over all φ in C∞
c (B,R3) with |φ| ≤ 1 we then arrive

at (1).
Thus it suffices to verify (3). Let Z be of class C2(B,R3); then for

φ ∈ C∞
c (B,R3) an integration by parts yields

(4)
∫

B

φ · (Zu ∧ Zv) du dv = − 1
2

∫

B

[
φu · (Z ∧ Zv) + φv · (Zu ∧ Z)

]
du dv.

Using a suitable approximation device, this identity can as well be established
for arbitrary Z ∈ H1

2 (B,R3).
Suppose now that Xn ⇀ X in H1

2 (B,R3). By Rellich’s theorem we obtain
Xn → X in L2(B,R3), and so (3) follows from (4). �
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Next we define the functionals Aε : H1
2 (B,R3) → R by

Aε := (1 − ε)A+ εD, 0 ≤ ε ≤ 1.

Since A and D are weakly lower semicontinuous in H1
2 (B,R3) also Aε has this

property, i.e. we have

Lemma 2. If Xn ⇀ X in H1
2 (B,R3) then

Aε(X) ≤ lim inf
n→∞

Aε(Xn)

for any ε ∈ [0, 1].

Our goal is now to find a conformally parametrized minimizer of A in C(Γ ).
As A is a somewhat singular functional we take a detour by first considering
the modified variational problem

(5) Aε → min in C(Γ )

for an arbitrary ε ∈ (0, 1]. As Aε is conformally invariant we can find a mini-
mizing sequence {Xn} for Aε in C(Γ ) that satisfies a fixed three-point condi-
tion, i.e.

Aε(Xn) → α(ε) := inf
C(Γ )

Aε = inf
C∗(Γ )

Aε

and Xn ∈ C∗(Γ ) if we use the notation of 4.3. Then

(1 − ε)A(Xn) + εD(Xn) = Aε(Xn) ≤ α(ε) + 1 for n � 1,

whence
D(Xn) ≤ const for all n ∈ N.

Now we can proceed as in the proof of Theorem 1 in 4.6: We obtain a subse-
quence {Xnp } of {Xn} that tends weakly in H1

2 (B,R3) to some Xε which is
contained in C∗(Γ ) as this set is weakly (sequentially) closed in H1

2 (B,R3). It
follows that

α(ε) ≤ Aε(Xε) ≤ lim
p→∞

Aε(Xnp) = α(ε),

and so Aε(Xε) = α(ε). Thus, for any ε > 0, we have found a minimizer
Xε ∈ C∗(Γ ) of Aε in C(Γ ). As in 4.5 this minimum property implies

(6) ∂Aε(Xε, λ) = 0 for any λ ∈ C1(B,R2).

Since A is parameter invariant it follows that

∂Aε(Xε, λ) = ε∂D(Xε, λ),

and so we obtain

(7) ∂D(Xε, λ) = 0 for all λ ∈ C1(B,R2).
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By Theorem 1 of 4.5 we see that Xε satisfies the conformality relations

(8) |Xε
u|2 = |Xε

v |2, 〈Xε
u, X

ε
v 〉 = 0.

Before we proceed we remark the following: In proving relation (6) we
have used the Riemann mapping theorem. This can be avoided by using
the method presented in the Supplementary Remark 1 of 4.5: Using vector
fields λ ∈ C1(B,R3) such that λ(w) is tangential to ∂B for any w ∈ ∂B
we construct diffeomorphisms τε of B onto itself which are of the form
τε(w) = w − ελ(w) + o(ε) as ε → 0. Let us denote the class of these vec-
tor fields by C1

tang(B,R
2). Then we arrive at

∂Aε(Xε, λ) = 0 for any λ ∈ C1
tang(B,R

2)

without employing the Riemann mapping theorem. This leads to

∂D(Xε, λ) = 0 for all λ ∈ C1
tang(B,R

2),

and by the formulae derived in Example 1 of 4.5 we arrive at

(9)
∫

B

[a(μu − νv) + b(μv + νu)] du dv = 0 for all λ = (μ, ν) ∈ C1
tang(B,R

2)

where
a := |Xε

u|2 − |Xε
v |2, b := 2〈Xε

u, X
ε
v 〉.

We claim that a, b satisfy the Cauchy–Riemann equations

(10) au = −bv, av = bu on B

whence Φ(w) := a(u, v) − ib(u, v) is a holomorphic function of w = u + iv
in B. Since we do not yet know that Xε is harmonic in B, we cannot derive
(10) as in the Supplementary Remark 1 of 4.5. Instead we apply (9) to vector
fields λ of the form λ = Sδη with η = (η1, η2) ∈ C∞

c (B′,R2) with B′ ⊂⊂ B,
where Sδ is a smoothing operator with a symmetric kernel kδ, 0 < δ � 1, i.e.
Sδη = kδ ∗ η. Set

aδ := Sδa, bδ := Sδb.

Then we obtain

0 =
∫

B

{
a[(Sδη

1)u − (Sδη
2)v] + b[(Sδη

1)v + (Sδη
2)u]

}
du dv

=
∫

B

{
a[Sδ(η1

u) − Sδ(η2
v)] + b[Sδ(η1

v) + Sδ(η2
u)]

}
du dv

=
∫

B

{
aδ(η1

u − η2
v) + bδ(η1

v + η2
u)

}
du dv

=
∫

B

{
−(aδ

u + bδv)η
1 + (aδ

v − bδu)η2
}
du dv
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since Sδ commutes with ∂/∂u and ∂/∂v and
∫

B

f · Sδϕdu dv =
∫

B

Sδf · ϕdu dv

for f ∈ L1(B) and ϕ ∈ C∞
c (B′), B′ ⊂⊂ B, 0 < δ � 1. By the fundamental

theorem of the calculus of variations it follows that

aδ
u + bδv = 0 and aδ

v − bδu = 0 in B′ ⊂⊂ B.

In other words: For any fixed B′ ⊂⊂ B the function Φδ(w) := aδ(u, v) −
ibδ(u, v) is holomorphic for w = u+iv ∈ B′ if 0 < δ < δ0(B′) where δ0(B′) > 0
is a sufficiently small number depending on B′. Since

‖a − aδ ‖L1(B′) → 0 and ‖b − bδ ‖L1(B′) → 0 as δ → +0

we obtain ∫

B′
|Φ − Φδ | du dv → 0 as δ → +0.

Since the L1-limit of holomorphic functions is holomorphic we infer that Φ is
holomorphic in B′ ⊂⊂ B, and so it is holomorphic in B. Thus we have verified
(10), and from now on we can proceed as in the Supplementary Remark 1 of 4.5
obtaining Φ(w) ≡ 0 in B, i.e. a(u, v) ≡ 0 and b(u, v) ≡ 0 on B. Therefore we
have verified the conformality relations

|Xε
u|2 = |Xε

v |2, 〈Xε
u, X

ε
v 〉 = 0 in B

for any ε ∈ (0, 1], which imply A(Xε) = D(Xε), and we obtain

Aε(Xε) = A(Xε) = D(Xε) for 0 < ε ≤ 1.

On the other hand we infer from A ≤ D and the minimum property of Xε

that
Aε(Xε) ≤ Aε(X) = (1 − ε)A(X) + εD(X) ≤ D(X)

holds for any X ∈ C(Γ ) and any ε ∈ (0, 1]. Choosing X = Xε′
we arrive at

D(Xε) ≤ D(Xε′
) for any ε, ε′ ∈ (0, 1]

whence

(11) D(Xε) = A(Xε) = Aε(Xε) ≡ const =: c for 0 < ε ≤ 1.

Set
a(Γ ) := inf

C(Γ )
A, e(Γ ) := inf

C(Γ )
D.

Then, for arbitrary Z ∈ C(Γ ) and any ε, ε′ ∈ (0, 1] we obtain

a(Γ ) ≤ A(Xε) = Aε(Xε) = Aε′
(Xε′

) ≤ Aε′
(Z)
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and
e(Γ ) ≤ D(Xε) = Aε(Xε) ≤ Aε(Z) ≤ D(Z).

Letting ε′ → +0 the first set of inequalities yields

a(Γ ) ≤ A(Xε) ≤ A(Z),

and the second furnishes

e(Γ ) ≤ D(Xε) ≤ D(Z)

for all Z ∈ C(Γ ). This implies

a(Γ ) ≤ A(Xε) ≤ a(Γ ) and e(Γ ) ≤ D(Xε) ≤ e(Γ )

whence
a(Γ ) = A(Xε) = D(Xε) = e(Γ ) for all ε ∈ (0, 1].

Set C(Γ ) := C(Γ ) ∩ C0(B,R3) and

a(Γ ) = inf
C(Γ )

A, e(Γ ) := inf
C(Γ )

D.

Then we know that every minimizer X of D in C(Γ ) lies in C(Γ ), and so

a(Γ ) ≤ a(Γ ) ≤ A(X) ≤ D(X) = e(Γ ) = a(Γ )

and
e(Γ ) ≤ e(Γ ) ≤ D(X) = e(Γ ).

Thus we have a(Γ ) = a(Γ ) = A(X) = D(X) = e(Γ ) = e(Γ ). In addition,
every conformally parametrized minimizer X of A in C(Γ ) satisfies a(Γ ) =
A(X) = D(X). So we have proved

Theorem 1. For any rectifiable curve Γ in R
3 one has

(12) inf
C(Γ )

A = inf
C(Γ )

D = inf
C(Γ )

A = inf
C(Γ )

D,

and any minimizer of Dirichlet’s integral in C(Γ ) is simultaneously a mini-
mizer of area in C(Γ ), and conversely every conformally parametrized mini-
mizer of area in C(Γ ) is as well a minimizer of Dirichlet’s integral in C(Γ ).

Remark 1. Starting from (11) we alternatively could have argued in the fol-
lowing way: Applying the reasoning of 4.6 we obtain a sequence of positive
numbers εj with εj → 0 and an X ∈ C∗(Γ ) such that Xεj ⇀ X in H1

2 (B,R3).
Then

a(Γ ) ≤ A(X) ≤ lim inf
j→∞

A(Xεj ) = lim
ε→0

Aε(Xε) = c

≤ lim
ε→0

Aε(Z) = A(Z) for any Z ∈ C(Γ )
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and so a(Γ ) ≤ A(X) ≤ a(Γ ), i.e. A(X) = a(Γ ). Therefore the weak limit X
of the Xεj is a minimizer of A in C(Γ ). By (11) and the minimum property
of Xε we have

c = Aε(Xε) ≤ Aε(X) for 0 < ε ≤ 1,

and by ε → +0 we get

c ≤ A(X) ≤ D(X) ≤ lim inf
j→∞

D(Xεj ) = c,

and so c = A(X) = D(X), which implies the conformality relations

|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0

as well as a(Γ ) = e(Γ ).
In other words, one can—by the detour via Aε—solve the variational

problem “A → min in C(Γ )” thereby simultaneously solving the problem
“D → min in C(Γ )” by a minimal surface X ∈ C(Γ ).

Remark 2. We have proved Theorem 1 without using Riemann’s mapping
theorem. Therefore it is no circulus vitiosus if we try to prove this theorem by
using the solution of Plateau’s problem that is provided by Theorem 1. This
idea will be carried out in the next section.

4.11 The Mapping Theorems of Riemann and Lichtenstein

First we want to show that the solution of Plateau’s problem applied to planar
curves provides a proof of Riemann’s mapping theorem, which states the
following:

Suppose that Ω is a simply connected domain in C bounded by a closed Jordan
curve Γ . Then there is a homeomorphism ϕ from Ω onto B which is holo-
morphic in Ω and provides a conformal mapping of Ω onto B, i.e. ϕ′(z) �= 0
for all z ∈ Ω.

We prove an equivalent assertion:

Theorem 1. Let Ω be a simply connected domain in C bounded by a closed
Jordan curve Γ . Then there exists a homeomorphism f from B onto Ω, B :=
{w ∈ C : |w| < 1}, which is holomorphic in B and satisfies f ′(w) �= 0 for all
w ∈ B.

Proof. (i) Firstly we prove the assertion under the additional assumption that
the contour Γ is rectifiable. We identify C with the x1, x2-plane R

2 and con-
sider a minimal surface X = (X1, X2, X3) of class C(Γ ) which is continuous
on B. Since Γ lies in the x1, x2-plane we obtain X3(w) ≡ 0 on account of the
maximum principle. Thus the conformality relations for w = u+ iv ∈ B read
as
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|X1
u|2 + |X2

u|2 = |X1
v |2 + |X2

v |2,(1)

X1
uX

1
v +X2

uX
2
v = 0.(2)

Equation (2) implies that

(3) X1
v = −λX2

u, X2
v = λX1

u

holds for some function λ : B → R, and (1) yields that λ(u, v) = ±1 on
B \ Σ where Σ denotes the set of branch points of X in B. On Σ equation
(3) is satisfied for any choice of λ. Since the points of Σ are isolated in B
it follows that either λ(u, v) ≡ 1 or λ(u, v) ≡ −1. In the first case we set
λ(u, v) := 1 on Σ, and λ(u, v) := −1 in the second. Thus either X1, X2

or X1,−X2 satisfy the Cauchy–Riemann equations on B. By applying the
reflection z = x1 + ix2 �→ z = x1 − ix2 we can assume that the equations

(4) X1
u = X2

v , X1
v = −X2

u

hold in B, and so f(w) := X1(u, v) + iX2(u, v), w = u + iv, is holomorphic
in B and continuous on B. Furthermore, f |∂B yields a homeomorphism from
∂B onto Γ . Therefore the loop ϕ : [0, 2π] → C defined by ϕ(t) := f(eit) has
the winding numbers

(5) W (ϕ, z) := W (ϕ − z) =

{
1 for z ∈ Ω,

0 for z ∈ C \ Ω.

For 0 < r < 1 and ϕr(t) := f(reit) we have

max
[0,2π]

|ϕ(t) − ϕr(t)| → 0 as r → 1 − 0.

Hence for any ε > 0 there is a δ > 0 such that

|ϕ(t) − ϕr(t)| < ε for all t ∈ [0, 2π], provided that 1 − δ < r < 1.

Then for any z ∈ C with dist(z, Γ ) > ε we obtain

(6) W (ϕr, z) = W (ϕ, z).

Since ϕr is real analytic we on the other hand have

(7) W (ϕr, z) =
1

2πi

∫ 2π

0

ϕ̇r(t)
ϕr(t) − z

dt.

This equation can be written as

W (ϕr, z) =
1

2πi

∫ 2π

0

f ′(reit)
f(reit) − z

ireit dt(8)

=
1

2πi

∫

Cr

f ′(w)
f(w) − z

dz
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where Cr denotes the positively oriented circle {reit : 0 ≤ t ≤ 2π} bounding
the disk Br(0) := {w ∈ C : |w| < r}. By Rouché’s formula we know that

(9)
1

2πi

∫

Cr

f ′(w)
f(w) − z

dz = n(f,Br(0), z)

where n(f,Br(0), z) is the number of zeros of the function f − z in Br(0)
counted with respect to their multiplicities. From (5)–(9) we infer the follow-
ing: For any z ∈ C \ Γ there is a δ ∈ (0, 1) such that

n(f,Br(0), z) =

{
1 if z ∈ Ω,

0 if z /∈ Ω,
provided that 1 − δ < r < 1.

This implies for z ∈ C \ Γ that

n(f,B, z) =

{
1 if z ∈ Ω,

0 if z /∈ Ω.

In other words, the equation f(w) = z has no solution w ∈ B if z ∈ C \Ω, and
exactly one solution w ∈ B if z ∈ Ω; this solution is a zero of order 1 for the
function f − z. Thus f yields a 1–1 mapping of B onto Ω such that f ′(w) �= 0
for all w ∈ B, i.e. f is a conformal mapping from B onto Ω. Moreover, f maps
∂B one-to-one onto Γ (see 4.5, Theorem 3), and so f provides a bijective
mapping of B onto Ω. Since f is continuous on B it finally follows that f is
a homeomorphism from B onto Ω, and so the assertion is proved in case that
Γ is rectifiable.

(ii) If Γ is not rectifiable we choose a sequence of rectifiable Jordan curves
Γj that converge to Γ in the sense of Fréchet as j → ∞. Let Ωj be the
bounded component of C \ Γj . On account of (i) there is for every j ∈ N a
homeomorphism of B onto Ωj which maps B conformally onto Ωj .

Now we proceed as in the proof of Theorem 3 in Section 4.3. Since we did
only sketch this proof we shall now fill in the details for the convenience of
the reader.

We can assume that the fj satisfy three-point conditions

fj(wk) = zk,j , k = 1, 2, 3, j ∈ N,

where w1, w2, w3 are three different points on ∂B, and z1,j , z2,j , z3,j are three
different points on Γj converging to three different points z1, z2, z3 on Γ :
zk,j → zk as j → ∞.

Any pair of points Pj , Qj on Γj divides Γj into two subarcs Γ ′
j and Γ ′ ′

j .
There is a σ0 > 0 such that one of the two arcs contains at most one of the
three points z1,j , z2,j , z3,j if |Pj − Qj | < σ0; let this arc be Γ ′

j . Since Γj → Γ
in the sense of Fréchet, there is a uniform estimate of the moduli of continuity
of the Jordan curves Γj , i.e.: For every ε > 0 there is a number σ(ε) with
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0 < σ(ε) < σ0 such that diamΓ ′
j < ε holds for any “short” subarc Γ ′

j of Γj

provided that its endpoints Pj , Qj satisfy |Pj − Qj | < σ(ε).
Moreover, there is a constant M > 0 such that measΩj ≤ M for all j ∈ N.

This implies

D(fj) = A(fj) = measΩj ≤ M for all j ∈ N.

For 0 < r < 1 and w0 ∈ ∂B we define the two-gon

Sr(w0) := B ∩ Br(w0)

which is bounded by the two closed circular arcs C ′
r and C ′ ′

r with common
endpoints ζ ′

r and ζ ′ ′
r on ∂B and C ′ ′

r ⊂ ∂B. By the Courant–Lebesgue lemma
we obtain: For every δ ∈ (0, 1) there is a number ρj ∈ (δ,

√
δ) such that the

oscillation of fj on Cρj is estimated by

osc(fj , C
′
ρj

) ≤
{

8πM
log 1/δ

}1/2

for all w0 ∈ ∂B.

For a given ε > 0 we can find a number τ(ε) > 0 such that for 0 < δ < τ(ε)
the arc C ′ ′√

δ
contains at most one of the points zk (and so fj maps C ′ ′

ρj
onto

the short arc Γ ′ ′
j with the endpoints fj(ζ ′

ρj
) and fj(ζ ′ ′

ρj
)), and secondly that

osc(fj , C
′
ρj

(w0)) < σ(ε).

It follows that

osc(fj , C
′ ′
ρj

(w0)) < ε for all w0 ∈ ∂B and j ∈ N.

Since fj maps ∂B homeomorphically onto Γ , we conclude that

osc(fj , C
′ ′
δ (w0)) < ε for all w0 ∈ ∂B and j ∈ N,

provided that 0 < δ < τ(ε). Furthermore fj(∂B) = Γj → Γ implies

max
∂B

|fj | ≤ const for all j ∈ N,

and so {fj |∂B } is compact in C0(∂B,C) equipped with the sup-norm on ∂B.
Thus, after renumbering, we may assume that {fj |∂B } converges uniformly on
∂B to some continuous function. By virtue of Weierstrass’s theorem we obtain
fj ⇒ f for some f ∈ C0(B,C), and f ∈ C∗(Γ ) as fj ∈ C∗(Γj) and Γj → Γ ,
where the ∗ denotes the corresponding three-point conditions fj(wk) = zk,j

and f(wk) = zk with zk,j → zk as j → ∞. The uniform limit of holomorphic
functions is holomorphic. Therefore f is holomorphic in B, continuous on B,
and non-constant as f is of class C∗(Γ ). By a theorem of Hurwitz the uniform
limit of injective holomorphic maps is injective, provided that this limit is
nonconstant. Consequently the holomorphic mapping f |B is injective, and
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so it maps B conformally onto the open set f(B) and ∂B continuously and
weakly monotonically onto Γ . Since f is open it follows that f(B) is the inner
domain Ω of the Jordan contour Γ , and Theorem 3 of 4.5 yields that f |∂B

maps ∂B one-to-one onto Γ . Thus f is a continuous bijective mapping from
B onto Ω, and so it is a homeomorphism. �

Remark 1. A lucid presentation of the properties of the winding number can
be found in Sauvigny [15], Vol. 1, III.1.

Remark 2. The mapping f in Theorem 1 is essentially unique. In fact, if f1
and f2 are two (strictly) conformal mappings of B onto Ω then f−1

1 ◦ f2 is a
(strictly) conformally automorphism τ of B, i.e.

f2 = f1 ◦ τ with τ(w) = eiϕ w − a

1 − aw
, a ∈ B, 0 ≤ ϕ < 2π.

Remark 3. We now want to sketch another proof of Theorem 1 for a rectifi-
able contour which in essence describes the approach to proving Lichtenstein’s
theorem that will follow next. So let us return to the mapping f := X1 + iX2

which we can assume to be holomorphic in B. Moreover, f is continuous on B,
and f |∂B provides a homeomorphism from ∂B onto Γ . Hence f(w) �≡ const
on B, and therefore f is an open mapping from B onto the open set f(B).
Furthermore, f(B) is compact, and we conclude that f(∂B) = ∂f(B) = Γ
and Ω = int f(B) = f(B). The set of zeros of f ′ in B coincides with the set
Σ of branch points of X in B. We claim that Σ is empty and f is univalent
in B. In fact if f ′(w0) = 0 and z0 := f(w0) for some w0 ∈ B it follows by
Rouché’s theorem in connection with Theorem 1 of 4.7 that for any z ∈ Ω the
function f(w) − z has at least two zeros w1 and w2 in B, except if z is the
image of a branch point. Since Σ is at most denumerable it follows that

N(f,B, z) ≥ 2 for almost all z ∈ Ω,

where N(f,B, z) denotes the number of different solutions w ∈ B for the
equation f(w) = z with z ∈ Ω. Since the area of X is given by

A(X) =
∫

B

|f ′(w)|2 du dv

the area formula yields for z = x1 + ix2 that

(10) A(X) =
∫

Ω

N(f,B, z) dx1 dx2 ≥ 2measΩ.

Moreover we may assume that X minimizes A, taking Theorem 1 of 4.10
into account. Since f(B) = Ω, inequality (10) contradicts the minimizing
property of X, and so we obtain N(f,B, z) = 1 for all z ∈ Ω. Consequently
f |B is injective and Σ is empty. Now one concludes as before that f is a
homeomorphism from B onto Ω that maps B conformally onto Ω.
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Now we shall use the approach of Section 4.10, combined with the ideas
described in the preceding Remark 3 to give a proof of Lichtenstein’s theorem
(cf. 1.4). As we shall nowhere base the reasoning of this book onto this result
we may use some regularity results that are proved only later in Chapters 7
and 8.

Let B again be the standard unit disk {w ∈ R
2 : |w| < 1}, w = (u, v),

equipped with the Euclidean metric

ds2e := du2 + dv2,

and Ω be a simply connected, open set in R
2, bounded by a closed rectifiable

Jordan curve Γ . We assume that Ω carries a Riemannian metric

ds2 := gjk(x) dxj dxk, x = (x1, x2).

For mappings τ ∈ H1
2 (B,R2) we define the “Gauss functions” E(τ),F(τ),

G(τ) : B → R by

E(τ) := gjk(τ)τ j
uτ

k
u , G(τ) := gjk(τ)τ j

v τ
k
v , F(τ) := gjk(τ)τ j

u τ
k
v .

We call τ weakly conformal if τ satisfies the conformality relations

(11) E(τ) = G(τ), F(τ) = 0.

Definition 1. A conformal mapping from B onto Ω is a diffeomorphism
from B onto Ω satisfying the conformality relations (11).

The pull-back τ∗ ds2 of ds2 by a diffeomorphism τ : B → Ω from Ω to B
is given by

τ∗ ds2 = E(τ) du2 + 2F(τ) du dv + G(τ) dv2.

For a conformal mapping τ : B → Ω we have

λ := E(τ) = G(τ) > 0 on B

and
τ∗ ds2 = λ(u, v) · (du2 + dv2).

It follows from (11) that the components τ1, τ2 of a conformal mapping
τ(u, v) = (τ1(u, v), τ2(u, v)), satisfy the Beltrami equations

(12)

√
g(τ)τ1

v = −ρ[g12(τ)τ1
u + g22(τ)τ2

u ],
√
g(τ)τ2

v = ρ[g11(τ)τ1
u + g12(τ)τ2

u ]

where
g(x) := det(gjk(x))

and either ρ(u, v) ≡ 1 or ρ(u, v) ≡ −1. From (12) it follows that
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√
g(τ) detDτ = ρE(τ).

Thus τ is orientation preserving or reversing if ρ = 1 or ρ = −1 respectively.
The Riemannian analogue of the area functional is

A(τ) :=
∫

B

√
E(τ)G(τ) − F2(τ) du dv =

∫

B

√
g(τ)|detDτ | du dv

and the corresponding Dirichlet integral is defined as

D(τ) :=
1
2

∫

B

[E(τ) + G(τ)] du dv.

We now state the following global version of Lichtenstein’s theorem:

Theorem 2. Suppose that Γ ∈ Cm,α and gjk ∈ Cm−1,α(Ω) for some m ∈ N

and α ∈ (0, 1). Then there is a conformal mapping τ from B onto Ω which is
of class Cm,α(B,R2).

Proof. We extend (gjk) to all of R
2, in such a way that gjk(x) = δjk for

|x| � 1 and gjk ∈ Cm−1,α(R2). Then there are numbers 0 < m1 ≤ m2 such
that

m1|ξ|2 ≤ gjk(x)ξjξk ≤ m2|ξ|2 for all x, ξ ∈ R
2.

For any τ ∈ H1
2 (B,R2) the functions E(τ), F(τ), G(τ) are of class L1(B), and

so A and D are well-defined on H1,2(B,R2). Analogous to Definition 3 in 4.2
we define C(Γ ) as the class of mappings τ ∈ H1

2 (B,R2) whose trace τ |∂B can
be represented by a weakly monotonic, continuous mapping from ∂B onto Γ ,
and C∗(Γ ) is the subclass of mappings τ ∈ C(Γ ) satisfying a fixed three-point
condition.

Now we define the functionals Aε : H1
2 (B,R2) → R by

Aε := (1 − ε)A+ εD, 0 ≤ ε ≤ 1.

As in 4.10 we have the following lower semicontinuity property: If τn ⇀ τ
in H1

2 (B,R2) then

Aε(τ) ≤ lim inf
n→∞

Aε(τn) for any ε ∈ [0, 1].

Unfortunately the simple proof of Lemma 1 in Section 4.10 does not seem
to work in the present situation; therefore we refer the reader to the general
lower semicontinuity theorem in Acerbi and Fusco [1] which contains the above
stated property as a special case.

Consider the variational problem “Aε → min in C(Γ )” for an arbitrary
ε ∈ (0, 1]. By the same reasoning as in 4.10 we see that there is a minimizer
τ ε ∈ C∗(Γ ) satisfying

∂Aε(τ ε, λ) = 0 for any λ ∈ C1
tang(B,R

2)
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and so
∂D(τ ε, λ) = 0 for all λ = (μ, ν) ∈ C1

tang(B,R
2),

where

∂D(τ ε, λ) =
∫

B

[a(μu − νv) + b(μv + νu)] du dv,

a := E(τ ε) − G(τ ε), b := 2F(τ ε).

It follows that Φ(w) := a(u, v)−ib(u, v) is a holomorphic function of w = u+iv
in B, and then Φ(w) ≡ 0 using the Supplementary Remark 1 of 4.5; see 4.10.
Thus we have

E(τ ε) = G(τ ε), F(τ ε) = 0 for any ε ∈ (0, 1]

whence A(τ ε) = D(τ ε) and so

Aε(τ ε) = A(τ ε) = D(τ ε) for 0 < ε ≤ 1.

On the other hand we infer from A ≤ D and the minimum property of τ ε that

Aε(τ ε) ≤ Aε(τ) = (1 − ε)A(τ) + εD(τ) ≤ D(τ)

holds for any τ ∈ C(Γ ) and 0 < ε ≤ 1. Choosing τ = τ ε′
we obtain

D(τ ε) ≤ D(τ ε′
) for all ε, ε′ ∈ (0, 1],

and so
D(τ ε) = A(τ ε) = Aε(τ ε) ≡ const =: c for 0 < ε ≤ 1.

Set
a(Γ ) := inf

C(Γ )
A, e(Γ ) := inf

C(Γ )
D.

Then, for arbitrary τ ∈ C(Γ ) and ε, ε′ ∈ (0, 1], we have

a(Γ ) ≤ A(τ ε) = Aε(τ ε) = Aε′
(τ ε′

) ≤ Aε′
(τ),

e(Γ ) ≤ D(τ ε) = Aε(τ ε) ≤ Aε(τ) ≤ D(τ).

Letting ε′ → +0 we arrive at

a(Γ ) ≤ A(τ ε) ≤ A(τ), e(Γ ) ≤ D(τ ε) ≤ D(τ) for any τ ∈ C(Γ ),

which implies

a(Γ ) ≤ A(τ ε) ≤ a(Γ ), e(Γ ) ≤ D(τ ε) ≤ e(Γ )

whence
a(Γ ) = A(τ ε) = D(τ ε) = e(Γ ) for all ε ∈ (0, 1].
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In particular we obtain

a(Γ ) = A(τ) = D(τ) = e(Γ )

for τ := τ1, that is, the minimizer τ of Dirichlet’s integralD in C(Γ ) minimizes
also the area functional A in C(Γ ). From D(τ) = e(Γ ) it follows that τ
is a minimal surface in the two-dimensional Riemannian manifold (R2, ds2),
provided that m ≥ 2 and α ∈ (0, 1), and τ ∈ Cm,α(B,R2); in particular, τ
satisfies (11). Furthermore, if w0 is a branch point of τ , i.e. E(τ)(w0) = 0,
then there is an a ∈ C

2, a �= 0, and a number ν ∈ N such that the Wirtinger
derivative τw has the expansion

τw(w) = a(w − w0)ν + o(|w − w0|)ν) as w → w0.

These results are derived in Chapters 2 and 3 of Vol. 2 for the Euclidean case.
In the Riemannian case the statements at the boundary are verified in the
same way, and the interior results are even easier to prove than the boundary
results. (We also refer to Morrey [8], Chapter 9; Tomi [1], and Heinz and
Hildebrandt [1].) Integrating the asymptotic expansion of τw we obtain for
0 < |x − τ(w0)| � 1 and x ∈ R

2 that the indicatrix

N(τ,B, x) := #{w ∈ B, τ(w) = x}

satisfies

(13) N(τ,B, x) ≥
{

2 if w0 ∈ B,

1 if w0 ∈ ∂B

in case that w0 is a branch point of τ .
Since τ maps ∂B weakly monotonically and continuously onto Γ and

τ ∈ C0(B,R2), a topological argument yields Ω ⊂ τ(B). Therefore we also
have

(14) N(τ,B, x) ≥ 1 for all x ∈ Ω.

Let τ0 be a conformal mapping of B onto Ω, τ0 ∈ C(Γ ). Then

A(τ0) =
∫

Ω

√
g(x) dx1 dx2 =

∫

Ω

√
g(x) dx1 dx2

since L2-measΓ = 0 for a rectifiable curve Γ . Since τ minimizes A in C(Γ )
we obtain

A(τ) ≤ A(τ0),

and the area formula yields

A(τ) =
∫

R2
N(τ, B, x)

√
g(x) dx1 dx2.
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Thus,

(15)
∫

R2
N(τ, B, x)

√
g(x) dx1 dx2 ≤

∫

Ω

√
g(x) dx1 dx2.

On account of (13)–(15) it firstly follows that τ has no branch points on
B, whence ∇τ(w) �= 0 for all w ∈ B. Thus τ |∂B is 1–1, and so it yields a
homeomorphism from ∂B onto Γ . Secondly, τ |B is open; hence it follows from
(14) and (15) that N(τ,B, x) = 1 for x ∈ Ω and N(τ,B, x) = 0 for x ∈ R

2 \Ω.
Consequently τ is a conformal mapping from B onto Ω satisfying the Beltrami
equations (12).

If we merely assume Γ ∈ C1,α and gjk ∈ C0,α, τ turns out to be a con-
formal mapping of class C1,α(B,R2) from B onto Ω. This one obtains from
the preceding result (m ≥ 2) by approximating Γ and gjk by C∞-data Γn,
gn

jk, and applying a priori estimates for the corresponding mappings τn and
their inverses τ−1

n which satisfy similar Beltrami equations as the τn (see e.g.
Schulz [1], Chapter 6; Jost [17], Chapter 3; or Morrey [8], pp. 373–374). �

A slight modification of the preceding reasoning combined with a suitable
approximation argument yields the following analog of Theorem 1:

Theorem 3. If Γ is a closed Jordan curve with the inner domain Ω and gjk ∈
Cm−1,α(R2) for some m ∈ N and α ∈ (0, 1), then there is a homeomorphism τ
from B onto Ω which yields a conformal mapping of class Cm,α(B,R2) from
B onto Ω.

As a corollary of Theorem 2 we obtain the following version of the original
Lichtenstein theorem:

Theorem 4. If X : B → R
n, n ≥ 2, is an immersed surface of class Cm,α,

m ∈ N, α ∈ (0, 1), then there exists an equivalent representation Y = X ◦ τ
which is conformally parametrized, i.e. |Yu|2 = |Yv |2, 〈Yu, Yv 〉 = 0.

Proof. X(x1, x2) with (x1, x2) ∈ B induces on B the Riemannian metric
ds2 = gjk(x) dxj dxk with

gjk := 〈Xxj , Xxk 〉 ∈ Cm−1,α(B).

If we now determine a conformal mapping τ from (B, dse) onto (B, ds) as in
Theorem 2 then Y := X ◦ τ has the desired property. �

4.12 Solution of Plateau’s Problem for Nonrectifiable
Boundaries

A general closed Jordan curve Γ need not bound any surface X : B → R
3 with

a finite Dirichlet integral. In fact, C(Γ ) is nonempty if and only if Γ possesses



4.12 Solution of Plateau’s Problem for Nonrectifiable Boundaries 315

a representation of class H1/2
2 ([0, 2π],R3). Nevertheless J. Douglas proved

that every closed Jordan curve Γ in R
3 spans a continuous disk-like minimal

surface. To see this we approximate Γ by sequences of rectifiable Γn, each
of which bounds a minimal surface Xn of finite area. There is a subsequence
{Xnp } that uniformly converges to a minimal surface X ∈ C2(B,R3) on every
Ω′ ⊂⊂ B. Yet it is not obvious that the limit X is continuous and that it maps
∂B onto Γ in the sense of 4.2, Definition 2. Namely, as A(Xn) may tend to
infinity, one cannot derive a uniform bound for the moduli of continuity of the
boundary values Xn|∂B by means of the Courant–Lebesgue lemma, and so, at
first, it only follows that X|∂B yields a weakly monotonic mapping from ∂B
into Γ which might have denumerably many jump discontinuities. The crucial
part of the proof consists in showing that these discontinuities do not appear.

We use a result on sequences of monotonic functions that in essence is due
to Helly; a proof can be derived from A. Wintner [1].

Lemma 1. Let {τn} be a sequence of increasing functions τn ∈ C0(R) with
τn(0) = 0 and τn(θ + 2π) = τn(θ). Then there is a function τ : R → R and a
subsequence {τnk

} with the following properties:

(i) τ is nondecreasing and continuous except for at most denumerably many
jump discontinuities.

(ii) If τ is continuous at θ then τnk
(θ) → τ(θ) as k → ∞.

(iii) Because of (i) the one-sided limits τ(θ0 − 0) and τ(θ0 + 0) exist at any
θ0 ∈ R, and we can redefine τ by τ(θ0) := 1

2 [τ(θ0 − 0)+τ(θ0 +0)] without
changing (i) and (ii). Set

σ(θ0) := 1
2 [τ(θ0 + 0) − τ(θ0 − 0)].

(iv) For any δ > 0 there exist numbers η(δ) > 0 and N0(δ) ∈ N such that for
all θ0 ∈ R the following holds:

|τ(θ) − τ(θ0)| ≤ σ(θ0) + δ if |θ − θ0| < η,

|τnk
(θ) − τ(θ0)| ≤ σ(θ0) + δ if |θ − θ0| < η and k > N0.

Now we can state the main result.

Theorem 1. For any closed Jordan curve Γ in R
3 there is a minimal surface

X : B → R
3 of class C0(B,R3) which maps ∂B homeomorphically onto Γ .

Proof. Let Γ be represented by γ ∈ C0(R,R3) which is monotonic and 2π-
periodic such that Γ = γ([0, 2π]). We approximate Γ by rectifiable Jordan
curves Γn (say, by simple closed polygons) with continuous, monotonic, 2π-
periodic representations γn : R → R

3, Γn = γn([0, 2π]), such that γn converges
uniformly to γ : γn(t) ⇒ γ(t) on R as n → ∞. For any n there is a minimal
surface Xn ∈ C(Γn) ∩ C0(B,R3) that maps ∂B homeomorphically onto Γn.
If we choose the orientation of Γn appropriately and require that Xn(eiθ)
respects this orientation, we can write
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(1) Xn(eiθ) = γn(τn(θ)) for θ ∈ R and n ∈ N

where the τn are increasing functions of class C0(R) with τn(θ+2π) = τn(θ)+
2π. As one can impose an arbitrarily chosen three-point condition on any Xn

we may also assume that τn(0) = 0, τn(1) = 1, τn(2) = 2 for any n ∈ N.
Passing to a suitable subsequence of {Xn} and renumbering it we obtain
Xn(w) ⇒ X(w) on Ω ⊂⊂ B where X : B → R

3 is a minimal surface. On
account of Lemma 1 we can furthermore assume that there is a nondecreasing,
possibly discontinuous function τ : R → R such that τn(θ) → τ(θ) as n → ∞,
provided that τ is continuous at θ, and for any δ > 0 there are numbers
η(δ) > 0 and N0(δ) ∈ N such that

(2) |τ(θ) − τ(θ0)| ≤ σ(θ0) + δ for |θ − θ0| < η(δ)

and

(3) |τn(θ) − τ(θ0)| ≤ σ(θ0) + δ for |θ − θ0| < η(δ) and n > N0(δ)

where σ(θ0) := 1
2 [τ(θ0 + 0) − τ(θ0 − 0)] and τ is redefined as

τ(θ0) = 1
2 [τ(θ0 + 0) + τ(θ0 − 0)].

First we will prove that

(4) lim
w→w0

X(w) = γ(τ(θ0)) for w0 = eiθ0 ∈ ∂B,

provided that τ is continuous at θ0. So let us assume that

(5) σ(θ0) = 0

for some fixed θ0, and choose some ε > 0. Since γ is uniformly continuous
on R there is some δ1(ε) > 0 such that

(6) |γ(t) − γ(t′)| < ε for |t − t′ | < δ1(ε).

Because of γn(t) ⇒ γ(t) on R there is an N1(ε) ∈ N such that

(7) |γ(t) − γn(t)| < ε for n > N1(ε) and all t ∈ R.

Furthermore, by (3) and (5) we obtain

(8) |τn(θ0) − τ(θ0)| < δ1(ε) for n > N0(δ1(ε)).

On account of (6)–(8) and
∣
∣γ(τ(θ0)) − Xn(reiθ)

∣
∣ ≤

∣
∣γ(τ(θ0)) − γ(τn(θ0))

∣
∣ +

∣
∣γ(τn(θ0)) − γn(τn(θ0))

∣
∣

+
∣
∣γn(τn(θ0)) − Xn(reiθ)

∣
∣
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we see that
∣
∣γ(τ(θ0)) − Xn(reiθ)

∣
∣ < 2ε+

∣
∣γn(τn(θ0)) − Xn(reiθ)

∣
∣(9)

for n > N(ε) := max
{
N1(ε), N0(δ1(ε))

}
.

For 0 ≤ r < 1 Poisson’s integral formula and (1) yield
∣
∣Xn(reiθ) − γn(τn(θ0))

∣
∣(10)

≤
∫ θ0+π

θ0−π

K(r, ϕ − θ)
∣
∣γn(τn(ϕ)) − γn(τn(θ0))

∣
∣ dϕ

=
∫

I1

· · · +
∫

I2

. . .

with I1 := {ϕ : |ϕ − θ0| < η(δ1(ε))}, I2 := [θ0 − π, θ0 + π] \ I1, and

K(r, α) :=
1
2π

1 − r2

1 − 2r cosα+ r2
.

On account of (3) and (6)–(8) we obtain for n > N(ε), |ϕ−θ0| < η(δ1(ε)) and
|θ − θ0| < η(δ1(ε)) that
∣
∣γn(τn(ϕ)) − γn(τn(θ0))

∣
∣ ≤

∣
∣γ(τn(ϕ)) − γn(τn(ϕ))

∣
∣ +

∣
∣γ(τn(θ0)) − γn(τn(θ0))

∣
∣

+
∣
∣γ(τn(ϕ)) − γ(τ(θ0))

∣
∣ +

∣
∣γ(τ(θ0)) − γ(τn(θ0))

∣
∣

< ε+ ε+ ε+ ε = 4ε,

whence

(11)
∣
∣
∣
∣

∫

I1

. . .

∣
∣
∣
∣ < 4ε

∫

I1

K(r, ϕ − θ) dϕ ≤ 4ε
∫ 2π

0

K(r, α) dα = 4ε.

Because of γn ⇒ γ there is a constant c0 such that

|γn(t)| + |γ(t)| ≤ c0 for t ∈ R and n ∈ N,

and so ∣
∣
∣
∣

∫

I2

. . .

∣
∣
∣
∣ ≤ c0

∫

I2

K(r, ϕ − θ) dθ.

Hence there is a constant δ2(ε) > 0 such that

(12)
∣
∣
∣
∣

∫

I2

. . .

∣
∣
∣
∣ < ε for 0 < 1 − r < δ2(ε),

|θ − θ0| < δ3(ε) := 1
2η(δ1(ε)) and all n ∈ N.

By (9)–(12) it follows that
∣
∣γ(τ(θ0)) − Xn(reiθ)

∣
∣ < 2ε+ 4ε+ ε = 7ε(13)

for n > N(ε), 0 < 1 − r < δ2(ε) and |θ − θ0| < δ3(ε).
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With n → ∞ we obtain

(14)
∣
∣γ(τ(θ0)) − X(reiθ)

∣
∣ ≤ 7ε for 0 < 1 − r < δ2(ε) and |θ − θ0| < δ3(ε).

This implies
lim

w→w0
X(w) = γ(τ(θ0)) for w0 = eiθ0 ,

provided that τ(θ) is continuous at θ = θ0.
Now we want to show by reductio ad absurdum that τ is everywhere

continuous. To this end, suppose that τ is discontinuous at θ0; then it is no
loss of generality if we assume that θ0 = 0. Set τ+ := τ(+0), τ− := τ(−0),
and X+ := γ(τ+), X− := γ(τ−). Since τ+ = limθ→+0 τ(θ) we have: For any
δ > 0 there is a number η∗(δ) > 0 such that

τ+ ≤ τ(θ) ≤ τ+ + δ/4 for 0 < θ < η∗(δ).

By virtue of (3) we may therefore even assume that

|τn(θ) − τ+| < δ for 0 < θ < η∗(δ) and n > N0(δ).

Choose some ε > 0 and set δ := δ1(ε). Then the same reasoning as before yields
for δ4(ε) := η∗(δ1(ε)) the following: For any point w̃ = eiϕ with 0 < ϕ < δ4(ε)
there is an open neighborhood U(ϕ) of w̃ in B such that

(15) |X+ − X(w)| < 7ε for w ∈ U(ϕ), 0 < ϕ < δ4(ε),

and correspondingly we can achieve

(16) |X− − X(w)| < 7ε for w ∈ U(ϕ),−δ4(ε) < ϕ < 0.

Now we are going to derive a contradiction to the assumption τ+ �= τ− by
proving that X+ �= X− is impossible. To this end we consider the conformal
automorphisms fa of B which are defined by

z = fa(w) :=
w − a

1 − aw
with a ∈ R, 0 < a < 1.

We have fa(1) = 1, fa(0) = −a, fa(−1) = −1 and fa(w) = fa(w) whence
fa(R) = R and fa(C+) = C+, fa(C−) = C− for C+ := {w ∈ ∂B : Imw > 0},
C− := {w ∈ ∂B : Imw < 0}. Moreover,

lim
a→1−0

fa(w) = −1 for any w ∈ B \ {1}.

Hence, for a ∈ (0, 1) sufficiently close to 1, we see that fa maps the arc
C+

0 := {eiϕ : 0 < ϕ < δ4(ε)} onto an arc fa(C+
0 ) which contains C+

1 :=
{eiψ : 1 ≤ ψ ≤ 2} in its interior. Then C−

0 := {eiϕ : −δ4(ε) < ϕ < 0} is
mapped onto fa(C−

0 ) which contains C−
1 := {eiψ : −2 ≤ ψ ≤ −1} in its
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interior. Set
Y (z) := X(f−1

a (z)) for z ∈ B.

Clearly, Y |B is again a minimal surface. Let

U+ :=
⋃

0<ϕ<δ4(ε)

U(ϕ), U− :=
⋃

−δ4(ε)<ϕ<0

U(ϕ).

By the choice of a, the image fa(U+) covers a whole strip Σ+(ε) along C+
1 in

B, and fa(U−) covers a strip Σ−(ε) along C−
1 in B where Σ+(ε) and Σ−(ε)

are of the form

Σ+(ε) = {ρeiψ : 1 − δ5(ε) < ρ < 1, 1 ≤ ψ ≤ 2},
Σ−(ε) = {ρeiψ : 1 − δ5(ε) < ρ < 1,−2 ≤ ψ ≤ −1},

and δ5(ε) is some positive number depending on ε > 0. Then we infer from
(15) and (16) that

(17) |Y (z) − X+| < 7ε for z ∈ Σ+(ε), |Y (z) − X− | < 7ε for z ∈ Σ−(ε).

We choose a sequence of numbers εj > 0 with εj → 0, thereafter a sequence of
radii ρj with 1 − δ5(εj) < ρj < 1, and then we set Zj(z) := Y (ρjz) for z ∈ B.
The mappings Zj are minimal surfaces of class C0(B,R3) which satisfy

(18)
|Zj(eiψ) − X+| < 7ε for 1 ≤ ψ ≤ 2,

|Zj(eiψ) − X− | < 7ε for − 2 ≤ ψ ≤ −1.

Moreover,

(19) |Zj(eiψ) − X+|, |Zj(eiψ) − X− | ≤ c0 for ψ ∈ R and j ∈ N.

From Poisson’s integral formula we get

|Zj(reiθ) − X+| ≤
∫ 2π

0

K(r, ψ − θ)|Zj(eiψ) − X+| dψ

=
∫

|ψ−θ|< 1
4

· · · +
∫

1
4 ≤ |ψ−θ|≤π

· · · .

If we restrict θ by 5
4 ≤ θ ≤ 7

4 , then for |ψ − θ| < 1
4 we have 1 < ψ < 2, and so

it follows from (18) and (19) that

|Zj(reiθ) − X+| < 7εj + c0p(r) if 5
4 ≤ θ ≤ 7

4

with
p(r) :=

∫

1
4 ≤ |α|≤π

K(r, α) dα → 0 as r → 1 − 0.
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Because of Zj(z) = Y (ρjz) we then obtain for j → ∞ that

|Y (reiθ) − X+| ≤ c0p(r) for 0 < r < 1, 5
4 < θ < 7

4 ,

and similarly,

|Y (reiθ) − X− | ≤ c0p(r) for 0 < r < 1, − 7
4 < θ < − 5

4 .

Thus Y assumes the constant boundary valuesX+ on C+
2 := {eiθ : 5

4 < θ < 7
4 }

and the constant boundary values X− on C−
2 := {eiθ : − 7

4 < θ < − 5
4 }. By

the reasoning used in the proof of Theorem 3 in Section 4.5 it follows that
Y (z) ≡ const on B ∪ C+

2 ∪ C−
2 which is a contradiction to Y |C+

2
= X+,

Y |C−
2

= X−, X+ �= X−.
Therefore τ is continuous on R, and so X is continuous on B and yields

a weakly monotonic mapping from ∂B onto Γ . By virtue of Corollary 2 in
Section 4.5 we see that X|∂B is a homeomorphism from ∂B onto Γ . �

Remark 1. Another proof of Theorem 1 can be found in Nitsche’s treatise
[28], pp. 269–271. The above proof is a slight modification of the approach
used by H. Werner [2], which also works for surfaces X of constant mean
curvature H provided that |X| ≤ 1 and |H| < 1

2 . The general case |H| ≤ 1 is
apparently not yet treated. Similarly Theorem 1 has not been carried over to
surfaces of prescribed variable mean curvature H(x) or to minimal surfaces
in a Riemannian manifold.

4.13 Plateau’s Problem for Cartan Functionals

Now we want to solve Plateau’s problem for regular Cartan functionals. Here
a Cartan functional means a two-dimensional variational integral

(1) F(X) :=
∫

B

F (X,Xu ∧ Xv) du dv

with a continuous Lagrangian F (x, z), (x, z) ∈ R
3 × R

3, that is positively
homogeneous of first degree in z, i.e.

(H) F (x, tz) = tF (x, z) for t > 0 and (x, z) ∈ R
3 × R

3.

As before we assume that B is the unit disk {w = (u, v) : u2 + v2 < 1} in R
2.

A Cartan functional F is said to be regular if its Lagrangian F (x, z) is def-
inite and weakly elliptic. The first assumption means that there are constants
m1, m2 with 0 < m1 ≤ m2 such that

m1 ≤ F (x, z) ≤ m2 for (x, z) ∈ R
3 × S2

with S2 := {z ∈ R
3 : |z| = 1}. Because of (H) the assumption of definiteness

means that
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(D) m1|z| ≤ F (x, z) ≤ m2|z| for (x, z) ∈ R
3 × R

3.

Secondly, weak ellipticity of F (x, z) is defined as convexity of F (x, z) in z for
any x ∈ R

3, i.e. we assume

F (x, tz1 + (1 − t)z2) ≤ tF (x, z1) + (1 − t)F (x, z2)(C)

for t ∈ [0, 1] and x, z1, z2 ∈ R
3.

Because of (D), a regular Cartan functional F, given by (1), is well-defined
for any X ∈ H1

2 (B,R3), and by (H) it follows that F(X ◦ τ) = F(X) for any
orientation preserving C1-diffeomorphism of B onto itself, i.e. a Cartan func-
tional is a parameter invariant (two-dimensional) variational integral . The
notation “Cartan functional” is derived from Elie Cartan’s memoir [1] where
he introduced a geometry based on an “angular metric” that is defined by
means of an integral (1) as

ds2 = gjk dx
j dxk, (gjk) = (gjk)−1, gjk := a−1/2ajk,

a := det(ajk), ajk :=
(

1
2
F 2

)

zjzk

= FFzjzk + FzjFzk .

This is a generalization of Finsler’s geometry which is based on one-dimensional
integrals F(X) =

∫ 1

0
F (X, Ẋ) dt with a Lagrangian F (x, z) satisfying (H), (D),

and (C).
Note that an F satisfying (H) and (D) cannot be of class C1(R3 × R

3), but
it may very well be of class Cs on R

3 × (R3 \ {0}). The prototype of a regular
Cartan functional is the area integral A(X) =

∫
B

|Xu ∧ Xv | du dv with the
Lagrangian F (x, z) = |z|. If F ∈ C2(R3 × (R3 \ {0})) and F (x, z) is convex in
z, then Fzz(x, z) ≥ 0 for z �= 0, but we never have Fzz(x, z) > 0 since Euler’s
relation implies Fzz(x, z)z = 0 because of (H). Thus the best we can hope for
is: Fzz(x, z) > 0 on {z} ⊥, which is equivalent to

ζ · |z|Fzz(x, z)ζ ≥ λ[|ζ|2 − |z| −2(ζ · z)2] for z �= 0

and some constant λ > 0, i.e. to Fλ(x, z) := F (x, z) − λ|z| being convex in z.
Let Γ be a closed, rectifiable Jordan curve in R

3 which is oriented, and
denote by C(Γ ) the class of surfaces X ∈ H1

2 (B,R3) bounded by Γ (see
Section 4.2, Definitions 2 and 3); then C(Γ ) is nonempty. We want to solve
the variational problem

(2) F → min in C(Γ ),

which we denote as Plateau problem for the Cartan functional F. This will be
achieved by a method that is similar to the reasoning used in Section 4.10 for
solving the problem “A → min in C(Γ )”.

Theorem 1. For any regular Cartan functional (1) the minimum problem (2)
has a solution X ∈ C(Γ ) which is conformally parametrized in the sense that

(3) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0.
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Proof. Instead of (2) we first consider the modified minimum problems

(4) Fε → min in C(Γ ),

ε ∈ (0, 1], where the auxiliary functionals Fε are defined for 0 < ε ≤ 1 as

(5) Fε := F + εD.

We can write
Fε(X) =

∫

B

fε(X,∇X) du dv

where the Lagrangian

fε(x, p) := F (x, p1 ∧ p2) +
ε

2
|p|2

is polyconvex in p = (p1, p2) ∈ R
3 × R

3 and satisfies

m1|p1 ∧ p2| +
ε

2
|p|2 ≤ fε(x, p) ≤ 1

2
(m2 + ε)|p|2

because of 2|p1 ∧ p2| ≤ |p1|2 + |p2|2. By a theorem of Acerbi and Fusco [1]
the functional Fε is (sequentially) weakly lower semicontinuous (w.l.s.) on
H1

2 (B,R3). Let Xj ∈ C(Γ ) be a minimizing sequence for the problem (4), i.e.

Fε(Xj) → d(ε) := inf
C(Γ )

Fε.

We can assume that all Xj satisfy a uniform three-point condition Xj(wk) =
Qk, k = 1, 2, 3, with wk ∈ ∂B and Qk ∈ Γ , i.e. Xj ∈ C∗(Γ ) in the sense of
Section 4.2. From (5) we infer

D(Xj) ≤ ε−1Fε(Xj) ≤ const for all j ∈ N and fixed ε > 0,

and the “boundary values” (= Sobolev traces) φj of Xj on ∂B satisfy
sup∂B |φj | ≤ const. Then a suitable variant of Sobolev’s inequality yields

|Xj |H1
2 (B,R3) ≤ const for all j ∈ N.

Passing to an appropriate subsequence of {Xj } which (by renumbering) is
again called {Xj } we obtain Xj ⇀ Xε in H1

2 (B,R3) for some Xε ∈ H1
2 (B,R3)

whence
Fε(Xε) ≤ lim Fε(Xj) = d(ε).

On the other hand C∗(Γ ) is a weakly sequentially closed subset of H1
2 (B,R3)

(cf. 4.6, Proposition 1), and so Xε ∈ C∗(Γ ), whence d(ε) ≤ Fε(Xε). This
implies

(6) Fε(Xε) = d(ε),
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i.e. Xε is a solution of (4). As in Section 4.10 we obtain

∂Fε(Xε, λ) = 0 for any λ ∈ C1
tang(B,R

2),

therefore
∂D(Xε, λ) = 0 for all λ ∈ C1

tang(B,R
2),

and now the reasoning of 4.10 yields

(7) |Xε
u|2 = |Xε

v |2, 〈Xε
u, X

ε
v 〉 = 0.

This is equivalent to

(8) A(Xε) = D(Xε) for ε ∈ (0, 1].

On the other hand assumption (D) implies m1A ≤ F, and so we infer from
(5) and (8) that

(m1 + ε)D(Xε) ≤ Fε(Xε).

Furthermore,
Fε ≤ (m2 + ε)D

by F ≤ m2A and A ≤ D, and we also have

Fε(Xε) ≤ Fε(Z) for any Z ∈ C(Γ )

on account of (6). Consequently,

(m1 + ε)D(Xε) ≤ (m2 + ε)D(Z) for any Z ∈ C(Γ ).

Since
m2 + ε

m1 + ε
<
m2

m1
for any ε > 0,

we arrive at

(9) D(Xε) ≤ (m2/m1) · e(Γ ) for all ε ∈ (0, 1]

with
e(Γ ) := inf

C(Γ )
D,

and by the same reasoning as above it follows that

|Xε|H1
2 (B,R3) ≤ const for all ε ∈ (0, 1].

Hence there is an X ∈ C∗(Γ ) and a sequence of numbers εj > 0 with εj → 0
such that Xεj ⇀ X in H1,2(B,R3). Since also F is sequentially w.l.s. by
Acerbi and Fusco [1], it follows that

d(0) := inf
C(Γ )

F ≤ F(X) ≤ lim inf
j→∞

F(Xεj ).
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As d(ε) is nondecreasing, limε→+0 d(ε) exists, and by

d(ε) = Fε(Xε) = F(Xε) + εD(Xε)

we infer from (9) that

lim
ε→+0

d(ε) = lim
ε→+0

Fε(Xε) = lim
ε→+0

F(Xε).

Thus we have

(10) d(0) ≤ F(X) ≤ lim
ε→+0

d(ε).

On the other hand,

d(ε) = Fε(Xε) ≤ Fε(Z) = F(Z) + εD(Z) for any Z ∈ C(Γ ).

Hence limε→+0 d(ε) ≤ F(Z), and so limε→+0 d(ε) ≤ d(0). By virtue of (10)
we arrive at

F(X) = d(0) := inf
C(Γ )

F,

and so X ∈ C(Γ ) is a solution of (2), i.e. a minimizer of F in C(Γ ).
We still have to prove (3) which does not immediately follow from (7)

because the Xεj merely converge weakly to X in H1
2 (B,R3). However (3)

follows from (7) as soon as we have proved the strong convergence Xεj → X
in H1

2 (B,R3). For this it suffices to prove

(11) lim
εj →0

D(Xεj ) = D(X),

which will be verified as follows: Since Xε minimizes Fε in C(Γ ), we have
Fε(Xε) ≤ Fε(X), i.e.

F(Xε) + εD(Xε) ≤ F(X) + εD(X),

and we also have
F(X) ≤ F(Xε)

as X minimizes F in C(Γ ). Therefore

εD(Xε) ≤ εD(X), ε ∈ (0, 1],

and so
D(Xε) ≤ D(X) for ε ∈ (0, 1],

whence
lim sup

j→∞
D(Xεj ) ≤ D(X).

On the other hand, Xεj ⇀ X in H1,2(B,R3) implies

D(X) ≤ lim inf
j→∞

D(Xεj )

and so we obtain (11). �



4.13 Plateau’s Problem for Cartan Functionals 325

Theorem 2. Every minimizer X of F in C(Γ ) that satisfies (3) is Hölder
continuous in B and continuous on B.

Proof. Fix some w0 ∈ B and set R := 1 − |w0| > 0. For 0 < r < R we define
H ∈ H1

2 (Br(w0),R3) as the solution of

ΔH = 0 in Br(w0), H − X ∈ H̊1
2 (Br(w0),R3),

and then we set Y (w) := H(w) for w ∈ Br(w0) and Y (w) := X(w) for
w ∈ B \ Br(w0). Since Y ∈ C(Γ ) it follows that

F(X) ≤ F(Y ),

whence
FBr(w0)(X) ≤ FBr(w0)(Y ).

Here and in the following the index Br(w0) means that the corresponding
integrals are to be taken over the set Br(w0). By (D) and (3) we have

m1DBr(w0)(X) = m1ABr(w0)(X) ≤ FBr(w0)(X),

and (3) together with A ≤ D and Y = H on Br(w0) yields

FBr(w0)(Y ) = FBr(w0)(H) ≤ m2ABr(w0)(H) ≤ m2DBr(w0)(H).

Thus
DBr(w0)(X) ≤ m2

m1
DBr(w0)(H),

that is,

(12) Φ(r) :=
∫

Br(w0)

| ∇X|2 du dv ≤ m2

m1

∫

Br(w0)

| ∇H|2 du dv.

Let us introduce polar coordinates ρ, θ around w0 by w = w0 +ρeiθ; we write

X(w) = X(w0 + ρeiθ) =: X∗(ρ, θ).

Then

Φ(r) =
∫ r

0

∫ 2π

0

{ |X∗
ρ (ρ, θ)|2 + ρ−2|X∗

θ (ρ, θ)|2}ρ dρ dθ.

Since
|X∗

ρ |2 = ρ−2|X∗
θ |2, 〈X∗

ρ , X
∗
θ 〉 = 0

we have

Φ(r) = 2
∫ r

0

ρ−1

(∫ 2π

0

|X∗
θ (ρ, θ)|2 dθ

)

dρ.

We can find a representative X∗(ρ, θ) that is absolutely continuous in θ for
almost all ρ ∈ (0, R) and

∫ 2π

0
|X∗

θ (ρ, θ)|2 dθ < ∞ for these ρ. The function
Φ(r) is absolutely continuous on [0, R], and



326 4 The Plateau Problem and the Partially Free Boundary Problem

Φ′(r) = 2r−1

∫ 2π

0

|X∗
θ (r, θ)|2 dθ for r ∈ (0, R) \ N

where N is a one-dimensional null set.
Furthermore we have

∫

Br(w0)

| ∇H|2 du dv ≤
∫ 2π

0

|X∗
θ (r, θ)|2 dθ

(see e.g. Vol. 2, Section 2.5, (18)), and so
∫

Br(w0)

| ∇H|2 du dv ≤ 1
2
rΦ′(r) for r ∈ (0, R) \ N.

By virtue of (12) we arrive at

Φ(r) ≤ 1
2
m2

m1
rΦ′(r) a.e. on (0, R).

Setting μ := m1/m2 we have

2μΦ(r) ≤ rΦ′(r) a.e. on (0, R)

whence

(13) Φ(r) ≤ (r/R)2μΦ(R) for r ∈ (0, R),

and then it follows that X ∈ C0,μ(B,R3) on account of Morrey’s “Dirichlet
growth theorem” (see Morrey [8], p. 79).

It remains to prove that X ∈ C0(B,R3). To this end we introduce polar
coordinates ρ, ϑ around the origin and write

X(w) = X(ρeiϑ) =: X∗(ρ, ϑ).

Set

ε(X,h) :=
∫ 1

1−2h

∫ 2π

0

[
|X∗

ρ (ρ, ϑ)|2 + |X∗
ϑ(ρ, ϑ)|2

]
dρ dϑ

for 0 < h < 1/4; then

1
2
ε(X,h) ≤

∫ 1

1−2h

∫ 2π

0

(|X∗
ρ |2 + ρ−2|X∗

ϑ|2)ρ dρ dϑ ≤ 2ε(X,h).

It follows as in Morrey [8], Theorem 3.5.2, that there is a number c0(μ) de-
pending only on μ such that

|X∗(1 − h, θ) − X∗(1 − h, θ′)| ≤ c0(μ)ε(X,h)h−μ|θ − θ′ |μ ≤ c0(μ)ε(X,h)

for all θ′ ∈ R with |θ − θ′ | ≤ h < 1/4.
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Let ξ(θ) be the continuous Sobolev trace X∗(1, θ) of X∗ on ρ = 1, and set

ω(ξ, h) := sup{ |ξ(θ′) − ξ(θ′ ′)| : θ′, θ′ ′ ∈ R, |θ′ − θ′ ′ | < h}.

Then ω(ξ, h) → 0 as h → +0.
Furthermore, for any θ ∈ R there is a θ1 with |θ − θ1| ≤ h such that

X(ρ, θ1) is absolutely continuous in ρ ∈ [1/2, 1], Xρ(·, θ1) ∈ L2([1/2, 1],R3
)

and
|X∗(ρ, θ1) − ξ(θ1)| → 0 as ρ → 1 − 0

as well as ∫ 1

1−h

|X∗
ρ (ρ, θ1)|2dρ ≤ h−1ε2(X,h).

It follows that

|ξ(θ1) − X∗(1 − h, θ1)| ≤
∫ 1

1−h

|X∗
ρ (ρ, θ1)| dρ

≤
√
h ·

{∫ 1

1−h

|X∗
ρ (ρ, θ1)|2 dρ

}1/2

≤ ε(X,h).

Given θ0 and θ with |θ − θ0| ≤ h′ < 1/4 we choose θ1 as above. Because of

|X∗(1 − h, θ) − ξ(θ0)|
≤ |X∗(1 − h, θ) − X∗(1 − h, θ1)| + |X∗(1 − h, θ1) − ξ(θ1)|

+ |ξ(θ1) − ξ(θ)| + |ξ(θ) − ξ(θ0)|

we then obtain

|X∗(1 − h, θ) − ξ(θ0)| ≤ [1 + c0(μ)]ε(X, θ, h) + ω(ξ, h) + ω(ξ, h′).

This proves X∗(ρ, θ) → ξ(θ0) as ρ → 1 − 0 and θ → θ0. Hence X ∈ C0(B,R3).
�

Remark 1. So far no general results concerning higher regularity of solutions
to (2) are known. For a special class of Cartan functionals it was proved that
the minimizers X of F in C(Γ ) satisfy X ∈ H2

2 (B,R3) ∩ C1,α(B,R3) for
some α ∈ (0, 1) provided that F ∈ C2 on R

3 × (R3 \ {0}) and Γ ∈ C4; see
Hildebrandt and von der Mosel [1–7].

4.14 Isoperimetric Inequalities

Now we want to derive the isoperimetric inequality for disk-type surfaces
X : B → R

3 of class C1(B,R3) or, more generally, for X ∈ H1
2 (B,R3) with

the parameter domain
B = {w ∈ C : |w| < 1},
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the boundary of which is given by

C = ∂B = {w ∈ C : |w| = 1}.

Recall that any X ∈ H1
2 (B,R3) has boundary values X|C of class L2(C,R3).

Denote by L(X) the length of the boundary trace X|C , i.e.,

L(X) = L(X|C) :=
∫

C

|dX|.

We recall a result that, essentially, has been proved in Section 4.7.

Lemma 1. (i) Let X : B → R
3 be a minimal surface with a finite Dirichlet

integral

D(X) =
1
2

∫

B

| ∇X|2 du dv

and with boundary values X|C of finite total variation

L(X) =
∫

C

|dX|.

Then X is of class H1
2 (B,R3) and has a continuous extension to B, i.e.,

X ∈ C0(B,R3). Moreover, the boundary values X|C are of class H1
1 (C,R3).

Setting X(r, θ) := X(reiθ), we obtain that, for any r ∈ (0, 1], the function
Xθ(r, θ) vanishes at most on a set of θ-values of one-dimensional Hausdorff
measure zero, and that the limits

lim
r→1−0

Xr(r, θ) and lim
r→1−0

Xθ(r, θ)

exist, and that

∂

∂θ
X(1, θ) = lim

r→1−0
Xθ(r, θ) a.e. on [0, 2π]

holds true. Finally, setting Xr(1, θ) := limr→1−0Xr(r, θ), it follows that

(1)
∫

B

〈∇X,∇φ〉 du dv =
∫

C

〈Xr, φ〉 dθ

is satisfied for all φ ∈ H1
2 ∩ L∞(B,R3). Moreover, we have

(2) lim
r→1−0

∫ 2π

0

|Xθ(r, θ)|r dθ =
∫ 2π

0

|dX(1, θ)|.

(ii) If X : B → R
3 is a minimal surface with a continuous extension to B

such that L(X) :=
∫

C
|dX| < ∞, then we still have (2).
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Proof. Since L(X) < ∞, the finiteness of D(X) is equivalent to the rela-
tion X ∈ H1

2 (B,R3), on account of Poincaré’s inequality. Hence X has an
L2(C)-trace on the boundary C of ∂B which, by assumption, has a finite
total variation

∫
C

|dX|. Consequently, the two one-sided limits

lim
θ→θ0−0

X(1, θ) and lim
θ→θ0+0

X(1, θ)

exist for every θ0 ∈ R. In conjunction with the Courant–Lebesgue lemma, we
obtain that X(1, θ) is a continuous function of θ ∈ R whence X ∈ C0(B,R3)
(cf. Section 4.7, part (iii) of the proof of Proposition 3). The rest of the proof
follows from Theorems 1 and 2 in Section 4.7. �

Lemma 2 (Wirtinger’s inequality). Let Z : R → R
3 be an absolutely

continuous function that is periodic with the period L > 0 and has the mean
value

(3) P :=
1
L

∫ L

0

Z(t) dt.

Then we obtain

(4)
∫ L

0

|Z(t) − P |2 dt ≤
(
L

2π

)2 ∫ L

0

|Ż(t)|2 dt,

and the equality sign holds if and only if there are constant vectors A1 and B1

in R
3 such that

(5) Z(t) = P +A1 cos
(

2π
L
t

)

+B1 sin
(

2π
L
t

)

holds for all t ∈ R.

Proof. We first assume that L = 2π and
∫ 2π

0
|Ż|2 dt < ∞. Then we have the

expansions

Z(t) = P +
∞∑

n=1

(An cosnt+Bn sinnt),

Ż(t) =
∞∑

n=1

n(Bn cosnt − An sinnt)

of Z and Ż into Fourier series with An, Bn ∈ R
3, and

∫ 2π

0

|Z − P |2 dt = π

∞∑

n=1

(|An|2 + |Bn|2),

∫ 2π

0

|Ż|2 dt = π

∞∑

n=1

n2(|An|2 + |Bn|2).
(6)
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Consequently it follows that

(7)
∫ 2π

0

|Z − P |2 dt ≤
∫ 2π

0

|Ż|2 dt,

and the equality sign holds if and only if all coefficients An and Bn vanish
for n > 1. Thus we have verified the assertion under the two additional hy-
potheses. If

∫ 2π

0
|Ż|2 dt = ∞, the statement of the lemma is trivially satisfied,

and the general case L > 0 can be reduced to the case L = 2π by the scaling
transformation t �→ (2π/L)t. �

Now we shall state the isoperimetric inequality for minimal surfaces in its
simplest form.

Theorem 1. Let X ∈ C2(B,R3) with B = {w : |w| < 1} be a minimal sur-
face, i.e. X be nonconstant and satisfy

ΔX = 0,

|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0.

Assume also that X is either of class H1
2 (B,R3) or of class C0(B,R3), and

that L(X) =
∫

C
|dX| < ∞. Then D(X) is finite, and we have

(8) D(X) ≤ 1
4π
L2(X).

Moreover, the equality sign holds if and only if X : B → R
3 represents a

(simply covered) disk.

Remark 1. Note that for every minimal surface X : B → R
3 the area func-

tional A(X) coincides with the Dirichlet integral D(X). Thus (8) can equiv-
alently be written as

(8′) A(X) ≤ 1
4π
L2(X).

Proof of Theorem 1. (i) Assume first that X is of class H1
2 (B,R3), and that

P is a constant vector in R
3. Because of L(X) < ∞, the boundary values X|C

are bounded whence X is of class L∞(B,R3) (this follows from the maximum
principle in conjunction with a suitable approximation device). Thus we can
apply formula (1) to φ = X − P , obtaining

∫

B

〈∇X,∇X〉 du dv(9)

=
∫

B

〈∇X,∇(X − P )〉 du dv

=
∫

C

〈Xr, X − P 〉 dθ ≤
∫

C

|Xr | |X − P | dθ

=
∫

C

|Xθ | |X − P | dθ =
∫ 2π

0

|Xθ(1, θ)| |X(1, θ) − P | dθ.
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Introducing s = σ(θ) by

σ(θ) :=
∫ θ

0

|Xθ(1, θ)| dθ,

we obtain that σ(θ) is a strictly increasing and absolutely continuous function
of θ, and σ̇(θ) = |Xθ(1, θ)| > 0 a.e. on R. Hence σ : R → R has a continuous
inverse τ : R → R. Let us introduce the reparametrization

Z(s) := X(1, τ(s)), s ∈ R,

of the curveX(1, θ), θ ∈ R. Then, for any s1, s2 ∈ R with s1 < s2, the numbers
θ1 := τ(s1), θ2 := τ(s2) satisfy θ1 < θ2 and

(10)
∫ s2

s1

|dZ| =
∫ θ2

θ1

|dX| = σ(θ2) − σ(θ1) = s2 − s1,

whence
|Z(s2) − Z(s1)| ≤ s2 − s1.

Consequently, the mapping Z : R → R
3 is Lipschitz continuous and therefore

also absolutely continuous, and we obtain from (10) that

(11)
∫ s2

s1

|Z ′(s)| ds = s2 − s1

(′= d
ds ), whence

(12) |Z ′(s)| = 1 a.e. on R.

In other words, the curve Z(s) is the reparametrization of X(1, θ) with respect
to the parameter s of its arc length.

As the mapping σ : R → R is absolutely continuous, it maps null sets onto
null sets, and we derive from

τ(s2) − τ(s1)
s2 − s1

=
1

σ(θ2)−σ(θ1)
θ2−θ1

and from σ̇(θ) > 0 a.e. on R that

(13) τ ′(s) =
1

σ̇(τ(s))
> 0 a.e. on R.

On account of
σ̇(θ) = |Xθ(1, θ)| a.e. on R

it then follows that

(14) |Xθ(1, τ(s))|dτ
ds

(s) = 1 a.e. on R,
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and thus we obtain

(15)
∫ 2π

0

|Xθ(1, θ)| |X(1, θ) − P | dθ =
∫ L

0

|Z(s) − P | ds.

We now infer from (9) and (15) that

(16)
∫

B

〈∇X,∇X〉 du dv ≤
∫ L

0

|Z(s) − P | ds.

By Schwarz’s inequality, we have

(17)
∫ L

0

|Z(s) − P | ds ≤
√
L

{∫ L

0

|Z(s) − P |2 ds
}1/2

,

and Wirtinger’s inequality (4) together with (12) implies that

(18)
{∫ L

0

|Z(s) − P |2 ds
}1/2

≤ L3/2

2π

if we choose P as the barycenter of the closed curve Z : [0, L] → R
3, i.e., if

P :=
1
L

∫ L

0

Z(s) ds.

By virtue of (16)–(18), we arrive at

(19)
∫

B

| ∇X|2 du dv ≤ 1
2π
L2

which is equivalent to the desired inequality (8).
Suppose that equality holds true in (8) or, equivalently, in (19). Then

equality must also hold in Wirtinger’s inequality (18), and by Lemma 2 we
infer

Z(s) = P +A1 cos
(

2π
L
s

)

+B1 sin
(

2π
L
s

)

.

Set R := L/(2π) and ϕ = s/R. Because of |Z ′(s)| ≡ 1, we obtain

R2 = |A1|2 sin2 ϕ+ |B1|2 cos2 ϕ − 2〈A1, B1〉 sinϕ cosϕ.

Choosing ϕ = 0 or π
2 , respectively, it follows that

|A1| = |B1| = R,

and therefore
〈A1, B1〉 = 0.

Then the pair of vectors E1, E2 ∈ R
3, defined by



4.14 Isoperimetric Inequalities 333

E1 :=
1
R
A1, E2 :=

1
R
B1,

is orthonormal, and we have

Z(Rϕ) = P +R{E1 cosϕ+ E2 sinϕ}.

Consequently Z(Rϕ), 0 ≤ ϕ ≤ 2π, describes a simply covered circle of radius
R, centered at P , and the same holds true for the curve X(1, θ) with 0 ≤
θ ≤ 2π. Hence X : B → R

3 represents a (simply covered) disk of radius R,
centered at P . This can be seen as follows: We may assume that the circle
Γ := {X(1, θ) : 0 ≤ θ ≤ 2π} lies in the x, y-plane and is given by

Γ = {(x, y, z) : x2 + y2 = R2, z = 0}.

Then the maximum principle implies that X has the form

X = (X1, X2, 0) with |X1(w)|2 + |X2(w)|2 ≤ R2 for w ∈ B

since ΔX3 = 0 and Δ(|X1|2 + |X2|2) ≥ 0. Using the conformality relation
it follows that either f(w) = X1(w) + iX2(w) or f(w) is holomorphic and,
in fact, conformal on B (for details, we refer to the proof of Theorem 1 in
Section 4.11).

Conversely, if X : B → R
3 represents a simply covered disk, then the

equality sign holds true in (8′) and, therefore also in (8).
Thus the assertion of the theorem is proved under the assumption that

X ∈ H1
2 (B,R3).

(ii) Suppose now that X is of class C0(B,R3). Then we introduce noncon-
stant minimal surfaces Xk : B → R

3 of class C∞(B,R3) by defining

Xk(w) := X(rkw) for |w| ≤ 1, rk :=
k

k + 1
.

We can apply (i) to each of the surfaces Xk, thus obtaining

(20) 4πD(Xk) ≤
{∫ 2π

0

|dXk(1, θ)|
}2

.

For k → ∞, we have rk → 1 − 0, D(Xk) → D(X), and part (ii) of Lemma 1
yields

lim
k→∞

∫ 2π

0

|dXk(1, θ)| =
∫ 2π

0

|dX(1, θ)|.

Thus we infer from (20) that

4πD(X) ≤ L2(X)

which implies in particular that X is of class H1
2 (B,R3). For the rest of the

proof, we can now proceed as in part (i). �
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If the boundary of a minimal surface X is very long in comparison to its
“diameter”, then another estimate of A(X) = D(X) might be better which
depends only linearly on the length L(X) of the boundary of X. We call this
estimate the linear isoperimetric inequality . It reads as follows:

Theorem 2. Let X be a nonconstant minimal surface with the parameter
domain B = {w : |w| < 1}, and assume that X is either continuous on B or
of class H1

2 (B,R3). Moreover, suppose that the length L(X) =
∫

C
|dX| of its

boundary is finite, and let KR(P ) be the smallest ball in R
3 containing X(∂B)

and therefore also X(B). Then we have

(21) D(X) ≤ 1
2RL(X).

Equality holds in (21) if and only if X(B) is a plane disk.

Proof. By Theorem 1 it follows that D(X) < ∞ and X ∈ H1
2 (B,R3), and

formula (9) implies

(22) 2D(X) ≤
∫

C

|Xθ | |X − P | dθ ≤ RL(X)

whence we obtain (21).
Suppose now that

(23) D(X) = 1
2RL(X).

Then we infer from (9) and (22) that
∫

C

〈Xr, X − P 〉 dθ =
∫

C

|Xr | |X − P | dθ

is satisfied; consequently we have

〈Xr, X − P 〉 = |Xr | |X − P |

a.e. on C, that is, the two vectors Xr and X − P are collinear a.e. on C.
Secondly we infer from (22) and (23) that

|X − P | = R a.e. on C.

Hence the H1
1 -curve Σ defined by X : C → R

3 lies on the sphere SR(P ) of
radius R centered at P , and the side normal Xr of the minimal surface X at
Σ is proportional to the radius vector X − P . Thus Xr(1, θ) is perpendicular
to SR(P ) for almost all θ ∈ [0, 2π]. Hence the surface X meets the sphere
SR(P ) orthogonally a.e. along Σ. As in the proof of Theorem 1 in Section 5.4
we can show that X is a stationary surface with a free boundary on SR(P )
and that X can be viewed as a stationary point of Dirichlet’s integral in the
class C(SR(P )). By Theorems 1 and 2 of Vol. 2, Section 2.8, the surface X
is real analytic on the closure B of B. Then it follows from the Theorem in
Vol. 2, Section 1.7 that X(B) is a plane disk.

Conversely, if X : B → R
3 represents a plane disk, then (23) is fulfilled.

�
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A more general version of the isoperimetric inequality (8′) will be proved
in Vol. 2, Section 6.5. We also refer to Section 6.4 of this volume where the
isoperimetric inequality of Morse–Tompkins for harmonic surfaces is derived.

4.15 Scholia

1 Historical Remarks and References to the Literature

Although Plateau’s problem is one of the classical questions in geometry and
analysis, progress in solving it was very slow. The problem was already for-
mulated by Lagrange in his Essai d’une nouvelle méthode . . . [1]: trouver la
surface qui est la moindre de toutes celles qui ont un même périmètre donné ,
but neither he nor Euler were able to solve the question. It seemed even dif-
ficult to find solutions of the minimal surface equation, not to speak of the
corresponding boundary value problem. In the early 19th century, Gergonne
[1] drew the attention of his contemporaries again to this and related boundary
value problems, but still Jacobi was unable to tackle them. In his Lectures on
the Calculus of Variations at Königsberg, 1837/38, he said: Es haben sich in
der neuesten Zeit die ausgezeichnetsten Mathematiker wie Poisson und Gauß
mit der Auffindung der Variation des Doppelintegrals beschäftigt, die wegen
der willkürlichen Funktionen unendliche Schwierigkeiten macht. Dennoch wird
man durch ganz gewöhnliche Aufgaben darauf geführt, z.B. durch das Problem:
unter allen Oberflächen, die durch ein schiefes Viereck im Raum gelegt werden
können, diejenige anzugeben, welche den kleinsten Flächeninhalt hat. Es ist
mir nicht bekannt, daß schon irgend jemand daran gedacht hätte, die zweite
Variation solcher Doppelintegrale zu untersuchen; auch habe ich, trotz vieler
Mühe, nur erkannt, daß der Gegenstand zu den allerschwierigsten gehört.

The problem mentioned by Jacobi, namely to span a minimal surface in
a general quadrilateral of R

3, was first solved by H.A. Schwarz and, indepen-
dently and at about the same time, by Riemann. Riemann’s paper appeared
posthumously in 1867, the same year that Schwarz’s prize-essay was sent to the
Berlin Academy. Later on, Plateau’s problem was solved for other polygonal
boundaries and, more generally, also free and partially free boundary problems
for so-called Schwarzian chains were tackled. In particular, we mention the
work of Weierstraß [4], Tallquist [2], and Neovius [1–5]. An outline of the
techniques used by these authors can be found in the treatise of Bianchi [1];
a very extensive presentation is given in volume 1 of Darboux’s Leçons [1].

The first general existence proof for the nonparametric Plateau problem
was given by A. Haar [3] in 1927, with important supplements by Radó con-
cerning the regularity of minimizers. The contributions of Haar and Radó were
major mathematical achievements; for the first time, the program envisioned
by Hilbert in his problems 19 and 20 had been carried out for a fundamental
variational problem with nonlinear Euler equations.

A first solution of the Plateau problem for a general contour was published
by R. Garnier [2] in 1928. By a limit procedure he obtained a solution for un-
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knotted and piecewise smooth Jordan curves from a penetrating analysis of
the Plateau problem for polygonal boundaries. However, Garnier’s long paper
was apparently seldom read if it was read at all (see Nitsche [28], p. 251),2

and it was soon superseded by the convincing proofs of J. Douglas [11,12] and
T. Radó [17,18] published about 1930. Douglas began to publish on Plateau’s
problem in 1927, and he announced a solution as early as 1929 (see Douglas
[5] and [17]). Still, his first papers were apparently not convincing to everyone
(see Constance Reid [1], pp. 173–174), and the long list of Douglas’s announce-
ments prior to 1931 might indicate that Douglas himself did not think he had
found the best possible presentation, see Douglas [1–11].

Douglas based his approach to Plateau’s problem on the functional

A0(X) :=
1
4π

∫ 2π

0

∫ 2π

0

|X(θ) − X(ϕ)|2

4 sin2 1
2 (θ − ϕ)

dθ dϕ,

X(θ) := X(eiθ) = X(cos θ, sin θ), which, for harmonic mappings

X : B = {w : |w| < 1} → R
N ,

coincides with Dirichlet’s integral D(X) (cf. Section 6.4). The Douglas func-
tional A0(X) has certain advantages as it only takes the boundary values X(θ)
of a harmonic mapping X : B → R

N into account, but the Dirichlet integral is
more natural and easier to handle. In the case of the general Plateau problem,
the Dirichlet integral can still be used while the Douglas functional has to be
replaced by a rather unwieldy expression, and also for free boundary problems
the Dirichlet integral seems to be the natural tool.

Radó’s method to attack Plateau’s problem is much closer to the approach
used in the present chapter than the method of Douglas. Radó runs through
several approximation steps. First he treats the case of a polygonal bound-
ary Γ where one can find a sequence of polyhedra Pn whose areas approach
the infimum a(Γ ) of areas of surfaces within Γ . As polyhedra admit confor-
mal representations Zn : B → R

3, the Dirichlet integrals of these represen-
tations approach the infimum value e(Γ ) of Dirichlet’s integral for surfaces
X : B → R

3 within Γ , and we have e(Γ ) = a(Γ ). Replacing the Zn by har-
monic maps Xn : B → R

3 with the same boundary values as Zn, we obtain
D(Xn) → e(Γ ) = a(Γ ) as n → ∞. A standard selection theorem for harmonic
maps implies that we can extract a subsequence from {Xn}, again denoted
by {Xn}, which converges uniformly on any B′ ⊂⊂ B to some harmonic map
X : B → R

3, and whose derivatives converge uniformly on B′ ⊂⊂ B to the
derivatives of X. Then we obtain

∫

B′
(|DuXn| − |DvXn|)2 du dv →

∫

B′
(|DuX| − |DvX|)2 du dv,

∫

B′
| 〈DuXn, DvXn〉| du dv →

∫

B′
| 〈DuX,DvX〉 | du dv

2 However, note the recent work of L. Desideri; cf. p. 364.
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as n → ∞. On the other hand, the choice of the Xn together with a sim-
ple estimation yields that the integrals on the left-hand side tend to zero as
n → ∞ since the Xn are approximate solutions for the Plateau problem to Γ .
This implies that X is a minimal surface, i.e., a harmonic map satisfying the
conformality conditions |Xu| = |Xv |, 〈Xu, Xv 〉 = 0. Moreover, a sophisticated
approximation theorem yields that X is continuous on B̄, and that X|∂B gives
a parametrization of Γ . Thus Plateau’s problem is solved for polygons.

In the next step, a rectifiable curve Γ is approximated by polygons Γn in
the sense of Fréchet. Solving the Plateau problem for any of the Γn by a min-
imal surface Xn, another application of the approximation theorem together
with a suitable compactness result for sequences of harmonic maps yields a
solution of Plateau’s problem minimizing area.

An admirably clear and short presentation of the results of Haar, Douglas
and Radó is given in the report [21] by Radó.

We note that the methods of Douglas and Radó yield area-minimizing min-
imal surfaces spanned into Γ if a(Γ ) < ∞ whereas Garnier’s solutions might
only be stationary. Moreover, Douglas was able to solve Plateau’s problem
even in the case when a(Γ ) = ∞. The essential simplification achieved in the
proofs of R. Courant [4] and L. Tonelli [1] presented in this chapter follows
from the Courant–Lebesgue lemma which is also of use in many other situa-
tions. The method of deriving the conformality conditions by a variation of
the independent variables is due to Radó (cf. [21], pp. 87–89). The efficient
variational formula generalizing Radó’s idea was stated by Courant [15].

Another solution of Plateau’s problem was found by McShane [1,2] in
1933 who directly attacked the problem of minimizing area. Using ideas of
Lebesgue he showed: (i) One can find a minimizing sequence of Lebesgue
monotone surfaces. (ii) Each of these surfaces can be replaced by a (weakly)
conformally parametrized Lebesgue monotone surface. (iii) The minimizing
sequence obtained by (i), (ii) is compact in C0(B,R3). A detailed presentation
of McShane’s approach is given in Nitsche [28], pp. 414–430.

The approach of Section 4.10 is due to S. Hildebrandt and H. von der
Mosel [1–7]; it leads to another solution of Plateau’s problem by minimizing
area. Contrary to all other methods this approach does not use any results
on conformal or quasiconformal reparametrizations of a given surface such
as the theorems of Lichtenstein or of Carathéodory, and so it establishes an
elementary proof of the fact that the minimizers of Dirichlet’s integral in the
class of disk-type surfaces bounded by a given rectifiable Jordan contour are
as well area minimizing. This was thought to be impossible; see Courant [15],
pp. 116–118. Moreover, a modification of the method is used in 4.11 to derive
the global Lichtenstein theorem by a variational method (cf. Hildebrandt and
von der Mosel [6,7]). Another variational proof of this theorem was earlier
given by J. Jost [6] and [17], rectifying the original approach by C.B. Morrey
(see [8], Chapter 9) which contains a gap.

The partially free problem was originally treated by Courant using some
of the ideas described in Chapter 1 of Vol. 2. The simplified version of Sec-
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tion 4.6 is due to Morrey [8]. Courant’s original approach can be studied in
his monograph [15] and also in Nitsche’s treatise [28].

A solution of Plateau’s problem for minimal surfaces X : B → M in
Riemannian manifolds M of great generality was given by C.B. Morrey [3],
with later supplements by L. Lemaire [1] and J. Jost [6]. Extensions to sur-
faces of constant or prescribed mean curvature H (=H-surfaces) are due to
E. Heinz [2], H. Werner [1,2], S. Hildebrandt [4–10], H. Wente [1–5], K. Steffen
[1–6], R. Gulliver [1,3], Gulliver and Spruck [1,2], Hildebrandt and Kaul [1],
Brezis and Coron [1–4], M. Struwe [5,7,11,12,14], J. Jost [17], U. Dierkes [2],
and Duzaar and Steffen [6,7]. The presentation given by Morrey in Chapter 9
of his treatise [8] is not quite correct but can be rectified. This was carried out
by Jost in his paper [6] and also in his monograph [17] where one finds a com-
plete theory of two-dimensional geometric variational problems comprising the
theory of conformal and harmonic mappings, Teichmüller theory, minimal sur-
faces of disk-type as well as of higher topological type, Plateau’s problem, and
free boundary problems. We also refer to Sections 4.10–4.13 above.

Detailed presentations of the results concerning Plateau’s problem can be
found in the survey of Radó [21], Courant’s monograph [15] and, most com-
plete of all, in Nitsche’s Lectures [28,37]. Beautiful recent surveys, also covering
results on H-surfaces, were written by M. Struwe [11] and J. Jost [17].

In solving Plateau’s problem, it is essential that Γ is a Jordan curve, i.e.,
a continuous embedding of the unit circle S1 into R

3, in other words, that Γ is
not allowed to have selfintersections. Nevertheless one can pose the problem of
minimizing area among surfaces bounded by a rectifiable closed curves Γ with
selfintersections if one enlarges the notion of admissible surfaces. For example,
if Γ is the “figure eight” in R

2, it bounds a surface of minimal area that splits
into two minimal disks. Still one can write it as a continuous mapping. Using
the Lebesgue notion of area, J. Hass [2] proved:

Any closed rectifiable curve Γ in R
3 bounds a “disk of least area” which is

a smooth immersion away from the boundary. This means: There is a mapping
X ∈ C0(B,R3) of the unit disk B ⊂ R

2 into R
3 bounded by Γ such that X

yields a smooth immersion of B \ X−1(Γ ). The phrase “X is bounded by Γ”
means: If γ : S1 → R

3 is a continuous representation of Γ and γ′ = X|∂B ,
then γ′ is a continuous mapping S1 → R

3 with dF (γ, γ′) = 0 where dF (γ, γ′)
is the “Fréchet distance” of γ and γ′, i.e.

dF (γ, γ′) = inf
{

sup
S1

|γ − γ′ ◦ ϕ| : ϕ ∈ Hom(S1)
}
,

where Hom(S1) denotes the set of homeomorphisms ϕ : S1 → S1. Here the
splitting phenomenon is expressed by the fact that X−1(Γ ) can be larger than
∂B, i.e. B ∩ X−1(Γ ) can be nonempty.

Another approach to the splitting (or bubbling) problem is contained in
the work of E. Kuwert [5–7], operating with Dirichlet’s integral; cf. Vol. 2,
Scholia to Chapter 1.
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2 Branch Points

In Section 3.2, Proposition 1 we have derived asymptotic expansions for min-
imal surfaces X : B → R

3 and their complex derivative Xw. Analogous ex-
pansions can be established at boundary branch points as we shall see in
Section 2.10 of Vol. 2. The basic tool for proving such asymptotic formulas is
a method due to Hartman and Wintner which is described in Chapter 3 of
Vol. 2.

It was a long-standing question whether the area-minimizing solution of
Plateau’s problem obtained by Douglas and Radó is a regular surface, that is,
an immersion. This was eventually confirmed in a series of papers by R. Os-
serman [12], R. Gulliver [2], H.W. Alt [1,2], and Gulliver, Osserman, and
Royden [1]. The break-through was achieved by Osserman [12] who, by an
ingenious idea, was able to rule out the existence of true branch points for
minimizers. A true branch point of a minimal surface X : B → R

3 is charac-
terized by the fact that there are several geometrically different sheets of the
surface lying over the tangent plane at w0. These sheets intersect transversally
along smooth curves in R

3 emanating from X(w0). A false (interior) branch
point is a singular point w0 ∈ B which has a neighborhood U in B such that
X(U) turns out to be (the trace of) an embedded surface. In other words,
false branch points cannot be detected by looking at the image of a minimal
surface; they are just the result of a false parametrization.

Osserman’s reasoning did not rule out the existence of false branch points
for a Douglas–Radó solution. This second part of the regularity proof was,
more or less simultaneously, achieved by Gulliver and Alt in the papers cited
above. Another treatment can be found in the paper of Gulliver–Osserman–
Royden. It is still an open problem whether there can be branch points at the
boundary ∂B; however, Gulliver and Lesley [1] indicated that the Douglas–
Radó solution is free of boundary branch points if Γ is a regular, real-analytic
Jordan curve. Thus we now have the following sharpened version of the

Fundamental existence theorem. Every closed rectifiable Jordan curve Γ
in R

3 bounds an area minimizing surface X : B → R
3 of the type of the disk,

and all solutions of this type are regular surfaces, i.e., they are free of branch
points w0 ∈ B. If Γ is regular and real analytic, then they have no branch
points on ∂B, either.

So far, all known proofs excluding the existence of branch points of area
minimizing solutions of Plateau’s problem were quite involved; thus we have
abstained from presenting them. However, on two occasions we have used the
opportunity to sketch the basic ideas. At the end of Section 5.3 in Vol. 2 we
have outlined Osserman’s idea of how to exclude true branch points at the
boundary, and in Section 1.9 of Vol. 2 we have indicated how false branch
points can be excluded.

A. Tromba has recently developed a method to exclude true interior branch
points for minimizers of A, which is technically simple and applies in many
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Fig. 1. A knotted curve bounding an embedded minimal surface of higher topological type

cases also to weak minimizers of D. This approach is presented in Chapter 6
of Vol. 2.

We should like to mention that Gulliver and Alt have ruled out interior
branch points for other surfaces such as for minimal surfaces in Riemannian
manifolds or for surfaces of prescribed mean curvature which satisfy Plateau-
type boundary conditions and minimize a suitable functional. However, all
these results only hold in R

3 or, more generally, in a three-dimensional mani-
fold, and they become false if n ≥ 4, i.e., if the codimension exceeds one. For
instance, let z = x + iy and set X(x, y) = (x, y,Re z4, Im z4). Then X(z),
z ∈ BR(0), describes a nonparametric minimal surface in R

4 with a singular
point at z = 0. The surface S given by X : BR(0) → R

4 is bounded by a
Jordan curve, and a simple differential-form argument similar to the one used
in Section 2.8 shows that S is in fact area minimizing. The branch-point
result is one of the very few basic results mentioned in our notes which only
holds true for codimension-one surfaces. The same remark applies to Nitsche’s
uniqueness theorem, cf. Section 5.6. We also mention that Steffen and Wente
[1] have excluded the existence of branch points for minimizers of Dirichlet’s
integral (as well as of more general functionals) subject to a volume constraint.

3 Embedded Solutions of Plateau’s Problem

The absence of branch points does not mean that a minimal surface is free
of selfintersections. However, selfintersecting minimal surfaces can never be
realized as soap films, i.e., they are unrealistic from the physical point of
view. Soap films either appear as surfaces of higher topological type (see
Fig. 1), thereby avoiding selfintersections which necessarily have to appear
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Fig. 2. An example of Almgren and Thurston

for disk-type surfaces spanned into knotted curves, or they arrange themselves
as systems forming the characteristic 120-degrees angle at their common liq-
uid edges (with a Y -shaped cross-cut; see No. 7 of these Scholia), but true
selfintersections can never be seen. Thus it is of interest to see whether a
given boundary curve Γ can be spanned by an embedded minimal disk (i.e.,
by an injective mapping X : B → R

3). For topological reasons, this cannot
be the case for knotted boundaries Γ , and we therefore have to look among
unknotted curves for promising candidates.

Let us begin with an interesting example of an unknotted closed curve Γ
described by Almgren and Thurston [1] (see Fig. 2) which can only bound
an oriented and embedded surface S lying in the convex hull of Γ if S has
at least three handles. (By stretching in the z-direction with a suitably large
factor, one can even achieve that the total curvature of Γ does not exceed
the value 4π + ε where ε is an arbitrarily given positive number.) Hence no
minimal disk spanned by Γ can be an embedding since, by the maximum
principle, its image in R

3 is necessarily contained in the convex hull of Γ .
Similar constructions lead to boundaries Γ spanning only embedded surfaces
S with S ⊂ convex hull of Γ if the genus of S is at least p where p is an
arbitrarily prescribed positive integer.

Another example, which is simpler than that of Almgren–Thurston, but
shows the same phenomenon, was somewhat later given by J.H. Hubbard [1].

Generally speaking, the classical mapping-approach to minimal surfaces
pursued in our notes has the disadvantage that one a priori fixes the topolog-
ical type of the geometric object. Thus it is much more difficult to decide in
this setting whether an area minimizing surface is geometrically regular. In
geometric measure theory this and other disadvantages have been overcome
by the introduction of generalized objects called currents and varifolds.

Simply speaking, an n-current T ∈ Dn(U) is a continuous linear functional
on the space Dn(U) of n-forms with compact support in a domain U of R

m.
Then each n-dimensional oriented submanifold M of R

n+k (with locally finite
n-dimensional Hausdorff measure Hn) represents an n-current in the following
way: Let τ1, . . . , τn be an adapted orthonormal frame of the tangent space
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TxM , and let ξ(x) = τ1 ∧ · · · ∧ τn be an orientation on TxM . Then we define
the current [M ] by

[M ](ω) :=
∫

M

〈ω(x), ξ(x)〉 dHn(x)

for ω ∈ Dn(U).
Conversely, the currents which are representable by a manifold (or, more

precisely, by a rectifiable n-varifold with integer multiplicity) are of basic
importance. They are called locally rectifiable (in the terminology of Federer
and Fleming), or they are said to be integer multiplicity currents (Simon [8],
p. 146). To be precise, T is of integer multiplicity if it is representable as

T (ω) =
∫

M

〈ω(x), ξ(x)〉θ(x) dHn(x), ω ∈ Dn(U),

where M is an Hn-measurable, countably n-rectifiable subset of U , θ is a
locally Hn-integrable positive integer-valued function, and ξ(x) is an Hn-
measurable orientation for the approximate tangent space TxM (see Simon
[8] for details). The mass of a current T in U is defined as

MU (T ) := sup{T (ω) : ‖ω‖ ≤ 1, ω ∈ Dn(U)}.

Using the tools of geometric measure theory, Hardt and Simon [1] answered
the question of embeddedness in the following way.

Theorem 1. Each closed Jordan curve Γ ⊂ R
3 of class C1,α bounds at least

one embedded orientable minimal surface.

However, note that, because of the semicontinuity of mass with respect to
weak convergence, one has no control over the topological type of the minimal
surface except for an upper bound on its genus. In fact, in the limit, cancel-
lation of several parts of currents (with opposite orientation) may produce
higher connectivity of the minimizing current. On the other hand it seems
plausible that under suitable geometric assumptions on Γ one might obtain
embedded minimal surfaces of prescribed topological type which are bounded
by Γ . In a sequence of papers starting with Gulliver and Spruck [3], the follow-
ing was proved by Tomi and Tromba [1], Almgren and Simon [1], and Meeks
and Yau [3]:

Theorem 2. Let K be a strictly convex body in R
3 whose boundary ∂K is of

class C2, and suppose that Γ is a closed rectifiable Jordan curve contained in
∂K. Then there exists an embedded minimal surface of the type of the disk
which is bounded by Γ .

All the papers cited above use different methods. Gulliver and Spruck gave
the first proof with the additional requirement that the total curvature of Γ
be not larger than 4π. Tomi and Tromba used methods from global analysis,
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while Almgren and Simon minimized area in the class of embedded disks,
thereby obtaining in the limit a certain varifold which corresponds to the
minimal embedded disk. Finally, Meeks and Yau proved that the minimizing
surface of the type of the disk is embedded.

Moreover, in their paper [4] Meeks and Yau established a connection be-
tween the problem of embeddedness and the problem of uniqueness. First they
gave a generalization of Theorem 2.

Theorem 3. Let M be a compact region in R
3 whose boundary is C2-smooth

and has nonnegative mean curvature with respect to the inward normal. Sec-
ondly, let Γ be a closed rectifiable Jordan curve contained in ∂M . Then any
(in C(Γ )) area minimizing minimal surface of disk type which is contained in
M and bounded by Γ has to be embedded.

Another result of Meeks and Yau is the following

Theorem 4. Let X : Σ → M ⊂ R
3 be a minimal surface defined on a compact

Riemann surface Σ with boundary, and suppose that M satisfies the assump-
tions of Theorem 3. Assume also that X|∂Σ is a regular smooth embedding
of ∂Σ into ∂M which decomposes ∂M into components Σj, and that X|∂Σ

is homotopically trivial in the component of M \ X(Σ) which contains Σj.
Then each such component Γ := X(∂Σ) bounds an embedded stable minimal
surface which is disjoint from X(Σ) unless X(Σ) is an embedded stable disk.

As a consequence of this result one obtains:

Theorem 5. If ∂M is a C2-surface homeomorphic to S2 and if the mean
curvature of ∂M with respect to the inward normal is nonnegative, then every
smooth Jordan curve Γ on ∂M either bounds at least two distinct embed-
ded minimal disks in M , or the only immersed minimal surface X : Σ → R

3

bounded by Γ (with no restriction on the genus of Σ) is a uniquely determined
stable, embedded minimal surface of the type of the disk.

Suppose that Γ is a regular, real analytic, closed Jordan curve which lies
on the boundary ∂K of a convex body, and suppose that the total curvature
of Γ is less than 4π. Then Theorem 5 in conjunction with Nitsche’s uniqueness
theorem implies that the only minimal surface X : Σ → R

3 is a unique area
minimizing disk. Clearly, this result is a considerable refinement of Nitsche’s
uniqueness theorem. It is unknown whether one can omit the assumption that
Γ lies on a convex surface. (Remark : Meeks and Yau indicate that in the above
conclusion ∂K need not be smooth.)

Further work in this connection has been done by F.H. Lin [3].
We also mention the fundamental paper by Ekholm, White, and Wienholtz

[1] on the embeddedness of minimal surfaces. The main result of this article
is

Theorem 6. Let Γ be a closed Jordan curve in R
n, n ≥ 3, with total curvature

≤ 4π, and let X : Σ → R
n be a minimal surface with boundary Γ where Σ is
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a compact, 2-dimensional C∞-manifold with boundary (i.e. X ∈ C0(Σ,Rn)
is harmonic and conformal in intΣ, and X|∂Σ maps ∂Σ homeomorphically
onto Γ ). Then X is an embedding of M up to and including the boundary, with
no interior branch points. If Γ is regular and of class Cs,α, s ≥ 1, 0 < α < 1,
then X ∈ Cs,α(Σ,Rn) is smoothly embedded and therefore has no boundary
branch points.

Furthermore, the authors point out that there are closed Jordan curves in
R

3 with total curvature <4π that bound “minimal Möbius strips”, and they
make the following interesting

Conjecture. Let Γ be a smooth, closed Jordan curve in R
3 with total curva-

ture ≤4π. Then, in addition to a unique minimal disk, Γ bounds either (i) no
other minimal surface, or (ii) exactly one minimal Möbius strip and no other
minimal surfaces, or (iii) exactly two minimal Möbius strips and no other
minimal surfaces.

Returning to geometric measure theory, we denote by R
(loc)
n (U) for an

open set U in R
m the set of all currents in U which locally are of integer

multiplicity.
A fact of central importance concerning the Plateau problem in arbitrary

dimensions and codimensions is the following compactness theorem which was
first proved by Federer and Fleming [1]:

Theorem 7. If Tj ∈ Dn(U), j = 1, 2, . . . , is a sequence of integer multiplicity
currents with

sup
j≥1

(MW(Tj) + M(∂Tj)) < ∞ for all W ⊂⊂ U,

then there is a current T ∈ Rloc
n (U) and a subsequence {Tj′ } converging weakly

to T in U .

(The nontrivial part in the proof is to show that the limit is, in fact, of
integer multiplicity.)

Employing the lower semicontinuity of mass under weak convergence of
currents, one concludes by means of Theorem 7 the following existence result:

Theorem 8. Let S ∈ Dn−1(Rn+k) be of integer multiplicity, of compact sup-
port suppS and with ∂S = 0. Then there is a current T ∈ Rn(Rn+k) with
∂T = S such that suppT is compact and M(T ) ≤ M(R) for all R ∈ Rn(Rn+k)
with compact support and with ∂R = S.

(Here the boundary current ∂T is defined by the relation

∂T (ω) = T (dω) for all ω ∈ Dn−1(U),

in analogy with Stokes’s theorem.)
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The next step is to examine the regularity of a minimizing current. One
sets

Reg(T ) := {x ∈ suppT : there is a neighborhood U(x)
such that suppT ∩ U(x) is an embedded

n-dimensional submanifold M of R
n+k }

and
Sing(T ) := suppT \ Reg(T ),

to denote the regular and the singular part of the support of T respectively. In
codimension one, the following basic regularity result was proved by Fleming
[2] (n − 2), Almgren [1] (n = 3), Simons [1] (n = 4, 5, 6), and Federer [3]:

Theorem 9. Let U ⊂ R
n+1 be open, T ∈ Rn(U) with M(T ) ≤ M(R) for all

R with supp(T \R) ⊂⊂ U . Then Sing(T ∩U) is empty for n ≤ 6, locally finite
for n = 7, and Hn−7+α (Sing(T ∩ U)) = 0 for all α > 0 and n > 7.

Bombieri, de Giorgi, and Giusti [1] proved that the seven-dimensional cone
in R

8 given by {x ∈ R
8 : x2

1 + · · · + x2
4 = x2

5 + · · · + x2
8} is mass-minimizing

which proves the sharpness of Theorem 8.
If the codimension is greater than one, we have the following result of

Almgren [6]:

Theorem 10. An n-dimensional, area minimizing integer multiplicity cur-
rent in R

n+k is in the interior a smooth embedded manifold, except for a
singular set whose Hausdorff dimension is at most n − 2.

This result is again sharp.
Finally the question of boundary regularity in codimension one was com-

pletely settled by Hardt and Simon [1]:

Theorem 11. In the setting of Theorem 4, let T ∈ Rn(Rn+1) be area mini-
mizing with an (n − 1)-dimensional oriented submanifold S of class C1,α as
boundary. Then, near S, the support of T is an embedded C1-manifold with
boundary.

Note that in Theorem 11 there is no restriction on the dimension n.

4 More on Uniqueness and Nonuniqueness

Let us begin with a classical example, Enneper’s surface

X(w) = Re
(

w − w3

3
, iw + i

w3

3
, w2

)

, w = u+ iv,

and define the closed curve Γr by



346 4 The Plateau Problem and the Partially Free Boundary Problem

Fig. 3. A closed curve bounding a part of Enneper’s surface (c) as well as two other

minimal surfaces of the type of the disk: see (a), (b). Courtesy of O. Wohlrab

Γr := {X(w) : |w| = r}.

Nitsche [14] has proved that Γr bounds at least two distinct minimal surfaces
of the type of the disk provided that 1 < r <

√
3, and that it bounds at

least three disk-type solutions if r0 < r <
√

3 where the value of r0 is about
1.681475 (see Fig. 3). For 0 < r < 1/

√
3 the orthogonal projection of Γr onto

the x, y-plane is convex and one-to-one whence one concludes that Γr bounds
exactly one disk-type surface. By a sharpened version of Nitsche’s uniqueness
theorem, Ruchert [1] proved uniqueness for 0 < r ≤ 1. Thereafter, Beeson and
Tromba [1] showed that a bifurcation occurs at r = 1 which is of the type of
the cusp catastrophe (in Thom’s morphogenesis) and that there is a number
δ0 > 0 such that Γr bounds at least three disk-type surfaces if 1 < r < 1+ δ0.
By means of the estimates of Chapter 2 of Vol. 2 one can then show that Γr

bounds exactly three disk-type surfaces if 1 < r < 1 + δ0.
The bifurcation of minimal surfaces was also studied in a remarkable pa-

per by Büch [1]. Starting with Weierstrass’s representation formula (27) of
Section 3.3 he was able to establish conditions on the Weierstrass function
F(ω) which imply the appearance of bifurcations of the type of the fold, the
cusp, and of the swallow tail (of Thom’s list).

Although it is not easy to find curves which bound only one disk-type
solution, the opposite problem is complicated as well, namely to verify by a
rigorous mathematical proof that a given curve bounds at least two minimal
surfaces. Therefore the following result of Quien and Tomi [1] might be of
interest:

There exist Jordan curves Γ which are arbitrarily close to a plane and which
bound (at least) a given number of geometrically distinct immersed minimal
surfaces of the type of the disk.

Let us outline the proof. Suppose that ϕ : S1 = ∂B → R
2 is an immersion

of the unit circle. We begin by looking at the question as to whether ϕ can
be extended to an immersion f : B̄ → R

2 with f |∂B = ϕ and, if so, how
many nonequivalent such extensions will exist (two immersions f and g are
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Fig. 4. An immersion ϕ : S1 → R2 which cannot be extended as an immersion f : B̄ → R2

of the disk into R2

Fig. 5. (a) A Milnor curve ϕ : S1 → R2 and its two extensions f : B̄ → R2 which are

immersions of the disk. (b) The leaves of two extensions to Milnor’s curve

Fig. 6. Milnor curves admitting (a) three extensions, (b) n extensions

equivalent if there is a diffeomorphism σ of B̄ onto itself such that f = g ◦σ).
For instance, the immersion ϕ : S1 → R

2 depicted in Fig. 4 cannot be extended
while Fig. 5a depicts an example due to Milnor which allows two extensions,
the leaves of which are depicted in Fig. 5b. Then, in Fig. 6 we exhibit a curve
with three different extensions which can inductively be improved to a curve
ϕ : S1 → R

2 allowing n extensions (see Fig. 6b). For a proof of these results
we refer to Poénaru [1].

Let us now consider an immersion ϕ : S1 → R
2 which allows n different

extensions f of class C3(B̄,R2). By the Lichtenstein mapping theorem we can
assume that f(u, v) = (f1(u, v), f2(u, v)) is conformally parametrized, i.e., we
have
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|fu|2 = |fv |2 =: Λ, 〈fu, fv 〉 = 0.

Next we choose a perturbation function ψ ∈ C2,β(∂B), 0 < β < 1, such that
F := (f1, f2, ψ) defines a Jordan curve F : ∂B → R

3 in R
3. This can be

achieved by a function ψ with arbitrarily small C2-norm. Now we consider
the class C of functions

Z(u, v) = (f1(u, v), f2(u, v), z(u, v)), (u, v) ∈ B,

such that z ∈ Lip(B̄) and z|∂B = ψ|∂B . The area of Z ∈ C is given by

A(z) :=
∫

B

|Zu ∧ Zv | du dv =
∫

B

Λ
√

1 + Λ−1| ∇z|2 du dv.

This functional is strictly convex whence there can exist at most one stationary
point x(u, v) of A, and the corresponding surface X = (f1, f2, x) would be
the absolute minimum of A within C. The Euler equation of A is

L(x) := aαβ ∂2x

∂uα∂uβ
+ b = 0

where we have set

aαβ := (1 + Λ−1)| ∇x|2δαβ − Λ−1 ∂x

∂uα

∂x

∂uβ
,

b := − 1
2

| ∇x|2 ∂

∂uα
Λ−1 ∂x

∂uα
.

For Λ = 1, the equation L(x) = 0 is the classical minimal surface equation.
We will show that the boundary value problem

L(x) = 0 in B, x = ψ on ∂B

can be solved for boundary values ψ with a sufficiently small C2-norm. We
only have to establish a gradient estimate along ∂B for any solution since
then a priori bounds for x and ∇x follow from standard estimates for scalar
problems (cf. Gilbarg and Trudinger [1], Chapters 9 and 14). To derive the
desired estimate we consider barrier functions of the type

c±(w) := ψ(w) ± ε(1 − |w|2), w = u+ iv,

where |ψ|C2(B̄) < ε ≤ 2/
√

27M,M := maxB | ∇Λ−1|. Then a brief computa-
tion will show that L(c−) ≥ 0, and similarly we obtain L(c+) ≤ 0. Conse-
quently ∇x can be estimated along ∂B by means of the maximum principle.
This shows that, for every equivalence class [f ], we find a minimal immersion
X = (f1, f2, x) which is bounded by Γ = F (∂B), F = (f1, f2, ψ). �

It is still unknown whether a smooth regular Jordan curve can bound in-
finitely many minimal surfaces of the type of the disk (or, more generally, of
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Fig. 7. Construction of a boundary configuration Γ bounding a one-parameter family of

(congruent) minimal surfaces of genus zero. The rotationally symmetric configuration Γ

consists of three coaxial circles Γ0, Γ1, Γ−1

the same topological type). Note, however, that one can find boundary config-
urations consisting of several closed curves which even bound one-parameter
families of distinct minimal surfaces of the same topological type. In fact,
one can construct rotationally symmetric configurations Γ = 〈Γ1, Γ2, . . . , Γn〉
consisting of n coaxial circles Γ1, . . . , Γn bounding one-parameter families of
solutions. The first example of this kind was given by Morgan [3] for n = 4.
In the paper [1] of Gulliver and Hildebrandt an example working with three
circles is exhibited which will be described below. Note that n = 3 is the mini-
mum number of circles for which such examples can be found since R. Schoen
[3] proved that, for n = 2, each immersed minimal surface bounded by two
coaxial circles Γ1 and Γ2 is either a pair of disks or a piece of a catenoid.

Now we are going to describe the construction of a rotationally symmetric
1-parameter family of minimal surfaces of genus zero which are bounded by
three coaxial circles which lie in parallel planes cf. Fig. 7.

To this end we consider a configuration Γ consisting of three circles
Γ0, Γ1, Γ−1 described by the equations x2 + y2 = 1 and z = 0, λ and −λ
respectively, λ > 0, and a second configuration Γ ∗ which consists of the
circle Γ1 and another closed curve γ that lies in the same plane as Γ0,
and is formed by the semicircle Γ ′

0 = Γ0 ∩ {x ≥ 0} and by the interval
I = {x = 0, z = 0, −1 < y < 1} on the y-axis. For small λ there is a minimal
surface M∗ of the type of an annulus bounded by Γ ∗ (see below). By Schwarz’s
reflection principle, we can extend M∗ as a minimal surface across the straight
segment I. For this purpose we rotate M∗ by 180◦ about the y-axis to form a
second minimal surface M∗ ∗. Their union M = M∗ ∪ M∗ ∗ is a minimal surface
with boundary Γ having genus zero. The segment I has become part of the
interior of M, and the surface M can be described by a harmonic mapping
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X : B → R
3 given in conformal coordinates of a triply connected planar do-

main B. Since M∗ is not symmetric under rotations about the z-axis, also M

has to be rotationally nonsymmetric.
We still have to find a connected minimal surface M∗ which is bounded

by the configuration Γ ∗. By virtue of J. Douglas’s theorem (cf. Chapter 8),
there exists an area minimizing minimal surface M∗ which is defined on an
annulus and has Γ ∗ as boundary, provided that λ is small enough. In fact,
the existence of Douglas’ solution is ascertained under the hypothesis that

(1) a(Γ ∗) < a(γ) + a(Γ1),

where a(Γ ∗) is the greatest lower bound of area for surfaces of the type of the
annulus with boundary Γ ∗ = γ ∪ Γ1, and a(γ) and a(Γ1) are the corresponding
lower bounds for disk-type surfaces bounded by γ and Γ1 respectively. Clearly,

a(γ) = π/2, a(Γ1) = π,

and a(Γ ∗) is smaller than the area A(S) of the surface S that consists of the
cylinder surface between Γ0 and Γ1 and of the half-disk {x2 + y2 ≤ 1, x ≤ 0,
z = 0}, that is,

a(Γ ∗) < 2πλ+ π/2.

Thus Douglas’s condition (1) is satisfied for λ ≤ 1/2. A somewhat more com-
plicated comparison surface S, consisting of half of a catenoid, half of a cone,
and two triangles shows that even the condition λ ≤ 0.7 suffices to ensure
the existence of a Douglas solution M∗ within the frame Γ ∗. Moreover, hy-
pothesis (1) implies that the surface M∗ is an immersion (cf. Gulliver [7],
Theorem 10.5). By the maximum principle, the interior of M∗ lies between
two planes z = 0 and z = λ. Therefore the interior of M∗ does not meet the
interior of M∗ ∗ where M∗ ∗ is the reflection of M∗ at the y-axis. Thus also
M = M∗ ∪ M∗ ∗ is immersed. Since M is not rotationally symmetric, we have
shown:

The configuration Γ consisting of three coaxial unit circles in parallel planes
at a distance λ ≤ 0.7 bounds a continuum of congruent immersed minimal
surfaces of genus zero.

We also note that M cannot have branch points on the boundary since its
boundary lies on a strictly convex set, a cylinder (see Section 2 of Vol. 2).

Let us now discuss examples of rectifiable Jordan curves bounding in-
finitely many minimal surfaces of the type of the disk. Such examples were
first described by P. Lévy [2] and R. Courant [15]; they are based on the so-
called bridge-theorem. This is a very convincing heuristic reasoning which, in
essence, amounts to the following (see Fig. 8):

Let Γ1 and Γ2 be two disjoint Jordan curves in R
3. Then construct a new

Jordan curve Γ by connecting Γ1 and Γ2 by a bridge β consisting of two arcs
γ1 and γ2 which look like two parallel lines, and by omitting two pieces of Γ1

and Γ2. Suppose also that the two arcs γ1 and γ2 have a small distance ε > 0.
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Fig. 8. Application of the bridge principle

Claim. If X1 and X2 are two disk-type minimal surfaces bounded by Γ1 and
Γ2 respectively, then there exists a disk-type surface X spanned into Γ which
is close to the surface Z formed by X1, X2 and a small strip σ spanned into
the bridge β. As ε tends to zero, the surface X converges to a geometric figure
consisting of X1, X2 and an arc γ connecting Γ1 and Γ2.

A few remarks might be appropriate:
(i) It is unlikely that the claim holds if X1 and X2 are unstable solutions

since a very tiny perturbation of the boundary might completely destroy them.
Thus one probably has to assume that X1 and X2 are local minimizers of area
within the classes C(Γ1) and C(Γ2) respectively, or at least stable minimal
surfaces. Even then the assertion might not be true as it stands since it is
unknown if minimizers are isolated or not. It is conceivable that there exist
blocks of minimizers, and therefore it might occur that, for ε → 0, the surface
X in the unified contour Γ approaches surfaces X̃1 and X̃2 in the contours Γ1

and Γ2 which belong to the same blocks as X1 and X2 but are different from
these surfaces.

(ii) Very likely one has to impose restrictions on the positions of Γ1 and
Γ2 if the bridge theorem is to hold. For instance, if Γ1 and Γ2 are two circles
of radius 1 and 2 respectively which have the same center and lie in the same
plane Π, and if β is a bridge consisting of two parallel lines joining Γ1 and Γ2,
then there is no bridge-solution X in the joint Γ . To remove this difficulty we
could, for instance, assume that the convex hulls of Γ1 and Γ2 are disjoint.
Another option is to leave suitable freedom in the choice of the bridge and
not to insist on a given pair of bridging curves γ1 and γ2. It might even be
necessary to leave freedom for the whole curve Γ in the sense that Γ should
merely be a curve close to the joint formed of Γ1, Γ2 and the bridge β, that
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is, we might have to wiggle the joint a little bit. Possibly we might also have
to smoothen the corners to make the procedure work.

We know of several (published and unpublished) attempts to establish a
rigorous version of the bridge theorem. Neither Courant nor Levy indicated
how to go about this task. The first paper containing such a proof was written
by Courant’s student M. Kruskal [1]; however, his reasoning turned out to be
incomplete. Another very promising attack was carried out by Meeks and
Yau in their paper [4] dealing with the connection between uniqueness and
embeddedness on which we have reported in Subsection 3 of these Scholia.
However, we are not able to follow all of their arguments, and we think that
possibly a more detailed discussion might be needed to establish a good bridge
theorem that will imply the existence of curves bounding infinitely many
minimal surfaces of the type of the disk. We have to mention that N. Smale
[1] gave a satisfactory proof of a bridge principle; however, his result is of
no use for the construction of contours bounding many or even infinitely
many solutions of Plateau’s problem because he constructs Γ not only in
dependence on Γ1 and Γ2 but also in dependence on two (stable) minimal
surfaces X1 and X2 within Γ1 and Γ2. That means that, if we pick different
surfaces X̃1 and X̃2 in Γ1 and Γ2, N. Smale’s construction will lead to another
joint Γ̃ which, in general, will differ from the joint Γ . At last the matter was
settled by B. White [21,22] who proved fairly general versions of the bridge
principle.

Let us now turn to the (heuristic) Levy–Courant construction. We take
a contour Γ1 which bounds at least two stable disk-type minimal surfaces
such as in Fig. 8. Next we consider a sequence Γ1, Γ2, Γ3, . . . of curves of the
same kind, selected in such a way that Γ2 is half the size of Γ1, the curve Γ3

is half the size of Γ2, and so on (see Fig. 9). Then we join Γ1 and Γ2 by a
bridge β1, Γ2 and Γ3 by a bridge β2 etc. such that a rectifiable Jordan arc Γ
is formed. Each Γj spans two stable surfaces which we say to be of type 0
or 1. Pick for each Γj one of these two numbers. Then we obtain a sequence
A = {aj } of digits aj = 0 or 1, and to any such sequence there corresponds
a stable disk-type minimal surface XA bounded by Γ which in Γj is close to
a surface of the type aj . Hence A �= A′ implies that XA �= XA′ , and we have
found a bijective mapping τ : A → XA of all binary representations of the
interval [0, 1] onto the set of geometrically different minimal surfaces bounded
by Γ . In other words, if we are willing to accept a strong bridge principle
applying to infinitely many curves, the above reasoning yields the following
result (see Fig. 9):

There exist rectifiable Jordan curves Γ which bound nondenumerably many
minimal surfaces of the type of the disk.

In fact, the construction seems to imply that one can choose Γ as a regular
C∞-curve except for a single kink.

It would be very interesting to make the Levy–Courant construction pre-
cise with the aid of B. White’s versions of the bridge principle.



4.15 Scholia 353

Fig. 9. Construction of a curve Γ bounding nondenumerably minimal surfaces of the type

of the disk

The finiteness question is a truly fundamental problem. J.C.C. Nitsche
conjectured that every reasonable (i.e., smooth, analytic, . . . ) curve Γ bounds
only finitely many minimal surfaces of disk-type. Despite the generic finiteness
result of Böhme–Tromba mentioned in Section 4.9, this question is completely
open. It would be very desirable to obtain upper and lower bounds for the
number of solutions of Plateau’s problem.

According to J.C.C. Nitsche [31,32], a regular, real analytic Jordan curve
Γ bounds only finitely many minimal surfaces of disk-type if its total curvature
does not exceed 6π, and if every disk-solution for Γ is free of branch points
(cf. also Beeson [5]).

Nitsche indicated that instead of Γ ∈ Cω the assumption Γ ∈ C3,α is suffi-
cient. A version of the 6π-theorem is proved in Section 5.7 (cf. 5.7, Theorem 3
and Remark 10).

Important contributions to the finiteness problem were also given in the
papers [3,4] of M. Beeson. In this context, we mention the papers of R. Böhme
[1,5], and of Böhme and Tomi [1] who started to investigate the structure of
the space of solutions for Plateau’s problem. Major progress in this direction
was achieved in Böhme–Tromba’s papers [1] and [2] where a fundamental
index theorem was derived. This index theorem has in the meantime been
carried over to various cases of the general Plateau problem (cf. Thiel [1–3],
Schüffler [6], Schüffler and Tomi [1], and finally Tomi and Tromba [6]).

In this respect we also have to mention the work on unstable minimal
surfaces in a given contour. In particular, we refer to the work of Courant
which is described in Chapter 6 of his treatise [15], and the generalizations of
his work given by E. Heinz [13,14], G. Ströhmer [1–4], and F. Sauvigny [3–6].
In Chapter 6, we present a version of Courant’s approach to unstable minimal
surfaces that also uses ideas due to E. Heinz. In the Scholia to Chapter 6 as
well as in Vol. 3, Chapter 6, further results concerning the existence of unstable
minimal surfaces will be described, in particular the work of M. Struwe.

Here we mention the following uniqueness theorem by Sauvigny [3]: Let
Γ be a polygon of total curvature less than 4π which lies on the boundary of
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a bounded convex set of R
3. Then Γ bounds exactly one disk-type minimal

surface, and this solution is free of branch points up to the boundary.
Interestingly, Sauvigny could generalize his uniqueness result to R

n, n ≥ 4,
under the assumption that the total curvature of Γ is less than 10π/3. This
generalization was possible since Sauvigny did not work with a field construc-
tion but with the so-called Courant function d(τ) and with the Marx–Shiffman
function θ(τ). The function d(τ) was introduced by Courant in his monograph
[15], pp. 223–236, where it plays an important role in his treatment of unsta-
ble minimal surfaces with polygonal boundaries. On the other hand, Heinz in
his subsequent basic work [19–24] emphasized the role of the Marx-Shiffman
function θ(τ). The functions d(τ) and θ(τ) are defined as follows. Let Γ be a
polygon with N+3 vertices ej , 1 ≤ j ≤ N+3. Consider mappings X : B̄ → R

3

of class C◦(B̄,R3) ∩ C2(B,R3) such that X(−1) = eN+1, X(−i) = eN+2,
X(1) = eN+3 and X(eiτj ) = ej , 1 ≤ j ≤ N , where τ = (τ1, . . . , τn) is an N -
tupel of parameter values τj satisfying 0 < τ1 < τ2 < · · · τN < π. Let F(τ) be
the class of such mappings which map the arc Ck := {eiθ : τk ≤ θ ≤ τk+1} into
the straight line Γk through the points ek and ek+1, whereas F′(τ) denotes
the subset of mappings X ∈ F(τ) which map Ck weakly monotonically onto
the interval [ek, ek+1] on Γk(τj = τk, ej = ek if j ≡ k mod N + 3). We set

d(τ) := inf{D(X) : X ∈ F′(τ)},
θ(τ) := inf{D(X) : X ∈ F(τ)}.

Then we clearly have d(τ) ≥ θ(τ), and simple examples show that we can have
d(τ) > θ(τ) for certain values of τ (see F. Lewerenz [1]). The function d(τ)
is of class C1, and its critical points correspond bijectively to the solutions
of Plateau’s problem of disk-type bounded by the polygon Γ . In this way,
Plateau’s problem for polygonal boundaries is connected with the critical
points of a function of finitely many variables. Unfortunately it is unknown
whether d(τ) is of class C2; therefore Courant’s function is not suited to
develop a Morse theory. The situation is much better for the function θ(τ).
Heinz [20,23] proved that θ(τ) is real analytic and that its critical points
correspond to solutions of a generalized Plateau problem for Γ (generalized
means: the solution X can overshoot the vertices, and we only know that
X(Ck) ⊂ Γk). The Morse index of such generalized solutions was computed
by Sauvigny [4], by studying the second derivative of the function θ. Note that
the two functions d(τ) and θ(τ) are closely connected as they coincide in the
critical points of d(τ).

We have presented some of the results by Courant and Shiffman as well as
extensions by Heinz, Sauvigny, and Jakob in Chapter 6 (note that there the
functions d and θ are denoted by Θ and Θ∗ respectively).

Uniqueness theorems and finiteness questions for minimal surfaces in Rie-
mannian manifolds and for H-surfaces were discussed by Ruchert [2], Koiso
[1,4,6], and Quien [1].
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5 Index Theorems, Generic Finiteness, and Morse-Theory Results

In this subsection we sketch some results for minimal surfaces which in Sec-
tions 5 and 6 of Vol. 3 are developed in detail.

Let B be the unit disk and S1 = ∂B. For integers r and s, r ≥ 2s + 4,
define

D = Ds = {u : S1 → S1 : deg u = 1 and u ∈ Hs(S1,C)},

where Hs denotes the Sobolev space of s-times differentiable functions with
values in C; set

A = {α : S1 → R
n : α ∈ Hr(S1,Rn), α an embedding}

(i.e. α is one-to-one and α′(ξ) �= 0 for all ξ ∈ S1), and let the total curvature
of Γα = α(S1) be bounded by π(s − 2).

Denote by π : A × D → A the projection map onto the first factor. A min-
imal surface X : B̄ → R

n spanning α ∈ A can be viewed as an element of
A × D, since X is harmonic and therefore determined by its boundary values

X|S1 = α ◦ u, where (α, u) ∈ A × D.

The classical approach to minimal surfaces is to understand the set of
minimal surfaces spanning a given fixed wire α; that is, the set of minimal
surfaces in π−1(α). The approach of Böhme–Tomi–Tromba is to first under-
stand the structure of the subset of minimal surfaces in the bundle N = A × D

viewed as a fiber bundle over A, and then to attack the question of the set
of minimal surfaces in the fiber π−1(α) in terms of the singularities of the
projection map π restricted to a suitable subvariety of N. This is in the spirit
of Thom’s original approach to unfoldings of singularities.

Let us say that a minimal surface X ∈ A × D has branching type (λ, ν),
λ = (λ1, . . . , λp) ∈ Z

p, ν = (ν1, . . . , νq) ∈ Z
q, λi, νi ≥ 0 if X has p distinct but

arbitrarily located interior branch points w1, . . . , wp in B of integer orders
λ1, . . . , λp and q distinct boundary branch points ξ1, . . . , ξq in S1 of (even)
integer orders ν1, . . . , νq. In a formal sense, the subset M of minimal surfaces
in N is an algebraic subvariety of N which is a stratified set, stratified by
branching types. To be more precise, let Mλ

ν denote the minimal surfaces of
branching type (λ, ν). Then we have the following index result of Böhme and
Tromba [2].

Index theorem for disk surfaces. The set Mλ
0 is a Cr−s−1-submanifold of

N, and the restriction πλ of π to Mλ
0 is of class Cr−s−1. Moreover, πλ is a

Fredholm map of index I(λ) = 2(2 − n)|λ| + 2p+ 3, where |λ| =
∑
λi.

Moreover, locally, for ν �= 0, we have M λ
ν ⊂ W λ

ν where W λ
ν is a sub-

manifold of N and where the restriction πλ
ν of π to W λ

ν is Fredholm of index
I(λ, ν) = 2(2 −n)|λ| +(2 −n)|ν| +2p+q+3, |ν| =

∑
νi. The number 3 comes

from the equivariance of the problem under the action of the three dimensional
conformal group of the disk.



356 4 The Plateau Problem and the Partially Free Boundary Problem

Ursula Thiel [3] has shown that if one uses weighted Sobolev spaces as a
model, the sets Mλ

ν can indeed be given a manifold structure with the index
of πλ

ν := π|Mλ
ν being I(λ, ν).

These stratification and index results are the basis to prove the generic
finiteness and stability of minimal surfaces of the type of the disk as discussed
in Böhme and Tromba [2]: There exists an open dense subset Â ⊂ A such that
if α ∈ Â, then there exists only a finite number of minimal surfaces bounded
by α, and these minimal surfaces are stable under perturbations of α. If n > 3,
they are nondegenerate critical points of Dirichlet’s integral. The open set Â

will be the set of regular values of the map π. Moreover we have the following

Remark. If n > 3, the minimal surfaces spanning α ∈ Â are all immersed
up to the boundary, and if n = 3, they are at most simply branched.

Schüffler [1–4,6,8], Schüffler and Tomi [1], and Thiel [1,2] have extended
the index theorem in various directions. Tomi and Tromba [6] have obtained
an index theorem for higher genus minimal surfaces employing the Teichmüller
theory; cf. Vol. 3, Chapters 4 and 5.

Finally, these results are also essential for a Morse theory for disk surfaces.
Let N = A × D be the bundle over A, α ∈ A, and let Γα = α(S1) be the

image of such an embedding. Consider the manifold of maps Hs(S1, Γα).
In A. Tromba [5] it is shown that Hs(S1, Γα) is a Cr−s-submanifold of
H2(S1,Rn). Let N(α) denote the component of Hs(S1, Γα) determined by
α. We can identify N(α) with the set of mappings X ∈ C0(B̄,Rn) which are
harmonic in B and whose boundary values X|∂B yield a parametrization of
Γα. Then the Dirichlet functional Eα : N(α) → R is defined by

Eα(X) =
1
2

∫

B

| ∇X|2 du dv.

We know by the index theorem that there exists an open dense set of
contours Â ⊂ A, A ⊂ Hr(S1,Rn), n ≥ 4, such that if α ∈ Â, there are only
a finite number of nondegenerate minimal surfaces X1, . . . , Xm spanning α.
Let D2Eα(Xi) : TXiN(α) × TXiN(α) → R denote the Hessian of Dirichlet’s
functional at Xi, and be λi the dimension of the maximal subspace on which
D2Eα(Xi) is negative definite. Then A. Tromba [11] proved the Morse equality

(1)
∑

i

(−1)λi = 1.

A version of this formula which holds in R
3 was developed by A. Tromba in

his papers [10,11]. The theory leading to these results is presented in Chapter 6
of Vol. 3.

The full Morse inequalities in the case n ≥ 4 were established by Struwe
[4], who proved

l∑

λ=0

(−1)l−λmλ ≥ (−1)l
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and
m0 ≥ 1

where mλ is the number of minimal surfaces of Morse index λ.
However, the case n = 3 remains open since the generic nondegeneracy

assumption is known not to hold (see Böhme and Tromba [2]). Here only
Tromba’s version of formula (1) is known.

6 Obstacle Problems

The minimization procedure can also be used to solve obstacle problems, that
is, to find surfaces of minimal area (or of a minimal Dirichlet integral) which
are spanning a prescribed boundary configuration and avoid certain open
sets (obstacles). In other words, the competing surfaces X of the variational
problem are confined to certain closed subsets of R

3 (or, more generally, to
closed subsets of the target manifold M of the mappings X : B → M). Prob-
lems of this kind were treated by F. Tomi [2–4], S. Hildebrandt [12,13], and
Hildebrandt and Kaul [1]. One can also consider obstacle problems where the
obstacle is thin. (In elasticity theory these problems are called Signorini prob-
lems.) In the context of minimal surfaces such problems occur naturally if
we consider free or partially free boundary problems with a supporting sur-
face S. If S has a nonempty boundary, then we can view S as part of a larger
surface S0 without boundary, and the part S0 \ S can be considered as an
obstacle since the boundary values of the competing surfaces X are confined
to S. The existence theory for such boundary problems with a thin obstacle
can be carried along the lines of Chapters 4 and 5, and no additional difficul-
ties will arise. The boundary behavior of solutions of such problems will be
investigated in the Vols. 2 and 3.

Presently we shall confine our attention to thick obstacles in R
3 (or M)

which are to be avoided by the admissible surfaces. To describe some of the
results, consider the functionals

FB(X) := EB(X) + VB(X)

where

EB(X) :=
1
2

∫

B

gjk(X)(Xj
uX

k
u +Xj

vX
k
v ) du dv,

VB(X) :=
∫

B

〈Q(X), Xu ∧ Xv 〉 du dv

that is,

FB(X) =
∫

B

e(X,∇X) du dv

with the Lagrangian

e(x, p) = 1
2gjk(x)(pj

1p
k
1 + pj

2p
k
2) + 〈Q(x), p1 ∧ p2〉

where x ∈ R
3 and p = (p1, p2) ∈ R

3 × R
3.
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Furthermore let C∗ denote one of the classes C∗(Γ ) or C∗(Γ, S), i.e., the
set of surfaces bounded by Γ or 〈Γ, S〉 respectively which are normalized by
a three point condition, see Sections 4.2 and 4.6. Suppose that K ⊂ R

3 is a
closed set; then we put C = C(K,C∗) := C∗ ∩ H1

2 (B,K), where H1
2 (B,K)

denotes the subset of functions f ∈ H1
2 (B,R3) which map almost all of B

into K. We consider the variational problem P(F, C) given by

F → min in C.

Theorem. Suppose that Q ∈ C0(K,R3), gij ∈ C0(K,R), gij = gji, i, j ∈
{1, 2, 3}, and let 0 < m0 ≤ m1 be numbers with the property

(1) m0|p|2 ≤ e(x, p) ≤ m1|p|2 for all (x, p) ∈ K × R
6.

Moreover assume that K is a closed set in R
3 such that C = C(K,C∗) is

nonempty. Then the variational problem P(F, C) has (at least) one solution
in C(K,C∗).

Proof. The following three statements have to be verified:

(i) The class C(K,C∗) is a weakly closed subset of H1
2 (B,R3).

(ii) There exists a minimizing sequence Xn ∈ C(K,C∗) for P(F, C) which
converges weakly in H1

2 (B,R3) to some X ∈ H1
2 (B,R3).

(iii) The functional FB(·) is weakly lower semicontinuous in H1
2 (B,R3).

(i)–(iii) immediately imply that X is an element of C furnishing a solution of
P(F, C); in fact, (iii) yields

FB(X) ≤ lim inf
n→∞

FB(Xn) = e = inf
C

FB ,

and hence FB(X) = e.
Property (i) follows from the weak closedness of C∗, from a theorem of Rel-

lich and from the fact that one can extract from any L2-convergent sequence
a subsequence which converges pointwise almost everywhere, cf. Theorem 2
in Section 4.6.

Statement (ii) is a consequence of the fact that for any minimizing sequence
of surfaces Xn ∈ C(K,C∗) there holds an estimate

‖Xn‖H1
2 (B) ≤ const

which follows from the ellipticity condition (1) and from a suitable Poincaré
inequality. Finally (iii) is a special case of a general lower semicontinuity result
of Serrin, see Morrey [8], Theorem 1.8.2. �

In addition to the preceding theorem we have the following result concern-
ing conformal parameters.

Proposition 12. Any solution X ∈ C(K,C∗) of the variational problem
P(F, C) satisfies almost everywhere in B the conformality relations

gijX
i
uX

j
u = gijX

i
vX

j
v and gijX

i
uX

j
v = 0.
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Fig. 10. (a) The obstacle problem is to find a surface of least Dirichlet integral which is

bounded by a Jordan curve Γ and which remains outside given solid bodies. The minimizers

among the disk-type surfaces are minimal surfaces away from the obstacle, but where they

touch it they may have non-zero mean curvature. (b) If multiply connected surfaces with

free boundaries on the obstacle are also admitted as comparison surfaces, then smaller

Dirichlet integrals can be achieved and the minimizers will be perpendicular to the obstacle

along their free boundaries

The proof of this result is obtained by a suitable adaptation of the argu-
ment given in Sections 4.5 and 4.10.

In the special case where gij = δij and Q = 0 we conclude from the
above theorems the existence of a minimal surface X bounded by Γ or 〈Γ, S〉
respectively which is spanned over the obstacle ∂K. Note that, in general, the
coincidence set T = {w ∈ B : X(w) ∈ ∂K} will be a nonempty subset of B.
If T is nonempty, then a soap film corresponding to X touches the surface
∂K of the obstacle. If one allows the film to change its topological type by,
say, admitting a number of holes, it can slide down on ∂K, thereby reducing
its area (see Fig. 10). The corresponding surfaces X : Ω → R

3 will then
be defined on a multiply connected parameter domain Ω ⊂ C and have free
boundaries on ∂K. This phenomenon was treated by Tolksdorf in his paper
[1] where he proved the existence of a minimum X for the functional

D̃(X) =
∫

B

| ∇̃X|2 du dv

with

∇̃X(u, v) :=

{
∇X(u, v) if X(u, v) �∈ ∂K,

0 if X(u, v) ∈ ∂K

in a suitably chosen class of comparison functions. For details we refer the
reader to Tolksdorf’s paper.
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Fig. 11. (a) Rule 1, (b) Rule 2 demonstrated by a system of 6 soap-films in tetrahedron

7 Systems of Minimal Surfaces

Usually one encounters soap films and soap bubbles in the shape of foam.
Roughly speaking, foam is a system of soap films and soap bubbles which
are attached to each other and meet at common liquid edges. More than a
hundred years ago Plateau observed in experiments that such systems obey
two simple rules which he stated in his treatise [1]. Let us formulate these
rules simply for systems of minimal surfaces (H = 0), neglecting systems of
bubbles (H = const �= 0) and mixed systems.

A system of minimal surfaces is a connected set which is a finite union of
smooth regular manifolds of zero mean curvature which sit in a given frame
and meet each other at free boundary curves called liquid edges. These liquid
edges form the singular part of the minimal surface system.

Rule 1. At each liquid edge meet exactly three minimal surfaces of the system,
and any two of them enclose an angle of 120 degrees.

Rule 2. Liquid edges can meet at supersingular points p. Each supersingular
point is the meeting point of exactly four liquid edges. Any two adjacent edges
form an angle ϕ = 109◦28′16′ ′ (precisely speaking, cosϕ = −1/3).

These two principles are illustrated by Fig. 11.
The first rigorous proof for the two rules governing systems of minimal

surfaces was given by J. Taylor [2] using the means of geometric measure
theory. Let us briefly outline her arguments. Consider a system S of minimal
surfaces which is bounded by a closed system Γ of Jordan arcs Γ1, Γ2, . . . ,
and assume that S minimizes area within all other systems bounded by Γ .
In the first step, a monotonicity formula is employed to prove the existence
of tangent cones TpS at each point p of S. Moreover, it is verified that each
tangent cone (which in general is not known to be unique) is again area
minimizing for the frame formed by the intersection of the cone with the unit
sphere S2 centered at p. Such a frame is a system of arcs on S2, and each
arc is part of a great circle. At any vertex of such a system only three arcs
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Fig. 12. The ten geodesic nets on S2

can run together, and any two of them form an angle of 120◦. A frame on
S2 with these properties is called a geodesic net. Thus, in order to classify all
area minimizing cones, one first looks at the simpler question of determining
all (equiangular) geodesic nets on S2. It turns out that exactly ten different
such nets exist. This classification was already carried out by Lamarle who,
however, missed one net. The complete list, depicted in Fig. 12, was given by
Heppes [1]. According to Lamarle and Heppes, the ten (equiangular) geodesic
nets C1, . . . , C10 can be described as follows:

(a) C1 is a great circle;
(b) C2 consists of three halves of great circles with common endpoints;
(c) C3 is a spherical tetrahedron;
(d) C4 is a spherical cube;
(e) C5 consists of 15 arcs forming the 1-skeleton of the prism over the regular

pentagon;
(f) C6 is a prism over a regular triangle and consists of 9 arcs;
(g) C7 is a spherical dodecahedron made of 30 arcs;
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(h) C8 consists of 24 arcs forming two regular quadrilaterals and 8 congruent
pentagons;

(i) C9 is formed by 18 arcs which determine 4 equal pentagons and 4 equal
quadrilaterals;

(j) C10 consists of 21 arcs forming three regular quadrilaterals and six con-
gruent pentagons.

Now that we know C1, . . . , C10, the crucial question of determining all area
minimizing tangent cones is reduced to the problem of finding out which of the
cones over Cj with their vertex at p are area minimizing. Jean Taylor proved
that C1, C2 and C3 are minimizers whereas the cones over C4, . . . , C10 are not
even stable. The mathematical proof is rather elaborate whereas the physical
demonstration of this fact is easily provided by a soap film experiment which
is depicted in Hildebrandt and Tromba [1], pp. 128–129. The pictures show
that the area minimizing soap films in C1, C2 and C3 are cones but not those
in C4, . . . , C10. Thus we are led to the following

Theorem of J. Taylor. Let S be a system of minimal surfaces which is
bounded by a closed system of Jordan arcs and minimizes area within its
boundary. Then the following holds true:

(i) At each point p ∈ S there exists a unique tangent cone which is congruent
to one of the cones (a), (b) or (c) in Fig. 12.

(ii) Let R(S) := {p ∈ S: the tangent cone to S at p is congruent to (a)}
denote the regular part of S. Then R(S) is a two-dimensional manifold
in R

3. Each component of R(S) has mean curvature zero.
(iii) Let Σ(S) := {p ∈ S: the tangent cone to S at p is congruent to (b)}

denote the set of singular points in S. Then Σ(S) is a one-dimensional
C1,α-manifold in R

3 for some α ∈ (0, 1). There exists a neighborhood
U(p) for each p ∈ Σ(S) and a conformal C1,α-diffeomorphism f of R

3

onto itself such that U ∩ S is the image of (b) under f .
(iv) Let σ(S) := {p ∈ S: the tangent cone to S at p is congruent to (c)}

denote the set of supersingular points in S. Then σ(S) consists of isolated
points. Furthermore, for each p ∈ σ(S) there exists a neighborhood U(p)
in R

3 and a conformal C1,α-diffeomorphism f of R
3 onto itself such that

U(p) ∩ S is the image of (c) under f .
(v) The system S decomposes into S = R(S) ∪ Σ(S) ∪ σ(S).

For the proof of this result we refer to J. Taylor [2]. The above theorem
also extends to systems of surfaces of constant mean curvature as well as to
systems of surfaces which are extremals of some functional which is close to
the area functional in a suitable sense.

Nitsche [33] proved that the singular part Σ(S) is a union of regular C∞-
curves, and Kinderlehrer, Nirenberg, and Spruck [1] even showed that Σ(S)
is a union of real analytic curves.
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It is fairly easy to prove the existence of area minimizing systems in a
given frame Γ by means of geometric measure theory.

We finally note that, under rather restrictive symmetry assumptions on
the boundary Γ , the existence of area minimizing systems S and the regularity
of their singular parts had earlier been established by A. Solomon [1,2].

8 Isoperimetric Inequalities

Historical remarks on this topic and further comments can be found in the
Scholia to Chapter 4 of Vol. 2.

9 Plateau’s Problem for Infinite Contours

It is also of interest to determine minimal surfaces which are not bounded
by one or several loops, but by one or several arcs, finite or infinite. Actu-
ally, already Riemann [2] developed a method to construct minimal surfaces
which are simply connected and have straight line segments as boundaries.
As examples he studied two infinite straight lines which are not contained in
a plane ([1], §15), two infinite half lines meeting at a common endpoint and
an infinite straight line parallel to the plane of the first two ([1], §16), three
pairwise skew lines ([1], §17). As a main idea to solve these three problems as
well as Plateau’s problem for the skew quadrilateral ([1], §18), Riemann used
the fact that the surface normal of a solution maps any straight segment of
the boundary onto an arc of a great circle on S2. This work was generalized
by E. Neovius [1–5]. In this context we also refer to the treatises of Darboux
[1] and Bianchi [1,2].

The problem of determining minimal surfaces with prescribed unbounded
contours was anew taken up by López and Wei [1], López and Mart́ın [1], and
Ferrer and Mart́ın for unbounded polygonal boundaries. For a fairly general
class of unbounded contours the problem was recently solved by F. Tomi
[13]. The curves Γ considered by Tomi are described by Γ = ξ(R), where ξ
provides a noncompact proper embedding of R into R

3 which is piecewise of
class C1,α for some α ∈ (0, 1) and satisfies ξ(0) = 0 and |ξ′(s)| = 1 as well as
the following conditions:

(i) There is a constant δ > 0 such that |p − q| ≤ δ for all p, q contained in
different components of Γ \ Γ1 where Γ1 is the connected components of
Γ ∩ B1 containing 0.

(ii) Let γ(s) := |ξ(s)|−1ξ(s) for s �= 0. Then

| 〈γ(x), ξ′(x)〉| → 1 as |s| → ∞.

(iii)
∫

Γ \Γ1
|ξ(s)| −1

√
1 − 〈γ(s), ξ′(s)〉2 ds < ∞.
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Then Tomi’s theorem reads as follows:

There exists a proper mapping X ∈ C0(H,R3) ∩ C∞(H,R) of a closed half-
plane H in R

2 which is an immersed minimal surface on H and maps ∂H in
a strictly monotonic way onto Γ .

Tomi’s class of admissible curves Γ contains all properly embedded curves
with polynomial ends. The main idea of the proof is to work with surfaces
whose area in a ball of radius R growth at most quadratically in R.

10 Plateau’s Problem for Polygonal Contours

(Added in Proof, May 2010)
In her recent thesis (Dec. 4, 2009) Laura Desideri [1] has rectified and sup-

plemented Garnier’s approach to Plateau’s problem for polygonal boundaries.
She proved the following beautiful theorem:

Let Γ be a polygon in R
3 ∪ { ∞} with n+3 sides in “generic position”, possibly

with one of its vertices lying at infinity. Then Γ bounds an immersed minimal
surface X : C+ → R

3 defined on the upper halfplane C+ in the sense that Γ
is the boundary of the image X(C+). If Γ has a vertex at infinity, then the
immersion X has a helicoidal end at this vertex.

This result contributes also to the problems discussed in No. 2 and No. 9.
Furthermore, Desideri has proved an analog of the above theorem for the
Plateau problem in Minkowski space.
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