
Chapter 3

Representation Formulas and Examples
of Minimal Surfaces

In this chapter we present the elements of the classical theory of minimal
surfaces developed during the nineteenth century. We begin by representing
minimal surfaces as real parts of holomorphic curves in C

3 which are isotropic.
This leads to useful and handy formulas for the line element, the Gauss map,
the second fundamental form and the Gauss curvature of minimal surfaces.
Moreover we obtain a complete description of all interior singular points of
two-dimensional minimal surfaces as branch points of C

3-valued power series,
and we derive a normal form of a minimal surface in the vicinity of a branch
point. Close to a branch point of order m, a minimal surface behaves, roughly
speaking, like an m-fold cover of a disk, a property which is also reflected in
the form of lower bounds for its area. Other by-products of the representation
of minimal surfaces as real parts of isotropic curves in C

3 are results on adjoint
and associated minimal surfaces that were discovered by Bonnet.

In Section 3.3 we turn to the representation formula of Enneper and Weier-
strass which expresses a given minimal surface in terms of integrals involving
a holomorphic function μ and a meromorphic function ν. Conversely, any pair
of such functions μ, ν can be used to define minimal surfaces provided that
μν2 is holomorphic. In the older literature this representation was mostly used
for a local discussion of minimal surfaces. Following the example of Osserman
(see [10] and [24]), the representation formula has become very important for
the treatment of global questions for minimal surfaces. As an example of this
development we describe in Section 3.7 the results concerning the omissions
of the Gauss map of a complete regular minimal surface. These results are
the appropriate generalization of Picard’s theorem in function theory to dif-
ferential geometry and culminate in the remarkable theorem of Fujimoto that
the Gauss map of a nonplanar complete and regular minimal surface cannot
miss more than four points on the Riemann sphere. Important steps to the
final version of this result which can also be viewed as a generalization of
Bernstein’s theorem were taken by Osserman and Xavier. The proof given in
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Section 3.7 is very close to Osserman’s original approach and is due to Mo
and Osserman [1].

Moreover, most of the sophisticated examples of minimal surfaces and,
in particular, of families of complete embedded minimal surfaces and also of
periodic surfaces of zero mean curvature are best described via the Enneper-
Weierstrass formula. We shall not attempt to present a complete picture of
this part of the theory which in recent years has gathered new momentum,
but we shall content ourselves with a few examples mentioned in Section 3.6
and with a very short survey given in the Scholia Section 3.8. Instead of a
careful discussion we include various figures depicting old and new examples
of these fascinating species.

A few of the known classical minimal surfaces are briefly described in
Section 3.5, and these surfaces are illustrated by numerous figures so that the
reader has sufficient visual examples for the investigations carried out in the
following chapters. We do not aim at completeness but we refer the reader
to Nitsche’s encyclopaedic treatise [28] as well as to the literature cited in
Subsection 1 of the Scholia, Section 3.8. A brief survey of some of the newer
examples can be found in Subsections 4 and 5 of the Scholia. For a detailed
presentation of recent results on complete minimal surfaces we in particular
refer to work of H. Karcher [1–5], to the encyclopaedia article by Karcher and
Hoffmann in EMS, and to the collection of papers in GTMS.

The Enneper–Weierstrass representation formula of a minimal surface X :
Ω → R

3 is still somewhat arbitrary since the composition Y = X ◦ τ of
X with a conformal mapping τ : Ω∗ → Ω describes the same geometric
object as X. Thus one can use a suitable map τ to eliminate one of the two
functions μ, ν in the Weierstrass formula; consequently every minimal surface
viewed as a geometric object, i.e., as an equivalence class of conformally equal
surfaces, corresponds to one holomorphic function F(ω). Weierstrass derived a
representation of this kind where F is defined on the stereographic projection
of the spherical image of the considered minimal surface. The Gauss curvature
and the second fundamental form of a minimal surface can be expressed in a
very simple way in terms of the functions μ, ν, or F.

Finally in Section 3.4 we discuss several contributions by H.A. Schwarz to
the theory of minimal surfaces, in particular his solution of Björling’s prob-
lem. This is just the Cauchy problem for minimal surfaces and an arbitrarily
prescribed real analytic initial strip, and it is known to possess a unique solu-
tion due to the theorem of Cauchy–Kovalevskaya. Schwarz found a beautiful
integral representation of this solution which can be used to construct inter-
esting minimal surfaces, such as surfaces containing given curves as geodesics
or as lines of curvature. As an interesting application of Schwarz’s solution we
treat his reflection principles for minimal surfaces.



3.1 Associate Minimal Surfaces 93

3.1 The Adjoint Surface. Minimal Surfaces as Isotropic
Curves in C

3. Associate Minimal Surfaces

Let us begin by recalling the general definition of a minimal surface, given in
Section 2.6.

A nonconstant surface X : Ω → R
3 of class C2 is said to be a minimal surface

if it satisfies the equations

(1) ΔX = 0

(2) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0

on Ω.

If a minimal surface

X(u, v) = (x(u, v), y(u, v), z(u, v))

is defined on a simply connected domain Ω of R
2 =̂ C, then we define an

adjoint surface
X∗(u, v) = (x∗(u, v), y∗(u, v), z∗(u, v))

to X(u, v) on Ω as solution of the Cauchy–Riemann equations

(3) Xu = X∗
v , Xv = −X∗

u

in Ω.
Clearly, all adjoint surfaces to some given minimal surface X differ only

by a constant vector; thus we may speak of the adjoint surface X∗(u, v) of
some minimal surface X(u, v) which is defined on a simply connected domain
Ω of R

2.
The equations (1)–(3) immediately imply

ΔX∗ = 0, |X∗
u |2 = |X∗

v |2, 〈X∗
u, X

∗
v 〉 = 0,

that is, the adjoint surface X∗ to some minimal surface X is a minimal surface.
Consider an arbitrary harmonic mapping X : Ω → R

3 of a simply con-
nected domain Ω in R

2 =̂ C, and let X∗ be the adjoint harmonic mapping to
X, defined as a solution of (3). Then

(4) f(w) := X(u, v) + iX∗(u, v), w = u + iv ∈ Ω

is a holomorphic mapping of Ω into C3 with components

ϕ(w) = x(u, v) + ix∗(u, v),
ψ(w) = y(u, v) + iy∗(u, v),(5)
χ(w) = z(u, v) + iz∗(u, v),
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which can be considered as a holomorphic curve in C
3. Its complex derivative

f ′ = df
dw is given by

(6) f ′ = Xu + iX∗
u = Xu − iXv,

whence it follows that

(7) 〈f ′, f ′ 〉 = |Xu|2 − |Xv |2 − 2i〈Xu, Xv 〉.

Consequently, the conformality relations (2) are satisfied if and only if the
isotropy relation

(8) 〈f ′, f ′ 〉 = 0

is fulfilled.
A holomorphic curve satisfying relation (8) is said to be an isotropic curve.
Using this notation, we obtain the following result:

Proposition 1. If X : Ω → R
3 is a minimal surface on a simply connected

parameter domain Ω in R2, then the holomorphic curve f : Ω → C3, defined
by (3) and (4), is a nonconstant isotropic curve. Conversely, if f : Ω → C

3

is a nonconstant isotropic curve in C
3, then

(9) X(u, v) := Re f(w), X∗(u, v) := Im f(w)

defines two minimal surfaces X : Ω → R
3 and X∗ : Ω → R

3 on Ω, whether
or not Ω is simply connected.

We say that X∗(u, v), w ∈ Ω, is an adjoint surface to some minimal surface
X(u, v), w ∈ Ω, if there is an isotropic curve f : Ω → C

3 such that (9) is
satisfied.

If X∗ is adjoint to X, then −X is adjoint to X∗, i.e.,

(10) X∗ ∗ = −X.

The isotropy condition (8) for a curve f(w) = (ϕ(w), ψ(w), χ(w)) means
that the derivatives of the three holomorphic functions ϕ, ψ, χ are coupled by
the relation

(11) ϕ′2 + ψ′2 + χ′2 = 0.

Let us introduce the two Wirtinger operators

(12)
∂

∂w
=

1
2

(
∂

∂u
− i

∂

∂v

)
,

∂

∂w̄
=

1
2

(
∂

∂u
+ i

∂

∂v

)
.

Then the equations (1) and (2) can equivalently be written as

(13) Xww̄ = 0
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and

(14) 〈Xw, Xw 〉 = 0,

respectively, and we also have

(14′) f ′ = 2Xw.

Suppose now that X : Ω → R
3 is a minimal surface on some domain Ω.

Then we have
W =

√
EG − F2 = E = G = 1

2 (E + G).

By restricting ourselves to simply connected subdomains Ω′ of Ω, we can
assume that there is an isotropic curve f such that X = Re f , f = (ϕ, ψ, χ).
Since |f ′ |2 = | ∇X|2 = 4|Xw |2, we obtain

(15) W = |Xu|2 = 1
2 | ∇X|2 = 1

2 |f ′ |2 = 2|Xw |2.

Thus the zeros of W are the common zeros of the three holomorphic functions
ϕ′, ψ′, χ′ and must, therefore, be isolated in Ω, except if X(w) ≡ const, which
is excluded.

Proposition 2. The singular points w of a minimal surface X : Ω → R3 on
a domain Ω are isolated. They are exactly the zeros of the function |Xu| in Ω.

As we shall see, the behavior of a minimal surface in the neighborhood of
one of its singular points resembles the behavior of a holomorphic function
ϕ(w) in the neighborhood of a zero of its derivative ϕ′(w). Therefore the
singular points of minimal surfaces are called branch points. We shall look at
them more closely in the next section.

The following statements are an immediate consequence of the equations
(1)–(3).

Proposition 3. Let X∗ : Ω → R
3 be an adjoint surface to the minimal sur-

face X : Ω → R3.
(i) We have X∗(w) 	≡ const.
(ii) Some point w0 ∈ Ω is a branch point of X if and only if it is a branch

point of X∗.
(iii) Denote by N(w) and N ∗(w) the Gauss maps of X(w) and X∗(w)

respectively, which are defined on the set Ω′ of regular points of X in Ω. Then
we have

(16) N(w) ≡ N ∗(w) on Ω′.

Moreover, the tangent spaces of X and X∗ coincide:

TwX = TwX∗ for all w ∈ Ω′,

and also the first fundamental forms of X and X∗ agree:
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IX(V,W ) = IX∗ (V,W ) for all V,W ∈ TwX, w ∈ Ω′,

i.e., the surfaces X and X∗ are isometric to each other. Therefore the Gauss
curvatures K and K∗ of X and X∗ are the same:

K(w) = K∗(w) for all w ∈ Ω′.

The Weingarten maps S and S∗ of X and X∗ respectively differ by a rotation
of 90 degrees on all tangent spaces TwX, with w ∈ Ω′.

Later on, we shall exhibit other relations between X, X∗, and their Gauss
map N . Presently, we want to formulate a consequence of the Propositions 1
and 2.

Proposition 4. Let Ω be a simply connected domain in C, X0 ∈ R
3, w0 ∈ Ω,

and suppose that Φ(w) = (Φ1(w), Φ2(w), Φ3(w)) 	≡ 0 is a holomorphic mapping
of Ω into C

3 which satisfies

(17) Φ2
1 + Φ2

2 + Φ2
3 = 0

on Ω. Then the formula

(18) X(w) = X0 + Re
∫ w

w0

Φ(ω) dω, w ∈ Ω,

defines a minimal surface X : Ω → R3, and, for every X∗
0 ∈ R3, the formula

(19) X∗(w) = X∗
0 + Im

∫ w

w0

Φ(ω) dω, w ∈ Ω,

yields an adjoint surface to X. The branch points of X are exactly the zeros
of Φ.

Conversely, if X : Ω → R3 is a minimal surface defined on a simply con-
nected domain Ω, then there is a holomorphic mapping Φ : Ω → C

3 satisfying
(17) such that

X(w) = X(w0) + Re
∫ w

w0

Φ(ω) dω

holds for arbitrary w,w0 ∈ Ω.

Remark. If Ω is not simply connected, then the integral (18) still defines a
minimal surface on Ω provided that the differential form Φdω only has purely
imaginary periods, i.e., that

∫
γ
Φ(ω) dω is a purely imaginary number for every

closed path γ contained in Ω.

Formula (18) yields
Xw = 1

2Φ.
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More generally, if X : Ω → R
3 is a minimal surface given in the form

X(w) = Re f(w),

where f : Ω → C
3 denotes an isotropic curve with the derivative

f ′ = Φ = (Φ1, Φ2, Φ3),

then we infer from
f ′ = Xu − iXv

that
Xu = ReΦ, Xv = −ImΦ.

Consequently, we obtain

(20) Xu ∧ Xv = Im(Φ2Φ̄3, Φ3Φ̄1, Φ1Φ̄2).

The line element ds = |dX| takes the form

ds2 = λ{du2 + dv2}

where

(21) Λ := |Xu|2 = 1
2 | ∇X|2 = 1

2 |f ′ |2 = 1
2 |Φ|2 = W.

Thus the spherical image N : Ω′ → S2, N = Λ−1Xu ∧ Xv, Ω′ := {w ∈ Ω :
Λ(w) 	= 0}, is given by

(22) N = 2|Φ| −2 Im(Φ2Φ̄3, Φ3Φ̄1, Φ1Φ̄2).

Moreover, the equation f ′ = Xu − iXv implies

f ′ ′ = Xuu − iXuv = −Xvv − iXuv

whence
〈f ′ ′, N 〉 = L − iM = −N − iM

on Ω′. Therefore we obtain the well-known relation

(23) L = −N,

expressing the fact that X has zero mean curvature, and also

(24) | 〈f ′ ′, N 〉|2 = L2 + M2.

By the observation of H. Hopf (cf. Section 1.3), the function 1
2 (L − N) − iM

is holomorphic on Ω′. Thus we obtain that the function

(25) l(w) := L(w) − iM(w) = 〈f ′ ′(w), N(w)〉

is holomorphic on Ω′.
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We infer from (23) and (24) that the Gauss curvature K of X on Ω′ is
given by

(26) K =
LN − M2

W2
= − L2 + M2

W2
= − |l|2

Λ2

or

(26′) K = −4|Φ| −4| 〈Φ′, N 〉|2, Φ = f ′.

We conclude that K(w) ≤ 0 on Ω′, and that K(w) = 0 if and only if l(w) = 0
holds.

Note that K ≤ 0 also follows from H = 0 because of 2H = κ1 + κ2 and
K = κ1κ2.

Umbilical points w of a surface X(w) are regular points where both prin-
cipal curvatures κ1 and κ2 are equal. Since H = 1

2 (κ1 + κ2) = 0 and
K = κ1κ2 ≤ 0, the umbilical points w ∈ Ω′ of a minimal surface X : Ω → R

3

are characterized by the condition

K(w) = 0,

or equivalently, by

L(w) = 0, M(w) = 0, N(w) = 0.

Since umbilical points of X are precisely the zeros of the holomorphic function
l : Ω′ → C, they must either be isolated, or else L(w) ≡ 0, M(w) ≡ 0, and
N(w) ≡ 0 on Ω′ which implies that X(w), w ∈ Ω, is a planar surface, taking
the Weingarten equations (48) of Section 1.2 into account.

In the next section, we shall prove that N(w) approaches a limit N0 as w
tends to some branch point w0 ∈ Ω. This implies that l(w) = L(w) − iM(w)
is actually holomorphic on Ω, since isolated singularities of holomorphic func-
tions are removable if they are continuity points.

By means of the function l(w), w ∈ Ω, it is easy to characterize the asymp-
totic lines and the curvature lines of a nonconstant minimal surface X(w),
w ∈ Ω.

Let ω(t) = (α(t), β(t)), t ∈ I, be a C1-curve in Ω, i.e., ω(I) ⊂ Ω. On
account of Section 1.2, (48), this curve is an asymptotic line of X if and only
if

Lα̇2 + 2Mα̇β̇ + Nβ̇2 = 0,

and, by 1.2, (53), it is a line of curvature if and only if

(EM − FL)α̇2 + (EN − GL)α̇β̇ + (FN − GM)β̇2 = 0.

Here E, . . . ,L, . . . have to be understood as E(ω), . . . ,L(ω), . . . . Since E = G,
F = 0, E = −N, we obtain:
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The asymptotic lines are described by

(27) L(α̇2 − β̇2) + 2Mα̇β̇ = 0,

and the lines of curvature are characterized by

(28) M(α̇2 − β̇2) − 2Lα̇β̇ = 0.

Let us introduce the complex valued quadratic form Ξ(ω̇), depending on ω̇ =
(α̇, β̇), by

(29) Ξ(ω̇) := l(ω)(α̇2 + iβ̇2), l = L − iM.

Then the asymptotic lines and the curvature lines are given by

(30) ReΞ(ω̇) = 0 and ImΞ(ω̇) = 0

respectively, or, in other words, by

(30′) Re l(w)(dw)2 = 0 and Im l(w)(dw)2 = 0,

using the holomorphic quadratic differential l(w)(dw)2.
Collecting these results, we obtain:

Proposition 5. Let X : Ω → R
3 be a minimal surface given by X = Re f ,

where f : Ω → C
3 is an isotropic curve with f ′ = Φ = (Φ1, Φ2, Φ3). Then

its spherical image N(w), w ∈ Ω′, on the set of regular points Ω′ := {w ∈
Ω : Λ(w) 	= 0}, Λ := |Xu|, is given by (22), and its Gauss curvature K on
Ω′ can be computed from (26) or (26′). On Ω′, the curvature K(w) is strictly
negative, except for umbilical points, where K(w) is vanishing. The umbilical
points of X are exactly the zeros of the holomorphic function l(w) = L(w) −
iM(w), w ∈ Ω. If X is a nonplanar surface, then its umbilical points are
isolated. Moreover, the asymptotic lines of X are described by

Re l(w)(dw)2 = 0,

and the curvature lines by

Im l(w)(dw)2 = 0.

Now we want to define the family of associate minimal surfaces to a given
minimal surface X : Ω → R

3 which is given as the real part of some isotropic
curve f : Ω → C

3. That is,

f(w) = X(w) + iX∗(w), w = u + iv ∈ Ω,

where
〈f ′(w), f ′(w)〉 ≡ 0 on Ω.
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Fig. 1. The bending process leading to the associate surfaces of Enneper’s surface corre-

sponding to the square [−2, 2]2, counter-clockwise from top right: θ = 0, π/6, π/3, and

π/2

Then, for every θ ∈ R, also

(31) g(w, θ) := e−iθf(w), w ∈ Ω

describes an isotropic curve, and

(32) Z(w, θ) := Re{e−iθf(w)} = X(w) cos θ + X∗(w) sin θ

defines a one-parameter family of minimal surfaces with the property that

(33) Z(w, 0) = X(w), Z

(
w,

π

2

)
= X∗(w).

The surfaces Z(w, θ), w ∈ Ω, are called associate minimal surfaces to the
surface X(w), w ∈ Ω. Relation (3) yields

Zu = Xu cos θ − Xv sin θ,

Zv = Xv cos θ + Xu sin θ,

and therefore, by virtue of (2),
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Fig. 2. The associates of Catalan’s surface, counter-clockwise from top right (θ =

0, π/6, π/3, π/2). The image of the curve v = 0 on Catalan’s contained in the plane y = 0

is a geodesic. Its Gauss image on S2 is an arc of a great circle

|Zu|2 = |Zv |2 = |Xu|2 = |Xv |2, 〈Zu, Zv 〉 = 0.

As before, we denote by Ω′ = {w ∈ Ω : Λ(w) 	= 0}, Λ := |Xu|, the domain
of regular points of X in Ω. Then Ω′ is also the domain of regular points for
each of the associate surfaces Z(·, θ), and also the tangent spaces TwX and
TwZ(·, θ) of X and Z(·, θ) coincide for all w ∈ Ω′ and every θ ∈ R. Therefore
the Gauss map N : Ω′ → S2 of X agrees with the spherical image of each of
its associate surfaces. Moreover, we have

(34) 〈dZ(·, θ), dZ(·, θ)〉 = 〈dX, dX〉

for all θ ∈ R, that is, all associate minimal surfaces have the same first funda-
mental form and, therefore, all associate surfaces are isometric to each other.

Consider now, for every θ ∈ R, the holomorphic function

l(θ) = L(θ) − iM(θ) := 〈g′ ′(·, θ), N 〉

which characterizes the asymptotic lines, the curvature lines, and the um-
bilical points of the associate minimal surface Z(·, θ). Because of g′ ′(w, θ) =
e−iθf ′ ′(w), we obtain
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Fig. 3. (a) The Jorge–Meeks catenoid. With courtesy of J. Hahn and K. Polthier.

(b) An associate minimal surface to the Jorge–Meeks catenoid. Courtesy of K. Polthier

and M. Wohlgemuth

(35) l(θ) = e−iθl(0) = [L cos θ − M sin θ] − i[L sin θ + M cos θ]

where l(0) = l = L − iM is the characteristic function for X = Z(·, 0). It
follows that l(π

2 ) = −M − iL. Set

ξ := L(α̇2 − β̇2) + 2Mα̇β̇,

η := −M(α̇2 − β̇2) + 2Lα̇β̇.

Then we obtain

(36)
l(0)(α̇ + iβ̇)2 = ξ + iη,

l

(
π

2

)
(α̇ + iβ̇)2 = η − iξ.

Since X = Z(·, 0) and X∗ = Z(·, π
2 ), we infer from Proposition 5 that the

asymptotic lines of X are the curvature lines of X∗, and conversely, the cur-
vature lines of X are the asymptotic lines of X∗. Thus we have found:

Proposition 6. All associate surfaces Z(·, θ) are in isometric correspondence
to each other. Each associate surface can be obtained from the original surface
X by a bending procedure which, at every stage, passes through a minimal
surface. For each w ∈ Ω, all tangent spaces TwZ(·, θ) coincide as θ varies
in R. Finally if θ and θ′ differ by π

2 , then the asymptotic lines of Z(·, θ)
are the curvature lines of Z(·, θ′), and the curvature lines of Z(·, θ) are the
asymptotic lines of Z(·, θ′).

One calls the bending procedure X → Z(·, θ) Bonnet’s transformation. For
w fixed, the points Z(w, θ) describe an ellipse as θ varies between 0 and 2π.
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To the first assertion of Proposition 6 one also can state a converse due to
H.A. Schwarz [1], vol. I, p. 175.

Proposition 7. Let X : Ω → R
3 and X̂ : Ω̂ → R

3 be two minimal surfaces
defined on simply connected domains Ω and Ω̂ respectively. Suppose also that
X and X̂ are isometric to each other, and that Z(·, θ), θ ∈ R, is a family of
associate minimal surfaces to X. Then X̂ is congruent to one of the surfaces
Z(·, θ). More precisely, there are a conformal mapping τ of Ω onto Ω̂, a motion
T of R

3, possibly followed by a reflection, and some θ0 ∈ R such that

T ◦ X̂ ◦ τ = Z(·, θ0).

For a proof of this Proposition we refer to Nitsche [28], § 177, pp. 164–165,
and to Calabi [1].

Let us return to the representation (18) in Proposition 4 which, in princi-
ple, yields all simply connected minimal surfaces. However, we have to satisfy
the isotropy relation (17) which prevents us from inserting arbitrary holo-
morphic functions Φ1, Φ2, Φ3. We can overcome this difficulty in the following
way:

Let Ω be a sufficiently small neighborhood of w0 and suppose that Φ1(w) 	=
0 on Ω. Then we can assume that the holomorphic function

σ(w) :=
∫ w

w0

Φ1(w) dw

yields an invertible mapping of Ω onto Ω∗ := σ(Ω). Let w = τ(ζ), ζ ∈ Ω∗, be
the inverse of ζ = σ(w), w ∈ Ω, and set

h(ζ) :=
∫ ζ

0

Φ2 ◦ τ

Φ1 ◦ τ
(ζ) dζ.

Then we obtain

ζ =
∫ w

w0

Φ1(w) dw, h(ζ) =
∫ w

w0

Φ2(w) dw,

and from
Φ2

3 = −{Φ2
1 + Φ2

2}
we infer that

Φ3(w) dw = i
√

Φ1(w)2 + Φ2(w)2 dw = i
√

1 + h′(ζ)2 dζ

if Φ3(w) 	= 0 on Ω. Hence we see that X|Ω is equivalent to the representation
Y := X ◦ τ, which can be written as

(37) Y (ζ) = X0 + Re
(
ζ, h(ζ), i

∫ ζ

0

√
1 + h′(ζ)2 dζ

)

for ζ ∈ Ω∗.
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Conversely, if h(ζ) is holomorphic on Ω∗ and 1 + h′(ζ)2 	= 0 for ζ ∈ Ω∗,
then (37) defines a minimal surface Y (ζ), ζ ∈ Ω∗, provided that Ω∗ is a
simply connected domain in C.

This is the classical representation formula of Monge, stating that ev-
ery minimal surface is locally equivalent to some holomorphic function and,
conversely, that essentially every holomorphic function h generates a mini-
mal surface. In Section 3.3 we shall derive global representation formulas for
minimal surfaces.

3.2 Behavior of Minimal Surfaces Near Branch Points

Let X : Ω → R
3 be a minimal surface on a domain Ω in R

2 =̂ C. For some
w0 ∈ Ω, we choose a disk BR(w0) ⊂⊂ Ω. Then, by virtue of Section 3.1,
Proposition 1, there is an isotropic curve f : BR(w0) → C

3 such that

(1) X(w) = Re f(w)

holds for all w ∈ BR(w0). As we have seen in Section 3.1, the point w0 is a
branch point of X if and only if

(2) f ′(w0) = 0.

We now want to derive an asymptotic expansion for X(w) in the neigh-
borhood BR(w0) of w0, using the formula

(3) f(w) = X(w) + iX∗(w), w ∈ BR(w0).

Suppose that f(w) 	≡ const, and that f ′(w0) = 0. Then there is an integer
m ≥ 1 such that

(4) f (k)(w0) = 0 for 1 ≤ k ≤ m, f (m+1)(w0) 	= 0.

Thus we obtain the Taylor expansion

(5) f(w) = f(w0) +
1

(m + 1)!
f (m+1)(w0)(w − w0)m+1 + · · ·

on BR(w0), and therefore also

f ′(w) =
1
m!

f (m+1)(w0)(w − w0)m + · · · .

Set X0 := X(w0) and

A =
1
2
(α − iβ) :=

1
2m!

f (m+1)(w0), B :=
2

m + 1
A.
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Then we conclude from

2Xw(w) = Xu(w) − iXv(w) = f ′(w)

that
Xw(w) = A(w − w0)m + O(|w − w0|m+1) as w → w0,

and
X(w) = X0 + Re{B(w − w0)m+1 + O(|w − w0|m+2)}.

The conformality relation
〈Xw, Xw 〉 = 0

implies that
〈A,A〉 = 0

holds, whence
|α|2 = |β|2, 〈α, β〉 = 0,

and A 	= 0 yields |α| = |β| > 0. Moreover,

Xu(w) = Re f ′(w) = αRe(w − w0)m + β Im(w − w0)m + · · · ,
Xv(w) = −Im f ′(w) = −α Im(w − w0)m + β Re(w − w0)m + · · · ,

where the remainder terms are of order O(|w − w0|m+1). Hence we conclude
that

Xu(w) ∧ Xv(w) = (α ∧ β)|w − w0|2m + O(|w − w0|2m+1) as w → w0.

This implies that N(w) tends to a limit vector N0 as w → w0:

lim
w→w0

N(w) = N0 =
α ∧ β

|α ∧ β| .

Consequently, the Gauss map N(w) of a minimal surface X(w), w ∈ Ω, is
well-defined on all of Ω as a continuous mapping into S2. In fact, N : Ω → S2

is a harmonic mapping of Ω into the unit sphere S2 (cf. Section 5.1) which
satisfies

ΔN + N | ∇N |2 = 0 in Ω.

Therefore N is real analytic (this also follows from the discussion in Sec-
tion 3.2). From formula (6) in Section 1.4 we then infer

|Nu|2 = |Nv |2, 〈Nu, Nv 〉 = 0

and
| ∇N |2 = −K| ∇X|2,

whence also
2|Nu ∧ Nv | = | ∇N |2,
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and formula (44) in Section 1.2 yields

Nu ∧ Nv = KXu ∧ Xv.

Since K ≤ 0, one concludes

ΔN = 2Nu ∧ Nv,

i.e. N is a surface of constant mean curvature one (cf. Chapter 5, and also
Vol. 3, Section 2.3).

We now want to put X into some normal form which will explain the term
branch point. Set

a :=
|α|

m + 1
=

|β|
m + 1

and
e1 :=

α

|α| , e2 :=
β

|β| , e3 := e1 ∧ e2 = N0.

Then we can rewrite the formula

X(w) = X0 + Re
{

α − iβ

m + 1
(w − w0)m+1 + O(|w − w0|m+2)

}

as

X(w) = X0 + ae1 Re(w − w0)m+1 + ae2 Im(w − w0)m+1 + O(|w − w0|m+2).

If we rotate the axes of the given coordinate system in R
3 such that e1, e2,

and e3 point in the directions of the new positive x, y, and z-axes respectively,
we obtain

x(w) + iy(w) = (x0 + iy0) + a(w − w0)m+1 + O(|w − w0|m+2),

z(w) = z0 + O(|w − w0|m+2).
(6)

This normal form of a minimal surface X(w) = (x(w), y(w), z(w)) shows that
a minimal surface X behaves in a neighborhood of one of its branch points
w0 like a branch point of m-th order of a Riemann surface. Thus we shall
denote the integer m, defined by (4), as the order of the branch point w0 of
the minimal surface X. If we define m = 0 for regular points, we may consider
regular points as branch points of order zero.

Remark 1. In Vol. 2, Section 6, we denote the order of a branch point w0

by n, while m is used for the index of w0.

Let us collect some of the previous results in the following

Proposition 1. If w0 ∈ Ω is a branch point of a minimal surface X : Ω →
R

3, then there is a vector A ∈ C
3, A 	= 0, and an integer m ≥ 1, the so-called

order of the branch point w0, such that the following holds:
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Fig. 1. w = 0 is a branch point of order one of Catalan’s surface. The parts of the surface

corresponding to the shrinking neighborhoods [−2n/10, 2n/10]2 for n = 5, 4, 3, 2, 1 illustrate

the convergence of the tangent planes in the vicinity of a branch point, a general property

of all two-dimensional minimal surfaces. Note that the second picture shows an enlarged

detail of the first one, the third one an enlarged detail of the second one, etc.

(7) Xw(w) = A(w − w0)m + O(|w − w0|m+1) as w → w0,

and N is a surface of constant mean curvature one;

(8) X(w) = X0 + Re[B(w − w0)m+1] + O(|w − w0|m+2),

where B = 2
m+1A, and A = 1

2 (α − iβ) is an isotropic vector in C
3 \ {0}:

(9) 〈A,A〉 = 0

or

(9′) |α|2 = |β|2 > 0, 〈α, β〉 = 0, α, β ∈ R
3.

The normal N(w) tends to the limit

(10) N0 =
α ∧ β

|α ∧ β| ,

and the tangent plane of X at w converges to a limiting position as w → w0.
Consequently, the function l(w) = L(w) − iM(w) is holomorphic on Ω,

and the spherical image map N(w) is a continuous map from Ω into S2.
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Next we want to derive a lower bound for the area of minimal surfaces.
Suppose that BR(P ) is a ball in R

3, the center P of which lies on the trace of
some minimal surface X : Ω → R

3 extending beyond BR(P ), i.e., there are no
boundary points of X(Ω) within BR(P ). Let w0 ∈ Ω be a branch point of X
of order m, and suppose that P = X(w0). Then the normal form (6) suggests
that the area of X(Ω) ∩ BR(P ) is at least as large as the area of m + 1 plane
equatorial disks of BR(P ), provided that the radius R is sufficiently small. In
fact, we can prove:

Proposition 2. Suppose that X : Ω → R
3 is a minimal surface defined on a

bounded simply connected domain Ω. Moreover, let w0 ∈ Ω be a branch point
of order m ≥ 0, X0 = X(w0), and let R > 0 be some number such that

(11) lim inf
k→∞

|X(wk)| ≥ R

holds for every sequence {wk } of points wk ∈ Ω with dist (wk, ∂Ω) → 0 as
k → ∞. Then the area A(X) of the surface X satisfies

(12) A(X) ≥ (m + 1)π(R2 − |X0|2).

Equality holds if and only if the image of X lies in a plane through the point
X0 which is perpendicular to the line from 0 to X0.

Proof. Since Ω can be mapped conformally onto the unit disk such that w0

is transformed into the origin, we may assume that w0 = 0, X0 = X(0), and
Ω = {w : |w| < 1}.

Then we can find an isotropic curve f : Ω → C
3 satisfying f(0) = X0 =

X(0) and
f = X + iX∗,

where X∗ : Ω → R
3 is an adjoint surface to X with X∗(0) = 0. We can

represent f(w) by the Taylor series

f(w) = X0 +
∞∑

k=m+1

Akw
k, Ak ∈ C

3,

which is convergent for |w| < 1. Applying Cauchy’s integral formula to the
holomorphic function F (w) := 〈f(w), f(w)〉, |w| < 1, it follows that

∫ 2π

0

F (reiθ) dθ = 2πF (0),

and therefore
∫ 2π

0

|X(reiθ)|2 dθ −
∫ 2π

0

|X∗(reiθ)|2 dθ = 2π|X0|2,

for every r ∈ (0, 1).
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On the other hand, we obtain

∫ 2π

0

|f(reiθ)|2 dθ =
∫ 2π

0

|X(reiθ)|2 dθ +
∫ 2π

0

|X∗(reiθ)|2 dθ

= 2π

{
|X0|2 +

∞∑
k=m+1

|Ak |2r2k

}
.

Combining the two identities, we arrive at

∫ 2π

0

|X(reiθ)|2 dθ = 2π|X0|2 + π

∞∑
k=m+1

|Ak |2r2k.

Setting
μ(r) := min

|w|=r
|X(w)|2,

we deduce the estimate

μ(r) ≤ |X0|2 +
1
2

∞∑
k=m+1

|Ak |2r2k.

Moreover, the area A(r) of the image of {w : |w| < r} under the mapping X
is given by

A(r) =
1
2

∫
|w|<r

| ∇X|2 du dv =
1
2

∫ r

0

∫ 2π

0

|f ′(teiθ)|2t dt dθ

=
π

2

∞∑
k=m+1

k|Ak |2r2k.

Thus we infer that

(13)
π

2

∞∑
k=m+2

[k − (m+ 1)]|Ak |2r2k − (m+ 1)π|X0|2 ≤ A(r) − (m+ 1)πμ(r).

By assumption (11), we have lim infr→1 μ(r) ≥ R2, whence

(14)
π

2

∞∑
k=m+2

[k − (m+1)]|Ak |2 +(m+1)π(R2 − |X0|2) ≤ lim
r→1

A(r) = A(X),

and inequality (12) is proved.
Suppose now that equality holds in (12). Then we infer form (14) that

Ak = 0 for k ≥ m + 2, whence

f(w) = X0 + Am+1w
m+1.
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Let Am+1 = a+ib, a, b ∈ R
3. Since f is isotropic, we obtain 〈Am+1, Am+1〉 = 0,

or |a| = |b|, 〈a, b〉 = 0. Therefore, the vectors e1 := a
|a| and e2 := − b

|b| are
orthonormal, and we have

(15) X(w) = X0 + |a|rm+1{e1 cos(m + 1)θ + e2 sin(m + 1)θ}.

This yields
A(X) = (m + 1)|a|2π.

On the other hand, we have assumed that

A(X) = (m + 1)π(R2 − |X0|2)

holds. Then we conclude that

(16) |a|2 = R2 − |X0|2.

Set e3 := e1 ∧ e2. Then e1, e2, e3 form an orthonormal frame in R
3, and we

can write

X0 =
3∑

k=1

ckek.

In conjunction with (15), it follows that

|X(eiθ)|2 = (c1 + |a| cos(m + 1)θ)2 + (c2 + |a| sin(m + 1)θ)2 + c23

= |X0|2 + |a|2 + 2|a| {c1 cos(m + 1)θ + c2 sin(m + 1)θ},

and, on account of (16), we conclude that

|X(eiθ)|2 = R2 + 2|a| {c1 cos(m + 1)θ + c2 sin(m + 1)θ}.

Therefore, unless c1 = c2 = 0, we can find an angle θ such that |X(eiθ)| < R,
which contradicts (11). Hence we see that

X0 = c3(e1 ∧ e2),

and formula (15) shows that X(w) lies in an affine plane, perpendicular to
the vector X0, which contains the point with the position vector X0.

Introducing suitable Cartesian coordinates x, y, z in R
3, we obtain the

normal form

x + iy =
√

R2 − |X0|2wm+1, |w| < 1,
z = 0

for the minimal surface X(w) = (x(w), y(w), z(w)), |w| < 1, in the case that
equality holds in (12).

This completes the proof of Proposition 2. �
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3.3 Representation Formulas for Minimal Surfaces

In Proposition 4 of Section 3.1 we have stated that for every holomorphic map

Φ(w) = (Φ1(w), Φ2(w), Φ3(w)), w ∈ Ω,

of a simply connected domain Ω in C with Φ(w) 	≡ 0 and

(1) 〈Φ,Φ〉 = Φ2
1 + Φ2

2 + Φ2
3 = 0,

the formula

(2) X(w) = X0 + Re
∫ w

w0

Φ(ζ) dζ, w ∈ Ω,

with w0 ∈ Ω and X0 ∈ R
3, defines a minimal surface X : Ω → R

3, and every
such surface can be obtained in this way. At the end of Section 3.1 we have
derived local solutions Φ of the isotropy equation (1). In this section we shall
first determine all (global) holomorphic mappings Φ : Ω → C3 satisfying (1).
This in turn will lead us to the celebrated Enneper–Weierstrass representation
formulas of minimal surfaces which, in particular, can be used to establish
explicit expressions for the normal image, the Gauss curvature, and for the
asymptotic and curvature lines of minimal surfaces.

Lemma 1. If μ(w) is a holomorphic function and ν(w) is a meromorphic
function in a domain Ω in C such that μ(w) 	≡ 0 and that μ has a zero of
order at least 2n where ν has a pole of order n, then the functions

(3) Φ1 =
1
2
μ(1 − ν2), Φ2 =

i

2
μ(1 + ν2), Φ3 = μν

are holomorphic in Ω, and the triple Φ = (Φ1, Φ2, Φ3) satisfies (1) and
Φ(w) 	≡ 0. Conversely, every triple Φ = (Φ1, Φ2, Φ3) 	≡ 0 of holomorphic
functions on Ω satisfying (1) can be written in the form (3) if and only if
Φ1 − iΦ2 	≡ 0.

Proof. The first part of the lemma follows by a straight-forward computation.
In order to prove the converse, we note that the assumption Φ1 − iΦ2 	≡ 0
certainly is necessary for (3) to hold. In fact, (1) is equivalent to

(4) (Φ1 − iΦ2)(Φ1 + iΦ2) + Φ2
3 = 0.

Hence Φ1 − iΦ2 = 0 yields Φ3 = 0, and Φ3 = μν would imply μ = 0 or
ν = 0. Since μ = 0 would give Φ = 0, we would have ν = 0 and therefore
Φ1 = μ/2, Φ2 = iμ/2; thus Φ1 + iΦ2 = 0. Consequently Φ1 = Φ2 = Φ3 = 0,
which contradicts Φ 	≡ 0.
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Suppose now that Φ1 − iΦ2 	≡ 0. Then the formulas

(5) μ := Φ1 − iΦ2, ν :=
Φ3

Φ1 − iΦ2

define a holomorphic function μ and a meromorphic function ν in Ω, satisfying
μν = Φ3. Moreover, (4) implies

(6) Φ1 + iΦ2 = − Φ2
3

Φ1 − iΦ2
= −μν2

which, together with
Φ1 − iΦ2 = μ,

yields
Φ1 =

μ

2
(1 − ν2), Φ2 = i

μ

2
(1 + ν2).

Finally, the relation μν2 = −(Φ1 + iΦ2) shows that the function μν2 is holo-
morphic. Therefore if w0 ∈ Ω is a pole of order n of ν, then w0 is a zero of
order at least 2n for μ. �

In conjunction with (2), this lemma yields the following result:

Theorem 1 (Enneper–Weierstrass representation formula). For ev-
ery nonplanar minimal surface

X(w) = (x(w), y(w), z(w)), w ∈ Ω,

defined on a simply connected domain Ω in C, there are a holomorphic func-
tion μ and a meromorphic function ν in Ω with μ 	≡ 0, ν 	≡ 0 such that μν2

is holomorphic in Ω, and that

x(w) = x0 + Re
∫ w

w0

1
2
μ(1 − ν2) dζ,

y(w) = y0 + Re
∫ w

w0

i

2
μ(1 + ν2) dζ,(7)

z(w) = z0 + Re
∫ w

w0

μν dζ

holds for w,w0 ∈ Ω and X0 = (x0, y0, z0) = X(w0).
Conversely, two functions μ and ν as above define by means of (7) a

minimal surface X : Ω → R
3 provided that Ω is simply connected.

Remark. A point w ∈ Ω is a branch point of a minimal surface X : Ω → R
3

represented by (1) and (2) if and only if Φ1(w) = Φ2(w) = Φ3(w) = 0. Thus,
w ∈ Ω is a branch point of a minimal surface X : Ω → R3 represented by (7)
if and only if both μ and μν2 are vanishing at w. The set of regular points
Ω′ := {w ∈ Ω : Λ(w) 	= 0} is therefore given by

Ω′ = {w ∈ Ω : |μ(w)|(1 + |ν(w)|2) 	= 0}.



3.3 Representation Formulas for Minimal Surfaces 113

The function ν has an important geometric meaning. It will turn out that
ν is just the stereographic projection of the spherical image N of X onto the
x, y-plane.

Before we prove this, we want to derive explicit expressions for the spher-
ical image N and for the Gauss curvature of a minimal surface X : Ω → R

3

given by

(8) X(w) = Re f(w),

with an isotropic curve f : Ω → R
3 satisfying

f ′ = Xu − iXv = Φ = (Φ1, Φ2, Φ3)(9)

=
(

1
2
μ(1 − ν2),

i

2
μ(1 + ν2), μν

)
,

where μ and ν satisfy the assumptions stated in Theorem 1. Then the function

Λ := |Xu|2 = 1
2 | ∇X|2 = 1

2 |f ′ |2 = 1
2 |Φ|2

can be written as

(10) Λ = 1
4 |μ|2(1 + |ν|2)2,

and the line element ds = |dX| takes the form

ds2 = Λ{du2 + dv2}.

By virtue of Section 3.1 (20), it follows that

Xu ∧ Xv = 1
4 |μ|2{1 + |ν|2}(2 Re ν, 2 Im ν, |ν|2 − 1).

Taking (10) into account, we obtain the representation

(11) N =
1

1 + |ν|2 (2 Re ν, 2 Im ν, |ν|2 − 1)

for the spherical image N : Ω → S2 of X.
In order to compute K, we first note that

f ′ = μ

(
1
2
(1 − ν2),

i

2
(1 + ν2), ν

)

implies

f ′ ′ =
μ′

μ
f ′ + μν′g, g := (−ν, iν, 1),

on {w ∈ Ω : μ(w) 	= 0}. From (11) we infer that

〈N, g〉 = −1.
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Since the zeros of μ are isolated and 〈N, f ′ 〉 = 0, we obtain

〈N, f ′ ′ 〉 = −μν′,

and on account of (25) of Section 3.1, we arrive at

(12) l = L − iM = −μν′.

The branch points of X(w) are removable singularities of l(w) = −μ(w)ν′(w)
since l(w) remains bounded if w approaches such a point. Hence l(w) is holo-
morphic in Ω.

Recall that μν2 is holomorphic in Ω, and that w ∈ Ω is a branch point of
X if and only if both μ(w) = 0 and μ(w)ν2(w) = 0 are satisfied. If Λ(w) 	= 0,
then l(w) = 0 if either ν′(w) = 0, or w is a pole for ν and a zero of at least
third order for μ.

Moreover, the formulas (10) and (12) together with (26) of Section 3.1
yield

(13) K = −
{

4|ν′ |
|μ|(1 + |ν|2)2

}2

for the Gauss curvature of X on Ω′ = {w ∈ Ω : Λ(w) 	= 0}. Then we infer
for any w ∈ Ω′ which is not a pole of ν that K(w) 	= 0 holds if and only if
ν′(w) 	= 0 is satisfied.

Moreover, Proposition 5 of Section 3.1 yields:

A curve γ(t) = α(t) + iβ(t) contained in Ω (with α(t), β(t) ∈ R) describes an
asymptotic line of the minimal surface X if and only if

(14) Re{μ(γ)ν′(γ)γ̇2} = 0,

and the lines of curvature are characterized by

(15) Im{μ(γ)ν′(γ)γ̇2} = 0.

Now we want to give a geometric interpretation of the function ν(w) that
enters into the representation formula (7).

Let us identify the complex plane C = {x + iy : x, y ∈ R} with the x, y-
plane {(x, y, z) : z = 0} in R

3, and let C̄ = C ∪ { ∞} be the compactification
of C with the point at infinity. As usual, we introduce the Riemann sphere
S2 = {(x, y, z) : x2 + y2 + z2 = 1}, and denote by P = (0, 0, 1) its north pole.
Then the stereographic projection

σ : S2 → C̄

is the 1–1-mapping of S2 onto the compactified complex plane C̄ which asso-
ciates each point Q ∈ S2, Q 	= P, with the intersection point ω of the x, y-plane
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Fig. 1. The stereographic projection.

with the straight line through P and Q, whereas P is mapped to ∞ (cf. Fig. 1).
Let ρ : C̄ → S2 be the inverse of σ. Then the image ρ(ω) := (a, b, c) = Q of
some point ω = ξ + iη ∈ C is given by

(16) a =
2ξ

1 + ξ2 + η2
, b =

2η
1 + ξ2 + η2

, c =
ξ2 + η2 − 1
1 + ξ2 + η2

and ρ(∞) = P .
The formula (16) can be written as

(17) ρ(ω) =
1

1 + |ω|2 (2 Reω, 2 Imω, |ω|2 − 1),

and we see that ρ(ω) → (0, 0, 1) = P as |ω| → ∞. A straightforward compu-
tation yields for ω = σ(Q) the formula

(18) ω =
a + ib

1 − c
.

If we now compare the formula (11) for the spherical image N(w) of a minimal
surface X(w), w ∈ Ω, given by (8) and (9), with the expression (17) for
ρ = σ−1, then we see that

(19) N(w) = ρ(ν(w)),

whence

(20) ν(w) = σ(N(w)).

Thus the meromorphic function ν : Ω → C̄ is nothing but the stereographic
projection of the normal image N of the given minimal surface X:

(21) ν = σ ◦ N, N = ρ ◦ ν.
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Fig. 2. The part of Enneper’s surface corresponding to the rectangle Ω = [−1/2, 1/2]2

floats at the top of the picture; w is mapped to X(w). The unit normal vector N(w) of

Enneper’s surface at the point X(w) is shown twice, one copy has its foot on the surface,

the other one at the origin of space. The Gauss image, i.e. the set of all unit normals of this

part of Enneper’s surface is displayed at the bottom. For minimal surfaces the Gauss map

corresponds to the meromorphic function ν(w) appearing in Weierstrass’s representation

formula (7) via the inverse of the stereographic projection from Ω to S2. The latter is

indicated by the dotted line starting at the north pole P , and for Enneper’s surface ν(w) = w

In particular, w ∈ Ω is a pole of ν if and only if the point N(w) ∈ S2 is the
north pole P .

Furthermore, the mapping

(22) ω = ν(w), w ∈ Ω,

is a biholomorphic mapping of Ω onto Ω∗ := ν(Ω) if the following two condi-
tions are satisfied:

(i) N(w) 	= P for all w ∈ Ω;

(ii) the mapping N : Ω → S2 is injective.
(23)

If ν : Ω → Ω∗ is biholomorphic, then we have ν′(w) 	= 0 for all w ∈ Ω, and
this implies K(w) < 0 on Ω, i.e., X has no umbilical points.

Suppose now that ν : Ω → Ω∗ is a biholomorphic mapping, and let

(24) w = τ(ω), ω ∈ Ω∗,

be its inverse. Then the reparametrization Y = X ◦ τ of the minimal surface
X is again a minimal surface, and
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(25) Y (ω) = X(τ(ω)), ω ∈ Ω∗.

Let us introduce the function

(26) F(ω) :=
1
2

μ(τ(ω))
ν′(τ(ω))

=
1
2
τ ′(ω)μ(τ(ω))

which is holomorphic in Ω∗. Then we infer from (7) the following representa-
tion formula of Weierstrass:

(27) Y (ω) = X0 + Re

⎡
⎢⎣

∫ ω

ω0
(1 − ω2)F(ω)dω∫ ω

ω0
i(1 + ω2) F(ω)dω∫ ω

ω0
2ωF(ω) dω

⎤
⎥⎦

where ω, ω0 ∈ Ω∗, and X0 = X(w0) = Y (ω0), ω0 = ν(w0).
Instead of two (essentially) arbitrary functions μ and ν as in (7), the

expression (27) only involves an arbitrary function F(ω). Conversely, for every
holomorphic function F(ω) 	≡ 0 on a simply connected domain Ω∗ in C, the
formula (27) defines a minimal surface Y : Ω∗ → R

3. In other words, to
each holomorphic function F 	= 0 corresponds some minimal surface, and
vice versa. Thus we have also recovered the result of Monge from the end of
Section 3.1.

From (27), we can derive an integral-free representation formula by intro-
ducing a function F (ω) such that F (3)(ω) = F(ω), and performing some partial
integrations. Let Y = (Y 1, Y 2, Y 3). Then, for suitable constants c1, c2, c3, we
obtain

(28)

Y 1(ω) = Re{(1 − ω2)F ′ ′(ω) + 2ωF ′(ω) − 2F (ω)} + c1,

Y 2(ω) = Re{i(1 + ω2)F ′ ′(ω) − 2iωF ′(ω) + 2iF (ω)} + c2,

Y 3(ω) = Re{2ωF ′ ′(ω) − 2F ′(ω)} + c3.

Weierstrass ([1], pp. 48–50) has used this representation to prove the following
theorem:

If F (ω) is an algebraic function of ω, then (28) defines an algebraic minimal
surface, and conversely, every algebraic minimal surface possesses a parameter
representation Y (ω) of type (28) with an algebraic function F (ω).

Let us now put together the main results for the representation formula
(27). We first note that (27) goes over into (7) if we replace ω and ω0 and
w and w0, Y (ω) and X(w), and set μ(w) := 2F(w) and ν(w) := w. Then we
arrive at the following result:

Theorem 2. Let F(w) be a holomorphic function in a simply connected do-
main Ω of C,F(w) 	≡ 0, and set

(29) Φ(w) = ((1 − w2)F(w), i(1 + w2)F(w), 2wF(w)).
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Then

(30) X(w) = X0 + Re
∫ w

w0

Φ(w) dw, w ∈ Ω,

defines a minimal surface X : Ω → R
3 with the surface normal

(31) N(w) =
1

1 + u2 + v2
(2u, 2v, u2 + v2 − 1), w = u + iv.

If σ denotes the stereographic projection from the north pole P = (0, 0, 1) of
S2 = {(x, y, z) : x2 + y2 + z2 = 1} onto the x, y-plane, then we have

σ(N(w)) = w.

The line element ds = |dX| on the surface X is given by

(32) ds2 = Λ(w){du2 + dv2}

where

(32′) Λ(w) = |F(w)|2(1 + u2 + v2)2, w = u + iv.

Thus the set Ω′ := {w ∈ Ω : Λ(w) 	= 0} of regular points of the minimal
surface X is described by

(33) Ω′ = {w ∈ Ω : F(w) 	= 0),

and its Gauss curvature K(w) on Ω′ is given by

(34) K(w) = − 4
|F(w)|2(1 + u2 + v2)4

.

The coefficients L,M,N of the second fundamental form satisfy L + N = 0
and can be obtained from the holomorphic function

(35) l(w) = L(w) − iM(w) = −2F(w), w ∈ Ω.

The branch points w ∈ Ω of X are the zeros of the holomorphic function
F(w), w ∈ Ω. Thus X has no umbilical points since an umbilical point is a zero
of l on the set of regular points Ω′. The directions (du, dv) of the asymptotic
lines are characterized by the equation

(36) Re F(w)(dw)2 = 0,

and the lines of curvature are described by

(37) Im F(w)(dw)2 = 0.
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Finally, the associate minimal surfaces Z(w, θ) to X(w) are given by

(38) Z(w, θ) = X0 + Re
∫ w

w0

e−iθΦ(w) dw;

their Weierstrass function F̃(w, θ) is simply

(39) F̃(w, θ) = e−iθ
F(w).

Conversely, if f : Ω̃ → C
3 is an isotropic map on a simply connected domain

Ω̃ ⊂ C, then the minimal surface

X̃(w) = X0 + Re
∫ w

w0

f ′(w) dw, w ∈ Ω̃,

has an equivalent representation X : Ω → R3 on Ω := σ(Ñ(Ω̃)), given by
(29) and (30), provided that its normal Ñ(w) satisfies condition (23):

(i) Ñ(w) 	= north pole of S2 for all w ∈ Ω̃;

(ii) the mapping Ñ : Ω̃ → S2 is injective.

Remark. In our computation of the Gauss curvature K we have used the
theorema egregium. Yet for minimal surfaces we can obtain K in a much
simpler way, basically by going back to the definition of K. First we note that
the spherical image

N(w) =
1

1 + u2 + v2
(2u, 2v, u2 + v2 − 1), w = u + iv,

is given by conformal parameters u, v; in fact, a straightforward computation
yields

(40)
|Nu(w)|2 = |Nv(w)|2 =

4
(1 + u2 + v2)2

,

〈Nu(w), Nv(w)〉 = 0.

(Note that N is just the inverse ρ = σ−1 of the stereographic projection
σ : S2 → C̄ restricted to Ω. The equations (40) express the fact that ρ and
therefore also σ are conformal mappings.)

From (40) we obtain for the third fundamental form of X the expression

(41) III(du, dv) =
4

(1 + u2 + v2)2
{du2 + dv2}

whereas (32) implies

I(du, dv) = Λ(w){du2 + dv2}.



120 3 Representation Formulas and Examples of Minimal Surfaces

On the other hand, it follows from Section 1.2, (26) that

III(du, dv) = −KI(du, dv)

whence

(42) K(w) = − 4
(1 + u2 + v2)2Λ(w)

.

On account of (32′), this relation is equal to (34).
Another possibility to compute K directly is to employ formula (44) (or

(45)) of Section 1.2.

Goursat has found a procedure to generate from a given minimal surface
X : Ω → R

3 and its adjoint X∗ : Ω → R
3 a one-parameter family of min-

imal surfaces Y (w, κ), w ∈ Ω, where the parameter κ varies in R, κ 	= 0.
The Goursat transformation resembles Bonnet’s transformation described in
Section 3.1 but is less restrictive. It is defined by

(43) Y (w, κ) = X0 + Re
∫ w

w0

Ψ(w, κ) dw

where

(44) Ψ(w, κ) =
((

1
κ

− κw2

)
F(w), i

(
1
κ

+ κw2

)
F(w), 2wF(w)

)
,

and

X(w) + iX∗(w) = X0 +
∫ w

w0

Φ(w) dw,

Φ(w) = ((1 − w2)F(w), i(1 + w2)F(w), 2wF(w)).

If X0 = 0, Y = (ξ, η, ζ), X = (x, y, z), X∗ = (x∗, y∗, z∗), we can write

ξ =
1 + κ2

2κ
x +

1 − κ2

2κ
y∗,

η =
1 + κ2

2κ
y +

κ2 − 1
2κ

x∗,(45)

ζ = z.

For fixed w and varying κ, the points Y (w, κ) describe a branch of a parabola.
Goursat’s transformation maps asymptotic lines into asymptotic lines and

lines of curvature into lines of curvature. For further details, we refer to Gour-
sat [1,2] (first and second mémoire).

Now we shall prove another representation formula, due to Weierstrass,
which is often found in the literature:
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Theorem 3 (Weierstrass representation formula). For every regular
minimal surface X : Ω → R

3 on a simply connected domain Ω, there exist
two holomorphic functions G and H without common zeros such that

x(w) = x0 + Re
∫ w

w0

(G2 − H2) dζ,

y(w) = y0 + Re
∫ w

w0

i(G2 + H2) dζ,(46)

z(w) = z0 + Re
∫ w

w0

2GH dζ

holds for w,w0 ∈ Ω and X0 = X(w0). Conversely, if G and H are two
holomorphic functions on a simply connected domain Ω such that |G(w)|2 +
|H(w)|2 	≡ 0, then (46) defines a nonconstant minimal surface which is regular
if and only if G and H have no zeros in common.

Proof. The second part follows by a straightforward computation. In order to
verify the first part, we consider an arbitrary minimal surface X : Ω → R3

given by

X(w) = X0 + Re
∫ w

w0

Φ(ζ) dζ, w ∈ Ω,

where Φ = (Φ1, Φ2, Φ3) : Ω → C
3 is a holomorphic mapping satisfying

(47) |Φ1|2 + |Φ2|2 + |Φ3|2 > 0

and

(48) (Φ1 − iΦ2)(Φ1 + iΦ2) = −Φ2
3.

The last equation, which is equivalent to (1), implies that every zero of Φ1 −iΦ2

or of Φ1 + iΦ2 is also a zero of Φ3. Then we infer that, because of (47), the two
functions Φ1 − iΦ2 and Φ1 + iΦ2 cannot have common zeros. Since every zero
of Φ2

3 is of even order, it follows that the zeros of both Φ1 − iΦ2 and Φ1 + iΦ2

are of even order. Then the functions

G :=
√

1
2 (Φ1 − iΦ2), H :=

√
− 1

2 (Φ1 + iΦ2)

are single-valued holomorphic functions which, for suitably chosen square
roots, satisfy

2GH = Φ3,

and clearly
G2 − H2 = Φ1, i(G2 + H2) = Φ2.

Moreover, the functions G and H have no common zeros. �
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Remark. 1. If we omit the assumption (47), then not every minimal surface
X(w) = X0 +Re

∫ w

w0
Φ(ζ) dζ can be written in the form (46). For instance, let

Φ1(w) = 3w, Φ2(w) = 5iw, Φ3(w) = 4w,

where Ω is a small disk centered at w = 0. If there were functions G and H
such that

3w = G(w)2 − H(w)2, 5iw = i{G(w)2 + H(w)2}, 4w = 2G(w)H(w),

it would follow that G2(w) = 4w. However, there is no (single-valued) holo-
morphic solution G(w) of this equation in Ω.

2. Weierstrass has derived the representation (30) with Φ given by (29)
from (46), by introducing a new variable

ω =
H(w)
G(w)

=
Φ1(w) + iΦ2(w)

−Φ3(w)

(arranging everything in such a way that the mapping w → ω is biholomor-
phic). Then

(Φ1 − iΦ2)(Φ1 + iΦ2) = −Φ2
3

implies that
1
ω

=
Φ1(w) − iΦ2(w)

Φ3(w)
,

and it follows that

G2(w)
dw

dω
=

1
2
(Φ1(w) − iΦ2(w))

dw

dω
= F(ω).

Then one can pass from (46) to the desired equations.

As a remarkable application of the Enneper–Weierstrass representation
formula we present the following1

Theorem of R. Krust. If an embedded minimal surface X : B → R3, B =
{w ∈ C : |w| < 1}, can be written as a graph over a convex domain in a plane,
then the corresponding adjoint surface X∗ : B → R

3 is a graph as well.

First we write the representation formula (7) in a different way. Let us
introduce the two meromorphic functions g and h by

g := ν, h′ := μν.

Then we have
dh = μν dζ,

1 Oral communication of R. Krust to H. Karcher. Our proof is borrowed from Karcher’s

note [3].
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and we can write (7) in the form

(49) X(w) = X(w0) + Re
∫ w

w0

ψ′(ζ) dζ,

where dψ(ζ) = ψ′(ζ) dζ is given by

(50) dψ =
[
1
2

(
1
g

− g

)
,
i

2

(
1
g

+ g

)
, 1

]
dh.

Note that the 1-forms dψ and dh are single-valued on B. The Gauss map
N : B → S2 associated with X is given by

(51) N =
1

1 + |g|2 (2 Re g, 2 Im g, |g|2 − 1).

Proof of Krust’s Theorem. We can assume that X is nonplanar, that it can
be represented as a graph above the x, y-plane, and that N(w) always points
into the lower hemisphere of S2. Then we infer from (51) that the function g
appearing in the Weierstrass representation (49), (50) of X satisfies

(52) |g(w)| < 1 for all w ∈ B.

Moreover, we can also suppose that w0 = 0 and X(w0) = 0. Introducing the
functions σ(w) and τ(w), w ∈ B, by

(53) σ(w) := −
∫ w

0

g

2
dh, τ(w) :=

∫ w

0

1
2g

dh,

we can write the first two coordinate functions x(w) and y(w) of X(w) as

(54) x(w) = Re[σ(w) + τ(w)], y(w) = Re i[τ(w) − σ(w)].

Then the orthogonal projections

(55) π(w) := x(w) + iy(w), π∗(w) := x∗(w) + iy∗(w)

of X(w) and of its adjoint X∗(w) = (x∗(w), y∗(w), z∗(w)) onto the x, y-plane
can be written as

(56) π = τ̄ + σ, π∗ = i(τ̄ − σ).

Pick any two points w1 and w2 in B, w1 	= w2 and set p1 := π(w1), p2 :=
π(w2). Since D := π(B) is a convex domain in the x, y-plane, we can connect
p1 and p2 within D by a line segment L : [0, 1] → D such that L(0) = p1 and
L(1) = p2. Then there is a piecewise smooth curve γ : [0, 1] → B such that
L = π ◦ γ. We can assume that |L̇(t)| = |p2 − p1| for all t ∈ [0, 1] whence

p2 − p1 = L (1) − L(0) = L̇(t) for all t ∈ [0, 1]
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and therefore

(57) p2 − p1 =
[

1
2g(w)

h′(w)γ̇(t) − g(w)
2

h′(w)γ̇(t)
]∣∣∣∣

w=γ(t)

.

Consider the scalar product S of the two vectors p2 −p1 and i[π∗(w2)−π∗(w1)]
of R

2:

S := 〈p2 − p1, i[π∗(w2) − π∗(w1)]〉(58)

=
〈
p2 − p1, −

∫
γ

(
g

2
dh +

1
2g

dh

)〉
.

Since for any two vectors w1, w2 ∈ R
2 =̂ C we have 〈w1, w2〉 = Re(w1w̄2), it

follows from (57) that

S =
∫ 1

0

Re
{[(

g

2
h′ +

1
2g

h′
)

◦ γ

]
γ̇(t)

[(
g

2
h′ − 1

2g
h′

)
◦ γ

]
γ̇(t)} dt

=
∫ 1

0

1
4

|γ̇(t)|2
[

|g(γ(t))|2 − 1
|g(γ(t))|2

]
|h′((γ(t))|2 dt.

Then we infer from (52) that S < 0. Therefore we obtain from (58) that
π∗(w2) − π∗(w1) 	= 0 for any pair of distinct points w1, w2 ∈ B, and we
conclude that the adjoint surface X∗ is a graph.

Remark. Similarly one proves that all associate surfaces X : B → R
3 of a

minimal embedding X : B → R
3 are graphs if X(B) can be written as a graph

over a convex domain in a plane.

3.4 Björling’s Problem. Straight Lines and Planar Lines
of Curvature on Minimal Surfaces. Schwarzian Chains

Given a real analytic strip S in R
3, Björling’s problem is to find a minimal

surface X containing this strip in its interior. This is but a special case of
the general theorem by Cauchy–Kovalevskaya whence we will expect to find a
uniquely determined solution. Following an idea by H.A. Schwarz, this solution
can be given by an explicit formula in terms of the initial data, i.e., in terms
of the prescribed strip S. Schwarz’s solution of the Björling problem yields a
beautiful method for generating minimal surfaces with interesting geometric
properties.

Let us now describe the problem in detail. We consider a real-analytic strip

S = {(c(t), n(t)) : t ∈ I}

consisting of a real-analytic curve c : I → R
3 with ċ(t) 	= 0 (or at least ċ(t) = 0

only in isolated points t ∈ I), and of a real-analytic vector field n : I → R
3

along c, with |n(t)| ≡ 1 and 〈ċ(t), n(t)〉 ≡ 0.
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Fig. 1. A cycloid is the curve generated by a point P on the periphery of a circle with center

C rolling along a straight line. Catalan’s surface, whose part corresponding to −3π/5 ≤ u ≤
13π/5, −2π/5 ≤ v ≤ 0 has been drawn here, solves Björling’s problem to find a minimal

surface passing through the cycloid in such a way that the surface normal coincides with

the cycloid’s principal normal vector. The two parallel projections onto the x, z-plane show

that the curves u = constant (e.g. the curve passing through the points P and Q) are planar

and perpendicular to the x, z-plane. Each of them is, in fact, a parabola having its apex on

the cycloid

We assume that I is an open interval in R.
Björling’s problem consists in finding a minimal surface X : Ω → R3 with

I ⊂ Ω such that the following conditions are satisfied:

(i) X(u, 0) = c(u) for u ∈ I,

(ii) N(u, 0) = n(u) for u ∈ I,

N being the normal of X,N : Ω → R
3.

Theorem 1. For any prescribed real-analytic strip S = {(c(t), n(t)) : t ∈ I},
the corresponding Björling problem has exactly one solution X(u, v), given by

(1) X(u, v) = Re
{
c(w) − i

∫ w

u0

n(w) ∧ dc(w)
}
,

w = u + iv ∈ Ω, u0 ∈ I, where Ω is a simply connected domain with I ⊂ Ω
in which the power-series expansions of both c and n are converging.

Remark. 1. The uniqueness is to be understood in the following sense: If
X̃(u, v), w = u + iv ∈ Ω̃, is another solution, then X(u, v) = X̃(u, v) for
u + iv ∈ Ω ∩ Ω̃.

2. Formula (1) means the following: One determines holomorphic exten-
sions c(u + iv) and n(u + iv) of the real-analytic functions c(t) and n(t),
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Fig. 2. A large piece of Catalan’s surface generated by the cycloid via Björling’s problem

t ∈ I, to a suitable simply-connected domain Ω with I ⊂ Ω, and then one
determines the line integral

∫ w

u0

n(w) ∧ dc(w) =
∫ w

u0

n(w) ∧ c′(w) dw

where c′(w) is the complex derivative of the holomorphic function c(w).

Proof of Theorem 1. Suppose that X(u, v) is a solution of Björling’s problem,
defined in the simply connected domain Ω, and let X∗ : Ω → R

3 be its adjoint
surface with X∗(u0, 0) = 0, u0 ∈ I. Then

f(w) = X(u, v) + iX∗(u, v), w = u + iv ∈ Ω,

is an isotropic curve with X = Re f and

f ′ = Xu + iX∗
u = Xu − iXv.

Since Xv = N ∧ Xu, it follows that

f ′ = Xu − iN ∧ Xu

whence
f ′(u) = ċ(u) − in(u) ∧ ċ(u)

and therefore

f(u) = c(u) − i

∫ u

u0

n(t) ∧ dc(t) for all u ∈ I.
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This implies

(2) f(w) = c(w) − i

∫ w

u0

n(w) ∧ dc(w), w ∈ Ω,

since both sides are holomorphic functions of w. Hence any possible solution
X must be of the form (1), which yields the uniqueness.

Now we shall prove that (1), in fact, yields the solution to Björling’s prob-
lem. To this end, we consider the holomorphic curve f : Ω → C

3 defined
by (2). For w ∈ I, we have

Re f ′(w) = ċ(w), Im f ′(w) = −n(w) ∧ ċ(w).

Since the real vectors ċ(w) and ċ(w) ∧ n(w) are orthogonal to each other and
have the same length, we infer that

〈f ′(w), f ′(w)〉 = 0 for all w ∈ I,

and therefore also

〈f ′(w), f ′(w)〉 = 0 for all w ∈ Ω.

Hence X(u, v) = Re f(w), w = u + iv ∈ Ω, is a minimal surface. Since
c(w), n(w), and c′(w) are real for w ∈ I, we infer that

(3) X(u, 0) = Re f(u) = c(u) for u ∈ I,

and
Xu(u, 0) − iXv(u, 0) = f ′(u) = ċ(u) − in(u) ∧ ċ(u), u ∈ I,

whence

(4) Xu(u, 0) = ċ(u), Xv(u, 0) = n(u) ∧ ċ(u).

Moreover, we have
Xv(u, 0) = N(u, 0) ∧ Xu(u, 0).

Because of
〈Xu(u, 0), Xv(u, 0)〉 = 0

and of
〈n(u), ċ(u)〉 = 0, |N(u, 0)| = |n(u)| = 1,

we infer that
N(u, 0) = n(u). �

Corollary 1. Let X(u, v) be the solution of Björling’s problem, given by (1).
Then we have

(5) X(u, −v) = Re{c(w) + i

∫ w

u0

n(w) ∧ dc(w)}, w = u + iv.
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Proof. The surface X̃(u, v) := X(u, −v) is again a minimal surface with the
normal Ñ(u, v) = −N(u, −v). Hence X̃ solves Björling’s problem for the strip

S̃ = {(c(t), −n(t)) : t ∈ I}

and is, therefore, given by

X̃(u, v) = Re
{
c(w) + i

∫ w

u0

n(w) ∧ dc(w)
}
. �

The formulae (1) and (5) imply the following two symmetry principles
discovered by H.A. Schwarz:

Theorem 2. (i) Every straight line contained in a minimal surface is an axis
of symmetry of the surface.

(ii) If a minimal surface intersects some plane E perpendicularly, then E
is a plane of symmetry of the surface.

In fact, this theorem is an immediate consequence of the following

Lemma 1. Let X(u, v) = (x(u, v), y(u, v), z(u, v)), w = u + iv ∈ Ω, be a
minimal surface whose domain of definition Ω contains some interval I that
lies on the real axis.

(i) If, for all u ∈ I, the points X(u, 0) are contained in the x-axis, then we
have for w = u + iv ∈ Ω with u ∈ I and w = u − iv ∈ Ω that

x(u, −v) = x(u, v),
y(u, −v) = −y(u, v),(6)
z(u, −v) = −z(u, v).

(ii) If the curve Σ = {X(u, 0) : u ∈ I} is contained in the x, y-plane E,
and if the surface X intersects orthogonally at Σ, then it follows

x(u, −v) = x(u, v),
y(u, −v) = y(u, v),(7)
z(u, −v) = −z(u, v)

for u ∈ I and w,w ∈ Ω.

Proof. (i) Set c(u) := X(u, 0) and n(u) := N(u, 0). By assumption, we have

c(u) = (c1(u), 0, 0), n(u) = (0, n2(u), n3(u)),

and therefore

n(u) ∧ ċ(u) = (0, ċ1(u)n3(u), −ċ1(u)n2(u)).

On account of (1) and (5), we then arrive at the formulae (6).
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Fig. 3. Lines of symmetry of Scherk’s surface demonstrate Schwarz’s first reflection principle

(ii) If X intersects E = {z = 0} at c(u) := X(u, 0) orthogonally, and if
n(u) := N(u, 0), it follows that

c(u) = (c1(u), c2(u), 0), n(u) = (n1(u), n2(u), 0),

whence
n(u) ∧ ċ(u) = (0, 0, n1(u)ċ2(u) − n2(u)ċ1(u)).

In conjunction with (1) and (5), we then obtain the identities (7). �
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Fig. 4. Planes of symmetry in Catalan’s and Henneberg’s surfaces

Lemma 2. Let X(w), w ∈ Ω, be a regular surface of class C3(Ω,R3), and
let c(t) = X(ω(t)), t ∈ I, be a regular curve on X defined by some C3-curve
ω : I → Ω. Then the following holds:

(i) The curve c is both a geodesic and an asymptotic line if and only if it
is a straight line.

(ii) Let c be a geodesic on X. Then c is also a line of curvature if and only
if it is a plane curve.

(iii) Suppose that c is contained in a plane E. Then c is a line of curvature
on X if and only if X intersects E along c at a constant angle ϕ (if ϕ = π

2 ,
then c is a geodesic).

Proof. We may assume that t coincides with the parameter of arc length s. Let
{t(s), s(s),N(s)} be the moving frame along c(s), consisting of the tangent
vector t(s) = ċ(s), the side normal s(s), and the surface normal N(s) =
N(ω(s)). Secondly, we consider the frame {t(s),n(s), b(s)}, where n(s) is the
principal normal, and b(s) = t (s) ∧ n(s) stands for the binormal vector of
c(s). Let us recall the formula (14) of Section 1.2:

(8) ṫ = κgs + κnN,

where κn = κ cos θ is the normal curvature of c, κg = ±κ sin θ the geodesic
curvature of c, cos θ = 〈n,N〉, and

ṫ = κn,

where κ denotes the curvature of c.
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(i) Suppose now that κn(s) ≡ 0 and κg(s) ≡ 0. Then the relation (8)
implies t (s) ≡ const, whence c(s) must be a straight line. Conversely, if c(s)
is a straight line, then ṫ(s) ≡ 0, and therefore κn(s) ≡ 0 as well as κg(s) ≡ 0.
Thus the first assertion is proved.

(ii) Suppose that c(s) is a geodesic line, i.e., κg(s) ≡ 0, or n(s) ≡ ±N(s).
We may assume that n(s) = N(s). Then the identity

ḃ = ṫ ∧ n + t ∧ ṅ = κn ∧ n + t ∧ ṅ = t ∧ ṅ

yields
ḃ = t ∧ Ṅ.

Since Ṅ(s) ∈ Tω(s)X, we can write

(9) Ṅ = γ1t + γ2s,

whence
ḃ = γ2N.

It follows that ḃ(s) ≡ 0 if and only if γ2(s) ≡ 0, that is, if and only if we have
Ṅ(s) ≡ γ1(s)t(s). Thus we conclude that c(s) is planar if and only if c is a
line of curvature.

(iii) Introduce ϕ(s) as the angle between the tangent plane of the surface
at w = ω(s) and the osculating plane of the curve c for the parameter value
s, i.e.,

cosϕ = 〈N, b〉.
Then we obtain

(10)
d

ds
cosϕ = 〈Ṅ, b〉 + 〈N, ḃ〉.

If c is a planar curve, we have ḃ = 0, and it satisfies

−Ṅ = kt, k = κ1 or κ2,

if it is a line of curvature. Hence a planar line of curvature fulfills

d

ds
cosϕ = −k〈t, b〉 = 0

or ϕ(s) ≡ const.
Conversely, suppose that c is a plane curve such that ϕ(s) ≡ const. Then

we have ḃ(s) ≡ 0, and (10) implies

(11) 〈Ṅ(s), b(s)〉 ≡ 0.

Moreover, we can use formula (9) from part (ii):

(12) Ṅ(s) ≡ γ1(s)t(s) + γ2(s)s(s),
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Fig. 5. The affine spaces shown here are the setting in which a part of Catalan’s surface is

deformed into its adjoint surface. It will be illustrated that if a minimal surface is perpen-

dicular to a plane along a part of the boundary of its domain of definition, then its adjoint

minimal surface maps that part of the boundary onto a straight line perpendicular to that

plane, and vice versa (Section 3.4, Proposition 1)

and (11) yields

(13) Ṅ(s) ≡ γ1(s)t(s) + γ3(s)n(s)

for an appropriate function γ3(s). Thus, for every admissible value of the
parameter s, at least one of the two relations

γ2(s) = γ3(s) = 0 or s(s) = n(s).

must be satisfied. Suppose that, for some admissible value s0, the equation
s(s0) = n(s0) holds. Then we have b(s0) = ±N(s0), i.e. ϕ(s0) = 0. On the
other hand, since ϕ(s) ≡ const, we find ϕ(s) ≡ 0, i.e., b(s) ≡ N(s) or b(s) ≡
−N(s). Since ḃ(s) ≡ 0, we infer that Ṅ(s) ≡ 0 and therefore (12) and (13)
yield γ2(s) ≡ 0 and γ3(s) ≡ 0. Hence in all cases our assumptions imply
γ2(s) ≡ 0 and γ3(s) ≡ 0, whence Ṅ(s) ≡ γ1(s)t (s), which means that c(s) is
a line of curvature. �

Supplement. It is easy to see that the assertions of Lemma 2 remain valid
if X is assumed to be a minimal surface with branch points and if c(t) is
supposed to be regular except for isolated points t ∈ I.

Now we can construct minimal surfaces with interesting special properties
by combining Schwarz’s formula (1) and Lemma 2. Before doing this, we want
to state a few observations, following from Lemma 2, which are pertinent to
the so-called Schwarzian chain problem.

Proposition 1. Let X : Ω → R
3 be a minimal surface with the normal map-

ping N : Ω → S2, and assume that X∗ : Ω → R
3 is an adjoint minimal
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Fig. 6. The bending process for the fundamental part 0 ≤ u ≤ 2π, 0 ≤ v (≤ π) < ∞
of Catalan’s surface into its adjoint surface through the family of its associated surfaces

(counter-clockwise from top right: θ = 0, π/6, π/3, and π/2). Catalan’s surface is perpen-

dicular to y = 0 along v = 0 and maps u = 0 and u = 2π onto straight lines orthogonal to

x = 0. Proposition 1 describes the resulting properties of the adjoint and the Gauss map

surface of X (hence, X∗ has the same normal mapping as X). Choose some
C3-curve ω : I → Ω with ω̇(t) 	= 0 except for isolated points t in the interval
I, and consider the curves c := X ◦ ω and c∗ := X∗ ◦ ω. Both have the same
spherical image γ := N ◦ ω, and the following holds:

(i) If c is a straight arc, i.e. c(I) is contained in some straight line L, then
γ(I) is contained in the great circle C of S2 that lies in the plane E0 through
the origin which is perpendicular to L. Moreover, c is both a geodesic and an
asymptotic line of X, and c∗ is a planar geodesic of X∗. The curve c∗ lies in
some plane E parallel to E0, and X∗ intersects E orthogonally along c∗.

(ii) If c is a planar geodesic on X, i.e. the orthogonal intersection of X
with some plane E, then γ(I) lies in the great circle C = E0 ∩ S2 where E0

is the plane parallel to E with 0 ∈ E0, and c∗ is a straight arc (and hence a
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Fig. 7. Another view of the bending of Catalan’s surface. The curve v = 0 is a geodesic,

and the lines u = 0 and u = 2π are asymptotic lines of the surface. The Gauss images of

these lines lie on great circles of the sphere S2

geodesic asymptotic line) on X∗. Moreover, c∗(I) is contained in some straight
line L perpendicular to E.

The proof of these very useful facts is either obvious or a direct consequence
of Lemma 2 and of Proposition 6 in Section 3.1. In particular, we emphasize
the following observation:

Straight arcs and planar geodesics on a minimal surface X are mapped by the
normal N of X into great circles on the Riemann sphere S2.

Similarly, one sees:

Planar lines of curvature on X are mapped by N into circles on S2.

By virtue of Theorem 2, we also obtain:

Straight arcs and planar geodesics on a minimal surface X are lines of rota-
tional symmetry or of mirror symmetry respectively.
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Fig. 8. A Schwarzian chain problem consisting of two plane faces of a cube and two

straight lines. Its solution can be used to construct periodic minimal surfaces. Lithograph

by H.A. Schwarz

Consider now a minimal surface X : Ω0 → R
3 without branch points, and

a simply connected subdomain Ω of Ω0 with Ω̄ ⊂ Ω0. Suppose also that the
normal N of X yields an injective mapping of Ω0 into S2, and that the bound-
ary of X(Ω̄) consists of finitely many straight arcs and planar geodesics (i.e.,
of orthogonal intersections of X with planes). In other words, the minimal
surface X : Ω̄ → R

3 is spanned into a frame {L1, . . . , Lj , E1, . . . , Ek } consist-
ing of finitely many straight lines L1, . . . , Lj and planes E1, . . . , Ek. Such a
frame is usually called a Schwarzian chain C. The boundary X : ∂Ω → R3 of
the minimal surface X : Ω̄ → R

3 by assumption lies on a Schwarzian chain,
and along its boundary, X is perpendicular to all planar parts of the chain C.
We say that X : Ω̄ → R

3 is a minimal surface solving the Schwarzian chain
problem for the chain C.

By Proposition 1 the boundary N : ∂Ω → S2 of the spherical image
N : Ω̄ → S2 of a solution X : Ω̄ → R3 of a Schwarzian chain problem
consists of circular arcs, all of which belong to great circles on S2. Moreover,
the stereographic projection σ : S2 → C̄ maps circles on S2 onto circles
(or straight lines) in C̄. As described in Section 3.3, we can introduce new
coordinates ω by some holomorphic mapping w = τ(ω), ω ∈ Ω∗, such that
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Fig. 9. A fundamental cell of A. Schoen’s S′ − S′′ cell in a cuboid whose top and bottom

faces are squares. The Schwarzian chain 〈S1, S2, . . . , S6〉 consists of the six faces of the

cuboid. It is spanned by a minimal surface which is clearly not of the type of the disk; it

consists of sixteen congruent pieces. (Varying the surface normal in the branch points of the

Gauss map up and down leads to a one-parameter family of minimal surfaces in cuboids of

different height.) Courtesy of K. Polthier

Fig. 10. A Schwarzian chain consisting of the faces of a hexagonal prism. Courtesy of

K. Polthier

the equivalent representation

Y (ω) := X(τ(ω)), ω ∈ Ω∗,

is defined on a domain Ω∗ bounded by circular arcs, if we assume that N(w) 	=
north pole for w ∈ Ω0. Moreover, there is a holomorphic function F(ω), ω ∈
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Ω∗, with F(ω) 	= 0, such that Y is given by

(14)
Y (ω) = X0 + Re

∫ ω

ω0

Φ(ω) dω, X0 ∈ R
3,

Φ(ω) = ((1 − ω2)F(ω), i(1 + ω2)F(ω), 2ωF(ω)).

The functions ν(w) = σ(N(w)) and l(w) = L(w) − iM(w) are holomorphic
on Ω0, ν yields the inverse of τ , and we have l(w) 	= 0 for w ∈ Ω0.

Fix some w0 ∈ Ω and set

(15) p(w) :=
∫ w

w0

√
l(w) dw, w ∈ Ω̄.

This defines a holomorphic function p(w), w ∈ Ω̄. Since p′(w) =
√

l(w) 	= 0,
we obtain by

ζ = p(w), w ∈ Ω̄,

a conformal mapping of Ω onto some domain Ω∗ ∗ in the ζ-plane. Note that

(16) dζ = p′(w) dw =
√

l(w)(dw)2.

Moreover, we know that the asymptotic lines on X are given by Re l(w)(dw)2

= 0, and the relation Im l(w)(dw)2 = 0 yields the lines of curvature (cf.
Section 3.1, Proposition 5). Thus the ζ-images of the asymptotic lines w =
w(t) lie on straight lines which intersect the real axis at an angle of 45◦ or of
135◦, whereas the lines of curvature w = w(t) are mapped by ζ = p(w) into
straight lines in the ζ-plane which are parallel either to the real axis or to the
imaginary axis.

For the solution X : Ω̄ → R
3 of the Schwarzian chain problem, the bound-

ary ∂Ω consists of arcs corresponding to asymptotic lines and to lines of cur-
vature. Hence the conformal mapping ζ = p(w) defined by (15) maps Ω onto
some polygonal domain Ω∗ ∗ in the ζ-plane. If we compose the two conformal
mappings

τ : Ω∗ → Ω, p : Ω → Ω∗ ∗,

then q = p ◦ τ : Ω∗ → Ω∗ ∗ yields a conformal mapping of Ω∗ onto Ω∗ ∗. By
the arguments given in Section 3.3 (cf. in particular the formulae (12), (26)
and (35)), we obtain from (15) the relation

q(ω) = p(τ(ω)) =
∫ ω

ω0

√
l(τ(ω))τ ′(ω) dω

=
∫ ω

ω0

√
−μ(τ(ω))ν′(τ(ω))τ ′(ω)2 dω

=
∫ ω

ω0

√
−2F(ω) dω,
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Fig. 11. A (generalized) Schwarzian chain made up of two analytic curves connecting two

plane rectangles. The Schwarzian chain problem is to find a minimal surface spanning this

configuration

Fig. 12. This particular Schwarzian chain problem is solved by the part of Henneberg’s

surface corresponding to the rectangle −0.3π ≤ u ≤ 0.3π, 0 ≤ v ≤ π/4. The surface

maps the sides parallel to the v-axis onto the two analytic boundary curves of the chain

whereas the two others correspond to Neil’s parabolas along which the minimal surface is

perpendicular to the two rectangles

that is,

(17) q(ω) =
∫ ω

ω0

√
−2F(ω) dω.

Hence the Weierstrass function F(ω) used in the representation (14) can
be computed from the conformal mapping q : Ω∗ → Ω∗ ∗ by the formula

(18) F(ω) = − 1
2

(
dq(ω)
dω

)2

.

By our assumptions, the mapping τ : Ω∗ → Ω is 1–1. If we also assume that
p : Ω → Ω∗ ∗ is 1–1, then q = p ◦ τ provides a biholomorphic mapping of Ω∗
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onto Ω∗ ∗ whose extension to Ω̄∗ maps the vertices of the circular polygonal
domain Ω∗ into the vertices of the polygonal domain Ω∗ ∗. (Note that the
vertices of Ω∗ are well defined by the chain C since we have assumed that the
normal mapping is defined on Ω̄∗.)

This reasoning, using the mappings τ : Ω∗ → Ω and p : Ω → Ω∗ ∗ together
with symmetry arguments, yields a handy method to solve the Schwarzian
chain problem in many interesting cases by explicit formulas. It can also be
used to construct many specimen of complete and, in particular, of periodic
minimal surfaces. For details, we refer to Karcher [1–3].

During the 19th century, function theoretic methods were the only known
tools for proving existence of minimal surfaces spanning a given boundary con-
figuration. These methods, however, limited the study of existence questions
to frames consisting only of straight lines and planar parts. In the following
chapters we shall develop another approach that is suitable for tackling more
general boundary problems for minimal surfaces. Yet this approach will only
yield the existence of minimal surfaces within a prescribed boundary config-
uration and does not give explicit formulas for solutions of a given boundary
problem. One has to use numerical methods to obtain further information on
the geometric shape of solutions. The classical methods of function theory,
on the other hand, have the appeal that they furnish explicit representation
formulas from which, in principle, one can read off all desired geometric prop-
erties of solutions. Surveys of and references to the classical results can be
found in Riemann [1], Schwarz [2], Weierstrass [1–5], Enneper [1], Darboux
[1], von Lilienthal [1], Blaschke [1], and Nitsche [28,37].

Now we are going to construct minimal surfaces with interesting special
properties by combining Lemma 2 with Schwarz’s solution (1) of the Björling
problem.

Firstly, Lemma 2(i) yields:

Proposition 2. Let S = {(c(t), n(t)) : t ∈ I} be a real analytic strip whose
supporting curve c(t), t ∈ I, is a straight line. Then

X(u, v) = Re
{
c(w) − i

∫ w

u0

n(w) ∧ dc(w)
}
, w = u + iv,

u0 ∈ I, defines a minimal surface with c(u) = X(u, 0) as geodesic. More-
over, c is also an asymptotic line of X, and the surface normal N(u, v) of X
coincides on I with n, i.e., N(u, 0) = n(u).

Consider now a real analytic strip S = {(c(t), n(t)) : t ∈ I} whose support-
ing curve c is contained in a plane E with a normal vector e which satisfies

〈n(t), e〉 ≡ cosϕ, t ∈ I,

for some constant angle ϕ. Then (1) defines a minimal surface X for which c
is a line of curvature contained in the plane E which intersects X at c under
the constant angle ϕ.
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Conversely, if c(t), t ∈ I, is a real analytic regular curve contained in a
plane E, and if ϕ(t) is a real analytic function, then

S = {(c(t), n(t)) : t ∈ I} with(19)

n(t) := e cosϕ(t) + ċ(t) ∧ e
1

|ċ(t)| sinϕ(t)

is a real analytic strip such that n(t) intersects E at its point of support c(t)
under the angle ϕ(t). By inserting (19) into (1), we obtain:

Proposition 3. Let c(t), t ∈ I, be some real analytic regular curve contained
in a plane E with a normal vector e, and let ϕ be some constant angle. Then,
for w = u + iv and u0 ∈ I,

X(w) = Re
{
c(w) − ie ∧ [c(w) − c(u0)] cosϕ(20)

− i sinϕ

∫ w

u0

〈c′(w), c′(w)〉1/2 dw e

}

defines a minimal surface containing c(u) = X(u, 0) as a planar line of cur-
vature. Moreover, X intersects E along c at a constant angle ϕ. Finally, if
ϕ = π

2 , then c furnishes a planar geodesic on the surface X given by (20).

By choosing E as the x, z-plane, we in particular obtain:

Proposition 4. If c(t) = (ξ(t), 0, ζ(t)), t ∈ R, is a real analytic regular curve
contained in the x, z-plane E, then

(21) X(u, v) =
(

Re ξ(w), Im
∫ w

0

{ξ′(w)2 + ζ ′(w)2}1/2 dw,Re ζ(w)
)

defines a minimal surface X that intersects E perpendicularly along c. More-
over, the curve c is a planar line of curvature on X; in fact, c is a planar
geodesic.

If c is a smooth regular curve with nonvanishing curvature, then the prin-
cipal normal n and the binormal b of c are well defined. If c is a geodesic or
an asymptotic line on a regular surface X, then the surface normal N of X
can be identified along c with n or with ±b, respectively. Thus we infer from
Theorem 1:

Proposition 5. Let c be a regular real analytic curve of nonvanishing curva-
ture. Then there exists a minimal surface X containing c as geodesic; X is
the only such surface if we assume that the surface normal of X along c coin-
cides with the principal normal N of c. Secondly, there is a minimal surface
Y containing c as an asymptotic line, and there is no other such surface if we
require that the surface normal of Y along c agrees with the binormal b of c.
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3.5 Examples of Minimal Surfaces

In this section we shall briefly discuss some of the classical minimal surfaces
found in the nineteenth century, as well as some new examples. Detailed ac-
counts and further information can be found in the treatises of Darboux [1]
and Nitsche [28,37], in the lecture notes of Barbosa and Colares [1], and in the
papers and reports of Hoffman [1–4], Hoffman and Meeks [1–10], Karcher [1–
5], Hoffman and Karcher [1] and Karcher and Polthier [1].

3.5.1 Catenoid and Helicoid

Figure 1 shows a part of the catenoid . This minimal surface owes its name to
the fact that it can be obtained by rotating a certain catenary (or chain line)
about some axis. If we choose the z-axis as axis of rotation, all catenoids are
generated by rotating the catenaries

(1) x = α cosh
(

z − z0

α

)
, z ∈ R,

where z0 and α are arbitrary constants, α 	= 0. It is one of the classical results
of the calculus of variations that every nonplanar rotationally symmetric min-
imal surface is congruent to a piece of a catenoid. We leave the simple proof
of this fact as an exercise to the reader.

Clearly, every catenoid is a doubly connected minimal surface which can
be parametrized2 by

x(u, v) = α coshu cos v,
y(u, v) = −α coshu sin v,(2)
z(u, v) = αu

with −∞ < u < ∞, 0 ≤ v < 2π, if we choose z0 = 0.
Note that the representation (2) is defined for all w = u+iv ∈ C. Hence the

mapping X : C → R
3, X(w) := (x(w), y(w), z(w)), represents the universal

covering surface of the catenoid generated by the meridian (1). The mapping
X : C → R

3 is harmonic and conformal. In fact, by means of the formulas

(3)
cosh(u + iv) = coshu cos v + i sinhu sin v,

sinh(u + iv) = sinhu cos v + i coshu sin v

we infer that

(4) X(w) = Re f(w)

where f : C → C
3 denotes the isotropic curve given by

2 We could as well define y(u, v) = α cosh u sin v; this would amount to a change of the

sense of rotation.
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Fig. 1. (a) Three quarters and all of the subset |z| ≤ 1.4π of the catenoid. The line along

which the model is cut open is a catenary, the curve described by a hanging chain. The

parts contained in large, origin-centered balls indicate a global view of the catenoid. They

look like two parallel plane disks connected by a thin funnel. (b) The part |u| ≤ 1.2π,

0 ≤ v ≤ π, of the catenoid

(5) f(w) = (α coshw,αi sinhw,αw).

In order to find the Weierstrass function F(ω) and the representation Y (ω) of
the catenoid given by Section 3.3, (27), or precisely by

x = α + Re
∫ ω

1

(1 − ω2)F(ω) dω,

y = Re
∫ ω

1

i(1 + ω2)F(ω) dω,(6)

z = Re
∫ ω

1

2ωF(ω) dω,

we introduce the new variable ω = e−w instead of w = u+ iv. Set r = |ω| and
θ = argω, i.e. ω = reiθ. Then logω = log r + iθ = −u − iv, and we can write
(2) in the new form

x =
α

2

(
1
r

+ r

)
cos θ = Re

α

2

(
1
ω

+ ω

)
,

y =
α

2

(
1
r

+ r

)
sin θ = Re

iα

2

(
1
ω

− ω

)
,(7)

z = −α log r = − Reα logω.
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Fig. 2. (a) A view of the part u ≥ −π/5 of the catenoid sitting on the plane z = −π/5.

(b) The subset −π/5 ≤ z ≤ π/10 shows the behaviour of the catenoid close to its plane of

symmetry z = 0. (c) Two catenoids sitting in the same boundary configuration
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By a straight-forward computation we infer that these equations are identical
with (6) if we choose

(8) F(ω) = − α

2ω2
, ω ∈ C \ {0}.

The geometrical meaning of the parameter ω implies that the normal map
N(ω) of the representation Y (ω) of the catenary given by (6) or (7), respec-
tively, omits exactly two points on the Riemann sphere S2, the north pole
ρ(∞) and the south pole ρ(0). Cut the ω-plane along the positive part of the
real axis and denote the resulting set {ω = ξ + iη : |ω| > 0, 0 < argω < 2π}
by C

′. Then N maps C
′ one-to-one onto S2 minus a meridian connecting ρ(0)

and ρ(∞), and we infer that the area of the spherical image N is given by
∫

dAN =
∫

C′
|Nξ ∧ Nη | dξ dη = 4π.

Since

(9) dAN = −K dAY

(cf. Section 1.2, (44)), we infer that the total curvature of the catenoid has
the value −4π:

(10)
∫

Y

K dA = −4π.

From (5), we read off that the adjoint surface

(11) X∗(w) := Im f(w)

of the catenoid (2) is given by

x∗(u, v) = α sinhu sin v,

y∗(u, v) = α sinhu cos v,(12)
z∗(u, v) = αv

or
X∗ = αY (v) + sinhuZ(v)

with
Y (v) = (0, 0, v), Z(v) = (sin v, cos v, 0).

Thus, for every v ∈ R, the curve X∗(·, v) is a straight line which meets the
z-axis perpendicularly. If we fix u 	= 0, then X∗(u, ·) describes a helix of pitch
2π|α|. This helix is left-handed for α > 0 and right-handed for α < 0. We see
that X∗ is generated by a screw motion of some straight line L meeting the
z-axis perpendicularly, whence X∗ is called helicoid or screw surface. Thus
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Fig. 3. A part of the helicoid, a ruled minimal surface

the helicoid X∗, the adjoint of the catenoid X, is a ruled surface with the
z-axis as its directrix.

We claim that the point set represented by some ruled surface

X(u, v) = a(v) + ub(v)

with a(v), b(v) ∈ R
3, which is regular, skew (i.e. [a′, b, b′] 	= 0) and of zero

mean curvature, must be congruent to a piece of the helicoid (E. Catalan [1]).
For the proof of this fact we can assume that |b| = 1 and |b′ | = 1 whence

〈b, b′ 〉 = 0, 〈b′, b′ ′ 〉 = 0.

Moreover, we can also assume that

〈a′(v), b(v)〉 = 0, 〈a′(0), b′(0)〉 = 0

as we can pass from a(v) to a new directrix ā(v) given by

ā(v) = a(v) − λ(v)b(v),

λ(v) = 〈a′(0), b′(0)〉 +
∫ v

0

〈a′(t), b(t)〉 dt.

This yields
F = 0, L = 0,

and the equation H = 0 is equivalent to N = 0 whence 〈N,Xvv 〉 = 0, and
therefore

det(Xu, Xv, Xvv) = 0;
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see Section 1.2, (31) and (43). Collecting the powers of u, we obtain the three
relations

det(b, a′, a′ ′) = 0, det(b, b′, b′ ′) = 0,
det(b, a′, b′ ′) + det(b, b′, a′ ′) = 0.

Since b′ is perpendicular to b and b′ ′, the second relation yields b′ ′ = 〈b′ ′, b〉b.
Hence (b ∧ b′)′ = 0, and we infer from |b| = 1 that the curve b(v) describes
a unit circle in a fixed plane E. Now, from the third relation, we obtain
det(b, b′, a′ ′) = 0, and therefore a′ ′ ∈ E as well as

a′ ′ = 〈a′ ′, b〉b + 〈a′ ′, b′ 〉b′.

Inserting this expression for a′ ′ into the equation det(b, a′, a′ ′) = 0, we infer

〈a′ ′, b′ 〉 det(b, a′, b′) = 0.

The determinant does not vanish for v close to zero (since its columns are
mutually orthogonal at v = 0 and X(u, v) is a regular surface), and therefore
〈a′ ′, b′ 〉 = 0. Hence 〈a′, b′ 〉 ′ = 0 and 〈a′(0), b′(0)〉 = 0 implies 〈a′, b′ 〉 = 0.
Together with 〈a′, b〉 = 0 we obtain that a′ is perpendicular to span{b, b′ } = E.
Since E does not depend on v, we conclude that also a′ ′ is orthogonal to E.
On the other hand we know that a′ ′ ∈ E. Thus we obtain a′ ′ = 0, i.e., the
directrix a(v) is a straight line, and we have proved that X(u, v) is a piece of
a helicoid since 〈a′, b〉 = 0.

There are various other proofs of this characterization of the helicoid. We
particularly mention the elegant approach of H.A. Schwarz by means of the
solution of a suitable Björling problem (see Schwarz [2], vol. I, pp. 181–182).

The coordinates of the associate surfaces

(13) Z(w, θ) = Re{e−iθf(w)}, θ ∈ R,

to the catenoid X(w) as well as to the helicoid X∗(w) are given by

x = α coshu cos v cos θ + α sinhu sin v sin θ,

y = −α coshu sin v cos θ + α sinhu cos v sin θ,(14)
z = αu cos θ + αu sin θ.

The bending process of deforming the catenoid X into the helicoid X∗ via the
associate surfaces Z(w, θ), 0 ≤ θ ≤ π

2 , is depicted in Fig. 4.

3.5.2 Scherk’s Second Surface: The General Minimal Surface of Helicoidal
Type

Consider the minimal surface Y (ω) defined by
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Fig. 4. The catenoid, a minimal surface of rotation, can be bent through its family of

associate minimal surfaces into the helicoid, its adjoint surface, which is a ruled surface
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Fig. 5. Scherk’s second surface is the family of associate surfaces of the catenoid viewed

in a different way. Every member of this family is generated by a screw motion of a planar

curve. The illustration shows the parts next to the z-axis of the associate surfaces with

parameter values θ = kπ/6 for k = 0, 1, 2, 3

x = α + Re
∫ ω

1

(1 − ω2)F(ω) dω,

y = Re
∫ ω

1

i(1 + ω2)F(ω) dω,(15)

z = γ + Re
∫ ω

1

2ωF(ω) dω

with the Weierstrass function

(16) F(ω) =
−(α − iβ)

2ω2
, α, β ∈ R, α2 + β2 	= 0.

For α = 0 or β = 0, we obtain a helicoid or a catenoid, respectively. If we
switch by ω = e−w, w = u + iv, from ω to the new variable w, then (15) is
transformed into

x = α coshu cos v + β sinhu sin v,

y = −α coshu sin v + β sinhu cos v,(17)
z = αu + βv + γ.

This is a parameter representation of a family of minimal surfaces. For a fixed
choice of α, β, γ, we want to denote a surface (17) as Scherk’s second surface.
This family comprises the catenoid (β = 0) and the helicoid (α = 0). In fact,
we can write X(w) in the following way, using the formulae

Xcat(w) = (coshu cos v, − coshu sin v, u)

for the catenoid and
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Fig. 6. Another view of parts of three members of the family of minimal surfaces called

Scherk’s second surface (θ = 60, 75, 90 degrees)

Xhel(w) = (sinhu sin v, sinhu cos v, v)

for the helicoid and choosing γ = 0:

(17′) X(w) = αXcat(w) + βXhel(w).

As we can write

α = c cos θ, β = c sin θ with c =
√

α2 + β2,

it follows that
X(w) = c[cos θXcat(w) + sin θXhel(w)].

In other words, Scherk’s second surface is nothing but an associate surface of
the catenoid.

We want to show that (17) provides a minimal surface of helicoid type
generated by a screw motion of some planar curve z = h(ρ) about the z-axis.
(One can easily prove that there exists no other nonplanar minimal surface
of helicoidal type; cf. Nitsche [28], pp. 62–63). To this end, we introduce
cylindrical coordinates ρ, ϕ, z instead of the Cartesian coordinates x, y, z by

(18) x = ρ cosϕ, y = ρ sinϕ, z = z.

From the first two formulas of (17), we infer that

tan(ϕ + v) =
sinϕ cos v + cosϕ sin v

cosϕ cos v − sinϕ sin v

=
y cos v + x sin v

x cos v − y sin v
=

β

α
tanhu
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whence

(19) v = −ϕ + arctan
(

β

α
tanhu

)
.

Moreover, the formulas

ρ2 − α2 = (α2 + β2) sinh2 u, ρ2 + β2 = (α2 + β2) cosh2 u

yield
ρ2 − α2

ρ2 + β2
= tanh2 u < 1

and

tanhu = ±

√
ρ2 − α2

ρ2 + β2
,

where the plus sign holds for u ≥ 0, and the minus sign is to be taken if u ≤ 0.
Thus

u = tanh−1

(
±

√
ρ2 − α2

ρ2 + β2

)
,

and the identity

tanh−1 ξ =
1
2

log
1 + ξ

1 − ξ
for |ξ| < 1

implies

u =
1
2

log

√
ρ2 + β2 ±

√
ρ2 − α2√

ρ2 + β2 ∓
√

ρ2 − α2
.

A brief computation yields

(20) u = − log
√

α2 + β2 + log(
√

ρ2 + β2 ±
√

ρ2 − α2).

Combining the relations (17)–(20), we arrive at

x = ρ cosϕ, y = ρ sinϕ, z = −βϕ + h(ρ),

h(ρ) := α log(
√

ρ2 + β2 ±
√

ρ2 − α2)(21)

+ β arctan

(
± β

α

√
ρ2 − α2

ρ2 + β2

)
+ γ − α log

√
α2 + β2.

This representation shows that Scherk’s second surface is a helicoidal surface
generated by a screw motion of a planar curve z = h(ρ) about the z-axis.
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3.5.3 The Enneper Surface

The minimal surface X(w), w ∈ C, given by the Weierstrass representation
(29), (30) of Section 3.3 with

F(w) ≡ 1

is the Enneper surface:

X(w) = Re
(∫ w

0

(1 − w2)F(w) dw,

∫ w

0

i(1 + w2)F(w) dw,

∫ w

0

2wF(w) dw
)
,

that is,

(22) X(w) = Re
(
w − w3

3
, iw +

iw3

3
, w2

)
.

Thus the components of the Enneper surface are given by

x = u − 1
3u

3 + uv2,

y = −v − u2v + 1
3v

3,(23)

z = u2 − v2

for w = u + iv ∈ C.
The Gauss curvature K(w) of X(w) has the form

(24) K(w) = − 4
(1 + |w|2)4 ,

and

(25) N(w) =
1

1 + |w|2 (2 Rew, 2 Imw, |w|2 − 1)

is its spherical image, which omits exactly one point on the Riemann surface,
the north pole ρ(∞). Moreover, the mapping N : C → S2 \ {ρ(∞)} is one-to-
one whence

∫
dAN = 4π, and by

dAN = −K dAX

we obtain

(26)
∫

X

K dA = −4π

for the total curvature of the Enneper surface. This formula can also be verified
by a direct computation using (24) as well as

|dX(w)|2 = |F(w)|2(1 + |w|2)2|dw|2.
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Fig. 7. These views of the subset of Enneper’s surface corresponding to |u| ≤ 2, |v| ≤ 2

reveal the behavior of the surface close to the origin. The planes and lines of symmetry of

the surface can be seen in the two projections onto the coordinate planes
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Fig. 8. Large parts of Enneper’s surface: the parts shown correspond to the squares

[−R, R]2, R = 1, 2, 4, 8, 16, of the parameter plane (clockwise from the top). The shapes

of the rescaled figures converge in view of the convergence of X(Rw)/R3

The trace of the Enneper surface X is congruent to the traces of its associate
surfaces

Z(w, θ) = Re
{
e−iθ

(
w − w3

3

)
, ie−iθ

(
w +

w3

3

)
, e−iθw2

}
.

This can be seen as follows: First we introduce new Cartesian coordinates
ξ, η, z instead of x, y, z by a rotation about the z-axis with the angle − θ

2 :

ξ + iη = e−iθ/2(x + iy).
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Fig. 9. The (negative of the) Gauss map of the first four parts of Enneper’s surface shown

before

Then the new coordinates ξ(w), η(w) of the associate surface will be obtained
from

ξ + iη = e−iθ/2[Re(e−iθw) + iRe(ie−iθw)]

+ e−iθ/2

[
Re

(
− 1

3
e−iθw3

)
+ iRe

(
ie−iθ w3

3

)]
.

Let us now introduce the new independent variable ζ = e−iθ/2w. Using the
identities

Re c + iRe ic = c̄, Re c + iRe(−ic) = c

for c ∈ C, it follows that

ξ + iη = Re(ζ − 1
3ζ

3) + iRe i(ζ + 1
3ζ

3).
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Fig. 10. For every parameter θ the subset of the associate surface corresponding to a disk

BR centered at w = 0 is obtained by rotating the same subset of Enneper’s surface around

the z-axis by an angle θ/2 (counter-clockwise from top right θ = 0, π/6, π/3, and π/2)

Thus we arrive at

ξ = Re(ζ − 1
3ζ

3),

η = Re i(ζ + 1
3ζ

3),

z = Re ζ2.

Comparing these expressions with (22), we see that Enneper’s surface and its
associates are the same geometric objects.

3.5.4 Bour Surfaces

Bour’s surfaces are given by

X(w) = X0+Re
(∫ w

1

(1−w2)F(w) dw,

∫ w

1

i(1+w2)F(w) dw,

∫ w

1

2wF(w) dw
)
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with the Weierstrass function

(27) F(w) = cwm−2, w ∈ C (or C \ {0}),

where m ∈ R and c ∈ C, c 	= 0. This class of minimal surfaces clearly contains
the previously considered examples where we had m = 0 or m = 2. It was
proved by Bour that the surfaces with (27) are exactly those minimal surfaces
which are developable onto some surface of revolution; cf. Schwarz [2], pp. 184–
185, and Darboux [1], vol. 1, in particular pp. 392–395. Further references can
be found in Nitsche [28], p. 57.

3.5.5 Thomsen Surfaces

Surfaces which are both minimal surfaces as well as affine minimal surfaces in
the sense of Blaschke [1] have been discussed by Thomsen. A comprehensive
discussion and a new derivation of all such surfaces can be found in Barthel,
Volkmer, and Haubitz [1]. It turns out that, besides the Enneper surfaces, all
other surfaces of this type belong to one of two families. The first family is
given by

X(w) = X0 + Reα−2(αβw +
√

1 + β2 sinh αw,(28)

− iα
√

1 + β2w − iβ sinhαw, −i coshαw)

or

x = x0 + α−2{αβu +
√

1 + β2 sinhαu cosαv},
y = y0 + α−2{α

√
1 + β2v + β coshαu sinαv},(29)

z = z0 + α−2{sinhαu sinαv},

and the second family is obtained from the first by interchanging x and y as
well as u and v; here we have assumed α > 0.

For β = 0, the first family yields the left-handed helicoid, the second
family the right-handed helicoid. One passes from one family to the other via
the Enneper surface or some plane, respectively. Four views of a Thomsen
surface are depicted in Fig. 11.

3.5.6 Scherk’s First Surface

The nonparametric surface z = ψ(x, y), defined by

(30) ez =
cos y
cosx

or equivalently, by

(31) z = log
cos y
cosx
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Fig. 11. Four different views of a piece of a Thomsen surface. Courtesy of I. Haubitz
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Fig. 12. The part |z| < 10, |x|, |y| < 5π/2, of Scherk’s first surface seen from z = +∞

Fig. 13. Scherk’s first surface is a non-parametric minimal surface defined on the set

0 < cos(y)/ cos(x) < +∞, which is made up of the black squares of the infinite checker

board shown in the figure

on the black squares

Ωk,l :=
{

(x, y) : |x − πk| <
π

2
, |y − πl| <

π

2

}
,
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Fig. 14. A closer view of one of the black squares shows the level lines of the surface

emanating from the corners. They satisfy cos(y)/ cos(x) = constant, and the gradient lines

perpendicular to them solve the equation sin(x) sin(y) = constant

Fig. 15. A view of Scherk’s first surface in the vicinity of the plane z = 0. The level curves

z = constant include the straight lines x = ±y as axes of symmetry

k, l ∈ Z, k + l = even, of the infinite checkerboard shown in Fig. 7, satisfies
the nonparametric minimal surface equation

(1 + ψ2
y)ψxx − 2ψxψyψxy + (1 + ψ2

x)ψyy = 0.

This surface is Scherk’s doubly periodic surface which we want to call Scherk’s
first minimal surface; clearly it is periodic both in the x- and in the y-direction.
The graph is repeated on each black square Ωk,l.
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The parameter lines shown in our illustrations of Scherk’s surface all have
the form

x = x(t), y = y(t), z = ψ(x(t), y(t))

with t varying in the interval [0, 1], and ψ(x, y) = log cos y
cos x . Any of the pro-

jected curves (x(t), y(t)) is either a level line or a gradient line of ψ, that is,
we either have

ψ(x(t), y(t)) = const,

or else

dx

dt
= ψx(x, y) = tanx,

dy

dt
= ψy(x, y) = − tan y.

The gradient lines have the interesting property that they are just the solutions
to the equation

sinx sin y = const.

Let us show that Scherk’s surface has the Weierstrass representation

x = −π + Re
∫ w

0

(1 − w2)F(w) dw

y = π + Re
∫ w

0

i(1 + w2)F(w) dw,

z = 0 + Re
∫ w

0

2wF(w) dw

with

(32) F(w) =
2

1 − w4
=

2
(1 + w)(1 − w)(w + i)(w − i)

on the parameter domain C\ { ±1, ±i}. This will show that the spherical image
N(w) of the Scherk surface X(w) omits exactly four points on S2, namely the
points ±1 and ± i on the equator. Since

(1 − w2)F(w) =
2

1 + w2
=

i

w + i
− i

w − i
,

i(1 + w2)F(w) =
2i

1 − w2
=

i

w + 1
− i

w − 1
,

2wF(w) =
4w

1 − w4
=

2w
w2 + 1

− 2w
w2 − 1

,

we infer that

(33) X(w) = Re
(
i log

w + i

w − i
, i log

w + 1
w − 1

, log
w2 + 1
w2 − 1

)
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(using the branch with log 1 = 0), and therefore

(34) X(w) =
(

− arg
w + i

w − i
, − arg

w + 1
w − 1

, log
∣∣∣∣w

2 + 1
w2 − 1

∣∣∣∣
)
.

Let us first restrict our considerations to the set {w : |w| ≤ 1, w 	= ±1, ±i}.
From

w + i

w − i
=

|w|2 − 1
|w − i|2 + i

w + w̄

|w − i|2 ,
w + 1
w − 1

=
|w|2 − 1
|w − 1|2 +

w̄ − w

|w − 1|2

we infer that

Re
w + i

w − i
=

|w|2 − 1
|w − i|2 ≤ 0, Re

w + 1
w − 1

=
|w|2 − 1
|w − 1|2 ≤ 0,

whence
π

2
≤ arg

w + i

w − i
, arg

w + 1
w − 1

≤ 3π
2

and therefore
− 3π

2
≤ x, y ≤ − π

2
.

We conclude that the mapping (x(w), y(w)), formed by the first two compo-
nents of (34), maps the disk {w : |w| < 1} one-to-one onto the square Ω−1,−1.

It follows that

cosx =
|w|2 − 1

|w − i|2
|w − i|
|w + i| =

|w|2 − 1
|w2 + 1| ,

cos y =
|w|2 − 1
|w − 1|2

|w − 1|
|w + 1| =

|w|2 − 1
|w2 − 1| ,

and therefore
cos y(w)
cosx(w)

=
∣∣∣∣w

2 + 1
w2 − 1

∣∣∣∣ = ez(w).

This proves that the representation X(w), |w| < 1, defined by (34), parametri-
zes Scherk’s surface (30). Moreover, the mapping X(w) = (x(w), y(w), z(w))
has the following properties:

(i) Let |w| = 1, w 	= ±1, ±i. Setting w = eiϕ, we obtain
∣∣∣∣w

2 + 1
w2 − 1

∣∣∣∣ = |cotϕ|

and therefore
z(w) = log|cotϕ|.

Furthermore, we have x(eiϕ) = − π
2 , y(eiϕ) = − 3π

2 for all ϕ ∈ (0, π
2 ). Hence

X(w) maps the open arc {eiϕ : 0 < ϕ < π
2 } of the unit circle {|w| = 1}

onto the straight line through (− π
2 , − 3π

2 , 0) which is parallel to the z-axis.



162 3 Representation Formulas and Examples of Minimal Surfaces

More generally, if C1, . . . , C4 denote the four open quartercircles on {|w| = 1}
between the points 1, i, −1, −i and if L1, . . . , L4 are the parallels to the z-
axis through the vertices P1, . . . , P4 of the square Ω−1,−1, then X provides a
1–1-mapping of Cj onto Lj (cf. Figs. 17, 18).

(ii) The rays w = reiθ, r ≥ 0, θ = π
4 ,

3π
4 , 5π

4 , 7π
4 satisfy

cosx(w) =
r2 − 1

| ±ir2 + 1| =
r2 − 1

| ±ir2 − 1| = cos y(w),

whence z(w) = 0. Therefore X maps these rays onto straight halflines in the
plane {z = 0} emanating from the center (−π, −π) of Ω−1,−1 and passing
through P1, . . . , P4.

(iii) Similarly, the rays w = reiθ, r ≥ 0, θ = 0, π
2 , π,

3π
2 are mapped by

(x(w), y(w)) onto the straight halflines emanating from (−π, −π) which are
parallel to the x-axis or to the y-axis respectively. (In this case, however, the
curve X(w) is no longer a straight line since z(w) is nonlinear.)

Applying Schwarz’s reflection principle for holomorphic functions and his
symmetry principle for minimal surfaces (Section 3.4, Theorem 2(i)), we in-
fer that a reflection of {w : |w| ≤ 1, w 	= ±1, ±i} at one of the circular arcs
C1, . . . , C4 corresponds to a reflection of the surface X(w) at one of the straight
lines L1, . . . , L4. More precisely, each of the four quarterdisks B1, . . . , B4 ex-
cised from {w : |w| < 1} by the u- and v-axes corresponds to one of the four
congruent subsquares Q1, . . . , Q4 of Ω−1,−1 having (−π, −π) as one of their
corner points (cf. Fig. 17), and the representation X maps the mirror image
B∗

j of Bj onto the part of Scherk’s surface obtained from the graph over the
square Qj by reflection in the straight line Lj .

This way it becomes clear which part of Scherk’s surface (30) is para-
metrized by the representation X : C \ { ±1, ±i} → R

3. If we lift X from
the 4-punctured plane to the corresponding universal covering surface, we
obtain a parametrization of the full Scherk surface in R

3 sitting as a graph
over the black squares of the infinite checkerboard, except for the straight
lines parallel to the z-axis through the vertices of the black squares. These
lines are also contained in the complete Scherk surface. In addition to these
lines of symmetry, we have two further families of parallel lines of symmetry
which sit in the plane {z = 0} and cross each other at an angle of 90 degrees.
As we know, these straight lines are asymptotic lines of the Scherk surface
given by argw = π

4 ,
3π
4 , 5π

4 , 7π
4 in the representation X. This can also be seen

by investigating the quadratic differential F(w)(dw)2. Looking at the rays
{w = reiϕ, r ≥ 0, ϕ = fixed}, we obtain (dw)2 = w2

r2 dr2, and therefore

F(w)(dw)2 =
2w2 dr2

r2(1 − w4)
=

−2 dr2

r2(w + 1
w )(w − 1

w )
.

Setting w = eω, Reω = log r, Imω = ϕ, it follows that

F(w)(dw)2 =
−( 1

2 ) dr2

r2 sinhω coshω
=

−dr2

r2 sinh 2ω
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Fig. 16. Scherk’s first surface is made up of infinitely many copies of its subset contained

in the slab −π/2 < x, y < π/2 of which |z| ≤ 6 is shown here. Each of the four straight

edges of the slab parallel to the z-axis forms a part of the boundary of this fundamental

saddle-shaped piece of the surface, and through repeated reflections in these edges Scherk’s

surface can be built (counter-clockwise from top left)
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Fig. 17. Construction of Scherk’s surface

and

sinh 2ω = sinh(2 log r) cos 2ϕ + i cosh(2 log r) sin 2ϕ.

Recall now that {w = reiϕ : rg ≥ 0} is an asymptotic line if F(w)(dw)2 ∈ iR,
and that it is a line of curvature if F(w)(dw)2 ∈ R. Thus the formula ϕ =
(2k + 1)π/4, k ∈ Z, yields asymptotic lines, and ϕ = kπ/2, k ∈ Z, provides
lines of curvature. As we had already proved, the curves X(reiϕ), ϕ = kπ/2,
are planar curves contained in planes x = const or y = const respectively,
which turn out to be planes of symmetry for Scherk’s surface. This can either
be verified by a direct computation or by applying formula (31) of Section 3.3.

If we restrict X(w) to the quarter disk

{
w = reiϕ : 0 ≤ r ≤ 1, 0 ≤ ϕ ≤ π

2
, w 	= 1, i

}
,

we obtain a minimal surface within the Schwarzian chain formed by the
straight line L = {x = − π

2 , y = − 3π
2 } and by the planes E1 = {y = −π}

and E2 = {x = −π}. Moreover, X meets the two planes perpendicularly
in planar lines of curvature which are plane geodesics of X. In other words,
this part of X solves the Schwarzian chain problem for the chain {L,E1, E2}.
Then the adjoint surface X∗ solves the chain problem for a chain {E,L1, L2}
consisting of a plane E and two straight lines L1 and L2 (cf. Fig. 19).

We infer that both X and X∗ can be built, by reflection, from elementary
pieces which are solutions of Schwarzian chain problems. This situation is typ-
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Fig. 18. A conformal representation of Scherk’s surface. The part corresponding to a

quarter of the unit disk (a) solves a Schwarzian chain problem for two perpendicular planes

E1, E2 and a straight line L parallel to them (b)

Fig. 19. (a) The corresponding part of the adjoint surface of Scherk’s surface solves a

Schwarzian chain problem for two straight lines L1, L2, and a plane E perpendicular to

E1, E2, and L respectively; cf. Fig. 18. (b) The common (negative of the) Gauss map of

these surfaces

ical of all cases where we have sufficiently many planes and lines of symmetry.
In our present case, the two elementary pieces are mapped by their spherical
image N bijectively onto some spherical triangle bounded by great-circular
arcs (cf. Fig. 19).
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Fig. 20. Part of Henneberg’s surface

Fig. 21. Henneberg’s surface maps the whole v-axis onto a straight line segment of length

2 on the x-axis. (Here we have depicted the part of the surface corresponding to 0 ≤ u ≤
π/5, 0 ≤ v ≤ π.) The end points of these straight line segments are the two branch points

on the surface; the limiting tangent plane in one of them is the x, y-plane, in the other one

it is the x, z-plane

3.5.7 The Henneberg Surface

Many interesting minimal surfaces are obtained by solving Björling’s problem
for a given real analytic strip

Σ = {(c(t), n(t)) : t ∈ I}

where c is a given regular, real analytic curve and n its principal normal. If
we in addition assume that c is contained in a plane E, then the solution X
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Fig. 22. The curves v = 0 and v = π/2 on Henneberg’s surface are Neil parabolas in the

x, z-plane and the y, z-plane respectively. For instance the curve v = 0 satisfies 2x3 = 9y2,

z = 0. Along these curves, the surface is perpendicular to the said planes as is shown in our

views of Henneberg’s surface depicting the parts |u| ≤ 3π/10, 0 ≤ v ≤ π/2

of Björling’s problem for Σ is a minimal surface meeting E perpendicularly
at c, and c is a planar geodesic of X as well as a line of curvature.

Let c be given by

c(t) = (x(t), 0, z(t))(35)
= (cosh(2t) − 1, 0, − sinh t + 1

3 sinh(3t)).

From the identities

cosh 2t = 1 + 2 sinh2 t, 1
3 sinh(3t) − sinh t = 4

3 sinh3 t

we infer that c(t) is a parametrization of Neil ’s parabola



168 3 Representation Formulas and Examples of Minimal Surfaces

Fig. 23. Parallel projections of the part of Henneberg’s surface corresponding to parameter

values |u| ≤ 3π/10, 0 ≤ v ≤ π/2. In particular, one can see that along the two Neil parabolas

the surface meets the planes y = 0 and z = 0 vertically

(36) 2x3 = 9z2

in the plane {y = 0}. By carrying out Schwarz’s construction (cf. formula (1)
of Section 3.4), we obtain as solution X(u, v) = (x(u, v), y(u, v), z(u, v)) of
Björling’s problem the Henneberg surface

x = −1 + cosh 2u cos 2v,
y = sinhu sin v + 1

3 sinh 3u sin 3v,(37)
z = − sinhu cos v + 1

3 sinh 3u cos 3v.

An isotropic curve f : C → C
3 with

X(u, v) = Re f(w), w = u + iv,

is given by

(38) f(w) =
(

−1 + cosh 2w, −i coshw − i

3
cosh 3w, − sinhw +

1
3

sinh 3w
)
.

Hence the adjoint surface X∗ to X has the form

x∗ = sinh 2u sin 2v,
y∗ = − coshu cos v − 1

3 cosh 3u cos 3v,(39)
z∗ = − coshu sin v + 1

3 cosh 3u sin 3v.

The curve X∗(0, v) = (0, − 4
3 cos3 v, − 4

3 sin3 v) lies in the plane {x∗ = 0} and
satisfies

(40) y∗2/3 + z∗2/3 = ( 4
3 )2/3,
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Fig. 24. The parts of Henneberg’s surface corresponding to the parameter sets kπ/5 ≤
|u| ≤ (k + 1)π/5 for k = 0, 1, 2, 3 (counter-clockwise from bottom right) reveal its large

scale behavior. Every part of the surface shown in one drawing fits into the hole at the

center of the following illustration. In view of the equation X(−u, v + π) = X(u, v) each

such subset of the surface has two layers glued together and therefore appears to consist of

one piece only

that is, the adjoint surface X∗ contains an asteroid. This asteroid is a planar
geodesic of X∗ since X(0, v) = (−1 + cos 2v, 0, 0) is a straight line and, there-
fore, a geodesic asymptotic line of X; cf. Section 3.4, Proposition 1. Thus X∗

meets the plane {x∗ = 0} perpendicularly at an asteroid as trace. The straight
line X∗(u, 0) = (0, − 4

3 cosh3 u, 0) = y-axis is a line of symmetry for X∗.

Remark. Note that in our figures the coordinate function y∗(u, v) in (39) is
replaced by y∗ − 4

3 . In this way, the origin remains invariant if we bend X into
X∗ via the associate surfaces to X.

We furthermore note that both X(u, v) and X∗(u, v) are periodic in v with
the period 2π.
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Fig. 25. Some views of parts of the adjoint of Henneberg’s surface corresponding to |u| ≤
π/5 and |u| ≤ 9π/40. The adjoint surface encloses a central cavity whose boundary is

homeomorphic to the unit sphere and consists of pieces of minimal surfaces. The curve

u = 0 on the adjoint surface is an asteroid in the y, z-plane connecting the four branch

points of the adjoint surface. Along this curve it is orthogonal to the y, z-plane

With the periodicity strip {0 ≤ v < 2π}, Henneberg’s surface contains
four of Neil’s parabolas as planar geodesics:

X(u, 0) =
(

−1 + cosh 2u, 0, − sinhu +
1
3

sinh 3u
)
,

X

(
u,

π

2

)
=

(
−1 − cosh 2u, sinhu − 1

3
sinh 3u, 0

)
,

X(u, π) =
(

−1 + cosh 2u, 0, sinhu − 1
3

sinh 3u
)
,

X

(
u,

3π
2

)
=

(
−1 − cosh 2u, − sinhu +

1
3

sinh 3u, 0
)
.

(41)

However, only two of these four parabolas are geometrically different. Each
of these Neil parabolas is periodically repeated on the surface X(u, v). Hen-
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neberg’s surface intersects the planes {y = 0} and {z = 0}, respectively, at
these Neil parabolas orthogonally.

We also observe that the branch points w = u + iv of X and X∗ are
given by

u = 0, v =
kπ

2
, k ∈ Z.

Moreover, the point set in R
3 represented by X(u, v) is nonorientable. In

fact, we easily infer from (39) that

X(u, v) = X(−u, v + π), Xu(u, v) = −Xu(−u, v + π),
Xv(u, v) = Xv(−u, v + π)

holds for all w ∈ C. Let ω(t), 0 ≤ t ≤ 1, be a smooth path in C, avoiding
the branch points w = 1

2 ikπ, joining some point (u, v) with (−u, v + π), say
ω(t) = (2t − 1, π(t − 1

4 )), 0 ≤ t ≤ 1. Then ξ(t) := X(ω(t)), 0 ≤ t ≤ 1, describes
a closed regular loop on Henneberg’s surface, but N(ω(0)) = −N(ω(1)). Thus,
if we move around the loop ξ(t) and return to the initial point, the surface
normal N(ω(0)) has changed to its opposite. If we slightly thicken the path
ω(t), its image on X will be a Möbius strip (cf. Figs. 27–29). In other words,
Henneberg’s surface is a one-sided minimal surface.

Let us finally mention that the Weierstrass function F(ω) of Henneberg’s
surface is given by

(42) F(ω) = − i

2

(
1 − 1

ω4

)

if we change the coordinates in R
3 by an orthogonal transformation in such a

way that x, y, z become −z, −y, x, respectively.

3.5.8 Catalan’s Surface

Solving Björling’s problem for the strip consisting of the cycloid

(43) c(t) = (1 − cos t, 0, t − sin t), t ∈ R

and its principal normal, we obtain Catalan’s surface

X(u, v) = (x(u, v), y(u, v), z(u, v)),

given by

x = 1 − cosu cosh v,

y = 4 sin
u

2
sinh

v

2
,(44)

z = u − sinu cosh v.



172 3 Representation Formulas and Examples of Minimal Surfaces

Fig. 26. The bending process for Henneberg’s surface into its adjoint surface is so intricate

that it is shown here from two different points of view in a long sequence of illustrations.

We have arranged for Xθ(0) = const for all times θ. The parts of the surfaces depicted here

correspond to |u| ≤ π/10; the parameter values θ of the associated surfaces are 90, 75, 60,

45, 30, 20, 10, 0 degrees respectively. The bending process starts with a part of the adjoint

surface which has a quadruple symmetry and passes through an asteroid in the y, z-plane

connecting the four branch points of the surface, the images of u = 0, v = 0, π/2, π, 3π/2.

The two boundary curves of this part of Henneberg’s adjoint surface alternate between the

halfspaces x > 0 and x < 0. In the bending process from the adjoint surface to Henneberg’s

surface the branch point opposite the origin moves up to the origin of Henneberg’s surface,

another branch point. The other two branch points move up to the x, z-plane and simul-

taneously approach each other until they finally meet on the x-axis. In this process the

surface is folded together so that one ends up with the double layer of Henneberg’s surface

for which half of the surface and two of the four branch points seem to have disappeared
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Fig. 26. c–e.
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Fig. 26. f–h.
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Fig. 27. Henneberg’s surface is non-orientable. After a walk on the surface along the

emphasized circuit you will find yourself upside down. This results from the equations

X(−u, v + π) = X(u, v) and N(−u, v + π) = −N(u, v) valid on Henneberg’s surface

Catalan’s surface X(u, v) contains the cycloid c(u) = X(u, 0) as a planar
geodesic, and we infer from X(0, v) = (1 − cosh v, 0, 0) that the x-axis is both
an asymptotic line and a line of symmetry for X.

The branch points of X lie on the u-axis and are given by (u, v) = (2πk, 0),
k ∈ Z. Their image points X(u, v) are the cusps of the cycloid c(u) = X(u, 0).

Catalan’s surface is periodic in the z-direction: The translation in the
parameter plane mapping u+ iv onto u+ 4π + iv corresponds to a 4π-shift of
the surface along the z-axis.

Catalan’s surface also has a number of other symmetries; for example,
complex conjugation in the parameter plane (i.e., the map u + iv to u − iv)
corresponds to a reflection of Catalan’s surface across the x, z-plane. Moreover
all planes z = (2k + 1)π, k ∈ Z, are planes of symmetry of Catalan’s surface.

Reflection in the parameter plane across the v-axis (i.e., the mapu + iv
to −u + iv) corresponds to a reflection of the surface across the x-axis. More
generally, all lines y = 0, z = 2πk, k ∈ Z, are lines of symmetry of Catalan’s
surface.

These properties imply that Catalan’s surface is made up of denumerably
many copies of the fundamental piece corresponding to

0 ≤ u ≤ 2π, 0 ≤ v.

The part v = 0 of the boundary of this fundamental piece lies on the cycloid
and is perpendicular to the x, z-plane as the following equation shows:
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Fig. 28. Henneberg’s surface contains a minimal Möbius band with a C1-smooth boundary

curve (a). It corresponds to the quarter of the annulus in the parameter plane shown in (b)

Xv(u, 0) = (0, 2 sin(u/2), 0) for all u ∈ R.

The other two boundaries of this fundamental piece, u = 0 and u = 2π lie
on the x-axis and the straight line y = 0, z = 2π parallel to it respectively.
Repeated reflections across the straight lines on the boundary and across the
x, z-plane will then build up the complete surface as shown in our illustrations.

Consider now the rolling wheel in the plane {y = 0} which is generating
the cycloid (43). If we introduce the complex coordinates ξ = x + iz in the
x, z-plane, the center of the wheel is described by ξ = 1 + iu, and the cycloid
is given by ξ = 1 + iu − eiu where u denotes the rotation angle of the rolling
wheel which generates the cycloid. Let R := {(1 + iu) − (ρ + 1)eiu : ρ > 0}
be the ray on the straight line through the centerpoint 1 + iu and the point
c(u) := 1+iu−eiu on the cycloid, emanating at c(u) and pointing in direction
of −eiu.

For fixed u ∈ R, the projection of X(u, v) onto the plane {y = 0} is given
by

ξ = 1 + iu − eiu cosh v.

Hence the curve X(u, v), v ∈ R, lies in the plane E that is perpendicular to
the x, z-plane and contains the ray R. Using Cartesian coordinates ρ and y
in E, we can describe X(u, ·) by the formulas
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Fig. 29. The projections onto the three coordinate planes convey the shape of this Möbius

band. Look at the x, y-projection (a) of the Möbius band, then turn it around the x-axis

to obtain the x, z-projection (b). Finally rotate it around the z-axis to end up with the

y, z-projection (c)

ρ = cosh v − 1 = 2 sinh2 v

2
,

y = 4 sin
u

2
sinh

v

2

(45)

with v ∈ R. Hence X(u, ·) yields a parametrization of the parabola

(46) y2 = aρ

with a := 8 sin2 u
2 in the plane E. Thus Catalan’s surface X is swept out

by a one-parameter family of parabolas P(u), u ∈ R. The vertex of P(u)
moves on the cycloid c(u), and the plane E(u) of P(u) intersects the x, z-
plane perpendicularly and contains the straight line through c(u) and the
center ξ = 1 + iu of the rolling wheel.

From (3) and (44) we infer that

X(u, v) = Re f(w), w = u + iv,
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Fig. 30. Catalan’s surface as seen from the halfplane y = 0, x > 0. All points of Catalan’s

surface remain outside the parabolic cylinder 8(x − 2) > y2, but the curves v = (2k + 1)π

on Catalan’s surface lie on its boundary

Fig. 31. The view of Catalan’s surface from the opposite halfplane y = 0, x < 0 is quite

different. The surface partitions the halfspace x < 0 into boxes of rhomboid cross sections

where f : C → C
3 is an isotropic curve given by

(47) f(w) =
(

1 − cosh(iw), 4i cosh
(

iw

2

)
, w + i sinh(iw)

)
.

This implies that the adjoint surface X∗(u, v) of Catalan’s surface has the
representation

x∗ = sinu sinh v,

y∗ = 4 cos
u

2
cosh

v

2
,(48)

z∗ = v − cosu sinh v
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Fig. 32. Catalan’s surface is made up of infinitely many copies congruent to its fundamental

subset defined by 0 ≤ u ≤ 2π, 0 ≤ v and shown here (for v ≤ π). Every curve u = constant

defines a parabola on the surface having its apex on the cycloid v = 0 along which the

surface is perpendicular to the x, z-plane. The parabolas u = 0 and u = 2π degenerate into

straight lines, and z = π is another plane of symmetry of the surface

with the y-axis as line of symmetry and the y, z-plane as plane of symmetry.
The adjoint surface X∗ intersects the plane {x = 0} perpendicularly along
the curve

X∗(0, v) =
(

0, 4 cosh
v

2
, v − sinh v

)
.

Points (x, y, z) on Catalan’s surface satisfy the following inequality

8(x − 2) ≤ y2,
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Fig. 33. Reflecting the fundamental piece defined by 0 ≤ u ≤ 2π, 0 ≤ v in the x, z-plane

yields the part 0 ≤ u ≤ 2π of Catalan’s surface. According to the reflection principle every

minimal surface which is perpendicular to a plane along a part of its boundary can be

extended by reflection as a minimal surface (Section 4.8)

Fig. 34. (a) The part of Catalan’s surface obtained by reflecting the fundamental piece

0 ≤ u ≤ 2π, v ≥ 0 in the x-axis. (b) Repetition of this reflection

i.e., the surface avoids the parabolic cylinder defined by this inequality. This
is illustrated in Figs. 30 and 32; note also that the curves u = (2k + 1)π,
k ∈ Z, lie on the boundary of the cylinder.
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Fig. 35. Starting from the fundamental piece, the complete Catalan surface can be built

by repeated reflections across straight lines and the z, x-plane

Fig. 36. Construction of Catalan’s surface via a Björling problem corresponding to cycloid

The estimate can be obtained by using the following formulas for the
trigonometric and hyperbolic functions:

y2 = 16 sin2(u/2) sinh2(v/2) = 4(1 − cos(u))(cosh(v) − 1)
= 4(−1 − cos(u) cosh(v) + cosh(v) + cos(u)),

x − 2 = −1 − cos(u) cosh(v),

cosh(v) cos(u) ≥ − cos(u) cosh(v) + cos(u)
≥ − cos(u) cosh(v) − 1 = x − 2,

which clearly imply 8(x − 2) ≤ y2.
Finally we note that, except for a suitable orthogonal transformation of

the Cartesian coordinates in R
3, the Weierstrass function of Catalan’s surface

is of the form

F(ω) = i

(
1
ω

− 1
ω3

)
.
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Fig. 37. Schwarz’s surface. Lithograph by H.A. Schwarz

Fig. 38. Extension of Schwarz’s surface by reflection. Lithograph by H.A. Schwarz

Remark. In our figures, we have instead of (48) used a translated surface,
given by

(48′) y∗ = 4 cos
u

2
cosh

v

2
− 4.

Then the origin is kept fixed if one deforms X into X∗.

3.5.9 Schwarz’s Surface

This celebrated surface is a disk-type minimal surface X : B → R
3 which

is bounded by a (nonplanar) quadrilateral Γ , see Fig. 37. By the general
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Fig. 39. A part of Schwarz’s periodic surface. Courtesy of O. Wohlrab

theory to be developed in the following, there is exactly one such minimal
surface which, by the reflection principle, can be continued without limit as a
minimal surface if we reflect it at its boundary edges. If the edges are equally
long and if the angles at the vertices are π/3, then we obtain an embedded
triply-periodic minimal surface. Its adjoint surface is also triply periodic and
embedded. It can be obtained by spanning a symmetric quadrilateral with two
angles of π/2 and two angles of π/3. Of course, H.A. Schwarz found these two
surfaces explicitly (by means of hyperelliptic integrals using the Weierstrass
representation formula Section 3.3 (27) with the Weierstrass function

F(ω) =
κ√

1 − 14ω4 + ω8

where κ is a suitable positive constant). As this representation was carefully
described by Schwarz himself (see [2], vol. 1) as well as by Bianchi [1] and
Nitsche [28,37], we refer the reader to these sources for the study of the clas-
sical approach.

3.6 Complete Minimal Surfaces

In this section we want to consider global minimal surfaces X : M → R
3 in

R
3 defined on Riemann surfaces M without boundary.

Let us assume that M is a two-dimensional manifold without boundary
which is endowed with a complex (or: conformal) structure c. Such a structure
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c is an atlas of charts ϕ : G → R
2 with the property that the transition map

ϕ◦ϕ̃−1 between any two charts ϕ : G → R
2 and ϕ̃ : G̃ → R

2 is a biholomorphic
mapping of ϕ̃(G∩G̃) onto ϕ(G∩G̃). A pair (M, c) consisting of a two-manifold
M and of a complex structure c is called a Riemann surface.

A mapping X : M → R
3 is harmonic if, for any chart ϕ : G → R

2, the
mapping X := X ◦ϕ−1 is harmonic. Since the composition X ◦χ of a harmonic
mapping X with a conformal (i.e., biholomorphic) mapping χ is also harmonic,
this definition of harmonicity of X is compatible with the complex structure c.

Secondly, we call a nonconstant mapping X : M → R
3 a minimal surface

with the parameter domain M if, for any chart ϕ : G → R
2, the mapping

X := X ◦ ϕ−1 is a minimal surface in the sense of Section 2.6. That is, for
any chart {G,ϕ} of the structure c, the map X(w) = X(u, v) defined by
X := X ◦ ϕ−1 satisfies

(1) ΔX = 0

and

(2) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0.

Again this definition of a minimal surface is compatible with the conformal
structure c of M . This can be seen as follows. The map Φ(w) = Xu(u, v) −
iXv(u, v), w = u + iv, is holomorphic if and only if X is harmonic. Moreover,
if Φ = (Φ1, Φ2, Φ3) is holomorphic, then also

〈Φ,Φ〉 = Φ2
1 + Φ2

2 + Φ2
3

is holomorphic, i.e. 〈Xw, Xw 〉 dw2 is a holomorphic quadratic differential.
Thus, for any harmonic X, the equations (2) are equivalent to the fact that
the holomorphic quadratic differential 〈Xw, Xw 〉 dw2 vanishes, and we see that
the equations (1) and (2) are preserved with respect to biholomorphic changes
of the variables w = u + iv. Hence the definition of minimality is compatible
with the structure c.

A minimal surface X : M → R
3 defined on a Riemann surface M as

parameter domain will be called a global minimal surface.
A global minimal surface X : M → R

3 is said to be regular if, for any chart
{G,ϕ} of M , the surface X = X ◦ ϕ−1 is regular. Moreover, p0 ∈ M is said to
be a branch point of X if, for some chart {G,ϕ} satisfying p0 ∈ G, the point
w0 = ϕ(p0) is a branch point of X = X ◦ ϕ−1. It can easily be seen that this
definition of a branch point holds for any chart {G,ϕ} with p0 ∈ G if it holds
for a single one, and the order of the branch point is independent of the chart.

The Gauss map N : M → S2 of a global minimal surface X : M → R
3 is

defined by means of the charts {G,ϕ} of the conformal structure c of M by

N(ω) := N(ϕ(ω))

where
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N = |Xu ∧ Xv | −1Xu ∧ Xv

is the surface normal of X = X ◦ ϕ−1. This definition of N holds in the
classical sense if X is free of branch points. Otherwise, if p0 is a branch point
of X and w0 = ϕ(p0), then N(w0) is defined by N(w0) = limw→w0 N(w), and
correspondingly,

N(p0) = lim
ω→p0

N(ω).

This definition of N is compatible with the structure c of M since the transition
maps ϕ ◦ ϕ̃−1 between charts are biholomorphic and therefore orientation
preserving.

Remark. If one admits parameter domains (M, c) with a structure c where
the transition maps ψ := ϕ ◦ ϕ̃−1 are not necessarily holomorphic but either
holomorphic or antiholomorphic (i.e., either ψ or ψ̄ is holomorphic), then we
include also nonorientable parameter domains such as the Klein bottle into
the class of admissible parameter domains of minimal surfaces. For instance,
the minimal surface X : C → R

3 defined by

X(w) := Re
[

i

p(w)
(w5 − w), −i(w5 + w),

2
3
(w6 + 1)

]
+

(
0, 0,

1
2

)
,

p(w) := w6 +
√

5w3 − 1, w ∈ C,

is a minimal surface of the topological type of the projective plane (see Pinkall
[1]). Its inversion in S2, given by Z(w) := |X(w)|−2X(w), is a Willmore
surface, i.e., a critical point of the functional

∫
H2 dA (see Fig. 1).

Again it makes sense to define minimal surfaces X : M → R3 by means of
equations (1) and (2) which are to be satisfied by X = X ◦ ϕ−1 for any chart
{U,ϕ} of the structure c. In this way we are led to nonorientable minimal
surfaces such as the Henneberg surface. However, we can always pass from
M to the orientable double-cover M̃ of M , and X can be lifted as a minimal
surface from M to M̃ . Thus nothing is lost if we assume in the sequel that M
is orientable.

From now on we want to restrict our attention to regular and orientable
global minimal surfaces X : M → R

3. On the parameter domain M of such
a manifold we can introduce a Riemannian metric 〈〈ξ, η〉〉 as pull-back of the
Euclidean metric of R

3 to M via the mapping X. Introducing local coordinates
w = u1 + iu2 = ϕ(ω) by means of a chart {G,ϕ}, the induced metric 〈〈ξ, η〉〉
is given by

(3) 〈〈ξ, η〉〉 = 〈ξαXuα , ηβXuβ 〉

for ξ = (ξ1, ξ2), η = (η1, η2), where X = X ◦ ϕ−1. In other words, we have

(4) 〈〈ξ, η〉〉 = gαβ(w)ξαηβ

where gαβ(w) = 〈Xuα(w), Xuβ (w)〉.
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Fig. 1. A photograph of a model of the Wilmore surface Z : C → R3 which is exhibited

at the entrance to the library of the Mathematics Research Institute Oberwolfach (Black

Forest). Since Z(C) is topologically a projective plane, the surface Z is a realization of a

Boy surface (see Hilbert and Cohn-Vossen [1], pp. 276–283). Courtesy of Archive of Math-

ematisches Forschungsinstitut Oberwolfach

Definition 1. A regular global minimal surface X : M → R
3 is said to be

complete if its parameter domain M endowed with the induced Riemannian
metric 〈〈·, · 〉〉 of R

3 via X is a complete Riemannian manifold.

We recall that a Riemannian manifold M with a metric 〈〈·,· 〉〉 is said to be
complete if it is a complete metric space with respect to its distance function
d(p, q). Here the distance d(p, q) of any two points p, q of M is defined as
infimum of the lengths

l(γ) =
∫ 1

0

‖γ̇(t)‖ dt

of curves γ : [0, 1] → M connecting p, q, i.e., p = γ(0), q = γ(1), and ‖γ̇‖ =
〈〈γ̇, γ̇〉〉1/2.

We cite the following criterion for the completeness of Riemannian mani-
folds (see, for instance, Gromoll, Klingenberg, and Meyer [1], p. 166):

Theorem of Hopf and Rinow. Let M be a Riemannian manifold with the
distance function d. Then the following statements are equivalent :

(i) M is complete, i.e. (M,d) is a complete metric space.
(ii) For any p ∈ M , the exponential map expp is defined on the whole

tangent space TpM .
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(iii) If G is a bounded subset of the metric space (M,d), then its closure
Ḡ is compact.

In order to formulate another condition for completeness that will be par-
ticularly useful for the discussion of global minimal surfaces, we need the
following

Definition 2. A divergent path on a Riemannian manifold M is a contin-
uous curve γ : [0, 1] → M such that, for any compact subset K of M , there is
a number t0(K) such that γ(t) is contained in the complement M \ K for all
t > t0(K).

In other words: A divergent path on M is a ray that ultimately leaves
every compact subset of M .

Proposition 1. A Riemannian manifold M is complete if and only if every
divergent C1-path γ : [0, 1) → M has infinite length.

Proof. (i) If M is complete and γ : [0, 1) → M is an arbitrary C1-path of
finite length, then γ([0, 1)) is bounded. Consequently, the closure of γ([0, 1))
is compact by the Hopf–Rinow theorem, and therefore γ is not divergent.

(ii) Conversely, if M is not complete, then we can find a geodesic γ :
[0, 1) → M having [0, 1) as its maximal domain of definition (to the right).
The curve γ is divergent since otherwise limt→1−0 γ(t) would exist and γ(t)
could be extended beyond t = 1. Since γ is a geodesic, its speed ‖γ̇(t)‖ is
constant for all t ∈ [0, 1) and therefore the length l(γ) =

∫ 1

0
‖γ̇(t)‖ dt of γ is

finite. �

Let us now consider a global minimal surface X : M → R
3 which is not nec-

essarily regular. Then X may have isolated singularities on M , branch points,
and its parameter domain M can be viewed as a generalized Riemannian 2-
manifold with isolated singular points whose metric tensor (gαβ(w)) is defined
as before by gαβ(w) = 〈Xuα(w), Xuβ (w)〉, X = X ◦ ϕ−1, for any chart {G,ϕ}
of the complex structure c of M . The only difference is now that (gαβ(w))
will vanish at points w = w0 corresponding to branch points of X. Thus the
notion of the length of a curve in M retains its meaning, and the same holds
for the notions distance function, closed set, compact set in M , as well as for
the notion divergent path on M . This leads us to

Definition 3. A divergent path on a global minimal surface X : M → R3 is
a continuous curve Γ : [0, 1) → R

3 of the form Γ = X ◦ γ where γ : [0, 1) → M
is a divergent path on the generalized Riemannian manifold M endowed with
the metric of R

3 via the mapping X.

Furthermore, Proposition 1 suggests the following

Definition 4. A global minimal surface X : M → R
3 is called complete if

the length of every divergent C1-path Γ on X is infinite.



188 3 Representation Formulas and Examples of Minimal Surfaces

Note that a regular minimal surface X : M → R
3 is complete in the sense of

Definition 4 if it is complete in the sense of Definition 1. Thus Definition 4 can
be viewed as a legitimate extension of our preceding definition of a complete
global minimal surface. In the sequel we shall drop the epithet global if we
speak of a minimal surface X : M → R

3 with a Riemann surface M as a
parameter domain.

If one wants to consider minimal surfaces in the large, one has to deal with
surfaces X̃ : M̃ → R

3 which are defined on Riemann surfaces M̃ . However,
in certain situations the investigation can be simplified by passing from M̃ to
its universal covering M which is a simply connected manifold of the same
dimension as M̃ . Any minimal surface X̃ : M̃ → R

3 can be lifted from M̃ to
M as a minimal surface X : M → R

3, and we shall see that X is complete if
and only if X̃ is complete.

Recall that the universal covering of M̃ is, precisely speaking, a mapping
π : M → M̃ of a simply connected two-dimensional manifold M with the
property that every point p of M̃ has a neighborhood U such that π−1(U)
is the disjoint union of open sets Si in M , called the sheets of the covering
above U , each of which is mapped homeomorphically by π onto U .3

If M̃ is a Riemann surface with the conformal structure c̃, then π−1 induces
a conformal structure c on M such that π : (M, c) → (M̃, c̃) becomes a
holomorphic mapping of the Riemann surface (M, c) onto the Riemann surface
(M̃, c̃). Consequently, if X̃ : M̃ → R

3 is a minimal surface with M̃ as parameter
domain, and if π : M → M̃ is the universal covering of M̃ , then X := X̃ ◦ π
defines a mapping X : M → R

3 which is again a minimal surface. We call this
map the universal covering of the minimal surface X̃. Note that X is regular
if and only if X̃ is regular, and the images of the Gauss maps N and Ñ of X

and X̃ coincide.

Proposition 2. A minimal surface X̃ : M̃ → R
3 is complete if and only if its

universal covering X : M → R
3 is complete.

Proof. If X̃ is regular, the result is an immediate consequence of statement
(ii) of the Hopf–Rinow theorem since the projection π : M → M̃ is a local
isometry.

To prove the result in general, we have to use Definition 4.
Suppose first that X is complete. We consider an arbitrary divergent path

Γ̃ on X̃. Lifting Γ̃ to the covering surface X, we obtain a divergent path Γ on
X which must have infinite length as X is complete. Since π : M → M̃ is a
local isometry, it follows that Γ̃ has infinite length, and we conclude that X̃

is complete.
Conversely, let now X̃ be complete. Consider an arbitrary divergent path

Γ on X given by Γ = X ◦ γ, γ : [0, 1) → M . We have to show that the length of
Γ is infinite. We look at the paths γ̃ := π ◦ γ on M̃ and Γ̃ := X̃ ◦ γ̃ = X ◦ γ = Γ

3 Concerning the universal covering we refer the reader to Weyl [4], Springer [1], Greenberg

[1].
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on X̃, respectively. If γ̃ is divergent, then the completeness of X̃ implies that
γ̃ has infinite length whence also γ has infinite length since π is locally an
isometry.

On the other hand, if γ̃ is not divergent, then there is a compact subset
K of M̃ and a sequence of parameter values tn in [0, 1) converging to 1 such
that γ̃(tn) belongs to K for all n. Passing to a subsequence we may assume
that the points γ̃(tn) converge to a point p∗ ∈ M̃ . Then we choose a chart
ϕ : G → R

2 around p∗ such that ϕ(p∗) = 0, and that π−1(G) is the disjoint
union of open sheets Si. Since the branch points are isolated, there is an ε > 0
such that Ωε := Bε(0) \B̄ε/2(0) is contained in ϕ(G) and that the metric of M
is positive definite on ϕ−1(Ω̄ε). Since the points γ̃(tn) converge to p∗, almost
all of them belong to the compact set ϕ−1(B̄ε/2(0)). Therefore and since γ
is divergent, the points γ(tn) are distributed over infinitely many sheets Si.
From this fact we infer that the path ϕ ◦ γ̃ has to cross Ωε an infinite number
of times, implying that the length of γ̃ is infinite. Therefore also the length of
γ is infinite.

Thus X is shown to be complete if X̃ is complete. �

Let us note a simple but basic result on parameter domains M of global
minimal surfaces X : M → R

3 satisfying ∂M = ∅.

Proposition 3. The parameter domain M of a global minimal surface X :
M → R3 cannot be compact, i.e. there are no compact minimal surfaces.

Proof. If M were compact, each of the components Xj(p) of X(p) would as-
sume its maximum in some point pj ∈ M , and since the functions Xj(p) are
harmonic on M , the maximum principle would imply that Xj(p) ≡ const on
M for j = 1, 2, 3. Since X(p) is supposed to be nonconstant, this is a contra-
diction. �

By the uniformization theorem, a simply connected Riemann surface is
either of the conformal type of the sphere S2, or of the complex plane C, or
of the unit disk B = {w : |w| < 1}. Because of Proposition 3 the first case is
excluded, and we obtain

Proposition 4. If the parameter domain M of a global minimal surface X :
M → R

3 is simply connected, then M is conformally equivalent to the complex
plane or to the unit disk.

A minimal surface X : M → R3 is said to be of parabolic type if M ∼ C,
and of hyperbolic type if M ∼ B. If M is not simply connected, we may pass
to the universal covering X̂ : M̂ → R

3 whose parameter domain M̂ is simply
connected, and we call X to be of parabolic or hyperbolic type if its universal
covering X̂ is of parabolic or hyperbolic type respectively.
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3.7 Omissions of the Gauss Map of Complete Minimal
Surfaces

A minimal surface which is a graph over R
2 is a complete minimal surface

whose Gauss map omits a whole hemisphere of S2, and Bernstein’s theorem
states that such a surface must necessarily be a plane. More generally one may
ask how large the set of omissions of the Gauss map for an arbitrary nonplanar
and complete minimal surface in R

3 can be. In order to get a feeling for what
can be true we first consider some special cases and a few examples before we
state the main result of this section.

Again we shall throughout consider global minimal surfaces X : M → R3

whose parameter domains M are Riemann surfaces without boundary, i.e.

(1) ∂M = ∅.

A first information is provided by the following result.

Proposition 1. The Gauss map of a minimal surface X : M → R
3 of para-

bolic type misses at most two points unless X(M) is contained in a plane.

Proof. If X is of parabolic type, then the corresponding universal covering X̂ :
M̂ → R

3 is defined on a parameter domain M̂ that is conformally equivalent
to the complex plane C. Since the spherical images of X and X̂ are the same,
it suffices to prove the following result:

Lemma 1. The Gauss map of a minimal surface X : C → R
3 misses at most

two points if X(C) is not contained in a plane.

Proof. We represent X by a Weierstrass representation formula

(2) X(w) = X(0) + Re
(∫ w

0

1
2
μ(1 − ν2) dζ,

∫ w

0

i

2
μ(1 + ν2) dζ,

∫ w

0

μν dζ

)

where μ(ζ) is holomorphic, ν(ζ) is meromorphic, μ(ζ) 	≡ 0, ν(ζ) 	≡ 0, and μν2 is
holomorphic on C. As we have seen in Section 3.3, the meromorphic mapping
ν is just the Gauss map N of X followed by the stereographic projection
σ : S2 → C̄ of the Riemann sphere into the complex plane, i.e., ν = σ ◦ N . As
Picard’s theorem implies that ν misses at most two values of C̄ = C ∪ {∞},
the assertion of the lemma follows from the representation N = σ−1 ◦ ν. �

Now we shall use formula (2) to construct some examples. Let Ω be the
complex plane C or the unit disk B, and suppose that μ and μν2 are holomor-
phic and nowhere vanishing on Ω. Then formula (2) defines a regular minimal
surface X : Ω → R

3 which has the line element

(3) ds = λ|dw|, λ = 1
2 |μ|(1 + |ν|2)
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(see Section 3.3, (10)). Hence we can compare the line element ds on Ω with
the ordinary Euclidean line element |dw|. Moreover, compact sets in (Ω, ds)
correspond to compact sets in the domain Ω equipped with the Euclidean
metric |dw|, and divergent paths in (Ω, ds) correspond to divergent paths in
(Ω, |dw|), and vice versa. Recall that by definition the surface X (or, equiva-
lently, the manifold (Ω, ds)) is complete if every divergent path γ : [0, 1) → Ω
has infinite length, that is, if

(4)
∫

γ

λ|dw| =
1
2

∫
γ

|μ|(1 + |ν|2)|dw| = ∞.

Then we obtain the following

Examples.

1 If μ(w) = w2 and ν(w) = p(w)/w where p(w) is a polynomial of degree
not less than two satisfying p(0) 	= 0, then μ and μν2 are holomorphic, and ν
maps C onto C. Moreover, there is a number δ > 0 such that |λ(z)| ≥ δ for
all z ∈ C whence ∫

γ

λ|dw| ≥ δ

∫
γ

|dw|

for any path γ : [0, 1) → C. By the preceding observations we infer that
formula (2) defines a complete regular minimal surface X : C → R

3 the Gauss
map of which omits no points of S2.

2 If we choose μ(w) = c and ν(w) = p(w) for some constant c 	= 0 and
some polynomial p(w) of degree at least one, then ν maps C onto C, and a
similar reasoning as in 1 shows that (2) defines a complete regular minimal
surface X : C → R3 whose Gauss map omits exactly one point, the north pole
of S2. In particular, if we choose μ(w) = 1

2 and ν(w) = w, formula (2) yields
Enneper’s surface.

3 If we take μ(w) = 1, ν(w) = ew, and Ω = C, then ν(w) omits exactly the
value zero, and we infer that (2) defines a complete regular minimal surface
X : C → R

3 whose Gauss map omits exactly two points of S2, the north pole
and the south pole. The same holds true for the catenoid (after a suitable
rotation).

4 Now we want to construct minimal surfaces X : Ω → R
3 whose Gauss

map omits a finite number of points. In fact, we want to prescribe a finite
set E = {a1, a2, . . . , an+1} on S2 which is to be omitted by the Gauss map
of X. Without loss of generality we can assume that an+1 is the north pole of
S2 as an+1 can be moved into this position by a suitable rotation of R

3. Let
w1, w2, . . . , wn, ∞ be the images of a1, a2, . . . , an, an+1 under the stereographic
projection σ of S2 onto C. Then we choose
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Ω := C \ {w1, w2, . . . , wn}, μ(w) :=
n∏

k=1

(w − wk)−1, ν(w) := w.

Since Ω is not simply connected, the surface X : Ω → R
3 defined by (1) is

multiple-valued as its values depend on the paths of integration. However,
the universal covering X̂ : Ω̂ → R

3 of X will be single-valued and the Gauss
maps of X and X̂ omit the same set of points E. Moreover, X̂ is complete
exactly when X is complete, and X̂ is regular since X is a regular surface.
Thus we can construct a regular minimal surface X̂ : Ω̂ → R

3 of parabolic or
hyperbolic type whose spherical image is S2 \ E, where E = {a1, . . . , an+1} is
an arbitrarily prescribed set of points on S2.

Are the surfaces X̂ constructed in this way complete surfaces? As we shall
see, this is true if and only if n ≤ 4, i.e., if and only if the exceptional set E
contains at most four points.

To this end we consider a curve γ : [0, 1) → Ω in the parameter domain
of X and the corresponding curve Γ = X ◦ γ on the minimal surface X. In
order to show that X is complete we have to prove that the length

L(Γ ) =
∫

Γ

ds =
∫

γ

λ(w)|dw| =
1
2

∫
γ

|μ|(1 + |ν|2)|dw|

of Γ is infinite if Γ is a divergent curve on X. Because of (4) we then have to
show that

(5) L(Γ ) =
1
2

∫
γ

(1 + |w|2)
n∏

k=1

|w − wk | −1|dw|

is infinite if Γ = X ◦ γ is a divergent path on X.
For any R > 0 there is a number ε = ε(R) > 0 such that

(6)
1
2
(1 + |w|2)

n∏
k=1

|w − wk | −1 ≥ ε for all w ∈ BR(0).

Hence, if γ(t) ∈ Ω ∩ BR(0) for all t ∈ [0, 1), we obtain

L(Γ ) ≥ εl(γ)

where l(γ) :=
∫

γ
|dw| denotes the Euclidean length of γ. We then conclude

that a divergent path Γ = X ◦ γ can have finite length L(Γ ) only if l(γ) < ∞;
but this assumption would imply that γ(t) converges to some point w0 ∈ C

as t → 1 − 0, and since Γ is divergent, we obtain that w0 /∈ Ω. We then arrive
at w0 ∈ σ(E \ {an+1}) = {w1, . . . , wn}, and therefore L(Γ ) = ∞ on account
of (4). Thus we see that a divergent path Γ = X ◦ γ has infinite length if
γ([0, 1)) is contained in a bounded set of C.

Suppose now that Γ = X ◦ γ is a divergent path such that γ is not
contained in a bounded set of C. Then either limt→1−0 |γ(t)| = ∞ or there are
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two sequences {tj }, {t′
j } of points tj , t

′
j ∈ [0, 1) such that limj→∞ |γ(tj)| = ∞,

whereas the sequence of points γ(t′
j) remains bounded. In the first case, the

integral (4) diverges for n ≤ 3 while it converges if n ≥ 4. In the second case
we find that L(Γ ) = ∞ since γ must cross some annulus A := {w ∈ C : R′ <
|w| < R} infinitely often, and we have a bound of the kind (6) on A.

Let us resume the main result of this example.

Proposition 2. For any set E consisting of four or less points of S2 there ex-
ists a regular, complete minimal surface X : Ω → R

3 of parabolic or hyperbolic
type whose Gauss map omits exactly the points of E.

The preceding construction suggests that in general the Gauss map of
a complete regular minimal surface cannot omit more than four points. Al-
though the construction given in 4 is not conclusive as there might be other
choices of μ and ν leading to a complete minimal surface with the desired
omission property, the result is nevertheless true and will now be stated as
the main result of this section.

Theorem 1. If X : M → R
3 is a complete regular minimal surface such that

X(M) is not a plane, then the Gauss map of X can omit at most four points.

This result is due to Fujimoto [3]. The proof given below was found by
Mo and Osserman [1] (cf. also Osserman [24]). Weaker results were earlier
obtained by Osserman, Ahlfors-Osserman, and Xavier.

Before we prove Fujimoto’s theorem we shall derive another result that was
conjectured by Nirenberg and proved by Osserman [1]. Although it is weaker
than Theorem 1, it already provides a considerable sharpening of Bernstein’s
theorem stated in Section 2.4.

Theorem 2. Let X : M → R
3 be a regular complete minimal surface such

that X(M) is not a plane. Then the image of the Gauss map of X is dense
in S2.

We remark that in this theorem the assumption of regularity can be re-
placed by the weaker requirement that X has only finitely many branch points
provided that M is assumed to be simply connected. However, the result does
not remain true if we admit arbitrary minimal surfaces as we can see from the
following example.

5 There exist complete nonplanar minimal surfaces the spherical images of
which lie in an arbitrarily small neighborhood of the south pole of S2. This
can be seen as follows. We set ν(w) = εw for some ε > 0, and choose a
holomorphic function μ : B → C of the unit disk such that

∫
γ

|μ(w)| |dw| =
∫ 1

0

|μ(γ(t))| |γ̇(t)| dt = ∞
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holds for every divergent path γ : [0, 1) → B. Defining X : B → R
3 by formula

(2) we obtain a complete minimal surface whose spherical image is contained
in an arbitrarily small neighborhood of the south pole provided that ε > 0
is sufficiently small. For the construction of such functions μ(w) we refer to
Osserman’s thesis [25] where it is shown that the images of the functions μ
are precisely those Riemann surfaces of class A which are of hyperbolic type.
In the last section of his thesis, Osserman gave a number of examples for
such surfaces which, consequently, lead to implicit examples of functions μ
described above.

An explicit example, pointed out by Osserman, is provided by μ := J ′ ◦ F
where J is the elliptic modular function and F a conformal map of the unit
disk B onto the upper halfplane. In particular, μ maps B onto a hyperbolic
Riemann surface of class A with no boundary points at finite distance.

Note that Bernstein’s theorem is an immediate corollary of Theorem 2,
as a nonparametric minimal surface X(x, y) = (x, y, z(x, y)) defined for all
(x, y) ∈ M = R

2 is a complete regular minimal surface. Since the Gauss map
of X maps R

2 into a hemisphere of S2, the set X(M) has to be a plane, and
then a straightforward computation yields that z(x, y) is an affine function,
i.e.,

z(x, y) = ax + by + c

for suitable constants a, b, c ∈ R.
The proof of Theorem 2 will be based on the following

Lemma 2. If f : B → C is a holomorphic function with at most finitely many
zeros, then there is a divergent path γ : [0, 1) → B of class C∞ such that

∫
γ

|f(w)| |dw| < ∞.

Proof. If f(w) 	= 0, then the holomorphic mapping F : B → C defined by

F (w) :=
∫ w

0

f(ζ) dζ

is invertible in a neighborhood of the origin in B. Let G(z) be the local inverse
of F around z = 0 which is defined on some disk BR(0), and be

G(z) = a1z + a2z
2 + · · ·

the Taylor expansion of G. We can assume R to be its radius of convergence;
it could be infinite as, for instance, it is the case for f(w) ≡ 1. Let us introduce
the set I of all ρ ∈ (0, R] such that G(Bρ(0)) ⊂ B and that the mapping

G : Bρ(0) → Ωρ := G(Bρ(0))
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is bijective. By Liouville’s theorem the number

r := sup I

is finite since G is nonconstant.
We claim that there is a point z0 ∈ ∂Br(0) such that

lim
t→1−0

|G(tz0)| = 1

which would then imply that the path

γ(t) := G(tz0), 0 ≤ t < 1,

is divergent in B, but
∫

γ

|f(w)| |dw| =
∫

γ

|F ′(w)| |dw| =
∫

F (γ)

|dz| = |z0| = r < ∞

and the assertion of the lemma were proved.
If we could not find some z0 ∈ ∂Br(0) as claimed, then for any z0 ∈ ∂Br(0)

we could select a sequence {tn} of numbers tn ∈ (0, 1) such that tn → 1 − 0
and that G(tnz0) converges to some point w0 ∈ B. Since F ′(w0) 	= 0, there is
a neighborhood V of w0 where F is invertible. Let Ĝ be the inverse of F |V.
Since

F (w0) = lim
n→∞

F (G(tnz0)) = lim
n→∞

tnz0 = z0,

the intersection F (V ) ∩ Br(0) is nonempty, and Ĝ must be an extension of
G to some neighborhood of z0. By a compactness argument we infer that G
admits a holomorphic extension to some disk Bρ′ (0) such that r < ρ′ < R
and G(Bρ′ (0)) ⊂ B. By the principle of unique continuation we infer that G
is bijective on Bρ′ (0) since F (G(z)) = z for z ∈ Bρ(0) if 0 < ρ < r. However,
the existence of such a ρ′ would contradict the definition of r. Thus the lemma
is proved if f(w) 	= 0 on B.

If f(w) has finitely many zeros w1, . . . , wn ∈ B of order ν1, . . . , νn, then
the function

f̃(w) := f(w)
n∏

k=1

(
1 − w̄kw

w − wk

)νk

does not vanish on B. For any a ∈ B, the transformation w → w−a
1−āw provides

a conformal mapping of B onto itself whence |f̃(w)| ≥ |f(w)| on B. The
preceding argument implies that there is a divergent path γ : [0, 1) → B such
that

∫
γ

|f̃(w)| |dw| < ∞ whence
∫

γ
|f(w)| |dw| < ∞, and the lemma is proved

in the general case. �

Now we turn to the
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Proof of Theorem 2. Passing to the universal covering of X, we may assume
that M is equal to C or to B = {w : |w| < 1}.

If X is of parabolic type (i.e., M = C), and if the spherical image of X is
not dense in S2, then Proposition 1 yields that X(C) is contained in an affine
plane of R

3, and since X is complete, the set X(C) must be the whole plane.
Suppose now that X is of hyperbolic type (i.e., M = B), and that the

spherical image of X is not dense in S2. Then the Gauss map of X misses
an open set which can be assumed to be a neighborhood of the north pole.
Representing X(w) = X(w) by formula (2) we then infer that the function
ν(w) is a bounded holomorphic function on B, and the branch points of X
are precisely the zeros of the holomorphic function μ. We have assumed that
there are no such zeros, but we could admit finitely many. By Lemma 2 there
is a divergent path γ in B such that

∫
γ

|μ| |dw| < ∞. On the other hand, the
length L(Γ ) of Γ := X ◦ γ is given by

L(Γ ) =
∫

Γ

ds =
1
2

∫
γ

|μ|(1 + |ν|2)|dw|

whence
L(Γ ) ≤ const

∫
γ

|μ| |dw| < ∞.

But this result is a contradiction to the completeness of the minimal surface
X which requires that any divergent path on X is of infinite length. �

Now we shall outline the

Proof of Theorem 1. Suppose that X : M → R
3 is a complete regular minimal

surface whose Gauss map omits at least five points a1, . . . , a5 ∈ S2. We can
assume that a5 is the north pole. Then we pass to the universal covering
X of X which we can assume to be defined on a simply connected domain
of C. On account of Proposition 1, the surface X must be of hyperbolic type,
and thus we can suppose that its parameter domain is the unit disk B =
{w ∈ C : |w| < 1}. In other words, we are given a complete regular minimal
surface X : B → R

3 which is represented on B by formula (1) where ν(w)
is meromorphic, μ(w) and μν2 are holomorphic, and μ(w) 	≡ 0, ν(w) 	≡ 0
on B. The meromorphic function ν is just the Gauss map of X followed by
the stereographic projection σ : S2 → C̄. Consequently ν(w) omits the four
points wk := σ(ak), 1 ≤ k ≤ 4, and the value ∞ = σ(a5), i.e., ν is holomorphic.
Since X is regular, we have μ(w) 	= 0 for all w ∈ B.

Now we want to proceed in a similar way as in the proof of Lemma 2. We
define a mapping F : B → C by

(7) F (w) :=
∫ w

0

f(ζ) dζ

where f has the properties stated in Lemma 2; a specific choice will be made
later on. Let G(z) be the inverse of F in a neighborhood of the origin, and
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let r be defined as in the proof of Lemma 2. Then we have F (G(z)) = z
for all z ∈ Br(0), and there is a point z0 ∈ ∂Br(0) such that |G(tz0)| → 1
as t → 1 − 0, and that G cannot be extended to a neighborhood of z0 as a
holomorphic function.

Let us introduce the curves γ∗, γ, and Γ by setting γ∗(t) := tz0, 0 ≤ t ≤ 1,
γ := G ◦ γ∗, and Γ := X ◦ γ. Then the length

L(Γ ) =
1
2

∫
γ

|μ|(1 + |ν|2)|dw|

of Γ can be expressed in the form

(8) L(Γ ) =
1
2

∫
γ∗

|μ ◦ G|(1 + |ν ◦ G|2)
∣∣∣∣dwdz

∣∣∣∣|dz|

where
dw

dz
(z) =

1
dz
dw (w)

=
1

f(w)
, w = G(z).

Now we choose the function f in the form

(9) f(w) := 1
2μ(w)ϕ(w)

where ϕ(w) is to be determined later. From (7) we then infer that

(10) L(Γ ) =
∫

γ∗

1 + |ν(G(z))|2
|ϕ(G(z))| |dz|.

We now want to choose ϕ in such a way that L(Γ ) becomes finite, and since
Γ is by construction a divergent path on X (see the proof of Lemma 2), this
would yield a contradiction to the completeness of X : B → R

3.
Note that h := ν ◦ G is holomorphic in Br(0) and omits at least the four

values w1, w2, w3, w4. Then, for any choice of the numbers ε and ε′ satisfying
0 < ε < 1 and 0 < ε′ < ε

4 , there is a real number b depending only on ε, ε′

and the points wj such that

(11) {1 + |h(z)|2}(1/2)(3−ε)
4∏

j=1

|h(z) − wj |ε
′ −1|h′(z)| ≤ 2br

r2 − |z|2

holds true for all z ∈ Br(0).
For the moment we shall dispense with the proof of this inequality, and

we proceed with the proof of the theorem by showing that L(Γ ) < ∞ for a
suitable choice of ϕ. Choose some ε ∈ (0, 1) and set p := 2/(3 − ε); then we
have 2

3 < p < 1. Now we try to choose ϕ in such a way that

(12) (ϕ ◦ G)(z) = {h′(z)}−p
4∏

j=1

[h(z) − wj ]p(1−ε′)
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is satisfied. On account of (11), this would imply the inequality

(13)
1 + |ν(G(z))|2

|ϕ(G(z))| ≤
(

2br
r2 − |z|2

)p

=
κ

(r2 − |z|2)p
for |z| < r

where κ := (2br)p, and 2
3 < p < 1. Then (10) and (13) would yield the desired

estimate L(Γ ) < ∞.
However, we have defined G as the inverse of

F (w) =
1
2

∫ w

0

μ(ζ)ϕ(ζ) dζ.

Thus G is defined in terms of ϕ, and we cannot by rights use (12) for defining ϕ.
To remove this difficulty, we transform in (12) everything from z to w using the
relations w = G(z), h(z) = ν(G(z)) = ν(w) and h′(z) = ν′(w)dw

dz = ν′(w)/ dz
dw .

Then (12) can be expressed in the form

(
dz

dw

)1−p

=
1
2
μ(w)

4∏
j=1

[ν(w) − wj ]p(1−ε′){ν′(w)}−p,

that is,

(14) f(w) =
{

1
2
μ(w)

}1/(1−p) 4∏
j=1

[ν(w) − wj ]p(1−ε′)/(1−p){ν′(w)}−p/(1−p).

On the right-hand side of (14) we only have given quantities that do not
involve ϕ, and therefore we can use (14) to define f(w) for w ∈ B provided
that ν′(w) 	= 0 in B. Then F (w) will be defined by (6), and G is the inverse
of F . We now derive from (14) that (12) holds whence we obtain (13) and
then L(Γ ) < ∞.

We still have to consider the case where ν′(w) vanishes on a nonempty set
Σ in B. Since X is nonplanar we have ν(w) 	≡ const, whence ν′(w) 	≡ 0. Thus
Σ is either a finite set, or it consists of a sequence of points tending to the
boundary of B. If we now define f(w) for w ∈ B \ Σ by (14), and then F (w)
by (6), we might obtain a multivalued function which, however, can be lifted
to a single-valued function F̂ on the universal covering surface B̂ of B \ Σ.
The surface B̂ is conformally equivalent to the unit disk, and the reasoning
of the proof of Lemma 2 leads again to a largest disk Br(0) where the inverse
Ĝ of F̂ is defined, and to a boundary point z0 ∈ ∂Br(0) which is a singular
point for Ĝ. Now we define a mapping G : Br(0) → B \ Σ by G := π ◦ Ĝ
where π : B̂ → B \ Σ is the canonical projection of the universal covering B̂
onto B \ Σ. Defining γ∗, γ, and Γ as before we see that L(Γ ) < ∞. To obtain
a contradiction we have to verify that Γ is a divergent path on X. If this were
not true, we could find a sequence of points zn = tnz0 on γ∗ with tn → 1 − 0
such that their images wn = G(zn) on γ converge to an interior point w0
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of B. Then w0 cannot be contained in B \ Σ on account of the reasoning of
Lemma 2, and therefore w0 must be an element of Σ, i.e., ν′(w0) = 0. Thus
we have the power series expansion

ν′(w) = α(w − w0)m + · · ·

for some α 	= 0 and some integer m ≥ 1 whence

{ν′(w)}p/(1−p) = β(w − w0)mp/(1−p) + · · · as w → w0

where we have set p := 2/(3−ε) for some fixed ε ∈ (0, 1). Note that p/(1−p) =
2/(1 − ε) > 2.

Case (i). Suppose that γ(t) → w0 as t → 1 − 0. Then we arrive at the relations

r =
∫

γ∗
|dz| =

∫
γ

|f(w)| |dw| ≥ c

∫
γ

|w − w0| −2|dw|

with a positive constant c > 0. Since
∫

γ

|w − w0| −2|dw| = ∞

we have found a contradiction.

Case (ii). If γ(t) does not tend to w0 as t → 1−0, there is another accumulation
point of γ(t) in B \ Σ, and the reasoning of the proof of Lemma 2 leads to a
contradiction.

Thus Γ is divergent but L(Γ ) < ∞, and this contradicts the completeness
of X.

It remains for us to verify the estimate (11). Let Ω be the domain

C \ {w1, w2, w3, w4}.

Its universal covering is conformally equivalent to the unit disk B, and the
standard Poincaré metric is pulled back to a conformally equivalent metric
ds = ρ(w)|dw| on Ω whose Gauss curvature is equal to −1. For ρ(w) we have
the asymptotic expansions

(15) ρ(w) ∼ Cj

|w − wj | log |w − wj | as w → wj , 1 ≤ j ≤ 4

and

(16) ρ(w) ∼ C0

|w| log |w| as w → ∞ = w5

where C0 and Cj are constants different from zero (see R. Nevanlinna [1],
pp. 259–260 and 250).

Now consider the function
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(17) ψ(w) := (1 + |w|2)(3−ε)/2ρ(w)−1
4∏

j=1

|w − wj |ε
′ −1, w ∈ Ω,

which is positive and continuous on Ω. By (15) and (16) we have ψ(w) → 0
as w → wj , j = 1, . . . , 5. Hence ψ(w) has a positive maximum on Ω, the value
b of which depends only on ε, ε′, and w1, . . . , w4, and we therefore obtain

(18) ψ(w) ≤ b for all w ∈ Ω.

Now we consider an arbitrary holomorphic function h(z) in Br(0) which omits
the points w1, . . . , w4, say, the function h = ν ◦ G that we considered before.
We lift h to a conformal mapping H from Br(0) to B and apply the Schwarz–
Pick lemma to H ◦ τ where τ denotes a conformal rescaling mapping which
maps B onto Br(0). This lemma states that holomorphic mappings of the unit
disk B into itself decrease the noneuclidean length of an arc (cf. Ahlfors [6],
p. 3, Carathéodory [5], vol. 2, pp. 14–20) which implies that

(19) ρ(h(z))|h′(z)| ≤ 2r
r2 − |z|2 for |z| < r.

From (17) and the two inequalities (18), (19) we infer the desired estimate
(11). �

A detailed exposition of Fujimoto’s work, in particular on the value dis-
tribution of the Gauss map of minimal surfaces, can be found in Fujimoto
[5,8].

3.8 Scholia

1 Historical Remarks and References to the Literature

In Sections 3.1–3.6 we had a glimpse at the theory of minimal surfaces devel-
oped during the 19th century. The principal tools were methods of complex
analysis, conformal mappings, the Gauss map and related differential geomet-
ric ideas, symmetry arguments and geometric intuition. Hence it is no surprise
that this part of the theory of minimal surfaces has always been a preferred
playground of differential geometers. During the last years this classical field
has experienced a remarkable revival which is to no small extent the merit
of computer graphics nowadays available. By the pioneering work of David
Hoffman this amazing tool has become a useful working aid and a source of
inspiration.4 In former times it was rather difficult to visualize minimal sur-
faces in the large and, in fact, the classical treatises do not show many figures.

4 See Callahan, Hoffman, and Hoffman [1], Hoffman [1–5], and Hoffman and Meeks [1,2,5,

8,9,11].
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This absence of figures cannot only be explained by the dislike of some of the
great French mathematicians for the old custom of supporting geometric rea-
soning by figures.5 An exception from the rule was H.A. Schwarz who put
much effort in the construction of permanent models of minimal surfaces (see
also the figures at the end of vol. 1 of his Abhandlungen [2]). Also the work of
Neovius (cf. in particular [5]) contains beautiful illustrations. In recent years
crystallographers and chemists have discovered the use of minimal surfaces for
the description of complicated crystalline structures, and, in addition to the
use of computer graphics, they have developed various means of visualizing
these surfaces by models.

A brief survey of the history of minimal surfaces until the time of
Riemann’s death can be found in the introduction to Riemann’s paper [2].
It is missing in the reprint included in Riemann’s Gesammelten mathemati-
schen Werken [2] since the editor H. Weber had decided to omit it as it was
written by Riemann’s student Hattendorf.

Hattendorf begins his survey with the derivation of the minimal surface
equation by Lagrange (1760/61), and he mentions that Lagrange found no
other solution than the plane. Then he states the contributions of Meusnier
(1776): The minimal surface equation is equivalent to H = 0 and has the
catenoid and the helicoid as solutions. Moreover, he mentions the integration
of the minimal surface equation by Monge (1784) and Legendre (1787) as
well as a basic discovery by Dupin (1813): The asymptotic lines of a minimal
surface are perpendicular to each other and enclose angles of 45 degrees with
the lines of curvature.

The representation formulas of Monge and Legendre were, as Hattendorf
remarks, not well suited for deriving other specific minimal surfaces besides
the helicoid and the catenoid found by Meusnier. New surfaces were first
derived by Scherk (in his prize-essay for the Jablonowski Society at Leipzig,
1831) by a kind of separation of variables. A similar approach was followed by
Catalan (1858), and Hattendorf also mentions that, in two papers from 1842
and 1843, Catalan showed that the helicoid is the only ruled minimal surface
(apart from the plane). Then Hattendorf discusses the solution of Björling’s
problem by Björling (Grunert’s Archive, vol. 4, 1843) and later by Bonnet
(Comptes Rendus 1853, 1855, 1856; Liouville’s Journal 1860). He mentions
that Bonnet investigated asymptotic lines, lines of curvature and geodesic
lines on minimal surfaces and that he looked for those surfaces of zero mean
curvature which satisfy certain geometric conditions. For instance, the surface
might be generated by a curve via a screw motion, it might have plane lines of
curvature, or it might pass through given lines. Of this latter problem, Bonnet

5 Lagrange wrote in the preface to his Mécanique analytique (second edition, vol. 1, 1811):

On ne trouvera point de Figures dans cet Ouvrage. Les méthodes que j’y expose ne de-

mandent ni constructions, ni raisonnemens géométriques ou mécaniques, mais seulement

des opérations algébriques, assujéties à une marche regulière et uniforme. Ceux qui aiment

l’Analyse, verront avec plaisir la Mécanique en devenir une nouvelle branche, et me sauront

gré d’en avoir étendu ainsi le domaine.
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Fig. 1. Riemann’s periodic minimal surface: an example with a translational symmetry.

Courtesy of K. Polthier and M. Wohlgemuth

treated the problem of finding minimal surfaces containing a given strip or
passing through two intersecting straight lines; the last question was also
investigated by Serret (1855). Hattendorf closes his report with the remark
that nothing more is known on minimal surfaces with given boundaries, and
he states that Bonnet stopped at that point where the true problem begins,
namely, the investigation of the limit and discontinuity properties. And then:
Diese Untersuchung gehört ihrem Wesen nach in die von Riemann geschaffene
Theorie der Funktionen von complexen Variablen.

A new period in the theory of minimal surfaces began in 1865 with the
solution of Plateau’s problem by H.A. Schwarz in the case that the boundary
curve is a regular quadrilateral, and, in 1867, for the general quadrilateral (see
Schwarz [2], vol. 1, pp. 1–91). These papers are based on the representation
formulas for minimal surfaces derived in Section 3.3. Weierstrass had lectured
on these formulas at the Mathematical Seminar of Berlin University as early
as 1861, and he reported them to the Berlin Academy in 1866 (see Weierstrass
[2–4]). Somewhat different representation formulas were stated by Enneper [1]
in 1864 who used the lines of curvature as parameter lines u = const and v =
const on a minimal surface. Other representation formulas were introduced by
Weingarten (1863), Riemann (1866), Peterson (1866) and Beltrami (1868).6

Riemann’s posthumous paper [2], published in 1867, treated minimal sur-
faces passing through one or several straight lines. In particular, it dealt with
the following special boundaries: (i) Two infinitely long, skew straight lines.
(ii) Three straight lines, two of which lie in a plane E and intersect; the
third lies in a plane E′ parallel to E. (iii) Three intersecting straight lines.
(iv) A quadrilateral. (v) Two arbitrary circles which lie in parallel planes.

Already in 1866, Weierstrass [1] reported in a lecture to the Academy that
he was able to solve Plateau’s problem for an arbitrary [unknotted] polyg-
onal boundary, but the details appeared only about thirty years later (cf.
Weierstrass [4]).

The whole development can be studied in the first volume of Schwarz’s
Abhandlungen published in 1890 and exclusively dedicated to the study of

6 For references, see R.v. Lilienthal: Besondere Flächen. Encyklopädie der Mathematischen

Wissenschaften III.3, pp. 307–333, in particular pp. 310–315.
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minimal surfaces. In several later supplements and annotations to his papers
and to the whole volume Schwarz gives a very clear picture of what was known
in his time. Particularly interesting is his report Miscellen aus dem Gebiete
der Minimalflächen (see [2], pp. 168–189 and 325–333).

A comprehensive presentation of the whole field can be found in Darboux’s
Leçons [1]. (Especially relevant to the field of minimal surfaces are vols. 1
and 3.)

A brief but very readable description of the Schwarz–Riemann–Weierstrass
approach to the solution of Plateau’s problem for polygonal boundaries is
given in chapters 14 and 15 of Bianchi’s treatise [1]. The main topic of chapter
15 is the construction of Schwarz’s minimal surface spanning a quadrilateral
and a discussion of its properties and of its adjoint surface.

The knowledge available at the turn of this century is surveyed in Lilien-
thal’s encyclopedia article [1].

An extensive presentation from the modern point of view can be found in
Nitsche’s treatise [28] (see also [37]); it is at the same time a rich source of
bibliographic and historical references.

During the years 1900–1925 not much progress was made in the theory of
parametric minimal surfaces apart from work of Neovius on periodic minimal
surfaces which, however, is largely an extension of his earlier work carried
out in the nineteenth century. The essential though indirect contributions of
that period to the theory of minimal surfaces were the development of a pow-
erful measure and integration theory by Lebesgue, of the direct methods by
Hilbert, Lebesgue, Courant, Tonelli, and the foundation of functional analy-
sis by Hilbert, F. Riesz, E. Schmidt, Fréchet, Hahn, and Banach. Moreover,
the basic techniques of the theory of elliptic equations, regularity theorems
and a priori estimates, were created by Korn, S. Bernstein, Lyapunov, Müntz
and Lichtenstein in those years. The noteworthy results of S. Bernstein con-
cern nonparametric minimal surfaces. Between 1925 and 1950 the theory of
minimal surfaces sprang to new life; the following two chapters will give an
impression of the achievements in that period. From then on boundary value
problems for minimal surfaces have stood in the center of interest. In the
sixties, DeGiorgi, Fleming, Federer, and Reifenberg developed the powerful
tool of geometric measure theory which since then has become more and
more important for the study of minimal surfaces.

For some time the Weierstrass–Schwarz theory of minimal surfaces moved
into the background, and mainly the pioneering work of Osserman on complete
minimal surfaces showed its usefulness and importance; in this respect we also
mention the interesting contributions by Leichtweiß, Nitsche and Voss from
that period, the main results of which are presented in Osserman’s survey [10]
which had a great influence on the subsequent development. We also refer to
chapter 8 of Nitsche’s Vorlesungen [28].

Thereafter, the interest in this area seemed more or less exhausted despite
some interesting contributions by Gackstatter and the exciting discoveries of
new triply periodic minimal surfaces by the physicist Alan Schoen (about
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1970); their existence, however, seemed not to be sufficiently rigorously es-
tablished. At the beginning of the 1880ties, the theory of complete and of
periodic minimal surfaces gathered new speed. This is particularly the merit
of Costa, D. Hoffman and Meeks who disproved a longstanding conjecture ac-
cording to which the only complete embedded minimal surfaces in R

3 of finite
topological type are the plane, the catenoid, and the helicoid. This conjecture
turned out to be false as there is a complete minimal surface X : M → R

3

defined on the square torus C/Z
2 with three points removed. This surface was

discovered by Costa [1,2]. Its representation formula (7) in Section 3.3 uses
the functions μ = ℘ and ν = a/℘′ where ℘ is the Weierstrass p-function, ℘′ its
derivative, and a denotes some constant 	= 0. Costa showed that X is a com-
plete surface of genus one with three ends; Hoffman and Meeks proved that
it is an embedded surface. Later on, many more similar surfaces were found,
so that today a fascinating new theory is developing. We shall collect a few
results in the next subsection. A second major achievement is the verification
of A. Schoen’s examples of triply periodic minimal surfaces by Karcher, see
Section 3.5. However, many more beautiful and fascinating new examples of
embedded minimal surfaces have recently been discovered, and the subject is
still growing fast. Another 200–300 pages (or more) would be needed to do
it justice. Thus we have to content ourselves with mentioning a few survey
papers and some comprehensive presentations.

At an early stage, the development was documented in the lecture notes
of Barbosa and Colares [1]. In his paper [1], Karcher showed how more em-
bedded minimal surfaces can be derived from some of the Scherk examples,
and in [2] he established the existence of Alan Schoen’s triply periodic min-
imal surfaces. The reader should begin by studying Karcher’s lecture notes
[3] where he outlines devices to construct interesting examples of increasing
topological complexity. Then we refer to the works of D. Hoffman and Meeks
cited in our bibliography. Particularly, we mention Hoffman [1–5], Hoffman
and Meeks [11], Meeks [6,7], Hoffman and Wohlgemuth [1], Wohlgemuth [1],
and Polthier [1,2].

Lately crystallographers have showed much interest in triply periodic min-
imal surfaces, and they have very much stimulated recent developments. We
especially refer the reader to the works of Sten Andersson, Blum, Bovin,
Eberson, Ericsson, Fischer, Hyde, Koch, Larsson, Lidin, Nesper, Ninham, and
v. Schnering—cited in our bibliography—where many beautiful surfaces are
depicted.

The following collection of results is mainly drawn from the papers of
Osserman, Karcher, Hoffman and Meeks quoted above.

2 Complete Minimal Surfaces of Finite Total Curvature and of Finite
Topology

The first basic results on complete minimal surfaces of finite total curvature
are due to Osserman; an excellent presentation is given in §9 of Osserman’s
survey [10].
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Theorem 1. Let M be a complete, orientable Riemannian two-manifold whose
Gauss curvature K satisfies K ≤ 0 and

∫
M

|K| dA < ∞. Then there exist a
compact Riemannian two-manifold M̃ and a finite number of points p1, . . . , pk

in M̃ such that M and M̃ ′ := M̃ \ {p1, . . . , pk } are isometric. In other words,
there is a length preserving diffeomorphism from M onto M̃ ′.

As a consequence of this result we obtain

Theorem 2. A complete regular minimal surface X : M → R
3 of finite total

curvature
∫

M
|K| dA defined on an orientable parameter manifold M is con-

formally equivalent to a compact Riemann surface R that has been punctured
in a finite number of points.

That means:

(K1) Complete orientable minimal surfaces without branch points and of finite
total curvature can be assumed to be parametrized on parameter domains M =
R \ {p1, . . . , pk } which are compact Riemann surfaces R with k points removed
(k ≥ 1).

Definition 1. A two-manifold is said to have finite topology if it is homeomor-
phic to a compact two-manifold from which finitely many points are removed.
Correspondingly, a surface X : M → R

3 is said to be of finite topology if its
parameter manifold M has finite topology.

Then property (K1) states that a complete minimal surface of finite total
curvature has necessarily finite topology. However, the converse is not true as
one can see from the helicoid. This minimal surface has the complete plane C

as parameter domain which is conformally equivalent to the once punctured
sphere. As the helicoid is periodic and not flat, its total curvature is infinite.
(Note, however, that this example is somewhat artificial because of its peri-
odicity, and a suitable, more stringent definition of finite topology dividing
out the periodicities would remove the helicoid from the list of examples.)
Meeks and Rosenberg [1,3] proved that the only complete, embedded, simply
connected and periodic minimal surface is the helicoid.

Until recently, the plane, the catenoid, and the helicoid were the only
known examples of complete embedded minimal surfaces with a finite topol-
ogy. The first new example depicted in Fig. 20 (see also the frontispiece) is the
Costa surface whose embeddedness was proved by Hoffman and Meeks. It is
conformally a torus punctured in three points. More complicated examples of
higher genus were discovered by D. Hoffman and Meeks. A sample is depicted
in Plate II.

Let R be a compact Riemann surface (without boundary), and p1, . . . , pk

a finite number of points in R. We consider a regular minimal surface X :
M → R

3 of finite topology, defined on M := R \ {p1, p2, . . . , pk }.
The image Ej := X(B′

j) of a punctured disk neighborhood B′
j = Bj \ {pj }

of pj is called an end of the surface X.
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What can one say about the behavior of X at its ends? Some answers
should be obtainable from information about the behavior of the Gauss map
N : M → S2 ⊂ R

3 of X at the ends Ej , that is, from the meromorphic
function ν := σ◦N obtained by composing N with the stereographic projection
σ : S2 → C̄. Let η be the holomorphic 1-form on M associated with X which
in local coordinates w is given by η(w) = μ(w)dw (here μ(w) is the function
from the representation formula (7) in Section 3.3). Then we have the following
basic information (see Osserman [5,10]):

Theorem 3. Let X : M → R
3 be a complete regular minimal surface of finite

total curvature
∫

M
K dA; for the sake of brevity we call such a mapping a

(K1)-surface. Then we have:

(K2) The meromorphic function ν : M → C̄ extends to a meromorphic func-
tion on R and the holomorphic 1-form η on M extends to a meromorphic
1-form on R.

(K3) The number m := 1
4π

∫
M

K dA is an integer satisfying m ≤ −(g +k − 1)
where g is the genus of M and k is the number of puncturing points in R.

(K4) The mapping X : M → R
3 is proper (i.e., pre-images of compact sets in

R
3 are compact sets in M).

Further properties of (K1)-surfaces X : M → R
3

(K5) Set Sj(R) := {Q ∈ R
3 : RQ ∈ Ej and Q ∈ S2}. Then Sj(R) converges

smoothly as R → ∞ to a great circle on S2 covered an integral number of
times, say, dj times. Moreover, we have

∫
M

K dA = 4π

{
1 − g − k −

k∑
j=1

(dj − 1)

}
, g = genus(M)

(see Jorge and Meeks [1], Gackstatter).

(K6) Denote by n(X) :=
∑k

j=1 dj the total spinning of X; clearly, n(X) ≥ k.
Then we have: n(X) = k ⇔

∫
M

K dA = −4π(g + k − 1) ⇔ all of the ends
of X are embedded (that is, for each j = 1, . . . , k, the map X embeds some
punctured neighborhood of pj) (see Jorge and Meeks [1]).

(K7) Let Ej be an embedded end corresponding to the puncture pj. The Gauss
map N : M → S2 can be extended continuously from M to R (see (K2)).
Assume that N(pj) = (0, 0, 1). Then outside of a compact set, the end Ej has
the asymptotic behavior

z(x, y) = α log r + β + r−2(γ1x + γ2y) + O(r−2)

as r =
√

x2 + y2 → ∞ (see R. Schoen [3]).
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We call the end Ej flat or planar if α = 0; for α 	= 0 we speak of a catenoid
end . This means that, far out, all (K1)-surfaces look at their embedded ends
either like planes or like half catenoids.

(K8) If X : M → R
3 is an embedded (K1)-surface of genus g with k ends,

then we have:
(i) If g = 0, then k 	= 3, 4, 5 (Jorge and Meeks [1]). In fact, g = 0 implies

that X is a plane (k = 1) or a catenoid (k = 2) (Lopez and Ros [1]).
(ii) If k = 1, then X(M) is a plane (see, e.g. Hoffman and Meeks [8]).
(iii) If k = 2, then X(M) is a catenoid (R. Schoen [3]).
Property (ii) follows from the strong halfspace theorem stated below.

(K9) The plane has total curvature 0, the catenoid −4π; all other embedded
(K1)-surfaces have a total curvature of less than or equal to −12π (Hoffman
and Meeks [8]).

(K10) The Costa surface X is an embedded (K1)-surface of genus 1 with three
ends and total curvature −12π. One end is flat, the other two are catenoid
ends. The function ν = σ ◦ N is of the form ν = a/℘′ where ℘ is the Weier-
strass p-function and a is a constant. The Costa surface contains two straight
lines intersecting perpendicularly; moreover, it can be decomposed into eight
congruent pieces, each of which lies in a different octant and each of which is
a graph (Hoffman and Meeks [1]). Generalizing the Costa example, Hoffman
and Meeks were able to show that, for any genus g ≥ 1, there is an embedded
(K1)-surface with one flat end and two catenoid ends. The total curvature∫

M
K dA of this surface is −4π(g +2). In fact, each of these examples belongs

to a 1-parameter family of embedded minimal surfaces (Hoffman [4], Hoffman
and Meeks [7]).

A sample of a Hoffman–Meeks surface is depicted in Plate II.
We mention that the underlying Riemann surface R is the (g + 1)-fold

covering of the sphere given by ζg+1 = wg(w2 − 1) punctured at w = ±1 and
w = ∞.

(K11) Callahan, Hoffman, and Meeks [3] constructed examples of embedded
(K1)-surfaces with four ends, two of which are flat, the others catenoidal.
Following a suggestion of Karcher, Wohlgemuth and Boix constructed many
more examples of increasing complexity.

3 Complete Properly Immersed Minimal Surfaces

A very useful result proved by means of the maximum principle is the following

Halfspace Theorem (Hoffman and Meeks [4,10]). A complete, properly im-
mersed minimal surface X : M → R

3 cannot be contained in a half space,
except for a plane.
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(An immersed minimal surface is a surface without branch points, and
properly means that the pre-image of any compact set on X(M) is a compact
subset of M .)

Note that the assumption of properness cannot be omitted as Jorge and
Xavier [1] exhibited examples of complete minimal surfaces X : M → R

3

contained between two parallel planes; see also Rosenberg and Toubiana [1].
A strengthening of the previous result is the strong halfspace theo-

rem (Hoffman and Meeks [4,10]): Two complete, properly immersed minimal
surfaces X : M → R

3 must intersect if they are not parallel planes.

4 Construction of Minimal Surfaces

The material of this subsection is essentially drawn from Karcher’s excellent
lecture notes [3] to which the reader is referred for details. We adjust our
notation from Chapter 3 to that of Karcher [3] so that we can immediately
use Karcher’s formulas. A very detailed presentation of the following material
and of related topics is given in the encyclopaedia article by D. Hoffman and
H. Karcher [1]; see [EMS].

Let us recall the representation formula (7) of Section 3.3 for a minimal
surface X : Ω → R

3 by means of a holomorphic function μ(w) and a mero-
morphic function ν(w) on Ω:

(1) X(w) = X(w0) + Re
∫ w

w0

ψ′(ζ) dζ

where ψ is defined by

(2) ψ′ =
(

1
2
μ(1 − ν2),

i

2
μ(1 + ν2), μν

)
.

If we introduce the two meromorphic functions g and h by

(3) g := ν, h′ := μν,

we have
dh = μν dζ,

and we can write (2) as

(4) dψ =
(

1
2

(
1
g

− g

)
,
i

2

(
1
g

+ g

)
, 1

)
dh.

Clearly, the functions ψ and h are multiple-valued while the 1-forms dψ and
dh are single-valued on Ω, and mutatis mutandis Ω can be replaced by a
domain on a Riemann surface.

The Gauss map N : Ω → S2 associated with X is given by
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(5) N =
1

|g|2 + 1
(2 Re g, 2 Im g, |g|2 − 1).

The line element ds of X : Ω → R
3 can be written as

(6) ds =
1
2

(
|g| +

1
|g|

)
|dh|

and the Gauss curvature K has now the form

(7) K = −16
(

|g| +
1

|g|

)−4∣∣∣∣dgg
∣∣∣∣
2

|dh| −2.

For w = u + iv and for a tangent vector W ∈ TwΩ = C, the second funda-
mental form II(W,W ) can be written as

(8) II(W,W ) = Re
{

dg

g
(W ) · dh(W )

}
.

Moreover, W describes an asymptotic direction exactly if dg
g (W ) ·dh(W ) ∈ iR,

and W is a principal curvature direction if and only if dg
g (W ) · dh(W ) ∈ R.

The reflection principles yield: If a straight line or a planar geodesic lies
on a complete minimal surface, then the 180◦-rotation around the straight line
or the reflection at the plane of the planar geodesic respectively is a congruence
of the minimal surface.

This observation has the following useful application: If there is a line
γ : I → Ω such that the stereographic projection g ◦ γ : I → C of its Gauss
image is contained in the stereographic projection of a meridian or of the
equator of S2, and if also h′ ◦ γ is contained in the stereographic projection of
a meridian of S2, then analytic reflection at γ does not change the values of
|g| + 1

|g| and of |h′ |, nor does it change the Euclidean metric |dw|. Therefore
this reflection is a Riemannian isometry for the metric (6) and, consequently,
the curve γ defines a geodesic c := X ◦ γ on the minimal surface. Moreover,
g ◦ γ corresponds either to a meridian of S2 or to its equator.

The following constructions will be based on Osserman’s results described
in Subsection 2 of these Scholia. The guiding idea is to describe meromor-
phic Weierstrass data g and h on Riemann surfaces M which are punctured
Riemann surfaces R, i.e., M = R \ {p1, p2, . . . , pk }.

A translational symmetry of the minimal surface generated by integrating
its Weierstrass data around a homotopically nontrivial loop on M is called
a period of the Weierstrass data. Integration of the Weierstrass data
leads to a single-valued minimal surface X(w) = Reψ(w) if all periods P =
(P1, P2, P3) vanish or, more generally, if the components of all periods are
purely imaginary (i.e., P ∈ iR3).
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Fig. 2. (A1) Enneper’s surface: g(w) = w. Courtesy of K. Polthier

Proposition 1. If a line of symmetry L passes through a puncture, then we
can consider closed curves around the puncture p which are symmetric with
respect to L. The integrated curve on the minimal surface then consists of
two congruent parts which are symmetric either with respect to a reflection
plane E or with respect to the axis A of a 180◦-rotation. The period P is the
difference vector between the two pieces of the curve; thus it is perpendicular
either to E or to A.

This observation can sometimes be used to show without computation that
some punctures cause no periods, for instance, if two nonparallel symmetry
planes pass through the punctures.

A very useful tool for proving embeddedness of surfaces is the following
theorem presented at the end of Section 3.3:

Theorem of R. Krust. If an embedded minimal surface X : B → R
3 can

be written as a graph over a convex domain of a plane, then the corresponding
adjoint surface X∗ : B → R

3 is also a graph.

Now we turn to the discussion of specific examples.

A. Minimal Surfaces Parametrized on Punctured Spheres

(A1) Enneper’s surface. Here we have

g(w) = w, dh = w dw, w ∈ C,

ψ(w) = 1
2

(
w − 1

3w
3, i

(
w + 1

3w
3
)
, w2

)
.

Reflections in straight lines through 0 are Riemannian isometries for the
corresponding metric

ds =
1
2

(
|w| +

1
|w|

)
|w| |dw|.

All these radial lines are therefore geodesics, and rotation about the origin
is an isometry group. Moreover, R and iR are planar symmetry lines, and
the 45◦-meridians are straight lines on Enneper’s surface. The Riemannian
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Fig. 3. (A2) Higher order Enneper surfaces. (a) g(w) = w2. With courtesy of K. Polthier.

(b) g(w) = w3. Courtesy of J. Hahn and K. Polthier

Fig. 4. A view of increasing parts of a higher order Enneper surface (g(w) = w2) from an

increasing distance. Courtesy of J. Hahn and K. Polthier

metric ds is complete on M := C ∼= S2 \ {north pole} and nondegenerate, i.e.,
Enneper’s surface is a regular minimal surface. Moreover, all associate surfaces
of Enneper’s surface are congruent. Circles γ(ϕ) = Reiϕ of sufficiently large
radius R are mapped to curves c(ϕ) = Reψ(γ(ϕ)) which wind three times
about the z-axis. Therefore the end of Enneper’s surface is not embedded,
but d = 3.

(A2) Higher order Enneper surfaces are defined by

g(w) = wn, dh = wndw, w ∈ C, n = 1, 2, 3, . . . ,

and they allow the same reasoning. However, we have more symmetry lines,
and the end winds (2n + 1)-times about the z-axis (d = 2n + 1).

Interesting deformations can be obtained in the form

g(w) = wn + tp(w), dh = g(w)dw, w ∈ C,

where t ∈ R, and p(w) is a polynomial of degree ≤ n − 1. These surfaces are
regular and have the same behavior at their ends as the corresponding higher
order Enneper surfaces given by t = 0.
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Fig. 5. Deformation of a catenoidal end into an Enneper end. Courtesy of K. Polthier and

M. Wohlgemuth

The simplest minimal immersions of higher genus such as the Chen–
Gackstatter surface (see (B2)) can be obtained from Weierstrass data which
have the same behavior at their end as an Enneper surface.

(A3) The catenoid is given by

g(w) = w, dh =
dw

w
,

w ∈ C \ {0} ∼= S2 \ {p1, p2}, p1 = north pole, p2 = south pole. Integration
of the Weierstrass data once around 0 adds the period P = (0, 0, 2πi) to ψ.
Hence the catenoid is defined on C \ {0} whereas its adjoint, the helicoid, lives
on the universal cover of S2 \ {p1, p2}, and its symmetry group is a screw
motion.

(A4) examples with one planar end can be obtained by the data

g(w) = wn+1, dh = wn−1 dw

for w ∈ C \ {0} ∼= twice punctured sphere = M . Hence we have

ψ(w) =
(

1
2

(
− 1

w
− w2n+1

2n + 1

)
,
i

2

(
− 1

w
+

w2n+1

2n + 1

)
,
wn

n

)
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Fig. 6. Minimal surfaces with one planar end. Courtesy of K. Polthier

and
ds = (|w|2n + |w| −2)|dw|.

This metric is complete on M . Reflections in all meridians define Riemannian
isometries. The end at w = ∞ winds (2n+1)-times around the z-axis just as in
the case of the higher order Enneper surfaces. The end at w = 0 is embedded
and turns out to be a flat end which is asymptotic to the x, y-plane.

(A5) Scherk’s saddle tower (Scherk’s fifth surface) is given by the Weier-
strass data

g(w) = w, dh =
1

w2 + w−2

dw

w
, w ∈ M,

where M = C̄ \ {±1, ±i} is conformally the four times punctured sphere. The
line element of Scherk’s fifth surface X = Reψ is given by

ds =
|w| + |w| −1

|w2 + w−2|

∣∣∣∣dww
∣∣∣∣.
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Fig. 7. Saddle towers, (a) Scherk’s saddle tower (A5): g(w) = w. This surface is also

called Scherk’s fifth surface. It can be described by the equation sin z = sinh x sinh y.

(b), (c) Higher order saddle towers (A6): (b) g(w) = w2, (c) g(w) = w3. Parts (a),

(b) with courtesy of K. Polthier and part (c) with courtesy of J. Hahn and K. Polthier

Fig. 8. The Jorge–Meeks 3-noid (g(w) = w2). It can be viewed as limit of saddle towers.

Courtesy of J. Hahn and K. Polthier

The corresponding metric is complete. The unit circle S1 in C, the axes R,
iR and the 45◦-meridians allow Riemannian reflections. In particular we have
a horizontal symmetry line (corresponding to S1) through all four punctures
whence all periods are vertical (and equal up to sign). Hence, on the open unit
disk B, the mapping X : B → R3 defines a regular minimal surface bounded
by four horizontal symmetry lines which lie in only two parallel planes. Ex-
tension by reflection in these planes yields a complete minimal surface with
one vertical period, and this surface is embedded if the fundamental piece is
embedded. In fact, it turns out to be a graph. By Krust’s theorem, the adjoint
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Fig. 9. A 4-noid with two orthogonal symmetry planes through each puncture. Courtesy

of K. Polthier and M. Wohlgemuth

Fig. 10. Several 4-noids. Courtesy of K. Polthier

surface is also embedded; it is Scherk’s doubly periodic minimal surface. Its
Weierstrass data are

g(w) = w, dh =
i

w2 + w−2

dw

w
,

(A6) Higher order saddle towers (Karcher) are defined by the Weierstrass
data
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Fig. 11. An Enneper catenoid (corresponding to g(w) = w−1 + w3). Courtesy of J. Hahn

and K. Polthier

Fig. 12. Doubled Enneper surfaces. (a) without symmetry planes (rotated ends), (b) with

symmetry planes. Courtesy of K. Polthier

g(w) = wn−1, dh =
1

wn + w−n

dw

w

which are defined on M = C̄ \ {ε1, ε2, . . . , ε2n} where εj are the (2n)-th roots
of 1; M is conformally the 2n-times punctured sphere.

(A7) Less symmetric saddle towers are obtained from

g(w) = wn−1, dh = (wn + w−n − 2 cosnϕ)−1 dw

w

w ∈ M , where M is C̄ punctured at w = e±iϕe2πil/n, l = 0, 1, . . . , n − 1, and
ϕ is a real parameter restricted by 0 < ϕ ≤ π

2n .
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Fig. 13. (A7) Less symmetric saddle towers. Courtesy of K. Polthier

Fig. 14. Helicoidal saddle towers: Deformed Scherk surfaces constructed by Karcher. Cour-

tesy of H. Karcher
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Fig. 15. The Jenkins–Serrin theorem for the hexagon (n = 3). Courtesy of J. Hahn and

K. Polthier

If ϕ → 0, then the punctures move pairwise together to become double
poles of dh, and their images lie on vertical symmetry planes. Hence the
punctures have no periods, and their ends turn out to be embedded catenoidal
ends. In fact, the surfaces with ϕ = 0 are the n-noids of Jorge–Meeks which
are not embedded.

We remark that the saddle towers as well as the n-noids allow deformations
which are again complete minimal surfaces. For more details, see Karcher [1,
3], and also Figs. 7–14.

Moreover, the construction of embedded saddle towers can be obtained
from a result by Jenkins and Serrin [2] by passing to the adjoint of the Jenkins–
Serrin surface and by applying the reflection principle and Krust’s theorem;
see Karcher [3].

Theorem of Jenkins and Serrin. Let Ω be a convex 2n-gon with all edges
of the same length and alternatingly marked ∞, −∞, ∞, −∞, . . . . Then there
is a uniquely determined nonparametric minimal surface z = u(x, y), x, y ∈ Ω,
over Ω which converges to ∞ or −∞ respectively as it approaches the marked
edges of Ω. The graph of u is a minimal surface bounded by the vertical lines
over the vertices of ∂Ω which has finite total curvature.

B. Minimal Surfaces Parametrized on Punctured Tori

While the examples (A) were constructed by Weierstrass data which are
rational functions on the punctured sphere, we shall now use meromorphic
maps T 2 → C̄ on the torus T 2, that is, doubly periodic functions (or: ellip-
tic functions). Karcher [3] effectively operates with a doubly periodic function
γ : T 2 → C̄ which, by reflection, is built from a biholomorphic map γ : B → D
of a rectangle B with the corners a, b, c, d onto the quarter circle D with the
vertices 0, 1, i. The mapping γ is obtained by Riemann’s mapping theorem.
Using the 3-point-condition γ(a) = i, γ(b) = 0, γ(c) = 1, we define an angle
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α ∈ (0, π
2 ) by γ(d) = eiα; this angle is called the conformal parameter of γ.

One obtains (
γ′

γ

)2

= κ(γ2 + γ−2 − 2 cosα)

where κ is a positive constant. As γ turns out to be a degree-two elliptic
function, there is a close connection to the geometric p-function. In fact, we
have

γ2 =
− tanα − cotα

p − 1
p + tanα − cotα

and
p′γ = κ∗p (κ∗ = positive constant).

Note that, in section B, the geometric p-function is not the usual Weierstrass
℘-function, but the one that has been modified linearly such that it has a
double zero in the middle, and that the product of the two finite branch values
is −1. Another useful elliptic function f is defined as extension by reflection
of the biholomorphic mapping from a rectangle B to the quarter disk D such
that b, c, d are mapped into 0, 1, i respectively whereas a goes to i tanα

2 . The
functions γ, p and f are linked by

fγ =
p

cosα − p sinα
.

(B1) A fence of catenoids (Hoffman–Karcher). One can construct a periodic
surface with a translational symmetry as depicted in Fig. 16. Dividing out
the symmetry, we obtain a torus with two embedded catenoidal ends. The
stereographic projection g of the Gauss map of this surface turns out to be γ
whereas f determines dh:

g = γ, dh = fdw.

The symmetries of f and γ yield that reflections in the expected symmetry
lines are Riemannian isometries for the metric

ds =
(

|γ| +
1

|γ|

)
|f | |dw|

of the fence.
(B2) The Chen–Gackstatter surface was the first minimal surface without
periods or branch points defined on a punctured torus that was discovered. It
has one puncture and therefore one end. Thus it is the direct relative of En-
neper’s surface, only that it possesses a handle (see Fig. 17). The Weierstrass
data are given as

g = rγ, dh = p′ dw

where the parameter r ∈ R
+ has to be chosen in such a way that the periods

vanish. The removal of the periods is one of the difficulties in this and other
examples.
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Fig. 16. Construction of higher genus minimal surfaces by growing handles out of a

catenoid. (a) A fence of catenoids (B1), (b)–(e) More catenoids with handles. Courtesy of

E. Boix, J. Hoffman, and M. Wohlgemuth

Fig. 17. (a) Enneper’s surface (A1): no handle. Courtesy of K. Polthier. (b) Chen–

Gackstatter surface (B2): one handle. Courtesy of J. Hahn and K. Polthier. (c) Chen–

Gackstatter surface with two handles. Courtesy of K. Polthier and M. Wohlgemuth
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Fig. 18. A fence of Scherk towers—a doubly periodic toroidal surface (B3). Courtesy of

K. Polthier

(B3) Doubly periodic examples are depicted in Figs. 18 and 19.

(B4) Riemann’s minimal surface is a simply periodic embedded minimal
surface defined on a twice punctured rectangular torus and with one period. Its
two ends are flat. A careful discussion can be found in Nitsche’s treatise [28].
The corresponding Weierstrass data are

g = p, dh = dw =
dp

p′ .

In fact, there is a 1-parameter family of Riemann examples, two for each rect-
angular torus. The adjoint surface of a Riemann example is another Riemann
example which is not congruent to the first, except in the special case of a
square torus.

(B5) Costa’s surface is an embedding of the three times punctured square
torus (i.e., without periods). In Karcher’s description [3], its Weierstrass data
are

g = rp′ = r
p

γ
,

dh = γ dw =
γ

γ′ dγ =
2

1 − p2
dp.

Again, the parameter r ∈ R
+ is used to remove all periods.
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Fig. 19. (a) and (b) A conjugate pair of embedded doubly periodic minimal surfaces (B3).

Part (a) with courtesy of K. Polthier and M. Wohlgemuth and part (b) with courtesy of

K. Polthier. (c) Riemann’s periodic minimal surface (B4) can be viewed as a limit of (b)

under deformation. Courtesy of K. Polthier and M. Wohlgemuth

5 Triply Periodic Minimal Surfaces

Five surfaces of this type were already known to H.A. Schwarz (see [2], vol. 1,
pp. 1–125, 136–147; cf. also Figs. 21–27 of this section, Figs. 37–39 of Sec-
tion 3.5, and Plates II–VII). They were obtained by spanning a disk-type
minimal surface X : B → R

3 into a polygon Γ and then reflecting this surface
at the edges of Γ . In 1891, A. Schoenflies (see [1,2]) proved that in this way
exactly six different periodic minimal surfaces can be obtained from (skew)
quadrilaterals, whereas Schwarz had erroneously claimed that there existed
exactly five surfaces of this type (see [2], vol. 1, pp. 221–222). All of these
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Fig. 20. The Costa surface (B5). Courtesy of K. Polthier

Fig. 21. Schwarz’s surface. Courtesy of O. Wohlrab
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Fig. 22. (a) Schwarz’s P -surface and (b), (c) deformations thereof. (d) This annulus

bounded by two triangles is part of the adjoint of the Schwarzian P -surface if the ratio of

edge length to height is 2
√

3. Courtesy of K. Polthier

Fig. 23. (a) A part of Schwarz’s H-surface. (b) An annulus-type minimal surface bounded

by two triangles which is part of the H-surface. Courtesy of K. Polthier
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Fig. 24. Schwarz’s CLP-surface. Courtesy of K. Polthier

Fig. 25. Alan Schoen’s H′–T -surface: (a) in a trigonal cell, (b) in the dual hexagonal cell.

Courtesy of K. Polthier

Fig. 26. Alan Schoen’s S′–S′′-surface. This part solves a free boundary problem with

regard to the faces of a cube. Courtesy of K. Polthier
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Fig. 27. Two views of A. Schoen’s I–Wp-surface. Both parts sit in a cube and meet its

faces at a right angle. Courtesy of K. Polthier

Fig. 28. An analogue to A. Schoen’s I–Wp-surface found by Karcher; it sits in a hexagonal

cell and meets the faces of this cell perpendicularly. Courtesy of K. Polthier

periodic minimal surfaces were described in detail by Steßmann [1]; one of
them was discovered by Neovius.

Clearly one can try to obtain other triply periodic minimal surfaces by
spanning pieces of minimal surfaces as stationary points of the area functional
into a general Schwarzian chain 〈Γ1, . . . , Γk, S1, . . . , Sl〉 and then reflecting
them at the edges Γj and the planar faces Sj . In this way, Neovius, Nicoletti,
Marty, Tenius, Stenius and Wernick generated more triply periodic minimal
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Fig. 29. Alan Schoen’s gyroid, an associate to Schwarz’s surface, is an embedded triply

periodic minimal surface. Courtesy of A. Schoen

surfaces. We refer to Nitsche’s treatise [28], § 818, pp. 664–665 for pertinent
references. After Steßmann’s paper, the subject was at rest for more than
30 years until the physicist and crystallographer Alan Schoen [1,2] revived
it. He discovered many new triply periodic minimal surfaces, and he built
marvelous models of enormous size which stunned everyone who had a chance
to see them (a few are depicted in Hildebrandt and Tromba [1]). However,
Schoen’s reports were a bit sketchy and thus, among mathematicians, there
remained some doubts whether all details could be filled in, whereas Schoen’s
work became very popular among crystallographers and chemists. Schoen’s
remarkable geometric intuition proved to be correct; H. Karcher established
the existence of all of Schoen’s surfaces, and he found triply periodic constant
mean curvature companions to them (see Karcher [2] and also [3]). By solving
conjugate Plateau problems, Karcher and his students found many more triply
periodic embedded minimal surfaces and even whole families of them. The
strategy for finding such examples is lucidly described in Section 4 of Karcher’s
lecture notes [3].
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6 Structure of Embedded Minimal Disks

In a series of papers (cf. bibliography), T.H. Colding and W.P. Minicozzi
investigated the structure of embedded minimal disks, i.e. of minimal surfaces
X : B → R

3 defined on closed disks B ⊂ R
2 being embeddings. (In particular

such surfaces are free of branch points.) One of their main results states that
every embedded minimal disk can either be modeled by a minimal graph or
by a piece of the helicoid depending on whether the supremum of the Gauss
curvature is small or not. Together with a Heinz-type curvature estimate which
is also due to Colding & Minicozzi, Meeks and Rosenberg [GTMS] proved that
the plane and the helicoid are the only complete, properly embedded, simply-
connected minimal surfaces in R

3.

7 Complete Minimal Surfaces and the Plateau Problem

One might think that a complete minimal surface “extends” to infinity, i.e.
cannot be contained in a compact set. The question whether or not this is
true had been raised by E. Calabi in the 1960ies, and in 1996 N. Nadirashvili
[1] found a surprising answer: He constructed a complete minimal surface in
R

3 which is contained in a ball. Even more surprising is a result obtained
by Mart́ın and Nadirashvili [1] in 2007: There exists a minimal surface X :
B → R

3 on the unit disk of R
2 which is complete and possesses a continuous

extension to B such that X|∂B : ∂B → R
3 provides a nonrectifiable Jordan

curve Γ of dimension 1. Such curves Γ are not rare: For any Jordan curve Γ0

in R
3 and any ε > 0 one can find a Jordan curve Γ such that the Hausdorff

distance of Γ and Γ0 satisfies δH(Γ, Γ0) < ε, and that Γ is the boundary
of a complete minimal surface X : B → R

3 in the sense described above.
(Concerning the Plateau problem we refer to Sections 4.1–4.5 and 4.12.) We
note that these surfaces have infinite area, and they cannot be embedded on
account of work by Colding and Minicozzi.



Color Plates

Plate I. (a) Stable and unstable catenoid, (b) helicoid and double helix, (c) Jorge–Meeks

surface. Courtesy of K. Polthier



Plate II. (a) A Hoffman–Meeks surface, (b) part of Schwarz’s P -surface. Courtesy of

D. Hoffman and K. Polthier



Plate III. A. Schoen’s H′–T -surface. (a) One layer of the dual lattice, (b) hexagonal

fundamental cell, (c) trigonal fundamental cell. Courtesy of K. Polthier



Plate IV. (a)–(e) The Karcher process of handle growing demonstrated by the transition

from Schwarz’s P -surface to Schoen’s S′–S′′-surface, (f) Schoen’s S′–S′′-surface. Courtesy

of K. Polthier



Plate V. (a)–(c) Schwarz’s CLP-surface, (d) Schwarz’s P -surface. Courtesy of K. Polthier



Plate VI. (a)–(d) Schwarz’s H-surface, (e) Karcher’s T–WP -surface. Courtesy of

K. Polthier



Plate VII. Fundamental cells. (a) A. Schoen’s I–WP -surface, (b) Neovius surface. Cour-

tesy of K. Polthier



Plate VIII. Fences of catenoids. Courtesy of E. Boix, J. Hoffman, and M. Wohlgemuth
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