
Chapter 2

Minimal Surfaces

Since the last century, the name minimal surfaces has been applied to surfaces
of vanishing mean curvature, because the condition

H = 0

will necessarily be satisfied by surfaces which minimize area within a given
boundary configuration. This was implicitly proved by Lagrange for nonpara-
metric surfaces in 1760, and then by Meusnier in 1776 who used the analytic
expression for the mean curvature and determined two minimal surfaces, the
catenoid and the helicoid. (The notion of mean curvature was introduced by
Young [1] and Laplace [1], but usually it is ascribed to Sophie Germain [1].)
In Section 2.1 we shall derive an expression for the first variation of area with
respect to general variations of a given surface. From this expression we ob-
tain the equation H = 0 as necessary condition for stationary surfaces of the
area functional, and we also demonstrate that solutions of the free boundary
problem meet their supporting surfaces at a right angle.

In Section 2.2, we particularly investigate nonparametric surfaces, and
we state the minimal surface equation in divergence and nondivergence form
which has to be satisfied by the height function. Finally we prove that, for a
nonparametric minimal surface X, the 1-form N ∧ dX is closed. In Section 2.3
it is shown that a nonparametric minimal surface X(x, y) = (x, y, z(x, y))
has a real analytic height function z(x, y) and, moreover, that X can be con-
formally mapped onto some planar domain. This conformal mapping can be
constructed explicitly if the domain of definition Ω of the surface X is convex.

Thereafter we prove in Section 2.4 the celebrated Bernstein theorem for
nonparametric minimal surfaces and also a quantitative local version of this
theorem which was discovered by E. Heinz. Then we show in Section 2.5 that
every regular surface X : Ω → R

3 satisfies the equation

ΔXX = 2HN
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54 2 Minimal Surfaces

and, therefore, minimal surfaces are characterized by the equation

ΔXX = 0.

If X is given by conformal parameters, this relation is equivalent to

ΔX = 0.

This observation is used in Section 2.6 to enlarge the class of minimal sur-
faces. We can now admit surfaces with isolated singularities by defining min-
imal surfaces as harmonic mappings X : Ω → R

3 that are given in conformal
parameters.

In Section 2.7 we derive a formula for the mean curvature of surfaces that
are defined by implicit equations. This relation is used in the last part of the
chapter to demonstrate that a minimal surface provides a minimum of area if
it can be embedded into a field of minimal surfaces. Finally, an expression for
the second variation of area is given, and we comment on the question when
a given minimal surface can be embedded into such a field.

2.1 First Variation of Area. Minimal Surfaces

Let X : Ω̄ → R
3 be a regular surface of class C2 with its spherical image

N : Ω̄ → R
3 defined by

N =
1
W

Xu ∧ Xv, W =
√

EG − F2 =
√

g,

and denote by gαβ and bαβ (or E, F, G and L, M, N, respectively) the coeffi-
cients of its first and second fundamental forms. Moreover, H stands for the
mean curvature of X. We write w = (u, v), u1 = u, u2 = v, and X,α = ∂

∂uα X;
Γ γ

αβ denote the Christoffel symbols of the second kind for X introduced in
Section 1.3.

We now consider a variation of X, that is, a mapping

Z : Ω̄ × (−ε0, ε0) → R
3, ε0 > 0,

of class C2, with the property that

Z(w, 0) = X(w) for all w ∈ Ω̄.

This map will be interpreted as a family of surfaces Z(w, ε), w ∈ Ω̄, which
vary X, and in which X is embedded.

By Taylor expansion, we can write

(1) Z(w, ε) = X(w) + εY (w) + ε2R(w, ε)
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with a continuous remainder term ε2R(w, ε) of square order, i.e. R(w, ε) =
O(1) as ε → 0. The vector field

Y (w) =
∂

∂ε
Z(w, ε)

∣
∣∣∣
ε=0

∈ C1(Ω̄, R3)

is called the first variation of the family of surfaces Z(·, ε).
We can write

(2) Y (w) = ηβ(w)X,β(w) + λ(w)N(w)

with functions η1, η2, λ of class C1(Ω̄). Then

Z,α = X,α + ε[ηβ
,αX,β + ηβX,αβ + λ,αN + λN,α] + ε2R,α.

By virtue of the Gauss equations

X,αβ = Γ γ
αβX,γ + bαβN

and the Weingarten equations

N,α = −bβ
αX,β , bβ

α = bαγgβγ ,

we obtain that

(3) Z,α = X,α + ε[ξγ
αX,γ + ναN ] + ε2R,α

where we have set:

ξγ
α = ηγ

,α + Γ γ
αβηβ − bαβgβγλ,

να = bαβηβ + λ,α.
(4)

Then, indicating the ε2-terms by · · · , we find

|Zu|2 = E + 2ε(ξ1
1E + ξ2

1F) + · · · ,

|Zv |2 = G + 2ε(ξ1
2F + ξ2

2G) + · · · ,

〈Zu, Zv 〉 = F + ε[ξ1
2E + (ξ1

1 + ξ2
2)F + ξ2

1G] + · · · ,

whence
|Zu|2|Zv |2 − 〈Zu, Zv 〉2 = W2[1 + 2ε(ξ1

1 + ξ2
2) + · · · ].

We, moreover, have

ξ1
1 + ξ2

2 = η1
u + η2

v − λbαβgαβ + Γα
αβηβ .

Since
bαβgαβ = 2H, Γα

αβ =
1
2g

g,β =
1
W

W,β
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(see formulas (42) of Section 1.2 and (12) of Section 1.3), we infer that

ξ1
1 + ξ2

2 =
1
W

{(η1W)u + (η2W)v } − 2Hλ.

On account of
√

1 + x = 1 + x/2 + O(x2) for |x| � 1, we see that

(|Zu|2|Zv |2 − 〈Zu, Zv 〉2)1/2 = W + ε[(η1W)u + (η2W)v − 2HWλ] + · · · .

Then we can conclude that the first variation

(5) δAΩ(X, Y ) :=
d

dε
AΩ(Z(·, ε))

∣
∣
∣
∣
ε=0

of the area functional AΩ(X) on Ω at X in the direction of a vector field
Y = ηαXα + λN is given by

δAΩ(X, Y ) =
∫

Ω

[(η1W)u + (η2W)v − 2HWλ] du dv.(6)

Performing an integration by parts, it follows that

δAΩ(X, Y ) =
∫

∂Ω

W(η1 dv − η2 du) − 2
∫

Ω

λHW du dv.(7)

This, in particular, implies that

δAΩ(X, Y ) = −2
∫

X

〈Y, N 〉HW du dv(8)

= −2
∫

X

〈Y, N 〉H dA

for all Y ∈ C∞
c (Ω, R3). Since λ = 〈Y, N 〉 can be chosen as an arbitrary

function of class C∞
c (Ω), the fundamental theorem of the calculus of variations

yields:

Theorem 1. The first variation δAΩ(X, Y ) of AΩ at X vanishes for all vector
fields Y ∈ C∞

c (Ω, R3) if and only if the mean curvature H of X is identically
zero.

In other words, the (regular) stationary points of the area functional—and,
in particular, its (regular) minimizers—are exactly the surfaces of zero mean
curvature. For this reason, a regular (i.e. immersed) surface X : Ω → R

3 of
class C2 is usually called a minimal surface if its mean curvature function H
satisfies

H = 0.(9)

We shall later broaden the class of minimal surfaces in order to allow also
surfaces with isolated singularities, but then we use conformal parameters u, v.
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Let us now formulate a more geometric expression for the first variation
of the area. Note that

λW = 〈Y, N 〉W = 〈Y, Xu ∧ Xv 〉 = [Y, Xu, Xv] (:= det(Y, Xu, Xv))

and, for Y = η1Xu + η2Xv + λN , we obtain

[Y, N, dX] = η1[Xu, N, Xv dv] + η2[Xv, N, Xu du] = W {η2 du − η1 dv}.

Hence, formula (7) implies that

−δAΩ(X, Y ) =
∫

∂Ω

[Y, N, dX] + 2
∫

Ω

H[Y, Xu, Xv] du dv.(10)

Let ω(s) be a representation of ∂Ω in terms of the parameter of arc length
s of the boundary X|∂Ω . Then c(s) := X(ω(s)) is a representation of the
boundary of X. Moreover, let Y(s) := Y (ω(s)), N(s) := N(ω(s)). Then

[Y, N, dX] ◦ ω = 〈Y, N ∧ t〉 ds = 〈Y, s〉 ds

where s is the side normal of the boundary curve c of the surface X. Hence
we get

−δAΩ(X, Y ) =
∫

∂X

〈 Y, s〉 ds + 2
∫

X

〈Y, N 〉H dA.(11)

In particular,

δAΩ(X, λN) = −2
∫

X

λH dA(12)

and

2H = −δAΩ(X, N)/AΩ(X) if H = const.(13)

In other words, for surfaces of constant mean curvature H, the expression
−2H is just the relative change of the area of the surface with respect to
normal variations.

Moreover, we have

δAΩ(X, Y ) = −
∫

∂X

〈Y, s〉 ds if H = 0,(14)

and we obtain the following

Proposition. If X : Ω̄ → R
3 is a minimal surface, then the equation

δAΩ(X, Y ) = 0

holds for all Y ∈ C1(Ω̄, R3) which are orthogonal to the side normal of the
boundary ∂X (that is, 〈Y, s〉 = 0 on ∂X).
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Furthermore, if we assume that

d

dε
AΩ(Z(·, ε))

∣∣∣∣
ε=0

= 0(15)

holds for all variations Z(·, ε) of X whose boundary values lie on some sup-
porting manifold S ⊂ R

3 of dimension two, then it follows that

δAΩ(X, Y ) = 0 holds for all Y ∈ C1(Ω̄, R3), the boundary(16)
values of which at ∂Ω are tangential to S.

From this equation, we firstly infer that X is a minimal surface, and sec-
ondly, by once again applying the fundamental theorem of the calculus of
variations, we obtain from equation (16) that the side normal of ∂X meets S
everywhere at a right angle. This means that X intersects S perpendicularly.
Thus we have proved:

Theorem 2. Suppose that (15) holds for all variations Z(·, ε) of X with
boundary on some supporting surface S. Then X is a minimal surface which
meets S orthogonally at its boundary ∂X.

A minimal surface as in Theorem 2 will be called a stationary surface to
the supporting manifold S, or solution of the free boundary problem for S. The
study of such free boundary problems will be emphasized in Section 4.6 and
particularly in Vols. 2 and 3. In short, if we consider stationary surfaces in
boundary configurations which, in part, consist of fixed curves Γ and, in ad-
dition, of free surfaces S (called support surfaces), then we deal with minimal
surfaces that meet S perpendicularly.

2.2 Nonparametric Minimal Surfaces

We shall now consider surfaces which are given in nonparametric form, that
is, as graph of a function z = z(x, y) on some domain Ω of R

2. Such a surface
can be described by the special parameter representation

X(x, y) = (x, y, z(x, y)), (x, y) ∈ Ω.

(In this case, the parameters are usually denoted by x and y instead of u
and v.)

We shall assume that the function z(x, y) is at least of class C2. Introducing
the time-honored abbreviations

(1) p = zx, q = zy, r = zxx, s = zxy, t = zyy
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we compute that

(2)
E = 1 + p2, F = pq, G = 1 + q2,

W 2 = 1 + p2 + q2, N = (ξ, η, ζ),

where

(3)
ξ = −p/

√
1 + p2 + q2, η = −q/

√
1 + p2 + q2,

ζ = 1/
√

1 + p2 + q2.

Moreover,

(4)
L = r/

√
1 + p2 + q2, M = s/

√
1 + p2 + q2,

N = t/
√

1 + p2 + q2,

whence finally

H =
(1 + q2)r − 2pqs + (1 + p2)t

2(1 + p2 + q2)3/2
,(5)

K =
rt − s2

(1 + p2 + q2)2
.(6)

Therefore, the equation H = 0 is equivalent to the nonlinear second order
differential equation

(7) (1 + q2)r − 2pqs + (1 + p2)t = 0,

the so-called minimal surface equation. It is necessary and sufficient for a
surface z = z(x, y) to be a minimal surface.

For nonparametric surfaces X(x, y) = (x, y, z(x, y)) the area functional
AΩ(X) takes the form

(8) AΩ(X) =
∫

Ω

√
1 + p2 + q2 dx dy.

By Theorem 1 of Section 2.1, a nonparametric minimal surface X, defined by
the function z = z(x, y), satisfies δAΩ(X, Y ) = 0 for all Y ∈ C∞

c (Ω, R3). In
particular for Y = (0, 0, ζ), ζ ∈ C∞

c (Ω), we obtain that
∫

Ω

(
p

W
ζx +

q

W
ζy

)
dx dy = 0,

and the fundamental lemma of the calculus of variations yields the Euler
equation

(9)
{

p
√

1 + p2 + q2

}

x

+
{

q
√

1 + p2 + q2

}

y

= 0
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for the functional

(10) A(z) :=
∫

Ω

√
1 + p2 + q2 dx dy.

Equation (9) can equivalently by written as

(11) div
∇z

√
1 + | ∇z|2

= 0.

This relation will be called the minimal surface equation in divergence form.
Actually equations (7) and (11) are equivalent. In fact, by means of a

straight-forward computation we infer from (5) that

div(W−1∇z) = 2H

holds true for any nonparametric surface z = z(x, y). This equation also im-
plies that any nonparametric surface X(x, y) = (x, y, z(x, y)) described by the
function z(x, y) is a minimal surface if and only if the 1-form

γ = −(p/W) dy + (q/W) dx

is a closed differential form on Ω, that is, if and only if

γ = −dc

with some function c ∈ C2(Ω) provided that the domain Ω is simply connected.
There is actually a stronger version of this result which permits a remark-

able geometric interpretation. For this purpose, we introduce the differential
form

(12) N ∧ dX = (α, β, γ)

with the components

(13) α = η dz − ζ dy, β = ζ dx − ξ dz, γ = ξ dy − η dx.

Inserting

dz = p dx + q dy, ξ = −p/W, η = −q/W, ζ = 1/W,

one obtains

α = − pq

W
dx − 1 + q2

W
dy,

β =
1 + p2

W
dx +

pq

W
dy,(14)

γ =
q

W
dx − p

W
dy.
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Let us introduce the differential expression

T := (1 + q2)r − 2pqs + (1 + p2)t.

Then a straight forward computation shows

(
− pq

W

)

y
−

(
− 1 + q2

W

)

x

= − p

W 3
T,

(
1 + p2

W

)

y

−
(pq

W

)

x
= − q

W 3
T,

( q

W

)

y
−

(
−p

W

)

x

=
1

W 3
T,

that is,

(15) dα = 2Hpdx dy, dβ = 2Hq dx dy, dγ = −2H dxdy,

whence

(16) d(N ∧ dX) = −2HWN dxdy

or equivalently

(16′) d(N ∧ dX) = −2HN dA,

where dA denotes the area element W dx dy.
Thus we have proved the following

Theorem 1. A nonparametric surface X(x, y) = (x, y, z(x, y)), described by
a function z = z(x, y) of class C2 on a simply connected domain Ω of R

2, with
the Gauss map N = (ξ, η, ζ) is a minimal surface if and only if the vector-
valued differential form N ∧ dX is a total differential, i.e. if and only if there
is a mapping X∗ ∈ C2(Ω, R3) such that

(17) −dX∗ = N ∧ dX.

If we write

(18) X∗ = (a, b, c), N ∧ dX = (α, β, γ),

equation (17) is equivalent to

(19) −da = α, −db = β, −dc = γ.

This remarkable theorem will be used to prove that each C2-solution of
the minimal surface equation (7) or (11), respectively, is in fact real analytic,
and that it can be mapped conformally onto a planar domain provided that
its domain of definition Ω is convex. This will be shown in the next section.
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We finally note that nonparametric surfaces, besides being interesting in
their own right, serve as useful tools for deriving identities between differential
invariants of general surfaces. In fact, locally each regular C2-surface X(u, v)
can, after a suitable rotation of the Cartesian coordinate system in R

3, be
written in the nonparametric form stated before. In other words, by a suit-
able coordinate transformation w = ϕ(x, y) we can pass from X(w) to a
strictly equivalent surface Z(x, y) = X(ϕ(x, y)) which is of type (x, y, z(x, y))
if we have chosen appropriate Cartesian coordinates in R

2. It is evident that
for such a representation Z(x, y) many differential expressions have a fairly
simple form, and therefore it will be much easier than in the general case
to recognize identities. Switching back to the original representation X(u, v),
these identities are equally well established provided that the terms involved
are known to be invariant with respect to parameter changes.

2.3 Conformal Representation and Analyticity of
Nonparametric Minimal Surfaces

Let X(x, y) = (x, y, z(x, y)) be a nonparametric minimal surface of class C2

defined on an open convex set Ω of R
2. We will show that z(x, y) is real ana-

lytic and that X(x, y) can be mapped conformally onto some planar domain.
By the Theorem 1 of Section 2.2, there exists a function a ∈ C2(Ω) such

that

(1) da =
pq

W
dx +

1 + q2

W
dy,

where p = zx, q = zy, and W =
√

1 + p2 + q2.
Then we consider the mapping ϕ : Ω → R

2 defined by ϕ(x, y) = (x, a(x, y))
which can be expressed by (x, y) �→ (u, v) or by the pair of equations

(2) u = x, v = a(x, y).

Since ay = W−1 · (1 + q2) > 0 and Ω is convex, the mapping ϕ is one-to-one,
and its Jacobian Jϕ satisfies

Jϕ =
∂(u, v)
∂(x, y)

= ay > 0.

Hence ϕ is a C2-diffeomorphism which maps Ω onto some domain Ω∗ of R
2.

Its inverse ψ : Ω∗ → Ω of class C2 is given by

(3) x = u, y = f(u, v)
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with some function f ∈ C2(Ω∗). Since Dψ(u, v) = [Dϕ(x, y)]−1, we then
obtain

(
1 0
fu fv

)
=

(
1 0
ax ay

)−1

=
(

1 0
−ax/ay 1/ay

)
.

On account of (1), we infer that

(4) fu = − pq

1 + q2
, fv =

W

1 + q2
,

where the arguments u, v and x, y in (4) are related to each other by (3). Next,
we transform the function z(x, y) to the new variables u, v and set

(5) g(u, v) := z(u, f(u, v))

and

(6) Z(u, v) := (u, f(u, v), g(u, v)) = X(ψ(u, v)).

Then the differentials dx, dy, dz = p dx + q dy of the functions x = u, y =
f(u, v), z = g(u, v) turn out to be

dx = du,

dy = df = − pq

1 + q2
du +

W

1 + q2
dv,(7)

dz = dg =
p

1 + q2
du +

qW

1 + q2
dv.

These equations yield the conformality relations

(8) |Zu|2 = |Zv |2 =
1 + p2 + q2

1 + q2
, 〈Zu, Zv 〉 = 0

for the surface Z = X ◦ ψ which is strictly equivalent to the nonparametric
surface X(x, y).

For the following, we use the two other equations of Section 2.2, (19):

−db = β, −dc = γ,

which state that

db = − 1 + p2

W
dx − pq

W
dy

dc = − q

W
dx +

p

W
dy.

(9)
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We introduce a surface

(10) Z∗(u, v) = (v, f ∗(u, v), g∗(u, v))

for (u, v) ∈ Ω∗, the components of which are defined by

(11)
f ∗(u, v) := b(u, f(u, v)),
g∗(u, v) := c(u, f(u, v)).

It follows from (4) and (9) that

(12)
df ∗ = − W

1 + q2
du − pq

1 + q2
dv,

dg∗ = − qW

1 + q2
du +

p

1 + q2
dv.

Comparing (7) and (12), we see that Z and Z∗ satisfy the Cauchy–Riemann
equations

(13) Zu = Z∗
v , Zv = −Z∗

u

on Ω∗, which are equivalent to

fu = f ∗
v , fv = −f ∗

u ,

gu = g∗
v , gv = −g∗

u.
(14)

Thus f + if ∗ and g + ig∗ are holomorphic functions of the variable w =
u + iv, and their real and imaginary parts f, g and f ∗, g∗, respectively, are
harmonic and therefore real analytic functions on Ω∗. It follows from (3) that
ψ : Ω∗ → Ω is real analytic, and then the same holds for the inverse mapping
ϕ : Ω → Ω∗. On the other hand, we infer from (5) that

(15) z(x, y) = g(ϕ(x, y)) = g(x, a(x, y)),

whence z(x, y) is seen to be real analytic on Ω.
Let us collect the results that are so far proved.

Theorem 1. If z ∈ C2(Ω) is a solution of the minimal surface equation (7)
or (11) of Section 2.2 in the domain Ω of R

2, then z is real analytic.

Remark. Although we have proved this result only for convex domains, the
general statement holds as well because we have only to show that z is real
analytic on every ball Br(c) contained in Ω, and this has been proved.

Theorem 2. Let X(x, y) = (x, y, z(x, y)) be a nonparametric minimal surface
of class C2 defined on some convex domain Ω of R

2. Then there exists a real
analytic diffeomorphism ϕ : Ω → Ω∗ of Ω onto some simply connected domain
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Ω∗, with a real analytic inverse ψ : Ω∗ → Ω, such that Z(u, v) = X(ψ(u, v))
satisfies the conformality conditions

|Zu|2 = |Zv |2, 〈Zu, Zv 〉 = 0.

The diffeomorphism ϕ can be chosen as

u = x, v = a(x, y)

where a(x, y) is a real analytic function which satisfies

ax =
pq

W
, ay =

1 + q2

W

with p = zx, q = zy, W =
√

1 + p2 + q2. Its inverse ψ is described by

x = u, y = f(u, v)

where f is a solution of
v = a(u, f(u, v)).

Finally, there is a surface X∗ = (a, b, c) on Ω which satisfies

dX∗ = −N ∧ dX

where N denotes the spherical image of X, and the mapping Φ : Ω∗ → C
3

defined by

Φ(u + iv) = Z(u, v) + iZ∗(u, v)
:= X(u, f(u, v)) + iX∗(u, f(u, v))

is a holomorphic function of the complex variable w = u + iv.

As we have already noted in Section 1.4, every regular surface of class C1,α

can be mapped conformally onto some plane domain, irrespective of its mean
curvature and its way of definition. But the previous reasoning shows that,
in the case of nonparametric minimal surfaces, it is not necessary to apply
Lichtenstein’s mapping theorem. For such surfaces X(x, y) = (x, y, z(x, y))
defined on a convex domain Ω, the conformal mapping ψ : Ω∗ → Ω can be
explicitly constructed from the function z(x, y). Moreover, if we introduce the
line integral

X∗(x, y) := −
∫ (x,y)

(x0,y0)

N ∧ dX

for some (x0, y0) ∈ Ω, we have the additional feature that Φ = (X + iX∗) ◦ ψ
is a holomorphic map Ω∗ → C

3.
Let us conclude this section with a geometric observation made by Rie-

mann and Beltrami. By the transformation (2) we have introduced conformal
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parameters u, v on a given nonparametric minimal surface X(x, y), in such
a way that the coordinate lines u = const are planar curves that can be
generated by intersecting the given surface by the family of parallel planes
x = const.

Conversely, if a regular minimal surface X is intersected by a family of
parallel planes P none of which is tangent to the given surface, and if each
point of X is met by some P , then the intersection lines of these planes with
the minimal surface form a family of curves on the surface which locally belong
to a net of conformal parameters u, v on the surface.

In fact, picking any sufficiently small piece of X, we can introduce Carte-
sian coordinates of R

3 in such a way that the planes P are given as coordinate
planes x = const, and that this piece can be written as a nonparametric sur-
face (x, y, z(x, y)) over some domain Ω contained in the plane z = 0. Then
the assertion follows from the previous result.

2.4 Bernstein’s Theorem

In this section we want to prove Bernstein’s celebrated theorem that every
solution of the minimal surface equation defined on the whole plane must be
an affine linear function.

To this end we consider an arbitrary nonparametric minimal surface
X(x1, x2) = (x1, x2, z(x1, x2)) defined on a convex domain Ω of R

2. Its height
function z(x1, x2) which is supposed to be of class C2 on Ω will then auto-
matically be real analytic. The coefficients of the first fundamental form of X
are given by gαβ = δαβ + z,α · z,β . Let W2 = g = det(gαβ), and set

(1) ḡαβ = gαβ/W.

We have det(ḡαβ) = 1 and

(ḡαβ) := (ḡαβ)−1 =
(

ḡ22 −ḡ12

−ḡ21 ḡ11

)
.

Since z(x1, x2) is a solution of the minimal surface equation, there exist real
analytic functions τα(x1, x2), α = 1, 2, on Ω such that

(2) dτα = ḡαβdxβ , α = 1, 2.

(This follows from the equations (14) and (19) of Section 2.2, setting τ1 = −b
and τ2 = a.) We use these functions to define a real analytic mapping ψ :
Ω → R

2 by setting σ = ψ(x) := x + τ(x) or, in components,

(3)
σ1 = x1 + τ1(x1, x2),

σ2 = x2 + τ2(x1, x2).
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Since B = Dτ = (τα
,β) = (ḡαβ), the matrix B is symmetric and positive

definite and we infer that, for arbitrary x = (x1, x2) and y = (y1, y2) ∈ Ω,

〈x − y, τ(x) − τ(y)〉 ≥ 0.

Then it follows that

|ψ(x) − ψ(y)|2 = |x − y|2 + |τ(x) − τ(y)|2 + 2〈x − y, τ(x) − τ(y)〉
≥ |x − y|2

or

(4) |ψ(x) − ψ(y)| ≥ |x − y|.

Therefore ψ maps Ω in a 1–1 way onto Ω∗ := ψ(Ω). Moreover,

ρ := det
(

∂ψα

∂xβ

)
= 2 + ḡ11 + ḡ22(5)

= 2 + W + 1/W ≥ 2,

and thus ψ : Ω → Ω∗ is a diffeomorphism. Now we define a second mapping
h(σ) = (h1(σ), h2(σ)) for σ ∈ Ω∗ by

h1(σ) = x1 − τ1(x)

h2(σ) = −x2 + τ2(x)
where σ = ψ(x).(6)

From the chain rule and from

(6′)
(

∂ψα

∂xβ

)−1

=
(

1 + ḡ11 ḡ12

ḡ21 1 + ḡ22

)−1

=
1

2 + W + 1/W

(
1 + ḡ22 −ḡ12

−ḡ21 1 + ḡ11

)

it follows that the derivative Dh(σ) of h(σ) is given by
(

∂hα

∂σβ

)
=

1
2 + W + 1/W

(
ḡ22 − ḡ11 −2ḡ12

2ḡ21 ḡ22 − ḡ11

)
◦ ψ−1(7)

or
(

∂hα

∂σβ

)
=

1
(W + 1)2

(
g22 − g11 −2g12

2g21 g22 − g11

)
◦ ψ−1.(8)

This shows that

(9) H(σ) := h1(σ) + ih2(σ)
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is a holomorphic function of σ = σ1 + iσ2 in Ω∗ with the complex derivative

H ′(σ) =
q2 − p2 + 2ipq

(W + 1)2
=

(
ip + q

1 + W

)2

(10)

where in the expressions p = z,1, q = z,2, and W =
√

1 + p2 + q2 on the
right-hand side one has to replace x by ψ−1(σ). We finally note that

|H ′(σ)| =
p2 + q2

(1 + W) 2
<

(
W

1 + W

)2

< 1.(11)

The image Ω∗ = ψ(Ω) of the convex set Ω clearly is a simply connected
domain. If Ω is the whole plane R

2 =̂ C, then one can infer from (4) that also
Ω∗ = C. Then, by Liouville’s theorem and by (11), the entire function H ′(σ)
must be constant. Thus, for μ := p/(1 + W), ν := q/(1 + W ), we infer that

μ2 − ν2 = c1, 2μν = c2

for appropriate constants c1 and c2, whence

μ2 + ν2 =
√

c2
1 + c2

2.

This shows that the continuous functions μ and ν must be constant, and that
there exists a constant c ≥ 0 such that

p2 + q2 = c(1 +
√

1 + p2 + q2)2

which implies p2 + q2 = const, and therefore

p = α1 and q = α2

for some numbers α1 and α2, that is

(12) z(x1, x2) = α0 + α1x
1 + α2x

2.

Thus a nonparametric minimal surface X(x1, x2) which is defined on all of R
2

has to be a plane. But this is the assertion of Bernstein’s theorem from 1916
which we will state as

Theorem 1. Every C2-solution of the minimal surface equation on R
2 has to

be an affine linear function.

In order to exploit the previous formulas more thoroughly, we introduce
the function

(13) F (σ) :=
p

1 + W
− i

q

1 + W

of σ = σ1 + iσ2. Here and in the sequel, x has to be replaced by ψ−1(σ) so
that, as in (10), (11), and (13), the right-hand sides are to be understood
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as functions of σ. (We omit to write the composition by ψ−1, because the
formulas would then become rather cumbersome. For instance formula (13)
should correctly have been written as

F :=
(

p − iq

1 + W

)
◦ ψ−1.

We think that the reader will have no difficulties with our sloppy but more
suggestive notation.)

Comparing (10) with (13), we see that

(14) H ′ = (iF )2.

Since H is holomorphic on Ω∗, we infer that also F is a holomorphic function.
Furthermore,

(15) |H ′ | = |F |2 =
p2 + q2

(1 + W )2
=

W 2 − 1
(1 + W )2

=
W − 1
W + 1

whence
1 + |F |2 =

2W

W + 1
and

(16) Λ :=
(

W

W + 1

)2

=
1
4
[1 + |F |2]2.

Let γμν(σ) be the coefficients of the first fundamental form of Z := X ◦ψ−1.
By the chain rule, we have

γμν = gαβ
∂xα

∂σμ

∂xβ

∂σν
= Wḡαβ

∂xα

∂σμ

∂xβ

∂σν
.

By (5) and (6′), we obtain
(

∂xα

∂σμ

)
=

1
ρ
(δαμ + ḡαμ)

and therefore

γμν =
W

ρ2
(ḡμβ + δμβ)(δβν + ḡβν)

=
W

ρ2
(ḡμν + δμν + δμν + ḡμν).

On account of (5), we arrive at

(γμν) =
W

ρ2

(
ρ 0
0 ρ

)
=

W

ρ

(
1 0
0 1

)
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and

ρ = 2 + W + 1/W =
(W + 1)2

W
, or

W

ρ
= Λ,

whence

(17) γμν = Λδμν .

Hence Z = X ◦ ψ−1 is represented by conformal parameters. By virtue of
the theorema egregium (cf. Section 1.3, (32)), the Gauss curvature K(σ) of
Z(σ) is given by

K = − 1
2Λ

Δ log Λ

or, equivalently,

(18) K = − ΛΔΛ − | ∇Λ|2
2Λ3

.

To simplify the computations, we set α = ReF, β = ImF . Then it follows
that

F = α + iβ, |F |2 = α2 + β2,

Λ = 1
4 {1 + α2 + β2}2,

ασ1 = βσ2 , ασ2 = −βσ1 , Δα = 0, Δβ = 0.

From these formulas, we derive

Λ2
σ1 + Λ2

σ2 = {1 + α2 + β2}2[(αασ1 + ββσ1)2 + (αασ2 + ββσ2)2]
= {1 + α2 + β2}2[α2(α2

σ1 + α2
σ2) + β2(β2

σ1 + β2
σ2)]

= 4Λ|F |2|F ′ |2

and

ΔΛ = 2
2∑

ν=1

(αασν + ββσν )2 + {1 + α2 + β2}(| ∇α|2 + | ∇β|2)

= 2|F |2|F ′ |2 + 2{1 + |F |2} |F ′ |2.

Hence

| ∇Λ|2 = 4Λ|F |2|F ′ |2,
ΔΛ = 2(1 + 2|F |2)|F ′ |2.

(19)

By inserting these relations in (18), we arrive at the important equation

(20) K = −|F ′ |2/Λ2

which, on account of (16), can also be written as
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(20′) K = −|F ′ |2
(

1 +
1
W

)4

.

Fix now some disk Br(x0) ⊂⊂ Ω, and set σ0 := ψ(x0). It follows from (4)
that Br(σ0) ⊂⊂ Ω∗.

Next we set c := F (σ0). By (11) or (15), we have |c| < 1. Thus

R(σ) :=
σ − c

1 − c̄σ

defines a conformal mapping of the unit disk B = B1(0) onto itself which
satisfies

R(c) = 0 and R′(c) =
1

1 − |c|2 > 1.

Secondly we consider the linear mapping

L(σ) := σ0 + rσ

of B onto Br(σ0) that fulfills

L(0) = σ0 and L′(0) = r.

Then the composition
M := R ◦ F ◦ L,

which can also be described by

M(σ) =
F (σ0 + rσ) − c

1 − c̄F (σ0 + rσ)
,

is a holomorphic mapping of B into itself since |F | < 1, and M(0) = 0. On
account of Schwarz’s lemma it follows that |M ′(0)| ≤ 1.

Since M ′(0) = R′(c)F ′(σ0)r and R′(c) > 1, we obtain

|F ′(σ0)| ≤ 1/r,

and we infer from (20′) that

|K(σ0)| ≤ 1
r2

(
1 +

1
W(x0)

)4

≤ 1
r2

(1 + 1)4 =
16
r2

.

The Gauss curvatures K and K of X and Z, respectively, are related to each
other by

K = K ◦ ψ−1.

Thus we have proved

(21) |K(x0)| ≤ 16
r2

,

and we can formulate the following assertion:



72 2 Minimal Surfaces

Theorem 2. If a disk of center x0 and radius r is contained in the domain of
definition of a nonparametric minimal surface X(x1, x2) = (x1, x2, z(x1, x2)),
then its Gauss curvature in x0 can be estimated by

(22) |K(x0)| ≤ 16
r2

.

This result, which is due to E. Heinz [1], can be considered as a quantitative
and local version of Bernstein’s theorem that follows from Theorem 2 if we
let r → ∞.

2.5 Two Characterizations of Minimal Surfaces

We shall prove two results that more or less were already established in Sec-
tion 2.2. Yet the formulas to be developed here will shed light on the problem
from a different angle.

Theorem 1. If X : Ω → R
3 is a regular surface of class C2 with mean cur-

vature H and with the spherical map N : Ω → R
3, then

(1) ΔXX = 2HN,

where ΔX denotes the Laplace–Beltrami operator on the surface X.

This implies the following characterization of minimal surfaces:

Corollary 1. A regular C2-surface X is a minimal surface if and only if

(2) ΔXX = 0

holds.

Suppose now that the parameters u, v of X(u, v) are conformal. Then
W = E = G, and Section 1.5, (17) implies that

(3) ΔX =
1
W

Δ

where Δ denotes the ordinary Laplace operator ∂2

∂u2 + ∂2

∂v2 . Moreover, we have

WN = Xu ∧ Xv

and therefore

Corollary 2. If X(u, v) is a regular C2-surface represented by conformal
parameters, then

(4) ΔX = 2HXu ∧ Xv.

In particular, X is a minimal surface if and only if

(5) ΔX = 0

holds.
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Proof of Theorem 1. It obviously suffices to establish (1) in a sufficiently small
neighborhood Ω′ of every point of Ω. Moreover, because of the invariant char-
acter of the expressions on both sides of (1), we only have to verify the asser-
tion for some surface that is strictly equivalent to X|Ω . Since every regular
C2-surface is locally equivalent (in a strict way) to some nonparametric sur-
face we have convinced ourselves that it suffices to prove (1) for an arbitrary
nonparametric surface

X(x1, x2) = (x1, x2, z(x1, x2)), (x1, x2) ∈ Ω.

Set as usual,
p = z,1, q = z,2, W =

√
1 + p2 + q2.

Then the Gauss equations

X,αβ = Γ γ
αβX,γ + bαβN

of Section 1.3 take the form
⎛

⎝
0
0

z,αβ

⎞

⎠ = Γ 1
αβ

⎛

⎝
1
0
p

⎞

⎠ + Γ 2
αβ

⎛

⎝
0
1
q

⎞

⎠ + bαβ

⎛

⎝
−p/W

−q/W

1/W

⎞

⎠

whence

Γ 1
αβ = bαβ

p

W
, Γ 2

αβ = bαβ
q

W
,

z,αβ = Γ 1
αβp + Γ 2

αβq +
bαβ

W
,

(6)

and this implies

(7) z,αβ = bαβW.

Since
2H = bαβgαβ

(see (42) of Section 1.2), it follows that

(8) gαβΓ 1
αβ =

2H

W
p, gαβΓ 2

αβ =
2H

W
q, gαβz,αβ = 2HW.

On account of Section 1.5, (19), we have

ΔXf = gαβ [f,αβ − Γ γ
αβf,γ ]

for an arbitrary function f ∈ C2(Ω). Then, by virtue of (8),

(9) ΔXf = gαβf,αβ − 2H

W
z,γf,γ .
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Specializing this formula to the functions f(x1, x2) = x1, x2, and z(x1, x2)
respectively, we obtain

(10) ΔXx1 = 2H
(

− p

W

)
, ΔXx2 = 2H

(
− q

W

)
, ΔXz = 2H

(
1
W

)
,

and this is equivalent to
ΔXX = 2HN.

This completes the proof of Theorem 1. �

The following result relates the Beltrami operators ΔX and ΔN of a mini-
mal surface X and its Gauss map N to each other.

Proposition. If N is the Gauss map of a minimal surface X, then

(11) ΔX = |K|ΔN .

Proof. Since IN = IIIX and (Section 1.2, (26))

KIX − 2HIIX + IIIX = 0,

it follows from H = 0 that K ≤ 0 and

(12) IN = −KIX = |K|IX .

Hence, if X is represented conformally, then the same holds for N , and we
infer from (12) and from relation (17) of Section 1.5 that

ΔX =
1
W

Δ, ΔN =
1

|K|W Δ

whence
ΔX = |K|ΔN .

Since both sides are invariant expressions with respect to parameter changes,
we conclude on account of Section 2.3, Theorem 2, the general validity of (11).
�

Now we turn to the second characterization of minimal surface which fol-
lows from

Theorem 2. Let X(u, v) be a regular surface of class C2 defined on some
domain Ω of R

2, and let N : Ω → R
3 be its Gauss map. Then

(13) Nv ∧ Xu − Nu ∧ Xv = 2HWN

and

(14) (N ∧ Xu)v − (N ∧ Xv)u = 2HWN.
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Proof. Set u1 = u and u2 = v. Then the Weingarten equations

N,α = −bβ
αX,β = −gγβbαγX,β

imply

N,2 ∧ X,1 = −gγ2b2γX,2 ∧ X,1,

N,1 ∧ X,2 = −gγ1b1γX,1 ∧ X,2

whence
N,2 ∧ X,1 − N,1 ∧ X,2 = {gγ1b1γ + gγ2b2γ }X,1 ∧ X,2.

Since
gγαbαγ = 2H, Xu ∧ Xv = WN,

the relation (13) is established, and (14) is a direct consequence of (13). �

Because of
N ∧ dX = N ∧ Xu du + N ∧ Xv dv

equation (14) is equivalent to

(15) d(N ∧ dX) = −2HWN du dv = −2HN dA.

This implies

Corollary 3. A regular C2-surface X : Ω → R
3 is a minimal surface if and

only if the differential form N ∧ dX is closed, that is,

(16) d(N ∧ dX) = 0.

If Ω is a simply connected domain, condition (16) is equivalent to the state-
ment that

Ψ(u, v) :=
∫ (u,v)

(u0,v0)

N ∧ dX

is a path-independent line integral.

Remark. Since formula (16) is invariant with respect to parameter changes
and has only to be proved locally, it follows as well from Section 2.2, (17).

2.6 Parametric Surfaces in Conformal Parameters.
Conformal Representation of Minimal Surfaces. General
Definition of Minimal Surfaces

Now we will provide another proof of the result stated in Corollary 2 of Sec-
tion 2.5 which is particularly simple because it uses only a minimum of dif-
ferential geometric formulas.
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Theorem 1. Let X(u, v) be a regular surface of class C2(Ω, R3) given by
conformal parameters u and v, that is,

(1) |Xu|2 = |Xv |2 and 〈Xu, Xv 〉 = 0.

Then necessary and sufficient for a real-valued function H(u, v) to represent
the mean curvature of the surface X is that Rellich’s equation

(2) ΔX = 2HXu ∧ Xv

holds in Ω.
In particular, X : Ω → R

3 is a minimal surface if and only if

(3) ΔX = 0.

Proof. The equation (1) can be written as

Λ := E = G = W, F = 0 in Ω.

According to Section 1.3, (31), the mean curvature is simply

H =
1

2Λ
(L + N).

Recalling that L = 〈Xuu, N 〉, N = 〈Xvv , N 〉, we obtain

(4) 〈ΔX, N 〉 = 〈Xuu + Xvv, N 〉 = 2ΛH.

On the other hand, differentiating (1) with respect to u and v yields

〈Xu, Xuu〉 = 〈Xv, Xvu〉, 〈Xuu, Xv 〉 + 〈Xu, Xuv 〉 = 0,

〈Xv, Xvv 〉 = 〈Xu, Xuv 〉, 〈Xvv, Xu〉 + 〈Xv, Xuv 〉 = 0

and therefore

(5) 〈ΔX, Xu〉 = 0 and 〈ΔX, Xv 〉 = 0.

In other words, ΔX is proportional to N .
Since |N | = 1, it follows from (4) that

ΔX = 2ΛHN,

and, by virtue of ΛN = WN = Xu ∧ Xv, we arrive at (2), and the theorem is
proved. �

The previous theorem provides another approach to the general formula

(6) ΔXX = 2HN
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proved in Theorem 1 of Section 2.5. One only has to show that an arbitrary
regular surface X of class C2 is locally strictly equivalent to a surface repre-
sented by conformal parameters. Then (6) follows from (2) by an invariance
reasoning.

The possibility to introduce conformal parameters on an arbitrary regular
C2-surface is expressed in Lichtenstein’s theorem, stated in Section 1.4. For
minimal surfaces (H = 0) we have—independently of the general Lichtenstein
theorem—given two different proofs that it is possible to introduce conformal
parameters in the small (cf. Sections 2.3 and 2.4). Thus the equation

(7) ΔXX = 0,

which characterizes minimal surfaces, is independently verified.
In order to transform a regular minimal surface globally to conformal pa-

rameters, one can combine Theorem 2 of Section 2.3 with the uniformization
theorem proved by Koebe and Poincaré. We cannot give the proof of this cel-
ebrated theorem. Instead, in Section 4.11 we shall present a variational proof
of Lichtenstein’s theorem which is based on the solution of a Plateau-type
problem. Here we merely state the global version of Theorem 2 in Section 2.3:

Theorem 2. Every regular surface X : Ω → R
3 of class C2, whether minimal

or not, is strictly equivalent to a surface represented by conformal parameters.

Still it should be noted that the following discussion will not rest on un-
fortified ground since existence proofs for minimal surfaces that will be given
later yield the existence of minimal surfaces represented by conformal param-
eters.

While the equations (6) and (7) only make sense for regular surfaces, the
equations (2) and (3) can also be formulated for surfaces with W = 0. This
enables us to give a definition of minimal surfaces that includes surfaces with
isolated singularities, called branch points, that will be studied in the next
chapter.

Definition 1. A nonconstant surface X : Ω → R
3 of class C2 is said to be a

minimal surface if it satisfies the conformality relations

(1) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0

as well as the equation

(3) ΔX = 0

on Ω.

If equation (3) is replaced by (2), we speak of a surface with the mean
curvature function H(u, v).

By (1) and (3) we can also define minimal surfaces X : Ω → R
n in R

n,
n ≥ 2, and most of the results in these notes will be true independently of the
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dimension n. For convenience we shall ordinarily restrict ourselves to the case
n = 3, and we shall only occasionally touch minimal surfaces X : Ω → M in
an n-dimensional Riemannian manifold M . If, in local coordinates x1, . . . , xn

on M , the line element ds2 of M has the form

(8) ds2 = gik(x) dxi dxk

(summation with respect to Latin indices i, k, . . . from 1 to n), then a surface
X ∈ C2(Ω, M) is said to be a minimal surface in M , if its local components
x1(u, v), . . . , xn(u, v) satisfy

(9) gik(X)xi
uxk

u = gik(X)xi
vxk

v , gik(X)xi
uxk

v = 0

and

(10) Δxl + Γ l
ik(X)(xi

uxk
u + xi

vxk
v) = 0

where Γ l
ik are the Christoffel symbols of second kind with respect to ds2.

Although there will be no systematic treatment of (9) and (10) in our notes,
these equations will turn up when we replace Cartesian coordinates by general
curvilinear coordinates in R

3 which will be essential for the investigation of
the boundary behavior of minimal surfaces.

2.7 A Formula for the Mean Curvature

Let us consider a family {Fc}c∈J of regular C2-surfaces Fc which are embed-
ded in R

3, implying that none of these surfaces has selfcuttings or selftangen-
cies. We also assume that the family depends in a C2-way on the parameter c.

A set S of R
3 is said to be simply covered by the surfaces of the family {Fc}

if each point x = (x1, x2, x3) of S is contained in exactly one of the surfaces.
Consider now a domain G in R

3 whose closure Ḡ is simply covered by a
family of C2-surfaces Fc in the sense that there is a function S ∈ C2(Ḡ) with
∇S(x) �= 0 for all x ∈ Ḡ, such that the leaves Fc of the foliation {Fc} can be
described as its level surfaces

(1) Fc = {x ∈ Ḡ : S(x) = c}.

Then

(2) Q(x) := | ∇S(x)| −1 · ∇S(x)

defines a field Q ∈ C1(Ḡ, R3) of unit vectors that is orthogonal to all surfaces
Fc; it is called the normal field of the foliation {Fc}.

Theorem 1. If G is a domain in R
3, and if S is a function of class C2(Ḡ)

such that ∇S(x) �= 0 on Ḡ, then the mean curvature H(x) of the level surface



2.7 A Formula for the Mean Curvature 79

Fc = {x ∈ Ḡ : S(x) = c}

passing through x ∈ Ḡ is given by the equation

(3) div Q(x) = −2H(x)

where Q(x) = | ∇S(x)| −1 · ∇S(x) denotes the normal field of the foliation {Fc}.

Proof. Pick some point x0 ∈ G, some r > 0 with Br(x0) ⊂⊂ G, and let x0

be contained in Fc0 . For F := B̄r(x0) ∩ Fc0 we then choose a regular C2-
parametrization X(w), w ∈ Ω̄ such that its surface normal N(w) = NX(w)
satisfies

N(w) = Q(X(w)) for all w ∈ Ω̄.

We can also achieve that x0 = X(w0) for some w0 ∈ Ω.
For some sufficiently small ε0 > 0 we define the normal variation

Z(w, ε) = X(w) + εN(w), ε ∈ [−ε0, ε0],

of the surface F represented by X(w). Let Sε be the surface with the param-
eter representation Z(·, ε), and denote by Cε the collar

{X(w) + λN(w) : w ∈ ∂Ω, 0 ≤ λ ≤ ε}.

The two caps F and Sε together with the collar Cε bound a domain Uε in
R

3 over which we will integrate div Q. Performing an integration by parts, we
obtain ∫

Uε

div Q dX =
∫

∂Uε

〈Q, N̄ε〉 dA

where N̄ε denotes the exterior normal of ∂Uε. Note that

N̄ε = −N = −Q on F.

By virtue of Taylor’s theorem, we infer that

〈Q, N̄ε〉 = O(ε) on Cε

whence ∫

Cε

〈Q, N̄ε〉dA = O(ε2).

If we apply formula (13) of Section 2.5, we obtain for Z(w, ε) = X(w)+εN(w)
the relations

Zu ∧ Zv = Xu ∧ Xv + ε{Xu ∧ Nv + Nu ∧ Xv } + ε2{Nu ∧ Nv }
= WN − ε2HWN + ε2Nu ∧ Nv,

and, by N = Q ◦ X, it follows that
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∫

Sε

〈Q, N̄ε〉dA =
∫

Ω

〈Q(X + εN), Zu ∧ Zv 〉 du dv

=
∫

Ω

〈Q(X + εN), WN − ε2HWN + ε2Nu ∧ Nv 〉 du dv

=
∫

F

dA − ε

∫

F

2H dA

+
∫

Ω

〈Q(X + εN) − Q(X), WN − ε2HWN 〉 du dv + O(ε2).

The relations |Q(x)| = 1 and N = Q ◦ X imply that

〈Q(X(w) + εN(w)) − Q(X(w)), N(w)〉 = O(ε2).

Thus we obtain from the previous computation that
∫

Sε

〈Q, N̄ε〉 dA =
∫

F

dA − ε

∫

F

2H dA + O(ε2).

Since ∫

Uε

div Q dX =
∫

Sε

〈Q, N̄ε〉 dA −
∫

F

dA +
∫

Cε

〈Q, N̄ε〉 dA,

it follows that
1
ε

∫

Uε

div Q dX = −
∫

F

2H dA + O(ε).

As ε → +0, we arrive at the equation
∫

F

div Q dA = −2
∫

F

H dA.

Here F stands for Fc0 ∩ B̄r(x0). Dividing both sides by
∫

F
dA, and letting r

tend to zero, we arrive at

div Q(x0) = −2H(x0).

Since x0 was chosen as an arbitrary point of G, and since both sides of this
equation are continuous functions on Ḡ, we finally obtain

div Q(x) = −2H(x)

for all x ∈ Ḡ which proves that theorem. �

Remark 1. With Di = ∂
∂xi and Q = (Q1, Q2, Q3) we can write

div Q = DiQi = Di

{
Sxi√

SxkSxk

}
=

Sxixi√
SxkSxk

− Sxixk

SxiSxk

{SxlSxl }3/2
.
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If we introduce the Hessian

hS(ξ, η) = Sxixkξiξk

and the Laplacian

ΔS = Sxixi = (D2
1 + D2

2 + D2
3)S

we can write

div Q =
1

| ∇S|

{
ΔS − 1

| ∇S|2 hS(∇S, ∇S)
}

.

Thus (3) can be written as

(4) H =
1

2| ∇S|

{
1

| ∇S|2 hS(∇S, ∇S) − ΔS

}
.

This and related formulas for curvature quantities can also be derived
by the technique of covariant differentiation applied to manifolds which are
implicitly defined. This has in detail been carried out by P. Dombrowski [1].

Remark 2. Consider the nonparametric surface which is given as graph of a
function ψ(x, y), (x, y) ∈ Ω̄ ⊂ R

2. We can embed z = ψ(x, y) into the family
of surfaces

z = ψ(x, y) + c

which simply cover Ḡ := Ω̄ × R. They are the level surfaces

S(x, y, z) = c

of the function S(x, y, z) := z − ψ(x, y), for which we obtain

Q(x, y, z) =
1

√
1 + ψ2

x + ψ2
y

· (−ψx, −ψy, 1)

whence

div Q = −

⎧
⎨

⎩
ψx√

1 + ψ2
x + ψ2

y

⎫
⎬

⎭
x

−

⎧
⎨

⎩
ψy√

1 + ψ2
x + ψ2

y

⎫
⎬

⎭
y

.

Thus in this particular case equation (3) takes the form

(5) div
∇ψ

√
1 + | ∇ψ|2

= 2H

which is equivalent to formula (5) of Section 2.2. If H = 0, we obtain the
minimal surface equation in divergence form (see Section 2.2, (11)):

(6) div
∇ψ

√
1 + | ∇ψ|2

= 0.
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From the theorem proved above we obtain the following

Corollary 1. If Ḡ is simply covered by a foliation of minimal surfaces Fc

which are the level surfaces of a function S ∈ C2(Ḡ) with ∇S(x) �= 0 on Ḡ,
then the normal field Q = | ∇S| −1 · ∇S of this foliation is divergence-free, that
is, the equation

(7) div Q = 0

holds on Ḡ.

2.8 Absolute and Relative Minima of Area

We begin with a result of the Weierstrass field theory for minimal surfaces
which, in a somewhat different form, was developed by H.A. Schwarz.

Lemma 1. Suppose that G is a domain in R
3 and that Q ∈ C1(Ḡ, R3) is a

vector field on R
3 with the properties that

(1) |Q(x)| = 1 and div Q(x) = 0 in G.

Moreover, let F be a regular C1-surface embedded in G whose surface normal
NF coincides on F with the vector field Q. Then, for every regular C1-surface
S that is contained in G and has the same boundary as F, we have

(2)
∫

F

dA ≤
∫

S

dA.

Proof. Let us first assume that the surfaces F and S bound a domain U whose
exterior surface normal on F points in the opposite direction of Q|F = NF.
Then we infer from Gauss’s theorem that

∫

U

div Q dX =
∫

∂U

〈Q, N∂U 〉 dA(3)

=
∫

S

〈Q, NS〉 dA −
∫

F

〈Q, NF〉 dA.

Because of (1), the left hand side is vanishing, and therefore

(4)
∫

F

〈Q, NF〉 dA =
∫

S

〈Q, NS〉 dA.

On account of
〈Q, NF〉 = 1

and of
〈Q, NS〉 ≤ |Q| |NS| = 1,



2.8 Absolute and Relative Minima of Area 83

we obtain

(5)
∫

F

dA ≤
∫

S

dA.

If S is a general surface as stated in the theorem, the same result holds.
This can be proved in essentially the same way by applying the calculus of
differential forms and the general Stokes theorem for 1-forms (see, for instance,
F. Warner [1]). �

Remark. It is easy to see that the equality sign in (5) holds if and only if F

and S are strictly equivalent.

Lemma 2. Let the assumptions of Lemma 1 be satisfied, with the following
alteration: The boundaries ∂F and ∂S of F and S are not necessarily the
same but lie on a surface T which is tangent to the vector field Q (that is,
Q(x) is a tangent vector to T at every point x ∈ T ), and are supposed to be
homologous to each other:

∂F ∼ ∂S on T.

Then the inequality (5) is still satisfied.

Proof. Let us choose a surface C ⊂ T such that ∂C = ∂S \ ∂F. Applying
Gauss’s theorem, we obtain

∫

U

div Q dX =
∫

S

〈Q, NS〉 dA −
∫

F

〈Q, NF〉 dA +
∫

C

〈Q, NC〉 dA.

Since ∫

C

〈Q, NC〉 dA = 0

we arrive once again at (4), from where the proof proceeds as before. �

By combining Lemma 1 or Lemma 2 with the corollary stated in Sec-
tion 2.7, we obtain the following

Theorem 1. A C2-family of regular, embedded C2-surfaces Fc which cover a
domain G simply is a family of minimal surfaces if and only if its normal field
is divergence-free. Such a foliation by minimal surfaces is area minimizing in
the following sense:

(i) Let F be a piece of some of the minimal leaves Fc, with F ⊂⊂ G. Then
we have

(6)
∫

F

dA ≤
∫

S

dA

for each regular C1-surface S contained in G with ∂S = ∂F.
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(ii) Let T be a surface in G which, in all of its points, is tangent to the
normal field of the minimal foliation, and suppose that T cuts out of each leaf
Fc some piece F∗

c whose boundary ∂F∗
c lies on T . Then we have:

(7)
∫

F∗
c1

dA =
∫

F∗
c2

dA

for all admissible parameter values c1 and c2, and secondly,

(8)
∫

Fc

dA ≤
∫

S

dA

for all regular C1-surfaces S contained in G whose boundaries ∂S are homo-
logous to ∂Fc on T .

The identity (7) is the minimal surface version of A. Kneser’s transversality
theorem.

The integral
∫

F
〈Q, N 〉 dA appearing in the previous reasoning, is the so-

called Hilbert’s independent integral associated with the area functional
∫

F
dA.

If we express F by its representation X(u, v), (u, v) ∈ Ω̄, Hilbert’s independent
integral takes the form

(9)
∫

Ω

〈Q(X), Xu ∧ Xv 〉 du dv.

The aforestated results can be summarized as follows:

A regular embedded minimal surface F yields a relative minimum of area
among all surfaces having the same boundary as F, if it can be embedded in a
foliation (or field) of minimal surfaces in the sense described before. In fact,
F is an absolute minimum of area among all surfaces with the same boundary
which lie in the domain covered by the field.

Not every minimal surface will have minimal area among all surfaces hav-
ing the same boundary. It is, in fact, not difficult to find examples of non-
minimizing surfaces of vanishing mean curvature. Yet the result just proved
shows that a minimal surface yields a relative minimum of area if it can be
embedded into a field of minimal surfaces. Thus we ask the question:

When can a minimal surface be embedded in a field of minimal surfaces?

An answer to this question was given by H.A. Schwarz. He proved that
each interior piece of a given regular embedded minimal surface X can be
embedded in a field of minimal surfaces if the first eigenvalue of the second
variation of the area functional at X is positive.

Presently we will not prove this result, but refer to Chapter 5 of this volume
and also to Volume 1 of Schwarz’s collected papers [2] as well as to Chapter I,
Section 6, pp. 86–110 of Nitsche’s lectures [28] where several examples and
further applications are discussed.
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However, we shall at least derive an expression for the second variation of
area δ2A(X, Y ) of a regular C2-surface X : Ω̄ → R

3 with respect to normal
variations Y = ϕN .

Here Ω is assumed to be a bounded domain in R
2, and ϕ is supposed to

be of class C1(Ω̄). Let

(10) Z := X + εY, Y = ϕN.

Then
Z,α = X,α + εϕN,α + εϕ,αN,

whence

ζαβ := 〈Z,α, Z,β 〉 = 〈X,α, X,β 〉 + 2ϕε〈X,α, N,β 〉 + ϕ2ε2〈N,αN,β 〉 + ϕ,αϕ,βε2

and therefore

(11) ζαβ = gαβ − ε2ϕbαβ + ε2{ϕ2cαβ + ϕ,αϕ,β }.

Then

det(ζαβ) = ζ11ζ22 − ζ12ζ21

= g[1 − ε2ϕgαβbαβ + ε2{gαβϕ,αϕ,β + ϕ2gαβcαβ + 4ϕ2b/g}] + O(ε3),

where g = det(gαβ) and b = det(bαβ).
From

KI − 2HII + III = 0

we infer the analogous relation for the corresponding bilinear forms whence

(12) Kgαβ − 2Hbαβ + cαβ = 0

or

(13) cαβ = 2Hbαβ − Kgαβ .

Because of
gαβbαβ = 2H, gαβgαβ = 2, b = Kg

we infer that

(14) det(ζαβ) = g[1 − ε4ϕH + ε2{ | ∇Xϕ|2 + ϕ2(4H2 + 2K)}] + O(ε3).

Moreover,
√

1 + x = 1 +
x

2
− x2

8
+ · · · for |x| � 1,

and therefore

√
1 + εα + ε2β = 1 +

α

2
ε +

(
β

2
− α2

8

)
ε2 + O(ε3)
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for |ε| � 1. Thus we see that
√

det(ζαβ) =
√

g[1 − ε2ϕH + ε2{ 1
2 | ∇Xϕ|2 + Kϕ2 + 2H2ϕ2 − 2H2ϕ2}]

+ O(ε3)

or

(15)
√

det(ζαβ) =
√

g[1 − ε2ϕH + ε2{ 1
2 | ∇Xϕ|2 + Kϕ2}] + O(ε3)}.

From this expansion, we derive for the second variation

(16) δ2AΩ(X, Y ) :=
d2

dε2
A(X + εY )

∣
∣
∣
∣
ε=0

of X in the normal direction Y = ϕN the formula

(17) δ2AΩ(X, Y ) =
∫

Ω

{ | ∇Xϕ|2 + 2Kϕ2} dA

which can be considered as a quadratic form on the Sobolev space H1
2 (Ω).

We restrict

(18) J(ϕ) := δ2AΩ(X, ϕN)

to the Sobolev space H̊1
2 (Ω) of functions ϕ ∈ H1

2 (Ω) with (generalized) bound-
ary values zero on ∂Ω.

Consider the isoperimetric problem

(19) J(ϕ) → min for ϕ ∈
◦

H1
2 (Ω) with

∫

Ω

ϕ2dA = 1.

Its solution satisfies

−ΔXϕ + 2Kϕ = μϕ in Ω,

ϕ = 0 on ∂Ω
(20)

where μ is the smallest real number, for which a nontrivial solution ϕ of these
two equations exists; in other words, μ = J(ϕ) is the smallest eigenvalue of
the operator −ΔX + 2K on Ω with respect to zero boundary values.

In the sequel we shall often write δ2A(X, ϕ) instead of δ2A(X, ϕN).

2.9 Scholia

1 References to the Literature on Nonparametric Minimal Surfaces

The modern theory of the nonparametric minimal surface equation and of
related equations begins with the celebrated papers of S. Bernstein [1–4] and
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with the work of Korn [1,2] and Müntz [1]. The central problem of interest
concerning nonparametric minimal surfaces was at that time the solution of
Plateau’s problem. A new attack on this problem was started by Müntz [2]
in 1925 which, however, proved to be faulty (see Radó [11], and also Müntz
[3]). The final solution of Plateau’s problem in the context of nonparametric
minimal surfaces in two dimensions was achieved by Haar in his pioneering
paper [3]. Important supplements were given by Radó; see Haar [5], Radó
[2,8,15]. In his survey [21], Radó gave a lucid presentation of the development
until 1933.

After 1945, many new and surprising results on two-dimensional non-
parametric minimal surfaces were found. In particular we mention the work of
Bers, Finn, Heinz, E. Hopf, Jörgens and J.C.C. Nitsche. A beautiful and very
complete presentation of the whole theory of two-dimensional nonparametric
minimal surfaces can be found in Nitsche’s treatise [28]; for an updated ver-
sion see [37]. Certain aspects of the theory based on the work of Sauvigny are
presented in Chapters 5 and 7 of this volume.

Even more astounding is the development of the theory of n-dimensional
nonparametric minimal surfaces which is to a large extent described in the
monographs of Gilbarg and Trudinger [1], Giusti [4], and Massari and Mi-
randa [1]. Finn’s treatise [11] leads the reader into the fascinating field of free
boundary problems connected with the phenomenon of capillarity.

The theory of nonparametric minimal surfaces of codimension m > 1 was
initiated by Osserman [11]. Here many new problems arise as was shown by
Lawson and Osserman [1]. Osserman proved:

Let M be an n-dimensional submanifold in R
n+p which is the graph of a func-

tion f ∈ C2(Ω, Rp), Ω ⊂ R
n. Let γαβ(x) := δαβ + f i

xα(x)f i
xβ (x) be the metric

tensor of M, γ := det(γαβ) and (γαβ) = (γαβ)−1. Then M is a minimal sub-
manifold of R

n+p if and only if

(1)
1

√
γ

Dβ {√
γγαβDαf i} = 0, 1 ≤ i ≤ p,

that is, if and only if the coordinate functions f i of the mapping f are har-
monic with respect to the metric of M. Equivalently we can write

(2) ΔMf = 0.

The equations (1) imply that

(3) Dα{√
γγαβ } = 0, 1 ≤ β ≤ n.

Therefore the equations (1) are equivalent to the system

(4) γαβDαDβf i = 0, 1 ≤ i ≤ p.
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Morrey [4] proved that any weak solution f ∈ C1(Ω, Rp), Ω ⊂ R
n, of (4) is

real analytic. On the other hand, Lawson and Osserman [1] found for n = 4,
p = 3 an example of a Lipschitz continuous weak solution of (1) which is not of
class C1. Furthermore, if Ω is the unit ball in R

4, they discovered a quadratic
polynomial ϕ : ∂Ω → R

3 which cannot be extended to a mapping

f ∈ C0(Ω̄, R3) ∩ C2(Ω, R3)

solving (1) in Ω. Harvey and Lawson [4] later proved that the singular solution
of (1) found by Lawson and Osserman is, in fact, area-minimizing with respect
to its boundary values.

Moreover, Lawson and Osserman [1] pointed out that, differently from
the case of codimension p = 1, the solutions of (1) are no longer uniquely
determined by their boundary values. Even if n = 2 and Ω is the unit disk,
there is a real analytic map ϕ : ∂Ω → R

2 to which there correspond three
distinct solutions u of (1) in Ω̄ satisfying u|∂Ω = ϕ.

2 Bernstein’s Theorem

Bernstein’s theorem is one of the most fascinating results in the theory of
nonlinear elliptic differential equations. First published in 1916, it has at-
tracted time and again the attention of analysis since the German translation
of Bernstein’s paper [4] appeared in 1927. Much later, a gap was discovered
in Bernstein’s original proof which succeedingly was closed by E.J. Mickle [1]
and E. Hopf [3].

A discussion of various ramifications and generalizations of Bernstein’s
theorem can be found in Osserman [5], Nitsche [28], Giusti [4], Gilbarg and
Trudinger [1], Hildebrandt [14,17]. The results presented in Sections 2.2–2.5
are essentially taken from the work of Radó, Nitsche and Heinz.

We mention that for nonparametric n-dimensional minimal surfaces of
codimension one Bernstein’s theorem holds true if n ≤ 7, whereas Bombieri, de
Giorgi, and Giusti [1] derived from the Simons cone C = {x ∈ R

8 : x = (y, z),
y, z ∈ R

4 and |y|2 = |z|2} an example which shows that Bernstein’s theorem
becomes false if n ≥ 8. A slight error in their reasoning was pointed out by
Luckhaus who also saw how it can be removed (cf. Dierkes [5]).

Another major achievement was the paper of Schoen, Simon, and Yau [1]
who proved a generalization of Heinz’s estimate (22) stated in Theorem 2
of Section 2.4 to all dimensions n ≤ 5, thereby obtaining another proof for
Bernstein’s theorem in dimensions n ≤ 5. Improvements of this work were
made by Simon [1,4]. We present some of these results in Vol. 3, Chapter 3.

A Bernstein theorem in arbitrary dimension and codimension was proved
by Hildebrandt, Jost, and Widman [1]:

If f : R
n → R

p is an entire solution of the minimal surface system (1) (i.e.,
a solution on all of R

n) such that
√

γ(x) ≤ β0 on R
n where β0 is a number
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satisfying β0 < cos−m(π/2
√

2m) and m := min{n, p} ≥ 2, then f is linear,
and therefore its graph represents an affine n-plane in R

n+p.

In this theorem γ(x) denotes the function det(γαβ(x)) where γαβ(x) =
δαβ + f i

xα(x)f i
xβ (x). Note that a better result holds true if m = 1. A re-

lated result was proved by Fischer-Colbrie [1]. In Vol. 3 we present a fairly
comprehensive presentation of Bernstein-type theorems.

3 Stable Minimal Surfaces

It is a rather difficult problem to decide whether a given specific minimal
surface spanned by a closed curve Γ is actually area minimizing, that is,
whether it is an absolute or at least relative minimizer of the area functional
among all surfaces of the same topological type bounded by Γ . Suppose that
the minimal surface X : Ω → R

3 is defined on a bounded domain Ω of R
2.

Then it is easy to see that the condition

(5) δ2AΩ(X, ϕ) ≥ 0 for all ϕ ∈ C∞
c (Ω, R3)

is necessary for any relative minimizer X within Γ . Let λ1(Ω) be the smallest
eigenvalue of the second-variation operator −ΔX + 2K on Ω with respect to
zero boundary values. Then, by a classical result of the calculus of variations,
X is a relative minimizer of area with respect to the C1-topology if X is a
regular minimal surface of class C2(Ω̄, R3) satisfying

(6) λ1(Ω) > 0.

A minimal surface X : Ω → R
3 defined on a parameter domain Ω ⊂ R

2

with a piecewise smooth boundary is said to be strictly stable if it is of class
C2(Ω̄, R3), regular (i.e. free of branch points) on Ω̄ and satisfies λ1(Ω) > 0.
If λ1(Ω) ≥ 0, the surface X is called stable.

In certain situations one can show that a stable minimal surface can be
embedded in a field, that is, it can be viewed as a leaf of a suitable foliation
in R

3 whose leaves are all minimal surfaces. Then we obtain that such a
stable surface actually is a relative minimizer of area with respect to the
C0-topology. Such a field construction plays an essential role in the proof of
Nitsche’s uniqueness theorem (see Section 4.9, and, for details, Sections 5.6
and 5.7).

Barbosa and do Carmo [1] proved that any immersed minimal surface
X : Ω → R

3 is strictly stable if the image N(Ω) of Ω under the Gauss map
N : Ω → S2 corresponding to X has area less than 2π. Later these authors
showed in [4] that the assumption

∫
K dA < 4

3π implies strict stability of any
immersed minimal surface X : Ω → R

n, for an arbitrary n ≥ 3, if Ω is simply
connected.

Stable minimal surfaces are an important subclass in the set of all minimal
surfaces. Roughly speaking, we can view strictly stable minimal surfaces as
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those surfaces of mean curvature zero that can experimentally be realized by
soap films. In some respect they behave like nonparametric minimal surfaces.
For instance, R. Schoen [2] proved an analogue of Heinz’s estimate (22) stated
in Section 2.4 for stable surfaces which, in turn, implies Bernstein’s theorem
for such surfaces. Moreover, Schoen’s estimate also yields an earlier result of
do Carmo and Peng [1] and of Fischer-Colbrie and R. Schoen [1], namely that
a complete stable minimal surface in R

3 has to be a plane.
For a fairly detailed discussion of the second variation of area and of stable

minimal surfaces we refer to Chapter 5 as well as to Nitsche [28], pp. 86–109,
and for an updated version to Nitsche [37], pp. 90–116. There the reader will
also find a survey of the fundamental contributions of H.A. Schwarz to this
problem which are mainly contained in his Festschrift for the 70th birthday
of Weierstrass (cf. Schwarz [2], vol. 1, pp. 223–269).

4 Foliations by Minimal Surfaces

In Section 2.8 as well as in Subsection 3 of these Scholia we saw that any leaf of
a foliation by minimal surfaces is area minimizing. This is the basic content of
Weierstrass’s approach to the calculus of variations. Its main ingredients are
the Weierstrass field construction (that is, the embedding of a given minimal
surface into a field consisting of a foliation with minimal leaves) and Hilbert’s
independent integral. The method presented in Section 2.8 furnishes a sim-
plification of the original form of the independent integral stated by Schwarz.
This simplified version is based on the calculus of differential forms and pro-
vides a flexible and important tool in differential geometry which is very easy
to handle. For applications and further results we refer to the basic work of
Harvey and Lawson [3,4] and of Lawlor and Morgan [1].

Other contributions on foliations by minimal submanifolds of a given
Riemannian manifold are due to Haefliger [1], Rummler [1], and Sullivan [1].

In the Sections 5.6 and 5.7 we discuss field constructions for immersed
minimal surfaces that are not embedded. They are the geometric basis for
Tomi’s finiteness theorem and Nitsche’s uniqueness theorem.
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