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Preface

This book is the first volume of a treatise on minimal surfaces consisting of al-
together three volumes, which can be read and studied independently of each
other. The central theme is boundary value problems for minimal surfaces,
such as Plateau’s problem. The present treatise forms a greatly extended ver-
sion of the monograph Minimal Surfaces I, II by U. Dierkes, S. Hildebrandt,
A. Küster, and O. Wohlrab, published in 1992, which is often cited in the liter-
ature as [DHKW]. New coauthors are Friedrich Sauvigny for the first volume
and Anthony J. Tromba for the second and third volume.

The topic of the treatise, belonging to differential geometry and the cal-
culus of variations as well as to the theory of partial differential equations
and functions of a complex variable, may at a first glance seem rather special.
However, we believe that it is both attractive and advantageous to consider
mathematical ideas in the light of special problems, even though mathemati-
cians nowadays often tend to prefer the opposite approach, namely to em-
phasize general theories while relegating specific problems to play the modest
role of examples. Both ways to present mathematics are equally valuable and
necessary, but the theory of minimal surfaces is a good case for the first ap-
proach, to study in some detail examples which are as fascinating as they are
important.

Our intention in writing this book is best characterized by a quote from
Courant’s treatise Dirichlet’s principle which in several respects has been a
model for our work: “Enlightenment, however, must come from an under-
standing of motives; live mathematical development springs from specific nat-
ural problems which can easily be understood, but whose solutions are difficult
and demand new methods of more general significance.”

One might think that three books are more than enough in order to give a
more or less complete presentation of the theory of minimal surfaces, but we
failed in many respects. Thus the reader should not expect an encyclopedic
treatment of the theory of minimal surfaces, but merely an introduction to
the field, followed by a more thorough presentation of certain aspects which

v



vi Preface

relate to boundary value problems. For further study we refer to our extensive
bibliography as well as to comments and references in the Scholia attached
to each chapter. In particular, we mention the various lecture notes, cited
at the beginning of our bibliography, as well as the treatises by Radó [21],
Courant [15], Osserman [10], Federer [1], Nitsche [28,37], Giusti [4], Massari
and Miranda [1], Struwe [11], Simon [8], Jost [17], and Giaquinta, Modica,
and Souc̆ek [1].

As Courant remarked, “in a field which has attracted so many mathemati-
cians it is difficult to achieve a fair accounting of the literature and to appraise
the merits of others.” By adding Scholia to each chapter we have tried to give
a sufficiently detailed account of how the theory of minimal surfaces has de-
veloped and what are the basic sources of information and inspiration, and
we hope that not too many were omitted.

We thank M. Beeson, F. Duzaar, K. Große-Brauckmann, R. Jakob, J.
Jost, E. Kuwert, F. Müller, M. Pingen, F. Tomi, H. von der Mosel, and D.
Wienholtz for pointing out errors and misprints in [DHKW]. Special thanks
we owe to Ruben Jakob who studied and corrected most of the new material
added to [DHKW], thereby eliminating numerous mistakes. His assistance
was invaluable. Moreover, Chapter 6 of this volume is substantially inspired
by his diploma thesis [1]. We also thank Robert Osserman for providing us
with Example 5 in Section 3.7, and Albrecht Küster for his cooperation in
writing [DHKW], and for numerous illustrations supplied by him.

We should also like to thank David Hoffman, Hermann Karcher, Konrad
Polthier and Meinhard Wohlgemuth for permitting us to use some of their
drawings of complete and of periodic minimal surfaces, and Imme Haubitz
for allowing us to reproduce some of her drawings of Thomsen surfaces. We
are grateful to Klaus Bach, Frei Otto and Eric Pitts for providing us with
photographs of various soap film experiments.

The continued support of our work by the Sonderforschungsbereich 611 at
Bonn University as well as by the Hausdorff Institute for Mathematics in Bonn
and its director Matthias Kreck was invaluable. We also thank the Centro
di Ricerca Matematica Ennio De Giorgi in Pisa and its director Mariano
Giaquinta for generous support of our work.

We are especially grateful to Anke Thiedemann and Birgit Dunkel who
professionally and with untiring patience typed many versions of the new
text.

Last but not least we should like to thank our publisher and in partic-
ular our very patient editors, Catriona Byrne, Marina Reizakis, and Angela
Schulze-Thomin, for their encouragement and support.

Duisburg
Bonn
Cottbus

Ulrich Dierkes
Stefan Hildebrandt
Friedrich Sauvigny
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Introduction

This text on minimal surfaces is arranged in three volumes, which in the sequel
will be quoted as Vol. 1 (Minimal Surfaces), Vol. 2 (Regularity of Minimal
Surfaces), and Vol. 3 (Global Analysis of Minimal Surfaces). Each volume is
divided into two parts.

The present volume is in many ways an introduction to differential geome-
try and to the classical theory of minimal surfaces, and the first four chapters
should more or less be readable for any graduate student. For these the only
prerequisites are the elements of vector analysis and some basic knowledge
of complex analysis. After an exposition of the basic ideas of the theory of
surfaces in three-dimensional Euclidean space given in Chapter 1, we begin
Chapter 2 by introducing minimal surfaces as regular surfaces which are sta-
tionary points of the area functional. This is equivalent to the fact that the
mean curvature H of such a surface vanishes identically. Then we show that
any minimal surface can be represented both in an elementary and a geomet-
rically significant way by conformal parameters. In general this representation
will only be local. However, invoking the uniformization theorem, we are led to
global conformal representations. This reasoning will suggest a new definition
of minimal surfaces that includes the old one but is much more convenient:
a minimal surface X(w) is defined as a nonconstant harmonic mapping from
a parameter domain Ω in the complex plane into R

3 which satisfies the con-
formality relation 〈Xw, Xw 〉 = 0. Note that such a mapping X may have
isolated zeros of its derivative Xw = 1

2 (Xu − iXv), called branch points. Hence
a minimal surface in this general sense need not be a regular surface, i.e. an
immersion, and therefore one occasionally speaks of a branched minimal sur-
face. Mostly we do not use this notation; for us a minimal surface X : Ω → R

3

is a harmonic mapping with conformal parameters. If the parameters of X are
not conformal, but X is an immersion with H ≡ 0, we often speak of a zero
mean curvature surface (e.g. in Chapters 5 and 7), except if X is also the
graph of a real valued function z(x, y), (x, y) ∈ Ω; then X is said to be a
nonparametric minimal surface.

xi



xii Introduction

Other parts of Chapter 2 are concerned with basic features of nonparamet-
ric minimal surfaces such as Bernstein’s theorem, stating that entire solutions
of the nonparametric minimal surface equation in R

2 have to be planes, and
with foliations by one-parameter families of minimal surfaces and their signif-
icance in establishing the minimum property. Finally we derive the formula
for the second variation of area.

The third chapter deals with the classical theory of minimal surfaces which
is in particular connected with the names of Monge, Scherk, Bonnet, Weier-
strass, Riemann, Enneper, and Schwarz. First we show that minimal surfaces
can be viewed as real parts of holomorphic isotropic curves in C

3. This in
turn leads us to representation formulas of minimal surfaces by means of ar-
bitrary meromorphic functions. We shall see how the Gauss map, the second
fundamental form and the Gauss curvature of a minimal surface can be com-
puted from such a representation formula. The reader might particularly enjoy
Section 3.5 where we present some of the celebrated minimal surfaces, most
of which have been known for more than a century, and illustrate them by
numerous drawings.

In Section 3.6 we introduce the notion of a global minimal surface and in
particular that of a complete minimal surface. The spherical image of complete
minimal surfaces is then studied in Section 3.7. We present some results of
the work of Osserman–Xavier–Fujimoto which can be viewed as a profound
generalization of both Bernstein’s theorem and of Picard’s theorem in complex
analysis which in turn led to Nevanlinna’s value distribution theory. In the
Scholia we give a brief survey of some of the more recent results on complete
and on periodic minimal surfaces. Here the development of the last twenty
years has brought many new results which are not at all covered by this
chapter. We refer the interested reader to the reports in GTMS (2005), the
encyclopaedia article by Hoffman and Karcher, and the survey by Rosenberg
(1992).

The second part of the present volume deals with the existence of minimal
surfaces which are bounded by prescribed boundary configurations. In Chap-
ter 4 we treat the simplest problem of this kind, the Plateau problem. This is
the question of whether one can find a minimal surface spanning a given closed
Jordan curve Γ . We present the celebrated existence theorem of Douglas and
Radó in the form described by Courant and Tonelli. A slight variation of their
method then leads to solutions of partially free boundary problems. Further
sections as well as the Scholia are concerned with Schwarz’s reflection prin-
ciples, obstacle problems, the existence of regular and of embedded minimal
surfaces, the isoperimetric inequality, and in particular with the question of
whether there can be more than one solution of Plateau’s problem.

In Chapter 4 we only use the simplest method to prove existence results
which is based on Dirichlet’s principle. This is to say, we obtain solutions of a
given boundary problem by minimizing Dirichlet’s integral within a suitable
class C(Γ ) of mappings. This method does not give all solutions as it only leads
to minimizers and misses the unstable minimal surfaces and even the relative
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minima. Furthermore we prove that minimizers of Dirichlet’s integral in C(Γ )
also minimize area in C(Γ ). The same method is used to derive Lichtenstein’s
theorem on conformal representation of regular surfaces and to solve Plateau’s
problem for regular Cartan functionals. In addition we show that every Jordan
curve bounds a minimal surface, even if this surface cannot be obtained by
minimizing area.

In Chapter 5 we study stable minimal surfaces and stable surfaces of pre-
scribed mean curvature (“H-surfaces”). Here the essential tool is the stability
inequality, which for minimal surfaces expresses the fact that the second vari-
ation of the area functional is nonnegative. The basic results of this chapter
are curvature estimates, field embeddings, Nitsche’s uniqueness theorem, and
various “finiteness results”, in particular Tomi’s theorem. Some of these re-
sults are used in Chapter 7 to treat the Dirichlet problem for nonparametric
H-surfaces. Here we also apply results on the solvability of the Plateau prob-
lem for (parametric) H-surfaces, to be proved in Section 4.7 of Vol. 2.

Chapter 6 deals with the existence of unstable minimal surfaces when the
mountain-pass lemma can be applied. We present Courant’s approach to this
problem.

Finally, in Chapter 8 we present an introduction to the general problem of
Plateau that, justifiedly, is often called the Douglas problem. This is the ques-
tion whether a configuration of several nonintersecting closed Jordan curves
in R

3 may bound multiply connected minimal surfaces of prescribed Euler
characteristic and prescribed character of orientability. In a general form, the
Douglas problem will be tackled in Vol. 3. Here we treat only the simplest form
of the problem, namely to find a minimal surface bounded by a prescribed
configuration which is parametrized on a “schlicht” domain in C = R

2, pre-
cisely, on a k-circle domain in C. As it will be seen in Vol. 2, there is not
always a solution; however, we prove the existence of a solution if Douglas’s
sufficient condition is satisfied. This solution is a minimizer both of area and
of Dirichlet’s integral. For example, Douglas’s condition holds if the boundary
configuration consists of two linked closed Jordan curves.

In many ways the material of this volume is self-contained; but there are
some exceptions. We use a few ideas from Sobolev space theory, and in Chap-
ters 4–8 we also apply basic results from the regularity theory of minimal
surfaces which will be established in Vol. 2. In fact, Volume 2 can be regarded
as an exercise in regularity theory for nonlinear boundary value problems of
elliptic systems. Nevertheless, regularity results are not only an interesting
exercise in generalizing classical results on conformal mappings to minimal
surfaces and to H-surfaces, but they may also have interesting applications
in geometry, for instance in establishing compactness results, index theorems,
or geometric inequalities such as estimates on the length of the free trace, or
generalized Gauss–Bonnet formulas.

Actually, the notions of regular curve, regular surface, regularity are used
in an ambiguous way. On the one hand, regularity of a map X : Ω → R

3

can mean that X is smooth and belongs to a class C1, C2, . . . , Cs, C∞, Cω,
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or to a Hölder class Ck,α, or to a Sobolev class Hk
p . The regularity results

obtained in Chapter 2 of Vol. 2 are to be understood in this sense. On the other
hand, a map X : Ω → R

3, viewed as a parameter representation of a surface
in R

3, is called regular or a regular surface or an immersion if the Jacobi
matrix (Xu, Xv) has rank 2, i.e., if at all of its points the surface has a well-
defined tangent space. If X(w), w = u+ iv, is given in conformal parameters,
then the singular (i.e., nonregular) points of X are exactly its branch points
w0, which are characterized by the relation Xw(w0) = 0. In Chapter 3 of
Vol. 2 we shall derive asymptotic expansions of minimal surfaces at boundary
branch points, which can be seen as a generalization of Taylor’s formula to the
nonanalytic case. Chapter 1 of Vol. 2 deals with minimal surfaces having free
boundary values. This is a generalization of the partially free boundary value
problem studied in Section 4.6 of Vol. 1. Chapter 2 presents the basic results
on the boundary behavior of minimal surfaces under Plateau or free boundary
conditions, and asymptotic expansions at branch points as well as the general
Gauss–Bonnet formula for branched surfaces are derived. In Chapter 3, the
Hartmann–Wintner–Heinz technique for obtaining asymptotic expansions is
described, together with Dziuk’s expansions at singular boundary points.

The second part of Vol. 2 deals with geometric properties of minimal sur-
faces and H-surfaces, furthermore with obstacle problems and the Plateau
problem for H-surfaces. As a generalization of the isoperimetric inequality,
the thread problem for minimal surfaces is studied. The volume ends with a
new approach by A. Tromba towards the celebrated result that a minimizer
of area in a given contour has no interior branch points.

The first part of Vol. 3 investigates solutions of partially free boundary
value problems. Then we study various generalizations of Bernstein’s theorem
for minimal surfaces. These results, and even more so those of Part II of Vol. 3,
are of a global nature. In this second part, a version of the general Plateau
problem (the “Douglas problem”) is solved by an approach via Teichmüller
theory, and then the fundamental index theorems by Böhme and Tromba and
by Tomi and Tromba are proved. In the final chapter of Vol. 3 methods from
global analysis are applied to Plateau’s problem.

The prospective reader will probably find many sections of the present
volume elementary, in that they require only basic knowledge of analysis and
that the exposition of the principal facts is fairly broad. The presentation
of Volumes 2 and 3 is somewhat more advanced although we have tried to
develop the necessary facts from potential theory ab ovo. Only a few results
of regularity theory will be borrowed from other sources; usually this will be
information needed for more refined statements such as higher regularity at
the boundary. For asymptotic expansions in corners we rely on some results
taken from Vekua’s treatise [1,2] and from the work of Dziuk. Part II of
Vol. 3 probably requires additional reading since we use results about Riemann
surfaces and from Teichmüller theory as well as from Global Analysis.

All the Scholia provide sources of additional information. In particular, we
try to give credit to the authorship of the results presented in the main text,
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and we sketch some of the main lines of the historical development. References
to the literature and brief surveys of relevant topics, not treated in our notes,
complete the picture.

Our notation is essentially the same as in the treatises of Morrey [8] and of
Gilbarg and Trudinger [1]. Sobolev spaces are denoted by Hk

p instead ofW k,p;
the definition of the classes C0, Ck, C∞, and Ck,α is the same as in Gilbarg and
Trudinger [1]; Cω denotes the class of real analytic functions; C∞

c (Ω) stands
for the set of C∞-functions with compact support in Ω. For greater precision
we write Ck(Ω,R3) for the class of Ck-mappings X : Ω → R

3, whereas the
corresponding class of scalar functions is denoted by Ck(Ω), and likewise we
proceed for the other classes of differentiability. Another standard symbol is
Br(w0) for the disk {w = u+ iv ∈ C : |w − w0| < r} in the complex plane. If
formulas become too cumbersome to read, we shall occasionally write B(w0, r)
instead of Br(w0). In general we shall deal with minimal surfaces defined on
simply connected bounded parameter domains Ω in C which, by Riemann’s
mapping theorem, all are conformally equivalent to each other. Hence we
can pick a standard representation B for Ω: we take it to be either the unit
disk {w : |w| < 1} or the semidisk {w : |w| < 1, Imw > 0}. In the first case
we write C for ∂B, in the second C will denote the semicircle {w : |w| = 1,
Imw > 0} while I stands for the interval {u ∈ R : |u| < 1}. On some occasions
it is convenient to switch several times from one meaning of B to the other.
Moreover, some definitions based on one meaning of B have to be transformed
mutatis mutandis to the other one. This may sometimes require slight changes
but we have refrained from pedantic adjustments which the reader can easily
supply himself.



Part I

Introduction to the Geometry of
Surfaces and to Minimal Surfaces



Chapter 1

Differential Geometry of Surfaces
in Three-Dimensional Euclidean Space

In this chapter we give a brief introduction to the differential geometry of sur-
faces in three-dimensional Euclidean space. The main purpose of this intro-
duction is to provide the reader with the basic notions of differential geometry
and with the essential formulas that will be needed later on.

Section 1.1 discusses the notion of surfaces that is mainly used in these
notes. Moreover, the notions of tangent space, surface normal, surface area,
equivalent surfaces, as well as tangent and normal vector fields are defined.

In Section 1.2 we consider the spherical image of a surface X and its
negative differential, the Weingarten map. This leads to the three fundamental
forms on a surface which, in turn, give rise to the definition of the principal
curvatures, and of the Gauss curvature and the mean curvature. By means
of the orthonormal frame {t, s,N} along a curve c on X consisting of the
tangent t = ċ to the curve, the side normal s and the surface normal N,
the geodesic curvature and the normal curvature of c are defined. This leads
to the standard interpretation of the principal curvatures and of the Gauss
and mean curvatures. The principal curvatures turn out to be the eigenvalues
of the Weingarten map, and the Gauss curvature is interpreted as the ratio
dAN

dAX
of the area element of a surface X and of its spherical image N if we

take orientation into account. After defining geodesics, asymptotic curves, and
lines of curvature, we note the invariance properties of the various curvature
measures.

Section 1.3 begins by stating the Gauss equations for the second deriva-
tives X,αβ of a surface representation X which lead to the definition of the
Christoffel symbols of the first and second kind. It will then be shown that
these symbols can be expressed in terms of the coefficients of the first funda-
mental form whence it follows that the same holds for the Gauss curvature.
This is essentially the content of Gauss’s celebrated theorema egregium. It
is proved by connecting the Gauss curvature with the Riemann curvature
tensor. Finally, a general expression for the geodesic curvature of a curve on
the surface is computed. In addition, we provide a collection of formulas for
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the Christoffel symbols and for the Gauss, mean, and geodesic curvatures in
orthogonal and conformal coordinates which will be useful later.

In Section 1.4 we define conformally equivalent surfaces and conformal
parameters, discuss the theorem of Gauss–Lichtenstein that surfaces X : Ω →
R

3 with Ω ⊂ R
2 can be mapped conformally into the plane, and finally we

state and prove different versions of the Gauss–Bonnet theorem by employ-
ing conformal representations. This approach is particularly well suited for
generalizing the Gauss–Bonnet theorem to surfaces with singularities (branch
points) as we shall see later.

In Section 1.5 we deal with basic vector analysis on surfaces X. After
introducing the covariant differentiation of tangential vector fields, we in par-
ticular define the X-gradient ∇Xf of a scalar function f as a tangential vector
field, and the X-divergence of a tangential vector field. Of basic importance is
the Laplace–Beltrami operator ΔX on X, a linear elliptic differential operator
which is defined as the divergence of the gradient. After providing an invari-
ant form of the Gauss integration theorem involving the Laplace–Beltrami
operator, we interpret the Laplace–Beltrami equation ΔXf = 0 as the Eu-
ler equation of the generalized Dirichlet integral. We close our discussion by
defining the covariant derivative DV

dt of a tangential vector field V (t) along a
curve c(t). Autoparallel vector fields V (t) are defined by the equation DV

dt = 0,
and geodesics c(t) on the surface are curves with D

dt ċ = 0. This turns out to
be equivalent to the fact that such c have zero geodesic curvature so that
the new definition of geodesics is equivalent to the one of Section 1.2. Finally
geodesics are proved to be the stationary curves of the energy functional and
the length functional.

1.1 Surfaces in Euclidean Space

Most of the surfaces studied in this book are mappings

(1) X : Ω → R
3

from a domain Ω in R
2 into R

3. The points of R
2 are written as w = (u, v) =

(u1, u2) or, if we identify R2 with the complex plane C, as w = u+iv = u1+iu2.
Then X maps w ∈ Ω onto some image point X(w) ∈ R

3.
In the following, we shall usually assume that X is at least of class C3,

and that X is regular on Ω, except for isolated points. By definition, at all
regular points w of Ω, the Jacobian matrix

(2) X∗(w) := ∇X(w) = (Xu(w), Xv(w)) =
(
∂X

∂u
(w),

∂X

∂v
(w)
)

has the maximal rank two. At such points the tangent space TwX of X cor-
responding to the parameter value w, defined by
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Fig. 1. A parametric surface

Fig. 2. (a) An embedded surface X : M → R3. (b) An immersed but not embedded surface

X : M → R3. (c) A branched covering; the branch point in the center has been removed to

provide a better view of the surface. (a) and (b) are parts of Enneper’s surface, (c) a part

of Henneberg’s surface
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(3) TwX := X∗(w)(R2),

is the two-dimensional subspace of R3 spanned by the linearly independent
vectors Xu(w) and Xv(w). Note that we have attached the tangent space to
the parameter point w and not to the point P = X(w) on the trace S :=
X(Ω) of the surface since selfintersections of S are not excluded. Thus, if
P = X(w) = X(w̃), w, w̃ ∈ Ω and w 	= w̃,S could have the two different
tangent planes P+TwX and P+Tw̃X; in other words, the tangent space TP S

of S at P would in general not be well defined, except for embeddings X.
At a regular point w the exterior product Xu ∧ Xv does not vanish, i.e.

W 	= 0, where

(4) W = |Xu ∧ Xv | =
√

|Xu|2|Xv |2 − 〈Xu, Xv 〉2.

Hence, in a neighborhood of a regular point w, the normal vector to the
surface,

(5) N =
1
W

· Xu ∧ Xv,

is well defined.
The area AΩ(X) (or simply A(X)) of the surface X : Ω → R

3 is defined
as

(6) AΩ(X) =
∫

Ω

|Xu ∧ Xv | du dv.

Introducing the area element dA as

dA = W du dv = |Xu ∧ Xv | du dv,

we may write

(6′) A(X) =
∫

X

dA =
∫

Ω

W du dv.

Two mappings X : Ω → R
3 and X̂ : Ω̂ → R

3 of class Cs, s ≥ 1, are said to be
equivalent (strictly speaking: Cs-equivalent) if there is a Cs-diffeomorphism
ϕ : Ω̂ → Ω, mapping Ω̂ onto Ω, such that

(7) X̂ = X ◦ ϕ or X̂(w) = X(ϕ(w)) for w ∈ Ω̂.

Let ϕ(w) be given by ϕ(w) = (α(w), β(w)) and denote the Jacobian
of ϕ by

Jϕ = detDϕ =
∣∣∣∣αu βu

αv βv

∣∣∣∣ .
If, in addition to (7), also the condition

(8) Jϕ > 0
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is satisfied, the mappings X and X̂ are called strictly equivalent. Since

(X̂u ∧ X̂v) = Jϕ · (Xα ∧ Xβ) ◦ ϕ,

the transformation theorem for multiple integrals implies that AΩ(X) =
AΩ̂(X̂), that is, equivalent surfaces have the same area. If the surfaces are
strictly equivalent, we get

|X̂u ∧ X̂v | −1 · (X̂v ∧ X̂v) = |Xα ∧ Xβ | −1 · (Xα ∧ Xβ) ◦ ϕ.

Denoting the normal vectors of X and X̂ by N and N̂ , respectively, this
implies that

(9) N̂ = N ◦ ϕ.

In other words, the normal vectors of two strictly equivalent surfaces are equiv-
alent.

Equivalent surfaces can be considered as identical geometric objects. They
are said to be equally or oppositely oriented if Jϕ > 0 or Jϕ < 0, respectively.

A mapping V : Ω → R
3 can be interpreted as a vector field along a

surface X : Ω → R
3. The proper geometric picture is to imagine that, for

each w ∈ Ω, the vector V (w) is attached to the point X(w) of the surface. Of
particular importance are tangential and normal vector fields. We say that V
is tangential, if

(10) V (w) ∈ TwX holds for all w ∈ Ω,

and we call it normal, if

(11) V (w) ⊥ TwX for all w ∈ Ω.

Clearly, a vector field V (w) is tangential along X if and only if it can be
written in the form

(10′) V (w) = V 1(w)Xu(w) + V 2(w)Xv(w) = V α(w)Xuα(w)

for all w ∈ Ω (summation with respect to repeated Greek indices from 1 to 2),
and it is normal along X if and only if it is of the form

(11′) V (w) = λ(w)N(w) for all w ∈ Ω,

with appropriate functions V 1(w), V 2(w) and λ(w) respectively.
To make these definitions precise we have to assume that all points of Ω are

regular points of X. If not, we either have to restrict ourselves to sufficiently
small neighborhoods Ω′ of regular points (instead of Ω), or we must replace
Ω by the (open) set Ω0 of its regular points.

Often a surface X : Ω → R
3 can be extended to the closure Ω or at least

to Ω ∪ C, where C is a subset of ∂Ω. Then the previous definitions may be
carried over in an appropriate way.
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In most cases we will restrict ourselves to surfaces which are mappings
X : Ω → R

3. Sometimes, however, we shall have to adopt a more global point
of view as, for instance, in Chapter 3. Then by a (general) surface in the
three-dimensional Euclidean space R

3 we mean a mapping

(12) X :M → R
3

from a two-dimensional manifold M into R
3. The image of any parameter

point p ∈ M will be denoted by X(p). Occasionally we shall also write

X = X(p), p ∈ M,

as symbol for the mapping (12). This is quite convenient although somewhat
imprecise. If we have fixed a Cartesian coordinate system in R

3 with coordi-
nates x, y, z, the map X(p) will be given by a triple of real-valued functions:

X(p) = (x(p), y(p), z(p)).

Let ∂M be the (possibly empty) boundary of M and M̊ its interior.
The differentiability properties of a surface X : M → R

3 are defined by
means of the charts of an atlas A of M . If, for example, M is at least of
class Cs, s ≥ 1, then we may say that the surface X is of class Cs up to the
boundary (notation: X ∈ Cs(M,R3)), if for every chart ϕ : G → R

2 of the
atlas A the local map or local parametrization

X := X ◦ ϕ−1 : ϕ(G) → R
3

of the mapping X is of class Cs(ϕ(G),R3). Such a local map X yields a
parameter representation of a patch of the global surface on a planar domain
Ω = ϕ(G) which is of the type discussed at the beginning.

Similarly, the space Cs(M̊,R3) will be defined as the set of surfaces X

that are of class Cs on the interior M̊ of M . Usually we shall only admit
surfaces X : M → R

3 which are regular (i.e., each local representation X of
X is regular) or have at most isolated singular points p ∈ M . This still leaves
us with a fairly general class of geometric objects. For instance, all embedded
and even all two-dimensional manifolds immersed in R

3 belong to our general
surfaces, be they orientable or not. Moreover, we have also included branched
coverings.

The area A(X) of a general surface X : M → R
3 can be defined by em-

ploying a partition of unity. Vector fields V : M → R
3 along X will be treated

by investigation of their parameterizations V = V ◦ ϕ−1 along the local rep-
resentations X = X ◦ ϕ−1 of X.

The reader who is not very familiar with manifolds need not worry. Only
in Chapter 3 we shall assume more than the most elementary facts about
them. Until then we shall only study local surfaces as in (1).
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1.2 Gauss Map, Weingarten Map. First, Second and
Third Fundamental Form. Mean Curvature and Gauss
Curvature

In the following we shall assume that X : Ω → R
3 is a regular surface of

class C3.
Let N be its normal field defined by formula (5) of the previous section.

Since |N | = 1, we can view N as a mapping of Ω into the unit sphere S2

of R3,

(1) N : Ω → S2 ⊂ R
3.

This mapping will be called the normal map, the spherical map, or the Gauss
map of the surfaceX. The set N(Ω) is called the spherical image of the surface
X : Ω → R3. However, sometimes also the map N : Ω → S2 will be called
the spherical image of X, following an old custom of geometers.

Fix now some point w = (u, v) ∈ Ω, and consider the tangential map
N∗(w) of N at w, that is,

N∗(w) = ∇N(w) = (Nu(w), Nv(w)).(2)

Then the Weingarten map S(w) at w is a linear mapping of the tangent space
TwX into itself,

S(w) : TwX → TwX,(3)

which maps a tangent vector

Fig. 1. A surface X : Ω → R3 and its Gauss map N : Ω → S2. X parametrizes the part of

Enneper’s surface corresponding to Ω = I × I, I = [−1/2, 1/2]
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V = V 1Xu(w) + V 2Xv(w) = V αXuα(w)

onto the vector

(4) S(w)V := −V 1Nu(w) − V 2Nv(w) = −V αNuα(w).

Since 〈N,N〉 = 1, we obtain by differentiation

(5) 〈N,Nu〉 = 0 and 〈N,Nv 〉 = 0,

i.e., the derivatives Nu(w) and Nv(w) are orthogonal to N(w) and must,
therefore, be elements of TwX. Hence S(w)V is indeed an element of TwX,
as we have stated.

If no misunderstanding is possible, we drop the argument w and write S
instead of S(w) for the Weingarten map.

We now claim that S is a selfadjoint linear mapping on the tangent space
TwX equipped with the scalar product 〈V,W 〉 of the surrounding Euclidean
space R

3. In other words, we have

〈SV,W 〉 = 〈V, SW 〉(6)

for arbitrary tangent vectors V = V αXuα(w), W = W βXuβ (w). In fact, the
equation 〈N,Xuβ 〉 = 0 implies

(7) 〈Nuα , Xuβ 〉 + 〈N,Xuαuβ 〉 = 0

whence

〈Nuα , Xuβ 〉 = 〈Nuβ , Xuα 〉,(8)

and therefore

〈SV,W 〉 = −〈NuαV α, XuβW β 〉 = −〈Nuα , Xuβ 〉V αW β

= −〈Xuα , Nuβ 〉V αW β = −〈XuαV α, NuβW β 〉 = 〈V, SW 〉.

Thus we can define on TwX three symmetric bilinear forms

(9) I(V,W ) := 〈V,W 〉, II(V,W ) := 〈SV,W 〉, III(V,W ) := 〈SV, SW 〉

for all V,W ∈ TwX, with their corresponding quadratic forms

(10) I(V ) := |V |2, II(V ) := 〈SV , V 〉, III(V ) := |SV |2

which are called first, second , and third fundamental form of the surface X
at w.

The first fundamental form is also called the metric form of X. If it
should be necessary to indicate that these forms depend on w, we write
Iw(V ), IIw(V ), IIIw(V ).
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To understand the geometric meaning of the second fundamental form, we
consider an arbitrary C3-curve ω in Ω which starts at w, for example:

ω : [0, ε] → Ω, ω(0) = w, ω(t) = (ω1(t), ω2(t)).

Then c := X ◦ω is a C3-curve on the surface X with initial point c(0) = X(w)
and initial velocity

ċ(0) = Xuα(w)ω̇α(0) ∈ TwX.

We note that, by definition,

|ċ(0)|2 = I(ċ(0)).

Let us temporarily assume that t is the parameter of arc length s of the curve
c; therefore we write c = c(s), 0 ≤ s ≤ l. Then we have |ċ(s)| = 1. Moreover,

t(s) = ċ(s)

is the unit tangent vector of the curve c,

κ(s) = |ṫ(s)|

its curvature, and, for κ(s) 	= 0, its principal normal n(s) is uniquely defined
by the equation

ṫ(s) = κ(s)n(s).

From
t(s) = ċ(s) = Xuα(ω(s))ω̇α(s)

we infer

ṫ(s) = c̈(s) = Xuαuβ (ω(s))ω̇α(s)ω̇β(s) +Xuα(ω(s))ω̈α(s).

By taking the scalar product of ṫ(0) with N = N(w) we arrive at

〈N, ṫ(0)〉 = 〈N,Xuαuβ (w)〉ω̇α(0)ω̇β(0).

On account of (7), we obtain

〈N, ṫ(0)〉 = −〈Nuα(w), Xuβ (w)〉ω̇α(0)ω̇β(0)

whence by (4)

〈N, ṫ(0)〉 = 〈Sċ(0), ċ(0)〉,(11)

that is,

κ(0)〈N(w),n(0)〉 = 〈Sċ(0), ċ(0)〉.(12)

By defining the surface normal N(s) := N(ω(s)) and the side normal
s(s) := N(s) ∧ t(s) along c, we obtain the moving orthonormal frame
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Fig. 2. Normal plane, osculating plane, rectifying plane. To describe a curve c : [0, l] → R3

in space satisfying |ċ| = 1 we introduce: t = ċ = tangent vector, κ = |ṫ| = curvature,

ρ = 1/κ = radius of curvature, n = ρṫ = normal vector, b = t ∧ n = binormal vector, M =

c+ρn = center of curvature, τ = − 〈b′, n〉 = 〈n′, b〉 = torsion. The normal plane is spanned

by n and b, the tangent plane S by t and n, and the rectifying plane R by t and b. The

circle of curvature C lies in S and has ρ as its radius. Its center is M ; C is the limit of a circle

through three points P, P ′, P ′′ on the curve as P ′, P ′′ → P : The sphere of curvature has the

center M ∗ = c + ρn+ (ρ̇/τ)b and intersects the tangent plane S in C. It is defined as limit

of the sphere determined by four points P, P ′, P ′′, P ′′′ on the curve as P ′, P ′′, P ′′′ → P .

Taken from K.H. Naumann and H. Bödeker (in Hilbert and Cohn-Vossen [1])

(13) {t(s), s(s),N(s)}

along the curve c(s), 0 ≤ s ≤ l, where t(s) and s(s) span the tangent space
Tω(s)X, and N(s) is orthogonal to Tω(s)X.

From 〈t, t〉 = 1 we infer that 〈t, ṫ〉 = 0. Thus ṫ(s) is a linear combination
of s(s) and N(s), and we have functions κg(s) and κn(s) such that

(14)
dt

ds
= κgs + κnN.

One calls κg(s) the geodesic curvature and κn(s) the normal curvature of
the curve c for the parameter value s. If θ(s) denotes the angle between n(s)
and N(s), we have

cos θ = 〈n,N〉,(15)

and it follows that

κg = 〈ṫ, s〉 = κ〈n, s〉 = ±κ sin θ,

κn = 〈ṫ,N〉 = κ〈n,N〉 = κ cos θ, κ =
√
κ2

g + κ2
n.

(16)
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Equation (12) is therefore equivalent to

(17) κn(0) = IIω(0)(ċ(0)), ċ =
dc

ds
.

If we drop the condition |ċ(t)| = 1 and return to an arbitrary parametrization
of the curve c, we have ds

dt = |ċ| =
√

I(ċ), and the chain rule yields

dc

dt
=
dc

ds

ds

dt
=
dc

ds
I1/2(ċ), ċ =

dc

dt
.

We therefore infer from (17), that

(18) κn =
II(V )
I(V )

where I(V ) and II(V ) are the values of the first and second fundamental forms
of X at w, and κn is the normal curvature of a curve c = X ◦ω : [0, ε] → R

3 on
X with the initial values c(0) = X(w) and ċ(0) = V at t = 0. If, in particular,
V is a velocity vector of a normal section c of an embedded surface X, the
vectors N(w) and n(0) are collinear, i.e., κn = ±κ, or

(19) κ = ± II(V )
I(V )

.

In other words, the Rayleigh quotient II/I measures the curvatures κ of all
possible normal sections of the surface X at the parameter point w, and the
sign of the quotient indicates whether n(0) points in the same direction as
N(w) or in the opposite direction, that is, whether the normal section curves
towards N(w) or away from it.

Since the Rayleigh quotient II/I has the meaning of a curvature, we call

κ1 := min
{

II(V )
I(V )

: V ∈ TwX,V 	= 0
}

(20)

= min{II(V ) : V ∈ TwX, I(V ) = 1},

κ2 := max
{

II(V )
I(V )

: V ∈ TwX,V 	= 0
}

(21)

= max{II(V ) : V ∈ TwX, I(V ) = 1}

the principal curvatures of the surface X at w. Note that κ1 = κ1(w), κ2 =
κ2(w), and II(V ) = IIw(V ) = 〈S(w)V, V 〉. The numbers ρi = 1/κi are said to
be the principal radii of curvature at w.

We can find unit vectors V1, V2 ∈ TwX such that

(22) κ1 = II(V1), κ2 = II(V2).
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An elementary reasoning yields that

(23) SV1 = κ1V1, SV2 = κ2V2.

In fact, we infer from the minimum property (20) that, for all ε ∈ R and all
V ∈ TwX,

II(V1 + εV ) ≥ κ1I(V1 + εV )

or

II(V1) + 2εII(V1, V ) + ε2II(V ) ≥ κ1I(V1) + 2κ1εI(V1, V ) + κ1ε
2I(V ).

Since II(V1) = κ1 and I(V1) = 1, we arrive at

2ε{II(V1, V ) − κ1I(V1, V )} + ε2[II(V ) − κ1I(V )] ≥ 0

whence
II(V1, V ) − κ1I(V1, V ) = 0

and therefore
〈SV 1, V 〉 = κ1〈V1, V 〉 for all V ∈ TwX.

But this is equivalent to the first equation of (23), and similarly the second
equation of (23) can be proved.

In other words, the principal curvatures are the eigenvalues of the Wein-
garten map S : TwX → TwX. If κ1 	= κ2, we infer from (23) that 〈V1, V2〉 = 0.
If κ1 = κ2 =: κ, the point w is said to be an umbilical point of X. In this case,
we have

SV = κV for all V ∈ TwX.

Therefore we may choose V1 and V2 ∈ TwX such that

SVi = κiVi, |V1| = |V2| = 1, 〈V1, V2〉 = 0.

Thus the eigenvectors V1, V2 of S can always be assumed to be orthogonal.
They can be considered as tangent vectors of normal sections of X at w which
have the smallest or largest signed curvature; thus they are called principal
directions of curvature of X at w.

Of particular geometric importance are the elementary symmetric func-
tions

(24) H = 1
2 (κ1 + κ2), K = κ1κ2

of the principal curvatures κ1, κ2. One calls H(w) the mean curvature and
K(w) the Gauss curvature of X at w.

Let E be the identity map on TwX. By (23), κ1 and κ2 are the roots of
the characteristic polynomial

p(κ) = det(S − κE)
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whence
p(κ) = (κ − κ1)(κ − κ2) = κ2 − 2Hκ+K.

On account of the Hamilton–Cayley theorem, we arrive at

S2 − 2HS +KE = 0 (= zero map),(25)

and therefore, the identity

KI − 2HII + III = 0(26)

holds.
For computations, it is often advantageous to use coordinates, namely the

coefficients of the first, second, and third fundamental forms:

gαβ(w) := 〈Xuα(w), Xuβ (w)〉,
bαβ(w) := −〈Nuα(w), Xuβ (w)〉,(27)
cαβ(w) := 〈Nuα(w), Nuβ (w)〉.

Obviously,

gαβ = gβα, cαβ = cβα.(28)

Because of (7) and (8), we also have

(29) bαβ = bβα = 〈N,Xuαuβ 〉.

Sometimes, the Gaussian notation

(30) G :=
(
g11 g12
g21 g22

)
=
(

E F

F G

)
, B :=

(
b11 b12
b21 b22

)
=
(

L M

M N

)

will be used, i.e.,

E = 〈Xu, Xu〉, F = 〈Xu, Xv 〉, G = 〈Xv, Xv 〉,
L = −〈Nu, Xu〉 = 〈N,Xuu〉, N = −〈Nv, Xv 〉 = 〈N,Xvv 〉,(31)
M = −〈Nu, Xv 〉 = −〈Nv, Xu〉 = 〈N,Xuv 〉 = 〈N,Xvu〉.

We, moreover, write

g := detG = g11g22 − g212,

b := detB = b11b22 − b212.
(32)

Then

W =
√

EG − F2 =
√
g =

√
det(gαβ),(33)

and, for V = V 1Xu + V 2Xv = V αXuα ,
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I(V ) = gαβ(w)V αV β = E(w)(V 1)2 + 2F(w)V 1V 2 + G(w)(V 2)2,
II(V ) = bαβ(w)V αV β = L(w)(V 1)2 + 2M(w)V 1V 2 + N(w)(V 2)2,(34)

III(V ) = cαβV
αV β .

We also introduce gαβ(w), setting

(35) G−1 = (gαβ).

Hence

gαβ = gβα and gαβg
βγ = δγα,(36)

where δγα is the Kronecker symbol, and

(37)
[
g11 g12

g21 g22

]
=

1
W2

[
G −F

−F E

]
.

As we know (cf. (5)), Nu and Nv are contained in TwX and, therefore, linear
combinations of the two linearly independent vectors Xu and Xv. Hence there
are uniquely determined coefficients aβ

α = aβ
α(w) such that

Nuα = aβ
αXuβ .

Then
〈Nuα , Xuγ 〉 = aβ

α〈Xuβ , Xuγ 〉, i.e., − bαγ = aβ
αgβγ

whence
−bαγg

γν = aβ
αgβγg

γν = aβ
αδ

ν
β = aν

α.

Thus we have found the Weingarten equations

(38) Nuα = −bβαXuβ with bβα := bαγg
γβ .

They can also be written in the form

(39) Nu = aXu + bXv, Nv = cXu + dXv

with

−L = aE + bF, −M = aF + bG,
−M = cE + dF, −N = cF + dG,

(40)

or

a = W−2(FM − GL), b = W−2(FL − EM),

c = W−2(FN − GM), d = W−2(FM − EN).
(41)

(Note that, in the last three formulas, the coefficient b is not to be confused
with the determinant b = det(bαβ) = LN − M2!)
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Let us now compute H and K in terms of the gαβ and bαβ . To this end,
we remember that the principal curvatures κ1 and κ2 are the two eigenvalues
of the Weingarten map S : TwX → TwX. The eigenvalue equation for S,

SV = κV,

can equivalently be written as

〈SV,W 〉 = κ〈V,W 〉 for all W ∈ TwX

or, by writing V = V αXuα ,W = W βXuβ , as

bαβV
αW β = κgαβV

αW β for all (W 1,W 2) ∈ R
2

whence
bαβV

α = κgαβV
α.

Since bαβ = bβα and gαβ = gβα, we infer that the equation SV = κV is
equivalent to

BV = κGV or G−1BV = κV

with V = (V 1, V 2) ∈ R
2 (to be read as column). Thus κ1 and κ2 are

the roots of

det(B − κG) =
∣∣∣∣b11 − κg11 b12 − κg12
b21 − κg21 b22 − κg22

∣∣∣∣
= det(gαβ)κ2 − (b11g22 + b22g11

− b12g21 − b21g12)κ+ det(bαβ)
= det(gαβ)(κ − κ1)(κ − κ2)
= det(gαβ)[κ2 − (κ1 + κ2)κ+ κ1κ2].

Hence, by comparing the coefficients of the powers of κ, we obtain

κ1κ2 =
detB
detG

= det(G−1B) = det(bβα),

κ1 + κ2 = trace(G−1B) = bαβg
αβ = b11 + b22.

In other words, since W =
√

EG − F2 =
√
g, we have

H =
LG + NE − 2MF

2(EG − F2)
=

1
2
bαβg

αβ =
1
2
(b11 + b22),(42)

K =
LN − M2

EG − F2
=

det(bαβ)
det(gαβ)

=
b

g
= det(bβα).(43)

Let us now interpret the Gauss curvature K in terms of the Gauss map N of
the surface X.
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Fig. 3. The Gauss map is (a) orientation preserving if K > 0, but (b) orientation reversing

if K < 0. Taken from K.H. Naumann and H. Bödeker (in Hilbert and Cohn-Vossen [1])

The Weingarten equations (38) imply that

Nu1 ∧ Nu2 = (b11b
2
2 − b12b

2
1)Xu1 ∧ Xu2

whence

Nu ∧ Nv = K(Xu ∧ Xv).(44)

Let us fix an ε-neighborhood Ωε = {w : |w − w0| < ε} of some point w0 ∈ Ω.
Then

AΩε(X) =
∫

Ωε

|Xu ∧ Xv | du dv,

AΩε(N) =
∫

Ωε

|Nu ∧ Nv | du dv =
∫

Ωε

|K| |Xu ∧ Xv | du dv

and therefore

|K(w0)| = lim
ε→0

AΩε(N)
AΩε(X)

=
dAN

dAX
.(45)

Thus the absolute value of the Gauss curvature of X at some point w ∈ Ω is
the ratio of the area elements dAN and dAX of the spherical image N of X
and of X itself. Moreover, suppose that K 	= 0 in a neighborhood of w ∈ Ω.
On account of (44), the surface normal N = |Nu ∧Nv | −1(Nu ∧Nv) will there
be well defined, and

(46) N =

{
N if K > 0,
−N if K < 0.
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Fig. 4. (a) Elliptic point, (b) hyperbolic point, (c) parabolic point. (The fat vertical lines

mark the various positions of the curvature centers with regard to different normal planes.)

Taken from K.H. Naumann and H. Bödeker (in Hilbert and Cohn-Vossen [1])

In other words, X and its spherical image N are equally oriented at w if
K(w) > 0, but they carry an opposite orientation if K(w) < 0.

We continue this section with another geometric interpretation of the sec-
ond fundamental form II of an embedded surface X : Ω → R

3. To this end,
we fix some point w ∈ Ω and consider the (affine) tangent plane Π to X at
the point X(w), which may be oriented by N(w); Π divides R

3 into two half
spaces R

3
+ and R

3
− where N(w) is pointing into R

3
+. Let δ(Q) be the oriented

distance of some point Q from Π, that is, δ(Q) ≥ 0 if Q ∈ R3
+, δ(Q) ≤ 0 if

Q ∈ R
3
−.

Let now Q = X(w + h), h = (h1, h2), be a point on the surface X in the
neighborhood of X(w). Then, by Taylor’s formula,

X(w + h) = X(w) +Xuα(w)hα + 1
2Xuαuβ (w)hαhβ + o(|h|2)

whence

δ(Q) = 〈X(w + h) − X(w), N(w)〉
= 1

2 〈Xuαuβ (w), N(w)〉hαhβ + o(|h|2)
that is,

δ(Q) = 1
2 II(Vh) + o(|h|2) as h → 0(47)

where Vh = h1Xu(w) + h2Xv(w), Q = X(w + h). That means, 1
2 II(Vh)

measures—up to an error term of higher than second order—the height of
the surface X above the tangent plane Π at X(w).

One calls the point X(w) an elliptic, hyperbolic, or parabolic point on the
surface X if K(w) > 0, K(w) < 0, or K(w) = 0. By (47), all points of X
locally lie on the same side of the tangent plane Π at X(w) if K(w) > 0,
while they lie on both sides if K(w) < 0. We only must note that IIw(V ) is a
definite quadratic form if K(w) > 0, but an indefinite form for K(w) < 0.
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Fig. 5. A bell-shaped surface carrying a closed parabolic line. The domain above the

line is elliptic, the domain below hyperbolic. (a) The tangent plane at a hyperbolic point

intersects the surface in a loop, and in a cusp at a parabolic point. For an elliptic point

P , the intersection set consists of P and of a disconnected smooth curve. (b) These two

figures depict the spherical image of a closed curve around a parabolic point. Taken from

K.H. Naumann and H. Bödeker (in Hilbert and Cohn-Vossen [1])

Fig. 6. (a) A regular torus carries two parabolic circles which are mapped to antipodal

points of S2, say, to the north pole and the south pole. These two circles bound two domains

on F, an elliptic and a hyperbolic one, each of which is bijectively mapped onto S2 punctured

at the two poles. (b) The spherical image of a curve encircling a parabolic point. Taken

from K.H. Naumann and H. Bödeker (in Hilbert and Cohn-Vossen [1])

Consider now a curve c = X ◦ ω on the surface X, that is,

c(t) = X(α(t), β(t)), t ∈ I ⊂ R.

It will be called a geodesic curve on X (or briefly: a geodesic of X) if its
geodesic curvature κg(t) vanishes for all t ∈ I, and it will be said to be an
asymptotic curve on X if its normal curvature κn(t) vanishes everywhere.
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Fig. 7. An isolated parabolic point P on a monkey saddle. The spherical image of a small

loop about P encircles twice the image P ′ of P on S2, i.e., the spherical image of a monkey

saddle is a branched surface over S2 with P ′ as branch point. Taken from K.H. Naumann

and H. Bödeker (in Hilbert and Cohn-Vossen [1])

For an asymptotic curve c(t), the osculating plane (that is, the plane
spanned t(t) and n(t)) coincides at all values of t ∈ I with the tangent space
Tω(t)X of the surface X at ω(t). By (18), we have

κn =
IIω(ċ)
Iω(ċ)

.

Thus the equation κn = 0 is equivalent to IIω(ċ) = 0, or

(48) L(ω)α̇2 + 2M(ω)α̇β̇ + N(ω)β̇2 = 0.

Hence there will be no asymptotic curves on X if we suppose K > 0 whereas
the assumption K < 0 implies that, for every w ∈ Ω, there exist two asymp-
totic curves passing through X(w).

Furthermore, c = X ◦ω will be called a line of curvature of X if its velocity
vector ċ(t) is proportional to a principal direction of X at w = ω(t) for all t.
Consequently,

(49) S(ω(t))ċ(t) = k(t)ċ(t)

holds, where k(t) = κ1(ω(t)) or κ2(ω(t)). But (49) implies

(50) −Nu(ω)α̇ − Nv(ω)β̇ = k
d

dt
X(ω),

that is,

(51) − d

dt
(N ◦ ω) = k

d

dt
(X ◦ ω).
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By employing the Weingarten equations (41), we get

FM − GL

W2
α̇+

FN − GM

W2
β̇ = −kα̇,

FL − EM

W2
α̇+

FM − EN

W2
β̇ = −kβ̇

(52)

(in these formulas, W,E, . . . ,L, . . . have to be understood as W(ω),E(ω), . . . ,
L(ω), . . . ).

We now multiply the first equation with β̇, the second with −α̇, and add
the resulting equations. Then, after a multiplication by W2, we arrive at

(53) (EM − FL )α̇2 + (EN − GL)α̇β̇ + (FN − GM)β̇2 = 0

or

(54)

∣∣∣∣∣∣
β̇2 −α̇β̇ α̇2

E F G

L M N

∣∣∣∣∣∣ = 0.

We finally want to demonstrate the invariance properties of the various
notions of curvatures introduced before.

To this end we consider two strictly equivalent surfaces

X : Ω → R
3 and X̂ : Ω̂ → R

3

which are related to each other by X̂ = X ◦ ϕ where ϕ : Ω̂ → Ω is a diffeo-
morphism, with the inverse ψ = ϕ−1, such that Jϕ > 0. Choose now some
w ∈ Ω and some tangent vector V = V αXuα(w) in TwX. We can determine
a smooth curve ω : [0, ε] → Ω, ε > 0, such that

(55) ω(0) = w and ω̇α(0) = V α, α = 1, 2.

Then the curve c(t) := X(ω(t)), 0 ≤ t ≤ ε, has the initial point c(0) = X(w),
and its initial velocity ċ(0) satisfies

V = ċ(0).(56)

Thus the tangent space TwX is spanned by the tangent vectors ċ(0) of curves
c(t) = X(ω(t)) with property (55).

Let now S(w) be the Weingarten map of TwX into itself, and set n(t) :=
N(ω(t)), 0 ≤ t ≤ ε. Then n is a curve on the spherical image N : Ω → R3 of
the surface X : Ω → R

3, and, by definition of S(w), we obtain

(57) S(w)V = −ṅ(0).

Yet from (56) and (57) we infer that

(58) TwX = TŵX̂ and S(w) = Ŝ(ŵ)
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where ŵ := ψ(w), and Ŝ(ŵ) : TŵX̂ → TŵX̂ is the Weingarten map for X̂ at
ŵ ∈ Ω̂.

In fact, by (9) we know that the spherical image N̂ : Ω̂ → R
3 of X̂ : Ω̂ →

R
3 is given by N̂ = N ◦ ϕ. Set ω̂ := ψ ◦ ω, ĉ := X̂ ◦ ω̂, and n̂ := N̂ ◦ ω̂. Then
V̂ := dĉ

dt (0) ∈ TŵX̂ since ŵ = ω̂(0), and we see as before that

Ŝ(ŵ)V̂ = −dn̂
dt

(0).

On the other hand, it is easily seen that c(t) = ĉ(t) and n(t) = n̂(t) for all
t ∈ [0, ε] whence V = V̂ and S(w)V = Ŝ(ŵ)V . Thus (58) is proved if we note
in addition that the roles of X and X̂ can be interchanged.

In other words, two strictly equivalent surfacesX and X̂ have the same tan-
gent space and the same Weingarten map at corresponding parameter points
w ∈ Ω and ŵ ∈ Ω̂:

TwX = Tψ(w)X̂ and S(w) = Ŝ(ψ(w)) for w ∈ Ω and ψ = ϕ−1.

Thus, if ϕ : Ω̂ → Ω is a C3-diffeomorphism of Ω̂ onto Ω with Jϕ > 0 and if
X̂ = X ◦ ϕ, then

N̂ = N ◦ ϕ and Ŝ = S ◦ ϕ(59)

and therefore

(60) κ̂1 = κ1 ◦ ϕ, κ̂2 = κ2 ◦ ϕ, Ĥ = H ◦ ϕ, K̂ = K ◦ ϕ,

where κ1, κ2, H,K and κ̂1, κ̂2, Ĥ, K̂ are the principal curvatures, the mean
curvature, and the Gauss curvature of X and X̂ respectively.

Corresponding statements hold for the geodesic curvature κg and the nor-
mal curvature κn of curves on X. If we apply parameter transformations ϕ
with Jϕ < 0 that change the orientation, then

N̂ = −N ◦ ϕ, Ŝ = −S ◦ ϕ, Ĥ = −H ◦ ϕ,

but still
K̂ = K ◦ ϕ.

Consequently, the sign of K has an intrinsic geometrical meaning but the sign
of H has not.

From their definitions we see that the three bilinear forms I(U, V ), II(U, V ),
and III(U, V ) are invariantly defined and can, therefore, be interpreted as
covariant 2-tensors. Hence, if gαβ(w) and ĝαβ(ŵ) are the coefficients of the
first fundamental form I and Î of X and X̂ = X ◦ ϕ, respectively, and w =
ϕ(ŵ), ŵ = (û1, û2), then

ĝαβ(ŵ) = gγδ(ϕ(ŵ))
∂ϕγ

∂ûα
(ŵ)

∂ϕδ

∂ûβ
(ŵ).(61)

In the same way, the coefficients bαβ and cαβ of II and III have to be trans-
formed.
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1.3 Gauss’s Representation Formula, Christoffel Symbols,
Gauss–Codazzi Equations, Theorema Egregium,
Minding’s Formula for the Geodesic Curvature

Let us again assume that X : Ω → R
3 is a regular surface of class C3.

We recall that, at each w ∈ Ω, we have the frame {Xu(w), Xv(w), N(w)}
consisting of three linearly independent vectors of which Xu(w) and Xv(w)
span the tangent space TwX, whereas N(w) spans the orthogonal complement
(TwX)⊥. Hence we can write

Xuαuβ = Γ γ
αβXuγ + bαβN(1)

on Ω with uniquely determined functions Γ γ
αβ(w) and bαβ(w). If we multiply

(1) by N , we obtain
bαβ = 〈Xuαuβ , N〉.

Thus the coefficients bαβ in (1) are in fact the coefficients of the second fun-
damental form, and our choice of notation in (1) is justified.

The equations (1) are called Gauss’s representation formulas of the second
derivatives of X. They accompany the Weingarten equations

(2) Nuα = −bβαXuβ , bβα = gβγbαγ ,

that were derived in the previous section.
The coefficients Γ γ

αβ are called Christoffel symbols of second kind, whereas
the functions

Γαβγ := gβσΓ
σ
αγ(3)

are the Christoffel symbols of first kind.

Remark. The reader should be warned that, unfortunately, the conventions
in differential geometry are not uniquely fixed. Thus a certain care is required
if one wants to use formulas from different sources. For instance, some authors
write gβσΓ

σ
αγ = Γαγβ . The classical notations introduced by Christoffel is [αβ

γ

]
and {αβ

γ } for the Christoffel symbols of first and second kind Γαγβ and Γ γ
αβ ,

whereas Eisenhart [3] writes [αβ, γ] and {γ
αβ }.

From (1) we infer that

〈Xuαuβ , Xuγ 〉 = Γ σ
αβ 〈Xuσ , Xuγ 〉 = Γ σ

αβgσγ ,

whence by (3)

〈Xuαuβ , Xuγ 〉 = Γαγβ .(4)
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This yields the symmetry relations

(5) Γαγβ = Γβγα, Γ γ
αβ = Γ γ

βα.

Moreover,

∂

∂uγ
gαβ =

∂

∂uγ
〈Xuα , Xuβ 〉 = 〈Xuαuγ , Xuβ 〉 + 〈Xuα , Xuβuγ 〉,

and therefore

gαβ,γ = Γαβγ + Γβαγ = gβτΓ
τ
αγ + gατΓ

τ
βγ .(6)

Here gαβ,γ stands for ∂
∂uγ gαβ . (More generally, we sometimes use the notation

f,γ = ∂
∂uγ f , f,γα = ∂2

∂uγ∂uα f , etc.) Then

−gαβ,γ + gαγ,β + gβγ,α = 2Γαγβ ,

and thus

Γαγβ = 1
2 {gαγ,β + gβγ,α − gαβ,γ }.(7)

Consequently, both Christoffel symbols can be computed from the coefficients
of the first fundamental form.

Furthermore,
gατg

τβ = δβα

implies
gατ,γg

τβ + gατg
τβ
,γ = 0,

and multiplication by gασ yields

(8) gσβ
,γ = −gατ,γg

τβgασ,

and, on account of (6),

gσβ
,γ = −{Γατγ + Γταγ }gτβgασ.

Thus

gσβ
,γ = −gασΓ β

αγ − gτβΓ σ
τγ .(9)

These equations are the counterpiece to (6).
In order to compute the derivatives ∂

∂uγ g of the determinant g = det(gαβ)
= g11g22 − g212, we recall the equations

g11 =
g22
g
, g22 =

g11
g
, g12 = g21 = −g12

g
.
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Then

∂

∂uγ
g = g11,γg22 + g11g22,γ − 2g12g12,γ

= g{g11g11,γ + g22g22,γ + 2g12g12,γ }

or

∂g

∂uγ
= ggαβgαβ,γ .(10)

Together with (6), it follows that

∂

∂uγ
g = ggαβ {Γαβγ + Γβαγ }

= ggαβ {gβτΓ
τ
αγ + gατΓ

τ
βγ }

= g{Γα
αγ + Γ β

βγ },

and therefore

guγ = 2gΓα
αγ .(11)

It follows that

(12) Γα
αγ =

1
2g
guγ =

1
2
∂

∂uγ
log g =

∂

∂uγ
log

√
g.

From (7), we infer in particular

(13)

Γ111 = 1
2Eu, Γ222 = 1

2Gv,

Γ121 = Fu − 1
2Ev, Γ212 = Fv − 1

2Gu,

Γ112 = Γ211 = 1
2Ev, Γ221 = Γ122 = 1

2Gu,

and

(14)

Γ 1
11 =

1
2W2

{GEu + F[Ev − 2Fu]}, Γ 2
22 =

1
2W2

{EGv + F[Gv − 2Fv]},

Γ 2
11 =

1
2W2

{E[2Fu − Ev] − FEu}, Γ 1
22 =

1
2W2

{G[2Fv − Gu] − FGv },

Γ 2
12 =

1
2W2

{EGu − FEv } = Γ 2
21, Γ 1

21 =
1

2W2
{GEv − FGu} = Γ 1

12.

In case of a surface X with orthogonal parameter curves, that is, with F =
〈Xu, Xv 〉 = 0, we obtain the following simplified formulas:

(15)

Γ111 = 1
2Eu, Γ222 = 1

2Gv,

Γ121 = − 1
2Ev, Γ212 = − 1

2Gu,

Γ112 = Γ211 = 1
2Ev, Γ221 = Γ122 = 1

2Gu
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and, because of W2 = EG,

(16)

Γ 1
11 =

Eu

2E
=
∂

∂u
log

√
E, Γ 2

22 =
Gv

2G
=
∂

∂v
log
√

G,

Γ 2
11 = − Ev

2G
, Γ 1

22 = − Gu

2E
,

Γ 2
12 = Γ 2

21 =
Gu

2G
=
∂

∂u
log
√

G, Γ 1
21 = Γ 1

12 =
Ev

2E
=
∂

∂v
log

√
E.

Furthermore, if u, v are conformal parameters of X, that is, if

(17) E = G, F = 0,

or

(17′) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0,

then the equations for the Christoffel symbols simplify even further. In fact, if

(17′ ′) Λ := E = G, F = 0,

then

Γ111 = −Γ212 = Γ221 = Γ122 = 1
2Λu,

Γ222 = −Γ121 = Γ112 = Γ211 = 1
2Λv

(19)

and

(18′)
Γ 1

11 = −Γ 1
22 = Γ 2

12 = Γ 2
21 =

∂

∂u
log

√
Λ =

Λu

2Λ
,

Γ 2
22 = −Γ 2

11 = Γ 1
21 = Γ 1

12 =
∂

∂v
log

√
Λ =

Λv

2Λ
.

From the Gauss formula

X,βγ = Γ δ
βγX,δ + bβγN

we obtain

X,βγα = {Γ τ
βγ,αX,τ + Γ δ

βγX,δα + bβγ,αN + bβγN,α}.

Substituting

X,δα = Γ τ
δαX,τ + bδαN and N,α = −bταX,τ ,

we arrive at

X,βγα = {Γ τ
βγ,α + Γ δ

βγΓ
τ
δα − bβγb

τ
α}X,τ + [Γ δ

βγbδα + bβγ,α]N.
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By subtracting the corresponding formula for X,αγβ , we infer that

(20) Rτ
αβγ = gστ (bασbβγ − bβσbαγ)

and

Γ δ
βγbδα − Γ δ

αγbδβ + bβγ,α − bαγ,β = 0,(21)

where the coefficients Rτ
αβγ are defined by

(22) Rτ
αβγ := Γ τ

βγ,α − Γ τ
αγ,β + Γ τ

αδΓ
δ
βγ − Γ τ

βδΓ
δ
αγ .

The equations (20) and (21) are called Gauss equations and Codazzi equations.
Together they are equivalent to the integrability conditions

(23) X,βγα = X,αγβ .

Although the Christoffel symbols do not transform as the coefficients of a
tensor, the Gauss equations (20) show that the functions Rτ

αβγ behave like
tensor coefficients. One calls the mapping R, defined by

(24) R(U, V )W = Rδ
αβγU

αV βW γX,δ

for U = UαX,α, V = V βX,β ,W = W γX,γ , which maps triples of tangential
vector fields U, V,W onto tangential vector fields R(U, V )W , the Riemann
curvature tensor. We have

〈R(U, V )W,Z〉 = RαβγδU
αV βW γZδ(25)

where U, V,W are given as before, and Z = ZδX,δ. Here, the coefficients
Rαβγδ are defined by

Rαβγδ = gδτR
τ
αβγ = bαδbβγ − bαγbβδ.(26)

Remark. The reader should once again be aware that the conventions to
define Rτ

αβγ and Rαβγδ vary from author to author. We have adopted the
convention of Gromoll, Klingenberg, and Meyer [1].

Since K = b/g, we infer from (26) that

(27) K = −R1212

g

and R1212 = R2121 = −R1221 = −R2112, whereas Rαβγδ = 0 for all other
(αβγδ).

We infer from (27) that the Gauss curvature K can solely be computed
from the coefficients gαβ of the first fundamental form although it had been
defined by means of I and II. This is the content of Gauss’s celebrated Theo-
rema egregium. If F = 0, equation (27) takes the form



1.3 Minding’s Formula for the Geodesic Curvature 29

(28) K = − 1√
EG

[
∂

∂u

{
1√
E

∂

∂u

√
G

}
+
∂

∂v

{
1√
G

∂

∂v

√
E

}]
.

Let us collect some formulas for the particular case of conformal coordi-
nates u, v.

Lemma. Suppose that

E = G := Λ, F = 0.(29)

Then we have

Xuu =
Λu

2Λ
Xu − Λv

2Λ
Xv + LN,

Xuv =
Λv

2Λ
Xu +

Λu

2Λ
Xv + MN,(30)

Xvv = −Λu

2Λ
Xu +

Λv

2Λ
Xv + NN

and

Nu = − L

Λ
Xu − M

Λ
Xv, Nv = − M

Λ
Xu − N

Λ
Xv.(31)

Moreover,

H =
L + N

2Λ
,(32)

K =
LN − M2

Λ2
= − 1

Λ
Δ log

√
Λ,(33)

where Δ denotes the Laplace operator ∂2

∂u2 + ∂2

∂v2 .
Furthermore

(34) Lv − Mu = ΛvH, Mv − Nu = −ΛuH

and
[
1
2 (L − N) − iM

]
w̄

= ΛHw(35)

where
∂

∂w
=

1
2

(
∂

∂u
− i

∂

∂v

)
,

∂

∂w̄
=

1
2

(
∂

∂u
+ i

∂

∂v

)
.

If we introduce the real-valued functions α(w) and β(w) by

g(w) = α(w) + iβ(w) := w2f(w) where f(w) := 1
2 (L − N) − iM,(36)

and if ρ, θ are polar coordinates defined by w = u + iv = ρeiθ, then the
equations (30) and (31) can be brought into the form
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Xρρ =
Λρ

2Λ
Xρ − 1

ρ

Λθ

2Λ
1
ρ
Xθ +

(
α

ρ2
+ ΛH

)
N,

1
ρ
Xρθ =

1
ρ

Λθ

2Λ
Xρ +

(
1
ρ

+
Λρ

2Λ

)
1
ρ
Xθ − β

ρ2
N,(37)

1
ρ2
Xθθ = −

(
1
ρ

+
Λρ

2Λ

)
Xρ +

1
ρ

Λθ

2Λ
1
ρ
Xθ −

(
α

ρ2
− ΛH

)
N

and

Nρ = − 1
Λ

(
α

ρ2
+ ΛH

)
Xρ +

β

ρ2Λ

1
ρ
Xθ,

1
ρ
Nθ =

β

ρ2Λ
Xρ +

1
Λ

(
α

ρ2
− ΛH

)
1
ρ
Xθ.

(38)

(HereXρ, Xθ, . . . are the partial derivatives with respect to ρ or θ, respectively,
of the composite functions (ρ, θ) �→ X(ρeiθ), etc.)

Proof. Formulas (30) and (31) are the Gauss and Weingarten equations (1)
and (2), by virtue of (18′). Equations (32) and (33) immediately follow from
the formulas (42) and (43) of Section 1.2, and from the theorema egregium
(28). In order to prove the first equation of (34), we consider the equation

L = 〈Xuu, N〉, M = 〈Xuv, N〉

whence
Lv − Mu = 〈Xuu, Nv 〉 − 〈Xuv, Nu〉.

By virtue of (29), (30), and (32), we then obtain

Lv − Mu =
Ev

2E
(L + N ) = EvH.

Similarly, the second equation of (34) can be proved. By applying ∂
∂w to

equation (32), we find that

ΛHw = 1
2 (Lw + Nw) − HΛw,(39)

and a trivial computation shows that

Lw̄ − Nw̄ = (Lw + Nw) + (−Nu + iLv),
−iMw̄ = 1

2 (Mv − iMu)

whence(
L − N

2
− iM

)
w̄

=
Lw̄ − Nw̄

2
− iMw̄

=
1
2
(Lw + Nw) +

1
2
(Mv − Nu) +

i

2
(Lv − Mu)

=
1
2
(Lw + Nw) − 1

2
ΛuH +

i

2
ΛvH

=
1
2
(Lw + Nw) − HΛw.
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Fig. 1. (a) Wente’s surface is a compact surface of constant mean curvature and of genus

one. (b) In this picture one third of the Wente surface is removed to gain a glimpse into

its interior. Courtesy of D. Hoffman, J. Spruck, J. Hoffman, and M. Callahan

Taking (39) into account, we can infer (35).
It is now an easy exercise to derive the equations (37) and (38) from (30)

and (31), respectively. �

An immediate consequence of formula (35) is the following observation
of H. Hopf:

If X(u, v) is a surface of constant mean curvature H represented by con-
formal parameters u, v, then

f(w) :=
L − N

2
− iM

is a holomorphic function of w = u+ iv.
Finally we will derive Minding’s formula for the geodesic curvature of a

curve on the surface X. To this end, we consider a curve c(t) = X(ω(t))
on X where ω : [t1, t2] → Ω is a curve in the parameter domain Ω. Let us
begin by first assuming that t is the parameter of arc length s, i.e., |ċ(t)| = 1.
We consider the orthonormal frame {t, s,N} consisting of the tangent vector
t = ċ, the side normal s, and the surface normal N = N ◦ ω. Since s = N ∧ t
we obtain

κg = 〈s, ṫ〉 = 〈N ∧ t, ṫ〉 = [N, t, ṫ] = [t, ṫ,N]

and therefore

κg = [ċ, c̈,N].(40)

Moreover,

ċ = X,α(ω)ω̇α, c̈ = X,βγ(ω)ω̇βω̇γ +X,β(ω)ω̈β ,

whence by (1)

c̈ = [ω̈δ + Γ δ
βγ(ω)ω̇βω̇γ ]X,δ(ω) + bβγ(ω)ω̇βω̇γ

N.(41)
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Since
Xu1(ω) ∧ Xu2(ω) =

√
g(ω)N,

we arrive at

ċ ∧ c̈ = {σ2ω̇1 − σ1ω̇2}
√
g(ω) N + bβγ(ω)ω̇αω̇βω̇γX,α(ω) ∧ N

where we have set
σδ := ω̈δ + Γ δ

βγ(ω)ω̇βω̇γ .

By virtue of (40), we obtain

(42) κg =
√
g(ω)(σ2ω̇1 − σ1ω̇2)

or, equivalently

(43) κg =
√
g(ω)[ω̇1ω̈2 − ω̇2ω̈1 + Γ 2

βγ(ω)ω̇1ω̇βω̇γ − Γ 1
βγ(ω)ω̇2ω̇βω̇γ ].

If |ċ| 	= 1, it follows that

(44) κg =

√
g(ω)

|ċ|3 [ω̇1ω̈2 − ω̇2ω̈1 + Γ 2
βγ(ω)ω̇1ω̇βω̇γ − Γ 1

βγ(ω)ω̇2ω̇βω̇γ ]

with |ċ|2 = gαβ(ω)ω̇αω̇β .
Let ω(t) = (α(t), β(t)), and set

Q(α, β, α̇, β̇) := Γ 2
11(α, β)α̇3 + {2Γ 2

12(α, β) − Γ 1
11(α, β)}α̇2β̇(45)

− {2Γ 1
12(α, β) − Γ 2

22(α, β)}α̇β̇2 − Γ 1
22(α, β)β̇3.

Then

κg =
W(α, β)[α̇β̈ − β̇α̈+Q(α, β, α̇, β̇)]

{E(α, β)α̇2 + 2F(α, β)α̇β̇ + G(α, β)β̇2}3/2
.(46)

In particular, if u, v are conformal coordinates: Λ := E = G,F = 0, then,
according to (18′),

κg

√
Λ{α̇2 + β̇2}3/2(47)

= (α̇β̈ − β̇α̈) + (α̇2 + β̇2)
[
β̇
∂

∂u
log

√
Λ − α̇

∂

∂v
log

√
Λ

]
.

If α(t) = R cos t, β(t) = R sin t, 0 ≤ t ≤ 2π, and if ν(t) = (cos t, sin t) points
into the exterior of this circular line, then (47) reduces to

(48) κg

√
Λ =

1
R

+
∂

∂ν
log

√
Λ.

If α = R cos t, β = −R sin t, 0 ≤ t ≤ 2π, then we have

(47′) κg

√
Λ = − 1

R
+
∂

∂ν
log

√
Λ

where ν(t) now denotes the interior normal (− cos t, sin t).
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1.4 Conformal Parameters, Gauss–Bonnet Theorem

Consider two matrix-valued functions

P : Ω → R
4, Q : Ω → R

4

on a domain Ω of R
2 which are given by

P (w) =
[
p11(w) p12(w)
p21(w) p22(w)

]
, Q(w) =

[
q11(w) q12(w)
q21(w) q22(w)

]

and are assumed to be symmetric:

pαβ(w) = pβα(w), qαβ(w) = qβα(w).

The functions P and Q are called conformal to each other if there exists a
function μ : Ω → R with μ(w) > 0 on Ω such that

(1) P (w) = μ(w)Q(w) for all w ∈ Ω.

Relation (1) is equivalent to

(2) pαβ(w)ξαξβ = μ(w)qαβ(w)ξαξβ

for all w ∈ Ω and all ξ = (ξ1, ξ2) ∈ R
2.

Let now X : Ω → R3, Y : Ω → R3 be regular surfaces of class C1 which
are defined on the same parameter domain Ω, and let

gαβ(w) = 〈Xuα(w), Xuβ (w)〉, γαβ(w) = 〈Yuα(w), Yuβ (w)〉

be the coefficients of the first fundamental forms IX and IY of X and Y
respectively.

Then the surfaces X and Y are said to be conformal to each other if the
matrix functions (gαβ(w)) and (γαβ(w)) are conformal to each other, that is,
if

(3) gαβ(w)ξαξβ = μ(w)γαβ(w)ξαξβ

holds for some μ(w) > 0 and all w ∈ Ω, ξ = (ξ1, ξ2) ∈ R
2. Equivalently, we

have

(4) IX(U) = μ(w) IY (V )

for U = ξαX,α(w) ∈ TwX, V = ξαY,α(w) ∈ TwY for all w ∈ Ω,
ξ = (ξ1, ξ2) ∈ R2.

If (4) holds, we also call the metric forms IX and IY conformal to each
other.

This relation has a simple but important geometric interpretation which
explains the notation conformal. For this purpose we consider two curves



34 1 Differential Geometry of Surfaces in Three-Dimensional Euclidean Space

ω(t), ω(t) in the parameter domain which intersect at t = t0, i.e., ω(t0) =
ω(t0) := w0. They define curves c := X ◦ω, c := X ◦ω on X as well as curves
e := Y ◦ω, e := Y ◦ω on Y , respectively, that intersect at X(w0) and Y (w0),
in angles ϕ and ψ given by

cosϕ =
〈ċ(t0), ċ(t0)〉

|ċ(t0)| |ċ(t0)| =
IX(ċ(t0), ċ(t0))

I1/2
X (ċ(t0)) · I1/2

X (ċ(t0))

and

cosψ =
〈ė(t0), ė(t0)〉

|ė(t0)| |ė(t0)| =
IY (ė(t0), ė(t0))

I1/2
Y (ė(t0)) · I1/2

Y (ė(t0))
.

The equation (4) implies that cosϕ = cosψ. In other words, if X and Y are
conformal to each other, then, at corresponding points w ∈ Ω, angles on X
and Y are measured in the same way.

As an example, we consider a regular C3-surface X : Ω → R
3 of zero mean

curvature and its spherical image N : Ω → R
3. From 2H = κ1+κ2 and H = 0

we infer κ1 = −κ2, whence K ≤ 0. Suppose that even K < 0. Then X is free
of umbilical points. Moreover, we infer from (26) of Section 1.2 that

(5) −K(w)IX(V ) = IIIX(V ) for all V ∈ TwX

or
−K(w)gαβ(w)ξαξβ = cαβ(w)ξαξβ

where gαβ and cαβ are the coefficients of IX and IIIX , respectively. Let V =
ξαX,α(w) and U = ξαN,α(w). Since

cαβ(w)ξαξβ = 〈S(w)V, S(w)V 〉 = 〈U,U〉 = IN (U)

where IN is the first fundamental form of the surface N : Ω → R
3, we obtain

that

(6) IN (U) = −K(w)IX(V ) for U = ξαN,α(w), V = ξαX,α(w),

where w ∈ Ω and ξ = (ξ1, ξ2) ∈ R
2. This, by definition, means that X and N

are conformal to each other provided that the mean curvature of X vanishes
identically. Thus we have proved: A zero mean curvature surface X without
umbilical points is conformal to its spherical image N .

Now we turn to another important notion, to the notion of the conformal
type of a regular C1-surface.

Two regular C1-surfaces X : Ω → R
3 and Y : Ω∗ → R

3 are said to be
conformally equivalent if there exists a C1-diffeomorphism τ : Ω → Ω∗ such
that the surfaces X : Ω → R3 and Y ◦ τ : Ω → R3 are conformal to each
other. The mapping τ will be called a conformal map of X onto Y .

One checks without difficulty that conformal equivalence is, in fact, an
equivalence relation. Thus a conformal type is defined as an equivalence class
of conformally equivalent surfaces.
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Let us, in particular, consider two planar surfaces X(u, v) = (u, v, 0),
(u, v) ∈ Ω, and Y (ξ, η) = (ξ, η, 0), (ξ, η) ∈ Ω∗, which are conformally equiva-
lent. Then there exists a C1-diffeomorphism τ : Ω → Ω∗ given by, say,

ξ = α(u, v), η = β(u, v)

such that X(u, v) and Y (τ(u, v)) = (α(u, v), β(u, v), 0) are conformal to each
other. Then there is a function μ(u, v) > 0 such that

(7)
(

α2
u + β2

u αuαv + βuβv

αuαv + βuβv α2
v + β2

v

)
= μ(u, v)

(
1 0
0 1

)
.

Hence the two vectors ω = (αu, βu) and σ = (αv, βv) of R
2 have the same

length
√
μ and are orthogonal to each other:

|ω| = |σ| and 〈ω, σ〉 = 0.

From this we infer that either

(8) αu = βv, αv = −βu

or

(8′) αu = −βv, αv = βu

holds. Conversely, both (8) and (8′) imply (7). That is, a diffeomorphism
τ : Ω → Ω∗ is a conformal mapping of the planar surface X onto the planar
surface Y if it either satisfies the Cauchy-Riemann equations (8), or if it fulfills
(8′), that is, if it is either a strictly conformal or an anticonformal map in the
usual sense, or in other words, if either α + iβ or α − iβ is a biholomorphic
map of w = u + iv. We mention that a conformal mapping τ : Ω → Ω∗

with Ω,Ω∗ ⊂ R
2 usually means “strictly conformal”, i.e. a diffeomorphism τ

from Ω to Ω∗ with a positive Jacobian Jτ , whereas we shall subsume both
strictly conformal mappings (Jτ > 0) and anticonformal mappings (Jτ < 0)
under this notion. (However, occasionally we may write “conformal” instead
of “strictly conformal” if the meaning is clear from the context.

Next, we consider the planar surface Y : Ω → R
3 given by Y (u, v) =

(u, v, 0), and a regular C1-surface X : Ω → R3 with coefficients

E = |Xu|2, F = 〈Xu, Xv 〉, G = |Xv |2

of its metric form I. By definition, X and Y are conformal to each other if
there is a function μ(w) > 0 such that

(
E F

F G

)
= μ

(
1 0
0 1

)
on Ω,

or, equivalently, that
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E = G, F = 0.(9)

In other words, the surface X : Ω → R3 is conformal to Y if and only if the
parameters u, v are conformal parameters of X.

A celebrated theorem by Lichtenstein states that each regular surface Y :
Ω∗ → R

3 of class C1,α, 0 < α < 1, can be mapped conformally onto a planar
domain Ω. This means the following:

There is a diffeomorphism σ from Ω∗ onto Ω with inverse τ : Ω → Ω∗,
both of class C1,α, such that X := Y ◦τ : Ω → R

3 is represented by conformal
parameters u, v, i.e., the coefficients E,F,G of the first fundamental form of
X satisfy (9).

The proof of this result is usually carried out in two steps. Firstly one shows
by employing the theory of elliptic differential equations that sufficiently small
pieces of a smooth regular surface can be mapped conformally onto a planar
domain. Then, secondly, one infers from the uniformization theorem that the
entire surface can be mapped onto a planar domain. We shall, however, not
provide the details of this proof since, in this book, we shall mainly be con-
cerned with surfaces of zero mean curvature for which it is fairly easy to
verify that they can be transformed to conformal parameters. This will be
carried out in the next chapter. In addition, we shall in Section 4.11 provide
a variational proof of Lichtenstein’s theorem that is related to the solution of
Plateau’s problem.

Let us now turn to the Gauss–Bonnet theorem which, in its simplest form,
states the following:

If Ω is a simply connected bounded open set in R
2 with a smooth regular

Jordan curve as boundary, and if X : Ω̄ → R
3 is a regular surface of class

C2, then

(10)
∫

X

KdA+
∫

Γ

κg ds = 2π.

Here the first integral is the total curvature of the surface X defined by

(11)
∫

X

KdA :=
∫

Ω

KW du dv.

The second integral,
∫

Γ
κg ds, the total geodesic curvature of the boundary

curve Γ of X, will be defined as follows: We choose a parametrization w =
ω(s), 0 ≤ s ≤ L, of ∂Ω which is positively oriented with respect to Ω. Then
c(s) = X(ω(s)), 0 ≤ s ≤ L, is a parametrization of the boundary curve Γ of
X, and it is assumed that |ċ(s)| = 1, that is, s is the parameter of the arc
length of Γ . Moreover, κg = [ċ, c̈, N ] is the geodesic curvature of Γ . We now
set
∫

Γ
κg ds :=

∫ L

0
κg(s) ds.

Proof of (10). We first assume that X is given in conformal coordinates, i.e.,
E = G := Λ,F = 0 on Ω̄, and that Ω = {(u, v) : u2 + v2 < 1}. Then,
dA = Λdu dv, and by formula (33) of Section 1.3
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K = − 1
Λ
Δ log

√
Λ.

For ∂Ω we choose the parametrization

ω(t) = (cos t, sin t), 0 ≤ t ≤ 2π,

which is positively oriented with respect to Ω. Then, by formula (48) of Sec-
tion 1.3, we have

κg ds = κg

√
Λdt =

(
1 +

∂

∂ν
log

√
Λ

)
dt,

where ν is the exterior normal of ∂Ω.
By virtue of Gauss’s integral theorem, we thus obtain

−
∫

X

K dA =
∫

Ω

Δ log
√
Λdu dv =

∫ 2π

0

∂

∂ν
log

√
Λdt

=
∫ 2π

0

(κg

√
Λ − 1) dt =

∫
Γ

κg ds − 2π

which proves (10).
Next we note that

∫
X
K dA remains the same if X is replaced by a surface

X ◦ τ , where τ : Ω∗ → Ω̄ is a C1-diffeomorphism, and similarly
∫

Γ
κg ds is

unchanged if we assume the Jacobian of τ to be positive. Hence the left hand
side of (10) is an invariant of X ◦ τ with respect to all parameter changes by
diffeomorphisms τ ∈ C1(Ω∗,R2) with Ω̄ = τ(Ω∗) and Jτ > 0. Moreover, by a
slight strengthening of Lichtenstein’s theorem, there exists such a parameter
transformation τ with the property that X ◦τ : Ω∗ → R

3 is given in conformal
parameters. Since each simply connected bounded domain is of the conformal
type of the disk, we can assume that Ω∗ is the unit disk {(u, v) : u2+v2 < 1}. If
we now apply the previous reasoning to X ◦τ , formula (10) will be established
in general.

Now we can state an analogous formula for surfaces which are bounded
by only piecewise smooth regular curves. To have a clear-cut assumption, we
suppose that the simply connected parameter domain Ω ⊂ R

2 is bounded by
a smooth regular curve w = ω(t), a ≤ t ≤ b, which is positively oriented with
respect to Ω. Let a ≤ t1 < t2 < · · · < tn ≤ b and w1 = ω(t1), . . . , wn = ω(tn),
and suppose that X : Ω̄ → R

3 is of class C0 on Ω̄ and of class C2 on
Ω̄ \ {w1, w2, . . . , wn}. Finally assume that c(t) = X(ω(t)) is piecewise smooth,
that ċ(ti ± 0) 	= 0, and that N(wi) := limw→wi N(w) exists for 1 ≤ i ≤ n.

Then it makes sense to speak of the interior angles αi of X at the vertices
X(wi) corresponding to the points w1, . . . , wn ∈ ∂Ω, and of its exterior angles
βi = π − αi, where 0 < αi ≤ 2π, −π ≤ βi < π.

By rounding off the corners of X corresponding to w1, . . . , wn from the
interior of X, and by carrying out an obvious limit procedure, formula (10)
changes to
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(12)
∫

X

K dA+
∫

Γ

κg ds+
n∑

i=1

βi = 2π,

or, equivalently,

(12′)
∫

X

K dA+
∫

Γ

κg ds+ (n − 2)π =
n∑

i=1

αi.

A second generalization of (10) concerns regular surfaces X : Ω̄ → R
3 of

class C2 where Ω is an n-fold connected domain in R
2 bounded by n closed,

regular, and smooth curves ω1, . . . , ωn. If we introduce the n closed and regular
boundary curves Γ1, . . . , Γn of X given by c1 = X ◦ ω1, . . . , cn = X ◦ ωn, we
obtain the formula

(13)
∫

X

K dA+
∫

Γ1

κg ds+ · · · +
∫

Γn

κg ds+ (n − 1)2π = 2π

provided that the parameterizations ω1, . . . , ωn of the boundary curves of ∂Ω
are positively oriented with respect to Ω. �

Sketch of a proof. By n − 1 suitable lines we can cut the multiply connected
domain Ω into a simply connected domain Ω′ in such a way that ∂Ω′ possesses
4(n− 1) corners with exterior angles of value π/2. Then also the surface X|Ω′

has a boundary with exactly 4(n − 1) vertices, and all the exterior angles
of X|Ω′ at these vertices are right angles. Let us apply (12) to the surface
X|Ω′ . The integrals

∫
κg ds over the cuts add to zero because κg changes on

oppositely oriented edges its sign. Thus we arrive at
∫

X

K dA+
n∑

j=1

∫
Γj

κg ds+ 4(n − 1)
π

2
= 2π

which implies (13). �

Similarly, if M is an orientable manifold of genus g bounded by n smooth,
mutually distinct, regular curves, and if X :M → R

3 is a regular mapping of
class C2, then we infer the general Gauss–Bonnet formula

(14)
∫

X

K dA+
n∑

j=1

∫
Γj

κg ds+ 4π(g − 1) + 2πn = 0

or, equivalently,

(15)
∫

X

K dA+
n∑

j=1

∫
Γj

κg ds = 2πχ(M)

where χ(M) = 2(1 − g) −n is the Euler–Poincaré-number of the manifold M .
If we consider an arbitrary triangulation of M with V vertices, E edges and
F faces, then
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Fig. 1. Orientable surfaces with and without boundaries and of finite connectivity. (a) Com-

pact surfaces of genus g = 0, 1, 2, 3 without boundary. (b) Schlicht domains (g = 0)

with 1, 2, 3, 4 boundary curves. (c) Compact surfaces with n boundary curves of genus

g = 0, 1, 2, 3. The number h = 2g + n indicates the order of connectivity of the correspond-

ing surface. Taken from K.H. Naumann and H. Bödeker (in Hilbert and Cohn-Vossen [1])

χ(M) = F − E + V.

The proof of (14) or (15) can be performed in a similar way as that of (13).
We only have to cut M into a simply connected domain M ′ which is to be
mapped into R

2 whence (12) can be applied. We shall refrain from carrying
out the details.

1.5 Covariant Differentiation. The Beltrami Operator

In this section we shall briefly discuss the algebraic formalism connected with
the so-called covariant differentiation. To simplify notations we restrict our-
selves to functions and vector fields of class C∞ on a regular C∞-surface
X : Ω → R

3. By counting the derivatives that are actually needed the reader
can easily modify these assumptions. Usually the existence of continuous
derivatives up to second or at most third order will suffice.

Denote by V(X) the set of tangential vector fields V : Ω → R
3 which are

of class C∞. Each V ∈ V(X) can be written in the form

V (w) = V α(w)X,α(w), w ∈ Ω,

where V 1, V 2 ∈ C∞(Ω). We can consider V(X) as an F(X)-module over the
function space F(X) := C∞(Ω), that is, if f, g ∈ F(X) and V,W ∈ V(X),
then also fV + gW ∈ V(X) where

(fV + gW )(w) = f(w)V (w) + g(w)W (w), w ∈ Ω.

With each U = UαX,α ∈ V(X) we can uniquely associate a differential
operator LU := Uα∂α defined by
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(1) (LUf)(w) = Uα(w)f,α(w) for f ∈ F(X)

and by

(LUV )(w) = (Uα∂α(V βX,β))(w)(2)
= Uα(w)V β(w)X,αβ(w) + Uα(w)V β

,α(w)X,β(w)

for V = V βXβ ∈ V(X). By the Gauss formula (1) of Section 1.3, we can write

(3) LUV = [UαV γ
,α + Γ γ

αβU
αV β ]X,γ + bαβU

αV βN.

Therefore LUV will in general not be a tangent vector field. If, however, P =
P (w) denotes the operator-valued function which associates with every w ∈ Ω
the orthogonal projection P (w) : R

3 → TwX of R
3 onto the tangent space

TwX of X at w, then we can define a mapping D : V(X) × V(X) → V(X)
setting DUV := PLUV or, more precisely,

(4) (DUV )(w) = P (w){(LUV )(w)} for w ∈ Ω.

From (3) and (4) we infer that

(5) DUV = [UαV γ
,α + Γ γ

αβU
αV β ]X,γ

holds for U = UαX,α, V = V βX,β ∈ V(X). In particular,

(6) DX,αX,β = Γ γ
αβX,γ .

The mapping D which maps each pair (U, V ) of tangential vector fields to
another tangential vector field DUV is called the covariant differentiation on
the surface X. It satisfies the three rules of a connection:

(7)

(i) DU [αV + βW ] = αDUV + βDUW for α, β ∈ R,

(ii) D[fU+gV ]W = fDUW + gDVW for f, g ∈ F(X),

(iii) DU [fV ] = (LUf) · V + f · DUV for f ∈ F(X)

and for U, V,W ∈ V(X). One easily proves that

(8) LU 〈V,W 〉 = 〈DUV,W 〉 + 〈V,DUW 〉.

Moreover, we have the two formulas

(9) DUV − DV U − [U, V ] = 0

and

R(U, V )W = DUDVW − DVDUW − D[U,V ]W(10)
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where
[U, V ] := (UαV β

,α − V αUβ
,α)X,β

denotes the commutator field of the two vector fields U = UαX,α, V =
V αX,α ∈ V(X) and R(U, V )W is the Riemann curvature tensor.

For each function f ∈ F(X) we can define a differential form ωf of degree
one by setting

ωf (V ) := LV f = V αf,α

for each V = V αX,α ∈ V(X). For each f , we can find a uniquely determined
vector field U ∈ V(X) such that

ωf (V ) = 〈U, V 〉 for all V ∈ V(X)

holds. Setting ∇Xf := U , we obtain a linear mapping ∇X : F(X) → V(X)
which satisfies

LV f = 〈∇Xf, V 〉 for all V ∈ V(X)(11)

and any f ∈ F(X) = C∞(Ω).
Let f ,1 and f ,2 be the coordinate functions of ∇Xf with respect to the

base vectors X1 and X2, respectively, that is,

(12) ∇Xf = f ,αX,α.

We claim that

(12′) f ,α = gαβf,β , where f,α =
∂f

∂uα
.

In fact, if U = UαX,α and V = V βX,β , then

〈U, V 〉 = 〈UαX,α, V
βX,β 〉 = UαV β 〈X,α, X,β 〉 = gαβU

αV β ,

and if we choose Uα = gαγf,γ , we obtain

〈U, V 〉 = gαβg
αγf,γV

β = δγβf,γV
β = f,βV

β = LV f

whence U = ∇Xf .
We call the vector field ∇Xf ∈ V(X) the X-gradient of the function

f ∈ F(X). To compute its length, we consider

〈∇Xf,∇Xf〉 = gαβf
,αf ,β = gαβg

βγf ,αf,γ = f ,αf,α.

Thus we obtain

| ∇Xf |2 = f ,αf,α = gαβf,αf,β .(13)

This expression for the square of the X-gradient of f is sometimes called
the first Beltrami differentiator. In terms of the Gauss symbols E,F, G, we
have
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(13′) | ∇Xf |2 =
Ef2

v − 2Ffufv + Gf2
u

EG − F2
.

Let us now fix some W ∈ V(X), and consider the mapping

A : V(X) → V(X)

which is defined by

AV := DVW for any V ∈ V(X).

This is an F(X)-linear operation, that is,

A(fU + gV ) = fA(U) + gA(V )

for f, g ∈ F(X) and U, V ∈ V(X).
Let us associate with A the 2 × 2-matrix

A = (aγ
α), where aγ

α = W γ
,α + Γ γ

αβW
β

if W = W βX,β .
Clearly A is the representation of the linear operator A with respect to

the base vector fields X,1 and X,2. In fact, for V = V αX,α, we have according
to equation (5) that

AV = aγ
αV

αX,γ .

The trace a11 +a22 of A will be called the X-divergence of the tangential vector
field W = W βX,β :

(14) divX W := traceA = a11 + a22 = Wα
,α + Γα

αβW
β .

By virtue of formula (12) of Section 1.3, we have

Γα
αβ =

g,β
2g

=
1

√
g
∂β

√
g

whence

divX W = Wα
,α + Γα

αβW
β = Wα

,α +
1

√
g
(∂β

√
g)W β =

1
√
g
∂β [

√
gW β ],

that is,

divX W =
1

√
g
[

√
gWα],α.(15)

Next we define a linear mapping ΔX : F(X) → F(X) by

(16) ΔXf := divX(∇Xf).
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Since
∇Xf = [gαβf,β ]X,α,

we infer from (15) that

(17) ΔXf =
1

√
g
∂α[

√
ggαβ∂βf ].

We name ΔX the Laplace–Beltrami operator on X. Sometimes ΔXf is called
Beltrami’s second differentiator.

Using the Gauss symbols, E,F,G,W =
√

EG − F2 =
√
g, we can also write

ΔXf =
1
W

[(
Efv − Ffu

W

)
v

+
(

Gfu − Ffv

W

)
u

]
.(18)

Another formula for ΔXf follows from (14) by virtue of Section 1.3, (9):

divX ∇Xf = divX {f ,αX,α} = f ,α
,α + Γα

αβf
,β

= {gαγf,γ },α + Γα
αβg

βγf,γ

= gαγf,αγ + [gαγ
,α + Γα

αβg
βγ ]f,γ

= gαγf,αγ − Γ γ
αβg

αβf,γ .

Thus

ΔXf = gαβ {fαβ − Γ γ
αβfγ }.(19)

We now want to apply an integration by parts to the integral
∫

X|B

〈∇Xϕ,∇Xf〉 dA =: J

where B ⊂⊂ Ω is a domain with a smooth regular boundary ∂B, and ϕ, f ∈
F(X) = C∞(Ω).

Polarization of (13) yields

〈∇Xϕ,∇Xf〉 = gαβϕ,αf,β

whence

J =
∫

B

gαβϕ,αf,β
√
g du dv(20)

=
∫

B

∂α(ϕ
√
ggαβf,β) du dv −

∫
B

ϕ∂α(
√
ggαβf,β) du dv

=
∫

∂B

ϕ
√
ggαβf,βεαγ du

γ −
∫

B

ϕΔXf
√
g du dv

where we have introduced εαγ by
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(21) εαγ =

⎧⎪⎨
⎪⎩

1 if α < γ,
−1 if α > γ,
0 if α = γ.

Let us now parametrize the curve X|∂B by its arc length s such that
X|∂B is positively oriented with respect to X|B; then t = tαX,α = duα

ds X,α

is the unit tangent vector along X|∂B . Set νβ :=
√
gεβγt

γ , να := gαβνβ and
ν := ναX,α. Then ν is a tangent vector field to X along the boundary curve
X|∂B with the property that 〈ν, t〉 = 0 and |ν| = 1. Thus ν is the exterior
normal to X|∂B tangent to X (i.e., ν is collinear to the side normal s of X|∂B),
and √

ggαβf,βεαγt
γ = νβf,β = gαβf

,ανβ = 〈 ∇Xf, ν〉.
If we introduce the directional derivative

∂

∂ν
f := 〈∇Xf, ν〉

of f in direction of the exterior normal ν, we finally infer from (20) that

(22)
∫

X|B

〈∇Xϕ,∇Xf〉 dA =
∫

X|∂B

ϕ
∂

∂ν
f ds −

∫
X|B

ϕΔXf dA.

Consider now the generalized Dirichlet integral

(23) EB(f) :=
1
2

∫
B

| ∇Xf |2√
g du dv.

Its first variation at f in direction of ϕ is defined as

(24) δEB(f, ϕ) :=
d

dε
EB(f + εϕ)

∣∣∣∣
ε=0

=
∫

B

〈 ∇Xϕ,∇Xf〉√
g du dv.

Hence, the equation

δEB(f, ϕ) = 0(25)

holds for all ϕ ∈ C∞
c (B) if and only if

(26) ΔXf = 0 on B.

That is, the Laplace–Beltrami equation (26) is the Euler equation of the gen-
eralized Dirichlet integral (23).

The F(X)-linear mapping Hf : V(X) → V(X) associated with any f ∈
F(X) and defined by

Hf (V ) := DV (∇Xf) for V ∈ V(X)(27)

is called the Hessian tensor of f , and the bilinear form
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(28) hf (U, V ) := 〈Hf (U), V 〉 = 〈DU ∇Xf, V 〉,

U, V ∈ V(X), is called the Hessian form of f .
An analogous computation as before shows that, for V = V αX,α ∈ V(X),

we have

Hf (V ) = hβ
αV

αX,β(29)

with

(29′) hβ
α = gβγ {f,αγ − Γ δ

αγf,δ }.

It follows easily from these formulas that hf (U, V ) is a symmetric bilinear
form.

The trace of the linear mapping Hf is given by hα
α = gαγ {f,αγ − Γ δ

αγf,δ },
whence by (19)

ΔXf = traceHf .(30)

We close our considerations by a brief excursion to geodesics.
Let ω : [a, b] → Ω be a curve in the parameter domain Ω, and c := X ◦ ω

be the curve lifted to the surface X.
A vector field V : [a, b] → R

3 is said to be a tangential field along c if
V (t) ∈ Tω(t)X for all t ∈ [a, b]. Let Vc be the class of tangential C∞-vector
fields along c.

For any V (t) = V α(t)X,α(ω(t)), t ∈ [a, b], we define the covariant deriva-
tive DV

dt (t) ∈ Vc by
(
DV

dt

)
(t) = P (ω(t))

{
d

dt
V (t)

}
(31)

where P (w) is the orthogonal projection of R
3 onto TwX.

We note the particularly important relation

(32)
d

dt
〈U, V 〉 =

〈
DU

dt
, V

〉
+
〈
U,
DV

dt

〉

for arbitrary U, V ∈ Vc.
Since

d

dt
V = V̇ αX,α(ω) + V αX,αβ(ω)ω̇β

we infer from the Gauss formulas (1) of Section 1.3 that

(33)
DV

dt
= [V̇ γ + Γ γ

αβ(ω)V αω̇β ]X,γ(ω).

If, in particular, t = s (parameter of arc length along c), then t = ċ and
c̈ = ṫ = κgs + κnN whence
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D

dt
ċ = P (ω)c̈ = κgs.(34)

Hence, the geodesic curvature κg(t) of c(t), t = s, vanishes identically if and
only if

(35)
D

dt
ċ = 0

or, equivalently, if

(36)
d2ωγ

dt2 + Γ γ
αβ(ω)

dωα

dt
dωβ

dt
= 0, γ = 1, 2.

The curves on the surfaceX satisfying (35) are called geodesic curves or simply
geodesics on X.

A vector field V = V αX,α(ω) ∈ Vc is said to be parallel (or, more precisely,
autoparallel) if

(37)
DV

dt
= 0

holds along c, that is, if

(38) V̇ γ + Γ γ
αβ(ω)V αω̇β = 0 (γ = 1, 2).

It follows from (32) that

〈U(t), V (t)〉 ≡ const for all t ∈ [a, b],

if U and V are parallel fields in Vc, and in particular

|V (t)| ≡ const if
DV

dt
(t) ≡ 0.

Since, by definition, the velocity vector ċ of a geodesic satisfies D
dt ċ = 0, we

obtain that
|ċ(t)| ≡ const,

that is, every geodesic c(t) is parametrized proportionally to the arc length.
Thus we conversely obtain that each geodesic has zero geodesic curvature.

Consider now the energy functional

(39) E(c) :=
1
2

∫ b

a

|ċ|2 dt

and the length functional

(40) L(c) :=
∫ b

a

|ċ| dt
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for curves c = X(ω) : [a, b] → R
3 on X. The first variations δE(c, V ) and

δL(c, V ) of E and L at a curve c in direction of V ∈ Vc are given by

(41) δE(c, V ) =
∫ b

a

〈
ċ,
D

dt

〉
dt

and by

(42) δL(c, V ) =
∫ b

a

〈
ċ,
D

dt
V

〉
|ċ| −1/2 dt.

This can be seen by embedding c(t) in a sufficiently differentiable family
ψ(t, ε), (t, ε) ∈ [a, b] × (−ε0, ε0), of curves ψ(·, ε) on X such that ψ(t, 0) = c(t)
and

∂

∂ε
ψ(t, 0) = V (t).

Since ∂
∂ε

∂
∂tψ(t, ε)|ε=0 = V̇ (t), we obtain

δE(c, V ) =
d

dε
E(ψ(·, ε))

∣∣∣∣
ε=0

=
∫ b

a

〈
ċ,
∂

∂ε

∂

∂t
ψ

〉∣∣∣∣
ε=0

dt

=
∫ b

a

〈ċ, V̇ 〉dt =
∫ b

a

〈
ċ,
D

dt
V

〉
dt,

because of ċ ∈ Vc. In the same way we can prove (42). For V ∈ Vc with
V (a) = 0 and V (b) = 0 we infer that

(43) δE(c, V ) = −
∫ b

a

〈
Dċ

dt
, V

〉
dt,

and if, in addition, |ċ(t)| ≡ const 	= 0, we obtain also

(44) δL(c, V ) = −
∫ b

a

|ċ| −1/2

〈
D

dt
ċ, V

〉
dt.

Therefore, the equation (35) is the Euler equation of the energy functional
E(c), and it is also the Euler equation of the length functional L(c) if we
restrict ourselves to curves c that are parametrized proportionally to the arc
length.

1.6 Scholia

1 Textbooks

The notes by Klingenberg [1] yield a concise and lucid introduction to differ-
ential geometry. A very readable modern text with numerous examples is the
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book by do Carmo [1]. The famous treatises [1] and [2] by Blaschke with their
historical annotations still provide an excellent guide to classical differential
geometry. We also refer to the modernized version of Blaschke [2] written by
Leichtweiß, cf. Blaschke and Leichtweiß [1].

As a reference to Riemannian geometry, we mention the lecture notes
by Gromoll, Klingenberg, and Meyer [1], the monographs by do Carmo [3],
Jost [18], Kobayashi and Nomizu [1], Kühnel [2], Spivak [1], Warner [1],
Dubrovin, Fomenko, and Novikov [1], and the notes by Chern [1,3] and
Hicks [1].

2 Annotations to the History of the Theory of Surfaces

The curvature theory of surfaces began with Euler’s investigation [1] from 1760
(printed 1767) concerning the curvature of plane sections of a given surface.
Euler’s results were supplemented by Meusnier [1], to whom in 1774 Monge
had suggested Euler’s paper [1] as a starting point for further investigations.
The paper Meusnier [1], in which the expression 2H = κ1 + κ2 appeared for
the first time, is the only publication by Meusnier.

The first glimpse to the inner theory of surfaces can be found in Euler’s
publication [2] from 1771 (printed 1772) which is memorable as the first paper
which solely operates with the first fundamental form (or the line element).
It contains the following main result: All surfaces that are developable into
the plane are formed by the tangents of some space curve. Euler’s method of
operating with two parameters and with the line element was, according to
Speiser, only taken up by Gauss.

In other publications (for instance, [3] and [4]) Euler laid the foundations
of a theory of conformal mappings and noticed its connection with the theory
of complex analytic functions.

Great merits for the further development have to be attributed to Monge
whose stimulating treatise [1] appeared between 1795 and 1807.

The modern development of differential geometry started with the work
of Gauss, especially with his prize-winning essay on conformal mappings [1]
from 1822 (published in 1825) and his Disquisitiones generales circa superficies
curvas [3] from 1827 (which appeared in print in 1828) that F. Klein called
the bible of modern differential geometry.

Already in the spring of 1816, Gauss had suggested to Schumacher as
a prize-question for the newly founded “Zeitschrift für Astronomie und ver-
wandte Wissenschaften”, to map two curved surfaces onto each other such
that the similarity of smallest parts is preserved. A letter to Schumacher dated
July 5, 1816 documents that the solution of this problem was known to Gauss,
and a note of this solution is preserved (cf. vol. 8 of [2], p. 371). Schumacher
arranged at the first possible occasion that the Copenhagen Academy of Sci-
ences posed this problem as prize-question for 1821 to the scientific commu-
nity, namely: “generaliter superficiem datam in alia superficie ita exprimere,
ut partes minimae imaginis archetypo fiant similes”. When in 1821 no so-
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lution came in, the question was renewed for 1822. Having been urged by
Schumacher, Gauss sent his contribution to Copenhagen on December 11,
1822, and, in 1823, he obtained the prize of the academy. In 1825, Gauss’s
paper was published in the last issue of Schumacher’s “Astronomische Ab-
handlungen”. The main result of this investigation is that every sufficiently
small piece of a regular, real-analytic surface can be mapped conformally onto
a domain in the plane. Gauss’s proof uses the method of characteristics which
restricts his reasoning to real-analytic surfaces.

Conformal mappings were, by the way, investigated long before Euler and
Gauss by geographers since such mappings naturally arise in the problem of
chart-making. Already Hipparch and also Ptolemy knew of the conformality
of the stereographic projection of the sphere into the plane. Mercator’s chart
of the world that was completed in 1569 used another conformal mapping of
the sphere, known as Mercator projection. Lambert’s conformal projections
from 1772 (cf. [1]) as well as Mercator’s projection are still used today. The
publications of Euler [3] and Lagrange [2] solve special cases of the problem
treated by Gauss in 1822. The term conformal mapping (konforme Abbildung)
was coined by Gauss in 1844 (see vol. 4 of [2], p. 262).

From Gauss’s prize-essay, one can draw a direct line to Riemann’s thesis
from 1851 (see Riemann [1], pp. 3–45, especially pp. 42–43), where the founda-
tions of a geometrical theory of functions were laid. As Riemann observed, such
a theory provided a global version of Gauss’s mapping theorem from 1822.

Although Riemann’s reasoning was defective, his thesis stimulated the re-
search of a whole century. A culmination point of the subsequent developments
was the proof of the uniformization theorem by Poincaré and Koebe (1909),
which is the precise form of the global Gauss mapping theorem envisioned
by Riemann. It is described in H. Weyl’s celebrated monograph: Die Idee der
Riemannschen Fläche [4].

In 1916, Lichtenstein [3] established the analogue of Gauss’s local mapping
theorem for surfaces of class C1,α which, together with the uniformization
theorem, yields the global theorem stated in Section 1.4. A direct proof of
this result by a variational method was proposed by Morrey [8]. The faulty
reasoning of Morrey was rectified and completed by Jost [6] and [17]. Another
approach, due to Bers and Vekua, is based on the theory of generalized analytic
functions (cf., for instance, Vekua [1] and [2]). Simplified proofs were recently
given by Sauvigny [13] and Hildebrandt and von der Mosel [6,8].

The expression 2H = κ1 + κ2 for the mean curvature appeared, as we
already have noted, first in Meusnier’s paper [1] where the equation H = 0
for minimal surfaces was derived. Thereafter, Young [1] and Laplace [1] rein-
troduced this expression in their theories of capillarity from 1805 and 1806,
respectively. The prize-essay by Gauss as well as his Disquisitiones generales
were in part the result of his practical work as director and organizer of the
geodesic measurements in the Kingdom of Hannover during the years 1821–
1825. The letters of his friends Bessel and Schumacher testify the deep impres-
sion the Disquisitiones made immediately after their appearance. The wealth
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of ideas is indeed overwhelming. We find the definition of the spherical im-
age that, as Gauss pointed out elsewhere, is derived from the method of the
astronomer to describe the locus of a star on the celestial sphere. The Gauss
curvature K is defined as the (signed) ratio ± dAN

dAX
, taking orientation into

account, as has been described in Section 1.2. We have introduced Gauss’s
representation formulas in Section 1.3 and, as the main result, we have pre-
sented the theorema egregium which opened the way to Riemann’s intrinsic
geometry of higher dimensional manifolds as it was sketched in Riemann’s
Habilitation lecture from 1854 (see Riemann [1], pp. 254–269). Dedekind re-
ported in his biographical sketch of Riemann’s life how amazed and excited
Gauss was by this lecture (Riemann [1], p. 517).

Gauss, moreover, proved that K = κ1 · κ2, and introducing the total cur-
vature (curvatura integra)

∫
X
K dA, he could compute the sum of the angles

in a geodesic triangle Δ on X in terms of the total curvature of X.
From here it was only one more step to the Gauss–Bonnet theorem stated

in Section 1.4 that was first formulated and proved by Bonnet [1] in 1848.
One only needs a formula for the quantity κg, which Bonnet called geodesic
curvature, and the formula for integration by parts. Such a formula in terms
of the coefficients of the first fundamental form was first published by Mind-
ing [1]. It turned out, however, that a similar result was already known to
Gauss. It was found in his posthumous papers (see vol. 8 of [2], pp. 386–396).
Since Gauss in his Disquisitiones announced the publication of further inves-
tigations on the curvatura integra (which, however, never appeared), there
seems to be no doubt that he, in fact, knew the essence of the Gauss–Bonnet
theorem. It should be mentioned that Gauss used the term side curvature
(Seitenkrümmung) instead of geodesic curvature.

We also note that, with the single exception of Euler [2], all authors before
Gauss only considered surfaces given as graphs z = z(x, y) of a function over
a planar domain. The point of view mostly taken in our notes is that of
Gauss. The more general notion of manifolds (and their immersions) was first
envisioned by Riemann [1] and then solidly founded by H. Weyl [4].

The two differential expressions | ∇Xf |2 and ΔXf were introduced by Bel-
trami [1] in 1864. They nowadays play a fundamental role. The Weingarten
equations were first stated in Weingarten’s paper [1].

There is a long history regarding the covariant differentiation of tangent
vectors and of tensors, starting with investigations by Christoffel and Lips-
chitz. The tensor character of the covariant differentiation was first established
by Christoffel in [1], where also the 3-index symbols were defined.

Covariant differentiation was developed into a systematic tool by Ricci and
Levi-Civita in 1901. The notion of autoparallel vector fields and of parallel
displacement along curves was discovered1 by Levi-Civita [1] in 1917. This,

1 H. Weyl ([2], 5. Auflage, p. 325) noted that the theory of parallel displacement is already

contained in the kinematic considerations of the Treatise on Natural Philosophy by Thomson

and Tait (edition 1912), Part I, sect. 135–137.
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in turn, led to the definition of an affine connection on a general differen-
tiable manifold by H. Weyl [1], using the formulas of (7) in Section 1.5 which
nowadays are set at the beginning of the theory.

The equations for the geodesics, considered as stationary curves of the
length functional, stand at the beginning of the theory of surfaces. The first
paper on this subject was published by Euler in 1728, but already in 1698
Johann Bernoulli, Euler’s teacher at Basel, had discovered that all shortest
lines on a surface have vanishing geodesic curvature. He stated his result in
the form that, at each of its points, the osculating plane of a geodesic curve
on a surface X must intersect X perpendicularly.

3 References to the Sources of Differential Geometry and to the Literature
on its History

Euler’s contributions to the curvature theory of surfaces can be found in his
Opera Omnia, Ser. I, vols. 28 and 29 [4].

The classical work of Monge appeared as Application de l’Analyse à la
Géométrie between 1795 and 1807 [1].

The fundamental results by Gauss, in particular his prize-winning paper
from 1822 for the Copenhagen Academy and his Disquisitiones generales circa
superficies curvas, are collected in his Werke, vols. 4 and 8 [2], and vols. 10
and 11 contain essays by Bolza [2], Galle [1], and Stäckel [1] which describe
the genesis of Gauss’s contributions to differential geometry.

There exist translations of the Disquisitiones into German and English.
The comments by Dombrowski [2] are particularly interesting.

A rich source of references are the surveys by v. Mangoldt, Lilienthal,
Scheffers, Voss, Salkowski, Liebmann, Weitzenböck, and Berwald in the En-
cyklopädie der mathematischen Wissenschaften III.3.

A selected and historically ordered bibliography of the differential-geomet-
ric literature which begins with Riemann’s Habilitation lecture (1854) and
reaches till 1949, is contained in Eisenhart’s treatise [3].

Numerous interesting historical annotations can be found in the various
editions of Weyl’s Raum, Zeit und Materie [2], which has also been translated
into English.

Of inestimable value are Darboux’s Leçons sur la théorie générale des sur-
faces [1], which comprehend a large part of the differential geometric knowl-
edge at the end of the nineteenth century.

We finally mention Klein’s lectures [1] on the development of mathematics
in the nineteenth century, which provide a comprehensive view of one of the
great epochs of mathematics.



Chapter 2

Minimal Surfaces

Since the last century, the name minimal surfaces has been applied to surfaces
of vanishing mean curvature, because the condition

H = 0

will necessarily be satisfied by surfaces which minimize area within a given
boundary configuration. This was implicitly proved by Lagrange for nonpara-
metric surfaces in 1760, and then by Meusnier in 1776 who used the analytic
expression for the mean curvature and determined two minimal surfaces, the
catenoid and the helicoid. (The notion of mean curvature was introduced by
Young [1] and Laplace [1], but usually it is ascribed to Sophie Germain [1].)
In Section 2.1 we shall derive an expression for the first variation of area with
respect to general variations of a given surface. From this expression we ob-
tain the equation H = 0 as necessary condition for stationary surfaces of the
area functional, and we also demonstrate that solutions of the free boundary
problem meet their supporting surfaces at a right angle.

In Section 2.2, we particularly investigate nonparametric surfaces, and
we state the minimal surface equation in divergence and nondivergence form
which has to be satisfied by the height function. Finally we prove that, for a
nonparametric minimal surface X, the 1-form N ∧dX is closed. In Section 2.3
it is shown that a nonparametric minimal surface X(x, y) = (x, y, z(x, y))
has a real analytic height function z(x, y) and, moreover, that X can be con-
formally mapped onto some planar domain. This conformal mapping can be
constructed explicitly if the domain of definition Ω of the surface X is convex.

Thereafter we prove in Section 2.4 the celebrated Bernstein theorem for
nonparametric minimal surfaces and also a quantitative local version of this
theorem which was discovered by E. Heinz. Then we show in Section 2.5 that
every regular surface X : Ω → R

3 satisfies the equation

ΔXX = 2HN
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and, therefore, minimal surfaces are characterized by the equation

ΔXX = 0.

If X is given by conformal parameters, this relation is equivalent to

ΔX = 0.

This observation is used in Section 2.6 to enlarge the class of minimal sur-
faces. We can now admit surfaces with isolated singularities by defining min-
imal surfaces as harmonic mappings X : Ω → R

3 that are given in conformal
parameters.

In Section 2.7 we derive a formula for the mean curvature of surfaces that
are defined by implicit equations. This relation is used in the last part of the
chapter to demonstrate that a minimal surface provides a minimum of area if
it can be embedded into a field of minimal surfaces. Finally, an expression for
the second variation of area is given, and we comment on the question when
a given minimal surface can be embedded into such a field.

2.1 First Variation of Area. Minimal Surfaces

Let X : Ω̄ → R
3 be a regular surface of class C2 with its spherical image

N : Ω̄ → R
3 defined by

N =
1
W
Xu ∧ Xv, W =

√
EG − F2 =

√
g,

and denote by gαβ and bαβ (or E,F,G and L,M,N, respectively) the coeffi-
cients of its first and second fundamental forms. Moreover, H stands for the
mean curvature of X. We write w = (u, v), u1 = u, u2 = v, and X,α = ∂

∂uαX;
Γ γ

αβ denote the Christoffel symbols of the second kind for X introduced in
Section 1.3.

We now consider a variation of X, that is, a mapping

Z : Ω̄ × (−ε0, ε0) → R
3, ε0 > 0,

of class C2, with the property that

Z(w, 0) = X(w) for all w ∈ Ω̄.

This map will be interpreted as a family of surfaces Z(w, ε), w ∈ Ω̄, which
vary X, and in which X is embedded.

By Taylor expansion, we can write

(1) Z(w, ε) = X(w) + εY (w) + ε2R(w, ε)
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with a continuous remainder term ε2R(w, ε) of square order, i.e. R(w, ε) =
O(1) as ε → 0. The vector field

Y (w) =
∂

∂ε
Z(w, ε)

∣∣∣∣
ε=0

∈ C1(Ω̄,R3)

is called the first variation of the family of surfaces Z(·, ε).
We can write

(2) Y (w) = ηβ(w)X,β(w) + λ(w)N(w)

with functions η1, η2, λ of class C1(Ω̄). Then

Z,α = X,α + ε[ηβ
,αX,β + ηβX,αβ + λ,αN + λN,α] + ε2R,α.

By virtue of the Gauss equations

X,αβ = Γ γ
αβX,γ + bαβN

and the Weingarten equations

N,α = −bβαX,β , bβα = bαγg
βγ ,

we obtain that

(3) Z,α = X,α + ε[ξγαX,γ + ναN ] + ε2R,α

where we have set:

ξγα = ηγ
,α + Γ γ

αβη
β − bαβg

βγλ,

να = bαβη
β + λ,α.

(4)

Then, indicating the ε2-terms by · · · , we find

|Zu|2 = E + 2ε(ξ11E + ξ21F) + · · · ,
|Zv |2 = G + 2ε(ξ12F + ξ22G) + · · · ,

〈Zu, Zv 〉 = F + ε[ξ12E + (ξ11 + ξ22)F + ξ21G] + · · · ,

whence
|Zu|2|Zv |2 − 〈Zu, Zv 〉2 = W2[1 + 2ε(ξ11 + ξ22) + · · · ].

We, moreover, have

ξ11 + ξ22 = η1
u + η2

v − λbαβg
αβ + Γα

αβη
β .

Since
bαβg

αβ = 2H, Γα
αβ =

1
2g
g,β =

1
W

W,β
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(see formulas (42) of Section 1.2 and (12) of Section 1.3), we infer that

ξ11 + ξ22 =
1
W

{(η1W)u + (η2W)v } − 2Hλ.

On account of
√

1 + x = 1 + x/2 +O(x2) for |x| � 1, we see that

(|Zu|2|Zv |2 − 〈Zu, Zv 〉2)1/2 = W + ε[(η1W)u + (η2W)v − 2HWλ] + · · · .

Then we can conclude that the first variation

(5) δAΩ(X,Y ) :=
d

dε
AΩ(Z(·, ε))

∣∣∣∣
ε=0

of the area functional AΩ(X) on Ω at X in the direction of a vector field
Y = ηαXα + λN is given by

δAΩ(X,Y ) =
∫

Ω

[(η1W)u + (η2W)v − 2HWλ] du dv.(6)

Performing an integration by parts, it follows that

δAΩ(X,Y ) =
∫

∂Ω

W(η1 dv − η2 du) − 2
∫

Ω

λHW du dv.(7)

This, in particular, implies that

δAΩ(X,Y ) = −2
∫

X

〈Y,N〉HW du dv(8)

= −2
∫

X

〈Y,N〉H dA

for all Y ∈ C∞
c (Ω,R3). Since λ = 〈Y,N〉 can be chosen as an arbitrary

function of class C∞
c (Ω), the fundamental theorem of the calculus of variations

yields:

Theorem 1. The first variation δAΩ(X,Y ) of AΩ at X vanishes for all vector
fields Y ∈ C∞

c (Ω,R3) if and only if the mean curvature H of X is identically
zero.

In other words, the (regular) stationary points of the area functional—and,
in particular, its (regular) minimizers—are exactly the surfaces of zero mean
curvature. For this reason, a regular (i.e. immersed) surface X : Ω → R

3 of
class C2 is usually called a minimal surface if its mean curvature function H
satisfies

H = 0.(9)

We shall later broaden the class of minimal surfaces in order to allow also
surfaces with isolated singularities, but then we use conformal parameters u, v.
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Let us now formulate a more geometric expression for the first variation
of the area. Note that

λW = 〈Y,N〉W = 〈Y,Xu ∧ Xv 〉 = [Y,Xu, Xv] (:= det(Y,Xu, Xv))

and, for Y = η1Xu + η2Xv + λN , we obtain

[Y,N, dX] = η1[Xu, N,Xv dv] + η2[Xv, N,Xu du] = W {η2 du − η1 dv}.

Hence, formula (7) implies that

−δAΩ(X,Y ) =
∫

∂Ω

[Y,N, dX] + 2
∫

Ω

H[Y,Xu, Xv] du dv.(10)

Let ω(s) be a representation of ∂Ω in terms of the parameter of arc length
s of the boundary X|∂Ω . Then c(s) := X(ω(s)) is a representation of the
boundary of X. Moreover, let Y(s) := Y (ω(s)),N(s) := N(ω(s)). Then

[Y,N, dX] ◦ ω = 〈Y,N ∧ t〉 ds = 〈Y, s〉 ds

where s is the side normal of the boundary curve c of the surface X. Hence
we get

−δAΩ(X,Y ) =
∫

∂X

〈 Y, s〉 ds+ 2
∫

X

〈Y,N〉H dA.(11)

In particular,

δAΩ(X,λN) = −2
∫

X

λH dA(12)

and

2H = −δAΩ(X,N)/AΩ(X) if H = const.(13)

In other words, for surfaces of constant mean curvature H, the expression
−2H is just the relative change of the area of the surface with respect to
normal variations.

Moreover, we have

δAΩ(X,Y ) = −
∫

∂X

〈Y, s〉 ds if H = 0,(14)

and we obtain the following

Proposition. If X : Ω̄ → R
3 is a minimal surface, then the equation

δAΩ(X,Y ) = 0

holds for all Y ∈ C1(Ω̄,R3) which are orthogonal to the side normal of the
boundary ∂X (that is, 〈Y, s〉 = 0 on ∂X).
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Furthermore, if we assume that

d

dε
AΩ(Z(·, ε))

∣∣∣∣
ε=0

= 0(15)

holds for all variations Z(·, ε) of X whose boundary values lie on some sup-
porting manifold S ⊂ R

3 of dimension two, then it follows that

δAΩ(X,Y ) = 0 holds for all Y ∈ C1(Ω̄,R3), the boundary(16)
values of which at ∂Ω are tangential to S.

From this equation, we firstly infer that X is a minimal surface, and sec-
ondly, by once again applying the fundamental theorem of the calculus of
variations, we obtain from equation (16) that the side normal of ∂X meets S
everywhere at a right angle. This means that X intersects S perpendicularly.
Thus we have proved:

Theorem 2. Suppose that (15) holds for all variations Z(·, ε) of X with
boundary on some supporting surface S. Then X is a minimal surface which
meets S orthogonally at its boundary ∂X.

A minimal surface as in Theorem 2 will be called a stationary surface to
the supporting manifold S, or solution of the free boundary problem for S. The
study of such free boundary problems will be emphasized in Section 4.6 and
particularly in Vols. 2 and 3. In short, if we consider stationary surfaces in
boundary configurations which, in part, consist of fixed curves Γ and, in ad-
dition, of free surfaces S (called support surfaces), then we deal with minimal
surfaces that meet S perpendicularly.

2.2 Nonparametric Minimal Surfaces

We shall now consider surfaces which are given in nonparametric form, that
is, as graph of a function z = z(x, y) on some domain Ω of R

2. Such a surface
can be described by the special parameter representation

X(x, y) = (x, y, z(x, y)), (x, y) ∈ Ω.

(In this case, the parameters are usually denoted by x and y instead of u
and v.)

We shall assume that the function z(x, y) is at least of class C2. Introducing
the time-honored abbreviations

(1) p = zx, q = zy, r = zxx, s = zxy, t = zyy
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we compute that

(2)
E = 1 + p2, F = pq, G = 1 + q2,

W 2 = 1 + p2 + q2, N = (ξ, η, ζ),

where

(3)
ξ = −p/

√
1 + p2 + q2, η = −q/

√
1 + p2 + q2,

ζ = 1/
√

1 + p2 + q2.

Moreover,

(4)
L = r/

√
1 + p2 + q2, M = s/

√
1 + p2 + q2,

N = t/
√

1 + p2 + q2,

whence finally

H =
(1 + q2)r − 2pqs+ (1 + p2)t

2(1 + p2 + q2)3/2
,(5)

K =
rt − s2

(1 + p2 + q2)2
.(6)

Therefore, the equation H = 0 is equivalent to the nonlinear second order
differential equation

(7) (1 + q2)r − 2pqs+ (1 + p2)t = 0,

the so-called minimal surface equation. It is necessary and sufficient for a
surface z = z(x, y) to be a minimal surface.

For nonparametric surfaces X(x, y) = (x, y, z(x, y)) the area functional
AΩ(X) takes the form

(8) AΩ(X) =
∫

Ω

√
1 + p2 + q2 dx dy.

By Theorem 1 of Section 2.1, a nonparametric minimal surface X, defined by
the function z = z(x, y), satisfies δAΩ(X,Y ) = 0 for all Y ∈ C∞

c (Ω,R3). In
particular for Y = (0, 0, ζ), ζ ∈ C∞

c (Ω), we obtain that
∫

Ω

(
p

W
ζx +

q

W
ζy

)
dx dy = 0,

and the fundamental lemma of the calculus of variations yields the Euler
equation

(9)
{

p√
1 + p2 + q2

}
x

+
{

q√
1 + p2 + q2

}
y

= 0
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for the functional

(10) A(z) :=
∫

Ω

√
1 + p2 + q2 dx dy.

Equation (9) can equivalently by written as

(11) div
∇z√

1 + | ∇z|2
= 0.

This relation will be called the minimal surface equation in divergence form.
Actually equations (7) and (11) are equivalent. In fact, by means of a

straight-forward computation we infer from (5) that

div(W−1∇z) = 2H

holds true for any nonparametric surface z = z(x, y). This equation also im-
plies that any nonparametric surface X(x, y) = (x, y, z(x, y)) described by the
function z(x, y) is a minimal surface if and only if the 1-form

γ = −(p/W) dy + (q/W) dx

is a closed differential form on Ω, that is, if and only if

γ = −dc

with some function c ∈ C2(Ω) provided that the domain Ω is simply connected.
There is actually a stronger version of this result which permits a remark-

able geometric interpretation. For this purpose, we introduce the differential
form

(12) N ∧ dX = (α, β, γ)

with the components

(13) α = η dz − ζ dy, β = ζ dx − ξ dz, γ = ξ dy − η dx.

Inserting

dz = p dx+ q dy, ξ = −p/W, η = −q/W, ζ = 1/W,

one obtains

α = −pq
W
dx − 1 + q2

W
dy,

β =
1 + p2

W
dx+

pq

W
dy,(14)

γ =
q

W
dx − p

W
dy.
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Let us introduce the differential expression

T := (1 + q2)r − 2pqs+ (1 + p2)t.

Then a straight forward computation shows

(
−pq

W

)
y

−
(

− 1 + q2

W

)
x

= − p

W 3
T,

(
1 + p2

W

)
y

−
(pq

W

)
x

= − q

W 3
T,

( q
W

)
y

−
(

−p
W

)
x

=
1

W 3
T,

that is,

(15) dα = 2Hpdx dy, dβ = 2Hq dx dy, dγ = −2H dxdy,

whence

(16) d(N ∧ dX) = −2HWN dxdy

or equivalently

(16′) d(N ∧ dX) = −2HN dA,

where dA denotes the area element W dx dy.
Thus we have proved the following

Theorem 1. A nonparametric surface X(x, y) = (x, y, z(x, y)), described by
a function z = z(x, y) of class C2 on a simply connected domain Ω of R

2, with
the Gauss map N = (ξ, η, ζ) is a minimal surface if and only if the vector-
valued differential form N ∧ dX is a total differential, i.e. if and only if there
is a mapping X∗ ∈ C2(Ω,R3) such that

(17) −dX∗ = N ∧ dX.

If we write

(18) X∗ = (a, b, c), N ∧ dX = (α, β, γ),

equation (17) is equivalent to

(19) −da = α, −db = β, −dc = γ.

This remarkable theorem will be used to prove that each C2-solution of
the minimal surface equation (7) or (11), respectively, is in fact real analytic,
and that it can be mapped conformally onto a planar domain provided that
its domain of definition Ω is convex. This will be shown in the next section.
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We finally note that nonparametric surfaces, besides being interesting in
their own right, serve as useful tools for deriving identities between differential
invariants of general surfaces. In fact, locally each regular C2-surface X(u, v)
can, after a suitable rotation of the Cartesian coordinate system in R

3, be
written in the nonparametric form stated before. In other words, by a suit-
able coordinate transformation w = ϕ(x, y) we can pass from X(w) to a
strictly equivalent surface Z(x, y) = X(ϕ(x, y)) which is of type (x, y, z(x, y))
if we have chosen appropriate Cartesian coordinates in R

2. It is evident that
for such a representation Z(x, y) many differential expressions have a fairly
simple form, and therefore it will be much easier than in the general case
to recognize identities. Switching back to the original representation X(u, v),
these identities are equally well established provided that the terms involved
are known to be invariant with respect to parameter changes.

2.3 Conformal Representation and Analyticity of
Nonparametric Minimal Surfaces

Let X(x, y) = (x, y, z(x, y)) be a nonparametric minimal surface of class C2

defined on an open convex set Ω of R
2. We will show that z(x, y) is real ana-

lytic and that X(x, y) can be mapped conformally onto some planar domain.
By the Theorem 1 of Section 2.2, there exists a function a ∈ C2(Ω) such

that

(1) da =
pq

W
dx+

1 + q2

W
dy,

where p = zx, q = zy, and W =
√

1 + p2 + q2.
Then we consider the mapping ϕ : Ω → R

2 defined by ϕ(x, y) = (x, a(x, y))
which can be expressed by (x, y) �→ (u, v) or by the pair of equations

(2) u = x, v = a(x, y).

Since ay = W−1 · (1 + q2) > 0 and Ω is convex, the mapping ϕ is one-to-one,
and its Jacobian Jϕ satisfies

Jϕ =
∂(u, v)
∂(x, y)

= ay > 0.

Hence ϕ is a C2-diffeomorphism which maps Ω onto some domain Ω∗ of R
2.

Its inverse ψ : Ω∗ → Ω of class C2 is given by

(3) x = u, y = f(u, v)
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with some function f ∈ C2(Ω∗). Since Dψ(u, v) = [Dϕ(x, y)]−1, we then
obtain

(
1 0
fu fv

)
=
(

1 0
ax ay

)−1

=
(

1 0
−ax/ay 1/ay

)
.

On account of (1), we infer that

(4) fu = − pq

1 + q2
, fv =

W

1 + q2
,

where the arguments u, v and x, y in (4) are related to each other by (3). Next,
we transform the function z(x, y) to the new variables u, v and set

(5) g(u, v) := z(u, f(u, v))

and

(6) Z(u, v) := (u, f(u, v), g(u, v)) = X(ψ(u, v)).

Then the differentials dx, dy, dz = p dx + q dy of the functions x = u, y =
f(u, v), z = g(u, v) turn out to be

dx = du,

dy = df = − pq

1 + q2
du+

W

1 + q2
dv,(7)

dz = dg =
p

1 + q2
du+

qW

1 + q2
dv.

These equations yield the conformality relations

(8) |Zu|2 = |Zv |2 =
1 + p2 + q2

1 + q2
, 〈Zu, Zv 〉 = 0

for the surface Z = X ◦ ψ which is strictly equivalent to the nonparametric
surface X(x, y).

For the following, we use the two other equations of Section 2.2, (19):

−db = β, −dc = γ,

which state that

db = − 1 + p2

W
dx − pq

W
dy

dc = − q

W
dx+

p

W
dy.

(9)
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We introduce a surface

(10) Z∗(u, v) = (v, f∗(u, v), g∗(u, v))

for (u, v) ∈ Ω∗, the components of which are defined by

(11)
f∗(u, v) := b(u, f(u, v)),
g∗(u, v) := c(u, f(u, v)).

It follows from (4) and (9) that

(12)
df∗ = − W

1 + q2
du − pq

1 + q2
dv,

dg∗ = − qW

1 + q2
du+

p

1 + q2
dv.

Comparing (7) and (12), we see that Z and Z∗ satisfy the Cauchy–Riemann
equations

(13) Zu = Z∗
v , Zv = −Z∗

u

on Ω∗, which are equivalent to

fu = f∗
v , fv = −f∗

u ,

gu = g∗
v , gv = −g∗

u.
(14)

Thus f + if∗ and g + ig∗ are holomorphic functions of the variable w =
u + iv, and their real and imaginary parts f, g and f∗, g∗, respectively, are
harmonic and therefore real analytic functions on Ω∗. It follows from (3) that
ψ : Ω∗ → Ω is real analytic, and then the same holds for the inverse mapping
ϕ : Ω → Ω∗. On the other hand, we infer from (5) that

(15) z(x, y) = g(ϕ(x, y)) = g(x, a(x, y)),

whence z(x, y) is seen to be real analytic on Ω.
Let us collect the results that are so far proved.

Theorem 1. If z ∈ C2(Ω) is a solution of the minimal surface equation (7)
or (11) of Section 2.2 in the domain Ω of R

2, then z is real analytic.

Remark. Although we have proved this result only for convex domains, the
general statement holds as well because we have only to show that z is real
analytic on every ball Br(c) contained in Ω, and this has been proved.

Theorem 2. Let X(x, y) = (x, y, z(x, y)) be a nonparametric minimal surface
of class C2 defined on some convex domain Ω of R

2. Then there exists a real
analytic diffeomorphism ϕ : Ω → Ω∗ of Ω onto some simply connected domain
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Ω∗, with a real analytic inverse ψ : Ω∗ → Ω, such that Z(u, v) = X(ψ(u, v))
satisfies the conformality conditions

|Zu|2 = |Zv |2, 〈Zu, Zv 〉 = 0.

The diffeomorphism ϕ can be chosen as

u = x, v = a(x, y)

where a(x, y) is a real analytic function which satisfies

ax =
pq

W
, ay =

1 + q2

W

with p = zx, q = zy, W =
√

1 + p2 + q2. Its inverse ψ is described by

x = u, y = f(u, v)

where f is a solution of
v = a(u, f(u, v)).

Finally, there is a surface X∗ = (a, b, c) on Ω which satisfies

dX∗ = −N ∧ dX

where N denotes the spherical image of X, and the mapping Φ : Ω∗ → C
3

defined by

Φ(u+ iv) = Z(u, v) + iZ∗(u, v)
:= X(u, f(u, v)) + iX∗(u, f(u, v))

is a holomorphic function of the complex variable w = u+ iv.

As we have already noted in Section 1.4, every regular surface of class C1,α

can be mapped conformally onto some plane domain, irrespective of its mean
curvature and its way of definition. But the previous reasoning shows that,
in the case of nonparametric minimal surfaces, it is not necessary to apply
Lichtenstein’s mapping theorem. For such surfaces X(x, y) = (x, y, z(x, y))
defined on a convex domain Ω, the conformal mapping ψ : Ω∗ → Ω can be
explicitly constructed from the function z(x, y). Moreover, if we introduce the
line integral

X∗(x, y) := −
∫ (x,y)

(x0,y0)

N ∧ dX

for some (x0, y0) ∈ Ω, we have the additional feature that Φ = (X + iX∗) ◦ψ
is a holomorphic map Ω∗ → C

3.
Let us conclude this section with a geometric observation made by Rie-

mann and Beltrami. By the transformation (2) we have introduced conformal
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parameters u, v on a given nonparametric minimal surface X(x, y), in such
a way that the coordinate lines u = const are planar curves that can be
generated by intersecting the given surface by the family of parallel planes
x = const.

Conversely, if a regular minimal surface X is intersected by a family of
parallel planes P none of which is tangent to the given surface, and if each
point of X is met by some P , then the intersection lines of these planes with
the minimal surface form a family of curves on the surface which locally belong
to a net of conformal parameters u, v on the surface.

In fact, picking any sufficiently small piece of X, we can introduce Carte-
sian coordinates of R

3 in such a way that the planes P are given as coordinate
planes x = const, and that this piece can be written as a nonparametric sur-
face (x, y, z(x, y)) over some domain Ω contained in the plane z = 0. Then
the assertion follows from the previous result.

2.4 Bernstein’s Theorem

In this section we want to prove Bernstein’s celebrated theorem that every
solution of the minimal surface equation defined on the whole plane must be
an affine linear function.

To this end we consider an arbitrary nonparametric minimal surface
X(x1, x2) = (x1, x2, z(x1, x2)) defined on a convex domain Ω of R

2. Its height
function z(x1, x2) which is supposed to be of class C2 on Ω will then auto-
matically be real analytic. The coefficients of the first fundamental form of X
are given by gαβ = δαβ + z,α · z,β . Let W2 = g = det(gαβ), and set

(1) ḡαβ = gαβ/W.

We have det(ḡαβ) = 1 and

(ḡαβ) := (ḡαβ)−1 =
(
ḡ22 −ḡ12

−ḡ21 ḡ11

)
.

Since z(x1, x2) is a solution of the minimal surface equation, there exist real
analytic functions τα(x1, x2), α = 1, 2, on Ω such that

(2) dτα = ḡαβdx
β , α = 1, 2.

(This follows from the equations (14) and (19) of Section 2.2, setting τ1 = −b
and τ2 = a.) We use these functions to define a real analytic mapping ψ :
Ω → R

2 by setting σ = ψ(x) := x+ τ(x) or, in components,

(3)
σ1 = x1 + τ1(x1, x2),

σ2 = x2 + τ2(x1, x2).
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Since B = Dτ = (τα
,β) = (ḡαβ), the matrix B is symmetric and positive

definite and we infer that, for arbitrary x = (x1, x2) and y = (y1, y2) ∈ Ω,

〈x − y, τ(x) − τ(y)〉 ≥ 0.

Then it follows that

|ψ(x) − ψ(y)|2 = |x − y|2 + |τ(x) − τ(y)|2 + 2〈x − y, τ(x) − τ(y)〉
≥ |x − y|2

or

(4) |ψ(x) − ψ(y)| ≥ |x − y|.

Therefore ψ maps Ω in a 1–1 way onto Ω∗ := ψ(Ω). Moreover,

ρ := det
(
∂ψα

∂xβ

)
= 2 + ḡ11 + ḡ22(5)

= 2 + W + 1/W ≥ 2,

and thus ψ : Ω → Ω∗ is a diffeomorphism. Now we define a second mapping
h(σ) = (h1(σ), h2(σ)) for σ ∈ Ω∗ by

h1(σ) = x1 − τ1(x)

h2(σ) = −x2 + τ2(x)
where σ = ψ(x).(6)

From the chain rule and from

(6′)
(
∂ψα

∂xβ

)−1

=
(

1 + ḡ11 ḡ12
ḡ21 1 + ḡ22

)−1

=
1

2 + W + 1/W

(
1 + ḡ22 −ḡ12

−ḡ21 1 + ḡ11

)

it follows that the derivative Dh(σ) of h(σ) is given by
(
∂hα

∂σβ

)
=

1
2 + W + 1/W

(
ḡ22 − ḡ11 −2ḡ12

2ḡ21 ḡ22 − ḡ11

)
◦ ψ−1(7)

or (
∂hα

∂σβ

)
=

1
(W + 1)2

(
g22 − g11 −2g12

2g21 g22 − g11

)
◦ ψ−1.(8)

This shows that

(9) H(σ) := h1(σ) + ih2(σ)
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is a holomorphic function of σ = σ1 + iσ2 in Ω∗ with the complex derivative

H ′(σ) =
q2 − p2 + 2ipq

(W + 1)2
=
(
ip+ q
1 + W

)2

(10)

where in the expressions p = z,1, q = z,2, and W =
√

1 + p2 + q2 on the
right-hand side one has to replace x by ψ−1(σ). We finally note that

|H ′(σ)| =
p2 + q2

(1 + W) 2
<

(
W

1 + W

)2

< 1.(11)

The image Ω∗ = ψ(Ω) of the convex set Ω clearly is a simply connected
domain. If Ω is the whole plane R

2 =̂ C, then one can infer from (4) that also
Ω∗ = C. Then, by Liouville’s theorem and by (11), the entire function H ′(σ)
must be constant. Thus, for μ := p/(1 + W), ν := q/(1 + W ), we infer that

μ2 − ν2 = c1, 2μν = c2

for appropriate constants c1 and c2, whence

μ2 + ν2 =
√
c21 + c22.

This shows that the continuous functions μ and ν must be constant, and that
there exists a constant c ≥ 0 such that

p2 + q2 = c(1 +
√

1 + p2 + q2)2

which implies p2 + q2 = const, and therefore

p = α1 and q = α2

for some numbers α1 and α2, that is

(12) z(x1, x2) = α0 + α1x
1 + α2x

2.

Thus a nonparametric minimal surface X(x1, x2) which is defined on all of R2

has to be a plane. But this is the assertion of Bernstein’s theorem from 1916
which we will state as

Theorem 1. Every C2-solution of the minimal surface equation on R2 has to
be an affine linear function.

In order to exploit the previous formulas more thoroughly, we introduce
the function

(13) F (σ) :=
p

1 + W
− i

q

1 + W

of σ = σ1 + iσ2. Here and in the sequel, x has to be replaced by ψ−1(σ) so
that, as in (10), (11), and (13), the right-hand sides are to be understood
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as functions of σ. (We omit to write the composition by ψ−1, because the
formulas would then become rather cumbersome. For instance formula (13)
should correctly have been written as

F :=
(
p − iq

1 + W

)
◦ ψ−1.

We think that the reader will have no difficulties with our sloppy but more
suggestive notation.)

Comparing (10) with (13), we see that

(14) H ′ = (iF )2.

Since H is holomorphic on Ω∗, we infer that also F is a holomorphic function.
Furthermore,

(15) |H ′ | = |F |2 =
p2 + q2

(1 + W )2
=

W 2 − 1
(1 + W )2

=
W − 1
W + 1

whence
1 + |F |2 =

2W

W + 1
and

(16) Λ :=
(

W

W + 1

)2

=
1
4
[1 + |F |2]2.

Let γμν(σ) be the coefficients of the first fundamental form of Z := X◦ψ−1.
By the chain rule, we have

γμν = gαβ
∂xα

∂σμ

∂xβ

∂σν
= Wḡαβ

∂xα

∂σμ

∂xβ

∂σν
.

By (5) and (6′), we obtain
(
∂xα

∂σμ

)
=

1
ρ
(δαμ + ḡαμ)

and therefore

γμν =
W

ρ2
(ḡμβ + δμβ)(δβν + ḡβν)

=
W

ρ2
(ḡμν + δμν + δμν + ḡμν).

On account of (5), we arrive at

(γμν) =
W

ρ2

(
ρ 0
0 ρ

)
=

W

ρ

(
1 0
0 1

)
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and

ρ = 2 + W + 1/W =
(W + 1)2

W
, or

W

ρ
= Λ,

whence

(17) γμν = Λδμν .

Hence Z = X ◦ ψ−1 is represented by conformal parameters. By virtue of
the theorema egregium (cf. Section 1.3, (32)), the Gauss curvature K(σ) of
Z(σ) is given by

K = − 1
2Λ
Δ log Λ

or, equivalently,

(18) K = −ΛΔΛ − | ∇Λ|2
2Λ3

.

To simplify the computations, we set α = ReF, β = ImF . Then it follows
that

F = α+ iβ, |F |2 = α2 + β2,

Λ = 1
4 {1 + α2 + β2}2,

ασ1 = βσ2 , ασ2 = −βσ1 , Δα = 0, Δβ = 0.

From these formulas, we derive

Λ2
σ1 + Λ2

σ2 = {1 + α2 + β2}2[(αασ1 + ββσ1)2 + (αασ2 + ββσ2)2]
= {1 + α2 + β2}2[α2(α2

σ1 + α2
σ2) + β2(β2

σ1 + β2
σ2)]

= 4Λ|F |2|F ′ |2

and

ΔΛ = 2
2∑

ν=1

(αασν + ββσν )2 + {1 + α2 + β2}(| ∇α|2 + | ∇β|2)

= 2|F |2|F ′ |2 + 2{1 + |F |2} |F ′ |2.

Hence

| ∇Λ|2 = 4Λ|F |2|F ′ |2,
ΔΛ = 2(1 + 2|F |2)|F ′ |2.

(19)

By inserting these relations in (18), we arrive at the important equation

(20) K = −|F ′ |2/Λ2

which, on account of (16), can also be written as
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(20′) K = −|F ′ |2
(

1 +
1
W

)4

.

Fix now some disk Br(x0) ⊂⊂ Ω, and set σ0 := ψ(x0). It follows from (4)
that Br(σ0) ⊂⊂ Ω∗.

Next we set c := F (σ0). By (11) or (15), we have |c| < 1. Thus

R(σ) :=
σ − c

1 − c̄σ

defines a conformal mapping of the unit disk B = B1(0) onto itself which
satisfies

R(c) = 0 and R′(c) =
1

1 − |c|2 > 1.

Secondly we consider the linear mapping

L(σ) := σ0 + rσ

of B onto Br(σ0) that fulfills

L(0) = σ0 and L′(0) = r.

Then the composition
M := R ◦ F ◦ L,

which can also be described by

M(σ) =
F (σ0 + rσ) − c

1 − c̄F (σ0 + rσ)
,

is a holomorphic mapping of B into itself since |F | < 1, and M(0) = 0. On
account of Schwarz’s lemma it follows that |M ′(0)| ≤ 1.

Since M ′(0) = R′(c)F ′(σ0)r and R′(c) > 1, we obtain

|F ′(σ0)| ≤ 1/r,

and we infer from (20′) that

|K(σ0)| ≤ 1
r2

(
1 +

1
W(x0)

)4

≤ 1
r2

(1 + 1)4 =
16
r2
.

The Gauss curvatures K and K of X and Z, respectively, are related to each
other by

K = K ◦ ψ−1.

Thus we have proved

(21) |K(x0)| ≤ 16
r2
,

and we can formulate the following assertion:
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Theorem 2. If a disk of center x0 and radius r is contained in the domain of
definition of a nonparametric minimal surface X(x1, x2) = (x1, x2, z(x1, x2)),
then its Gauss curvature in x0 can be estimated by

(22) |K(x0)| ≤ 16
r2
.

This result, which is due to E. Heinz [1], can be considered as a quantitative
and local version of Bernstein’s theorem that follows from Theorem 2 if we
let r → ∞.

2.5 Two Characterizations of Minimal Surfaces

We shall prove two results that more or less were already established in Sec-
tion 2.2. Yet the formulas to be developed here will shed light on the problem
from a different angle.

Theorem 1. If X : Ω → R
3 is a regular surface of class C2 with mean cur-

vature H and with the spherical map N : Ω → R
3, then

(1) ΔXX = 2HN,

where ΔX denotes the Laplace–Beltrami operator on the surface X.

This implies the following characterization of minimal surfaces:

Corollary 1. A regular C2-surface X is a minimal surface if and only if

(2) ΔXX = 0

holds.

Suppose now that the parameters u, v of X(u, v) are conformal. Then
W = E = G, and Section 1.5, (17) implies that

(3) ΔX =
1
W
Δ

where Δ denotes the ordinary Laplace operator ∂2

∂u2 + ∂2

∂v2 . Moreover, we have

WN = Xu ∧ Xv

and therefore

Corollary 2. If X(u, v) is a regular C2-surface represented by conformal
parameters, then

(4) ΔX = 2HXu ∧ Xv.

In particular, X is a minimal surface if and only if

(5) ΔX = 0

holds.
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Proof of Theorem 1. It obviously suffices to establish (1) in a sufficiently small
neighborhood Ω′ of every point of Ω. Moreover, because of the invariant char-
acter of the expressions on both sides of (1), we only have to verify the asser-
tion for some surface that is strictly equivalent to X|Ω . Since every regular
C2-surface is locally equivalent (in a strict way) to some nonparametric sur-
face we have convinced ourselves that it suffices to prove (1) for an arbitrary
nonparametric surface

X(x1, x2) = (x1, x2, z(x1, x2)), (x1, x2) ∈ Ω.

Set as usual,
p = z,1, q = z,2, W =

√
1 + p2 + q2.

Then the Gauss equations

X,αβ = Γ γ
αβX,γ + bαβN

of Section 1.3 take the form⎛
⎝ 0

0
z,αβ

⎞
⎠ = Γ 1

αβ

⎛
⎝1

0
p

⎞
⎠+ Γ 2

αβ

⎛
⎝0

1
q

⎞
⎠+ bαβ

⎛
⎝−p/W

−q/W
1/W

⎞
⎠

whence

Γ 1
αβ = bαβ

p

W
, Γ 2

αβ = bαβ
q

W
,

z,αβ = Γ 1
αβp+ Γ 2

αβq +
bαβ

W
,

(6)

and this implies

(7) z,αβ = bαβW.

Since
2H = bαβg

αβ

(see (42) of Section 1.2), it follows that

(8) gαβΓ 1
αβ =

2H
W
p, gαβΓ 2

αβ =
2H
W
q, gαβz,αβ = 2HW.

On account of Section 1.5, (19), we have

ΔXf = gαβ [f,αβ − Γ γ
αβf,γ ]

for an arbitrary function f ∈ C2(Ω). Then, by virtue of (8),

(9) ΔXf = gαβf,αβ − 2H
W
z,γf,γ .
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Specializing this formula to the functions f(x1, x2) = x1, x2, and z(x1, x2)
respectively, we obtain

(10) ΔXx
1 = 2H

(
− p

W

)
, ΔXx

2 = 2H
(

− q

W

)
, ΔXz = 2H

(
1
W

)
,

and this is equivalent to
ΔXX = 2HN.

This completes the proof of Theorem 1. �

The following result relates the Beltrami operators ΔX and ΔN of a mini-
mal surface X and its Gauss map N to each other.

Proposition. If N is the Gauss map of a minimal surface X, then

(11) ΔX = |K|ΔN .

Proof. Since IN = IIIX and (Section 1.2, (26))

KIX − 2HIIX + IIIX = 0,

it follows from H = 0 that K ≤ 0 and

(12) IN = −KIX = |K|IX .

Hence, if X is represented conformally, then the same holds for N , and we
infer from (12) and from relation (17) of Section 1.5 that

ΔX =
1
W
Δ, ΔN =

1
|K|W Δ

whence
ΔX = |K|ΔN .

Since both sides are invariant expressions with respect to parameter changes,
we conclude on account of Section 2.3, Theorem 2, the general validity of (11).
�

Now we turn to the second characterization of minimal surface which fol-
lows from

Theorem 2. Let X(u, v) be a regular surface of class C2 defined on some
domain Ω of R

2, and let N : Ω → R
3 be its Gauss map. Then

(13) Nv ∧ Xu − Nu ∧ Xv = 2HWN

and

(14) (N ∧ Xu)v − (N ∧ Xv)u = 2HWN.
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Proof. Set u1 = u and u2 = v. Then the Weingarten equations

N,α = −bβαX,β = −gγβbαγX,β

imply

N,2 ∧ X,1 = −gγ2b2γX,2 ∧ X,1,

N,1 ∧ X,2 = −gγ1b1γX,1 ∧ X,2

whence
N,2 ∧ X,1 − N,1 ∧ X,2 = {gγ1b1γ + gγ2b2γ }X,1 ∧ X,2.

Since
gγαbαγ = 2H, Xu ∧ Xv = WN,

the relation (13) is established, and (14) is a direct consequence of (13). �

Because of
N ∧ dX = N ∧ Xu du+N ∧ Xv dv

equation (14) is equivalent to

(15) d(N ∧ dX) = −2HWN dudv = −2HN dA.

This implies

Corollary 3. A regular C2-surface X : Ω → R
3 is a minimal surface if and

only if the differential form N ∧ dX is closed, that is,

(16) d(N ∧ dX) = 0.

If Ω is a simply connected domain, condition (16) is equivalent to the state-
ment that

Ψ(u, v) :=
∫ (u,v)

(u0,v0)

N ∧ dX

is a path-independent line integral.

Remark. Since formula (16) is invariant with respect to parameter changes
and has only to be proved locally, it follows as well from Section 2.2, (17).

2.6 Parametric Surfaces in Conformal Parameters.
Conformal Representation of Minimal Surfaces. General
Definition of Minimal Surfaces

Now we will provide another proof of the result stated in Corollary 2 of Sec-
tion 2.5 which is particularly simple because it uses only a minimum of dif-
ferential geometric formulas.
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Theorem 1. Let X(u, v) be a regular surface of class C2(Ω,R3) given by
conformal parameters u and v, that is,

(1) |Xu|2 = |Xv |2 and 〈Xu, Xv 〉 = 0.

Then necessary and sufficient for a real-valued function H(u, v) to represent
the mean curvature of the surface X is that Rellich’s equation

(2) ΔX = 2HXu ∧ Xv

holds in Ω.
In particular, X : Ω → R

3 is a minimal surface if and only if

(3) ΔX = 0.

Proof. The equation (1) can be written as

Λ := E = G = W, F = 0 in Ω.

According to Section 1.3, (31), the mean curvature is simply

H =
1

2Λ
(L + N).

Recalling that L = 〈Xuu, N〉, N = 〈Xvv , N〉, we obtain

(4) 〈ΔX,N〉 = 〈Xuu +Xvv, N〉 = 2ΛH.

On the other hand, differentiating (1) with respect to u and v yields

〈Xu, Xuu〉 = 〈Xv, Xvu〉, 〈Xuu, Xv 〉 + 〈Xu, Xuv 〉 = 0,
〈Xv, Xvv 〉 = 〈Xu, Xuv 〉, 〈Xvv, Xu〉 + 〈Xv, Xuv 〉 = 0

and therefore

(5) 〈ΔX,Xu〉 = 0 and 〈ΔX,Xv 〉 = 0.

In other words, ΔX is proportional to N .
Since |N | = 1, it follows from (4) that

ΔX = 2ΛHN,

and, by virtue of ΛN = WN = Xu ∧Xv, we arrive at (2), and the theorem is
proved. �

The previous theorem provides another approach to the general formula

(6) ΔXX = 2HN
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proved in Theorem 1 of Section 2.5. One only has to show that an arbitrary
regular surface X of class C2 is locally strictly equivalent to a surface repre-
sented by conformal parameters. Then (6) follows from (2) by an invariance
reasoning.

The possibility to introduce conformal parameters on an arbitrary regular
C2-surface is expressed in Lichtenstein’s theorem, stated in Section 1.4. For
minimal surfaces (H = 0) we have—independently of the general Lichtenstein
theorem—given two different proofs that it is possible to introduce conformal
parameters in the small (cf. Sections 2.3 and 2.4). Thus the equation

(7) ΔXX = 0,

which characterizes minimal surfaces, is independently verified.
In order to transform a regular minimal surface globally to conformal pa-

rameters, one can combine Theorem 2 of Section 2.3 with the uniformization
theorem proved by Koebe and Poincaré. We cannot give the proof of this cel-
ebrated theorem. Instead, in Section 4.11 we shall present a variational proof
of Lichtenstein’s theorem which is based on the solution of a Plateau-type
problem. Here we merely state the global version of Theorem 2 in Section 2.3:

Theorem 2. Every regular surface X : Ω → R
3 of class C2, whether minimal

or not, is strictly equivalent to a surface represented by conformal parameters.

Still it should be noted that the following discussion will not rest on un-
fortified ground since existence proofs for minimal surfaces that will be given
later yield the existence of minimal surfaces represented by conformal param-
eters.

While the equations (6) and (7) only make sense for regular surfaces, the
equations (2) and (3) can also be formulated for surfaces with W = 0. This
enables us to give a definition of minimal surfaces that includes surfaces with
isolated singularities, called branch points, that will be studied in the next
chapter.

Definition 1. A nonconstant surface X : Ω → R
3 of class C2 is said to be a

minimal surface if it satisfies the conformality relations

(1) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0

as well as the equation

(3) ΔX = 0

on Ω.

If equation (3) is replaced by (2), we speak of a surface with the mean
curvature function H(u, v).

By (1) and (3) we can also define minimal surfaces X : Ω → R
n in R

n,
n ≥ 2, and most of the results in these notes will be true independently of the
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dimension n. For convenience we shall ordinarily restrict ourselves to the case
n = 3, and we shall only occasionally touch minimal surfaces X : Ω → M in
an n-dimensional Riemannian manifold M . If, in local coordinates x1, . . . , xn

on M , the line element ds2 of M has the form

(8) ds2 = gik(x) dxi dxk

(summation with respect to Latin indices i, k, . . . from 1 to n), then a surface
X ∈ C2(Ω,M) is said to be a minimal surface in M , if its local components
x1(u, v), . . . , xn(u, v) satisfy

(9) gik(X)xi
ux

k
u = gik(X)xi

vx
k
v , gik(X)xi

ux
k
v = 0

and

(10) Δxl + Γ l
ik(X)(xi

ux
k
u + xi

vx
k
v) = 0

where Γ l
ik are the Christoffel symbols of second kind with respect to ds2.

Although there will be no systematic treatment of (9) and (10) in our notes,
these equations will turn up when we replace Cartesian coordinates by general
curvilinear coordinates in R3 which will be essential for the investigation of
the boundary behavior of minimal surfaces.

2.7 A Formula for the Mean Curvature

Let us consider a family {Fc}c∈J of regular C2-surfaces Fc which are embed-
ded in R

3, implying that none of these surfaces has selfcuttings or selftangen-
cies. We also assume that the family depends in a C2-way on the parameter c.

A set S of R
3 is said to be simply covered by the surfaces of the family {Fc}

if each point x = (x1, x2, x3) of S is contained in exactly one of the surfaces.
Consider now a domain G in R

3 whose closure Ḡ is simply covered by a
family of C2-surfaces Fc in the sense that there is a function S ∈ C2(Ḡ) with
∇S(x) 	= 0 for all x ∈ Ḡ, such that the leaves Fc of the foliation {Fc} can be
described as its level surfaces

(1) Fc = {x ∈ Ḡ : S(x) = c}.

Then

(2) Q(x) := | ∇S(x)| −1 · ∇S(x)

defines a field Q ∈ C1(Ḡ,R3) of unit vectors that is orthogonal to all surfaces
Fc; it is called the normal field of the foliation {Fc}.

Theorem 1. If G is a domain in R
3, and if S is a function of class C2(Ḡ)

such that ∇S(x) 	= 0 on Ḡ, then the mean curvature H(x) of the level surface
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Fc = {x ∈ Ḡ : S(x) = c}

passing through x ∈ Ḡ is given by the equation

(3) divQ(x) = −2H(x)

where Q(x) = | ∇S(x)| −1 · ∇S(x) denotes the normal field of the foliation {Fc}.

Proof. Pick some point x0 ∈ G, some r > 0 with Br(x0) ⊂⊂ G, and let x0

be contained in Fc0 . For F := B̄r(x0) ∩ Fc0 we then choose a regular C2-
parametrization X(w), w ∈ Ω̄ such that its surface normal N(w) = NX(w)
satisfies

N(w) = Q(X(w)) for all w ∈ Ω̄.

We can also achieve that x0 = X(w0) for some w0 ∈ Ω.
For some sufficiently small ε0 > 0 we define the normal variation

Z(w, ε) = X(w) + εN(w), ε ∈ [−ε0, ε0],

of the surface F represented by X(w). Let Sε be the surface with the param-
eter representation Z(·, ε), and denote by Cε the collar

{X(w) + λN(w) : w ∈ ∂Ω, 0 ≤ λ ≤ ε}.

The two caps F and Sε together with the collar Cε bound a domain Uε in
R

3 over which we will integrate divQ. Performing an integration by parts, we
obtain ∫

Uε

divQdX =
∫

∂Uε

〈Q, N̄ε〉 dA

where N̄ε denotes the exterior normal of ∂Uε. Note that

N̄ε = −N = −Q on F.

By virtue of Taylor’s theorem, we infer that

〈Q, N̄ε〉 = O(ε) on Cε

whence ∫
Cε

〈Q, N̄ε〉dA = O(ε2).

If we apply formula (13) of Section 2.5, we obtain for Z(w, ε) = X(w)+εN(w)
the relations

Zu ∧ Zv = Xu ∧ Xv + ε{Xu ∧ Nv +Nu ∧ Xv } + ε2{Nu ∧ Nv }
= WN − ε2HWN + ε2Nu ∧ Nv,

and, by N = Q ◦ X, it follows that
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∫
Sε

〈Q, N̄ε〉dA =
∫

Ω

〈Q(X + εN), Zu ∧ Zv 〉 du dv

=
∫

Ω

〈Q(X + εN),WN − ε2HWN + ε2Nu ∧ Nv 〉 du dv

=
∫

F

dA − ε

∫
F

2H dA

+
∫

Ω

〈Q(X + εN) − Q(X),WN − ε2HWN〉 du dv +O(ε2).

The relations |Q(x)| = 1 and N = Q ◦ X imply that

〈Q(X(w) + εN(w)) − Q(X(w)), N(w)〉 = O(ε2).

Thus we obtain from the previous computation that
∫

Sε

〈Q, N̄ε〉 dA =
∫

F

dA − ε

∫
F

2H dA+O(ε2).

Since ∫
Uε

divQdX =
∫

Sε

〈Q, N̄ε〉 dA −
∫

F

dA+
∫

Cε

〈Q, N̄ε〉 dA,

it follows that
1
ε

∫
Uε

divQdX = −
∫

F

2H dA+O(ε).

As ε → +0, we arrive at the equation
∫

F

divQdA = −2
∫

F

H dA.

Here F stands for Fc0 ∩ B̄r(x0). Dividing both sides by
∫

F
dA, and letting r

tend to zero, we arrive at

divQ(x0) = −2H(x0).

Since x0 was chosen as an arbitrary point of G, and since both sides of this
equation are continuous functions on Ḡ, we finally obtain

divQ(x) = −2H(x)

for all x ∈ Ḡ which proves that theorem. �

Remark 1. With Di = ∂
∂xi and Q = (Q1, Q2, Q3) we can write

divQ = DiQi = Di

{
Sxi√
SxkSxk

}
=

Sxixi√
SxkSxk

− Sxixk

SxiSxk

{SxlSxl }3/2
.
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If we introduce the Hessian

hS(ξ, η) = Sxixkξiξk

and the Laplacian

ΔS = Sxixi = (D2
1 +D2

2 +D2
3)S

we can write

divQ =
1

| ∇S|

{
ΔS − 1

| ∇S|2hS(∇S,∇S)
}
.

Thus (3) can be written as

(4) H =
1

2| ∇S|

{
1

| ∇S|2 hS(∇S,∇S) − ΔS

}
.

This and related formulas for curvature quantities can also be derived
by the technique of covariant differentiation applied to manifolds which are
implicitly defined. This has in detail been carried out by P. Dombrowski [1].

Remark 2. Consider the nonparametric surface which is given as graph of a
function ψ(x, y), (x, y) ∈ Ω̄ ⊂ R

2. We can embed z = ψ(x, y) into the family
of surfaces

z = ψ(x, y) + c

which simply cover Ḡ := Ω̄ × R. They are the level surfaces

S(x, y, z) = c

of the function S(x, y, z) := z − ψ(x, y), for which we obtain

Q(x, y, z) =
1√

1 + ψ2
x + ψ2

y

· (−ψx,−ψy, 1)

whence

divQ = −

⎧⎨
⎩

ψx√
1 + ψ2

x + ψ2
y

⎫⎬
⎭

x

−

⎧⎨
⎩

ψy√
1 + ψ2

x + ψ2
y

⎫⎬
⎭

y

.

Thus in this particular case equation (3) takes the form

(5) div
∇ψ√

1 + | ∇ψ|2
= 2H

which is equivalent to formula (5) of Section 2.2. If H = 0, we obtain the
minimal surface equation in divergence form (see Section 2.2, (11)):

(6) div
∇ψ√

1 + | ∇ψ|2
= 0.
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From the theorem proved above we obtain the following

Corollary 1. If Ḡ is simply covered by a foliation of minimal surfaces Fc

which are the level surfaces of a function S ∈ C2(Ḡ) with ∇S(x) 	= 0 on Ḡ,
then the normal field Q = | ∇S| −1 · ∇S of this foliation is divergence-free, that
is, the equation

(7) divQ = 0

holds on Ḡ.

2.8 Absolute and Relative Minima of Area

We begin with a result of the Weierstrass field theory for minimal surfaces
which, in a somewhat different form, was developed by H.A. Schwarz.

Lemma 1. Suppose that G is a domain in R3 and that Q ∈ C1(Ḡ,R3) is a
vector field on R

3 with the properties that

(1) |Q(x)| = 1 and divQ(x) = 0 in G.

Moreover, let F be a regular C1-surface embedded in G whose surface normal
NF coincides on F with the vector field Q. Then, for every regular C1-surface
S that is contained in G and has the same boundary as F, we have

(2)
∫

F

dA ≤
∫

S

dA.

Proof. Let us first assume that the surfaces F and S bound a domain U whose
exterior surface normal on F points in the opposite direction of Q|F = NF.
Then we infer from Gauss’s theorem that∫

U

divQdX =
∫

∂U

〈Q,N∂U 〉 dA(3)

=
∫

S

〈Q,NS〉 dA −
∫

F

〈Q,NF〉 dA.

Because of (1), the left hand side is vanishing, and therefore

(4)
∫

F

〈Q,NF〉 dA =
∫

S

〈Q,NS〉 dA.

On account of
〈Q,NF〉 = 1

and of
〈Q,NS〉 ≤ |Q| |NS| = 1,
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we obtain

(5)
∫

F

dA ≤
∫

S

dA.

If S is a general surface as stated in the theorem, the same result holds.
This can be proved in essentially the same way by applying the calculus of
differential forms and the general Stokes theorem for 1-forms (see, for instance,
F. Warner [1]). �

Remark. It is easy to see that the equality sign in (5) holds if and only if F

and S are strictly equivalent.

Lemma 2. Let the assumptions of Lemma 1 be satisfied, with the following
alteration: The boundaries ∂F and ∂S of F and S are not necessarily the
same but lie on a surface T which is tangent to the vector field Q (that is,
Q(x) is a tangent vector to T at every point x ∈ T ), and are supposed to be
homologous to each other:

∂F ∼ ∂S on T.

Then the inequality (5) is still satisfied.

Proof. Let us choose a surface C ⊂ T such that ∂C = ∂S \ ∂F. Applying
Gauss’s theorem, we obtain

∫
U

divQdX =
∫

S

〈Q,NS〉 dA −
∫

F

〈Q,NF〉 dA+
∫

C

〈Q,NC〉 dA.

Since ∫
C

〈Q,NC〉 dA = 0

we arrive once again at (4), from where the proof proceeds as before. �

By combining Lemma 1 or Lemma 2 with the corollary stated in Sec-
tion 2.7, we obtain the following

Theorem 1. A C2-family of regular, embedded C2-surfaces Fc which cover a
domain G simply is a family of minimal surfaces if and only if its normal field
is divergence-free. Such a foliation by minimal surfaces is area minimizing in
the following sense:

(i) Let F be a piece of some of the minimal leaves Fc, with F ⊂⊂ G. Then
we have

(6)
∫

F

dA ≤
∫

S

dA

for each regular C1-surface S contained in G with ∂S = ∂F.
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(ii) Let T be a surface in G which, in all of its points, is tangent to the
normal field of the minimal foliation, and suppose that T cuts out of each leaf
Fc some piece F∗

c whose boundary ∂F∗
c lies on T . Then we have:

(7)
∫

F∗
c1

dA =
∫

F∗
c2

dA

for all admissible parameter values c1 and c2, and secondly,

(8)
∫

Fc

dA ≤
∫

S

dA

for all regular C1-surfaces S contained in G whose boundaries ∂S are homo-
logous to ∂Fc on T .

The identity (7) is the minimal surface version of A. Kneser’s transversality
theorem.

The integral
∫

F
〈Q,N〉 dA appearing in the previous reasoning, is the so-

called Hilbert’s independent integral associated with the area functional
∫

F
dA.

If we express F by its representation X(u, v), (u, v) ∈ Ω̄, Hilbert’s independent
integral takes the form

(9)
∫

Ω

〈Q(X), Xu ∧ Xv 〉 du dv.

The aforestated results can be summarized as follows:

A regular embedded minimal surface F yields a relative minimum of area
among all surfaces having the same boundary as F, if it can be embedded in a
foliation (or field) of minimal surfaces in the sense described before. In fact,
F is an absolute minimum of area among all surfaces with the same boundary
which lie in the domain covered by the field.

Not every minimal surface will have minimal area among all surfaces hav-
ing the same boundary. It is, in fact, not difficult to find examples of non-
minimizing surfaces of vanishing mean curvature. Yet the result just proved
shows that a minimal surface yields a relative minimum of area if it can be
embedded into a field of minimal surfaces. Thus we ask the question:

When can a minimal surface be embedded in a field of minimal surfaces?

An answer to this question was given by H.A. Schwarz. He proved that
each interior piece of a given regular embedded minimal surface X can be
embedded in a field of minimal surfaces if the first eigenvalue of the second
variation of the area functional at X is positive.

Presently we will not prove this result, but refer to Chapter 5 of this volume
and also to Volume 1 of Schwarz’s collected papers [2] as well as to Chapter I,
Section 6, pp. 86–110 of Nitsche’s lectures [28] where several examples and
further applications are discussed.
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However, we shall at least derive an expression for the second variation of
area δ2A(X,Y ) of a regular C2-surface X : Ω̄ → R

3 with respect to normal
variations Y = ϕN .

Here Ω is assumed to be a bounded domain in R
2, and ϕ is supposed to

be of class C1(Ω̄). Let

(10) Z := X + εY, Y = ϕN.

Then
Z,α = X,α + εϕN,α + εϕ,αN,

whence

ζαβ := 〈Z,α, Z,β 〉 = 〈X,α, X,β 〉 + 2ϕε〈X,α, N,β 〉 + ϕ2ε2〈N,αN,β 〉 + ϕ,αϕ,βε
2

and therefore

(11) ζαβ = gαβ − ε2ϕbαβ + ε2{ϕ2cαβ + ϕ,αϕ,β }.

Then

det(ζαβ) = ζ11ζ22 − ζ12ζ21

= g[1 − ε2ϕgαβbαβ + ε2{gαβϕ,αϕ,β + ϕ2gαβcαβ + 4ϕ2b/g}] +O(ε3),

where g = det(gαβ) and b = det(bαβ).
From

KI − 2HII + III = 0

we infer the analogous relation for the corresponding bilinear forms whence

(12) Kgαβ − 2Hbαβ + cαβ = 0

or

(13) cαβ = 2Hbαβ − Kgαβ .

Because of
gαβbαβ = 2H, gαβgαβ = 2, b = Kg

we infer that

(14) det(ζαβ) = g[1 − ε4ϕH + ε2{ | ∇Xϕ|2 + ϕ2(4H2 + 2K)}] +O(ε3).

Moreover,
√

1 + x = 1 +
x

2
− x2

8
+ · · · for |x| � 1,

and therefore

√
1 + εα+ ε2β = 1 +

α

2
ε+

(
β

2
− α2

8

)
ε2 +O(ε3)
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for |ε| � 1. Thus we see that
√

det(ζαβ) =
√
g[1 − ε2ϕH + ε2{ 1

2 | ∇Xϕ|2 +Kϕ2 + 2H2ϕ2 − 2H2ϕ2}]

+O(ε3)

or

(15)
√

det(ζαβ) =
√
g[1 − ε2ϕH + ε2{ 1

2 | ∇Xϕ|2 +Kϕ2}] +O(ε3)}.

From this expansion, we derive for the second variation

(16) δ2AΩ(X,Y ) :=
d2

dε2
A(X + εY )

∣∣∣∣
ε=0

of X in the normal direction Y = ϕN the formula

(17) δ2AΩ(X,Y ) =
∫

Ω

{ | ∇Xϕ|2 + 2Kϕ2} dA

which can be considered as a quadratic form on the Sobolev space H1
2 (Ω).

We restrict

(18) J(ϕ) := δ2AΩ(X,ϕN)

to the Sobolev space H̊1
2 (Ω) of functions ϕ ∈ H1

2 (Ω) with (generalized) bound-
ary values zero on ∂Ω.

Consider the isoperimetric problem

(19) J(ϕ) → min for ϕ ∈
◦

H1
2 (Ω) with

∫
Ω

ϕ2dA = 1.

Its solution satisfies

−ΔXϕ+ 2Kϕ = μϕ in Ω,
ϕ = 0 on ∂Ω

(20)

where μ is the smallest real number, for which a nontrivial solution ϕ of these
two equations exists; in other words, μ = J(ϕ) is the smallest eigenvalue of
the operator −ΔX + 2K on Ω with respect to zero boundary values.

In the sequel we shall often write δ2A(X,ϕ) instead of δ2A(X,ϕN).

2.9 Scholia

1 References to the Literature on Nonparametric Minimal Surfaces

The modern theory of the nonparametric minimal surface equation and of
related equations begins with the celebrated papers of S. Bernstein [1–4] and
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with the work of Korn [1,2] and Müntz [1]. The central problem of interest
concerning nonparametric minimal surfaces was at that time the solution of
Plateau’s problem. A new attack on this problem was started by Müntz [2]
in 1925 which, however, proved to be faulty (see Radó [11], and also Müntz
[3]). The final solution of Plateau’s problem in the context of nonparametric
minimal surfaces in two dimensions was achieved by Haar in his pioneering
paper [3]. Important supplements were given by Radó; see Haar [5], Radó
[2,8,15]. In his survey [21], Radó gave a lucid presentation of the development
until 1933.

After 1945, many new and surprising results on two-dimensional non-
parametric minimal surfaces were found. In particular we mention the work of
Bers, Finn, Heinz, E. Hopf, Jörgens and J.C.C. Nitsche. A beautiful and very
complete presentation of the whole theory of two-dimensional nonparametric
minimal surfaces can be found in Nitsche’s treatise [28]; for an updated ver-
sion see [37]. Certain aspects of the theory based on the work of Sauvigny are
presented in Chapters 5 and 7 of this volume.

Even more astounding is the development of the theory of n-dimensional
nonparametric minimal surfaces which is to a large extent described in the
monographs of Gilbarg and Trudinger [1], Giusti [4], and Massari and Mi-
randa [1]. Finn’s treatise [11] leads the reader into the fascinating field of free
boundary problems connected with the phenomenon of capillarity.

The theory of nonparametric minimal surfaces of codimension m > 1 was
initiated by Osserman [11]. Here many new problems arise as was shown by
Lawson and Osserman [1]. Osserman proved:

Let M be an n-dimensional submanifold in R
n+p which is the graph of a func-

tion f ∈ C2(Ω,Rp), Ω ⊂ R
n. Let γαβ(x) := δαβ + f i

xα(x)f i
xβ (x) be the metric

tensor of M, γ := det(γαβ) and (γαβ) = (γαβ)−1. Then M is a minimal sub-
manifold of R

n+p if and only if

(1)
1

√
γ
Dβ { √

γγαβDαf
i} = 0, 1 ≤ i ≤ p,

that is, if and only if the coordinate functions f i of the mapping f are har-
monic with respect to the metric of M. Equivalently we can write

(2) ΔMf = 0.

The equations (1) imply that

(3) Dα{ √
γγαβ } = 0, 1 ≤ β ≤ n.

Therefore the equations (1) are equivalent to the system

(4) γαβDαDβf
i = 0, 1 ≤ i ≤ p.
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Morrey [4] proved that any weak solution f ∈ C1(Ω,Rp), Ω ⊂ R
n, of (4) is

real analytic. On the other hand, Lawson and Osserman [1] found for n = 4,
p = 3 an example of a Lipschitz continuous weak solution of (1) which is not of
class C1. Furthermore, if Ω is the unit ball in R

4, they discovered a quadratic
polynomial ϕ : ∂Ω → R

3 which cannot be extended to a mapping

f ∈ C0(Ω̄,R3) ∩ C2(Ω,R3)

solving (1) in Ω. Harvey and Lawson [4] later proved that the singular solution
of (1) found by Lawson and Osserman is, in fact, area-minimizing with respect
to its boundary values.

Moreover, Lawson and Osserman [1] pointed out that, differently from
the case of codimension p = 1, the solutions of (1) are no longer uniquely
determined by their boundary values. Even if n = 2 and Ω is the unit disk,
there is a real analytic map ϕ : ∂Ω → R

2 to which there correspond three
distinct solutions u of (1) in Ω̄ satisfying u|∂Ω = ϕ.

2 Bernstein’s Theorem

Bernstein’s theorem is one of the most fascinating results in the theory of
nonlinear elliptic differential equations. First published in 1916, it has at-
tracted time and again the attention of analysis since the German translation
of Bernstein’s paper [4] appeared in 1927. Much later, a gap was discovered
in Bernstein’s original proof which succeedingly was closed by E.J. Mickle [1]
and E. Hopf [3].

A discussion of various ramifications and generalizations of Bernstein’s
theorem can be found in Osserman [5], Nitsche [28], Giusti [4], Gilbarg and
Trudinger [1], Hildebrandt [14,17]. The results presented in Sections 2.2–2.5
are essentially taken from the work of Radó, Nitsche and Heinz.

We mention that for nonparametric n-dimensional minimal surfaces of
codimension one Bernstein’s theorem holds true if n ≤ 7, whereas Bombieri, de
Giorgi, and Giusti [1] derived from the Simons cone C = {x ∈ R

8 : x = (y, z),
y, z ∈ R

4 and |y|2 = |z|2} an example which shows that Bernstein’s theorem
becomes false if n ≥ 8. A slight error in their reasoning was pointed out by
Luckhaus who also saw how it can be removed (cf. Dierkes [5]).

Another major achievement was the paper of Schoen, Simon, and Yau [1]
who proved a generalization of Heinz’s estimate (22) stated in Theorem 2
of Section 2.4 to all dimensions n ≤ 5, thereby obtaining another proof for
Bernstein’s theorem in dimensions n ≤ 5. Improvements of this work were
made by Simon [1,4]. We present some of these results in Vol. 3, Chapter 3.

A Bernstein theorem in arbitrary dimension and codimension was proved
by Hildebrandt, Jost, and Widman [1]:

If f : R
n → R

p is an entire solution of the minimal surface system (1) (i.e.,
a solution on all of R

n) such that
√
γ(x) ≤ β0 on R

n where β0 is a number
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satisfying β0 < cos−m(π/2
√

2m) and m := min{n, p} ≥ 2, then f is linear,
and therefore its graph represents an affine n-plane in R

n+p.

In this theorem γ(x) denotes the function det(γαβ(x)) where γαβ(x) =
δαβ + f i

xα(x)f i
xβ (x). Note that a better result holds true if m = 1. A re-

lated result was proved by Fischer-Colbrie [1]. In Vol. 3 we present a fairly
comprehensive presentation of Bernstein-type theorems.

3 Stable Minimal Surfaces

It is a rather difficult problem to decide whether a given specific minimal
surface spanned by a closed curve Γ is actually area minimizing, that is,
whether it is an absolute or at least relative minimizer of the area functional
among all surfaces of the same topological type bounded by Γ . Suppose that
the minimal surface X : Ω → R

3 is defined on a bounded domain Ω of R
2.

Then it is easy to see that the condition

(5) δ2AΩ(X,ϕ) ≥ 0 for all ϕ ∈ C∞
c (Ω,R3)

is necessary for any relative minimizer X within Γ . Let λ1(Ω) be the smallest
eigenvalue of the second-variation operator −ΔX + 2K on Ω with respect to
zero boundary values. Then, by a classical result of the calculus of variations,
X is a relative minimizer of area with respect to the C1-topology if X is a
regular minimal surface of class C2(Ω̄,R3) satisfying

(6) λ1(Ω) > 0.

A minimal surface X : Ω → R
3 defined on a parameter domain Ω ⊂ R

2

with a piecewise smooth boundary is said to be strictly stable if it is of class
C2(Ω̄,R3), regular (i.e. free of branch points) on Ω̄ and satisfies λ1(Ω) > 0.
If λ1(Ω) ≥ 0, the surface X is called stable.

In certain situations one can show that a stable minimal surface can be
embedded in a field, that is, it can be viewed as a leaf of a suitable foliation
in R

3 whose leaves are all minimal surfaces. Then we obtain that such a
stable surface actually is a relative minimizer of area with respect to the
C0-topology. Such a field construction plays an essential role in the proof of
Nitsche’s uniqueness theorem (see Section 4.9, and, for details, Sections 5.6
and 5.7).

Barbosa and do Carmo [1] proved that any immersed minimal surface
X : Ω → R

3 is strictly stable if the image N(Ω) of Ω under the Gauss map
N : Ω → S2 corresponding to X has area less than 2π. Later these authors
showed in [4] that the assumption

∫
K dA < 4

3π implies strict stability of any
immersed minimal surface X : Ω → R

n, for an arbitrary n ≥ 3, if Ω is simply
connected.

Stable minimal surfaces are an important subclass in the set of all minimal
surfaces. Roughly speaking, we can view strictly stable minimal surfaces as
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those surfaces of mean curvature zero that can experimentally be realized by
soap films. In some respect they behave like nonparametric minimal surfaces.
For instance, R. Schoen [2] proved an analogue of Heinz’s estimate (22) stated
in Section 2.4 for stable surfaces which, in turn, implies Bernstein’s theorem
for such surfaces. Moreover, Schoen’s estimate also yields an earlier result of
do Carmo and Peng [1] and of Fischer-Colbrie and R. Schoen [1], namely that
a complete stable minimal surface in R

3 has to be a plane.
For a fairly detailed discussion of the second variation of area and of stable

minimal surfaces we refer to Chapter 5 as well as to Nitsche [28], pp. 86–109,
and for an updated version to Nitsche [37], pp. 90–116. There the reader will
also find a survey of the fundamental contributions of H.A. Schwarz to this
problem which are mainly contained in his Festschrift for the 70th birthday
of Weierstrass (cf. Schwarz [2], vol. 1, pp. 223–269).

4 Foliations by Minimal Surfaces

In Section 2.8 as well as in Subsection 3 of these Scholia we saw that any leaf of
a foliation by minimal surfaces is area minimizing. This is the basic content of
Weierstrass’s approach to the calculus of variations. Its main ingredients are
the Weierstrass field construction (that is, the embedding of a given minimal
surface into a field consisting of a foliation with minimal leaves) and Hilbert’s
independent integral. The method presented in Section 2.8 furnishes a sim-
plification of the original form of the independent integral stated by Schwarz.
This simplified version is based on the calculus of differential forms and pro-
vides a flexible and important tool in differential geometry which is very easy
to handle. For applications and further results we refer to the basic work of
Harvey and Lawson [3,4] and of Lawlor and Morgan [1].

Other contributions on foliations by minimal submanifolds of a given
Riemannian manifold are due to Haefliger [1], Rummler [1], and Sullivan [1].

In the Sections 5.6 and 5.7 we discuss field constructions for immersed
minimal surfaces that are not embedded. They are the geometric basis for
Tomi’s finiteness theorem and Nitsche’s uniqueness theorem.



Chapter 3

Representation Formulas and Examples
of Minimal Surfaces

In this chapter we present the elements of the classical theory of minimal
surfaces developed during the nineteenth century. We begin by representing
minimal surfaces as real parts of holomorphic curves in C

3 which are isotropic.
This leads to useful and handy formulas for the line element, the Gauss map,
the second fundamental form and the Gauss curvature of minimal surfaces.
Moreover we obtain a complete description of all interior singular points of
two-dimensional minimal surfaces as branch points of C

3-valued power series,
and we derive a normal form of a minimal surface in the vicinity of a branch
point. Close to a branch point of order m, a minimal surface behaves, roughly
speaking, like an m-fold cover of a disk, a property which is also reflected in
the form of lower bounds for its area. Other by-products of the representation
of minimal surfaces as real parts of isotropic curves in C

3 are results on adjoint
and associated minimal surfaces that were discovered by Bonnet.

In Section 3.3 we turn to the representation formula of Enneper and Weier-
strass which expresses a given minimal surface in terms of integrals involving
a holomorphic function μ and a meromorphic function ν. Conversely, any pair
of such functions μ, ν can be used to define minimal surfaces provided that
μν2 is holomorphic. In the older literature this representation was mostly used
for a local discussion of minimal surfaces. Following the example of Osserman
(see [10] and [24]), the representation formula has become very important for
the treatment of global questions for minimal surfaces. As an example of this
development we describe in Section 3.7 the results concerning the omissions
of the Gauss map of a complete regular minimal surface. These results are
the appropriate generalization of Picard’s theorem in function theory to dif-
ferential geometry and culminate in the remarkable theorem of Fujimoto that
the Gauss map of a nonplanar complete and regular minimal surface cannot
miss more than four points on the Riemann sphere. Important steps to the
final version of this result which can also be viewed as a generalization of
Bernstein’s theorem were taken by Osserman and Xavier. The proof given in

U. Dierkes, S. Hildebrandt, F. Sauvigny, Minimal Surfaces,

Grundlehren der mathematischen Wissenschaften 339,
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Section 3.7 is very close to Osserman’s original approach and is due to Mo
and Osserman [1].

Moreover, most of the sophisticated examples of minimal surfaces and,
in particular, of families of complete embedded minimal surfaces and also of
periodic surfaces of zero mean curvature are best described via the Enneper-
Weierstrass formula. We shall not attempt to present a complete picture of
this part of the theory which in recent years has gathered new momentum,
but we shall content ourselves with a few examples mentioned in Section 3.6
and with a very short survey given in the Scholia Section 3.8. Instead of a
careful discussion we include various figures depicting old and new examples
of these fascinating species.

A few of the known classical minimal surfaces are briefly described in
Section 3.5, and these surfaces are illustrated by numerous figures so that the
reader has sufficient visual examples for the investigations carried out in the
following chapters. We do not aim at completeness but we refer the reader
to Nitsche’s encyclopaedic treatise [28] as well as to the literature cited in
Subsection 1 of the Scholia, Section 3.8. A brief survey of some of the newer
examples can be found in Subsections 4 and 5 of the Scholia. For a detailed
presentation of recent results on complete minimal surfaces we in particular
refer to work of H. Karcher [1–5], to the encyclopaedia article by Karcher and
Hoffmann in EMS, and to the collection of papers in GTMS.

The Enneper–Weierstrass representation formula of a minimal surface X :
Ω → R

3 is still somewhat arbitrary since the composition Y = X ◦ τ of
X with a conformal mapping τ : Ω∗ → Ω describes the same geometric
object as X. Thus one can use a suitable map τ to eliminate one of the two
functions μ, ν in the Weierstrass formula; consequently every minimal surface
viewed as a geometric object, i.e., as an equivalence class of conformally equal
surfaces, corresponds to one holomorphic function F(ω). Weierstrass derived a
representation of this kind where F is defined on the stereographic projection
of the spherical image of the considered minimal surface. The Gauss curvature
and the second fundamental form of a minimal surface can be expressed in a
very simple way in terms of the functions μ, ν, or F.

Finally in Section 3.4 we discuss several contributions by H.A. Schwarz to
the theory of minimal surfaces, in particular his solution of Björling’s prob-
lem. This is just the Cauchy problem for minimal surfaces and an arbitrarily
prescribed real analytic initial strip, and it is known to possess a unique solu-
tion due to the theorem of Cauchy–Kovalevskaya. Schwarz found a beautiful
integral representation of this solution which can be used to construct inter-
esting minimal surfaces, such as surfaces containing given curves as geodesics
or as lines of curvature. As an interesting application of Schwarz’s solution we
treat his reflection principles for minimal surfaces.
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3.1 The Adjoint Surface. Minimal Surfaces as Isotropic
Curves in C

3. Associate Minimal Surfaces

Let us begin by recalling the general definition of a minimal surface, given in
Section 2.6.

A nonconstant surface X : Ω → R
3 of class C2 is said to be a minimal surface

if it satisfies the equations

(1) ΔX = 0

(2) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0

on Ω.

If a minimal surface

X(u, v) = (x(u, v), y(u, v), z(u, v))

is defined on a simply connected domain Ω of R
2 =̂ C, then we define an

adjoint surface
X∗(u, v) = (x∗(u, v), y∗(u, v), z∗(u, v))

to X(u, v) on Ω as solution of the Cauchy–Riemann equations

(3) Xu = X∗
v , Xv = −X∗

u

in Ω.
Clearly, all adjoint surfaces to some given minimal surface X differ only

by a constant vector; thus we may speak of the adjoint surface X∗(u, v) of
some minimal surface X(u, v) which is defined on a simply connected domain
Ω of R

2.
The equations (1)–(3) immediately imply

ΔX∗ = 0, |X∗
u |2 = |X∗

v |2, 〈X∗
u, X

∗
v 〉 = 0,

that is, the adjoint surfaceX∗ to some minimal surfaceX is a minimal surface.
Consider an arbitrary harmonic mapping X : Ω → R

3 of a simply con-
nected domain Ω in R2 =̂ C, and let X∗ be the adjoint harmonic mapping to
X, defined as a solution of (3). Then

(4) f(w) := X(u, v) + iX∗(u, v), w = u+ iv ∈ Ω

is a holomorphic mapping of Ω into C3 with components

ϕ(w) = x(u, v) + ix∗(u, v),
ψ(w) = y(u, v) + iy∗(u, v),(5)
χ(w) = z(u, v) + iz∗(u, v),
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which can be considered as a holomorphic curve in C
3. Its complex derivative

f ′ = df
dw is given by

(6) f ′ = Xu + iX∗
u = Xu − iXv,

whence it follows that

(7) 〈f ′, f ′ 〉 = |Xu|2 − |Xv |2 − 2i〈Xu, Xv 〉.

Consequently, the conformality relations (2) are satisfied if and only if the
isotropy relation

(8) 〈f ′, f ′ 〉 = 0

is fulfilled.
A holomorphic curve satisfying relation (8) is said to be an isotropic curve.
Using this notation, we obtain the following result:

Proposition 1. If X : Ω → R
3 is a minimal surface on a simply connected

parameter domain Ω in R2, then the holomorphic curve f : Ω → C3, defined
by (3) and (4), is a nonconstant isotropic curve. Conversely, if f : Ω → C

3

is a nonconstant isotropic curve in C
3, then

(9) X(u, v) := Re f(w), X∗(u, v) := Im f(w)

defines two minimal surfaces X : Ω → R
3 and X∗ : Ω → R

3 on Ω, whether
or not Ω is simply connected.

We say thatX∗(u, v), w ∈ Ω, is an adjoint surface to some minimal surface
X(u, v), w ∈ Ω, if there is an isotropic curve f : Ω → C

3 such that (9) is
satisfied.

If X∗ is adjoint to X, then −X is adjoint to X∗, i.e.,

(10) X∗ ∗ = −X.

The isotropy condition (8) for a curve f(w) = (ϕ(w), ψ(w), χ(w)) means
that the derivatives of the three holomorphic functions ϕ, ψ, χ are coupled by
the relation

(11) ϕ′2 + ψ′2 + χ′2 = 0.

Let us introduce the two Wirtinger operators

(12)
∂

∂w
=

1
2

(
∂

∂u
− i

∂

∂v

)
,

∂

∂w̄
=

1
2

(
∂

∂u
+ i

∂

∂v

)
.

Then the equations (1) and (2) can equivalently be written as

(13) Xww̄ = 0
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and

(14) 〈Xw, Xw 〉 = 0,

respectively, and we also have

(14′) f ′ = 2Xw.

Suppose now that X : Ω → R
3 is a minimal surface on some domain Ω.

Then we have
W =

√
EG − F2 = E = G = 1

2 (E + G).

By restricting ourselves to simply connected subdomains Ω′ of Ω, we can
assume that there is an isotropic curve f such that X = Re f , f = (ϕ, ψ, χ).
Since |f ′ |2 = | ∇X|2 = 4|Xw |2, we obtain

(15) W = |Xu|2 = 1
2 | ∇X|2 = 1

2 |f ′ |2 = 2|Xw |2.

Thus the zeros of W are the common zeros of the three holomorphic functions
ϕ′, ψ′, χ′ and must, therefore, be isolated in Ω, except if X(w) ≡ const, which
is excluded.

Proposition 2. The singular points w of a minimal surface X : Ω → R3 on
a domain Ω are isolated. They are exactly the zeros of the function |Xu| in Ω.

As we shall see, the behavior of a minimal surface in the neighborhood of
one of its singular points resembles the behavior of a holomorphic function
ϕ(w) in the neighborhood of a zero of its derivative ϕ′(w). Therefore the
singular points of minimal surfaces are called branch points. We shall look at
them more closely in the next section.

The following statements are an immediate consequence of the equations
(1)–(3).

Proposition 3. Let X∗ : Ω → R
3 be an adjoint surface to the minimal sur-

face X : Ω → R3.
(i) We have X∗(w) 	≡ const.
(ii) Some point w0 ∈ Ω is a branch point of X if and only if it is a branch

point of X∗.
(iii) Denote by N(w) and N∗(w) the Gauss maps of X(w) and X∗(w)

respectively, which are defined on the set Ω′ of regular points of X in Ω. Then
we have

(16) N(w) ≡ N∗(w) on Ω′.

Moreover, the tangent spaces of X and X∗ coincide:

TwX = TwX
∗ for all w ∈ Ω′,

and also the first fundamental forms of X and X∗ agree:
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IX(V,W ) = IX∗ (V,W ) for all V,W ∈ TwX, w ∈ Ω′,

i.e., the surfaces X and X∗ are isometric to each other. Therefore the Gauss
curvatures K and K∗ of X and X∗ are the same:

K(w) = K∗(w) for all w ∈ Ω′.

The Weingarten maps S and S∗ of X and X∗ respectively differ by a rotation
of 90 degrees on all tangent spaces TwX, with w ∈ Ω′.

Later on, we shall exhibit other relations between X, X∗, and their Gauss
map N . Presently, we want to formulate a consequence of the Propositions 1
and 2.

Proposition 4. Let Ω be a simply connected domain in C, X0 ∈ R
3, w0 ∈ Ω,

and suppose that Φ(w) = (Φ1(w), Φ2(w), Φ3(w)) 	≡ 0 is a holomorphic mapping
of Ω into C

3 which satisfies

(17) Φ2
1 + Φ2

2 + Φ2
3 = 0

on Ω. Then the formula

(18) X(w) = X0 + Re
∫ w

w0

Φ(ω) dω, w ∈ Ω,

defines a minimal surface X : Ω → R3, and, for every X∗
0 ∈ R3, the formula

(19) X∗(w) = X∗
0 + Im

∫ w

w0

Φ(ω) dω, w ∈ Ω,

yields an adjoint surface to X. The branch points of X are exactly the zeros
of Φ.

Conversely, if X : Ω → R3 is a minimal surface defined on a simply con-
nected domain Ω, then there is a holomorphic mapping Φ : Ω → C

3 satisfying
(17) such that

X(w) = X(w0) + Re
∫ w

w0

Φ(ω) dω

holds for arbitrary w,w0 ∈ Ω.

Remark. If Ω is not simply connected, then the integral (18) still defines a
minimal surface on Ω provided that the differential form Φdω only has purely
imaginary periods, i.e., that

∫
γ
Φ(ω) dω is a purely imaginary number for every

closed path γ contained in Ω.

Formula (18) yields
Xw = 1

2Φ.
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More generally, if X : Ω → R
3 is a minimal surface given in the form

X(w) = Re f(w),

where f : Ω → C
3 denotes an isotropic curve with the derivative

f ′ = Φ = (Φ1, Φ2, Φ3),

then we infer from
f ′ = Xu − iXv

that
Xu = ReΦ, Xv = −ImΦ.

Consequently, we obtain

(20) Xu ∧ Xv = Im(Φ2Φ̄3, Φ3Φ̄1, Φ1Φ̄2).

The line element ds = |dX| takes the form

ds2 = λ{du2 + dv2}

where

(21) Λ := |Xu|2 = 1
2 | ∇X|2 = 1

2 |f ′ |2 = 1
2 |Φ|2 = W.

Thus the spherical image N : Ω′ → S2, N = Λ−1Xu ∧ Xv, Ω′ := {w ∈ Ω :
Λ(w) 	= 0}, is given by

(22) N = 2|Φ| −2 Im(Φ2Φ̄3, Φ3Φ̄1, Φ1Φ̄2).

Moreover, the equation f ′ = Xu − iXv implies

f ′ ′ = Xuu − iXuv = −Xvv − iXuv

whence
〈f ′ ′, N〉 = L − iM = −N − iM

on Ω′. Therefore we obtain the well-known relation

(23) L = −N,

expressing the fact that X has zero mean curvature, and also

(24) | 〈f ′ ′, N〉|2 = L2 + M2.

By the observation of H. Hopf (cf. Section 1.3), the function 1
2 (L − N) − iM

is holomorphic on Ω′. Thus we obtain that the function

(25) l(w) := L(w) − iM(w) = 〈f ′ ′(w), N(w)〉

is holomorphic on Ω′.
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We infer from (23) and (24) that the Gauss curvature K of X on Ω′ is
given by

(26) K =
LN − M2

W2
= − L2 + M2

W2
= − |l|2

Λ2

or

(26′) K = −4|Φ| −4| 〈Φ′, N〉|2, Φ = f ′.

We conclude that K(w) ≤ 0 on Ω′, and that K(w) = 0 if and only if l(w) = 0
holds.

Note that K ≤ 0 also follows from H = 0 because of 2H = κ1 + κ2 and
K = κ1κ2.

Umbilical points w of a surface X(w) are regular points where both prin-
cipal curvatures κ1 and κ2 are equal. Since H = 1

2 (κ1 + κ2) = 0 and
K = κ1κ2 ≤ 0, the umbilical points w ∈ Ω′ of a minimal surface X : Ω → R

3

are characterized by the condition

K(w) = 0,

or equivalently, by

L(w) = 0, M(w) = 0, N(w) = 0.

Since umbilical points of X are precisely the zeros of the holomorphic function
l : Ω′ → C, they must either be isolated, or else L(w) ≡ 0, M(w) ≡ 0, and
N(w) ≡ 0 on Ω′ which implies that X(w), w ∈ Ω, is a planar surface, taking
the Weingarten equations (48) of Section 1.2 into account.

In the next section, we shall prove that N(w) approaches a limit N0 as w
tends to some branch point w0 ∈ Ω. This implies that l(w) = L(w) − iM(w)
is actually holomorphic on Ω, since isolated singularities of holomorphic func-
tions are removable if they are continuity points.

By means of the function l(w), w ∈ Ω, it is easy to characterize the asymp-
totic lines and the curvature lines of a nonconstant minimal surface X(w),
w ∈ Ω.

Let ω(t) = (α(t), β(t)), t ∈ I, be a C1-curve in Ω, i.e., ω(I) ⊂ Ω. On
account of Section 1.2, (48), this curve is an asymptotic line of X if and only
if

Lα̇2 + 2Mα̇β̇ + Nβ̇2 = 0,

and, by 1.2, (53), it is a line of curvature if and only if

(EM − FL)α̇2 + (EN − GL)α̇β̇ + (FN − GM)β̇2 = 0.

Here E, . . . ,L, . . . have to be understood as E(ω), . . . ,L(ω), . . . . Since E = G,
F = 0, E = −N, we obtain:
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The asymptotic lines are described by

(27) L(α̇2 − β̇2) + 2Mα̇β̇ = 0,

and the lines of curvature are characterized by

(28) M(α̇2 − β̇2) − 2Lα̇β̇ = 0.

Let us introduce the complex valued quadratic form Ξ(ω̇), depending on ω̇ =
(α̇, β̇), by

(29) Ξ(ω̇) := l(ω)(α̇2 + iβ̇2), l = L − iM.

Then the asymptotic lines and the curvature lines are given by

(30) ReΞ(ω̇) = 0 and ImΞ(ω̇) = 0

respectively, or, in other words, by

(30′) Re l(w)(dw)2 = 0 and Im l(w)(dw)2 = 0,

using the holomorphic quadratic differential l(w)(dw)2.
Collecting these results, we obtain:

Proposition 5. Let X : Ω → R
3 be a minimal surface given by X = Re f ,

where f : Ω → C
3 is an isotropic curve with f ′ = Φ = (Φ1, Φ2, Φ3). Then

its spherical image N(w), w ∈ Ω′, on the set of regular points Ω′ := {w ∈
Ω : Λ(w) 	= 0}, Λ := |Xu|, is given by (22), and its Gauss curvature K on
Ω′ can be computed from (26) or (26′). On Ω′, the curvature K(w) is strictly
negative, except for umbilical points, where K(w) is vanishing. The umbilical
points of X are exactly the zeros of the holomorphic function l(w) = L(w) −
iM(w), w ∈ Ω. If X is a nonplanar surface, then its umbilical points are
isolated. Moreover, the asymptotic lines of X are described by

Re l(w)(dw)2 = 0,

and the curvature lines by

Im l(w)(dw)2 = 0.

Now we want to define the family of associate minimal surfaces to a given
minimal surface X : Ω → R

3 which is given as the real part of some isotropic
curve f : Ω → C

3. That is,

f(w) = X(w) + iX∗(w), w = u+ iv ∈ Ω,

where
〈f ′(w), f ′(w)〉 ≡ 0 on Ω.
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Fig. 1. The bending process leading to the associate surfaces of Enneper’s surface corre-

sponding to the square [−2, 2]2, counter-clockwise from top right: θ = 0, π/6, π/3, and

π/2

Then, for every θ ∈ R, also

(31) g(w, θ) := e−iθf(w), w ∈ Ω

describes an isotropic curve, and

(32) Z(w, θ) := Re{e−iθf(w)} = X(w) cos θ +X∗(w) sin θ

defines a one-parameter family of minimal surfaces with the property that

(33) Z(w, 0) = X(w), Z

(
w,
π

2

)
= X∗(w).

The surfaces Z(w, θ), w ∈ Ω, are called associate minimal surfaces to the
surface X(w), w ∈ Ω. Relation (3) yields

Zu = Xu cos θ − Xv sin θ,
Zv = Xv cos θ +Xu sin θ,

and therefore, by virtue of (2),



3.1 Associate Minimal Surfaces 101

Fig. 2. The associates of Catalan’s surface, counter-clockwise from top right (θ =

0, π/6, π/3, π/2). The image of the curve v = 0 on Catalan’s contained in the plane y = 0

is a geodesic. Its Gauss image on S2 is an arc of a great circle

|Zu|2 = |Zv |2 = |Xu|2 = |Xv |2, 〈Zu, Zv 〉 = 0.

As before, we denote by Ω′ = {w ∈ Ω : Λ(w) 	= 0}, Λ := |Xu|, the domain
of regular points of X in Ω. Then Ω′ is also the domain of regular points for
each of the associate surfaces Z(·, θ), and also the tangent spaces TwX and
TwZ(·, θ) of X and Z(·, θ) coincide for all w ∈ Ω′ and every θ ∈ R. Therefore
the Gauss map N : Ω′ → S2 of X agrees with the spherical image of each of
its associate surfaces. Moreover, we have

(34) 〈dZ(·, θ), dZ(·, θ)〉 = 〈dX, dX〉

for all θ ∈ R, that is, all associate minimal surfaces have the same first funda-
mental form and, therefore, all associate surfaces are isometric to each other.

Consider now, for every θ ∈ R, the holomorphic function

l(θ) = L(θ) − iM(θ) := 〈g′ ′(·, θ), N〉

which characterizes the asymptotic lines, the curvature lines, and the um-
bilical points of the associate minimal surface Z(·, θ). Because of g′ ′(w, θ) =
e−iθf ′ ′(w), we obtain



102 3 Representation Formulas and Examples of Minimal Surfaces

Fig. 3. (a) The Jorge–Meeks catenoid. With courtesy of J. Hahn and K. Polthier.

(b) An associate minimal surface to the Jorge–Meeks catenoid. Courtesy of K. Polthier

and M. Wohlgemuth

(35) l(θ) = e−iθl(0) = [L cos θ − M sin θ] − i[L sin θ + M cos θ]

where l(0) = l = L − iM is the characteristic function for X = Z(·, 0). It
follows that l(π

2 ) = −M − iL. Set

ξ := L(α̇2 − β̇2) + 2Mα̇β̇,

η := −M(α̇2 − β̇2) + 2Lα̇β̇.

Then we obtain

(36)
l(0)(α̇+ iβ̇)2 = ξ + iη,

l

(
π

2

)
(α̇+ iβ̇)2 = η − iξ.

Since X = Z(·, 0) and X∗ = Z(·, π
2 ), we infer from Proposition 5 that the

asymptotic lines of X are the curvature lines of X∗, and conversely, the cur-
vature lines of X are the asymptotic lines of X∗. Thus we have found:

Proposition 6. All associate surfaces Z(·, θ) are in isometric correspondence
to each other. Each associate surface can be obtained from the original surface
X by a bending procedure which, at every stage, passes through a minimal
surface. For each w ∈ Ω, all tangent spaces TwZ(·, θ) coincide as θ varies
in R. Finally if θ and θ′ differ by π

2 , then the asymptotic lines of Z(·, θ)
are the curvature lines of Z(·, θ′), and the curvature lines of Z(·, θ) are the
asymptotic lines of Z(·, θ′).

One calls the bending procedureX �→ Z(·, θ) Bonnet’s transformation. For
w fixed, the points Z(w, θ) describe an ellipse as θ varies between 0 and 2π.
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To the first assertion of Proposition 6 one also can state a converse due to
H.A. Schwarz [1], vol. I, p. 175.

Proposition 7. Let X : Ω → R
3 and X̂ : Ω̂ → R

3 be two minimal surfaces
defined on simply connected domains Ω and Ω̂ respectively. Suppose also that
X and X̂ are isometric to each other, and that Z(·, θ), θ ∈ R, is a family of
associate minimal surfaces to X. Then X̂ is congruent to one of the surfaces
Z(·, θ).More precisely, there are a conformal mapping τ of Ω onto Ω̂, a motion
T of R

3, possibly followed by a reflection, and some θ0 ∈ R such that

T ◦ X̂ ◦ τ = Z(·, θ0).

For a proof of this Proposition we refer to Nitsche [28], § 177, pp. 164–165,
and to Calabi [1].

Let us return to the representation (18) in Proposition 4 which, in princi-
ple, yields all simply connected minimal surfaces. However, we have to satisfy
the isotropy relation (17) which prevents us from inserting arbitrary holo-
morphic functions Φ1, Φ2, Φ3. We can overcome this difficulty in the following
way:

Let Ω be a sufficiently small neighborhood of w0 and suppose that Φ1(w) 	=
0 on Ω. Then we can assume that the holomorphic function

σ(w) :=
∫ w

w0

Φ1(w) dw

yields an invertible mapping of Ω onto Ω∗ := σ(Ω). Let w = τ(ζ), ζ ∈ Ω∗, be
the inverse of ζ = σ(w), w ∈ Ω, and set

h(ζ) :=
∫ ζ

0

Φ2 ◦ τ
Φ1 ◦ τ (ζ) dζ.

Then we obtain

ζ =
∫ w

w0

Φ1(w) dw, h(ζ) =
∫ w

w0

Φ2(w) dw,

and from
Φ2

3 = −{Φ2
1 + Φ2

2}
we infer that

Φ3(w) dw = i
√
Φ1(w)2 + Φ2(w)2 dw = i

√
1 + h′(ζ)2 dζ

if Φ3(w) 	= 0 on Ω. Hence we see that X|Ω is equivalent to the representation
Y := X ◦ τ, which can be written as

(37) Y (ζ) = X0 + Re
(
ζ, h(ζ), i

∫ ζ

0

√
1 + h′(ζ)2 dζ

)

for ζ ∈ Ω∗.
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Conversely, if h(ζ) is holomorphic on Ω∗ and 1 + h′(ζ)2 	= 0 for ζ ∈ Ω∗,
then (37) defines a minimal surface Y (ζ), ζ ∈ Ω∗, provided that Ω∗ is a
simply connected domain in C.

This is the classical representation formula of Monge, stating that ev-
ery minimal surface is locally equivalent to some holomorphic function and,
conversely, that essentially every holomorphic function h generates a mini-
mal surface. In Section 3.3 we shall derive global representation formulas for
minimal surfaces.

3.2 Behavior of Minimal Surfaces Near Branch Points

Let X : Ω → R
3 be a minimal surface on a domain Ω in R

2 =̂ C. For some
w0 ∈ Ω, we choose a disk BR(w0) ⊂⊂ Ω. Then, by virtue of Section 3.1,
Proposition 1, there is an isotropic curve f : BR(w0) → C

3 such that

(1) X(w) = Re f(w)

holds for all w ∈ BR(w0). As we have seen in Section 3.1, the point w0 is a
branch point of X if and only if

(2) f ′(w0) = 0.

We now want to derive an asymptotic expansion for X(w) in the neigh-
borhood BR(w0) of w0, using the formula

(3) f(w) = X(w) + iX∗(w), w ∈ BR(w0).

Suppose that f(w) 	≡ const, and that f ′(w0) = 0. Then there is an integer
m ≥ 1 such that

(4) f (k)(w0) = 0 for 1 ≤ k ≤ m, f (m+1)(w0) 	= 0.

Thus we obtain the Taylor expansion

(5) f(w) = f(w0) +
1

(m+ 1)!
f (m+1)(w0)(w − w0)m+1 + · · ·

on BR(w0), and therefore also

f ′(w) =
1
m!
f (m+1)(w0)(w − w0)m + · · · .

Set X0 := X(w0) and

A =
1
2
(α − iβ) :=

1
2m!

f (m+1)(w0), B :=
2

m+ 1
A.
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Then we conclude from

2Xw(w) = Xu(w) − iXv(w) = f ′(w)

that
Xw(w) = A(w − w0)m +O(|w − w0|m+1) as w → w0,

and
X(w) = X0 + Re{B(w − w0)m+1 +O(|w − w0|m+2)}.

The conformality relation
〈Xw, Xw 〉 = 0

implies that
〈A,A〉 = 0

holds, whence
|α|2 = |β|2, 〈α, β〉 = 0,

and A 	= 0 yields |α| = |β| > 0. Moreover,

Xu(w) = Re f ′(w) = αRe(w − w0)m + β Im(w − w0)m + · · · ,
Xv(w) = −Im f ′(w) = −α Im(w − w0)m + βRe(w − w0)m + · · · ,

where the remainder terms are of order O(|w − w0|m+1). Hence we conclude
that

Xu(w) ∧ Xv(w) = (α ∧ β)|w − w0|2m +O(|w − w0|2m+1) as w → w0.

This implies that N(w) tends to a limit vector N0 as w → w0:

lim
w→w0

N(w) = N0 =
α ∧ β

|α ∧ β| .

Consequently, the Gauss map N(w) of a minimal surface X(w), w ∈ Ω, is
well-defined on all of Ω as a continuous mapping into S2. In fact, N : Ω → S2

is a harmonic mapping of Ω into the unit sphere S2 (cf. Section 5.1) which
satisfies

ΔN +N | ∇N |2 = 0 in Ω.

Therefore N is real analytic (this also follows from the discussion in Sec-
tion 3.2). From formula (6) in Section 1.4 we then infer

|Nu|2 = |Nv |2, 〈Nu, Nv 〉 = 0

and
| ∇N |2 = −K| ∇X|2,

whence also
2|Nu ∧ Nv | = | ∇N |2,
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and formula (44) in Section 1.2 yields

Nu ∧ Nv = KXu ∧ Xv.

Since K ≤ 0, one concludes

ΔN = 2Nu ∧ Nv,

i.e. N is a surface of constant mean curvature one (cf. Chapter 5, and also
Vol. 3, Section 2.3).

We now want to put X into some normal form which will explain the term
branch point. Set

a :=
|α|
m+ 1

=
|β|
m+ 1

and
e1 :=

α

|α| , e2 :=
β

|β| , e3 := e1 ∧ e2 = N0.

Then we can rewrite the formula

X(w) = X0 + Re
{
α − iβ

m+ 1
(w − w0)m+1 +O(|w − w0|m+2)

}

as

X(w) = X0 + ae1 Re(w − w0)m+1 + ae2 Im(w − w0)m+1 +O(|w − w0|m+2).

If we rotate the axes of the given coordinate system in R
3 such that e1, e2,

and e3 point in the directions of the new positive x, y, and z-axes respectively,
we obtain

x(w) + iy(w) = (x0 + iy0) + a(w − w0)m+1 +O(|w − w0|m+2),

z(w) = z0 +O(|w − w0|m+2).
(6)

This normal form of a minimal surface X(w) = (x(w), y(w), z(w)) shows that
a minimal surface X behaves in a neighborhood of one of its branch points
w0 like a branch point of m-th order of a Riemann surface. Thus we shall
denote the integer m, defined by (4), as the order of the branch point w0 of
the minimal surface X. If we define m = 0 for regular points, we may consider
regular points as branch points of order zero.

Remark 1. In Vol. 2, Section 6, we denote the order of a branch point w0

by n, while m is used for the index of w0.

Let us collect some of the previous results in the following

Proposition 1. If w0 ∈ Ω is a branch point of a minimal surface X : Ω →
R

3, then there is a vector A ∈ C
3, A 	= 0, and an integer m ≥ 1, the so-called

order of the branch point w0, such that the following holds:
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Fig. 1. w = 0 is a branch point of order one of Catalan’s surface. The parts of the surface

corresponding to the shrinking neighborhoods [−2n/10, 2n/10]2 for n = 5, 4, 3, 2, 1 illustrate

the convergence of the tangent planes in the vicinity of a branch point, a general property

of all two-dimensional minimal surfaces. Note that the second picture shows an enlarged

detail of the first one, the third one an enlarged detail of the second one, etc.

(7) Xw(w) = A(w − w0)m +O(|w − w0|m+1) as w → w0,

and N is a surface of constant mean curvature one;

(8) X(w) = X0 + Re[B(w − w0)m+1] +O(|w − w0|m+2),

where B = 2
m+1A, and A = 1

2 (α − iβ) is an isotropic vector in C
3 \ {0}:

(9) 〈A,A〉 = 0

or

(9′) |α|2 = |β|2 > 0, 〈α, β〉 = 0, α, β ∈ R
3.

The normal N(w) tends to the limit

(10) N0 =
α ∧ β

|α ∧ β| ,

and the tangent plane of X at w converges to a limiting position as w → w0.
Consequently, the function l(w) = L(w) − iM(w) is holomorphic on Ω,

and the spherical image map N(w) is a continuous map from Ω into S2.
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Next we want to derive a lower bound for the area of minimal surfaces.
Suppose that BR(P ) is a ball in R

3, the center P of which lies on the trace of
some minimal surface X : Ω → R

3 extending beyond BR(P ), i.e., there are no
boundary points of X(Ω) within BR(P ). Let w0 ∈ Ω be a branch point of X
of order m, and suppose that P = X(w0). Then the normal form (6) suggests
that the area of X(Ω) ∩ BR(P ) is at least as large as the area of m+ 1 plane
equatorial disks of BR(P ), provided that the radius R is sufficiently small. In
fact, we can prove:

Proposition 2. Suppose that X : Ω → R
3 is a minimal surface defined on a

bounded simply connected domain Ω. Moreover, let w0 ∈ Ω be a branch point
of order m ≥ 0, X0 = X(w0), and let R > 0 be some number such that

(11) lim inf
k→∞

|X(wk)| ≥ R

holds for every sequence {wk } of points wk ∈ Ω with dist (wk, ∂Ω) → 0 as
k → ∞. Then the area A(X) of the surface X satisfies

(12) A(X) ≥ (m+ 1)π(R2 − |X0|2).

Equality holds if and only if the image of X lies in a plane through the point
X0 which is perpendicular to the line from 0 to X0.

Proof. Since Ω can be mapped conformally onto the unit disk such that w0

is transformed into the origin, we may assume that w0 = 0, X0 = X(0), and
Ω = {w : |w| < 1}.

Then we can find an isotropic curve f : Ω → C
3 satisfying f(0) = X0 =

X(0) and
f = X + iX∗,

where X∗ : Ω → R
3 is an adjoint surface to X with X∗(0) = 0. We can

represent f(w) by the Taylor series

f(w) = X0 +
∞∑

k=m+1

Akw
k, Ak ∈ C

3,

which is convergent for |w| < 1. Applying Cauchy’s integral formula to the
holomorphic function F (w) := 〈f(w), f(w)〉, |w| < 1, it follows that

∫ 2π

0

F (reiθ) dθ = 2πF (0),

and therefore
∫ 2π

0

|X(reiθ)|2 dθ −
∫ 2π

0

|X∗(reiθ)|2 dθ = 2π|X0|2,

for every r ∈ (0, 1).
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On the other hand, we obtain

∫ 2π

0

|f(reiθ)|2 dθ =
∫ 2π

0

|X(reiθ)|2 dθ +
∫ 2π

0

|X∗(reiθ)|2 dθ

= 2π

{
|X0|2 +

∞∑
k=m+1

|Ak |2r2k

}
.

Combining the two identities, we arrive at

∫ 2π

0

|X(reiθ)|2 dθ = 2π|X0|2 + π
∞∑

k=m+1

|Ak |2r2k.

Setting
μ(r) := min

|w|=r
|X(w)|2,

we deduce the estimate

μ(r) ≤ |X0|2 +
1
2

∞∑
k=m+1

|Ak |2r2k.

Moreover, the area A(r) of the image of {w : |w| < r} under the mapping X
is given by

A(r) =
1
2

∫
|w|<r

| ∇X|2 du dv =
1
2

∫ r

0

∫ 2π

0

|f ′(teiθ)|2t dt dθ

=
π

2

∞∑
k=m+1

k|Ak |2r2k.

Thus we infer that

(13)
π

2

∞∑
k=m+2

[k − (m+ 1)]|Ak |2r2k − (m+ 1)π|X0|2 ≤ A(r) − (m+ 1)πμ(r).

By assumption (11), we have lim infr→1 μ(r) ≥ R2, whence

(14)
π

2

∞∑
k=m+2

[k− (m+1)]|Ak |2 +(m+1)π(R2 − |X0|2) ≤ lim
r→1

A(r) = A(X),

and inequality (12) is proved.
Suppose now that equality holds in (12). Then we infer form (14) that

Ak = 0 for k ≥ m+ 2, whence

f(w) = X0 +Am+1w
m+1.
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LetAm+1 = a+ib, a, b ∈ R
3. Since f is isotropic, we obtain 〈Am+1, Am+1〉 = 0,

or |a| = |b|, 〈a, b〉 = 0. Therefore, the vectors e1 := a
|a| and e2 := − b

|b| are
orthonormal, and we have

(15) X(w) = X0 + |a|rm+1{e1 cos(m+ 1)θ + e2 sin(m+ 1)θ}.

This yields
A(X) = (m+ 1)|a|2π.

On the other hand, we have assumed that

A(X) = (m+ 1)π(R2 − |X0|2)

holds. Then we conclude that

(16) |a|2 = R2 − |X0|2.

Set e3 := e1 ∧ e2. Then e1, e2, e3 form an orthonormal frame in R
3, and we

can write

X0 =
3∑

k=1

ckek.

In conjunction with (15), it follows that

|X(eiθ)|2 = (c1 + |a| cos(m+ 1)θ)2 + (c2 + |a| sin(m+ 1)θ)2 + c23
= |X0|2 + |a|2 + 2|a| {c1 cos(m+ 1)θ + c2 sin(m+ 1)θ},

and, on account of (16), we conclude that

|X(eiθ)|2 = R2 + 2|a| {c1 cos(m+ 1)θ + c2 sin(m+ 1)θ}.

Therefore, unless c1 = c2 = 0, we can find an angle θ such that |X(eiθ)| < R,
which contradicts (11). Hence we see that

X0 = c3(e1 ∧ e2),

and formula (15) shows that X(w) lies in an affine plane, perpendicular to
the vector X0, which contains the point with the position vector X0.

Introducing suitable Cartesian coordinates x, y, z in R
3, we obtain the

normal form

x+ iy =
√
R2 − |X0|2wm+1, |w| < 1,

z = 0

for the minimal surface X(w) = (x(w), y(w), z(w)), |w| < 1, in the case that
equality holds in (12).

This completes the proof of Proposition 2. �
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3.3 Representation Formulas for Minimal Surfaces

In Proposition 4 of Section 3.1 we have stated that for every holomorphic map

Φ(w) = (Φ1(w), Φ2(w), Φ3(w)), w ∈ Ω,

of a simply connected domain Ω in C with Φ(w) 	≡ 0 and

(1) 〈Φ,Φ〉 = Φ2
1 + Φ2

2 + Φ2
3 = 0,

the formula

(2) X(w) = X0 + Re
∫ w

w0

Φ(ζ) dζ, w ∈ Ω,

with w0 ∈ Ω and X0 ∈ R
3, defines a minimal surface X : Ω → R

3, and every
such surface can be obtained in this way. At the end of Section 3.1 we have
derived local solutions Φ of the isotropy equation (1). In this section we shall
first determine all (global) holomorphic mappings Φ : Ω → C3 satisfying (1).
This in turn will lead us to the celebrated Enneper–Weierstrass representation
formulas of minimal surfaces which, in particular, can be used to establish
explicit expressions for the normal image, the Gauss curvature, and for the
asymptotic and curvature lines of minimal surfaces.

Lemma 1. If μ(w) is a holomorphic function and ν(w) is a meromorphic
function in a domain Ω in C such that μ(w) 	≡ 0 and that μ has a zero of
order at least 2n where ν has a pole of order n, then the functions

(3) Φ1 =
1
2
μ(1 − ν2), Φ2 =

i

2
μ(1 + ν2), Φ3 = μν

are holomorphic in Ω, and the triple Φ = (Φ1, Φ2, Φ3) satisfies (1) and
Φ(w) 	≡ 0. Conversely, every triple Φ = (Φ1, Φ2, Φ3) 	≡ 0 of holomorphic
functions on Ω satisfying (1) can be written in the form (3) if and only if
Φ1 − iΦ2 	≡ 0.

Proof. The first part of the lemma follows by a straight-forward computation.
In order to prove the converse, we note that the assumption Φ1 − iΦ2 	≡ 0
certainly is necessary for (3) to hold. In fact, (1) is equivalent to

(4) (Φ1 − iΦ2)(Φ1 + iΦ2) + Φ2
3 = 0.

Hence Φ1 − iΦ2 = 0 yields Φ3 = 0, and Φ3 = μν would imply μ = 0 or
ν = 0. Since μ = 0 would give Φ = 0, we would have ν = 0 and therefore
Φ1 = μ/2, Φ2 = iμ/2; thus Φ1 + iΦ2 = 0. Consequently Φ1 = Φ2 = Φ3 = 0,
which contradicts Φ 	≡ 0.
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Suppose now that Φ1 − iΦ2 	≡ 0. Then the formulas

(5) μ := Φ1 − iΦ2, ν :=
Φ3

Φ1 − iΦ2

define a holomorphic function μ and a meromorphic function ν in Ω, satisfying
μν = Φ3. Moreover, (4) implies

(6) Φ1 + iΦ2 = − Φ2
3

Φ1 − iΦ2
= −μν2

which, together with
Φ1 − iΦ2 = μ,

yields
Φ1 =

μ

2
(1 − ν2), Φ2 = i

μ

2
(1 + ν2).

Finally, the relation μν2 = −(Φ1 + iΦ2) shows that the function μν2 is holo-
morphic. Therefore if w0 ∈ Ω is a pole of order n of ν, then w0 is a zero of
order at least 2n for μ. �

In conjunction with (2), this lemma yields the following result:

Theorem 1 (Enneper–Weierstrass representation formula). For ev-
ery nonplanar minimal surface

X(w) = (x(w), y(w), z(w)), w ∈ Ω,

defined on a simply connected domain Ω in C, there are a holomorphic func-
tion μ and a meromorphic function ν in Ω with μ 	≡ 0, ν 	≡ 0 such that μν2

is holomorphic in Ω, and that

x(w) = x0 + Re
∫ w

w0

1
2
μ(1 − ν2) dζ,

y(w) = y0 + Re
∫ w

w0

i

2
μ(1 + ν2) dζ,(7)

z(w) = z0 + Re
∫ w

w0

μν dζ

holds for w,w0 ∈ Ω and X0 = (x0, y0, z0) = X(w0).
Conversely, two functions μ and ν as above define by means of (7) a

minimal surface X : Ω → R
3 provided that Ω is simply connected.

Remark. A point w ∈ Ω is a branch point of a minimal surface X : Ω → R
3

represented by (1) and (2) if and only if Φ1(w) = Φ2(w) = Φ3(w) = 0. Thus,
w ∈ Ω is a branch point of a minimal surface X : Ω → R3 represented by (7)
if and only if both μ and μν2 are vanishing at w. The set of regular points
Ω′ := {w ∈ Ω : Λ(w) 	= 0} is therefore given by

Ω′ = {w ∈ Ω : |μ(w)|(1 + |ν(w)|2) 	= 0}.
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The function ν has an important geometric meaning. It will turn out that
ν is just the stereographic projection of the spherical image N of X onto the
x, y-plane.

Before we prove this, we want to derive explicit expressions for the spher-
ical image N and for the Gauss curvature of a minimal surface X : Ω → R

3

given by

(8) X(w) = Re f(w),

with an isotropic curve f : Ω → R
3 satisfying

f ′ = Xu − iXv = Φ = (Φ1, Φ2, Φ3)(9)

=
(

1
2
μ(1 − ν2),

i

2
μ(1 + ν2), μν

)
,

where μ and ν satisfy the assumptions stated in Theorem 1. Then the function

Λ := |Xu|2 = 1
2 | ∇X|2 = 1

2 |f ′ |2 = 1
2 |Φ|2

can be written as

(10) Λ = 1
4 |μ|2(1 + |ν|2)2,

and the line element ds = |dX| takes the form

ds2 = Λ{du2 + dv2}.

By virtue of Section 3.1 (20), it follows that

Xu ∧ Xv = 1
4 |μ|2{1 + |ν|2}(2 Re ν, 2 Im ν, |ν|2 − 1).

Taking (10) into account, we obtain the representation

(11) N =
1

1 + |ν|2 (2 Re ν, 2 Im ν, |ν|2 − 1)

for the spherical image N : Ω → S2 of X.
In order to compute K, we first note that

f ′ = μ
(

1
2
(1 − ν2),

i

2
(1 + ν2), ν

)

implies

f ′ ′ =
μ′

μ
f ′ + μν′g, g := (−ν, iν, 1),

on {w ∈ Ω : μ(w) 	= 0}. From (11) we infer that

〈N, g〉 = −1.
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Since the zeros of μ are isolated and 〈N, f ′ 〉 = 0, we obtain

〈N, f ′ ′ 〉 = −μν′,

and on account of (25) of Section 3.1, we arrive at

(12) l = L − iM = −μν′.

The branch points of X(w) are removable singularities of l(w) = −μ(w)ν′(w)
since l(w) remains bounded if w approaches such a point. Hence l(w) is holo-
morphic in Ω.

Recall that μν2 is holomorphic in Ω, and that w ∈ Ω is a branch point of
X if and only if both μ(w) = 0 and μ(w)ν2(w) = 0 are satisfied. If Λ(w) 	= 0,
then l(w) = 0 if either ν′(w) = 0, or w is a pole for ν and a zero of at least
third order for μ.

Moreover, the formulas (10) and (12) together with (26) of Section 3.1
yield

(13) K = −
{

4|ν′ |
|μ|(1 + |ν|2)2

}2

for the Gauss curvature of X on Ω′ = {w ∈ Ω : Λ(w) 	= 0}. Then we infer
for any w ∈ Ω′ which is not a pole of ν that K(w) 	= 0 holds if and only if
ν′(w) 	= 0 is satisfied.

Moreover, Proposition 5 of Section 3.1 yields:

A curve γ(t) = α(t) + iβ(t) contained in Ω (with α(t), β(t) ∈ R) describes an
asymptotic line of the minimal surface X if and only if

(14) Re{μ(γ)ν′(γ)γ̇2} = 0,

and the lines of curvature are characterized by

(15) Im{μ(γ)ν′(γ)γ̇2} = 0.

Now we want to give a geometric interpretation of the function ν(w) that
enters into the representation formula (7).

Let us identify the complex plane C = {x + iy : x, y ∈ R} with the x, y-
plane {(x, y, z) : z = 0} in R

3, and let C̄ = C ∪ { ∞} be the compactification
of C with the point at infinity. As usual, we introduce the Riemann sphere
S2 = {(x, y, z) : x2 + y2 + z2 = 1}, and denote by P = (0, 0, 1) its north pole.
Then the stereographic projection

σ : S2 → C̄

is the 1–1-mapping of S2 onto the compactified complex plane C̄ which asso-
ciates each point Q ∈ S2, Q 	= P, with the intersection point ω of the x, y-plane
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Fig. 1. The stereographic projection.

with the straight line through P and Q, whereas P is mapped to ∞ (cf. Fig. 1).
Let ρ : C̄ → S2 be the inverse of σ. Then the image ρ(ω) := (a, b, c) = Q of
some point ω = ξ + iη ∈ C is given by

(16) a =
2ξ

1 + ξ2 + η2
, b =

2η
1 + ξ2 + η2

, c =
ξ2 + η2 − 1
1 + ξ2 + η2

and ρ(∞) = P .
The formula (16) can be written as

(17) ρ(ω) =
1

1 + |ω|2 (2 Reω, 2 Imω, |ω|2 − 1),

and we see that ρ(ω) → (0, 0, 1) = P as |ω| → ∞. A straightforward compu-
tation yields for ω = σ(Q) the formula

(18) ω =
a+ ib
1 − c

.

If we now compare the formula (11) for the spherical image N(w) of a minimal
surface X(w), w ∈ Ω, given by (8) and (9), with the expression (17) for
ρ = σ−1, then we see that

(19) N(w) = ρ(ν(w)),

whence

(20) ν(w) = σ(N(w)).

Thus the meromorphic function ν : Ω → C̄ is nothing but the stereographic
projection of the normal image N of the given minimal surface X:

(21) ν = σ ◦ N, N = ρ ◦ ν.
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Fig. 2. The part of Enneper’s surface corresponding to the rectangle Ω = [−1/2, 1/2]2

floats at the top of the picture; w is mapped to X(w). The unit normal vector N(w) of

Enneper’s surface at the point X(w) is shown twice, one copy has its foot on the surface,

the other one at the origin of space. The Gauss image, i.e. the set of all unit normals of this

part of Enneper’s surface is displayed at the bottom. For minimal surfaces the Gauss map

corresponds to the meromorphic function ν(w) appearing in Weierstrass’s representation

formula (7) via the inverse of the stereographic projection from Ω to S2. The latter is

indicated by the dotted line starting at the north pole P , and for Enneper’s surface ν(w) = w

In particular, w ∈ Ω is a pole of ν if and only if the point N(w) ∈ S2 is the
north pole P .

Furthermore, the mapping

(22) ω = ν(w), w ∈ Ω,

is a biholomorphic mapping of Ω onto Ω∗ := ν(Ω) if the following two condi-
tions are satisfied:

(i) N(w) 	= P for all w ∈ Ω;

(ii) the mapping N : Ω → S2 is injective.
(23)

If ν : Ω → Ω∗ is biholomorphic, then we have ν′(w) 	= 0 for all w ∈ Ω, and
this implies K(w) < 0 on Ω, i.e., X has no umbilical points.

Suppose now that ν : Ω → Ω∗ is a biholomorphic mapping, and let

(24) w = τ(ω), ω ∈ Ω∗,

be its inverse. Then the reparametrization Y = X ◦ τ of the minimal surface
X is again a minimal surface, and
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(25) Y (ω) = X(τ(ω)), ω ∈ Ω∗.

Let us introduce the function

(26) F(ω) :=
1
2
μ(τ(ω))
ν′(τ(ω))

=
1
2
τ ′(ω)μ(τ(ω))

which is holomorphic in Ω∗. Then we infer from (7) the following representa-
tion formula of Weierstrass:

(27) Y (ω) = X0 + Re

⎡
⎢⎣
∫ ω

ω0
(1 − ω2)F(ω)dω∫ ω

ω0
i(1 + ω2) F(ω)dω∫ ω

ω0
2ωF(ω) dω

⎤
⎥⎦

where ω, ω0 ∈ Ω∗, and X0 = X(w0) = Y (ω0), ω0 = ν(w0).
Instead of two (essentially) arbitrary functions μ and ν as in (7), the

expression (27) only involves an arbitrary function F(ω). Conversely, for every
holomorphic function F(ω) 	≡ 0 on a simply connected domain Ω∗ in C, the
formula (27) defines a minimal surface Y : Ω∗ → R

3. In other words, to
each holomorphic function F 	= 0 corresponds some minimal surface, and
vice versa. Thus we have also recovered the result of Monge from the end of
Section 3.1.

From (27), we can derive an integral-free representation formula by intro-
ducing a function F (ω) such that F (3)(ω) = F(ω), and performing some partial
integrations. Let Y = (Y 1, Y 2, Y 3). Then, for suitable constants c1, c2, c3, we
obtain

(28)

Y 1(ω) = Re{(1 − ω2)F ′ ′(ω) + 2ωF ′(ω) − 2F (ω)} + c1,

Y 2(ω) = Re{i(1 + ω2)F ′ ′(ω) − 2iωF ′(ω) + 2iF (ω)} + c2,

Y 3(ω) = Re{2ωF ′ ′(ω) − 2F ′(ω)} + c3.

Weierstrass ([1], pp. 48–50) has used this representation to prove the following
theorem:

If F (ω) is an algebraic function of ω, then (28) defines an algebraic minimal
surface, and conversely, every algebraic minimal surface possesses a parameter
representation Y (ω) of type (28) with an algebraic function F (ω).

Let us now put together the main results for the representation formula
(27). We first note that (27) goes over into (7) if we replace ω and ω0 and
w and w0, Y (ω) and X(w), and set μ(w) := 2F(w) and ν(w) := w. Then we
arrive at the following result:

Theorem 2. Let F(w) be a holomorphic function in a simply connected do-
main Ω of C,F(w) 	≡ 0, and set

(29) Φ(w) = ((1 − w2)F(w), i(1 + w2)F(w), 2wF(w)).
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Then

(30) X(w) = X0 + Re
∫ w

w0

Φ(w) dw, w ∈ Ω,

defines a minimal surface X : Ω → R
3 with the surface normal

(31) N(w) =
1

1 + u2 + v2
(2u, 2v, u2 + v2 − 1), w = u+ iv.

If σ denotes the stereographic projection from the north pole P = (0, 0, 1) of
S2 = {(x, y, z) : x2 + y2 + z2 = 1} onto the x, y-plane, then we have

σ(N(w)) = w.

The line element ds = |dX| on the surface X is given by

(32) ds2 = Λ(w){du2 + dv2}

where

(32′) Λ(w) = |F(w)|2(1 + u2 + v2)2, w = u+ iv.

Thus the set Ω′ := {w ∈ Ω : Λ(w) 	= 0} of regular points of the minimal
surface X is described by

(33) Ω′ = {w ∈ Ω : F(w) 	= 0),

and its Gauss curvature K(w) on Ω′ is given by

(34) K(w) = − 4
|F(w)|2(1 + u2 + v2)4

.

The coefficients L,M,N of the second fundamental form satisfy L + N = 0
and can be obtained from the holomorphic function

(35) l(w) = L(w) − iM(w) = −2F(w), w ∈ Ω.

The branch points w ∈ Ω of X are the zeros of the holomorphic function
F(w), w ∈ Ω. Thus X has no umbilical points since an umbilical point is a zero
of l on the set of regular points Ω′. The directions (du, dv) of the asymptotic
lines are characterized by the equation

(36) Re F(w)(dw)2 = 0,

and the lines of curvature are described by

(37) Im F(w)(dw)2 = 0.
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Finally, the associate minimal surfaces Z(w, θ) to X(w) are given by

(38) Z(w, θ) = X0 + Re
∫ w

w0

e−iθΦ(w) dw;

their Weierstrass function F̃(w, θ) is simply

(39) F̃(w, θ) = e−iθ
F(w).

Conversely, if f : Ω̃ → C
3 is an isotropic map on a simply connected domain

Ω̃ ⊂ C, then the minimal surface

X̃(w) = X0 + Re
∫ w

w0

f ′(w) dw, w ∈ Ω̃,

has an equivalent representation X : Ω → R3 on Ω := σ(Ñ(Ω̃)), given by
(29) and (30), provided that its normal Ñ(w) satisfies condition (23):

(i) Ñ(w) 	= north pole of S2 for all w ∈ Ω̃;

(ii) the mapping Ñ : Ω̃ → S2 is injective.

Remark. In our computation of the Gauss curvature K we have used the
theorema egregium. Yet for minimal surfaces we can obtain K in a much
simpler way, basically by going back to the definition of K. First we note that
the spherical image

N(w) =
1

1 + u2 + v2
(2u, 2v, u2 + v2 − 1), w = u+ iv,

is given by conformal parameters u, v; in fact, a straightforward computation
yields

(40)
|Nu(w)|2 = |Nv(w)|2 =

4
(1 + u2 + v2)2

,

〈Nu(w), Nv(w)〉 = 0.

(Note that N is just the inverse ρ = σ−1 of the stereographic projection
σ : S2 → C̄ restricted to Ω. The equations (40) express the fact that ρ and
therefore also σ are conformal mappings.)

From (40) we obtain for the third fundamental form of X the expression

(41) III(du, dv) =
4

(1 + u2 + v2)2
{du2 + dv2}

whereas (32) implies

I(du, dv) = Λ(w){du2 + dv2}.
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On the other hand, it follows from Section 1.2, (26) that

III(du, dv) = −KI(du, dv)

whence

(42) K(w) = − 4
(1 + u2 + v2)2Λ(w)

.

On account of (32′), this relation is equal to (34).
Another possibility to compute K directly is to employ formula (44) (or

(45)) of Section 1.2.

Goursat has found a procedure to generate from a given minimal surface
X : Ω → R

3 and its adjoint X∗ : Ω → R
3 a one-parameter family of min-

imal surfaces Y (w, κ), w ∈ Ω, where the parameter κ varies in R, κ 	= 0.
The Goursat transformation resembles Bonnet’s transformation described in
Section 3.1 but is less restrictive. It is defined by

(43) Y (w, κ) = X0 + Re
∫ w

w0

Ψ(w, κ) dw

where

(44) Ψ(w, κ) =
((

1
κ

− κw2

)
F(w), i

(
1
κ

+ κw2

)
F(w), 2wF(w)

)
,

and

X(w) + iX∗(w) = X0 +
∫ w

w0

Φ(w) dw,

Φ(w) = ((1 − w2)F(w), i(1 + w2)F(w), 2wF(w)).

If X0 = 0, Y = (ξ, η, ζ), X = (x, y, z), X∗ = (x∗, y∗, z∗), we can write

ξ =
1 + κ2

2κ
x+

1 − κ2

2κ
y∗,

η =
1 + κ2

2κ
y +

κ2 − 1
2κ

x∗,(45)

ζ = z.

For fixed w and varying κ, the points Y (w, κ) describe a branch of a parabola.
Goursat’s transformation maps asymptotic lines into asymptotic lines and

lines of curvature into lines of curvature. For further details, we refer to Gour-
sat [1,2] (first and second mémoire).

Now we shall prove another representation formula, due to Weierstrass,
which is often found in the literature:
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Theorem 3 (Weierstrass representation formula). For every regular
minimal surface X : Ω → R

3 on a simply connected domain Ω, there exist
two holomorphic functions G and H without common zeros such that

x(w) = x0 + Re
∫ w

w0

(G2 − H2) dζ,

y(w) = y0 + Re
∫ w

w0

i(G2 +H2) dζ,(46)

z(w) = z0 + Re
∫ w

w0

2GH dζ

holds for w,w0 ∈ Ω and X0 = X(w0). Conversely, if G and H are two
holomorphic functions on a simply connected domain Ω such that |G(w)|2 +
|H(w)|2 	≡ 0, then (46) defines a nonconstant minimal surface which is regular
if and only if G and H have no zeros in common.

Proof. The second part follows by a straightforward computation. In order to
verify the first part, we consider an arbitrary minimal surface X : Ω → R3

given by

X(w) = X0 + Re
∫ w

w0

Φ(ζ) dζ, w ∈ Ω,

where Φ = (Φ1, Φ2, Φ3) : Ω → C
3 is a holomorphic mapping satisfying

(47) |Φ1|2 + |Φ2|2 + |Φ3|2 > 0

and

(48) (Φ1 − iΦ2)(Φ1 + iΦ2) = −Φ2
3.

The last equation, which is equivalent to (1), implies that every zero of Φ1 −iΦ2

or of Φ1 + iΦ2 is also a zero of Φ3. Then we infer that, because of (47), the two
functions Φ1 − iΦ2 and Φ1 + iΦ2 cannot have common zeros. Since every zero
of Φ2

3 is of even order, it follows that the zeros of both Φ1 − iΦ2 and Φ1 + iΦ2

are of even order. Then the functions

G :=
√

1
2 (Φ1 − iΦ2), H :=

√
− 1

2 (Φ1 + iΦ2)

are single-valued holomorphic functions which, for suitably chosen square
roots, satisfy

2GH = Φ3,

and clearly
G2 − H2 = Φ1, i(G2 +H2) = Φ2.

Moreover, the functions G and H have no common zeros. �
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Remark. 1. If we omit the assumption (47), then not every minimal surface
X(w) = X0 +Re

∫ w

w0
Φ(ζ) dζ can be written in the form (46). For instance, let

Φ1(w) = 3w, Φ2(w) = 5iw, Φ3(w) = 4w,

where Ω is a small disk centered at w = 0. If there were functions G and H
such that

3w = G(w)2 − H(w)2, 5iw = i{G(w)2 +H(w)2}, 4w = 2G(w)H(w),

it would follow that G2(w) = 4w. However, there is no (single-valued) holo-
morphic solution G(w) of this equation in Ω.

2. Weierstrass has derived the representation (30) with Φ given by (29)
from (46), by introducing a new variable

ω =
H(w)
G(w)

=
Φ1(w) + iΦ2(w)

−Φ3(w)

(arranging everything in such a way that the mapping w �→ ω is biholomor-
phic). Then

(Φ1 − iΦ2)(Φ1 + iΦ2) = −Φ2
3

implies that
1
ω

=
Φ1(w) − iΦ2(w)

Φ3(w)
,

and it follows that

G2(w)
dw

dω
=

1
2
(Φ1(w) − iΦ2(w))

dw

dω
= F(ω).

Then one can pass from (46) to the desired equations.

As a remarkable application of the Enneper–Weierstrass representation
formula we present the following1

Theorem of R. Krust. If an embedded minimal surface X : B → R3, B =
{w ∈ C : |w| < 1}, can be written as a graph over a convex domain in a plane,
then the corresponding adjoint surface X∗ : B → R

3 is a graph as well.

First we write the representation formula (7) in a different way. Let us
introduce the two meromorphic functions g and h by

g := ν, h′ := μν.

Then we have
dh = μν dζ,

1 Oral communication of R. Krust to H. Karcher. Our proof is borrowed from Karcher’s

note [3].
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and we can write (7) in the form

(49) X(w) = X(w0) + Re
∫ w

w0

ψ′(ζ) dζ,

where dψ(ζ) = ψ′(ζ) dζ is given by

(50) dψ =
[
1
2

(
1
g

− g

)
,
i

2

(
1
g

+ g
)
, 1
]
dh.

Note that the 1-forms dψ and dh are single-valued on B. The Gauss map
N : B → S2 associated with X is given by

(51) N =
1

1 + |g|2 (2 Re g, 2 Im g, |g|2 − 1).

Proof of Krust’s Theorem. We can assume that X is nonplanar, that it can
be represented as a graph above the x, y-plane, and that N(w) always points
into the lower hemisphere of S2. Then we infer from (51) that the function g
appearing in the Weierstrass representation (49), (50) of X satisfies

(52) |g(w)| < 1 for all w ∈ B.

Moreover, we can also suppose that w0 = 0 and X(w0) = 0. Introducing the
functions σ(w) and τ(w), w ∈ B, by

(53) σ(w) := −
∫ w

0

g

2
dh, τ(w) :=

∫ w

0

1
2g
dh,

we can write the first two coordinate functions x(w) and y(w) of X(w) as

(54) x(w) = Re[σ(w) + τ(w)], y(w) = Re i[τ(w) − σ(w)].

Then the orthogonal projections

(55) π(w) := x(w) + iy(w), π∗(w) := x∗(w) + iy∗(w)

of X(w) and of its adjoint X∗(w) = (x∗(w), y∗(w), z∗(w)) onto the x, y-plane
can be written as

(56) π = τ̄ + σ, π∗ = i(τ̄ − σ).

Pick any two points w1 and w2 in B, w1 	= w2 and set p1 := π(w1), p2 :=
π(w2). Since D := π(B) is a convex domain in the x, y-plane, we can connect
p1 and p2 within D by a line segment L : [0, 1] → D such that L(0) = p1 and
L(1) = p2. Then there is a piecewise smooth curve γ : [0, 1] → B such that
L = π ◦ γ. We can assume that |L̇(t)| = |p2 − p1| for all t ∈ [0, 1] whence

p2 − p1 = L (1) − L(0) = L̇(t) for all t ∈ [0, 1]
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and therefore

(57) p2 − p1 =
[

1
2g(w)

h′(w)γ̇(t) − g(w)
2
h′(w)γ̇(t)

]∣∣∣∣
w=γ(t)

.

Consider the scalar product S of the two vectors p2 −p1 and i[π∗(w2)−π∗(w1)]
of R

2:

S := 〈p2 − p1, i[π∗(w2) − π∗(w1)]〉(58)

=
〈
p2 − p1,−

∫
γ

(
g

2
dh+

1
2g
dh

)〉
.

Since for any two vectors w1, w2 ∈ R
2 =̂ C we have 〈w1, w2〉 = Re(w1w̄2), it

follows from (57) that

S =
∫ 1

0

Re
{[(

g

2
h′ +

1
2g
h′
)

◦ γ
]
γ̇(t)

[(
g

2
h′ − 1

2g
h′
)

◦ γ
]
γ̇(t)} dt

=
∫ 1

0

1
4

|γ̇(t)|2
[

|g(γ(t))|2 − 1
|g(γ(t))|2

]
|h′((γ(t))|2 dt.

Then we infer from (52) that S < 0. Therefore we obtain from (58) that
π∗(w2) − π∗(w1) 	= 0 for any pair of distinct points w1, w2 ∈ B, and we
conclude that the adjoint surface X∗ is a graph.

Remark. Similarly one proves that all associate surfaces X : B → R
3 of a

minimal embedding X : B → R
3 are graphs if X(B) can be written as a graph

over a convex domain in a plane.

3.4 Björling’s Problem. Straight Lines and Planar Lines
of Curvature on Minimal Surfaces. Schwarzian Chains

Given a real analytic strip S in R
3, Björling’s problem is to find a minimal

surface X containing this strip in its interior. This is but a special case of
the general theorem by Cauchy–Kovalevskaya whence we will expect to find a
uniquely determined solution. Following an idea by H.A. Schwarz, this solution
can be given by an explicit formula in terms of the initial data, i.e., in terms
of the prescribed strip S. Schwarz’s solution of the Björling problem yields a
beautiful method for generating minimal surfaces with interesting geometric
properties.

Let us now describe the problem in detail. We consider a real-analytic strip

S = {(c(t), n(t)) : t ∈ I}

consisting of a real-analytic curve c : I → R
3 with ċ(t) 	= 0 (or at least ċ(t) = 0

only in isolated points t ∈ I), and of a real-analytic vector field n : I → R
3

along c, with |n(t)| ≡ 1 and 〈ċ(t), n(t)〉 ≡ 0.
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Fig. 1. A cycloid is the curve generated by a point P on the periphery of a circle with center

C rolling along a straight line. Catalan’s surface, whose part corresponding to −3π/5 ≤ u ≤
13π/5, −2π/5 ≤ v ≤ 0 has been drawn here, solves Björling’s problem to find a minimal

surface passing through the cycloid in such a way that the surface normal coincides with

the cycloid’s principal normal vector. The two parallel projections onto the x, z-plane show

that the curves u = constant (e.g. the curve passing through the points P and Q) are planar

and perpendicular to the x, z-plane. Each of them is, in fact, a parabola having its apex on

the cycloid

We assume that I is an open interval in R.
Björling’s problem consists in finding a minimal surface X : Ω → R3 with

I ⊂ Ω such that the following conditions are satisfied:

(i) X(u, 0) = c(u) for u ∈ I,
(ii) N(u, 0) = n(u) for u ∈ I,

N being the normal of X,N : Ω → R
3.

Theorem 1. For any prescribed real-analytic strip S = {(c(t), n(t)) : t ∈ I},
the corresponding Björling problem has exactly one solution X(u, v), given by

(1) X(u, v) = Re
{
c(w) − i

∫ w

u0

n(w) ∧ dc(w)
}
,

w = u + iv ∈ Ω, u0 ∈ I, where Ω is a simply connected domain with I ⊂ Ω
in which the power-series expansions of both c and n are converging.

Remark. 1. The uniqueness is to be understood in the following sense: If
X̃(u, v), w = u + iv ∈ Ω̃, is another solution, then X(u, v) = X̃(u, v) for
u+ iv ∈ Ω ∩ Ω̃.

2. Formula (1) means the following: One determines holomorphic exten-
sions c(u + iv) and n(u + iv) of the real-analytic functions c(t) and n(t),
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Fig. 2. A large piece of Catalan’s surface generated by the cycloid via Björling’s problem

t ∈ I, to a suitable simply-connected domain Ω with I ⊂ Ω, and then one
determines the line integral

∫ w

u0

n(w) ∧ dc(w) =
∫ w

u0

n(w) ∧ c′(w) dw

where c′(w) is the complex derivative of the holomorphic function c(w).

Proof of Theorem 1. Suppose that X(u, v) is a solution of Björling’s problem,
defined in the simply connected domain Ω, and let X∗ : Ω → R

3 be its adjoint
surface with X∗(u0, 0) = 0, u0 ∈ I. Then

f(w) = X(u, v) + iX∗(u, v), w = u+ iv ∈ Ω,

is an isotropic curve with X = Re f and

f ′ = Xu + iX∗
u = Xu − iXv.

Since Xv = N ∧ Xu, it follows that

f ′ = Xu − iN ∧ Xu

whence
f ′(u) = ċ(u) − in(u) ∧ ċ(u)

and therefore

f(u) = c(u) − i

∫ u

u0

n(t) ∧ dc(t) for all u ∈ I.
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This implies

(2) f(w) = c(w) − i

∫ w

u0

n(w) ∧ dc(w), w ∈ Ω,

since both sides are holomorphic functions of w. Hence any possible solution
X must be of the form (1), which yields the uniqueness.

Now we shall prove that (1), in fact, yields the solution to Björling’s prob-
lem. To this end, we consider the holomorphic curve f : Ω → C

3 defined
by (2). For w ∈ I, we have

Re f ′(w) = ċ(w), Im f ′(w) = −n(w) ∧ ċ(w).

Since the real vectors ċ(w) and ċ(w) ∧ n(w) are orthogonal to each other and
have the same length, we infer that

〈f ′(w), f ′(w)〉 = 0 for all w ∈ I,

and therefore also

〈f ′(w), f ′(w)〉 = 0 for all w ∈ Ω.

Hence X(u, v) = Re f(w), w = u + iv ∈ Ω, is a minimal surface. Since
c(w), n(w), and c′(w) are real for w ∈ I, we infer that

(3) X(u, 0) = Re f(u) = c(u) for u ∈ I,

and
Xu(u, 0) − iXv(u, 0) = f ′(u) = ċ(u) − in(u) ∧ ċ(u), u ∈ I,

whence

(4) Xu(u, 0) = ċ(u), Xv(u, 0) = n(u) ∧ ċ(u).

Moreover, we have
Xv(u, 0) = N(u, 0) ∧ Xu(u, 0).

Because of
〈Xu(u, 0), Xv(u, 0)〉 = 0

and of
〈n(u), ċ(u)〉 = 0, |N(u, 0)| = |n(u)| = 1,

we infer that
N(u, 0) = n(u). �

Corollary 1. Let X(u, v) be the solution of Björling’s problem, given by (1).
Then we have

(5) X(u,−v) = Re{c(w) + i
∫ w

u0

n(w) ∧ dc(w)}, w = u+ iv.
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Proof. The surface X̃(u, v) := X(u,−v) is again a minimal surface with the
normal Ñ(u, v) = −N(u,−v). Hence X̃ solves Björling’s problem for the strip

S̃ = {(c(t),−n(t)) : t ∈ I}

and is, therefore, given by

X̃(u, v) = Re
{
c(w) + i

∫ w

u0

n(w) ∧ dc(w)
}
. �

The formulae (1) and (5) imply the following two symmetry principles
discovered by H.A. Schwarz:

Theorem 2. (i) Every straight line contained in a minimal surface is an axis
of symmetry of the surface.

(ii) If a minimal surface intersects some plane E perpendicularly, then E
is a plane of symmetry of the surface.

In fact, this theorem is an immediate consequence of the following

Lemma 1. Let X(u, v) = (x(u, v), y(u, v), z(u, v)), w = u + iv ∈ Ω, be a
minimal surface whose domain of definition Ω contains some interval I that
lies on the real axis.

(i) If, for all u ∈ I, the points X(u, 0) are contained in the x-axis, then we
have for w = u+ iv ∈ Ω with u ∈ I and w = u − iv ∈ Ω that

x(u,−v) = x(u, v),
y(u,−v) = −y(u, v),(6)
z(u,−v) = −z(u, v).

(ii) If the curve Σ = {X(u, 0) : u ∈ I} is contained in the x, y-plane E,
and if the surface X intersects orthogonally at Σ, then it follows

x(u,−v) = x(u, v),
y(u,−v) = y(u, v),(7)
z(u,−v) = −z(u, v)

for u ∈ I and w,w ∈ Ω.

Proof. (i) Set c(u) := X(u, 0) and n(u) := N(u, 0). By assumption, we have

c(u) = (c1(u), 0, 0), n(u) = (0, n2(u), n3(u)),

and therefore

n(u) ∧ ċ(u) = (0, ċ1(u)n3(u),−ċ1(u)n2(u)).

On account of (1) and (5), we then arrive at the formulae (6).
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Fig. 3. Lines of symmetry of Scherk’s surface demonstrate Schwarz’s first reflection principle

(ii) If X intersects E = {z = 0} at c(u) := X(u, 0) orthogonally, and if
n(u) := N(u, 0), it follows that

c(u) = (c1(u), c2(u), 0), n(u) = (n1(u), n2(u), 0),

whence
n(u) ∧ ċ(u) = (0, 0, n1(u)ċ2(u) − n2(u)ċ1(u)).

In conjunction with (1) and (5), we then obtain the identities (7). �
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Fig. 4. Planes of symmetry in Catalan’s and Henneberg’s surfaces

Lemma 2. Let X(w), w ∈ Ω, be a regular surface of class C3(Ω,R3), and
let c(t) = X(ω(t)), t ∈ I, be a regular curve on X defined by some C3-curve
ω : I → Ω. Then the following holds:

(i) The curve c is both a geodesic and an asymptotic line if and only if it
is a straight line.

(ii) Let c be a geodesic on X. Then c is also a line of curvature if and only
if it is a plane curve.

(iii) Suppose that c is contained in a plane E. Then c is a line of curvature
on X if and only if X intersects E along c at a constant angle ϕ (if ϕ = π

2 ,
then c is a geodesic).

Proof. We may assume that t coincides with the parameter of arc length s. Let
{t(s), s(s),N(s)} be the moving frame along c(s), consisting of the tangent
vector t(s) = ċ(s), the side normal s(s), and the surface normal N(s) =
N(ω(s)). Secondly, we consider the frame {t(s),n(s), b(s)}, where n(s) is the
principal normal, and b(s) = t (s) ∧ n(s) stands for the binormal vector of
c(s). Let us recall the formula (14) of Section 1.2:

(8) ṫ = κgs + κnN,

where κn = κ cos θ is the normal curvature of c, κg = ±κ sin θ the geodesic
curvature of c, cos θ = 〈n,N〉, and

ṫ = κn,

where κ denotes the curvature of c.
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(i) Suppose now that κn(s) ≡ 0 and κg(s) ≡ 0. Then the relation (8)
implies t (s) ≡ const, whence c(s) must be a straight line. Conversely, if c(s)
is a straight line, then ṫ(s) ≡ 0, and therefore κn(s) ≡ 0 as well as κg(s) ≡ 0.
Thus the first assertion is proved.

(ii) Suppose that c(s) is a geodesic line, i.e., κg(s) ≡ 0, or n(s) ≡ ±N(s).
We may assume that n(s) = N(s). Then the identity

ḃ = ṫ ∧ n + t ∧ ṅ = κn ∧ n + t ∧ ṅ = t ∧ ṅ

yields
ḃ = t ∧ Ṅ.

Since Ṅ(s) ∈ Tω(s)X, we can write

(9) Ṅ = γ1t + γ2s,

whence
ḃ = γ2N.

It follows that ḃ(s) ≡ 0 if and only if γ2(s) ≡ 0, that is, if and only if we have
Ṅ(s) ≡ γ1(s)t(s). Thus we conclude that c(s) is planar if and only if c is a
line of curvature.

(iii) Introduce ϕ(s) as the angle between the tangent plane of the surface
at w = ω(s) and the osculating plane of the curve c for the parameter value
s, i.e.,

cosϕ = 〈N, b〉.
Then we obtain

(10)
d

ds
cosϕ = 〈Ṅ, b〉 + 〈N, ḃ〉.

If c is a planar curve, we have ḃ = 0, and it satisfies

−Ṅ = kt, k = κ1 or κ2,

if it is a line of curvature. Hence a planar line of curvature fulfills

d

ds
cosϕ = −k〈t, b〉 = 0

or ϕ(s) ≡ const.
Conversely, suppose that c is a plane curve such that ϕ(s) ≡ const. Then

we have ḃ(s) ≡ 0, and (10) implies

(11) 〈Ṅ(s), b(s)〉 ≡ 0.

Moreover, we can use formula (9) from part (ii):

(12) Ṅ(s) ≡ γ1(s)t(s) + γ2(s)s(s),



132 3 Representation Formulas and Examples of Minimal Surfaces

Fig. 5. The affine spaces shown here are the setting in which a part of Catalan’s surface is

deformed into its adjoint surface. It will be illustrated that if a minimal surface is perpen-

dicular to a plane along a part of the boundary of its domain of definition, then its adjoint

minimal surface maps that part of the boundary onto a straight line perpendicular to that

plane, and vice versa (Section 3.4, Proposition 1)

and (11) yields

(13) Ṅ(s) ≡ γ1(s)t(s) + γ3(s)n(s)

for an appropriate function γ3(s). Thus, for every admissible value of the
parameter s, at least one of the two relations

γ2(s) = γ3(s) = 0 or s(s) = n(s).

must be satisfied. Suppose that, for some admissible value s0, the equation
s(s0) = n(s0) holds. Then we have b(s0) = ±N(s0), i.e. ϕ(s0) = 0. On the
other hand, since ϕ(s) ≡ const, we find ϕ(s) ≡ 0, i.e., b(s) ≡ N(s) or b(s) ≡
−N(s). Since ḃ(s) ≡ 0, we infer that Ṅ(s) ≡ 0 and therefore (12) and (13)
yield γ2(s) ≡ 0 and γ3(s) ≡ 0. Hence in all cases our assumptions imply
γ2(s) ≡ 0 and γ3(s) ≡ 0, whence Ṅ(s) ≡ γ1(s)t (s), which means that c(s) is
a line of curvature. �

Supplement. It is easy to see that the assertions of Lemma 2 remain valid
if X is assumed to be a minimal surface with branch points and if c(t) is
supposed to be regular except for isolated points t ∈ I.

Now we can construct minimal surfaces with interesting special properties
by combining Schwarz’s formula (1) and Lemma 2. Before doing this, we want
to state a few observations, following from Lemma 2, which are pertinent to
the so-called Schwarzian chain problem.

Proposition 1. Let X : Ω → R
3 be a minimal surface with the normal map-

ping N : Ω → S2, and assume that X∗ : Ω → R
3 is an adjoint minimal
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Fig. 6. The bending process for the fundamental part 0 ≤ u ≤ 2π, 0 ≤ v (≤ π) < ∞
of Catalan’s surface into its adjoint surface through the family of its associated surfaces

(counter-clockwise from top right: θ = 0, π/6, π/3, and π/2). Catalan’s surface is perpen-

dicular to y = 0 along v = 0 and maps u = 0 and u = 2π onto straight lines orthogonal to

x = 0. Proposition 1 describes the resulting properties of the adjoint and the Gauss map

surface of X (hence, X∗ has the same normal mapping as X). Choose some
C3-curve ω : I → Ω with ω̇(t) 	= 0 except for isolated points t in the interval
I, and consider the curves c := X ◦ ω and c∗ := X∗ ◦ ω. Both have the same
spherical image γ := N ◦ ω, and the following holds:

(i) If c is a straight arc, i.e. c(I) is contained in some straight line L, then
γ(I) is contained in the great circle C of S2 that lies in the plane E0 through
the origin which is perpendicular to L. Moreover, c is both a geodesic and an
asymptotic line of X, and c∗ is a planar geodesic of X∗. The curve c∗ lies in
some plane E parallel to E0, and X∗ intersects E orthogonally along c∗.

(ii) If c is a planar geodesic on X, i.e. the orthogonal intersection of X
with some plane E, then γ(I) lies in the great circle C = E0 ∩ S2 where E0

is the plane parallel to E with 0 ∈ E0, and c∗ is a straight arc (and hence a
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Fig. 7. Another view of the bending of Catalan’s surface. The curve v = 0 is a geodesic,

and the lines u = 0 and u = 2π are asymptotic lines of the surface. The Gauss images of

these lines lie on great circles of the sphere S2

geodesic asymptotic line) on X∗. Moreover, c∗(I) is contained in some straight
line L perpendicular to E.

The proof of these very useful facts is either obvious or a direct consequence
of Lemma 2 and of Proposition 6 in Section 3.1. In particular, we emphasize
the following observation:

Straight arcs and planar geodesics on a minimal surface X are mapped by the
normal N of X into great circles on the Riemann sphere S2.

Similarly, one sees:

Planar lines of curvature on X are mapped by N into circles on S2.

By virtue of Theorem 2, we also obtain:

Straight arcs and planar geodesics on a minimal surface X are lines of rota-
tional symmetry or of mirror symmetry respectively.
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Fig. 8. A Schwarzian chain problem consisting of two plane faces of a cube and two

straight lines. Its solution can be used to construct periodic minimal surfaces. Lithograph

by H.A. Schwarz

Consider now a minimal surface X : Ω0 → R
3 without branch points, and

a simply connected subdomain Ω of Ω0 with Ω̄ ⊂ Ω0. Suppose also that the
normal N of X yields an injective mapping of Ω0 into S2, and that the bound-
ary of X(Ω̄) consists of finitely many straight arcs and planar geodesics (i.e.,
of orthogonal intersections of X with planes). In other words, the minimal
surface X : Ω̄ → R

3 is spanned into a frame {L1, . . . , Lj , E1, . . . , Ek } consist-
ing of finitely many straight lines L1, . . . , Lj and planes E1, . . . , Ek. Such a
frame is usually called a Schwarzian chain C. The boundary X : ∂Ω → R3 of
the minimal surface X : Ω̄ → R

3 by assumption lies on a Schwarzian chain,
and along its boundary, X is perpendicular to all planar parts of the chain C.
We say that X : Ω̄ → R

3 is a minimal surface solving the Schwarzian chain
problem for the chain C.

By Proposition 1 the boundary N : ∂Ω → S2 of the spherical image
N : Ω̄ → S2 of a solution X : Ω̄ → R3 of a Schwarzian chain problem
consists of circular arcs, all of which belong to great circles on S2. Moreover,
the stereographic projection σ : S2 → C̄ maps circles on S2 onto circles
(or straight lines) in C̄. As described in Section 3.3, we can introduce new
coordinates ω by some holomorphic mapping w = τ(ω), ω ∈ Ω∗, such that
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Fig. 9. A fundamental cell of A. Schoen’s S′ − S′′ cell in a cuboid whose top and bottom

faces are squares. The Schwarzian chain 〈S1, S2, . . . , S6〉 consists of the six faces of the

cuboid. It is spanned by a minimal surface which is clearly not of the type of the disk; it

consists of sixteen congruent pieces. (Varying the surface normal in the branch points of the

Gauss map up and down leads to a one-parameter family of minimal surfaces in cuboids of

different height.) Courtesy of K. Polthier

Fig. 10. A Schwarzian chain consisting of the faces of a hexagonal prism. Courtesy of

K. Polthier

the equivalent representation

Y (ω) := X(τ(ω)), ω ∈ Ω∗,

is defined on a domain Ω∗ bounded by circular arcs, if we assume that N(w) 	=
north pole for w ∈ Ω0. Moreover, there is a holomorphic function F(ω), ω ∈
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Ω∗, with F(ω) 	= 0, such that Y is given by

(14)
Y (ω) = X0 + Re

∫ ω

ω0

Φ(ω) dω, X0 ∈ R
3,

Φ(ω) = ((1 − ω2)F(ω), i(1 + ω2)F(ω), 2ωF(ω)).

The functions ν(w) = σ(N(w)) and l(w) = L(w) − iM(w) are holomorphic
on Ω0, ν yields the inverse of τ , and we have l(w) 	= 0 for w ∈ Ω0.

Fix some w0 ∈ Ω and set

(15) p(w) :=
∫ w

w0

√
l(w) dw, w ∈ Ω̄.

This defines a holomorphic function p(w), w ∈ Ω̄. Since p′(w) =
√
l(w) 	= 0,

we obtain by
ζ = p(w), w ∈ Ω̄,

a conformal mapping of Ω onto some domain Ω∗ ∗ in the ζ-plane. Note that

(16) dζ = p′(w) dw =
√
l(w)(dw)2.

Moreover, we know that the asymptotic lines on X are given by Re l(w)(dw)2

= 0, and the relation Im l(w)(dw)2 = 0 yields the lines of curvature (cf.
Section 3.1, Proposition 5). Thus the ζ-images of the asymptotic lines w =
w(t) lie on straight lines which intersect the real axis at an angle of 45◦ or of
135◦, whereas the lines of curvature w = w(t) are mapped by ζ = p(w) into
straight lines in the ζ-plane which are parallel either to the real axis or to the
imaginary axis.

For the solution X : Ω̄ → R
3 of the Schwarzian chain problem, the bound-

ary ∂Ω consists of arcs corresponding to asymptotic lines and to lines of cur-
vature. Hence the conformal mapping ζ = p(w) defined by (15) maps Ω onto
some polygonal domain Ω∗ ∗ in the ζ-plane. If we compose the two conformal
mappings

τ : Ω∗ → Ω, p : Ω → Ω∗ ∗,

then q = p ◦ τ : Ω∗ → Ω∗ ∗ yields a conformal mapping of Ω∗ onto Ω∗ ∗. By
the arguments given in Section 3.3 (cf. in particular the formulae (12), (26)
and (35)), we obtain from (15) the relation

q(ω) = p(τ(ω)) =
∫ ω

ω0

√
l(τ(ω))τ ′(ω) dω

=
∫ ω

ω0

√
−μ(τ(ω))ν′(τ(ω))τ ′(ω)2 dω

=
∫ ω

ω0

√
−2F(ω) dω,
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Fig. 11. A (generalized) Schwarzian chain made up of two analytic curves connecting two

plane rectangles. The Schwarzian chain problem is to find a minimal surface spanning this

configuration

Fig. 12. This particular Schwarzian chain problem is solved by the part of Henneberg’s

surface corresponding to the rectangle −0.3π ≤ u ≤ 0.3π, 0 ≤ v ≤ π/4. The surface

maps the sides parallel to the v-axis onto the two analytic boundary curves of the chain

whereas the two others correspond to Neil’s parabolas along which the minimal surface is

perpendicular to the two rectangles

that is,

(17) q(ω) =
∫ ω

ω0

√
−2F(ω) dω.

Hence the Weierstrass function F(ω) used in the representation (14) can
be computed from the conformal mapping q : Ω∗ → Ω∗ ∗ by the formula

(18) F(ω) = − 1
2

(
dq(ω)
dω

)2

.

By our assumptions, the mapping τ : Ω∗ → Ω is 1–1. If we also assume that
p : Ω → Ω∗ ∗ is 1–1, then q = p ◦ τ provides a biholomorphic mapping of Ω∗
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onto Ω∗ ∗ whose extension to Ω̄∗ maps the vertices of the circular polygonal
domain Ω∗ into the vertices of the polygonal domain Ω∗ ∗. (Note that the
vertices of Ω∗ are well defined by the chain C since we have assumed that the
normal mapping is defined on Ω̄∗.)

This reasoning, using the mappings τ : Ω∗ → Ω and p : Ω → Ω∗ ∗ together
with symmetry arguments, yields a handy method to solve the Schwarzian
chain problem in many interesting cases by explicit formulas. It can also be
used to construct many specimen of complete and, in particular, of periodic
minimal surfaces. For details, we refer to Karcher [1–3].

During the 19th century, function theoretic methods were the only known
tools for proving existence of minimal surfaces spanning a given boundary con-
figuration. These methods, however, limited the study of existence questions
to frames consisting only of straight lines and planar parts. In the following
chapters we shall develop another approach that is suitable for tackling more
general boundary problems for minimal surfaces. Yet this approach will only
yield the existence of minimal surfaces within a prescribed boundary config-
uration and does not give explicit formulas for solutions of a given boundary
problem. One has to use numerical methods to obtain further information on
the geometric shape of solutions. The classical methods of function theory,
on the other hand, have the appeal that they furnish explicit representation
formulas from which, in principle, one can read off all desired geometric prop-
erties of solutions. Surveys of and references to the classical results can be
found in Riemann [1], Schwarz [2], Weierstrass [1–5], Enneper [1], Darboux
[1], von Lilienthal [1], Blaschke [1], and Nitsche [28,37].

Now we are going to construct minimal surfaces with interesting special
properties by combining Lemma 2 with Schwarz’s solution (1) of the Björling
problem.

Firstly, Lemma 2(i) yields:

Proposition 2. Let S = {(c(t), n(t)) : t ∈ I} be a real analytic strip whose
supporting curve c(t), t ∈ I, is a straight line. Then

X(u, v) = Re
{
c(w) − i

∫ w

u0

n(w) ∧ dc(w)
}
, w = u+ iv,

u0 ∈ I, defines a minimal surface with c(u) = X(u, 0) as geodesic. More-
over, c is also an asymptotic line of X, and the surface normal N(u, v) of X
coincides on I with n, i.e., N(u, 0) = n(u).

Consider now a real analytic strip S = {(c(t), n(t)) : t ∈ I} whose support-
ing curve c is contained in a plane E with a normal vector e which satisfies

〈n(t), e〉 ≡ cosϕ, t ∈ I,

for some constant angle ϕ. Then (1) defines a minimal surface X for which c
is a line of curvature contained in the plane E which intersects X at c under
the constant angle ϕ.
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Conversely, if c(t), t ∈ I, is a real analytic regular curve contained in a
plane E, and if ϕ(t) is a real analytic function, then

S = {(c(t), n(t)) : t ∈ I} with(19)

n(t) := e cosϕ(t) + ċ(t) ∧ e 1
|ċ(t)| sinϕ(t)

is a real analytic strip such that n(t) intersects E at its point of support c(t)
under the angle ϕ(t). By inserting (19) into (1), we obtain:

Proposition 3. Let c(t), t ∈ I, be some real analytic regular curve contained
in a plane E with a normal vector e, and let ϕ be some constant angle. Then,
for w = u+ iv and u0 ∈ I,

X(w) = Re
{
c(w) − ie ∧ [c(w) − c(u0)] cosϕ(20)

− i sinϕ
∫ w

u0

〈c′(w), c′(w)〉1/2 dw e

}

defines a minimal surface containing c(u) = X(u, 0) as a planar line of cur-
vature. Moreover, X intersects E along c at a constant angle ϕ. Finally, if
ϕ = π

2 , then c furnishes a planar geodesic on the surface X given by (20).

By choosing E as the x, z-plane, we in particular obtain:

Proposition 4. If c(t) = (ξ(t), 0, ζ(t)), t ∈ R, is a real analytic regular curve
contained in the x, z-plane E, then

(21) X(u, v) =
(

Re ξ(w), Im
∫ w

0

{ξ′(w)2 + ζ ′(w)2}1/2 dw,Re ζ(w)
)

defines a minimal surface X that intersects E perpendicularly along c. More-
over, the curve c is a planar line of curvature on X; in fact, c is a planar
geodesic.

If c is a smooth regular curve with nonvanishing curvature, then the prin-
cipal normal n and the binormal b of c are well defined. If c is a geodesic or
an asymptotic line on a regular surface X, then the surface normal N of X
can be identified along c with n or with ±b, respectively. Thus we infer from
Theorem 1:

Proposition 5. Let c be a regular real analytic curve of nonvanishing curva-
ture. Then there exists a minimal surface X containing c as geodesic; X is
the only such surface if we assume that the surface normal of X along c coin-
cides with the principal normal N of c. Secondly, there is a minimal surface
Y containing c as an asymptotic line, and there is no other such surface if we
require that the surface normal of Y along c agrees with the binormal b of c.



3.5 Examples of Minimal Surfaces 141

3.5 Examples of Minimal Surfaces

In this section we shall briefly discuss some of the classical minimal surfaces
found in the nineteenth century, as well as some new examples. Detailed ac-
counts and further information can be found in the treatises of Darboux [1]
and Nitsche [28,37], in the lecture notes of Barbosa and Colares [1], and in the
papers and reports of Hoffman [1–4], Hoffman and Meeks [1–10], Karcher [1–
5], Hoffman and Karcher [1] and Karcher and Polthier [1].

3.5.1 Catenoid and Helicoid

Figure 1 shows a part of the catenoid . This minimal surface owes its name to
the fact that it can be obtained by rotating a certain catenary (or chain line)
about some axis. If we choose the z-axis as axis of rotation, all catenoids are
generated by rotating the catenaries

(1) x = α cosh
(
z − z0
α

)
, z ∈ R,

where z0 and α are arbitrary constants, α 	= 0. It is one of the classical results
of the calculus of variations that every nonplanar rotationally symmetric min-
imal surface is congruent to a piece of a catenoid. We leave the simple proof
of this fact as an exercise to the reader.

Clearly, every catenoid is a doubly connected minimal surface which can
be parametrized2 by

x(u, v) = α coshu cos v,
y(u, v) = −α coshu sin v,(2)
z(u, v) = αu

with −∞ < u < ∞, 0 ≤ v < 2π, if we choose z0 = 0.
Note that the representation (2) is defined for all w = u+iv ∈ C. Hence the

mapping X : C → R
3, X(w) := (x(w), y(w), z(w)), represents the universal

covering surface of the catenoid generated by the meridian (1). The mapping
X : C → R3 is harmonic and conformal. In fact, by means of the formulas

(3)
cosh(u+ iv) = coshu cos v + i sinhu sin v,
sinh(u+ iv) = sinhu cos v + i coshu sin v

we infer that

(4) X(w) = Re f(w)

where f : C → C
3 denotes the isotropic curve given by

2 We could as well define y(u, v) = α cosh u sin v; this would amount to a change of the

sense of rotation.
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Fig. 1. (a) Three quarters and all of the subset |z| ≤ 1.4π of the catenoid. The line along

which the model is cut open is a catenary, the curve described by a hanging chain. The

parts contained in large, origin-centered balls indicate a global view of the catenoid. They

look like two parallel plane disks connected by a thin funnel. (b) The part |u| ≤ 1.2π,

0 ≤ v ≤ π, of the catenoid

(5) f(w) = (α coshw,αi sinhw,αw).

In order to find the Weierstrass function F(ω) and the representation Y (ω) of
the catenoid given by Section 3.3, (27), or precisely by

x = α+ Re
∫ ω

1

(1 − ω2)F(ω) dω,

y = Re
∫ ω

1

i(1 + ω2)F(ω) dω,(6)

z = Re
∫ ω

1

2ωF(ω) dω,

we introduce the new variable ω = e−w instead of w = u+ iv. Set r = |ω| and
θ = argω, i.e. ω = reiθ. Then logω = log r + iθ = −u − iv, and we can write
(2) in the new form

x =
α

2

(
1
r

+ r
)

cos θ = Re
α

2

(
1
ω

+ ω
)
,

y =
α

2

(
1
r

+ r
)

sin θ = Re
iα

2

(
1
ω

− ω

)
,(7)

z = −α log r = − Reα logω.
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Fig. 2. (a) A view of the part u ≥ −π/5 of the catenoid sitting on the plane z = −π/5.

(b) The subset −π/5 ≤ z ≤ π/10 shows the behaviour of the catenoid close to its plane of

symmetry z = 0. (c) Two catenoids sitting in the same boundary configuration
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By a straight-forward computation we infer that these equations are identical
with (6) if we choose

(8) F(ω) = − α

2ω2
, ω ∈ C \ {0}.

The geometrical meaning of the parameter ω implies that the normal map
N(ω) of the representation Y (ω) of the catenary given by (6) or (7), respec-
tively, omits exactly two points on the Riemann sphere S2, the north pole
ρ(∞) and the south pole ρ(0). Cut the ω-plane along the positive part of the
real axis and denote the resulting set {ω = ξ + iη : |ω| > 0, 0 < argω < 2π}
by C

′. Then N maps C
′ one-to-one onto S2 minus a meridian connecting ρ(0)

and ρ(∞), and we infer that the area of the spherical image N is given by
∫
dAN =

∫
C′

|Nξ ∧ Nη | dξ dη = 4π.

Since

(9) dAN = −K dAY

(cf. Section 1.2, (44)), we infer that the total curvature of the catenoid has
the value −4π:

(10)
∫

Y

K dA = −4π.

From (5), we read off that the adjoint surface

(11) X∗(w) := Im f(w)

of the catenoid (2) is given by

x∗(u, v) = α sinhu sin v,
y∗(u, v) = α sinhu cos v,(12)
z∗(u, v) = αv

or
X∗ = αY (v) + sinhuZ(v)

with
Y (v) = (0, 0, v), Z(v) = (sin v, cos v, 0).

Thus, for every v ∈ R, the curve X∗(·, v) is a straight line which meets the
z-axis perpendicularly. If we fix u 	= 0, then X∗(u, ·) describes a helix of pitch
2π|α|. This helix is left-handed for α > 0 and right-handed for α < 0. We see
that X∗ is generated by a screw motion of some straight line L meeting the
z-axis perpendicularly, whence X∗ is called helicoid or screw surface. Thus
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Fig. 3. A part of the helicoid, a ruled minimal surface

the helicoid X∗, the adjoint of the catenoid X, is a ruled surface with the
z-axis as its directrix.

We claim that the point set represented by some ruled surface

X(u, v) = a(v) + ub(v)

with a(v), b(v) ∈ R3, which is regular, skew (i.e. [a′, b, b′] 	= 0) and of zero
mean curvature, must be congruent to a piece of the helicoid (E. Catalan [1]).

For the proof of this fact we can assume that |b| = 1 and |b′ | = 1 whence

〈b, b′ 〉 = 0, 〈b′, b′ ′ 〉 = 0.

Moreover, we can also assume that

〈a′(v), b(v)〉 = 0, 〈a′(0), b′(0)〉 = 0

as we can pass from a(v) to a new directrix ā(v) given by

ā(v) = a(v) − λ(v)b(v),

λ(v) = 〈a′(0), b′(0)〉 +
∫ v

0

〈a′(t), b(t)〉 dt.

This yields
F = 0, L = 0,

and the equation H = 0 is equivalent to N = 0 whence 〈N,Xvv 〉 = 0, and
therefore

det(Xu, Xv, Xvv) = 0;
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see Section 1.2, (31) and (43). Collecting the powers of u, we obtain the three
relations

det(b, a′, a′ ′) = 0, det(b, b′, b′ ′) = 0,
det(b, a′, b′ ′) + det(b, b′, a′ ′) = 0.

Since b′ is perpendicular to b and b′ ′, the second relation yields b′ ′ = 〈b′ ′, b〉b.
Hence (b ∧ b′)′ = 0, and we infer from |b| = 1 that the curve b(v) describes
a unit circle in a fixed plane E. Now, from the third relation, we obtain
det(b, b′, a′ ′) = 0, and therefore a′ ′ ∈ E as well as

a′ ′ = 〈a′ ′, b〉b+ 〈a′ ′, b′ 〉b′.

Inserting this expression for a′ ′ into the equation det(b, a′, a′ ′) = 0, we infer

〈a′ ′, b′ 〉 det(b, a′, b′) = 0.

The determinant does not vanish for v close to zero (since its columns are
mutually orthogonal at v = 0 and X(u, v) is a regular surface), and therefore
〈a′ ′, b′ 〉 = 0. Hence 〈a′, b′ 〉 ′ = 0 and 〈a′(0), b′(0)〉 = 0 implies 〈a′, b′ 〉 = 0.
Together with 〈a′, b〉 = 0 we obtain that a′ is perpendicular to span{b, b′ } = E.
Since E does not depend on v, we conclude that also a′ ′ is orthogonal to E.
On the other hand we know that a′ ′ ∈ E. Thus we obtain a′ ′ = 0, i.e., the
directrix a(v) is a straight line, and we have proved that X(u, v) is a piece of
a helicoid since 〈a′, b〉 = 0.

There are various other proofs of this characterization of the helicoid. We
particularly mention the elegant approach of H.A. Schwarz by means of the
solution of a suitable Björling problem (see Schwarz [2], vol. I, pp. 181–182).

The coordinates of the associate surfaces

(13) Z(w, θ) = Re{e−iθf(w)}, θ ∈ R,

to the catenoid X(w) as well as to the helicoid X∗(w) are given by

x = α coshu cos v cos θ + α sinhu sin v sin θ,
y = −α coshu sin v cos θ + α sinhu cos v sin θ,(14)
z = αu cos θ + αu sin θ.

The bending process of deforming the catenoid X into the helicoid X∗ via the
associate surfaces Z(w, θ), 0 ≤ θ ≤ π

2 , is depicted in Fig. 4.

3.5.2 Scherk’s Second Surface: The General Minimal Surface of Helicoidal
Type

Consider the minimal surface Y (ω) defined by
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Fig. 4. The catenoid, a minimal surface of rotation, can be bent through its family of

associate minimal surfaces into the helicoid, its adjoint surface, which is a ruled surface
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Fig. 5. Scherk’s second surface is the family of associate surfaces of the catenoid viewed

in a different way. Every member of this family is generated by a screw motion of a planar

curve. The illustration shows the parts next to the z-axis of the associate surfaces with

parameter values θ = kπ/6 for k = 0, 1, 2, 3

x = α+ Re
∫ ω

1

(1 − ω2)F(ω) dω,

y = Re
∫ ω

1

i(1 + ω2)F(ω) dω,(15)

z = γ + Re
∫ ω

1

2ωF(ω) dω

with the Weierstrass function

(16) F(ω) =
−(α − iβ)

2ω2
, α, β ∈ R, α2 + β2 	= 0.

For α = 0 or β = 0, we obtain a helicoid or a catenoid, respectively. If we
switch by ω = e−w, w = u + iv, from ω to the new variable w, then (15) is
transformed into

x = α coshu cos v + β sinhu sin v,
y = −α coshu sin v + β sinhu cos v,(17)
z = αu+ βv + γ.

This is a parameter representation of a family of minimal surfaces. For a fixed
choice of α, β, γ, we want to denote a surface (17) as Scherk’s second surface.
This family comprises the catenoid (β = 0) and the helicoid (α = 0). In fact,
we can write X(w) in the following way, using the formulae

Xcat(w) = (coshu cos v,− coshu sin v, u)

for the catenoid and
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Fig. 6. Another view of parts of three members of the family of minimal surfaces called

Scherk’s second surface (θ = 60, 75, 90 degrees)

Xhel(w) = (sinhu sin v, sinhu cos v, v)

for the helicoid and choosing γ = 0:

(17′) X(w) = αXcat(w) + βXhel(w).

As we can write

α = c cos θ, β = c sin θ with c =
√
α2 + β2,

it follows that
X(w) = c[cos θXcat(w) + sin θXhel(w)].

In other words, Scherk’s second surface is nothing but an associate surface of
the catenoid.

We want to show that (17) provides a minimal surface of helicoid type
generated by a screw motion of some planar curve z = h(ρ) about the z-axis.
(One can easily prove that there exists no other nonplanar minimal surface
of helicoidal type; cf. Nitsche [28], pp. 62–63). To this end, we introduce
cylindrical coordinates ρ, ϕ, z instead of the Cartesian coordinates x, y, z by

(18) x = ρ cosϕ, y = ρ sinϕ, z = z.

From the first two formulas of (17), we infer that

tan(ϕ+ v) =
sinϕ cos v + cosϕ sin v
cosϕ cos v − sinϕ sin v

=
y cos v + x sin v
x cos v − y sin v

=
β

α
tanhu
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whence

(19) v = −ϕ+ arctan
(
β

α
tanhu

)
.

Moreover, the formulas

ρ2 − α2 = (α2 + β2) sinh2 u, ρ2 + β2 = (α2 + β2) cosh2 u

yield
ρ2 − α2

ρ2 + β2
= tanh2 u < 1

and

tanhu = ±

√
ρ2 − α2

ρ2 + β2
,

where the plus sign holds for u ≥ 0, and the minus sign is to be taken if u ≤ 0.
Thus

u = tanh−1

(
±

√
ρ2 − α2

ρ2 + β2

)
,

and the identity

tanh−1 ξ =
1
2

log
1 + ξ
1 − ξ

for |ξ| < 1

implies

u =
1
2

log

√
ρ2 + β2 ±

√
ρ2 − α2√

ρ2 + β2 ∓
√
ρ2 − α2

.

A brief computation yields

(20) u = − log
√
α2 + β2 + log(

√
ρ2 + β2 ±

√
ρ2 − α2).

Combining the relations (17)–(20), we arrive at

x = ρ cosϕ, y = ρ sinϕ, z = −βϕ+ h(ρ),

h(ρ) := α log(
√
ρ2 + β2 ±

√
ρ2 − α2)(21)

+ β arctan

(
±β
α

√
ρ2 − α2

ρ2 + β2

)
+ γ − α log

√
α2 + β2.

This representation shows that Scherk’s second surface is a helicoidal surface
generated by a screw motion of a planar curve z = h(ρ) about the z-axis.
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3.5.3 The Enneper Surface

The minimal surface X(w), w ∈ C, given by the Weierstrass representation
(29), (30) of Section 3.3 with

F(w) ≡ 1

is the Enneper surface:

X(w) = Re
(∫ w

0

(1 − w2)F(w) dw,
∫ w

0

i(1 + w2)F(w) dw,
∫ w

0

2wF(w) dw
)
,

that is,

(22) X(w) = Re
(
w − w3

3
, iw +

iw3

3
, w2

)
.

Thus the components of the Enneper surface are given by

x = u − 1
3u

3 + uv2,

y = −v − u2v + 1
3v

3,(23)

z = u2 − v2

for w = u+ iv ∈ C.
The Gauss curvature K(w) of X(w) has the form

(24) K(w) = − 4
(1 + |w|2)4 ,

and

(25) N(w) =
1

1 + |w|2 (2 Rew, 2 Imw, |w|2 − 1)

is its spherical image, which omits exactly one point on the Riemann surface,
the north pole ρ(∞). Moreover, the mapping N : C → S2 \ {ρ(∞)} is one-to-
one whence

∫
dAN = 4π, and by

dAN = −K dAX

we obtain

(26)
∫

X

K dA = −4π

for the total curvature of the Enneper surface. This formula can also be verified
by a direct computation using (24) as well as

|dX(w)|2 = |F(w)|2(1 + |w|2)2|dw|2.
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Fig. 7. These views of the subset of Enneper’s surface corresponding to |u| ≤ 2, |v| ≤ 2

reveal the behavior of the surface close to the origin. The planes and lines of symmetry of

the surface can be seen in the two projections onto the coordinate planes
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Fig. 8. Large parts of Enneper’s surface: the parts shown correspond to the squares

[−R, R]2, R = 1, 2, 4, 8, 16, of the parameter plane (clockwise from the top). The shapes

of the rescaled figures converge in view of the convergence of X(Rw)/R3

The trace of the Enneper surface X is congruent to the traces of its associate
surfaces

Z(w, θ) = Re
{
e−iθ

(
w − w3

3

)
, ie−iθ

(
w +

w3

3

)
, e−iθw2

}
.

This can be seen as follows: First we introduce new Cartesian coordinates
ξ, η, z instead of x, y, z by a rotation about the z-axis with the angle − θ

2 :

ξ + iη = e−iθ/2(x+ iy).
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Fig. 9. The (negative of the) Gauss map of the first four parts of Enneper’s surface shown

before

Then the new coordinates ξ(w), η(w) of the associate surface will be obtained
from

ξ + iη = e−iθ/2[Re(e−iθw) + iRe(ie−iθw)]

+ e−iθ/2

[
Re
(

− 1
3
e−iθw3

)
+ iRe

(
ie−iθw

3

3

)]
.

Let us now introduce the new independent variable ζ = e−iθ/2w. Using the
identities

Re c+ iRe ic = c̄, Re c+ iRe(−ic) = c

for c ∈ C, it follows that

ξ + iη = Re(ζ − 1
3ζ

3) + iRe i(ζ + 1
3ζ

3).



3.5 Examples of Minimal Surfaces 155

Fig. 10. For every parameter θ the subset of the associate surface corresponding to a disk

BR centered at w = 0 is obtained by rotating the same subset of Enneper’s surface around

the z-axis by an angle θ/2 (counter-clockwise from top right θ = 0, π/6, π/3, and π/2)

Thus we arrive at

ξ = Re(ζ − 1
3ζ

3),

η = Re i(ζ + 1
3ζ

3),

z = Re ζ2.

Comparing these expressions with (22), we see that Enneper’s surface and its
associates are the same geometric objects.

3.5.4 Bour Surfaces

Bour’s surfaces are given by

X(w) = X0+Re
(∫ w

1

(1−w2)F(w) dw,
∫ w

1

i(1+w2)F(w) dw,
∫ w

1

2wF(w) dw
)
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with the Weierstrass function

(27) F(w) = cwm−2, w ∈ C (or C \ {0}),

where m ∈ R and c ∈ C, c 	= 0. This class of minimal surfaces clearly contains
the previously considered examples where we had m = 0 or m = 2. It was
proved by Bour that the surfaces with (27) are exactly those minimal surfaces
which are developable onto some surface of revolution; cf. Schwarz [2], pp. 184–
185, and Darboux [1], vol. 1, in particular pp. 392–395. Further references can
be found in Nitsche [28], p. 57.

3.5.5 Thomsen Surfaces

Surfaces which are both minimal surfaces as well as affine minimal surfaces in
the sense of Blaschke [1] have been discussed by Thomsen. A comprehensive
discussion and a new derivation of all such surfaces can be found in Barthel,
Volkmer, and Haubitz [1]. It turns out that, besides the Enneper surfaces, all
other surfaces of this type belong to one of two families. The first family is
given by

X(w) = X0 + Reα−2(αβw +
√

1 + β2 sinh αw,(28)

− iα
√

1 + β2w − iβ sinhαw,−i coshαw)

or

x = x0 + α−2{αβu+
√

1 + β2 sinhαu cosαv},
y = y0 + α−2{α

√
1 + β2v + β coshαu sinαv},(29)

z = z0 + α−2{sinhαu sinαv},

and the second family is obtained from the first by interchanging x and y as
well as u and v; here we have assumed α > 0.

For β = 0, the first family yields the left-handed helicoid, the second
family the right-handed helicoid. One passes from one family to the other via
the Enneper surface or some plane, respectively. Four views of a Thomsen
surface are depicted in Fig. 11.

3.5.6 Scherk’s First Surface

The nonparametric surface z = ψ(x, y), defined by

(30) ez =
cos y
cosx

or equivalently, by

(31) z = log
cos y
cosx
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Fig. 11. Four different views of a piece of a Thomsen surface. Courtesy of I. Haubitz
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Fig. 12. The part |z| < 10, |x|, |y| < 5π/2, of Scherk’s first surface seen from z = +∞

Fig. 13. Scherk’s first surface is a non-parametric minimal surface defined on the set

0 < cos(y)/ cos(x) < +∞, which is made up of the black squares of the infinite checker

board shown in the figure

on the black squares

Ωk,l :=
{

(x, y) : |x − πk| < π

2
, |y − πl| < π

2

}
,
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Fig. 14. A closer view of one of the black squares shows the level lines of the surface

emanating from the corners. They satisfy cos(y)/ cos(x) = constant, and the gradient lines

perpendicular to them solve the equation sin(x) sin(y) = constant

Fig. 15. A view of Scherk’s first surface in the vicinity of the plane z = 0. The level curves

z = constant include the straight lines x = ±y as axes of symmetry

k, l ∈ Z, k + l = even, of the infinite checkerboard shown in Fig. 7, satisfies
the nonparametric minimal surface equation

(1 + ψ2
y)ψxx − 2ψxψyψxy + (1 + ψ2

x)ψyy = 0.

This surface is Scherk’s doubly periodic surface which we want to call Scherk’s
first minimal surface; clearly it is periodic both in the x- and in the y-direction.
The graph is repeated on each black square Ωk,l.
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The parameter lines shown in our illustrations of Scherk’s surface all have
the form

x = x(t), y = y(t), z = ψ(x(t), y(t))

with t varying in the interval [0, 1], and ψ(x, y) = log cos y
cos x . Any of the pro-

jected curves (x(t), y(t)) is either a level line or a gradient line of ψ, that is,
we either have

ψ(x(t), y(t)) = const,

or else

dx

dt
= ψx(x, y) = tanx,

dy

dt
= ψy(x, y) = − tan y.

The gradient lines have the interesting property that they are just the solutions
to the equation

sinx sin y = const.

Let us show that Scherk’s surface has the Weierstrass representation

x = −π + Re
∫ w

0

(1 − w2)F(w) dw

y = π + Re
∫ w

0

i(1 + w2)F(w) dw,

z = 0 + Re
∫ w

0

2wF(w) dw

with

(32) F(w) =
2

1 − w4
=

2
(1 + w)(1 − w)(w + i)(w − i)

on the parameter domain C\ { ±1,±i}. This will show that the spherical image
N(w) of the Scherk surface X(w) omits exactly four points on S2, namely the
points ±1 and ± i on the equator. Since

(1 − w2)F(w) =
2

1 + w2
=

i

w + i
− i

w − i
,

i(1 + w2)F(w) =
2i

1 − w2
=

i

w + 1
− i

w − 1
,

2wF(w) =
4w

1 − w4
=

2w
w2 + 1

− 2w
w2 − 1

,

we infer that

(33) X(w) = Re
(
i log

w + i
w − i

, i log
w + 1
w − 1

, log
w2 + 1
w2 − 1

)
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(using the branch with log 1 = 0), and therefore

(34) X(w) =
(

− arg
w + i
w − i

,− arg
w + 1
w − 1

, log
∣∣∣∣w

2 + 1
w2 − 1

∣∣∣∣
)
.

Let us first restrict our considerations to the set {w : |w| ≤ 1, w 	= ±1,±i}.
From

w + i
w − i

=
|w|2 − 1

|w − i|2 + i
w + w̄

|w − i|2 ,
w + 1
w − 1

=
|w|2 − 1
|w − 1|2 +

w̄ − w

|w − 1|2

we infer that

Re
w + i
w − i

=
|w|2 − 1

|w − i|2 ≤ 0, Re
w + 1
w − 1

=
|w|2 − 1
|w − 1|2 ≤ 0,

whence
π

2
≤ arg

w + i
w − i

, arg
w + 1
w − 1

≤ 3π
2

and therefore
− 3π

2
≤ x, y ≤ −π

2
.

We conclude that the mapping (x(w), y(w)), formed by the first two compo-
nents of (34), maps the disk {w : |w| < 1} one-to-one onto the square Ω−1,−1.

It follows that

cosx =
|w|2 − 1

|w − i|2
|w − i|
|w + i| =

|w|2 − 1
|w2 + 1| ,

cos y =
|w|2 − 1
|w − 1|2

|w − 1|
|w + 1| =

|w|2 − 1
|w2 − 1| ,

and therefore
cos y(w)
cosx(w)

=
∣∣∣∣w

2 + 1
w2 − 1

∣∣∣∣ = ez(w).

This proves that the representation X(w), |w| < 1, defined by (34), parametri-
zes Scherk’s surface (30). Moreover, the mapping X(w) = (x(w), y(w), z(w))
has the following properties:

(i) Let |w| = 1, w 	= ±1,±i. Setting w = eiϕ, we obtain
∣∣∣∣w

2 + 1
w2 − 1

∣∣∣∣ = |cotϕ|

and therefore
z(w) = log|cotϕ|.

Furthermore, we have x(eiϕ) = − π
2 , y(eiϕ) = − 3π

2 for all ϕ ∈ (0, π
2 ). Hence

X(w) maps the open arc {eiϕ : 0 < ϕ < π
2 } of the unit circle {|w| = 1}

onto the straight line through (− π
2 ,− 3π

2 , 0) which is parallel to the z-axis.
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More generally, if C1, . . . , C4 denote the four open quartercircles on {|w| = 1}
between the points 1, i,−1,−i and if L1, . . . , L4 are the parallels to the z-
axis through the vertices P1, . . . , P4 of the square Ω−1,−1, then X provides a
1–1-mapping of Cj onto Lj (cf. Figs. 17, 18).

(ii) The rays w = reiθ, r ≥ 0, θ = π
4 ,

3π
4 ,

5π
4 ,

7π
4 satisfy

cosx(w) =
r2 − 1

| ±ir2 + 1| =
r2 − 1

| ±ir2 − 1| = cos y(w),

whence z(w) = 0. Therefore X maps these rays onto straight halflines in the
plane {z = 0} emanating from the center (−π,−π) of Ω−1,−1 and passing
through P1, . . . , P4.

(iii) Similarly, the rays w = reiθ, r ≥ 0, θ = 0, π
2 , π,

3π
2 are mapped by

(x(w), y(w)) onto the straight halflines emanating from (−π,−π) which are
parallel to the x-axis or to the y-axis respectively. (In this case, however, the
curve X(w) is no longer a straight line since z(w) is nonlinear.)

Applying Schwarz’s reflection principle for holomorphic functions and his
symmetry principle for minimal surfaces (Section 3.4, Theorem 2(i)), we in-
fer that a reflection of {w : |w| ≤ 1, w 	= ±1,±i} at one of the circular arcs
C1, . . . , C4 corresponds to a reflection of the surfaceX(w) at one of the straight
lines L1, . . . , L4. More precisely, each of the four quarterdisks B1, . . . , B4 ex-
cised from {w : |w| < 1} by the u- and v-axes corresponds to one of the four
congruent subsquares Q1, . . . , Q4 of Ω−1,−1 having (−π,−π) as one of their
corner points (cf. Fig. 17), and the representation X maps the mirror image
B∗

j of Bj onto the part of Scherk’s surface obtained from the graph over the
square Qj by reflection in the straight line Lj .

This way it becomes clear which part of Scherk’s surface (30) is para-
metrized by the representation X : C \ { ±1,±i} → R

3. If we lift X from
the 4-punctured plane to the corresponding universal covering surface, we
obtain a parametrization of the full Scherk surface in R

3 sitting as a graph
over the black squares of the infinite checkerboard, except for the straight
lines parallel to the z-axis through the vertices of the black squares. These
lines are also contained in the complete Scherk surface. In addition to these
lines of symmetry, we have two further families of parallel lines of symmetry
which sit in the plane {z = 0} and cross each other at an angle of 90 degrees.
As we know, these straight lines are asymptotic lines of the Scherk surface
given by argw = π

4 ,
3π
4 ,

5π
4 ,

7π
4 in the representation X. This can also be seen

by investigating the quadratic differential F(w)(dw)2. Looking at the rays
{w = reiϕ, r ≥ 0, ϕ = fixed}, we obtain (dw)2 = w2

r2 dr
2, and therefore

F(w)(dw)2 =
2w2 dr2

r2(1 − w4)
=

−2 dr2

r2(w + 1
w )(w − 1

w )
.

Setting w = eω, Reω = log r, Imω = ϕ, it follows that

F(w)(dw)2 =
−( 1

2 ) dr2

r2 sinhω coshω
=

−dr2

r2 sinh 2ω
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Fig. 16. Scherk’s first surface is made up of infinitely many copies of its subset contained

in the slab −π/2 < x, y < π/2 of which |z| ≤ 6 is shown here. Each of the four straight

edges of the slab parallel to the z-axis forms a part of the boundary of this fundamental

saddle-shaped piece of the surface, and through repeated reflections in these edges Scherk’s

surface can be built (counter-clockwise from top left)
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Fig. 17. Construction of Scherk’s surface

and

sinh 2ω = sinh(2 log r) cos 2ϕ+ i cosh(2 log r) sin 2ϕ.

Recall now that {w = reiϕ : rg ≥ 0} is an asymptotic line if F(w)(dw)2 ∈ iR,
and that it is a line of curvature if F(w)(dw)2 ∈ R. Thus the formula ϕ =
(2k + 1)π/4, k ∈ Z, yields asymptotic lines, and ϕ = kπ/2, k ∈ Z, provides
lines of curvature. As we had already proved, the curves X(reiϕ), ϕ = kπ/2,
are planar curves contained in planes x = const or y = const respectively,
which turn out to be planes of symmetry for Scherk’s surface. This can either
be verified by a direct computation or by applying formula (31) of Section 3.3.

If we restrict X(w) to the quarter disk

{
w = reiϕ : 0 ≤ r ≤ 1, 0 ≤ ϕ ≤ π

2
, w 	= 1, i

}
,

we obtain a minimal surface within the Schwarzian chain formed by the
straight line L = {x = − π

2 , y = − 3π
2 } and by the planes E1 = {y = −π}

and E2 = {x = −π}. Moreover, X meets the two planes perpendicularly
in planar lines of curvature which are plane geodesics of X. In other words,
this part of X solves the Schwarzian chain problem for the chain {L,E1, E2}.
Then the adjoint surface X∗ solves the chain problem for a chain {E,L1, L2}
consisting of a plane E and two straight lines L1 and L2 (cf. Fig. 19).

We infer that both X and X∗ can be built, by reflection, from elementary
pieces which are solutions of Schwarzian chain problems. This situation is typ-
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Fig. 18. A conformal representation of Scherk’s surface. The part corresponding to a

quarter of the unit disk (a) solves a Schwarzian chain problem for two perpendicular planes

E1, E2 and a straight line L parallel to them (b)

Fig. 19. (a) The corresponding part of the adjoint surface of Scherk’s surface solves a

Schwarzian chain problem for two straight lines L1, L2, and a plane E perpendicular to

E1, E2, and L respectively; cf. Fig. 18. (b) The common (negative of the) Gauss map of

these surfaces

ical of all cases where we have sufficiently many planes and lines of symmetry.
In our present case, the two elementary pieces are mapped by their spherical
image N bijectively onto some spherical triangle bounded by great-circular
arcs (cf. Fig. 19).
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Fig. 20. Part of Henneberg’s surface

Fig. 21. Henneberg’s surface maps the whole v-axis onto a straight line segment of length

2 on the x-axis. (Here we have depicted the part of the surface corresponding to 0 ≤ u ≤
π/5, 0 ≤ v ≤ π.) The end points of these straight line segments are the two branch points

on the surface; the limiting tangent plane in one of them is the x, y-plane, in the other one

it is the x, z-plane

3.5.7 The Henneberg Surface

Many interesting minimal surfaces are obtained by solving Björling’s problem
for a given real analytic strip

Σ = {(c(t), n(t)) : t ∈ I}

where c is a given regular, real analytic curve and n its principal normal. If
we in addition assume that c is contained in a plane E, then the solution X
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Fig. 22. The curves v = 0 and v = π/2 on Henneberg’s surface are Neil parabolas in the

x, z-plane and the y, z-plane respectively. For instance the curve v = 0 satisfies 2x3 = 9y2,

z = 0. Along these curves, the surface is perpendicular to the said planes as is shown in our

views of Henneberg’s surface depicting the parts |u| ≤ 3π/10, 0 ≤ v ≤ π/2

of Björling’s problem for Σ is a minimal surface meeting E perpendicularly
at c, and c is a planar geodesic of X as well as a line of curvature.

Let c be given by

c(t) = (x(t), 0, z(t))(35)
= (cosh(2t) − 1, 0,− sinh t+ 1

3 sinh(3t)).

From the identities

cosh 2t = 1 + 2 sinh2 t, 1
3 sinh(3t) − sinh t = 4

3 sinh3 t

we infer that c(t) is a parametrization of Neil ’s parabola
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Fig. 23. Parallel projections of the part of Henneberg’s surface corresponding to parameter

values |u| ≤ 3π/10, 0 ≤ v ≤ π/2. In particular, one can see that along the two Neil parabolas

the surface meets the planes y = 0 and z = 0 vertically

(36) 2x3 = 9z2

in the plane {y = 0}. By carrying out Schwarz’s construction (cf. formula (1)
of Section 3.4), we obtain as solution X(u, v) = (x(u, v), y(u, v), z(u, v)) of
Björling’s problem the Henneberg surface

x = −1 + cosh 2u cos 2v,
y = sinhu sin v + 1

3 sinh 3u sin 3v,(37)
z = − sinhu cos v + 1

3 sinh 3u cos 3v.

An isotropic curve f : C → C
3 with

X(u, v) = Re f(w), w = u+ iv,

is given by

(38) f(w) =
(

−1 + cosh 2w,−i coshw − i

3
cosh 3w,− sinhw +

1
3

sinh 3w
)
.

Hence the adjoint surface X∗ to X has the form

x∗ = sinh 2u sin 2v,
y∗ = − coshu cos v − 1

3 cosh 3u cos 3v,(39)
z∗ = − coshu sin v + 1

3 cosh 3u sin 3v.

The curve X∗(0, v) = (0,− 4
3 cos3 v,− 4

3 sin3 v) lies in the plane {x∗ = 0} and
satisfies

(40) y∗2/3 + z∗2/3 = ( 4
3 )2/3,
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Fig. 24. The parts of Henneberg’s surface corresponding to the parameter sets kπ/5 ≤
|u| ≤ (k + 1)π/5 for k = 0, 1, 2, 3 (counter-clockwise from bottom right) reveal its large

scale behavior. Every part of the surface shown in one drawing fits into the hole at the

center of the following illustration. In view of the equation X(−u, v + π) = X(u, v) each

such subset of the surface has two layers glued together and therefore appears to consist of

one piece only

that is, the adjoint surface X∗ contains an asteroid. This asteroid is a planar
geodesic of X∗ since X(0, v) = (−1 + cos 2v, 0, 0) is a straight line and, there-
fore, a geodesic asymptotic line of X; cf. Section 3.4, Proposition 1. Thus X∗

meets the plane {x∗ = 0} perpendicularly at an asteroid as trace. The straight
line X∗(u, 0) = (0,− 4

3 cosh3 u, 0) = y-axis is a line of symmetry for X∗.

Remark. Note that in our figures the coordinate function y∗(u, v) in (39) is
replaced by y∗ − 4

3 . In this way, the origin remains invariant if we bend X into
X∗ via the associate surfaces to X.

We furthermore note that both X(u, v) and X∗(u, v) are periodic in v with
the period 2π.
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Fig. 25. Some views of parts of the adjoint of Henneberg’s surface corresponding to |u| ≤
π/5 and |u| ≤ 9π/40. The adjoint surface encloses a central cavity whose boundary is

homeomorphic to the unit sphere and consists of pieces of minimal surfaces. The curve

u = 0 on the adjoint surface is an asteroid in the y, z-plane connecting the four branch

points of the adjoint surface. Along this curve it is orthogonal to the y, z-plane

With the periodicity strip {0 ≤ v < 2π}, Henneberg’s surface contains
four of Neil’s parabolas as planar geodesics:

X(u, 0) =
(

−1 + cosh 2u, 0,− sinhu+
1
3

sinh 3u
)
,

X

(
u,
π

2

)
=
(

−1 − cosh 2u, sinhu − 1
3

sinh 3u, 0
)
,

X(u, π) =
(

−1 + cosh 2u, 0, sinhu − 1
3

sinh 3u
)
,

X

(
u,

3π
2

)
=
(

−1 − cosh 2u,− sinhu+
1
3

sinh 3u, 0
)
.

(41)

However, only two of these four parabolas are geometrically different. Each
of these Neil parabolas is periodically repeated on the surface X(u, v). Hen-



3.5 Examples of Minimal Surfaces 171

neberg’s surface intersects the planes {y = 0} and {z = 0}, respectively, at
these Neil parabolas orthogonally.

We also observe that the branch points w = u + iv of X and X∗ are
given by

u = 0, v =
kπ

2
, k ∈ Z.

Moreover, the point set in R
3 represented by X(u, v) is nonorientable. In

fact, we easily infer from (39) that

X(u, v) = X(−u, v + π), Xu(u, v) = −Xu(−u, v + π),
Xv(u, v) = Xv(−u, v + π)

holds for all w ∈ C. Let ω(t), 0 ≤ t ≤ 1, be a smooth path in C, avoiding
the branch points w = 1

2 ikπ, joining some point (u, v) with (−u, v + π), say
ω(t) = (2t− 1, π(t− 1

4 )), 0 ≤ t ≤ 1. Then ξ(t) := X(ω(t)), 0 ≤ t ≤ 1, describes
a closed regular loop on Henneberg’s surface, but N(ω(0)) = −N(ω(1)). Thus,
if we move around the loop ξ(t) and return to the initial point, the surface
normal N(ω(0)) has changed to its opposite. If we slightly thicken the path
ω(t), its image on X will be a Möbius strip (cf. Figs. 27–29). In other words,
Henneberg’s surface is a one-sided minimal surface.

Let us finally mention that the Weierstrass function F(ω) of Henneberg’s
surface is given by

(42) F(ω) = − i

2

(
1 − 1

ω4

)

if we change the coordinates in R
3 by an orthogonal transformation in such a

way that x, y, z become −z,−y, x, respectively.

3.5.8 Catalan’s Surface

Solving Björling’s problem for the strip consisting of the cycloid

(43) c(t) = (1 − cos t, 0, t − sin t), t ∈ R

and its principal normal, we obtain Catalan’s surface

X(u, v) = (x(u, v), y(u, v), z(u, v)),

given by

x = 1 − cosu cosh v,

y = 4 sin
u

2
sinh

v

2
,(44)

z = u − sinu cosh v.
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Fig. 26. The bending process for Henneberg’s surface into its adjoint surface is so intricate

that it is shown here from two different points of view in a long sequence of illustrations.

We have arranged for Xθ(0) = const for all times θ. The parts of the surfaces depicted here

correspond to |u| ≤ π/10; the parameter values θ of the associated surfaces are 90, 75, 60,

45, 30, 20, 10, 0 degrees respectively. The bending process starts with a part of the adjoint

surface which has a quadruple symmetry and passes through an asteroid in the y, z-plane

connecting the four branch points of the surface, the images of u = 0, v = 0, π/2, π, 3π/2.

The two boundary curves of this part of Henneberg’s adjoint surface alternate between the

halfspaces x > 0 and x < 0. In the bending process from the adjoint surface to Henneberg’s

surface the branch point opposite the origin moves up to the origin of Henneberg’s surface,

another branch point. The other two branch points move up to the x, z-plane and simul-

taneously approach each other until they finally meet on the x-axis. In this process the

surface is folded together so that one ends up with the double layer of Henneberg’s surface

for which half of the surface and two of the four branch points seem to have disappeared
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Fig. 26. c–e.
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Fig. 26. f–h.
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Fig. 27. Henneberg’s surface is non-orientable. After a walk on the surface along the

emphasized circuit you will find yourself upside down. This results from the equations

X(−u, v + π) = X(u, v) and N(−u, v + π) = −N(u, v) valid on Henneberg’s surface

Catalan’s surface X(u, v) contains the cycloid c(u) = X(u, 0) as a planar
geodesic, and we infer from X(0, v) = (1 − cosh v, 0, 0) that the x-axis is both
an asymptotic line and a line of symmetry for X.

The branch points of X lie on the u-axis and are given by (u, v) = (2πk, 0),
k ∈ Z. Their image points X(u, v) are the cusps of the cycloid c(u) = X(u, 0).

Catalan’s surface is periodic in the z-direction: The translation in the
parameter plane mapping u+ iv onto u+ 4π+ iv corresponds to a 4π-shift of
the surface along the z-axis.

Catalan’s surface also has a number of other symmetries; for example,
complex conjugation in the parameter plane (i.e., the map u + iv to u − iv)
corresponds to a reflection of Catalan’s surface across the x, z-plane. Moreover
all planes z = (2k + 1)π, k ∈ Z, are planes of symmetry of Catalan’s surface.

Reflection in the parameter plane across the v-axis (i.e., the mapu + iv
to −u+ iv) corresponds to a reflection of the surface across the x-axis. More
generally, all lines y = 0, z = 2πk, k ∈ Z, are lines of symmetry of Catalan’s
surface.

These properties imply that Catalan’s surface is made up of denumerably
many copies of the fundamental piece corresponding to

0 ≤ u ≤ 2π, 0 ≤ v.

The part v = 0 of the boundary of this fundamental piece lies on the cycloid
and is perpendicular to the x, z-plane as the following equation shows:
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Fig. 28. Henneberg’s surface contains a minimal Möbius band with a C1-smooth boundary

curve (a). It corresponds to the quarter of the annulus in the parameter plane shown in (b)

Xv(u, 0) = (0, 2 sin(u/2), 0) for all u ∈ R.

The other two boundaries of this fundamental piece, u = 0 and u = 2π lie
on the x-axis and the straight line y = 0, z = 2π parallel to it respectively.
Repeated reflections across the straight lines on the boundary and across the
x, z-plane will then build up the complete surface as shown in our illustrations.

Consider now the rolling wheel in the plane {y = 0} which is generating
the cycloid (43). If we introduce the complex coordinates ξ = x + iz in the
x, z-plane, the center of the wheel is described by ξ = 1 + iu, and the cycloid
is given by ξ = 1 + iu − eiu where u denotes the rotation angle of the rolling
wheel which generates the cycloid. Let R := {(1 + iu) − (ρ + 1)eiu : ρ > 0}
be the ray on the straight line through the centerpoint 1 + iu and the point
c(u) := 1+iu−eiu on the cycloid, emanating at c(u) and pointing in direction
of −eiu.

For fixed u ∈ R, the projection of X(u, v) onto the plane {y = 0} is given
by

ξ = 1 + iu − eiu cosh v.

Hence the curve X(u, v), v ∈ R, lies in the plane E that is perpendicular to
the x, z-plane and contains the ray R. Using Cartesian coordinates ρ and y
in E, we can describe X(u, ·) by the formulas
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Fig. 29. The projections onto the three coordinate planes convey the shape of this Möbius

band. Look at the x, y-projection (a) of the Möbius band, then turn it around the x-axis

to obtain the x, z-projection (b). Finally rotate it around the z-axis to end up with the

y, z-projection (c)

ρ = cosh v − 1 = 2 sinh2 v

2
,

y = 4 sin
u

2
sinh

v

2

(45)

with v ∈ R. Hence X(u, ·) yields a parametrization of the parabola

(46) y2 = aρ

with a := 8 sin2 u
2 in the plane E. Thus Catalan’s surface X is swept out

by a one-parameter family of parabolas P(u), u ∈ R. The vertex of P(u)
moves on the cycloid c(u), and the plane E(u) of P(u) intersects the x, z-
plane perpendicularly and contains the straight line through c(u) and the
center ξ = 1 + iu of the rolling wheel.

From (3) and (44) we infer that

X(u, v) = Re f(w), w = u+ iv,
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Fig. 30. Catalan’s surface as seen from the halfplane y = 0, x > 0. All points of Catalan’s

surface remain outside the parabolic cylinder 8(x − 2) > y2, but the curves v = (2k + 1)π

on Catalan’s surface lie on its boundary

Fig. 31. The view of Catalan’s surface from the opposite halfplane y = 0, x < 0 is quite

different. The surface partitions the halfspace x < 0 into boxes of rhomboid cross sections

where f : C → C
3 is an isotropic curve given by

(47) f(w) =
(

1 − cosh(iw), 4i cosh
(
iw

2

)
, w + i sinh(iw)

)
.

This implies that the adjoint surface X∗(u, v) of Catalan’s surface has the
representation

x∗ = sinu sinh v,

y∗ = 4 cos
u

2
cosh

v

2
,(48)

z∗ = v − cosu sinh v
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Fig. 32. Catalan’s surface is made up of infinitely many copies congruent to its fundamental

subset defined by 0 ≤ u ≤ 2π, 0 ≤ v and shown here (for v ≤ π). Every curve u = constant

defines a parabola on the surface having its apex on the cycloid v = 0 along which the

surface is perpendicular to the x, z-plane. The parabolas u = 0 and u = 2π degenerate into

straight lines, and z = π is another plane of symmetry of the surface

with the y-axis as line of symmetry and the y, z-plane as plane of symmetry.
The adjoint surface X∗ intersects the plane {x = 0} perpendicularly along
the curve

X∗(0, v) =
(

0, 4 cosh
v

2
, v − sinh v

)
.

Points (x, y, z) on Catalan’s surface satisfy the following inequality

8(x − 2) ≤ y2,
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Fig. 33. Reflecting the fundamental piece defined by 0 ≤ u ≤ 2π, 0 ≤ v in the x, z-plane

yields the part 0 ≤ u ≤ 2π of Catalan’s surface. According to the reflection principle every

minimal surface which is perpendicular to a plane along a part of its boundary can be

extended by reflection as a minimal surface (Section 4.8)

Fig. 34. (a) The part of Catalan’s surface obtained by reflecting the fundamental piece

0 ≤ u ≤ 2π, v ≥ 0 in the x-axis. (b) Repetition of this reflection

i.e., the surface avoids the parabolic cylinder defined by this inequality. This
is illustrated in Figs. 30 and 32; note also that the curves u = (2k + 1)π,
k ∈ Z, lie on the boundary of the cylinder.
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Fig. 35. Starting from the fundamental piece, the complete Catalan surface can be built

by repeated reflections across straight lines and the z, x-plane

Fig. 36. Construction of Catalan’s surface via a Björling problem corresponding to cycloid

The estimate can be obtained by using the following formulas for the
trigonometric and hyperbolic functions:

y2 = 16 sin2(u/2) sinh2(v/2) = 4(1 − cos(u))(cosh(v) − 1)
= 4(−1 − cos(u) cosh(v) + cosh(v) + cos(u)),

x − 2 = −1 − cos(u) cosh(v),

cosh(v) cos(u) ≥ − cos(u) cosh(v) + cos(u)
≥ − cos(u) cosh(v) − 1 = x − 2,

which clearly imply 8(x − 2) ≤ y2.
Finally we note that, except for a suitable orthogonal transformation of

the Cartesian coordinates in R
3, the Weierstrass function of Catalan’s surface

is of the form

F(ω) = i
(

1
ω

− 1
ω3

)
.
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Fig. 37. Schwarz’s surface. Lithograph by H.A. Schwarz

Fig. 38. Extension of Schwarz’s surface by reflection. Lithograph by H.A. Schwarz

Remark. In our figures, we have instead of (48) used a translated surface,
given by

(48′) y∗ = 4 cos
u

2
cosh

v

2
− 4.

Then the origin is kept fixed if one deforms X into X∗.

3.5.9 Schwarz’s Surface

This celebrated surface is a disk-type minimal surface X : B → R
3 which

is bounded by a (nonplanar) quadrilateral Γ , see Fig. 37. By the general
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Fig. 39. A part of Schwarz’s periodic surface. Courtesy of O. Wohlrab

theory to be developed in the following, there is exactly one such minimal
surface which, by the reflection principle, can be continued without limit as a
minimal surface if we reflect it at its boundary edges. If the edges are equally
long and if the angles at the vertices are π/3, then we obtain an embedded
triply-periodic minimal surface. Its adjoint surface is also triply periodic and
embedded. It can be obtained by spanning a symmetric quadrilateral with two
angles of π/2 and two angles of π/3. Of course, H.A. Schwarz found these two
surfaces explicitly (by means of hyperelliptic integrals using the Weierstrass
representation formula Section 3.3 (27) with the Weierstrass function

F(ω) =
κ√

1 − 14ω4 + ω8

where κ is a suitable positive constant). As this representation was carefully
described by Schwarz himself (see [2], vol. 1) as well as by Bianchi [1] and
Nitsche [28,37], we refer the reader to these sources for the study of the clas-
sical approach.

3.6 Complete Minimal Surfaces

In this section we want to consider global minimal surfaces X : M → R
3 in

R
3 defined on Riemann surfaces M without boundary.

Let us assume that M is a two-dimensional manifold without boundary
which is endowed with a complex (or: conformal) structure c. Such a structure
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c is an atlas of charts ϕ : G → R
2 with the property that the transition map

ϕ◦ϕ̃−1 between any two charts ϕ : G → R
2 and ϕ̃ : G̃ → R

2 is a biholomorphic
mapping of ϕ̃(G∩G̃) onto ϕ(G∩G̃). A pair (M, c) consisting of a two-manifold
M and of a complex structure c is called a Riemann surface.

A mapping X : M → R
3 is harmonic if, for any chart ϕ : G → R

2, the
mapping X := X ◦ϕ−1 is harmonic. Since the composition X ◦χ of a harmonic
mappingX with a conformal (i.e., biholomorphic) mapping χ is also harmonic,
this definition of harmonicity of X is compatible with the complex structure c.

Secondly, we call a nonconstant mapping X : M → R
3 a minimal surface

with the parameter domain M if, for any chart ϕ : G → R
2, the mapping

X := X ◦ ϕ−1 is a minimal surface in the sense of Section 2.6. That is, for
any chart {G,ϕ} of the structure c, the map X(w) = X(u, v) defined by
X := X ◦ ϕ−1 satisfies

(1) ΔX = 0

and

(2) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0.

Again this definition of a minimal surface is compatible with the conformal
structure c of M . This can be seen as follows. The map Φ(w) = Xu(u, v) −
iXv(u, v), w = u+ iv, is holomorphic if and only if X is harmonic. Moreover,
if Φ = (Φ1, Φ2, Φ3) is holomorphic, then also

〈Φ,Φ〉 = Φ2
1 + Φ2

2 + Φ2
3

is holomorphic, i.e. 〈Xw, Xw 〉 dw2 is a holomorphic quadratic differential.
Thus, for any harmonic X, the equations (2) are equivalent to the fact that
the holomorphic quadratic differential 〈Xw, Xw 〉 dw2 vanishes, and we see that
the equations (1) and (2) are preserved with respect to biholomorphic changes
of the variables w = u+ iv. Hence the definition of minimality is compatible
with the structure c.

A minimal surface X : M → R3 defined on a Riemann surface M as
parameter domain will be called a global minimal surface.

A global minimal surface X : M → R
3 is said to be regular if, for any chart

{G,ϕ} of M , the surface X = X ◦ϕ−1 is regular. Moreover, p0 ∈ M is said to
be a branch point of X if, for some chart {G,ϕ} satisfying p0 ∈ G, the point
w0 = ϕ(p0) is a branch point of X = X ◦ ϕ−1. It can easily be seen that this
definition of a branch point holds for any chart {G,ϕ} with p0 ∈ G if it holds
for a single one, and the order of the branch point is independent of the chart.

The Gauss map N : M → S2 of a global minimal surface X : M → R
3 is

defined by means of the charts {G,ϕ} of the conformal structure c of M by

N(ω) := N(ϕ(ω))

where
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N = |Xu ∧ Xv | −1Xu ∧ Xv

is the surface normal of X = X ◦ ϕ−1. This definition of N holds in the
classical sense if X is free of branch points. Otherwise, if p0 is a branch point
of X and w0 = ϕ(p0), then N(w0) is defined by N(w0) = limw→w0 N(w), and
correspondingly,

N(p0) = lim
ω→p0

N(ω).

This definition of N is compatible with the structure c ofM since the transition
maps ϕ ◦ ϕ̃−1 between charts are biholomorphic and therefore orientation
preserving.

Remark. If one admits parameter domains (M, c) with a structure c where
the transition maps ψ := ϕ ◦ ϕ̃−1 are not necessarily holomorphic but either
holomorphic or antiholomorphic (i.e., either ψ or ψ̄ is holomorphic), then we
include also nonorientable parameter domains such as the Klein bottle into
the class of admissible parameter domains of minimal surfaces. For instance,
the minimal surface X : C → R

3 defined by

X(w) := Re
[

i

p(w)
(w5 − w),−i(w5 + w),

2
3
(w6 + 1)

]
+
(

0, 0,
1
2

)
,

p(w) := w6 +
√

5w3 − 1, w ∈ C,

is a minimal surface of the topological type of the projective plane (see Pinkall
[1]). Its inversion in S2, given by Z(w) := |X(w)| −2X(w), is a Willmore
surface, i.e., a critical point of the functional

∫
H2 dA (see Fig. 1).

Again it makes sense to define minimal surfaces X : M → R3 by means of
equations (1) and (2) which are to be satisfied by X = X ◦ ϕ−1 for any chart
{U,ϕ} of the structure c. In this way we are led to nonorientable minimal
surfaces such as the Henneberg surface. However, we can always pass from
M to the orientable double-cover M̃ of M , and X can be lifted as a minimal
surface from M to M̃ . Thus nothing is lost if we assume in the sequel that M
is orientable.

From now on we want to restrict our attention to regular and orientable
global minimal surfaces X : M → R

3. On the parameter domain M of such
a manifold we can introduce a Riemannian metric 〈〈ξ, η〉〉 as pull-back of the
Euclidean metric of R

3 toM via the mapping X. Introducing local coordinates
w = u1 + iu2 = ϕ(ω) by means of a chart {G,ϕ}, the induced metric 〈〈ξ, η〉〉
is given by

(3) 〈〈ξ, η〉〉 = 〈ξαXuα , ηβXuβ 〉

for ξ = (ξ1, ξ2), η = (η1, η2), where X = X ◦ ϕ−1. In other words, we have

(4) 〈〈ξ, η〉〉 = gαβ(w)ξαηβ

where gαβ(w) = 〈Xuα(w), Xuβ (w)〉.
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Fig. 1. A photograph of a model of the Wilmore surface Z : C → R3 which is exhibited

at the entrance to the library of the Mathematics Research Institute Oberwolfach (Black

Forest). Since Z(C) is topologically a projective plane, the surface Z is a realization of a

Boy surface (see Hilbert and Cohn-Vossen [1], pp. 276–283). Courtesy of Archive of Math-

ematisches Forschungsinstitut Oberwolfach

Definition 1. A regular global minimal surface X : M → R
3 is said to be

complete if its parameter domain M endowed with the induced Riemannian
metric 〈〈 ·, · 〉〉 of R

3 via X is a complete Riemannian manifold.

We recall that a Riemannian manifold M with a metric 〈〈·,· 〉〉 is said to be
complete if it is a complete metric space with respect to its distance function
d(p, q). Here the distance d(p, q) of any two points p, q of M is defined as
infimum of the lengths

l(γ) =
∫ 1

0

‖γ̇(t)‖ dt

of curves γ : [0, 1] → M connecting p, q, i.e., p = γ(0), q = γ(1), and ‖γ̇‖ =
〈〈γ̇, γ̇〉〉1/2.

We cite the following criterion for the completeness of Riemannian mani-
folds (see, for instance, Gromoll, Klingenberg, and Meyer [1], p. 166):

Theorem of Hopf and Rinow. Let M be a Riemannian manifold with the
distance function d. Then the following statements are equivalent :

(i) M is complete, i.e. (M,d) is a complete metric space.
(ii) For any p ∈ M , the exponential map expp is defined on the whole

tangent space TpM .
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(iii) If G is a bounded subset of the metric space (M,d), then its closure
Ḡ is compact.

In order to formulate another condition for completeness that will be par-
ticularly useful for the discussion of global minimal surfaces, we need the
following

Definition 2. A divergent path on a Riemannian manifold M is a contin-
uous curve γ : [0, 1] → M such that, for any compact subset K of M , there is
a number t0(K) such that γ(t) is contained in the complement M \ K for all
t > t0(K).

In other words: A divergent path on M is a ray that ultimately leaves
every compact subset of M .

Proposition 1. A Riemannian manifold M is complete if and only if every
divergent C1-path γ : [0, 1) → M has infinite length.

Proof. (i) If M is complete and γ : [0, 1) → M is an arbitrary C1-path of
finite length, then γ([0, 1)) is bounded. Consequently, the closure of γ([0, 1))
is compact by the Hopf–Rinow theorem, and therefore γ is not divergent.

(ii) Conversely, if M is not complete, then we can find a geodesic γ :
[0, 1) → M having [0, 1) as its maximal domain of definition (to the right).
The curve γ is divergent since otherwise limt→1−0 γ(t) would exist and γ(t)
could be extended beyond t = 1. Since γ is a geodesic, its speed ‖γ̇(t)‖ is
constant for all t ∈ [0, 1) and therefore the length l(γ) =

∫ 1

0
‖γ̇(t)‖ dt of γ is

finite. �

Let us now consider a global minimal surface X :M → R
3 which is not nec-

essarily regular. Then X may have isolated singularities on M , branch points,
and its parameter domain M can be viewed as a generalized Riemannian 2-
manifold with isolated singular points whose metric tensor (gαβ(w)) is defined
as before by gαβ(w) = 〈Xuα(w), Xuβ (w)〉, X = X ◦ ϕ−1, for any chart {G,ϕ}
of the complex structure c of M . The only difference is now that (gαβ(w))
will vanish at points w = w0 corresponding to branch points of X. Thus the
notion of the length of a curve in M retains its meaning, and the same holds
for the notions distance function, closed set, compact set in M , as well as for
the notion divergent path on M . This leads us to

Definition 3. A divergent path on a global minimal surface X :M → R3 is
a continuous curve Γ : [0, 1) → R

3 of the form Γ = X ◦γ where γ : [0, 1) → M
is a divergent path on the generalized Riemannian manifold M endowed with
the metric of R

3 via the mapping X.

Furthermore, Proposition 1 suggests the following

Definition 4. A global minimal surface X : M → R
3 is called complete if

the length of every divergent C1-path Γ on X is infinite.
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Note that a regular minimal surface X : M → R
3 is complete in the sense of

Definition 4 if it is complete in the sense of Definition 1. Thus Definition 4 can
be viewed as a legitimate extension of our preceding definition of a complete
global minimal surface. In the sequel we shall drop the epithet global if we
speak of a minimal surface X : M → R

3 with a Riemann surface M as a
parameter domain.

If one wants to consider minimal surfaces in the large, one has to deal with
surfaces X̃ : M̃ → R

3 which are defined on Riemann surfaces M̃ . However,
in certain situations the investigation can be simplified by passing from M̃ to
its universal covering M which is a simply connected manifold of the same
dimension as M̃ . Any minimal surface X̃ : M̃ → R

3 can be lifted from M̃ to
M as a minimal surface X : M → R3, and we shall see that X is complete if
and only if X̃ is complete.

Recall that the universal covering of M̃ is, precisely speaking, a mapping
π : M → M̃ of a simply connected two-dimensional manifold M with the
property that every point p of M̃ has a neighborhood U such that π−1(U)
is the disjoint union of open sets Si in M , called the sheets of the covering
above U , each of which is mapped homeomorphically by π onto U .3

If M̃ is a Riemann surface with the conformal structure c̃, then π−1 induces
a conformal structure c on M such that π : (M, c) → (M̃, c̃) becomes a
holomorphic mapping of the Riemann surface (M, c) onto the Riemann surface
(M̃, c̃). Consequently, if X̃ : M̃ → R

3 is a minimal surface with M̃ as parameter
domain, and if π : M → M̃ is the universal covering of M̃ , then X := X̃ ◦ π
defines a mapping X : M → R

3 which is again a minimal surface. We call this
map the universal covering of the minimal surface X̃. Note that X is regular
if and only if X̃ is regular, and the images of the Gauss maps N and Ñ of X

and X̃ coincide.

Proposition 2. A minimal surface X̃ : M̃ → R3 is complete if and only if its
universal covering X :M → R

3 is complete.

Proof. If X̃ is regular, the result is an immediate consequence of statement
(ii) of the Hopf–Rinow theorem since the projection π : M → M̃ is a local
isometry.

To prove the result in general, we have to use Definition 4.
Suppose first that X is complete. We consider an arbitrary divergent path

Γ̃ on X̃. Lifting Γ̃ to the covering surface X, we obtain a divergent path Γ on
X which must have infinite length as X is complete. Since π : M → M̃ is a
local isometry, it follows that Γ̃ has infinite length, and we conclude that X̃

is complete.
Conversely, let now X̃ be complete. Consider an arbitrary divergent path

Γ on X given by Γ = X ◦γ, γ : [0, 1) → M . We have to show that the length of
Γ is infinite. We look at the paths γ̃ := π◦γ on M̃ and Γ̃ := X̃ ◦ γ̃ = X ◦γ = Γ

3 Concerning the universal covering we refer the reader to Weyl [4], Springer [1], Greenberg

[1].
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on X̃, respectively. If γ̃ is divergent, then the completeness of X̃ implies that
γ̃ has infinite length whence also γ has infinite length since π is locally an
isometry.

On the other hand, if γ̃ is not divergent, then there is a compact subset
K of M̃ and a sequence of parameter values tn in [0, 1) converging to 1 such
that γ̃(tn) belongs to K for all n. Passing to a subsequence we may assume
that the points γ̃(tn) converge to a point p∗ ∈ M̃ . Then we choose a chart
ϕ : G → R

2 around p∗ such that ϕ(p∗) = 0, and that π−1(G) is the disjoint
union of open sheets Si. Since the branch points are isolated, there is an ε > 0
such that Ωε := Bε(0) \B̄ε/2(0) is contained in ϕ(G) and that the metric ofM
is positive definite on ϕ−1(Ω̄ε). Since the points γ̃(tn) converge to p∗, almost
all of them belong to the compact set ϕ−1(B̄ε/2(0)). Therefore and since γ
is divergent, the points γ(tn) are distributed over infinitely many sheets Si.
From this fact we infer that the path ϕ ◦ γ̃ has to cross Ωε an infinite number
of times, implying that the length of γ̃ is infinite. Therefore also the length of
γ is infinite.

Thus X is shown to be complete if X̃ is complete. �

Let us note a simple but basic result on parameter domains M of global
minimal surfaces X :M → R

3 satisfying ∂M = ∅.

Proposition 3. The parameter domain M of a global minimal surface X :
M → R3 cannot be compact, i.e. there are no compact minimal surfaces.

Proof. If M were compact, each of the components Xj(p) of X(p) would as-
sume its maximum in some point pj ∈ M , and since the functions Xj(p) are
harmonic on M , the maximum principle would imply that Xj(p) ≡ const on
M for j = 1, 2, 3. Since X(p) is supposed to be nonconstant, this is a contra-
diction. �

By the uniformization theorem, a simply connected Riemann surface is
either of the conformal type of the sphere S2, or of the complex plane C, or
of the unit disk B = {w : |w| < 1}. Because of Proposition 3 the first case is
excluded, and we obtain

Proposition 4. If the parameter domain M of a global minimal surface X :
M → R

3 is simply connected, then M is conformally equivalent to the complex
plane or to the unit disk.

A minimal surface X : M → R3 is said to be of parabolic type if M ∼ C,
and of hyperbolic type if M ∼ B. If M is not simply connected, we may pass
to the universal covering X̂ : M̂ → R

3 whose parameter domain M̂ is simply
connected, and we call X to be of parabolic or hyperbolic type if its universal
covering X̂ is of parabolic or hyperbolic type respectively.
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3.7 Omissions of the Gauss Map of Complete Minimal
Surfaces

A minimal surface which is a graph over R
2 is a complete minimal surface

whose Gauss map omits a whole hemisphere of S2, and Bernstein’s theorem
states that such a surface must necessarily be a plane. More generally one may
ask how large the set of omissions of the Gauss map for an arbitrary nonplanar
and complete minimal surface in R

3 can be. In order to get a feeling for what
can be true we first consider some special cases and a few examples before we
state the main result of this section.

Again we shall throughout consider global minimal surfaces X : M → R3

whose parameter domains M are Riemann surfaces without boundary, i.e.

(1) ∂M = ∅.

A first information is provided by the following result.

Proposition 1. The Gauss map of a minimal surface X :M → R
3 of para-

bolic type misses at most two points unless X(M) is contained in a plane.

Proof. If X is of parabolic type, then the corresponding universal covering X̂ :
M̂ → R

3 is defined on a parameter domain M̂ that is conformally equivalent
to the complex plane C. Since the spherical images of X and X̂ are the same,
it suffices to prove the following result:

Lemma 1. The Gauss map of a minimal surface X : C → R
3 misses at most

two points if X(C) is not contained in a plane.

Proof. We represent X by a Weierstrass representation formula

(2) X(w) = X(0) + Re
(∫ w

0

1
2
μ(1 − ν2) dζ,

∫ w

0

i

2
μ(1 + ν2) dζ,

∫ w

0

μν dζ

)

where μ(ζ) is holomorphic, ν(ζ) is meromorphic, μ(ζ) 	≡ 0, ν(ζ) 	≡ 0, and μν2 is
holomorphic on C. As we have seen in Section 3.3, the meromorphic mapping
ν is just the Gauss map N of X followed by the stereographic projection
σ : S2 → C̄ of the Riemann sphere into the complex plane, i.e., ν = σ ◦N . As
Picard’s theorem implies that ν misses at most two values of C̄ = C ∪ {∞},
the assertion of the lemma follows from the representation N = σ−1 ◦ ν. �

Now we shall use formula (2) to construct some examples. Let Ω be the
complex plane C or the unit disk B, and suppose that μ and μν2 are holomor-
phic and nowhere vanishing on Ω. Then formula (2) defines a regular minimal
surface X : Ω → R

3 which has the line element

(3) ds = λ|dw|, λ = 1
2 |μ|(1 + |ν|2)
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(see Section 3.3, (10)). Hence we can compare the line element ds on Ω with
the ordinary Euclidean line element |dw|. Moreover, compact sets in (Ω, ds)
correspond to compact sets in the domain Ω equipped with the Euclidean
metric |dw|, and divergent paths in (Ω, ds) correspond to divergent paths in
(Ω, |dw|), and vice versa. Recall that by definition the surface X (or, equiva-
lently, the manifold (Ω, ds)) is complete if every divergent path γ : [0, 1) → Ω
has infinite length, that is, if

(4)
∫

γ

λ|dw| =
1
2

∫
γ

|μ|(1 + |ν|2)|dw| = ∞.

Then we obtain the following

Examples.

1 If μ(w) = w2 and ν(w) = p(w)/w where p(w) is a polynomial of degree
not less than two satisfying p(0) 	= 0, then μ and μν2 are holomorphic, and ν
maps C onto C. Moreover, there is a number δ > 0 such that |λ(z)| ≥ δ for
all z ∈ C whence ∫

γ

λ|dw| ≥ δ

∫
γ

|dw|

for any path γ : [0, 1) → C. By the preceding observations we infer that
formula (2) defines a complete regular minimal surface X : C → R

3 the Gauss
map of which omits no points of S2.

2 If we choose μ(w) = c and ν(w) = p(w) for some constant c 	= 0 and
some polynomial p(w) of degree at least one, then ν maps C onto C, and a
similar reasoning as in 1 shows that (2) defines a complete regular minimal
surface X : C → R3 whose Gauss map omits exactly one point, the north pole
of S2. In particular, if we choose μ(w) = 1

2 and ν(w) = w, formula (2) yields
Enneper’s surface.

3 If we take μ(w) = 1, ν(w) = ew, and Ω = C, then ν(w) omits exactly the
value zero, and we infer that (2) defines a complete regular minimal surface
X : C → R

3 whose Gauss map omits exactly two points of S2, the north pole
and the south pole. The same holds true for the catenoid (after a suitable
rotation).

4 Now we want to construct minimal surfaces X : Ω → R
3 whose Gauss

map omits a finite number of points. In fact, we want to prescribe a finite
set E = {a1, a2, . . . , an+1} on S2 which is to be omitted by the Gauss map
of X. Without loss of generality we can assume that an+1 is the north pole of
S2 as an+1 can be moved into this position by a suitable rotation of R

3. Let
w1, w2, . . . , wn,∞ be the images of a1, a2, . . . , an, an+1 under the stereographic
projection σ of S2 onto C. Then we choose
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Ω := C \ {w1, w2, . . . , wn}, μ(w) :=
n∏

k=1

(w − wk)−1, ν(w) := w.

Since Ω is not simply connected, the surface X : Ω → R
3 defined by (1) is

multiple-valued as its values depend on the paths of integration. However,
the universal covering X̂ : Ω̂ → R

3 of X will be single-valued and the Gauss
maps of X and X̂ omit the same set of points E. Moreover, X̂ is complete
exactly when X is complete, and X̂ is regular since X is a regular surface.
Thus we can construct a regular minimal surface X̂ : Ω̂ → R

3 of parabolic or
hyperbolic type whose spherical image is S2 \ E, where E = {a1, . . . , an+1} is
an arbitrarily prescribed set of points on S2.

Are the surfaces X̂ constructed in this way complete surfaces? As we shall
see, this is true if and only if n ≤ 4, i.e., if and only if the exceptional set E
contains at most four points.

To this end we consider a curve γ : [0, 1) → Ω in the parameter domain
of X and the corresponding curve Γ = X ◦ γ on the minimal surface X. In
order to show that X is complete we have to prove that the length

L(Γ ) =
∫

Γ

ds =
∫

γ

λ(w)|dw| =
1
2

∫
γ

|μ|(1 + |ν|2)|dw|

of Γ is infinite if Γ is a divergent curve on X. Because of (4) we then have to
show that

(5) L(Γ ) =
1
2

∫
γ

(1 + |w|2)
n∏

k=1

|w − wk | −1|dw|

is infinite if Γ = X ◦ γ is a divergent path on X.
For any R > 0 there is a number ε = ε(R) > 0 such that

(6)
1
2
(1 + |w|2)

n∏
k=1

|w − wk | −1 ≥ ε for all w ∈ BR(0).

Hence, if γ(t) ∈ Ω ∩ BR(0) for all t ∈ [0, 1), we obtain

L(Γ ) ≥ εl(γ)

where l(γ) :=
∫

γ
|dw| denotes the Euclidean length of γ. We then conclude

that a divergent path Γ = X ◦γ can have finite length L(Γ ) only if l(γ) < ∞;
but this assumption would imply that γ(t) converges to some point w0 ∈ C

as t → 1 − 0, and since Γ is divergent, we obtain that w0 /∈ Ω. We then arrive
at w0 ∈ σ(E \ {an+1}) = {w1, . . . , wn}, and therefore L(Γ ) = ∞ on account
of (4). Thus we see that a divergent path Γ = X ◦ γ has infinite length if
γ([0, 1)) is contained in a bounded set of C.

Suppose now that Γ = X ◦ γ is a divergent path such that γ is not
contained in a bounded set of C. Then either limt→1−0 |γ(t)| = ∞ or there are
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two sequences {tj }, {t′
j } of points tj , t′

j ∈ [0, 1) such that limj→∞ |γ(tj)| = ∞,
whereas the sequence of points γ(t′

j) remains bounded. In the first case, the
integral (4) diverges for n ≤ 3 while it converges if n ≥ 4. In the second case
we find that L(Γ ) = ∞ since γ must cross some annulus A := {w ∈ C : R′ <
|w| < R} infinitely often, and we have a bound of the kind (6) on A.

Let us resume the main result of this example.

Proposition 2. For any set E consisting of four or less points of S2 there ex-
ists a regular, complete minimal surface X : Ω → R

3 of parabolic or hyperbolic
type whose Gauss map omits exactly the points of E.

The preceding construction suggests that in general the Gauss map of
a complete regular minimal surface cannot omit more than four points. Al-
though the construction given in 4 is not conclusive as there might be other
choices of μ and ν leading to a complete minimal surface with the desired
omission property, the result is nevertheless true and will now be stated as
the main result of this section.

Theorem 1. If X : M → R
3 is a complete regular minimal surface such that

X(M) is not a plane, then the Gauss map of X can omit at most four points.

This result is due to Fujimoto [3]. The proof given below was found by
Mo and Osserman [1] (cf. also Osserman [24]). Weaker results were earlier
obtained by Osserman, Ahlfors-Osserman, and Xavier.

Before we prove Fujimoto’s theorem we shall derive another result that was
conjectured by Nirenberg and proved by Osserman [1]. Although it is weaker
than Theorem 1, it already provides a considerable sharpening of Bernstein’s
theorem stated in Section 2.4.

Theorem 2. Let X : M → R
3 be a regular complete minimal surface such

that X(M) is not a plane. Then the image of the Gauss map of X is dense
in S2.

We remark that in this theorem the assumption of regularity can be re-
placed by the weaker requirement that X has only finitely many branch points
provided that M is assumed to be simply connected. However, the result does
not remain true if we admit arbitrary minimal surfaces as we can see from the
following example.

5 There exist complete nonplanar minimal surfaces the spherical images of
which lie in an arbitrarily small neighborhood of the south pole of S2. This
can be seen as follows. We set ν(w) = εw for some ε > 0, and choose a
holomorphic function μ : B → C of the unit disk such that

∫
γ

|μ(w)| |dw| =
∫ 1

0

|μ(γ(t))| |γ̇(t)| dt = ∞
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holds for every divergent path γ : [0, 1) → B. Defining X : B → R
3 by formula

(2) we obtain a complete minimal surface whose spherical image is contained
in an arbitrarily small neighborhood of the south pole provided that ε > 0
is sufficiently small. For the construction of such functions μ(w) we refer to
Osserman’s thesis [25] where it is shown that the images of the functions μ
are precisely those Riemann surfaces of class A which are of hyperbolic type.
In the last section of his thesis, Osserman gave a number of examples for
such surfaces which, consequently, lead to implicit examples of functions μ
described above.

An explicit example, pointed out by Osserman, is provided by μ := J ′ ◦F
where J is the elliptic modular function and F a conformal map of the unit
disk B onto the upper halfplane. In particular, μ maps B onto a hyperbolic
Riemann surface of class A with no boundary points at finite distance.

Note that Bernstein’s theorem is an immediate corollary of Theorem 2,
as a nonparametric minimal surface X(x, y) = (x, y, z(x, y)) defined for all
(x, y) ∈ M = R

2 is a complete regular minimal surface. Since the Gauss map
of X maps R

2 into a hemisphere of S2, the set X(M) has to be a plane, and
then a straightforward computation yields that z(x, y) is an affine function,
i.e.,

z(x, y) = ax+ by + c

for suitable constants a, b, c ∈ R.
The proof of Theorem 2 will be based on the following

Lemma 2. If f : B → C is a holomorphic function with at most finitely many
zeros, then there is a divergent path γ : [0, 1) → B of class C∞ such that

∫
γ

|f(w)| |dw| < ∞.

Proof. If f(w) 	= 0, then the holomorphic mapping F : B → C defined by

F (w) :=
∫ w

0

f(ζ) dζ

is invertible in a neighborhood of the origin in B. Let G(z) be the local inverse
of F around z = 0 which is defined on some disk BR(0), and be

G(z) = a1z + a2z2 + · · ·

the Taylor expansion of G. We can assume R to be its radius of convergence;
it could be infinite as, for instance, it is the case for f(w) ≡ 1. Let us introduce
the set I of all ρ ∈ (0, R] such that G(Bρ(0)) ⊂ B and that the mapping

G : Bρ(0) → Ωρ := G(Bρ(0))
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is bijective. By Liouville’s theorem the number

r := sup I

is finite since G is nonconstant.
We claim that there is a point z0 ∈ ∂Br(0) such that

lim
t→1−0

|G(tz0)| = 1

which would then imply that the path

γ(t) := G(tz0), 0 ≤ t < 1,

is divergent in B, but
∫

γ

|f(w)| |dw| =
∫

γ

|F ′(w)| |dw| =
∫

F (γ)

|dz| = |z0| = r < ∞

and the assertion of the lemma were proved.
If we could not find some z0 ∈ ∂Br(0) as claimed, then for any z0 ∈ ∂Br(0)

we could select a sequence {tn} of numbers tn ∈ (0, 1) such that tn → 1 − 0
and that G(tnz0) converges to some point w0 ∈ B. Since F ′(w0) 	= 0, there is
a neighborhood V of w0 where F is invertible. Let Ĝ be the inverse of F |V.
Since

F (w0) = lim
n→∞

F (G(tnz0)) = lim
n→∞

tnz0 = z0,

the intersection F (V ) ∩ Br(0) is nonempty, and Ĝ must be an extension of
G to some neighborhood of z0. By a compactness argument we infer that G
admits a holomorphic extension to some disk Bρ′ (0) such that r < ρ′ < R
and G(Bρ′ (0)) ⊂ B. By the principle of unique continuation we infer that G
is bijective on Bρ′ (0) since F (G(z)) = z for z ∈ Bρ(0) if 0 < ρ < r. However,
the existence of such a ρ′ would contradict the definition of r. Thus the lemma
is proved if f(w) 	= 0 on B.

If f(w) has finitely many zeros w1, . . . , wn ∈ B of order ν1, . . . , νn, then
the function

f̃(w) := f(w)
n∏

k=1

(
1 − w̄kw

w − wk

)νk

does not vanish on B. For any a ∈ B, the transformation w �→ w−a
1−āw provides

a conformal mapping of B onto itself whence |f̃(w)| ≥ |f(w)| on B. The
preceding argument implies that there is a divergent path γ : [0, 1) → B such
that

∫
γ

|f̃(w)| |dw| < ∞ whence
∫

γ
|f(w)| |dw| < ∞, and the lemma is proved

in the general case. �

Now we turn to the
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Proof of Theorem 2. Passing to the universal covering of X, we may assume
that M is equal to C or to B = {w : |w| < 1}.

If X is of parabolic type (i.e., M = C), and if the spherical image of X is
not dense in S2, then Proposition 1 yields that X(C) is contained in an affine
plane of R

3, and since X is complete, the set X(C) must be the whole plane.
Suppose now that X is of hyperbolic type (i.e., M = B), and that the

spherical image of X is not dense in S2. Then the Gauss map of X misses
an open set which can be assumed to be a neighborhood of the north pole.
Representing X(w) = X(w) by formula (2) we then infer that the function
ν(w) is a bounded holomorphic function on B, and the branch points of X
are precisely the zeros of the holomorphic function μ. We have assumed that
there are no such zeros, but we could admit finitely many. By Lemma 2 there
is a divergent path γ in B such that

∫
γ

|μ| |dw| < ∞. On the other hand, the
length L(Γ ) of Γ := X ◦ γ is given by

L(Γ ) =
∫

Γ

ds =
1
2

∫
γ

|μ|(1 + |ν|2)|dw|

whence
L(Γ ) ≤ const

∫
γ

|μ| |dw| < ∞.

But this result is a contradiction to the completeness of the minimal surface
X which requires that any divergent path on X is of infinite length. �

Now we shall outline the

Proof of Theorem 1. Suppose that X :M → R
3 is a complete regular minimal

surface whose Gauss map omits at least five points a1, . . . , a5 ∈ S2. We can
assume that a5 is the north pole. Then we pass to the universal covering
X of X which we can assume to be defined on a simply connected domain
of C. On account of Proposition 1, the surface X must be of hyperbolic type,
and thus we can suppose that its parameter domain is the unit disk B =
{w ∈ C : |w| < 1}. In other words, we are given a complete regular minimal
surface X : B → R

3 which is represented on B by formula (1) where ν(w)
is meromorphic, μ(w) and μν2 are holomorphic, and μ(w) 	≡ 0, ν(w) 	≡ 0
on B. The meromorphic function ν is just the Gauss map of X followed by
the stereographic projection σ : S2 → C̄. Consequently ν(w) omits the four
points wk := σ(ak), 1 ≤ k ≤ 4, and the value ∞ = σ(a5), i.e., ν is holomorphic.
Since X is regular, we have μ(w) 	= 0 for all w ∈ B.

Now we want to proceed in a similar way as in the proof of Lemma 2. We
define a mapping F : B → C by

(7) F (w) :=
∫ w

0

f(ζ) dζ

where f has the properties stated in Lemma 2; a specific choice will be made
later on. Let G(z) be the inverse of F in a neighborhood of the origin, and
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let r be defined as in the proof of Lemma 2. Then we have F (G(z)) = z
for all z ∈ Br(0), and there is a point z0 ∈ ∂Br(0) such that |G(tz0)| → 1
as t → 1 − 0, and that G cannot be extended to a neighborhood of z0 as a
holomorphic function.

Let us introduce the curves γ∗, γ, and Γ by setting γ∗(t) := tz0, 0 ≤ t ≤ 1,
γ := G ◦ γ∗, and Γ := X ◦ γ. Then the length

L(Γ ) =
1
2

∫
γ

|μ|(1 + |ν|2)|dw|

of Γ can be expressed in the form

(8) L(Γ ) =
1
2

∫
γ∗

|μ ◦ G|(1 + |ν ◦ G|2)
∣∣∣∣dwdz

∣∣∣∣|dz|

where
dw

dz
(z) =

1
dz
dw (w)

=
1

f(w)
, w = G(z).

Now we choose the function f in the form

(9) f(w) := 1
2μ(w)ϕ(w)

where ϕ(w) is to be determined later. From (7) we then infer that

(10) L(Γ ) =
∫

γ∗

1 + |ν(G(z))|2
|ϕ(G(z))| |dz|.

We now want to choose ϕ in such a way that L(Γ ) becomes finite, and since
Γ is by construction a divergent path on X (see the proof of Lemma 2), this
would yield a contradiction to the completeness of X : B → R

3.
Note that h := ν ◦ G is holomorphic in Br(0) and omits at least the four

values w1, w2, w3, w4. Then, for any choice of the numbers ε and ε′ satisfying
0 < ε < 1 and 0 < ε′ < ε

4 , there is a real number b depending only on ε, ε′

and the points wj such that

(11) {1 + |h(z)|2}(1/2)(3−ε)
4∏

j=1

|h(z) − wj |ε
′ −1|h′(z)| ≤ 2br

r2 − |z|2

holds true for all z ∈ Br(0).
For the moment we shall dispense with the proof of this inequality, and

we proceed with the proof of the theorem by showing that L(Γ ) < ∞ for a
suitable choice of ϕ. Choose some ε ∈ (0, 1) and set p := 2/(3 − ε); then we
have 2

3 < p < 1. Now we try to choose ϕ in such a way that

(12) (ϕ ◦ G)(z) = {h′(z)}−p
4∏

j=1

[h(z) − wj ]p(1−ε′)



198 3 Representation Formulas and Examples of Minimal Surfaces

is satisfied. On account of (11), this would imply the inequality

(13)
1 + |ν(G(z))|2

|ϕ(G(z))| ≤
(

2br
r2 − |z|2

)p

=
κ

(r2 − |z|2)p
for |z| < r

where κ := (2br)p, and 2
3 < p < 1. Then (10) and (13) would yield the desired

estimate L(Γ ) < ∞.
However, we have defined G as the inverse of

F (w) =
1
2

∫ w

0

μ(ζ)ϕ(ζ) dζ.

ThusG is defined in terms of ϕ, and we cannot by rights use (12) for defining ϕ.
To remove this difficulty, we transform in (12) everything from z to w using the
relations w = G(z), h(z) = ν(G(z)) = ν(w) and h′(z) = ν′(w)dw

dz = ν′(w)/ dz
dw .

Then (12) can be expressed in the form

(
dz

dw

)1−p

=
1
2
μ(w)

4∏
j=1

[ν(w) − wj ]p(1−ε′){ν′(w)}−p,

that is,

(14) f(w) =
{

1
2
μ(w)

}1/(1−p) 4∏
j=1

[ν(w) − wj ]p(1−ε′)/(1−p){ν′(w)}−p/(1−p).

On the right-hand side of (14) we only have given quantities that do not
involve ϕ, and therefore we can use (14) to define f(w) for w ∈ B provided
that ν′(w) 	= 0 in B. Then F (w) will be defined by (6), and G is the inverse
of F . We now derive from (14) that (12) holds whence we obtain (13) and
then L(Γ ) < ∞.

We still have to consider the case where ν′(w) vanishes on a nonempty set
Σ in B. Since X is nonplanar we have ν(w) 	≡ const, whence ν′(w) 	≡ 0. Thus
Σ is either a finite set, or it consists of a sequence of points tending to the
boundary of B. If we now define f(w) for w ∈ B \ Σ by (14), and then F (w)
by (6), we might obtain a multivalued function which, however, can be lifted
to a single-valued function F̂ on the universal covering surface B̂ of B \ Σ.
The surface B̂ is conformally equivalent to the unit disk, and the reasoning
of the proof of Lemma 2 leads again to a largest disk Br(0) where the inverse
Ĝ of F̂ is defined, and to a boundary point z0 ∈ ∂Br(0) which is a singular
point for Ĝ. Now we define a mapping G : Br(0) → B \ Σ by G := π ◦ Ĝ
where π : B̂ → B \ Σ is the canonical projection of the universal covering B̂
onto B \Σ. Defining γ∗, γ, and Γ as before we see that L(Γ ) < ∞. To obtain
a contradiction we have to verify that Γ is a divergent path on X. If this were
not true, we could find a sequence of points zn = tnz0 on γ∗ with tn → 1 − 0
such that their images wn = G(zn) on γ converge to an interior point w0
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of B. Then w0 cannot be contained in B \ Σ on account of the reasoning of
Lemma 2, and therefore w0 must be an element of Σ, i.e., ν′(w0) = 0. Thus
we have the power series expansion

ν′(w) = α(w − w0)m + · · ·

for some α 	= 0 and some integer m ≥ 1 whence

{ν′(w)}p/(1−p) = β(w − w0)mp/(1−p) + · · · as w → w0

where we have set p := 2/(3−ε) for some fixed ε ∈ (0, 1). Note that p/(1−p) =
2/(1 − ε) > 2.

Case (i). Suppose that γ(t) → w0 as t → 1 − 0. Then we arrive at the relations

r =
∫

γ∗
|dz| =

∫
γ

|f(w)| |dw| ≥ c

∫
γ

|w − w0| −2|dw|

with a positive constant c > 0. Since
∫

γ

|w − w0| −2|dw| = ∞

we have found a contradiction.

Case (ii). If γ(t) does not tend to w0 as t → 1−0, there is another accumulation
point of γ(t) in B \ Σ, and the reasoning of the proof of Lemma 2 leads to a
contradiction.

Thus Γ is divergent but L(Γ ) < ∞, and this contradicts the completeness
of X.

It remains for us to verify the estimate (11). Let Ω be the domain

C \ {w1, w2, w3, w4}.

Its universal covering is conformally equivalent to the unit disk B, and the
standard Poincaré metric is pulled back to a conformally equivalent metric
ds = ρ(w)|dw| on Ω whose Gauss curvature is equal to −1. For ρ(w) we have
the asymptotic expansions

(15) ρ(w) ∼ Cj

|w − wj | log |w − wj | as w → wj , 1 ≤ j ≤ 4

and

(16) ρ(w) ∼ C0

|w| log |w| as w → ∞ = w5

where C0 and Cj are constants different from zero (see R. Nevanlinna [1],
pp. 259–260 and 250).

Now consider the function
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(17) ψ(w) := (1 + |w|2)(3−ε)/2ρ(w)−1
4∏

j=1

|w − wj |ε
′ −1, w ∈ Ω,

which is positive and continuous on Ω. By (15) and (16) we have ψ(w) → 0
as w → wj , j = 1, . . . , 5. Hence ψ(w) has a positive maximum on Ω, the value
b of which depends only on ε, ε′, and w1, . . . , w4, and we therefore obtain

(18) ψ(w) ≤ b for all w ∈ Ω.

Now we consider an arbitrary holomorphic function h(z) in Br(0) which omits
the points w1, . . . , w4, say, the function h = ν ◦ G that we considered before.
We lift h to a conformal mapping H from Br(0) to B and apply the Schwarz–
Pick lemma to H ◦ τ where τ denotes a conformal rescaling mapping which
maps B onto Br(0). This lemma states that holomorphic mappings of the unit
disk B into itself decrease the noneuclidean length of an arc (cf. Ahlfors [6],
p. 3, Carathéodory [5], vol. 2, pp. 14–20) which implies that

(19) ρ(h(z))|h′(z)| ≤ 2r
r2 − |z|2 for |z| < r.

From (17) and the two inequalities (18), (19) we infer the desired estimate
(11). �

A detailed exposition of Fujimoto’s work, in particular on the value dis-
tribution of the Gauss map of minimal surfaces, can be found in Fujimoto
[5,8].

3.8 Scholia

1 Historical Remarks and References to the Literature

In Sections 3.1–3.6 we had a glimpse at the theory of minimal surfaces devel-
oped during the 19th century. The principal tools were methods of complex
analysis, conformal mappings, the Gauss map and related differential geomet-
ric ideas, symmetry arguments and geometric intuition. Hence it is no surprise
that this part of the theory of minimal surfaces has always been a preferred
playground of differential geometers. During the last years this classical field
has experienced a remarkable revival which is to no small extent the merit
of computer graphics nowadays available. By the pioneering work of David
Hoffman this amazing tool has become a useful working aid and a source of
inspiration.4 In former times it was rather difficult to visualize minimal sur-
faces in the large and, in fact, the classical treatises do not show many figures.

4 See Callahan, Hoffman, and Hoffman [1], Hoffman [1–5], and Hoffman and Meeks [1,2,5,

8,9,11].
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This absence of figures cannot only be explained by the dislike of some of the
great French mathematicians for the old custom of supporting geometric rea-
soning by figures.5 An exception from the rule was H.A. Schwarz who put
much effort in the construction of permanent models of minimal surfaces (see
also the figures at the end of vol. 1 of his Abhandlungen [2]). Also the work of
Neovius (cf. in particular [5]) contains beautiful illustrations. In recent years
crystallographers and chemists have discovered the use of minimal surfaces for
the description of complicated crystalline structures, and, in addition to the
use of computer graphics, they have developed various means of visualizing
these surfaces by models.

A brief survey of the history of minimal surfaces until the time of
Riemann’s death can be found in the introduction to Riemann’s paper [2].
It is missing in the reprint included in Riemann’s Gesammelten mathemati-
schen Werken [2] since the editor H. Weber had decided to omit it as it was
written by Riemann’s student Hattendorf.

Hattendorf begins his survey with the derivation of the minimal surface
equation by Lagrange (1760/61), and he mentions that Lagrange found no
other solution than the plane. Then he states the contributions of Meusnier
(1776): The minimal surface equation is equivalent to H = 0 and has the
catenoid and the helicoid as solutions. Moreover, he mentions the integration
of the minimal surface equation by Monge (1784) and Legendre (1787) as
well as a basic discovery by Dupin (1813): The asymptotic lines of a minimal
surface are perpendicular to each other and enclose angles of 45 degrees with
the lines of curvature.

The representation formulas of Monge and Legendre were, as Hattendorf
remarks, not well suited for deriving other specific minimal surfaces besides
the helicoid and the catenoid found by Meusnier. New surfaces were first
derived by Scherk (in his prize-essay for the Jablonowski Society at Leipzig,
1831) by a kind of separation of variables. A similar approach was followed by
Catalan (1858), and Hattendorf also mentions that, in two papers from 1842
and 1843, Catalan showed that the helicoid is the only ruled minimal surface
(apart from the plane). Then Hattendorf discusses the solution of Björling’s
problem by Björling (Grunert’s Archive, vol. 4, 1843) and later by Bonnet
(Comptes Rendus 1853, 1855, 1856; Liouville’s Journal 1860). He mentions
that Bonnet investigated asymptotic lines, lines of curvature and geodesic
lines on minimal surfaces and that he looked for those surfaces of zero mean
curvature which satisfy certain geometric conditions. For instance, the surface
might be generated by a curve via a screw motion, it might have plane lines of
curvature, or it might pass through given lines. Of this latter problem, Bonnet

5 Lagrange wrote in the preface to his Mécanique analytique (second edition, vol. 1, 1811):

On ne trouvera point de Figures dans cet Ouvrage. Les méthodes que j’y expose ne de-

mandent ni constructions, ni raisonnemens géométriques ou mécaniques, mais seulement

des opérations algébriques, assujéties à une marche regulière et uniforme. Ceux qui aiment

l’Analyse, verront avec plaisir la Mécanique en devenir une nouvelle branche, et me sauront

gré d’en avoir étendu ainsi le domaine.



202 3 Representation Formulas and Examples of Minimal Surfaces

Fig. 1. Riemann’s periodic minimal surface: an example with a translational symmetry.

Courtesy of K. Polthier and M. Wohlgemuth

treated the problem of finding minimal surfaces containing a given strip or
passing through two intersecting straight lines; the last question was also
investigated by Serret (1855). Hattendorf closes his report with the remark
that nothing more is known on minimal surfaces with given boundaries, and
he states that Bonnet stopped at that point where the true problem begins,
namely, the investigation of the limit and discontinuity properties. And then:
Diese Untersuchung gehört ihrem Wesen nach in die von Riemann geschaffene
Theorie der Funktionen von complexen Variablen.

A new period in the theory of minimal surfaces began in 1865 with the
solution of Plateau’s problem by H.A. Schwarz in the case that the boundary
curve is a regular quadrilateral, and, in 1867, for the general quadrilateral (see
Schwarz [2], vol. 1, pp. 1–91). These papers are based on the representation
formulas for minimal surfaces derived in Section 3.3. Weierstrass had lectured
on these formulas at the Mathematical Seminar of Berlin University as early
as 1861, and he reported them to the Berlin Academy in 1866 (see Weierstrass
[2–4]). Somewhat different representation formulas were stated by Enneper [1]
in 1864 who used the lines of curvature as parameter lines u = const and v =
const on a minimal surface. Other representation formulas were introduced by
Weingarten (1863), Riemann (1866), Peterson (1866) and Beltrami (1868).6

Riemann’s posthumous paper [2], published in 1867, treated minimal sur-
faces passing through one or several straight lines. In particular, it dealt with
the following special boundaries: (i) Two infinitely long, skew straight lines.
(ii) Three straight lines, two of which lie in a plane E and intersect; the
third lies in a plane E′ parallel to E. (iii) Three intersecting straight lines.
(iv) A quadrilateral. (v) Two arbitrary circles which lie in parallel planes.

Already in 1866, Weierstrass [1] reported in a lecture to the Academy that
he was able to solve Plateau’s problem for an arbitrary [unknotted] polyg-
onal boundary, but the details appeared only about thirty years later (cf.
Weierstrass [4]).

The whole development can be studied in the first volume of Schwarz’s
Abhandlungen published in 1890 and exclusively dedicated to the study of

6 For references, see R.v. Lilienthal: Besondere Flächen. Encyklopädie der Mathematischen

Wissenschaften III.3, pp. 307–333, in particular pp. 310–315.
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minimal surfaces. In several later supplements and annotations to his papers
and to the whole volume Schwarz gives a very clear picture of what was known
in his time. Particularly interesting is his report Miscellen aus dem Gebiete
der Minimalflächen (see [2], pp. 168–189 and 325–333).

A comprehensive presentation of the whole field can be found in Darboux’s
Leçons [1]. (Especially relevant to the field of minimal surfaces are vols. 1
and 3.)

A brief but very readable description of the Schwarz–Riemann–Weierstrass
approach to the solution of Plateau’s problem for polygonal boundaries is
given in chapters 14 and 15 of Bianchi’s treatise [1]. The main topic of chapter
15 is the construction of Schwarz’s minimal surface spanning a quadrilateral
and a discussion of its properties and of its adjoint surface.

The knowledge available at the turn of this century is surveyed in Lilien-
thal’s encyclopedia article [1].

An extensive presentation from the modern point of view can be found in
Nitsche’s treatise [28] (see also [37]); it is at the same time a rich source of
bibliographic and historical references.

During the years 1900–1925 not much progress was made in the theory of
parametric minimal surfaces apart from work of Neovius on periodic minimal
surfaces which, however, is largely an extension of his earlier work carried
out in the nineteenth century. The essential though indirect contributions of
that period to the theory of minimal surfaces were the development of a pow-
erful measure and integration theory by Lebesgue, of the direct methods by
Hilbert, Lebesgue, Courant, Tonelli, and the foundation of functional analy-
sis by Hilbert, F. Riesz, E. Schmidt, Fréchet, Hahn, and Banach. Moreover,
the basic techniques of the theory of elliptic equations, regularity theorems
and a priori estimates, were created by Korn, S. Bernstein, Lyapunov, Müntz
and Lichtenstein in those years. The noteworthy results of S. Bernstein con-
cern nonparametric minimal surfaces. Between 1925 and 1950 the theory of
minimal surfaces sprang to new life; the following two chapters will give an
impression of the achievements in that period. From then on boundary value
problems for minimal surfaces have stood in the center of interest. In the
sixties, DeGiorgi, Fleming, Federer, and Reifenberg developed the powerful
tool of geometric measure theory which since then has become more and
more important for the study of minimal surfaces.

For some time the Weierstrass–Schwarz theory of minimal surfaces moved
into the background, and mainly the pioneering work of Osserman on complete
minimal surfaces showed its usefulness and importance; in this respect we also
mention the interesting contributions by Leichtweiß, Nitsche and Voss from
that period, the main results of which are presented in Osserman’s survey [10]
which had a great influence on the subsequent development. We also refer to
chapter 8 of Nitsche’s Vorlesungen [28].

Thereafter, the interest in this area seemed more or less exhausted despite
some interesting contributions by Gackstatter and the exciting discoveries of
new triply periodic minimal surfaces by the physicist Alan Schoen (about
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1970); their existence, however, seemed not to be sufficiently rigorously es-
tablished. At the beginning of the 1880ties, the theory of complete and of
periodic minimal surfaces gathered new speed. This is particularly the merit
of Costa, D. Hoffman and Meeks who disproved a longstanding conjecture ac-
cording to which the only complete embedded minimal surfaces in R

3 of finite
topological type are the plane, the catenoid, and the helicoid. This conjecture
turned out to be false as there is a complete minimal surface X : M → R

3

defined on the square torus C/Z2 with three points removed. This surface was
discovered by Costa [1,2]. Its representation formula (7) in Section 3.3 uses
the functions μ = ℘ and ν = a/℘′ where ℘ is the Weierstrass p-function, ℘′ its
derivative, and a denotes some constant 	= 0. Costa showed that X is a com-
plete surface of genus one with three ends; Hoffman and Meeks proved that
it is an embedded surface. Later on, many more similar surfaces were found,
so that today a fascinating new theory is developing. We shall collect a few
results in the next subsection. A second major achievement is the verification
of A. Schoen’s examples of triply periodic minimal surfaces by Karcher, see
Section 3.5. However, many more beautiful and fascinating new examples of
embedded minimal surfaces have recently been discovered, and the subject is
still growing fast. Another 200–300 pages (or more) would be needed to do
it justice. Thus we have to content ourselves with mentioning a few survey
papers and some comprehensive presentations.

At an early stage, the development was documented in the lecture notes
of Barbosa and Colares [1]. In his paper [1], Karcher showed how more em-
bedded minimal surfaces can be derived from some of the Scherk examples,
and in [2] he established the existence of Alan Schoen’s triply periodic min-
imal surfaces. The reader should begin by studying Karcher’s lecture notes
[3] where he outlines devices to construct interesting examples of increasing
topological complexity. Then we refer to the works of D. Hoffman and Meeks
cited in our bibliography. Particularly, we mention Hoffman [1–5], Hoffman
and Meeks [11], Meeks [6,7], Hoffman and Wohlgemuth [1], Wohlgemuth [1],
and Polthier [1,2].

Lately crystallographers have showed much interest in triply periodic min-
imal surfaces, and they have very much stimulated recent developments. We
especially refer the reader to the works of Sten Andersson, Blum, Bovin,
Eberson, Ericsson, Fischer, Hyde, Koch, Larsson, Lidin, Nesper, Ninham, and
v. Schnering—cited in our bibliography—where many beautiful surfaces are
depicted.

The following collection of results is mainly drawn from the papers of
Osserman, Karcher, Hoffman and Meeks quoted above.

2 Complete Minimal Surfaces of Finite Total Curvature and of Finite
Topology

The first basic results on complete minimal surfaces of finite total curvature
are due to Osserman; an excellent presentation is given in §9 of Osserman’s
survey [10].
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Theorem 1. LetM be a complete, orientable Riemannian two-manifold whose
Gauss curvature K satisfies K ≤ 0 and

∫
M

|K| dA < ∞. Then there exist a
compact Riemannian two-manifold M̃ and a finite number of points p1, . . . , pk

in M̃ such that M and M̃ ′ := M̃ \ {p1, . . . , pk } are isometric. In other words,
there is a length preserving diffeomorphism from M onto M̃ ′.

As a consequence of this result we obtain

Theorem 2. A complete regular minimal surface X : M → R
3 of finite total

curvature
∫

M
|K| dA defined on an orientable parameter manifold M is con-

formally equivalent to a compact Riemann surface R that has been punctured
in a finite number of points.

That means:

(K1) Complete orientable minimal surfaces without branch points and of finite
total curvature can be assumed to be parametrized on parameter domains M =
R \ {p1, . . . , pk } which are compact Riemann surfaces R with k points removed
(k ≥ 1).

Definition 1. A two-manifold is said to have finite topology if it is homeomor-
phic to a compact two-manifold from which finitely many points are removed.
Correspondingly, a surface X : M → R

3 is said to be of finite topology if its
parameter manifold M has finite topology.

Then property (K1) states that a complete minimal surface of finite total
curvature has necessarily finite topology. However, the converse is not true as
one can see from the helicoid. This minimal surface has the complete plane C

as parameter domain which is conformally equivalent to the once punctured
sphere. As the helicoid is periodic and not flat, its total curvature is infinite.
(Note, however, that this example is somewhat artificial because of its peri-
odicity, and a suitable, more stringent definition of finite topology dividing
out the periodicities would remove the helicoid from the list of examples.)
Meeks and Rosenberg [1,3] proved that the only complete, embedded, simply
connected and periodic minimal surface is the helicoid.

Until recently, the plane, the catenoid, and the helicoid were the only
known examples of complete embedded minimal surfaces with a finite topol-
ogy. The first new example depicted in Fig. 20 (see also the frontispiece) is the
Costa surface whose embeddedness was proved by Hoffman and Meeks. It is
conformally a torus punctured in three points. More complicated examples of
higher genus were discovered by D. Hoffman and Meeks. A sample is depicted
in Plate II.

Let R be a compact Riemann surface (without boundary), and p1, . . . , pk

a finite number of points in R. We consider a regular minimal surface X :
M → R

3 of finite topology, defined on M := R \ {p1, p2, . . . , pk }.
The image Ej := X(B′

j) of a punctured disk neighborhood B′
j = Bj \ {pj }

of pj is called an end of the surface X.
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What can one say about the behavior of X at its ends? Some answers
should be obtainable from information about the behavior of the Gauss map
N : M → S2 ⊂ R

3 of X at the ends Ej , that is, from the meromorphic
function ν := σ◦N obtained by composing N with the stereographic projection
σ : S2 → C̄. Let η be the holomorphic 1-form on M associated with X which
in local coordinates w is given by η(w) = μ(w)dw (here μ(w) is the function
from the representation formula (7) in Section 3.3). Then we have the following
basic information (see Osserman [5,10]):

Theorem 3. Let X :M → R
3 be a complete regular minimal surface of finite

total curvature
∫

M
K dA; for the sake of brevity we call such a mapping a

(K1)-surface. Then we have:

(K2) The meromorphic function ν : M → C̄ extends to a meromorphic func-
tion on R and the holomorphic 1-form η on M extends to a meromorphic
1-form on R.

(K3) The number m := 1
4π

∫
M
K dA is an integer satisfying m ≤ −(g +k− 1)

where g is the genus of M and k is the number of puncturing points in R.

(K4) The mapping X : M → R
3 is proper (i.e., pre-images of compact sets in

R3 are compact sets in M).

Further properties of (K1)-surfaces X : M → R
3

(K5) Set Sj(R) := {Q ∈ R
3 : RQ ∈ Ej and Q ∈ S2}. Then Sj(R) converges

smoothly as R → ∞ to a great circle on S2 covered an integral number of
times, say, dj times. Moreover, we have

∫
M

K dA = 4π

{
1 − g − k −

k∑
j=1

(dj − 1)

}
, g = genus(M)

(see Jorge and Meeks [1], Gackstatter).

(K6) Denote by n(X) :=
∑k

j=1 dj the total spinning of X; clearly, n(X) ≥ k.
Then we have: n(X) = k ⇔

∫
M
K dA = −4π(g + k − 1) ⇔ all of the ends

of X are embedded (that is, for each j = 1, . . . , k, the map X embeds some
punctured neighborhood of pj) (see Jorge and Meeks [1]).

(K7) Let Ej be an embedded end corresponding to the puncture pj. The Gauss
map N : M → S2 can be extended continuously from M to R (see (K2)).
Assume that N(pj) = (0, 0, 1). Then outside of a compact set, the end Ej has
the asymptotic behavior

z(x, y) = α log r + β + r−2(γ1x+ γ2y) +O(r−2)

as r =
√
x2 + y2 → ∞ (see R. Schoen [3]).
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We call the end Ej flat or planar if α = 0; for α 	= 0 we speak of a catenoid
end . This means that, far out, all (K1)-surfaces look at their embedded ends
either like planes or like half catenoids.

(K8) If X : M → R
3 is an embedded (K1)-surface of genus g with k ends,

then we have:
(i) If g = 0, then k 	= 3, 4, 5 (Jorge and Meeks [1]). In fact, g = 0 implies

that X is a plane (k = 1) or a catenoid (k = 2) (Lopez and Ros [1]).
(ii) If k = 1, then X(M) is a plane (see, e.g. Hoffman and Meeks [8]).
(iii) If k = 2, then X(M) is a catenoid (R. Schoen [3]).
Property (ii) follows from the strong halfspace theorem stated below.

(K9) The plane has total curvature 0, the catenoid −4π; all other embedded
(K1)-surfaces have a total curvature of less than or equal to −12π (Hoffman
and Meeks [8]).

(K10) The Costa surface X is an embedded (K1)-surface of genus 1 with three
ends and total curvature −12π. One end is flat, the other two are catenoid
ends. The function ν = σ ◦ N is of the form ν = a/℘′ where ℘ is the Weier-
strass p-function and a is a constant. The Costa surface contains two straight
lines intersecting perpendicularly; moreover, it can be decomposed into eight
congruent pieces, each of which lies in a different octant and each of which is
a graph (Hoffman and Meeks [1]). Generalizing the Costa example, Hoffman
and Meeks were able to show that, for any genus g ≥ 1, there is an embedded
(K1)-surface with one flat end and two catenoid ends. The total curvature∫

M
K dA of this surface is −4π(g +2). In fact, each of these examples belongs

to a 1-parameter family of embedded minimal surfaces (Hoffman [4], Hoffman
and Meeks [7]).

A sample of a Hoffman–Meeks surface is depicted in Plate II.
We mention that the underlying Riemann surface R is the (g + 1)-fold

covering of the sphere given by ζg+1 = wg(w2 − 1) punctured at w = ±1 and
w = ∞.

(K11) Callahan, Hoffman, and Meeks [3] constructed examples of embedded
(K1)-surfaces with four ends, two of which are flat, the others catenoidal.
Following a suggestion of Karcher, Wohlgemuth and Boix constructed many
more examples of increasing complexity.

3 Complete Properly Immersed Minimal Surfaces

A very useful result proved by means of the maximum principle is the following

Halfspace Theorem (Hoffman and Meeks [4,10]). A complete, properly im-
mersed minimal surface X : M → R

3 cannot be contained in a half space,
except for a plane.
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(An immersed minimal surface is a surface without branch points, and
properly means that the pre-image of any compact set on X(M) is a compact
subset of M .)

Note that the assumption of properness cannot be omitted as Jorge and
Xavier [1] exhibited examples of complete minimal surfaces X : M → R

3

contained between two parallel planes; see also Rosenberg and Toubiana [1].
A strengthening of the previous result is the strong halfspace theo-

rem (Hoffman and Meeks [4,10]): Two complete, properly immersed minimal
surfaces X :M → R

3 must intersect if they are not parallel planes.

4 Construction of Minimal Surfaces

The material of this subsection is essentially drawn from Karcher’s excellent
lecture notes [3] to which the reader is referred for details. We adjust our
notation from Chapter 3 to that of Karcher [3] so that we can immediately
use Karcher’s formulas. A very detailed presentation of the following material
and of related topics is given in the encyclopaedia article by D. Hoffman and
H. Karcher [1]; see [EMS].

Let us recall the representation formula (7) of Section 3.3 for a minimal
surface X : Ω → R

3 by means of a holomorphic function μ(w) and a mero-
morphic function ν(w) on Ω:

(1) X(w) = X(w0) + Re
∫ w

w0

ψ′(ζ) dζ

where ψ is defined by

(2) ψ′ =
(

1
2
μ(1 − ν2),

i

2
μ(1 + ν2), μν

)
.

If we introduce the two meromorphic functions g and h by

(3) g := ν, h′ := μν,

we have
dh = μν dζ,

and we can write (2) as

(4) dψ =
(

1
2

(
1
g

− g

)
,
i

2

(
1
g

+ g
)
, 1
)
dh.

Clearly, the functions ψ and h are multiple-valued while the 1-forms dψ and
dh are single-valued on Ω, and mutatis mutandis Ω can be replaced by a
domain on a Riemann surface.

The Gauss map N : Ω → S2 associated with X is given by
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(5) N =
1

|g|2 + 1
(2 Re g, 2 Im g, |g|2 − 1).

The line element ds of X : Ω → R
3 can be written as

(6) ds =
1
2

(
|g| +

1
|g|

)
|dh|

and the Gauss curvature K has now the form

(7) K = −16
(

|g| +
1

|g|

)−4∣∣∣∣dgg
∣∣∣∣
2

|dh| −2.

For w = u + iv and for a tangent vector W ∈ TwΩ = C, the second funda-
mental form II(W,W ) can be written as

(8) II(W,W ) = Re
{
dg

g
(W ) · dh(W )

}
.

Moreover,W describes an asymptotic direction exactly if dg
g (W ) ·dh(W ) ∈ iR,

and W is a principal curvature direction if and only if dg
g (W ) · dh(W ) ∈ R.

The reflection principles yield: If a straight line or a planar geodesic lies
on a complete minimal surface, then the 180◦-rotation around the straight line
or the reflection at the plane of the planar geodesic respectively is a congruence
of the minimal surface.

This observation has the following useful application: If there is a line
γ : I → Ω such that the stereographic projection g ◦ γ : I → C of its Gauss
image is contained in the stereographic projection of a meridian or of the
equator of S2, and if also h′ ◦γ is contained in the stereographic projection of
a meridian of S2, then analytic reflection at γ does not change the values of
|g| + 1

|g| and of |h′ |, nor does it change the Euclidean metric |dw|. Therefore
this reflection is a Riemannian isometry for the metric (6) and, consequently,
the curve γ defines a geodesic c := X ◦ γ on the minimal surface. Moreover,
g ◦ γ corresponds either to a meridian of S2 or to its equator.

The following constructions will be based on Osserman’s results described
in Subsection 2 of these Scholia. The guiding idea is to describe meromor-
phic Weierstrass data g and h on Riemann surfaces M which are punctured
Riemann surfaces R, i.e., M = R \ {p1, p2, . . . , pk }.

A translational symmetry of the minimal surface generated by integrating
its Weierstrass data around a homotopically nontrivial loop on M is called
a period of the Weierstrass data. Integration of the Weierstrass data
leads to a single-valued minimal surface X(w) = Reψ(w) if all periods P =
(P1, P2, P3) vanish or, more generally, if the components of all periods are
purely imaginary (i.e., P ∈ iR3).
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Fig. 2. (A1) Enneper’s surface: g(w) = w. Courtesy of K. Polthier

Proposition 1. If a line of symmetry L passes through a puncture, then we
can consider closed curves around the puncture p which are symmetric with
respect to L. The integrated curve on the minimal surface then consists of
two congruent parts which are symmetric either with respect to a reflection
plane E or with respect to the axis A of a 180◦-rotation. The period P is the
difference vector between the two pieces of the curve; thus it is perpendicular
either to E or to A.

This observation can sometimes be used to show without computation that
some punctures cause no periods, for instance, if two nonparallel symmetry
planes pass through the punctures.

A very useful tool for proving embeddedness of surfaces is the following
theorem presented at the end of Section 3.3:

Theorem of R. Krust. If an embedded minimal surface X : B → R
3 can

be written as a graph over a convex domain of a plane, then the corresponding
adjoint surface X∗ : B → R

3 is also a graph.

Now we turn to the discussion of specific examples.

A. Minimal Surfaces Parametrized on Punctured Spheres

(A1) Enneper’s surface. Here we have

g(w) = w, dh = w dw, w ∈ C,

ψ(w) = 1
2

(
w − 1

3w
3, i
(
w + 1

3w
3
)
, w2

)
.

Reflections in straight lines through 0 are Riemannian isometries for the
corresponding metric

ds =
1
2

(
|w| +

1
|w|

)
|w| |dw|.

All these radial lines are therefore geodesics, and rotation about the origin
is an isometry group. Moreover, R and iR are planar symmetry lines, and
the 45◦-meridians are straight lines on Enneper’s surface. The Riemannian
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Fig. 3. (A2) Higher order Enneper surfaces. (a) g(w) = w2. With courtesy of K. Polthier.

(b) g(w) = w3. Courtesy of J. Hahn and K. Polthier

Fig. 4. A view of increasing parts of a higher order Enneper surface (g(w) = w2) from an

increasing distance. Courtesy of J. Hahn and K. Polthier

metric ds is complete on M := C ∼= S2 \ {north pole} and nondegenerate, i.e.,
Enneper’s surface is a regular minimal surface. Moreover, all associate surfaces
of Enneper’s surface are congruent. Circles γ(ϕ) = Reiϕ of sufficiently large
radius R are mapped to curves c(ϕ) = Reψ(γ(ϕ)) which wind three times
about the z-axis. Therefore the end of Enneper’s surface is not embedded,
but d = 3.

(A2) Higher order Enneper surfaces are defined by

g(w) = wn, dh = wndw, w ∈ C, n = 1, 2, 3, . . . ,

and they allow the same reasoning. However, we have more symmetry lines,
and the end winds (2n+ 1)-times about the z-axis (d = 2n+ 1).

Interesting deformations can be obtained in the form

g(w) = wn + tp(w), dh = g(w)dw, w ∈ C,

where t ∈ R, and p(w) is a polynomial of degree ≤ n − 1. These surfaces are
regular and have the same behavior at their ends as the corresponding higher
order Enneper surfaces given by t = 0.
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Fig. 5. Deformation of a catenoidal end into an Enneper end. Courtesy of K. Polthier and

M. Wohlgemuth

The simplest minimal immersions of higher genus such as the Chen–
Gackstatter surface (see (B2)) can be obtained from Weierstrass data which
have the same behavior at their end as an Enneper surface.

(A3) The catenoid is given by

g(w) = w, dh =
dw

w
,

w ∈ C \ {0} ∼= S2 \ {p1, p2}, p1 = north pole, p2 = south pole. Integration
of the Weierstrass data once around 0 adds the period P = (0, 0, 2πi) to ψ.
Hence the catenoid is defined on C \ {0} whereas its adjoint, the helicoid, lives
on the universal cover of S2 \ {p1, p2}, and its symmetry group is a screw
motion.

(A4) examples with one planar end can be obtained by the data

g(w) = wn+1, dh = wn−1 dw

for w ∈ C \ {0} ∼= twice punctured sphere =M . Hence we have

ψ(w) =
(

1
2

(
− 1
w

− w2n+1

2n+ 1

)
,
i

2

(
− 1
w

+
w2n+1

2n+ 1

)
,
wn

n

)
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Fig. 6. Minimal surfaces with one planar end. Courtesy of K. Polthier

and
ds = (|w|2n + |w| −2)|dw|.

This metric is complete on M . Reflections in all meridians define Riemannian
isometries. The end at w = ∞ winds (2n+1)-times around the z-axis just as in
the case of the higher order Enneper surfaces. The end at w = 0 is embedded
and turns out to be a flat end which is asymptotic to the x, y-plane.

(A5) Scherk’s saddle tower (Scherk’s fifth surface) is given by the Weier-
strass data

g(w) = w, dh =
1

w2 + w−2

dw

w
, w ∈ M,

where M = C̄ \ {±1,±i} is conformally the four times punctured sphere. The
line element of Scherk’s fifth surface X = Reψ is given by

ds =
|w| + |w| −1

|w2 + w−2|

∣∣∣∣dww
∣∣∣∣.
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Fig. 7. Saddle towers, (a) Scherk’s saddle tower (A5): g(w) = w. This surface is also

called Scherk’s fifth surface. It can be described by the equation sin z = sinh x sinh y.

(b), (c) Higher order saddle towers (A6): (b) g(w) = w2, (c) g(w) = w3. Parts (a),

(b) with courtesy of K. Polthier and part (c) with courtesy of J. Hahn and K. Polthier

Fig. 8. The Jorge–Meeks 3-noid (g(w) = w2). It can be viewed as limit of saddle towers.

Courtesy of J. Hahn and K. Polthier

The corresponding metric is complete. The unit circle S1 in C, the axes R,
iR and the 45◦-meridians allow Riemannian reflections. In particular we have
a horizontal symmetry line (corresponding to S1) through all four punctures
whence all periods are vertical (and equal up to sign). Hence, on the open unit
disk B, the mapping X : B → R3 defines a regular minimal surface bounded
by four horizontal symmetry lines which lie in only two parallel planes. Ex-
tension by reflection in these planes yields a complete minimal surface with
one vertical period, and this surface is embedded if the fundamental piece is
embedded. In fact, it turns out to be a graph. By Krust’s theorem, the adjoint
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Fig. 9. A 4-noid with two orthogonal symmetry planes through each puncture. Courtesy

of K. Polthier and M. Wohlgemuth

Fig. 10. Several 4-noids. Courtesy of K. Polthier

surface is also embedded; it is Scherk’s doubly periodic minimal surface. Its
Weierstrass data are

g(w) = w, dh =
i

w2 + w−2

dw

w
,

(A6) Higher order saddle towers (Karcher) are defined by the Weierstrass
data
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Fig. 11. An Enneper catenoid (corresponding to g(w) = w−1 + w3). Courtesy of J. Hahn

and K. Polthier

Fig. 12. Doubled Enneper surfaces. (a) without symmetry planes (rotated ends), (b) with

symmetry planes. Courtesy of K. Polthier

g(w) = wn−1, dh =
1

wn + w−n

dw

w

which are defined on M = C̄ \ {ε1, ε2, . . . , ε2n} where εj are the (2n)-th roots
of 1; M is conformally the 2n-times punctured sphere.

(A7) Less symmetric saddle towers are obtained from

g(w) = wn−1, dh = (wn + w−n − 2 cosnϕ)−1 dw

w

w ∈ M , where M is C̄ punctured at w = e±iϕe2πil/n, l = 0, 1, . . . , n − 1, and
ϕ is a real parameter restricted by 0 < ϕ ≤ π

2n .
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Fig. 13. (A7) Less symmetric saddle towers. Courtesy of K. Polthier

Fig. 14. Helicoidal saddle towers: Deformed Scherk surfaces constructed by Karcher. Cour-

tesy of H. Karcher
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Fig. 15. The Jenkins–Serrin theorem for the hexagon (n = 3). Courtesy of J. Hahn and

K. Polthier

If ϕ → 0, then the punctures move pairwise together to become double
poles of dh, and their images lie on vertical symmetry planes. Hence the
punctures have no periods, and their ends turn out to be embedded catenoidal
ends. In fact, the surfaces with ϕ = 0 are the n-noids of Jorge–Meeks which
are not embedded.

We remark that the saddle towers as well as the n-noids allow deformations
which are again complete minimal surfaces. For more details, see Karcher [1,
3], and also Figs. 7–14.

Moreover, the construction of embedded saddle towers can be obtained
from a result by Jenkins and Serrin [2] by passing to the adjoint of the Jenkins–
Serrin surface and by applying the reflection principle and Krust’s theorem;
see Karcher [3].

Theorem of Jenkins and Serrin. Let Ω be a convex 2n-gon with all edges
of the same length and alternatingly marked ∞,−∞,∞,−∞, . . . . Then there
is a uniquely determined nonparametric minimal surface z = u(x, y), x, y ∈ Ω,
over Ω which converges to ∞ or −∞ respectively as it approaches the marked
edges of Ω. The graph of u is a minimal surface bounded by the vertical lines
over the vertices of ∂Ω which has finite total curvature.

B. Minimal Surfaces Parametrized on Punctured Tori

While the examples (A) were constructed by Weierstrass data which are
rational functions on the punctured sphere, we shall now use meromorphic
maps T 2 → C̄ on the torus T 2, that is, doubly periodic functions (or: ellip-
tic functions). Karcher [3] effectively operates with a doubly periodic function
γ : T 2 → C̄ which, by reflection, is built from a biholomorphic map γ : B → D
of a rectangle B with the corners a, b, c, d onto the quarter circle D with the
vertices 0, 1, i. The mapping γ is obtained by Riemann’s mapping theorem.
Using the 3-point-condition γ(a) = i, γ(b) = 0, γ(c) = 1, we define an angle
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α ∈ (0, π
2 ) by γ(d) = eiα; this angle is called the conformal parameter of γ.

One obtains (
γ′

γ

)2

= κ(γ2 + γ−2 − 2 cosα)

where κ is a positive constant. As γ turns out to be a degree-two elliptic
function, there is a close connection to the geometric p-function. In fact, we
have

γ2 =
− tanα − cotα

p − 1
p + tanα − cotα

and
p′γ = κ∗p (κ∗ = positive constant).

Note that, in section B, the geometric p-function is not the usual Weierstrass
℘-function, but the one that has been modified linearly such that it has a
double zero in the middle, and that the product of the two finite branch values
is −1. Another useful elliptic function f is defined as extension by reflection
of the biholomorphic mapping from a rectangle B to the quarter disk D such
that b, c, d are mapped into 0, 1, i respectively whereas a goes to i tanα

2 . The
functions γ, p and f are linked by

fγ =
p

cosα − p sinα
.

(B1) A fence of catenoids (Hoffman–Karcher). One can construct a periodic
surface with a translational symmetry as depicted in Fig. 16. Dividing out
the symmetry, we obtain a torus with two embedded catenoidal ends. The
stereographic projection g of the Gauss map of this surface turns out to be γ
whereas f determines dh:

g = γ, dh = fdw.

The symmetries of f and γ yield that reflections in the expected symmetry
lines are Riemannian isometries for the metric

ds =
(

|γ| +
1

|γ|

)
|f | |dw|

of the fence.
(B2) The Chen–Gackstatter surface was the first minimal surface without
periods or branch points defined on a punctured torus that was discovered. It
has one puncture and therefore one end. Thus it is the direct relative of En-
neper’s surface, only that it possesses a handle (see Fig. 17). The Weierstrass
data are given as

g = rγ, dh = p′ dw

where the parameter r ∈ R
+ has to be chosen in such a way that the periods

vanish. The removal of the periods is one of the difficulties in this and other
examples.
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Fig. 16. Construction of higher genus minimal surfaces by growing handles out of a

catenoid. (a) A fence of catenoids (B1), (b)–(e) More catenoids with handles. Courtesy of

E. Boix, J. Hoffman, and M. Wohlgemuth

Fig. 17. (a) Enneper’s surface (A1): no handle. Courtesy of K. Polthier. (b) Chen–

Gackstatter surface (B2): one handle. Courtesy of J. Hahn and K. Polthier. (c) Chen–

Gackstatter surface with two handles. Courtesy of K. Polthier and M. Wohlgemuth
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Fig. 18. A fence of Scherk towers—a doubly periodic toroidal surface (B3). Courtesy of

K. Polthier

(B3) Doubly periodic examples are depicted in Figs. 18 and 19.

(B4) Riemann’s minimal surface is a simply periodic embedded minimal
surface defined on a twice punctured rectangular torus and with one period. Its
two ends are flat. A careful discussion can be found in Nitsche’s treatise [28].
The corresponding Weierstrass data are

g = p, dh = dw =
dp

p′ .

In fact, there is a 1-parameter family of Riemann examples, two for each rect-
angular torus. The adjoint surface of a Riemann example is another Riemann
example which is not congruent to the first, except in the special case of a
square torus.

(B5) Costa’s surface is an embedding of the three times punctured square
torus (i.e., without periods). In Karcher’s description [3], its Weierstrass data
are

g = rp′ = r
p

γ
,

dh = γ dw =
γ

γ′ dγ =
2

1 − p2
dp.

Again, the parameter r ∈ R
+ is used to remove all periods.
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Fig. 19. (a) and (b) A conjugate pair of embedded doubly periodic minimal surfaces (B3).

Part (a) with courtesy of K. Polthier and M. Wohlgemuth and part (b) with courtesy of

K. Polthier. (c) Riemann’s periodic minimal surface (B4) can be viewed as a limit of (b)

under deformation. Courtesy of K. Polthier and M. Wohlgemuth

5 Triply Periodic Minimal Surfaces

Five surfaces of this type were already known to H.A. Schwarz (see [2], vol. 1,
pp. 1–125, 136–147; cf. also Figs. 21–27 of this section, Figs. 37–39 of Sec-
tion 3.5, and Plates II–VII). They were obtained by spanning a disk-type
minimal surface X : B → R3 into a polygon Γ and then reflecting this surface
at the edges of Γ . In 1891, A. Schoenflies (see [1,2]) proved that in this way
exactly six different periodic minimal surfaces can be obtained from (skew)
quadrilaterals, whereas Schwarz had erroneously claimed that there existed
exactly five surfaces of this type (see [2], vol. 1, pp. 221–222). All of these
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Fig. 20. The Costa surface (B5). Courtesy of K. Polthier

Fig. 21. Schwarz’s surface. Courtesy of O. Wohlrab
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Fig. 22. (a) Schwarz’s P -surface and (b), (c) deformations thereof. (d) This annulus

bounded by two triangles is part of the adjoint of the Schwarzian P -surface if the ratio of

edge length to height is 2
√

3. Courtesy of K. Polthier

Fig. 23. (a) A part of Schwarz’s H-surface. (b) An annulus-type minimal surface bounded

by two triangles which is part of the H-surface. Courtesy of K. Polthier
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Fig. 24. Schwarz’s CLP-surface. Courtesy of K. Polthier

Fig. 25. Alan Schoen’s H′–T -surface: (a) in a trigonal cell, (b) in the dual hexagonal cell.

Courtesy of K. Polthier

Fig. 26. Alan Schoen’s S′–S′′-surface. This part solves a free boundary problem with

regard to the faces of a cube. Courtesy of K. Polthier
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Fig. 27. Two views of A. Schoen’s I–Wp-surface. Both parts sit in a cube and meet its

faces at a right angle. Courtesy of K. Polthier

Fig. 28. An analogue to A. Schoen’s I–Wp-surface found by Karcher; it sits in a hexagonal

cell and meets the faces of this cell perpendicularly. Courtesy of K. Polthier

periodic minimal surfaces were described in detail by Steßmann [1]; one of
them was discovered by Neovius.

Clearly one can try to obtain other triply periodic minimal surfaces by
spanning pieces of minimal surfaces as stationary points of the area functional
into a general Schwarzian chain 〈Γ1, . . . , Γk, S1, . . . , Sl〉 and then reflecting
them at the edges Γj and the planar faces Sj . In this way, Neovius, Nicoletti,
Marty, Tenius, Stenius and Wernick generated more triply periodic minimal
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Fig. 29. Alan Schoen’s gyroid, an associate to Schwarz’s surface, is an embedded triply

periodic minimal surface. Courtesy of A. Schoen

surfaces. We refer to Nitsche’s treatise [28], § 818, pp. 664–665 for pertinent
references. After Steßmann’s paper, the subject was at rest for more than
30 years until the physicist and crystallographer Alan Schoen [1,2] revived
it. He discovered many new triply periodic minimal surfaces, and he built
marvelous models of enormous size which stunned everyone who had a chance
to see them (a few are depicted in Hildebrandt and Tromba [1]). However,
Schoen’s reports were a bit sketchy and thus, among mathematicians, there
remained some doubts whether all details could be filled in, whereas Schoen’s
work became very popular among crystallographers and chemists. Schoen’s
remarkable geometric intuition proved to be correct; H. Karcher established
the existence of all of Schoen’s surfaces, and he found triply periodic constant
mean curvature companions to them (see Karcher [2] and also [3]). By solving
conjugate Plateau problems, Karcher and his students found many more triply
periodic embedded minimal surfaces and even whole families of them. The
strategy for finding such examples is lucidly described in Section 4 of Karcher’s
lecture notes [3].
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6 Structure of Embedded Minimal Disks

In a series of papers (cf. bibliography), T.H. Colding and W.P. Minicozzi
investigated the structure of embedded minimal disks, i.e. of minimal surfaces
X : B → R

3 defined on closed disks B ⊂ R
2 being embeddings. (In particular

such surfaces are free of branch points.) One of their main results states that
every embedded minimal disk can either be modeled by a minimal graph or
by a piece of the helicoid depending on whether the supremum of the Gauss
curvature is small or not. Together with a Heinz-type curvature estimate which
is also due to Colding & Minicozzi, Meeks and Rosenberg [GTMS] proved that
the plane and the helicoid are the only complete, properly embedded, simply-
connected minimal surfaces in R

3.

7 Complete Minimal Surfaces and the Plateau Problem

One might think that a complete minimal surface “extends” to infinity, i.e.
cannot be contained in a compact set. The question whether or not this is
true had been raised by E. Calabi in the 1960ies, and in 1996 N. Nadirashvili
[1] found a surprising answer: He constructed a complete minimal surface in
R

3 which is contained in a ball. Even more surprising is a result obtained
by Mart́ın and Nadirashvili [1] in 2007: There exists a minimal surface X :
B → R

3 on the unit disk of R
2 which is complete and possesses a continuous

extension to B such that X|∂B : ∂B → R
3 provides a nonrectifiable Jordan

curve Γ of dimension 1. Such curves Γ are not rare: For any Jordan curve Γ0

in R
3 and any ε > 0 one can find a Jordan curve Γ such that the Hausdorff

distance of Γ and Γ0 satisfies δH(Γ, Γ0) < ε, and that Γ is the boundary
of a complete minimal surface X : B → R3 in the sense described above.
(Concerning the Plateau problem we refer to Sections 4.1–4.5 and 4.12.) We
note that these surfaces have infinite area, and they cannot be embedded on
account of work by Colding and Minicozzi.



Color Plates

Plate I. (a) Stable and unstable catenoid, (b) helicoid and double helix, (c) Jorge–Meeks

surface. Courtesy of K. Polthier



Plate II. (a) A Hoffman–Meeks surface, (b) part of Schwarz’s P -surface. Courtesy of

D. Hoffman and K. Polthier



Plate III. A. Schoen’s H′–T -surface. (a) One layer of the dual lattice, (b) hexagonal

fundamental cell, (c) trigonal fundamental cell. Courtesy of K. Polthier



Plate IV. (a)–(e) The Karcher process of handle growing demonstrated by the transition

from Schwarz’s P -surface to Schoen’s S′–S′′-surface, (f) Schoen’s S′–S′′-surface. Courtesy

of K. Polthier



Plate V. (a)–(c) Schwarz’s CLP-surface, (d) Schwarz’s P -surface. Courtesy of K. Polthier



Plate VI. (a)–(d) Schwarz’s H-surface, (e) Karcher’s T–WP -surface. Courtesy of

K. Polthier



Plate VII. Fundamental cells. (a) A. Schoen’s I–WP -surface, (b) Neovius surface. Cour-

tesy of K. Polthier



Plate VIII. Fences of catenoids. Courtesy of E. Boix, J. Hoffman, and M. Wohlgemuth



Part II

Plateau’s Problem



Chapter 4

The Plateau Problem and the Partially Free
Boundary Problem

The remainder of this book is essentially devoted to boundary value problems
for minimal surfaces. The simplest of such problems was named Plateau’s
problem, in honor of the Belgian physicist J.A.F. Plateau, although it had been
formulated much earlier by Lagrange, Meusnier, and other mathematicians.
It is the question of finding a surface of least area spanned by a given closed
Jordan curve Γ .

In his treatise Statique expérimentale et théorétique des liquides soumis aux
seules forces moléculaires from 1873, Plateau described a multitude of experi-
ments connected with the phenomenon of capillarity. Among other things,
Plateau noted that every contour consisting of a single closed wire, whatever
be its geometric form, bounds at least one soap film. Now the mathemati-
cal model of a thin wire is a closed Jordan curve of finite length. Moreover,
the mathematical objects modeling soap films are two-dimensional surfaces
in R

3. To every such surface, the phenomenological theory of capillarity, due
to Gauss, attaches a potential energy that is proportional to its surface area.
Hence, by Johann Bernoulli’s principle of virtual work, soap films in stable
equilibrium correspond to surfaces of minimal area.

Turning this argument around, it stands to reason that every rectifiable
closed Jordan curve bounds at least one surface of least area and that all
possible solutions to Plateau’s problem can be realized by soap film experi-
ments. However, as R. Courant [15] has remarked, empirical evidence can
never establish mathematical existence—nor can the mathematician’s demand
for existence be dismissed by the physicist as useless rigor. Only a mathemat-
ical existence proof can ensure that the mathematical description of a physical
phenomenon is meaningful.

The mathematical question that we have formulated above as Plateau’s
problem was a great challenge to mathematicians. It turned out to be a
formidable task. During the nineteenth century, Plateau’s problem was solved
for many special contours Γ , but a sufficiently general solution was only ob-
tained in 1930 by J. Douglas [11,12] and simultaneously by T. Radó [17,18].

U. Dierkes, S. Hildebrandt, F. Sauvigny, Minimal Surfaces,
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Fig. 1. A Jordan contour bounding two disk-type minimal surfaces (b), (c) and a minimal

surface of genus one (a)

Fig. 2. A Jordan curve bounding (a) a disk-type minimal surface and (b) a minimal

Möbius strip

A considerable simplification of their methods was found by R. Courant [4,
5] and, independently, by L. Tonelli [1]. In the present chapter we want to
describe the Courant–Tonelli approach to Plateau’s problem.

Recall that regular surfaces of least area are minimal surfaces, in the sense
that their mean curvature vanishes throughout. Thus we can formulate a
somewhat more general version of Plateau’s problem: Given a closed rectifiable
Jordan curve Γ , find a minimal surface spanned by Γ . Then the least area
problem for Γ is more stringent than the Plateau problem: the first question
deals with the (absolute or relative) minimizers of area, whereas the second
is concerned with the stationary points of the area functional.

Note that for a fixed boundary contour Γ the solutions to Plateau’s prob-
lem are by no means uniquely determined. Moreover, there may exist solutions
of different genus within the same boundary curve, and there may exist both
orientable and non-orientable minimal surfaces within the same boundary
frame. This is illustrated by the minimal surfaces depicted in Fig. 2.

Even if we fix the topological type of the solutions to Plateau’s problem,
the unique solvability is, in general, not ensured. For instance, Figs. 1 and 4
depict some boundary configurations which can span several minimal surfaces
of the topological type of the disk. In Section 4.9, we shall give a survey of what
is known about the number of disk-type solutions to Plateau’s problem. In the
Scholia (Section 4.15) as well as in Chapters 5 and 7, the reader will find more
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Fig. 3. A closed Jordan curve (a), bounding a disk-type minimal surface (b), as well as a

Möbius strip (c)

examples and further results on the number of solutions of Plateau’s problem,
and we shall also discuss the question whether solutions are immersed or even
embedded.

Other boundary value problems for minimal surfaces will be considered
in Chapter 8 and in Vols. 2 and 3. For example, the last chapter of this
volume as well as Chapter 4 of Vol. 3 deal with solutions of the general Plateau
problem (also called Douglas problem) where one has to find a minimal surface
of possibly higher topological type spanned by a frame consisting of one or
several curves.

We begin the present chapter by having a closer look at Plateau’s prob-
lem. First we compare Dirichlet’s integral with the area functional, and we
shall explain why it seems to be more profitable to minimize the Dirichlet
integral rather than the area. Then, in Section 4.2, we set up Plateau’s prob-
lem in a form that we shall deal with in Sections 4.3–4.5. In Section 4.2, we
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Fig. 4. Another Jordan curve spanned by two disk-type minimal surfaces

Fig. 5. A Jordan curve bounding a one-sided minimal surface of higher topological type

Fig. 6. Two interlocked Jordan curves spanned by an annulus-type minimal surface

describe the minimization procedure that will lead to a solution of Plateau’s
problem, and in Section 4.3, we prove the uniform convergence of a suitably
chosen minimizing sequence to a harmonic mapping. This is achieved with
the aid of the Courant–Lebesgue lemma proved in Section 4.4. In Section 4.5
we use variations of the independent variables for establishing a variational
formula, from which we can derive that the minimizer X(u, v), constructed in
Section 4.3, also satisfies the conformality relations

|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0.

Hence it follows thatX actually is a minimal surface solving Plateau’s problem
for the prescribed boundary curve Γ . Finally we shall see why X is also



4 The Plateau Problem and the Partially Free Boundary Problem 243

Fig. 7. (a) A configuration consisting of a planar surface S and a Jordan arc Γ . (b) Solution

of the partially free boundary value problem corresponding to the configuration 〈Γ, S〉,
computed by a finite-element method

a solution of the least area problem, using Morrey’s lemma on ε-conformal
mappings. A self-contained proof of this result is presented in Section 4.10; it
is described below.

A slight modification of Courant’s approach, given in Section 4.6, will lead
to the solution of the partially free boundary problem.

A few results concerning the boundary behavior of minimal surfaces with
rectifiable boundaries are collected in Section 4.7. They will in particular be
needed in Chapter 5 of Vol. 2.

Reflection principles for minimal surfaces will be formulated in Section 4.8.
Essentially we shall prove again two results from Section 3.4, without using
Schwarz’s solution to Björling’s problem.

In 4.9 we give a survey on some results concerning the uniqueness and
nonuniqueness of solutions to Plateau’s problem; in particular Radó’s unique-
ness result is proved. Generalizations of Radó’s theorem to free boundary
problems are studied in Chapters 1 and 2 of Vol. 3.

Another approach to Plateau’s problem, presented in 4.10, proceeds by
minimizing the convex combination (1 −ε)A+εD of the area functional A and
the Dirichlet integral D for any ε ∈ (0, 1] in C(Γ ). It turns out that any min-
imizer yields a conformally parametrized solution of the problem “A → min
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Fig. 8. (a) A boundary configuration 〈Γ, S〉 consisting of a disk S and of a closed Jordan

curve Γ disjoint from S. (b) An annulus-type minimal surface which is stationary in 〈Γ, S〉

Fig. 9. Three more views of the minimal surface described in Fig. 8
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Fig. 10. The general Plateau problem consists in finding minimal surfaces spanning several

closed Jordan curves. Here we show two parallel coaxial circles bounding three minimal

surfaces of rotation

in C(Γ )” which also minimizes D in C(Γ ). This way we arrive at another
proof of Theorem 4 in 4.5 and in particular of the relation (40) in 4.5 stating
that a(Γ ) = e(Γ ). This new approach only applies methods developed in the
present chapter and completely avoids Morrey’s Lemma on ε-conformal map-
pings (see 4.5). Thus no results on quasiconformal mappings nor on conformal
representations of surfaces are needed for solving the minimal-area problem.
Actually, the underlying idea of 4.10 can be used to obtain conformal rep-
resentations of surfaces or of two-dimensional Riemannian metrics. This will
be carried out in 4.11 where we show that the solution of Plateau’s prob-
lem for planar contours provides a proof of the Riemann mapping theorem.
This way we also verify that planar solutions to Plateau’s problem are area-
minimizing, free of branch points, and uniquely determined (up to a conformal
reparametrization).

In a similar manner we derive other mapping theorems such as Lichten-
stein’s mapping theorem.

Nonrectifiable Jordan curves in R
3 no longer need to bound a disk-type

surface of finite Dirichlet integral. Nevertheless J. Douglas proved that any
closed Jordan curve in R3 bounds a continuous disk-type minimal surface.
A proof of this fact is presented in Section 4.12.

In Section 4.13 it is proved that every oriented closed, rectifiable Jordan
curve bounds a continuous and conformally parametrized disk-type surface
of finite area that minimizes an arbitrarily given regular Cartan functional,
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i.e. a given regular two-dimensional and parameter invariant variational inte-
gral F(X) =

∫
B
F (X,Xu ∧ Xv) du dv. Here no general regularity theory for

the corresponding Euler equation is available; therefore the existence proof is
based on a variational method that resembles the technique of Section 4.10.

Thereafter we derive the basic isoperimetric inequality for disk-type min-
imal surfaces. Generalizations of this inequality are studied in Chapter 6 and
in Chapter 4 of Vol. 2.

Finally the Scholia in Section 4.15 give a brief survey of the history of
Plateau’s problem as well as references to the literature. Moreover some ba-
sic results on the nonexistence of branch points for minimizers are described.
In addition we discuss the question as to whether a contour bounds embed-
ded solutions, the problem of uniqueness and nonuniqueness, index theorems,
generic finiteness, and Morse-theoretic results. These topics will also (and in
more detail) be treated in Chapter 6 and in Vol. 3. Thereafter we review some
results on solutions to obstacle problems, a detailed presentation of which is
given in Chapter 4 of Vol. 2. At last, some results on systems of minimal
surfaces are described.

4.1 Area Functional Versus Dirichlet Integral

If one tries to formulate and to solve Plateau’s problem, cumbersome difficul-
ties may turn up. Among other problems one has to face the fact that there
exist mathematical solutions to Plateau’s problem which cannot be realized
in experiment by soap films. This is, of course, to be expected for merely
stationary solutions which are not minimizing, because they correspond to
unstable soap films, and these will be destroyed by the tiniest perturbation
of the soap lamellae caused by, say, a slight shaking of the boundary frame or
by a breath of air.

However it can also happen that (mathematical) solutions of Plateau’s
problem have branch points, and that they have self-intersections. Both phe-
nomena are unrealistic in the physical sense because Plateau has discovered
the following rule for a stable configuration of soap films:

Three adjacent minimal surfaces of an area-minimizing system of surfaces,
corresponding to a stable system of soap films, meet in a smooth line at an
angle of 120◦. Only four such lines, each being the soul of three soap films,
can meet at a common point. At such a vertex, each pair of liquid edges forms
an angle ϕ of 109◦28′16′ ′ or, more precisely, of cosϕ = −1/3.

Figure 11 in Section 4.15 shows a system of soap films exhibiting these
features.

Solutions of Plateau’s problem, which are absolute minimizers of area, can-
not have interior branch points according to a result by Osserman–Gulliver–
Alt. Their proof of this result is rather difficult and lengthy; thus it will only
be sketched in Sections 1.9 and 5.3 of Vol. 2 (see also the Scholia 4.15 of the
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Fig. 1. The monster surface: a minimal surface of infinite genus

present chapter and the Scholia 6.7 of Vol. 2). A new approach leading to this
result is described in Chapter 6 of Vol. 2.

Yet, despite the absence of branch points for minimizers, self-intersections
of (mathematical) solutions are still conceivable, and so far only a few positive
results are known, for instance:

If Γ is a closed Jordan curve that lies on a convex surface, then Γ bounds a
disk-type minimal surface without self-intersections.

Another positive result, due to Ekholm, White, and Wienholtz [1] is the
following:

If Γ is a closed Jordan curve in R
3 with total curvature less or equal to 4π,

then any minimal surface—independently of its topological type—is embedded
up to and including the boundary, with no interior branch points.

A brief survey on the existence of embedded solutions of Plateau’s problem
is given in the Scholia 4.15, Subsection 3.

To solve Plateau’s problem we would like to use the classical approach,
which consists in minimizing area among surfaces given as mappings from a
two-dimensional parameter domain into R3, this way fixing the topological
type of the admissible surfaces. However, as we have already seen, it is by
no means clear what the topological type of the surface of least area in a
given configuration Γ will be. In fact, there may be rectifiable boundaries for
which the area-minimizing solution of Plateau’s problem is of infinite genus.
An example for this phenomenon is depicted in Fig. 1.

Let us now restrict ourselves to surfaces X ∈ C0(B̄,R3) which are param-
etrized on the closure of the unit disk B = {w ∈ C : |w| < 1}, and which map
the circle ∂B topologically onto a prescribed closed Jordan curve Γ in R

3. Such
a surface is said to be a solution of Plateau’s problem for Γ if its restriction
to B is a minimal surface. Since minimal surfaces are the critical points of the
area functional

AB(X) =
∫

B

|Xu ∧ Xv | du dv,

one is tempted to look for solutions of Plateau’s problem by minimizing
AB(X) in the class of all surfaces X ∈ C0(B̄,R3) mapping ∂B homeomor-
phically onto Γ . But this method will produce literally hair-raising solutions.
This can be seen as follows. Suppose that Γ is a circle in R

3 contained in the
x, y-plane, say
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Fig. 2. A hairy disk

Fig. 3. A hair C∞-grown on a disk

Γ = {(x, y, z) : x2 + y2 = 1, z = 0},
and let K(Γ ) = {(x, y, z) : x2 + y2 ≤ 1, z = 0} be the disk which is bounded
by Γ . On account of the maximum principle, the only minimal surfaces X of
class C0(B̄,R3) ∩ C2(B,R3) which map ∂B topologically onto Γ and satisfy

(1) ΔX = 0,

(2) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0

in B, are regular conformal mappings of B̄ onto K(Γ ) (cf. Section 4.11).
On the other hand, among the minimizers of the area functional AB(X),

there are mappings X : B̄ → R
3 which parametrize sets K∗(Γ ) which may be

viewed as hairy disks bounded by Γ (see Fig. 2). They occur as additional,
though nonregular, minimizers of AB since hairs do not contribute to surface
area. For example, let us raise just one hair on the disk K(Γ ). To this end,
we consider the set

K∗(Γ ) = K(Γ ) ∪ H
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consisting of the disk K(Γ ) and the hair

H = {(x, y, z) : x = y = 0, 0 ≤ z ≤ 1}

attached to the center of K(Γ ). Then K∗(Γ ) can be parametrized by the
following mapping X(u, v) of class C∞(B̄,R3):

x(u, v) = y(u, v) := 0, z(u, v) := ϕ(r) for 0 ≤ r ≤ 1
2 ,

where r =
√
u2 + v2, and

x(u, v) := ψ(r) cos θ, y(u, v) := ψ(r) sin θ, z(u, v) := 0 for 1
2 ≤ r ≤ 1.

Here, the functions ϕ(r) and ψ(r) are defined by

ϕ(r) := exp 4
(

1 − 1
1 − 4r2

)
, ψ(r) := exp 4

(
1
3

− 1
4r2 − 1

)
.

Note that the surface X(u, v) is irregular for 0 ≤ r ≤ 1
2 which is also evident

from the fact that the whole disk B1/2 = {(u, v) : u2 +v2 < 1
4 } is mapped into

the hair H (cf. Fig. 3).
Consequently, if we would use the variational problem

AB(X) → min,

we would have to cope with a host of nasty solutions. In order to derive a
reasonable solution satisfying equations (1) and (2), we would have to cut
off all the hairs from a hairy solution.1 This is fairly easy in the setting of
geometric measure theory since a two-dimensional measure neglects hairs as
sets of measure zero, whereas in the context of mappings the regularization
of solutions requires quite an elaborate procedure.

In order to avoid this difficulty, we shall proceed similarly as in Riemannian
geometry where one studies the one-dimensional Dirichlet instead of the length
functional, using the fact that the critical points of Dirichlet’s integral are also
critical points of the length functional which are parametrized proportionally
to the arc length, and vice versa. An analogous relation holds between the
stationary surfaces of the two-dimensional Dirichlet integral

(3) DB(X) =
1
2

∫
B

(|Xu|2 + |Xv |2) du dv

and the area functional AB(X). This can be seen as follows: For arbitrary
vectors p, q ∈ R

3 we have
|p ∧ q| ≤ |p| |q|,

1 When David Hilbert had established Dirichlet’s principle, Felix Klein wrote: “Hilbert

schneidet den Flächen die Haare ab” (cf. D. Hilbert, Gesammelte Abhandlungen, Vol. 3,

p. 409).
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and therefore

(4) |p ∧ q| ≤ 1
2 |p|2 + 1

2 |q|2.

The equality sign in (4) holds if and only if p ⊥ q and |p| = |q|. Suppose now
that X ∈ C1(B,R3) has a finite Dirichlet integral DB(X). Then we obtain
the inequality

(5) AB(X) ≤ DB(X),

and the equality sign is satisfied if and only if the conformality relations
(2) are fulfilled on B. In other words, area functional and Dirichlet integral
coincide exactly on the conformally parametrized surfaces X, and, in general,
the Dirichlet integral furnishes a majorant for the area functional.

Moreover, every smooth regular surface X : B → R
3 can, by Lichtenstein’s

theorem, be reparametrized by a regular change τ : B → B of parameters such
that Y := X ◦ τ satisfies the conformality relations

|Yu|2 = |Yv |2, 〈Yu, Yv 〉 = 0,

and we obtain
DB(Y ) = AB(Y ) = AB(X).

This observation makes it plausible that, within a class C of surfaces which is
invariant with respect to parameter changes, minimizers of DB(X) will also
be minimizers of AB(X), and more generally, that stationary points of DB(X)
will be stationary points of AB(X).

Certainly the class C defined by Plateau’s boundary conditionX : ∂B → Γ
has this invariance property. Thus we are led to the idea that we should
minimize Dirichlet’s integral instead of the area functional since we would
also obtain a minimizer for AB(X).

We will presently dispense with putting this idea on solid ground by mak-
ing the above reasoning rigorous. Instead we shall simply use the following
idea: Minimize DB(X) instead of AB(X), and justify it a posteriori by proving
that, in suitable classes C, the stationary points of DB(X) are in fact minimal
surfaces.

The use of Dirichlet’s integral in the minimizing procedure is a advanta-
geous for several reasons:

(i) It is not advisable to carry out the minimization among regular surfaces
only, because the class of such surfaces is not closed with respect to uniform
convergence of B̄ or to H1

2 (B)-convergence, and a better convergence of min-
imizing sequences will be difficult (or even impossible) to obtain. However, if
we admit general surfaces for minimization, the hairy monsters will also turn
up as minimizers when AB(X) is minimized. They are excluded if we instead
minimize DB(X).

(ii) Minimizing sequences of DB(X) have better compactness properties
than those of AB(X).
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The basic reason for (i) and (ii) is that the expression |p|2 + |q|2 only
vanishes if p = 0 and q = 0 holds, whereas |p ∧ q| is zero for any pair of
collinear vectors p and q. Moreover, AB(X) is invariant with respect to arbi-
trary reparametrizations of X, while DB(X) remains unchanged only under
conformal parameter transformations.

Keeping these ideas in mind, we will now proceed to formulate a minimum
problem, the solution of which will turn out to be a solution of Plateau’s
problem.

Notational convention: Occasionally we shall write D(X,B) and A(X,B)
instead of DB(X) and AB(X), and, for two mappings X,Y , we denote by
DB(X,Y ) the polarization of the Dirichlet integral:

(6) DB(X,Y ) :=
1
2

∫
B

(〈Xu, Yu〉 + 〈Xv, Yv 〉) du dv =
1
2

∫
B

〈 ∇X,∇Y 〉 du dv.

4.2 Rigorous Formulation of Plateau’s Problem and of the
Minimization Process

Set
B := {w ∈ C : |w| < 1}

and
C := {w ∈ C : |w| = 1} = ∂B.

A closed Jordan curve Γ in R
3 is a subset of R

3 which is homeomorphic to
∂B. By distinguishing some fixed homeomorphism γ : C → Γ from C onto Γ
we equip Γ with an orientation, and we say that Γ is oriented (by γ).

Definition 1. Given a closed Jordan curve Γ in R3, we say that X : B̄ → R3

is a solution of Plateau’s problem for the boundary contour Γ (or : a minimal
surface spanned in Γ ) if it fulfills the following three conditions:

(i) X ∈ C0(B̄,R3) ∩ C2(B,R3);
(ii) The surface X satisfies in B the equations

(1) ΔX = 0,

(2) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0;

(iii) The restriction X|C of X to the boundary C of the parameter domain B
is a homeomorphism of C onto Γ .

If it is necessary to be more precise, we shall denote a minimal surface X
described in this definition as disk-type solution of Plateau’s problem for the
contour Γ .
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Condition (iii) is equivalent to the assumption that X|C is a continuous,
strictly monotonic (i.e. injective) mapping of C onto Γ .

Clearly this condition is not closed with respect to uniform convergence
on C since uniform limits of strictly monotonic functions can be merely weakly
monotonic, that is, they may have arcs of constancy on C. To be precise, we
give the following

Definition 2. Suppose that Γ is a closed Jordan curve in R
3, which is ori-

ented by a homeomorphism γ : C → Γ from C onto Γ . Then a continuous
mapping ϕ : C → Γ of C onto Γ is said to be weakly monotonic if there is
a nondecreasing continuous function τ : [0, 2π] → R with τ(2π) = τ(0) + 2π
such that

(3) ϕ(eiθ) = γ(eiτ(θ)) for 0 ≤ θ ≤ 2π.

In other words, ϕ is weakly monotonic if the image points ϕ(w) traverse
Γ in a constant direction when w moves along C in a constant direction. The
image points may stand still but never move backwards if w moves monoton-
ically on C, and ϕ(w) moves once around Γ if w travels once around C.

Introducing the mapping E : [0, 2π] → C by E(θ) := eiθ, we can write (3)
as

ϕ ◦ E = γ ◦ E ◦ τ
whence we arrive at

(4) E ◦ τ = γ−1 ◦ ϕ ◦ E.

From this formula we obtain at once:

Lemma 1. Let {ϕn} be a sequence of weakly monotonic, continuous mappings
of C onto a closed Jordan curve Γ , and suppose that the mappings ϕn converge
uniformly on C to some mapping ϕ : C → R

3. Then ϕ is a weakly monotonic
continuous mapping of C onto Γ .

Remark. The assertion of Lemma 1 remains true if we assume that the map-
pings ψn are weakly monotonic, continuous mappings of C onto closed Jordan
arcs Γn which converge in the sense of Fréchet to some Jordan arc Γ . That
means, there are homeomorphisms γn and γ of C onto Γn and Γ respectively,
such that γn tends uniformly to γ as n → ∞.

Now we want to set up the variational problem that will lead us to a
solution of Plateau’s problem. First we define the class C(Γ ) of admissible
functions. We have exactly two essentially different orientations of Γ . Corre-
spondingly there will be exactly two possibilities to define C(Γ ) if Γ is not
oriented, while C(Γ ) will be uniquely defined for an oriented contour Γ .

Recall that every function X ∈ H1
2 (B,R3) has a trace X|C on the bound-

ary C = ∂B which is of class L2(C,R3).
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Definition 3. Given a closed Jordan curve Γ in R
3, a mapping X : B → R

3

is said to be of class C(Γ ) with respect to a fixed orientation γ : C → Γ of Γ if
X ∈ H1

2 (B,R3) and if its trace X|C can be represented by a weakly monotonic,
continuous mapping ϕ : C → Γ of C onto Γ (i.e., every L2(C)-representative
of X|C coincides with ϕ except for a subset of zero 1-dimensional Hausdorff
measure).

Let

(5) D(X) = DB(X) :=
1
2

∫
B

(|Xu|2 + |Xv |2) du dv

be the Dirichlet integral of a mapping X ∈ H1
2 (B,R3). Then we define the

variational problem P(Γ ) associated with Plateau’s problem for the oriented
curve Γ as the following task:

Minimize Dirichlet’s integral D(X), defined by (5), in the class C(Γ ).
In other words, setting

(6) e(Γ ) := inf{D(X) : X ∈ C(Γ )},

we have to find a surface X ∈ C(Γ ) such that

(7) D(X) = e(Γ )

is satisfied.
In order to solve the minimum problem P(Γ ), we shall have to find a min-

imizing sequence {Xn} whose boundary values Xn|C contain a subsequence
which is uniformly convergent on C. The selection of such a minimizing se-
quence will be achieved by the following artifice:

Fix three different points w1, w2, w3 on C, an orientation γ : C → Γ of Γ ,
and three different points Q1, Q2, Q3 on Γ such that γ(wk) = Qk, k = 1, 2, 3.
Let C(Γ ) be defined with respect to the orientation γ of Γ , and consider those
mappings X ∈ C(Γ ) which satisfy the three-point condition

(8) X(wk) = Qk, k = 1, 2, 3.

The set of such mappings X will be denoted by C∗(Γ ). Set

(9) e∗(Γ ) := inf{D(X) : X ∈ C∗(Γ )}.

We clearly have
e(Γ ) ≤ e∗(Γ ).

Moreover, if X ∈ C(Γ ), then there exist three different points ζ1, ζ2, ζ3 on C
such that

X(ζk) = Qk, k = 1, 2, 3.
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Let σ be a strictly conformal mapping of B̄ onto itself with the property that

σ(wk) = ζk, k = 1, 2, 3.

Then the mapping Y := X ◦ σ is of class C∗(Γ ) and satisfies D(Y ) = D(X),
because of the conformal invariance of the Dirichlet integral. Hence we even
obtain

(10) e(Γ ) = e∗(Γ ).

Consequently, any solution X of the restricted minimum problem

(11) P∗(Γ ): Minimize D(X) in the class C ∗(Γ )

is also a solution of the original minimum problem P(Γ ). Hence we shall try to
solve P∗(Γ ) instead of P(Γ ), in this way obtaining a convenient compactness
property of the boundary values of any minimizing sequence, as we shall see.

Before we can start with our minimizing process, one final difficulty re-
mains to be solved. Since P∗(Γ ) would not have a solution if C∗(Γ ) were
empty, let us now study under which circumstances C∗(Γ ) or, equivalently,
C(Γ ) is certainly nonempty.

Let ϕ : C → Γ be a homeomorphism representing Γ , and let

(12) ϕ(eiθ) =
A0

2
+

∞∑
n=1

{An cosnθ +Bn sinn θ}

be its Fourier expansion, An, Bn ∈ R
3, which is convergent in L2([0, 2π],R3).

We can assume that ϕ satisfies the prescribed three-point condition, i.e.,

ϕ(wk) = Qk, k = 1, 2, 3.

Let ρ, θ be polar coordinates about the origin of the w-plane, that is,

w = ρeiθ,

and set

(13) X(w) :=
A0

2
+

∞∑
n=1

ρn(An cosnθ +Bn sinnθ).

Since |An| and |Bn| are bounded by 2 supC |ϕ|, the series on the right-hand
side converges uniformly on every compact subset of B, and a well-known
computation shows that its limit is nothing but Poisson’s integral for the
boundary values ϕ(eiθ), i.e.,

(14) X(w) =
1
2π

∫ 2π

0

ϕ(eiψ)
1 − ρ2

1 + ρ2 − 2ρ cos(θ − ψ)
dψ
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for w = ρeiθ, ρ < 1. By the classical result of H.A. Schwarz, the mapping
X(w) is harmonic in B and satisfies X(w) → ϕ(w0) as w → w0, w ∈ B, for
every w0 ∈ ∂B. Hence X can be extended to a continuous function on B̄ with
the boundary values ϕ on C = ∂B. A straight-forward computation yields

(15) D(X) =
π

2

∞∑
n=1

n(|An|2 + |Bn|2).

Consequently the map X : B̄ → R
3 belongs to the class H1

2 (B,R3) if and only
if

(16)
∞∑

n=1

n(|An|2 + |Bn|2) < ∞.

If this is true, then C ∗(Γ ) is nonempty.
Condition (16) is satisfied if and only if φ(θ) := ϕ(eiθ) has half a deriva-

tive which is square-integrable. This is, for example, true if the representation
ϕ : C → Γ of the Jordan curve Γ is Lipschitz continuous. Such a represen-
tation of Γ exists if and only if Γ has finite length. Hence, for any rectifiable
Jordan curve Γ , neither C(Γ ) nor C∗(Γ ) are empty. Note, however, that the
rectifiability of Γ is only sufficient but not necessary for C(Γ ) to be nonempty.

Remark. Since D is invariant under strictly conformal as well as under an-
ticonformal mappings of B, its infimum e(Γ ) in C(Γ ) is independent of the
chosen orientation of Γ . The same holds for the generalized Dirichlet integral
(34) in Section 4.5, whereas the infimum of the integral (36) in 4.5 may depend
on the orientation of Γ , and the same holds for “Cartan functionals”, as con-
sidered in Section 4.13. Thus for conformally invariant integrals in the general
sense, such as D, we may neglect the orientation of the boundary contour Γ ;
both orientations lead to the same solutions of P(Γ ); in the noninvariant cases
we might obtain different solutions for opposite orientations.

Convention. It goes without saying that C(Γ ) always is defined with respect
to a fixed orientation of Γ .

4.3 Existence Proof, Part I: Solution of the Variational
Problem

Let Γ be a closed oriented Jordan curve in R
3, and let C(Γ ) be the class of

admissible surfaces bounded by Γ which we have defined in Section 4.2. The
aim of this section is to find a solution of the minimum problem

P(Γ ): D(X) → min in the class C(Γ ).

We are going to prove the following
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Theorem 1. If C(Γ ) is nonempty, then the minimum problem P(Γ ) has at
least one solution which is continuous on B and harmonic in B. In particular,
P(Γ ) has such a solution for every rectifiable curve Γ .

Proof. As we have seen in Section 4.2, the class C(Γ ) is nonempty for every
closed Jordan curve of finite length. Hence it suffices to prove the first part of
the assertion. Recall that we only have to find a solution of

P∗(Γ ): D(X) → min in the class C∗(Γ ),

where C∗(Γ ) denotes the set of surfaces X ∈ C(Γ ) satisfying a fixed three-
point condition

(1) X(wk) = Qk, k = 1, 2, 3.

Here, w1, w2, w3 are three different points on C = ∂B, and Q1, Q2, Q3 denote
three different points on Γ .

Choose a sequence {Xn} of mappings Xn ∈ C ∗(Γ ) such that

(2) lim
n→∞

D(Xn) = e∗(Γ )

holds. We can assume without loss of generality that Xn is a surface of class
C0(B̄,R3) ∩ C2(B,R3) which satisfies

ΔXn = 0 in B,

n = 1, 2, 3, . . . . (Otherwise we replace Xn by the solution Zn of the boundary
value problem

ΔZn = 0 in B,
Zn = Xn on C

which is continuous on B̄ and of class C2(B,R3) ∩H1
2 (B,R3). It is well known

that this problem has exactly one solution. This solution minimizes D(X)
among all X ∈ H1

2 (B,R3) with X −Xn ∈ H̊1
2 (B,R3). Consequently, D(Zn) ≤

D(Xn), and by construction we have Zn ∈ C ∗(Γ ) whence e∗(Γ ) ≤ D(Zn).
Thus we obtain

e∗(Γ ) ≤ D(Zn) ≤ D(Xn) → e∗(Γ ),

and therefore
lim

n→∞
D(Zn) = e∗(Γ ).

Hence we have found a minimizing sequence {Zn} for P∗(Γ ) consisting of
harmonic mappings Zn which are continuous on B̄.)

We now claim that the boundary values Xn|C
of the terms of any min-

imizing sequence {Xn} for P∗(Γ ) are equicontinuous on C. The key to this
crucial result is the so-called Courant–Lebesgue lemma. We defer its proof to
the next section so as not to interrupt our reasoning.
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Courant–Lebesgue lemma. Let X be of class C0(B̄,R3) ∩ C1(B,R3) and
suppose that

(3) D(X) ≤ M

for some M with 0 ≤ M < ∞. Then, for every z0 ∈ C and for each δ ∈
(0, 1), there exists a number ρ ∈ (δ,

√
δ) such that the distance of the images

X(z), X(z′) of the two intersection points z and z′ of C with the circle ∂Bρ(z0)
can be estimated by

(4) |X(z) − X(z′)| ≤
{

4Mπ
log 1/δ

}1/2

.

This lemma will be applied as follows: Since Γ is the topological image
of C, there exists, for every ε > 0, a number λ(ε) > 0 with the following
property:

Any pair of points P,Q ∈ Γ with

(5) 0 < |P − Q| < λ(ε)

decomposes Γ into two arcs Γ1(P,Q) and Γ2(P,Q) such that

(6) diamΓ1(P,Q) < ε

holds. Hence, if 0 < ε < ε0 := minj 	=k |Qj −Qk |, then Γ1(P,Q) can contain at
most one of the points Qj appearing in the three-point condition (1).

Let now X be an arbitrary mapping in C ∗(Γ ) that fulfills the assumptions
of the Courant–Lebesgue lemma, and let δ0 ∈ (0, 1) be a fixed number with

(7) 2
√
δ0 < min

j 	=k
|wj − wk |

where w1, w2, w3 appear in (1).
For an arbitrary ε ∈ (0, ε0), we choose some number δ = δ(ε) > 0 such

that

(8)
{

4πM
log 1/δ

}1/2

< λ(ε)

and

(9) δ < δ0.

Consider an arbitrary point z0 on C, and let ρ ∈ (δ,
√
δ) be some number such

that the images P := X(z), Q := X(z′) of the two intersection points z, z′ of
C and ∂Bρ(z0) satisfy

|P − Q| ≤
{

4Mπ
log 1/δ

}1/2

.
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Then we infer from (8) that |P − Q| < λ(ε), whence

diamΓ1(P,Q) < ε

holds on account of (6). Because of ε < ε0 the arc Γ1(P,Q) contains at most
one of the points Qj . On the other hand, it follows from X ∈ C ∗(Γ ) and from
(1), (7), (9) that X(C ∩ Bρ(z0)) contains at most one of the points Qj and
must therefore coincide with the arc Γ1(P,Q):

Γ1(P,Q) = X(C ∩ Bρ(z0)).

Consequently we have

|X(w) − X(w′)| < ε for all w,w′ ∈ C ∩ Bρ(z0).

This implies

(10) |X(w) − X(w′)| < ε for all w,w′ ∈ C with |w − w′ | < δ.

Consider now the minimizing sequence {Xn}. By (2), there is some number
M > 0 such that

D(Xn) ≤ M

holds for all n ∈ N. Thus we can apply (10) to X = Xn, n = 1, 2, . . . , and
we conclude that the functions Xn|C are equicontinuous. Moreover, we infer
from Xn(C) = Γ that the functions Xn|C are uniformly bounded. Hence, by
the theorem of Arzelà–Ascoli, we can assume that the Xn|C tend to some
mapping ϕ ∈ C0(C,R3) as n → ∞, uniformly on C, and that ϕ is a weakly
monotonic mapping of C onto Γ . Since the functions Xn are continuous on
B̄ and harmonic in B, it follows that Xn tends uniformly on B̄ to some
function X, which is continuous on B̄, harmonic in B, satisfies (1), and has
the boundary values ϕ. Consequently, X is of class C∗(Γ ), and therefore

e∗(Γ ) ≤ D(X).

Moreover, a classical result for harmonic functions implies that grad Xn tends
to grad X as n → ∞, uniformly on every B′ ⊂⊂ B, whence

lim
n→∞

DB′ (Xn) = DB′ (X)

and therefore
lim inf
n→∞

DB(Xn) ≥ DB′ (X) if B′ ⊂⊂ B.

Thus we finally obtain

e∗(Γ ) = lim
n→∞

D(Xn) ≥ D(X) ≥ e∗(Γ ),

or
D(X) = e∗(Γ ).

Therefore X ∈ C∗(Γ ) is a minimizer of the Dirichlet integral D(X) within the
class C(Γ ). �
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In the previous theorem we have obtained at least one harmonic minimizer
of D(X) in the class C(Γ ). Now we want to show that every solution of P(Γ )
is a harmonic mapping. In fact, we have

Theorem 2. Every minimizer X of the Dirichlet integral within the class
C(Γ ) is continuous in B̄ and harmonic in B.

Proof. Let ϕ = (ϕ1, ϕ2, ϕ3) be an arbitrary test function of class C∞
c (B,R3).

Then we have X + εϕ ∈ C(Γ ) for every ε ∈ R. On account of the minimum
property of X, the quadratic polynomial

f(ε) := D(X + εϕ) = D(X) + 2εD(X,ϕ) + ε2D(ϕ), ε ∈ R,

has an absolute minimum at ε = 0, whence f ′(0) = 0, or

(11) D(X,ϕ) = 0 for all ϕ ∈ C∞
c (B,R3).

By a classical result for harmonic functions (Weyl’s lemma), we obtain from
(11) that X is harmonic in B. Since X ∈ H1

2 (B,R3) and X|C ∈ C0(C,R3), it
also follows that X ∈ C0(B̄,R3). �

By the same reasoning that led to Theorem 1, we also obtain the following
results (cf. Section 4.2, Lemma 1):

Theorem 3. Let {Γn} be a sequence of closed (oriented) Jordan curves in R
3

which converge in the sense of Fréchet to some closed (oriented) Jordan curve
Γ (notation: Γn → Γ as n → ∞), and let {Xn} be a sequence of mappings
Xn ∈ C (Γn) with uniformly bounded Dirichlet integral, i.e.,

(12) D(Xn) ≤ M, n ∈ N.

Then their boundary values ϕn := Xn|C are equicontinuous if they satisfy a
uniform three-point condition

(13) ϕn(wj) = Q(n)
j , j = 1, 2, 3,

with some points wj ∈ C and Q(n)
j ∈ Γn, j = 1, 2, 3, such that limn→∞ Q

(n)
j =

Qj holds, where Q1, Q2, Q3 denote three different points on the limit curve Γ .
If, moreover, the mappings Xn are continuous on B̄ and harmonic in B,

then we can extract a subsequence {Xnp } that converges uniformly on B̄ to
some mapping X ∈ C(Γ ) which is continuous on B̄ and harmonic in B.

Remark. For minimal surfaces Xn, the isoperimetric inequality (cf. Sec-
tion 4.14) implies that

(14) D(Xn) ≤ 1
4π
L2(Γn)

holds, where L(Γn) denotes the lengths of the curves Γn. Hence condition (12)
is satisfied by every sequence of minimal surfaces Xn ∈ C(Γn), n = 1, 2, . . . ,
spanned by closed Jordan curves Γn of uniformly bounded lengths,

(15) L(Γn) ≤ l for all n ∈ N.
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Theorem 4. Let Γ, Γ1, Γ2, . . . be closed (oriented) Jordan curves in R
3 with

Γn → Γ as n → ∞ (Fréchet convergence) and limn→∞ e(Γn) = e(Γ ). Fur-
thermore, let Xn ∈ C(Γn) be a sequence of solutions for P(Γn) whose boundary
values ϕn = Xn|C satisfy a uniform three-point condition such as in Theo-
rem 3. Then we can extract a subsequence {Xnp } which converges uniformly
on B̄ to some solution X of P(Γ ) as p → ∞, and

(16) lim
n→∞

D(Xn) = D(X).

4.4 The Courant–Lebesgue Lemma

We now want to supply a proof for the Courant–Lebesgue lemma that was
used in the previous section. In fact, this lemma will be an immediate conse-
quence of the next proposition.

Let us introduce the following notations:

B := {w : |w| < 1}, C := ∂B,

Sr(z0) := B ∩ Br(z0), Cr(z0) := B̄ ∩ ∂Br(z0).

If z0 ∈ C, then we can write

Cr(z0) = {z0 + reiθ : θ1(r) ≤ θ ≤ θ2(r)}

with
0 < θ2(r) − θ1(r) < π.

Proposition 1. Suppose that X is of class C0(B̄,Rn)∩C1(B,Rn), n ∈ N, and
satisfies D(X) < ∞. Let z0 be any point on C, and set Z(r, θ) := X(z0 +reiθ)
where r, θ denote polar coordinates about z0. Then, for every δ ∈ (0, R2),
0 < R < 1, there is a number ρ ∈ (δ,

√
δ) such that, for every pair θ, θ′ with

θ1(ρ) ≤ θ ≤ θ′ ≤ θ2(ρ), we obtain the estimate

(1)
∫ θ′

θ

|Zθ(ρ, θ)| dθ ≤ η(δ,R)|θ − θ′ |1/2

with

(2) η(δ,R) :=
{

2
log(1/δ)

∫
SR(z0)

| ∇X|2 du dv
}1/2

,

and in particular

(3) |Z(ρ, θ) − Z(ρ, θ′)| ≤ η(δ,R)|θ − θ′ |1/2.

Remark. The assumption z0 ∈ C is not essential as we shall see from the
proof. We shall leave it to the reader to formulate a corresponding result in
other situations.
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We begin the proof of Proposition 1 by verifying the following

Lemma 1. Let X satisfy the assumptions of Proposition 1, and set

Z(r, θ) := X(z0 + reiθ), z0 ∈ C,

and

(4) p(r) :=
∫ θ2(r)

θ1(r)

|Zθ(r, θ)|2 dθ.

Moreover, let I be a measurable subset of (0, 1), and suppose that both

(5) 0 <
∫

I

dr

r
< ∞ and

∫
I

p(r)
r
dr ≤ M < ∞

are satisfied. Then the set IM := {ρ ∈ I : p(ρ)
∫

I
dr
r ≤ M} has a positive

1-dimensional Lebesgue measure,

(6) L1(IM ) > 0,

and for every ρ ∈ IM and all θ, θ′ with θ1(ρ) ≤ θ ≤ θ′ ≤ θ2(ρ) we obtain the
inequality

(7)
∫ θ′

θ

|Zθ(ρ, θ)| dθ ≤
{
M
/∫

I

dr

r

}1/2

|θ − θ′ |1/2.

Proof. (i) If L1(IM ) = 0, then we would obtain

p(ρ) > M
/∫

I

dr

r
for almost all ρ ∈ I.

Multiplying by 1/ρ, and integrating over I with respect to ρ, we would arrive
at the inequality ∫

I

p(ρ)
ρ
dρ > M

which is a contradiction to (5). Hence we see that L1(IM ) > 0.
(ii) Let ρ ∈ IM and θ1(ρ) ≤ θ ≤ θ′ ≤ θ2(ρ). Then it follows that

∫ θ′

θ

|Zθ(ρ, θ)| dθ ≤
{∫ θ′

θ

|Zθ(ρ, θ)|2 dθ
}1/2

|θ − θ′ |1/2

≤
{
M
/∫

I

dr

r

}1/2

|θ − θ′ |1/2. �

Proof of Proposition 1. Let p(r) be the function defined by (4). Then we ob-
tain
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∫ r

0

p(ρ)
ρ
dρ ≤

∫ r

0

∫ θ2(ρ)

θ1(ρ)

{
|Zρ(ρ, θ)|2 +

1
ρ2

|Zθ(ρ, θ)|2
}
ρ dθ dρ

= 2D(X,Sr(z0)).

For M := 2D(X,SR(z0)) and I = (δ,
√
δ), we infer from Lemma 1 that there

is some ρ with δ < ρ <
√
δ ≤ R such that

∫ θ′

θ

|Zθ(ρ, θ)| dθ ≤
{
M
/∫ √

δ

δ

dr

r

}1/2

|θ − θ′ |1/2

=
{

4D(X,SR(z0))
1

log 1/δ

}1/2

|θ − θ′ |1/2

= η(δ,R)|θ − θ′ |1/2,

and from

Z(ρ, θ′) − Z(ρ, θ) =
∫ θ′

θ

Zθ(ρ, θ) dθ

we infer that

|Z(ρ, θ′) − Z(ρ, θ)| ≤
∫ θ′

θ

|Zθ(ρ, θ)| dθ ≤ η(θ,R)|θ − θ′ |1/2. �

There is a generalization of Proposition 1 which holds for functions X(w)
of class H1

2 (B,Rn); see e.g. Morrey [8], Theorem 3.1.2(g). Recall the following
property of such functions:

If Z(r, θ) := X(z0 +reiθ) is the transformation of X into polar coordinates
r, θ about some point z0 ∈ C, then there is representation of Z, again denoted
by Z, such that Z(r, θ) is absolutely continuous with respect to θ for almost all
r ∈ (0, 2), and that Z(r, θ) is absolutely continuous with respect to r ∈ (r0, 2),
for any r0 > 0 and for almost all θ. Moreover, the partial derivatives Zr, Zθ

of Z with respect to r and θ coincide almost everywhere on {(r, θ) : 0 <
r < 2, θ1(r) < θ < θ2(r)} with the corresponding distributional derivatives.
Consequently, the function

p(r) =
∫ θ2(r)

θ1(r)

|Zθ(r, θ)|2 dθ

is defined for almost all r ∈ (0, 2). Moreover, p(r) is measurable on (0, 2), and∫ 2

0
p(r)

r dr < ∞. Instead of Lemma 1, we now obtain

Lemma 2. Let I be a measurable subset of (0, 1) such that

0 <
∫

I

dr

r
< ∞ and

∫
I

p(r)
r
dr ≤ M < ∞.

Then the set IM := {ρ ∈ I : p(ρ)
∫

I
dr
r ≤ M} satisfies L1(IM ) > 0, and for

almost all ρ ∈ IM and all θ, θ′ with θ1(ρ) ≤ θ ≤ θ′ ≤ θ2(ρ) we obtain
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∫ θ′

θ

|Zθ(ρ, θ)| dθ ≤
{
M
/∫

I

dr

r

}1/2

|θ − θ′ |1/2.

Consequently we arrive at the following analogue of Proposition 1:

Proposition 2. Every X ∈ H1
2 (B,Rn) possesses a representative Z(r, θ) of

X(z0 + reiθ), z0 ∈ C, which is absolutely continuous with respect to θ for a.a.
r ∈ (0, 2) and which has the following property :

For every δ ∈ (0, R2), 0 < R < 1, there is a measurable subset I of the
interval (δ,

√
δ) with L1(I) > 0 such that

|Z(ρ, θ) − Z(ρ, θ′)| ≤
∫ θ′

θ

|Zθ(ρ, θ)| dθ ≤ η(δ,R)|θ − θ′ |1/2

holds for a.a ρ ∈ I and θ1(ρ) ≤ θ ≤ θ′ ≤ θ2(ρ), where

η(δ,R) :=
{

4
log 1/δ

D(X,SR(z0))
}1/2

.

This and other versions of the Courant–Lebesgue lemma are quite useful
for many purposes, in particular for the treatment of free boundary value
problems.

4.5 Existence Proof, Part II: Conformality of Minimizers
of the Dirichlet Integral

In this section, we want to prove that the solutions X(u, v) of the minimum
problem P(Γ ) satisfy the conformality relations

(1) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0.

To this end, we exploit the minimum property of X by changing the indepen-
dent variables u, v in direction of arbitrarily prescribed vector fields λ(u, v) =
(μ(u, v), ν(u, v)) on B̄. Such variations of X will be called inner variations.

In order to make this variational technique precise, we start with an arbi-
trary vector field λ = (μ, ν) on B̄ which is of class C1(B̄,R2). Without restric-
tion we can assume that λ is defined on all of R

2 and is of class C1(R2,R2).
With λ we associate some 1-parameter family of mappings τε : R

2 → R
2 which

satisfies

(2) τε(w) = τ(w, ε) = w − ελ(w) + o(ε) as ε → 0,

w = (u, v). For instance, we could take τε(w) = w − ελ(w). The function
τ(w, ε) is of class C1 on R

2 × R. Choose some open set B0 with B ⊂⊂ B0.
Then it is easy to see that τε : B0 → τε(B0) furnishes an orientation preserving
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C1-diffeomorphism of B0 onto its image τε(B0) provided that |ε| < ε0, for
some sufficiently small ε0 > 0, because τε(w) is just a perturbation of the
identity map τ0(w) = w.

Clearly the inverse mappings σε = τ−1
ε exist on a common domain of

definition Ω satisfying B∗
ε ⊂⊂ Ω ⊂⊂ B0, where we have set B∗

ε := τε(B). We
write ω = τε(w) = τ(w, ε) and w = σε(ω) = σ(ω, ε). The function σ(ω, ε) is
of class C1 on Ω × (−ε0, ε0) and satisfies both

(3) σ(ω, ε) = ω + ελ(ω) + o(ε)

and

(4) τ(σ(ω, ε), ε) = ω

for all (ω, ε) ∈ Ω × (−ε0, ε0).
Restricting the region of definition of τε = τ(·, ε) and σε = σ(·, ε) to B̄

and B̄∗
ε , respectively, the mapping τε is a diffeomorphism of B̄ onto B̄∗

ε , with
the inverse σε, and we have in particular

(5) B∗
0 = B, σ(w, 0) = w,

∂

∂ε
σ(w, ε)

∣∣∣∣
ε=0

= λ(w) for w ∈ B̄.

Moreover, the Jacobian of the mapping τε(w) is given by

detDτε =
∣∣∣∣1 − εμu + o(ε) −εμv + o(ε)

−ενu + o(ε) 1 − ενv + o(ε)

∣∣∣∣ = 1 − ε(μu + νv) + o(ε)

whence

(6)
∂

∂ε
detDτε

∣∣∣∣
ε=0

= −(μu + νv) = −div λ.

Consider now an arbitrary function X ∈ C1(B̄,R3). We embed X into the
family of functions

(7) Zε := X ◦ σε, σε : B∗
ε → B̄,

which are obtained from X by the inner variations σε. Let us compute the
rate of change of the Dirichlet integral D(Zε, B

∗
ε ) at ε = 0. Since we later may

want to carry out the same computation for other variational integrals F(X)
of the type

(8) FB(X) = F(X,B) :=
∫

B

F (X,Xu, Xv) du dv

with a C1-Lagrangian F (x, p, q), we shall compute the derivative f ′(0) of the
function
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(9) f(ε) := F(Zε, B
∗
ε ) =

∫
B∗

ε

F

(
Zε,

∂

∂α
Zε,

∂

∂β
Zε

)
dα dβ

where we have set w = (u, v), ω = (α, β). By applying the transformation
theorem to this integral and to the mapping τε : B̄ → B∗

ε , we obtain

(10) f(ε) =
∫

B

F

(
X,

(
∂

∂α
Zε

)
◦ τε,

(
∂

∂β
Zε

)
◦ τε
)

|detDτε| du dv.

Set
σε(ω) = σε(α, β) = (σ1

ε(α, β), σ2
ε(α, β)).

From
Zε(α, β) = X(σ1

ε(α, β), σ2
ε(α, β))

we infer that

∂

∂α
Zε(α, β) = Xu(σε(ω))

∂σ1
ε

∂α
(ω) +Xv(σε(ω))

∂σ2
ε

∂α
(ω),

∂

∂β
Zε(α, β) = Xu(σε(ω))

∂σ1
ε

∂β
(ω) +Xv(σε(ω))

∂σ2
ε

∂β
(ω).

Therefore(
∂

∂α
Zε

)
(τε(w)) = Xu(w)

∂σ1
ε

∂α
(τε(w)) +Xv(w)

∂σ2
ε

∂α
(τε(w)),

(
∂

∂β
Zε

)
(τε(w)) = Xu(w)

∂σ1
ε

∂β
(τε(w)) +Xv(w)

∂σ2
ε

∂β
(τε(w)).

(11)

Moreover, we have

σ1
ε(α, β) = α+ εμ(α, β) + o(ε)

σ2
ε(α, β) = β + εν(α, β) + o(ε)

as ε → 0,

and therefore

∂

∂α
σ1

ε(α, β) = 1 + ε
∂

∂α
μ(α, β) + o(ε),

∂

∂β
σ1

ε(α, β) = ε
∂

∂β
μ(α, β) + o(ε),

∂

∂α
σ2

ε(α, β) = ε
∂

∂α
ν(α, β) + o(ε),

∂

∂β
σ2

ε(α, β) = 1 + ε
∂

∂β
ν(α, β) + o(ε).

(12)

Replacing α and β by

α = u − εμ(u, v) + o(ε), β = v − εν(u, v) + o(ε),



266 4 The Plateau Problem and the Partially Free Boundary Problem

differentiating (12) with respect to ε, and setting ε = 0, we arrive at

∂

∂ε

∂σ1
ε

∂α
(τε(w))

∣∣∣∣
ε=0

= μu(u, v),
∂

∂ε

∂σ1
ε

∂β
(τε(w))

∣∣∣∣
ε=0

= μv(u, v),

∂

∂ε

∂σ2
ε

∂α
(τε(w))

∣∣∣∣
ε=0

= νu(u, v),
∂

∂ε

∂σ2
ε

∂β
(τε(w))

∣∣∣∣
ε=0

= νv(u, v).

On account of (11), we then conclude that

∂

∂ε

(
∂

∂α
Zε

)
(τε(w))

∣∣∣∣
ε=0

= Xu(w)μu(w) +Xv(w)νu(w),

∂

∂ε

(
∂

∂β
Zε

)
(τε(w))

∣∣∣∣
ε=0

= Xu(w)μv(w) +Xv(w)νv(w).
(13)

Combining formulas (6) and (10)–(13), we finally obtain

f ′(0) =
∫

B

{
〈Fp(X,Xu, Xv), Xuμu +Xvνu〉(14)

+ 〈Fq(X,Xu, Xv), Xuμv +Xvνv 〉
− F (X,Xu, Xv)[μu + νv]

}
du dv.

Following Giaquinta and Hildebrandt [1], we denote ∂FB(X,λ) := f ′(0)
as (first) inner variation of the functional FB at X in direction of the vector
field λ = (μ, ν), that is,

∂FB(X,λ) :=
∫

B

{ 〈Fp, Xuμu +Xvνu〉 + 〈Fq, Xuμv +Xvνv 〉(15)

− F [μu + νv]} du dv

where the arguments of F, Fp, Fq are to be taken as X,Xu, Xv.
Collecting the previous results, we obtain the following

Proposition 1. If {τε} |ε|<ε0 is a C1-family of C1-diffeomorphisms τε : B̄ →
B∗

ε with the inverses σε : B∗
ε → B̄, such that B∗

0 = B holds and that σ(w, ε) :=
σε(w) satisfies

(16) σ(w, 0) = w,
∂σ

∂ε
(w, 0) = λ(w), and λ ∈ C1(B̄,R2),

then, for every X ∈ C1(B̄,R3), we obtain

(17)
d

dε
F (X ◦ σε, B

∗
ε )
∣∣∣∣
ε=0

= ∂FB(X,λ)

where ∂FB(X,λ) is defined by (15).
Moreover, given any vector field λ ∈ C1(B̄,R2), we can find a 1-parameter

family of diffeomorphisms σε with the above stated properties and, in partic-
ular, with the property (16).
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Let us now consider two important cases:

Examples 1. For the Dirichlet integral

D(X) =
1
2

∫
B

(|Xu|2 + |Xv |2) du dv

and for any vector field λ = (μ, ν) ∈ C1(B̄,R2), the first inner variation
∂D(X,λ) is given by

(18) 2∂D(X,λ) =
∫

B

[a(μu − νv) + b(μv + νu)] du dv,

where a and b denote the functions

(19) a := |Xu|2 − |Xv |2, b := 2〈Xu, Xv 〉.

Note that the expression ∂D(X,λ) is not only defined for surfaces X ∈
C1(B̄,R3), but also for surfaces X ∈ H1

2 (B,R3). In fact, a closer inspection
of the previous computations yields the following result:

Proposition 2. If FB(X) = D(X), then the assertion of Proposition 1 holds
for every X ∈ H1

2 (B,R3), and the inner variation ∂D(X,λ) of the Dirichlet
integral at X in direction of any λ ∈ C1(B̄,R2) is given by formulas (18) and
(19).

Examples 2. For the generalized Dirichlet integral

(20) E(X) =
1
2

∫
B

gjk(X){Xj
uX

k
u +Xj

vX
k
v } du dv

and for any λ = (μ, ν) ∈ C1(B̄,R2), we obtain

2∂E(X,λ) =
∫

B

[a(μu − νv) + b(μv + νu)] du dv

with

a := gjk(X)Xj
uX

k
u − gjk(X)Xj

vX
k
v ,

b := 2gjk(X)Xj
uX

k
v .

(21)

Again we can prove a generalization of Proposition 1 which is similar to
Proposition 2 and holds for E and X ∈ H1

2 (B,R3).
Now we are in a position to prove the main results of this section.

Theorem 1. Let X(u, v) be a surface of class H1
2 (B,R3) such that

(22) ∂D(X,λ) = 0 for all λ ∈ C1(B̄,R2)

is satisfied. Then X fulfills the conformality relations (1) a.e. in B. Con-
versely, if (1) holds a.e. in B for some X ∈ H1

2 (B,R3), then the relation (22)
is satisfied.
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Proof. Choose arbitrary functions ρ, σ ∈ C∞
c (B) and determine functions

h, k ∈ C∞(B̄) with
Δh = ρ, Δk = σ on B,
h = 0, k = 0 on ∂B.

(This is possible on account of well known results of potential theory, cf.
Gilbarg and Trudinger [1].)

Then the functions

μ := hu + kv, ν := −hv + ku

are of class C∞(B̄) and satisfy

μu − νv = ρ, μv + νu = σ.

We now infer from assumption (22) in conjunction with (18) and (19) that
∫

B

{aρ+ bσ} du dv = 0

holds for all ρ, σ ∈ C∞
c (B). By the fundamental lemma of the calculus of

variations we conclude that

a = 0 and b = 0

a.e. on B.
It is a trivial conclusion from (18) and (19) that, conversely, the confor-

mality relations (1) imply (22). �

Corollary 1. If X ∈ H1
2 (B,R3) is harmonic in B and satisfies (22), then X

is a minimal surface.

Theorem 2. Every solution X of the variational problem

P(Γ ): D(X) → min in the class C(Γ )

is of class C0(B̄,R3) ∩ C2(B,R3) and satisfies

ΔX = 0,

|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0

in B, that is, X is a minimal surface.

Proof. By virtue of Section 4.3, Theorem 2, we only have to verify the confor-
mality relations. Let σε : B∗

ε → B̄ be a family of inner variations as described
in Proposition 1, and set Zε := X ◦ σε, where X is a minimizer of DB(·) in
the class C(Γ ). Clearly we have Zε ∈ H1

2 (B∗
ε ,R

3). Since B̄ and B∗
ε are dif-

feomorphic, |ε| < ε0, there is a conformal mapping κε : B → B∗
ε of B onto
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B∗
ε , by virtue of Riemann’s mapping theorem. Moreover, a classical result in

function theory yields that κε can be extended to a homeomorphism of B̄
onto B∗

ε since ∂B∗
ε is a Jordan curve. It follows that Yε := Zε ◦ κε is of class

C(Γ ), whence

(23) D(X,B) ≤ D(Yε, B) for |ε| < ε0,

because of the minimum property of X.
A straightforward computation shows that the Dirichlet integral is invari-

ant with respect to conformal mappings. Therefore we have

D(Yε, B) = D(Zε ◦ κε, B) = D(Zε, B
∗
ε ),

and in conjunction with (23), we arrive at

(24) D(X,B) ≤ D(Zε, B
∗
ε ), |ε| < ε0.

Set f(ε) := D(Zε, B
∗
ε ) and note that X = Z0. Then we can write (24) as

f(0) ≤ f(ε), |ε| < ε0,

and we obtain
0 = f ′(0) = ∂D(X,λ)

for every λ ∈ C1(B̄,R2), on account of (9) and of Proposition 2. Then the
conformality relations (1) are a consequence of Theorem 1. �

Theorem 3. Every solution of P(Γ ) and, more generally, every minimal sur-
face of class C(Γ ) yields a topological mapping of C onto Γ .

Proof. Let X ∈ C(Γ ) be continuous in B̄, harmonic in B, and suppose that
(1) holds in B. It suffices to prove that X provides a one-to-one mapping of
C onto Γ . Suppose that this were not true. Since X|C is weakly monotonic,
we could then find an arc C0 = {eiθ : θ1 < θ < θ2} which is mapped onto a
single point P ∈ R

3:

(25) X(eiθ) = P for all θ ∈ (θ1, θ2).

By Schwarz’s reflection principle we could extend X(w) as a harmonic map-
ping across C0. Differentiating (25) in the tangential direction, we would then
obtain

∂

∂θ
X(eiθ) = 0

and, applying the conformality relations, it would follow that grad X vanishes
identically on C0. This would imply grad X ≡ 0 on B, or X(w) ≡ P , a
contradiction to X ∈ C(Γ ). �

Combining Theorems 1–3 with the results of Section 4.3, we have found
the following
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Main Theorem. Let Γ be a closed curve in R
3 and suppose that C(Γ ) is

nonempty. Then the minimum problem

P(Γ ): D(X) → min in the class C(Γ )

has at least one solution. Every solution X of P(Γ ) is continuous on B̄, har-
monic in B, satisfies the conformality relations (1) in B, and maps C topo-
logically onto Γ . In particular, every closed rectifiable curve Γ in R

3 spans at
least one minimal surface of the type of the disk.

Obviously the proof of Theorem 3 does not use the fact that D(X) < ∞,
and so we have also

Corollary 2. Let X : B → R
3 be a minimal surface which is continuous on

B and maps C = ∂B in a weakly monotonic way onto Γ (as defined in 4.2,
Definition 2). Then X yields a homeomorphism from C onto Γ .

Supplementary Remarks.

1. For the proof of Theorem 2 we have used the Riemann mapping theorem.
This can be avoided as we shall presently see. The advantage of this dif-
ferent proof is that the Main Theorem above can be used to provide an
independent approach to Riemann’s mapping theorem; see Section 4.11.
Let us use the complex notation w = u+ iv, and consider the variations

(26) ω = τε(w) = weiεϕ(r,θ)

with ϕ(r, θ) = ψ(w), w = reiθ, where ψ(u, v) denotes an arbitrary function
of class C1(B̄). Writing

(27) τε(w) = w − ελ(w) + o(ε) as ε → 0

we obtain

(28) λ(w) = μ(u, v) + iv(u, v) = −iwϕ(r, θ).

Clearly, the mappings τε define diffeomorphisms of B̄ onto itself, provided
that |ε| is sufficiently small. Hence, if we set σε := τ−1

ε and Zε := X ◦ σε

for some solution X of P(Γ ), then the functions Zε are of class C(Γ ), and
we obtain

D(Zε) ≥ D(X) for |ε| � 1.

As in the proof of Theorem 2, we now conclude that

(29)
∫

B

[a(μu − νv) + b(μv + νu)] du dv = 0

holds for
a := |Xu|2 − |Xv |2, b := 2〈Xu, Xv 〉.
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One easily verifies the Cauchy–Riemann equations

au = −bv, av = bu

in B, using the relation ΔX = 0 which holds for every solution X of P(Γ ).
Consequently the mapping Φ : B → C defined by Φ(w) := a(u, v)−ib(u, v)
is a holomorphic function of w = u+ iv ∈ B, and only this fact is used in
the sequel. Suppose first that we had X ∈ C1(B̄,R3). Then, by employing
Δa = Δb = 0, we could transform the left-hand side of (29) into a line
integral over C = ∂B, thus obtaining

(30) Im
∫

C

λ(w)Φ(w) dw = 0.

On account of (28), we then arrive at

(31) Im
∫ 2π

0

ϕ(1, θ)w2Φ(w) dθ = 0, w = eiθ.

Let H(r, θ) := Imw2Φ(w), w = reiθ, and choose

(32) ϕ(r, θ) := ζ(r; ρ)K(r, θ; ρ, θ′)

where w′ = ρeiθ
′

is some fixed point in B, ζ(r; ρ) is a function of class
C∞(R) with respect to r which satisfies ζ(r; ρ) = 0 for 0 ≤ r ≤ ρ′, and
ζ(r; ρ) = 1 for ρ′ ′ < r, where the numbers ρ′, ρ′ ′ satisfy ρ < ρ′ < ρ′ ′ < 1,
and K denotes the Poisson kernel for the disk Br(0):

K(r, θ; ρ, θ′) :=
1
2π

r2 − ρ2

r2 − 2ρr cos(θ − θ′) + ρ2
.

Then we infer from (31) that
∫ 2π

0

K(1, θ; ρ, θ′)H(1, θ) dθ = 0,

and Poisson’s formula yields

H(ρ, θ′) = 0

for every ρ ∈ (0, 1) and 0 ≤ θ′ ≤ 2π, or Imw2Φ(w) = 0. Hence, Re w2Φ(w)
is constant in B, whence

w2Φ(w) ≡ c

or
Φ(w) ≡ c

w2
.

Since Φ(w) is holomorphic in B, we infer that c = 0 or Φ(w) ≡ 0, that is,
a = 0 and b = 0.
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In general, however, we only know that X ∈ C1(B,R3). Thus we have to
modify our proof slightly. Let

BR := {w : |w| < R}, CR := ∂BR, 0 < R < 1.

Then we infer from (29) that
∫

BR

[a(μu − νv) + b(μv + νu)] du dv → 0 as R → 1 − 0.

Performing the same integration by parts as before, we obtain instead of
(30) the relation

Im
∫

CR

λ(w)Φ(w) dw → 0 as R → 1 − 0

whence

(33) lim
R→1−0

Im
∫ 2π

0

ϕ(R, θ)w2Φ(w) dθ = 0, w = Reiθ .

If we choose ϕ(r, θ) as in (32) and assume that ρ < ρ′ < ρ′ ′ < R < 1, then
Poisson’s formula yields

Im
∫ 2π

0

ϕ(R, θ)w2Φ(w) dθ =
∫ 2π

0

K(R, θ; ρ, θ′)H(R, θ) dθ = H(ρ, θ′)

and (33) implies limR→1−0H(ρ, θ′) = 0, or H(ρ, θ′) = 0. The rest of the
proof is the same as before.

2. Results that are similar to Theorems 1–3 can be obtained for the gener-
alized Dirichlet integral

(34) EB(X) =
1
2

∫
B

gjk(X){Xj
uX

k
u +Xj

vX
k
v } du dv,

where X = (X1, X2, . . . , Xn). The conformality relations for the minimiz-
ers of EB(X) in C(Γ ), which will replace (1), are now of the form

(35) gjk(X)Xj
uX

k
u = gjk(X)Xj

vX
k
v , gjk(X)Xj

uX
k
v = 0.

Using the complex notation w = u+ iv, we can express (35) by the single
complex equation

gjk(X)Xj
wX

k
w = 0.

3. Other functionals FB(X) which can be handled in the same way asDB(X)
or EB(X) are expressions of the type

(36) FB(X) = EB(X) + VB(X)
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where V (X) is invariant with respect to diffeomorphisms of the parameter
domain B which have a positive Jacobian. In fact, if σε : B∗

ε → B̄ is such
a family of diffeomorphisms from B∗

ε onto B̄, then the property

VB(X) = VB∗
ε
(X ◦ σε)

implies that

FB∗
ε
(X ◦ σε) − FB(X) = EB∗

ε
(X ◦ σε) − EB(X).

Hence, a minimum property of X with respect to FB can be translated
into a minimum property with respect to E, and we are in the previously
considered situation. Under suitable assumptions we shall therefore obtain
the conformality relations (35).
If, for instance, VB(X) denotes a volume functional of the type

(37) VB(X) =
∫

B

〈Q(X), Xu ∧ Xv 〉 du dv

where Q = (Q1, Q2, Q3) is a C1-vector field defined on R
3 and X =

(X1, X2, X3), then the Euler equations of the functional FB(X) =
EB(X) + VB(X) are given by

(38) ΔX l + Γ l
jk(X)[Xj

uX
k
u +Xj

vX
k
v ] = divQ(X)[Xu ∧ Xv]mglm(X).

Here (gjk(x)) is assumed to be a positive definite 3×3-matrix, and (gjk(x))
denotes its inverse. Moreover, Γjkl and Γ k

jl denote the Christoffel symbols
of first and second kind:

Γjkl = 1
2 {gjk,l + gkl,j − gjl,k },

Γ l
jk = glmΓjmk

where gjk,l stands for the derivative gjk,xl . Finally, we have used the no-
tation

divQ = Q1
x1 +Q2

x2 +Q3
x3 .

If X is conformal, then the equations (38) express that X is a surface of
mean curvature

(39) H(X) =
1

2
√
g(X)

divQ(X), g := det(gjk),

in the Riemannian manifold (R3, ds2) with the line element ds2 = gjk(x)
dxj dxk. In Chapter 4 of Vol. 2 we give a survey on results concerning
the Plateau problem for functionals F = D + V and present some of the
proofs. The Plateau problem for the general definite parametric integral
(= Cartan functional) F is treated in Section 4.13.
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So far we have proved that every closed rectifiable curve Γ in R
3 bounds

at least one minimal surface X of class C(Γ ), and this solution of the Plateau
problem has been obtained by minimization of the Dirichlet integral among
all (disk-type) surfaces of class C(Γ ). Since any minimizer X is automatically
continuous on B̄, the solution of Plateau’s problem can as well be achieved
by minimizing D(X) within the class

C(Γ ) := C(Γ ) ∩ C0(B̄,R3).

Although every minimizer X satisfies

D(X) = A(X),

it is by no means clear that a minimizer of the Dirichlet integral in C̄(Γ ) also
minimizes the area functional among all surfaces in C̄(Γ ). For this we need to
know that

(40) ā(Γ ) = ē(Γ ),

where ā(Γ ) and ē(Γ ) denote the infimum of A(X) and D(X) respectively,
among all X ∈ C(Γ ). However, the inequality

A(X) ≤ D(X)

only implies that
ā(Γ ) ≤ ē(Γ ).

In fact, the proof of the equality sign is not a trivial matter. Usually it is
based on the fact proved by Carathéodory that polyhedral surfaces can be
represented conformally (in the generalized sense). Equivalently one can apply
a basic result on “ε-conformal mappings” due to C.B. Morrey which is derived
by means of quasiconformal mappings; a somewhat weaker version was already
stated by T. Radó [21]. We only quote Morrey’s lemma without proving it,
because we shall later present a self-contained proof of (40) that uses only
fairly elementary tools (see Section 4.10). Roughly speaking, Morrey’s lemma
says that one can introduce nearly conformal parameters on every reasonable
surface X. To be precise, we need the following

Lemma on ε-conformal mappings. Let X be a mapping B → R
3 of class

C0(B̄,R3) ∩H1
2 (B,R3). Then, for every ε > 0, there exists a homeomorphism

τε of B̄ onto itself which is of class H1
2 on B̄ and satisfies both

Zε := X ◦ τε ∈ C0(B̄,R3) ∩ H1
2 (B,R3)

and
D(Zε) ≤ A(X) + ε.
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(For a proof, we refer to Morrey [1], pp. 141–143, and [3], pp. 814–815.)
Let us turn to the proof of (40): Let X be an arbitrary surface in C(Γ ).

Then, by Morrey’s lemma, we can find homeomorphisms τn of B̄ onto itself
such that Zn := X ◦ τn ∈ C(Γ ) and

D(Zn) ≤ A(X) +
1
n
, n = 1, 2, . . . .

Since
ē(Γ ) ≤ D(Zn) for all n ∈ N,

we obtain
ē(Γ ) ≤ A(X)

and therefore
ē(Γ ) ≤ ā(Γ ).

Thus the relation (40) is proved.
We notice that (40) implies the conformality relations (40). In fact, if X

minimizes the Dirichlet integral in C(Γ ), then X ∈ C0(B̄,R3), and (40) yields
A(X) = D(X). As we have observed in Section 4.1, this equality can only
hold if (1) is satisfied. �

Thus we have proved:

Theorem 4. Every solution X ∈ C(Γ ) of the minimum problem P(Γ ) is a
surface of least area in C(Γ ) ∩ C0(B̄,R3).

Another, completely self-contained proof of this result will be given in
Section 4.10, which even shows

(41) e(Γ ) = e(Γ ) = a(Γ ) = a(Γ ),

where a(Γ ) and a(Γ ) denote the infima of A over C(Γ ) and C(Γ ) respectively,
while e(Γ ) and e(Γ ) are the corresponding infima of D. Note that the relation
e(Γ ) = e(Γ ) follows from Theorem 2 whereas a(Γ ) = a(Γ ) is not immediately
obvious.

4.6 Variant of the Existence Proof. The Partially Free
Boundary Problem

In this section we want to give another existence proof for the minimum
problem P(Γ ) which is of a more functional-analytic nature and can easily be
modified to handle other boundary value problems for minimal surfaces, for
instance, the partially free problem. The Courant–Lebesgue lemma will once
again play an essential role. We shall use it in the following form:
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Proposition 1. Let Γ be a closed (oriented) Jordan curve in R
3, and let

C∗(Γ ) be the class of surfaces bounded by Γ and normalized by a fixed three-
point condition as defined in Section 4.2. Then C∗(Γ ) is a weakly sequentially
closed subset of H1

2(B,R
3).

Proof. Let {Xn} be a sequence of surfaces Xn ∈ C∗(Γ ) which converge weakly
in H1

2(B,R
3) to some element X ∈ H1

2 (B,R3). Then the norms of Xn are
uniformly bounded,

(1) |Xn|H1
2 (B) ≤ c, n = 1, 2, . . . ,

and Rellich’s theorem yields both

|Xn − X|L2(B) → 0 as n → ∞

and

(2) |φn − φ|L2(C) → 0 as n → ∞

where φn and φ denote the L2(C)-traces of Xn and X on C.
By (1) and Theorem 3 in Section 4.3, the functions φn, n ∈ N, are equi-

continuous on C, and φn(C) = Γ implies

(3) sup
C

|φn| ≤ const, n = 1, 2, . . . .

Thus the functions φn are compact in C0(C,R3), and we can extract a sub-
sequence {φnp } which converges uniformly on C to some φ′ ∈ C0(C,R3) as
p → ∞. From (2) we infer that φ′ = φ, and a well-known reasoning yields
that {φn} itself converges to φ as n → ∞. Moreover, Lemma 1 of Section 4.2
implies that φ is a weakly monotonic mapping of C onto Γ which satisfies the
same three-point condition as the φn. Consequently, X is contained in C∗(Γ ),
and the assertion is proved. �

Now we shall give a new proof of the following result:

Theorem 1. The minimum problem P(Γ ) has at least one solution. Any so-
lution of P(Γ ) is harmonic in B, continuous on B, and satisfies

|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0 in B.

Proof. We proceed in four steps:
(i) First we show that there is a minimizing sequence {Xn} for P(Γ ), Xn ∈

C∗(Γ ), which converges weakly in H1
2 (B,R3) to some X ∈ H1

2 (B,R3).
In fact, let {Xn} be a sequence of surface Xn ∈ C∗(Γ ) which satisfy

(4) lim
n→∞

D(Xn) = e(Γ ) := inf{D(X) : X ∈ C(Γ )}.
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Then we have

(5) D(Xn) ≤ const, n = 1, 2, . . . ,

and the boundary values φn := Xn|C satisfy (3). A suitable variant of
Poincaré’s inequality, together with (3) and (5), yields

(6) |Xn|H1
2 (B) ≤ const, n = 1, 2, . . . .

In Hilbert space, any closed ball is weakly sequentially compact. Thus there
is a subsequence {Xnp } which converges weakly in H1

2 (B,R3) to some X ∈
H1

2 (B,R3), and clearly
lim

p→∞
D(Xnp) = e(Γ ).

Renumbering the Xnp and writing Xn instead of Xnp , the assertion (i) is
proved.

(ii) The Dirichlet integral is weakly lower semicontinuous in H1
2 (B,R3).

To verify this, we consider any sequence of elements X1, X2, . . . ∈ H1
2 (B,R3)

which converges weakly in H1
2 (B,R3) to some X ∈ H1

2 (B,R3). Since

F(Z) := D(X,Z)

is a bounded linear functional on H1
2 (B,R3), we obtain

lim
n→∞

F(Xn) = F(X),

and therefore

D(Xn) = D(X − Xn) + 2D(X,Xn) − D(X)

≥ 2D(X,Xn) − D(X) → D(X).

That is,

(7) lim inf
n→∞

D(Xn) ≥ D(X),

and (ii) is verified.
(iii) The set C∗(Γ ) is a weakly (sequentially) closed subset of H1

2 (B,R3).
This assertion is the statement of Proposition 1.
Combining (i)–(iii), we obtain that X is a solution of P(Γ ). In fact, (i) and

(ii) imply
D(X) ≤ lim

n→∞
D(Xn) = e(Γ ),

and (i) and (iii) yield X ∈ C∗(Γ ), whence

e(Γ ) ≤ D(X),
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and therefore
D(X) = e(Γ ).

(iv) Finally, ifX is a solution of P(Γ ), it follows from Weyl’s lemma that X
is harmonic in B, and then a well-known reasoning yields that X is continuous
on B. The conformality relations for X were derived in the previous section.
�

Let us apply this method to another boundary value problem for minimal
surfaces, the semi-free (or: partially free) problem.

Consider a boundary configuration 〈Γ, S〉 consisting of a closed set S in
R

3 (e.g., a smooth surface S with or without boundary, or something more
exotic, see Figs. 4–7), and a Jordan curve Γ the endpoints P1 and P2 of which
lie on S, P1 	= P2, but all other points of Γ are disjoint from S.

Let us denote the arcs of ∂B lying in the half-planes {Imw ≥ 0} and
{Imw ≤ 0} by C and I respectively. The class C(Γ, S) of admissible surfaces
for the semi-free problem is the set of all mapsX ∈ H1

2 (B,R3) whose L2-traces
on C and I satisfy

(i) X(w) ∈ S for H 1-almost all w ∈ I;
(ii) X|C maps C continuously and in a weakly monotonic way onto Γ such

that X(1) = P1 and X(−1) = P2.

We orient Γ and C(Γ, S) by taking P1 as the initial point and P2 as the
endpoint of Γ .

The corresponding variational problem P(Γ, S) reads:

D(X) → min in the class C(Γ, S).

Again, as in the study of the Plateau problem, it is desirable to introduce a
three-point-condition. Since we have already fixed the images of two boundary
points, the image of only one more point needs to be prescribed: Let P3

be some point of Γ different from P1 and P2, and let C∗(Γ, S) denote the
class of all those surfaces X ∈ C(Γ, S) mapping i =

√
−1 ∈ C to P3. The

corresponding variational problem P∗(Γ, S) then requires:

D(X) → min in C∗(Γ, S).

Theorem 2. If C(Γ, S) is nonempty, then there exists a solution of the min-
imum problem P(Γ, S). Moreover, every solution X of P(Γ, S) is of class
C0(B ∪ C ′,R3) ∩ C2(B,R3) for every arc C ′ contained in the interior of C,
and satisfies both

ΔX = 0 in B

and
|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0

in B. Finally, the class C(Γ, S) is nonempty if Γ is rectifiable and if there
exists a rectifiable arc in S which connects P1 and P2.



4.6 Variant of the Existence Proof. The Partially Free Boundary Problem 279

Fig. 1. Partially free problems and area minimizing solutions. From S. Hildebrandt and

J.C.C. Nitsche [3]

Proof. The existence of a minimizer can be established more or less in the
same way as for Theorem 1. The steps (i), (ii) and (iv) can be carried out in
the same manner, whereas (iii) is to be replaced by:

(iii′) The class C∗(Γ, S) is closed with respect to weak convergence of se-
quences in H1

2 (B,R3).
In fact, if {Xn} is a sequence of surfaces Xn ∈ C∗(Γ, S) which converge

weakly in H1
2 (B,R3) to some element X ∈ H1

2 (B,R3), then the norms of Xn

are uniformly bounded, and we have

lim
n→∞

|φn − φ|L2(∂B) = 0

for φ = X|∂B, φn = Xn|∂B . Hence there is a subsequence {φnp } such that

φnp(w) → φ(w) as p → ∞,
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Fig. 2. Other partially free problems and area minimizing solutions. From S. Hildebrandt

and J.C.C. Nitsche [3]

for H 1-almost all w ∈ ∂B. Since

Xn(w) ∈ S for H 1-almost allw ∈ I,

we thus obtain that also

X(w) ∈ S for H1-almost all w ∈ I.

Furthermore, a similar reasoning as in the proof of Proposition 1 yields
that X|C maps C continuously and weakly monotonically onto Γ and satisfies
the 3-point condition

X(1) = P1, X(i) = P3, X(−1) = P2,

that is, X ∈ C∗(Γ, S).
In fact, all we have to prove is that the mappings φn|C are equicontinuous

on C. By the Courant–Lebesgue lemma, the φn are equicontinuous on every
closed subarc C ′ lying in the interior of C. Thus we have to investigate how the
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Fig. 3. An irregular support surface for the semifree boundary problem

Fig. 4. Partially free problems can have several solutions

functions φn(eiθ), 0 ≤ θ ≤ π, behave for θ → +0 or θ → π − 0. To this end we
use the assumption that Γ and S have only the points P1 and P2 in common.
Let Γ1 and Γ2 be the subarcs of Γ with the endpoints P1, P3 and P2, P3

respectively. We conclude that, for every ε > 0, there is a number Δ(ε) > 0
such that |P − P1| < ε holds true for every P ∈ Γ1 with dist(P, S) < Δ(ε),
and that |P2 − P | < ε is fulfilled for every P ∈ Γ2 with dist(P, S) < Δ(ε).

Moreover, applying the Courant–Lebesgue lemma to the surfaces Xn (or,
to be precise, Proposition 2 of Section 4.4 to X = Xn and z0 = ±1), we
obtain sequences {w′

n}, {w′ ′
n} of points w′

n, w
′ ′
n ∈ C with w′

n → 1, w′ ′
n → −1

as n → ∞ such that dist(Xn(w′
n), S) → 0, dist(Xn(w′ ′

n), S) → 0, Xn(w′
n) ∈

Γ1, Xn(w′ ′
n) ∈ Γ2. As each Xn furnishes a weakly monotonic map of C onto

Γ , this implies the equicontinuity of the mappings Xn on C. �



282 4 The Plateau Problem and the Partially Free Boundary Problem

4.7 Boundary Behavior of Minimal Surfaces with Rectifiable
Boundaries

So far we have considered (disk-type) minimal surfaces X of class C(Γ ). They
have continuous boundary values on C = ∂B which are continuously assumed
by X(w), w ∈ B, as w tends to some boundary point. In this section we
want to prove that the first derivatives of X assume boundary values of class
L1(C) on C if Γ is rectifiable, and that we can establish a general formula for
integration by parts.

Throughout this section we shall only make the following

General assumption. Let X : B̄ → R
3 be a surface of class C0(B̄,R3) ∩

C2(B,R3) which has boundary values of finite variation, i.e.,

(1) L(X) :=
∫

C

|dX| < ∞,

and which satisfies in B the equations X(w) 	≡ const and

(2) ΔX = 0,

(3) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0.

Moreover let X∗ be any adjoint minimal surface to X, defined by the Cauchy–
Riemann equations

(4) Xu = X∗
v , Xv = −X∗

u in B.

Clearly, the general assumption will be satisfied by the solutions of
Plateau’s problem in C(Γ ), but it will be fulfilled in many other situations
as well.

The main goal of this section is the following

Theorem 1. If the minimal surface X satisfies the general assumption and
if X∗ is an adjoint surface to X, then we have:

(i) X∗ admits a continuous extension to all of B̄, and the boundary values
X∗ |C are likewise rectifiable and satisfy

(5)
∫

C

|dX| =
∫

C

|dX∗ |.

(ii) The boundary values X|C and X∗ |C are absolutely continuous functions
on C.

(iii) Set X(r, θ) := X(reiθ) and X∗(r, θ) := X∗(reiθ). Then the partial deriva-
tives Xr(r, θ), Xθ(r, θ), X∗

r (r, θ), X∗
θ (r, θ), considered as periodic functions

of θ ∈ [0, 2π], tend to limits in L1([0, 2π],R3) as r increases to 1, both in
the L1-norm on [0, 2π] and pointwise almost everywhere on [0, 2π]. The
limits of Xθ and X∗

θ coincide a.e. on ∂B with the pointwise derivatives
of the boundary values X(eiθ) and X∗(eiθ). Moreover, these derivatives
vanish at most on a subset of C of 1-dimensional Hausdorff measure zero.
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An essential step in the proof of the theorem is the following

Proposition 1. The function λ(r), 0 ≤ r ≤ 1, defined by

λ(r) := L(X|Cr ) =
∫

Cr

|dX|, Cr := {reiθ : 0 ≤ θ ≤ 2π},

increases monotonically and is bounded from above by L(X|C). Consequently,
we also have λ(1) = limr→1−0 λ(r).

Proof. We have to show that, if 0 ≤ r < R ≤ 1, then λ(r) ≤ λ(R). It suffices,
however, to assume that R = 1, because the general case will then follow by
considering the minimal surface X(w

R ) : BR → R3.
Since X is continuous on B̄, Poisson’s formula yields that X(r, θ) :=

X(reiθ) satisfies

(6) X(r, θ) =
∫ 2π

0

K(r, ϕ − θ)X(1, ϕ) dϕ,

where

K(r, α) =
1
2π

1 − r2

1 − 2r cosα+ r2
=

1
2π

1 − |w|2
|1 − w|2 , if w = reiα.

Hence

Xθ(r, θ) =
∫ 2π

0

Kθ(r, ϕ − θ)X(1, ϕ) dϕ = −
∫ 2π

0

Kϕ(r, ϕ − θ)X(1, ϕ) dϕ

=
∫ 2π

0

K(r, ϕ − θ) dX(1, ϕ).

The integration by parts is justified since the total variation of X|∂B , i.e. the
length of X|∂B , is finite (cf. Natanson [1], Chapter VIII). In addition, K(r, α)
is positive throughout; thus

|Xθ(r, θ)| ≤
∫ 2π

0

K(r, ϕ − θ)| dX(1, ϕ)|,

whence

λ(r) =
∫ 2π

0

|Xθ(r, θ)| dθ

≤
∫ 2π

0

∫ 2π

0

K(r, ϕ − θ) dθ| dX(1, ϕ)| ≤ λ(1)

because of ∫ 2π

0

K(r, α) dα = 1.

As λ(r) is lower semicontinuous, we obtain λ(r) → λ(1) as r → 1 − 0. �
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(Note that neither here nor in the proof of the next result the conformality
relations (3) are used.)

Proposition 2. If we write X(r, θ) := X(reiθ), then we obtain

(7)
∫ 1

0

|Xr(r, θ)| dr ≤ 1
2

∫
C

|dX|

for every θ ∈ [0, 2π].

Proof. It suffices to prove the inequality for θ = 0. Applying (6) and an
integration by parts, we obtain

X(r, 0) =
∫ 2π

0

K(r, ϕ)X(1, ϕ) dϕ = X(1, 0) −
∫ 2π

0

h(r, ϕ) dX(1, ϕ)

where

h(r, ϕ) :=
∫ ϕ

0

K(r, α) dα =
ϕ

2π
+

1
2πi

log
1 − w̄

1 − w
, w = reiϕ.

Then it follows that

Xr(r, 0) = −
∫ 2π

0

hr(r, ϕ) dX(1, ϕ)

and therefore

|Xr(r, 0)| ≤
∫ π

0

hr(r, ϕ)| dX(1, ϕ)| −
∫ 2π

π

hr(r, ϕ)| dX(1, ϕ)|

since
hr(r, ϕ) =

1
π

sinϕ
1 − 2r cosϕ+ r2

is positive for 0 < ϕ < π and negative for π < ϕ < 2π. Consequently,
∫ 1

0

|Xr(r, 0)| dr ≤
∫ π

0

{h(1, ϕ) − h(0, ϕ)}| dX(1, ϕ)|

+
∫ 2π

π

{h(0, ϕ) − h(1, ϕ)}| dX(1, ϕ)|.

As |h(1, ϕ) − h(0, ϕ)| ≤ 1
2 , we arrive at the desired inequality.

Proposition 3. The conjugate surface X∗ can be extended continuously to B̄.
Moreover, both X and X∗ are contained in H1

2 (B,R3), and we obtain

(8)
∫

C

|dX| =
∫

C

|dX∗ |, DB(X) = DB(X∗),

and

(9)
∫ 1

0

|X∗
r (r, θ)| dr ≤ 1

2

∫
C

|dX∗ |.
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Proof. (i) Similar to Proposition 2, we have used the notations X(r, θ) =
X(reiθ) and X∗(r, θ) = X∗(reiθ). The Cauchy–Riemann equations read

(10) rXr = X∗
θ , rX∗

r = −Xθ,

and the conformality relations are equivalent to

(11) r2|Xr |2 = |Xθ |2, 〈Xr, Xθ 〉 = 0.

Therefore we also have

(12) |Xr | = |X∗
r |, |Xθ | = |X∗

θ |,

and it follows that

|X∗(r2, θ) − X∗(r1, θ)| ≤
∫ r2

r1

|X∗
r (r, θ)| dr(13)

=
∫ r2

r1

|Xr(r, θ)| dr ≤ 1
2

∫
C

|dX|

for 0 < r1 < r2 < 1, on account of Proposition 2. Hence,
∫ 1

0

|X∗
r (r, θ)| dr < ∞,

and the convergence of this integral implies that limr→1−0X
∗(r, θ) exists for

all θ ∈ [0, 2π].
Consider now points wj = eiθj , 0 ≤ j ≤ n, on C with

0 = θ0 < θ1 < θ2 < · · · < θn = 2π.

Then
n∑

j=1

|X∗(wj) − X∗(wj−1)| = lim
r→1

n∑
j=1

|X∗(rwj) − X∗(rwj−1)|

≤ lim
r→1

∫ 2π

0

|X∗
θ (r, θ)| dθ

= lim
r→1

∫ 2π

0

|Xθ(r, θ)| dθ =
∫

C

|dX|,

and we infer that
∫ 2π

0

|dX∗(1, θ)| ≤
∫ 2π

0

|dX(1, θ)| < ∞.

In other words, X∗(1, θ) is a function of bounded variation for 0 ≤ θ ≤ 2π.
(ii) From X ∈ C0(B̄,R3) we infer that supB |X| < ∞. Moreover, (13)

implies
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|X∗(w)| ≤ |X∗(0)| + |X∗(w) − X∗(0)| ≤ |X∗(0)| +
1
2

∫
C

|dX|

whence also supB |X∗ | < ∞.
Moreover, the Cauchy–Riemann equations (4) yield

DB(X) = DB(X∗).

Hence, in order to prove, X,X∗ ∈ H1
2 (B,R3), we only have to verify that

DB(X) < ∞. Let BR = {reiθ : 0 ≤ r < R}. Then an integration by parts
leads to ∫

BR

| ∇X|2 du dv =
∫

∂BR

〈X,Xr 〉 ds ≤
∫

∂BR

|X| |Xr | ds

=
∫ 2π

0

|X(R, θ)| |Xθ(R, θ)| dθ

≤ sup
B

|X| ·
∫ 2π

0

|Xθ(R, θ)| dθ

≤ sup
B

|X| ·
∫

C

|dX|,

and for R → 1 − 0 we obtain

(14)
∫

B

| ∇X|2 du dv ≤ sup
B

|X| ·
∫

C

|dX| < ∞.

(iii) As we have shown that X∗(1, θ) is a function of bounded variation
with respect to θ, these boundary values can have only denumerably many
discontinuities, and, for every θ0 ∈ R, both one-sided limits

lim
θ→θ0−0

X∗(1, θ), lim
θ→θ0+0

X∗(1, θ)

exist. Because of D(X∗) < ∞ and of the Courant–Lebesgue lemma (cf. Sec-
tion 4.4, Proposition 2), we then conclude that limθ→θ0 X

∗(1, θ) exists for all
θ0 ∈ R, and therefore X∗(1, θ) depends continuously on θ. Hence we can apply
Proposition 2 to X∗ instead of X, and we then obtain∫ 1

0

|X∗
r (r, θ)| dr ≤ 1

2

∫
C

|dX∗ |.

Finally, Proposition 1, applied to both X and X∗, yields

lim
r→1−0

∫ 2π

0

|Xθ(r, θ)| dθ =
∫

C

|dX|,

lim
r→1−0

∫ 2π

0

|X∗
θ (r, θ)| dθ =

∫
C

|dX∗ |,

and both limits coincide because of (12), whence∫
C

|dX| =
∫

C

|dX∗ |. �
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Now we turn to the

Proof of Theorem 1. Let us introduce the holomorphic function f : B → C
3

by
f(w) := X(w) + iX∗(w)

with the complex derivative f ′(w). By the conformality relations (3), we infer
that

|f ′(w)| =
√

2|Xr(w)| = r−1
√

2 |Xθ(w)|, w = reiθ,

and Proposition 1 implies that the (increasing) Hardy function

μ(r) :=
1
2π

∫ 2π

0

|f ′(reiθ)| dθ =
1

πr
√

2

∫ 2π

0

|Xθ(reiθ)| dθ

of f ′(w) satisfies

lim
r→1−0

μ(r) ≤
∫

C

|dX| < ∞.

Thus the holomorphic function f ′(w), w ∈ B, belongs to the Hardy class H1,
and a well known theorem by F. Riesz [1] ensures the existence of a function
g(θ) of class L1([0, 2π],C3) such that both

lim
r→1−0

∫ 2π

0

|f ′(reiθ) − g(θ)| dθ = 0

and
lim

r→1−0
f ′(reiθ) = g(θ) a.e. on [0, 2π].

If we write
f(reiθ) = X(r, θ) + iX∗(r, θ),

we see that

Xr(r, θ) + iX∗
r (r, θ) =

∂

∂r
f(reiθ) = eiθf ′(reiθ) → eiθg(θ),

Xθ(r, θ) + iX∗
θ (r, θ) =

∂

∂θ
f(reiθ) = ireiθf ′(reiθ) → ieiθg(θ)

(15)

as r → 1 − 0.
For any r ∈ (0, 1) and for 0 ≤ θ1 ≤ θ2 ≤ 2π, we can write

f(reiθ2) − f(reiθ1) =
∫ θ2

θ1

ireiθf ′(reiθ) dθ.

Letting r → 1 − 0, it follows that

f(eiθ2) − f(eiθ1) =
∫ θ2

θ1

ieiθg(θ) dθ
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for any θ1, θ2 ∈ [0, 2π], where g ∈ L1([0, 2π],C3). This implies that

f(eiθ) = X(1, θ) + iX∗(1, θ)

is an absolutely continuous function of θ ∈ [0, 2π] whose derivative

(16) Xθ(1, θ) + iX∗
θ (1, θ) =

∂

∂θ
f(eiθ) = ieiθf ′(eiθ)

exists a.e. on [0, 2π]. Comparing formulas (15) and (16), we obtain the asser-
tions of (ii) and (iii), except for the fact that Xθ(1, θ) 	= 0 and X∗

θ (1, θ) 	= 0
a.e. on [0, 2π].

Taking X(w) 	≡ const on B into account, it follows that f(w) 	≡ const on
B, and a well known theorem by F. and M. Riesz [1] implies that the boundary
values of f ′(w) can only vanish on a subset of C of measure zero.

Finally the assertion of (i) follows from Proposition 3. �
Notice that the proof of Proposition 3 and in particular formula (14) yield

the following result:

Proposition 4. If the minimal surface X is contained in a ball

KR(P0) := {P ∈ R
3 : |P − P0| ≤ R}

of radius R, then

(17) AB(X) = DB(X) ≤ R/2 · L(X|C).

Local versions of Theorem 1 are of course available. For instance, one has

Theorem 1′. If C ′ is an open subarc of C = ∂B, and if X ∈ H1
2 (B,R3) is a

minimal surface in B which is continuous and has rectifiable boundary values
on C ′, i.e.,

L(X|C′ ) =
∫

C′
|dX| < ∞,

then X|C′ ′ is absolutely continuous on any subarc C ′ ′ ⊂⊂ C ′, and the tangen-
tial derivative Xθ of X|C′ ′ is nonzero a.e. on C ′ ′.

The proof can be reduced to the previous case by using the Courant–
Lebesgue lemma (see Proposition 2 of Section 4.4) and suitable conformal
reparametrizations.

Theorem 2 (Integration by parts). If the minimal surface X satisfies the
general assumption of this section, and if Y is an arbitrary function of class
L∞ ∩ H1

2 (B,R3), then we have

(18)
∫

B

〈∇X,∇Y 〉 du dv =
∫

∂B

〈
Y,
∂

∂ν
X

〉
ds

where the line integral on the right-hand side is to be taken with positive ori-
entation of ∂B, and ∂

∂νX denotes the normal derivative of X with respect to
the exterior normal ν to ∂B.



4.8 Reflection Principles 289

Remark. An analogous result holds if the minimal surface X is parametrized
on an arbitrary parameter domain B with piecewise smooth boundary.

Proof of the theorem. Let 0 < R < 1 and BR = {w : |w| < R}. Since

X ∈ C1(BR,R
3),

we have the classical formula∫
BR

〈∇X,∇Y 〉 du dv =
∫

∂BR

〈Xr, Y 〉 ds.

Letting R → 1 − 0, the left-hand side obviously tends to
∫

B
〈 ∇X,∇Y 〉 du dv,

whereas the right-hand side converges to
∫

C
〈Xr, Y 〉 ds, on account of Theo-

rem 1 and of Lebesgue’s theorem on dominated convergence. �

4.8 Reflection Principles

In this section Ω denotes a domain in the complex plane which is symmetric
with respect to the real axis, i.e., w ∈ Ω if and only if w ∈ Ω. Set

Ω+ := Ω ∩ {w ∈ C : Imw > 0},
Ω− := Ω ∩ {w ∈ C : Imw < 0},

I := Ω ∩ {w ∈ C : Imw = 0},

where I is an open subset of R.
We want to prove two reflection principles for minimal surfaces which

generalize the well known reflection principle for harmonic functions due to
H.A. Schwarz.

Theorem 1. Suppose that X is of class C0(Ω+ ∪ I,R3) ∩ C2(Ω+,R3) and
satisfies both

(1) ΔX = 0

and

(2) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0

in Ω+. Assume also that X maps I into a straight line L0. Then X can be
extended across I onto all of Ω by reflection in L0, and the extended surface X
satisfies (1) and (2) on Ω. To be precise, the extension of X to Ω− is defined
by

X(w) := (X(w))∗, w ∈ Ω−,

where, for P ∈ R
3, we denote by P ∗ the reflection image of P in L0.
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Fig. 1. Reflection of a minimal surface in a plane (Catalan’s surface)

Fig. 2. Reflection of a minimal surface in a straight line (Catalan’s surface)

Theorem 2. Suppose that X is of class C1(Ω+ ∪ I,R3) ∩ C2(Ω+,R3) and
satisfies both (1) and (2) in Ω+. Assume also that X maps I into a plane S
such that X is perpendicular to S along I (i.e., Xv(w) ⊥ S for all w ∈ I).
Then X can be extended across I as a minimal surface on all of Ω if we reflect
X in S. To be precise, the extension of X to Ω− is defined by

X(w) := (X(w))∗, w ∈ Ω−,

where P ∗ denotes the mirror image in S of any point P ∈ R
3.

Note that these two reflection principles are more or less the same as those
formulated in Section 3.4, only that we a priori require less regularity than
before. To solve Björling’s problem, we needed real analyticity of X along I

whereas here it suffices to assume X ∈ C0 and X ∈ C1 respectively along I.
In fact, we shall prove that, under the assumptions of Theorems 1 and 2,
X must be real analytic on I. Thus both theorems provide special cases of
boundary regularity results. In Chapter 2 of Vol. 2 we shall treat the question
of boundary regularity of minimal surfaces in some generality.

Proof of Theorem 1. Let us introduce Cartesian coordinates x, y, z in R
3 such

that L0 becomes the z-axis, and set X(w) = (x(w), y(w), z(w)), w = (u, v) =
u+ iv, w̄ = (u,−v) = u − iv. Then we have



4.8 Reflection Principles 291

(3) x(w) = 0 and y(w) = 0 for all w ∈ I.

Now, by Schwarz’s reflection principle, we can extend x and y as harmonic
functions to all of Ω if we set

(4) x(w) := −x(w) and y(w) := −y(w) for w ∈ Ω−.

Moreover (3) implies that

(5) xu(w) = 0, yu(w) = 0 for w ∈ I.

Let {wn} be some sequence of points wn ∈ Ω+ such that wn → w0 ∈ I as
n → ∞. We obtain from (2), (5) and x, y ∈ C∞(Ω) that

(6) lim
n→∞

zu(wn)zv(wn) = 0,

and from

z2u(wn) = |Xu(wn)|2 − x2
u(wn) − y2u(wn)

= |Xv(wn)|2 − x2
u(wn) − y2u(wn)

≥ |zv(wn)|2 − x2
u(wn) − y2u(wn)

together with (5) and (6) we infer that

(7) lim
n→∞

zv(wn) = 0

for all sequences {wn}, wn ∈ Ω+, with wn → w0 ∈ I. Hence the harmonic
function zv(w), w ∈ Ω+, is continuous on Ω+ ∪ I and satisfies

(8) zv(w) = 0 for all w ∈ I.

Schwarz’s reflection principle yields that we can extend z(w) as harmonic
function across I to Ω by setting

(9) z(w) := z(w) for w ∈ Ω−.

Then X is harmonic in Ω, and formulas (4) and (9) together with (2) show
that X fulfills the conformality relations on all of Ω. �

Proof of Theorem 2. We now introduce Cartesian coordinates x, y, z in R
3

such that S is described by the equation z = 0. Then the minimal surface

X(w) = (x(w), y(w), z(w))

satisfies

(10) z(w) = 0 for all w ∈ I.
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Moreover, Xu(w) is tangential to S for all w ∈ I, and Xv is perpendicular to
Xu. Since we have assumed that X(w) meets S along I at a right angle, it
follows that Xv(w) is orthogonal to the two vectors

e1 = (1, 0, 0), e2 = (0, 1, 0)

spanning S, for all w ∈ I, whence we conclude that

(11) xv(w) = 0, yv(w) = 0 for all w ∈ I.

Applying Schwarz’s reflection principle for harmonic functions, we infer from
(10) and (11) that x(w), y(w), z(w) can be continued to Ω as harmonic func-
tions, by setting

(12) x(w) = x(w), y(w) = y(w), z(w) = −z(w) for w ∈ Ω−.

One easily checks that the harmonic vector X(w), w ∈ Ω, satisfies the con-
formality relations on all of Ω. �

Recently, Choe [4] proved that a minimal surface can also be analytically
extended across a plane S if it meets this plane at a constant angle θ with
0 < θ < π, and the extension is again carried out by reflection in S.

4.9 Uniqueness and Nonuniqueness Questions

How many minimal surfaces can be spanned in a given closed Jordan curve?
The answer to this question is not known in general, not even if we fix the
topological type of the solutions of Plateau’s problem. As we have consid-
ered only disk-type minimal surfaces, we want to consider the more modest
question of:

How many minimal surfaces of the type of the disk can be spanned in a given
closed Jordan curve Γ?

The situation would be simple if we could prove that Γ bounds only one
disk-type minimal surface X ∈ C(Γ ) (up to reparametrizations X ◦ τ of X by
conformal mappings τ : B → B of the parameter domain B onto itself; such
reparametrizations would not be counted as different from X and could be
excluded by fixing a three-point condition for the surfaces X ∈ C(Γ ) which are
prospective solutions; in other words: Uniqueness of the solution of Plateau’s
problem in C(Γ ) actually means ‘uniqueness in C∗(Γ )’ ).

However, examples (cf. Figs. 1 and 4 of the Introduction) warn us not
to expect uniqueness for disk-type solutions of Plateau’s problem. Thus we
may ask whether additional geometric conditions for Γ are known which en-
sure this uniqueness. Essentially, we know three results:
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1. Theorem of Radó [16]: If Γ has a one-to-one parallel projection onto a
planar convex curve γ, then Γ bounds at most one disk-type minimal surface.

This result will be proved in the sequel (cf. Theorem 1). By the same
technique, Radó [20] was able to ensure uniqueness in the case of Γ admitting
a one-to-one central projection onto a planar convex curve γ. (See also Nitsche
[28], pp. 360–362.)

For the sake of completeness we mention a result of Tromba [3] which looks
like a corollary to Radó’s theorem but, at closer inspection, turns out not to
be included. Actually it is proved in a completely different way.

Tromba’s observation. If Γ is C2-close to a planar curve γ of class C2,
then Γ bounds a unique minimal surface of the type of the disk.

2. Theorem of Nitsche [26]: If Γ is regular, real analytic and has a total
curvature less than or equal to 4π, then Γ bounds only one disk-type minimal
surface.

A proof of this result is given in Section 5.6. It is based on a “field em-
bedding”. We shall establish this by using a technique due to H.A. Schwarz,
modified by J.C.C. Nitsche. The third uniqueness theorem, due to F. Sauvi-
gny, is described in Section 7.2.

For polygonal Γ of total curvature less than 4π, this result was earlier
conjectured by R. Schneider [2] whose sketch of a proof contained some of the
ideas used in Nitsche’s proof.

In general, however, nothing is known about the number of solutions of
Plateau’s problem which are of class C(Γ ). Actually, the situation seems to
be rather unpromising on account of the following remarkable result due to
Böhme [6]:

For each positive integer N and for each ε > 0, there exists a regular real
analytic Jordan curve Γ in R

3 with total curvature less than 4π + ε which
bounds at least N minimal surfaces of class C∗(Γ ), i.e., of the type of the
disk.

One does not even know whether the number of solutions X ∈ C(Γ ) of
Plateau’s Problem for the curve Γ is finite or not. There are suggestive exam-
ples of P. Levy [2] and Courant [15] which indicate that there might be rec-
tifiable Jordan curves Γ bounding non-denumerably many minimal surfaces.
The validity of these examples, however, depends strictly on the validity of the
strong bridge theorem which recently was rigorously proved by B. White. For
the construction principle of the Levy–Courant examples and for comments
on the bridge principle we refer the reader to the Scholia.

Whatever may be the case, we have two satisfactory partial answers to the
finiteness question:

1. Theorem of Böhme–Tromba [1]. Generically, the number of disk-type
solutions of Plateau’s problem is finite.
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For a proof of this result, see Vol. 3.

2. Theorem of Tomi [6]. There are only finitely many disk-type solutions
of Plateau’s problem which are absolute minimizers of the area functional in
C∗(Γ ) provided that Γ is a regular real-analytic Jordan curve.

3. Theorem of Nitsche [31]. If the regular contour Γ ∈ C3,α is either extreme
or real analytic and has a total curvature of less than 6π, then there exist only
finitely many immersions X : B → R

3 of class C∗(Γ ).

A proof of the results 2 and 3 can be found in Section 5.7.

Doubtless, the number-of-solutions problem is the most exciting and most
challenging question that can be raised in connection with Plateau’s problem.

Now we want to discuss Radó’s result.

Theorem 1. If Γ possesses a one-to-one parallel projection onto a plane con-
vex Jordan curve γ, then Γ bounds at most one minimal surface except, of
course, for conformal reparametrizations. It has no branch points, and it ad-
mits a non-parametric representation.

As an example, let us consider an arbitrary quadrilateral Γ in R
3. By this

we mean a Jordan curve which is a polygon with four edges and four vertices.
If Γ is a planar curve, then it bounds exactly one (planar) minimal surface
on account of the maximum principle. On the other hand it is easy to verify
that any nonplanar quadrilateral admits a one-to-one orthogonal projection
onto a convex plane quadrilateral. Applying Radó’s theorem, we then obtain:

Every quadrilateral bounds a uniquely determined minimal surface of the type
of the disk.

For the proof of Theorem 1 we need the following

Lemma 1 (Monodromy principle). Let Ω be a simply connected, bounded
domain in C and let f ∈ C0(Ω̄,C) ∩ C1(Ω,C) be a mapping whose Jacobian
detDf vanishes nowhere in Ω so that f is an open mapping of Ω onto the do-
main Ω′ = f(Ω). Then f is injective if at least one of the following conditions
is satisfied :

(i) f maps ∂Ω into a closed Jordan curve γ in C;
(ii) f maps Ω into a simply connected domain Ω̂ and ∂Ω into ∂Ω̂.

Proof. First we will show that ∂Ω′ ⊂ f(∂Ω). In fact, for an arbitrary point
z ∈ ∂Ω′ we can find a sequence of points zn ∈ Ω′ converging to z, and another
sequence of points wn ∈ Ω such that f(wn) = zn and wn → w for some w ∈ Ω̄.
Since f is continuous on Ω̄, we obtain f(w) = z, and this implies w ∈ ∂Ω as
the mapping f is open. Thus we have proved that ∂Ω′ ⊂ f(∂Ω).

Let us now assume that (i) holds true. Then C \ γ consists of two compo-
nents, the simply connected interior Ω̂ of γ, and the unbounded exterior Ω̃.
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Because of
∂Ω′ ⊂ f(∂Ω) ⊂ γ = ∂Ω̃

we obtain
Ω′ ∩ Ω̃ = Ω′ ∩ Ω̃,

and this implies Ω′ ∩ Ω̃ = ∅, whence f(Ω) = Ω′ ⊂ Ω̂ and f(∂Ω) ⊂ γ = ∂Ω̂.
Thus we are in the situation described by (ii). Let us now consider this case.
Repeating the previous reasoning, we get Ω′ ∩ Ω̂ = Ω′ ∩ Ω̂, and we conclude
that f(Ω) = Ω′ = Ω̂, and therefore ∂f(Ω) = ∂Ω̂.

The injectivity of f can now be justified by a standard monodromy argu-
ment. Suppose that two points w1 and w2 in Ω were mapped onto the same
image point z ∈ Ω̂. Any arc α in Ω joining w1 and w2 will be mapped by f
onto a closed curve β in Ω̂ since f(w1) = f(w2) = z. By some homotopy in
the simply connected domain Ω̂ we can shrink β to the point z. Since f is
a local diffeomorphism in Ω, each curve of the homotopy is the image of an
arc in Ω which joins w1 and w2, and this curve must be closed as soon as its
image lies in a sufficiently small neighborhood of z. �

For a more detailed proof of the monodromy principle in C we refer the
reader to a suitable text book of complex analysis such as Ahlfors [5] or
Bieberbach [2]. (More general versions of this principle in algebraic topology
can for instance be found in Greenberg [1].)

The next two lemmata contain the essential ideas needed for the proof of
the theorem.

We shall again encounter the reasoning employed in the proof of the fol-
lowing lemma in Chapters 1 and 2 of Vol. 3 where similar uniqueness theorems
for surfaces with semifree boundaries will be proved.

Lemma 2 (Radó’s lemma). If f : B̄ → R is harmonic in B, continuous
on B̄, not identically zero, and if its derivatives of orders 0, 1, . . . ,m vanish
at some point w0 ∈ B, then f changes its sign on ∂B at least 2(m+1) times.

Proof. The function f is the real part of a holomorphic function F : B → C

whose power series expansion close to w0 is given by

F (w) = iβ0 + an(w − w0)n +O(|w − w0|n+1)

for |w − w0| → 0, where n ≥ m+ 1, an 	= 0, and β0 is real. Consequently the
set {w ∈ B : f(w) = 0} divides a neighborhood of w0 into 2n open sectors
σ1, σ2, . . . , σ2n by means of 2n analytic arcs emanating from w0 such that f
is positive on σ1, σ3, . . . , σn−1 and negative on σ2, σ4, . . . , σ2n, cf. Fig. 1.

The set {w ∈ B : f(w) 	= 0} is open, therefore it has at most denumerably
many connected components. Let Q1, Q2, . . . , Q2n be the components con-
taining the sectors σ1, σ2, . . . , σ2n respectively. We claim that no two of them
coincide.

Suppose for example that Q2k = Q2l, k 	= l. Then we can construct a
(piece-wise linear) closed Jordan curve γ starting at w0, running first through
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Fig. 1. Rado’s lemma: Sectors

the sector σ2k and finally traversing σ2l before it returns to w0. Now either
the sector σ2k−1 or σ2k+1 belongs to the bounded component Ω of C \ γ. The
function f is non-positive on γ = ∂Ω but positive on σ2k−1 and on σ2k+1.
The maximum principle applied to the harmonic function f : Ω → R yields
the desired contradiction, and the remaining cases are excluded similarly.

Another application of the maximum principle shows that each of the
components Qj , j = 1, . . . , 2n, has a boundary point wj ∈ ∂Qj lying on
∂B such that f(wj) is positive for j = 1, 3, . . . , 2n − 1 and negative for j =
2, 4, . . . , 2n. Moreover, for any of these wj we can construct a path γj in
Qj starting in the sector σj and ending at wj . Since these paths γj do not
intersect, the pattern of the points wj on ∂B reflects the one of sectors σj close
to w0. Thus between any wj and its successor wj+1 the continuous function
f |∂B has a zero. �

The third lemma is a variant of Lemma 2 and a consequence of the mon-
odromy principle. The conclusions are the same, but the assumptions are dif-
ferent. This result is known as Kneser’s lemma (cf. T. Radó [5], H. Kneser
[1]).

Lemma 3. Suppose that ϕ : B̄ → R
2 is a transformation which is harmonic

in B, continuous in B̄, and which maps ∂B in a weakly monotonic manner
onto the boundary ∂Ω of a convex domain Ω ⊂ R

2. Then ϕ is a diffeomor-
phism from B onto Ω. If in addition ϕ : ∂B → ∂Ω is a homeomorphism, then
so is ϕ : B̄ → Ω̄.

Proof. This lemma will follow immediately from the monodromy principle, if
we can show that the Jacobian det Dϕ of the transformation ϕ has no zeros
in B.

First of all, the maximum principle for harmonic functions implies that
ϕ(B) lies in Ω. Now, if det Dϕ(w0) = 0 for some w0 ∈ B, then the rows of the
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Jacobi matrix Dϕ(w0) are linearly dependent, i.e., there are real constants a
and b, at least one of which is nonzero and such that

axu(w0) + byu(w0) = 0

and
axv(w0) + byv(w0) = 0

where x and y are the real and the imaginary parts of ϕ respectively. Moreover
there is a real number c such that

ax(w0) + by(w0) + c = 0,

which means that ϕ(w0) lies on the straight line

L(w0) = {x+ iy : ax+ by + c = 0}

which intersects ∂Ω in exactly two points P1 and P2. Let us now inspect the
harmonic function

f(w) = ax(w) + by(w) + c

which is continuous on B̄. Note that ϕ maps ∂B onto ∂Ω. Then, for any
w ∈ ∂B, the function f(w) vanishes if and only if ϕ(w) lies on the intersection
of ∂Ω with the straight line L(w0). Furthermore, since ϕ maps ∂B in a weakly
monotonic manner onto ∂Ω, the pre-image

ϕ−1{P1, P2} = ϕ−1(∂Ω ∩ L(w0)) = f−1
|∂B {0}

consists of two closed connected subarcs of ∂B. On the other hand, Radó’s
lemma implies that f has at least four zeros in ∂B which are separated by
points where f does not vanish. This contradiction shows that the assumption
det Dϕ(w0) = 0 is impossible. �

Now we turn to the

Proof of Theorem 1. After a rotation of coordinates we may suppose that
the parallel projection mentioned in the theorem is the orthogonal projection
onto the xy-plane. Then Γ possesses a 1–1 orthogonal projection γ which
is a convex curve contained in the plane {z = 0}. Replacing γ by γ, we may
assume that Γ lies as a graph above a plane convex curve γ which is contained
in the plane {z = 0}. Therefore the preceding lemma shows that the first two
components x and y of any minimal surface X = (x, y, z) ∈ C(Γ ) which solves
Plateau’s problem for Γ determine a diffeomorphism ϕ from B onto the convex
domain Ω enclosed by γ. Denoting the inverse of ϕ by (u(x, y), v(x, y)), the
function

Z(x, y) := z(u(x, y), v(x, y))

defines a nonparametric representation of the surface X(B). Of course, X has
no branch points since its first two components define a diffeomorphism. Con-
sequentlyX(B) is a regular embedded surface whose mean curvature vanishes.
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Fig. 2. Rado’s uniqueness theorem (strengthened): The Jordan curve Γ is a generalized

graph over a plane convex curve, the square shown in (a). The solution to Plateau’s problem

for Γ is therefore unique (b), (c)

Thus, as we have seen in Section 2.2, Z(x, y) is a solution of the minimal sur-
face equation with bounded, but not necessarily continuous boundary values.

Suppose now that X and X̂ are two solutions of Plateau’s problem for
Γ , and denote their corresponding non-parametric representations by Z(x, y)
and Ẑ(x, y) respectively. If the projection of Γ onto γ is one-to-one, then ϕ is a
homeomorphism from B̄ onto Ω̄. Consequently, since X and X̂ are continuous
on B̄, the functions Z and Ẑ are continuous on Ω̄, and so is the difference
Z − Ẑ, which vanishes on ∂Ω. Moreover Z − Ẑ satisfies a second order linear
equation in Ω for which the maximum principle holds true (cf. Gilbarg and
Trudinger [1], p. 208). This implies that Z and Ẑ coincide in Ω̄ so that we
have in particular X(B) = X̂(B).

Now since X and X̂ are conformal and invertible, X−1 ◦ X̂ is a conformal
mapping from B onto itself. Thus a three-point-condition guarantees that X
is equal to X̂. �
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Remark to Theorem 1. The uniqueness result of Theorem 1 remains true
under somewhat weaker assumptions on Γ . Instead of requiring the existence
of a 1-to-1 parallel projection of Γ onto a plane convex curve γ, we can allow
vertical segments for Γ which are mapped onto single points of γ. For the proof
of this more general fact one needs a sharpening of the maximum principle
provided by Nitsche [11]; see also Nitsche [28], §401 and §586. This reasoning
is essentially based on an extension of Theorem 6 in Section 7.3.

Concluding this section, we want to draw some further results from Radó’s
lemma.

Theorem 2. If w0 ∈ B is an interior branch point of the minimal surface
X ∈ C(Γ ), then each plane Π through the point X(w0) intersects Γ in at least
four distinct points.

Proof. Let ν ∈ S2 be a vector normal to Π. Then we have

Π = {x ∈ R
3 : 〈x − X(w0), ν〉 = 0}.

Consider the function f : B → R
3 defined by

f(w) := 〈X(w) − X(w0), ν〉, w ∈ B,

which is continuous on B, harmonic in B, and satisfies

f(w0) = 0, fu(w0) = 0, fv(w0) = 0.

On account of Lemma 2 it follows that f has at least four zeros on ∂B. �

Corollary 1. If there is a straight line L in R
3 such that each plane Π through

L intersects Γ in at most three points, then any minimal surface X ∈ C(Γ )
is free of interior branch points.

An immediate consequence of this result is

Corollary 2. A minimal surface X ∈ C(Γ ) has no interior branch points if Γ
possesses a one-to-one parallel or central projection onto a star-shaped planar
curve.

4.10 Another Solution of Plateau’s Problem by Minimizing
Area

In this section we want to present a solution of the minimal area problem
for disk-type surfaces which is obtained by minimizing the functional Aε :=
(1 − ε)A + εD in the class C(Γ ). This will lead to a direct solution of the
simultaneous problem of finding a minimal surface of class C(Γ ) that minimizes
both the area functional
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A(X) =
∫

B

|Xu ∧ Xv | du dv

and the Dirichlet integral

D(X) =
1
2

∫
B

(|Xu|2 + |Xv |2) du dv

among all admissible surfaces X ∈ C(Γ ). Thereby we obtain another proof of
Theorem 4 and of relation (40) in Section 4.5.

We begin by recalling thatD is (sequentially) weakly lower semicontinuous
in H1

2 (B,R3); cf. 4.6. It turns out that A has the same property:

Lemma 1. Let {Xn} be a sequence in H1
2 (B,R3) which converges weakly in

H1
2 (B,R3) to some X ∈ H1

2 (B,R3). Then

(1) A(X) ≤ lim inf
n→∞

A(Xn).

Proof. First we note the identity

(2) A(Z) = sup
{∫

B

φ · (Zu ∧ Zv) du dv : φ ∈ C∞
c (B,R3), |φ| ≤ 1

}

which holds for any Z ∈ H1
2 (B,R3); it can easily be verified.

We claim that for proving (1) it suffices to show

(3) lim
n→∞

∫
B

φ · (Xn,u ∧ Xn,v) du dv =
∫

B

φ · (Xu ∧ Xv) du dv

for any φ ∈ C∞
c (B,R3) satisfying |φ| ≤ 1. In fact, equations (2) and (3) imply∫

B

φ · (Xu ∧ Xv) du dv = lim
n→∞

∫
B

φ · (Xn,u ∧ Xn,v) du dv

≤ lim inf
n→∞

[
sup
{∫

B

ψ · (Xn,u ∧ Xn,v) du dv : ψ ∈ C∞
c (B,R3), |ψ| ≤ 1

}]

= lim inf
n→∞

A(Xn).

Taking the supremum over all φ in C∞
c (B,R3) with |φ| ≤ 1 we then arrive

at (1).
Thus it suffices to verify (3). Let Z be of class C2(B,R3); then for

φ ∈ C∞
c (B,R3) an integration by parts yields

(4)
∫

B

φ · (Zu ∧ Zv) du dv = − 1
2

∫
B

[
φu · (Z ∧ Zv) + φv · (Zu ∧ Z)

]
du dv.

Using a suitable approximation device, this identity can as well be established
for arbitrary Z ∈ H1

2 (B,R3).
Suppose now that Xn ⇀ X in H1

2 (B,R3). By Rellich’s theorem we obtain
Xn → X in L2(B,R3), and so (3) follows from (4). �
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Next we define the functionals Aε : H1
2 (B,R3) → R by

Aε := (1 − ε)A+ εD, 0 ≤ ε ≤ 1.

Since A and D are weakly lower semicontinuous in H1
2 (B,R3) also Aε has this

property, i.e. we have

Lemma 2. If Xn ⇀ X in H1
2 (B,R3) then

Aε(X) ≤ lim inf
n→∞

Aε(Xn)

for any ε ∈ [0, 1].

Our goal is now to find a conformally parametrized minimizer of A in C(Γ ).
As A is a somewhat singular functional we take a detour by first considering
the modified variational problem

(5) Aε → min in C(Γ )

for an arbitrary ε ∈ (0, 1]. As Aε is conformally invariant we can find a mini-
mizing sequence {Xn} for Aε in C(Γ ) that satisfies a fixed three-point condi-
tion, i.e.

Aε(Xn) → α(ε) := inf
C(Γ )

Aε = inf
C∗(Γ )

Aε

and Xn ∈ C∗(Γ ) if we use the notation of 4.3. Then

(1 − ε)A(Xn) + εD(Xn) = Aε(Xn) ≤ α(ε) + 1 for n � 1,

whence
D(Xn) ≤ const for all n ∈ N.

Now we can proceed as in the proof of Theorem 1 in 4.6: We obtain a subse-
quence {Xnp } of {Xn} that tends weakly in H1

2 (B,R3) to some Xε which is
contained in C∗(Γ ) as this set is weakly (sequentially) closed in H1

2 (B,R3). It
follows that

α(ε) ≤ Aε(Xε) ≤ lim
p→∞

Aε(Xnp) = α(ε),

and so Aε(Xε) = α(ε). Thus, for any ε > 0, we have found a minimizer
Xε ∈ C∗(Γ ) of Aε in C(Γ ). As in 4.5 this minimum property implies

(6) ∂Aε(Xε, λ) = 0 for any λ ∈ C1(B,R2).

Since A is parameter invariant it follows that

∂Aε(Xε, λ) = ε∂D(Xε, λ),

and so we obtain

(7) ∂D(Xε, λ) = 0 for all λ ∈ C1(B,R2).
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By Theorem 1 of 4.5 we see that Xε satisfies the conformality relations

(8) |Xε
u|2 = |Xε

v |2, 〈Xε
u, X

ε
v 〉 = 0.

Before we proceed we remark the following: In proving relation (6) we
have used the Riemann mapping theorem. This can be avoided by using
the method presented in the Supplementary Remark 1 of 4.5: Using vector
fields λ ∈ C1(B,R3) such that λ(w) is tangential to ∂B for any w ∈ ∂B
we construct diffeomorphisms τε of B onto itself which are of the form
τε(w) = w − ελ(w) + o(ε) as ε → 0. Let us denote the class of these vec-
tor fields by C1

tang(B,R
2). Then we arrive at

∂Aε(Xε, λ) = 0 for any λ ∈ C1
tang(B,R

2)

without employing the Riemann mapping theorem. This leads to

∂D(Xε, λ) = 0 for all λ ∈ C1
tang(B,R

2),

and by the formulae derived in Example 1 of 4.5 we arrive at

(9)
∫

B

[a(μu − νv) + b(μv + νu)] du dv = 0 for all λ = (μ, ν) ∈ C1
tang(B,R

2)

where
a := |Xε

u|2 − |Xε
v |2, b := 2〈Xε

u, X
ε
v 〉.

We claim that a, b satisfy the Cauchy–Riemann equations

(10) au = −bv, av = bu on B

whence Φ(w) := a(u, v) − ib(u, v) is a holomorphic function of w = u + iv
in B. Since we do not yet know that Xε is harmonic in B, we cannot derive
(10) as in the Supplementary Remark 1 of 4.5. Instead we apply (9) to vector
fields λ of the form λ = Sδη with η = (η1, η2) ∈ C∞

c (B′,R2) with B′ ⊂⊂ B,
where Sδ is a smoothing operator with a symmetric kernel kδ, 0 < δ � 1, i.e.
Sδη = kδ ∗ η. Set

aδ := Sδa, bδ := Sδb.

Then we obtain

0 =
∫

B

{
a[(Sδη

1)u − (Sδη
2)v] + b[(Sδη

1)v + (Sδη
2)u]

}
du dv

=
∫

B

{
a[Sδ(η1

u) − Sδ(η2
v)] + b[Sδ(η1

v) + Sδ(η2
u)]
}
du dv

=
∫

B

{
aδ(η1

u − η2
v) + bδ(η1

v + η2
u)
}
du dv

=
∫

B

{
−(aδ

u + bδv)η
1 + (aδ

v − bδu)η2
}
du dv
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since Sδ commutes with ∂/∂u and ∂/∂v and
∫

B

f · Sδϕdu dv =
∫

B

Sδf · ϕdu dv

for f ∈ L1(B) and ϕ ∈ C∞
c (B′), B′ ⊂⊂ B, 0 < δ � 1. By the fundamental

theorem of the calculus of variations it follows that

aδ
u + bδv = 0 and aδ

v − bδu = 0 in B′ ⊂⊂ B.

In other words: For any fixed B′ ⊂⊂ B the function Φδ(w) := aδ(u, v) −
ibδ(u, v) is holomorphic for w = u+iv ∈ B′ if 0 < δ < δ0(B′) where δ0(B′) > 0
is a sufficiently small number depending on B′. Since

‖a − aδ ‖L1(B′) → 0 and ‖b − bδ ‖L1(B′) → 0 as δ → +0

we obtain ∫
B′

|Φ − Φδ | du dv → 0 as δ → +0.

Since the L1-limit of holomorphic functions is holomorphic we infer that Φ is
holomorphic in B′ ⊂⊂ B, and so it is holomorphic in B. Thus we have verified
(10), and from now on we can proceed as in the Supplementary Remark 1 of 4.5
obtaining Φ(w) ≡ 0 in B, i.e. a(u, v) ≡ 0 and b(u, v) ≡ 0 on B. Therefore we
have verified the conformality relations

|Xε
u|2 = |Xε

v |2, 〈Xε
u, X

ε
v 〉 = 0 in B

for any ε ∈ (0, 1], which imply A(Xε) = D(Xε), and we obtain

Aε(Xε) = A(Xε) = D(Xε) for 0 < ε ≤ 1.

On the other hand we infer from A ≤ D and the minimum property of Xε

that
Aε(Xε) ≤ Aε(X) = (1 − ε)A(X) + εD(X) ≤ D(X)

holds for any X ∈ C(Γ ) and any ε ∈ (0, 1]. Choosing X = Xε′
we arrive at

D(Xε) ≤ D(Xε′
) for any ε, ε′ ∈ (0, 1]

whence

(11) D(Xε) = A(Xε) = Aε(Xε) ≡ const =: c for 0 < ε ≤ 1.

Set
a(Γ ) := inf

C(Γ )
A, e(Γ ) := inf

C(Γ )
D.

Then, for arbitrary Z ∈ C(Γ ) and any ε, ε′ ∈ (0, 1] we obtain

a(Γ ) ≤ A(Xε) = Aε(Xε) = Aε′
(Xε′

) ≤ Aε′
(Z)
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and
e(Γ ) ≤ D(Xε) = Aε(Xε) ≤ Aε(Z) ≤ D(Z).

Letting ε′ → +0 the first set of inequalities yields

a(Γ ) ≤ A(Xε) ≤ A(Z),

and the second furnishes

e(Γ ) ≤ D(Xε) ≤ D(Z)

for all Z ∈ C(Γ ). This implies

a(Γ ) ≤ A(Xε) ≤ a(Γ ) and e(Γ ) ≤ D(Xε) ≤ e(Γ )

whence
a(Γ ) = A(Xε) = D(Xε) = e(Γ ) for all ε ∈ (0, 1].

Set C(Γ ) := C(Γ ) ∩ C0(B,R3) and

a(Γ ) = inf
C(Γ )

A, e(Γ ) := inf
C(Γ )

D.

Then we know that every minimizer X of D in C(Γ ) lies in C(Γ ), and so

a(Γ ) ≤ a(Γ ) ≤ A(X) ≤ D(X) = e(Γ ) = a(Γ )

and
e(Γ ) ≤ e(Γ ) ≤ D(X) = e(Γ ).

Thus we have a(Γ ) = a(Γ ) = A(X) = D(X) = e(Γ ) = e(Γ ). In addition,
every conformally parametrized minimizer X of A in C(Γ ) satisfies a(Γ ) =
A(X) = D(X). So we have proved

Theorem 1. For any rectifiable curve Γ in R
3 one has

(12) inf
C(Γ )

A = inf
C(Γ )

D = inf
C(Γ )

A = inf
C(Γ )

D,

and any minimizer of Dirichlet’s integral in C(Γ ) is simultaneously a mini-
mizer of area in C(Γ ), and conversely every conformally parametrized mini-
mizer of area in C(Γ ) is as well a minimizer of Dirichlet’s integral in C(Γ ).

Remark 1. Starting from (11) we alternatively could have argued in the fol-
lowing way: Applying the reasoning of 4.6 we obtain a sequence of positive
numbers εj with εj → 0 and an X ∈ C∗(Γ ) such that Xεj ⇀ X in H1

2 (B,R3).
Then

a(Γ ) ≤ A(X) ≤ lim inf
j→∞

A(Xεj ) = lim
ε→0

Aε(Xε) = c

≤ lim
ε→0

Aε(Z) = A(Z) for any Z ∈ C(Γ )
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and so a(Γ ) ≤ A(X) ≤ a(Γ ), i.e. A(X) = a(Γ ). Therefore the weak limit X
of the Xεj is a minimizer of A in C(Γ ). By (11) and the minimum property
of Xε we have

c = Aε(Xε) ≤ Aε(X) for 0 < ε ≤ 1,

and by ε → +0 we get

c ≤ A(X) ≤ D(X) ≤ lim inf
j→∞

D(Xεj ) = c,

and so c = A(X) = D(X), which implies the conformality relations

|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0

as well as a(Γ ) = e(Γ ).
In other words, one can—by the detour via Aε—solve the variational

problem “A → min in C(Γ )” thereby simultaneously solving the problem
“D → min in C(Γ )” by a minimal surface X ∈ C(Γ ).

Remark 2. We have proved Theorem 1 without using Riemann’s mapping
theorem. Therefore it is no circulus vitiosus if we try to prove this theorem by
using the solution of Plateau’s problem that is provided by Theorem 1. This
idea will be carried out in the next section.

4.11 The Mapping Theorems of Riemann and Lichtenstein

First we want to show that the solution of Plateau’s problem applied to planar
curves provides a proof of Riemann’s mapping theorem, which states the
following:

Suppose that Ω is a simply connected domain in C bounded by a closed Jordan
curve Γ . Then there is a homeomorphism ϕ from Ω onto B which is holo-
morphic in Ω and provides a conformal mapping of Ω onto B, i.e. ϕ′(z) 	= 0
for all z ∈ Ω.

We prove an equivalent assertion:

Theorem 1. Let Ω be a simply connected domain in C bounded by a closed
Jordan curve Γ . Then there exists a homeomorphism f from B onto Ω, B :=
{w ∈ C : |w| < 1}, which is holomorphic in B and satisfies f ′(w) 	= 0 for all
w ∈ B.

Proof. (i) Firstly we prove the assertion under the additional assumption that
the contour Γ is rectifiable. We identify C with the x1, x2-plane R2 and con-
sider a minimal surface X = (X1, X2, X3) of class C(Γ ) which is continuous
on B. Since Γ lies in the x1, x2-plane we obtain X3(w) ≡ 0 on account of the
maximum principle. Thus the conformality relations for w = u+ iv ∈ B read
as
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|X1
u|2 + |X2

u|2 = |X1
v |2 + |X2

v |2,(1)

X1
uX

1
v +X2

uX
2
v = 0.(2)

Equation (2) implies that

(3) X1
v = −λX2

u, X2
v = λX1

u

holds for some function λ : B → R, and (1) yields that λ(u, v) = ±1 on
B \ Σ where Σ denotes the set of branch points of X in B. On Σ equation
(3) is satisfied for any choice of λ. Since the points of Σ are isolated in B
it follows that either λ(u, v) ≡ 1 or λ(u, v) ≡ −1. In the first case we set
λ(u, v) := 1 on Σ, and λ(u, v) := −1 in the second. Thus either X1, X2

or X1,−X2 satisfy the Cauchy–Riemann equations on B. By applying the
reflection z = x1 + ix2 �→ z = x1 − ix2 we can assume that the equations

(4) X1
u = X2

v , X1
v = −X2

u

hold in B, and so f(w) := X1(u, v) + iX2(u, v), w = u + iv, is holomorphic
in B and continuous on B. Furthermore, f |∂B yields a homeomorphism from
∂B onto Γ . Therefore the loop ϕ : [0, 2π] → C defined by ϕ(t) := f(eit) has
the winding numbers

(5) W (ϕ, z) := W (ϕ − z) =

{
1 for z ∈ Ω,
0 for z ∈ C \ Ω.

For 0 < r < 1 and ϕr(t) := f(reit) we have

max
[0,2π]

|ϕ(t) − ϕr(t)| → 0 as r → 1 − 0.

Hence for any ε > 0 there is a δ > 0 such that

|ϕ(t) − ϕr(t)| < ε for all t ∈ [0, 2π], provided that 1 − δ < r < 1.

Then for any z ∈ C with dist(z, Γ ) > ε we obtain

(6) W (ϕr, z) = W (ϕ, z).

Since ϕr is real analytic we on the other hand have

(7) W (ϕr, z) =
1

2πi

∫ 2π

0

ϕ̇r(t)
ϕr(t) − z

dt.

This equation can be written as

W (ϕr, z) =
1

2πi

∫ 2π

0

f ′(reit)
f(reit) − z

ireit dt(8)

=
1

2πi

∫
Cr

f ′(w)
f(w) − z

dz
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where Cr denotes the positively oriented circle {reit : 0 ≤ t ≤ 2π} bounding
the disk Br(0) := {w ∈ C : |w| < r}. By Rouché’s formula we know that

(9)
1

2πi

∫
Cr

f ′(w)
f(w) − z

dz = n(f,Br(0), z)

where n(f,Br(0), z) is the number of zeros of the function f − z in Br(0)
counted with respect to their multiplicities. From (5)–(9) we infer the follow-
ing: For any z ∈ C \ Γ there is a δ ∈ (0, 1) such that

n(f,Br(0), z) =

{
1 if z ∈ Ω,
0 if z /∈ Ω,

provided that 1 − δ < r < 1.

This implies for z ∈ C \ Γ that

n(f,B, z) =

{
1 if z ∈ Ω,
0 if z /∈ Ω.

In other words, the equation f(w) = z has no solution w ∈ B if z ∈ C \Ω, and
exactly one solution w ∈ B if z ∈ Ω; this solution is a zero of order 1 for the
function f − z. Thus f yields a 1–1 mapping of B onto Ω such that f ′(w) 	= 0
for all w ∈ B, i.e. f is a conformal mapping from B onto Ω. Moreover, f maps
∂B one-to-one onto Γ (see 4.5, Theorem 3), and so f provides a bijective
mapping of B onto Ω. Since f is continuous on B it finally follows that f is
a homeomorphism from B onto Ω, and so the assertion is proved in case that
Γ is rectifiable.

(ii) If Γ is not rectifiable we choose a sequence of rectifiable Jordan curves
Γj that converge to Γ in the sense of Fréchet as j → ∞. Let Ωj be the
bounded component of C \ Γj . On account of (i) there is for every j ∈ N a
homeomorphism of B onto Ωj which maps B conformally onto Ωj .

Now we proceed as in the proof of Theorem 3 in Section 4.3. Since we did
only sketch this proof we shall now fill in the details for the convenience of
the reader.

We can assume that the fj satisfy three-point conditions

fj(wk) = zk,j , k = 1, 2, 3, j ∈ N,

where w1, w2, w3 are three different points on ∂B, and z1,j , z2,j , z3,j are three
different points on Γj converging to three different points z1, z2, z3 on Γ :
zk,j → zk as j → ∞.

Any pair of points Pj , Qj on Γj divides Γj into two subarcs Γ ′
j and Γ ′ ′

j .
There is a σ0 > 0 such that one of the two arcs contains at most one of the
three points z1,j , z2,j , z3,j if |Pj − Qj | < σ0; let this arc be Γ ′

j . Since Γj → Γ
in the sense of Fréchet, there is a uniform estimate of the moduli of continuity
of the Jordan curves Γj , i.e.: For every ε > 0 there is a number σ(ε) with
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0 < σ(ε) < σ0 such that diamΓ ′
j < ε holds for any “short” subarc Γ ′

j of Γj

provided that its endpoints Pj , Qj satisfy |Pj − Qj | < σ(ε).
Moreover, there is a constant M > 0 such that measΩj ≤ M for all j ∈ N.

This implies

D(fj) = A(fj) = measΩj ≤ M for all j ∈ N.

For 0 < r < 1 and w0 ∈ ∂B we define the two-gon

Sr(w0) := B ∩ Br(w0)

which is bounded by the two closed circular arcs C ′
r and C ′ ′

r with common
endpoints ζ ′

r and ζ ′ ′
r on ∂B and C ′ ′

r ⊂ ∂B. By the Courant–Lebesgue lemma
we obtain: For every δ ∈ (0, 1) there is a number ρj ∈ (δ,

√
δ) such that the

oscillation of fj on Cρj is estimated by

osc(fj , C
′
ρj

) ≤
{

8πM
log 1/δ

}1/2

for all w0 ∈ ∂B.

For a given ε > 0 we can find a number τ(ε) > 0 such that for 0 < δ < τ(ε)
the arc C ′ ′√

δ
contains at most one of the points zk (and so fj maps C ′ ′

ρj
onto

the short arc Γ ′ ′
j with the endpoints fj(ζ ′

ρj
) and fj(ζ ′ ′

ρj
)), and secondly that

osc(fj , C
′
ρj

(w0)) < σ(ε).

It follows that

osc(fj , C
′ ′
ρj

(w0)) < ε for all w0 ∈ ∂B and j ∈ N.

Since fj maps ∂B homeomorphically onto Γ , we conclude that

osc(fj , C
′ ′
δ (w0)) < ε for all w0 ∈ ∂B and j ∈ N,

provided that 0 < δ < τ(ε). Furthermore fj(∂B) = Γj → Γ implies

max
∂B

|fj | ≤ const for all j ∈ N,

and so {fj |∂B } is compact in C0(∂B,C) equipped with the sup-norm on ∂B.
Thus, after renumbering, we may assume that {fj |∂B } converges uniformly on
∂B to some continuous function. By virtue of Weierstrass’s theorem we obtain
fj ⇒ f for some f ∈ C0(B,C), and f ∈ C∗(Γ ) as fj ∈ C∗(Γj) and Γj → Γ ,
where the ∗ denotes the corresponding three-point conditions fj(wk) = zk,j

and f(wk) = zk with zk,j → zk as j → ∞. The uniform limit of holomorphic
functions is holomorphic. Therefore f is holomorphic in B, continuous on B,
and non-constant as f is of class C∗(Γ ). By a theorem of Hurwitz the uniform
limit of injective holomorphic maps is injective, provided that this limit is
nonconstant. Consequently the holomorphic mapping f |B is injective, and
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so it maps B conformally onto the open set f(B) and ∂B continuously and
weakly monotonically onto Γ . Since f is open it follows that f(B) is the inner
domain Ω of the Jordan contour Γ , and Theorem 3 of 4.5 yields that f |∂B

maps ∂B one-to-one onto Γ . Thus f is a continuous bijective mapping from
B onto Ω, and so it is a homeomorphism. �

Remark 1. A lucid presentation of the properties of the winding number can
be found in Sauvigny [15], Vol. 1, III.1.

Remark 2. The mapping f in Theorem 1 is essentially unique. In fact, if f1
and f2 are two (strictly) conformal mappings of B onto Ω then f−1

1 ◦ f2 is a
(strictly) conformally automorphism τ of B, i.e.

f2 = f1 ◦ τ with τ(w) = eiϕ
w − a

1 − aw
, a ∈ B, 0 ≤ ϕ < 2π.

Remark 3. We now want to sketch another proof of Theorem 1 for a rectifi-
able contour which in essence describes the approach to proving Lichtenstein’s
theorem that will follow next. So let us return to the mapping f := X1 + iX2

which we can assume to be holomorphic in B. Moreover, f is continuous on B,
and f |∂B provides a homeomorphism from ∂B onto Γ . Hence f(w) 	≡ const
on B, and therefore f is an open mapping from B onto the open set f(B).
Furthermore, f(B) is compact, and we conclude that f(∂B) = ∂f(B) = Γ
and Ω = int f(B) = f(B). The set of zeros of f ′ in B coincides with the set
Σ of branch points of X in B. We claim that Σ is empty and f is univalent
in B. In fact if f ′(w0) = 0 and z0 := f(w0) for some w0 ∈ B it follows by
Rouché’s theorem in connection with Theorem 1 of 4.7 that for any z ∈ Ω the
function f(w) − z has at least two zeros w1 and w2 in B, except if z is the
image of a branch point. Since Σ is at most denumerable it follows that

N(f,B, z) ≥ 2 for almost all z ∈ Ω,

where N(f,B, z) denotes the number of different solutions w ∈ B for the
equation f(w) = z with z ∈ Ω. Since the area of X is given by

A(X) =
∫

B

|f ′(w)|2 du dv

the area formula yields for z = x1 + ix2 that

(10) A(X) =
∫

Ω

N(f,B, z) dx1 dx2 ≥ 2 measΩ.

Moreover we may assume that X minimizes A, taking Theorem 1 of 4.10
into account. Since f(B) = Ω, inequality (10) contradicts the minimizing
property of X, and so we obtain N(f,B, z) = 1 for all z ∈ Ω. Consequently
f |B is injective and Σ is empty. Now one concludes as before that f is a
homeomorphism from B onto Ω that maps B conformally onto Ω.
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Now we shall use the approach of Section 4.10, combined with the ideas
described in the preceding Remark 3 to give a proof of Lichtenstein’s theorem
(cf. 1.4). As we shall nowhere base the reasoning of this book onto this result
we may use some regularity results that are proved only later in Chapters 7
and 8.

Let B again be the standard unit disk {w ∈ R2 : |w| < 1}, w = (u, v),
equipped with the Euclidean metric

ds2e := du2 + dv2,

and Ω be a simply connected, open set in R2, bounded by a closed rectifiable
Jordan curve Γ . We assume that Ω carries a Riemannian metric

ds2 := gjk(x) dxj dxk, x = (x1, x2).

For mappings τ ∈ H1
2 (B,R2) we define the “Gauss functions” E(τ),F(τ),

G(τ) : B → R by

E(τ) := gjk(τ)τ j
uτ

k
u , G(τ) := gjk(τ)τ j

v τ
k
v , F(τ) := gjk(τ)τ j

u τ
k
v .

We call τ weakly conformal if τ satisfies the conformality relations

(11) E(τ) = G(τ), F(τ) = 0.

Definition 1. A conformal mapping from B onto Ω is a diffeomorphism
from B onto Ω satisfying the conformality relations (11).

The pull-back τ∗ ds2 of ds2 by a diffeomorphism τ : B → Ω from Ω to B
is given by

τ∗ ds2 = E(τ) du2 + 2F(τ) du dv + G(τ) dv2.

For a conformal mapping τ : B → Ω we have

λ := E(τ) = G(τ) > 0 on B

and
τ∗ ds2 = λ(u, v) · (du2 + dv2).

It follows from (11) that the components τ1, τ2 of a conformal mapping
τ(u, v) = (τ1(u, v), τ2(u, v)), satisfy the Beltrami equations

(12)

√
g(τ)τ1

v = −ρ[g12(τ)τ1
u + g22(τ)τ2

u ],√
g(τ)τ2

v = ρ[g11(τ)τ1
u + g12(τ)τ2

u ]

where
g(x) := det(gjk(x))

and either ρ(u, v) ≡ 1 or ρ(u, v) ≡ −1. From (12) it follows that
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√
g(τ) detDτ = ρE(τ).

Thus τ is orientation preserving or reversing if ρ = 1 or ρ = −1 respectively.
The Riemannian analogue of the area functional is

A(τ) :=
∫

B

√
E(τ)G(τ) − F2(τ) du dv =

∫
B

√
g(τ)|detDτ | du dv

and the corresponding Dirichlet integral is defined as

D(τ) :=
1
2

∫
B

[E(τ) + G(τ)] du dv.

We now state the following global version of Lichtenstein’s theorem:

Theorem 2. Suppose that Γ ∈ Cm,α and gjk ∈ Cm−1,α(Ω) for some m ∈ N

and α ∈ (0, 1). Then there is a conformal mapping τ from B onto Ω which is
of class Cm,α(B,R2).

Proof. We extend (gjk) to all of R
2, in such a way that gjk(x) = δjk for

|x| � 1 and gjk ∈ Cm−1,α(R2). Then there are numbers 0 < m1 ≤ m2 such
that

m1|ξ|2 ≤ gjk(x)ξjξk ≤ m2|ξ|2 for all x, ξ ∈ R
2.

For any τ ∈ H1
2 (B,R2) the functions E(τ), F(τ), G(τ) are of class L1(B), and

so A and D are well-defined on H1,2(B,R2). Analogous to Definition 3 in 4.2
we define C(Γ ) as the class of mappings τ ∈ H1

2 (B,R2) whose trace τ |∂B can
be represented by a weakly monotonic, continuous mapping from ∂B onto Γ ,
and C∗(Γ ) is the subclass of mappings τ ∈ C(Γ ) satisfying a fixed three-point
condition.

Now we define the functionals Aε : H1
2 (B,R2) → R by

Aε := (1 − ε)A+ εD, 0 ≤ ε ≤ 1.

As in 4.10 we have the following lower semicontinuity property: If τn ⇀ τ
in H1

2 (B,R2) then

Aε(τ) ≤ lim inf
n→∞

Aε(τn) for any ε ∈ [0, 1].

Unfortunately the simple proof of Lemma 1 in Section 4.10 does not seem
to work in the present situation; therefore we refer the reader to the general
lower semicontinuity theorem in Acerbi and Fusco [1] which contains the above
stated property as a special case.

Consider the variational problem “Aε → min in C(Γ )” for an arbitrary
ε ∈ (0, 1]. By the same reasoning as in 4.10 we see that there is a minimizer
τ ε ∈ C∗(Γ ) satisfying

∂Aε(τ ε, λ) = 0 for any λ ∈ C1
tang(B,R

2)
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and so
∂D(τ ε, λ) = 0 for all λ = (μ, ν) ∈ C1

tang(B,R
2),

where

∂D(τ ε, λ) =
∫

B

[a(μu − νv) + b(μv + νu)] du dv,

a := E(τ ε) − G(τ ε), b := 2F(τ ε).

It follows that Φ(w) := a(u, v)−ib(u, v) is a holomorphic function of w = u+iv
in B, and then Φ(w) ≡ 0 using the Supplementary Remark 1 of 4.5; see 4.10.
Thus we have

E(τ ε) = G(τ ε), F(τ ε) = 0 for any ε ∈ (0, 1]

whence A(τ ε) = D(τ ε) and so

Aε(τ ε) = A(τ ε) = D(τ ε) for 0 < ε ≤ 1.

On the other hand we infer from A ≤ D and the minimum property of τ ε that

Aε(τ ε) ≤ Aε(τ) = (1 − ε)A(τ) + εD(τ) ≤ D(τ)

holds for any τ ∈ C(Γ ) and 0 < ε ≤ 1. Choosing τ = τ ε′
we obtain

D(τ ε) ≤ D(τ ε′
) for all ε, ε′ ∈ (0, 1],

and so
D(τ ε) = A(τ ε) = Aε(τ ε) ≡ const =: c for 0 < ε ≤ 1.

Set
a(Γ ) := inf

C(Γ )
A, e(Γ ) := inf

C(Γ )
D.

Then, for arbitrary τ ∈ C(Γ ) and ε, ε′ ∈ (0, 1], we have

a(Γ ) ≤ A(τ ε) = Aε(τ ε) = Aε′
(τ ε′

) ≤ Aε′
(τ),

e(Γ ) ≤ D(τ ε) = Aε(τ ε) ≤ Aε(τ) ≤ D(τ).

Letting ε′ → +0 we arrive at

a(Γ ) ≤ A(τ ε) ≤ A(τ), e(Γ ) ≤ D(τ ε) ≤ D(τ) for any τ ∈ C(Γ ),

which implies

a(Γ ) ≤ A(τ ε) ≤ a(Γ ), e(Γ ) ≤ D(τ ε) ≤ e(Γ )

whence
a(Γ ) = A(τ ε) = D(τ ε) = e(Γ ) for all ε ∈ (0, 1].
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In particular we obtain

a(Γ ) = A(τ) = D(τ) = e(Γ )

for τ := τ1, that is, the minimizer τ of Dirichlet’s integralD in C(Γ ) minimizes
also the area functional A in C(Γ ). From D(τ) = e(Γ ) it follows that τ
is a minimal surface in the two-dimensional Riemannian manifold (R2, ds2),
provided that m ≥ 2 and α ∈ (0, 1), and τ ∈ Cm,α(B,R2); in particular, τ
satisfies (11). Furthermore, if w0 is a branch point of τ , i.e. E(τ)(w0) = 0,
then there is an a ∈ C

2, a 	= 0, and a number ν ∈ N such that the Wirtinger
derivative τw has the expansion

τw(w) = a(w − w0)ν + o(|w − w0|)ν) as w → w0.

These results are derived in Chapters 2 and 3 of Vol. 2 for the Euclidean case.
In the Riemannian case the statements at the boundary are verified in the
same way, and the interior results are even easier to prove than the boundary
results. (We also refer to Morrey [8], Chapter 9; Tomi [1], and Heinz and
Hildebrandt [1].) Integrating the asymptotic expansion of τw we obtain for
0 < |x − τ(w0)| � 1 and x ∈ R

2 that the indicatrix

N(τ, B, x) := #{w ∈ B, τ(w) = x}

satisfies

(13) N(τ, B, x) ≥
{

2 if w0 ∈ B,
1 if w0 ∈ ∂B

in case that w0 is a branch point of τ .
Since τ maps ∂B weakly monotonically and continuously onto Γ and

τ ∈ C0(B,R2), a topological argument yields Ω ⊂ τ(B). Therefore we also
have

(14) N(τ, B, x) ≥ 1 for all x ∈ Ω.

Let τ0 be a conformal mapping of B onto Ω, τ0 ∈ C(Γ ). Then

A(τ0) =
∫

Ω

√
g(x) dx1 dx2 =

∫
Ω

√
g(x) dx1 dx2

since L2-measΓ = 0 for a rectifiable curve Γ . Since τ minimizes A in C(Γ )
we obtain

A(τ) ≤ A(τ0),

and the area formula yields

A(τ) =
∫

R2
N(τ, B, x)

√
g(x) dx1 dx2.
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Thus,

(15)
∫

R2
N(τ, B, x)

√
g(x) dx1 dx2 ≤

∫
Ω

√
g(x) dx1 dx2.

On account of (13)–(15) it firstly follows that τ has no branch points on
B, whence ∇τ(w) 	= 0 for all w ∈ B. Thus τ |∂B is 1–1, and so it yields a
homeomorphism from ∂B onto Γ . Secondly, τ |B is open; hence it follows from
(14) and (15) that N(τ, B, x) = 1 for x ∈ Ω and N(τ, B, x) = 0 for x ∈ R

2 \Ω.
Consequently τ is a conformal mapping from B onto Ω satisfying the Beltrami
equations (12).

If we merely assume Γ ∈ C1,α and gjk ∈ C0,α, τ turns out to be a con-
formal mapping of class C1,α(B,R2) from B onto Ω. This one obtains from
the preceding result (m ≥ 2) by approximating Γ and gjk by C∞-data Γn,
gn

jk, and applying a priori estimates for the corresponding mappings τn and
their inverses τ−1

n which satisfy similar Beltrami equations as the τn (see e.g.
Schulz [1], Chapter 6; Jost [17], Chapter 3; or Morrey [8], pp. 373–374). �

A slight modification of the preceding reasoning combined with a suitable
approximation argument yields the following analog of Theorem 1:

Theorem 3. If Γ is a closed Jordan curve with the inner domain Ω and gjk ∈
Cm−1,α(R2) for some m ∈ N and α ∈ (0, 1), then there is a homeomorphism τ
from B onto Ω which yields a conformal mapping of class Cm,α(B,R2) from
B onto Ω.

As a corollary of Theorem 2 we obtain the following version of the original
Lichtenstein theorem:

Theorem 4. If X : B → R
n, n ≥ 2, is an immersed surface of class Cm,α,

m ∈ N, α ∈ (0, 1), then there exists an equivalent representation Y = X ◦ τ
which is conformally parametrized, i.e. |Yu|2 = |Yv |2, 〈Yu, Yv 〉 = 0.

Proof. X(x1, x2) with (x1, x2) ∈ B induces on B the Riemannian metric
ds2 = gjk(x) dxj dxk with

gjk := 〈Xxj , Xxk 〉 ∈ Cm−1,α(B).

If we now determine a conformal mapping τ from (B, dse) onto (B, ds) as in
Theorem 2 then Y := X ◦ τ has the desired property. �

4.12 Solution of Plateau’s Problem for Nonrectifiable
Boundaries

A general closed Jordan curve Γ need not bound any surface X : B → R
3 with

a finite Dirichlet integral. In fact, C(Γ ) is nonempty if and only if Γ possesses
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a representation of class H1/2
2 ([0, 2π],R3). Nevertheless J. Douglas proved

that every closed Jordan curve Γ in R
3 spans a continuous disk-like minimal

surface. To see this we approximate Γ by sequences of rectifiable Γn, each
of which bounds a minimal surface Xn of finite area. There is a subsequence
{Xnp } that uniformly converges to a minimal surface X ∈ C2(B,R3) on every
Ω′ ⊂⊂ B. Yet it is not obvious that the limit X is continuous and that it maps
∂B onto Γ in the sense of 4.2, Definition 2. Namely, as A(Xn) may tend to
infinity, one cannot derive a uniform bound for the moduli of continuity of the
boundary values Xn|∂B by means of the Courant–Lebesgue lemma, and so, at
first, it only follows that X|∂B yields a weakly monotonic mapping from ∂B
into Γ which might have denumerably many jump discontinuities. The crucial
part of the proof consists in showing that these discontinuities do not appear.

We use a result on sequences of monotonic functions that in essence is due
to Helly; a proof can be derived from A. Wintner [1].

Lemma 1. Let {τn} be a sequence of increasing functions τn ∈ C0(R) with
τn(0) = 0 and τn(θ + 2π) = τn(θ). Then there is a function τ : R → R and a
subsequence {τnk

} with the following properties:

(i) τ is nondecreasing and continuous except for at most denumerably many
jump discontinuities.

(ii) If τ is continuous at θ then τnk
(θ) → τ(θ) as k → ∞.

(iii) Because of (i) the one-sided limits τ(θ0 − 0) and τ(θ0 + 0) exist at any
θ0 ∈ R, and we can redefine τ by τ(θ0) := 1

2 [τ(θ0 − 0)+τ(θ0 +0)] without
changing (i) and (ii). Set

σ(θ0) := 1
2 [τ(θ0 + 0) − τ(θ0 − 0)].

(iv) For any δ > 0 there exist numbers η(δ) > 0 and N0(δ) ∈ N such that for
all θ0 ∈ R the following holds:

|τ(θ) − τ(θ0)| ≤ σ(θ0) + δ if |θ − θ0| < η,
|τnk

(θ) − τ(θ0)| ≤ σ(θ0) + δ if |θ − θ0| < η and k > N0.

Now we can state the main result.

Theorem 1. For any closed Jordan curve Γ in R
3 there is a minimal surface

X : B → R3 of class C0(B,R3) which maps ∂B homeomorphically onto Γ .

Proof. Let Γ be represented by γ ∈ C0(R,R3) which is monotonic and 2π-
periodic such that Γ = γ([0, 2π]). We approximate Γ by rectifiable Jordan
curves Γn (say, by simple closed polygons) with continuous, monotonic, 2π-
periodic representations γn : R → R3, Γn = γn([0, 2π]), such that γn converges
uniformly to γ : γn(t) ⇒ γ(t) on R as n → ∞. For any n there is a minimal
surface Xn ∈ C(Γn) ∩ C0(B,R3) that maps ∂B homeomorphically onto Γn.
If we choose the orientation of Γn appropriately and require that Xn(eiθ)
respects this orientation, we can write



316 4 The Plateau Problem and the Partially Free Boundary Problem

(1) Xn(eiθ) = γn(τn(θ)) for θ ∈ R and n ∈ N

where the τn are increasing functions of class C0(R) with τn(θ+2π) = τn(θ)+
2π. As one can impose an arbitrarily chosen three-point condition on any Xn

we may also assume that τn(0) = 0, τn(1) = 1, τn(2) = 2 for any n ∈ N.
Passing to a suitable subsequence of {Xn} and renumbering it we obtain
Xn(w) ⇒ X(w) on Ω ⊂⊂ B where X : B → R

3 is a minimal surface. On
account of Lemma 1 we can furthermore assume that there is a nondecreasing,
possibly discontinuous function τ : R → R such that τn(θ) → τ(θ) as n → ∞,
provided that τ is continuous at θ, and for any δ > 0 there are numbers
η(δ) > 0 and N0(δ) ∈ N such that

(2) |τ(θ) − τ(θ0)| ≤ σ(θ0) + δ for |θ − θ0| < η(δ)

and

(3) |τn(θ) − τ(θ0)| ≤ σ(θ0) + δ for |θ − θ0| < η(δ) and n > N0(δ)

where σ(θ0) := 1
2 [τ(θ0 + 0) − τ(θ0 − 0)] and τ is redefined as

τ(θ0) = 1
2 [τ(θ0 + 0) + τ(θ0 − 0)].

First we will prove that

(4) lim
w→w0

X(w) = γ(τ(θ0)) for w0 = eiθ0 ∈ ∂B,

provided that τ is continuous at θ0. So let us assume that

(5) σ(θ0) = 0

for some fixed θ0, and choose some ε > 0. Since γ is uniformly continuous
on R there is some δ1(ε) > 0 such that

(6) |γ(t) − γ(t′)| < ε for |t − t′ | < δ1(ε).

Because of γn(t) ⇒ γ(t) on R there is an N1(ε) ∈ N such that

(7) |γ(t) − γn(t)| < ε for n > N1(ε) and all t ∈ R.

Furthermore, by (3) and (5) we obtain

(8) |τn(θ0) − τ(θ0)| < δ1(ε) for n > N0(δ1(ε)).

On account of (6)–(8) and
∣∣γ(τ(θ0)) − Xn(reiθ)

∣∣ ≤
∣∣γ(τ(θ0)) − γ(τn(θ0))

∣∣+ ∣∣γ(τn(θ0)) − γn(τn(θ0))
∣∣

+
∣∣γn(τn(θ0)) − Xn(reiθ)

∣∣



4.12 Solution of Plateau’s Problem for Nonrectifiable Boundaries 317

we see that
∣∣γ(τ(θ0)) − Xn(reiθ)

∣∣ < 2ε+
∣∣γn(τn(θ0)) − Xn(reiθ)

∣∣(9)

for n > N(ε) := max
{
N1(ε), N0(δ1(ε))

}
.

For 0 ≤ r < 1 Poisson’s integral formula and (1) yield
∣∣Xn(reiθ) − γn(τn(θ0))

∣∣(10)

≤
∫ θ0+π

θ0−π

K(r, ϕ − θ)
∣∣γn(τn(ϕ)) − γn(τn(θ0))

∣∣ dϕ
=
∫

I1

· · · +
∫

I2

. . .

with I1 := {ϕ : |ϕ − θ0| < η(δ1(ε))}, I2 := [θ0 − π, θ0 + π] \ I1, and

K(r, α) :=
1
2π

1 − r2

1 − 2r cosα+ r2
.

On account of (3) and (6)–(8) we obtain for n > N(ε), |ϕ−θ0| < η(δ1(ε)) and
|θ − θ0| < η(δ1(ε)) that
∣∣γn(τn(ϕ)) − γn(τn(θ0))

∣∣ ≤
∣∣γ(τn(ϕ)) − γn(τn(ϕ))

∣∣+ ∣∣γ(τn(θ0)) − γn(τn(θ0))
∣∣

+
∣∣γ(τn(ϕ)) − γ(τ(θ0))

∣∣+ ∣∣γ(τ(θ0)) − γ(τn(θ0))
∣∣

< ε+ ε+ ε+ ε = 4ε,

whence

(11)
∣∣∣∣
∫

I1

. . .

∣∣∣∣ < 4ε
∫

I1

K(r, ϕ − θ) dϕ ≤ 4ε
∫ 2π

0

K(r, α) dα = 4ε.

Because of γn ⇒ γ there is a constant c0 such that

|γn(t)| + |γ(t)| ≤ c0 for t ∈ R and n ∈ N,

and so ∣∣∣∣
∫

I2

. . .

∣∣∣∣ ≤ c0

∫
I2

K(r, ϕ − θ) dθ.

Hence there is a constant δ2(ε) > 0 such that

(12)
∣∣∣∣
∫

I2

. . .

∣∣∣∣ < ε for 0 < 1 − r < δ2(ε),

|θ − θ0| < δ3(ε) := 1
2η(δ1(ε)) and all n ∈ N.

By (9)–(12) it follows that
∣∣γ(τ(θ0)) − Xn(reiθ)

∣∣ < 2ε+ 4ε+ ε = 7ε(13)
for n > N(ε), 0 < 1 − r < δ2(ε) and |θ − θ0| < δ3(ε).
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With n → ∞ we obtain

(14)
∣∣γ(τ(θ0)) − X(reiθ)

∣∣ ≤ 7ε for 0 < 1 − r < δ2(ε) and |θ − θ0| < δ3(ε).

This implies
lim

w→w0
X(w) = γ(τ(θ0)) for w0 = eiθ0 ,

provided that τ(θ) is continuous at θ = θ0.
Now we want to show by reductio ad absurdum that τ is everywhere

continuous. To this end, suppose that τ is discontinuous at θ0; then it is no
loss of generality if we assume that θ0 = 0. Set τ+ := τ(+0), τ− := τ(−0),
and X+ := γ(τ+), X− := γ(τ−). Since τ+ = limθ→+0 τ(θ) we have: For any
δ > 0 there is a number η∗(δ) > 0 such that

τ+ ≤ τ(θ) ≤ τ+ + δ/4 for 0 < θ < η∗(δ).

By virtue of (3) we may therefore even assume that

|τn(θ) − τ+| < δ for 0 < θ < η∗(δ) and n > N0(δ).

Choose some ε > 0 and set δ := δ1(ε). Then the same reasoning as before yields
for δ4(ε) := η∗(δ1(ε)) the following: For any point w̃ = eiϕ with 0 < ϕ < δ4(ε)
there is an open neighborhood U(ϕ) of w̃ in B such that

(15) |X+ − X(w)| < 7ε for w ∈ U(ϕ), 0 < ϕ < δ4(ε),

and correspondingly we can achieve

(16) |X− − X(w)| < 7ε for w ∈ U(ϕ),−δ4(ε) < ϕ < 0.

Now we are going to derive a contradiction to the assumption τ+ 	= τ− by
proving that X+ 	= X− is impossible. To this end we consider the conformal
automorphisms fa of B which are defined by

z = fa(w) :=
w − a

1 − aw
with a ∈ R, 0 < a < 1.

We have fa(1) = 1, fa(0) = −a, fa(−1) = −1 and fa(w) = fa(w) whence
fa(R) = R and fa(C+) = C+, fa(C−) = C− for C+ := {w ∈ ∂B : Imw > 0},
C− := {w ∈ ∂B : Imw < 0}. Moreover,

lim
a→1−0

fa(w) = −1 for any w ∈ B \ {1}.

Hence, for a ∈ (0, 1) sufficiently close to 1, we see that fa maps the arc
C+

0 := {eiϕ : 0 < ϕ < δ4(ε)} onto an arc fa(C+
0 ) which contains C+

1 :=
{eiψ : 1 ≤ ψ ≤ 2} in its interior. Then C−

0 := {eiϕ : −δ4(ε) < ϕ < 0} is
mapped onto fa(C−

0 ) which contains C−
1 := {eiψ : −2 ≤ ψ ≤ −1} in its
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interior. Set
Y (z) := X(f−1

a (z)) for z ∈ B.

Clearly, Y |B is again a minimal surface. Let

U+ :=
⋃

0<ϕ<δ4(ε)

U(ϕ), U− :=
⋃

−δ4(ε)<ϕ<0

U(ϕ).

By the choice of a, the image fa(U+) covers a whole strip Σ+(ε) along C+
1 in

B, and fa(U−) covers a strip Σ−(ε) along C−
1 in B where Σ+(ε) and Σ−(ε)

are of the form

Σ+(ε) = {ρeiψ : 1 − δ5(ε) < ρ < 1, 1 ≤ ψ ≤ 2},
Σ−(ε) = {ρeiψ : 1 − δ5(ε) < ρ < 1,−2 ≤ ψ ≤ −1},

and δ5(ε) is some positive number depending on ε > 0. Then we infer from
(15) and (16) that

(17) |Y (z) −X+| < 7ε for z ∈ Σ+(ε), |Y (z) −X− | < 7ε for z ∈ Σ−(ε).

We choose a sequence of numbers εj > 0 with εj → 0, thereafter a sequence of
radii ρj with 1 − δ5(εj) < ρj < 1, and then we set Zj(z) := Y (ρjz) for z ∈ B.
The mappings Zj are minimal surfaces of class C0(B,R3) which satisfy

(18)
|Zj(eiψ) − X+| < 7ε for 1 ≤ ψ ≤ 2,

|Zj(eiψ) − X− | < 7ε for − 2 ≤ ψ ≤ −1.

Moreover,

(19) |Zj(eiψ) − X+|, |Zj(eiψ) − X− | ≤ c0 for ψ ∈ R and j ∈ N.

From Poisson’s integral formula we get

|Zj(reiθ) − X+| ≤
∫ 2π

0

K(r, ψ − θ)|Zj(eiψ) − X+| dψ

=
∫

|ψ−θ|< 1
4

· · · +
∫

1
4 ≤ |ψ−θ|≤π

· · · .

If we restrict θ by 5
4 ≤ θ ≤ 7

4 , then for |ψ − θ| < 1
4 we have 1 < ψ < 2, and so

it follows from (18) and (19) that

|Zj(reiθ) − X+| < 7εj + c0p(r) if 5
4 ≤ θ ≤ 7

4

with
p(r) :=

∫
1
4 ≤ |α|≤π

K(r, α) dα → 0 as r → 1 − 0.
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Because of Zj(z) = Y (ρjz) we then obtain for j → ∞ that

|Y (reiθ) − X+| ≤ c0p(r) for 0 < r < 1, 5
4 < θ <

7
4 ,

and similarly,

|Y (reiθ) − X− | ≤ c0p(r) for 0 < r < 1, − 7
4 < θ < − 5

4 .

Thus Y assumes the constant boundary valuesX+ on C+
2 := {eiθ : 5

4 < θ <
7
4 }

and the constant boundary values X− on C−
2 := {eiθ : − 7

4 < θ < − 5
4 }. By

the reasoning used in the proof of Theorem 3 in Section 4.5 it follows that
Y (z) ≡ const on B ∪ C+

2 ∪ C−
2 which is a contradiction to Y |C+

2
= X+,

Y |C−
2

= X−, X+ 	= X−.
Therefore τ is continuous on R, and so X is continuous on B and yields

a weakly monotonic mapping from ∂B onto Γ . By virtue of Corollary 2 in
Section 4.5 we see that X|∂B is a homeomorphism from ∂B onto Γ . �

Remark 1. Another proof of Theorem 1 can be found in Nitsche’s treatise
[28], pp. 269–271. The above proof is a slight modification of the approach
used by H. Werner [2], which also works for surfaces X of constant mean
curvature H provided that |X| ≤ 1 and |H| < 1

2 . The general case |H| ≤ 1 is
apparently not yet treated. Similarly Theorem 1 has not been carried over to
surfaces of prescribed variable mean curvature H(x) or to minimal surfaces
in a Riemannian manifold.

4.13 Plateau’s Problem for Cartan Functionals

Now we want to solve Plateau’s problem for regular Cartan functionals. Here
a Cartan functional means a two-dimensional variational integral

(1) F(X) :=
∫

B

F (X,Xu ∧ Xv) du dv

with a continuous Lagrangian F (x, z), (x, z) ∈ R
3 × R

3, that is positively
homogeneous of first degree in z, i.e.

(H) F (x, tz) = tF (x, z) for t > 0 and (x, z) ∈ R
3 × R

3.

As before we assume that B is the unit disk {w = (u, v) : u2 + v2 < 1} in R
2.

A Cartan functional F is said to be regular if its Lagrangian F (x, z) is def-
inite and weakly elliptic. The first assumption means that there are constants
m1, m2 with 0 < m1 ≤ m2 such that

m1 ≤ F (x, z) ≤ m2 for (x, z) ∈ R
3 × S2

with S2 := {z ∈ R
3 : |z| = 1}. Because of (H) the assumption of definiteness

means that
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(D) m1|z| ≤ F (x, z) ≤ m2|z| for (x, z) ∈ R
3 × R

3.

Secondly, weak ellipticity of F (x, z) is defined as convexity of F (x, z) in z for
any x ∈ R

3, i.e. we assume

F (x, tz1 + (1 − t)z2) ≤ tF (x, z1) + (1 − t)F (x, z2)(C)

for t ∈ [0, 1] and x, z1, z2 ∈ R
3.

Because of (D), a regular Cartan functional F, given by (1), is well-defined
for any X ∈ H1

2 (B,R3), and by (H) it follows that F(X ◦ τ) = F(X) for any
orientation preserving C1-diffeomorphism of B onto itself, i.e. a Cartan func-
tional is a parameter invariant (two-dimensional) variational integral . The
notation “Cartan functional” is derived from Elie Cartan’s memoir [1] where
he introduced a geometry based on an “angular metric” that is defined by
means of an integral (1) as

ds2 = gjk dx
j dxk, (gjk) = (gjk)−1, gjk := a−1/2ajk,

a := det(ajk), ajk :=
(

1
2
F 2

)
zjzk

= FFzjzk + FzjFzk .

This is a generalization of Finsler’s geometry which is based on one-dimensional
integrals F(X) =

∫ 1

0
F (X, Ẋ) dt with a Lagrangian F (x, z) satisfying (H), (D),

and (C).
Note that an F satisfying (H) and (D) cannot be of class C1(R3 × R

3), but
it may very well be of class Cs on R3 × (R3 \ {0}). The prototype of a regular
Cartan functional is the area integral A(X) =

∫
B

|Xu ∧ Xv | du dv with the
Lagrangian F (x, z) = |z|. If F ∈ C2(R3 × (R3 \ {0})) and F (x, z) is convex in
z, then Fzz(x, z) ≥ 0 for z 	= 0, but we never have Fzz(x, z) > 0 since Euler’s
relation implies Fzz(x, z)z = 0 because of (H). Thus the best we can hope for
is: Fzz(x, z) > 0 on {z}⊥, which is equivalent to

ζ · |z|Fzz(x, z)ζ ≥ λ[|ζ|2 − |z| −2(ζ · z)2] for z 	= 0

and some constant λ > 0, i.e. to Fλ(x, z) := F (x, z) − λ|z| being convex in z.
Let Γ be a closed, rectifiable Jordan curve in R

3 which is oriented, and
denote by C(Γ ) the class of surfaces X ∈ H1

2 (B,R3) bounded by Γ (see
Section 4.2, Definitions 2 and 3); then C(Γ ) is nonempty. We want to solve
the variational problem

(2) F → min in C(Γ ),

which we denote as Plateau problem for the Cartan functional F. This will be
achieved by a method that is similar to the reasoning used in Section 4.10 for
solving the problem “A → min in C(Γ )”.

Theorem 1. For any regular Cartan functional (1) the minimum problem (2)
has a solution X ∈ C(Γ ) which is conformally parametrized in the sense that

(3) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0.
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Proof. Instead of (2) we first consider the modified minimum problems

(4) Fε → min in C(Γ ),

ε ∈ (0, 1], where the auxiliary functionals Fε are defined for 0 < ε ≤ 1 as

(5) Fε := F + εD.

We can write
Fε(X) =

∫
B

fε(X,∇X) du dv

where the Lagrangian

fε(x, p) := F (x, p1 ∧ p2) +
ε

2
|p|2

is polyconvex in p = (p1, p2) ∈ R3 × R3 and satisfies

m1|p1 ∧ p2| +
ε

2
|p|2 ≤ fε(x, p) ≤ 1

2
(m2 + ε)|p|2

because of 2|p1 ∧ p2| ≤ |p1|2 + |p2|2. By a theorem of Acerbi and Fusco [1]
the functional Fε is (sequentially) weakly lower semicontinuous (w.l.s.) on
H1

2 (B,R3). Let Xj ∈ C(Γ ) be a minimizing sequence for the problem (4), i.e.

Fε(Xj) → d(ε) := inf
C(Γ )

Fε.

We can assume that all Xj satisfy a uniform three-point condition Xj(wk) =
Qk, k = 1, 2, 3, with wk ∈ ∂B and Qk ∈ Γ , i.e. Xj ∈ C∗(Γ ) in the sense of
Section 4.2. From (5) we infer

D(Xj) ≤ ε−1Fε(Xj) ≤ const for all j ∈ N and fixed ε > 0,

and the “boundary values” (= Sobolev traces) φj of Xj on ∂B satisfy
sup∂B |φj | ≤ const. Then a suitable variant of Sobolev’s inequality yields

|Xj |H1
2 (B,R3) ≤ const for all j ∈ N.

Passing to an appropriate subsequence of {Xj } which (by renumbering) is
again called {Xj } we obtain Xj ⇀ Xε in H1

2 (B,R3) for some Xε ∈ H1
2 (B,R3)

whence
Fε(Xε) ≤ limFε(Xj) = d(ε).

On the other hand C∗(Γ ) is a weakly sequentially closed subset of H1
2 (B,R3)

(cf. 4.6, Proposition 1), and so Xε ∈ C∗(Γ ), whence d(ε) ≤ Fε(Xε). This
implies

(6) Fε(Xε) = d(ε),
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i.e. Xε is a solution of (4). As in Section 4.10 we obtain

∂Fε(Xε, λ) = 0 for any λ ∈ C1
tang(B,R

2),

therefore
∂D(Xε, λ) = 0 for all λ ∈ C1

tang(B,R
2),

and now the reasoning of 4.10 yields

(7) |Xε
u|2 = |Xε

v |2, 〈Xε
u, X

ε
v 〉 = 0.

This is equivalent to

(8) A(Xε) = D(Xε) for ε ∈ (0, 1].

On the other hand assumption (D) implies m1A ≤ F, and so we infer from
(5) and (8) that

(m1 + ε)D(Xε) ≤ Fε(Xε).

Furthermore,
Fε ≤ (m2 + ε)D

by F ≤ m2A and A ≤ D, and we also have

Fε(Xε) ≤ Fε(Z) for any Z ∈ C(Γ )

on account of (6). Consequently,

(m1 + ε)D(Xε) ≤ (m2 + ε)D(Z) for any Z ∈ C(Γ ).

Since
m2 + ε
m1 + ε

<
m2

m1
for any ε > 0,

we arrive at

(9) D(Xε) ≤ (m2/m1) · e(Γ ) for all ε ∈ (0, 1]

with
e(Γ ) := inf

C(Γ )
D,

and by the same reasoning as above it follows that

|Xε|H1
2 (B,R3) ≤ const for all ε ∈ (0, 1].

Hence there is an X ∈ C∗(Γ ) and a sequence of numbers εj > 0 with εj → 0
such that Xεj ⇀ X in H1,2(B,R3). Since also F is sequentially w.l.s. by
Acerbi and Fusco [1], it follows that

d(0) := inf
C(Γ )

F ≤ F(X) ≤ lim inf
j→∞

F(Xεj ).
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As d(ε) is nondecreasing, limε→+0 d(ε) exists, and by

d(ε) = Fε(Xε) = F(Xε) + εD(Xε)

we infer from (9) that

lim
ε→+0

d(ε) = lim
ε→+0

Fε(Xε) = lim
ε→+0

F(Xε).

Thus we have

(10) d(0) ≤ F(X) ≤ lim
ε→+0

d(ε).

On the other hand,

d(ε) = Fε(Xε) ≤ Fε(Z) = F(Z) + εD(Z) for any Z ∈ C(Γ ).

Hence limε→+0 d(ε) ≤ F(Z), and so limε→+0 d(ε) ≤ d(0). By virtue of (10)
we arrive at

F(X) = d(0) := inf
C(Γ )

F,

and so X ∈ C(Γ ) is a solution of (2), i.e. a minimizer of F in C(Γ ).
We still have to prove (3) which does not immediately follow from (7)

because the Xεj merely converge weakly to X in H1
2 (B,R3). However (3)

follows from (7) as soon as we have proved the strong convergence Xεj → X
in H1

2 (B,R3). For this it suffices to prove

(11) lim
εj →0

D(Xεj ) = D(X),

which will be verified as follows: Since Xε minimizes Fε in C(Γ ), we have
Fε(Xε) ≤ Fε(X), i.e.

F(Xε) + εD(Xε) ≤ F(X) + εD(X),

and we also have
F(X) ≤ F(Xε)

as X minimizes F in C(Γ ). Therefore

εD(Xε) ≤ εD(X), ε ∈ (0, 1],

and so
D(Xε) ≤ D(X) for ε ∈ (0, 1],

whence
lim sup

j→∞
D(Xεj ) ≤ D(X).

On the other hand, Xεj ⇀ X in H1,2(B,R3) implies

D(X) ≤ lim inf
j→∞

D(Xεj )

and so we obtain (11). �
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Theorem 2. Every minimizer X of F in C(Γ ) that satisfies (3) is Hölder
continuous in B and continuous on B.

Proof. Fix some w0 ∈ B and set R := 1 − |w0| > 0. For 0 < r < R we define
H ∈ H1

2 (Br(w0),R3) as the solution of

ΔH = 0 in Br(w0), H − X ∈ H̊1
2 (Br(w0),R3),

and then we set Y (w) := H(w) for w ∈ Br(w0) and Y (w) := X(w) for
w ∈ B \ Br(w0). Since Y ∈ C(Γ ) it follows that

F(X) ≤ F(Y ),

whence
FBr(w0)(X) ≤ FBr(w0)(Y ).

Here and in the following the index Br(w0) means that the corresponding
integrals are to be taken over the set Br(w0). By (D) and (3) we have

m1DBr(w0)(X) = m1ABr(w0)(X) ≤ FBr(w0)(X),

and (3) together with A ≤ D and Y = H on Br(w0) yields

FBr(w0)(Y ) = FBr(w0)(H) ≤ m2ABr(w0)(H) ≤ m2DBr(w0)(H).

Thus
DBr(w0)(X) ≤ m2

m1
DBr(w0)(H),

that is,

(12) Φ(r) :=
∫

Br(w0)

| ∇X|2 du dv ≤ m2

m1

∫
Br(w0)

| ∇H|2 du dv.

Let us introduce polar coordinates ρ, θ around w0 by w = w0 +ρeiθ; we write

X(w) = X(w0 + ρeiθ) =: X∗(ρ, θ).

Then

Φ(r) =
∫ r

0

∫ 2π

0

{ |X∗
ρ (ρ, θ)|2 + ρ−2|X∗

θ (ρ, θ)|2}ρ dρ dθ.

Since
|X∗

ρ |2 = ρ−2|X∗
θ |2, 〈X∗

ρ , X
∗
θ 〉 = 0

we have

Φ(r) = 2
∫ r

0

ρ−1

(∫ 2π

0

|X∗
θ (ρ, θ)|2 dθ

)
dρ.

We can find a representative X∗(ρ, θ) that is absolutely continuous in θ for
almost all ρ ∈ (0, R) and

∫ 2π

0
|X∗

θ (ρ, θ)|2 dθ < ∞ for these ρ. The function
Φ(r) is absolutely continuous on [0, R], and
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Φ′(r) = 2r−1

∫ 2π

0

|X∗
θ (r, θ)|2 dθ for r ∈ (0, R) \ N

where N is a one-dimensional null set.
Furthermore we have

∫
Br(w0)

| ∇H|2 du dv ≤
∫ 2π

0

|X∗
θ (r, θ)|2 dθ

(see e.g. Vol. 2, Section 2.5, (18)), and so
∫

Br(w0)

| ∇H|2 du dv ≤ 1
2
rΦ′(r) for r ∈ (0, R) \ N.

By virtue of (12) we arrive at

Φ(r) ≤ 1
2
m2

m1
rΦ′(r) a.e. on (0, R).

Setting μ := m1/m2 we have

2μΦ(r) ≤ rΦ′(r) a.e. on (0, R)

whence

(13) Φ(r) ≤ (r/R)2μΦ(R) for r ∈ (0, R),

and then it follows that X ∈ C0,μ(B,R3) on account of Morrey’s “Dirichlet
growth theorem” (see Morrey [8], p. 79).

It remains to prove that X ∈ C0(B,R3). To this end we introduce polar
coordinates ρ, ϑ around the origin and write

X(w) = X(ρeiϑ) =: X∗(ρ, ϑ).

Set

ε(X,h) :=
∫ 1

1−2h

∫ 2π

0

[
|X∗

ρ (ρ, ϑ)|2 + |X∗
ϑ(ρ, ϑ)|2

]
dρ dϑ

for 0 < h < 1/4; then

1
2
ε(X,h) ≤

∫ 1

1−2h

∫ 2π

0

(|X∗
ρ |2 + ρ−2|X∗

ϑ|2)ρ dρ dϑ ≤ 2ε(X,h).

It follows as in Morrey [8], Theorem 3.5.2, that there is a number c0(μ) de-
pending only on μ such that

|X∗(1 − h, θ) − X∗(1 − h, θ′)| ≤ c0(μ)ε(X,h)h−μ|θ − θ′ |μ ≤ c0(μ)ε(X,h)

for all θ′ ∈ R with |θ − θ′ | ≤ h < 1/4.
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Let ξ(θ) be the continuous Sobolev trace X∗(1, θ) of X∗ on ρ = 1, and set

ω(ξ, h) := sup{ |ξ(θ′) − ξ(θ′ ′)| : θ′, θ′ ′ ∈ R, |θ′ − θ′ ′ | < h}.

Then ω(ξ, h) → 0 as h → +0.
Furthermore, for any θ ∈ R there is a θ1 with |θ − θ1| ≤ h such that

X(ρ, θ1) is absolutely continuous in ρ ∈ [1/2, 1], Xρ(·, θ1) ∈ L2([1/2, 1],R3
)

and
|X∗(ρ, θ1) − ξ(θ1)| → 0 as ρ → 1 − 0

as well as ∫ 1

1−h

|X∗
ρ (ρ, θ1)|2dρ ≤ h−1ε2(X,h).

It follows that

|ξ(θ1) − X∗(1 − h, θ1)| ≤
∫ 1

1−h

|X∗
ρ (ρ, θ1)| dρ

≤
√
h ·
{∫ 1

1−h

|X∗
ρ (ρ, θ1)|2 dρ

}1/2

≤ ε(X,h).

Given θ0 and θ with |θ − θ0| ≤ h′ < 1/4 we choose θ1 as above. Because of

|X∗(1 − h, θ) − ξ(θ0)|
≤ |X∗(1 − h, θ) − X∗(1 − h, θ1)| + |X∗(1 − h, θ1) − ξ(θ1)|

+ |ξ(θ1) − ξ(θ)| + |ξ(θ) − ξ(θ0)|

we then obtain

|X∗(1 − h, θ) − ξ(θ0)| ≤ [1 + c0(μ)]ε(X, θ, h) + ω(ξ, h) + ω(ξ, h′).

This proves X∗(ρ, θ) → ξ(θ0) as ρ → 1 − 0 and θ → θ0. Hence X ∈ C0(B,R3).
�

Remark 1. So far no general results concerning higher regularity of solutions
to (2) are known. For a special class of Cartan functionals it was proved that
the minimizers X of F in C(Γ ) satisfy X ∈ H2

2 (B,R3) ∩ C1,α(B,R3) for
some α ∈ (0, 1) provided that F ∈ C2 on R

3 × (R3 \ {0}) and Γ ∈ C4; see
Hildebrandt and von der Mosel [1–7].

4.14 Isoperimetric Inequalities

Now we want to derive the isoperimetric inequality for disk-type surfaces
X : B → R

3 of class C1(B,R3) or, more generally, for X ∈ H1
2 (B,R3) with

the parameter domain
B = {w ∈ C : |w| < 1},
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the boundary of which is given by

C = ∂B = {w ∈ C : |w| = 1}.

Recall that any X ∈ H1
2 (B,R3) has boundary values X|C of class L2(C,R3).

Denote by L(X) the length of the boundary trace X|C , i.e.,

L(X) = L(X|C) :=
∫

C

|dX|.

We recall a result that, essentially, has been proved in Section 4.7.

Lemma 1. (i) Let X : B → R3 be a minimal surface with a finite Dirichlet
integral

D(X) =
1
2

∫
B

| ∇X|2 du dv

and with boundary values X|C of finite total variation

L(X) =
∫

C

|dX|.

Then X is of class H1
2 (B,R3) and has a continuous extension to B, i.e.,

X ∈ C0(B,R3). Moreover, the boundary values X|C are of class H1
1 (C,R3).

Setting X(r, θ) := X(reiθ), we obtain that, for any r ∈ (0, 1], the function
Xθ(r, θ) vanishes at most on a set of θ-values of one-dimensional Hausdorff
measure zero, and that the limits

lim
r→1−0

Xr(r, θ) and lim
r→1−0

Xθ(r, θ)

exist, and that

∂

∂θ
X(1, θ) = lim

r→1−0
Xθ(r, θ) a.e. on [0, 2π]

holds true. Finally, setting Xr(1, θ) := limr→1−0Xr(r, θ), it follows that

(1)
∫

B

〈∇X,∇φ〉 du dv =
∫

C

〈Xr, φ〉 dθ

is satisfied for all φ ∈ H1
2 ∩ L∞(B,R3). Moreover, we have

(2) lim
r→1−0

∫ 2π

0

|Xθ(r, θ)|r dθ =
∫ 2π

0

|dX(1, θ)|.

(ii) If X : B → R
3 is a minimal surface with a continuous extension to B

such that L(X) :=
∫

C
|dX| < ∞, then we still have (2).
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Proof. Since L(X) < ∞, the finiteness of D(X) is equivalent to the rela-
tion X ∈ H1

2 (B,R3), on account of Poincaré’s inequality. Hence X has an
L2(C)-trace on the boundary C of ∂B which, by assumption, has a finite
total variation

∫
C

|dX|. Consequently, the two one-sided limits

lim
θ→θ0−0

X(1, θ) and lim
θ→θ0+0

X(1, θ)

exist for every θ0 ∈ R. In conjunction with the Courant–Lebesgue lemma, we
obtain that X(1, θ) is a continuous function of θ ∈ R whence X ∈ C0(B,R3)
(cf. Section 4.7, part (iii) of the proof of Proposition 3). The rest of the proof
follows from Theorems 1 and 2 in Section 4.7. �

Lemma 2 (Wirtinger’s inequality). Let Z : R → R
3 be an absolutely

continuous function that is periodic with the period L > 0 and has the mean
value

(3) P :=
1
L

∫ L

0

Z(t) dt.

Then we obtain

(4)
∫ L

0

|Z(t) − P |2 dt ≤
(
L

2π

)2 ∫ L

0

|Ż(t)|2 dt,

and the equality sign holds if and only if there are constant vectors A1 and B1

in R
3 such that

(5) Z(t) = P +A1 cos
(

2π
L
t

)
+B1 sin

(
2π
L
t

)

holds for all t ∈ R.

Proof. We first assume that L = 2π and
∫ 2π

0
|Ż|2 dt < ∞. Then we have the

expansions

Z(t) = P +
∞∑

n=1

(An cosnt+Bn sinnt),

Ż(t) =
∞∑

n=1

n(Bn cosnt − An sinnt)

of Z and Ż into Fourier series with An, Bn ∈ R
3, and

∫ 2π

0

|Z − P |2 dt = π
∞∑

n=1

(|An|2 + |Bn|2),

∫ 2π

0

|Ż|2 dt = π
∞∑

n=1

n2(|An|2 + |Bn|2).
(6)
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Consequently it follows that

(7)
∫ 2π

0

|Z − P |2 dt ≤
∫ 2π

0

|Ż|2 dt,

and the equality sign holds if and only if all coefficients An and Bn vanish
for n > 1. Thus we have verified the assertion under the two additional hy-
potheses. If

∫ 2π

0
|Ż|2 dt = ∞, the statement of the lemma is trivially satisfied,

and the general case L > 0 can be reduced to the case L = 2π by the scaling
transformation t �→ (2π/L)t. �

Now we shall state the isoperimetric inequality for minimal surfaces in its
simplest form.

Theorem 1. Let X ∈ C2(B,R3) with B = {w : |w| < 1} be a minimal sur-
face, i.e. X be nonconstant and satisfy

ΔX = 0,

|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0.

Assume also that X is either of class H1
2 (B,R3) or of class C0(B,R3), and

that L(X) =
∫

C
|dX| < ∞. Then D(X) is finite, and we have

(8) D(X) ≤ 1
4π
L2(X).

Moreover, the equality sign holds if and only if X : B → R
3 represents a

(simply covered) disk.

Remark 1. Note that for every minimal surface X : B → R
3 the area func-

tional A(X) coincides with the Dirichlet integral D(X). Thus (8) can equiv-
alently be written as

(8′) A(X) ≤ 1
4π
L2(X).

Proof of Theorem 1. (i) Assume first that X is of class H1
2 (B,R3), and that

P is a constant vector in R
3. Because of L(X) < ∞, the boundary values X|C

are bounded whence X is of class L∞(B,R3) (this follows from the maximum
principle in conjunction with a suitable approximation device). Thus we can
apply formula (1) to φ = X − P , obtaining∫

B

〈∇X,∇X〉 du dv(9)

=
∫

B

〈∇X,∇(X − P )〉 du dv

=
∫

C

〈Xr, X − P 〉 dθ ≤
∫

C

|Xr | |X − P | dθ

=
∫

C

|Xθ | |X − P | dθ =
∫ 2π

0

|Xθ(1, θ)| |X(1, θ) − P | dθ.
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Introducing s = σ(θ) by

σ(θ) :=
∫ θ

0

|Xθ(1, θ)| dθ,

we obtain that σ(θ) is a strictly increasing and absolutely continuous function
of θ, and σ̇(θ) = |Xθ(1, θ)| > 0 a.e. on R. Hence σ : R → R has a continuous
inverse τ : R → R. Let us introduce the reparametrization

Z(s) := X(1, τ(s)), s ∈ R,

of the curveX(1, θ), θ ∈ R. Then, for any s1, s2 ∈ R with s1 < s2, the numbers
θ1 := τ(s1), θ2 := τ(s2) satisfy θ1 < θ2 and

(10)
∫ s2

s1

|dZ| =
∫ θ2

θ1

|dX| = σ(θ2) − σ(θ1) = s2 − s1,

whence
|Z(s2) − Z(s1)| ≤ s2 − s1.

Consequently, the mapping Z : R → R
3 is Lipschitz continuous and therefore

also absolutely continuous, and we obtain from (10) that

(11)
∫ s2

s1

|Z ′(s)| ds = s2 − s1

(′= d
ds ), whence

(12) |Z ′(s)| = 1 a.e. on R.

In other words, the curve Z(s) is the reparametrization of X(1, θ) with respect
to the parameter s of its arc length.

As the mapping σ : R → R is absolutely continuous, it maps null sets onto
null sets, and we derive from

τ(s2) − τ(s1)
s2 − s1

=
1

σ(θ2)−σ(θ1)
θ2−θ1

and from σ̇(θ) > 0 a.e. on R that

(13) τ ′(s) =
1

σ̇(τ(s))
> 0 a.e. on R.

On account of
σ̇(θ) = |Xθ(1, θ)| a.e. on R

it then follows that

(14) |Xθ(1, τ(s))|dτ
ds

(s) = 1 a.e. on R,



332 4 The Plateau Problem and the Partially Free Boundary Problem

and thus we obtain

(15)
∫ 2π

0

|Xθ(1, θ)| |X(1, θ) − P | dθ =
∫ L

0

|Z(s) − P | ds.

We now infer from (9) and (15) that

(16)
∫

B

〈∇X,∇X〉 du dv ≤
∫ L

0

|Z(s) − P | ds.

By Schwarz’s inequality, we have

(17)
∫ L

0

|Z(s) − P | ds ≤
√
L

{∫ L

0

|Z(s) − P |2 ds
}1/2

,

and Wirtinger’s inequality (4) together with (12) implies that

(18)
{∫ L

0

|Z(s) − P |2 ds
}1/2

≤ L3/2

2π

if we choose P as the barycenter of the closed curve Z : [0, L] → R3, i.e., if

P :=
1
L

∫ L

0

Z(s) ds.

By virtue of (16)–(18), we arrive at

(19)
∫

B

| ∇X|2 du dv ≤ 1
2π
L2

which is equivalent to the desired inequality (8).
Suppose that equality holds true in (8) or, equivalently, in (19). Then

equality must also hold in Wirtinger’s inequality (18), and by Lemma 2 we
infer

Z(s) = P +A1 cos
(

2π
L
s

)
+B1 sin

(
2π
L
s

)
.

Set R := L/(2π) and ϕ = s/R. Because of |Z ′(s)| ≡ 1, we obtain

R2 = |A1|2 sin2 ϕ+ |B1|2 cos2 ϕ − 2〈A1, B1〉 sinϕ cosϕ.

Choosing ϕ = 0 or π
2 , respectively, it follows that

|A1| = |B1| = R,

and therefore
〈A1, B1〉 = 0.

Then the pair of vectors E1, E2 ∈ R
3, defined by
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E1 :=
1
R
A1, E2 :=

1
R
B1,

is orthonormal, and we have

Z(Rϕ) = P +R{E1 cosϕ+ E2 sinϕ}.

Consequently Z(Rϕ), 0 ≤ ϕ ≤ 2π, describes a simply covered circle of radius
R, centered at P , and the same holds true for the curve X(1, θ) with 0 ≤
θ ≤ 2π. Hence X : B → R3 represents a (simply covered) disk of radius R,
centered at P . This can be seen as follows: We may assume that the circle
Γ := {X(1, θ) : 0 ≤ θ ≤ 2π} lies in the x, y-plane and is given by

Γ = {(x, y, z) : x2 + y2 = R2, z = 0}.

Then the maximum principle implies that X has the form

X = (X1, X2, 0) with |X1(w)|2 + |X2(w)|2 ≤ R2 for w ∈ B

since ΔX3 = 0 and Δ(|X1|2 + |X2|2) ≥ 0. Using the conformality relation
it follows that either f(w) = X1(w) + iX2(w) or f(w) is holomorphic and,
in fact, conformal on B (for details, we refer to the proof of Theorem 1 in
Section 4.11).

Conversely, if X : B → R3 represents a simply covered disk, then the
equality sign holds true in (8′) and, therefore also in (8).

Thus the assertion of the theorem is proved under the assumption that
X ∈ H1

2 (B,R3).
(ii) Suppose now that X is of class C0(B,R3). Then we introduce noncon-

stant minimal surfaces Xk : B → R
3 of class C∞(B,R3) by defining

Xk(w) := X(rkw) for |w| ≤ 1, rk :=
k

k + 1
.

We can apply (i) to each of the surfaces Xk, thus obtaining

(20) 4πD(Xk) ≤
{∫ 2π

0

|dXk(1, θ)|
}2

.

For k → ∞, we have rk → 1 − 0, D(Xk) → D(X), and part (ii) of Lemma 1
yields

lim
k→∞

∫ 2π

0

|dXk(1, θ)| =
∫ 2π

0

|dX(1, θ)|.

Thus we infer from (20) that

4πD(X) ≤ L2(X)

which implies in particular that X is of class H1
2 (B,R3). For the rest of the

proof, we can now proceed as in part (i). �
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If the boundary of a minimal surface X is very long in comparison to its
“diameter”, then another estimate of A(X) = D(X) might be better which
depends only linearly on the length L(X) of the boundary of X. We call this
estimate the linear isoperimetric inequality . It reads as follows:

Theorem 2. Let X be a nonconstant minimal surface with the parameter
domain B = {w : |w| < 1}, and assume that X is either continuous on B or
of class H1

2 (B,R3). Moreover, suppose that the length L(X) =
∫

C
|dX| of its

boundary is finite, and let KR(P ) be the smallest ball in R
3 containing X(∂B)

and therefore also X(B). Then we have

(21) D(X) ≤ 1
2RL(X).

Equality holds in (21) if and only if X(B) is a plane disk.

Proof. By Theorem 1 it follows that D(X) < ∞ and X ∈ H1
2 (B,R3), and

formula (9) implies

(22) 2D(X) ≤
∫

C

|Xθ | |X − P | dθ ≤ RL(X)

whence we obtain (21).
Suppose now that

(23) D(X) = 1
2RL(X).

Then we infer from (9) and (22) that∫
C

〈Xr, X − P 〉 dθ =
∫

C

|Xr | |X − P | dθ

is satisfied; consequently we have

〈Xr, X − P 〉 = |Xr | |X − P |

a.e. on C, that is, the two vectors Xr and X − P are collinear a.e. on C.
Secondly we infer from (22) and (23) that

|X − P | = R a.e. on C.

Hence the H1
1 -curve Σ defined by X : C → R

3 lies on the sphere SR(P ) of
radius R centered at P , and the side normal Xr of the minimal surface X at
Σ is proportional to the radius vector X − P . Thus Xr(1, θ) is perpendicular
to SR(P ) for almost all θ ∈ [0, 2π]. Hence the surface X meets the sphere
SR(P ) orthogonally a.e. along Σ. As in the proof of Theorem 1 in Section 5.4
we can show that X is a stationary surface with a free boundary on SR(P )
and that X can be viewed as a stationary point of Dirichlet’s integral in the
class C(SR(P )). By Theorems 1 and 2 of Vol. 2, Section 2.8, the surface X
is real analytic on the closure B of B. Then it follows from the Theorem in
Vol. 2, Section 1.7 that X(B) is a plane disk.

Conversely, if X : B → R
3 represents a plane disk, then (23) is fulfilled.

�
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A more general version of the isoperimetric inequality (8′) will be proved
in Vol. 2, Section 6.5. We also refer to Section 6.4 of this volume where the
isoperimetric inequality of Morse–Tompkins for harmonic surfaces is derived.

4.15 Scholia

1 Historical Remarks and References to the Literature

Although Plateau’s problem is one of the classical questions in geometry and
analysis, progress in solving it was very slow. The problem was already for-
mulated by Lagrange in his Essai d’une nouvelle méthode . . . [1]: trouver la
surface qui est la moindre de toutes celles qui ont un même périmètre donné ,
but neither he nor Euler were able to solve the question. It seemed even dif-
ficult to find solutions of the minimal surface equation, not to speak of the
corresponding boundary value problem. In the early 19th century, Gergonne
[1] drew the attention of his contemporaries again to this and related boundary
value problems, but still Jacobi was unable to tackle them. In his Lectures on
the Calculus of Variations at Königsberg, 1837/38, he said: Es haben sich in
der neuesten Zeit die ausgezeichnetsten Mathematiker wie Poisson und Gauß
mit der Auffindung der Variation des Doppelintegrals beschäftigt, die wegen
der willkürlichen Funktionen unendliche Schwierigkeiten macht. Dennoch wird
man durch ganz gewöhnliche Aufgaben darauf geführt, z.B. durch das Problem:
unter allen Oberflächen, die durch ein schiefes Viereck im Raum gelegt werden
können, diejenige anzugeben, welche den kleinsten Flächeninhalt hat. Es ist
mir nicht bekannt, daß schon irgend jemand daran gedacht hätte, die zweite
Variation solcher Doppelintegrale zu untersuchen; auch habe ich, trotz vieler
Mühe, nur erkannt, daß der Gegenstand zu den allerschwierigsten gehört.

The problem mentioned by Jacobi, namely to span a minimal surface in
a general quadrilateral of R

3, was first solved by H.A. Schwarz and, indepen-
dently and at about the same time, by Riemann. Riemann’s paper appeared
posthumously in 1867, the same year that Schwarz’s prize-essay was sent to the
Berlin Academy. Later on, Plateau’s problem was solved for other polygonal
boundaries and, more generally, also free and partially free boundary problems
for so-called Schwarzian chains were tackled. In particular, we mention the
work of Weierstraß [4], Tallquist [2], and Neovius [1–5]. An outline of the
techniques used by these authors can be found in the treatise of Bianchi [1];
a very extensive presentation is given in volume 1 of Darboux’s Leçons [1].

The first general existence proof for the nonparametric Plateau problem
was given by A. Haar [3] in 1927, with important supplements by Radó con-
cerning the regularity of minimizers. The contributions of Haar and Radó were
major mathematical achievements; for the first time, the program envisioned
by Hilbert in his problems 19 and 20 had been carried out for a fundamental
variational problem with nonlinear Euler equations.

A first solution of the Plateau problem for a general contour was published
by R. Garnier [2] in 1928. By a limit procedure he obtained a solution for un-



336 4 The Plateau Problem and the Partially Free Boundary Problem

knotted and piecewise smooth Jordan curves from a penetrating analysis of
the Plateau problem for polygonal boundaries. However, Garnier’s long paper
was apparently seldom read if it was read at all (see Nitsche [28], p. 251),2

and it was soon superseded by the convincing proofs of J. Douglas [11,12] and
T. Radó [17,18] published about 1930. Douglas began to publish on Plateau’s
problem in 1927, and he announced a solution as early as 1929 (see Douglas
[5] and [17]). Still, his first papers were apparently not convincing to everyone
(see Constance Reid [1], pp. 173–174), and the long list of Douglas’s announce-
ments prior to 1931 might indicate that Douglas himself did not think he had
found the best possible presentation, see Douglas [1–11].

Douglas based his approach to Plateau’s problem on the functional

A0(X) :=
1
4π

∫ 2π

0

∫ 2π

0

|X(θ) − X(ϕ)|2

4 sin2 1
2 (θ − ϕ)

dθ dϕ,

X(θ) := X(eiθ) = X(cos θ, sin θ), which, for harmonic mappings

X : B = {w : |w| < 1} → R
N ,

coincides with Dirichlet’s integral D(X) (cf. Section 6.4). The Douglas func-
tional A0(X) has certain advantages as it only takes the boundary values X(θ)
of a harmonic mapping X : B → R

N into account, but the Dirichlet integral is
more natural and easier to handle. In the case of the general Plateau problem,
the Dirichlet integral can still be used while the Douglas functional has to be
replaced by a rather unwieldy expression, and also for free boundary problems
the Dirichlet integral seems to be the natural tool.

Radó’s method to attack Plateau’s problem is much closer to the approach
used in the present chapter than the method of Douglas. Radó runs through
several approximation steps. First he treats the case of a polygonal bound-
ary Γ where one can find a sequence of polyhedra Pn whose areas approach
the infimum a(Γ ) of areas of surfaces within Γ . As polyhedra admit confor-
mal representations Zn : B → R

3, the Dirichlet integrals of these represen-
tations approach the infimum value e(Γ ) of Dirichlet’s integral for surfaces
X : B → R

3 within Γ , and we have e(Γ ) = a(Γ ). Replacing the Zn by har-
monic maps Xn : B → R

3 with the same boundary values as Zn, we obtain
D(Xn) → e(Γ ) = a(Γ ) as n → ∞. A standard selection theorem for harmonic
maps implies that we can extract a subsequence from {Xn}, again denoted
by {Xn}, which converges uniformly on any B′ ⊂⊂ B to some harmonic map
X : B → R

3, and whose derivatives converge uniformly on B′ ⊂⊂ B to the
derivatives of X. Then we obtain∫

B′
(|DuXn| − |DvXn|)2 du dv →

∫
B′

(|DuX| − |DvX|)2 du dv,
∫

B′
| 〈DuXn, DvXn〉| du dv →

∫
B′

| 〈DuX,DvX〉 | du dv

2 However, note the recent work of L. Desideri; cf. p. 364.
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as n → ∞. On the other hand, the choice of the Xn together with a sim-
ple estimation yields that the integrals on the left-hand side tend to zero as
n → ∞ since the Xn are approximate solutions for the Plateau problem to Γ .
This implies that X is a minimal surface, i.e., a harmonic map satisfying the
conformality conditions |Xu| = |Xv |, 〈Xu, Xv 〉 = 0. Moreover, a sophisticated
approximation theorem yields that X is continuous on B̄, and that X|∂B gives
a parametrization of Γ . Thus Plateau’s problem is solved for polygons.

In the next step, a rectifiable curve Γ is approximated by polygons Γn in
the sense of Fréchet. Solving the Plateau problem for any of the Γn by a min-
imal surface Xn, another application of the approximation theorem together
with a suitable compactness result for sequences of harmonic maps yields a
solution of Plateau’s problem minimizing area.

An admirably clear and short presentation of the results of Haar, Douglas
and Radó is given in the report [21] by Radó.

We note that the methods of Douglas and Radó yield area-minimizing min-
imal surfaces spanned into Γ if a(Γ ) < ∞ whereas Garnier’s solutions might
only be stationary. Moreover, Douglas was able to solve Plateau’s problem
even in the case when a(Γ ) = ∞. The essential simplification achieved in the
proofs of R. Courant [4] and L. Tonelli [1] presented in this chapter follows
from the Courant–Lebesgue lemma which is also of use in many other situa-
tions. The method of deriving the conformality conditions by a variation of
the independent variables is due to Radó (cf. [21], pp. 87–89). The efficient
variational formula generalizing Radó’s idea was stated by Courant [15].

Another solution of Plateau’s problem was found by McShane [1,2] in
1933 who directly attacked the problem of minimizing area. Using ideas of
Lebesgue he showed: (i) One can find a minimizing sequence of Lebesgue
monotone surfaces. (ii) Each of these surfaces can be replaced by a (weakly)
conformally parametrized Lebesgue monotone surface. (iii) The minimizing
sequence obtained by (i), (ii) is compact in C0(B,R3). A detailed presentation
of McShane’s approach is given in Nitsche [28], pp. 414–430.

The approach of Section 4.10 is due to S. Hildebrandt and H. von der
Mosel [1–7]; it leads to another solution of Plateau’s problem by minimizing
area. Contrary to all other methods this approach does not use any results
on conformal or quasiconformal reparametrizations of a given surface such
as the theorems of Lichtenstein or of Carathéodory, and so it establishes an
elementary proof of the fact that the minimizers of Dirichlet’s integral in the
class of disk-type surfaces bounded by a given rectifiable Jordan contour are
as well area minimizing. This was thought to be impossible; see Courant [15],
pp. 116–118. Moreover, a modification of the method is used in 4.11 to derive
the global Lichtenstein theorem by a variational method (cf. Hildebrandt and
von der Mosel [6,7]). Another variational proof of this theorem was earlier
given by J. Jost [6] and [17], rectifying the original approach by C.B. Morrey
(see [8], Chapter 9) which contains a gap.

The partially free problem was originally treated by Courant using some
of the ideas described in Chapter 1 of Vol. 2. The simplified version of Sec-
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tion 4.6 is due to Morrey [8]. Courant’s original approach can be studied in
his monograph [15] and also in Nitsche’s treatise [28].

A solution of Plateau’s problem for minimal surfaces X : B → M in
Riemannian manifolds M of great generality was given by C.B. Morrey [3],
with later supplements by L. Lemaire [1] and J. Jost [6]. Extensions to sur-
faces of constant or prescribed mean curvature H (=H-surfaces) are due to
E. Heinz [2], H. Werner [1,2], S. Hildebrandt [4–10], H. Wente [1–5], K. Steffen
[1–6], R. Gulliver [1,3], Gulliver and Spruck [1,2], Hildebrandt and Kaul [1],
Brezis and Coron [1–4], M. Struwe [5,7,11,12,14], J. Jost [17], U. Dierkes [2],
and Duzaar and Steffen [6,7]. The presentation given by Morrey in Chapter 9
of his treatise [8] is not quite correct but can be rectified. This was carried out
by Jost in his paper [6] and also in his monograph [17] where one finds a com-
plete theory of two-dimensional geometric variational problems comprising the
theory of conformal and harmonic mappings, Teichmüller theory, minimal sur-
faces of disk-type as well as of higher topological type, Plateau’s problem, and
free boundary problems. We also refer to Sections 4.10–4.13 above.

Detailed presentations of the results concerning Plateau’s problem can be
found in the survey of Radó [21], Courant’s monograph [15] and, most com-
plete of all, in Nitsche’s Lectures [28,37]. Beautiful recent surveys, also covering
results on H-surfaces, were written by M. Struwe [11] and J. Jost [17].

In solving Plateau’s problem, it is essential that Γ is a Jordan curve, i.e.,
a continuous embedding of the unit circle S1 into R

3, in other words, that Γ is
not allowed to have selfintersections. Nevertheless one can pose the problem of
minimizing area among surfaces bounded by a rectifiable closed curves Γ with
selfintersections if one enlarges the notion of admissible surfaces. For example,
if Γ is the “figure eight” in R

2, it bounds a surface of minimal area that splits
into two minimal disks. Still one can write it as a continuous mapping. Using
the Lebesgue notion of area, J. Hass [2] proved:

Any closed rectifiable curve Γ in R3 bounds a “disk of least area” which is
a smooth immersion away from the boundary. This means: There is a mapping
X ∈ C0(B,R3) of the unit disk B ⊂ R

2 into R
3 bounded by Γ such that X

yields a smooth immersion of B \ X−1(Γ ). The phrase “X is bounded by Γ”
means: If γ : S1 → R

3 is a continuous representation of Γ and γ′ = X|∂B ,
then γ′ is a continuous mapping S1 → R

3 with dF (γ, γ′) = 0 where dF (γ, γ′)
is the “Fréchet distance” of γ and γ′, i.e.

dF (γ, γ′) = inf
{

sup
S1

|γ − γ′ ◦ ϕ| : ϕ ∈ Hom(S1)
}
,

where Hom(S1) denotes the set of homeomorphisms ϕ : S1 → S1. Here the
splitting phenomenon is expressed by the fact that X−1(Γ ) can be larger than
∂B, i.e. B ∩ X−1(Γ ) can be nonempty.

Another approach to the splitting (or bubbling) problem is contained in
the work of E. Kuwert [5–7], operating with Dirichlet’s integral; cf. Vol. 2,
Scholia to Chapter 1.
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2 Branch Points

In Section 3.2, Proposition 1 we have derived asymptotic expansions for min-
imal surfaces X : B → R3 and their complex derivative Xw. Analogous ex-
pansions can be established at boundary branch points as we shall see in
Section 2.10 of Vol. 2. The basic tool for proving such asymptotic formulas is
a method due to Hartman and Wintner which is described in Chapter 3 of
Vol. 2.

It was a long-standing question whether the area-minimizing solution of
Plateau’s problem obtained by Douglas and Radó is a regular surface, that is,
an immersion. This was eventually confirmed in a series of papers by R. Os-
serman [12], R. Gulliver [2], H.W. Alt [1,2], and Gulliver, Osserman, and
Royden [1]. The break-through was achieved by Osserman [12] who, by an
ingenious idea, was able to rule out the existence of true branch points for
minimizers. A true branch point of a minimal surface X : B → R3 is charac-
terized by the fact that there are several geometrically different sheets of the
surface lying over the tangent plane at w0. These sheets intersect transversally
along smooth curves in R

3 emanating from X(w0). A false (interior) branch
point is a singular point w0 ∈ B which has a neighborhood U in B such that
X(U) turns out to be (the trace of) an embedded surface. In other words,
false branch points cannot be detected by looking at the image of a minimal
surface; they are just the result of a false parametrization.

Osserman’s reasoning did not rule out the existence of false branch points
for a Douglas–Radó solution. This second part of the regularity proof was,
more or less simultaneously, achieved by Gulliver and Alt in the papers cited
above. Another treatment can be found in the paper of Gulliver–Osserman–
Royden. It is still an open problem whether there can be branch points at the
boundary ∂B; however, Gulliver and Lesley [1] indicated that the Douglas–
Radó solution is free of boundary branch points if Γ is a regular, real-analytic
Jordan curve. Thus we now have the following sharpened version of the

Fundamental existence theorem. Every closed rectifiable Jordan curve Γ
in R

3 bounds an area minimizing surface X : B → R
3 of the type of the disk,

and all solutions of this type are regular surfaces, i.e., they are free of branch
points w0 ∈ B. If Γ is regular and real analytic, then they have no branch
points on ∂B, either.

So far, all known proofs excluding the existence of branch points of area
minimizing solutions of Plateau’s problem were quite involved; thus we have
abstained from presenting them. However, on two occasions we have used the
opportunity to sketch the basic ideas. At the end of Section 5.3 in Vol. 2 we
have outlined Osserman’s idea of how to exclude true branch points at the
boundary, and in Section 1.9 of Vol. 2 we have indicated how false branch
points can be excluded.

A. Tromba has recently developed a method to exclude true interior branch
points for minimizers of A, which is technically simple and applies in many
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Fig. 1. A knotted curve bounding an embedded minimal surface of higher topological type

cases also to weak minimizers of D. This approach is presented in Chapter 6
of Vol. 2.

We should like to mention that Gulliver and Alt have ruled out interior
branch points for other surfaces such as for minimal surfaces in Riemannian
manifolds or for surfaces of prescribed mean curvature which satisfy Plateau-
type boundary conditions and minimize a suitable functional. However, all
these results only hold in R

3 or, more generally, in a three-dimensional mani-
fold, and they become false if n ≥ 4, i.e., if the codimension exceeds one. For
instance, let z = x + iy and set X(x, y) = (x, y,Re z4, Im z4). Then X(z),
z ∈ BR(0), describes a nonparametric minimal surface in R

4 with a singular
point at z = 0. The surface S given by X : BR(0) → R

4 is bounded by a
Jordan curve, and a simple differential-form argument similar to the one used
in Section 2.8 shows that S is in fact area minimizing. The branch-point
result is one of the very few basic results mentioned in our notes which only
holds true for codimension-one surfaces. The same remark applies to Nitsche’s
uniqueness theorem, cf. Section 5.6. We also mention that Steffen and Wente
[1] have excluded the existence of branch points for minimizers of Dirichlet’s
integral (as well as of more general functionals) subject to a volume constraint.

3 Embedded Solutions of Plateau’s Problem

The absence of branch points does not mean that a minimal surface is free
of selfintersections. However, selfintersecting minimal surfaces can never be
realized as soap films, i.e., they are unrealistic from the physical point of
view. Soap films either appear as surfaces of higher topological type (see
Fig. 1), thereby avoiding selfintersections which necessarily have to appear
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Fig. 2. An example of Almgren and Thurston

for disk-type surfaces spanned into knotted curves, or they arrange themselves
as systems forming the characteristic 120-degrees angle at their common liq-
uid edges (with a Y -shaped cross-cut; see No. 7 of these Scholia), but true
selfintersections can never be seen. Thus it is of interest to see whether a
given boundary curve Γ can be spanned by an embedded minimal disk (i.e.,
by an injective mapping X : B → R

3). For topological reasons, this cannot
be the case for knotted boundaries Γ , and we therefore have to look among
unknotted curves for promising candidates.

Let us begin with an interesting example of an unknotted closed curve Γ
described by Almgren and Thurston [1] (see Fig. 2) which can only bound
an oriented and embedded surface S lying in the convex hull of Γ if S has
at least three handles. (By stretching in the z-direction with a suitably large
factor, one can even achieve that the total curvature of Γ does not exceed
the value 4π + ε where ε is an arbitrarily given positive number.) Hence no
minimal disk spanned by Γ can be an embedding since, by the maximum
principle, its image in R3 is necessarily contained in the convex hull of Γ .
Similar constructions lead to boundaries Γ spanning only embedded surfaces
S with S ⊂ convex hull of Γ if the genus of S is at least p where p is an
arbitrarily prescribed positive integer.

Another example, which is simpler than that of Almgren–Thurston, but
shows the same phenomenon, was somewhat later given by J.H. Hubbard [1].

Generally speaking, the classical mapping-approach to minimal surfaces
pursued in our notes has the disadvantage that one a priori fixes the topolog-
ical type of the geometric object. Thus it is much more difficult to decide in
this setting whether an area minimizing surface is geometrically regular. In
geometric measure theory this and other disadvantages have been overcome
by the introduction of generalized objects called currents and varifolds.

Simply speaking, an n-current T ∈ Dn(U) is a continuous linear functional
on the space Dn(U) of n-forms with compact support in a domain U of R

m.
Then each n-dimensional oriented submanifold M of R

n+k (with locally finite
n-dimensional Hausdorff measure Hn) represents an n-current in the following
way: Let τ1, . . . , τn be an adapted orthonormal frame of the tangent space
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TxM , and let ξ(x) = τ1 ∧ · · · ∧ τn be an orientation on TxM . Then we define
the current [M ] by

[M ](ω) :=
∫

M

〈ω(x), ξ(x)〉 dHn(x)

for ω ∈ Dn(U).
Conversely, the currents which are representable by a manifold (or, more

precisely, by a rectifiable n-varifold with integer multiplicity) are of basic
importance. They are called locally rectifiable (in the terminology of Federer
and Fleming), or they are said to be integer multiplicity currents (Simon [8],
p. 146). To be precise, T is of integer multiplicity if it is representable as

T (ω) =
∫

M

〈ω(x), ξ(x)〉θ(x) dHn(x), ω ∈ Dn(U),

where M is an Hn-measurable, countably n-rectifiable subset of U , θ is a
locally Hn-integrable positive integer-valued function, and ξ(x) is an Hn-
measurable orientation for the approximate tangent space TxM (see Simon
[8] for details). The mass of a current T in U is defined as

MU (T ) := sup{T (ω) : ‖ω‖ ≤ 1, ω ∈ Dn(U)}.

Using the tools of geometric measure theory, Hardt and Simon [1] answered
the question of embeddedness in the following way.

Theorem 1. Each closed Jordan curve Γ ⊂ R
3 of class C1,α bounds at least

one embedded orientable minimal surface.

However, note that, because of the semicontinuity of mass with respect to
weak convergence, one has no control over the topological type of the minimal
surface except for an upper bound on its genus. In fact, in the limit, cancel-
lation of several parts of currents (with opposite orientation) may produce
higher connectivity of the minimizing current. On the other hand it seems
plausible that under suitable geometric assumptions on Γ one might obtain
embedded minimal surfaces of prescribed topological type which are bounded
by Γ . In a sequence of papers starting with Gulliver and Spruck [3], the follow-
ing was proved by Tomi and Tromba [1], Almgren and Simon [1], and Meeks
and Yau [3]:

Theorem 2. Let K be a strictly convex body in R
3 whose boundary ∂K is of

class C2, and suppose that Γ is a closed rectifiable Jordan curve contained in
∂K. Then there exists an embedded minimal surface of the type of the disk
which is bounded by Γ .

All the papers cited above use different methods. Gulliver and Spruck gave
the first proof with the additional requirement that the total curvature of Γ
be not larger than 4π. Tomi and Tromba used methods from global analysis,
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while Almgren and Simon minimized area in the class of embedded disks,
thereby obtaining in the limit a certain varifold which corresponds to the
minimal embedded disk. Finally, Meeks and Yau proved that the minimizing
surface of the type of the disk is embedded.

Moreover, in their paper [4] Meeks and Yau established a connection be-
tween the problem of embeddedness and the problem of uniqueness. First they
gave a generalization of Theorem 2.

Theorem 3. Let M be a compact region in R
3 whose boundary is C2-smooth

and has nonnegative mean curvature with respect to the inward normal. Sec-
ondly, let Γ be a closed rectifiable Jordan curve contained in ∂M . Then any
(in C(Γ )) area minimizing minimal surface of disk type which is contained in
M and bounded by Γ has to be embedded.

Another result of Meeks and Yau is the following

Theorem 4. Let X : Σ → M ⊂ R3 be a minimal surface defined on a compact
Riemann surface Σ with boundary, and suppose that M satisfies the assump-
tions of Theorem 3. Assume also that X|∂Σ is a regular smooth embedding
of ∂Σ into ∂M which decomposes ∂M into components Σj, and that X|∂Σ

is homotopically trivial in the component of M \ X(Σ) which contains Σj.
Then each such component Γ := X(∂Σ) bounds an embedded stable minimal
surface which is disjoint from X(Σ) unless X(Σ) is an embedded stable disk.

As a consequence of this result one obtains:

Theorem 5. If ∂M is a C2-surface homeomorphic to S2 and if the mean
curvature of ∂M with respect to the inward normal is nonnegative, then every
smooth Jordan curve Γ on ∂M either bounds at least two distinct embed-
ded minimal disks in M , or the only immersed minimal surface X : Σ → R

3

bounded by Γ (with no restriction on the genus of Σ) is a uniquely determined
stable, embedded minimal surface of the type of the disk.

Suppose that Γ is a regular, real analytic, closed Jordan curve which lies
on the boundary ∂K of a convex body, and suppose that the total curvature
of Γ is less than 4π. Then Theorem 5 in conjunction with Nitsche’s uniqueness
theorem implies that the only minimal surface X : Σ → R

3 is a unique area
minimizing disk. Clearly, this result is a considerable refinement of Nitsche’s
uniqueness theorem. It is unknown whether one can omit the assumption that
Γ lies on a convex surface. (Remark : Meeks and Yau indicate that in the above
conclusion ∂K need not be smooth.)

Further work in this connection has been done by F.H. Lin [3].
We also mention the fundamental paper by Ekholm, White, and Wienholtz

[1] on the embeddedness of minimal surfaces. The main result of this article
is

Theorem 6. Let Γ be a closed Jordan curve in R
n, n ≥ 3, with total curvature

≤ 4π, and let X : Σ → R
n be a minimal surface with boundary Γ where Σ is
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a compact, 2-dimensional C∞-manifold with boundary (i.e. X ∈ C0(Σ,Rn)
is harmonic and conformal in intΣ, and X|∂Σ maps ∂Σ homeomorphically
onto Γ ). Then X is an embedding ofM up to and including the boundary, with
no interior branch points. If Γ is regular and of class Cs,α, s ≥ 1, 0 < α < 1,
then X ∈ Cs,α(Σ,Rn) is smoothly embedded and therefore has no boundary
branch points.

Furthermore, the authors point out that there are closed Jordan curves in
R

3 with total curvature <4π that bound “minimal Möbius strips”, and they
make the following interesting

Conjecture. Let Γ be a smooth, closed Jordan curve in R
3 with total curva-

ture ≤4π. Then, in addition to a unique minimal disk, Γ bounds either (i) no
other minimal surface, or (ii) exactly one minimal Möbius strip and no other
minimal surfaces, or (iii) exactly two minimal Möbius strips and no other
minimal surfaces.

Returning to geometric measure theory, we denote by R
(loc)
n (U) for an

open set U in R
m the set of all currents in U which locally are of integer

multiplicity.
A fact of central importance concerning the Plateau problem in arbitrary

dimensions and codimensions is the following compactness theorem which was
first proved by Federer and Fleming [1]:

Theorem 7. If Tj ∈ Dn(U), j = 1, 2, . . . , is a sequence of integer multiplicity
currents with

sup
j≥1

(MW(Tj) + M(∂Tj)) < ∞ for all W ⊂⊂ U,

then there is a current T ∈ Rloc
n (U) and a subsequence {Tj′ } converging weakly

to T in U .

(The nontrivial part in the proof is to show that the limit is, in fact, of
integer multiplicity.)

Employing the lower semicontinuity of mass under weak convergence of
currents, one concludes by means of Theorem 7 the following existence result:

Theorem 8. Let S ∈ Dn−1(Rn+k) be of integer multiplicity, of compact sup-
port suppS and with ∂S = 0. Then there is a current T ∈ Rn(Rn+k) with
∂T = S such that suppT is compact and M(T ) ≤ M(R) for all R ∈ Rn(Rn+k)
with compact support and with ∂R = S.

(Here the boundary current ∂T is defined by the relation

∂T (ω) = T (dω) for all ω ∈ Dn−1(U),

in analogy with Stokes’s theorem.)
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The next step is to examine the regularity of a minimizing current. One
sets

Reg(T ) := {x ∈ suppT : there is a neighborhood U(x)
such that suppT ∩ U(x) is an embedded

n-dimensional submanifold M of R
n+k }

and
Sing(T ) := suppT \ Reg(T ),

to denote the regular and the singular part of the support of T respectively. In
codimension one, the following basic regularity result was proved by Fleming
[2] (n − 2), Almgren [1] (n = 3), Simons [1] (n = 4, 5, 6), and Federer [3]:

Theorem 9. Let U ⊂ R
n+1 be open, T ∈ Rn(U) with M(T ) ≤ M(R) for all

R with supp(T \R) ⊂⊂ U . Then Sing(T ∩U) is empty for n ≤ 6, locally finite
for n = 7, and Hn−7+α (Sing(T ∩ U)) = 0 for all α > 0 and n > 7.

Bombieri, de Giorgi, and Giusti [1] proved that the seven-dimensional cone
in R

8 given by {x ∈ R
8 : x2

1 + · · · + x2
4 = x2

5 + · · · + x2
8} is mass-minimizing

which proves the sharpness of Theorem 8.
If the codimension is greater than one, we have the following result of

Almgren [6]:

Theorem 10. An n-dimensional, area minimizing integer multiplicity cur-
rent in R

n+k is in the interior a smooth embedded manifold, except for a
singular set whose Hausdorff dimension is at most n − 2.

This result is again sharp.
Finally the question of boundary regularity in codimension one was com-

pletely settled by Hardt and Simon [1]:

Theorem 11. In the setting of Theorem 4, let T ∈ Rn(Rn+1) be area mini-
mizing with an (n − 1)-dimensional oriented submanifold S of class C1,α as
boundary. Then, near S, the support of T is an embedded C1-manifold with
boundary.

Note that in Theorem 11 there is no restriction on the dimension n.

4 More on Uniqueness and Nonuniqueness

Let us begin with a classical example, Enneper’s surface

X(w) = Re
(
w − w3

3
, iw + i

w3

3
, w2

)
, w = u+ iv,

and define the closed curve Γr by
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Fig. 3. A closed curve bounding a part of Enneper’s surface (c) as well as two other

minimal surfaces of the type of the disk: see (a), (b). Courtesy of O. Wohlrab

Γr := {X(w) : |w| = r}.

Nitsche [14] has proved that Γr bounds at least two distinct minimal surfaces
of the type of the disk provided that 1 < r <

√
3, and that it bounds at

least three disk-type solutions if r0 < r <
√

3 where the value of r0 is about
1.681475 (see Fig. 3). For 0 < r < 1/

√
3 the orthogonal projection of Γr onto

the x, y-plane is convex and one-to-one whence one concludes that Γr bounds
exactly one disk-type surface. By a sharpened version of Nitsche’s uniqueness
theorem, Ruchert [1] proved uniqueness for 0 < r ≤ 1. Thereafter, Beeson and
Tromba [1] showed that a bifurcation occurs at r = 1 which is of the type of
the cusp catastrophe (in Thom’s morphogenesis) and that there is a number
δ0 > 0 such that Γr bounds at least three disk-type surfaces if 1 < r < 1+ δ0.
By means of the estimates of Chapter 2 of Vol. 2 one can then show that Γr

bounds exactly three disk-type surfaces if 1 < r < 1 + δ0.
The bifurcation of minimal surfaces was also studied in a remarkable pa-

per by Büch [1]. Starting with Weierstrass’s representation formula (27) of
Section 3.3 he was able to establish conditions on the Weierstrass function
F(ω) which imply the appearance of bifurcations of the type of the fold, the
cusp, and of the swallow tail (of Thom’s list).

Although it is not easy to find curves which bound only one disk-type
solution, the opposite problem is complicated as well, namely to verify by a
rigorous mathematical proof that a given curve bounds at least two minimal
surfaces. Therefore the following result of Quien and Tomi [1] might be of
interest:

There exist Jordan curves Γ which are arbitrarily close to a plane and which
bound (at least) a given number of geometrically distinct immersed minimal
surfaces of the type of the disk.

Let us outline the proof. Suppose that ϕ : S1 = ∂B → R
2 is an immersion

of the unit circle. We begin by looking at the question as to whether ϕ can
be extended to an immersion f : B̄ → R

2 with f |∂B = ϕ and, if so, how
many nonequivalent such extensions will exist (two immersions f and g are
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Fig. 4. An immersion ϕ : S1 → R2 which cannot be extended as an immersion f : B̄ → R2

of the disk into R2

Fig. 5. (a) A Milnor curve ϕ : S1 → R2 and its two extensions f : B̄ → R2 which are

immersions of the disk. (b) The leaves of two extensions to Milnor’s curve

Fig. 6. Milnor curves admitting (a) three extensions, (b) n extensions

equivalent if there is a diffeomorphism σ of B̄ onto itself such that f = g ◦σ).
For instance, the immersion ϕ : S1 → R

2 depicted in Fig. 4 cannot be extended
while Fig. 5a depicts an example due to Milnor which allows two extensions,
the leaves of which are depicted in Fig. 5b. Then, in Fig. 6 we exhibit a curve
with three different extensions which can inductively be improved to a curve
ϕ : S1 → R

2 allowing n extensions (see Fig. 6b). For a proof of these results
we refer to Poénaru [1].

Let us now consider an immersion ϕ : S1 → R
2 which allows n different

extensions f of class C3(B̄,R2). By the Lichtenstein mapping theorem we can
assume that f(u, v) = (f1(u, v), f2(u, v)) is conformally parametrized, i.e., we
have
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|fu|2 = |fv |2 =: Λ, 〈fu, fv 〉 = 0.

Next we choose a perturbation function ψ ∈ C2,β(∂B), 0 < β < 1, such that
F := (f1, f2, ψ) defines a Jordan curve F : ∂B → R

3 in R
3. This can be

achieved by a function ψ with arbitrarily small C2-norm. Now we consider
the class C of functions

Z(u, v) = (f1(u, v), f2(u, v), z(u, v)), (u, v) ∈ B,

such that z ∈ Lip(B̄) and z|∂B = ψ|∂B . The area of Z ∈ C is given by

A(z) :=
∫

B

|Zu ∧ Zv | du dv =
∫

B

Λ
√

1 + Λ−1| ∇z|2 du dv.

This functional is strictly convex whence there can exist at most one stationary
point x(u, v) of A, and the corresponding surface X = (f1, f2, x) would be
the absolute minimum of A within C. The Euler equation of A is

L(x) := aαβ ∂2x

∂uα∂uβ
+ b = 0

where we have set

aαβ := (1 + Λ−1)| ∇x|2δαβ − Λ−1 ∂x

∂uα

∂x

∂uβ
,

b := − 1
2

| ∇x|2 ∂

∂uα
Λ−1 ∂x

∂uα
.

For Λ = 1, the equation L(x) = 0 is the classical minimal surface equation.
We will show that the boundary value problem

L(x) = 0 in B, x = ψ on ∂B

can be solved for boundary values ψ with a sufficiently small C2-norm. We
only have to establish a gradient estimate along ∂B for any solution since
then a priori bounds for x and ∇x follow from standard estimates for scalar
problems (cf. Gilbarg and Trudinger [1], Chapters 9 and 14). To derive the
desired estimate we consider barrier functions of the type

c±(w) := ψ(w) ± ε(1 − |w|2), w = u+ iv,

where |ψ|C2(B̄) < ε ≤ 2/
√

27M,M := maxB | ∇Λ−1|. Then a brief computa-
tion will show that L(c−) ≥ 0, and similarly we obtain L(c+) ≤ 0. Conse-
quently ∇x can be estimated along ∂B by means of the maximum principle.
This shows that, for every equivalence class [f ], we find a minimal immersion
X = (f1, f2, x) which is bounded by Γ = F (∂B), F = (f1, f2, ψ). �

It is still unknown whether a smooth regular Jordan curve can bound in-
finitely many minimal surfaces of the type of the disk (or, more generally, of
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Fig. 7. Construction of a boundary configuration Γ bounding a one-parameter family of

(congruent) minimal surfaces of genus zero. The rotationally symmetric configuration Γ

consists of three coaxial circles Γ0, Γ1, Γ−1

the same topological type). Note, however, that one can find boundary config-
urations consisting of several closed curves which even bound one-parameter
families of distinct minimal surfaces of the same topological type. In fact,
one can construct rotationally symmetric configurations Γ = 〈Γ1, Γ2, . . . , Γn〉
consisting of n coaxial circles Γ1, . . . , Γn bounding one-parameter families of
solutions. The first example of this kind was given by Morgan [3] for n = 4.
In the paper [1] of Gulliver and Hildebrandt an example working with three
circles is exhibited which will be described below. Note that n = 3 is the mini-
mum number of circles for which such examples can be found since R. Schoen
[3] proved that, for n = 2, each immersed minimal surface bounded by two
coaxial circles Γ1 and Γ2 is either a pair of disks or a piece of a catenoid.

Now we are going to describe the construction of a rotationally symmetric
1-parameter family of minimal surfaces of genus zero which are bounded by
three coaxial circles which lie in parallel planes cf. Fig. 7.

To this end we consider a configuration Γ consisting of three circles
Γ0, Γ1, Γ−1 described by the equations x2 + y2 = 1 and z = 0, λ and −λ
respectively, λ > 0, and a second configuration Γ ∗ which consists of the
circle Γ1 and another closed curve γ that lies in the same plane as Γ0,
and is formed by the semicircle Γ ′

0 = Γ0 ∩ {x ≥ 0} and by the interval
I = {x = 0, z = 0, −1 < y < 1} on the y-axis. For small λ there is a minimal
surface M∗ of the type of an annulus bounded by Γ ∗ (see below). By Schwarz’s
reflection principle, we can extend M∗ as a minimal surface across the straight
segment I. For this purpose we rotate M∗ by 180◦ about the y-axis to form a
second minimal surface M∗ ∗. Their union M = M∗ ∪ M∗ ∗ is a minimal surface
with boundary Γ having genus zero. The segment I has become part of the
interior of M, and the surface M can be described by a harmonic mapping
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X : B → R
3 given in conformal coordinates of a triply connected planar do-

main B. Since M∗ is not symmetric under rotations about the z-axis, also M

has to be rotationally nonsymmetric.
We still have to find a connected minimal surface M∗ which is bounded

by the configuration Γ ∗. By virtue of J. Douglas’s theorem (cf. Chapter 8),
there exists an area minimizing minimal surface M∗ which is defined on an
annulus and has Γ ∗ as boundary, provided that λ is small enough. In fact,
the existence of Douglas’ solution is ascertained under the hypothesis that

(1) a(Γ ∗) < a(γ) + a(Γ1),

where a(Γ ∗) is the greatest lower bound of area for surfaces of the type of the
annulus with boundary Γ ∗ = γ ∪ Γ1, and a(γ) and a(Γ1) are the corresponding
lower bounds for disk-type surfaces bounded by γ and Γ1 respectively. Clearly,

a(γ) = π/2, a(Γ1) = π,

and a(Γ ∗) is smaller than the area A(S) of the surface S that consists of the
cylinder surface between Γ0 and Γ1 and of the half-disk {x2 + y2 ≤ 1, x ≤ 0,
z = 0}, that is,

a(Γ ∗) < 2πλ+ π/2.

Thus Douglas’s condition (1) is satisfied for λ ≤ 1/2. A somewhat more com-
plicated comparison surface S, consisting of half of a catenoid, half of a cone,
and two triangles shows that even the condition λ ≤ 0.7 suffices to ensure
the existence of a Douglas solution M∗ within the frame Γ ∗. Moreover, hy-
pothesis (1) implies that the surface M∗ is an immersion (cf. Gulliver [7],
Theorem 10.5). By the maximum principle, the interior of M∗ lies between
two planes z = 0 and z = λ. Therefore the interior of M∗ does not meet the
interior of M∗ ∗ where M∗ ∗ is the reflection of M∗ at the y-axis. Thus also
M = M∗ ∪ M∗ ∗ is immersed. Since M is not rotationally symmetric, we have
shown:

The configuration Γ consisting of three coaxial unit circles in parallel planes
at a distance λ ≤ 0.7 bounds a continuum of congruent immersed minimal
surfaces of genus zero.

We also note that M cannot have branch points on the boundary since its
boundary lies on a strictly convex set, a cylinder (see Section 2 of Vol. 2).

Let us now discuss examples of rectifiable Jordan curves bounding in-
finitely many minimal surfaces of the type of the disk. Such examples were
first described by P. Lévy [2] and R. Courant [15]; they are based on the so-
called bridge-theorem. This is a very convincing heuristic reasoning which, in
essence, amounts to the following (see Fig. 8):

Let Γ1 and Γ2 be two disjoint Jordan curves in R
3. Then construct a new

Jordan curve Γ by connecting Γ1 and Γ2 by a bridge β consisting of two arcs
γ1 and γ2 which look like two parallel lines, and by omitting two pieces of Γ1

and Γ2. Suppose also that the two arcs γ1 and γ2 have a small distance ε > 0.
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Fig. 8. Application of the bridge principle

Claim. If X1 and X2 are two disk-type minimal surfaces bounded by Γ1 and
Γ2 respectively, then there exists a disk-type surface X spanned into Γ which
is close to the surface Z formed by X1, X2 and a small strip σ spanned into
the bridge β. As ε tends to zero, the surface X converges to a geometric figure
consisting of X1, X2 and an arc γ connecting Γ1 and Γ2.

A few remarks might be appropriate:
(i) It is unlikely that the claim holds if X1 and X2 are unstable solutions

since a very tiny perturbation of the boundary might completely destroy them.
Thus one probably has to assume that X1 and X2 are local minimizers of area
within the classes C(Γ1) and C(Γ2) respectively, or at least stable minimal
surfaces. Even then the assertion might not be true as it stands since it is
unknown if minimizers are isolated or not. It is conceivable that there exist
blocks of minimizers, and therefore it might occur that, for ε → 0, the surface
X in the unified contour Γ approaches surfaces X̃1 and X̃2 in the contours Γ1

and Γ2 which belong to the same blocks as X1 and X2 but are different from
these surfaces.

(ii) Very likely one has to impose restrictions on the positions of Γ1 and
Γ2 if the bridge theorem is to hold. For instance, if Γ1 and Γ2 are two circles
of radius 1 and 2 respectively which have the same center and lie in the same
plane Π, and if β is a bridge consisting of two parallel lines joining Γ1 and Γ2,
then there is no bridge-solution X in the joint Γ . To remove this difficulty we
could, for instance, assume that the convex hulls of Γ1 and Γ2 are disjoint.
Another option is to leave suitable freedom in the choice of the bridge and
not to insist on a given pair of bridging curves γ1 and γ2. It might even be
necessary to leave freedom for the whole curve Γ in the sense that Γ should
merely be a curve close to the joint formed of Γ1, Γ2 and the bridge β, that
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is, we might have to wiggle the joint a little bit. Possibly we might also have
to smoothen the corners to make the procedure work.

We know of several (published and unpublished) attempts to establish a
rigorous version of the bridge theorem. Neither Courant nor Levy indicated
how to go about this task. The first paper containing such a proof was written
by Courant’s student M. Kruskal [1]; however, his reasoning turned out to be
incomplete. Another very promising attack was carried out by Meeks and
Yau in their paper [4] dealing with the connection between uniqueness and
embeddedness on which we have reported in Subsection 3 of these Scholia.
However, we are not able to follow all of their arguments, and we think that
possibly a more detailed discussion might be needed to establish a good bridge
theorem that will imply the existence of curves bounding infinitely many
minimal surfaces of the type of the disk. We have to mention that N. Smale
[1] gave a satisfactory proof of a bridge principle; however, his result is of
no use for the construction of contours bounding many or even infinitely
many solutions of Plateau’s problem because he constructs Γ not only in
dependence on Γ1 and Γ2 but also in dependence on two (stable) minimal
surfaces X1 and X2 within Γ1 and Γ2. That means that, if we pick different
surfaces X̃1 and X̃2 in Γ1 and Γ2, N. Smale’s construction will lead to another
joint Γ̃ which, in general, will differ from the joint Γ . At last the matter was
settled by B. White [21,22] who proved fairly general versions of the bridge
principle.

Let us now turn to the (heuristic) Levy–Courant construction. We take
a contour Γ1 which bounds at least two stable disk-type minimal surfaces
such as in Fig. 8. Next we consider a sequence Γ1, Γ2, Γ3, . . . of curves of the
same kind, selected in such a way that Γ2 is half the size of Γ1, the curve Γ3

is half the size of Γ2, and so on (see Fig. 9). Then we join Γ1 and Γ2 by a
bridge β1, Γ2 and Γ3 by a bridge β2 etc. such that a rectifiable Jordan arc Γ
is formed. Each Γj spans two stable surfaces which we say to be of type 0
or 1. Pick for each Γj one of these two numbers. Then we obtain a sequence
A = {aj } of digits aj = 0 or 1, and to any such sequence there corresponds
a stable disk-type minimal surface XA bounded by Γ which in Γj is close to
a surface of the type aj . Hence A 	= A′ implies that XA 	= XA′ , and we have
found a bijective mapping τ : A → XA of all binary representations of the
interval [0, 1] onto the set of geometrically different minimal surfaces bounded
by Γ . In other words, if we are willing to accept a strong bridge principle
applying to infinitely many curves, the above reasoning yields the following
result (see Fig. 9):

There exist rectifiable Jordan curves Γ which bound nondenumerably many
minimal surfaces of the type of the disk.

In fact, the construction seems to imply that one can choose Γ as a regular
C∞-curve except for a single kink.

It would be very interesting to make the Levy–Courant construction pre-
cise with the aid of B. White’s versions of the bridge principle.
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Fig. 9. Construction of a curve Γ bounding nondenumerably minimal surfaces of the type

of the disk

The finiteness question is a truly fundamental problem. J.C.C. Nitsche
conjectured that every reasonable (i.e., smooth, analytic, . . . ) curve Γ bounds
only finitely many minimal surfaces of disk-type. Despite the generic finiteness
result of Böhme–Tromba mentioned in Section 4.9, this question is completely
open. It would be very desirable to obtain upper and lower bounds for the
number of solutions of Plateau’s problem.

According to J.C.C. Nitsche [31,32], a regular, real analytic Jordan curve
Γ bounds only finitely many minimal surfaces of disk-type if its total curvature
does not exceed 6π, and if every disk-solution for Γ is free of branch points
(cf. also Beeson [5]).

Nitsche indicated that instead of Γ ∈ Cω the assumption Γ ∈ C3,α is suffi-
cient. A version of the 6π-theorem is proved in Section 5.7 (cf. 5.7, Theorem 3
and Remark 10).

Important contributions to the finiteness problem were also given in the
papers [3,4] of M. Beeson. In this context, we mention the papers of R. Böhme
[1,5], and of Böhme and Tomi [1] who started to investigate the structure of
the space of solutions for Plateau’s problem. Major progress in this direction
was achieved in Böhme–Tromba’s papers [1] and [2] where a fundamental
index theorem was derived. This index theorem has in the meantime been
carried over to various cases of the general Plateau problem (cf. Thiel [1–3],
Schüffler [6], Schüffler and Tomi [1], and finally Tomi and Tromba [6]).

In this respect we also have to mention the work on unstable minimal
surfaces in a given contour. In particular, we refer to the work of Courant
which is described in Chapter 6 of his treatise [15], and the generalizations of
his work given by E. Heinz [13,14], G. Ströhmer [1–4], and F. Sauvigny [3–6].
In Chapter 6, we present a version of Courant’s approach to unstable minimal
surfaces that also uses ideas due to E. Heinz. In the Scholia to Chapter 6 as
well as in Vol. 3, Chapter 6, further results concerning the existence of unstable
minimal surfaces will be described, in particular the work of M. Struwe.

Here we mention the following uniqueness theorem by Sauvigny [3]: Let
Γ be a polygon of total curvature less than 4π which lies on the boundary of
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a bounded convex set of R
3. Then Γ bounds exactly one disk-type minimal

surface, and this solution is free of branch points up to the boundary.
Interestingly, Sauvigny could generalize his uniqueness result to R

n, n ≥ 4,
under the assumption that the total curvature of Γ is less than 10π/3. This
generalization was possible since Sauvigny did not work with a field construc-
tion but with the so-called Courant function d(τ) and with the Marx–Shiffman
function θ(τ). The function d(τ) was introduced by Courant in his monograph
[15], pp. 223–236, where it plays an important role in his treatment of unsta-
ble minimal surfaces with polygonal boundaries. On the other hand, Heinz in
his subsequent basic work [19–24] emphasized the role of the Marx-Shiffman
function θ(τ). The functions d(τ) and θ(τ) are defined as follows. Let Γ be a
polygon with N+3 vertices ej , 1 ≤ j ≤ N+3. Consider mappings X : B̄ → R3

of class C◦(B̄,R3) ∩ C2(B,R3) such that X(−1) = eN+1, X(−i) = eN+2,
X(1) = eN+3 and X(eiτj ) = ej , 1 ≤ j ≤ N , where τ = (τ1, . . . , τn) is an N -
tupel of parameter values τj satisfying 0 < τ1 < τ2 < · · · τN < π. Let F(τ) be
the class of such mappings which map the arc Ck := {eiθ : τk ≤ θ ≤ τk+1} into
the straight line Γk through the points ek and ek+1, whereas F′(τ) denotes
the subset of mappings X ∈ F(τ) which map Ck weakly monotonically onto
the interval [ek, ek+1] on Γk(τj = τk, ej = ek if j ≡ k mod N + 3). We set

d(τ) := inf{D(X) : X ∈ F′(τ)},
θ(τ) := inf{D(X) : X ∈ F(τ)}.

Then we clearly have d(τ) ≥ θ(τ), and simple examples show that we can have
d(τ) > θ(τ) for certain values of τ (see F. Lewerenz [1]). The function d(τ)
is of class C1, and its critical points correspond bijectively to the solutions
of Plateau’s problem of disk-type bounded by the polygon Γ . In this way,
Plateau’s problem for polygonal boundaries is connected with the critical
points of a function of finitely many variables. Unfortunately it is unknown
whether d(τ) is of class C2; therefore Courant’s function is not suited to
develop a Morse theory. The situation is much better for the function θ(τ).
Heinz [20,23] proved that θ(τ) is real analytic and that its critical points
correspond to solutions of a generalized Plateau problem for Γ (generalized
means: the solution X can overshoot the vertices, and we only know that
X(Ck) ⊂ Γk). The Morse index of such generalized solutions was computed
by Sauvigny [4], by studying the second derivative of the function θ. Note that
the two functions d(τ) and θ(τ) are closely connected as they coincide in the
critical points of d(τ).

We have presented some of the results by Courant and Shiffman as well as
extensions by Heinz, Sauvigny, and Jakob in Chapter 6 (note that there the
functions d and θ are denoted by Θ and Θ∗ respectively).

Uniqueness theorems and finiteness questions for minimal surfaces in Rie-
mannian manifolds and for H-surfaces were discussed by Ruchert [2], Koiso
[1,4,6], and Quien [1].
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5 Index Theorems, Generic Finiteness, and Morse-Theory Results

In this subsection we sketch some results for minimal surfaces which in Sec-
tions 5 and 6 of Vol. 3 are developed in detail.

Let B be the unit disk and S1 = ∂B. For integers r and s, r ≥ 2s + 4,
define

D = Ds = {u : S1 → S1 : deg u = 1 and u ∈ Hs(S1,C)},

where Hs denotes the Sobolev space of s-times differentiable functions with
values in C; set

A = {α : S1 → R
n : α ∈ Hr(S1,Rn), α an embedding}

(i.e. α is one-to-one and α′(ξ) 	= 0 for all ξ ∈ S1), and let the total curvature
of Γα = α(S1) be bounded by π(s − 2).

Denote by π : A × D → A the projection map onto the first factor. A min-
imal surface X : B̄ → R

n spanning α ∈ A can be viewed as an element of
A × D, since X is harmonic and therefore determined by its boundary values

X|S1 = α ◦ u, where (α, u) ∈ A × D.

The classical approach to minimal surfaces is to understand the set of
minimal surfaces spanning a given fixed wire α; that is, the set of minimal
surfaces in π−1(α). The approach of Böhme–Tomi–Tromba is to first under-
stand the structure of the subset of minimal surfaces in the bundle N = A × D

viewed as a fiber bundle over A, and then to attack the question of the set
of minimal surfaces in the fiber π−1(α) in terms of the singularities of the
projection map π restricted to a suitable subvariety of N. This is in the spirit
of Thom’s original approach to unfoldings of singularities.

Let us say that a minimal surface X ∈ A × D has branching type (λ, ν),
λ = (λ1, . . . , λp) ∈ Z

p, ν = (ν1, . . . , νq) ∈ Z
q, λi, νi ≥ 0 if X has p distinct but

arbitrarily located interior branch points w1, . . . , wp in B of integer orders
λ1, . . . , λp and q distinct boundary branch points ξ1, . . . , ξq in S1 of (even)
integer orders ν1, . . . , νq. In a formal sense, the subset M of minimal surfaces
in N is an algebraic subvariety of N which is a stratified set, stratified by
branching types. To be more precise, let Mλ

ν denote the minimal surfaces of
branching type (λ, ν). Then we have the following index result of Böhme and
Tromba [2].

Index theorem for disk surfaces. The set Mλ
0 is a Cr−s−1-submanifold of

N, and the restriction πλ of π to Mλ
0 is of class Cr−s−1. Moreover, πλ is a

Fredholm map of index I(λ) = 2(2 − n)|λ| + 2p+ 3, where |λ| =
∑
λi.

Moreover, locally, for ν 	= 0, we have M λ
ν ⊂ W λ

ν where W λ
ν is a sub-

manifold of N and where the restriction πλ
ν of π to W λ

ν is Fredholm of index
I(λ, ν) = 2(2 −n)|λ| +(2 −n)|ν| +2p+q+3, |ν| =

∑
νi. The number 3 comes

from the equivariance of the problem under the action of the three dimensional
conformal group of the disk.
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Ursula Thiel [3] has shown that if one uses weighted Sobolev spaces as a
model, the sets Mλ

ν can indeed be given a manifold structure with the index
of πλ

ν := π|Mλ
ν being I(λ, ν).

These stratification and index results are the basis to prove the generic
finiteness and stability of minimal surfaces of the type of the disk as discussed
in Böhme and Tromba [2]: There exists an open dense subset Â ⊂ A such that
if α ∈ Â, then there exists only a finite number of minimal surfaces bounded
by α, and these minimal surfaces are stable under perturbations of α. If n > 3,
they are nondegenerate critical points of Dirichlet’s integral. The open set Â

will be the set of regular values of the map π. Moreover we have the following

Remark. If n > 3, the minimal surfaces spanning α ∈ Â are all immersed
up to the boundary, and if n = 3, they are at most simply branched.

Schüffler [1–4,6,8], Schüffler and Tomi [1], and Thiel [1,2] have extended
the index theorem in various directions. Tomi and Tromba [6] have obtained
an index theorem for higher genus minimal surfaces employing the Teichmüller
theory; cf. Vol. 3, Chapters 4 and 5.

Finally, these results are also essential for a Morse theory for disk surfaces.
Let N = A × D be the bundle over A, α ∈ A, and let Γα = α(S1) be the

image of such an embedding. Consider the manifold of maps Hs(S1, Γα).
In A. Tromba [5] it is shown that Hs(S1, Γα) is a Cr−s-submanifold of
H2(S1,Rn). Let N(α) denote the component of Hs(S1, Γα) determined by
α. We can identify N(α) with the set of mappings X ∈ C0(B̄,Rn) which are
harmonic in B and whose boundary values X|∂B yield a parametrization of
Γα. Then the Dirichlet functional Eα : N(α) → R is defined by

Eα(X) =
1
2

∫
B

| ∇X|2 du dv.

We know by the index theorem that there exists an open dense set of
contours Â ⊂ A, A ⊂ Hr(S1,Rn), n ≥ 4, such that if α ∈ Â, there are only
a finite number of nondegenerate minimal surfaces X1, . . . , Xm spanning α.
Let D2Eα(Xi) : TXiN(α) × TXiN(α) → R denote the Hessian of Dirichlet’s
functional at Xi, and be λi the dimension of the maximal subspace on which
D2Eα(Xi) is negative definite. Then A. Tromba [11] proved the Morse equality

(1)
∑

i

(−1)λi = 1.

A version of this formula which holds in R
3 was developed by A. Tromba in

his papers [10,11]. The theory leading to these results is presented in Chapter 6
of Vol. 3.

The full Morse inequalities in the case n ≥ 4 were established by Struwe
[4], who proved

l∑
λ=0

(−1)l−λmλ ≥ (−1)l
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and
m0 ≥ 1

where mλ is the number of minimal surfaces of Morse index λ.
However, the case n = 3 remains open since the generic nondegeneracy

assumption is known not to hold (see Böhme and Tromba [2]). Here only
Tromba’s version of formula (1) is known.

6 Obstacle Problems

The minimization procedure can also be used to solve obstacle problems, that
is, to find surfaces of minimal area (or of a minimal Dirichlet integral) which
are spanning a prescribed boundary configuration and avoid certain open
sets (obstacles). In other words, the competing surfaces X of the variational
problem are confined to certain closed subsets of R

3 (or, more generally, to
closed subsets of the target manifold M of the mappings X : B → M). Prob-
lems of this kind were treated by F. Tomi [2–4], S. Hildebrandt [12,13], and
Hildebrandt and Kaul [1]. One can also consider obstacle problems where the
obstacle is thin. (In elasticity theory these problems are called Signorini prob-
lems.) In the context of minimal surfaces such problems occur naturally if
we consider free or partially free boundary problems with a supporting sur-
face S. If S has a nonempty boundary, then we can view S as part of a larger
surface S0 without boundary, and the part S0 \ S can be considered as an
obstacle since the boundary values of the competing surfaces X are confined
to S. The existence theory for such boundary problems with a thin obstacle
can be carried along the lines of Chapters 4 and 5, and no additional difficul-
ties will arise. The boundary behavior of solutions of such problems will be
investigated in the Vols. 2 and 3.

Presently we shall confine our attention to thick obstacles in R
3 (or M)

which are to be avoided by the admissible surfaces. To describe some of the
results, consider the functionals

FB(X) := EB(X) + VB(X)

where

EB(X) :=
1
2

∫
B

gjk(X)(Xj
uX

k
u +Xj

vX
k
v ) du dv,

VB(X) :=
∫

B

〈Q(X), Xu ∧ Xv 〉 du dv

that is,

FB(X) =
∫

B

e(X,∇X) du dv

with the Lagrangian

e(x, p) = 1
2gjk(x)(pj

1p
k
1 + pj

2p
k
2) + 〈Q(x), p1 ∧ p2〉

where x ∈ R
3 and p = (p1, p2) ∈ R

3 × R
3.
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Furthermore let C∗ denote one of the classes C∗(Γ ) or C∗(Γ, S), i.e., the
set of surfaces bounded by Γ or 〈Γ, S〉 respectively which are normalized by
a three point condition, see Sections 4.2 and 4.6. Suppose that K ⊂ R

3 is a
closed set; then we put C = C(K,C∗) := C∗ ∩ H1

2 (B,K), where H1
2 (B,K)

denotes the subset of functions f ∈ H1
2 (B,R3) which map almost all of B

into K. We consider the variational problem P(F, C) given by

F → min in C.

Theorem. Suppose that Q ∈ C0(K,R3), gij ∈ C0(K,R), gij = gji, i, j ∈
{1, 2, 3}, and let 0 < m0 ≤ m1 be numbers with the property

(1) m0|p|2 ≤ e(x, p) ≤ m1|p|2 for all (x, p) ∈ K × R
6.

Moreover assume that K is a closed set in R
3 such that C = C(K,C∗) is

nonempty. Then the variational problem P(F, C) has (at least) one solution
in C(K,C∗).

Proof. The following three statements have to be verified:

(i) The class C(K,C∗) is a weakly closed subset of H1
2 (B,R3).

(ii) There exists a minimizing sequence Xn ∈ C(K,C∗) for P(F, C) which
converges weakly in H1

2 (B,R3) to some X ∈ H1
2 (B,R3).

(iii) The functional FB(·) is weakly lower semicontinuous in H1
2 (B,R3).

(i)–(iii) immediately imply that X is an element of C furnishing a solution of
P(F, C); in fact, (iii) yields

FB(X) ≤ lim inf
n→∞

FB(Xn) = e = inf
C

FB ,

and hence FB(X) = e.
Property (i) follows from the weak closedness of C∗, from a theorem of Rel-

lich and from the fact that one can extract from any L2-convergent sequence
a subsequence which converges pointwise almost everywhere, cf. Theorem 2
in Section 4.6.

Statement (ii) is a consequence of the fact that for any minimizing sequence
of surfaces Xn ∈ C(K,C∗) there holds an estimate

‖Xn‖H1
2 (B) ≤ const

which follows from the ellipticity condition (1) and from a suitable Poincaré
inequality. Finally (iii) is a special case of a general lower semicontinuity result
of Serrin, see Morrey [8], Theorem 1.8.2. �

In addition to the preceding theorem we have the following result concern-
ing conformal parameters.

Proposition 12. Any solution X ∈ C(K,C∗) of the variational problem
P(F, C) satisfies almost everywhere in B the conformality relations

gijX
i
uX

j
u = gijXi

vX
j
v and gijX

i
uX

j
v = 0.
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Fig. 10. (a) The obstacle problem is to find a surface of least Dirichlet integral which is

bounded by a Jordan curve Γ and which remains outside given solid bodies. The minimizers

among the disk-type surfaces are minimal surfaces away from the obstacle, but where they

touch it they may have non-zero mean curvature. (b) If multiply connected surfaces with

free boundaries on the obstacle are also admitted as comparison surfaces, then smaller

Dirichlet integrals can be achieved and the minimizers will be perpendicular to the obstacle

along their free boundaries

The proof of this result is obtained by a suitable adaptation of the argu-
ment given in Sections 4.5 and 4.10.

In the special case where gij = δij and Q = 0 we conclude from the
above theorems the existence of a minimal surface X bounded by Γ or 〈Γ, S〉
respectively which is spanned over the obstacle ∂K. Note that, in general, the
coincidence set T = {w ∈ B : X(w) ∈ ∂K} will be a nonempty subset of B.
If T is nonempty, then a soap film corresponding to X touches the surface
∂K of the obstacle. If one allows the film to change its topological type by,
say, admitting a number of holes, it can slide down on ∂K, thereby reducing
its area (see Fig. 10). The corresponding surfaces X : Ω → R

3 will then
be defined on a multiply connected parameter domain Ω ⊂ C and have free
boundaries on ∂K. This phenomenon was treated by Tolksdorf in his paper
[1] where he proved the existence of a minimum X for the functional

D̃(X) =
∫

B

| ∇̃X|2 du dv

with

∇̃X(u, v) :=

{
∇X(u, v) if X(u, v) 	∈ ∂K,
0 if X(u, v) ∈ ∂K

in a suitably chosen class of comparison functions. For details we refer the
reader to Tolksdorf’s paper.
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Fig. 11. (a) Rule 1, (b) Rule 2 demonstrated by a system of 6 soap-films in tetrahedron

7 Systems of Minimal Surfaces

Usually one encounters soap films and soap bubbles in the shape of foam.
Roughly speaking, foam is a system of soap films and soap bubbles which
are attached to each other and meet at common liquid edges. More than a
hundred years ago Plateau observed in experiments that such systems obey
two simple rules which he stated in his treatise [1]. Let us formulate these
rules simply for systems of minimal surfaces (H = 0), neglecting systems of
bubbles (H = const 	= 0) and mixed systems.

A system of minimal surfaces is a connected set which is a finite union of
smooth regular manifolds of zero mean curvature which sit in a given frame
and meet each other at free boundary curves called liquid edges. These liquid
edges form the singular part of the minimal surface system.

Rule 1. At each liquid edge meet exactly three minimal surfaces of the system,
and any two of them enclose an angle of 120 degrees.

Rule 2. Liquid edges can meet at supersingular points p. Each supersingular
point is the meeting point of exactly four liquid edges. Any two adjacent edges
form an angle ϕ = 109◦28′16′ ′ (precisely speaking, cosϕ = −1/3).

These two principles are illustrated by Fig. 11.
The first rigorous proof for the two rules governing systems of minimal

surfaces was given by J. Taylor [2] using the means of geometric measure
theory. Let us briefly outline her arguments. Consider a system S of minimal
surfaces which is bounded by a closed system Γ of Jordan arcs Γ1, Γ2, . . . ,
and assume that S minimizes area within all other systems bounded by Γ .
In the first step, a monotonicity formula is employed to prove the existence
of tangent cones TpS at each point p of S. Moreover, it is verified that each
tangent cone (which in general is not known to be unique) is again area
minimizing for the frame formed by the intersection of the cone with the unit
sphere S2 centered at p. Such a frame is a system of arcs on S2, and each
arc is part of a great circle. At any vertex of such a system only three arcs
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Fig. 12. The ten geodesic nets on S2

can run together, and any two of them form an angle of 120◦. A frame on
S2 with these properties is called a geodesic net. Thus, in order to classify all
area minimizing cones, one first looks at the simpler question of determining
all (equiangular) geodesic nets on S2. It turns out that exactly ten different
such nets exist. This classification was already carried out by Lamarle who,
however, missed one net. The complete list, depicted in Fig. 12, was given by
Heppes [1]. According to Lamarle and Heppes, the ten (equiangular) geodesic
nets C1, . . . , C10 can be described as follows:

(a) C1 is a great circle;
(b) C2 consists of three halves of great circles with common endpoints;
(c) C3 is a spherical tetrahedron;
(d) C4 is a spherical cube;
(e) C5 consists of 15 arcs forming the 1-skeleton of the prism over the regular

pentagon;
(f) C6 is a prism over a regular triangle and consists of 9 arcs;
(g) C7 is a spherical dodecahedron made of 30 arcs;
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(h) C8 consists of 24 arcs forming two regular quadrilaterals and 8 congruent
pentagons;

(i) C9 is formed by 18 arcs which determine 4 equal pentagons and 4 equal
quadrilaterals;

(j) C10 consists of 21 arcs forming three regular quadrilaterals and six con-
gruent pentagons.

Now that we know C1, . . . , C10, the crucial question of determining all area
minimizing tangent cones is reduced to the problem of finding out which of the
cones over Cj with their vertex at p are area minimizing. Jean Taylor proved
that C1, C2 and C3 are minimizers whereas the cones over C4, . . . , C10 are not
even stable. The mathematical proof is rather elaborate whereas the physical
demonstration of this fact is easily provided by a soap film experiment which
is depicted in Hildebrandt and Tromba [1], pp. 128–129. The pictures show
that the area minimizing soap films in C1, C2 and C3 are cones but not those
in C4, . . . , C10. Thus we are led to the following

Theorem of J. Taylor. Let S be a system of minimal surfaces which is
bounded by a closed system of Jordan arcs and minimizes area within its
boundary. Then the following holds true:

(i) At each point p ∈ S there exists a unique tangent cone which is congruent
to one of the cones (a), (b) or (c) in Fig. 12.

(ii) Let R(S) := {p ∈ S: the tangent cone to S at p is congruent to (a)}
denote the regular part of S. Then R(S) is a two-dimensional manifold
in R

3. Each component of R(S) has mean curvature zero.
(iii) Let Σ(S) := {p ∈ S: the tangent cone to S at p is congruent to (b)}

denote the set of singular points in S. Then Σ(S) is a one-dimensional
C1,α-manifold in R

3 for some α ∈ (0, 1). There exists a neighborhood
U(p) for each p ∈ Σ(S) and a conformal C1,α-diffeomorphism f of R

3

onto itself such that U ∩ S is the image of (b) under f .
(iv) Let σ(S) := {p ∈ S: the tangent cone to S at p is congruent to (c)}

denote the set of supersingular points in S. Then σ(S) consists of isolated
points. Furthermore, for each p ∈ σ(S) there exists a neighborhood U(p)
in R

3 and a conformal C1,α-diffeomorphism f of R
3 onto itself such that

U(p) ∩ S is the image of (c) under f .
(v) The system S decomposes into S = R(S) ∪ Σ(S) ∪ σ(S).

For the proof of this result we refer to J. Taylor [2]. The above theorem
also extends to systems of surfaces of constant mean curvature as well as to
systems of surfaces which are extremals of some functional which is close to
the area functional in a suitable sense.

Nitsche [33] proved that the singular part Σ(S) is a union of regular C∞-
curves, and Kinderlehrer, Nirenberg, and Spruck [1] even showed that Σ(S)
is a union of real analytic curves.
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It is fairly easy to prove the existence of area minimizing systems in a
given frame Γ by means of geometric measure theory.

We finally note that, under rather restrictive symmetry assumptions on
the boundary Γ , the existence of area minimizing systems S and the regularity
of their singular parts had earlier been established by A. Solomon [1,2].

8 Isoperimetric Inequalities

Historical remarks on this topic and further comments can be found in the
Scholia to Chapter 4 of Vol. 2.

9 Plateau’s Problem for Infinite Contours

It is also of interest to determine minimal surfaces which are not bounded
by one or several loops, but by one or several arcs, finite or infinite. Actu-
ally, already Riemann [2] developed a method to construct minimal surfaces
which are simply connected and have straight line segments as boundaries.
As examples he studied two infinite straight lines which are not contained in
a plane ([1], §15), two infinite half lines meeting at a common endpoint and
an infinite straight line parallel to the plane of the first two ([1], §16), three
pairwise skew lines ([1], §17). As a main idea to solve these three problems as
well as Plateau’s problem for the skew quadrilateral ([1], §18), Riemann used
the fact that the surface normal of a solution maps any straight segment of
the boundary onto an arc of a great circle on S2. This work was generalized
by E. Neovius [1–5]. In this context we also refer to the treatises of Darboux
[1] and Bianchi [1,2].

The problem of determining minimal surfaces with prescribed unbounded
contours was anew taken up by López and Wei [1], López and Mart́ın [1], and
Ferrer and Mart́ın for unbounded polygonal boundaries. For a fairly general
class of unbounded contours the problem was recently solved by F. Tomi
[13]. The curves Γ considered by Tomi are described by Γ = ξ(R), where ξ
provides a noncompact proper embedding of R into R

3 which is piecewise of
class C1,α for some α ∈ (0, 1) and satisfies ξ(0) = 0 and |ξ′(s)| = 1 as well as
the following conditions:

(i) There is a constant δ > 0 such that |p − q| ≤ δ for all p, q contained in
different components of Γ \ Γ1 where Γ1 is the connected components of
Γ ∩ B1 containing 0.

(ii) Let γ(s) := |ξ(s)| −1ξ(s) for s 	= 0. Then

| 〈γ(x), ξ′(x)〉| → 1 as |s| → ∞.

(iii)
∫

Γ \Γ1
|ξ(s)| −1

√
1 − 〈γ(s), ξ′(s)〉2 ds < ∞.
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Then Tomi’s theorem reads as follows:

There exists a proper mapping X ∈ C0(H,R3) ∩ C∞(H,R) of a closed half-
plane H in R

2 which is an immersed minimal surface on H and maps ∂H in
a strictly monotonic way onto Γ .

Tomi’s class of admissible curves Γ contains all properly embedded curves
with polynomial ends. The main idea of the proof is to work with surfaces
whose area in a ball of radius R growth at most quadratically in R.

10 Plateau’s Problem for Polygonal Contours

(Added in Proof, May 2010)
In her recent thesis (Dec. 4, 2009) Laura Desideri [1] has rectified and sup-

plemented Garnier’s approach to Plateau’s problem for polygonal boundaries.
She proved the following beautiful theorem:

Let Γ be a polygon in R
3 ∪ { ∞} with n+3 sides in “generic position”, possibly

with one of its vertices lying at infinity. Then Γ bounds an immersed minimal
surface X : C+ → R

3 defined on the upper halfplane C+ in the sense that Γ
is the boundary of the image X(C+). If Γ has a vertex at infinity, then the
immersion X has a helicoidal end at this vertex.

This result contributes also to the problems discussed in No. 2 and No. 9.
Furthermore, Desideri has proved an analog of the above theorem for the
Plateau problem in Minkowski space.



Chapter 5

Stable Minimal- and H-Surfaces

Solving Plateau’s problem in the preceding chapter we concentrated our at-
tention to a solution X of this problem, and we somewhat neglected its Gauss
mapping N , the surface normal of X. However, the mapping N turns out to
be continuous even in case of a branched solution X, and so it is seen to be a
real analytic surface of constant mean curvature one. As it will be very useful
to study the pair (X,N) together and not X alone, we are invited to enlarge
our spectrum and to investigate directly surfaces of prescribed mean curva-
ture. This will enable us in Chapter 7 to solve the nonparametric equation
of prescribed mean curvature via the solution of Plateau’s problem for para-
metric surfaces of prescribed mean curvature. Using and extending the ideas
presented in Chapter 4, this more general Plateau problem for H-surfaces will
be solved in Vol. 2, Chapter 4. In order to shorten the presentation of this
chapter we shall strongly rely on the treatise of F. Sauvigny [16] as well as on
Vol. 2. Especially the control of the boundary regularity will be indispensable
for our considerations.

In Section 5.1 we derive the basic equation for the Gauss map N of an
H-surface X : B → R

3 and prove that N is a classical—and in particular
continuous solution of this equation. In Section 5.2 we study a substitute
for the Weingarten mapping S introduced in Section 1.2, namely Bonnet’s
mapping R : TwX → TwX, which leads to the definition of Bonnet’s surface
Y : B → R

3 for a constant mean curvature surface (= cmc-surface). This
surface again is a cmc-surface of mean curvature one provided that not all
points of X are umbilical points, and it might give more information than N
if properly exploited.

The stability of H-surfaces is discussed in Section 5.3 by means of the
second variation δ2F (X,ϕN), ϕ ∈ C∞

c (B), of a functional F defined by

(1) F (X) = A(X) + 2V (X), V (X) :=
∫

B

〈Q(X), Xu ∧ Xv 〉 du dv

where the associated vector field Q : R
3 → R

3 is defined by the equation
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(2) divQ(x) = H(x).

Although Q is not uniquely determined by H, the stability condition depends
only on H: X is stable if

(3)
∫

B

| ∇ϕ|2 du dv ≥ μ

∫
B

pϕ2 du dv for all ϕ ∈ C∞
c (B)

and μ = 2 with

(4) p := Λ[2H2(X) − K − 〈Hx(X), N〉], Λ := |Xu ∧ Xv |,

while strict stability of X means that (3) holds true with μ > 2.
The central result of this section states that the stability of X together

with the monotonicity condition

(5)
∂H

∂e
= 〈Hx, e〉 ≥ 0 for some e ∈ S2

and the boundary condition 〈N, e〉 > 0 on ∂B implies 〈N, e〉 > 0 on B.
In Section 5.4 a kind of converse is proved for immersed cmc-surfaces

satisfying 〈N, e〉 > 0 on B for some e ∈ S2 as they prove to be strictly
stable. Furthermore a cmc-surface X is strictly stable if its density function
p = 2H2 − K satisfies

(6)
∫

B

(2H2 − K)Λdu dv < 2π.

For minimal surfaces (H = 0, K ≤ 0) this condition means

(7)
∫

B

|K| dA < 2π.

Finally Gulliver’s estimate

(8) A(X) ≤ 2μ
2μ − 1

πr2

is established for any μ-stable, immersed cmc-surface X ∈ C2,α(B,R3),
μ > 1/2, representing a geodesic disk Kr(x0) of radius r. This leads to the
curvature estimate

(9) κ2
1(0) + κ2

2(0) ≤ c(h0)r−2

with a universal constant c(h0) proved in Theorems 1 and 2 of Section 5.5.
This estimate holds for all stable, immersed cmc-surfaces X with X(0) = 0
and |H| ≤ h0 which represent a geodesic disk Kr(0) of radius r around the
origin. The estimate (9) implies a “Bernstein-type” result that was first stated
by do Carmo and Peng [1] and by Fischer-Colbrie and Schoen [1].

In Section 5.6 the uniqueness theorem of J.C.C. Nitsche is proved, after
establishing the perturbation equation for a field embedding and constructing
the field immersion of a strictly stable immersed minimal surface that can be
slightly extended beyond its boundary.
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5.1 H-Surfaces and Their Normals

In Theorem 1 of Section 2.6 we have seen that a regular (i.e. immersed) surface
X ∈ C2(Ω,R3), Ω ⊂ R

2, that satisfies the conformality relations

(1) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0

is a surface of mean curvature H(u, v) at (u, v) ∈ Ω if and only if X satisfies
Rellich’s equation

(2) ΔX = 2HXu ∧ Xv.

Suppose now that H(x) is a prescribed scalar-valued function of x ∈ R
3 which

is of class C0,α(R3), 0 < α < 1. Then a C2-solution X of (2) with H := H ◦X
and satisfying (1) will be called a surface of prescribed mean curvature H
in R

3. As for minimal surfaces we will also consider branched surfaces of this
kind, i.e. we allow points w ∈ Ω where the function Λ, defined by

(3) Λ := |Xu|2 = |Xv |2 = |Xu ∧ Xv | = W,

is vanishing. Such points are again called branch points of X. As usual
we write H(X) for the composed function H ◦ X. Summarizing we give the
following

Definition 1. A nonconstant solution X ∈ C2(Ω,R3), Ω ⊂ R
2, of

(4) ΔX = 2H(X)Xu ∧ Xv,

satisfying the conformality relations (1), will be called an H-surface. We speak
of an immersed H-surface X if Λ given by

|dX|2 = Λ · (du2 + dv2)

satisfies

(5) Λ(u, v) > 0 for all points (u, v) ∈ Ω.

If H(x) ≡ const we may address X as a constant H-surface; also the notation
cmc-surface is common.

All notions of these definitions pertain to the class C2(Ω,R3). Usually we
shall investigate disk-type H-surfaces, i.e. the parameter domain Ω will in
most cases be the unit disk

B := {w = (u, v) ∈ R
2 : |w| < 1},

and often the complex notation w = u+ iv ∈ C is used.
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Remark 1. Suppose that H ∈ Cr,α(R3), r ≥ 0, α ∈ (0, 1). Then any solution
X ∈ C2(Ω,R3) of (4) is of class Cr+2,α(Ω,R3). This result follows from elliptic
theory; see e.g. Sauvigny [16], Chapter IX, §4.

Remark 2. Let H ∈ C0,α(R3), 0 < α < 1, and suppose that X is an H-
surface of class C0(B,R3) ∩ C2(B,R3) such that X(∂B) lies on a regular
Jordan curve Γ of class C2,α. Then X ∈ C2,α(B,R3). If H ∈ Cr−2,α(R3) and
Γ ∈ Cr,α, r ≥ 2, it follows that X ∈ Cr,α(B,R3). For a proof see Vol. 2,
Section 7.3.

Remark 3. Let X be an H-surface of class C2,α(B,R3) or C2,α(B,R3) re-
spectively. Then, for each point w0 ∈ B or B, there is a vector A ∈ C

3 with
A 	= 0 and 〈A,A〉 = 0, and a nonnegative integer n = n(w0) such that

(6) Xw(w) = A(w − w0)n + o(|w − w0|n) as w → w0.

A proof of this fact by means of the Hartman-Wintner technique is given in
Vol. 2, Section 2.10 (using Section 3.1 of Vol. 2). Another proof can be found in
Sauvigny [16], Chapter XII, §10 which is based on the theory of “generalized
analytic functions” (see Sauvigny [16], Chapter IV). The point w0 is a branch
point of X if and only if n(w0) ≥ 1, and n(w0) ≥ 1 is called the order of the
branch point w0 ∈ B (or B respectively). The point w0 is a regular point of
X if and only if n(w0) = 0.

Formula (6) implies that branch points w0 of anH-surfaceX ∈ C2,α(B,R3)
or ∈ C2,α(B,R3) are isolated in B or B respectively. In the first case there
are at most finitely many branch points in any Ω ⊂⊂ B, and in the second
case there are at most finitely many branch points w1, . . . , wk+� ∈ B, say,
w1, . . . , wk ∈ B and wk+1, . . . , wk+� ∈ ∂B. The points w1, . . . , wk are the in-
ner branch points ofX, and wk+1, . . . , wk+� the boundary branch points
of the H-surface X.

The first fundamental form ds2 of an H-surface X is given by

ds2 = 〈dX, dX〉 = Λ(du2 + dv2)(7)
= 2〈Xw, Xw 〉(du2 + dv2) = 2|Xw |2(du2 + dv2).

The set of regular points of X ∈ C2(B,R3), denoted by B
′
, is given by

(8) B
′
= {w ∈ B : Λ(w) > 0} = B \ {w1, . . . , wk+�}.

An important tool to cope with branch points analytically is the subsequent

Proposition 1. There exists a sequence {χn} of functions χn ∈ C∞
c (B

′
) with

0 ≤ χn ≤ 1 satisfying

(9) lim
n→∞

χn(w) = 1 for all w ∈ B′
and lim

n→∞
D(χn) = 0.
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Proof. For 0 < r < R we define the functions φ(w) by φ(w) := 1 for |w| ≤ r,
φ(w) := 0 for |w| ≥ R, and

φ(w) :=
log |w| − logR
log r − logR

for r < |w| < R.

Then 0 ≤ φ ≤ 1 and, for any R > 0,∫
R2

| ∇φ|2 du dv =
2π

log(R/r)
→ 0 as r → +0.

By mollifying these functions we can construct a sequence {φn} of functions
φn ∈ C∞(R2) with 0 ≤ φn ≤ 1 such that φn(w) = 0 for |w| ≥ Rn, Rn → 0,
φn(w) = 1 for |w| ≤ rn, 0 < rn < Rn, and

∫
R2 | ∇φn|2 du dv → 0 as n → ∞.

Furthermore we have φn(w) → 0 for all w 	= 0.
Finally we define χn ∈ C∞(B) for n ∈ N by

χn(w) :=
k+�∏
ν=1

[1 − φn(w − wν)], w ∈ B.

Obviously the sequence {χn} possesses the desired properties. �

Now we consider the normal N of an H-surface X near a branch point
w0 ∈ B. A straight-forward calculation yields

(10) N = Λ−1Xu ∧ Xv =
−i

〈Xw, Xw 〉Xw ∧ Xw.

Inserting the asymptotic expansion (6) with A = a − ib, a, b ∈ R3, |a| = |b|,
〈a, b〉 = 0, we obtain

(11) N(w) → |a| −2a ∧ b ∈ S2 for w ∈ B′
with w → w0.

Therefore the normal N can be extended continuously from B
′
into the branch

points of X, i.e. N ∈ C0(B,R3) with N(B) ⊂ S2. Furthermore, N is of class
C2,α on B′ and C1,α on B

′
. F. Sauvigny [1,2] proved that N is even of class

C2,α on B and established the following

Theorem 1. The normal N to an H-surface X ∈ C3,α(B,R3) is of class
C2,α(B,R3) and satisfies the differential equation

(12) ΔN + 2pN = −2ΛHx(X)

with

(13) p := 2ΛH2(X) − ΛK − Λ〈Hx(X), N〉.

For the term ΛK involving the Gaussian curvature K of X we have

ΛK ∈ C1,α(B).
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Proof. (i) Equation (12) with (13) is derived on B′ := B \ {w1, . . . , wk } in
Sauvigny [16], Chapter XII, §9 (see Proposition 2). If the reader wants to
check it, he finds the necessary formulae from classical differential geometry
in Chapter 1 above, particularly in Section 1.3.

Using the Weingarten equations one obtains on B
′
:

| ∇N |2 = |Nu|2 + |Nv |2 = Λ−1(L2 + 2M2 + N2)(14)

= Λ−1[(L + N)2 − 2(LN − M2)]

= 4ΛH2(X) − 2ΛK = 2[2ΛH2(X) − ΛK].

Invoking the evident orthogonal expansion

(15) ΛHx(X) = 〈Hx(X), Xu〉Xu + 〈Hx(X), Xv 〉Xv + Λ〈Hx(X), N〉N

we transform the differential equation (12) into the following equivalent form:

(16) ΔN +N | ∇N |2 + f(X,∇X) = 0 in B′,

with

(17) f(X,∇X) := 2[〈Hx(X), Xu〉Xu + 〈Hx(X), Xv 〉Xv].

(ii) By the Gauss–Bonnet theorem (see Vol. 2, Section 2.11, Theorem 1 and
in particular Remark 2) it follows that

∫
B

|K| dA =
∫

B
Λ|K| du dv is finite.

Then (14) implies that

(18)
∫

B

| ∇N |2 du dv < ∞.

With the aid of a “smoothing sequence” {χn} from Proposition 1 we now
derive a weak differential equation for N in B, using (16). To this end we
choose an arbitrary test function φ ∈ C∞

c (B,R3), multiply (16) by φ ·χn, and
perform an integration by parts. Then

∫
B

〈∇N,∇(φ · χn)〉 du dv(19)

=
∫

B

〈N,φ〉 | ∇N |2χn du dv +
∫

B

〈f(X,∇X), φ〉χn du dv.

In this identity we want to let n tend to infinity. First we consider the left-hand
side; we have

∫
B

〈 ∇N,∇(φ · χn)〉 du dv

=
∫

B

〈∇N,∇φ〉χn du dv +
∫

B

〈 ∇N,φ∇χn〉 du dv,
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and Schwarz’s inequality yields∣∣∣∣
∫

B

〈∇N,φ∇χn〉 du dv
∣∣∣∣

≤
{∫

B

| ∇N |2 du dv
}1/2{∫

B

|φ∇χn|2 du dv
}1/2

≤ 2 sup
B

|φ|
√
D(N)

√
D(χn) → 0 as n → ∞

on account of (18) and D(χn) → 0. Furthermore, χn(w) → 1 on B′. Then
(18) and Lebesgue’s convergence theorem imply∫

B

〈∇N,∇φ〉χn du dv →
∫

B

〈∇N,∇φ〉 du dv

whence ∫
B

〈∇N,∇(φ · χn)〉 du dv →
∫

B

〈∇N,∇φ〉 du dv.

For the same reason the right-hand side of (19) tends to∫
B

〈N,φ〉 | ∇N |2 du dv +
∫

B

〈f(X,∇X), φ〉 du dv

as n → ∞, and so we infer from (19) that

(20)
∫

B

〈∇N,∇φ〉 du dv =
∫

B

{ 〈N,φ〉 | ∇N |2 + 〈f(X,∇X), φ〉 } du dv.

Since N is already known to be continuous on B (and even on B), and
f(X,∇X) ∈ Cα(B,R3), a regularity result by Ladyzhenskaya and Uraltseva
[1,2] implies N ∈ C2,α(B,R3); for a simple proof of this fact see F. Tomi [1].

Finally, equation (14) leads to

(21) −ΛK = 1
2 | ∇N |2 − 2ΛH2(X),

and therefore ΛK ∈ C1,α(B). �

Remark 4. Although we know that N ∈ C0(B,R3) ∩C2,α(B \Σ′,R3), Σ′ =
{wk+1, . . . , wk+�} = set of boundary branch points, we do not know whether
limw→w′ ∇N(w) or even limw→w′ ∇2N(w) exist for w′ ∈ Σ′. An answer to
this question seems to be complicated but valuable.

5.2 Bonnet’s Mapping and Bonnet’s Surface

In this section we briefly want to discuss Bonnet’s fundamental form asso-
ciated with any H-surface, and the Bonnet surface associated with a cmc-
surface. The Bonnet surface provides valuable information on the umbilical
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points of a cmc-surface and can serve as a useful substitute for the Gauss
mapping N . It might prove to be useful in further investigations.

For the notations to be used in the sequel we refer to Sections 1.1 and 1.2,
and also to the brief introduction to the differential-geometric formulae given
in Sauvigny [16], Chapter XI, §1.

Let S(w) : TwX → TwX be the Weingarten mapping associated with an
arbitraryH-surfaceX : B → R3. At each regular point w ∈ B (i.e. for w ∈ B′

)
this mapping is a selfadjoint linear mapping of the tangent space TwX of X
corresponding to w (or, less precisely, the tangent space of the surface X at
the point X(w)). Secondly, let

I(w) : TwX → TwX with I(w)V = V for V ∈ TwX

be the identity on TwX.

Definition 1. Let X : B → R
3 be an H-surface of class C2,α. Then, for any

regular point w ∈ B of X, we define the Bonnet mapping

R(w) : TwX → TwX

by

(1) R(w) := H(X(w))I(w) − S(w).

Remark 1. Clearly the Bonnet mapping R(w) is a selfadjoint linear operator
on TwX with the two eigenvalues λ1(w) and λ2(w), given by

λ1(w) = H(X(w)) − κ1(w), λ2(w) = H(X(w)) − κ2(w),

where κ1(w) and κ2(w) are the principal curvatures of X at w ∈ B
′
. Since

2H(X(w)) = κ1(w) + κ2(w), we obtain

(2) λ1(w) = 1
2 [κ2(w) − κ1(w)], λ2(w) = 1

2 [κ1(w) − κ2(w)].

Therefore the Bonnet mapping has a vanishing trace,

(3) trR(w) = 0 for all w ∈ B′
,

and from

detR = λ1λ2 = − 1
4 [κ2

1 + κ2
2 − 2κ1κ2] = −

[
1
4 (κ1 + κ2)2 − κ1κ2

]

it follows for w ∈ B′
that

(4) detR(w) = −[H2(X(w)) − K(w)] = −λ2
1(w) = −λ2

2(w).
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Since λ1(w) = −λ2(w), the Bonnet map R(w) is either indefinite or the zero
mapping. Clearly R(w) = 0 if and only if κ1(w) = κ2(w), that is, R(w) van-
ishes exactly at the umbilical points w ∈ B′

of the H-surface X. Furthermore,
R∗R = λ2

1I since λ2
1 = λ2

2, and so we obtain the fundamental identity

(5) R∗(w)R(w) = [H2(X(w)) − K(w)]I(w) for all w ∈ B′

with

(6) H2(X(w)) − K(w) = λ2
1(w) = λ2

2(w) ≥ 0.

Since SXu = −Nu, SXv = −Nv, one obtains

RXu = Nu +H(X)Xu, RXv = Nv +H(X)Xv.

Set M := (Xu, Xv) and multiply (5) from the right by M and from the left
by M∗. Then the right-hand side becomes

[H2(X) − K] ·
(

|Xu|2 〈Xu, Xv 〉
〈Xu, Xv 〉 |Xv |2

)
= Λ[H2(X) − K] · I

whereas the left-hand side becomes

M∗R∗RM =
(
μ τ
τ ν

)

with

(7)
μ := |Nu +H(X)Xu|2, ν := |Nv +H(X)Xv |2,
τ := 〈Nu +H(X)Xu, Nv +H(X)Xv 〉.

Thus

(8) μ = ν = Λ · [H2(X) − K], τ = 0.

Definition 2. With any H-surface X ∈ C2,α(B,R3) we associate the qua-
dratic form

(9) dσ2 = 〈Nuα +H(X)Xuα , Nuβ +H(X)Xuβ 〉 duα duβ ,

u1 := u, u2 := v, which is called Bonnet’s fundamental form.

The formulae (7)–(9) imply that Bonnet’s fundamental form is conformal
to the first fundamental form |dX|2 = Λ(du2 + dv2). More precisely, since
X,N ∈ C1(B,R3), we obtain:

Theorem 1. Bonnet’s fundamental form dσ2 of an H-surface X with the
Gauss curvature K can be written as

(10) dσ2 = Λ[H2(X) − K](du2 + dv2), Λ = |Xu|2.

This quadratic form is positive semidefinite and vanishes exactly at those
points w ∈ B which are either umbilical or branch points of X.
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Definition 3. With any H-surface X ∈ C3,α(B,R3) of constant mean cur-
vature H and any vector Y0 ∈ R

3 we associate a new surface, the Bonnet
surface Y ∈ C0(B,R3) ∩ C2,α(B,R3) of X, which is defined by

(11) Y (w) := N(w) +HX(w) + Y0 for w ∈ B.

As a consequence of Theorem 1 we obtain the following result:

Corollary 1. The Bonnet surface Y = N + HX + Y0 of any cmc-surface
X ∈ C2(B,R3) satisfies

(12) |dY |2 = Λ(H2 − K)(du2 + dv2) = dσ2 in B

whence in particular

(13) |Yu|2 = |Yv |2, 〈Yu, Yv 〉 = 0 in B

and

(14) |Yu ∧ Yv | = Λ · (H2 − K).

Remark 2. The Bonnet surface Y of a cmc-surface X degenerates exactly on
the set Σ of branch points of X in B and the set Σ∗ of umbilical points of X
in B. Whereas the points of Σ are isolated, the set Σ∗ might have nonisolated
points. Even intΣ∗ can be nonvoid as in the case of a planar surface or a
spherical cap. Note however that, by regularity theory, each cmc-surface X is
real analytic in B, and so intΣ∗ 	= ∅ implies H2 −K(w) ≡ 0 on B \Σ, i.e. all
points w ∈ B \Σ are umbilical points. This implies that X is either planar or
a spherical surface.

Theorem 2. The Bonnet surface Y of a cmc-surface X is either a constant
mapping or a cmc-surface of mean curvature one. In the first case all points
of X are umbilical, i.e. X is either planar or a spherical surface, while in the
second case X has only isolated umbilical points in B, and the normal Ñ of
Y coincides with −N where N is the normal of X.

Proof. On account of Theorem 1 in Section 5.1 we have

ΔN = −4ΛH2N + 2ΛKN in B,

and furthermore
ΔX = 2HΛN in B.

This implies

(15) ΔY = −2Λ(H2 − K)N in B.
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In addition, the relations (4) and (6) imply

detR(w) = −(H2 − K(w)) ≤ 0.

Thus, by (4) and Yu = RXu, Yv = RXv it follows that

Yu ∧ Yv = −(H2 − K)Xu ∧ Xv

whence

(16) Yu ∧ Yv = −Λ(H2 − K)N in B.

From (15) and (16) one finally infers

(17) ΔY = 2Yu ∧ Yv in B,

and the formulae (13) of Corollary 1 state that

|Yu|2 = |Yv |2, 〈Yu, Yv 〉 = 0 in B.

Then the Hartman–Wintner theorem states that either (i) Y (w) ≡ const in B,
or (ii) Y (w) is nowhere locally constant in B, and the branch points of Y are
isolated. In case (i) the surface is either planar or spherical, while in case (ii)
the surface X has at most isolated umbilical points, and Y is a cmc-surface
of mean curvature one. Moreover, in this case the surface normal Ñ of Y is
defined by

Ñ :=
1

|Yu ∧ Yv | (Yu ∧ Yv) on B \ (Σ ∪ Σ∗)

and can be extended continuously to all of B.
Note also that (14) and (16) imply

Yu ∧ Yv = −|Yu ∧ Yv |N,

whence Ñ = −N on B. �
Remark 3. For any cmc-surface X, its Bonnet surface Y “realizes” the Bon-
net fundamental form dσ2 of X via the formula (12). For an H-surface X with
variable H one cannot expect to find a similar realization of its dσ2 since the
set of umbilical points of X might be very general.

Remark 4. For a cmc-surface X with H 	= 0, the associated Bonnet surface
Y provides a suitable substitute for the Gauss map N of X.

Remark 5. Let Y be the Bonnet map of a cmc-surface X with H 	= 0, and
set

(18) Z := X +
1
H
N.

Then Y = HZ, and it follows that

ΔZ = 2HZu ∧ Zv, |Zu|2 = |Zv |2, 〈Zu, Zv 〉 = 0.

Therefore we obtain O. Bonnet’s result that (18) defines a second H-surface
parallel to X, except for a spherical X when Z reduces to a point.
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5.3 The Second Variation of F for H-Surfaces and Their
Stability

As already mentioned in No. 3 of the Supplementary Results to Section 4.5,
H-surfaces are closely related to certain functionals E := D+ 2V that gener-
alize Dirichlet’s integral D. In fact if H is a given scalar function on R

3 and
Q : R

3 → R
3 is a C1-vector field on R

3,

Q(x) = (Q1(x), Q2(x), Q3(x)), x = (x1, x2, x3) ∈ R
3,

such that

(1) div Q = H, i.e. Q1
x1 +Q2

x2 +Q3
x3 = H,

then any H-surface X : B → R
3 is a stationary point of the functional

E = D + 2V where

D(X) =
1
2

∫
B

| ∇X|2 du dv

is the Dirichlet integral of X and V denotes a volume integral defined by

(2) V (X) =
∫

B

〈Q(X), Xu ∧ Xv 〉 du dv.

Introducing the trilinear product

[a, b, c] = det(a, b, c) = a · (b ∧ c) = b · (c ∧ a) = c · (a ∧ b)

we can write V as

(3) V (X) =
∫

B

[Q(X), Xu, Xv] du dv.

In Vol. 2, Chapter 4, we shall construct H-surfaces within a prescribed bound-
ary contour Γ by minimizing the functional1

(4) E(X) :=
∫

B

{
1
2

| ∇X|2 + 2[Q(X), Xu, Xv]
}
du dv

in a subset of the class C(Γ ) defined in Section 4.2.
Closely related to E = D + 2V is the functional F := A+ 2V where A is

the usual area functional

A(X) =
∫

B

|Xu ∧ Xv | du dv =
∫

B

√
|Xu|2|Xv |2 − 〈Xu, Xv 〉2 du dv,

that is,

(5) F (X) :=
∫

B

{ |Xu ∧ Xv | + 2[Q(X), Xu, Xv]} du dv.

1 However, we shall write E = D + V which changes (1) to div Q = 2H.
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We have

(6) F (X) ≤ E(X)

and the equality sign holds if and only if

|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0.

Clearly, V (X) (and therefore also E(X) and F (X)) are well-defined if X ∈
H1

2 (B,R3) and either supR3 |Q| < ∞ or X ∈ L∞(B,R3).
In Sections 2.1 and 2.8 we have already derived the first variation δA(X,Y )

and the second variation δ2A(X,Y ) of a regular C2-surface X : B → R
3 in

normal direction Y = ϕN , ϕ ∈ C∞
c (B), N being the normal of X. Now we

want to admit also branched surfaces X; for the sake of simplicity we assume
that X is an H-surface of class C3,α(B,R3), 0 < α < 1, that is regular (i.e.
immersed) in B

′
as in 5.1, B

′
= B \ {branch points of X}. For an arbitrary

test function ϕ ∈ C∞
c (B′) with B′ = B

′ ∩B we consider the normal variation
Z : B × (−ε0, ε0) → R

3, ε0 > 0, which is defined by

(7) Z(w, t) := X(w) + tϕ(w)N(w), w ∈ B, |t| < ε0,

where N is the normal of X. From formula (15) in Section 2.8 we obtain the
following expansion at all regular points w ∈ B of X:

|Zu(w, t) ∧ Zv(w, t)|(8)
= Λ(w) − 2tΛ(w)H(X(w))ϕ(w)

+ 1
2 t

2[| ∇ϕ(w)|2 + 2Λ(w)K(w)ϕ2(w)] +O(w, t3)

where Λ = |Xu|2 and K is the Gauss curvature of X. The error term O(w, t3)
vanishes outside of suppϕ, and we have

(9) |O(w, t3)| ≤ const · t3 for all w ∈ suppϕ ⊂⊂ B′.

For ϕ ∈ C∞
c (B′), this implies

(10)
d

dt
A(Z(·, t))

∣∣∣∣
t=0

= −
∫

B

2ΛH(X)ϕdu dv

and

(11)
d2

dt2
A(Z(·, t))

∣∣∣∣
t=0

=
∫

B

{ | ∇ϕ|2 + 2ΛKϕ2} du dv.

By Theorem 1 of 5.1, the right-hand sides of (10) and (11) can continuously
be extended onto functions ϕ ∈ C∞

c (B). Therefore we take (10) and (11) as
definitions of the first two derivatives of A(Z(·, t)) at t = 0, i.e. for δA(X,ϕN)
and δ2A(X,ϕN), if ϕ ∈ C∞

c (B). In order to compute d
dtV (Z(·, t))|t=0 and
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d2

dt2V (Z(·, t))|t=0 for ϕ ∈ C∞
c (B), we introduce P (w, t) := Q(Z(w, t)), w ∈ B,

|t| < ε0. Then

∂

∂t
[P,Zu, Zv] = [Pt, Zu, Zv] + [P, (ϕN)u, Zv] + [P,Zu, (ϕN)v]

= [Pt, Zu, Zv] + [P, ϕN,Zv]u + [P,Zu, ϕN ]v
− [Pu, Zt, Zv] − [Pv, Zu, Zt]

= [Pu, Zv, Zt] + [Pv, Zt, Zu] + [Pt, Zu, Zv]
+ {[P, ϕN,Zv]u + [P,Zu, ϕN ]v }

= [Qx(Z)Zu, Zv, Zt] + [Qx(Z)Zv, Zt, Zu] + [Qx(Z)Zt, Zu, Zv]
+ {. . .}

= [Zu, Zv, Zt] · (div Q)(Z) + {. . .}
= [Zu, Zv, Zt] · H(Z) + {. . .}.

The divergence theorem implies
∫

B
{. . .} du dv = 0 since suppϕ ⊂ B, and so

(12)
d

dt
V (Z) =

∫
B

H(Z)Zt · (Zu ∧ Zv) du dv.

We have

Zu ∧ Zv = (Xu + tϕuN + tϕNu) ∧ (Xv + tϕvN + tϕNv)
= Xu ∧ Xv + t{ϕvXu ∧ N + ϕuN ∧ Xv + ϕ(Xu ∧ Nv +Nu ∧ Xv)}

+ t2(ϕϕuN ∧ Nv + ϕϕvNu ∧ N + ϕ2Nu ∧ Nv).

Multiplication by Zt = ϕN yields

Zt · (Zu ∧ Zv) = Λϕ − 2ΛH(X)ϕ2t+ ΛKϕ3t2.

Then formula (12) and Theorem 1 of 5.1 imply

(13)
d

dt
V (Z) =

∫
B

{ΛH(Z)ϕ − 2ΛH(X)H(Z)ϕ2t+ ΛKH(Z)ϕ3t2} du dv.

Therefore

(14)
d

dt
V (Z)

∣∣∣∣
t=0

=
∫

B

ΛH(X)ϕdu dv.

Furthermore we infer from (13) that

(15)
d2V (Z)
dt2

∣∣∣∣
t=0

=
∫

B

{ 〈Hx(X), N〉 − 2H2(X)}ϕ2Λdu dv.
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Since F = A+ 2V , we infer from (10) and (14) that

d

dt
F (Z(·, t))

∣∣∣∣
t=0

=
∫

B

{ −2ΛH(X)ϕ+ 2ΛH(X)ϕ} du dv = 0,

and from (11) and (15) that

d2

dt2
F (Z(·, t))

∣∣∣∣
t=0

=
∫

B

{ | ∇ϕ|2 + 2Λ(K − 2H2(X) + 〈Hx(X), N〉)ϕ2} du dv.

Set

(16) δF (X,ϕN) :=
d

dt
F (Z)

∣∣∣∣
t=0

, δ2F (X,ϕN) :=
d2

dt2
F (Z)

∣∣∣∣
t=0

.

Thus we have proved:

Theorem 1. The first variation δF (X,ϕN) of F = A+ 2V with divQ = H
at an H-surface X ∈ C3,α(B,R3) in the normal direction Y = ϕN with
ϕ ∈ C∞

c (B) vanishes, and for the second variation δ2F (X,ϕN) we have

(17) δ2F (X,ϕN) =
∫

B

{ | ∇ϕ|2 − 2pϕ2} du dv,

where the density function p associated with X is defined by

(18) p := Λ · [2H2(X) − K − 〈Hx(X), N〉].

If Q ∈ C2,α(R3,R3), then p ∈ C0,α(B). Note that p is the same function as
in Section 5.1, Theorem 1, formula (13).

Definition 1. An H-surface X ∈ C3,α(B,R3) is called stable if it satisfies
the stability inequality

(19) δ2F (X,ϕN) ≥ 0 for all ϕ ∈ C∞
c (B)

which can be written as

(20)
∫

B

| ∇ϕ|2 du dv ≥ 2
∫

B

pϕ2 du dv for all ϕ ∈ C∞
c (B).

Remark 1. By means of Proposition 1 in 5.1 it follows easily that the stability
condition (19) is equivalent to

δ2F (X,ϕN) ≥ 0 for all ϕ ∈ C∞
c (B′)

where B′ := B \ {branch points of X}.
We note also that it suffices to assume X ∈ C3,α(B,R3) in Definition 1

and in Theorem 1 since we only consider ϕ with compact support in B.
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Remark 2. When an H-surface is nonstable we can find some ϕ ∈ C∞
c (B)

such that δ2F (X,ϕN) < 0. Obviously, global and local minimizers of F are
stable.

On the other hand, an H-surface is said to be unstable, if it does not
constitute a strong local minimum of F , i.e. in any C0(B,R3)-neighborhood
of X one can find a surface X̃ with F (X̃) < F (X). A nonstable surface is
necessarily unstable while the converse need not be true.

In the next section we shall define the notions μ-stable for μ > 0 and
strictly stable (μ > 2).

Remark 3. The vector field Q is not uniquely determined by the equation
divQ = H, neither is the functional F . Nevertheless the notions “stable and
nonstable” are uniquely defined since in δ2F (X,ϕN) only the expressions H
and Hx enter. Occasionally one prefers the notation δ2F (X,ϕ) which means
the same as δ2F (X,ϕN).

The following central result for stableH-surfaces was found by F. Sauvigny
[1,2]. It is used to prove that under certain assumptions a stable surface is
in fact “nonparametric”, that is, a graph of a function which is defined on a
domain of the x1, x2-plane.

Theorem 2. Suppose that the prescribed mean curvature H(x) = H(x1, x2, x3)
is of class C1,α(R3) and satisfies the monotonicity condition

(21) Hx3(x) ≥ 0 for x ∈ R
3.

Furthermore let X ∈ C3,α(B,R3), 0 < α < 1, be a stable H-surface the
normal N = (N1, N2, N3) of which satisfies the boundary condition

(22) N3(w) > 0 for all w ∈ ∂B.
Then it follows that N3(w) > 0 for all w ∈ B.

Proof. Let e3 = (0, 0, 1) be the unit vector in x3-direction and set

(23) f := N3 = 〈N, e3〉.
Multiplying both sides of equation (12) in 5.1 by e3 and noting −2ΛHx3(X) ≤
0, it follows

(24) Δf + 2pf ≤ 0 in B.

Since, by assumption, f(w) > 0 for w ∈ ∂B holds true, Proposition 1 below
yields f(w) > 0 for all w ∈ B. �
Remark 4. The geometrical content of Theorem 2 is the following: If a stable
H-surface constitutes a positively oriented, branched graph over the x1, x2-
plane at the boundary, then the same property holds true in the interior.

Now we establish the result that was used in the proof of Theorem 2.
It is of independent interest; a similar reasoning will be applied when we
treat partially free boundary value problems for minimal surfaces (cf. Vol. 3,
Section 3).
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Proposition 1. Suppose that p ∈ C0,α(B) satisfies the stability inequality

(25)
∫

B

| ∇ϕ|2 du dv ≥ 2
∫

B

pϕ2 du dv for all ϕ ∈ C∞
c (B)

and let f ∈ C0(B) ∩ C2(B) be a solution of the boundary value problem

(26) Δf + 2pf ≤ 0 in B, f(w) > 0 on ∂B.

Then one has f(w) > 0 for all w ∈ B.

Remark 5. The assertion would already follow from (26) alone if one had
p(w) ≤ 0 on B, as one could apply the maximum principle. The gist of Propo-
sition 1 is that the assumption p ≤ 0 can be replaced by (25). Note that even
for minimal surfaces one has p = −ΛK ≥ 0.

Proof of Proposition 1. We first show that f(w) ≥ 0 on B. To this end we
consider the “negative part” f− of f , defined by

f−(w) := min{f(w), 0} for w ∈ B,

which is of the class H1
2 (B) with compact support in B and satisfies

∇f−(w) =

{
0 for almost all w ∈ B with f(w) ≥ 0,
∇f(w) for all w ∈ B with f(w) < 0.

Then ∫
B

| ∇f− |2 du dv = −
∫

B

f−Δf du dv

on account of a generalized version of the divergence theorem (see e.g. Sauvi-
gny [16], Chapter VIII, §9, Propositions 1 and 2), and by (26):

−
∫

B

f−Δf du dv ≤ 2
∫

B

pff− du dv = 2
∫

B

p|f− |2 du dv.

Therefore,

(27)
∫

B

| ∇f− |2 du dv ≤ 2
∫

B

p|f− |2 du dv.

Next, with ψ ∈ C∞
c (B), we insert ϕ := f− + εψ ∈ H̊1

2 (B) into (25), which
even holds for test functions of class H̊1

2 (B), |ε| ≤ ε0, ε0 > 0, thus obtaining
∫

B

| ∇f− |2 du dv + 2ε
∫

B

∇f− · ∇ψ du dv + ε2
∫

B

| ∇ψ|2 du dv

≥ 2
∫

B

p|f− |2 du dv + 4ε
∫

B

pf−ψ du dv + 2ε2
∫

B

pψ2 du dv.
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With the aid of (27) we arrive at

2ε
∫

B

(∇f− · ∇ψ − 2pf−ψ) du dv + ε2
∫

B

(| ∇ψ|2 − 2pψ2) du dv ≥ 0

for all ε ∈ (−ε0, ε0), whence we obtain the weak differential equation

(28)
∫

B

(∇f− · ∇ψ − 2pf−ψ) du dv = 0 for all ψ ∈ C∞
c (B).

Applying Moser’s inequality (see Gilbarg–Trudinger [1], or Sauvigny [16],
Chapter X, §5, Theorem 1) we infer from f−(w) ≡ 0 near ∂B, that f−(w) ≡ 0
in B, and therefore f(w) ≥ 0.

Finally, (26) implies
∫

B

(∇f · ∇ϕ − 2pfϕ) du dv ≥ 0 for all ϕ ∈ C∞
c (B) with ϕ ≥ 0,

and we have f ≥ 0. Invoking once more Moser’s inequality (see loc. cit. above)
and recalling the assumption f(w) > 0 on ∂B we arrive at the desired inequal-
ity f(w) > 0 for w ∈ B. �

5.4 On μ-Stable Immersions of Constant Mean Curvature

The density function p associated with an H-surface X might even change its
sign if H(x) is variable. This phenomenon is excluded for constant H since in
this case

(1) p = Λ · (2H2 − K) = 1
2Λ · (κ2

1 + κ2
2) ≥ 0.

Assumption. In this section we consider immersed cmc-surfaces X : B →
R

3 of class C2,α, i.e.

X ∈ C2,α(B,R3), 0 < α < 1, and Λ(w) > 0 on B.

Then X is real analytic on B, H ≡ const, K ∈ C0,α(B) and the density
function p associated with X is of class C0,α(B); in particular, p is continuous
up to the boundary ∂B.

Definition 1. An immersed cmc-surface X is called μ-stable with μ > 0 if

(2)
∫

B

| ∇ϕ|2 du dv ≥ μ

∫
B

pϕ2 du dv for all ϕ ∈ C∞
c (B)

holds true; if even μ > 2, the surface X is said to be strictly stable.
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Remark 1. Since p ∈ L∞(B), relation (2) is equivalent to
∫

B

| ∇ϕ|2 du dv ≥ μ

∫
B

pϕ2 du dv for all ϕ ∈ H̊1
2 (B).

Remark 2. The 2-stable, immersed cmc-surfaces X are stable in the sense of
Section 5.3.

Let us begin with the following instructive result which for minimal sur-
faces is due to H.A. Schwarz.

Theorem 1. If the immersed cmc-surface X with the surface normal N =
(N1, N2, N3) satisfies

(3) N3(w) > 0 for all w ∈ B,

then X is strictly stable.

Proof. We solve the variational problem

(4) D(ϕ) → min in
{
ϕ ∈ H̊1

2 (B) :
∫

B

pϕ2 du dv = 1
}
.

Its solution ϕ0 is an eigenfunction to the least eigenvalue μ > 0 of the eigen-
value problem

(5) −Δϕ0 = μpϕ0 in B, ϕ0 = 0 on ∂B,

where ϕ0 ∈ H̊1
2 (B). Elliptic theory yields ϕ0 ∈ C2,α(B).

Let e3 := (0, 0, 1) and set ψ := N3 = 〈N, e3〉 ∈ C1,α(B). The function
ψ is real analytic on B and satisfies ψ(w) > 0 on B. In order to compare
the eigenfunction ϕ0 with the auxiliary function ψ, we first note that ψ is a
solution of

(6) −Δψ = 2pψ in B,

taking equation (12) of Section 5.1 into account. Obviously we can find a
number λ ∈ R such that the further auxiliary function

(7) χ := ψ + λϕ0

satisfies

(8) χ ≥ 0 in B, χ > 0 on ∂B, χ(w0) = 0 for at least one w0 ∈ B.

From

−Δχ = −Δψ − λΔϕ0 = 2pψ + μpλϕ0

= (2 − μ)pψ + μp · (ψ + λϕ0)
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we infer

(9) Δχ+ μpχ = (μ − 2)pψ.

Suppose now that X were not strictly stable. Then we had μ ≤ 2, and (9)
would yield the differential inequality

(10) Δχ+ μpχ ≤ 0 in B.

Applying the same reasoning as in the proof of Proposition 1 of Section 5.3
we infer χ(w) ≡ 0 in B, which evidently contradicts (8). Therefore X must
be strictly stable. �

The following profound result will be used in Section 5.6 to prove a unique-
ness result for Plateau’s problem.

Theorem 2. Let X be an immersed cmc-surface whose density function p =
(2H2 − K)Λ satisfies

(11)
∫

B

(2H2 − K)Λdu dv < 2π.

Then X is strictly stable.

Proof. (i) On the northern hemisphere S+
r := {x ∈ R

3 : |x| = r, x3 > 0}
of radius r with the area 2πr2 we consider the eigenvalue problem for the
Laplace–Beltrami operator with zero boundary values on the equator ∂S+

r =
{x ∈ R

3 : |x| = r, x3 = 0}. The least eigenvalue λ1(S+
r ) can explicitly be

determined as

(12) λ1(S+
r ) = 2/r2

in the following way: Via stereographic projection we construct a conformal
mapping

(13) Z : B → S
+

r with Z(∂B) = ∂S+
r ,

which is necessarily a cmc-surface of mean curvature 1/r. Then the auxiliary
function ϕ := Z3 satisfies

(14) ϕ > 0 in B and ϕ = 0 on ∂B.

From the system

ΔZ =
2
r
Zu ∧ Zv = − 2

r2
|Zu|2Z in B,
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which is satisfied by the 1
r -surface Z,we obtain the equation

(15) −Δϕ =
2
r2
ϕ on B

where Δ is the Laplace–Beltrami operator ΔZ on S+
r . From (14) and (15) we

infer that λ1(S+
r ) = 2

r2 , as stated in (12).
(ii) Now we invoke Theorem 2 from Section 5.2. Accordingly the Bonnet

surface Y = N +HX associated with X is either a constant surface or else a
cmc-surface of mean curvature one. Moreover we have Y (w) ≡ const on B if
and only if H2 −K(w) ≡ 0 on B. In this case it follows trivially for all r1 > 0
that ∫

B

| ∇φ|2 du dv ≥ 2
r21

∫
B

(H2 − K)Λφ2 du dv for all φ ∈ C∞
c (B).

If H2 −K(w) 	≡ 0 on B it makes sense to study the eigenvalue problem for the
Laplace–Beltrami operator on the surface Y with respect to zero boundary
values. Its smallest eigenvalue

λ1(|dY |2) = inf
{

2D(φ) : φ ∈ H̊1
2 (B) with

∫
B

(H2 − K)Λφ2 du dv = 1
}

can be compared with that of all surfaces of equal area, whose Gaussian
curvature is bounded from above by a constant greater than or equal to one.
The smallest eigenvalue is assumed on the spherical cap S+

r1
of radius r1 > 0

with the area
∫

B
(H2 − K)Λdu dv = 2πr21. This yields the estimate

(16)
∫

B

| ∇φ|2 du dv ≥ 2
r21

∫
B

(H2 − K)Λφ2 du dv for all φ ∈ C∞
c (B).

Consequently X is strictly stable if H = 0.
(iii) In case that H 	= 0 we additionally consider the cmc-surface Ỹ := HX

with the area
∫

B
H2Λdu dv = 2πr22. By the same arguments as in (ii) we find

that

(17)
∫

B

| ∇φ|2 du dv ≥ 2
r22

∫
B

H2Λφ2 du dv for all φ ∈ C∞
c (B)

is valid.
(iv) From (11) we infer

2π >
∫

B

(2H2 − K)Λdu dv = 2π(r21 + r22)

whence 0 < r21 < r
2
2 < 1. Addition of (16) and (17) yields

(r21 + r22)
∫

B

| ∇φ|2 du dv ≥ 2
∫

B

(2H2 − K)Λφ2 du dv for all φ ∈ C∞
c (B).
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Thus the H-surface X is μ-stable with the value

μ :=
2

r21 + r22
> 2. �

Remark 3. The reasoning used in part (ii) of the preceding proof depends
on isoperimetric inequalities and symmetrization techniques in the class of
surfaces with bounded Gaussian curvature from above. For the methods that
cope with branch points in these surfaces we refer to the paper by Barbosa
and do Carmo [4], especially Proposition (3.13) in Section 3. Here the authors
prove the following result: Let p be a nonnegative C2-function on B vanishing
only at isolated points, and denote by λ1 the first eigenvalue of the problem

Δf + λpf = 0 in B, f ∈ H̊1
2 (B).

Furthermore, suppose that the Gaussian curvature K̂ of the manifold (B, dσ2)
with the singular metric dσ2 = p ds2, ds2 = du2 + dv2 the standard metric on
B, satisfies K̂ ≤ K0 for some constant K0 ∈ [0,∞). Then we have the inequal-
ity λ1 ≥ λ̃1(B0) where B0 denotes a geodesic disk in the 2-dimensional space
of constant Gaussian curvature K0, and λ̃1(B0) is the smallest eigenvalue of
the Laplace–Beltrami operator on B0 corresponding to this metric.

Remark 4. For minimal surfaces it is advantageous to operate with the nor-
mal N whose image might yield a multiple covering on the sphere. In this
case the original condition of Barbosa and do Carmo [1], namely that the
spherical image N(B) be contained in a spherical domain of area less than
2π, is considerably weaker than the inequality (11).

Remark 5. With the aid of H. Hopf’s quadratic differential, H. Ruchert [1]
established the above result alternatively without using the Bonnet surface.

The following area estimate constitutes the first step to prove a curvature
estimate and subsequent Bernstein results for stable minimal surfaces. The
estimate to be presented here even pertains to nonstable H-surfaces. Applied
to geodesic disks of radius r on complete minimal submanifolds we see that
their areas grow at most quadratically in r as r → ∞.

Theorem 3 (R. Gulliver [15]). Let X ∈ C2,α(B,R3) be an immersed, μ-stable
cmc-surface with μ > 1

2 , and suppose that X(B) = Kr(x0), where Kr(x0)
denotes a geodesic disk of radius r and center x0 := X(0) as described in
(19)–(21) below. Then we have the estimate

(18) A(X) ≤ 2μ
2μ − 1

πr2

for the area of X.
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Proof. (i) We represent the geodesic disk Kr(x0) = X(B) with respect to
geodesic polar coordinates ρ, ϕ by the mapping

(19)
Z : [0, r] × [0, 2π] → R

3, Z(0, 0) = x0,

X(B) = {Z(ρ, ϕ) : 0 ≤ ρ ≤ r, 0 ≤ ϕ ≤ 2π},

with the first fundamental form

(20) ds2 = |dZ|2 = dρ2 + P (ρ, ϕ) dϕ2

(i.e. |Zρ|2 = 1, 〈Zρ, Zϕ〉 = 0, |Zϕ|2 = P ). Here the function P (ρ, ϕ) > 0 in
(0, r] × [0, 2π) satisfies the asymptotic conditions

(21) lim
ρ→+0

P (ρ, ϕ) = 0 and lim
ρ→+0

∂

∂ρ

√
P (ρ, ϕ) = 1 for 0 ≤ ϕ ≤ 2π.

According to Minding’s formula for the geodesic curvature κg(ρ, ϕ) of the
curve Γρ := {Z(ρ, ϕ) : 0 ≤ ϕ < 2π} we obtain

(22)
∂

∂ρ

√
P (ρ, ϕ) = κg(ρ, ϕ)

√
P (ρ, ϕ) for 0 < ρ ≤ r, 0 ≤ ϕ < 2π,

cf. Section 1.3, and W. Blaschke [1], §83, formula (127).
(ii) We introduce the length of Γρ by

(23) L(ρ) :=
∫ 2π

0

√
P (ρ, ϕ) dϕ, 0 < ρ ≤ r.

Differentiating L(ρ) with the aid of (22) and applying the Gauss–Bonnet the-
orem, we obtain

L′(ρ) =
∫ 2π

0

κg(ρ, ϕ)
√
P (ρ, ϕ) dϕ(24)

= 2π −
∫ ρ

0

∫ 2π

0

K(τ, ϕ)
√
P (τ, ϕ) dτ dϕ

and consequently

(25) L′ ′(ρ) = −
∫ 2π

0

K(ρ, ϕ)
√
P (ρ, ϕ) dϕ.

(iii) In order to apply the stability condition (2) we choose the test function
ϕ(w) as

ϕ(w) = η(ρ) := 1 − ρ/r for 0 ≤ ρ ≤ r if w ↔ (ρ, ϕ).
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By (23) we have

∫ r

0

|η′(ρ)|2L(ρ) dρ =
∫ r

0

∫ 2π

0

|η′(ρ)|2
√
P (ρ, ϕ) dρ dϕ =: J.

Now we use the invariant first Beltrami operator

‖∇φ‖2 := (EG − F2)−1(Gφ2
u − 2Fφuφv + Eφ2

v)

for the metric ds2 = E du2 + 2F du dv + G dv2. Especially for the geodesic
metric ds2 = dσ2 + P (ρ, ϕ) dϕ2 the stability inequality (2) yields

J =
∫ r

0

∫ 2π

0

Pη2
ρ + 1 · η2

ϕ

P

√
P dρ dϕ ≥ μ

∫ r

0

∫ 2π

0

(2H2 − K)η2
√
P dϕdρ

≥ −μ
∫ r

0

η2

(∫ 2π

0

K
√
P dϕ

)
dρ.

Taking (25) into account, we arrive at

J ≥ μ

∫ r

0

L′ ′(ρ)η2(ρ) dρ

= μ[L′(ρ)η2(ρ)]r+0 − 2μ
∫ r

0

L′(ρ)η(ρ)η′(ρ) dρ

after an integration by parts. Since η(0) = 1, η(r) = 0, and L′(+0) = 2π, it
follows that

J ≥ −2πμ − 2μ
∫ r

0

L′ηη′ dρ

and ∫ r

0

L′ηη′ dρ = [Lηη′]r+0 −
∫ r

0

[L(η′)2 + Lηη′ ′] dρ = −
∫ r

0

L(η′)2 dρ

since η′ ′ = 0, L(+0) = 0, and η(r) = 0. Thus we obtain
∫ r

0

L(η′)2 dρ ≥ −2πμ+ 2μ
∫ r

0

L(η′)2 dρ

whence, by η′(ρ) = − 1
r it follows that

1
r2

∫ r

0

L(ρ) dρ ≤ 2πμ
2μ − 1

and finally

A(X) = A(Z) =
∫ r

0

∫ 2π

0

√
P (ρ, ϕ) dρ dϕ ≤ 2πμ

2μ − 1
r2. �
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5.5 Curvature Estimates for Stable and Immersed
cmc-Surfaces

The basic result of this section is the following

Theorem 1 (F. Sauvigny [7,8]). Let X ∈ C3,α(B,R3) be a stable, immersed
cmc-surface with X(0) = 0 whose mean curvature H is bounded by a constant
h0 ≥ 0, i.e. |H| ≤ h0. Suppose also that X represents a geodesic disk K1(0)
of radius 1 about X(0) = 0 such that X(B) = K1(0). Furthermore let κ1 and
κ2 be the principal curvatures of X. Then there is a universal constant c(h0)
depending only on the parameter value h0 such that

(1) κ2
1(0) + κ2

2(0) ≤ c(h0).

Proof. (i) Since X is 2-stable, Gulliver’s estimate yields

(2)
∫

B

| ∇X|2 du dv = 2A(X) ≤ 8π
3

(cf. Section 5.4, Theorem 3). In order to effectively use the Courant–Lebesgue
lemma, we fix the number

(3) ν0 := 1
3 exp

(
− 32

3 π
2
)

∈
(
0, 1

3

)

and claim the following

Preliminary Statement. There exists a point w∗ = ρ0eiϕ0 ∈ B with |w∗ | ≤
1 − 3ν0 such that the radial derivative Xρ of X satisfies

(4) |Xρ(w∗)| ≥ λ0 := 1
2 · (1 − 3ν0)−1 > 0.

To verify this claim, we introduce the set Γ (B) of continuous and piece-
wise regular curves γ : [0, 1] → B with γ(0) = 0 and γ(1) ∈ ∂B. From the
properties of the geodesic disk K1(0) = X(B) we infer

(5) inf
γ∈Γ (B)

∫ 1

0

∣∣∣∣ ddtX(γ(t))
∣∣∣∣dt = 1.

We fix a point w1 ∈ ∂B, and set δ := 3ν0. By (2) and the Courant–Lebesgue
lemma there is a number δ∗ ∈ (δ,

√
δ) such that for

Cδ∗ (w) := {w ∈ B : |w − w1| = δ∗ }

we can estimate

(6)
∫

Cδ∗ (w1)

|dX| ≤ 2
{
π ·
(

8
3
π

)
1

log 1
δ

} 1
2

= 2
{

8
3
π2 · 1

32
3 π

2

} 1
2

= 1.
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Denote by γ1 : [0, 1 − δ∗] → B the path

γ1(t) := tw1, 0 ≤ t ≤ 1 − δ∗,

from the origin to the point w2 := (1 − δ∗)w1 on the circle ∂B1−δ∗ (0). For
ε = ±1 we additionally consider the paths

γ2(t) := w1 + (w2 − w1)eiεt, 0 ≤ t ≤ t2(δ∗),

leading within B on the circle Cδ∗ (w1) from w2 to the boundary ∂B. On
account of (6) we conclude that either for ε = 1 or for ε = −1 the inequality

(7)
∫ t2(δ

∗)

0

∣∣∣∣ ddtX(γ2(t))
∣∣∣∣dt ≤ 1

2

holds true. We combine γ1 and γ2 to a path γ ∈ Γ (B). By means of (5) and
(7) it follows that

1 ≤
∫ 1

0

|d(X ◦ γ)| =
∫ 1−δ∗

0

∣∣∣∣ ddtX(γ1)
∣∣∣∣dt+

∫ t2(δ
∗)

0

∣∣∣∣ ddtX(γ2)
∣∣∣∣dt

≤
∫ 1−δ∗

0

∣∣∣∣ ddtX(γ1)
∣∣∣∣dt+ 1

2
.

Hence there is a value t∗ ∈ [0, 1 − δ∗] such that
∣∣∣∣ ddtX(γ1(t∗))

∣∣∣∣ ≥ 1
2(1 − δ)

.

This proves the desired “preliminary statement”.
(ii) Now we choose a test function ϕ ∈ C∞

c (B) with ϕ(w) ≡ 1 for |w| ≤
1−ν0 and | ∇ϕ| ≤ 2/ν0 in B, which will be inserted into the stability condition.
By formula (14) of 5.1 we also have

1
2 | ∇N |2 = (2H2 − K)Λ,

and so ∫
|w|≤1−ν0

| ∇N |2 du dv = 2
∫

|w|≤1−ν0

(2H2 − K)Λdu dv

≤ 2
∫

B

(2H2 − K)Λϕ2 du dv

≤
∫

B

| ∇ϕ|2 du dv ≤ 4πν−2
0 .

Hence we have found the universal bound

(8)
∫

B1−ν0 (0)

| ∇N |2 du dv ≤ 4πν−2
0
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for the energy of the unit normal N of X on the disk B1−ν0(0) of radius 1 −ν0
about the origin.

With the aid of the Courant–Lebesgue lemma we then find a universal
constant δ1 with 0 < δ1 <

√
δ1 ≤ 2ν0, such that to each point w0 ∈ B1−3ν0(0)

there exists a radius δ∗ = δ∗(w0, X) ∈ (δ1,
√
δ1) satisfying

(9)
∫

Cδ∗ (w0)

|dN | ≤ π for Cδ∗ (w0) := {w ∈ B : |w − w0| = δ∗ }.

From this we infer the following result: There is a universal constant τ > 0
with the property that for any w0 ∈ B1−3ν0(0) there exists a “pole vector”
e0 = e0(w0) ∈ S2 such that

〈N(w), e〉 > 0 for all w ∈ Cδ∗ (w0) and all e ∈ S2 with |e − e0| ≤ τ.

Then one derives from Theorem 2 of Section 5.3 the basic

Auxiliary Statement. There is a universal constant τ with the property
that for any w0 ∈ B1−3ν0(0) there is a “pole vector” e0 ∈ S2 such that

(10) 〈N(w), e〉 > 0 for all w ∈ Bδ1(w0) and all e ∈ S2 with |e − e0| ≤ τ.

(iii) The auxiliary statement means geometrically that Bδ1(w0) is mapped
by N into a geodesic disk on S2, i.e. into a spherical cap, with a universal
geodesic radius smaller than π/2 (= geodesic radius of a hemisphere), and
that the center of this disk depends on the point w0 ∈ B1−3ν0(0). Therefore
the set N(Bδ1(w0)) is contained in a closed 3-dimensional ball of a fixed radius
M ∈ (0, 1). Especially at the origin we find a vector N0 ∈ R

3, such that

(11) |N(w) − N0| ≤ M for all w ∈ Bδ1(0)

holds true with a universal constant M ∈ (0, 1).
Furthermore the formulae (16) and (17) of Section 5.1 imply that

(12) ΔN = −N | ∇N |2 in B.

From the gradient estimate of E. Heinz we infer that there is an a priori
constant c1 > 0 such that

(13) | ∇N(0)| ≤ c1

holds true (cf. Vol. 2, Section 2.2, Proposition 1, or F. Sauvigny [16], Chap-
ter XII, §2, Theorem 1).

(iv) For an arbitrary point w0 ∈ B1−3ν0(0) we can achieve that

(14) X(w0) = 0 and e0 = e3 := (0, 0, 1)

applying a suitable translation and rotation in R
3. Consider the planar map-

ping f : Bδ1(w0) → R
2 defined by
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(15) f(w) := (X1(w), X2(w)), w ∈ Bδ1(w0).

By the “auxiliary statement” its Jacobian Jf satisfies

(16) Jf :=
∂(X1, X2)
∂(u, v)

> 0 in Bδ1(w0),

and (2) implies

(17)
∫

Bδ1 (w0)

| ∇f |2 du dv ≤ 8π
3
.

From Xw · Xw = 0 it follows that | ∇X3|2 ≤ | ∇f |2 whence

(18) 1
2 | ∇X|2 ≤ | ∇f |2 ≤ | ∇X|2.

Thus any bound on | ∇f | is equivalent to a bound on | ∇X|. Furthermore

|Δf | ≤ |ΔX| = 2|H| · |Xu ∧ Xv | ≤ h0| ∇X|2,

and so we infer from (18) that

(19) |Δf | ≤ 2h0| ∇f |2 in Bδ1(w0).

With the aid of the Courant–Lebesgue lemma we obtain a further universal
constant δ2 with 0 < δ2 <

√
δ2 ≤ δ1 and an “individual” constant δ∗ ∗ =

δ∗ ∗(w0, X) ∈ (δ2,
√
δ2) satisfying

(20) 4h0

∫
Cδ∗ ∗ (w0)

|df | ≤ 1 for Cδ∗ ∗ (w0) := {w ∈ B : |w − w0| = δ∗ ∗ }.

Therefore, f(Cδ∗ ∗ (w0)) is contained in a closed plane disk of radius (8h0)−1.
Since f has a positive Jacobian Jf in Bδ1(w0) and Bδ∗ ∗ (w0) ⊂ Bδ1(w0), the
mapping f is not allowed to protrude from this disk. Taking f(w0) = 0 into
account, we arrive at the inequality

(21) |f(w)| ≤ 1
4h0

for all w ∈ Bδ2(w0).

(v) We set ν := 1
2δ2; then ν ∈ (0, ν0). Recalling that f : B2ν(w0) → R

2

provides an open mapping of B2ν(w0) onto its image which satisfies

|Δf | ≤ 2h0| ∇f |2 and |f | ≤ 1
4h0

on B2ν(w0),

we are now in the position to apply an inequality of E. Heinz that is based on
the theory of pseudoholomorphic functions (see Sauvigny [16], Chapter XII,
§5, Theorem 2). Thus we obtain a priori constants c′(h0) and c′ ′(h0) with
0 < c′ ≤ c′ ′ such that
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(22) c′(h0)| ∇f(w0)|5 ≤ | ∇f(w)| ≤ c′ ′(h0)| ∇f(w0)| 1
5 for all w ∈ Bν(w0).

Furthermore, by virtue of (18), the surface element Λ = 1
2 | ∇X|2 of X satisfies

1
2 | ∇f |2 ≤ Λ ≤ | ∇f |2 in B2ν(w0),

and so (22) yields the following

Intermediate Statement. There exists a universal constant Θ = Θ(h0) ∈
(0, 1) such that the surface element Λ satisfies the distortion estimate

(23) Θ(h0)Λ5(w) ≤ Λ(w0) for all w ∈ Bν(w0)

holds true for any w0 ∈ B1−3ν0(0).

(vi) In order to estimate Λ(0) from below, we apply the “preliminary
statement” and pick a point w∗ ∈ B1−3ν0(0) satisfying

(24) Λ(w∗) ≥ λ2
0 > 0,

cf. (4). Then we choose n ∈ N in such a way that

1 − 3ν ≤ nν < 1 − 2ν

is fulfilled and introduce the points

wj :=
j

n
w∗ for j = 0, 1, . . . , n.

Then we have

|wj | =
j

n
|w∗ | ≤ |w∗ | ≤ 1 − 3ν0 for j = 0, 1, . . . , n

and

|wj+1 − wj | =
1
n

|w∗ | ≤ 1 − 3ν0
n

≤ 1 − 3ν
n

≤ ν for j = 0, 1, . . . , n − 1.

Applying repeatedly (23) and (24) we obtain

Λ(0) = Λ(w0) ≥ ΘΛ5(w1) ≥ Θ1+5Λ52
(w2) ≥ Θ1+5+52

Λ53
(w3)

≥ · · · ≥ Θ1+5+52+···+5n−1
Λ5n

(wn) ≥ Θ5n

λ2·5n

0 =: c2(h0)

that is,

(25) Λ(0) ≥ c2(h0).

(vii) We have

κ2
1 + κ2

2 = 4H2 − 2K =
| ∇N |2
Λ
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on account of formula (14) in Section 5.1. Setting

c(h0) := c21(h0)c−1
2 (h0),

the estimates (13) and (25) yield the desired inequality

κ2
1(0) + κ2

2(0) ≤ c(h0). �

By a scaling argument we immediately obtain the interesting

Theorem 2. Let X ∈ C3,α(B,R3) denote a stable, immersed minimal surface
representing a geodesic disk Kr(x0) of radius r > 0 centered at x0 := X(0),
briefly : X(B) = Kr(x0). Then the principal curvatures κ1 and κ2 of X satisfy

(26) κ2
1(0) + κ2

2(0) ≤ c(0)
r2

where c(0) is the universal constant c(h0) of Theorem 1 for h0 = 0.

Proof. Consider the scaled minimal surface

Y :=
1
r
(X − x0), r > 0.

The normals of X and Y coincide whereas the Weingarten mapping S̃ of
Y differs from the Weingarten mapping S of X by the factor r. Hence the
principal curvatures of Y are rκ1 and rκ2 if κ1, κ2 are the principal curvatures
of X, and Y (B) = K1(0). Then formula (1) of Theorem 1 yields

r2(κ2
1(0) + κ2

2(0)) ≤ c(0),

which is the desired estimate (26). �

As a corollary of Theorem 2 we obtain the following “Bernstein-type”
result proved by do Carmo and Peng [1] and Fischer-Colbrie and Schoen [1].

Theorem 3. Let Y : R
2 → R

3 represent a regular and embedded minimal sur-
face which is geodesically complete and stable (that is, stable on each geodesic
disk). Then Y represents a plane in R

3.

Proof. The set M := Y (R2) is a complete Riemannian manifold of dimension
two, the Gauss curvature of which is nonpositive. A theorem by Hadamard
implies that M is diffeomorphic to R2. Thus, for each r > 0 and for any point
x0 ∈ M, there is a geodesic disk Kr(x0) on M about the center x0. If Y is
not already conformal, then we introduce conformal parameters on Kr(x0),
obtaining a harmonic mapping X from B onto Kr(x0) such that X(0) = x0.
By Theorem 2, the principal curvatures κ1 and κ2 of M at x0, i.e. the principal
curvatures of X at w = 0, are zero, if we let r tend to ∞. Since x0 can be
chosen arbitrarily on M, it follows that Y represents a plane in R

3. �



5.6 Nitsche’s Uniqueness Theorem and Field-Immersions 395

5.6 Nitsche’s Uniqueness Theorem and Field-Immersions

In this section we prove a uniqueness theorem, due to J.C.C. Nitsche [26], for
minimal surfaces solving Plateau’s problem. This result was already stated in
Section 4.9.

Proposition 1. Let X ∈ C3,α(B,R3) denote an immersed minimal surface
with the normal N . For any function ζ ∈ C3,α(B) we consider the varied
surface Y : B → R

3 defined by

(1) Y := X + ζN.

Then Y represents an immersed, but not necessarily conformal, surface of zero
mean curvature if and only if ζ satisfies the perturbation equation

(2) Lζ = Φ(ζ) in B

where L denotes the Schwarzian operator L associated with the minimal sur-
face X, which is defined by

(3) Lζ := −Δζ + 2ΛKζ.

Here Λ is the area element of X, and K is its Gaussian curvature. The
right-hand side Φ in (2) is a sum of homogeneous terms of second till
fifth order in ζ,∇ζ and ∇2ζ, the coefficient-functions of which depend on
X,∇X,∇2X,∇3X and on 1/Λ. Furthermore, there is a constant c1 > 0 de-
pending only on ‖X‖C3,α(B,R3) and ‖1/Λ‖C0(B) such that Φ satisfies

(4) ‖Φ(ζ) − Φ(η)‖C0,α(B) ≤ c1[‖ζ‖C2,α(B) + ‖η‖C2,α(B)]‖ζ − η‖C2,α(B)

for all ζ, η ∈ C2,α(B) whose C2,α(B)-norms are bounded by one.

Proof. Differentiating (1) we obtain

(5) Yu = Xu + ζuN + ζNu, Yv = Xv + ζvN + ζNv

and

(6)
Yuu = Xuu + ζuuN + 2ζuNu + ζNuu,

Yuv = Xuv + ζuvN + (ζuNv + ζvNu) + ζNuv,

Yvv = Xvv + ζvvN + 2ζvNv + ζNvv.

We write the first fundamental form of Y as

(7) 〈dY, dY 〉 = E∗ du2 + 2F∗ du dv + G∗dv2

and, using (5), evaluate E∗,F∗,G∗. Recall that the coefficients of the second
fundamental form of X are given by
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L = −〈Xu, Nu〉 = 〈Xuu, N〉, N = −〈Xv, Nv 〉 = 〈Xvv, N〉,
M = −〈Xu, Nv 〉 = −〈Xv, Nu〉 = 〈Xuv, N〉.

From (5) we infer

(8)
E∗

Λ
= 1 − 2ζ

L

Λ
+ · · · , F∗

Λ
= −2ζ

M

Λ
+ · · · , G∗

Λ
= 1 − 2ζ

N

Λ
+ · · ·

where + · · · stands for terms which are quadratic in ζ, ζu, . . . , ζvv.
The surface Y has zero mean curvature if and only if

(9) 0 =
〈

E∗

Λ
Yvv − 2

F∗

Λ
Yuv +

G∗

Λ
Yuu,

1
Λ

(Yu ∧ Yv)
〉
.

From (5), (6), and (8) we obtain the differential equation (2) with the
Schwarzian operator L and a right-hand side Φ that has the properties de-
scribed. Let us sketch the necessary computations: We write (9) as

Linear expression in ζ, ζu, . . . , ζvv + Φ(ζ) = 0

where Φ(ζ) consists of all nonlinear ζ-terms. Now Φ(ζ) is a polynomial of fifth
degree in ζ, ζu, . . . , ζvv with coefficients depending on 1/Λ,X,∇X,∇2X,N ,
∇N,∇2N . Obviously we can estimate these coefficients in the C0,α-norm using
a bound for ‖X‖C3,α and ‖1/Λ‖C0,α on B. The terms of Φ(ζ) are at least
quadratic in ζ and its derivatives up to second order.

Furthermore,

(10)
1
Λ
Yu ∧ Yv = N + (terms in ζ, ζu, . . . , ζvv of at least first order),

and (6) and (8) imply

E∗

Λ
Yvv − 2

F∗

Λ
Yuv +

G∗

Λ
Yuu(11)

= ΔX +Δζ · N + 2ζuNu + 2ζvNv + ζΔN

− 2
ζ

Λ
(LXvv − 2MXuv + NXuu) + · · ·

= (Δζ + 2ΛKζ)N + 2(ζuNu + ζvNv)

− 2
ζ

Λ
(LXvv − 2MXuv + NXuu) + · · ·

where + · · · stands again for terms that are quadratic in ζ, . . . , ζvv.
Here we have used the equation ΔN = 2ΛKN , cf. (11) and (12) of 5.1.

From (9), (10) and (11) it follows that

0 = Δζ + 2ΛKζ − 2
ζ

Λ
(LN − 2M2 + NL) + · · · .

Furthermore, by formula (32) of Section 1.3 we have
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Λ2K = LN − M2

and so we arrive at
0 = Δζ − 2ΛKζ + · · · .

Therefore equation (9) is equivalent to

(12) −Δζ + 2ΛKζ = Φ(ζ)

as it was claimed.
The nonlinearity Φ(ζ) consists of finitely many terms of the form

a(X)∂i1ζ . . . ∂ikζ

with 2 ≤ k ≤ 5 where ∂i
 denotes a partial derivative of order i� with
0 ≤ i� ≤ 2, and ‖a(X)‖Cα(B) can be estimated by ‖X‖C3,α(B,R3) and
‖1/Λ‖C0(B). We leave it as an easy exercise to the reader to verify the “con-
dition of contraction” (4). �

With the aid of Schauder’s theory we will now show the fundamental result
that a strictly stable, immersed minimal surfaceX : B → R

3 can be embedded
into a field of surfaces of zero mean curvature provided that X is extendable
beyond ∂B.

Proposition 2. Let X ∈ C3,α(B,R3) be a strictly stable, immersed mini-
mal surface which can be extended as a minimal surface to a larger disk
Ω := B1+δ(0) with δ > 0. Then there is a one-parameter family

Z : B × [−t0, t0] → R
3

of zero mean curvature surfaces Z(·, t) (not necessarily conformally parametri-
zed) which is of class C2,α(B × [−t0, t0],R3), |t| ≤ t0, and has the following
properties:

(a) Z(w, 0) = X(w) for w ∈ B;
(b) JZ := ∂(Z1,Z2,Z3)

∂(u,v,t) > 0 on B × [−t0, t0];
(c) If N∗(·, t) denotes the normal to the surface Z(·, t), one has

Zt(w, t) = ρ(w, t)N∗(w, t) for w ∈ B and |t| < t0

with ρ(w, t) > 0 on B × [−t0, t0].

Definition 1. A mapping Z as described in Proposition 2 is called a field
immersion of the minimal surface X.

Proof of Proposition 2. (i) It is easily seen that also the extensionX : Ω → R
3

is strictly stable and immersed for 0 < δ � 1. The strict stability of this
extension implies that the boundary value problem
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Lζ = 0 in Ω, ζ = 0 on ∂Ω

has only the trivial solution ζ(w) ≡ 0 on Ω. Then Schauder’s theory implies
that there is a uniquely determined solution ξ ∈ C2,α(Ω) of the boundary
value problem

(13) Lξ = 0 in Ω, ξ = 1 on ∂Ω

(see e.g. Sauvigny [16], Chapter IX, §6, Theorem 5).
By virtue of Proposition 1 in 5.3 it follows that ξ(w) > 0 for all w ∈ Ω.

Set
C2,α

0 (Ω) := {η ∈ C2,α(Ω) : η(w) = 0 for all w ∈ ∂Ω}
and note that the operator

(14) L0 := L|C2,α
0 (Ω) : C2,α

0 (Ω) → C0,α(Ω)

is an invertible mapping satisfying

(15) ‖L−1
0 f‖2,α ≤ c2‖f‖α for all f ∈ C0,α(Ω)

with an a priori constant c2 > 0. Here we have used the abbreviating notation

‖ · ‖m,α := ‖ · ‖Cm,α(Ω).

Finally set
c3 := ‖ξ‖2,α.

(ii) For sufficiently small t1 > 0 we now want to solve the nonlinear Dirich-
let problem

(16) Lζ(·, t) = Φ(ζ(·, t)) in Ω, ζ(·, t) = t on ∂Ω

by ζ(·, t) ∈ C2,α(Ω) and for parameter values with |t| ≤ t1. To this end we
make the “Ansatz”

(17) ζ(w, t) := η(w, t) + tξ(w) for w ∈ Ω, |t| < t1,

where η(·, t) ∈ C2,α
0 (Ω) is to be determined as solution of

(18) Lη(·, t) = Φ(η(·, t) + tξ) in Ω.

This is equivalent to finding a solution η(·, t) ∈ C2,α
0 (Ω) of the fixed point

equation

(19) η(·, t) = L−1
0 Φt(η(·, t)) with Φt(ζ) := Φ(ζ + tξ).

In order to solve (19) by Banach’s fixed point theorem we introduce the balls

B(t) := {ζ ∈ C2,α
0 (Ω) : ‖ζ‖2,α ≤ |t|3/2}
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with |t| ≤ t1 � 1. For ζ ∈ B(t) and |t| � 1 we have ‖ζ + tξ‖2,α ≤ 1. Then by
(15) and (4) (B replaced with Ω) we obtain for ζ ∈ B(t) that

‖L−1
0 Φt(ζ)‖2,α ≤ c2‖Φt(ζ)‖α = c2‖Φ(ζ + tξ)‖α

≤ c2c1‖ζ + tξ‖2
2,α ≤ 2c1c2{‖ζ‖2

2,α + t2‖ξ‖2
2,α}

≤ 2c1c2{ |t|3 + c23t
2} = 2c1c2{|t|3/2 + c23|t|1/2}|t|3/2.

For |t| ≤ t1 � 1 it follows that

‖L−1
0 Φt(ζ)‖2,α ≤ |t|3/2,

and the operator L−1
0 Φt maps B(t) into itself.

Secondly, for ζ, η ∈ B(t) with |t| � 1 we have ‖ζ + tξ‖2,α ≤ 1 and also
‖η + tξ‖2,α ≤ 1, whence

‖L−1
0 Φt(ζ) − L−1

0 Φt(η)‖2,α = ‖L−1
0 (Φt(ζ) − Φt(η))‖2,α

≤ c2‖Φt(ζ) − Φt(η)‖α = c2‖Φ(ζ + tξ) − Φ(ζ + tη)‖α

≤ c2c1|t| · ‖ζ − η‖2,α ≤ 1
2 ‖ζ − η‖2,α for |t| � 1,

and so

‖L−1
0 Φt(ζ) − L−1

0 Φt(η)‖2,α ≤ 1
2 ‖ζ − η‖2,α

for ζ, η ∈ B(t) and |t| < t1 with 0 < t1 � 1.

Therefore the mapping L−1
0 Φt : B(t) → B(t) is contracting, and so it possesses

a uniquely determined fixed point η(·, t) ∈ C2,α
0 (Ω) for 0 < |t| < t1 with

0 < t1 � 1, and for t = 0 we have L−1
0 Φ0(0) = 0, i.e. η(·, 0) = 0. A slight

modification of the proof shows that η(·, t) is differentiable with respect to
t and that even η ∈ C2,α(Ω × [−t1, t1]) holds true (see e.g. Giaquinta and
Hildebrandt [1], vol. 1, Chapter 6). Moreover, the choice of B(t) shows that

ηt(w, 0) = 0 for w ∈ Ω,

and so the superposition (17) yields a solution ζ ∈ C2(Ω × [−t1, t1]) of (16),
satisfying

ζt(w, 0) = ξ(w) > 0 for all w ∈ Ω.
For 0 < t1 � 1 we then obtain

(20) ζt(w, t) > 0 for w ∈ Ω and |t| ≤ t1.

Hence the family Y : Ω × [−t1, t1] → R
3 constitutes a field of surfaces

(21) Y (·, t) = X + ζ(·, t)N

of zero mean curvature surfaces in R
3 with Y (·, 0) = X. Finally by reparame-

trizing Y via their orthogonal trajectories we obtain for some t0 ∈ [0, t1] a
family
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(22) Z : B × [−t0, t0] → R
3

of zero mean curvature surfaces Z(·, t) satisfying (a)–(c). (The reparametriza-
tion is left to the reader as an exercise in ordinary differential equations.)
�

From Section 2.8 we already know that those minimal surfaces that can be
embedded into a foliation of simply covering surfaces of zero mean curvature
furnish a relative minimum of the area functional. Now we are confronted with
the more intricate problem to prove a similar property for immersed minimal
surfaces that can be embedded into a field of surfaces with H = 0 that might
have selfintersections.

Let Γ be an oriented Jordan curve in R
3, and denote by C(Γ ) the class of

surfaces X ∈ H1
2 (B,R3) bounded by Γ in the sense of Section 4.2. Set

C(Γ ) := C(Γ ) ∩ C0(B,R3),

and define
C

∗
(Γ ) := {X ∈ C(Γ ) : X(wj) = Qj , j = 1, 2, 3}

where Q1, Q2, Q3 are three fixed points on Γ and wj = exp( 2πi
3 j), j = 1, 2, 3.

Proposition 3. Let X ∈ C(Γ ) be a minimal surface that satisfies the assump-
tions of Proposition 2. Then there is a number ε = ε(X) > 0 such that

D(X) < D(Y ) for all Y ∈ C
∗
(Γ ) with 0 < sup

B
|Y (w) − X(w)| < ε.

Proof. (i) We embedX in a field immersion Z : B×[−t0, t0] → R3 as described
in Proposition 2 and consider the corresponding surface element

W(w, t) := |Zu(w, t) ∧ Zv(w, t)| = [N∗(w, t), Zu(w, t), Zv(w, t)].

Using the orthogonality condition and (c) we obtain

Wt = [N∗
t , Zu, Zv] + [N∗, Ztu, Zv] + [N∗, Zu, Ztv]

= 0 + [N∗, (ρN∗)u, Zv] + [N∗, Zu, (ρN∗)v]
= ρ{[N∗, N∗

u , Zv] + [N∗, Zu, N
∗
v ]}

= ρ〈N∗, N∗
u ∧ Zv + Zu ∧ N∗

v 〉.

Furthermore, Theorem 2 of Section 2.5 yields

N∗
u ∧ Zv + Zu ∧ N∗

v = 0.

Thus we have

(23) Wt(w, t) = 0 for w ∈ B and |t| ≤ t0.
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(ii) The field immersion of Proposition 2 is constructed even on a larger
disk Ω0 with B ⊂⊂ Ω0 ⊂⊂ Ω. This implies that Z : Ω0 × [−t0, t0] → R

3

furnishes a local diffeomorphism provided that 0 < t0 � 1, but globally the
inverse of Z need not exist. For compactness reasons the local inverse Z−1 is
defined on domains of uniform size. Consequently there is an ε = ε(X) > 0
such that all admissible Y ∈ C

∗
(Γ ) with supB |Y − X| < ε can be written as

(24) Y (w) = Z(f(w), τ(w)), w ∈ B,

with a continuous mapping f from B into R2 and a continuous function τ :
B → R such that

(25) f maps ∂B monotonically onto itself, f(wj) = wj , j = 1, 2, 3,

and f |∂B is positive-oriented with respect to B, and

(26) τ(w) = 0 for w ∈ ∂B and |τ(w)| ≤ t0 on B.

On account of Dirichlet’s principle, harmonic functions are unique minimizers
of D for given boundary values; thus it suffices to consider Y, f, τ that are real
analytic on B and of class C0 on B.

(iii) Assume for the moment that f furnishes a diffeomorphism from B
onto B with the inverse g, and set σ := τ ◦ g as well as

(27) Ỹ (w) := Y (g(w)) = Z(w, σ(w)).

Then it follows that

Ỹu(w) ∧ Ỹv(w) = Yu(g(w)) ∧ Yv(g(w))Jg(w)
= [(Zu + Ztσu) ∧ (Zv + Ztσv)](w, σ(w))
= [Zu ∧ Zv + σuZt ∧ Zv + σvZu ∧ Zt](w, σ(w)).

Multiplication by N∗(w, σ(w)) yields by virtue of (23) that

〈N∗(w, σ(w)), Yu(g(w)) ∧ Yv(g(w))〉Jg(w)
= W(w, σ(w)) = W(w, 0) = |Xu(w) ∧ Xv(w)|.

Integration over B then leads to the Schwarz comparison formula:

(28)
∫

B

〈N∗(f(w), τ(w)), Yu(w) ∧ Yv(w)〉 du dv =
∫

B

|Xu ∧ Xv | du dv.

(As demonstrated in Section 2.8, this formula can be seen as a precursor of
Hilbert’s independent integral.) The relation (28) implies A(Y ) ≥ A(X), and
the equality sign holds if and only if Yu ∧Yv points in the direction of N∗(f, τ).
This implies Y = X, and the result is proved.

(iv) In the sequel we have to verify this result even if f is not a global
diffeomorphism of B onto B. We have to deal with the possibility that f(B)
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might “overshoot” B, and that f(B) could cover B in several layers. We note
first that, in general, the critical values of the real analytic mapping f : B → B
constitute a Lebesgue null set N in R

2 (see Sauvigny [16], Chapter III, §4).
Combining this observation with arguments using the winding number, we
come to the following

Conclusion. There exist sequences {G�} and {H�} of subdomains of B such
that

(29) f� := f |G

: G� → R

2 is a positively oriented diffeomorphism
from G� onto H�; τ� := τ |G


;

and

(30) G� ∩ Gk = ∅, H� ∩ Hk = ∅ for & 	= k;

B
∖ ∞⋃

�=1

H� is a Lebesgue null set in R
2.

One obtains the G� and H� as follows: For z0 ∈ B \ N one has pre-images
w0, w

′
0, w

′ ′
0 , . . . such that Jf (w0) 	= 0, Jf (w′

0) 	= 0, Jf (w′ ′
0 ) 	= 0, . . . . Since

f |∂B is positive oriented, at least one of these numbers has to be positive,
say, Jf (w0) > 0. Then there is a neighborhood G of w0 such that f |G is a
positively oriented diffeomorphism of G onto a neighborhood H of z0. A re-
peated application of this argument leads to the selection of diffeomorphisms
f� : G� → H� with the properties (29) and (30). Note that B \

⋃
G� might

have positive measure. This means that we have omitted multiple coverings
of B by f(B) as well as parts of B that are mapped onto f(B) \ (B).

When we apply the arguments of part (iii) to these individual diffeomor-
phisms, the Schwarz comparison formula (28) implies

D(Y ) ≥ A(Y ) =
∫

B

|Yu ∧ Yv | du dv(31)

≥
∞∑

�=1

∫
G


|Yu ∧ Yv | du dv

≥
∞∑

�=1

∫
G


〈N∗(f�, τ�), Yu ∧ Yv 〉 du dv

=
∞∑

�=1

∫
H


|Xu ∧ Xv | du dv = A(X) = D(X).

(v) If D(X) = D(Y ) then all inequalities in (31) turn into equalities,
and so we have in particular that S := B \

⋃
G� is a two-dimensional null

set. Otherwise we would have ∇Y (w) = 0 for w ∈ S with meas S > 0, and
therefore ∇Y (w) ≡ 0 on B since Y is real analytic. This implies Y (w) ≡ const
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on B, a contradiction to Y ∈ C(Γ ). Thus we obtain Jf (w) = ∂(f1,f2)
∂(u,v) > 0 a.e.

on B. Furthermore, the vectors

Yu ∧ Yv = Zu(f�, τ�) ∧ Zv(f�, τ�)
∂(f1

� , f
2
� )

∂(u, v)
+ Zv(f�, τ�) ∧ Zt(f�, τ�)

∂(f2
� , τ�)

∂(u, v)

+ Zt(f�, τ�) ∧ Zu(f�, τ�)
∂(τ�, f1

� )
∂(u, v)

have to point into the direction of the normals N∗(f�, τ�) on G�. Thus the two
determinants

∂(f2
� , τ�)

∂(u, v)
and

∂(τ�, f1
� )

∂(u, v)

have to vanish on G� for & = 1, 2, . . . , since Zv ∧Zt and Zt ∧Zu are two linearly
independent vectors perpendicular to N∗, and so we obtain

∇τ = 0 in
∞⋃

�=1

G�

because of Jf = ∂(f1,f2)
∂(u,v) > 0 on G�. Since meas S = 0 we obtain ∇τ(w) ≡ 0

in B whence τ(w) ≡ const in B, and τ = 0 on ∂B yields τ(w) = 0 on B. Thus
we arrive at

(32) Y (w) = Z(f(w), 0) = X(f(w)) for w ∈ B.

(vi) We have found: Any Y ∈ C
∗
(Γ ) with maxB |Y − X| < ε � 1 satisfies

D(Y ) ≥ D(X), and D(Y ) = D(X) if and only if Y = X ◦ f . It follows that
D(Y ) ≤ D(Ỹ ) for all Ỹ ∈ C

∗
(Γ ) with maxB |Ỹ − Y | < ε̃ for some ε̃ with

0 < ε̃ � 1. This implies that Y is conformally parametrized in the sense that
Yw · Yw = 0. Hence it follows from (32) that f is a mapping from B onto B
which is conformal (in the generalized sense) in B, monotonic on ∂B with
f(∂B) = ∂B and f(wj) = wj , j = 1, 2, 3. We conclude that f(w) ≡ w on B
and therefore Y (w) = X(w) on B. Thus we have proved

D(X) < D(Y ) for 0 < sup
B

|X − Y | < ε. �

We are now prepared to prove the following

Theorem 1 (J.C.C. Nitsche). Let Γ be a real analytic, regular Jordan curve
with a total curvature κ(Λ) less or equal to 4π. Then there is exactly one disk-
type minimal surface in C

∗
(Γ ), i.e. exactly one solution X ∈ C

∗
(Γ ) solving

Plateau’s problem to the contour Γ . This solution is free of branch points up to
the boundary and can be continued analytically across Γ as a minimal surface.

Proof. (i) If Γ lies in the plane E, any minimal surface X ∈ C
∗
(Γ ) is contained

in this plane as well, due to the convex hull property, and so it reduces to a
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strictly conformal or anticonformal mapping from B onto the interior of Γ in
E which is uniquely determined by the three-point condition X(wj) = Qj ,
j = 1, 2, 3 (cf. Section 4.11). By the asymptotic expansion of Xw at w0 ∈ ∂B
it turns out that there are no boundary branch points of X, because otherwise
X(B) would overshoot Γ into R

2\Ω, whereΩ is the interior domain of Γ . Thus
the assertion of the theorem holds in this case even without the assumption
κ(Γ ) ≤ 4π; actually it would suffice that Γ ∈ C2,α (or even Γ ∈ C1,α) in
order to prove the uniqueness of X ∈ C

∗
(Γ ).

(ii) Thus from now on we assume that Γ is nonplanar. By H. Lewy’s
regularity theorem [5] we know that any minimal surface X ∈ C(Γ ) can be
continued analytically across Γ onto a larger disk Ω := B1+δ(0), cf. Vol. 2,
Section 2.8. Furthermore, by the Gauss–Bonnet formula established in Vol. 2,
Section 2.11, we have the following: Let w1, . . . , wk ∈ B and wk+1, . . . , wk+� ∈
∂B be the finitely many branch points of a minimal surface X ∈ C

∗
(Γ ) with

the orders ν1, . . . , νk and νk+1, . . . , νk+� respectively (see Vol. 2, Section 2.10),
νj ∈ N. Then

(33) 0 ≤
k∑

j=1

νj +
1
2

k+�∑
j=k+1

νj =
1
2π

{∫
B

KΛdudv +
∫

Γ

κg ds − 2π
}
.

In (iii) we shall see that the integral of the geodesic curvature κg of Γ on X
is bounded by the total curvature of Γ , i.e.

(34)
∫

Γ

κg ds ≤
∫

Γ

κ ds =: κ(Γ ),

and by assumption we have κ(Γ ) ≤ 4π. Therefore we obtain

(35)
∫

Γ

κg ds − 2π ≤ 2π.

The Gaussian curvature K of X satisfies K = κ1κ2 = −κ2
1 ≤ 0 in B′ =

B \ {w1, . . . , wk } since 0 = 2H = κ1 +κ2. If we had K(w) ≡ 0 in B′, it would
follow that the Weingarten mapping of X were everywhere trivial in B′, i.e.
N(w) ≡ const in B′ and then in B. This would imply that X and thus Γ were
planar, which is excluded by the assumption above. Therefore K(w) 	≡ 0 on
B′, and consequently

(36)
∫

B

KΛdudv < 0.

From (33), (35), and (36) it follows that

(37) 0 ≤
k∑

j=1

νj +
1
2

k+�∑
j=k+1

νj < 1.
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Furthermore the orders of the boundary branch points wk+1, . . . , wk+� have
to be even because of the monotonicity of the mapping X|∂B (see Vol. 2,
Section 2.10). Therefore (37) implies

(38) νj = 0 for j = 1, . . . , k + &,

i.e. any minimal surface X ∈ C(Γ ) with κ(Γ ) ≤ 4π is an immersion of B
into R

3, and (33) reduces to the classical Gauss–Bonnet theorem

(39) −
∫

B

KΛdudv =
∫

Γ

κg ds − 2π

for an immersed minimal surface X.
(iii) Let us parametrize Γ by the arc length parameter s ∈ [0, L], L =

length of Γ , setting

Y (s) := X(cosϕ(s), sinϕ(s)), 0 ≤ s ≤ L,

satisfying |Y ′(s)| ≡ 1 for 0 ≤ s ≤ L. Furthermore set

Z(s) := N(cosϕ(s), sinϕ(s)), 0 ≤ s ≤ L.

Then κ(s) = |Y ′ ′(s)| is the curvature of the arc Γ at the point Y (s), and

κ(Γ ) =
∫ L

0

κ(s) ds =
∫ L

0

|Y ′ ′(s)| ds

is the total curvature of Γ . Since the geodesic curvature satisfies

|κg(s)| = |[Y ′ ′(s), Z(s), Y ′(s)]|

and the normal curvature κn of Y fulfills

|κn(s)| = | 〈Z(s), Y ′ ′(s)〉 |,

we have the decomposition

κ2(s) = κ2
g(s) + κ2

n(s)

whence indeed
|κg(s)| ≤ κ(s) for 0 ≤ s ≤ L.

For
∫ L

0
κg ds =

∫ L

0
κ ds, then κn(s) ≡ 0 for 0 ≤ s ≤ L. Note that with

w(s) := (cosϕ(s), sinϕ(s)) we obtain

Y ′ = [Xu(w)(− sinϕ) +Xv(w) cosϕ]ϕ′

and

Y ′ ′ = [Xuu(w)(sin2 ϕ) − 2Xuv(w) sinϕ cosϕ+Xvv(w) cos2 ϕ]|ϕ′ |2 + · · ·

where + · · · stands for the neglected tangential terms.
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From κn(s) ≡ 0 and |κn(s)| = | 〈Z(s), Y ′ ′(s)〉 | as well as Xuu = −Xvv we
infer that

0 = 〈Z,Xuu(w)[cos2 ϕ − sin2 ϕ] + 2Xuv(w) sinϕ cosϕ〉(40)
= L(w)[cos2 ϕ − sin2 ϕ] + 2M sinϕ cosϕ
= Re {[L(w) − iM(w)](cosϕ+ i sinϕ)2}.

In Section 1.3 we have seen via the Codazzi equations that

f(w) := [L(w) − iM(w)]w2, w ∈ B,

is holomorphic on B. Then (40) implies Re f |∂B = 0 and therefore Re f(w) ≡ 0
in B, whence f(w) ≡ const in B. Since f(0) = 0 it follows that f(w) ≡ 0 in B.
Thus we arrive at

L(w) ≡ 0, M(w) ≡ 0, N(w) ≡ 0 in B

whence K(w) ≡ 0 in B which contradicts (36). Thus κn(s) ≡ 0 is impossible,
and (35) is strengthened into

∫
Γ

κg ds < 4π.

Combining this with (39) it follows that

(41) −
∫

B

KΛdudv < 2π.

Because of Theorem 2 in Section 5.4 we infer from (41) thatX is strictly stable.
According to Proposition 2 we can therefore embed X into a field immersion
of minimal surfaces, and so Proposition 3 implies that any minimal surface
X ∈ C

∗
(Γ ) furnishes a strict relative minimum for Dirichlet’s integral D in

C
∗
(Γ ).
Suppose now that two different minimal surfaces X1 and X2 existed in

C
∗
(Γ ). Then both would furnish a strict relative minimum of D in C

∗
(Γ ).

Then by Courant’s “Mountain Pass Lemma”, to be presented in the next
chapter, there would exist a third minimal surface X3 ∈ C

∗
(Γ ) which were

unstable in the sense that it were not a local minimizer of D (cf. Theorem 2
in Section 6.7). The existence of such a surface X3 is impossible as we have
seen above, and so there cannot be two different minimal surfaces in C

∗
(Γ ).

However there is always one minimal surface X in C
∗
(Γ ), which proves the

theorem. �

Remark 1. The unique solution in Nitsche’s theorem actually is not only
immersed, but even embedded, according to the following remarkable result
due to T. Ekholm, B. White, and D. Wienholtz [1]:
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Theorem 2. Let Γ be a closed Jordan curve in R
n with total curvature ≤ 4π,

and let X : B → R
n be a minimal surface in C(Γ ). Then X is embedded up

to and including the boundary, with no interior branch points.

In fact Theorem 2 even holds for minimal surfaces X : M → R
n defined

on a compact 2-manifold M with boundary ∂M which is mapped homeomor-
phically onto Γ .

5.7 Some Finiteness Results for Plateau’s Problem

For Plateau’s problem the most challenging question is: “How many minimal
surfaces of the type of the disk, or of general topological type, are bounded
by a preassigned ‘well-behaved’ closed Jordan curve Γ?” The Courant–Levy
examples (cf. No. 4 of Section 4.15) show that Γ may bound infinitely many
solutions even if it is regular and smooth except for one point. Thus a reason-
able answer can only be expected if we interpret the attribute “well-behaved”
in a suitably restricted way, say as regular and real analytic, or as regular and
of class Ck for some k ≥ 1, or as piecewise linear (i.e. Γ is a polygon). More-
over it is interesting to find upper or lower bounds for the number of solutions
bounded by a well-behaved contour Γ . However, even the decision whether or
not a well-behaved Γ spans only finitely many disk-type minimal surfaces is
still open.

We shall prove in this section that stable, immersed surfaces of the type of
the disk bounded by a real analytic, regular contour Γ are isolated; hence only
finitely many of them can be bounded by such a Γ . The possibility to estimate
quantitatively a suitable neighborhood, where no further solution exists, seems
to be out of reach. The pioneering contribution towards isolatedness of stable
solutions for Plateau’s problem is due to F. Tomi [6].

We begin our discussion with the following local uniqueness theorem that
is already contained in the considerations of the last section. To this end we
need the perturbation equation Lζ = Φ(ζ) defined in 5.6, Proposition 1, which
is associated with a given immersed minimal surface X. We have the following
result:

Proposition 1. Let X be an immersed, strictly stable minimal surface of class
C3,α(B,R3) with the normal N . Then there is a number ε(X) > 0 such that
all solutions ζ ∈ C2,α(B) of

(1) L(ζ) = Φ(ζ) in B, ζ = 0 on ∂B,

satisfying |ζ(w)| < ε(X) for all w ∈ B, are identically zero. Consequently, if
Y ∈ C2,α(B,R3) is an immersed zero mean curvature surface with Y (w) =
X(w) for w ∈ ∂B and

(2) |Y (w) − X(w)| < ε(X) for w ∈ B
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which can be written as

(3) Y (w) = X(w) + ζ(w)N(w) for w ∈ B,

ζ as above, then Y = X.

Proof. In Proposition 2 of Section 5.6 we have constructed a one-parameter
family η ∈ C2,α(B× [−t0, t0]) of functions η(w, t), w ∈ B, t ∈ [−t0, t0], t0 > 0,
solving

(4) Lη(·, t) = Φ(η(·, t)) in B, η(·, t) = t on ∂B,

such that the family of surfaces

(5) Z(w, t) := X(w) + η(w, t)N(w), w ∈ B, |t| ≤ t0

yields a field immersion of X, as η(w, 0) ≡ 0 on B. (Note that in 5.6 the
function η was called ζ.) Then there is a number ε = ε(X) > 0 such that any
Y of the form (3) with ζ ∈ C2,α

0 (B) satisfying Lζ = Φ(ζ) and |ζ(w)| < ε(X)
for w ∈ B is covered by the field (5). Then we can write

(6) ζ(w) = η(w, τ(w)) for w ∈ B

where the “height function” τ is of class C2,α(B) and satisfies |τ(w)| ≤ t0 for
w ∈ B as well as

(7) τ(w) = 0 on ∂B.

Now we prove τ(w) ≡ 0 on B which is turn implies

ζ(w) = η(w, 0) ≡ 0 on B

whence Y = X.
In fact, suppose that τ(w) 	≡ 0. Then there is a point w0 ∈ B such that

τ(w0) = t0 with
|t0| = max{ |τ(w)| : w ∈ B} > 0.

Then the minimal immersion Y of the form (3), satisfying (1) and (2), touches
the minimal immersion Z(·, t0) at the interior point x0 := X(w0). We repre-
sent both Y and Z(·, t) locally as minimal graphs over the same plane in
a neighborhood of x0. Applying the maximum principle to the difference of
the two equations for these graphs we conclude that the two graphs coincide.
Repeating this reasoning, a continuity argument yields Y (w) ≡ Z(w, t0) for
w ∈ B, whence ζ(w) ≡ η(w, t0) for all w ∈ B, and therefore

(8) ζ(w) = t0 for all w ∈ ∂B.

Since t0 	= 0, this contradicts the assumption ζ|∂B = 0, and so we have verified
τ(w) ≡ 0 on B. �
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Next we modify the reasoning used to prove Proposition 2 of Section 5.6.
This will lead to the following central result due to F. Tomi [6] and J.C.C. Nit-
sche [26].

Proposition 2. Let X ∈ C3,α(B,R3) be an immersed, stable minimal sur-
face, and suppose that {ζj } is a sequence of functions ζj ∈ C2,α(B) satisfying

(9) Lζj = Φ(ζj) in B, ζj = 0 on ∂B

and

(10) 0 < ‖ζj ‖2,α → 0 for j → ∞

(where ‖ · ‖2,α is the C2,α(B)-norm). Then X is weakly stable, and there exists
a real analytic one-parameter family

ζ : B × [−t0, t0] → R, t0 > 0,

of solutions ζ(·, t) ∈ C2,α(B) of

(11) Lζ(·, t) = Φ(ζ(·, t)) in B, ζ(w, t) = 0 for w ∈ ∂B,

|t| ≤ t0, satisfying

(12)
∂

∂t
ζ(w, t)

∣∣∣∣
t=0

> 0 for all w ∈ B.

Proof. Since the stable minimal immersion is not isolated, we infer from
Proposition 1 that X is only “weakly stable” in the sense that the Schwarzian
operator L has zero as its lowest eigenvalue with respect to zero boundary
values. Equivalently this means: There exists a function ξ ∈ C2,α(B) satisfy-
ing

(13) Lξ = 0 in B, ξ|∂B = 0, ξ(w) > 0 for all w ∈ B.

Consider the closed subspace

B̃ :=
{
η ∈ C2,α

0 (B) :
∫

B

ξη du dv = 0
}

of the Banach space (C2,α
0 (B), ‖ · ‖2,α), as well as the restriction

(14) L̃ := L|B̃ : B̃ → C0,α(B).

Next we define the “projection” Φ̃t by

(15) Φ̃t(η) := Φ(tξ + η) −
{∫

B

ξΦ(tξ + η) du dv
}
ξ, η ∈ B̃
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for all t ∈ R. Similarly as in the proof of Propositions 1 and 2 in Section 5.6
one can show that, for any t with |t| ≤ t0 and 0 < t0 � 1 there is exactly one
solution η(·, t) ∈ B̃ of

(16) L̃(η(·, t)) = Φ̃t(η(·, t)) in B,

and the structure of the right-hand side in (16) yields a real analytic depen-
dence of η(·, t) on the parameter t ∈ [−t0, t0]. From the assumptions (9) and
(10) we infer the representations

(17) ζj = tjζ + η(·, tj)

with

(18) tj → 0 as j → ∞ and tj 	= 0

for j � 1. Define the real analytic function ψ : (−t0, t0) → R by

(19) ψ(t) :=
∫

B

Φ(tξ(u, v) + η(u, v, t))ξ(u, v) du dv.

With the aid of (9), (17), (13), (16) and (15) we obtain for j � 1 that

Φ(ζj) = L(ζj) = L(η(·, tj)) = L̃(η(·, tj))
= Φ̃tj (η(·, tj)) = Φ(tjξ + η(·, tj)) − ψ(tj)ξ
= Φ(ζj) − ψ(tj)ξ.

This implies
ψ(tj) = 0 for j � 1, tj → 0;

hence the real analytic function ψ satisfies

ψ(t) ≡ 0 on (−t0, t0).

Finally we infer from (16) that

Lζ(·, t) = Φ(ζ(·, t)) in B for |t| ≤ t0

with the family of functions

ζ(w, t) := tξ(w) + η(w, t), w ∈ B, |t| ≤ t0

satisfying
∂

∂t
ξ(w, 0) = ξ(w) +

∂

∂t
η(w, 0) > 0 for w ∈ B

since
∂

∂t
η(w, 0) = 0 for all w ∈ B

(see part (ii) of the proof of Proposition 2 in Section 5.6). �
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The Propositions 1 and 2 motivate the following

Definition 1. An immersed minimal surface X ∈ C(Γ ) is called weakly
stable if it is stable, but not strictly stable.

Remark 1. Let λ1 be the smallest eigenvalue of the Schwarzian operator
L = −Δ + 2ΛK of X on B with respect to zero boundary values, i.e. the
smallest number λ ∈ R such that the boundary value problem

Lζ = λζ in B, ζ = 0 on ∂B

possesses a nontrivial solution ζ. It is well known that λ1 is simple and that
each eigenfunction ζ corresponding to λ1 satisfies ζ(w) 	= 0 for all w ∈ B.
Thus the eigenspace to λ1 is one-dimensional and will be spanned by an
eigenfunction ζ satisfying ζ(w) > 0 for all w ∈ B. Hence we have:

X is stable if and only if λ1 ≥ 0, weakly stable if and only if λ1 = 0, strictly
stable if and only if λ1 > 0, nonstable if and only if λ1 < 0.

Furthermore we have:

1. X is weakly stable if and only if there is a ζ ∈ C2,α(B) with Lζ = 0 in B,
ζ = 0 on ∂B, and ζ(w) > 0 for w ∈ B.

2. X is strictly stable if there is a ζ ∈ C2,α(B) with Lζ = 0 in B and ζ > 0
on B.

3. X is nonstable if there is a subdomain Ω of B with Ω 	= B such that B \Ω
is non-empty and “Lζ = 0 in Ω” possesses a solution ζ ∈ C0(Ω) ∩ C2(Ω)
with ζ = 0 on ∂Ω and ζ > 0 on Ω.

Remark 2. Tomi’s original proof of Proposition 2 did not use the “pertur-
bation equation” Lζ = Φ(ζ), but was based on a real analytic version of the
implicit function theorem in Banach spaces.

Proposition 3. With the family ζ(·, t), |t| ≤ t0 from Proposition 2 we define
the real analytic one-parameter family of immersions

(20) Y (·, t) := X + ζ(·, t)N, |t| ≤ t0,

from B into R
3 which have mean curvature zero and satisfy

Y (w, t) = X(w) for w ∈ ∂B

and
|Yt(w, t)| = |ζt(w, t)| > 0 for w ∈ B and |t| ≤ t0.

Furthermore, all surfaces Y (·, t) have the same area, i.e.

(21) A(Y (·, t)) ≡ const for |t| ≤ t0.
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Proof. As at the end of the proof of Proposition 2 in Section 5.6, formula
(22), we reparametrize the surfaces Y (·, t) via their orthogonal trajectories
and obtain (possibly for some smaller t0 > 0) a family Z : B × [−t0, t0] → R

3

of zero mean curvature surfaces Z(·, t), whose area elements W(u, v, t) :=
|Zu(u, v, t) ∧ Zv(u, v, t)| satisfy

(22)
∂

∂t
W(u, v, t) ≡ 0 on B × [−t0, t0]

(cf. the proof of formula (23) in Section 5.6). This implies

A(Z(·t)) ≡ const for |t| ≤ t0.

Since Z(·, t) is a reparametrization of Y (·, t), it follows that

A(Y (·, t)) = A(Z(·, t)) for |t| ≤ t0,

which in conjunction with the preceding identity implies (21). �

The above lense-shaped field of zero mean curvature surfaces Y (·, t) defined
by (20) is defined in a similar way as a field of conjugate geodesics. This
motivates

Definition 2. A family Y (·, t) = X + ζ(·, t)N , |t| ≤ t0, of zero mean cur-
vature immersions B → R

3 and of constant area A(Y (·, t)), as described in
Propositions 2 and 3, is called conjugate field for X. We also say: X is
embedded in the conjugate field {Y (·, t)}|t|≤t0 .

This leads to the question whether a minimal immersion that is sufficiently
close to a surface X and has the properties required in Propositions 2 and 3,
can be “covered” by a conjugate field for X. This might not be the case if we
interpret “close” in the sense of the C0(B,R3)-norm. However, this property
can be proved if we understand “close” in the C2,α-sense. This is a consequence
of the following result due to R. Böhme and F. Tomi [1], §3, pp. 15–20. For
the convenience of the reader we shall provide a proof.

Proposition 4. Let {Xj } be a sequence of immersions B → R3 with Xj ∈
C(Γ ) ∩ C3,α(B,R) and

lim
j→∞

‖Xj − X‖C3,β(B,R3) = 0 for β ∈ (0, α),

where the limit X is also an immersion B → R
3 of class C(Γ ) ∩C3,α(B,R3).

Then there are reparametrizations Yj ∈ C(Γ ) ∩ C2,α(B,R3) of Xj which can
be expressed as “generalized graphs above X” in the form

Yj = X + ζjN with ζj ∈ C2,α
0 (B)

and
‖ζj ‖2,β → 0 as j → ∞ for 0 < β < α.
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Proof. First we continue X to an immersion of class C3,α(Ω,R3) for some Ω
with B ⊂ Ω and consider the family of surfaces

Z(w, t) := X(w) + tN(w), w ∈ Ω, |t| < ε,

for some ε with 0 < ε � 1. Then Z ∈ C2,α(Ω × (−ε, ε),R3), and the Jacobian
JZ of Z is everywhere positive on Ω × (−ε, ε). Thus Z is an open mapping
of Ω × (−ε, ε) into R3, and Z can locally be inverted. In conjunction with a
monodromy argument it follows that, for j � 1, each Xj can be represented
in the form

Xj(w) = Z(fj(w), zj(w)), w ∈ B,
with a mapping fj : B → R

3 of the class C2,α(B,R2) such that fj |∂B maps
∂B monotonically onto itself, and a height function zj ∈ C2,α

0 (B).
Setting f(w) := w and z(w) := 0 for w ∈ B we can write

X(w) = Z(f(w), z(w)).

Then we infer from Xj → X in C2,α(B,R3) and the fact that the local inverse
of Z is of class C2,α:

fj → f in C2,α(B,R2), zj → z = 0 in C2,α(B).

Since f(w) ≡ w on B, the mappings fj satisfy

Jfj (w) > 0 on B for j � 1,

and so every fj |B is an open mapping of B into R
2, j � 1. Since fj ∈

C0(B,R2) and fj |∂B is a homeomorphism of ∂B onto ∂B, we infer fj(B) = B
for j � 1; therefore the fj are C2,α-diffeomorphisms of B onto B for j � 1.
Setting ζj := zj ◦ f−1

j ∈ C2,α
0 (B) and Yj := Xj ◦ f−1

j = Z(idB , ζj) we obtain

Yj(w) = Xj(fj(w)) = X(w) + ζj(w)N(w) for w ∈ B, j � 1,

with
‖ζj ‖C2,α(B) → 0 as j → ∞.

�

Remark 3. Let us interpret the preceding results in a geometric way. Proposi-
tion 1 states that a strictly stable, immersedX ∈ C(Γ ) can be embedded into a
field {Z(·, t)}|t|≤t0 of minimal immersions such that every immersion Y ∈ C(Γ )
with the mean curvature zero, given in the “normal form” Y = X + ζN with
ζ ∈ C2,α

0 (B) satisfying Lζ = Φ(ζ), coincides with X if it is sufficiently close
to X in the C0(B,R3)-norm. This means: A strictly stable minimal immer-
sion is isolated with respect to the C0-norm compared with normal variations
Y = X + ζN , ζ as above.

Yet it is not clear whether every minimal immersions X̃ ∈ C(Γ ) that is
C0-close to X has a normal-form representation Y ; but, by Proposition 4,
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such a reparametrization can be achieved if X̃ is C2,α-close to X. Thus we
obtain: Any strictly stable minimal immersion X ∈ C(Γ ) is isolated in the
C2,α-norm among all minimal immersions of class C(Γ ).

If, however, the stable immersion X ∈ C(Γ ) is the C2,α-limit of stable
immersions Xj ∈ C(Γ ) with Xj 	= X, then X is weakly stable and can be em-
bedded into a conjugate field {Y (·, t)}|t|≤t0 which forms a regular, real analytic
curve in C2,α(B,R3).

Now we turn to Tomi’s “finiteness result”. We recall some definitions and
formulate a compactness result.

The class C∗(Γ ) consists of those X ∈ C(Γ ) which satisfy a preassigned
three-point condition ∗, and C

∗
(Γ ) := C∗(Γ ) ∩ C0(B,R3). For X ∈ C(Γ ) the

area A(X) and Dirichlet’s integral D(X) are

A(X) =
∫

B

|Xu ∧ Xv | du dv, D(X) =
1
2

∫
B

| ∇X|2 du dv.

We know that

a(Γ ) = inf
C(Γ )

A = inf
C(Γ )

D = inf
C

∗
(Γ )
A = inf

C
∗
(Γ )
D.

Proposition 5. For any Γ ∈ Ck,α there is a constant c(Γ, k, α, ∗) such that
each minimal surface X ∈ C∗(Γ ) is of class Ck,α(B,R3) and satisfies

‖X‖Ck,α(B,R3) ≤ c(Γ, k, α, ∗), k ∈ N, α ∈ (0, 1),

where c(Γ, k, α, ∗) is a constant which depends only on Γ, k, α, ∗. Hence, from
any sequence of minimal surfaces Xj ∈ C∗(Γ ), we can extract a subsequence
Xjν → X in Ck,β(B,R3) as ν → ∞ for any β ∈ (0, α), where X ∈ C∗(Γ ) ∩
Ck,α(B,R3) is a minimal surface.

Proof. See Vol. 2, Chapter 2. �

Theorem 1 (F. Tomi [6]). Let Γ be a closed Jordan curve in R
3 of class C3,α,

and suppose that every minimal surface X of class C(Γ ) with A(X) = a(Γ )
is an immersion of B into R

3, i.e. X be free both of interior and boundary
branch points. Then Γ spans only finitely many minimal surfaces X ∈ C∗(Γ )
which satisfy A(X) = a(Γ ), i.e. which are area minimizing in C(Γ ).

This immediately implies the following

Corollary 1. If all minimal surfaces X ∈ C(Γ ) with Γ ∈ C3,α are immersed
up to the boundary, i.e. have no branch points on B, then there are only finitely
many minimal surfaces X ∈ C∗(Γ ) with A(X) = a(Γ ).

Remark 4. In Section 4.9 we have exhibited conditions on Γ which ensure
that any X ∈ C(Γ ) is free of branch points, in which case Corollary 1 can be
applied.
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Remark 5. By the papers by R. Osserman, H.W. Alt, R. Gulliver, and Gul-
liver/Osserman/Royden it follows that any minimal surface X ∈ C(Γ ) with
A(X) = a(Γ ) is free of interior branch points. Furthermore, R. Gulliver
and F.D. Lesley [1] have stated that, in addition, every X ∈ C(Γ ) with
A(X) = a(Γ ) has no boundary branch point if Γ is a regular, real analytic
Jordan curve. This result implies

Corollary 2. If Γ is a regular, real analytic, closed Jordan curve, then there
exist only finitely many X ∈ C∗(Γ ) with A(X) = a(Γ ), and all of them are
immersions.

Proof of Theorem 1. Suppose that Γ bounds infinitely many X with A(X) =
a(Γ ). By Proposition 5 there is a sequence {Xj } of minimal surfaces Xj ∈
C∗(Γ ) with A(Xj) = a(Γ ) and

0 < ‖Xj − X‖C3,β(B,R3) → 0 as j → 0

for β ∈ (0, α), and the limitX is a minimal surface of class C∗(Γ )∩C3,α(B,R3)
with A(X) = a(Γ ).

By Propositions 2, 3, 4 we embed X into a conjugate field, with α replaced
by β ∈ (0, α), i.e. there is a regular, real analytic curve {Y (·, t)}|t|≤t0 with
Y (·, 0) = X which lies in the level set

Mc(Γ ) := {X ∈ C∗(Γ ) : D(X) = A(X) = c}, c := a(Γ ).

We equip Mc(Γ ) with the C2(B,R3)-norm and denote by Kc the closed, con-
nected component of Mc(Γ ) containing X. A continuity argument combined
with the above reasoning yields: Through every X0 ∈ Kc there is a real ana-
lytic, regular curve {Y (·, t)}|t|≤t0 contained in Kc such that Y (·, 0) = X0.

Consider now the volume functional V on the “block” Kc which is defined
by

(23) V (X) :=
1
3

∫
B

[X,Xu, Xv] du dv.

Since Kc is a compact subset of C2(B,R3) and V is continuous on Kc, there
is an X0 ∈ Kc such that

V (X0) = max
Kc

V.

Let {Y (·, t)}|t|≤t0 be a regular, real analytic arc with Y (·, 0) = X0. Then

(24)
d

dt
V (Y (·, t))

∣∣∣∣
t=0

= 0.

On the other hand we have

Y (·, t) := X0 + ζ(·, t)N0,



416 5 Stable Minimal- and H-Surfaces

N0 = normal of X0, with ξ = ζt(·, 0), ξ(w) > 0 on B, and Yt(·, 0) = ξN0. Set

Λ0 := |X0,u ∧ X0,v | = |X0,u|2

with Λ0(w) > 0 on B. The computations in 5.3 show that

(25)
d

dt
V (Y (·, t))

∣∣∣∣
t=0

=
∫

B

Λ0(w)ξ(w) du dv > 0

if we take div 1
3x = 1 into account. Clearly, (25) contradicts (24), and so the

theorem is proved. �

Now we want to generalize Theorem 1 to stable solutions of Plateau’s
problem. So far we can carry out this program only for some special classes
of boundaries, e.g. for extreme curves.

Definition 3. A closed Jordan curve Γ in R3 is called extreme if for any
point P of Γ there is a plane of support, that is, a plane Π such that Γ lies
on one side of Π but is not completely contained in Π.

Clearly, Γ is extreme if and only if it lies on the boundary of a convex
body. Equivalently we have: Γ is extreme if and only if it lies on the boundary
of its convex hull.

Proposition 6 (Compactness property of stable minimal immersions). Let
Γ be a closed regular Jordan curve of class C3,α which is extreme, and suppose
that {Xj } is a sequence of stable minimal surfaces Xj ∈ C∗(Γ ) free of branch
points on B. Then:

(i) We can extract a subsequence {Xjν } converging in C3,β(B,R3) with β ∈
(0, α) to a minimal surface X ∈ C3,α(B,R3).

(ii) The limit surface X is a stable minimal immersion of B into R
3.

Proof. Statement (i) follows from Proposition 5, and the limit X of the Xjν

has no branch points on ∂B since Γ is extreme. It remains to prove that X
is stable and has no branch points in B. To this end we consider the Gauss
curvature Kν and the surface element Λν = |DuXjν |2 of Xjν as well as the
normal Nν : B → S2 ⊂ R

3 of Xjν . We have

1
2 | ∇Nν |2 = −ΛνKν ,

and the Gauss–Bonnet formula yields

−
∫

B

ΛνKνdu dv =
∫

∂B

(κg)ν ds − 2π ≤ κ(Γ ) − 2π.

Thus the total curvature κ(Γ ) of Γ estimates the Dirichlet integrals D(Nν) =
1
2

∫
B

| ∇Nν |2 du dv of the normals Nν by

(26) D(Nν) ≤ κ(Γ ) − 2π for all ν ∈ N.
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Furthermore the isoperimetric inequality yields

(27) D(Xjν ) ≤ 1
4π
L2(Γ ) for all ν ∈ N.

Thus by the reasoning in (i), (ii), (iii) of the proof of Theorem 1 in Section 5.5
we conclude: For any B′ ⊂⊂ B there is a constant c(B′) > 0 such that

(28) | ∇Nν(w)| ≤ c(B′) for all w ∈ B′.

Since |Nν | ≤ 1 we may assume that the subsequence {jν } also satisfies

(29) Nν(w) ⇒ N(w) for w ∈ B and for any B′ ⊂⊂ B.

(Actually it suffices to apply merely (i) and (ii) of the proof quoted above
since in this way we already obtain a uniform modulus of continuity of the
Nν on any B′ ⊂⊂ B.)

Suppose now that X had an interior branch point w0 ∈ B; we may assume
that w1 = 0, X(0) = 0, N(0) = e3 = (0, 0, 1). Then the associated planar
mapping f : B → C with

f(w) := X1(w) + iX2(w), w ∈ B,

has the asymptotic expansion

f(w) = awn + o(|w|n+1) as w → 0, a ∈ C \ {0}

where n ≥ 2. Thus the winding number i(f, 0) of f about w = 0 is at least 2.
On the other hand the planar mappings fν : B → C associated with Xjν ,

fν(w) := X1
jν

(w) + iX2
jν
, w ∈ B,

satisfy fν(w) ⇒ f(w) for |w| � 1 as well as

fν(w) = aνw + o(|w|2) for |w| ≤ δ, 0 < δ � 1, aν ∈ C \ {0}, ν � 1,

since Xjν (w) ⇒ X(w) and Nν(w) ⇒ N(w) as ν → ∞ for |w| ≤ δ with 0 <
δ � 1. Hence the winding numbers i(fν , 0) of fν about 0 satisfy i(fν , 0) = 1
for ν � 1. Since i(fν , 0) → i(f, 0) as ν → ∞, we obtain i(f, 0) = 1, a
contradiction to i(f, 0) ≥ 2. Thus X has no branch points in B.

Then we conclude

(30) Λν(w)Kν(w) → Λ(w)K(w) as ν → ∞ for w ∈ B,

and Lebesgue’s theorem on dominated convergence yields the stability of X.
�

When we combine the reasoning in the proof of Theorem 1 with Proposi-
tion 6, we obtain
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Theorem 2. An extreme, regular Jordan contour Γ ∈ C3,α bounds at most
finitely many stable minimal immersions B → R

3 of class C∗(Γ ).

Remark 6. The central reason why we can carry over the proof of Theorem 1
to the situation considered in Theorem 2 is the observation stated in Propo-
sition 3 that all elements Y (·, t) of the regular, real analytic family (20) have
the same area A(Y (·, t)).

Remark 7. The arguments used for the proof of Theorem 2 and the subse-
quent Theorem 3 are based on Sauvigny’s paper [10].

Remark 8. The same reasoning holds true if we replace the assumption that
Γ be extreme by the property: No minimal surface X ∈ C(Γ ) has a boundary
branch point on ∂B.

In this context, J.C.C. Nitsche [31] has proved the following result:

Proposition 7. Let Γ be a closed, regular, real analytic Jordan curve in R
3

with the property that there is a straight line in R
3 such that no plane through

this line intersects Γ in more than two distinct points. Then every solution of
Plateau’s problem for Γ is free of branch points.

We now present a modified version of the 6π-finiteness theorem by J.C.C.
Nitsche [31] which considers also nonstable solutions of Plateau’s problem.

Proposition 8. Let Γ ∈ C3,α be a closed, regular, extreme Jordan curve in R
3

with a total curve κ(Γ ) less than 6π. Then from any sequence {Xj } of minimal
immersions Xj : B → R

3 we can extract a subsequence {Xjν } converging in
C3,β(B,R3) for 0 < β < α to a minimal immersion X : B → R

3 of class
C3,α(B,R3).

Proof. We copy the reasoning used for proving Proposition 6, but we have
to replace the stability condition with the subsequent curvatura-integra con-
dition to achieve a uniform modulus of continuity for the normals Nν of the
converging subsequence {Xjν } of {Xj }. The estimate (26) yields

(31) D(Nν) = A(Nν) ≤ κ(Γ ) − 2π =: ω with 0 ≤ ω < 4π.

If ω = 0 thenNν = const for all ν ∈ N, and thus theNν are certainly uniformly
continuous. Hence we can assume that

0 < ω < 4π.

With the aid of the Courant–Lebesgue lemma we obtain a universal radius
ρ > 0 such that Nν maps the circle ∂Bρ(w0) contained in B into a spherical
cap on S2 with a “sufficiently small” geodesic radius. Since Nν(w) 	≡ const on
B, it follows that Nν : B → S2 is an open mapping (because the composition
σ ◦ Nν with a stereographic projection σ : S2 → C is locally holomorphic,
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see Section 3.3). We then conclude that all spherical images Nν(Bρ(w0)) have
to remain within this cap. Otherwise Nν(Bρ(w0)) would entirely cover the
complementary cap, in contradiction to the integral condition (31). Thus we
obtain a modulus of continuity for the mappings Nν , ν ∈ N, in the interior
of B. �

Now we present the following version of Nitsche’s 6π-theorem:

Theorem 3. Let Γ ∈ C3,α be a closed, regular, extreme Jordan curve of
the total curvature κ(Γ ) < 6π. Then there exist only finitely many minimal
immersions X : B → R

3 of class C∗(Γ ).

Proof. If there were infinitely many minimal immersions, Proposition 8 would
yield a sequence of distinct minimal immersions Xj : B → R

3 of class C∗(Γ )
which converge in C2,β(B,R3), 0 < β < α, to some minimal immersion
X ∈ C∗(Γ ) of class C3,α(B,R3) with

Λ(w) := 1
2 | ∇X(w)|2 > 0 in B

and

(32) −
∫

B

KΛdudv ≤ ω < 4π.

By virtue of Proposition 4 we can represent the surfaces Xj as graphs Yj over
X in the form

Yj(w) = X(w) + ζj(w)N(w) for w ∈ B(33)

with ζj ∈ C2,α
0 (B) and ‖ζj ‖2,β → 0 for 0 < β < α.

For j � 1 the ζj are solutions of

(34) Lζj = Φ(ζj) in B with ζj = 0 on ∂B,

where L is the Schwarzian operator for X. If λ = 0 were not an eigenvalue of
L with respect to the boundary condition ζ = 0 on ∂B, we would obtain

ζj = L−1
0 Φ(ζj), j ∈ N,

with L0 := L|C2,β
0 (B). Since L−1

0 φ is contracting (see Proposition 2 of Sec-
tion 5.6) we obtain a contradiction to the property ‖ζj ‖2,β → 0 as j → ∞.
Thus λ = 0 is an eigenvalue of L.

If λ = 0 is the smallest eigenvalue of L then X is stable, and the arguments
used in the proofs of the Theorems 1 and 2 lead to a contradiction.

Now we show that λ = 0 has to be the smallest eigenvalue of L. Otherwise
there is a ξ ∈ C2,β

0 (B) with

Lξ = 0 in B
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with ∫
B

ξ(w) · ξ1(w) dw = 0,

where ξ1 is an eigenfunction to the smallest eigenvalue of L, i.e.

Lξ1 = λ1ξ1 in B, ξ1 = 0 on ∂B,

satisfying ξ1(w) > 0 in B. Then there are two disjoint and nonempty open
subsets Ω1 and Ω2 of {w ∈ B : ξ(w) 	= 0} such that

(35) Lξ = 0 in Ωj , ξ = 0 on ∂Ωj , ξ(w) 	= 0 on Ωj for j = 1, 2.

Condition (32) implies that one of the domains Ωj , say Ω1, has the property

(36) −
∫

Ω1

KΛdudv < 2π.

In virtue of the stability theorem by Barbosa–do Carmo (see Section 5.4),
property (36) implies that X|Ω1 is strictly stable, which is a contradiction to
(35) for j = 1.

Therefore, Γ bounds only finitely many minimal immersions of class C∗(Γ ).
�

Remark 9. The last theorem remains true under the weaker assumption
κ(Γ ) ≤ 6π. To cover the case κ(Γ ) = 6π we refer to the proof of Theorem 1
in Section 5.6, estimating the total geodesic curvature by the total curvature.

Remark 10. It would be desirable to establish Theorem 3 for real analytic
contours, renouncing the assumption that Γ be extreme. Nitsche’s 6π-theorem
in [31] states finiteness under the assumption that Γ be real analytic and that
no minimal surface X ∈ C(Γ ) has a branch point on B. We also hint at the
work of Beeson [3–5].

5.8 Scholia

H.A. Schwarz initiated the study of the second variation of area for immersed
minimal surfaces in his celebrated memoir Ueber ein die Flächen kleinsten
Flächeninhalts betreffendes Problem der Variationsrechnung (1885), dedicated
to K. Weierstrass on occasion of his seventieth birthday (cf. Schwarz [2],
Vol. I, pp. 223–269). The main purpose of that paper is to establish a cri-
terion whether or not a given minimal surface furnishes a relative minimum
of area among all surfaces bounded by the same contour. As Schwarz showed,
a minimal surface is a local minimizer if it can be embedded in a field, i.e.
a one-parameter foliation, of minimal surfaces. We have described this idea
in Sections 2.7 and 2.8. When is such an embedding possible? To decide this
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question, Schwarz considered the spherical image Ω of the given surface and
introduced the Schwarz operator L on this image. The desired embedding is
possible if the equation Lζ = 0 in Ω possesses a solution ζ ∈ C0(Ω) ∩ C2(Ω)
which is positive on Ω. In this connection, Schwarz connected the study of
the operator L = Δ + p, p > 0, with the minimum problem for the Rayleigh
quotient J1(ζ)/J0(ζ), where

J1(ζ) :=
∫

Ω

| ∇ζ|2 dx dy, J0(ζ) :=
∫

Ω

pζ2 dx dy.

This led him to the minimum characterization of the smallest eigenvalue for
Δ and L respectively, which can be considered as the beginning of Hilbert’s
theory of eigenvalue problems in the form that later was developed by Courant.
In this paper one also finds Schwarz’s inequality (see Schwarz [2], Vol. I, p. 251)
in the form ∣∣∣∣

∫
Ω

ϕψ dx dy

∣∣∣∣ ≤

√∫
Ω

ϕ2 dx dy

√∫
Ω

ψ2 dx dy.

These ideas were generalized by L. Lichtenstein, and later by many other
mathematicians to study the corresponding minimum problem for general
multiple integrals in the calculus of variations; see Giaquinta and Hildebrandt
[1], Vol. 1, Chapter 6, in particular Section 4.

J.C.C. Nitsche [26] revived Schwarz’s field construction to prove the cel-
ebrated uniqueness theorem presented in Section 5.6. Basic ingredients of
Nitsche’s proof are the results of Chapter 6 concerning the existence of unsta-
ble minimal surfaces, obtained by the mountain-pass lemma, and the stability
theorem of J.L. Barbosa and M. do Carmo [1].

We also note that the renewed interesting and flourishing study of stable
minimal surfaces was, in fact, initiated by the work of Barbosa and do Carmo.

A very careful and comprehensive description of results connected with
the second variation of surface area and stable minimal surfaces can be found
in J.C.C. Nitsche’s treatises [28] and [37], §§98–119; in particular a lucid pre-
sentation of Schwarz’s approach is given.

In Sections 5.1–5.5 we essentially followed the work of F. Sauvigny [1,
2,7–11]. We also mention prior work by R. Schoen [2], who generalized the
fundamental curvature estimate by E. Heinz [1], presented in Section 2.4, to
minimal immersions X : B → N in a three-dimensional oriented Rieman-
nian manifold N . A special case of his Theorem 3 is the following result: Let
M = X(B) be an immersed, stable surface in R

3 which compactly contains
a geodesic ball BR0(P0) for some P0 ∈ M and some r0 > 0. Then there is
an absolute constant c > 0 such that the second fundamental form A of M
at P0 is estimated by |A|2(P0) ≤ cr−2

0 . The corresponding analogue for cmc-
surfaces, due to F. Sauvigny [7,8], is given in Section 5.5, see Theorems 1
and 2. We also refer the reader to the interesting work of S. Fröhlich [1–5] on
curvature estimates for immersions of mean curvature type, even with higher
codimensions, where the notion of μ-stable extremals appears.
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Nitsche’s uniqueness result had a predecessor in an unpublished paper by
R. Schneider, who formulated the following beautiful theorem (1968): A closed
polygon in R

3 with a total curvature κ(Γ ) < 4π bounds only one disk-type
minimal surface. Moreover, he conjectured that every Jordan curve with a
total curvature less than 4π spans only one disk-type minimal surface, and
for any ε > 0 he gave an example of a curve Γ with κ(Γ ) < 4π + ε bounding
at least two disk-type minimal immersions.

Schneider’s Example (1968): Consider the minimal surface X : Ω → R3

defined by

X(u, v) := (−v sinu, v cosu, u), Ω := {(u, v) : |u| < απ, |v| < R}

for R > 0 and 0 < α < 1, which is part of the helicoid given by the equation
x+y tan z = 0. The boundary Γ of X consists of two straight segments Γ1, Γ2

and two parts Γ3, Γ4 of helices meeting Γ1 and Γ2 perpendicularly. The total
curvature of Γ3 as well of Γ4 is 2παR(1+R2)− 1

2 . Adding the contributions of
the four corners of Γ , one obtains

κ(Γ ) = 2π[1 + 2αR(1 +R2)− 1
2 ].

Given ε ∈ (0, 2π) we choose α ∈ ( 1
2 , 1) as α := 1

2 + ε
4π . Then

κ(Γ ) = 2π + (2π + ε)R(1 +R2)− 1
2 .

The right-hand side is an increasing function of R ∈ [0,∞) which tends to 1
as R → ∞, thus κ(Γ ) < 4π + ε for any R > 0. On the other hand, Schwarz
showed in 1872 (see [1]; and [2], Vol. 1, pp. 161–163) that for α ∈ (1

2 , 1) there
is a value R0(α) ∈ (

√
3,∞) with R0(α) → ∞ as α → 1

2 + 0, R0(α) →
√

3 as
α → 1 −0, such that X ◦τ does not furnish a relative minimum of area in C(Γ )
if R ∈ (R0(α),∞), where τ is a conformal mapping of the unit disk B onto Ω.
We know however that there is a minimal surface X̃ ∈ C(Γ ) which minimizes
area in C(Γ ). This surface is an immersion for the following reason. Since Γ
lies on the boundary of a compact convex set K, X̃ cannot have any boundary
branch points. Furthermore, through every point of K there is a plane which
intersects Γ only in two points. Hence no minimal surface of class C(Γ ) has
an interior branch point (see Radó [21], p. 35). Thus Γ bounds at least two
regular (i.e. immersed) minimal surfaces. We recall that Böhme [6] later on
showed that for any ε > 0 and any N ∈ N there is a real analytic Jordan curve
Γ with κ(Γ ) < 4π + ε which bounds at least N disk-type minimal surfaces.

Schneider’s paper was not published since it depended on fragmentary
results by Marx and Shiffman (cf. Marx [1]) which in 1968 were considered
to be unproved (Oberwolfach meeting on the “Calculus of Variations”). This
desideratum stimulated E. Heinz to write a series of fundamental papers (cf.
Heinz [19–24]) which rigorously dealt with the asymptotic behaviour of mini-
mal surfaces in corners and led to the theory of quasi-minimal surfaces. Some
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of Heinz’s results are described in the Scholia to Chapter 6. Using these re-
sults, F. Sauvigny [3–5] developed a theory of the second variation of the area
for minimal surfaces bounded by polygons, and he rediscovered Schneider’s
unpublished result, thereby also establishing an analog for R

p, p > 3. In addi-
tion, the “finiteness question” for certain polygonal boundaries was answered
affirmatively by R. Jakob [9,10], building on Heinz’s results.

We also mention a paper by H. Ruchert [2] where Nitsche’s uniqueness
theorem is carried over to “small” surfaces of constant mean curvature.

In a fundamental paper by R. Böhme and F. Tomi [1], the structure of
the set of solutions to Plateau’s problems was analyzed with the aid of semi-
analytic sets. This in turn led to F. Tomi’s seminal paper [6] about the finite-
ness of the number of absolute minimizers for Plateau’s problem.

J.C.C. Nitsche proved the 6π-finiteness theorem in his paper [31]. The iso-
latedness of cmc-immersions solving the corresponding Plateau problem was
investigated by F. Sauvigny [10]. His ideas are used in Section 5.7, especially
for the compactness results concerning minimal immersions.



Chapter 6

Unstable Minimal Surfaces

In this chapter we want to show that the existence of two minimal surfaces
in a closed rectifiable contour Γ , which are local minimizers of Dirichlet’s in-
tegral D, guarantees the existence of a third minimal surface bounded by Γ ,
which is unstable, i.e. of non-minimum character. Results of this kind were
first proved by M. Shiffman [2] and simultaneously by M. Morse and C. Tomp-
kins [1,2]. Here we present an approach to the result stated above that is due
to R. Courant [13] (a detailed presentation is given in his treatise [15], Chap-
ter VI, Sections 7 and 8). Courant’s method proceeds by reduction of the
problem to a finite-dimensional one for a function Θ : T → R

n provided the
boundary Γ is a closed polygon.1 In Section 6.1 we describe Courant’s re-
duction method in a modified version due to E. Heinz [13]. Then, in 6.2, we
prove several results concerning the existence of unstable critical points for a
function f ∈ C1(Ω) defined on a bounded, open, connected set of R

n. The
prototype is the following theorem: If f possesses two strict local minimizers
x1, x2 ∈ Ω and satisfies f(x) → ∞ as x tends to ∂Ω, then there exists a third
critical point x3 which is of non-minimum type. The proof of such a result
uses a maximum-minimum principle that is nowadays called the mountain
pass lemma.

In 6.3 this result is used to show that a polygonal contour bounds an
unstable minimal surface if it bounds two surfaces which are separated by a
wall, for instance if it spans two strict local minimizers with respect to the
“strong norm”

‖X‖1,B := ‖X‖C0(B,R3) +
√
D(X).

Shiffman [4] extended Courant’s approach from polygons to general rectifiable
contours using convergence results for the area functional A and for Dirich-
let’s integral D. These results are presented in Section 6.4. One kind of con-
vergence employs the Douglas functional A0 which is seen to coincide with D
on harmonic mappings. The other kind of convergence uses computations and

1 In Section 4.15, No. 5, the Courant function was denoted by d just as in Courant’s original

work.
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estimates which also lead to an isoperimetric inequality for harmonic surfaces
H of class C(Γ ),

A(H) ≤ 1
4L

2(Γ ),

where L(Γ ) is the length of the boundary contour Γ , or more generally,

A(H) ≤ 1
4

(∫
∂B

|dX|
)2

for H ∈ H1
2 (B,R3) ∩C0(B,R3) if X|∂B is not monotonic. Shiffman’s passage

to the limit from polygons to general rectifiable contours satisfying a chord-
arc condition is worked out in Section 6.6, also using ideas due to Heinz [14]
and a topological reasoning that we have taken from R. Jakob [1] and [2];
this part is presented in Section 6.5. It should be pointed out that in 6.6 we
have to work with the weaker norm ‖X‖C0(B,R3) since the convergence results
of 6.4 do not suffice to carry over the results for polygons to the case of general
boundaries in full strength.

6.1 Courant’s Function Θ

Let Γ be a simple closed polygon (i.e. a piecewise linear and closed Jordan
curve) in R

3 with N + 3 (≥ 4) consecutive vertices

Q0, A1, . . . , Al, Q1, Al+1, . . . , Am, Q2, Am+1, . . . , AN , Q0.

Set ψk := 2kπ
3 for k = 0, 1, 2, 3 and consider the set T of points t =

(t1, . . . , tN ) ∈ RN satisfying

ψ0 < t
1 < · · · < tl < ψ1 < t

l+1 < · · · < tm < ψ2 < t
m+1 < · · · < tN < ψ3.

Clearly T is a bounded, open, and convex subset of R
N . We define C(Γ ) as

in Chapter 4, and the subclass C
∗
(Γ ) is to consist of those X ∈ C(Γ ) which

satisfy the three-point condition X(wk) = Qk, k = 0, 1, 2, with wk := eiψk .

Definition 1. With every t ∈ T we associate the set

(1) U(t) = {X ∈ C
∗
(Γ ) : X(eit

k

) = Ak, k = 1, . . . , N}.

Then we define the Courant function Θ : T → R by

(2) Θ(t) := inf{D(X) : X ∈ U(t)}.

Proposition 1. For every t ∈ T there is exactly one X ∈ U(t) such that

D(X) = Θ(t).

This X is harmonic in B, continuous on B, and the quadratic differential
dX · dX is holomorphic, that is, the function f := a−ib with a := |Xu|2− |Xv |2,
b := 2〈Xu, Xv 〉 is holomorphic in B.
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Proof. (i) The existence of a solution of Courant’s minimum problem

(3) D → min in U(t)

is proved in the same way as the existence of a solution to Plateau’s problem
“D → min in C

∗
(Γ )”, and also the regularity properties follow in the same

manner. Since D(X) = Θ(t) implies

∂D(X,λ) = 0 for any λ ∈ C∞
c (B,R2)

the function f = a − ib is holomorphic in B (see Chapter 4).
(ii) Suppose now that X1, X2 ∈ U(t) are two solutions of (3), i.e.

D(X1) = D(X2) = Θ(t).

Set Y1 := 1
2 (X1 − X2), Y2 := 1

2 (X1 +X2). Since U(t) is evidently convex we
have Y2 ∈ U(t), and so

Θ(t) ≤ D(Y2).

The parallelogram law yields

D(X1) +D(X2) − 2D(Y2) = 2D(Y1)

whenceD(X1−X2) = 0. This implies ∇(X1−X2) = 0, and soX1−X2 = const.
As Xj(wk) = Qk, k = 0, 1, 2, for both j = 1 and j = 2, we arrive at X1 = X2.
�

Definition 2. We introduce the Courant mapping Z : T → C
∗
(Γ ) as the

mapping t �→ Z(t) for t ∈ T where Z(t) is the uniquely determined element in
U(t) such that

(4) Θ(t) = D(Z(t)).

For w = u+ iv=̂(u, v) ∈ B we write

Z(t, u, v) = Z(t, w) := Z(t)(w).

There is a close connection between the Courant function Θ, the Courant
map Z, and the minimal surfaces bounded by Γ . In fact we shall see that
the minimal surfaces of class C

∗
(Γ ) are in one-to-one correspondence to the

critical points t of Θ, and they are given by the values Z(t) of Z at these t.
Precisely speaking we shall prove:

Theorem 1. (i) The Courant function Θ is of class C1(T ), and Θ(t) tends
to infinity if t approaches the boundary ∂T .

(ii) If X is a minimal surface of class C
∗ (Γ ) then X = Z(t) for exactly

one t ∈ T .
(iii) For t ∈ T the harmonic surface Z(t) is a minimal surface if and only

if t is a critical point of Θ. Thus the set of minimal surfaces in C
∗
(Γ ) is in

1–1 correspondence to the set of critical points of Θ.
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To verify this result we proceed in several steps. We begin by proving

Lemma 1. Suppose that X ∈ U(t) is a minimal surface. Then X is real
analytic on B′ := B \ {eis1 , . . . , eisN+4 } where s1 < s2 < · · · < sN+4 stand for
the N + 4 parameters

ψ0 < t
1 < · · · < tl < ψ1 < t

l+1 < · · · < tm < ψ2 < t
m+1 < · · · < tN < ψ3

corresponding to the vertices Q0, A1, . . . , Al, Q1, . . . , AN , Q0 of Γ . Moreover,
transforming X to polar coordinates r, ϕ around the origin by Y (r, ϕ) :=
X(reiϕ) we find for any j ∈ {1, 2, . . . , N+3} an orthonormal triple of constant
vectors p1, p2, p3 ∈ R

3 such that

(5) Y (r, ϕ) = Y (1, sj) + α1(r, ϕ)p1 + α2(r, ϕ)p2 + α3(r, ϕ)p3 for reiϕ ∈ B′

and

(6) α1(1, ϕ) = 0, a2(1, ϕ) = 0, a3,r(1, ϕ) = 0 for sj < ϕ < sj+1.

Proof. If X is a minimal surface of class U(t), the assertions follow from the
reflection principle, see Section 4.8, Theorem 1. �

Proposition 2. Any minimal surface X of class U(t) coincides with the min-
imizer Y := Z(t) of D in U(t).

Proof. Consider the domain

Ω := B
∖N+3⋃

j=1

Bεj (w̃j), w̃j := eisj , εj > 0,

with s1, . . . , sN+3 as in Lemma 1. For 0 < εj � 1 the domain Ω is simply
connected, and ∂Ω consists of subarcs γj of ∂B and of circular subarcs Cj of
∂Bεj (w̃j). For φ := Y − X we have

DΩ(Y ) = DΩ(X) +DΩ(φ) + 2DΩ(X,φ),

and

DΩ(X,φ) =
1
2

∫
∂Ω

Xν · φ dH1, ν := exterior normal to ∂Ω,

since X ∈ C2(Ω,R3), X,φ ∈ C0(Ω,R3), and ΔX = 0 in B. By Lemma 1 it
follows that Xν · φ = 0 on γ1, γ2, . . . , γN+3 whence

DΩ(X,φ) =
N+3∑
j=1

∫
Cj

Xνφ dH
1

and therefore
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|DΩ(X,φ)| ≤ const
N+3∑
j=1

∫
Cj

|Xν | dH1.

Choosing ε1, . . . , εN+3 appropriately we can make the right hand side as
small as we like (using the conformality relations and the Courant–Lebesgue
Lemma, see Section 4.4), and so we arrive at

D(Y ) = D(X) +D(Y − X) ≥ D(X).

Since Y is assumed to be the uniquely determined minimizer of D in U(t) we
obtain X = Y . �

Proof of part (ii) of Theorem 1. Since X is of class C
∗ (Γ ) it satisfies the 3-

point condition X(wk) = Qk, k = 0, 1, 2, and X|∂B is (weakly) monotonic.
Thus there is an n-tuple t ∈ T such that X ∈ U(t). By Proposition 2 it follows
that X = Z(t). Suppose that there is another t′ ∈ T with t′ 	= t such that
X = Z(t′). Then there exist values s and s′ with 0 ≤ s < s′ < 2π such that
γ := {eiϕ : s < ϕ < s′ } lies in B′ and X(1, ϕ) ≡ const on γ whence ∇X ≡ 0 on
γ because of the conformality relations. As the branch points of a nonconstant
minimal surface are isolated we obtain X(w) ≡ const on B which contradicts
the 3-point condition. Therefore t = t′. �

This shows that the minimal surfaces within C
∗
(Γ ) are in one-to-one cor-

respondence with a nonempty subset T0 of T . We want to prove that T0 is
the set of critical points of Θ. This, in particular, requires to show that Θ is
of class C1(T ).

An important technical tool is a formula for the inner variation of Dirich-
let’s integral, for which we shall state a certain generalization. First we intro-
duce an important class of diffeomorphisms σε = σ(·, ε) of B onto itself that
was already used in Chapter 4; see 4.5, Supplementary Remarks.

Lemma 2. There exist two constants δ0 > 0 and κ0 > 0 with the following
properties:

(i) For every ε ∈ (−2, 2) and any real-valued function μ ∈ C1(B) with
|μ|C1(B) < δ0, the mapping τε = τ(·, ε) of B into R2 defined by

(7) τε(w) = τ(w, ε) := weiεμ(w), w ∈ B,

is a C1-diffeomorphism of B onto itself which maps any circle Cr := {w ∈
C : |w| = r}, 0 < r ≤ 1, onto itself, in particular σε(∂B) = ∂B. Denote by
σε = σ(·, ε) := τ−1

ε the inverse mapping to τε. If we view w �→ σε(w) and
ω �→ τε(w) as one-parameter families of diffeomorphisms from B onto
itself, we have

(8)

τε(w) = w − ελ(w) + ρ(w, ε),

λ(w) = −iwμ(w), ρ(w, ε) =
∞∑

n=2

εn

n!
winμn(w).
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Writing λ(w) = λ1(w) + iλ2(w) in the real form λ(u, v) = (λ1(u, v),
λ2(u, v)) we obtain

(9) λ1(u, v) = vμ(u, v), λ2(u, v) = −uμ(u, v).

Clearly λ(u, v) is tangential to ∂B at w = (u, v).
(ii) For X ∈ C(Γ ) ∩ C1(B,R3), |ε| < 2 and |μ|C1(B) < δ0 we can represent

D(X ◦ σε) in the following way :

(10) D(X ◦ σε) = D(X) + ε∂D(X,λ) + ε2R(X,μ)

with

(11) ∂D(X,λ) =
1
2

∫
B

[a(λ1
u − λ2

v) + b(λ1
v + λ2

u)] du dv,

a := |Xu|2 − |Xv |2, b := 2〈Xu, Xv 〉,

and

(12) |R(X,μ)| ≤ κ0D(X)|μ|2
C1(B)

.

Furthermore we can write ∂D(X,λ) in the form

(13) ∂D(X,λ) = 4
∫

B

Im[wμwXw · Xw] du dv =: V (X,μ).

Proof. Part (i) is fairly obvious and can be left to the reader. Assertion (ii)
follows by the computations of Section 4.5. Note that the functions ϕ, μ, ν in
4.5, (26)–(28) have in (10)–(13) been replaced by μ, λ1, λ2 respectively. Thus
we have

τε(w) = weiεμ(w) =
∞∑

n=0

εn

n!
winμn(w) = w − ελ(w) + · · · as ε → 0,

σε(ω) = ω + ελ(ω) + · · · as ε → 0, λ(w) = λ1(w) + iλ2(w) = −iwμ(w),

i.e.
λ1(u, v) = vμ(u, v), λ2(u, v) = −uμ(u, v),

and so
λ1

u = vμu, λ1
v = μ+ vμv,

λ2
u = −μ − uμu, λ2

v = −uμv,

whence

a(λ1
u − λ2

v) + b(λ1
v + λ2

u) = a(vμu + uμv) + b(vμv − uμu)

and
2wμw = (u+ iv)(μu + iμv) = (uμu − vμv) + i(vμu + uμv).
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In conjunction with 4Xw · Xw = a − ib the last equation yields

8 Im[wμwXw · Xw] = a(uμv + vμu) + b(vμv − uμu)
= a(λ1

u − λ2
v) + b(λ1

v + λ2
u).

Therefore equation (13) is equivalent to (11). �

Proposition 3. We have Θ ∈ C0(T ).

Proof. For tp = (t1p, . . . , t
N
p ) ∈ T with tp → t ∈ T as p → ∞, t = (t1, . . . , tN )

we have to show that Θ(tp) → Θ(t). To this end we choose functions
νn ∈ C1(B), n = 1, . . . , N , satisfying

(14) νn(wk) = 0, k = 0, 1, 2, and νn(ζj) = δnj , ζj := eit
j

,

δnj = Kronecker symbol, and set

(15) μp(w) :=
N∑

n=1

(tnp − tn)νn(w) for w ∈ B.

Then μp ∈ C1(B) and |μp|C1(B) → 0 as p → ∞, in particular

|μp|C1(B) < δ0 for p � 1.

Hence the mappings σp := τ−1
p with τp defined by

(16) τp(w) := weiμp(w), w ∈ B,

satisfy the assumptions of Lemma 2 for p � 1, and σp(wk) = wk and σp(ζ
p
j ) =

ζj , ζ
p
j := eit

j
p , whence Xp := Z(t) ◦ σp ∈ U(tp). Therefore

Θ(tp) ≤ D(Xp), Θ(t) = D(Z(t)),

and by Lemma 2 we obtain

(17) Θ(tp) ≤ Θ(t) + κD(Z(t))|μp|2
C1(B)

for p � 1 and some constant κ > 0. Since Θ(tp) = D(Z(tp)) it follows that

(18) D(Z(tp)) ≤ Θ(t)[1 + κδ20 ] for p � 1.

On the other hand, replacing μp by μ′
p with

μ′
p(w) :=

N∑
n=1

(tn − tnp )νp
n(w)
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with νp
n(wk) = 0, 0 ≤ k ≤ 2, νp

n(ζp
j ) = δnj for 1 ≤ j, n ≤ N and νp

n ∈ C1(B)
as well as |νp

n|C1(B) ≤ c for some constant c and all p ∈ N, 1 ≤ n ≤ N , we
consider σ′

p := (τ ′
p)

−1 with

τ ′
p(w) := weiμ

′
p(w) for w ∈ B.

Then Yp := Z(tp) ◦ σ′
p ∈ U(t) whence

Θ(t) ≤ D(Yp), Θ(tp) = D(Z(tp)),

and Lemma 2 yields

(19) Θ(t) ≤ Θ(tp) + κD(Z(tp))|μ′
p|2

C1(B)
for p � 1

with the same κ as in (17). On account of (17)–(19) we arrive at

|Θ(t) − Θ(tp)| ≤ κΘ(t)
{

|μp|2
C1(B)

+ [1 + κδ20 ]|μ′
p|2

C1(B)

}

for p � 1. Since |μp|C1(B) → 0 and |μ′
p|C1(B) → 0 as p → ∞ we obtain

(20) Θ(tp) → Θ(t) as tp → t. �

Because of (18) and |Z(tp)|C0(B,R3) ≤ const for p ∈ N, it follows that

|Z(tp)|H1
2 (B,R3) ≤ const for all p ∈ N.

Then, for any subsequence of {Z(tp)} we may extract another subsequence
{Z(tpk

)} such that Z(tpk
) ⇀ Y in H1

2 (B,R3) for some Y ∈ H1
2 (B,R3). By the

Courant–Lebesgue Lemma and the maximum principle we may also assume
that

|Y − Z(tpk
)|C0(B,R3) → 0 as k → ∞.

This implies Y ∈ U(t) ∩ C0(B,R3); therefore Θ(t) ≤ D(Y ). On the other
hand we infer from Z(tpk

) ⇀ Y in H1
2 (B,R3) that

D(Y ) ≤ lim
k→∞

D(Z(tpk
)) = lim

k→∞
Θ(tpk

) = Θ(t).

Thus we have D(Y ) = Θ(t). In virtue of Proposition 1 and Definition 2 it
follows that Y = Z(t), whence Z(tpk

) → Z(t) in H1
2 (B,R3). By a standard

reasoning we obtain

(21)
∣∣Z(t) − Z(tp)

∣∣
H1

2 (B,R3)
+
∣∣Z(t) − Z(tp)

∣∣
C0(B,R3)

→ 0 as tp → t,

and well-known estimates for harmonic mappings yield

(22)
∣∣Z(t) − Z(tp)

∣∣
Cs(Ω,R3)

→ 0 as tp → t

for any Ω ⊂⊂ B and any s ∈ N. Thus we have found:



6.1 Courant’s Function Θ 433

Proposition 4. The Courant mapping Z : T → C
∗
(Γ ) is continuous in the

sense of (21) and (22).

Lemma 3. Suppose that μ ∈ C1(B) satisfies |μ|C1(B) < δ0 and μ(wk) = 0,
k = 0, 1, 2, where δ0 is the constant from Lemma 2. Then for every t =
(t1, . . . , tN ) ∈ T and u = (u1, . . . , uN ) with uj := μ(ζj) and ζj = eit

j

we have

(23) Θ(t+ u) ≤ Θ(t) + V (Z(t), μ) +R(Z(t), μ)

with

(24)
∣∣R(Z(t), μ)

∣∣ ≤ κ0D(Z(t))|μ|2
C1(B)

.

Proof. Consider the diffeomorphism σ = τ−1 defined by τ(w) := weiμ(w), and
let Z(t) be the minimizer of D in U(t). Then Z ′ := Z(t) ◦ σ ∈ U(t + u) and
(10)–(13) implies

D(Z ′) = D(Z(t)) + V (Z(t), μ) +R(Z(t), μ)

where R(Z(t), μ) is estimated by (24), see Lemma 2. Furthermore Θ(t) =
D(Z(t)) and Θ(t+ u) ≤ D(Z ′), and so we obtain (23). �

Proposition 5. For any t ∈ T and any u ∈ R
N the directional derivative

(25)
∂

∂u
Θ(t) := lim

ε→0

1
ε
[Θ(t+ εu) − Θ(t)]

exists and can be computed as follows: Choose some real-valued function
μ ∈ C1(B) satisfying μ(wk) = 0, k = 0, 1, 2, and μ(ζj) = uj, 1 ≤ j ≤ N ,
for ζj := exp(itj). Then

(26)
∂

∂u
Θ(t) = V (Z(t), μ).

Setting λ(w) := −iwμ(w) we can equivalently write

(27)
∂

∂u
Θ(t) = ∂D(Z(t), λ).

Proof. Given t ∈ T and u ∈ R
N we choose a function μ ∈ C1(B) satisfying

(I) μ(wk) = 0, k = 0, 1, 2, and μ(ζj) = uj for ζj := eit
j

, 1 ≤ j ≤ N .
(IIr) There is some number r > 0 such that

μ(w) ≡ μ(ζj) for w ∈ B ∩ Br(wj), 1 ≤ j ≤ N.

Then we choose some ε0 > 0 such that

ε0|μ|C1(B) < δ0.
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If we apply Lemma 3 to t and εu (instead of t and u) we obtain

Θ(t+ εu) ≤ Θ(t) + εV (Z(t), μ) +R(Z(t), εμ)

provided that |ε| < ε0. Here we only have used (I). To establish the next
inequality we employ (IIr). For this purpose we apply Lemma 3 to t′ := t+εu
and −εu instead of t and u respectively. Then

Θ(t) ≤ Θ(t+ εu) − εV
(
Z(t+ εu), μ) +R(Z(t+ εu),−εμ)

for |ε| < ε1(r) and some ε1(r) ∈ (0, ε0). Thus, for 0 < |ε| < ε1(r),∣∣Θ(t+ εu) − Θ(t) − εV
(
Z(t), μ)

∣∣
≤ |ε|

∣∣V (Z(t+ εu), μ) − V (Z(t), μ)
∣∣+ ∣∣R(Z(t), εμ

∣∣+ ∣∣R(Z(t+ εu),−εμ)
∣∣.

By (13) and (21) we see that
∣∣V (Z(t+ εu), μ) − V (Z(t), μ)

∣∣ → 0 as ε → 0.

Furthermore we have |Z(t+ εu)|H1
2 (B,R3) ≤ c = const for |ε| � 1, and so

|ε| −1
{∣∣R(Z(t), εμ

)∣∣+ ∣∣R(Z(t+ εu),−εμ)
∣∣} ≤ 2c|μ|2

C1(B)
· |ε| for |ε| � 1.

We then conclude that∣∣∣∣1ε [Θ(t+ εu) − Θ(t)] − V (Z(t), μ)
∣∣∣∣ → 0 as ε → 0.

Thus we have proved (26) for functions μ ∈ C1(B) satisfying (I) and (IIr).
In order to show that (IIr) is superfluous we approximate a given μ ∈ C1(B)
satisfying (I) by functions μp ∈ C1(B) satisfying (I) and (IIrp) with rp → +0,
as well as

|μ − μp|C1(Ω) → 0 for p → ∞ and any Ω ⊂⊂ B.

By (13) we obtain

V (Z(t), μp) → V (Z(t), μ) as p → ∞.

On the other hand we have already proved that ∂
∂uΘ(t) exists and that

∂

∂u
Θ(t) = V (Z(t), μp) for all p ∈ N.

Letting p tend to infinity we obtain (26) for any μ ∈ C1(B) satisfying (I). �

Proposition 6. The Courant function Θ is of class C1(T ). Moreover, for any
t = (t1, . . . , tN ) ∈ T , ζj = exp(itj), and any μ ∈ C1(B) satisfying μ(wk) = 0,
k = 0, 1, 2, we have
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(28)
N∑

j=1

Θtj (t)μ(ζj) = V (Z(t), μ)

and, equivalently, for λ(w) := −wiμ(w):

(29)
N∑

j=1

Θtj (t)μ(ζj) = ∂D(Z(t), λ).

Proof. Let u = (1, 0, . . . , 0) and choose μ, μ′ ∈ C1(B) with

μ(wk) = 0, μ′(wk) = 0, k = 0, 1, 2,

and
μ(ζ1) = μ′(ζ ′

1) = 1, μ(ζj) = μ′(ζ ′
j) = 0 for 2 ≤ j ≤ N,

where ζj = exp(itj), ζ ′
j = exp(it′ j). According to (26) we have

∂Θ

∂t1
(t) = V (Z(t), μ),

∂Θ

∂t1
(t′) = V (Z(t′), μ′),

and Proposition 4 yields |Z(t′) − Z(t)|H1
2 (B,R3) → 0 as t′ → t.

Furthermore we can construct μ′ as a one-parameter family of functions
μ′(t′, ·) ∈ C1(B), |t′ − t| � 1, with

lim
t′ →t

∣∣μ′(t′, ·) − μ
∣∣
C1(B)

= 0.

Then we obtain
lim
t′ →t

∣∣Θt1(t′) − Θt1(t)
∣∣ = 0,

i.e. Θt1 ∈ C0(T ), and similarly it follows that Θt2 , . . . , ΘtN ∈ C0(T ). Hence
we have proved that Θ ∈ C1(T ), and this implies

∂Θ

∂u
(t) =

N∑
j=1

Θtj (t)uj .

On account of Proposition 5, we now obtain (28) and (29). �

Proposition 7. We have Θ(t) → ∞ as dist(t, ∂T ) → 0.

Proof. Otherwise there is a sequence {tp} of points tp ∈ T with tp → t ∈ ∂T
and Θ(tp) = D(Z(tp)) ≤ const, and by the Courant–Lebesgue Lemma we
may assume that the mappings Z(tp)|∂B are uniformly convergent on ∂B.
This clearly contradicts the fact that tp → t ∈ ∂T , which means that at least
one of the sequences of intervals

[ψ0, t
1
p], [t1p, t

2
p], . . . , [tNp , ψ2], p ∈ N,

shrinks to one point, whereas each of these intervals is mapped by Z(tp)|∂B

onto one of the sides of Γ . �
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Proof of Theorem 1. Part (i) of the assertion follows from Propositions 6
and 7, and Part (ii) is already proved. Thus it remains to prove Part (iii):

(I) If Z(t) is a minimal surface we have Z(t)w ·Z(t)w = 0, and consequently
V (Z(t), μ) = 0 for any μ ∈ C1(B), which implies ∇Θ(t) = 0 by virtue
of Propositions 5 and 6 respectively.

(II) If ∇Θ(t) = 0 we infer from Proposition 6 that

(30) V (Z(t), μ) = 0 for any μ ∈ C1(B) with μ(wk) = 0,
k = 0, 1, 2.

By Proposition 8 to be proved consequently we obtain Z(t)w ·Z(t)w = 0,
and therefore Z(t) is a minimal surface since Z(t) is harmonic.

(III) By assertion (ii) of Theorem 1 we know that for every minimal surface
X ∈ C

∗
(Γ ) there is exactly one t ∈ T such that X = Z(t). Hence the

set of minimal surfaces in C
∗
(Γ ) is in one-to-one correspondence to the

set of critical points of Θ. �

Proposition 8. Suppose that (30) is satisfied. Then

(31) V (Z(t), μ) = 0 for any μ ∈ C1(B),

and so Z(t) satisfies the conformality relation

(32) Z(t)w · Z(t)w = 0,

i.e. Z(t) is a minimal surface.

Proof. For the sake of brevity we set X := Z(t). We have

V (X,μ) = lim
r→1−0

Vr(X,μ)

with
Vr(X,μ) := 4 Im

∫
Br

wXw · Xwμw du dv,

Br := {w ∈ B : |w| < r}, 0 < r < 1. Set

f(w) := wXw(w) · Xw(w)μ(w), g(w) := wXw(w) · Xw(w)μw(w).

Since Xw · Xw is holomorphic we have

fw = g,

and Gauß’s theorem yields
∫

Br

g(w) du dv =
1
2i

∫
∂Br

f(w) dw =
1
2

∫ 2π

0

f̃(reiϕ)μ(reiϕ) dϕ
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with
f̃(w) := w2Xw(w) · Xw(w).

Therefore,

Vr(X,μ) =
∫ 2π

0

h(reiϕ)μ(reiϕ) dϕ

with

h(w) := 2 Im f̃(w) =
∞∑

k=2

(akw
k + akw

k).

Let
μ0(w) := Re(a+ bw + cw)

for arbitrarily chosen a, b, c ∈ C. Then

∫ 2π

0

h(reiϕ)μ0(reiϕ) dϕ = 0 for 0 < r < 1

and therefore
Vr(X,μ) = Vr(X,μ − μ0).

With r → 1 − 0 we arrive at

V (X,μ) = V (X,μ − μ0).

We can choose a, b, c ∈ C in such a way that μ(wk) = μ0(wk) for k = 0, 1, 2
whence V (X,μ−μ0) = 0 on account of (30), and so V (X,μ) = 0; i.e. we have
verified (31).

Now we can argue as in Section 4.5, Supplementary Remark 1, to obtain
Xw · Xw = 0.

Another way to verify this equation is to apply the relation

0 = lim
r→1−0

∫ 2π

0

h(reiϕ)μ(reiϕ) dϕ, h(w) =
∞∑

k=2

(akw
k + akw

k),

to μ(w) := 1
2 (wk + wk) as well as to μ(w) := 1

2i (w
k − wk). This leads to

ak + ak = 0 and ak − ak = 0, i.e. ak = 0 for k ≥ 2, and so h(w) ≡ 0 on B.
Since

h(w) := 2 Im[w2Xw(w) · Xw(w)]

it follows that
w2Xw(w) · Xw(w) ≡ const =: c.

Therefore Xw(w) · Xw(w) = cw−2 on B \ {0}, which implies c = 0 since the
left-hand side is holomorphic in B. �
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6.2 Courant’s Mountain Pass Lemma

In this section we want to prove several versions of the mountain pass lemma
that can essentially be found in Courant’s treatise [15], VI.7.

Theorem 1. Let Ω be a bounded domain in R
n, and assume that f ∈ C1(Ω)

has the following two properties:

(i) f(x) → ∞ as dist(x, ∂Ω) → 0 for x ∈ Ω;
(ii) there are two distinct strict local minimizers x1, x2 ∈ Ω of f .

Then f possesses a third critical point x3 ∈ Ω that is “unstable” in the sense
that x3 is not a local minimizer of f . Furthermore x3 has the following “saddle
point property”:

(1) f(x3) = inf
p∈P

max
x∈p

f(x) =: c

where P denotes the set of all compact connected subsets p of Ω with x1, x2 ∈ p
(i.e. the set of all “paths” in Ω connecting x1 and x2).

Proof. Because of (i) there is an ε > 0 such that

(2) f(x) > c+ 1 for all x ∈ Ω with dist(x, ∂Ω) < ε.

We choose a sequence {pm} of paths pm ∈ P with

cm := max
pm

f ≤ c+ 1 for all m ∈ N and lim
m→∞

cm = c,

and then we set

p∗
m := closure (pm ∪ pm+1 ∪ pm+2 ∪ · · · ), p∗ := p∗

1 ∩ p∗
2 ∩ p∗

3 ∩ · · · .

By (2), the compact sets p∗
m are contained in Ω, and p∗

1 ⊃ p∗
2 ⊃ p∗

3 ⊃ · · · .
Therefore p∗ is a compact subset of Ω. Since x1 and x2 are contained in all
pm it follows that all sets p∗

m are connected, and so p∗ is connected (see e.g.
Alexandroff and Hopf [1], p. 118). Hence p∗ ∈ P and so

(3) max
p∗
f ≥ inf

p∈P
max

p
f = c.

On the other hand, p∗ = lim supm→∞ pm := set of all points x ∈ R
n with

x = limj→∞ zj of points zj ∈ pmj
with mj → ∞. Thus any point y ∈ p∗ is the

limit of a sequence of points zj ∈ pmj
with mj → ∞. Therefore f(zj) → f(y)

and
f(zj) ≤ max

pmj

f = cmj → c,

whence f(y) ≤ c, and consequently maxp∗ f ≤ c. By virtue of (3) we obtain

(4) max
p∗
f = c with c := inf

p∈P
max
x∈p

f(x).



6.2 Courant’s Mountain Pass Lemma 439

On account of (ii) we have also

(5) max{f(x1), f(x2)} < c.

Now we want to show that there is a critical point x3 of f with x3 ∈ p∗ and
f(x3) = c. To prove this we consider the level set Lc in p∗, defined by

Lc := {x ∈ p∗ : f(x) = c},

which is compact and nonvoid. We claim that ∇f(x3) = 0 for some x3 ∈ Lc.
Otherwise, | ∇f(x)| ≥ 2ε > 0 for all x ∈ Lc. Since f ∈ C1(Ω) there would
exist a number δ > 0 such that

| ∇f(x)| > ε in U := {x ∈ Ω : dist(x, Lc) < δ} ⊂⊂ Ω.

By virtue of (5) we can also choose δ > 0 so small that x1, x2 /∈ U. Let V be
an open subset of the open set U such that

Lc ⊂⊂ V ⊂⊂ U ⊂⊂ Ω.

By Tietze’s theorem there is a function η ∈ C0
c (Ω) with 0 ≤ η ≤ 1, η(x) ≡ 1

on V, and supp η ⊂ U. Then we define ϕ ∈ C0(Ω × R,Rn) by

ϕ(x, t) := x − tη(x)∇f(x).

Clearly, ϕ(x, ·) ∈ C1(R,Rn) for any x ∈ Ω. Since U ⊂⊂ Ω and η(x) = 0 for
x ∈ Ω \ U, there is a number t0 > 0 such that ϕ(x, t) ∈ Ω for any x ∈ Ω and
|t| ≤ t0. Thus f ◦ ϕ is defined on Ω × [−t0, t0], and

d

dt
f(ϕ(x, t)) = −η(x)〈∇f(ϕ(x, t)),∇f(x)〉

= −η(x)| ∇f(x)|2 − η(x)〈a(x, t) − ∇f(x),∇f(x)〉

with
a(x, t) := ∇f(ϕ(x, t)).

By making t0 > 0 sufficiently small we can achieve that

|a(x, t) − ∇f(x)| ≤ ε

2
≤ 1

2
| ∇f(x)|

for x ∈ U and |t| ≤ t0 whence

−η(x)〈a(x, t) − ∇f(x),∇f(x)〉 ≤ η(x)
2

| ∇f(x)|2

for x ∈ U and |t| ≤ t0. Since η(x) = 0 for x ∈ Ω \ U this inequality is also
satisfied for x ∈ Ω \ U and |t| ≤ t0, and so
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d

dt
f(ϕ(x, t)) ≤ −η(x)

2
| ∇f(x)|2 for x ∈ Ω and |t| ≤ t0.

Let p0 be the compact, connected set

p0 := ϕ(p∗, t0) = {ϕ(x, t0) : x ∈ p∗ }.

Since x1, x2 ∈ p∗ and x1, x2 /∈ U we obtain x1, x2 ∈ p0 on account of
ϕ(x, t) = x for x ∈ Ω \ U, and so we see that p0 ∈ P. Consequently we
have

(6) max
p0

f ≥ c.

Furthermore, for any x ∈ p∗ and z := ϕ(x, t0) we can write

f(z) − f(x) = f(ϕ(x, t0)) − f(ϕ(x, 0)) =
∫ t0

0

d

dt
f(ϕ(x, t)) dt

and therefore
f(z) ≤ f(x) − t0

2
η(x)| ∇f(x)|2.

For x ∈ Lc we then obtain

f(z) ≤ f(x) − t0
2
ε2 < f(x) = c,

and for x ∈ p0 \ Lc we have f(x) < c and therefore f(z) ≤ f(x) < c. This
implies f(z) < c for all z ∈ p0, whence maxp0

f < c which is a contradiction
to (6), and so we infer that minLc | ∇f | = 0. Hence Lc contains a critical point
of f . Let Kc be the set of critical points of f contained in Lc, i.e.

Kc = {x ∈ p∗ : f(x) = c and ∇f(x) = 0}.

Clearly Kc is a closed subset of the compact set p∗. Since x1 and x2 are
contained in p∗ \Lc there is a boundary point x3 of Kc (viewed as a subspace
of the connected topological space p∗). Then, in any neighborhood N of x3

there is a point y ∈ p∗ \Kc. By f(x) ≤ c for all x ∈ p∗ we either have f(y) < c
or f(y) = c. In the second case we have ∇f(y) 	= 0; consequently there is a
point z ∈ N with f(z) < f(y) = c. Thus any neighborhood N of x3 contains
a point x with f(x) < f(x3), i.e. x3 is not a local minimizer of f . �

The first part of the preceding proof yields the following result.

Proposition 1. Let Ω be a bounded domain in R
n, and assume that f ∈

C1(Ω) satisfies f(x) → ∞ as dist(x, ∂Ω) → 0 for x ∈ Ω. Then, for any
x1, x2 ∈ Ω, there exists a compact, connected set p∗ ⊂ Ω with x1, x2 ∈ p∗

such that
max

p∗
f = inf

p∈P
max

p
f

where P denotes the set of all compact connected sets p in Ω with x1, x2 ∈ p.
We call p∗ a minimal path of P.
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Remark 1. We note that the unstable critical point x3 of f determined in
the proof of Theorem 1 lies on a minimal path p∗ of p.

The result of Theorem 1 can be extended in the following way:

Theorem 2. Let Ω be a bounded domain in R
n, and assume that f ∈ C1(Ω)

has the following properties:

(i) f(x) → ∞ as dist(x, ∂Ω) → 0 for x ∈ Ω.
(ii*) There are two distinct points x1, x2 ∈ Ω such that

max
p
f > max{f(x1), f(x2)} for all p ∈ P

where P denotes the set of all compact, connected subsets p of Ω con-
taining x1 and x2.

Then f possesses a minimal path p∗ of P and an unstable critical point x3

such that x3 ∈ p∗, f(x3) = maxp∗ f , and

f(x3) = inf
p∈P

max
x∈p

f(x).

Proof. By Proposition 1 one shows that there is a “minimal path” p∗ in P

satisfying (4). Then (ii*) implies (5), and we can proceed as before. �

Remark 2. If (ii*) holds we say that x1 and x2 are separated by a wall.
This is, for instance, the case if there exist numbers c and r > 0 such that
|x1 − x2| > r, f(x) ≥ c for x ∈ Ω with |x − x1| = r, and f(x1), f(x2) < c.

Now we want to discuss the situation that f possesses two local minimizers
which are not necessarily separated by a wall.

Theorem 3. Let Ω be a bounded domain in R
n, and assume that f ∈ C1(Ω)

has the following two properties:

(i) f(x) → ∞ as dist(x, ∂Ω) → 0 for x ∈ Ω;
(ii) there are two distinct local minimizers x1, x2 ∈ Ω of f .

Then either

(1◦) there is a compact connected set p∗ in Ω containing x1 and x2 such that

f(x1) = f(x2) =: c and f(x) ≡ c, ∇f(x) ≡ 0 for x ∈ p∗,

or else

(2◦) f possesses a third critical point x3 ∈ Ω which is unstable.

Proof. As before let P be the set of “paths” p containing x1 and x2 and set

c := inf
p∈P

max
p
f.
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We may assume that f(x1) ≤ f(x2). By Proposition 1 we show that there is
a minimal path p∗ ∈ P such that

max
p∗
f = c.

If f(x2) < c we can proceed as before and obtain (2◦). Therefore it suffices
to consider the case f(x2) = c. Since x2 is a local minimizer of f , there is a
δ > 0 such that f(x) ≥ c on the ball Uδ(x2) := {x ∈ R

n : |x − x2| < δ}. Since
f(x) ≤ c for x ∈ p∗ we have f(x) ≡ c for x ∈ p∗ ∩ Uδ(x2), which implies
∇f(x) ≡ 0 for x ∈ p∗ ∩ Uδ(x2). Set

Lc := {x ∈ p∗ : f(x) = c}, Kc := {x ∈ Lc : ∇f(x) = 0}.

If Kc = p∗ we obtain assertion (1◦), and we finally have to consider the case
that p∗ \ Kc is nonempty. Then there is a boundary point x3 of Kc (viewed
as a subspace of the connected topological space p∗), and it follows as in the
proof of Theorem 1 that x3 is an unstable critical point of f . �

6.3 Unstable Minimal Surfaces in a Polygon

Now we return to the situation considered in 6.1 where Γ is a simple closed
polygon in R

3 with N +3 vertices. As before C
∗
(Γ ) denotes the subset of sur-

faces X in H
1

2(B,R3) := H1
2 (B,R3) ∩ C0(B,R3) that map ∂B monotonically

onto Γ (in the sense of 4.2, Definition 3) and fulfill a fixed 3-point condition
X(wk) = Qk, k = 0, 1, 2, as described in 6.1. We equip H

1

2(B,R
3) with the

norm

(1) ‖X‖1,B := ‖X‖C0(B,R3) +
√
D(X)

and the corresponding distance function

(2) d1(X,Y ) := ‖X − Y ‖1,B , X, Y ∈ H1

2(B,R
3).

Clearly (H
1

2(B,R3), ‖ · ‖1,B) is a Banach space, and C
∗
(Γ ) is a closed subset

of this space. Therefore (C
∗
(Γ ), d1) is a complete metric space.

In this section all topological concepts concerning subsets of C
∗
(Γ ) will

refer to the metric d1. (In 6.6 we shall change to a weaker metric, to d0).
A path P in C

∗
(Γ ) is defined as a compact, connected subset of C

∗
(Γ ). We

say that P joins (or connects) X1 and X2 if X1, X2 are contained in P , and
P(X1, X2) denotes the set of paths in C

∗
(Γ ) joining X1 and X2.

Furthermore let H∗(Γ ) be the subset of X ∈ C
∗
(Γ ) that are harmonic in

B, and W∗(Γ ) be the image of the bounded, open, convex subset T of R
N

introduced in 6.1 under the Courant mapping Z : T → C
∗
(Γ ). Then we have
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(3) W∗(Γ ) := Z(T ) ⊂ H∗(Γ ) ⊂ C
∗
(Γ ).

For t1, t2 ∈ T we denote by P(t1, t2) the set of paths p in T joining t1, t2,
i.e. the set of compact, connected subsets p of T with t1, t2 ∈ p. Moreover,
P

′(X1, X2) be the set of all paths P ∈ P(X1, X2) with P ⊂ H∗(Γ ), and
P

′ ′(X1, X2) be the set of paths P ∈ P(X1, X2) with P ∈ W∗(Γ ).
The set T is connected, and Z is continuous according to 6.1, Proposition 4.

Hence W∗(Γ ) is connected, and the image Z(p) of any path p ∈ P(t1, t2) is a
path in W∗(Γ ), i.e.

(4) Z(p) ∈ P
′ ′(X1, X2) for p ∈ P(t1, t2) and X1 := Z(t1), X2 := Z(t2).

For any t ∈ T the set is convex. Hence, for any X ∈ U(t) the mapping
R(t,X) : [0, 1] → U(t), given by

(5) R(t,X)(λ) := λZ(t) + (1 − λ)X, 0 ≤ λ ≤ 1,

defines a continuous arc in U(t) which connects X with Z(t), and so the
segment

(6) Σ(t,X) := {R(t,X)(λ) : 0 ≤ λ ≤ 1}

is a path in C
∗
(Γ ) joining X and Z(t), i.e.

(7) Σ(t,X) ∈ P(X,Z(t)) for X ∈ U(t).

Lemma 1. For any X ∈ U(t) we have

max
Σ(t,X)

D = D(X).

Proof. For 0 ≤ λ ≤ 1 we set Y (λ) := R(t,X)(λ), i.e.

Y (λ) = Z(t) + (1 − λ)φ with φ := X − Z(t).

Then

D(Y (λ)) = D(Z(t)) + 2(1 − λ)D(Z(t), φ) + (1 − λ)2D(φ),

and consequently

(8)
d

dλ
D(Y (λ)) = −2D(Z(t), φ) − 2(1 − λ)D(φ) for 0 ≤ λ ≤ 1.

On the other hand we have

D(Y (λ)) ≥ D(Z(t)) = D(Y (1)) for 0 ≤ λ ≤ 1
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since Y (λ) ∈ U(t) and Z(t) is the minimizer of D in U(t). It follows that

D(Y (1)) − D(Y (λ))
1 − λ

≤ 0 for 0 ≤ λ < 1,

whence
d

dλ
D(Y (λ))

∣∣∣∣
λ=1

≤ 0.

From (8) we infer for λ = 1 that

D(Z(t), φ) ≥ 0,

and so (8) yields
d

dλ
D(Y (λ)) ≤ 0 for 0 ≤ λ ≤ 1.

Thus the function λ �→ D(Y (λ)) is decreasing for 0 ≤ λ ≤ 1, whence D(X) =
D(Y (0)) ≥ D(Y (λ)) for 0 ≤ λ ≤ 1. �
Lemma 2. For any X1 ∈ U(t1) and X2 ∈ U(t2) there exists a path P ∗ ∈
P(X1, X2) such that

(9) max
X∈P ∗

D(X) ≤ max
{
D(X1), D(X2),max

t∈p
Θ(t)

}

holds for any p ∈ P(t1, t2). Moreover, if X1, X2 ∈ H∗(Γ ) then P ∗ ∈
P

′(X1, X2).

Proof. By Lemma 1 we have

D(X) ≤ D(Xj) for X ∈ Σ(tj , Xj) with j = 1, 2,

and
max

X∈Z(p)
D(X) = max

t∈p
Θ(t) for p ∈ P(t1, t2).

On account of 6.2, Proposition 1, there is a path p∗ ∈ P(t1, t2) such that

max
t∈p∗

Θ(t) = inf
p∈P(t1,t2)

max
t∈p

Θ(t).

Then P ∗ := Σ(t1, X1)∪Z(p∗)∪Σ(t2, X2) is a path in C
∗
(Γ ) joiningX1 andX2

which, in addition, satisfies (9). Moreover, P ∗ ⊂ H∗(Γ ) if X1, X2 ∈ H∗(Γ ). �
Remark 1. Consequently P(X1, X2) is nonempty for any X1, X2 ∈ C∗(Γ )
since there are points t1, t2 ∈ T such that X1 ∈ U(t1) and X2 ∈ U(t2).
Correspondingly, P

′(X1, X2) is nonvoid for any X1, X2 ∈ H∗(Γ ).

Now we want to establish the existence of unstable minimal surfaces span-
ning the polygon Γ using the results from 6.2. To this end we recall that
Courant’s function Θ := D ◦ Z is of class C1(T ) and satisfies Θ(t) → ∞ as
dist(t, ∂T ) → 0 for t ∈ T . Therefore, taking Ω := T , n := N , and f := Θ, we
see that f satisfies assumption (i) of Theorem 1–3 in 6.2, which we will now
apply to the present situation.



6.3 Unstable Minimal Surfaces in a Polygon 445

Definition 1. A minimal surface X ∈ C
∗
(Γ ) is said to be unstable if for any

ρ > 0 there is a mapping Y ∈ C
∗
(Γ ) such that d1(Y,X) < ρ and D(Y ) <

D(X).

Remark 2. Precisely speaking, a minimal surface X as in the preceding def-
inition should be called D-unstable, whereas it could be called A-unstable if
for any ρ > 0 there is a Y ∈ C

∗
(Γ ) such that d1(Y,X) < ρ and A(Y ) < A(X).

We have: Any D-unstable minimal surface X in C
∗
(Γ ) is also A-unstable. In

fact, the inequality D(Y ) < D(X) implies A(Y ) < A(X) because of

A(Y ) ≤ D(Y ) < D(X) = A(X).

Theorem 1. Let X1 and X2 be two distinct minimal surfaces which are strict
local minimizers of Dirichlet’s integral on (C

∗
(Γ ), d1). Then there exists an

unstable minimal surface X3 ∈ C
∗
(Γ ).

Proof. By assumption there is an ε0 > 0 such that

D(Xj) < D(X) for all X ∈ C
∗
(Γ ) with 0 < d1(X,Xj) < ε0, j = 1, 2.

Furthermore there are two points t1, t2 ∈ T with t1 	= t2 and X1 = Z(t1),
X2 = Z(t2). Since Z is continuous there is a δ0 > 0 such that

d1(Z(t), Z(tj)) < ε0 if t ∈ T satisfies |t − tj | < δ0, j = 1, 2.

Because of Theorem 1(ii) of 6.1 we have Z(t) 	= Z(tj) for t 	= tj . It follows
that

D(Z(tj)) < D(Z(t)) for t ∈ T with 0 < |t − tj | < δ0, j = 1, 2,

which is equivalent to

Θ(tj) < Θ(t) for t ∈ T satisfying 0 < |t − tj | < δ0, j = 1, 2.

Then, by 6.2, Theorem 1, there is an unstable critical point t3 ∈ T of Θ, i.e.
∇Θ(t3) = 0, and for any δ > 0 there is a point tδ ∈ T with |tδ − t3| < δ
and Θ(tδ) < Θ(t3). Moreover, given ρ > 0, we have d1(Z(t), Z(t3)) < ρ if
|t − t3| < δ � 1. Setting X3 := Z(t3) and Y := Z(tδ) it follows that

D(Y ) < D(X3) and d1(Y,X3) < ρ.

By taking Theorem 1 of 6.1 into account we see thatX3 is an unstable minimal
surface in C

∗ (Γ ). �

On account of 6.2, formula (1), the unstable minimal surface X3 of Theo-
rem 1 has the following saddle point property :
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Corollary 1. If the two strict local minima X1, X2 of D are given by X1 =
Z(t1), X2 = Z(t2), then

(10) D(X3) = inf
p∈P(t1,t2)

max
t∈p

D(Z(t)).

The preceding theorem can be generalized as follows:

Theorem 2. Suppose that X1, X2 ∈ C
∗
(Γ ) are “separated by a wall”, i.e. it

is assumed that X1 	= X2 and

(11) max
X∈P

D(X) > max{D(X1), D(X2)} for all P ∈ P(X1, X2).

Then there exists an unstable minimal surface X3 in C
∗
(Γ ).

Proof. There are two points t1, t2 ∈ T with X1 ∈ U(t1), X2 ∈ U(t2). Here,
t1 and t2 are not necessarily uniquely determined by X1 and X2 respectively.
However, t1 	= t2 since t1 = t2 would imply that P := Σ(t1, X1)∪Σ(t2, X2) is a
path contained in P(X1, X2) such that maxX∈P D(X) = max{D(X1), D(X2)}
if we take Lemma 1 into account; but this were a contradiction to (11).

We claim that

(12) max
p
Θ > max{Θ(t1), Θ(t2)} for all p ∈ P(t1, t2).

Otherwise we would have for all p ∈ P(t1, t2) that

max
p
Θ = max{Θ(t1), Θ(t2)} ≤ max{D(X1), D(X2)},

since Θ(t1) ≤ D(X1) and Θ(t2) ≤ D(X2). Then it follows from Lemma 2 that
there is a path P ∗ ∈ P(X1, X2) such that

max
X∈P ∗

D(X) = max{D(X1), D(X2)},

a contradiction to (11). Thus we have verified (12), and by 6.2, Theorem 2,
there is an unstable critical point t3 ∈ T of the Courant function. Setting
X3 := Z(t3), we see as in the proof of Theorem 1 that X3 is an unstable
minimal surface in C

∗
(Γ ). �

As before we obtain the saddle point property (9) for X3:

Corollary 2. If X1, X2 ∈ C
∗
(Γ ) are separated by a wall, there is an unstable

minimal surface X = Z(t) ∈ C
∗
(Γ ) such that

D(X) = inf
p∈P(t1,t2)

max
t∈p

D(Z(t))

for some critical point t of Θ.
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Next we want to consider the case where X1, X2 ∈ C
∗
(Γ ) are two local

minimizers of Dirichlet’s integral which are not necessarily separated by a
wall.

Theorem 3. Suppose that X1 and X2 are two distinct minimal surfaces in
C

∗
(Γ ) both of which are local minimizers of D on C

∗
(Γ ).

Then either

1◦ There is a path P ∗ ∈ P
′ ′(X1, X2) such that

D(X) ≡ const =: c for all X ∈ P ∗,

or else

2◦ D possesses a third critical point X3 in C
∗
(Γ ) which is an unstable minimal

surface.

Proof. There are uniquely determined points t1, t2 ∈ T with t1 	= t2 such that
X1 = Z(t1) and X2 = Z(t2). The assumption of the theorem implies that t1
and t2 are distinct local minimizers of Θ. By virtue of 6.2, Theorem 3, there
is a path p∗ ∈ P(t1, t2) such that either

Θ(t) ≡ const =: c and ∇Θ(t) ≡ 0 for t ∈ p∗,

or else Θ possesses a third critical point t3 ∈ T which is unstable. In the first
case we have 1◦ for P ∗ = Z(p∗) ∈ P

′ ′(X1, X2), and in the second we obtain
2◦ for X3 := Z(t3). �

In 6.6 we shall use the following variant of the preceding results.

Theorem 4. For t1, t2 ∈ T with t1 	= t2 there is a minimal path p∗ of P(t1, t2)
satisfying

(13) max
X∈Z(p∗)

D(X) = inf
p∈P(t1,t2)

max
X∈Z(p)

D(X).

If, in addition,

(14) max
X∈Z(p∗)

D(X) > max{D
(
Z(t1)), D(Z(t2))}

then there is an unstable minimal surface X3 in C
∗
(Γ ) such that X3 = Z(t3)

for t3 ∈ p∗, i.e. X3 ∈ Z(p∗), and

D(X3) = max
X∈Z(p∗)

D(X) = inf
p∈P(t1,t2)

max
X∈Z(p)

D(X).

Proof. The assertions follow immediately from 6.2, Proposition 1 and Theo-
rem 2, if we take Theorem 1 of 6.1 into account. �

The next result will not be needed for the proof of the final theorems in
Section 6.6; yet they are of independent interest.
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Proposition 1. If X1 = Z(t1) and X2 = Z(t2) for t1, t2 ∈ T then

(15) d(X1, X2) := inf
P ∈P′ ′(X1,X2)

max
X∈P

D(X)

and

(16) σ(t1, t2) := inf
P ∈Z(P(t1,t2))

max
X∈P

D(X)

satisfy

(17) d(X1, X2) = σ(t1, t2).

Proof. From Z(P(t1, t2)) ⊂ P
′ ′(X1, X2) it follows that

d(X1, X2) ≤ σ(t1, t2).

Thus it remains to show

(18) σ(t1, t2) ≤ d(X1, X2).

This is not obvious since the pre-image Z−1(P ) of P ∈ P
′ ′(X1, X2) might not

contain a path p ∈ P(t1, t2). Instead we prove a weaker result, stated in the
next proposition, which suffices to verify (18). �

Proposition 2. For any P ∈ P
′ ′(Z(t1), Z(t2)) there exists a p ∈ P(t1, t2)

such that

(19) max
X∈Z(p)

D(X) ≤ max
X∈P

D(X).

Proof. We first note that the pre-image m := Z−1(P ) of a given P ∈
P

′ ′(Z(t1), Z(t2)) is closed. In fact, if tj ∈ m for all j ∈ N and tj → t0 then
t0 ∈ Ω since t0 ∈ ∂Ω would imply D(Z(tj)) = Θ(tj) → ∞ whereas Z(tj) ∈ P
yields D(Z(tj)) ≤ const < ∞. Since Z is continuous we have Z(tj) → Z(t0)
whence Z(t0) ∈ P . Hencem is closed and therefore compact. Ifm is connected
we set p := m and obtain (19). Thus we now assume that m is disconnected
and write m as disjoint union m =

⋃
α∈J mα of its compact connected com-

ponents mα.
Consider two such components mα and mβ , α 	= β, for which Z(mα) ∩

Z(mβ) is nonvoid. Then there are points t ∈ mα and t ∈ mβ such that
Z(t) = Z(t). Let j ∈ {1, . . . , N} be the first index such that tj 	= t

j , say,
tj < t

j . Then it follows that

Z(t)(eiϕ) ≡ Aj for ϕ ∈ [tj , tj ].

Consider the path γ1 := {(t1, . . . , tj−1, s, tj+1, . . . , tN ) : tj ≤ s ≤ t
j } and

set Y (t1) = Z(t) for t1 ∈ γ1. Then Y (t1) ∈ U(t1) for t1 ∈ γ1. If tj+1 =
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t
j+1
, . . . , tN = t

N , the path γ1 connects t and t in T , and Y (t1) ≡
Z(t) = Z(t) for all t1 ∈ γ1. Otherwise we proceed in the same way
for the next index k with tk 	= t

k and obtain a path γ2 that connects
(t1, . . . , tj−1, t

j
, tj+1, . . . , tk, . . . , tN ) with (t1, . . . , tj−1, t

j
, tj+1, . . . , t

k
, . . . , tN ),

and Y (t2) ≡ Z(t) = Z(t) for t2 ∈ γ2. After at most N steps we have con-
structed a path γαβ ∈ P(t, t) in T with D(Z(τ)) ≤ D(Z(t)) = D(Z(t)) for all
τ ∈ γαβ . Then mαβ := mα ∪ mβ ∪ γαβ ∈ P(t, t), and

(20) max
X∈Z(mαβ)

D(X) ≤ max
X∈P

D(X).

On the other hand, if Z(mα) ∩ Z(mβ) = ∅ we set mαβ := mα ∪ mβ ; in this
case (20) is clearly satisfied. Set

m′ :=
⋃

(α,β)∈J ×J

mαβ .

Then

(21) sup
X∈Z(m′)

D(X) ≤ max
X∈P

D(X) < ∞.

Since Θ(t) → ∞ as dist(t, ∂T ) → 0 for t ∈ T , we conclude that p := m′ is
a compact subset of T . Moreover we infer from the connectedness of P and
the above construction that m′ is connected, whence p is connected, since the
closure of a connected set is connected. Hence p is an element of P(t1, t2), and
(21) implies (19) because of the continuity of Z. �

Corollary 3. If X1 = Z(t1), X2 = Z(t2) for t1, t2 ∈ T , p∗ ∈ P(t1, t2), and
maxt∈p∗ D(Z(t)) = σ(t1, t2) then P ∗ := Z(p∗) satisfies maxX∈P ∗ D(X) =
d(X1, X2). This means: The image P ∗ = Z(p∗) of a minimal path p∗ of
P(t1, t2) is a minimal path of P (X1, X2).

Proof. The assertion is an immediate consequence of Proposition 1. �

In particular we obtain:

Corollary 4. The saddle point property

D(X3) = inf
p∈P(t1,t2)

max
t∈p

D(Z(t))

in the Corollaries 1 and 2 is equivalent to

(22) D(X3) = inf
P ∈P′ ′(X1,X2)

max
X∈P

D(X).
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6.4 The Douglas Functional. Convergence Theorems for
Harmonic Mappings

Let C0
2π(R,R3) be the class of continuous mappings ξ : R → R

3 that are 2π-
periodic, i.e. which satisfy ξ(θ+2π) = ξ(θ) for any θ ∈ R. Then the Douglas
functional A0 is a function A0 : C0

2π(R,R3) → R defined by

(1) A0(ξ) :=
1
4π

∫ 2π

0

∫ 2π

0

|ξ(θ) − ξ(ϕ)|2

4 sin2 1
2 (θ − ϕ)

dθ dϕ ≤ ∞.

Because of
|eiθ − eiϕ|2 = 4 sin2 1

2
(θ − ϕ)

we can write A0(ξ) as

(2) A0(ξ) :=
1
4π

∫ 2π

0

∫ 2π

0

|ξ(θ) − ξ(ϕ)|2
|eiθ − eiϕ|2 dθ dϕ.

We recall the following well-known result:

Lemma 1. Let ξ ∈ C0
2π(R,R3). Then the uniquely determined mapping H ∈

C0(B,R3) ∩ C2(B,R3) with

ΔH = 0 in B, H(eiθ) = ξ(θ) for θ ∈ R,

is given by

H(ρeiθ) =
1
2
a0 +

∞∑
n=1

ρn(an cosnθ + bn sinnθ), 0 ≤ ρ ≤ 1, θ ∈ R,(3)

an :=
1
π

∫ 2π

0

ξ(θ) cosnθ dθ, bn :=
1
π

∫ 2π

0

ξ(θ) sinnθ dθ.

We call H the “harmonic extension of ξ”.

Theorem 1. Let H ∈ C0(B,R3) be the harmonic extension of ξ ∈ C0
2π(R,R3).

Then

(4) D(H) = A0(ξ).

Proof. H is given by (3). Then

|an|2 =
1
π2

∫ 2π

0

∫ 2π

0

ξ(θ)ξ(ϕ) cosnθ cosnϕdθ dϕ,

|bn|2 =
1
π2

∫ 2π

0

∫ 2π

0

ξ(θ)ξ(ϕ) sinnθ sinnϕdθ dϕ,
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whence

|an|2 + |bn|2 =
1
π2

∫ 2π

0

∫ 2π

0

ξ(θ)ξ(ϕ) cosn(θ − ϕ) dθ dϕ for n ≥ 1.

Because of
∫ 2π

0

cosn(θ − ϕ) dϕ =
∫ 2π

0

cosn(θ − ϕ) dθ = 0

we obtain

|an|2 + |bn|2 = − 1
2π2

∫ 2π

0

∫ 2π

0

|ξ(θ) − ξ(ϕ)|2 cosn(θ − ϕ) dθ dϕ, n ≥ 1.

Furthermore,

DBr (H) =
1
2

∫
Br

| ∇H|2 du dv with Br := {(u, v) ∈ R
2 : u2 + v2 < r2}

is computed as

DBr (H) =
π

2

∞∑
n=1

nr2n(|an|2 + |bn|2) for 0 < r < 1.

Setting

(5) Q(r, α) :=

{
−
∑∞

n=1 nr
2n cosnα for 0 ≤ r < 1,

1
4 sin2 1

2 α
for r = 1,

we obtain

(6) DBr (H) =
1
4π

∫ 2π

0

∫ 2π

0

Q(r, θ − ϕ)|ξ(θ) − ξ(ϕ)|2 dθ dϕ for 0 < r < 1.

Furthermore,

−2Q(r, α) =
∞∑

n=1

nr2neinα +
∞∑

n=1

nr2ne−inα.

Setting z := r2eiα, we find that

−2Q(r, α) = z

∞∑
n=1

nzn−1 + z
∞∑

n=1

nzn−1 =
z

(1 − z)2
+

z

(1 − z)2

=
z(1 − z)2 + z(1 − z)2

(1 − z)2(1 − z)2
=

(z + z) − 4|z|2 + (z + z)|z|2
[1 − (z + z) + zz]2

,
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and so

Q(r, α) = r2
a − b

(a+ b)2
, a := (1 + r2)2 sin2 α

2
, b := (1 − r2)2 cos2

α

2
.

Hence
Q(r, α)
Q(1, α)

=
4r2 sin2 α

2

a+ b
a − b

a+ b
for α 	≡ 0 mod 2π

which implies

(7)
Q(r, α) ≤ Q(1, α) for 0 ≤ r < 1,

lim
r→1−0

Q(r, α) = Q(1, α) for α 	≡ 0 mod 2π.

If A0(ξ) < ∞ then

1
4π

∫ 2π

0

∫ 2π

0

Q(r, θ − ϕ)|ξ(θ) − ξ(ϕ)|2 dθ dϕ → A0(ξ) as r → 1 − 0

on account of Lebesgue’s convergence theorem. Since

DBr (H) → D(H) as r → 1 − 0

we infer from (6) that D(H) = A0(ξ).
Conversely, if D(H) < ∞, 0 < ε < π, and

R(ε) := {(θ, ϕ) ∈ [0, 2π] × [0, 2π] : |eiθ − eiϕ| > ε}

we have
∫

R(ε)

Q(1, θ − ϕ)|ξ(θ) − ξ(ϕ)|2 dθ dϕ

≤ lim
r→1−0

∫
R(ε)

Q(r, θ − ϕ)|ξ(θ) − ξ(ϕ)|2 dθ dϕ

≤ lim
r→1−0

∫ 2π

0

∫ 2π

0

Q(r, θ − ϕ)|ξ(θ) − ξ(ϕ)|2 dθ dϕ

= lim
r→1−0

4πDBr (H) = 4πD(H) < ∞.

With ε → +0 we obtain

A0(ξ) = lim
ε→+0

1
4π

∫
R(ε)

Q(1, θ − ϕ)|ξ(θ) − ξ(ϕ)|2 dθ dϕ < ∞,

and then the reasoning above yields A0(ξ) = D(H). Thus we have proved (4),
since our arguments imply that D(H) = ∞ if and only if A0(ξ) = ∞. �
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Corollary 1. Let {ξj } be a sequence in C0
2π(R,R3) with the following proper-

ties:

(i) ξj(θ) ⇒ 0 on R as j → ∞.
(ii) There is a mapping η ∈ C0

2π(R,R3) such that A0(η) < ∞ and

(8) |ξj(θ) − ξj(ϕ)| ≤ |η(θ) − η(ϕ)| for all j ∈ N and θ, ϕ ∈ R.

Then we have the relation

lim
j→∞

A0(ξj) = 0.

Proof. As Q(1, θ − ϕ)|η(θ) − η(ϕ)|2 is an L1-majorant of the functions
Q(1, θ − ϕ)|ξj(θ) − ξj(ϕ)|2 on [0, 2π] × [0, 2π], the assertion is an immediate
consequence of Lebesgue’s convergence theorem. �

Let H(B,R3) be the class of mappings H ∈ C0(B,R3) ∩ C2(B,R3) with
ΔH = 0 in B. For any H ∈ H(B,R3) we define the value D0(H) by

(9) D0(H) := A0(ξ) where ξ(θ) := H(eiθ), θ ∈ R.

The function D0 : H(B,R3) → R is also denoted as Douglas functional.
Because of (2) we can as well write

(10) D0(H) =
1
4π

∫ 2π

0

∫ 2π

0

|H(eiθ) − H(eiϕ)|2
|eiθ − eiϕ|2 dθ dϕ.

An immediate consequence of Theorem 1 is

Corollary 2. For any H ∈ H(B,R3) we have

(11) D(H) = D0(H).

For H ∈ H(B,R3) ∩ H1
2 (B,R3) with ξ(θ) := H(eiθ) for θ ∈ R we define

the norm

(12) ‖H‖1,B := ‖ξ‖C0([0,2π],R3) +
√
A0(ξ);

in virtue of (9), (11), and the maximum principle it agrees with the norm

(13) ‖H‖1,B := ‖H‖C0(B,R3) +
√
D(H)

introduced in 6.3, (1); hence H(B,R3) ∩ H1
2 (B,R3) equipped with the norm

‖ · ‖1,B is complete, i.e. a Banach space.
From Corollaries 1 and 2 we infer the following important result:

Theorem 2 (E. Heinz [14]). Let {Hj } be a sequence in H(B,R3) ∩H1
2 (B,R3)

with the boundary values {ξj }, ξj(θ) = Hj(eiθ) for θ ∈ R, and assume the
following :
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(i) ξj(θ) ⇒ ξ(θ) on R for j → ∞ with A0(ξ) < ∞.
(ii) There is a number κ > 0 such that

|ξj(θ) − ξj(ϕ)| ≤ κ|ξ(θ) − ξ(ϕ)| for all j ∈ N and θ, ϕ ∈ R.

Then we have

‖Hj − H‖1,B = ‖Hj − H‖C0(B,R3) +
√
D(Hj − H) → 0 as j → ∞,

where H is the harmonic extension of ξ, and in particular H ∈ H(B,R3) ∩
H1

2 (B,R3) and Hj → H in H1
2 (B,R3).

Now we want to prove a second kind of convergence theorem for harmonic
mappings. We begin with deriving an isoperimetric inequality for harmonic
surfaces due to M. Morse and C. Tompkins [3].

Theorem 3. For any H ∈ H(B,R3) := C0(B,R3) ∩ C2(B,R3) ∩ {ΔH =
0 in B} we have

(14) A(H) ≤ 1
4

(∫
∂B

|dH|
)2

.

Proof. We may assume that
∫

∂B
|dH| is finite, because otherwise (14) is cer-

tainly true. The area A(H) of H is defined as

A(H) =
∫

B

|Hu ∧ Hv | du dv.

We transform H(u, v) to polar coordinates r, θ around the origin by setting

X(r, θ) := H(r cos θ, r sin θ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π,

and obtain

A(H) =
∫ 1

0

∫ 2π

0

|Xr ∧ Xθ | dθ dr.

Poisson’s integral formula yields

X(r, θ) =
∫ 2π

0

K(r, ϕ − θ)ξ(ϕ) dϕ, ξ(ϕ) := X(1, ϕ),

where K(r, α) denotes the Poisson kernel

K(r, α) =
1
2π

1 − r2

1 − 2r cosα+ r2
.

As in the proof of 4.7, Proposition 1, we obtain

Xθ(r, θ) =
1
2π

∫ 2π

0

1 − r2

ω(r, θ, ϕ)
dξ(ϕ)
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where
ω(r, θ, ϕ) := 1 − 2r cos(θ − ϕ) + r2.

By using the computation of the proof of 4.7, Proposition 2, we find in addition
that

Xr(r, θ) =
1
π

∫ 2π

0

sin(ϕ − θ)
ω(r, θ, ϕ)

dξ(ϕ).

Therefore,

Xr(r, θ) ∧ Xθ(r, θ) =
1

2π2

∫ 2π

0

∫ 2π

0

(1 − r2) sin(ϕ − θ)
ω(r, θ, ϕ)ω(r, θ, ψ)

dξ(ϕ) ∧ dξ(ψ).

Interchanging ϕ and ψ on the right-hand side, the left-hand side remains
the same. Adding the two expressions, dividing by 2, and noting the relation
dξ(ϕ) ∧ dξ(ψ) = −dξ(ψ) ∧ dξ(ϕ), we arrive at

Xr(r, θ) ∧ Xθ(r, θ)

=
1

4π2

∫ 2π

0

∫ 2π

0

(1 − r2)[sin(ϕ − θ) − sin(ψ − θ)]
ω(r, θ, ϕ)ω(r, θ, ψ)

dξ(ϕ) ∧ dξ(ψ).

Furthermore, the identity

sinϕ − sinψ = 2 cos
ϕ+ ψ

2
sin
ϕ − ψ

2

implies

sin(ϕ − θ) − sin(ψ − θ) = 2 cos
[
1
2 (ϕ+ ψ) − θ

]
sin 1

2 (ϕ − ψ)

whence
|sin(ϕ − θ) − sin(ψ − θ)| ≤ 2|sin 1

2 (ϕ − ψ)|,

and therefore

|Xr(r, θ) ∧ Xθ(r, θ)| ≤ 1
2π2

∫ 2π

0

∫ 2π

0

(1 − r2)|sin 1
2 (ϕ − ψ)|

ω(r, θ, ϕ)ω(r, θ, ψ)
|dξ(ϕ)| |dξ(ψ)|.

For 0 < ε < ρ < 1 we set

a(ε, ρ) :=
∫ ρ

ε

∫ 2π

0

|Xr(r, θ) ∧ Xθ(r, θ)| dθ dr.

Then

a(ε, ρ) ≤
∫ 2π

0

∫ 2π

0

I(ϕ, ψ)|sin 1
2 (ϕ − ψ)| |dξ(ϕ)| |dξ(ψ)|
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with

I(ϕ, ψ) :=
1
π

∫ ρ

ε

I∗(r, ϕ, ψ) dr,

I∗(r, ϕ, ψ) :=
1
2π

∫ 2π

0

1 − r2

ω(r, θ, ϕ)ω(r, θ, ψ)
dθ.

Fix ψ ∈ [0, 2π] and r ∈ (ε, ρ), and consider a harmonic function f in the unit
disk B with f ∈ C0(B) which has the boundary values

f(eiθ) :=
1

ω(r, θ, ψ)
=

1
1 − 2r cos(ψ − θ) + r2

.

For 0 ≤ R ≤ 1 we write
h(R,ϕ) := f(Reiϕ).

Then Poisson’s integral formula yields

h(R,ϕ) =
1
2π

∫ 2π

0

1 − R2

ω(R, θ, ϕ)ω(r, θ, ψ)
dθ,

whence
I∗(r, ϕ, ψ) = h(r, ϕ).

In order to determine the function h, we recall that for fixed r with 0 < r < 1
the Poisson kernel

g(R, θ) :=
R2 − r2

R2 − 2rR cos(ψ − θ) + r2

is a harmonic function (written in polar coordinates) of R, θ in {R > 1}, i.e.
in the exterior of B = {w ∈ C : |w| < 1}, and g(1, θ) = (1 − r2)h(1, θ). Hence
h is obtained from (1 − r2)−1g by reflection at the unit circle ∂B = {R = 1},
that is, by replacing R by 1

R :

h(R,ϕ) =
1

1 − r2
R−2 − r2

R−2 − 2rR−1 cos(ψ − ϕ) + r2
.

Thus we infer

I∗(r, ϕ, ψ) =
1 + r2

1 − 2r2 cos(ψ − ϕ) + r4

whence

I(ϕ, ψ) =
1
π

∫ ρ

ε

1 + r2

1 − 2r2 cos(ψ − ϕ) + r4
dr

=
1
2π

∫ ρ

ε

{
1

1 − 2r cos 1
2 (ψ − ϕ) + r2

+
1

1 + 2r cos 1
2 (ψ − ϕ) + r2

}
dr

=
1
2π

1
|sin 1

2 (ψ − ϕ)|
[S(r, ϕ, ψ)]ρε
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with

S(r, ϕ, ψ) := arctg
(
r − cos 1

2 (ψ − ϕ)
|sin 1

2 (ψ − ϕ)|

)
+ arctg

(
r + cos 1

2 (ψ − ϕ)
|sin 1

2 (ψ − ϕ)|

)
.

Using the formula

arctg a+ arctg b = arctg
a+ b
1 − ab

we obtain

I(ϕ, ψ) =
[

1
2π|sin 1

2 (ψ − ϕ)|
arctg

(
2r|sin 1

2 (ψ − ϕ)|
1 − r2

)]r=ρ

r=ε

.

Therefore,

(15) a(ε, ρ) ≤ 1
2π

∫ 2π

0

∫ 2π

0

[
arctg

(
2r|sin 1

2 (ψ − ϕ)|
1 − r2

)]r=ρ

r=ε

|dξ(ϕ)| |dξ(ψ)|.

Since [. . . ] → π
2 as ε → +0 and ρ → 1 − 0, and a(ε, ρ) → A, we finally see

that

(16) A ≤ 1
4
L2 with L :=

∫ 2π

0

|dξ(θ)|. �

Now we prove a convergence theorem for the area of harmonic mappings
discovered by M. Morse and C. Tompkins [3].

Theorem 4. Let {Hj } be a sequence of harmonic mappings in H(B,R3) with
the following two properties:

(i) ‖Hj − H‖C0(B,R3) → 0 as j → ∞ for some H ∈ H(B,R3);
(ii)

∫
∂B

|dHj | →
∫

∂B
|dH| as j → ∞.

Then the area of Hj tends to the area of H, i.e.

(17) lim
j→∞

A(Hj) = A(H).

Proof. Analogously to the preceding proof we introduce Xj , X and ξj , ξ by

Xj(r, θ) := Hj(reiθ), X(r, θ) := H(reiθ),
ξj(θ) := Xj(1, θ), ξ(θ) := X(1, θ).

For α, β ∈ R with 0 < β − α < 2π we set

Lj(α, β) :=
∫ β

α

|dξj(θ)|, L(α, β) :=
∫ β

α

|dξ(θ)|.

1◦ Claim: Lj(α, β) → L(α, β) as j → ∞ uniformly in α, β.
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Otherwise there would be an ε > 0 and a subsequence of indices jp → ∞
as p → ∞ and sequences αjp → α, βjp → β such that

|Lj(αj , βj) − L(αj , βj)| ≥ 2ε for all j = jp, p ∈ N.

Since L(αjp , βjp) → L(α, β) for p → ∞ we may assume that

|L(αj , βj) − L(α, β)| < ε for all j = jp,

and so we obtain

|Lj(αj , βj) − L(α, β)| > ε for all j = jp.

Since the arc length is lower semicontinuous with respect to uniform conver-
gence we obtain

lim inf
p→∞

Ljp(αjp , βjp) ≥ L(α, β) + ε.

By passing to a suitable subsequence of {jp}, which will again be denoted by
{jp}, we may even assume that

(18) lim
p→∞

Ljp(αjp , βjp) ≥ L(α, β) + ε.

On the other hand, if γj and γ are the complementary arcs to {eiθ : αj ≤ θ ≤
βj } and {eiθ : α ≤ θ ≤ β} respectively in ∂B, and

Lj :=
∫

γj

|dHj |, L :=
∫

γ

|dH|,

we get

(19) lim inf
p→∞

Ljp ≥ L.

Adding (18) and (19) we would obtain

lim inf
p→∞

∫
∂B

|dHjp | ≥
∫

∂B

|dH| + ε,

which contradicts assumption (ii). Thus the claim 1◦ is proved.
2◦ Set

(20) l(σ) := sup
{∫

γ

|dH|,
∫

γ

|dHj | : γ ⊂ ∂B, length γ = σ, j ∈ N

}
.

Because of 1◦ we obtain

(21) l(σ) → 0 as σ → +0.
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Furthermore there is a number λ > 0 such that∫
∂B

|dHj | ≤ λ for all j ∈ N.

Set

aj(R, ρ) :=
∫ ρ

R

∫ 2π

0

|Xj,r(r, θ) ∧ Xj,θ(r, θ)| dθ dr

for 0 < R < ρ < 1. By (15) we have

aj(R, ρ) ≤ 1
2π

∫ 2π

0

∫ 2π

0

[χ(r, ψ, ϕ)]r=ρ
r=R|dξj(ϕ)| |dξj(ψ)|

with

χ(r, ψ, ϕ) := arctg
(

2r|sin 1
2 (ψ − ϕ)|

1 − r2

)
.

We decompose the domain of integration Ω := {(ϕ, ψ) : 0 < ϕ,ψ < 2π} into
the disjoint sets Ω1 and Ω2 defined by

Ω1 := {(ϕ, ψ) ∈ Ω : ‖ψ − ϕ‖ ≤ σ}, Ω2 := {(ϕ, ψ) ∈ Ω : ‖ψ − ϕ‖ > σ},

where ‖ψ−ϕ‖ denotes the length of the shorter arc on ∂B with the endpoints
eiϕ and eiψ. Then

aj(R, ρ) ≤ I1j (R, ρ) + I2j (R, ρ)

with

Ik
j (R, ρ) :=

1
2π

∫
Ωk

[χ(r, ψ, ϕ)]r=ρ
r=R|dξj(ϕ)| |dξj(ψ)|, k = 1, 2.

On Ω1 we estimate [χ(r, ψ, ϕ)]ρR from above by π
2 and obtain

I1j (R, ρ) ≤ 1
2π

· π
2

∫
Ω1

|dξj(ϕ)| |dξj(ψ)| ≤ 1
4
λl(σ).

On Ω2 we find

[χ(r, ψ, ϕ)]ρR ≤ π

2
− arctg

{
2R|sin(σ/2)|

1 − R2

}
.

For 0 < σ < 1 we certainly have sin(σ/2) ≥ σ/4, and so

[χ(r, ψ, ϕ)]ρR ≤ π

2
− arctg

Rσ

2(1 − R2)

whence

I2j (R, ρ) ≤ λ2

2π

{
π

2
− arctg

Rσ

2(1 − R2)

}
.
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Then we obtain for aj(R, 1) := limρ→1−0 aj(R, ρ) the estimate

aj(R, 1) ≤ λ

4
l(σ) +

λ2

2π

{
π

2
− arctg

Rσ

2(1 − R2)

}
for 0 < σ < 1.

Now we choose an arbitrary ε > 0; then there is some σ ∈ (0, 1) such that
l(σ) < ε/(2λ). Moreover we can find an R ∈ (0, 1) depending on ε and σ such
that

λ2

2π

{
π

2
− arctg

Rσ

2(1 − R2)

}
<
ε

8
.

Then we obtain

AB\BR
(Hj) = aj(R, 1) <

ε

4
for BR = {w : |w| < R}, B := B1,

and the same reasoning yields

AB\BR
(H) <

ε

4
.

On BR we have ∇Hj ⇒ ∇H; therefore there is a number j0 ∈ N such that

|ABR
(H) − ABR

(Hj)| < ε

2
for j > j0(ε).

It follows that

|A(H) − A(Hj)| ≤ |ABR
(H) − ABR

(Hj)| +AB\BR
(H) +AB\BR

(Hj)

<
ε

2
+
ε

4
+
ε

4
= ε for j > j0(ε),

and so: A(Hj) → A(H) as j → ∞. �

For minimal surfaces we obtain a stronger convergence result:

Theorem 5. Let {Xj } be a sequence of minimal surfaces in B which are
continuous on B and satisfy

(i) ‖Xj − X‖C0(B,R3) → 0 for some X ∈ C0(B,R3);
(ii)

∫
∂B

|dXj | →
∫

∂B
|dX| as j → ∞.

Then X is a minimal surface in B, and

(22) lim
j→∞

D(Xj) = D(X).

Moreover, Xj → X in H1
2 (B,R3).

Proof. By assumption we have in B

(23) ΔXj = 0 and |DuXj |2 = |DvXj |2, 〈DuXj , DvXj 〉 = 0 in B.
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Furthermore relation (i) implies ∇sXj ⇒ ∇sX on every B′ ⊂⊂ B and for
any s ≥ 1. Therefore (23) implies

(24) ΔX = 0 and |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0 in B,

i.e. X is a minimal surface in B. From (23) and (24) we infer

D(Xj) = A(Xj) and D(X) = A(X),

and (17) of Theorem 4 yields A(Xj) → A(X). This implies (22). Finally,
a standard reasoning shows that Xj ⇀ X in H1

2 (B,R3). Then, in conjunction
with (22), we obtain Xj → X in H1

2 (B,R3). �

An immediate consequence of this theorem are the next two results:

Corollary 3. Let {Xj } be a sequence of minimal surfaces in B which are of
class C

∗
(Γ ) and satisfy Xj ⇒ X on B. Then X is a minimal surface in B of

class C
∗
(Γ ), and

‖X − Xj ‖H1
2 (B,R3) → 0 as j → ∞.

Corollary 4. Let {Xj } be a sequence of minimal surfaces in B which are of
class C(Γj) and satisfy Xj ⇒ X on B. We also assume that Γ, Γ1, Γ2, . . .
are closed rectifiable Jordan curves in R

3 such that Γj → Γ (in the sense of
Fréchet), and that the lengths L(Γj) of Γj tend to the length L(Γ ) of Γ . Then
X is a minimal surface in B of class C(Γ ), and D(Xj) → D(X) < ∞ as well
as

‖X − Xj ‖H1
2 (B,R3) → 0 as j → ∞.

Remark 1. If we in Theorem 3 of 4.3 assume in addition that L(Γn) → L(Γ )
then the extracted subsequence {Xnp } of the quoted theorem also satisfies
‖X − Xnp ‖H1

2 (B,R3) → 0 as p → ∞.

6.5 When Is the Limes Superior of a Sequence of Paths
Again a Path?

In the next section we need a generalization of the reasoning used in the proof
of Theorem 1 of 6.2 to prove the existence of a minimizing path p∗ joining two
minimizers. Since we shall operate in the metric space (C

∗
(Γ ), d0), we shall

formulate this generalization in the context of a general metric space (E, d)
with a distance function d.

Let {Mj } be a sequence of subsets Mj of E. Following the example of
Hausdorff we define the Limes Inferior of {Mj} by

lim inf
j→∞

Mj :=
{
x ∈ E : there is a sequence of points

xj ∈ Mj , j ∈ N, with d(x, xj) → 0
}
,



462 6 Unstable Minimal Surfaces

and the Limes Superior of {Mj} by

lim sup
j→∞

Mj :=
{
x ∈ E : there is an increasing sequence of indices jl → ∞

and a sequence of points xl ∈ Mjl
with d(x, xl) → 0

}
.

Proposition 1. We have

(1) lim sup
j→∞

Mj =
⋂
k∈N

⋃
j≥k

Mj .

Proof. Set

M := lim sup
j→∞

Mj and M∗ :=
⋂
k∈N

⋃
j≥k

Mj .

(i) Let x ∈ M ; then d(x, xl) → 0 for some sequence of points xl ∈ Mjl

with increasing jl → ∞. Given k ∈ N there is an N ∈ N such that jl ≥ k
for all l ≥ N whence xl ∈ Mk ∪ Mk+1 ∪ Mk+2 ∪ · · · for l ≥ N , and therefore
x ∈ closure(Mk ∪ Mk+1 ∪ Mk+2 ∪ · · · ) for any k ∈ N. Hence x ∈ M∗, and
consequently M ⊂ M∗.

(ii) Conversely let x ∈ M∗. Then x ∈ closure(Mk ∪ Mk+1 ∪ Mk+2 ∪ · · · )
for all k ∈ N. Then for any k ∈ N we can find a point xk ∈ Mk ∪ Mk+1 ∪ · · ·
with d(x, xk) < 2−k. By induction we can now extract a subsequence {xjl

}
of points xjl

∈ Mjl
where {jl} is an increasing sequence of indices jl → ∞.

Clearly, d(x, xjl
) → 0, and so x ∈ M , whence M∗ ⊂ M . �

The following results are well known:

Proposition 2. If {Mj }j∈N is a family of connected subsets of E with the
property Mj ∩ Mk 	= ∅ for all j, k ∈ N then

⋃
j∈N

Mj is connected.

Proposition 3. If M is a connected subset of E then also M .

Proposition 4. If {Mj } is a sequence of compact, connected subsets Mj of
E with M1 ⊃ M2 ⊃ M3 ⊃ · · · then

⋂
j∈N

Mj is connected.

Proof. See e.g. Alexandroff and Hopf [1], p. 118. �

A straight-forward consequence of Propositions 1–4 is:

Theorem 1. If {Mj } is a sequence of compact, connected subsets of (E, d)
such that Mj ∩Mk is nonempty for all j, k ∈ N, and that

⋃
j≥kMj is relatively

compact for any k ∈ N, then lim supj→∞ Mj is connected and compact.

We note that it was this result that we have used in 6.2 to establish the
existence of a minimal path p∗. Now we prove the following generalization
of Theorem 1 that will be employed in 6.6. We use the following notation:
A path in E is a nonempty compact, connected subset of E.
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Theorem 2. Let {Mn} be a sequence of paths in (E, d) such that
⋃

j∈N
Mj is

relatively compact and lim infj→∞ Mj is nonempty. Then also lim supj→∞ Mj

is a path in (E, d).

Proof. Set M := lim supj→∞ Mj . By (1), M is a closed subset of the compact
subset closure(M1 ∪ M2 ∪ M3 ∪ · · · }, and so M is compact and nonempty, as
lim infj→∞ Mj ⊂ M .

Suppose now that M were not connected. Then there are two open sets
Ω′ and Ω′ ′ in E such that the sets M ′ := M ∩ Ω′ and M ′ ′ := M ∩ Ω′ ′ are
nonvoid as well as disjoint and satisfy M = M ′ ∪M ′ ′. Clearly M ′ and M ′ ′ are
compact subsets of E whence δ := dist(M ′,M ′ ′) > 0. Set ε := δ/4 and define
the sets

M ′
ε := {x ∈ E : dist(x,M ′) < ε

}
, M ′ ′

ε := {x ∈ E : dist(x,M ′ ′) < ε}.

Moreover let x be an arbitrary point of lim infMj . Then there is a sequence
{xj } of points xj ∈ Mj with dist(x, xj) → 0. We may assume that x is
contained in M ′, because the case x ∈ M ′ ′ can be handled analogously. Then
there is a number N(ε) ∈ N such that

Mj ∩ M ′
ε 	= ∅ for all j > N(ε).

Furthermore, since M ′ ′ is nonvoid there is a subsequence {Mjl
} such that

Mjl
∩ M ′ ′

ε 	= ∅ for all l ∈ N; in addition we can assume that jl > N(ε) for all
l ∈ N. In this way we obtain

Mjl
∩ M ′

ε 	= ∅ and Mjl
∩ M ′ ′

ε 	= ∅ for all l ∈ N.

Thus, for any l ∈ N, we can choose points x′
l ∈ Mjl

∩M ′
ε and x′ ′

l ∈ Mjl
∩M ′ ′

ε .
Fix l; since Mjl

is connected there is a finite set {z1, . . . , zm} of points in Mjl

with z1 = x′
l, zm = x′ ′

l , and d(zk, zk+1) < ε for k = 1, . . . ,m − 1 (see e.g.
Querenburg [1], p. 46). Since dist(M ′

ε,M
′ ′
ε ) > δ − 2ε = 2ε, at least one of the

points z1, . . . , zm is not contained in M ′
ε ∪ M ′ ′

ε , we call it yl. Then {yl} is a
sequence of points with yl ∈ Mjl

and

(2) dist(yl,M) ≥ ε for l ∈ N.

As
⋃

j∈N
Mj is relatively compact, there is a subsequence {ylk } of {yl} that

converges to some point y, i.e. d(ylk , y) → 0 as k → ∞. By definition of M
we have y ∈ M , contrary to (2). Thus the compact set is also connected, and
so M is a path. �

6.6 Unstable Minimal Surfaces in Rectifiable Boundaries

Now we want to carry over the results of Section 6.3 to rectifiable closed Jordan
curves Γ in R

3 that satisfy a (global) chord-arc condition of the following kind:
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There is a positive constant μ such that for any two points x1, x2 of Γ we
have

(1) &(x1, x2) ≤ μ|x1 − x2|

where &(x1, x2) is the length of the shorter one of the two subarcs of Γ bounded
by x1 and x2.

This assumption will be denoted as Condition (μ).
By C

∗
(Γ ) we denote the class of surfaces X ∈ C(Γ ) ∩ C0(B,R3) which

satisfy some fixed preassigned 3-point condition

(2) X(wk) = Qk, k = 0, 1, 2, wk := exp(iψk), ψk =
2πk
3
,

where Q0, Q1, Q2 are three fixed points on Γ .
Furthermore let H∗(Γ ) be the subset of mappings X ∈ C

∗
(Γ ) which are

harmonic in B. As in 6.3 we could equip both C
∗
(Γ ) and H∗(Γ ) with the

distance function

(3) d1(X,Y ) := ‖X − Y ‖1,B , X, Y ∈ H1

2(B,R
3),

which is derived from the norm

(4) ‖X‖1,B := ‖X‖C0(B,R3) +
√
D(X)

of the Banach space H
1

2(B,R
3) := H1

2 (B,R3) ∩ C0(B,R3). Unfortunately we
have to work with the metric space (H

1

2(B,R
3), d0),

(5) d0(X,Y ) := ‖X − Y ‖C0(B,R3),

as we are unable to apply Theorem 2 of 6.5 in (H
1

2(B,R
3), d1). Instead we

can obtain a version of this result in (H
1

2(B,R
3), d0); this will be stated as

Lemma 2. We note that this deficiency is the reason why we cannot carry
over the results obtained for polygons in full strength to general boundary
contours Γ . We begin our discussion of the general case with a suitable ap-
proximation device.

Lemma 1. Let Γ be a closed rectifiable Jordan curve in R
3 satisfying Condi-

tion (μ). Then there exists a sequence {Γj } of simple, closed polygons Γj in
R

3 and a sequence of homeomorphisms φj : Γ → Γj from Γ onto Γj such that
the following holds:

(i) Q1, Q2, Q3 ∈ Γj for all j ∈ N.
(ii) Γj has Nj+3 (≥4) consecutive vertices which lie on Γ , given by Q0, A1(j),

. . . , Alj (j), Q1, Alj+1(j), . . . , Amj (j), Q2, Amj+1(j), . . . , ANj (j), Q0.
(iii) Δ(Γj) → 0 where Δ(Γj) denotes the length of the largest edge of Γj.
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(iv) The length L(Γj) of the polygons Γj tends to the length L(Γ ) of Γ .
(v) We have

max
x∈Γ

|x − φj(x)| → 0 as j → ∞

and φj(x) = x if x is a vertex of Γj.
(vi) The subarc on Γ bounded by two consecutive vertices of Γj is the shorter

one of the two subarcs of Γ bounded by these vertices if it contains no
other vertex of Γj.

(vii) For any x′, x′ ′ ∈ Γ and any j ∈ N we have

|φj(x′) − φj(x′ ′)| ≤ l(x′, x′ ′)

where l(x′, x′ ′) is the length of the shorter arc on Γ with endpoints x′

and x′ ′.

We call {Γj } an approximating sequence of inscribed polygons for
Γ and Q0, Q1, Q2.

The proof of this lemma is tedious, but elementary, and will therefore be
omitted.

Lemma 2. Let {Γj } be an approximating sequence of inscribed polygons for
Γ , and Q0, Q1, Q2 ∈ Γ , and {Pj } be a sequence of paths (i.e. compact and
connected sets) Pj in (H∗(Γj), d0) such that

(6) sup{D(X) : X ∈ Pj } ≤ κ for all j ∈ N and some κ > 0.

Moreover, suppose that there is a sequence {Yj } of points Yj ∈ H∗(Γj) with

(7) d0(Yj , Y ) → 0 as j → ∞ for some Y ∈ H1

2(B,R
3).

Then P := lim supj→∞ Pj is a path in (H∗(Γ ), d0), and

(8) sup{D(X) : X ∈ P} ≤ κ.

Proof. By Theorem 3 of 4.3 we obtain that
⋃

j∈N
Pj is relatively compact

in (H
1

2(B,RN ), d0), and (7) implies that lim infj→∞ Pj is nonempty. Then
we infer from 6.5, Proposition 1 and Theorem 2, and 4.3, Theorem 3, that
P := lim supj→∞ Pj is a path in (H∗(Γ ), d0), and (8) follows from (6) since
D is sequentially weakly lower semicontinuous on H1

2 (B,R3). �

Remark 1. A path in (H
1

2(B,R
3), d1) is also a path in (H

1

2(B,R
3), d0). This

ensues from the following two statements:

1◦ A d1-compact set in H
1

2(B,R
3) is also d0-compact.

2◦ A d1-connected set in H
1

2(B,R
3) is as well d0-connected.
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Proof. (a) We first recall that a subset of a metric space is compact if and
only if it is sequentially compact.

Let M ⊂ H
1

2(B,R3) be d1-compact, and {xj } be a sequence in M . Then
there exists a subsequence {xjk

} with d1(xjk
, x) → 0 for some x ∈ M . It

follows that d0(xjk
, x) → 0; consequently M is d0-compact.

(b) Suppose now that M ⊂ H
1

2(B,R
3) is d1-connected, but not d0-

connected. Then there exist two d0-closed sets M ′ and M ′ ′ which are nonvoid
and satisfy M = M ′ ∪ M ′ ′ and M ′ ∩ M ′ ′ = ∅. We claim that both M ′ and
M ′ ′ are d1-closed. For instance, if {xj } is a sequence in M ′ with d1(xj , x) → 0
then d0(xj , x) → 0, and therefore x ∈ M ′ since M ′ is d0-closed. Analogously
we see that M ′ ′ is d1-closed. Consequently M is d1-disconnected, contrary to
our assumption. �
Remark 2. In virtue of Remark 1 we can carry over the results of 6.3, The-
orems 1–3, from (C

∗
(Γ ), d1) to (C

∗
(Γ ), d0), Γ being a closed simple polygon.

We merely have to replace expressions of the kind maxP D for paths P by
supP D since D is no longer continuous on a d0-path. Of course, supP D
could be infinite, and it might be infinite for any path P containing two given
points X1, X2 ∈ C

∗
(Γ ). It will be seen later that the latter does not occur; cf.

Lemma 6.

Let us now consider an arbitrary boundary contour Γ satisfying Con-
dition (μ), and three points Q0, Q1, Q2 ∈ Γ . We choose an approximating
sequence {Γj } of inscribed polygons Γj for Γ and Q0, Q1, Q2. As in 6.1 we
define for each Γj the set Tj of points t = (t1, . . . , tN(j)) ∈ RN(j) satisfying

ψ0 < t
1 < · · · < tlj < ψ1 < t

lj+1 < · · · < tmj < ψ2 < t
mj+1 < · · · < tNj < ψ3,

ψk := 2kπ
3 , k = 0, 1, 2, 3, and C

∗
(Γj) and H∗(Γj) are the subsets of mappings

X of class C(Γj) or H(Γj) respectively satisfying (2).
With every t ∈ Tj we associate the set

(9) Uj(t) :=
{
X ∈ C

∗
(Γj) : X(exp(itk)) = Ak(j), k = 1, . . . , Nj

}
,

and the corresponding Courant function Θj : Tj → R is defined by

(10) Θj(t) := inf{D(X) : X ∈ Uj(t)} for t ∈ Tj .

Furthermore the associated Courant mapping Zj : Tj → C
∗
(Γj) is the map-

ping t �→ Zj(t) where Zj(t) is the uniquely determined minimizer of D in
Uj(t), i.e.

(11) Θj(t) = D(Zj(t)) for t ∈ Tj .

The beautiful properties of Zj and Θj are discussed in 6.1 and 6.3. We set

(12) W∗
j (Γj) := Zj(Tj), j ∈ N.

Furthermore Θj is of class C1(Tj), and the minimal surfaces of class C
∗
(Γj)

are in 1–1 correspondence with the critical points of Θj in Tj .



6.6 Unstable Minimal Surfaces in Rectifiable Boundaries 467

Lemma 3. Given H ∈ H∗(Γ ) there are points tj = (t1j , . . . , t
Nj

j ) ∈ Tj such
that

(13) H(exp(itkj )) = Ak(j) for 1 ≤ k ≤ Nj and for all j ∈ N.

Then

(14) d1(Zj(tj), H) → 0 as j → ∞.

Proof. The first statement is obvious since H satisfies the Plateau boundary
condition.

Let now Hj be the harmonic extension of φj(H|∂B) to B, and set Yj :=
Hj − H. Then, by (vii) of Lemma 1 and (1), we obtain for any α, β ∈ R that

|Yj(eiα) − Yj(eiβ)| ≤ |Hj(eiα) − Hj(eiβ)| + |H(eiα) − H(eiβ)|
≤ l(H(eiα), H(eiβ)) + |H(eiα) − H(eiβ)|
≤ (μ+ 1)|H(eiα) − H(eiβ)|.

Furthermore, φj(H|∂B) → H|∂B in C0(∂B,R3), i.e. Yj → 0 in C0(∂B,R3).
Then 6.4, Theorem 2 implies

(15) d1(Hj , H) → 0 as j → ∞.

From (13) it follows that Hj ∈ Uj(tj), j ∈ N, and then

(16) D(Zj(tj)) ≤ D(Hj) ≤ const for all j ∈ N

because of (10), (11), and (15). Since Zj(tj) and Hj lie in Uj(tj), we infer
from Lemma 1(iii) that

‖Zj(tj) − Hj ‖C0(∂B,R3) ≤ Δ(Γj) → 0 as j → ∞.

In conjunction with (15) we arrive at

(17) d0(Zj(tj), H) → 0 as j → ∞.

Because of (16) we can extract from any subsequence of {Zj(tj)} another
subsequence {Zjk

(tjk
)} which converges weakly in H1

2 (B,R3) and therefore
strongly in L2(B,R3) to some element X, and (17) implies X = H. Hence

(18) Zjk
(tjk

)⇀ H in H1
2 (B,R3) as k → ∞,

and consequently
D(H) ≤ lim inf

k→∞
D(Zjk

(tjk
)).

On the other hand,
lim sup

k→∞
D(Zjk

(tjk
)) ≤ D(H)
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in virtue of (15) and (16), and so we obtain

D(Zjk
(tjk

)) → D(H).

In conjunction with (18) we arrive at Zjk
(tjk

) → H in H1
2 (B,R3), and then a

standard reasoning implies

‖Zj(tj) − H‖H1
2 (B,R3) → 0 as j → ∞.

Together with (17) we finally have (14). �

Lemma 4. Equip C
∗
(Γ ) with the metric d0; then there is a continuous map-

ping (X,λ) �→ R(X,λ) from C
∗
(Γ ) × [0, 1] into C

∗
(Γ ) such that R(X, 0) = X,

R(X, 1) = H ∈ H∗(Γ ) with X|∂B = H|∂B, and d(λ) := D(R(X,λ)) decreases
from d(0) = D(X) to d(1) = D(H).

Proof. Choose H ∈ H∗(Γ ) with H|∂B = X|∂B for some X ∈ C
∗
(Γ ), and set

R(X,λ) := λH + (1 − λ)X = H + (1 − λ)(X − H) for 0 ≤ λ ≤ 1.

By Dirichlet’s principle we have D(H,φ) = 0 for all φ ∈ H1
2 (B,R3) with

φ|∂B = 0 whence

D(R(X,λ)) = D(H) + (1 − λ)2D(X − H) for 0 ≤ λ ≤ 1. �

Let P(X1, X2) be the set of all paths P in (C
∗
(Γ ), d0) with X1, X2 ∈ P .

Lemma 5. Let X1, X2 ∈ C
∗
(Γ ), and H1, H2 ∈ H∗(Γ ) be the harmonic map-

pings with Hk |∂B = Xk |∂B, k = 1, 2. Then we have:

(i) P(X1, X2) is nonvoid if and only if P(H1, H2) is nonvoid.
(ii) Assume that P(H1, H2) is nonvoid. Then

(19) sup
P
D > max{D(X1), D(X2)} for all P ∈ P(X1, X2)

implies

(20) sup
P
D > max{D(H1), D(H2)} for all P ∈ P(H1, H2).

Proof. If P ∈ P(X1, X2) then R(P, 1) ∈ P(H1, H2). Conversely, if P ∈
P(H1, H2) and P1 := {R(X1, λ) : 0 ≤ λ ≤ 1}, P2 := {R(X2, λ) : 0 ≤ λ ≤ 1}
then P̃ := P1 ∪ P ∪ P2 ∈ P(X1, X2), and so (i) is proved.

Suppose that there is some P ∈ P(H1, H2) with supP D ≤ max{D(H1),
D(H2)}. Then supP̃ D ≤ max{D(X1), D(X2)} on account of Lemma 4. Hence
(19) implies (20). �
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Lemma 6. Let Γ be a closed rectifiable Jordan curve in R
3 satisfying Con-

dition (μ). Then any two points H1 and H2 of H∗(Γ ) with H1 	= H2 can be
joined by a path P ∗ (i.e. a compact connected subset) in (H∗(Γ ), d0) such that

(21) sup
P ∗
D ≤ max

{
D(H1), D(H2),

1
4π
L2(Γ )

}
.

Proof. Let {Γj } be an approximating sequence of inscribed polygons Γj for Γ
and Q0, Q1, Q2 with the associated points tj,1 and tj,2 in Tj ⊂ R

Nj for H1 and
H2 such that φj(H1|∂B) and φj(H2|∂B) are the boundary values of harmonic
mappings Hj,1 and Hj,2 in Uj(tj,1) and Uj(tj,2) respectively; see Lemma 3.
Set

Yj,1 := Zj(tj,1), Yj,2 := Zj(tj,2), j ∈ N.

In virtue of Lemma 3, (14) we have

(22) d1(Yj,1, H1) → 0 and d1(Yj,2, H2) → 0 as j → ∞,

in particular

(23) D(Yj,1) → D(H1) and D(Yj,2) → D(H2).

Consider the set Pj := Pj(tj,1, tj,2) of all paths p in Tj joining tj,1 and tj,2.
By (22) and H1 	= H2 we may assume that tj,1 	= tj,2 for all j ∈ N. In virtue
of 6.3, Theorem 4, there is a minimal path p∗

j in Pj such that

cj := max
X∈Zj(p∗

j )
D(X) = inf

p∈Pj

max
X∈Zj(p)

D(X), j ∈ N.

We claim that for all j ∈ N

(24) cj ≤ max
{
D(Yj,1), D(Yj,2),

1
4π
L2(Γj)

}
.

In fact, suppose that

cj > max{D(Yj,1), D(Yj,2)}.

Then it follows from Theorem 4 of 6.3 that there is an unstable minimal
surface Yj ∈ P ∗

j := Z(p∗
j ) with cj = D(Yj). The isoperimetric inequality

yields

cj ≤ 1
4π
L2(Γj),

and so we have (24). On the other hand, if cj ≤ max{D(Yj,1), D(Yj,2)}, (24)
is clearly fulfilled, and so we have verified (24) for all j ∈ N.

In conjunction with (23) and L(Γj) → L(Γ ) we conclude that the se-
quence {cj } is bounded, and so (passing to a subsequence and renaming
it) we may assume that cj → κ for some κ ≥ 0. Then H1 and H2 lie in
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lim infj→∞ P ∗
j , and Lemma 2 implies that P ∗ := lim supj→∞ P ∗

j is a path in
(H∗(Γ ), d0) joining H1 and H2. The weak lower semicontinuity D with re-
spect to weak convergence in H1

2 (B,R3) in conjunction with the definition of
P ∗ yields supP ∗ D ≤ κ, and so we arrive at

(25) sup
P ∗
D ≤ κ = lim

j→∞
cj ≤ max

{
D(H1), D(H2),

1
4π
L2(Γ )

}
. �

Lemma 7. Let Γ be a closed rectifiable Jordan curve in R
3 satisfying Con-

dition (μ). Suppose also that H1, H2 are two different points of (H∗(Γ ), d0)
such that

(26) sup
P ′
D > max

{
D(H1), D(H2)

}
for all P ′ ∈ P

′(H1, H2)

where P
′(H1, H2) denotes the set of all paths in (H∗(Γ ), d0) joining H1 and

H2. Then there exists some path P ∗ ∈ (H∗(Γ ), d0) and some minimal surface
H3 ∈ P ∗ with

(27) D(H3) = c := sup
P ∗
D

which is d0-unstable, i.e. in every d0-neighborhood of H3 there exists an X ∈
C

∗
(Γ ) such that D(X) < D(H3).

Proof. Let P ∗ ∈ P
′(H1, H2) be the path constructed in the proof of Lemma 6.

Then
c := sup

P ∗
D > max{D(H1), D(H2)}

in virtue of (26). By (25) we have

c ≤ κ = lim
j→∞

cj , cj := max
P ∗

j

D.

In conjunction with (23) we then obtain

max
P ∗

j

D > max{D(Yj,1), D(Yj,2)} for j � 1.

Using the proof of Theorem 4 in 6.3 we conclude that for j � 1 there is a
minimal surface Xj ∈ P ∗

j satisfying D(Xj) = cj , and a standard reasoning
(cf. 4.3, Theorem 3) shows that there is a subsequence {Xjk

} and a minimal
surface X0 ∈ P ∗ such that d0(Xjk

, X0) → 0 and Xjk
⇀ X0 in H1

2 (B,R3).
Furthermore, L(Γj) → L(Γ ). Then we infer D(Xjk

) → D(X0) on account of
6.4, Theorem 5. Therefore

κ = lim
k→∞

cjk
= D(X0) ≤ c.

Thus the minimal surface X0 ∈ P ∗ satisfies D(X0) = c. In order to obtain an
unstable minimal surface H3 ∈ P ∗ with D(H3) = c we consider the set Kc
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of all minimal surfaces H ∈ P ∗ with D(H) = c which is a closed subset of
(P ∗, d0) on account of 4.3, Theorem 3, and 6.4, Theorem 5. Furthermore Kc

is a nonvoid and proper subset of P ∗ since X0 ∈ Kc and H1, H2 	∈ Kc. Hence,
on account of the connectedness of P ∗, there exists a boundary point H3 of
Kc with H3 ∈ Kc, therefore

Nε := (P ∗ \ Kc) ∩ {X : d0(X,H3) < ε} 	= ∅ for every ε > 0.

If for any ε > 0 there is an X ∈ Nε with D(X) < c, we have shown that
H3 is unstable. It remains to consider the case when we have D(X) = c for
all X ∈ Nε and any ε ∈ (0, ε0) for some positive ε0. Pick some X ∈ Nε for
any ε ∈ (0, ε0). Then D(X) = c, and X is harmonic as Nε ⊂ P ∗ ⊂ P

′. Since
X 	∈ Kc we conclude that X is not conformal; therefore we have

(28) ∂D(X,λ) 	= 0

for some vector field λ ∈ C2(B,R2) that is tangential at ∂B. Then we can
find a C1-family σ(·, t) : B → B of diffeomorphisms of B onto itself such that
σ(w, 0) = w for all w ∈ B and

d

dt
D(X ◦ σ(·, t))

∣∣∣∣
t=0

< 0,

whence D(X ◦ σ(·, t)) < D(X) = c for 0 < t � 1. Thus D(Y ) < D(X) for
Y := X ◦ σ(·, t) ∈ C(Γ ) as well as d0(Y,X) � 1 for 0 < t � 1, and therefore
d0(Y,H3) < ε for 0 < t � 1. By the reasoning of 6.1, Proposition 8, one
can achieve that (28) holds for some admissible λ with λ(wk) = 0 for wk =
exp(iψk), k = 0, 1, 2. Approximating λ in a suitable way one can construct
σ(·, t) in such a way that also σ(wk, t) = wk for |t| � 1 is fulfilled, and
therefore Y lies even in C

∗
(Γ ). �

Now we can state the main result of this section.

Theorem 1. Let Γ be a closed rectifiable Jordan curve in R
3 satisfying Condi-

tion (μ), and let X1, X2 be two points of (C
∗
(Γ ), d0) such that X1|∂B 	= X2|∂B

and

(29) sup
P
D > max{D(X1), D(X2)} for all P ∈ P(X1, X2).

Then there exists a D-unstable (and therefore also A-unstable) minimal sur-
face X3 ∈ (C

∗
(Γ ), d0), i.e. for any ε > 0 there is an X ∈ C

∗
(Γ ) with

d0(X,X3) < ε and D(X) < D(X3).

Proof. Let H1, H2 ∈ H∗(Γ ) be the harmonic surfaces with Hk |∂B = Xk |∂B ,
k = 1, 2. By Lemma 6 the set P

′(H1, H2) is nonvoid, and so also P(X1, X2)
is nonvoid according to Lemma 5(i). Thus assumption (29) makes sense, and
Lemma 5(ii) yields
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sup
P
D > max{D(H1), D(H2)} for all P ∈ P(H1, H2).

Since P
′(H1, H2) ⊂ P(H1, H2) we also have

sup
P ′
D > max{D(H1), D(H2)} for all P ′ ∈ P

′(H1, H2).

Moreover, X1|∂B 	= X2|∂B implies H1 	= H2. Now the assertion follows from
Lemma 7 and from 6.3, Remark 2. �

As a corollary of the preceding result we obtain

Theorem 2. Let Γ be a closed rectifiable Jordan curve in R
3 satisfying Con-

dition (μ), and let X1, X2 ∈ C
∗
(Γ ) be two different minimal surfaces, each

furnishing a strict local minimum for D in (C
∗
(Γ ), d0), i.e.

(30) D(Xk) < D(X) for any X ∈ C
∗
(Γ ) with d0(X,Xk) < ε, k = 1, 2,

for any positive ε � 1. Then there is a third minimal surface X3 ∈ C
∗
(Γ )

which is both D-unstable and A-unstable in (C
∗
(Γ ), d0).

Another corollary of Theorem 1 is the following result:

Theorem 3. Let Γ be a closed rectifiable Jordan curve in R
3 satisfying Condi-

tion (μ), and let X1, X2 ∈ C
∗
(Γ ) be two minimal surfaces separated by a wall,

i.e. which satisfy (29). Then there exists a third minimal surface X3 ∈ C
∗
(Γ )

which is both D-unstable and A-unstable in C
∗
(Γ ).

6.7 Scholia

6.7.1 Historical Remarks and References to the Literature

The results of the present chapter are a special part of Morse theory that for-
merly ran under the headline “Theorem of the Wall”. Nowadays one speaks of
the “Mountain Pass Theorem”, referring to the path-breaking work by A. Am-
brosetti and P. Rabinowitz [1]. A presentation of applications of this theorem
to various variational problems can be found in the texts of M. Struwe [13] and
E. Zeidler [1]. Originally Morse theory worked very well for one-dimensional
variational integrals, say, geodesics whereas already minimal surfaces lead to
enormous difficulties. In a remarkable competition, the first results were found
by M. Shiffman [2–5] and by M. Morse & C. Tompkins [1–5] almost simulta-
neously. Of particular interest is that work by Morse & Tompkins which uses
the “theorem of the wall”, while their general Morse-theoretic statements are
more or less useless as they are based on topological assumptions which can-
not be verified in a concrete situation. A general Morse theory for minimal
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surfaces in R
4 was developed by M. Struwe [4,8] and J. Jost & M. Struwe [1].

Furthermore A. Tromba [10–12] obtained a Morse-theoretic result for minimal
surfaces in three-dimensional space which is presented in the last chapter of
Vol. 3.

Somewhat later than Shiffman and Morse & Tompkins, Courant found a
new approach to the “theorem of the wall” that works for minimal surfaces
bounded by a polygonal contour; cf. R. Courant [13] and [15], and Shiffman
[4] showed how Courant’s “polygonal theory” can also be used to establish
the “theorem of the wall” for rectifiable boundary contours. This work was
carried over by E. Heinz [12–14] to surfaces of constant mean curvature H
with |H| < 1

(2R) which are contained in a ball of radius R. In his remarkable
paper [2], Ströhmer was able to establish the “theorem of the wall” for sur-
faces of prescribed mean curvature H(x) under the most general assumption
|H(x)| ≤ 1

R . Previously G. Ströhmer [1] had generalized the Courant–Shiffman
theory to minimal surfaces in a Riemannian manifold of nonpositive sectional
curvature. Further contributions by Ströhmer concern the semi-free problem
[3], and in [4] the Plateau problem for more general integrals. M. Shiffman [8]
developed a “mountain pass theorem” for general parametric integrals of the
type

F(X) =
∫

B

F (Xu ∧ Xv) du dv.

Unfortunately, Shiffman’s reasoning is not stringent, as has been pointed out
by R. Jakob (cf. [2], p. 403). Nevertheless, Shiffman’s paper contains quite
ingenious ideas which, combined with the technique developed by Courant
and Heinz, enabled R. Jakob to establish a modified version of Shiffman’s
theory (see Jakob [1,2,4,5]).

6.7.2 The Theorem of the Wall for Minimal Surfaces in Textbooks

The first textbook presentation can be found in Courant [15], Chapter VI,
Sections 7 and 8. The results of 6.6 can also be derived by using Courant’s
pinching lemma 6.10 (cf. pp. 236–237, 241–243) instead of Lemma 1 in 6.6.

J.C.C. Nitsche gave a detailed and very precise presentation of Shiffman’s
approach to unstable minimal surfaces in §§419–433 of his treatise [28], with
applications to several examples in §§ 434–436.

An interesting and completely new approach to the “mountain pass the-
orem” for minimal surfaces, based on Douglas’s functional, was given by
M. Struwe [11], with a correction in Imbusch and Struwe [1]. In this work,
an infinite-dimensional version of the mountain-pass lemma is used to prove
the existence of unstable minimal surfaces directly for boundary contours Γ
of class C2, without the detour of approximating Γ by polygonal contours Γj .
This enabled Struwe to work with a metric d1 instead of d0, just as we did in
6.3, which leads to somewhat stronger existence results than those in 6.6 for
Γ ∈ C2, i.e. to results as presented in 6.3 for polygonal Γ . It is a challenging
problem to carry over Struwe’s approach to related problems.
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J. Jost [17], Corollary 4.4.11, proved the following result: Let Γ be a closed
Jordan curve in a compact Riemannian manifold that contains no minimal
spheres (e.g. if the sectional curvature of M is nonpositive). Suppose that Γ
bounds two homotopic minimal surfaces X1, X2 : B → M both of which are
strict relative minima of Dirichlet’s integral D (with respect to the C0- or H1

2 -
topology). Then there exists a third minimal surface X3 : B → M bounded by
Γ and satisfying

D(X3) > max{D(X1), D(X2)}.
He also noted that for proving such a result the compactness ofM is not really
needed; it is sufficient to assume that X1(B) and X2(B) lie in a bounded,
strictly convex subset of N , without further restrictions on M . Therefore
one in particular obtains a corresponding result in R

n. Moreover, Ströhmer’s
results in his papers [1] and [4] can be obtained in this way.

Another “instability result” of J. Jost [17] is his Theorem 4.6.1 which holds
for Jordan curves Γ of class C2 in R

n: Let X1, X2 : B → R
n be minimal

surfaces of class C∗(Γ ) such that X1(B) 	= X2(B). (i) If both X1 and X2 are
strict local minimizers, then there is a third minimal surface in C∗(Γ ) which
is unstable. (ii) If both X1 and X2 are global minimizers, then one either has a
third and unstable minimal surface X3, or there is a continuous family X(·, t)
with X(·, 0) = X1, X(·, 1) = X2, and D(X(·, t)) ≡ const.

Generalizations of this result are indicated in Jost [17], p. 160, Remark (1).

6.7.3 Sources for This Chapter

In writing this chapter we have extensively used Courant’s work in [15], Heinz’s
papers [13] and [14], as well as a first draft by R. Jakob. In addition, Jakob’s
papers [1,2] and several lectures that he gave to us were of help; we are very
grateful for his support in drawing up the material and for his criticism of our
first draft.

6.7.4 Multiply Connected Unstable Minimal Surfaces

In [8] Struwe used his approach from [11] to prove the existence of unstable
minimal surfaces of annulus type. J. Hohrein [1] discussed the existence of
unstable minimal surfaces of higher genus in Riemannian manifolds of non-
positive curvature, employing ideas of Struwe [4]. Unstable minimal surfaces
X of annulus type in a Riemannian manifold M were studied by H. Kim [1]
assuming that the boundary of X lies in a ball Br(p) of normal range, which
in particular means that the radius r of the ball satisfies r < π/(2

√
κ) where

κ is an upper bound for the sectional curvature of M .

6.7.5 Quasi-Minimal Surfaces

It is not known whether the Courant function Θ associated with a polygon
Γ is of class C2, and so it is impossible to develop a Morse theory for Θ. To
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overcome this difficulty, Marx and Shiffman have set up a modified variational
problem which leads to a modification Θ∗ of Θ with a much better behavior;
cf. Courant [15], pp. 235–236, and I. Marx [1]. The original work of Shiffman
was never published, and the proofs given in Marx’s paper are incomplete
(see e.g. E. Heinz [20], p. 84, and [25], pp. 200–201). A satisfactory theory
of the variational problem of Marx–Shiffman was developed only much later
by E. Heinz [19–24], with further contributions by F. Sauvigny [1–3,6], and
R. Jakob [6–10]. In the sequel we shall present a brief summary of this work.

Let Γ be a simple closed polygon with N + 3 (≥ 4) consecutive vertices
Q1, Q2, . . . , QN+3, and set QN+4 := Q1, Q0 := QN+3. Consider the set of
points t = (t1, t2, . . . , tN ) with 0 < t1 < t2 < · · · < tN < π, and set

tN+ν :=
1
2
π(1 + ν) for ν = 1, 2, 3, t0 := 0.

We assume that the angles at the corners Qj are neither 0 nor π, i.e. for
ξk := Qk − Qk−1, any two vectors ξk, ξk+1 are linearly independent. By Γk

we denote the straight lines

Γk := {sξk : s ∈ R}.

For t ∈ T we define U∗(t) as the set of surfaces

X ∈ H1
2 (B,R3) ∩ C0(B,R3) ∩ C2(B,R3)

which map the circular arcs γk := {eiϕ : tk < ϕ < tk+1} into the straight lines
Γ ′

k := Qk + Γk. Then X(wk) = Qk for wk := eit
k

and 1 ≤ k ≤ N + 3. We
want to minimize D in the class U∗(t). This will be achieved by minimizing
D in the class V , defined by

V := {X ∈ H1
2 (B,R3) : X|∂B(γj) ⊂ Γ ′

j , j = 1, 2, . . . , N + 3},

and then proving that the minimizer in V actually belongs to U∗(t). Since we
have no control over the boundary values of elements of V we need a Poincaré
inequality for the elements of V ; in fact, such an inequality for the elements of
V ∩C1(B,R3) will suffice. This will be achieved by formula (2) of the following

Lemma 1. Let τ0 ∈ [0, 2π], w0 := eiτ0 , 0 < ε0 < π, 0 < ε1 < 1, γ− :=
{eiϕ : τ0 − ε0 < ϕ < τ0}, γ+ := {eiϕ : τ0 < ϕ < τ0 + ε0}; e−, e+ ∈ R

3

with |e− | = |e+| = 1 and 〈e−, e+〉 ≤ 1 − ε1, Γ+ := {se+ : s ∈ R}, Γ− :=
{se− : s ∈ R}; finally suppose that Z ∈ H1

2 (B,R3) ∩C1(B,R3) and Z|γ+(w) ∈
Γ+ H1-a.e. on γ+, Z|γ− (w) ∈ Γ− H1-a.e. on γ−. Then there are numbers
c1 = c1(ε0, ε1), c2 = c2(ε0, ε1), and δ0 = δ0(ε0) ∈ (0, 1) with the following
properties:

(i) For any δ ∈ (0, δ0] there is a δ∗ ∈ (δ,
√
δ) with

(1) |Z(w)| ≤ c1

(
log

1
δ

)− 1
2√
D(Z) for w ∈ B with |w − w0| = δ∗.
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(ii) We have

(2)
∫

B

|Z|2 du dv ≤ c2D(Z).

Proof. (i) By 4.4, Proposition 2, there is a δ∗ ∈ (δ,
√
δ) such that

|Z(w) − Z(w′)| ≤ 2
(

log
1
δ

)− 1
2√
D(Z)(3)

for w,w′ ∈ B with |w − w0| = δ∗ and |w′ − w0| = δ∗.

Let w1, w2 be the two end points of the circular arc {w ∈ B : |w − w0| = δ∗ }.
For 0 < δ < ε0 we can assume that w1 ∈ γ−, w2 ∈ γ+. Then (3) and
〈e−, e+〉 ≤ 1 − ε1 imply

(4) |Z(w1)| ≤ c0(ε0, ε1)
(

log
1
δ

)− 1
2

·
√
D(Z).

Now (1) follows from (3), (4), and |Z(w)| ≤ |Z(w1)| + |Z(w) − Z(w1)|.
(ii) Fix some δ0 with 0 < δ0 < ε and choose δ := δ0 in (i). Since

∫ 1

1−δ0

(∫ 2π

0

|Zϕ(reiϕ)|2 dϕ
)
dr

r
≤ 2D(Z),

there are numbers δ1 ∈ (0, δ0) and r1 := 1 − δ1 with r1 > 1 − δ0 and

∫ 2π

0

|Zϕ(r1eiϕ)|2 dϕ ≤
(∫ 1

1−δ0

dr

r

)−1

· 2D(Z) <
2
δ0
D(Z)

whence

|Z(r1eiϕ) − Z(r1eiψ)| ≤ [4πδ−1
0 D(Z)]

1
2 for 0 ≤ ϕ, ψ ≤ 2π.

Since the arcs {w ∈ B : |w| = r1} and {w ∈ B : |w − w0| = δ∗ } intersect we
obtain in conjunction with (1) that

|Z(w)| ≤
[
c1 ·
(

log
1
δ0

)− 1
2

+
(

4π
δ0

) 1
2
]√
D(Z)(5)

for {w ∈ B : |w| = r1}.

Choose some ε > 0 and consider the function

f(r) := ε+
∫ 2π

0

|Z(reiϕ)|2 dϕ, r ∈ (0, 1).
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From
d

dr

√
f(r) =

f ′(r)
2
√
f(r)

=

∫ 2π

0
2〈Z(reiϕ), Zr(reiϕ)〉 dϕ

2
√
f(r)

we infer by Schwarz’s inequality that

∣∣∣∣ ddr
√
f(r)

∣∣∣∣ ≤
(∫ 2π

0

|Zr(reiϕ)|2 dϕ
) 1

2

.

Then

√
f(r) −

√
f(r1) ≤

∣∣∣∣
∫ r

r1

d

dr

√
f(r) dr

∣∣∣∣ ≤
∣∣∣∣
∫ r

r1

∣∣∣∣ ddr
√
f(r)

∣∣∣∣dr
∣∣∣∣

≤
∣∣∣∣
∫ r

r1

1√
r

·
(∫ 2π

0

|Zr(r eiϕ)
∣∣∣∣
2

rdϕ

) 1
2

dr

∣∣∣∣,
and by Schwarz’s inequality,

√
f(r) ≤

√
f(r1) +

(√
log

1
r

+
√

log
1
r1

)√
2D(Z).

Squaring and letting ε tend to zero we obtain the estimate
∫ 2π

0

|Z(reiϕ)|2 dϕ ≤ 2
∫ 2π

0

|Z(r1eiϕ)|2 dϕ+ 8
(

log
1
r

+ log
1
r1

)
D(Z).

In virtue of 1
r1
< 1

1−δ0
and (5) we arrive at

∫ 2π

0

|Z(reiϕ)|2 dϕ ≤ c(ε0, ε1) ·
(

1 + log
1
r

)
D(Z) for 0 < r < 1.

Multiplying by r and integrating with respect to r from 0 to 1 we obtain (2).
�

Now we fix some arbitrary t ∈ T . Depending on Γ there are numbers q > 0
and μ = μ(t) ∈ (0, 1) such that

(6) |Qk | ≤ q, |tj − tk | ≥ μ, | 〈ξk, ξk+1〉 | ≤ 1 − μ

for 1 ≤ j, k ≤ N + 3, j 	= k.

Proposition 1. There exists a uniquely determined mapping X ∈ U∗(t) with
D(X) = infU ∗(t)D which is harmonic in B.

Proof. Set d := infV D and d∗ := infU ∗(t)D. By U∗(t) ⊂ V and (6) it follows
that

(7) 0 ≤ d ≤ d∗(q, μ) < ∞.
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Choose a sequence of mappings Xn ∈ V with D(Xn) → d. By Dirichlet’s
principle we can assume that the Xn are harmonic in B, in particular Xn ∈
C1(B,R3). Since Z := Xn −Xl satisfies the assumptions of Lemma 1 we have

∫
B

|Xn − Xl|2 du dv ≤ c2D(Xn − Xl) for any n, l ∈ N.

Furthermore, 1
2 (Xk +Xl) ∈ V because V is a convex set, whence

D(Xn +Xl) = 4D
(

1
2 (Xn +Xl)

)
≥ 4d,

and therefore

D(Xn − Xl) = 2D(Xn) + 2D(Xl) − D(Xn +Xl)
≤ 2D(Xn) + 2D(Xl) − 4d → 0 as n, l → ∞.

Thus {Xn} is a Cauchy sequence in H1
2 (B,R3), and so there is an X ∈

H1
2 (B,R3) withXn → X inH1

2 (B,R3) as n → ∞. Then we also haveXn ⇒ X
in B′ for any B′ ⊂⊂ B; hence X is harmonic in B. Since V is a closed sub-
set of H1

2 (B,R3) we see that X ∈ V , and D(Xn) → d yields D(X) = d.
Consequently X is a minimizer of D in V .

Suppose that Y ∈ V were another minimizer. Then

D(X − Y ) = 2D(X) + 2D(Y ) − D(X + Y ) ≤ 2d+ 2d − 4d ≤ 0

and consequently D(X − Y ) = 0. By Lemma 1(ii), follows
∫

B

|X − Y |2 du dv = 0,

and therefore X = Y . Thus D possesses exactly one minimizer X in V . If we
can show that X ∈ C0(B,R3) it follows that X lies in U∗(t), and consequently

inf
V
D = inf

U ∗(t)
D

because of U∗(t) ⊂ V , and so it would be shown that X is the unique mini-
mizer of D in U∗(t).

Standard elliptic regularity theory yields that X is real analytic on the set
B \ {w1, . . . , wN+3}, wk := eit

k

, and

(8)
〈Xr(w), Qk+1 − Qk 〉 = 0
RkX(w) = X(w)

for w ∈ γk, k = 1, . . . , N + 3.

Here Rk : R
3 → R

3 denotes the reflection of R
3 in the straight line Γ ′

k =
Qk + Γk.
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It remains to prove the continuity of X at the points w = wk. Set

X+(w) := X(w) for |w| < 1, X−(w) := X(w−1) for |w| > 1.

Here w−1 = w/|w|2 is the mirror point of w with respect to the unit circle
∂B. Let P be the exterior of the convex hull of w1, . . . , wN+3, and Ωk be the
subset of B ∩P bounded by γk and the linear segment σk with the endpoints
wk and wk+1. By (8) and Schwarz’s reflection principle, X− can be extended
to a harmonic mapping in P , which will again be denoted by X−, and one
has

(9) X−(w) = RkX
+(w) for w ∈ Ωk.

Then for 0 < ρ2 ≤ δ1(μ) � 1 the function |X− − Qk |2 is subharmonic in
P ∩ Bρ(wk), whereas |X+ − Qk |2 is subharmonic in B ∩ Bρ(wk), and by (9)
it follows that |X−(w) − Qk |2 = |X+(w) − Qk |2 holds both for w ∈ Ωk and
for w ∈ Ωk−1. Hence the function

(10) g(w) :=

{
|X+(w) − Qk |2 for w ∈ Bρ(wk) ∩ B, w 	= wk,

|X−(w) − Qk |2 for w ∈ Bρ(wk) ∩ (C \ B), w 	= wk,

is subharmonic in the punctured disk B′
ρ(wk) := {w ∈ R

2 : 0 < |w−wk | < ρ}.
By (7) we have D(X − Qk) = D(x) ≤ d∗, and so the Courant–Lebesgue
Lemma yields together with | 〈ξk, ξk+1〉| ≤ 1 − μ for each k:

For any δ ∈ (0, δ1] and any k with 1 ≤ k ≤ N + 3 there is a number ρ =
ρ(δ, k) ∈ (δ,

√
δ) such that

|X(w) − Qk | ≤ c3(μ)
√
d∗ ·

(
log

1
δ

)−1/2

=: Mδ(11)

for w ∈ B with |w − wk | = ρ.

Hence for any k = 1, . . . , N + 3 there is a sequence {ρj } of numbers ρj > 0
with ρj → 0 as j → ∞ such that

(12) mj := max{ |X(w) − Qk | : w ∈ B, |w − wk | = ρj } → 0 as j → ∞.

Applying the maximum principle to the subharmonic function g on the annu-
lus A(ρj , ρ) := {w ∈ C : ρj ≤ |w − wk | ≤ ρ} for j � 1 we infer from (11) and
(12) that

max{g(w) : w ∈ A(ρj , ρ)} ≤ max{m2
j ,M

2
δ }.

Letting j tend to infinity it follows that

max{g(w) : w ∈ B′
ρ(wk)} ≤ M2

δ .

In conjunction with (10) we obtain that X is also continuous at the points
w1, . . . , wN+3, and therefore X ∈ C0(B,R3) and X ∈ U∗(t). �
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Definition 1. The Marx–Shiffman mapping Z∗ : T → H1
2 (B,R3) is de-

fined by Z∗(t) := X for t ∈ T where X denotes the uniquely determined
minimizer of D in U∗(t), and the Marx–Shiffman function Θ∗ : T → R is
given by

(13) Θ∗(t) := D(Z∗(t)) = inf
U ∗(t)

D.

Any mapping Z∗(t) : B → R
3 is called a quasi-minimal surface (cf.

I. Marx [1]). If we want to emphasize the dependence of Z∗ and Θ∗ on t and
on the vertices Q1, . . . , QN+3 we write Z∗(t, Q1, . . . , QN+3) and as well as
Θ∗(t, Q1, . . . , QN+3).

Remark 1. The three point condition X(wk) = Qk, k = N +1, N +2, N +3
with wk = eit

k

and tN+ν = 1
2π(1 + ν) for ν = 1, 2, 3 is only needed if we want

to compare Θ∗ with the Courant function Θ. Otherwise we can replace t by
t∗ = (t1, t2, . . . , tN+3) and T by T ∗ := {t∗ ∈ R

N+3 : t1 < t2 < · · · < tN+3 <
t1 + 2π}. Then the statements on Θ∗ and Z∗ as functions of t ∈ T also hold
(with obvious alterations) if we consider Θ∗, Z∗ as functions of t∗ ∈ T ∗.

Corollary 1. For t ∈ T there is a number c4 = c4(q, μ(t)) > 0 such that

max
B

|Z∗(t)| ≤ c4.

Furthermore, for any t ∈ T and ε > 0 there is a number δ2 = δ2(q, μ(t), ε) > 0
such that

|Z∗(t)(w) − Z∗(t)(w′)| < ε for any w,w′ ∈ B with |w − w′ | < δ2.

Remark 2. This corollary together with Proposition 1 implies that the map-
pings Z∗(t, Q1, . . . , QN+3) and Z∗(t∗, Q1, . . . , QN+3) depend continuously on
the data t ∈ T and t∗ ∈ T ∗ respectively and on Q1, . . . , QN+3.

Corollary 2. For any t ∈ T , the mapping Z∗(t) ∈ U∗(t) is of class C0(B,R3)∩
Cω(B \ {w1, . . . , wN+3},R3), harmonic in B

′
:= B \ {w1, . . . , wN+3}, and sat-

isfies the boundary conditions (8) on γ1 ∪ · · · ∪ γN+3.

Proposition 2. Let Θ and Θ∗ be the Courant function and the Marx–Shiffman
function associated with a given simple and closed polygon Γ . Then we have:

(i) Θ∗(t) ≤ Θ(t) for all t ∈ T ;
(ii) Θ∗(t) = Θ(t) if t ∈ T is a critical point of Θ;
(iii) There are polygons Γ such that Θ∗ 	= Θ, i.e.

Θ∗(t) < Θ(t) for some t ∈ T.
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Proof. (i) Since U(t) ⊂ U∗(t) for any t ∈ T , it follows that

Θ∗(t) = inf
U ∗(t)

D ≤ inf
U(t)

D = Θ(t).

(ii) Let t ∈ T be a critical point of Θ, and note that

Θ(t) = D(Z(t)), Θ∗(t) = D(Z∗(t)).

By a similar reasoning as in the proof of Proposition 2 in 6.1 we infer that
Z(t) = Z∗(t).

(iii) The third assertion follows from the Lewerenz examples: For any
N ∈ N there is a closed simple polygon Γ with N + 3 vertices such that the
corresponding functions Θ and Θ∗ do not coincide.

It suffices to construct an example for N = 1; the other cases will be
obtained by a slight modification of this example. So we are looking for a
polygon with four vertices Q1, Q2, Q3, Q4 such that the corresponding func-
tions Θ,Θ∗ satisfy Θ∗(t) < Θ(t) for some t ∈ T . (Note that T here reduces
to an interval.) For the sake of convenience we parametrize all surfaces on the
semidisk B+ := {(u, v) ∈ R

2 : u2 + v2 < 1 and v > 0} instead of the disk
B := {(u, v) ∈ R

2 : u2 + v2 < 1}. Let Γε be the polygon determined by the
four successive corners

Qε
1 := (0, 0,−ε), Qε

2 := (0, 0, ε),
Qε

3 = Q3 := (1, 1,−1), Qε
4 = Q4 := (−1, 1, 1),

where ε > 0 is a parameter that will be fixed later on. Set

w1 := (−1, 0), w2 := (1, 0), w3 := (α, α), w4 := (−α, α), α :=
1√
2
.

By Zε = (Z1
ε , Z

2
ε , Z

3
ε ) we denote the uniquely determined minimizer of DB+ ,

DB+(X) :=
1
2

∫
B+

| ∇X|2 du dv,

among all X ∈ H1
2 (B+,R3)∩C0(B+,R3) which map ∂B+ monotonically onto

Γε such that X(w1) = Qε
1, X(w2) = Qε

2, X(w3) = Q3, X(w4) = Q4, and Cε

be the class of all such X. Consider the surface Z ′
ε defined by

Z ′
ε(u, v) :=

(
−Z1

ε (−u, v), Z2
ε (−u, v),−Z3

ε (−u, v)
)
.

One easily checks that Z ′
ε ∈ Cε and DB+(Zε) = DB+(Z ′

ε), whence we obtain
Zε = Z ′

ε. Thus, for any (u, v) ∈ B+, Z1
ε (−u, v) = −Z1

ε (u, v), Z2
ε (−u, v) =

Z2
ε (u, v), Z3

ε (−u, v) = −Z3
ε (u, v). In particular it follows that

Z1
ε (0, v) = 0, Z3

ε (0, v) = 0 for 0 ≤ v ≤ 1,
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Fig. 1. Lewerenz curve

and Zε ∈ Cε immediately yields

Z2
ε (0, 0) = 0, Z2

ε (0, 1) = 1,

that is
Zε(0, 0) = P0 := (0, 0, 0), Zε(0, 1) = P1 := (0, 1, 0).

Fix some ε′ with 0 < ε′ � 1. By an elementary construction we can find
surfaces Yε ∈ Cε such that DB+(Yε) ≤ const for 0 < ε < ε′. Then DB+(Zε) ≤
const for 0 < ε < ε′, and by the Courant–Lebesgue Lemma there exists a
sequence of numbers εj ∈ (0, 1) with εj → 0 such that the harmonic map-
pings Zεj converge uniformly on B+ to some Z0 ∈ C0(B+,R3) ∩H1

2 (B+,R3)
which maps ∂B+ monotonically onto the polygon Γ0 with the three vertices
P0, Q3, Q4 such that

Z0(u, 0) = P0 for −1 ≤ u ≤ 1, Z0(w3) = Q3, Z0(w4) = Q4

and
Z(0, 1) = P1.

Now we reflect Z3
ε and Z3

0 symmetrically at the u-axis, setting

ζε(u, v) :=

{
Z3

ε (u, v) for v ≥ 0,
Z3

ε (u,−v) for v ≤ 0,
ζ0(u, v) :=

{
Z3

0 (u, v) for v ≥ 0,
Z3

0 (u,−v) for v ≤ 0,

where (u, v) ∈ B and B := {(u, v) : u2 + v2 < 1}.
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Then we consider the functions hε, h0 ∈ H1
2 (B) ∩ C0(B) ∩ C2(B) which

are harmonic in B and satisfy

hε|∂B = ζε|∂B , h0|∂B = ζ0|∂B .

By Dirichlet’s principle,

DB(hε) ≤ DB(ζε) and DB(h0) ≤ DB(ζ0),

and the equality sign holds if and only if hε = ζε and h0 = ζ0 respectively.
The symmetry of ζε and ζ0 implies

DB(ζε) = 2DB+(ζε) and DB(ζ0) = 2DB+(ζ0).

Let w∗ = (u,−v) be the mirror point of w = (u, v). Then

ζε(w) = ζε(w∗) and ζ0(w) = ζ0(w∗) for any w ∈ ∂B.

Set
h∗

ε(w) := hε(w∗) and h∗
0(w) := h0(w∗) for w ∈ B.

Then h∗
ε, h

∗
0 are continuous on B, harmonic in B, and h∗

ε |∂B = hε|∂B , h∗
0|∂B =

h0|∂B . The maximum principle implies h∗
ε = hε and h∗

0 = h0, and so

hε(u,−v) = hε(u, v), h0(u,−v) = h0(u, v) for (u, v) ∈ B.

This in turn yields

DB(hε) = 2DB+(hε), DB(h0) = 2DB+(h0),

therefore
DB+(hε) ≤ DB+(ζε), DB+(h0) ≤ DB+(ζ0),

and equality occurs if and only if hε = ζε and h0 = ζ0 respectively.
Furthermore, Z3

ε (−u, v) = −Z3
ε (u, v) for (u, v) ∈ B yields

hε(−u, v) = −hε(u, v) and h0(−u, v) = −h0(u, v) for (u, v) ∈ ∂B.

Then an analogous reasoning furnishes

h0(−u, v) = −h0(u, v) for (u, v) ∈ B,

and so
h0(0, v) = 0 for all v with |v| ≤ 1.

Moreover, Z0 maps the quarter circle {(cos θ, sin θ) : 0 ≤ θ ≤ π
2 } onto the

polygonal subarc P0Q3P1 of Γ0, whence h0(u, v) ≤ 0 on the boundary of
the semidisk S+ := {(u, v) ∈ B : u > 0}. The maximum principle yields
h0(u, v) < 0 in S+, in particular
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h0(u, 0) < 0 for 0 < u < 1,

and similarly
h0(u, 0) > 0 for −1 < u < 0.

Since Zεj ⇒ Z0 on B+, it follows that ζεj |∂B ⇒ ζ0|∂B , and therefore hεj ⇒ h0

on B. Hence there are numbers ε0 > 0 and u+
1 , u

+
2 , u

−
1 , u

−
1 such that 0 < u+

1 <
u+

2 < 1, −1 < u−
1 < u

−
2 < 0, and

hε0(u, 0) < 0 for u+
1 < u < u

+
2 , hε0(u, 0) > 0 for u−

1 < u < u
−
2 .

Now we define a new harmonic mapping Xε0 by

Xε0 := (Z1
ε0
, Z2

ε0
, hε0 |

B
+)

which satisfies

Xε0(w1) = Qε0
1 , Xε0(w2) = Qε0

2 , Xε0(0, 0) = P0,

hence
hε0(−1, 0) = −ε0, hε0(1, 0) = ε0, hε0(0, 0) = 0.

Therefore Xε0 is not monotonic on {(u, 0) : − 1 ≤ u ≤ 1}. Thus hε0 does not
coincide with ζε0 ; hence DB+(hε0) < DB+(ζε0) and therefore

DB+(Xε0) < DB+(Zε0).

We also note that Xε is an admissible mapping for Shiffman’s variational
problem since it maps the subarcs of ∂B+ between wj and wj+1 into the
straight lines through Qε0

j and Qε0
j+1 (with wj+4 := wj , Qε0

j+4 := Qε0
j ). Hence,

for w1, w2, w3, w4 and Γε0 the “Marx–Shiffman minimizer” furnishes a smaller
value for DB+ than the “Courant minimizer”, and consequently Θ∗(t) < Θ(t)
for some t ∈ T if we return to our original notation.

By a slight modification of the preceding reasoning one can construct
“Lewerenz examples” Γ with more than four vertices. �

The elementary results that we so far have proved are taken from Lewerenz
[1] and Heinz [19]. The following work is much more profound and rests on
classical results by H. Poincaré, L. Schlesinger [1–4], and J. Plemelj [1] about
the Riemann–Hilbert problem. Here we can only present the statements of
Heinz’s principal theorems without any proof.

The main result of [19] is

Theorem 1. For t∗ = (t1, . . . , tN+3) ∈ T ∗ := {t∗ ∈ R
N+3 : t1 < · · · < tN+3 <

t1 + 2π} we set X(u, v, t∗) := Z∗(t∗)(w), w = (u, v), where Z∗(t∗) is
the quasi-minimal surface (i.e. the Marx–Shiffman mapping), bounded by
the polygon Γ , that belongs to t∗ ∈ T ∗ (see Definition 1 and Remark 1).
Let t∗

0 ∈ (t10, . . . , t
N+3
0 ) ∈ T ∗, ẘk := exp(itk0) for k = 1, . . . , N + 3 and

ẘ = ů + i̊v =̂ (̊u, v̊) ∈ B with ẘ 	= ẘ1, . . . , ẘN+3. Then, in a sufficiently
small neighborhood of (̊u, v̊, t∗

0), the mapping X(u, v, t∗) possesses a conver-
gent power series expansion.
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In [21] Heinz also allowed the corners Q1, . . . , QN+3 of Γ to vary under the
assumption that none of the angles at Q̊1, . . . , Q̊N+3 of Γ̊ will be 90◦. Then it
turns out that X(u, v, t∗, Q) can be expanded in a convergent power series of
the variables (u, v, t∗, Q) near (̊u, v̊, t∗

0, Q̊) where Q := (Q1, . . . , QN+3), Q̊ :=
(Q̊1, . . . , Q̊N+3), X(wk, t

∗, Q) = Qk for wk = exp(itk) and X(ẘk, t
∗
0, Q̊k) = Q̊k

for k = 1, . . . , N + 3.
In [20] (and with simplified proofs in [23]) Heinz proved analyticity of the

Shiffman function Θ∗(t) in t ∈ T :

Theorem 2. For t ∈ T set X = X(·, t) = Z∗(t). Then one has:

(i) In B × T the mapping X satisfies

w2Xw(w) · Xw(w) =
i

8π

N+3∑
k=1

Rk(t)
wk + w
wk − w

, wk := exp(itk),

where the Rk(t) are real analytic in t ∈ T and satisfy

N+3∑
k=1

Rk(t) = 0 and
N+3∑
k=1

wkRk(t) = 0.

(ii) Θ∗(t) is real analytic in T , and

∂Θ∗(t)
∂tk

= Rk(t) for k = 1, . . . , N.

(iii) X(·, t) is minimal surface (i.e. ΔX(·, t) = 0 and Xw(·, t) · Xw(·, t) = 0
in B) if and only if ∇Θ∗(t) = 0.

According to Heinz [21], also the function Θ∗(t, Q) = D(X(·, t, Q)) is real
analytic in t ∈ T and Q ∈ R

3(N+3) if we avoid angles of 90◦ at the vertices
Q̊k of the polygon Γ̊ that is to be varied; in fact, it suffices that the angle at
one of the vertices Q̊k is different from 90◦ (see Heinz [21], pp. 33–34).

In order to formulate further results it will be convenient to use the fol-
lowing notations:

M(Γ ) := {X ∈ C(Γ ) : ΔX = 0, Xw · Xw = 0}

is the class of disk-type minimal surfaces X : B → R
3 bounded by Γ , and

M∗(Γ ) is the subclass

M∗(Γ ) := {X ∈ C(Γ ) : ΔX = 0, Xw · Xw = 0}

of X ∈ M(Γ ) satisfying the three-point condition

(∗) X(wk) = Qk for k = N + 1, N + 2, N + 3
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and wN+ν := exp(itN+ν), 1 ≤ ν ≤ 3, and tN+ν = π
2 (1 + ν). As always

in the present context, Γ is a polygon in R
3 with the “true vertices” Q1,

Q2, . . . , QN+3. By S(Q) we denote the class of quasi-minimal surfaces X =
Z∗(t) with “∂X ⊂ Γ ′

1 ∪ Γ ′
2 ∪ · · · ∪ Γ ′

N+3”, precisely speaking:

S(Q) := {X : X = Z∗(t) for some t ∈ T}, Q := (Q1, . . . , QN+3),

where T = {t = (t1, . . . , tN ) : 0 < t1 < · · · < tN < π} and Z∗(t) is the Marx–
Shiffman mapping for t ∈ T , i.e. the minimizer of D in the class U∗(t) of
surfaces Y ∈ H1

2 (B,R3) ∩C0(B,R3) ∩C2(B,R3) with Y (γk) ⊂ Γ ′
k = Qk +Γk,

k = 1, . . . , N + 3. In particular, the elements X ∈ S(Q) satisfy the same
3-point condition (∗) as the elements X ∈ M∗(Γ ), and X(wk) = Qk for
k = 1, . . . , N + 3.

Finally we denote by Sk(Q) the class of quasi-minimal surfaces X ∈ S(Q)
which are minimal surfaces, i.e.:

SM(Q) = {X ∈ S(Q) : Xw · Xw = 0}
= {X : X = Z∗(t) for some t ∈ T with ∇Θ∗(t) = 0}.

Then
M∗(Γ ) ⊂ SM(Q) ⊂ S(Q).

Now we want to define the notion of a branch point of a quasi-minimal surface
and of its branch point order .

Proposition 3 (E. Heinz [19], Satz 2; [22], pp. 549–550; [23], pp. 385–386).
Let X = X(·, t) = Z∗(t) ∈ S(Q), t ∈ T , V := {w1, . . . , wN+3}. Then for any
ζ ∈ B there exist A ∈ C

3 with A 	= 0, ν ∈ Z with ν ≥ 0, and α ∈ (−1, 0] such
that Xw = 1

2 (Xu − iXv) has the asymptotic representation

(14) Xw(w, t) = A · (w − ζ)ν+α + o(|w − ζ|ν+α) for w ∈ B,w → ζ.

Moreover, α = 0 if ζ /∈ V .
This expansion is uniquely determined.

Definition 2. One calls ζ ∈ B a branch point of X ∈ S(Q) if ν > 0, and
ν = ν(ζ) is said to be the order of the branch point ζ. If ζ ∈ B is not a
branch point, we set ν(ζ) = 0. Clearly the set Σ(X) of branch points ζ ∈ B is
finite, and for any ζ ∈ B we have:

ζ ∈ Σ(X) if and only if |Xw(w, τ)| → 0 as w → ζ, w ∈ B.

The total order of branch points of X will be called κ(X); it is defined as

(15) κ(X) :=
∑
ζ∈B

ν(ζ) +
1
2

∑
ζ∈∂B

ν(ζ).
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In order to estimate κ(X) for X(·, t) ∈ SM(Q), we need one more defini-
tion:

Definition 3. For X ∈ X(·, t) ∈ SM(Q) one defines the Schwarz operator
S = SY : dom(S) → L2(B) by S := −Δ+ 2KE on its domain

domS = {ϕ ∈ H̊1
2 (B) ∩ C2(B) : Sϕ ∈ L2(B)},

where E := |Xu|2, and K is the Gauss curvature of X. By kerS we denote
the kernel of S,

kerS := {ϕ ∈ domS : Sϕ = 0}.

Realizing that for any critical point t of Θ∗ the pairing 〈Y (·, t), · 〉 with the
unit normal field Y (·, t) := |Xu ∧ Xv | −1(Xu ∧ Xv)(·, t) maps the vector space

V t :=

{
N∑

k=1

ckXtk(·, t) : c = (c1, . . . , cN ) ∈ kerD2Θ∗(t)

}

onto the kernel of SX(·,t) with

dim
{
ker(〈X(·, t), · 〉)

}
= 2κ(X(·, t)) − #

{
eit




∈ Σ(X(·, t)) : 1 ≤ & ≤ N
}
.

E. Heinz (cf. [22], p. 563, Satz 3) obtained the following fundamental result:

Theorem 3. For X = X(·, t) = Z∗(t) ∈ SM(Q), t ∈ T , with the Schwarz
operator S = SX one has

(16) dimkerSX + rank ∇2Θ∗(t) + 2κ(X) = N,

where ∇2Θ∗(t) denotes then Hessian matrix of Θ∗ at t:

∇2Θ∗(t) =
(
∂2Θ∗(t)
∂tj∂tk

)
j,k=1,...,N

.

Corollary 3. For X = X(·, t) ∈ SM(Q) one has κ(X) ≤ N
2 , and κ(X) = N

2 if
and only if λ = 0 is not an eigenvalue of SX and Θ∗

tjtk(t) = 0 for 1 ≤ j, k ≤ N .

Corollary 4. For X = X(·, t) ∈ SM(Q), the Hessian matrix ∇2Θ∗(t) is in-
vertible if λ = 0 is not an eigenvalue of SX and X has no branch points
in B.

What can one say about κ(X) if X = X(·, t) merely is an element of S(Q),
but not a minimal surface? E. Heinz [24] has found that in this case one still
has

(17) κ(X) ≤ N

2
.
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Furthermore, for any N ∈ N he constructed a closed simple polygon Γ in R
3

with N + 3 vertices Q1, . . . , QN+3 and a surface X = Z∗(t) ∈ SM(Q) such
that κ(X) = N

2 . Then ∇Θ∗(t) = 0 and ∇2Θ∗(t) = 0.
There is a much sharper estimate for the total branch point order κ(X) of

a quasi-minimal surface X = X(·, t) ∈ S(Q), due to F. Sauvigny [6], p. 300:
Let αk be the angle α ∈ (−1, 0] appearing in the expansion (14) ofXw(w, t)

at the point ζ = wk := exp(itk) ∈ ∂B, k = 1, 2, . . . , N + 3.
The Heinz expansion (14) can be written as

Xw(w, t) = (w − ζ)ν+αg(w) as w → ζ,

with g(ζ) 	= 0. This expansion has the companion

Xww(w, t) =
β

w − ζ
Xw(w, t) + (w − ζ)βgw(w), β := ν + α > −1.

The “normal component” Y ∗ of any Y ∈ C
3 is

Y ∗ := Y − |Xw(w, t)| −2〈Y,Xw(w, t)〉Xw(w, t).

Thus
X∗

ww(w) = (w − ζ)βg∗
w(w),

and consequently the curvature function

(18) Ψ(w) := 2|Xw(w, t)| −2 · |X∗
ww(w, t)|

is integrable on B. If Xw ·Xw = 0 (i.e. X ∈ SM(Q)) one finds that Ψ = −E ·K,
hence

∫
B
Ψ du dv in this case is the total curvature

∫
X

|K| dA = −
∫

B
EK dudv

of X. Now we can formulate Sauvigny’s result:

Theorem 4. For any quasi-minimal surface X = X(·, t) ∈ SM(Q) one has

(19) 2π · [1 + κ(X)] = π
N+3∑
k=1

|αk | +
∫

B

Ψ du dv.

This is the analog of formula (19) in Section 2.11 of Vol. 2.
For X = Z∗(t) ∈ SM(Q) one can relate the second variation δ2A(X,Y )

of the area A at X in normal direction Y = λW−1(Xu ∧ Xv), λ ∈ C1
0 (B),

W = |Xu ∧ Xv |, to the Hessian matrix ∇2Θ(t):

Theorem 5 (F. Sauvigny [5], pp. 180–181). If X = X(·, t) = Z∗(t) ∈ SM(Q)
and δ2A(X,Y ) ≥ 0 for all normal directions Y then ∇2Θ∗(t) is positive
semidefinite. If X has no branch points in B and X is strictly stable, that
is, if ∫

B

(| ∇ϕ|2 + 2EKζ2) du dv > 0

for all ϕ ∈ H̊1
2 (B) ∩ C0(B), then ∇2Θ∗(t) is positive definite.
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In his paper [4], Sauvigny was even able to show that the Morse index
m(X) of a mapping X = X(·, t) ∈ SM(Q), i.e. the number of negative eigen-
values of the Schwarz operator, agrees with the Morse index of ∇2Θ∗(t), i.e.
with the number of negative eigenvalues of this symmetric N × N -matrix
(cf. [2], p. 186, Theorem 3; a weaker version of this result was already formu-
lated by I. Marx [1], without proof). Furthermore Sauvigny in [4] generalized
Heinz’s identity (16) (which only holds for surfaces in R

3) to an inequality for
surfaces and polygons in R

p, namely,

(20) dimker ∇2Θ∗(t) ≤ dim kerSX + 2κ(X).

For this purpose we note that most results discussed in this subsection can
be carried over from R

3 to R
p with p > 3, except for Theorem 3 and for the

addendum to Theorem 1 (cf. Heinz [21]), which are restricted to R
3.

We finally mention several other results for surfaces X ∈ M∗(Γ ) bounded
by polygons Γ :

Theorem 6 (F. Sauvigny [3]). If Γ is an extreme, simple polygon of to-
tal curvature k(Γ ) < 4π then Γ bounds exactly one minimal surface, i.e.
#M∗(Γ ) = 1. This surface has no branch points in B.

As usual Γ is called extreme if it lies on the boundary of a compact convex
set.

The total curvature k(Γ ) is defined as the sum η1 + η2 + · · · + ηN+3 of the
unoriented angles ηk :≡ �(ξk−1, ξk) ∈ (0, π).

The result above can be generalized to Rp with p > 3 if one replaces the
assumption k(Γ ) < 4π by the stronger condition k(Γ ) < 10π

3 (cf. Sauvigny
[3]). At last we quote three finiteness results:

Theorem 7 (R. Jakob [6–8]). Let Γ be a simple, closed, extreme polygon
Γ in R3. Then every immersed, stable minimal surface spanning Γ is an
isolated point of M∗(Γ ). In particular, M∗(Γ ) contains only finitely many
stable minimal surfaces without branch points.

This result can be generalized in the following way:

Theorem 8 (R. Jakob [9]). Let Γ be a simple, closed, extreme polygon in
R

3 whose angles at the corners are different from π
2 . Then there exists a

neighborhood N(Γ ) of Γ in R
3 and an integer μ(Γ ) such that the number

of immersed, stable minimal surfaces in M∗(Γ ′) is bounded by μ(Γ ) for any
simple closed polygon Γ ′ which is contained in N(Γ ) and has as many vertices
as Γ .

Recently, R. Jakob [10] has also obtained the following generalization of
Theorem 7:

Theorem 9 (R. Jakob [10]). Let Γ ⊂ R
3 be a simple closed polygon having

the following two properties: Firstly it has to bound only minimal surfaces
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without boundary branch points, and secondly its total curvature, i.e. the sum
of the exterior angles {ηk } at its N + 3 vertices, has to be smaller than 6π.
Then every immersed minimal surface spanning Γ is an isolated point of the
space M∗(Γ ) of all disk-type minimal surfaces spanning Γ , and in particular
Γ can bound only finitely many immersed minimal surfaces of disk-type.

Sketch of the proof : At first we prove that any immersed X∗ ∈ M∗(Γ ) is
an isolated point of M∗(Γ ) with respect to the ‖ · ‖C0(B̄)-norm. Hence we
assume the contrary, i.e. the existence of some immersed minimal surface X∗

and of some sequence {Xj } ⊂ M∗(Γ ) satisfying ‖Xj − X∗ ‖C0(B̄) → 0. Now
Heinz’s formula (16) in Theorem 3 implies that the Schwarz operator SX

(cf. Definition 3) of any immersed minimal surface X which is a non-isolated
point of M∗(Γ ) must have a non-trivial kernel. There are two possibilities:
Either 0 is the smallest eigenvalue of SX∗

, or 0 is the nth eigenvalue of SX∗

for some n > 1. In the first case X∗ is a stable immersed minimal surface and
therefore an isolated point of (M∗(Γ ), ‖ · ‖C0(B̄)) by Theorem 1.1 in Jakob
[10]. Hence, only the second case can hold true here. Now let un be some
eigenfunction of SX∗

corresponding to the nth eigenvalue λn = 0, for some
n > 1. In this case it is known (cf. Theorem 2.3 in Jakob [10]) that the zero
set of un is not empty and subdivides B into at least 2 disjoint nodal domains.
Sauvigny’s Gauss–Bonnet formula (19) in Theorem 4 yields especially under
the requirement that the total curvature

∑N+3
k=1 ηk of Γ , as defined below

Theorem 6, is smaller than 6π:

(21) 2π −
∫

B

KE dudv = π
N+3∑
k=1

|αk | =
N+3∑
k=1

ηk < 6π,

thus
∫

B
|KE| du dv < 4π for every immersed minimal surface X = X( ·, t) ∈

M∗(Γ ). Here we have used the fact that the exterior angles ηk at the vertices
of Γ coincide with the angles −παk of X, where αk appears in the expo-
nent of the leading summand in the asymptotic expansion (14) of Xw( · , t)
about each eitk respectively, on account of the fact that particularly the points
{eitk }k=1,...,N+3 are not branch points of the immersed surface X. Thus there
is at least one nodal domain D of un such that

(22)
∫

D

|(KE)∗ | du dv < 2π.

Now again by Theorem 2.3 in Jakob [10] there are two possibilities: (i) ∂D is
a finite, disjoint union of piecewise analytic, closed Jordan curves, or (ii) ∂D
is piecewise real analytic about each of its points with the exception of at
most finitely many points eitkj , for some subcollection {kj } ⊂ {1, . . . , N +3},
about each of which ∂D fails to be representable as a graph of a Lipschitz-
continuous function. We shall first examine case (i): The stability theorem of
Barbosa and do Carmo [4], in its version for minimal surfaces with polygonal
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boundaries (cf. Theorem 2.4 in Jakob [10]), guarantees that the restriction
X∗ |D of X∗ has to be even strictly stable, i.e. one has

(23) λmin(SX∗ |D ) > 0

for the smallest eigenvalue λmin(SX∗ |D ) of the Schwarz operator assigned
to the restricted surface X∗ |D. But on the other hand, since there holds
SX∗

(un) = 0 on B, the restriction un|D satisfies in particular

SX∗ |D (un|D) = 0 on D

and is moreover of class H̊1
2 (D) ∩Cω(D), because un|D vanishes identically on

the piecewise real analytic boundary of D and is continuous on B̄. Hence un is
an eigenfunction of SX∗ |D corresponding to the eigenvalue 0, in contradiction
to (23). In case (ii) the argument is slightly more involved. Firstly one has
to prove that on the considered domain D there still exists some function
φ∗ ∈ SH̊1

2 (D) which minimizes the quadratic form

JX∗ |D (φ) :=
∫

D

{ | ∇φ|2 + 2(KE)∗φ2} du dv,

assigned to SX∗ |D , on the L2(D)-sphere

SH̊1
2 (D) := {φ ∈ H̊1

2 (D) : ‖φ‖L2(D) = 1}

of H̊1
2 (D), and which satisfies

(24) JX∗ |D (φ∗) = λmin(SX∗ |D ).

Moreover we need the following pointwise estimate of |KE| due to Heinz (see
(3.3) in Heinz [22] or (26) in Jakob [9]) about each of the points eit1 , . . . , eitN+3 :

(25) |KE|(w) ≤ const(X,Γ )|w− eitk | −2+α for all w ∈ B̄ ∩Bδ(eitk) \ {eitk }

for δ < 1
2 mink=1,...,N+3{ |eitk − eitk−1 | } and for some α > 0 depending only

on Γ . Now combining (22), (25) and the absolute continuity of the Lebesgue
integral we can infer the existence of some sufficiently small δ > 0 such that
the enlargement D̃ := D ∪

⋃
j(Bδ(e

itkj ) ∩ B) of D is a finitely connected
domain whose boundary is a disjoint union of piecewise real analytic closed
Jordan curves and still satisfies

(26)
∫

D̃

|(KE)∗ | du dv < 2π.

Hence, we can apply the above mentioned stability theorem, i.e. Theorem 2.4
in Jakob [10], to X∗ |D̃ and obtain

(27) λmin(SX∗ |D̃ ) > 0.
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Next we extend φ∗ onto D̃ by simply setting φ̃∗(w) = 0 for w ∈ D̃ \ D,
obtaining φ̃∗ ∈ SH̊1

2 (D̃). Now since D̃ has a piecewise real analytic boundary
we know that λmin(SX∗ |D̃ ) = minSH̊1

2 (D̃) J
X∗ |D̃ . Combining this with (24) and

(27) we achieve:

λmin(SX∗ |D ) = JX∗ |D (φ∗) = JX∗ |D̃ (φ̃∗) ≥ min
SH̊1

2 (D̃)
JX∗ |D̃(28)

= λmin(SX∗ |D̃ ) > 0.

But on the other hand we know that un|D ∈ H1
2 (D) ∩ C0(D̄), on account

of un ∈ H1
2 (B) ∩ C0(B̄), and that un = 0 on ∂D, from which one can de-

duce that un|D ∈ H̊1
2 (D). Since we also know that un|D ∈ Cω(D) and that

SX∗ |D (un|D) = 0 on D, we obtain that un|D is an element of the domain of
SX∗ |D , and thus an eigenfunction of SX∗ |D corresponding to the eigenvalue
0, in contradiction to (28), which proves the first assertion of Theorem 9.

In order to derive from this the “finiteness statement” of Theorem 9, it
suffices to show the closedness of the subset M∗

i (Γ ) of immersed minimal
surfaces within the compact space (M∗(Γ ), ‖ · ‖C0(B̄)). Thus let {Xj } be a
sequence in M∗

i (Γ ) converging to some X∗ in M∗(Γ ). As in (21) we infer
the constant value

∫
B

|(KE)j | dw ≡
∑N+3

k=1 ηk − 2π < 4π for every j from
Sauvigny’s Gauss–Bonnet formula. Now, by Theorem 1 in Sauvigny [10], this
is in fact a sufficient condition for the limit minimal surface X∗ to be free of
interior branch points again. Finally, since X∗ is spanned by Γ , it must be
free of boundary branch points as well, just by assumption on Γ . Hence X∗

is an element of M∗
i (Γ ), and consequently M∗

i (Γ ) inherits the compactness of
(M∗(Γ ), ‖ · ‖C0(B̄)).



Chapter 7

Graphs with Prescribed Mean Curvature

This chapter is devoted to nonparametric surfaces of prescribed mean cur-
vature H, that is, to H-surfaces which can be represented as graphs over
planar domains. Nonparametric minimal surfaces, i.e. graphs with H = 0,
were already considered in Section 2.2, and the celebrated two-dimensional
Bernstein theorem was described in Section 2.4. Generalizations of this result
are presented in Volume 3 of this treatise.

One can find a wealth of theorems on nonparametric minimal surfaces
and H-surfaces in the monographs of J.C.C. Nitsche [28], D. Gilbarg and
N. Trudinger [1], U. Massari and M. Miranda [1], E. Giusti [4], as well as in
the notes [8] of L. Simon, in his survey paper [9], and in his encyclopaedia
article [17], IV. Clearly the abundance of this material deserves a thorough
and comprehensive presentation which exceeds the scope of the present book.
For this reason we merely describe some existence and uniqueness results for
the nonparametric Plateau problem (i.e. the Dirichlet problem) for minimal
surfaces and, more generally, for H-surfaces, which can be derived from the
solution of the parametric Plateau problem for minimal surfaces, studied in
Chapter 4, and for H-surfaces that will be treated in Vol. 2.

We shall base our investigations on the results of Chapter 5 concerning
stable minimal- and H-surfaces, and so we will use the same notations as in
Chapter 5. The discussion ends in Section 7.3 with a presentation of some
basic estimates for nonparametric H-surfaces, namely Heinz’s maximal ra-
dius theorem, Serrin’s maximal height theorem, and Finn’s area estimate. Fur-
thermore a gradient estimate for nonparametric H-surfaces is derived. The
section closes with an energy estimate for the difference of two solutions of
the H-surface equation, which can be used to prove unique solvability of the
H-surface equation even in cases when the classical maximum principle fails.
An application of this estimate is a theorem about the removability of isolated
singularities of nonparametric H-surfaces which generalizes Bers’s celebrated
result that isolated singularities of solutions for the minimal surface equation
can be removed.

U. Dierkes, S. Hildebrandt, F. Sauvigny, Minimal Surfaces,
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The basic feature of this chapter is the Gaussian approach viewing graphs
as regular parametric surfaces whose normals N = (N1, N2, N3) point into
the upper hemisphere

S2
+ := {x ∈ R

3 : 〈x, e〉 > 0}

where e denotes some unit vector in R
3. Applying a rotation we can assume

that e = e3 = (0, 0, 1), and then N(B) ⊂ S2
+ means N3 > 0.

7.1 H-Surfaces with a One-to-One Projection onto a Plane,
and the Nonparametric Dirichlet Problem

In Section 4.9 Radó’s result on minimal surfaces with a 1–1 projection onto
a plane was presented, using H. Kneser’s lemma. Now we take up these con-
siderations following F. Sauvigny [1,2], and the textbook [16], where in Chap-
ter XII, §9, the Dirichlet problem for the nonparametric H-surface equation
is solved by a continuity method.

For the following we assume that H(x, y, z) is a real-valued function on
R

3 of class C1,α(R3), 0 < α < 1, satisfying

(1) sup
R3

|H| ≤ h0 and Hz(x, y, z) ≥ 0 on R
3

for some h0 ∈ (0,∞). Set

(2) r0 =
1

2h0
.

Let R
2 be the x, y-plane with the points p = (x, y). The Euclidean distance

of two points p = (x, y) and p′ = (x′, y′) is denoted by

|p − p′ | :=
√

(x − x′)2 + (y − y′)2.

The disk with radius r > 0 and center p0 = (x0, y0) is

Br(p0) := {p ∈ R
2 : |p − p0| < r}.

Specifically we introduce the disk

(3) Ω0 := Br0(0) = {p ∈ R
2 : |p| < r0}

of radius r0 about the origin, and the closed circular cylinder

(4) Z := Ω0 × R = {(x, y, z) ∈ R
3 : (x, y) ∈ Ω0, z ∈ R}.
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Definition 1. (i) A bounded open set Ω of R
2 is called a Jordan domain if

it is bounded by a closed Jordan curve.
(ii) A Jordan domain Ω in R

2 with 0 ∈ Ω ⊂ Ω0 is said to be 2h0-convex
if for every point p′ ∈ ∂Ω there is a closed disk S0 := Br0(p0) such that

(5) Ω ⊂ S0 and p′ ∈ ∂Ω ∩ ∂S0.

We call S0 a support disk of Ω at the point p′ ∈ ∂Ω.

Remark 1. A Jordan domainΩ with 0 ∈ Ω ⊂ Ω0 with ∂Ω ∈ C2,α, 0 < α < 1,
is 2h0-convex if and only if the curvature κ of the positive-oriented boundary
∂Ω satisfies κ(p) ≥ 1/r0 = 2h0 at each point p ∈ ∂Ω.

Let Γ be a rectifiable closed Jordan curve in R
3, and recall that C(Γ )

denotes the class of surfaces X : B → R
3 bounded by Γ . We fix a three-point

condition

(∗) X(ζk) = Qk for k = 1, 2, 3,

with ζk = exp( 2πk
3 i) and three given distinct points Qk ∈ Γ , thereby express-

ing the orientation of Γ . As usual we denote by C∗(Γ ) the class of surfaces
X ∈ C(Γ ) satisfying (∗).

Now we consider regular curves Γ ∈ C3,α which lie as graphs above the
boundary ∂Ω of a 2h0-convex Jordan domain. This means the following: There
is a function γ ∈ C3,α(∂Ω) above the boundary ∂Ω ∈ C3,α such that

(6) Γ = {(p, γ(p)) ∈ R
3 : p ∈ ∂Ω}.

Then we write:

(7) Γ = graph γ.

Furthermore we assume that Qk = (qk, γ(qk)), qk ∈ ∂Ω, holds where q1, q2, q3
induce a positive orientation of ∂Ω.

Theorem 1. Let Ω be a Jordan domain in R
2 with 0 ∈ Ω ⊂ Ω0 which is

2h0-convex, ∂Ω ∈ C3,α, and suppose that Γ ∈ C3,α is given as a graph γ
for some γ ∈ C3,α(∂Ω), whereas H ∈ C1,α satisfies (1). Then there exists
exactly one stable H-surface X ∈ C∗(Γ ). This surface is an immersion and
even an embedding of Ω into R

3, and it can be represented nonparametrically
as graph ζ, where ζ ∈ C3,α(Ω) is a solution of the boundary value problem

(8)
Mζ = 2H(·, ζ)(1 + | ∇ζ|2)3/2 in Ω,
ζ = γ on ∂Ω,

and Mζ denotes the minimal surface operator

(9) Mζ := (1 + ζ2y )ζxx − 2ζxζyζxy + (1 + ζ2x)ζyy.
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Proof. (i) Consider the vector field

Q(x, y, z) :=
1
2

(∫ x

0

H(t, y, z) dt,
∫ y

0

H(x, t, z) dt, 0
)
,

satisfying divQ = H on Z, and the associated functional

E(X) :=
∫

B

(
1
2

| ∇X|2 + 2[Q(X), Xu, Xv]
)
du dv

defined by formula (4) of Section 5.3.
By minimizing E among all X ∈ C∗(Γ ) with X(B) ⊂ Z one obtains an

H-surface X contained in C∗(Γ )∩C3,α(B,R3) with X(B) ⊂ int Z (cf. Gulliver
and Spruck [1], Hildebrandt [10]; these results are described in Chapter 4 of
Vol. 2). On account of 5.3, Theorem 1, the H-surface X is stable since it also
minimizes

F (X) :=
∫

B

(|Xu ∧ Xv | + 2[Q(X), Xu, Xv]) du dv

in the class {X ∈ C∗(Γ ) : X(B) ⊂ Z} and satisfies X(B) ⊂ int Z.
(ii) Now we consider an arbitrary stable H-surface X of class C∗(Γ ) ∩

C3,α(B,R3) with X(B) ⊂ Z. We write

X(w) = (X1(w), X2(w), X3(w)) = (f(w), X3(w))

where f : B → R2 denotes the associated planar mapping

(10) f(w) := (X1(w), X2(w)), w ∈ B.

One realizes that f |∂B maps ∂B homeomorphically onto ∂Ω. We claim that

(11) f(B) ⊂ Ω. �

Otherwise we could find a point w̃ ∈ B with f(w̃) 	∈ Ω. Then there is
a support disk S0 of Ω at some p′ ∈ ∂Ω ∩ ∂S0 such that f(w̃) /∈ intS0,
and Ω ⊂ intS0. Let S0 = Br0(p0) and consider the family Φ(w, λ), w ∈ B,
λ ∈ [0, 1], of functions

Φ(w, λ) := |f(w) − λp0|2, w ∈ B,

which satisfy
Φ(w, λ) ≤ r20 for w ∈ ∂B and 0 ≤ λ ≤ 1.

On account of X(B) ⊂ intZ we have

Φ(w, 0) < r20 for w ∈ B
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whereas Φ(w̃, 1) > r20. Then there is a λ∗ ∈ (0, 1) and a point w∗ ∈ B with

(12) Φ(w∗, λ∗) = r20 and Φ(w, λ∗) ≤ r20 on B.

The conformality relation Xw · Xw = 0 implies | ∇X3|2 ≤ | ∇f |2, and so

ΔΦ(·, λ∗) = 2| ∇f |2 + 2〈f − λ∗p0, Δf〉
≥ 2| ∇f |2 − 2|f − λ∗p0| |Δf | ≥ 2| ∇f |2 − 2r0|ΔX|
≥ 2| ∇f |2 − 2r0 · 2h0|Xu ∧ Xv | ≥ 2| ∇f |2 − 2|Xu| |Xv |
= 2| ∇f |2 − | ∇X|2 ≥ 2| ∇f |2 − | ∇f |2 − | ∇X3|2 ≥ 0,

that is,

(13) ΔΦ(·, λ∗) ≥ 0 in B.

By virtue of the maximum principle we infer from (12) and (13) that
Φ(w, λ∗) ≡ r20 for w ∈ B, which evidently is not true. Thus (11) is valid.

(iii) For each point w′ ∈ ∂B with the image p′ := f(w′) ∈ ∂Ω we consider
the support disk S0 = Br0(p0) and define the auxiliary function Φ : B → R

2

defined by
Φ(w) := |f(w) − p0|2

which satisfies
Φ(w) ≤ r20 in B and Φ(w′) = r20.

By the same reasoning as before we have

ΔΦ ≥ 0 in B.

Then the boundary point lemma of E. Hopf yields

(14)
∂Φ

∂ν
(w′) = 2

〈
f(w′) − p0,

∂f

∂ν
(w′)

〉
> 0

for the derivative in direction of the exterior normal ν to ∂B at w′ ∈ ∂B. This
immediately implies

(15)
∂X

∂ν
(w′) 	= 0 for all w′ ∈ ∂B,

and consequently the H-surface X has no boundary branch points.
Furthermore, Φ assumes its maximum at w′ ∈ ∂B. Therefore

(16)
∂Φ

∂τ
(w′) = 0

holds true where ∂
∂τ denotes the tangential derivative to ∂B at w′.
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Equation (16) implies
〈
f(w′) − p0,

∂f

∂τ
(w′)

〉
= 0, p0 = (x1

0, x
2
0),

whence

(17) X1
τ (w′) = −λ[X2(w′) − x2

0], X2
τ (w′) = λ[X1(w′) − x1

0]

for some λ ∈ R.
Because of

|Xτ (w′)|2 = |Xν(w′)|2 > 0

and
|X3

τ (w′)|2 ≤ c|fτ (w′)|2

for some constant c we arrive at

(18) |fτ (w′)|2 > 0.

Since f is positive-oriented it follows that (17) holds with some λ > 0, and
we infer from (14) that the Jacobian

Jf = det(fu, fv) = det(fν , fτ )

satisfies
Jf (w′) = (X1

νX
2
τ − X1

τX
2
ν )(w′) =

λ

2
Φν(w′) > 0.

Thus we have found

(19) Jf (w′) > 0 for all w′ ∈ ∂B

which is equivalent to

(20) N3(w′) = 〈N(w′), e3〉 > 0 for all w′ ∈ ∂B.

Invoking the fundamental Theorem 2 of Section 5.3 on stable H-surfaces, we
arrive at

(21) N3(w) = 〈N(w), e3〉 > 0 for all w ∈ B.

(iv) Now we want to show that X has no branch points in B, using formula
(21) and applying an index-sum argument to the mapping f : B → R

2 (see
Sauvigny [16], Chapter III).

We use the asymptotic expansion of an H-surface X at an interior branch
point w0 ∈ B which is obtained by the Hartmann–Wintner technique (cf.
Vol. 2, Chapter 3) and has the same form as for minimal surfaces: There is a
vector A ∈ C

3 with A 	= 0 and A · A = 0, and an integer n ≥ 1 such that
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(22) Xw(w) = A(w − w0)n + o(|w − w0|n) as w → w0.

If w0 is a regular point of X, i.e. if Xw(w0) 	= 0, then the same formula holds
with n = 0. As explained in Section 5.1, the normal

N = |Xu ∧ Xv | −1(Xu ∧ Xv)

satisfies
lim

w→w0
N(w) = |a ∧ b| −1(a ∧ b) = |a| −2(a ∧ b),

where A = a − ib; a, b ∈ R
3 \ {0}, |a| = |b|, 〈a, b〉 = 0. Since H ∈ C1,α, it

follows X ∈ C3,α(B,R3), and by 5.1, Theorem 1, we have: N is of the class
C3,α(B,R3) and satisfies equation (12) of 5.1. Set

a := (a1, a2, a3), b = (b1, b2, b3).

Then (21) yields

(23) a1b2 − a2b1 > 0.

We integrate the first two equations of (22),

X1
w(w) = A1(w − w0)n + o(|w − w0|n)

X2
w(w) = A2(w − w0)n + o(|w − w0|n)

as w → w0,

A1 = a1 − ib1, A2 = a2 − ib2. This leads to

X1(w) = X1(w0) +
1

n+ 1
[A1(w − w0)n+1 +A

1
(w − w0)n+1]

+ o(|w − w0|n+1),

X2(w) = X2(w0) +
1

n+ 1
[A2(w − w0)n+1 +A

2
(w − w0)n+1]

+ o(|w − w0|n+1)

as w → w0. Using polar coordinates r, ϕ with w = w0 + reiϕ, it follows

X1(w0 + reiϕ) = X1(w0) +
2

n+ 1
[a1 cos(n+ 1)ϕ+ b1 sin(n+ 1)ϕ]rn+1

+ o(rn+1),

X2(w0 + reiϕ) = X2(w0) +
2

n+ 1
[a2 cos(n+ 1)ϕ+ b2 sin(n+ 1)ϕ]rn+1

+ o(rn+1)

as r → 0.
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When l : C → C denotes the mapping given by the matrix

(24)
2

n+ 1

(
a1 b1

a2 b2

)
,

we obtain for f(w) = X1(w) + iX2(w) the expansion

(25) f(w) = f(w0) + l((w − w0)n+1) + o(|w − w0|n+1) as w → w0.

From (23)–(25) we infer that

f(w) 	= f(w0) for 0 < |w − w0| < ε � 1.

Furthermore, the “topological index” i(f, w0) of f at w0 is given by

(26) i(f, w0) = n+ 1.

The mapping f : B → C is open and satisfies (11): f(B) ⊂ Ω. Since f |∂B

yields a homeomorphism of ∂B onto ∂Ω and f ∈ C0(B,R2), R
2=̂C, it follows

that f(B) = Ω. Then an arbitrarily chosen point z∗ ∈ Ω has at least one and
at most finitely many pre-images w1, . . . , wk in B, i.e.

f(wν) = z∗ for ν = 1, . . . , k.

As f |∂B is positive-oriented, the index-sum formula yields

k∑
ν=1

i(f, wν) = 1

which together with (26) implies k = 1 and i(f, w∗) = 1 for w∗ := w1.
Therefore f |B is a one-to-one mapping of B onto Ω, and (23)–(25) imply
that the Jacobian Jf (w∗) of f at w∗ ∈ B satisfies Jf (w∗) > 0. Thus f |B is
a diffeomorphism from B onto Ω with Jf (w) > 0 for all w ∈ B, i.e. f |B is
orientation preserving.

(v) Now we introduce ζ ∈ C3,α(Ω) by

(27) ζ := X3 ◦ f−1,

which solves the Dirichlet problem (8). Using (1): Hz ≥ 0, the maximum prin-
ciple implies that the solution of (8) is uniquely determined; see e.g. F. Sauvi-
gny [16], Chapter VI, pp. 365–370, or Gilbarg–Trudinger [1]. Therefore, any
two stable H-surfaces within the class {X ∈ C∗(Γ ) : X(B) ⊂ Z} coincide.

Remark 2. Mutatis mutandis, Theorem 1 remains valid if the bounding con-
tour Γ is allowed to creep vertically along the z-axis finitely many times.
The planar map f then possesses finitely many intervals of constancy on ∂B
which correspond to the creeping intervals of X|∂B . However, the parametric
H-surface X has no branch points on B and is uniquely determined within
the class of stable H-surfaces ∈ C∗(Γ ). The Dirichlet boundary values of
ζ := X3 ◦ f−1 on ∂Ω jump finitely often. Even in this case one can verify the
unique solvability of the Dirichlet problem (8) by an “energy method” due to
J.C.C. Nitsche.
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Remark 3. S. Hildebrandt and F. Sauvigny [4–7] have studied the phe-
nomenon that minimal surfaces with a free boundary on a surface S having
edges that may creep along such edges. This work is described in Vol. 3. Gen-
eralizations of these results to H-surfaces can be found in papers by F. Müller
[5–11].

Via a simultaneous approximation of the “projection domain Ω” and the
boundary values one can derive the following result from Theorem 1:

Theorem 2 (Nonparametric Dirichlet problem). Let γ ∈ C0(∂Ω) be pre-
scribed boundary values on a 2h0-convex Jordan domain Ω with 0 ∈ Ω ⊂ Ω0.
Then the Dirichlet problem (8) possesses exactly one solution ζ ∈ C0(Ω) ∩
C3,α(Ω).

Proof. The uniqueness of a solution of (8) is proved in the same way as before,
using the maximum principle. Another way to establish unique solvability
of (8) is to apply Corollary 1 of Section 7.3.

Hence we only have to show the existence of a solution. This will be
achieved with the aid of a suitable approximation procedure, approximating Ω
by smoothly bounded Ωn and γ : ∂Ω → R by smooth functions γn : ∂Ωn → R,
and applying Theorem 1 to the “approximating problems”

(28)
Mζn = 2H(·, ζn)(1 + | ∇ζn|2)3/2 in Ωn,

ζn = γn on ∂Ωn.

Let us sketch this approach.
(i) First we construct a sequence {Ωn} of 2h0-convex domains Ωn with

∂Ωn ∈ C3,α and 0 ∈ Ωn ⊂ Ω such that

(29) dist(∂Ωn, ∂Ω) → 0 as n → ∞

and
length(∂Ωn) ↗ length(∂Ω) as n → ∞

(see F. Sauvigny [1,2] for details). We can write

∂Ω = ω(I), ∂Ωn = ωn(I), I := [0, 2π]

where ω and ωn are 2π-periodic mappings R → R
2 which provide mono-

tonic, positive-oriented representations of ∂Ω and ∂Ωn respectively such that
ω ∈ Lip(R,R2), ωn ∈ C3,α(R,R2). Using polar coordinates about the origin,
we can write ωn and ω in the form

(30) ωn(θ) = (rn(θ) cos θ, rn(θ) sin θ), ω(θ) = (r(θ) cos θ, r(θ) sin θ),

where rn(θ) and r(θ) are 2π-periodic. Because of (29) we can assume that

(31) ωn(θ) ⇒ ω(θ) on R as n → ∞; equivalently: rn(θ) ⇒ r(θ). �
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Since the 2h0-convex curve ω fulfills a chord-arc condition, we can choose
the ωn in such a way that the ωn satisfy a uniform chord-arc condition, i.e.
there is an ε > 0 and an M0 > 0 such that

(32)
∫ θ2

θ1

|ω̇n(θ)|dθ ≤ M0|ωn(θ2) − ωn(θ1)| for all n ∈ N

and all θ1, θ2 ∈ R with θ1 ≤ θ2 and |ωn(θ1) − ωn(θ2)| ≤ ε.

Now we interpret the boundary values γ : ∂Ω → R as a continuous, 2π-
periodic function γ(θ) of the polar angle θ, and we approximate γ uniformly
on R by 2π-periodic functions γn(θ), θ ∈ R, which are of class C3,α(R):

(33) γn(θ) ⇒ γ(θ) on R as n → ∞.

Set

(34) ψn(θ) := (ωn(θ), γn(θ)), ψ(θ) := (ω(θ), γ(θ)), θ ∈ R.

Then we obtain the Jordan contours

(35) Γn := ψn(I) ∈ C3,α, Γ := ψ(I), I = [0, 2π],

whose representations ψn and ψ satisfy

(36) ψn(θ) ⇒ ψ(θ) on R as n → ∞.

This yields the following auxiliary statement : For each ε > 0 there is δ(ε) > 0
such that

(37) |ψn(θ1) − ψn(θ2)| ≤ ε for all θ1, θ2 ∈ R with |θ1 − θ2| ≤ δ(ε), n ∈ N.

(ii) On account of Theorem 1 we obtain: For each n ∈ N there is an
Xn ∈ C∗(Γ ) ∩ C3,α(B,R3), satisfying

(38) ΔXn = 2H(Xn)Xn,u ∧ Xn,v and Xn,w · Xn,w = 0,

which admits an equivalent representation

Zn(x, y) = (x, y, ζn(x, y)), (x, y) ∈ Ωn.

Here ζn ∈ C3,α(Ωn) is a solution of the equation

(39) Mζn = 2H(·, ζn)(1 + | ∇ζn|2)3/2 in Ωn,

which is obtained by

(40) ζn = X3
n ◦ f−1

n ,

where fn : B → R
2 is a diffeomorphism from B onto Ωn with fn ∈

C3,α(B,R2). By (33) we have
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m0 := sup{ |γn(θ)| : θ ∈ R, n ∈ N} < ∞.

Then it follows from Theorem 4 in Section 7.3 that

(41) sup
Ωn

|ζn| ≤ m0 + h−1
0 for all n ∈ N,

and

D(Xn) = A(Xn) = A(Zn)(42)
≤ 3 measΩ +m0[2h0 measΩ + length(∂Ω)] =: c0.

(iii) Now we want to prove a result that will be used to prove equicontinuity
of the sequence {Xn}. To this end we consider an arbitrary mapping X =
(X1, X2, X3) ∈ C0(B,R3) ∩ C2(B,R3) satisfying X(B) ⊂ Ω0 × R = int Z,
Z = Ω0 × R, Ω0 = Br0(0), r0 = (2h0)−1, and

ΔX = 2H(X)Xu ∧ Xv and Xw · Xw = 0 in B

with supR3 |H| ≤ h0. Let f := (X1, X2) be the associated planar mapping; it
satisfies

f(B) ⊂ Ω0

and
| ∇X|2 ≤ 2| ∇f |2 in B.

Lemma 1. Let 0 < ε < r0, p∗ ∈ Ω0, Ω := Ω0 ∩ Bε(p∗), G a subdomain of B,
and suppose that f(∂G) ⊂ Bε(p∗) = {p ∈ R2 : |p − p∗ | ≤ ε}. Then we have

f(G) ⊂ Ω.

Proof. We essentially apply the same reasoning as in part (ii) of the proof
of Theorem 1. Suppose that the assertion is not valid. Then there is a point
w̃ ∈ G with f(w̃) /∈ Ω. Since Ω is 2h0-convex, there exists a support disk
S0 = Br0(p0) at some point p′ ∈ ∂Ω ∩ ∂S0 such that f(w̃) 	∈ Br0(p0) and
Ω ⊂ Br0(p0). Set

Φ(w, λ) := |f(w) − λp0|2 for w ∈ G and 0 ≤ λ ≤ 1.

For w ∈ ∂G it follows that |f(w) − p0| ≤ r0 and |f(w)| ≤ ε whence

|f(w) − λp0| ≤ λ|f(w) − p0| + (1 − λ)|f(w)| ≤ λr0 + (1 − λ)ε < r0,

and therefore

Φ(w, λ) < r20 for all w ∈ ∂G and λ ∈ [0, 1].
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Furthermore, f(G) ⊂ f(B) ⊂ Ω0 = Br0(0) implies

Φ(w, 0) < r20 for all w ∈ G,

and f(w̃) /∈ Br0(p0) yields
Φ(w̃, 1) > r20.

Then there exists some λ∗ ∈ (0, 1) and some w∗ ∈ G with

Φ(w∗, λ∗) = r20 and Φ(w, λ∗) ≤ r20 for all w ∈ G.

By virtue of

ΔΦ(·, λ∗) = 2| ∇f |2 + 2〈f − λ∗p0, Δf〉
≥ 2{ | ∇f |2 − |f − λ∗p0| |Δf | } ≥ 2{ | ∇f |2 − r0|ΔX| }
≥ 2{ | ∇f |2 − 2h0r0|Xu ∧ Xv | }
≥ 2{ | ∇f |2 − |Xu| |Xv | } ≥ 2{ | ∇f |2 − 1

2 | ∇X|2} ≥ 0,

the function Φ(·, λ∗) is subharmonic in G and assumes its maximum at some
point w∗ ∈ G. This yields Φ(w, λ∗) ≡ r20 for all w ∈ G, a contradiction to
Φ(w, λ∗) < r20 for all w ∈ ∂G. �

The next result is evident:

Lemma 2. Let G be a subdomain of B such that osc∂GX ≤ ε. Then there is
a point P ∗ = (p∗, z∗) ∈ Z such that

X(∂G) ⊂ Kε(P ∗) := {P ∈ R
3 : |P − P ∗ | ≤ ε},

and, in particular, f(∂G) ⊂ Bε(p∗).

For P ∗ = (p∗, z∗) ∈ R
2 × R we introduce the spherical box Nε,μ(P ∗) with

0 < ε < h−1
0 and μ > 0 by

Nε,μ(P ∗) := {P = (p, z) ∈ R
2 × R : |p − p∗ | ≤ ε, |z − z∗ | ≤ μ+ η(p − p∗, ε)}

with
η(p − p∗, ε) :=

√
h−2

0 − |p − p∗ |2 −
√
h−2

0 − ε2 for h0 > 0

and η := 0 for h0 = 0.
If h0 > 0, the boundary of Nε,μ(P ∗) consists of the cylinder

{(p, z) ∈ R
3 : |p − p∗ | = ε, |z − z∗ | ≤ μ}

and the two spherical caps

F+
ε,μ(P ∗) := {(p, z) ∈ R

3 : |p − p∗ | ≤ ε, z = z∗ + μ+ η(p − p∗, ε)},
F−

ε,μ(P ∗) := {(p, z) ∈ R
3 : |p − p∗ | ≤ ε, z = z∗ − μ − η(p − p∗, ε)}.
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Lemma 3. We have

Kε(P ∗) ⊂ Nε,ε(P ∗) ⊂ K2ε(P ∗)

for h0 = 0 as well as for h0 > 0 provided that ε < r0 = 1
2h

−1
0 .

Proof. The first inclusion is evident, and the second is evident for h0 = 0,
hence we have to verify it for h0 > 0. We may assume that P ∗ = 0.

Suppose now P = (p, z) ∈ Nε,ε(0), i.e. |p|2 ≤ ε2 and |z| ≤ ε+ η(p, ε). Then

|z| ≤ ε+
√
h−2

0 − |p|2 −
√
h−2

0 − ε2 ≤ ε+
√
h−2

0 −
√
h−2

0 − ε2

≤ ε+
h−2

0 − (h−2
0 − ε2)√
h−2

0

= (1 + εh0)ε <
3
2
ε.

Therefore,
|p|2 + z2 ≤ ε2 + 9

4ε
2 < 4ε2,

and so P ∈ K2ε(0). �

Lemma 4. Let 0 < ε < r0 = (2h0)−1, and suppose that osc∂GX ≤ ε holds
true for some subdomain G of B. Then we have:

(i) There is a point P ∗ = (p∗, z∗) ∈ Z such that

X(∂G) ⊂ Kε(P ∗) and f(∂G) ⊂ Bε(p∗).

(ii) We have f(G) ⊂ Bε(p∗).
(iii) Finally we obtain

X(G) ⊂ Nε,ε(P ∗) ⊂ K2ε(P ∗).

Proof. Assertion (i) follows from Lemma 2, and (ii) is a consequence of
Lemma 1. Because of Lemma 3 it suffices to prove X(G) ⊂ Nε,ε(P ∗). If
h0 = 0, this is implied by the maximum principle for harmonic mappings.
Thus we may assume h0 > 0. By (ii) we have |f(w) − p∗ | < ε for w ∈ G;
therefore we only have to show

|X3(w) − z∗ | ≤ ε+ η(f(w) − p∗, ε) for all w ∈ G.

If this were not true, we could find a number μ > ε and some point w′ ∈ G
such that

|X3(w′) − z∗ | = μ+ η(f(w′) − p∗, ε)

and
|X3(w) − z∗ | ≤ μ+ η(f(w) − p∗, ε) for all w ∈ G.
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Furthermore, we infer from X(∂G) ⊂ Kε(P ∗) ⊂ Nε,ε(P ∗) that

(43) |X3(w) − z∗ | ≤ ε+ η(f(w) − p∗, ε) for w ∈ ∂G.

Thus we obtain w′ ∈ G. Consequently, X(G) either lies entirely below
F+

ε,μ(P ∗) or above F−
ε,μ(P ∗) and touches the corresponding cap at some point

X(w′) with w′ ∈ G. It suffices to consider the first case. Then we have

X3(w) − z∗ ≤ μ+
√
h−2

0 − |f(w) − p∗ |2 −
√
h−2

0 − ε2 for w ∈ G

and equality for w = w′. Setting

Φ(w) := |f(w) − p∗ |2 +
∣∣∣X3(w) − z∗ − μ+

√
h−2

0 − ε2
∣∣∣2,

this means

Φ(w) ≤ h−2
0 for all w ∈ G and Φ(w′) = h−2

0 , w′ ∈ G.

We have
|ΔX| ≤ 2h0|Xu ∧ Xv | ≤ h0| ∇X|2

and
ΔΦ = 2| ∇X|2 + 2〈Y,ΔX〉

with
Y :=

(
f − p∗, X3 − z∗ − μ+

√
h−2

0 − ε2
)
.

This yields
|Y (w)| =

√
Φ(w) ≤ h−1

0 for w ∈ G,
whence

ΔΦ ≥ 2| ∇X|2 − 2|Y | |ΔX|
≥ 2| ∇X|2 − 2h−1

0 h0| ∇X|2 = 0 in G.

Thus Φ is subharmonic in G and satisfies

Φ(w′) = h−2
0 = max

G
Φ for some w′ ∈ G,

whence Φ(w) ≡ h−2
0 holds true for all w ∈ G. This, however, is a contradiction

to the property (43) which implies Φ(w) < h−2
0 for w ∈ ∂G on account of

ε < μ. �

(iv) Now we use (37), (42), and the Courant–Lebesgue lemma to make the
oscillation osc∂GXn of the Xn uniformly small for appropriate subdomains
G of B whose boundaries are either circles or two-gons. By Lemma 4(iii), it
follows that the Xn, n ∈ N, are equicontinuous on B. Furthermore, the fn are
uniformly bounded on B since fn(B) ⊂ Ω0, and (40), (41) imply
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sup
B

|X3
n| ≤ m0 + h−1

0 for all n ∈ N.

(This can also be proved by a reasoning similar to (iii).) Thus the Xn are also
uniformly bounded on B. By Arzelà–Ascoli’s theorem we may then assume
that the Xn converge uniformly on B to some X ∈ C0(B,R3), and on account
of (42) we may also assume that

Xn ⇀ X in H1
2 (B,R3).

This implies X ∈ C(Γ ).
(v) From (38) we infer

|ΔXn| ≤ h0| ∇Xn|2 in B for all n ∈ N.

In conjunction withXn(w) ⇒ X(w) on B, an a priori estimate due to E. Heinz
yields:

For any B′ ⊂⊂ B there is a number c(B′) > 0 such that

(44) sup
B′

| ∇Xn| ≤ c(B′) for all n ∈ N

holds true; cf. Vol. II, Section 2.2, Proposition 1.

Then we infer from (38) and (44) by a standard reasoning that

‖Xn‖C3,α(B′,R3) ≤ c∗(B′, α) for all n ∈ N

and all B′ ⊂⊂ B, and we obtain X ∈ C0(B,R3) ∩ C3,α(B,R3) as well as
Xn → X in C3,β(B′,R3), 0 < β < α, for all B′ ⊂⊂ B and

ΔX = 2H(X)Xu ∧ Xv in B.

Moreover, (38) yields also

Xw · Xw = 0 in B.

Thus X is an H-surface of class C(Γ ).
Let N and Nn be the normals of X and Xn respectively. From N3

n(w) > 0
on B we infer

(45) N3(w) ≥ 0 in B,

and Theorem 1 in Section 5.1 yields

ΔN + 2pN = −2Λ gradH(X).

Since Hz ≥ 0 it follows

(46) ΔN3 + 2pN3 ≤ 0.
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Invoking a reasoning due to E. Heinz [5], Lemma 6, we infer from (45) and
(46) that

(47) N3(w) > 0 in B.

Another possibility to verify (47) is to invoke Moser’s inequality (cf. Sauvigny
[16], vol. 2, p. 369).

Now we proceed as in the proof of Theorem 1 and conclude that X
has no branch points in B and that f := (X1, X2) furnishes a homeomor-
phic mapping from B onto Ω which is diffeomorphic from B onto Ω, and
f ∈ C3,α(B,R2). Then ζ := X3 ◦ f−1 is of class C0(Ω) ∩ C3,α(Ω) and solves
the Dirichlet problem (8).

Remark 4. Since Z3
n := X3

n ◦ f−1
n and fn ⇒ f in B, one can derive the

equicontinuity of the X3
n from formula (9) in Section 7.3.

7.2 Unique Solvability of Plateau’s Problem for Contours
with a Nonconvex Projection onto a Plane

In this section we consider closed Jordan curves Γ in R
3 which possess a

one-to-one projection onto a closed Jordan curve Γ lying in a plane Π, which
we identify with R

2. The points in R
2 are described by p = (x, y), and P =

(x, y, z) denote the points in R
3.

Radó’s theorem states: If Γ is convex then there exists exactly one mini-
mal surface of class C∗(Γ ), and this surface is nonparametric. The existence
follows from Theorem 2 in Section 7.1, and the uniqueness was proved in
Section 4.9. Inspecting this proof, we realize that only planes were used as
comparison surfaces for a given minimal surface X ∈ C(Γ ) in order to derive
a nonparametric representation

Z(x, y) = (x, y, ζ(x, y)), (x, y) ∈ Ω,

of X. Now we shall substitute the plane by Scherk’s first surface from Sec-
tion 3.5.6, restricted to its fundamental domain (see also Sauvigny [16],
pp. 272–273). This comparison surface leads to a new uniqueness theorem
for Plateau’s problem in the case that H = 0, established by F. Sauvigny [12].
To formulate this result we first repeat the definition of Scherk’s surface in
a form that we will use, and then we define the Scherkian tongs which will
replace the ordinary half-space in our considerations.

Definition 1. For each parameter value a > 0 we consider the open square
Q(a) := {(x, y) ∈ R

2 : |x|, |y| < π/(2a)}, where Scherk’s surface S(a) is defined
as the minimal graph

S(a) := {(x, y, σ(x, y)) : (x, y) ∈ Q(a)}(1)

with σ(x, y) :=
1
a
[log cos(ax) − log cos(ay)].
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Then σx(x, y) = − tan(ax), σy(x, y) = tan(ay); the surface element

(2) ω :=
√

1 + σ2
x + σ2

y

and the upwards pointing unit normal

(3) Σ := (−σx/ω,−σy/ω, 1/ω)

are given by

(4)
ω(x, y) = {1 + tan2(ax) + tan2(ay)}1/2

Σ(x, y) = ω−1(x, y)(tan(ax),− tan(ay), 1)
for (x, y) ∈ Q(a).

The intersection of S(a) and the x, z-plane is a principal-curvature line

(5)
(
x, 0,

1
a

log cos(ax)
)
, |x| < π

2a
,

with the oriented curvature

(6) κ(x) = −a cos(ax), |x| < π

2a
.

In the limit a → +0 we obtain σ(x, y) = 0 and Q(0) = R
2, i.e. the Scherkian

surface tends to the x, y-plane {z = 0}.

Definition 2. For all parameter values a ≥ 0 we define the Scherkian half-
space (or Scherkian tongs) S+(a) as the set

S+(a) := {(x, y, z) ∈ R
3 : (x, y) ∈ Q(a), x > σ(y, z)}

whose boundary is the Scherk surface

∂S+(a) = {(σ(y, z), y, z) : (y, z) ∈ Q(a)}

with σ(y, z) =
1
a
[log cos(ay) − log cos(az)],

which lies over the y, z-plane.
Rotating S+(a) about the z-axis such that the plane vector e1 = (1, 0, 0) is

transformed into the vector

ν = (ν1, ν2, 0) ∈ S1 × {0},

and translating the origin 0 ∈ R
3 into the point P0 = (x0, y0, z0) of R

3, we
obtain the general Scherkian halfspace (or tongs)

S+(a, P0, ν) ⊂ R
3.
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Fig. 1. Scherkian tongs

Note that the open set S+(a, P0, ν) “emanates” from its boundary point
P0 ∈ ∂S+(a, P0, ν) “in the direction ν” and possesses a square of side-length
π/a as projection domain perpendicular to ν.

Now we can formulate the main result of this section, Sauvigny’s unique-
ness theorem.

Theorem 1. Let Ω be a Jordan domain in R
2 with Γ := ∂Ω ∈ C3,α. Further-

more, consider boundary values γ ∈ C3,α(Γ ) and define the Jordan contour
Γ in R

3 by

(7) Γ := {(p, γ(p)) ∈ R
3 : p ∈ Γ},

which has a 1–1 projection onto Γ = ∂Ω. Let ν : ∂Ω → S1 × {0} be the
interior unit normal to ∂Ω, and suppose that for each point p0 ∈ ∂Ω there
is a parameter value a0 = a(p0) such that for P0 := (p0, γ(p0)) ∈ Γ and
ν0 := ν(p0) we have

(8) Γ \ {P0} ⊂ S+(a0, P0, ν0).

As usual we fix a three-point condition (∗) on Γ and denote by C∗(Γ ) the class
of admissible surfaces X : B → R

3 satisfying (∗).
Then there exists exactly one minimal surface X ∈ C∗(Γ ). This surface is

a C3,α-immersion of B into R
3 and possesses a nonparametric representation

(x, y, ζ(x, y)), (x, y) ∈ Ω, as graph of a solution ζ ∈ C3,α(Ω) of the Dirichlet
problem

(9) Mζ = 0 in Ω, ζ(p) = γ(p) on ∂Ω,

for the minimal surface equation.

The basic tool to be used in the proof of Theorem 1 is a comparison prin-
ciple that will allow us to compare an arbitrary parametric minimal surface
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with one of Scherk’s minimal graphs ∂S+(a0, P0, ν0) as well as with other
minimal graphs.

Theorem 2. Let X = (X1, X2, X3) : B → R
3 be a minimal surface with the

associate planar mapping f := (X1, X2) : B → R
2, satisfying f(B) ⊂ Ω, and

the surface normal N : B → S2. Secondly, consider a solution η ∈ C2(Ω)
of the minimal surface equation Mη = 0 in some domain Ω of R

2 with the
normal Ξ : Ω → S2

+ (= open upper hemisphere of S2) and its pull-back

(10) T = (T 1, T 2, T 3) := Ξ ◦ f : B → S2
+.

Then the auxiliary function

(11) Φ := X3 − η(X1, X2) = X3 − η ◦ f

satisfies the elliptic differential equation

(12)
∂

∂u
(T 3Φu) +

∂

∂v
(T 3Φv) − [e3, Tv, N ]Φu − [Tu, e3, N ]Φv = 0 in B,

where e3 := (0, 0, 1), T 3 = 〈T, e3〉, and [a, b, c] denotes the triple product
〈a, b ∧ c〉.

Proof. (i) We have

(13) ΔX = 0 in B

as well as

(14) N ∧ Xu = Xv, N ∧ Xv = −Xu in B.

Now we consider the reparametrization

(15) Y := (f, η ◦ f) = (X1, X2, η(X1, X2))

of the minimal graph (x, y, η(x, y)), (x, y) ∈ Ω. Since the mean curvature of Y
is identically zero on B, we obtain the parameter-invariant equation

(16) Yu ∧ Tv + Tu ∧ Yv = 0 in B,

whatever the sign and the zero set of the Jacobian Jf = X1
uX

2
v −X2

uX
1
v might

be.
(ii) Set W :=

√
1 + η2

x ◦ f + η2
y ◦ f . Because of

Ξ = {1 + η2
x + η2

y } −1/2(−ηx,−ηy, 1)

we have
T = W−1 · (−ηx ◦ f,−ηy ◦ f, 1), i.e. T 3 = 1/W.
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This leads to

(17)
Φu = −(ηx ◦ f)X1

u − (ηy ◦ f)X2
u +X3

u = W 〈T,Xu〉,
Φv = −(ηx ◦ f)X1

v − (ηy ◦ f)X2
v +X3

v = W 〈T,Xv 〉.

Differentiating Y = (f,X3 + [η ◦ f − X3]) we obtain

Yu = Xu + [(ηx ◦ f)X1
u + (ηy ◦ f)X2

u − X3
u]e3,

Yv = Xv + [(ηx ◦ f)X1
v + (ηy ◦ f)X2

v − X3
v ]e3.

On account of (17), we then arrive at

(18)
Yu = Xu − Φue3,

Yv = Xv − Φve3.

From (17) we infer that the expression

(19) LΦ :=
∂

∂u
(W−1Φu) +

∂

∂v
(W−1Φv)

satisfies

LΦ =
∂

∂u
〈T,Xu〉 +

∂

∂v
〈T,Xv 〉

= 〈T,ΔX〉 + 〈Tu, Xu〉 + 〈Tv, Xv 〉.

In virtue of (13) and (14) we get

LΦ = [Xu, Tv, N ] + [Tu, Xv, N ],

and (18) then yields

LΦ = [Yu + Φue3, Tv, N ] + [Tu, Yv + Φve3, N ]
= 〈Yu ∧ Tv + Tu ∧ Yv, N〉 + [e3, Tv, N ]Φu + [Tu, e3, N ]Φv.

By (16) it follows that

(20) LΦ = [e3, Tv, N ]Φu + [Tu, e3, N ]Φv.

From (19), (20), and T 3 = 1/W we finally obtain (12). �

If we apply Theorem 2 to η := σ, defined by (1), we find:

Corollary 1. If X = (f,X3) : B → R
3, is a minimal surface with the normal

N satisfying f(B) ⊂ Q(a), then Φ := X3 − σ ◦ f satisfies

(21)
∂

∂u
(Σ3Φu) +

∂

∂v
(Σ3Φv) − [e3, Σv, N ]Φu − [Σu, e3, N ]Φv = 0 in B.
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Now we turn to the

Proof of Theorem 1. We proceed in four steps. First we show that any min-
imal surface X ∈ C∗(Γ ) “lies above Ω”, that means, f(B) ⊂ Ω. Secondly
we prove that X meets the bounding Scherkian graphs transversally. In the
third step we show that a minimizer of D in C∗(Γ ) possesses a nonparametric
representation above Ω. Finally we use the comparison principle of Theorem 2
to identify any minimal surface X ∈ C∗(Γ ) with this minimal graph.

(i) Step 1 (Inclusion Principle). We claim that

(22) f(B) ⊂ Ω.

To verify this assertion we pick an arbitrary point p0 = (x0, y0) ∈ ∂Ω, set
P0 = (p0, γ(p0)), a0 = a(p0), ν0 = ν(p0), and note that

Γ \ {P0} ⊂ S+(a0, P0, ν0)

an account of assumption (8). We want to show that

(23) X(B) ⊂ S+(a0, P0, v0).

By a translation in z-direction and a rotation about the z-axis we arrange for
P0 = 0 and ν0 = e1 = (1, 0, 0), and so (8) in combination with the boundary
condition X(∂B) = Γ takes on the form

(24) X(∂B \ {w0}) ⊂ S+(a0) with p0 = f(w0), w0 ∈ ∂B.

Consider the auxiliary function Ψ ∈ C3,α(B) which is defined by

(25) Ψ(w) := X1(w) − σ(X2(w), X3(w)) for w ∈ B.

This function is built in the same way as the function Φ in Corollary 1, only
that the z-direction is interchanged with the x-direction. Therefore it satisfies
an elliptic differential equation in B since the Scherk surface S+(a0) lies as a
graph over a square {(y, z) : |y|, |z| < π/(2a0)} in the y, z-plane. This equation
is of the same kind as (21), and by (24) we have

(26) Ψ(w) > 0 for all w ∈ ∂B \ {w0}, and Ψ(w0) = 0.

Then the maximum (or, rather, the minimum) principle yields

(27) Ψ(w) > 0 for all w ∈ B.

Thus the assumption (24) implies

X(B) ⊂ S+(a0).

If we return to the original assumption (8), we obtain (23) for all p0 ∈ ∂Ω,
and so we arrive at (22).
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(ii) Step 2 (Transversality at the Boundary). In the situation (26) and
(27), the boundary point lemma of E. Hopf implies

(28)
∂

∂n0
Ψ(w0) < 0 for w0 ∈ ∂B and n0 = w0,

and we also have X(w0) = P0 = 0. Without loss of generality we may assume
that w0 = (0, 1). Then (28) states that the function Ψ(u, v) satisfies

Ψv(0, 1) < 0.

Furthermore, we have

Ψv(0, 1) = X1
v (0, 1) − σy(0, 0)X2

v (0, 1) − σz(0, 0)X3
v (0, 1)

= X1
v (0, 1),

and therefore
X1

v (0, 1) < 0,

whence
|Xu(0, 1)| = |Xv(0, 1)| > 0,

and a reasoning analogous to that in the proof of Theorem 1 in Section 7.1
yields

(X1
uX

2
v − X1

vX
2
u)(0, 1) > 0.

Performing a rotation of B we finally obtain

(29) |Xu(w0)| = |Xv(w0)| > 0 for all w0 ∈ ∂B

and

(30) Jf (w0) = (X1
uX

2
v − X1

vX
2
u)(w0) > 0 for all w0 ∈ ∂B.

This implies for the normal N = (N1, N2, N3) of X the inequality

(31) N3(w0) = 〈N(w0), e3〉 > 0 for all w0 ∈ ∂B.

Consequently, X meets the bounding Scherkian graphs transversally.
(iii) Step 3. Now we take a minimizer X̃ of D, and therefore also of A, in

C∗(Γ ). Then its normal Ñ satisfies

〈Ñ(w), e3〉 = Ñ3(w) > 0 on B

on account of Section 5.3, Theorem 2. Via the arguments in parts (iv) and
(v) of the proof the Theorem 1 in Section 7.1, we see that the plane mapping
f̃ = (X̃1, X̃2) yields a positive-oriented diffeomorphism from B onto Ω, and
ζ̃ := X̃3 ◦ f̃−1 solves the boundary value problem (9).



7.2 Unique Solvability of Plateau’s Problem 515

(iv) Step 4. At last, we consider an arbitrary minimal surface X ∈ C∗(Γ ),
which might be nonstable, and compare it with the minimal graph

{(x, y, ζ̃(x, y)) : (x, y) ∈ Ω}

that was obtained in (iii). It satisfies as well the inclusion property (22) and
the transversality relations (29)–(31). To identify X with X̃ we consider the
auxiliary function

Φ := X3 − ζ̃(X1, X2) ∈ C2(B)

from Theorem 2, which fulfills the boundary condition

Φ(w) = 0 for all w ∈ ∂B.

Since Φ satisfies the elliptic equation (12), we conclude that

(32) Φ(w) ≡ 0 on B ⇔ X3 = ζ̃(X1, X2).

This implies in particular for f = (X1, X2) that

X3
u = ζ̃x(f)X1

u + ζ̃y(f)X2
u, X3

v = ζ̃x(f)X1
v + ζ̃y(f)X2

v ,

from which we infer in virtue of (31) that

N = {(1 + ζ̃2x + ζ̃2y )−1/2(−ζ̃x,−ζ̃y, 1)} ◦ f

and therefore N3(w) > 0 on B. Now we conclude as in Step 4 that f =
(X1, X2) yields a positive-oriented diffeomorphism from B onto Ω, and ζ :=
X3 ◦ f−1 solves (9). On the other hand, the identity (32) is equivalent to
X3 = ζ̃ ◦ f whence ζ̃ = X3 ◦ f−1 = ζ. Consequently X and X̃ can only differ
by a conformal mapping ϕ from B onto itself, i.e. X = X̃ ◦ϕ, and this implies
X = X̃ since both surfaces fulfill the same three-point condition (∗). This
completes the proof of the theorem. �

Remark 1. In the paper [12] by Sauvigny, boundary values γ : ∂Ω → R are
explicitly investigated for nonconvex domains with ∂Ω ∈ C3,α such that (9) is
solvable. These boundary values satisfy a Lipschitz condition with a Lipschitz
constant less than one.

We note that, according to a result by Osserman and Finn (see Finn [9]),
(9) cannot be solved for all boundary values γ ∈ C0(∂Ω) if Ω is nonconvex;
a detailed discussion of the pertinent results can be found in the treatise
by J.C.C. Nitsche [28], §§406–411, and also §§648–653. For special classes of
boundary values, a solution of the nonparametric problem (9) for nonconvex
Ω was also provided by C.P. Lau [1], F. Schulz and G. Williams [1], and
G. Williams [1].

Remark 2. H. Wenk [1] improved the results of this section substituting
Scherk’s surface by the catenoid as comparison surface. This approach is more
intricate; however, multiply connected minimal surfaces are then accessible.
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7.3 Miscellaneous Estimates for Nonparametric H-Surfaces

In the sequel we assume that Ω is a bounded Jordan domain in R
2, and that

H : R3 → R denotes a mean curvature function of class C1,α(R3).
We consider solutions ζ ∈ C3,α of the nonparametric mean curvature equa-

tion where the mean curvature is the prescribed curvature function H(x, y, z),
i.e. we consider nonparametric surfaces

S := graph ζ = {(x, y, ζ(x, y)) ∈ R
3 : (x, y)) ∈ Ω},

the height function z = ζ(x, y) of which satisfies

(1) Mζ(x, y) = 2H(x, y, ζ(x, y))[1 + | ∇ζ(x, y)|2]3/2 in Ω,

where M denotes the minimal surface operator

(2) Mζ = (1 + ζ2y )ζxx − 2ζxζyζxy + (1 + ζ2x)ζyy.

(Sometimes, weaker assumptions on H and X suffice.) We begin with the
Maximal Radius Theorem due to E. Heinz [26] whose proof is almost elemen-
tary.

Theorem 1. If there is a solution ζ ∈ C2(Ω) of (1) for a disk Ω = BR(p0)
of radius R > 0, satisfying

(3) inf
Ω

|H(x, y, ζ(x, y))| ≥ β > 0

then it follows R ≤ 1/β.

Proof. Condition (3) implies that eitherH(·, ζ) > 0 orH(·, ζ) < 0. The second
case can be reduced to the first one by the reflection (x, y, z) �→ (x, y,−z),
and so we can assume that

H(x, y, ζ(x, y)) ≥ β > 0 for (x, y) ∈ Ω.

Let us write (1) in the form

(4)
∂

∂x

(
ζx
W

)
+
∂

∂y

(
ζy
W

)
= 2H(·, ζ) in Ω, W :=

√
1 + ζ2x + ζ2y .

Integrating both sides over the disk Br := Br(p0), 0 < r < R, we obtain

2πr2β ≤
∫

Br

2H(x, y, ζ(x, y)) dx dy

=
∫

∂Br

(
ζx
W
dy − ζy

W
dx

)

≤
∫

∂Br

W−1| ∇ζ|
√
dx2 + dy2 ≤

∫
∂Br

ds = 2πr

whence r ≤ 1/β for all r ∈ (0, R). Letting r → R − 0 we arrive at R ≤ 1/β.
�
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One can estimate the supremum of |ζ| for solutions ζ of (1) by their bound-
ary values on sufficiently small disks; cf. F. Sauvigny [16], Vol. 2, Chap. XII,
§9, Proposition 1. This is achieved by comparing the solution with a spherical
cap, a technique proposed by S. Bernstein. With the aid of Bonnet’s parallel
surface from Section 5.2 we now estimate the height of solutions of (1), even
on arbitrary domains, by their boundary values assuming that H = const.
This device was used earlier by H. Liebmann to show that ovaloids of con-
stant mean curvature are necessarily spheres. J. Serrin rediscovered Bonnet’s
surface in his investigation of the so-called large solutions to Plateau’s prob-
lem with constant H > 0. We now derive Serrin’s Maximal Height Theorem
(cf. J. Serrin [5]).

Theorem 2. Let ζ ∈ C0(Ω) ∩ C2(Ω) be a solution of (1) for H = const > 0
which satisfies

(5) |ζ(x, y)| ≤ m for all (x, y) ∈ ∂Ω

with a constant m > 0. Then ζ is estimated by

(6) −m − 1
H

≤ ζ(x, y) ≤ m for all (x, y) ∈ Ω.

Proof. (i) we introduce conformal parameters into Z : Ω → R
3, given by

Z(x, y) := (x, y, ζ(x, y)), (x, y) ∈ Ω, using a positive-oriented uniformization
map f : B → Ω which is a homeomorphism from B onto Ω and furnishes
a conformal mapping from B onto Ω; see Section 4.11, or Sauvigny [16],
Chapter VII, §§7–8. Set X = (X1, X2, X3) := Z ◦ f , and let N be the unit
normal of X and Λ its surface element. Then N3 ≥ 0, and so the equation
ΔX = 2HXu ∧ Xv implies

ΔX3 = 2H(X1
uX

2
v − X1

vX
2
u) ≥ 0 in B.

Thus X3 is subharmonic, and therefore X3 = ζ ◦ f ≤ m on ∂B satisfies
X3 ≤ m on B whence ζ = X3 ◦ f−1 ≤ m on Ω.

(ii) By Theorem 2 of Section 5.2, the parallel surface Y := X + 1
HN is

again an H-surface satisfying

ΔY = 2HYu ∧ Yv = −2HΛ(H2 − K)N in B.

The auxiliary function Φ := Y 3 = 〈Y, e3〉 satisfies

ΔΦ = −2HΛ(H2 − K)N3 ≤ 0 in B,

and so it is superharmonic in B. Since

Φ(w) ≥ −m+
1
H
N3(w) ≥ −m for w ∈ ∂B,

we obtain Φ(w) ≥ −m for w ∈ B, which means that
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X3(w) ≥ −m − 1
H
N3(w) ≥ −m − 1

H
for all w ∈ B

holds true. �

Next we derive an Area Estimate for nonparametric H-surfaces that re-
peatedly appears in the work of R. Finn.

Theorem 3. The area A(Z) :=
∫

Ω

√
1 + | ∇ζ|2 dx dy of an H-surface Z(x, y)

= (x, y, ζ(x, y)), corresponding to a solution ζ ∈ C0(Ω) ∩ C2(Ω) of (1) with
supΩ |H(x, y, ζ(x, y))| ≤ h0, is bounded by

(7) A(Z) ≤ sup
∂Ω

|ζ| · length(∂Ω) + [1 + 2h0 sup
Ω

|ζ|] · measΩ.

Proof. We shall verify (7) for domains Ω with a smooth boundary. Then the
general result follows by approximation. Let us multiply (4) by ζ and integrate
over Ω. Then

2
∫

Ω

ζH(·, ζ) dx dy =
∫

Ω

ζ[(W−1ζx)x + (W−1ζy)y] dx dy

=
∫

Ω

[(W−1ζζx)x + (W−1ζζy)y] dx dy −
∫

Ω

W−1| ∇ζ|2 dx dy

=
∫

∂Ω

W−1ζ(ζx dy − ζy dx) −
∫

Ω

W dx dy +
∫

Ω

W−1 dx dy.

This leads to

(8)
∫

Ω

W dx dy ≤
∫

∂Ω

|ζ| ds+ measΩ + 2h0

∫
Ω

|ζ| dx dy

whence ∫
Ω

W dx dy ≤ sup
∂Ω

|ζ| · length(∂Ω) +
[
1 + 2h0 sup

Ω
|ζ|
]
measΩ. �

Let μ := sup∂Ω |ζ| and

η± := ±μ ±
√
h−2

0 − (x2 + y2) ±
√
h−2

0 − r20 with 0 < r0 ≤ h−1
0 .

The functions η+ and η− are spherical caps over Ω0 := Br0(0). If 0 ∈ Ω ⊂
Br0(0) then

Mη+ = −2h0(1 + | ∇η+|2)3/2 ≤ 2H(·, η+)(1 + | ∇η+|2)3/2

Mη− = 2h0(1 + | ∇η− |2)3/2 ≥ 2H(·, η−)(1 + | ∇η− |2)3/2
in Ω.

Assuming Hz ≥ 0 we can deduce differential inequalities in Ω for φ+ := ζ−η+

and φ− := ζ − η− (see e.g. Sauvigny [16], Vol. 1, Chapter VI, §2). Then the
maximum principle yields
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η−(w) ≤ ζ(w) ≤ η+(w) for w ∈ Ω.

Therefore

(9) |ζ(w)| ≤ sup
∂Ω

|ζ| + h−1
0 +

√
h−2

0 − r20 for all w ∈ Ω.

In the maximal situation r0 = h−1
0 we attain

|ζ(w)| ≤ sup
∂Ω

|ζ| + h−1
0 in Ω.

In conjunction with Theorem 3 we obtain:

Theorem 4. Suppose that 0 ∈ Ω ⊂ Ω0 = Br0(0), r0 = 1/h0, Hz(x, y, z) ≥ 0,
|H| ≤ h0, and let ζ ∈ C0(Ω) ∩ C2(Ω) be a solution of (1). Then we have

(10) sup
Ω

|ζ| ≤ sup
∂Ω

|ζ| + h−1
0

and

(11)
∫

Ω

√
1 + | ∇ζ|2 dx dy ≤ 3 measΩ + [2h0 measΩ + length(∂Ω)] sup

∂Ω
|ζ|.

Theorem 5 (Gradient estimates for H-graphs). Suppose that H ∈ C1,α(R3)
satisfies

(12) Hz(x, y, z) ≥ 0 in R
3, sup

R3
|H| ≤ h0, sup

R3
| ∇H| ≤ h1,

with positive constants h0 and h1. Furthermore let ζ be a solution of (1)
with supΩ |ζ| ≤ M for constant M > 0. Then there is a constant M1 =
M1(h0R, h1R

2,MR−1) > 0, depending only on the quantities h0R, h1R
2,

MR−1, such that

(13) | ∇ζ(p0)| ≤ M1

holds true for any p0 ∈ Ω with BR(p0) ⊂⊂ Ω.

Proof. (i) Let BR := BR(p0) ⊂⊂ Ω; then by (7)

(14)
∫

BR

√
1 + | ∇ζ| dx dy ≤ 2πRM + πR2 + 2h0MπR

2.

Introduce conformal parameters for Y (x, y) := (x, y, ζ(x, y)), p = (x, y) ∈
BR(p0), via a uniformizing mapping f ∈ C3,α(B,BR) with f(0) = p0 =
(x0, y0), and set X := Y ◦ f ∈ C3,α(B,R3). Then the resulting H-surface X
satisfies

D(X) = A(X) = A(Y ) =
∫

BR

√
1 + | ∇ζ|2 dx dy,
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and by (14) we obtain

(15) 2D(X) ≤ 4πRM + 2πR2 + 4πh0MR
2.

(ii) Now we consider the normalized plane mapping

(16) F (w) := R−1(X1(w) − x0, X
2(w) − y0), w ∈ B,

corresponding to X(w) = (X1(w), X2(w), X3(w)). Clearly, F ∈ C3,α(B,B),
F (0) = 0, and F is a diffeomorphism of B onto itself, which by (16) satisfies

2D(F ) ≤ 2R−2D(X)(17)
≤ 4πMR−1 + 2π + 4π(MR−1)(h0R) =: τ(h0R,MR

−1).

Furthermore,

|ΔF | ≤ R−1|ΔX| ≤ h0R
−1| ∇X|2 = h0R

−1(| ∇X1|2 + | ∇X2|2 + | ∇X3|2),

and Xw · Xw = 0 implies

| ∇X3|2 ≤ | ∇X1|2 + | ∇X2|2 = R2| ∇F |2.

This leads to

(18) |ΔF | ≤ 2h0R| ∇F |2 in B.

Now we can apply a distortion estimate due to E. Heinz in the form derived
in F. Sauvigny [16], Chap. XII, §5, formulae (29) and (28), using (17) and
(18). This yields a number δ = δ(h0R,MR

−1) ∈ (0, 1) such that

(19) |F (w)| ≥ 1/2 for all w ∈ ∂B1−δ(0),

and numbers ϑ(h0R,MR
−1) and λ(h0R,MR

−1) such that

(20) 0 < ϑ ≤ | ∇F (w)| ≤ λ for all w ∈ B1−δ(0).

(iii) Next we consider the auxiliary function Φ ∈ C2,α(B) defined by

(21) Φ := N3 = 〈N, e3〉 = Λ−1(X1
uX

2
v − X2

uX
1
v ).

Since

Λ = 2−1| ∇X|2 ≤ R2| ∇F |2 and X1
uX

2
v − X2

uX
1
v = R2JF ,

we obtain

(22) Φ ≥ | ∇F | −2JF > 0 in B,

where JF is the Jacobian of F . On account of (19) it follows that F (B1−δ(0)) ⊃
B1/2(0); therefore
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∫
B1−δ(0)

JF du dv = measF (B1−δ(0)) ≥ 1
4
π.

Furthermore, (20) yields | ∇F (w)| −2 ≥ λ−2 on B1−δ(0), and so (22) implies

(23)
∫

B1−δ(0)

Φdu dv ≥ π

4
λ−2(h0R,MR

−1).

By Theorem 1 of Section 5.1 we have

ΔΦ = −2pΦ − 2ΛHz(X)

with
p = 2ΛH2(X) − ΛK − Λ〈gradH(X), N〉.

Then,

−2p = −2Λ[2H2(X) − K] + 2Λ〈gradH(X), N〉 ≤ 0 + 2Λh1

and
−2ΛHz(X) ≤ 0.

Consequently we have

ΔΦ ≤ 2(R−2Λ)(h1R
2)Φ ≤ 2| ∇F |2(h1R

2)Φ
(20)

≤ 2λ2(h0R,MR
−1)(h1R

2)Φ on B1−δ(0).

Setting
σ(h0R,MR

−1, h1R
2) := 2λ2(h0R,MR

−1)(h1R
2),

we arrive at
ΔΦ ≤ σΦ in B1−δ(0).

(iv) Now we apply a quantitative version of Moser’s inequality that in two
dimensions had already been proved by E. Heinz [5], Lemma 6′ on p. 216; see
also F. Sauvigny [16], Chap. X, §5, Theorem 1. This yields

Φ(0) ≥ exp
(

− 1
4
(1 − δ)2σ

)
[π(1 − δ)2]−1

∫
B1−δ(0)

Φdu dv.

If we use (23) and define M1(h0R, h1R
2,MR−1) by

M−1
1 := exp

(
− 1

4
(1 − δ)2σ

)
[π(1 − δ)2]−1π

4
λ−2(h0R,MR

−1),

it follows that
Φ(0) ≥ 1/M1.

On account of
Φ(0) = N3(0) = (1 + | ∇ζ(p0)|2)−1/2

we obtain
| ∇ζ(p0)| ≤

√
1 + | ∇ζ(p0)|2 = 1/Φ(0) ≤ M1,

which gives the desired gradient estimate (13). �
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Remark 1. This proof of the gradient estimate is due to F. Sauvigny [11].
We note that only the estimate of | ∇F | from above by λ in (20) was used to
derive a bound for | ∇ζ(p0)|. If one wants to obtain curvature estimates then
the lower bound by ϑ in (20) is needed as well. In Sauvigny [7,8], curvature
estimates are derived for solutions ζ of (1), without assuming the monotonicity
condition Hz ≥ 0.

Remark 2. If H(x, y, z) ≡ const, then the graph of a solution ζ of (1) repre-
sents a stable cmc-surface, and Section 5.5 yields an estimate for the principal
curvatures in this class.

Now we prove an estimate for the difference of two solutions of (1), using a
similar idea as in the proof of Theorem 2. For H = 0, the estimate was derived
by J.C.C. Nitsche (see [28], §585). It can be applied to prove uniqueness of
solutions to the Dirichlet problem for (1) with discontinuous boundary values.

Theorem 6. Let Ω be a Jordan domain in R2 with a rectifiable boundary ∂Ω,
and suppose that ζ1, ζ2 ∈ C0(Ω) ∩ C2(Ω) are two solutions of (1). Then, for
any compact subset Q of Ω and with

(24) μ(Q) := max
{

max
Q

√
1 + | ∇ζ1|2,max

Q

√
1 + | ∇ζ2|2

}

we have

(25)
∫

Q

| ∇ζ1 − ∇ζ2|2 dx dy ≤ 2μ3(Q)
∫

∂Ω

|ζ1 − ζ2| ds,

provided that Hz(x, y, z) ≥ 0 on R3.

Proof. (i) Let ζ1, ζ2 ∈ C0(Ω) ∩ C2(Ω) be two solutions of (1), and set

pj :=
∂ζj
∂x
, qj :=

∂ζj
∂y
, Wj =

√
1 + p2j + q2j , j = 1, 2.

By (4) we have

∂

∂x

(
pj

Wj

)
+
∂

∂y

(
qj
Wj

)
= 2H(·, ζj) in Ω, j = 1, 2.

This leads to

∂

∂x

(
p2
W2

− p1
W1

)
+
∂

∂y

(
q2
W2

− q1
W1

)
= 2H(·, ζ2) − 2H(·, ζ1).

If we multiply this equation by ζ2 − ζ1, integrate over Ω′ ⊂⊂ Ω, and perform
an integration by parts, we obtain



7.3 Miscellaneous Estimates for Nonparametric H-Surfaces 523

−
∫

Ω′

[
(p2 − p1)

(
p2
W2

− p1
W1

)
+ (q2 − q1)

(
q2
W2

− q1
W1

)]
dx dy

+
∫

∂Ω′
(ζ2 − ζ1)

[(
p2
W2

− p1
W1

)
dy −

(
q2
W2

− q1
W1

)
dx

]

=
∫

Ω′
2(ζ2 − ζ1)[H(·, ζ2) − H(·, ζ1)]dx dy,

provided that ∂Ω′ is piecewise smooth.
(ii) The boundary integral is estimated by

∣∣∣∣
∫

∂Ω′
(ζ2 − ζ1)[. . .]

∣∣∣∣ ≤ 2
∫

∂Ω′
|ζ2 − ζ1| ds,

and we observe

H(x, y, z2) − H(x, y, z1) = Hz(x, y, z̃)(z2 − z1)

with an intermediate value z̃. Since Hz ≥ 0, we obtain

(z2 − z1) · [H(x, y, z2) − H(x, y, z1)] = Hz(x, y, z̃)(z2 − z1)2 ≥ 0,

and therefore ∫
Ω′

2(ζ2 − ζ1)[H(·, ζ2) − H(·, ζ1)] dx dy ≥ 0.

Thus we arrive at∫
Ω′

[
(p2 −p1)

(
p2
W2

− p1
W1

)
+(q2 −q1)

(
q2
W2

− q1
W1

)]
dx dy ≤ 2

∫
∂Ω′

|ζ2 −ζ1| ds.

(iii) For 0 ≤ t ≤ 1 we set

p(t) := p1+t(p2 −p1), q(t) := q1+t(q2 −q1), W (t) := {1+p(t)2+q(t)2}1/2,

f(t) := (p2 − p1)
[
p(t)
W (t)

− p1
W1

]
+ (q2 − q1)

[
q(t)
W (t)

− q1
W1

]
.

Note that f(0) = 0. By the mean value theorem there is a value t = t(x, y) ∈
(0, 1) with f(1) = f ′(t), and a brief calculation yields

W ′ ′(t) = W−3(t){ |p′(t)|2 + |q′(t)|2 + [p(t)q′(t) − q(t)p′(t)]2} = f ′(t),

whence
f ′(t) ≥ W−3(t)[(p2 − p1)2 + (q2 − q1)2]

and
W ′ ′(t) ≥ 0.
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Therefore
W (t) ≤ max{W1,W2} for 0 ≤ t ≤ 1,

and consequently

f(1) = f ′(t) ≥ (max{W1,W2})−3[(p2 − p1)2 + (q2 − q1)2].

(iv) Now we choose an arbitrary compact set Q in Ω and then an open set
Ω′ with ∂Ω′ ∈ C1 and Q ⊂ Ω′ ⊂⊂ Ω; set

μ(Q) := max{W1(x, y),W2(x, y) : (x, y) ∈ Q}.

Then DQ(ζ2 − ζ1) := 1
2

∫
Q

| ∇ζ2 − ∇ζ1|2 dx dy is estimated by

DQ(ζ2 − ζ1) ≤ 1
2
μ3(Q)

∫
Q

f(1) dx dy ≤ μ3(Q)
∫

∂Ω′
|ζ2 − ζ1| ds.

Approximating Ω from the interior by domains Ω′ ⊂⊂ Ω such that Ω′ ↗ Ω
and length (∂Ω′) → length(∂Ω), we find

DQ(ζ2 − ζ1) ≤ μ3(Q)
∫

∂Ω

|ζ2 − ζ1| ds. �

Corollary 1. If ζ1, ζ2 ∈ C0(Ω) ∩C2(Ω) are two solutions of (1) in a Jordan
domain Ω with a rectifiable boundary which satisfy ζ1 = ζ2 on ∂Ω, then we
have ζ1 = ζ2.

Proof. The estimate (25) implies ∇ζ1|Q = ∇ζ2|Q for any compact Q in Ω,
whence ∇ζ1(p) = ∇ζ2(p) for all p ∈ Ω, and therefore ζ1 − ζ2 = const. Since
ζ1(p) = ζ2(p) for p ∈ ∂Ω, we obtain ζ1 = ζ2. �

Remark 3. J.C.C. Nitsche (see [28], §586) has used the technique of the proof
for Theorem 6 to establish a

General Maximum Principle. Let ζ1, ζ2 ∈ C2(Ω \ A), Ω ⊂ R
2, be two

solutions of Mζ = 0 in Ω \A where A is a compact set in R
2 with H1(A) = 0,

H1 = one-dimensional Hausdorff measure. Furthermore, suppose that

lim
p→p0

[ζ1(p) − ζ2(p)] ≤ M for all p0 ∈ ∂Ω \ A.

Then we obtain ζ1 − ζ2 ≤ M in Ω \ A. Furthermore, if ζ1(p′) − ζ2(p′) = M
for a single point p′ ∈ Ω \ A, it follows ζ1(p) − ζ2(p) ≡ M .

Independently and at the same time, an n-dimensional version of the max-
imum principle was proved by De Giorgi and Stampacchia [1] in 1965. These
authors as well as Nitsche also established the following result.

General Removability Theorem. Let Ω be a domain in R
2, A a compact

subset of Ω with H1(A) = 0, and ζ ∈ C2(Ω \ A) be a solution of Mζ = 0 in
Ω\A. Then there is exactly one extension ζ∗ ∈ C2(Ω) of ζ such that Mζ∗ = 0
in Ω.
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For a proof, see J.C.C. Nitsche [28], §§591–593. This result is a powerful
generalization of a celebrated theorem by L. Bers [2], published in 1951: An
isolated singularity of a solution of the minimal surface equation Mζ = 0 is
removable.

We shall now generalize this to nonparametric H-surfaces. We will remove
sets of exemption points which are specified in

Definition 1. A subset A of a domain Ω in R
2 is called admissible singular

subset of Ω, if it is compact and has the following covering property : For each
ε > 0 there exist N = N(ε) open disks Bk := {p ∈ R

2 : |p − pk | < rk } with
0 < rk < ε, Bk ⊂⊂ Ω,

(26) A ⊂
N⋃

k=1

Bk, Bk ∩ B� = ∅ for k 	= &

and

(27)
N∑

k=1

length(∂Bk) ≤ 2πε.

We call {Bk }1≤k≤N an ε-covering of A.

Remark 4. Obviously, an admissible singular A in Ω is a two-dimensional
null set in R

2 which even satisfies H1(A) = 0; but in addition we require
Bk ∩ B� = ∅. We note that, the regular part Ω′ := Ω \ A is connected, and
thus Ω′ is a domain. For example, any finite subset A of Ω is admissible.
Also, any compact, denumerable subset A of Ω with at most finitely many
accumulation points is admissible.

We can generalize Theorem 6 in the following way:

Theorem 7. Let A be an admissible singular subset of a Jordan domain Ω
with a rectifiable boundary, Hz(x, y, z) ≥ 0 on R

3, and suppose that ζ1, ζ2 ∈
C0(Ω \ A) ∩ C2(Ω \ A) are solutions of

(28) Mζj = 2H(·, ζj)W 3
j in Ω \ A, Wj :=

√
1 + | ∇ζj |2.

Then we have the weighted energy estimate

(29)
∫

Ω\A

μ| ∇ζ1 − ∇ζ2|2 dx dy ≤ 2
∫

∂Ω

|ζ1 − ζ2| ds

with the positive, continuous weight function μ : Ω \ A → R defined by

(30) μ(x, y) := [max{W1(x, y),W2(x, y)]−3 for (x, y) ∈ Ω \ A.
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Corollary 2. Let the assumptions of Theorem 7 be satisfied and suppose also
that ζ1 = ζ2 on ∂Ω. Then we have

(31) ζ1 = ζ2 on Ω \ A.

Proof. The weighted estimate (29) together with (30) imply that ∇ζ1 = ∇ζ2
in Ω \A. Since Ω \A is connected we infer ζ1 − ζ2 = const on Ω \A, and the
boundary condition ζ1|∂Ω = ζ2|∂Ω finally yields (31). �

As an immediate application of Corollary 2 and of Theorem 1 in Sec-
tion 7.1 we obtain the following Theorem on Removable Singularities
for H-Graphs.

Theorem 8. Let A be an admissible singular subset of the domain Ω in R
2,

and ζ ∈ C2(Ω \ A) be a solution of

(32) Mζ = 2H(·, ζ){1 + | ∇ζ|2}3/2 in Ω \ A,

where H satisfies supR3 |H| ≤ h0 and Hz(x, y, z) ≥ 0 on R
3.

Then ζ can be extended to a function of class C2(Ω) which satisfies (1).

Proof. Choose 0 < ε < h0, and let {Bk }1≤k≤N be an ε-covering of A. With
the aid of Theorem 2 in Section 7.1 we obtain solutions ζk ∈ C0(Bk) ∩C2(Bk)
of

Mζk = 2H(·, ζk){1 + | ∇ζk |2}3/2 in Bk,

ζk = ζ on ∂Bk.

Corollary 2 can be applied to the pair {ζ|Bk
, ζk }, and we obtain ζ = ζk

on Bk \ A, k = 1, . . . , N(ε). Thus it follows ζ ∈ C2(Ω), and (1) is now an
immediate consequence of (32). �

It remains to establish Theorem 7.

Proof of Theorem 7. (i) We first assume that ∂Ω ∈ C1. Then we write (28)
in the form

div(W−1
j ∇ζj) = 2H(·, ζj) in Ω′ := Ω \ A, j = 1, 2.

Subtracting the two equations from each other we obtain

1
2

div[(W−1
1 ∇ζ1) − (W−1

2 ∇ζ2)] = H(·, ζ1) − H(·, ζ2)(33)

= (ζ1 − ζ2)
∫ 1

0

Hz(·, ζ2 + t(ζ1 − ζ2)) dt on Ω′.

For any ζ ∈ C2(Ω \ A) we define the truncated function [ζ]M , 0 < M < ∞,
by
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[ζ]M (x, y) :=

⎧⎪⎨
⎪⎩
M for ζ(x, y) ≥ M,

ζ(x, y) for |ζ(x, y)| < M,
−M for ζ(x, y) ≤ −M,

(x, y) ∈ Ω \ A.

Clearly, [ζ1 − ζ2]M ∈ H1
2,loc(Ω

′) ∩ L∞(Ω′). Moreover we infer from (33) that

0 ≤ 2[ζ1 − ζ2]M [ζ1 − ζ2]
∫ 1

0

Hz(·, ζ2 + t(ζ1 − ζ2)) dt(34)

= [ζ1 − ζ2]M div[W−1
1 ∇ζ1 − W−1

2 ∇ζ2]
= div{[ζ1 − ζ2]M [W−1

1 ∇ζ1 − W−1
2 ∇ζ2]

− 〈∇[ζ1 − ζ2]M ,W−1
1 ∇ζ1 − W−1

2 ∇ζ2〉 on Ω′.

We note that the open sets

ΩM := {(x, y) ∈ Ω′ : |ζ1(x, y) − ζ2(x, y)| < M}, M > 0,

exhaust Ω′ monotonically, i.e. ΩM ↗ Ω′ as M → ∞, in the sense that
ΩM ⊂ ΩM̃ for M < M̃ and Ω′ =

⋃∞
M=1ΩM .

(ii) Let ε > 0, and choose an ε-covering {Bk }1≤k≤N of A. Define the
subdomain Ωε of Ω′ by

Ωε := Ω \ {B1 ∪ · · · ∪ BN }.

The Ωε exhaust the regular domain Ω′ = Ω \A, i.e. Ωε → Ω′ for ε → +0, but
the exhaustion need not be monotonic.

For any ε > 0, the vector field η := [ζ1 −ζ2]M [W−1
1 ∇ζ1 −W−1

2 ∇ζ2] belongs
to the class H1

2 (Ωε,R
2) ∩ C0(Ωε,R

2). Thus we may apply an integration by
parts to (34) integrated over Ωε, thereby obtaining

∫
Ωε ∩ΩM

〈∇ζ1 − ∇ζ2,W−1
1 ∇ζ1 − W−1

2 ∇ζ2〉 dx dy(35)

≤
∫

∂Ωε

〈[ζ1 − ζ2]M [W−1
1 ∇ζ1 − W−1

2 ∇ζ2], ν〉 ds,

where ν denotes the exterior unit normal to the domain Ωε, which is of
class C1. Since η ∈ L∞(Ω′) and

N(ε)∑
k=1

length(∂Bk) ≤ 2πε,

we infer from (35) for ε → 0 that
∫

ΩM

〈∇ζ1 − ∇ζ2,W−1
1 ∇ζ1 − W−1

2 ∇ζ2〉 dx dy(36)

≤ 2
∫

∂Ω

|ζ1 − ζ2| ds for all M > 0.
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Now we could use the reasoning from part (iii) in the proof of Theorem 6 to
derive the following estimate from (36):

(37)
∫

ΩM

μ| ∇ζ1 − ∇ζ2| dx dy ≤ 2
∫

∂Ω

|ζ1 − ζ2| ds for all M > 0.

Instead it might be welcome to the reader if we present the following detailed
computation, because it gives some geometric insight. Consider the function
F (p) =

√
1 + |p|2 on R2. Setting p = (α, β), we have F (p) =

√
1 + α2 + β2,

and the Hessian Fpp(p) of F is given by

Fpp(p) = F−3(p)C(p) with C(p) :=
(

1 + β2 −αβ
−αβ 1 + α2

)
.

With γ = (ξ, η) ∈ R
2 we obtain for the quadratic form associated with C(p)

that

〈γ, C(p)γ〉 = ξ2 + β2ξ2 − 2αβξη + η2 + α2η2

= ξ2 + η2 + (αη − βξ)2 ≥ ξ2 + η2 = |γ|2.

Therefore,

(38) 〈γ, Fpp(p)γ〉 ≥ F−3(p)|γ|2.

For p1, p2 ∈ R2 we obtain

Fp(p1) − Fp(p2) =
∫ 1

0

Fpp(p2 + t(p1 − p2))(p1 − p2) dt,

whence by (38),

〈p1 − p2, Fp(p1) − Fp(p2)〉

=
∫ 1

0

〈p1 − p2, Fpp(p2 + t(p1 − p2))(p1 − p2)〉 dt

≥
(∫ 1

0

F−3(p2 + t(p1 − p2)) dt
)

|p1 − p2|2.

By (38), the function F (p) is convex; hence

F (p2 + t(p1 − p2)) ≤ max{F (p1), F (p2)} for 0 ≤ t ≤ 1.

Then it follows

(39) 〈p1 − p2, Fp(p1) − Fp(p2)〉 ≥ [max{F (p1), F (p2)}]−3|p1 − p2|2.

With p1 := ∇ζ1(x, y) and p2 := ∇ζ2(x, y) we obtain

Fp(p1) = W−1
1 (x, y)∇ζ1(x, y), Fp(p2) = W−1

2 (x, y)∇ζ2(x, y),
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and then

〈∇ζ1 − ∇ζ2,W−1
1 ∇ζ1 − W−1

2 ∇ζ2〉 ≥ μ| ∇ζ1 − ∇ζ2|2.

In conjunction with (36), this implies (37).
Letting M tend to infinity and recalling ΩM ↗ Ω′, we infer with the aid

of B. Levi’s theorem on monotone convergence the desired inequality (29)
with μ given by (30), provided that ∂Ω ∈ C1.

(ii) If ∂Ω is merely a rectifiable Jordan curve, we exhaust Ω by domains
Ωj with A ⊂ Ωj ⊂⊂ Ω, ∂Ωj ∈ C1, and length (∂Ωj) → length (∂Ω) as
j → ∞. Then the desired estimate is obtained from the estimate for Ωj in the
limit j → ∞. �

7.4 Scholia

1. In this chapter we presented an approach to the Dirichlet problem for the
minimal surface equation Mζ = 0 and, more generally, for the nonparametric
H-surface equation

(1) Mζ = 2H(·, ζ)[1 + | ∇ζ|2]3/2 in Ω

in two dimensions. The special feature of our method is to start with a solution
X of the Plateau problem for the parametric equation

(2) ΔX = 2H(X)Xu ∧ Xv in B

and then to show thatX possesses an equivalent nonparametric representation
Y (x, y) = (x, y, ζ(x, y)) with ζ solving (1), provided that Γ is a graph above
the boundary of a 2h0-convex domain Ω in R

2 and that |H| ≤ h0 as well as
Hz ≥ 0. The transition from the parametric problem to the nonparametric
one is based on the projection theorem by F. Sauvigny [1,2]. For the minimal
surface equation this idea was invented by T. Radó [21] in the proof of his
uniqueness theorem for Plateau’s problem, see Section 4.9. For the general
case, the uniqueness is restricted to stable H-surfaces. Sauvigny’s ideas were
generalized to the study of free boundary value problems for minimal surfaces
(cf. S. Hildebrandt and F. Sauvigny [1–7]; see Vol. 3) and also for H-surfaces
(F. Müller [5–11]).

Besides the treatises of Nitsche [28], Gilbarg and Trudinger [1], and Sauvi-
gny [16] we also refer to the monograph on capillarity problems by R. Finn
[11] as well as to later work by this author.

2. An independent proof of the removability theorem of Bers was given by
R. Finn [1]. Finn’s result extends to isolated singularities of solutions to equa-
tions of the minimal surface type. L. Bers [5] gave another proof of Finn’s
theorem using the uniformization theorem, and eventually Finn [6] strength-
ened Bers’s method, thereby obtaining a removability for a more general type
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of nonlinear elliptic equations. Nitsche’s removability theorem appeared first
in his paper [12]. De Giorgi and Stampacchia [1] proved: If ζ ∈ C2(Ω \ K) is
a solution of the n-dimensional minimal surface equation in Ω \ K where Ω
is an open set in R

n and K a compact subset of Ω with Hn−1(K) = 0, then u
extends to a C2-solution on the whole of Ω. L. Simon [3] showed that it is in
fact only necessary for K to be a locally compact subset of Ω, and therefore K
can extend to the boundary of Ω. Furthermore, Simon’s method carries over
to equations of the form

n∑
j=1

DjFpj (x,−Dζ, 1) = H(x),

where F (x, p) is a positive definite, elliptic Lagrangian satisfying λF (x, p) =
F (x, λp) for λ > 0. We also refer to work of M. Miranda [1], G. Anzellotti [1],
and Hildebrandt and Sauvigny [8].



Chapter 8

Introduction to the Douglas Problem

In this chapter we present an introduction to the general problem of Plateau
that, justifiedly, is often called the Douglas problem. This is the question
whether a configuration Γ := 〈Γ1, . . . , Γk 〉 of k nonintersecting closed Jordan
curves Γj in R

3 may bound multiply connected minimal surfaces of prescribed
Euler characteristic and prescribed character of orientability. Here we treat
only the simplest form of the Douglas problem, to find a minimal surface
X : Ω → R

3 whose parameter domain Ω is a k-fold connected, bounded, open
set in R

2 whose boundary consists of k closed, nonintersecting Jordan curves.
Since any such domain can be mapped conformally onto a domain B bounded
by k circles, we may choose such k-circle domains as parameter domains for
the desired minimal surfaces. However, different from the case k = 1 where
all parameter domains are conformally equivalent, two admissible parameter
domains will in general be of different conformal type if k ≥ 2. Therefore we
are no longer allowed to fix a k-circle domain B a priori as the parameter
domain of any solution of the Douglas problem; instead, the determination of
B is part of the problem since X has to fulfill the conformality relations.

After discussing some examples in Section 8.1, we state the main result. In
Section 8.2 we show that from ∂D(X, η) = 0 for all C1-vector fields η : B → R

2

on the domain B of X one can derive the conformality relation 〈Xw, Xw 〉 = 0.
The proof of this fact is a quite nontrivial generalization of the method used
in Section 4.5.

Different from the Plateau problem (k = 1), the Douglas problem (k ≥ 2)
has in general no “connected” solution. For example, two parallel circles Γ1

and Γ2 contained in distinct planes do not bound a connected minimal surface
if they are “too far apart”. This phenomenon is discussed in Chapter 4 of
Vol. 2. Douglas has exhibited a sufficient condition ensuring the existence of
connected minimal surfaces bounded by Γ1, . . . , Γk. However, this condition
is somewhat difficult to deal with, while Courant’s condition of cohesion is
much easier to handle. This condition is described in Section 8.3, and it is
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shown that it leads to sequences of parameter domains which converge towards
nondegenerate domains.

In Section 8.4 we solve the Douglas problem for k-fold connected minimal
surfaces, assuming that the condition of cohesion is satisfied. Then, in Sec-
tion 8.5, we prepare two useful tools which later on will be used to modify
surfaces in a suitable way. These modifications were invented by Courant.

The main result is contained in Section 8.6 where we solve the Douglas
problem, assuming the so-called Douglas condition. The solution is seen to be
a simultaneous minimizer of the area A and the energy D in the class C(Γ )
of admissible surfaces, which implies

inf
C(Γ )

A = inf
C(Γ )

D.

The “necessary Douglas condition”

a(Γ ) ≤ a+(Γ )

and the “sufficient Douglas condition”

a(Γ ) < a+(Γ )

are studied in some detail in Sections 8.7 and 8.8; in particular, we present sev-
eral examples. As a generalization of Riemann’s mapping theorem to multiply
connected planar domains we obtain Koebe’s mapping theorem.

The Scholia (Section 8.9) contain some historical remarks and references
to the literature.

8.1 The Douglas Problem. Examples and Main Result

In Chapter 4 we discussed the classical problem of Plateau as it was solved
by Douglas and Radó, and we presented the solution found by Courant and,
independently, by Tonelli. In the restricted sense formulated in Definition 1
of Section 4.2, Plateau’s problem consists in finding a “disk-type” minimal
surface spanning a prescribed closed Jordan curve Γ . This is to say, given Γ ,
we have to find a mapping X : B → R

3 of the closure of the disk B := {w ∈
R

2 : |w| < 1} into R
3 which is harmonic and conformal in B, continuous on B,

and maps ∂B topologically (i.e. homeomorphically) onto Γ .
As mentioned before, this is neither the most general nor the most nat-

ural way to formulate Plateau’s problem, but merely the simplest and most
convenient one, as we do not run into the difficulty that parameter domains
of the same topological type may be of different conformal type. However,
there is no need to restrict ourselves to minimal surfaces bounded by a single
closed curve since boundary configurations consisting of several closed curves
may bound multiply connected minimal surfaces. A classical example is the
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Fig. 1. A soap film experiment: Catenoids held by two coaxial circles

Fig. 2. Minimal surfaces bounded by two closed curves

catenoid, the minimal surface of revolution, which is bounded by two coaxial
circles in parallel planes. Moreover, soap film experiments show that certain
configurations may bound minimal surfaces of higher topological structure,
even nonorientable ones such as surfaces of the type of the Möbius strip. Fig-
ures 1–5 depict several such contours as well as minimal surfaces spanning
them. In certain cases it is not difficult to see that a topologically more com-
plicated minimal surface may have a smaller area than any disk-type surface
bounded by the same contour.

The first to state Plateau’s problem in a general form was Jesse Douglas
who attacked this question in a series of profound and pioneering papers.
Hence many authors speak of the Douglas problem instead of what Douglas
himself called the

General problem of Plateau. Given a configuration Γ = 〈Γ1, Γ2, . . . , Γk 〉
in R

3 consisting of k mutually disjoint Jordan curves Γj, find a minimal
surface of prescribed topological type that spans Γ .
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Fig. 3. An annulus-type minimal surface spanned by two interlocking curves

Fig. 4. Two views of a minimal surface of genus zero bounded by three closed curves.

Courtesy of K. Polthier

Fig. 5. A closed curve bounding a one-sided minimal surface. This curve also spans a

disk-type minimal surface

What is a surface, and what is its topological type? One might think of a
surface as a two-dimensional submanifold of R

3, or better as an embedding
X : M → R

3 of a two-dimensional manifold M with (or without) boundary
into R

3. This definition is too restrictive as we want to consider “surfaces”
S = X(M) with selfintersections; thus we might think of local embeddings
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such as immersions X : M → R
3. But even this class is too narrow as we want

to study minimal surfaces with branch points. Moreover, in order to be able
to use functional analytic arguments, we would like to operate with mappings
X contained in a Sobolev space, which are in fact only equivalence classes of
mappings X : M → R

3, and every representative of X is only determined up
to a set of two-dimensional measure zero.

In such general cases we cannot define the topological type of the surface
S = X(M) in the usual way. Instead we use the following preliminary def-
inition: A surface in R

3 is a mapping X : M → R
3 of a two-dimensional

manifold M (with or without boundary), and the topological type of X is de-
fined as the topological type of the “parameter manifold” M . The image set
S := X(M) is called the trace of X in R3; occasionally one calls S instead
of X a surface in R

3, and S is said to be an embedded or immersed surface
respectively if X is an embedding or an immersion. We note that X might be
defined only up to a null set in M .

Suppose that M is a compact two-dimensional C1-manifold whose bound-
ary ∂M consists of k closed Jordan curves, and which is oriented (ε(M) := 1)
or nonoriented (ε(M) := −1). Let χ(M) := α0 −α1 +α2 be the Euler charac-
teristic of M , with α0, α1, α2 the number of edges, wedges, and faces of any
regular triangulation of M . Then the topological type of M , denoted by [M ],
is defined as

[M ] := {ε(M), r(M), χ(M)} with r(M) := k,

and the genus of M , denoted by g(M), is defined by

χ(M) + r(M) =:

{
2 − 2g(M) if ε(M) = 1,
2 − g(M) if ε(M) = −1.

For instance, ifM is a k-fold connected, compact region in R
2, then ε(M) = 1,

r(M) = k, χ(M) = 2 − k, and [M ] = {1, k, 2 − k}, g(M) = 0. In the present
chapter we want to consider surfaces X : M → R

3, whose parameter sets M
have this topological type. The more general case [M ] = {1, r(M), χ(M)} is
treated in Chapter 4 of Vol. 3, while [M ] = { −1, r(M), χ(M)} can be handled
by passing to the double cover of M .

The General Douglas Problem then reads as follows:

Given a configuration Γ = 〈Γ1, . . . , Γk 〉 of k mutually disjoint Jordan curves
Γ1, . . . , Γk, find a minimal surface X : M → R

3 of prescribed topological type
[M ] = {ε(M), k, χ(M)} that spans Γ .

The idea to solve this task is to minimize Dirichlet’s integral D(X) among
all surfaces X : M → R

3 bounded by Γ , and of given topological type [M ].
For technical reasons it is inconvenient to allow all parameter sets M of fixed
topological type for competition. Since D is invariant with respect to confor-
mal mappings τ : intM∗ → intM , it is sufficient to minimize D in a class of
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mappings X : M → R
3 withM ∈ N where N denotes a set of parameter man-

ifolds M containing all conformal types with the fixed topological type [M ].
In fact, it is not necessary to know a priori what all conformal representations
for a given type [M ] are; it suffices to make a good guess and to verify that the
method works. However, choosing a sequence {Xj } of surfaces Xj : Mj → R

3,
bounded by Γ , with Mj ∈ N and

D(Xj) → inf{D(X) : X :M → R
3, ∂X = Γ, M ∈ N}

as j → ∞ such that Xj converges in some sense to a mapping X : M → R
3,

it is by no means clear that the limit set M = limj→∞ Mj will belong to N; in
fact, M might very well jump out of the class N. To prevent this, one has to
take suitable precautions such as assuming the condition of cohesion or the
Douglas condition.

Here we shall solve the simple kind of Douglas problem, namely: Determine
a minimal surface X : M → R

3, spanning Γ = 〈Γ1, . . . , Γk 〉, defined on a
schlicht parameter region M ⊂ R

2 of type [M ] = {1, k, 2 − k}. To obtain a
solution, we minimize D in a suitable class C(Γ ) of mappings X : B → R

3

with B ∈ N(k) where N(k) is the class of k-circle domains B in R
2. Let us

give a precise definition of this kind of domains.
As usual we identify the point w = (u, v) ∈ R

2 with w = u+ iv ∈ C, and
correspondingly R2 is identified with C. For q ∈ C and r > 0 we define the
disk Br(q) as

Br(q) := {w ∈ C : |w − q| < r};

it is a 1-circle domain. If q = 0 and r = 1, we call the unit disk B1(0)
the normed 1-circle domain. For k > 1, a k-circle domain B(q, r) with q =
(q1, . . . , qk) ∈ C

k and r = (r1, . . . , rk) ∈ R
k, r1 > 0, . . . , rk > 0, is a disk

Br1(q1), from which k−1 closed disks Br2(q2), . . . , Brk
(qk) are removed which

are contained in Br1(q1) and which do not intersect. That is,

B(q, r) = Br1(q1) \ {Br2(q2) ∪̇ · · · ∪̇ Brk
(qk)},

and |q1 − qj | + rj > r1 for 1 < j ≤ k as well as

rj + r� < |qj − q�| for j 	= & with 2 ≤ j, & ≤ r.

If, in addition q1 = q2 = 0 and r1 = 1, then B(q, r) is called a normed k-circle
domain. We set Cj := ∂Brj (qj).

Let N(k) be the class of k-circle domains, and N1(k) be the class of normed
k-circle domains.

For X ∈ H1
2 (B,R3) with B = dom(X) ∈ N(k) we define the area func-

tional A(X) and the Dirichlet integral D(X) as

A(X) :=
∫

B

|Xu ∧ Xv | du dv =
∫

B

√
|Xu|2|Xv |2 − 〈Xu, Xv 〉2 du dv,

D(X) :=
1
2

∫
B

[|Xu|2 + |Xv |2] du dv.
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Note that these integrals are extended over the domain B of X which may
vary with X. If B′ is a subdomain of dom(X) = B we write

AB′ (X) :=
∫

B′
|Xu ∧ Xv | du dv, DB′ (X) :=

1
2

∫
B′

| ∇X|2 du dv.

Recall that
A(X) ≤ D(X) for any X ∈ H1

2 (B,R3)

and
A(X) = D(X) if and only if 〈Xw, Xw 〉 = 0

where
Xw :=

1
2
(Xu − iXv), Xw :=

1
2
(Xu + iXv).

The real form of the conformality relation 〈Xw, Xw 〉 = 0 is

(1) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0.

For a boundary contour Γ = 〈Γ1, . . . , Γk 〉 of k mutually disjoint, closed Jordan
curves Γ1, . . . , Γk we define the Douglas class C(Γ ) of admissible mappings
X : B → R

3 for the variational procedure that we are going to set up:

Definition 1. A mapping X ∈ H1
2 (B,R3) ∩C0(∂B,R3) with B = dom(X) ∈

N(k) belongs to C(Γ ) if the Sobolev trace X|∂B maps ∂B in a weakly mono-
tonic way onto Γ = 〈Γ1, . . . , Γk 〉. By this we mean the following : There is an
enumeration C1, . . . , Ck of the boundary circles of B such that X|Cj maps Cj

in a weakly monotonic way onto Γj, j = 1, . . . , k.

If in the sequel we consider a mapping X ∈ C(Γ ) with B = dom(X)
and ∂B = C1 ∪̇ · · · ∪̇ Ck, we tacitly assume the boundary circles Cj to be
enumerated in such a way that

Γ1 = X(C1), . . . , Γk = X(Ck).

We note that C(Γ ) is nonempty if Γ = 〈Γ1, . . . , Γk 〉 is rectifiable, which means
that each of the curves Γ1, . . . , Γk is rectifiable.

Now we can formulate the principal result of this chapter.

Theorem 1. Let Γ = 〈Γ1, . . . , Γk 〉 be a boundary contour consisting of k
mutually disjoint, closed, rectifiable Jordan curves in R

3, and suppose that
Γ satisfies either Courant’s condition of cohesion or the Douglas condition.
Then the following holds true:

(i) There is a minimizer X ∈ C(Γ ) of Dirichlet’s integral in C(Γ ), that is,

(2) D(X) = inf
C(Γ )

D.

Every such minimizer X is a minimal surface, i.e. X is harmonic in B
and satisfies the conformality relations (1); moreover, X is continuous
on B and yields a topological mapping from ∂B onto Γ .
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(ii) In addition, we have

(3) inf
C(Γ )

D = inf
C(Γ )

A.

This implies that every minimizer of D in C(Γ ) is also a minimizer of A
in C(Γ ). Conversely, every conformally parametrized minimizer of A in
C(Γ ) is also a minimizer of D in C(Γ ).

(iii) Set C(Γ ) := C(Γ ) ∩ C0(B,R3). Then we even have

(4) inf
C(Γ )

D = inf
C(Γ )

D = inf
C(Γ )

A = inf
C(Γ )

A.

Courant’s condition of cohesion and the Douglas condition will be stated
in Sections 8.3 and 8.6 respectively.

Without proof we mention the following result that will be derived in
Vol. 2, Section 2.3 (for k ≥ 2):

Theorem 2. Suppose that Γ = 〈Γ1, . . . , Γk 〉 is of class Ck,α, k ≥ 1, α ∈
(0, 1). Then each minimal surface X : B → R3 of class C(Γ ) is also of class
Ck,α(B,R3).

8.2 Conformality of Minimizers of D in C(Γ )

Following ideas of R. Courant and H. Lewy we shall prove:

Theorem 1. If X ∈ C(Γ ) is a minimizer of D in C(Γ ) then it satisfies

(1) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0.

We first recall the following result that was proved in Section 4.5:

Lemma 1. If X ∈ C(Γ ) minimizes D in C(Γ ) then its inner variation
∂D(X, η) vanishes for all vector fields η ∈ C1(B,R2) with B = dom(X).

Therefore Theorem 1 follows from

Theorem 2. If X ∈ C(Γ ) with B = dom(X) satisfies

(2) ∂D(X, η) = 0 for all η ∈ C1(B,R2),

then the conformality relations (1) hold true.

Before we begin with the proof of this theorem, we will derive some aux-
iliary results. The first one was proved in Section 4.5:
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Lemma 2. If X ∈ C(Γ ) with B = dom(X) then

(3) a := |Xu|2 − |Xv |2, b := 2〈Xu, Xv 〉

are of class L1(B), and for any η = (η1, η2) ∈ C1(B,R2) we have

(4) ∂D(X, η) =
1
2

∫
B

[a(η1
u − η2

v) + b(η2
u + η1

v)] du dv.

Let X be of class H1
2 (B,R3), and consider a conformal mapping ν : B∗ →

B from B∗ ⊂ C onto B. Then X∗ := X ◦ ν satisfies D(X) = D(X∗), i.e.
∫

B

| ∇X|2 du dv =
∫

B∗
| ∇X∗ |2 du dv.

Since

∂D(X, η) =
d

dε
D(X ◦ τε)

∣∣∣∣
ε=0

where τε denotes an “inner variation” of the form

τε(w) = w − ελ(w) + o(ε), |ε| � 1

we obtain

Lemma 3. Let ν be a conformal mapping from B
∗

onto B and X ∈ H1
2 (B,R2),

X∗ = X ◦ τ . Then

∂D(X, η) = 0 for all η ∈ C1(B,R2)

is equivalent to

∂D(X, ζ) = 0 for all ζ ∈ C1(B
∗
,R2).

Lemma 4. For any B ∈ N(k) there is a Möbius transformation f such that
f(B) ∈ N1(k).

Proof. For k = 1, f is given by f(w) := 1
r1

(w − q1) if B = Br1(q1). If k ≥ 2
and B = Br1(q1) \ {Br2(q2) ∪ · · · ∪ Brk

(qk)} then f := ϕ ◦ ψ with

ϕ(w) :=
w1 − q1
r1

, ψ(z) :=
z − p2
p2z − 1

with p2 := ϕ(q2)

solves the task. �

Lemma 5. If X ∈ C(Γ ) with B = dom(X) and

φ := 4〈Xw, Xw 〉 = a − ib, a = |Xu|2 − |Xv |2, b = 2〈Xu, Xv 〉,

then (2) is equivalent to
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(5)
∫

B

ηwφ du dv = 0 for all η ∈ C1(B,C).

Furthermore, if ν is a Möbius transformation and B = ν(B∗), B,B∗ ∈ N(k)
as well as X∗ = X ◦ ν, φ∗ := 〈X∗

w, X
∗
w 〉, then X∗ ∈ C(Γ ) with B∗ = dom(X∗)

satisfies

(5′)
∫

B∗
ζwφ

∗ du dv = 0 for all ζ ∈ C1(B
∗
,C).

(Here and in the sequel, C1 means continuously differentiable in the “real”
sense, i.e. C1(B,C) is identified with C1(B,R2), etc.)

Proof. The equivalence of (2) and (5) follows from (4) and the identity

Re(ηwφ) = 1
2 [(η1

u − η2
v)a+ (η2

u + η1
v)b].

Furthermore, equation (5) implies (5′) on account of Lemmas 2 and 3, using
the first assertion of Lemma 5. �

Lemma 6. If X ∈ C(Γ ) with B = dom(X) satisfies

(6)
∫

B

[a(η1
u − η2

v) + b(η2
u + η1

v)] du dv = 0 for all η ∈ C∞
c (B,R2),

then φ := 4〈Xw, Xw 〉 = a − ib with a, b given by (3) is holomorphic in B, i.e.
φw(w) = 0 for all w ∈ B.

Proof. Let μ = (μ1, μ2) ∈ C∞
c (B,R2) and set η := Sδμ = kδ ∗ μ where Sδ is a

mollifier with a symmetric kernel kδ. Then η ∈ C∞
c (B,R2) if 0 < δ � 1, and

aδ := Sδa, bδ := Sδb are of class C∞(B), and we infer from (6) the relation
∫

B

[aδ(μ1
u − μ2

v) + bδ(μ2
u + μ1

v)] du dv = 0.

An integration by parts yields
∫

B

[−(aδ
u + bδv)μ

1 + (aδ
v − bδu)μ2] du dv = 0

for all μ ∈ C∞
c (B′,R2) with B′ ⊂⊂ B and 0 < δ < δ0(B′) ≤ dist(B′, ∂B).

Hence aδ,−bδ satisfy

aδ
u = (−bδ)v, aδ

v = −(−bδ)u in B′

and so φδ := aδ − ibδ is holomorphic in B′ ⊂⊂ B for 0 < δ < δ0(B′). Since
φδ → φ in L1(B′,C) as δ → 0 for B′ ⊂⊂ B, we infer that φ is holomorphic in
any B′ ⊂⊂ B and therefore also in B. �
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Proof of Theorem 2. We have to show that the holomorphic function φ(w)
vanishes identically in B. We shall proceed in five steps. First we prove:

(i) Let α be a closed C1-Jordan curve in B which partitions B \ α into two
disjoint open sets B1 and B2, i.e. B = B1 ∪̇ α ∪̇ B2. Suppose also that
η = (η1, η2) ∈ C1(B,R2), written in the complex form η = η1 + iη2, is
holomorphic in B1 and satisfies η(w) = 0 for any w ∈ ∂B2 \ α. Then we
have

(7) Im
∫

β

η(w)φ(w) dw = 0

for any closed C1-curve β in B1 that is homologous to α (where
∫

β
. . . dw

is the complex line integral along β).

In fact, ηw = 0 on B1 and (6) imply

Re
∫

B2

ηwφ du dv = 0,

whence ∫
B2

[a(η1
u − η2

v) + b(η2
u + η1

v)] du dv = 0.

Since η = 0 on ∂B2 \ α, an integration by parts yields

0 =
∫

α

(aη2 − bη1)du+ (aη1 + bη2) dv

−
∫

B2

[(auη
1 + buη2) + (bvη1 − avη

2)] du dv.

Furthermore,

2 Re(ηφw) = (auη
1 + buη2) + (bvη1 − avη

2),

and
Im(φη dw) = (aη2 − bη1) du+ (aη1 + bη2) dv.

Since φw = 0 in B it follows

Im
∫

α

φη dw = 0.

As φη is holomorphic in B1 we also have
∫

α

φη dw =
∫

β

φη dw

and so we obtain (7). Thus assertion (i) is proved.
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For any M in C we define the “thickening” Bδ(M) by

Bδ(M) := {w ∈ C : dist(w,M) < δ},

and then the annuli Aj(δ) of width δ > 0 about the circles Cj = ∂Brj (qj)
which bound the domain B ∈ N(k) given by

B = Br1(q1)
∖ k⋃

j=2

Brj (qj)

with Brj (qj) ⊂ Br1(q1) and Brj (qj) ∩ Br

(q�) = ∅ for 2 ≤ j, & ≤ k, j 	= &:

Aj(δ) := B ∩ Bδ(Cj), j = 1, . . . , k.

We have
Aj(δ) ∩ A�(δ) = ∅ for j 	= &, 1 ≤ j, & ≤ k,

provided that

δ < δ0 := 1
2 min{dist(Cj , C�) : j 	= &, 1 ≤ j, & ≤ k}.

Now we turn to the second step in the proof of Theorem 2, which consists in
proving the following result:

(ii) For any closed C1-curve in Aj(δ), 0 < δ < δ0, which is homologous to
Cj, we have

(8)
∫

βj

φ(w) dw = 0

and

(9)
∫

βj

(w − qj)φ(w) dw = 0

for j = 1, . . . , k.

To prove this result, we fix some j ∈ {1, . . . , k} and consider three vector
fields η1, η2, η3 ∈ C∞

c (B ∪ Cj ,C) with

∂

∂w
η�(w) = 0 in Aj(δ), & = 1, 2, 3,

satisfying

η1(w) :=

{
ζ for w ∈ Aj(δ),
0 for w ∈ B \ Aj(2δ),

where ζ is an arbitrary complex number,
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η2(w) :=

{
w − qj for w ∈ Aj(δ),
0 for w ∈ B \ Aj(2δ),

η3(w) :=

{
−i(w − qj) for w ∈ Aj(δ),
0 for w ∈ B \ Aj(2δ).

Let C ′
j be the circle ∂Aj(δ) \ Cj and apply step (i) to α := C ′

j and η :=
η1. Then, for any closed curve βj in Aj(δ) homologous to α and therefore
homologous to Cj , it follows that

Im
[
ζ

∫
βj

φ(w) dw
]

= 0 for all ζ ∈ C.

This yields formula (8).
Applying the same reasoning to η := η2 and η := η3 respectively, we obtain

Im
∫

βj

(w − qj)φ(w) dw = 0 and Re
∫

βj

(w − qj)φ(w) dw = 0,

which proves formula (9).

Remark. One can as well choose

η2(w) := (w − qj)n and η3(w) := −i(w − qj)n on Aj(δ)

with n ∈ Z \ {0} and

η2(w) := 0 and η3(w) := 0 on B \ Aj(2δ).

Then one obtains

(10)
∫

βj

(w − qj)nφ(w) dw = 0 for all n ∈ Z

and βj ⊂ Aj(δ), 0 < δ < δ0. If k = 2 and

B = {w ∈ C : 0 < r < |w| < 1} ∈ N1(2),

then φ(w) is holomorphic in B, and thus it can be expanded into a convergent
Laurent series:

φ(w) =
∞∑

n=− ∞
anw

n for w ∈ B.

Formula (10) then becomes
∫

β

wnφ(w) dw = 0 for all n ∈ Z
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and β = {w ∈ C : |w| = ρ} with r < ρ < 1, and we obtain an = 0 for all
n ∈ Z, i.e. φ(w) ≡ 0. Since every B̃ ∈ N(2) is equivalent to some B ∈ N1(2),
the assertion of Theorem 2 is proved in case that k = 2, and for k = 1 the
proof follows in the same way. Thus the proof becomes really interesting for
k ≥ 3.

On account of Lemmas 4 and 5, it suffices to prove Theorem 2 under the
additional assumption

(11) B ∈ N1(k)

which from now on will be required. In other words, we assume that

(11′) r1 = 1, q1 = q2 = 0.

Now we turn to the third step of the proof. We are going to show

(iii) One has: (w − qj)2φ(w) is continuous on B ∪ Cj, and

(12) Im[(w − qj)2φ(w)] = 0 for w ∈ Cj , 1 ≤ j ≤ k.

We will first verify (12) for the case j = 1 where q1 = 0 and r1 = 1; by a
suitable Möbius transformation any of the cases j = 2, . . . , k will be reduced
to j = 1.

Fix some δ ∈ (0, δ0), and let ψ be an arbitrary real valued function with
ψ ∈ C1(B) and

ψ(w) = 0 for w ∈ B with |w| ≤ 1 − 2δ.

Set
η(w) := −i[wψ(w)] for w ∈ B.

By (6) we have

0 = Re
∫

B

ηwφ du dv = lim
R→1−0

Re
∫

B∩BR(0)

ηwφ du dv.

As in the proof of step (i) it follows that

0 = − lim
R→1−0

Im
∫

∂BR(0)

iwψ(w)φ(w) dw.

With w = Reiθ and dw = iw dθ we obtain

(13) 0 = lim
R→1−0

∫ 2π

0

ψ(Reiθ)h(Reiθ) dθ

if we denote by h : B → R the harmonic function

h(w) := Im[w2φ(w)], w ∈ B.
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Suppose now that ψ depends also on a further parameter z ∈ Bρ(0) such that
ψ(w, z) is of class C1 for (w, z) satisfying 1 − δ ≤ |w| ≤ 1, |z| ≤ ρ ≤ 1 − σ for
σ ∈ (0, 2δ). Then we obtain for f := Re[ηw(·, z)φ] that

∣∣∣∣
∫

B∩BR(0)

f du dv

∣∣∣∣ =
∣∣∣∣
∫

B

f du dv −
∫

B\BR(0)

f du dv

∣∣∣∣
=
∣∣∣∣
∫

B\BR(0)

f du dv

∣∣∣∣
≤ M ·

∫
B\BR(0)

|φ| du dv for R > 1 − σ

where
M := sup{ |ηw(w, z)| : 1 − δ ≤ |w| ≤ 1, |z| ≤ ρ} < ∞.

Thus we achieve the uniform convergence of
∫

B∩BR(0)
f(w, z) du dv to zero as

R → 1 − 0 for z ∈ Bρ(0), i.e.

Re
∫

B∩BR(0)

ηw(w, z)φ(w) du dv → 0 uniformly in z ∈ Bρ(0) as R → 1 − 0,

since |φ| ∈ L1(B). This implies that the convergence in (13) is uniform with
respect to z ∈ Bρ(0), i.e.

(14)
∫ 2π

0

ψ(Reiθ, z)h(Reiθ) dθ → 0 uniformly in z ∈ Bρ(0) as R → 1 − 0.

For 0 ≤ r ≤ ρ < 1 − σ < R < 1 and w = Reiθ, z = reiϑ we introduce the
Poisson kernel K(w, z) of the ball BR(0) with respect to w ∈ ∂BR(0) and
z ∈ Bρ(0),

K(w, z) :=
R2 − r2

2π[R2 − 2rR cos(θ − ϑ) + r2]
.

Furthermore let ξ be a radial cut-off function of class C∞(R) with ξ(r) = 1
for r ≥ 1 − σ/2 and ξ(r) = 0 for r ≤ 1 − σ, 0 < σ < 2δ, and set

ψ(w, z) := ξ(|w|)K(w, z)

for z ∈ Bρ(0), 0 < ρ < 1 − σ, and 1 − 2δ < 1 − σ ≤ |w| ≤ 1. Then ψ(w, z) has
the properties required above, and for R = |w| ≥ 1 − σ/2 one has ξ(|w|) = 1.
Consequently it follows from (14) that

HR(z) :=
∫ 2π

0

K(Reiθ, z)h(Reiθ)dθ, z ∈ BR(0),

satisfies

(15) ‖HR‖C0(Bρ(0)) → 0 as R → 1 − 0 for any ρ < 1 − σ, 0 < σ < 2δ.
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By Poisson’s formula and Schwarz’s theorem it follows that HR is harmonic
in the disk BR(0) and can be extended to a continuous function on BR(0)
satisfying

(16) HR(w) = h(w) for w ∈ ∂BR(0).

In the sequel, A(r, r′) denotes the annulus

A(r, r′) := {w ∈ C : r < |w| < r′ } for 0 < r < r′ < ∞.

For R0 := 1 − 2δ < R < 1 we now consider the excess function ER :
A(R0, R) → R defined by

ER(w) := h(w) − HR(w) for w ∈ A(R0, R),

which is continuous on A(R0, R), harmonic in A(R0, R), and vanishes on the
circle ∂BR(0) according to (16). By reflection in this circle we can extend ER

to a continuous function on A(R0, R
′) with R′ := R2/R0 which is harmonic

in A(R0, R
′) and satisfies

(17) max
∂BR0 (0)

|ER| = max
∂BR′ (0)

|ER|.

Set
C = C(R0) := 2 max

∂BR0 (0)
|h|, R0 = 1 − 2δ,

and for arbitrarily chosen ε > 0 we pick a number σ with

(18) 0 < σ < min
{
δ

2
,
εδ

2C

}
.

Because of (15) there is a number R1 ∈ (1 − (σ/2), 1) such that

max
∂BR0 (0)

|HR| < C/2 for all R ∈ (R1, 1),

and so ER = h − HR satisfies

max
∂BR0 (0)

|ER| < C for all R ∈ (R1, 1).

In conjunction with (17) the maximum principle then implies

(19) max
A(R0,R′)

|ER| < C for all R ∈ (R1, 1)

where R0 = 1 − 2δ and R′ = R2/R0.
For R ∈ (R1, 1) we have 1 − σ/2 < R < 1 and therefore R − (1 − σ) >

σ/2 > 0. For any w ∈ A(1 − σ,R) it follows that
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dist(w, ∂A(R0, R
′)) > (1 − σ) − R0 = 2δ − σ > δ.

Applying Cauchy’s estimate to ∇ER on A(1 − σ,R) we then infer from (19)
that

max
A(1−σ,R)

| ∇ER| ≤ C(R0)
δ

for R ∈ (R1, 1).

Since ER(w) = 0 for |w| = R, we can write

|ER((1 − σ)eiθ)| ≤
∫ R

1−σ

|∂rER(reiθ)| dr ≤ σ
C

δ
<
εδ

2C
· C
δ

whence
|ER(w)| < ε

2
for |w| = 1 − σ and R1 < R < 1,

where R1 ∈ (1 − σ/2, 1) was chosen above and σ is a fixed number satisfying
(18).

Applying once more (15) it follows that for the chosen σ there is a number
R2 ∈ [R1, 1) such that

max
B1−σ(0)

|HR| < ε

2
for all R ∈ (R2, 1).

Because of
h(w) = ER(w) +HR(w) for w ∈ A(R0, R)

and R0 = 1 − 2δ < 1 − σ < 1 − σ/2 < R1 ≤ R2 < R < 1 we arrive at

|h(w)| < ε/2 + ε/2 = ε for |w| = 1 − σ.

This implies for the harmonic function h(w) = Im[w2φ(w)] that

lim
σ→+0

max
∂B1−σ(0)

|h| = 0,

and so we can extend h continuously to B ∪ C1 with C1 = ∂B1(0) by setting

h(w) = 0 for w ∈ C1,

which completes the proof of (12) for j = 1.
Note that for the proof of (12) in the case j = 1 we only have used q1 = 0,

r1 = 1 and the fact that C1 = ∂B1(0) contains the other boundary circles
C2, . . . , Ck in its interior domain B1(0). Therefore we can reduce the cases
j = 2, . . . , k to j = 1 by applying the Möbius transformation μ : Ĉ → Ĉ,
Ĉ := C ∪ {∞}, defined by

z = μ(w) :=
rj

w − qj
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where Cj = ∂Brj (qj) = {w ∈ C : |w − qj | = rj }. The mapping μ maps B
into another k-circle domain B∗ whose exterior circle is C1 = ∂B1(0), and
C1 = μ(Cj). Let ν := μ−1 be the inverse of μ, and set

X∗ := X ◦ ν with dom(X∗) = B∗.

Then by Lemma 5 we have
∫

B∗
ζwφ

∗ du dv = 0 for all ζ ∈ C1(B
∗
,R2),

and the above reasoning yields

Im[z2φ∗(z)] = 0 for z ∈ C1

and φ∗(z) = 4〈X∗
z , X

∗
z 〉 = a∗(z) − ib∗(z). A straight-forward computation

yields

(w − qj)2φ(w) = z2φ∗(z) for z ∈ C1 and w = ν(z) ∈ Cj .

Thus we have shown that (w − qj)2φ(w) is continuous on B ∪ Cj and

Im[(w − qj)2φ(w)] = 0 for w ∈ Cj , 2 ≤ j ≤ k,

and so the proof of assertion (iii) is complete. �

Let us review the assertion of (iii). We have shown that each of the holo-
morphic functions

Fj(w) := (w − qj)2φ(w), w ∈ B,

1 ≤ j ≤ k, has a harmonic imaginary part hj := ImFj which can continuously
be extended to B ∪ Cj by setting hj = 0 on Cj . Then the reflection principle
for harmonic functions yields that hj can be extended as a harmonic func-
tion beyond Cj . Inspecting the Cauchy–Riemann equations, it follows that Fj

can be extended holomorphically across Cj , and therefore φ can be extended
holomorphically to some domain G with B ⊂ G ⊂ C. This implies that either
φ(w) ≡ 0 in B, or else φ has finitely many zeros in B. Employing a method
due to Hans Lewy we will show that the second case is impossible, thus veri-
fying the assertion of Theorem 2. To this end we turn to the next step of the
proof:

(iv) If φ(w) 	≡ 0 in B then φ has at least four zeros on each boundary circle
Cj of B.

To prove this, let r, θ be polar coordinates around qj defined by w =
qj + reiθ, and introduce the 2π-periodic functions

fj(θ) := r2j e
i2θφ(qj + rjeiθ), j = 1, . . . , k,
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that are real analytic in θ and satisfy fj(θ) ∈ R for θ ∈ R on account of (12).
By step (ii) applied to βj := Cj it follows that

i

∫ 2π

0

fj(θ) dθ = 0 and ir−1
j

∫ 2π

0

e−iθfj(θ) dθ = 0,

whence

(20)
∫ 2π

0

fj(θ) dθ = 0,
∫ 2π

0

fj(θ) cos θ dθ = 0,
∫ 2π

0

fj(θ) sin θ dθ = 0.

Then fj(θ) 	≡ const, because the first equation would imply fj(θ) ≡ 0 and
therefore φ(w) ≡ 0 on ∂Brj (qj) which is impossible since φ(w) has only finitely
many zeros in B. Moreover

∫ 2π

0
fj(θ) dθ = 0 shows that fj(θ) must change

its sign in [0, 2π) at least once, and so it has a positive maximum and a
negative minimum. Correspondingly fj(θ) possesses two zeros θ0, θ1 ∈ [0, 2π),
i.e. |θ0 − θ1| < 2π since fj is periodic. By choosing the polar angle θ suitably
we can assume that fj(θ) has the two zeros θ0 and −θ0 with some θ0 ∈ (0, π),
while the three equations (20) remain valid. This yields

(21)
∫ π

−π

fj(θ)[cos θ − cos θ0] dθ = 0,

and so the function fj(θ)[cos θ − cos θ0] changes its sign in (−π, π). Since
g(θ) := cos θ − cos θ0 with g′(θ) = − sin θ satisfies g′(θ) > 0 for −π < θ < 0,
g′(θ) < 0 for 0 < θ < π, it follows that

g(θ) < 0 on (−π,−θ0) ∪ (θ0, π), g(θ) > 0 on (−θ0, θ0).

If fj(θ) would have no other zero than θ0 and −θ0 then fj(θ)g(θ) did not
change its sign in (−π, π), but this contradicts (21). Thus there is a third zero
θ3 of fj(θ) in (−π, π). We claim that there is even a fourth zero θ4 of fj in
(−π, π). In fact suppose that fj(θ) 	= 0 for θ ∈ (−π, π) with θ 	= ±θ0, θ3. If
θ3 ∈ (−θ0, θ0) then again fj(θ)g(θ) would not change its sign, a contradiction
to (21). The other two cases θ3 < −θ0 and θ0 < θ3 can be transformed to the
case −θ0 < θ3 < θ0 by a shift of θ which keeps (21) fixed because of (20). This
completes the proof of assertion (iv). �

Now we turn to the final step in the proof of Theorem 2:

(v) We have φ(w) ≡ 0 in B.

Suppose that this were false. Then φ(w) had only finitely many zeros in
B as we have observed before. Let wm ∈ B be the interior zeros of φ with
the multiplicities μm, m = 1, . . . ,M , and ζ� ∈ ∂B be the boundary zeros of φ
with the multiplicities ν�, & = 1, . . . , L. Set N := μ1 + · · · + μM , and choose
ρ > 0 sufficiently small. Then, by Rouché’s formula, the number N ≥ 0 is
given by
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N =
1

2πi

∫
∂Gρ

φ′(w)
φ(w)

dw, Gρ := B
∖ L⋃

�=1

Bρ(ζ�).

The boundary ∂Gρ consists of βj(ρ) := Cj ∩ ∂Gρ, j = 1, . . . , k, and of the
circular arcs γ�(ρ) := ∂Bρ(ζ�) ∩ B, & = 1, . . . , L. Recall also that Fj(w) =
(w − qj)2φ(w) is holomorphic in B ∪Cj and real valued on Cj . Then we have

d logFj(w) = d log(w − qj)2 + d log φ(w) on βj ,

whence
φ′(w)
φ(w)

dw =
F ′

j(w)
Fj(w)

dw − 2
w − qj

dw for w ∈ βj .

This implies
1

2πi

∫
βj(ρ)

φ′(w)
φ(w)

dw = Ij(ρ) \ Kj(ρ)

with

Ij(ρ) :=
1

2πi

∫
βj(ρ)

F ′
j(w)
Fj(w)

dw

and
Kj(ρ) := 2

1
2πi

∫
βj(ρ)

dw

w − qj
.

We have

lim
ρ→+0

Kj(ρ) =

⎧⎨
⎩

2 for j = 1,

−2 for j = 2, . . . , k,

and it will be proved below that

(22) lim
ρ→+0

Ij(ρ) = 0.

Thus

N = lim
ρ→+0

k∑
j=1

[Ij(ρ) − Kj(ρ)] + lim
ρ→+0

L∑
�=1

P�(ρ)

with

P�(ρ) :=
1

2πi

∫
γ
(ρ)

φ′(w)
φ(w)

dw.

Since φ is mirror symmetric with respect to the inversion at Cj it follows that
(for γ∗

� (ρ) as reflection of γ�(ρ) at Cj)

lim
ρ→+0

P�(ρ) =
1

4πi
lim

ρ→+0

∫
γ
(ρ)∪γ∗


 (ρ)

φ′(w)
φ(w)

dw

=
1

4πi
lim

ρ→+0

∫
−∂Bρ(ζ
)

φ′(w)
φ(w)

dw = −ν�

2
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since the positive orientation of Gρ implies that the circles ∂Bρ(ζ�) are to be
taken as negatively oriented. Since L ≥ 4k and ν� ≥ 1 it follows that

N = −2 + 2(k − 1) − 1
2

L∑
�=1

ν� ≤ −4 + 2k − 1
2

· 4k = −4,

a contradiction to N ≥ 0. Therefore we obtain φ(w) ≡ 0 on B.
It remains to prove (22). Since

2πiIj(ρ) =
∫

βj(ρ)

d log |Fj(w)| =
∫

β′
j(ρ)

d log |ψ(θ)|

with ψ(θ) := Fj(qj + rjeiθ) and

β′
j(ρ) = [0, θ1 − ε(ρ)] ∪

p−1⋃
s=1

[θs + ε(ρ), θs+1 − ε(ρ)] ∪ [θp + ε(ρ), 2π],

where ε = ε(ρ) → +0 as ρ → +0, and ζs := eiθs are the zeros of Fj on Cj , we
obtain ∫

β′
j(ρ)

d log |ψ(θ)| =
p+1∑
s=1

[log |ψ(θ)|]bs(ρ)
as(ρ)

with

a1(ρ) = 0, a2(ρ) = θ1 + ε(ρ), . . . , ap(ρ) = θp−1 + ε(ρ),
ap+1(ρ) = θp + ε(ρ),
b1(ρ) = θ1 − ε(ρ), b2(ρ) = θ2 − ε(ρ), . . . , bp(ρ) = θp − ε(ρ),
bp+1(ρ) = 2π.

Thus we infer from ψ(0) = ψ(2π)

∫
β′

j(ρ)

d log |ψ(θ)| =
p∑

s=1

[
log |ψ(bs(ρ))| − log |ψ(as+1(ρ))|

]

=
p∑

s=1

log
∣∣∣∣ψ(θs − ε(ρ))
ψ(θs + ε(ρ))

∣∣∣∣ → 0 for ρ → +0

since
ψ(θs − ε(ρ))
ψ(θs + ε(ρ))

→ 1 as ρ → +0.

Thus we conclude Ij(ρ) → 0 as ρ → +0, and we have verified (22).
This completes the proof of Theorem 2. �
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8.3 Cohesive Sequences of Mappings

Let {Bm} be a sequence of k-circle domains

Bm = B(q(m), r(m)) ∈ N(k)

with q(m) = (q(m)
1 , . . . , q

(m)
k ) ∈ Ck, r(m) = (r(m)

1 , . . . , r
(m)
k ) ∈ Rk, r(m)

j > 0.
We say that {Bm} converges to the domain B := Br1(q1) \

⋃k
j=2Brj (qj),

symbol :
Bm → B as m → ∞, or lim

m→∞
Bm = B,

if q(m) → q in C
k and r(m) → r in R

k.
By N(k) and N1(k) we denote the set of domains B in C that are limits

of converging sequences {Bm} in N(k) and N1(k) respectively.
Clearly the limit B of a sequence {Bm} ⊂ N(k) need not be a k-circle

domain again, i.e. B might be “degenerate” in the sense that B ∈ N(k) \ N(k).
Let us investigate how the boundary circles

C
(m)
j := ∂B

r
(m)
j

(q(m)
j ) of Bm = B

r
(m)
1

(q(m)
1 )

∖ k⋃
j=2

B
r
(m)
j

(q(m)
j )

behave if the Bm converge to a degenerate domain with the “boundary circles”
Cj = ∂Brj (qj). Here rj might be zero; then Cj is just the point qj , i.e.
C

(m)
j → qj . Another form of degeneration is that two limit circles Cj and C�,
j 	= &, are true circles which “touch” each other (this includes the possibility
Cj = C�).

We distinguish three kinds of degeneration:

Type 1. Two limits Cj and C�, j 	= &, are true circles which touch each other,
i.e. either Cj = C� or Cj ∩ C� = {w0} for some w0 ∈ B.

Type 2. One limit C� is a point p which lies on a true limit circle Cj .

Type 3. One limit C� is a point p which does not lie on any true limit circle.

For our purposes it suffices to consider degenerate limits B of domains
Bm ∈ N1(k). Here we have for all m ∈ N that

C
(m)
1 = C := ∂B1(0), C

(m)
2 = ∂B

r
(m)
2

(0), 0 < r(m)
2 < 1.

Case (a): k = 2. Then either r(m)
2 → 1 or r(m)

2 → 0, i.e. C1 = C2 = C
(type 1) or C2 = {0} (type 3), whereas type 2 cannot occur for a degenerate
limit B.

Case (b): k ≥ 3. Then either r(m)
2 → 1 or r(m)

2 → r ∈ [0, 1).
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(b1) If r(m)
2 → 1 then C1 = C2 = C and Cj = {qj } with j = 3, . . . , k. Thus

B is both of type 1 and 2.

(b2) If r(m)
2 → r2 with 0 ≤ r2 < 1, then C1 = C and either C2 = ∂Br2(0)

with 0 < r2 < 1 or C2 = {0}. Here we have at least one of the following
possibilities:

(i) B is of type 1 with Cj ∩ C� = {w0} for some w0 ∈ B, and possibly also
of type 2 or type 3 or both.

(ii) B is not of type 1, but of type 2, or of type 3, or both of type 2 and 3.

The following result is obvious:

Lemma 1. From any sequence of domains Bm ∈ N1(k) we can extract a
subsequence {Bmj } with Bmj → B ∈ N1(k) as j → ∞.

We now want to state conditions ensuring that the limit B of domains
Bm ∈ N1(k) is nondegenerate, that isB ∈ N1(k). A first result in this direction
is

Proposition 1. Let {Xm} be a sequence of mappings Xm ∈ C(Γ ) with Bm =
dom(Xm) ∈ N1(k), k ≥ 2, where Γ = 〈Γ1, . . . , Γk 〉 is a contour consisting
of k rectifiable, mutually disjoint Jordan curves Γ1, . . . , Γk and suppose that
Bm → B for m → ∞ as well as

D(Xm) ≤ M for all m ∈ N

and some constant M > 0. Then B ∈ N1(k) cannot be degenerate of type 1.

Proof. Let μ(Γ ) be the minimal distance of the curves Γ1, . . . , Γk from each
other, i.e.

(1) μ(Γ ) := min{dist(Γj , Γ�) : 1 ≤ j, & ≤ k, j 	= &} > 0.

If B were of type 1, there would be j, & ∈ {1, . . . , k} with j 	= & such that
C

(m)
j → Cj and C(m)

� → C� as m → ∞, where Cj and C� are true circles with
Cj ∩ C� 	= ∅. Let w0 ∈ Cj ∩ C�, and introduce polar coordinates ρ, θ about
w0 : w = w0 + ρeiθ. There is a representative

Zm(ρ, θ) := Xm(w0 + ρeiθ)

of Xm which, for almost all ρ ∈ (0, 1), is absolutely continuous in θ ∈ [θ1, θ2]
along each arc γ(ρ) := {w0 +ρeiθ : θ1 ≤ θ ≤ θ2} contained in Bm; we call γ(ρ)
Xm-admissible. The Courant–Lebesgue lemma yields: For each m ∈ N and
each δ ∈ (0, 1) there is an Xm-admissible arc γm(ρ) = {w0 + ρeiθ : θm

1 ≤ θ ≤
θm
2 } in Bm with δ < ρ <

√
δ such that

(2) osc(Zm, γm(ρ)) ≤ 2
{

2πM
(

log
1
δ

)−1}1/2

.
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Furthermore, there is an R > 0 such that ∂Br(w0) intersects Cj and C�

for 0 < r < 2R. Let δ be an arbitrary number with 0 <
√
δ < R. Since

C
(m)
j → Cj and C(m)

� → C� as m → ∞, there is a number N(δ,R) ∈ N such
that the following holds:

For m > N(δ,R) and δ < ρ < R the circle ∂Bρ(w0) intersects C(m)
j and

C
(m)
� .

Then there is an Xm-admissible subarc γm(ρ) of ∂Bρ(w0) ∩Bm satisfying
δ < ρ <

√
δ which has its endpoints on two circles C(m)

j′ and C(m)
�′ (which

might be different from C
(m)
j and C(m)

� ), and, moreover, which satisfies (2).
It follows that

μ(Γ ) ≤ dist(Γj′ , Γ�′ ) ≤ 2

√
2πM
log 1

δ

for 0 < δ � 1

whence we obtain μ(Γ ) = 0 letting δ → +0, a contradiction to (1). �

Corollary 1. Under the assumptions of Proposition 1, the limit B ∈ N1(k) of
the domains Bm ∈ N1(k) can only be degenerate of type 3 if k = 2. Moreover,
if k ≥ 3 then B can only be degenerate of type 2, or of type 3, or both.

These two types of degeneration may indeed occur if we do not impose a
further condition, namely a condition of cohesion.

If we operate with sequences in the class C(Γ ), defined by

C(Γ ) := C(Γ ) ∩ C0(B,R3)

one can conveniently use Courant’s condition of cohesion. In this way one can
solve the minimum problem

“D → min in C(Γ )”.

In the same way one could also solve the problem

“Aε → min in C(Γ )”

where Aε = (1−ε)A+εD, 0 < ε ≤ 1, but this would require a strong regularity
theorem, which we here want to avoid in order to make the minimization
procedure as transparent as possible. The prize for this is that we have to
work with another condition of cohesion which is a bit more cumbersome
to formulate than Courant’s condition. This second condition is a simplified
version of a stipulation introduced by M. Kurzke [1]; cf. also Kurzke and
von der Mosel [1].

Definition 1. A sequence {Xm} of mappings Xm ∈ H
1

2(Bm,R
3) with Bm ∈

N(k), k ≥ 2, is said to be C-cohesive if there is an ε > 0 such that, for each
m ∈ N, any closed continuous curve c : S1 → R

2 with γ := c(S1) ⊂ Bm and
diamXm|γ < ε is homotopic to zero in Bm.
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For X ∈ H1
2 (B,R3), the composition X ◦ c of X with a closed curve

c ∈ C0(S1, B) is not defined in the usual sense. In order to give it a well-defined
meaning we restrict ourselves to special curves c. Suppose that γ is a closed
Jordan curve in B, i.e. the image γ = c(S1) of S1 under a homeomorphism
c : S1 → γ ⊂ B. If the inner domain G of γ is strong Lipschitz (i.e. G ∈ C0,1)
then X has a well-defined trace Z = “X|γ” on γ = ∂G, which is of class
L2(γ,R3). If Z has a continuous representative γ → R

3 we denote it again by
Z and call it the continuous representative of X on γ. Then Z ◦ c : S1 → R

3

is a well-defined, closed, continuous curve in R
3. (Note that G need not be a

subdomain of B.)
In applications G will be either (i) a disk, or (ii) a two-gon bounded by two

circular arcs γ1 and γ2. In case (i), X is represented by a mapping X∗(r, θ)
with respect to polar coordinates r, θ about the origin of the disk G of radius
R ∈ (0, 1) such that X∗(r, θ) is absolutely continuous with respect to θ ∈ R

for all r ∈ (0, 1) \ N1 where N1 is a 1-dimensional null set and R /∈ N1, and
similarly X∗(r, θ) is absolutely continuous with respect to r ∈ (ε, 1 − ε), 0 <
ε � 1, for almost all θ ∈ R. Then the continuous representative Z = “X|γ” of
X on the circle γ = ∂G is given by Z = X∗(R, ·). In case (ii), γ1 is a subarc of
∂B, B = dom(X), and γ2 is a circular subarc in B with the same endpoints
as γ1. Here the continuous representative Z = “X|γ” is the continuous trace
of X on γ1 (recall that for X ∈ C(Γ ) we have “X|∂B” ∈ C0(∂B,R3)), while
on γ2 the trace Z = “X|γ” is given as in (i) by

Z(w0 +Reiθ) = X∗(R, θ) for θ1 ≤ θ ≤ θ2,

where X∗(r, θ) is a representation of X in polar coordinates around a point
w0 such that X∗(R, θ) is absolutely continuous in θ ∈ [θ1, θ2].

Definition 2. A sequence {Xm} of mappings Xm ∈ H1
2 (Bm,R

3) with Bm =
dom(Xm) ∈ N(k) is called separating if the following holds: For any ε > 0
there is an m0(ε) ∈ N such that for any m > m0(ε) there exists a closed
Jordan curve γm in Bm bounding a strong Lipschitz interior B∗

m such that :

(i) Xm possesses a well-defined continuous trace Zm := “Xm|γm” on γm =
∂B∗

m;
(ii) diamZm(γm) < ε;
(iii) A homeomorphic representation cm : S1 → γm of γm is not homotopic

to zero in Bm.

Definition 3. A sequence {Xm} of mappings Xm ∈ H1
2 (Bm,R

3) with Bm =
dom(Xm) ∈ N(k) is said to be cohesive if none of its subsequences is sepa-
rating.

An immediate consequence of these two definitions is

Proposition 2. A sequence {Xm} of mappings Xm ∈ H1
2 (Bm,R

3) with
Bm = dom(Xm) ∈ N(k) is cohesive if and only if the following holds: For
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every subsequence {Xmj } of {Xm} there is an ε > 0 and a further subsequence
{Xmj


} such that for each closed Jordan curve γ in Bmj

with a strong Lip-

schitz interior G the continuous trace Z� := “Xmj

|γ” satisfies diamZ� < ε,

but a homeomorphic representation c : S1 → γ of γ is homotopic to zero in
Bmj


.

Comparing Proposition 2 with Definition 1 we obtain

Proposition 3. Any C-cohesive sequence {Xm} of mappings Xm of class
H

1

2(Bm,R
3) with Bm = dom(Xm) ∈ N(k) is also cohesive.

Because of this, we in the sequel investigate only cohesive sequences.

Proposition 4. Let {Xm} be a sequence of mappings Xm ∈ H1
2 (Bm,R

3) with
Bm = dom(Xm) ∈ N(k), and {σm} be a sequence of Möbius transformations
from B

∗
m onto Bm, B∗

m ∈ N(k). Then we have:

(i) If {Xm} is separating, then also {Xm ◦ σm}.
(ii) If {Xm} is cohesive, then also {Xm ◦ σm}.

Proof. We only have to observe that every σm is a diffeomorphism from B
∗
m

onto Bm; hence Xm ◦ σm ∈ H1
2 (B

∗
m,R

3); furthermore, if γ is a Jordan curve
in Bm bounding a strong Lipschitz domain, then σ−1

m (γ) is a Jordan curve
in B

∗
m bounding a strong Lipschitz domain. (We also note: If γ consists of

circular arcs, then the same holds for σ−1
m (γ).) �

Theorem 1. Let {Xm} be a cohesive sequence of mappings Xm ∈ C(Γ ) with
Bm = dom(Xm) ∈ N1(k), k ≥ 2, whose contour Γ = 〈Γ1, . . . , Γk 〉 consists
of k rectifiable, mutually disjoint Jordan curves Γ1, . . . , Γk. Suppose also that
there is a constant M > 0 such that

D(Xm) ≤ M for all m ∈ N,

and that Bm → B. Then B is of class N1(k).

Proof. Clearly, B ∈ N1(k). If B were degenerate, it could not be of type 1 on
account of Proposition 1; so we have to show that B can neither be of type 2
nor of type 3. �

Suppose first that B were of type 3, that is: One or several circles shrink
to a point p ∈ B which stays away from other limit points or limit circles.
Since C(m)

1 ≡ C := ∂B1(0) for all m ∈ N, we have C1 = C, and therefore
p 	∈ C, i.e. p ∈ B \ C. Thus the index set I := {& ∈ N : 2 ≤ & ≤ k} consists of
two disjoint, nonempty sets I1 and I2 such that
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C
(m)
j → {p} as m → ∞ for j ∈ I1,

C
(m)
� → C� (= point or circle) as m → ∞ with p /∈ C� for & ∈ I2.

Then we can find a number ρ0 ∈ (0, 1) and an index m0 ∈ N such that for
m ≥ m0 the following holds true:

(3)
C

(m)
j ⊂ Bρ0(p) for j ∈ I1,

C
(m)
� ∩ Bρ0(p) = ∅ for & ∈ I2.

Secondly, for any ρ1 ∈ (0, ρ0) there is an m1 = m1(ρ1) ∈ N with m1(ρ1) ≥ m0

such that

C
(m)
j ⊂ Bρ1(p) for j ∈ I1 and m > m1(ρ1).

We clearly have

{w ∈ C : ρ1 ≤ |w − p| ≤ ρ0} ⊂ Bm for m > m1(ρ1).

Furthermore, by virtue of a well-known extension theorem, there are Sobolev
functions Ym ∈ H1

2 (B1(0),R3) on the unit disk B1(0) satisfying

Ym|Bm = Xm for all m ∈ N.

We introduce polar coordinates r, θ about p, and choose representations
Z̃m(r, θ) of Xm, restricted to Bρ0(p) \ Bρ1(p), for m > m1(ρ1) which are
absolutely continuous in θ for a.a. r ∈ (ρ1, ρ0), and absolutely continuous in
r ∈ (ρ1, ρ0) for a.a. θ ∈ R. By the Courant–Lebesgue lemma we have:

(4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For any ε > 0 there is a number δ∗(ε,M, ρ0) ∈ (0, 1), depending only
on ε,M, ρ0, which has the following properties :
(i) δ∗ <

√
δ∗ ≤ ρ0;

(ii) for any ρ1 ∈ (0, δ∗), any δ with ρ1 < δ < δ∗, and all m >
m1(ρ1), there is a subset Jm(δ) of (δ,

√
δ) with meas Jm(δ) > 0 and

osc Z̃m(r, ·) < ε for all r ∈ Jm(δ);
(iii) Z̃m(r, ·) is the trace of Xm on ∂Br(p) for any r ∈ (ρ1, ρ0) \ Sm

where Sm is a one-dimensional null set, and so we can assume that
Jm(δ) ⊂ (ρ1, ρ0) \ Sm.

Let us now fix some ε > 0 and then some ρ1 > 0 with ρ1 < δ∗(ε,M, ρ0).
Furthermore we choose some δ > 0 satisfying

ρ1 < δ < δ
∗(ε,M, ρ0).



558 8 Introduction to the Douglas Problem

Then

{w ∈ C : δ < |w − p| <
√
δ} ⊂ Bρ0(p) \ Bρ1(p) ⊂ Bm for all m > m1(ρ1).

For any m > m1(ρ1) we choose some rm ∈ Jm(δ) and set γm := ∂Brm(p).
Then γm is a Jordan curve in Bm which bounds the strong Lipschitz domain
B∗

m := Brm(p). By construction, Ym is defined on B∗
m, and Xm(w) = Ym(w)

for w ∈ Bρ0(p) \ Bρ1(p). Thus Xm possesses an absolutely continuous repre-
sentation Zm := Z̃m(rm, ·) = “Xm|γm” with diam Zm(γm) < ε. Furthermore
we have C(m)

j ⊂ B∗
m for j ∈ I1. Therefore no homeomorphic representation

cm : S1 → γm of γm is homotopic to zero in Bm.
Since ε > 0 can be chosen arbitrarily, we see that {Xm} contains a sepa-

rating subsequence, a contradiction, since {Xm} was assumed to be cohesive.
Now we turn to the last possibility: Suppose that B := limm→∞ Bm is of

type 2. Then we have k ≥ 3, see Corollary 1. Here we again have C(m)
1 ≡ C =

∂B1(0) for all m ∈ N, whence C1 = C, and either C2 = {0} or C2 = ∂Br2(0)
with 0 < r2 < 1. Furthermore, type 2 means that one sequence of circles,
say {C(m)

j }, converges to a true circle Cj, 1 ≤ j ≤ k, while one or several

other sequences {C(m)
� } shrink to a point p of Cj. Here we can decompose

I ′ := {& ∈ N : 1 ≤ & ≤ k, & 	= j} into I ′
1 := {& ∈ I ′ : C(m)

� → {p} as m → ∞}
and I ′

2 := I ′ \ I ′
1; then the limits C� of C(m)

� for m → ∞ and & ∈ I ′
2 are either

points or circles which stay away from p.
We can find a number ρ0 ∈ (0, 1) and an index m0 ∈ N such that for

m ≥ m0 the following holds true:

(∗)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂Bρ0(p) intersects C(m)
j in exactly two points;

C
(m)
� ⊂ Bρ0(p) ∩ Bm := Sm

ρ0
(p) for & ∈ I ′

1;

C
(m)
� ∩ Bρ0(p) = ∅ for & ∈ I ′

2.

Checking the three cases j = 1, j = 2, and 3 ≤ j ≤ k, one realizes that both
I ′
1 and I ′

2 are nonempty.
For any ρ1 ∈ (0, ρ0) there is an m1 = m1(ρ1) ∈ N with m1(ρ1) ≥ m0 such

that

C
(m)
� ⊂ Bρ1(p) ∩ Bm =: Sm

ρ1
(p) for & ∈ I ′

1 and m > m1(ρ1).

As in the preceding discussion we choose extensions Ym ∈ H1
2 (B1(0),R3) of

Xm from Bm to B1(0). Then we introduce polar coordinates r, θ about p,
and choose representations Z̃m(r, θ) of Xm, restricted to Sm

ρ0
(p) \ Sm

ρ1
(p) for

m > m1(ρ1) which are absolutely continuous in θ for a.a. r ∈ (ρ1, ρ0), and
absolutely continuous in r ∈ (ρ1, ρ0) for a.a. θ such that w = p + reiθ ∈
Sm

ρ0
(p) \ Sm

ρ1
(p).

Applying the Courant–Lebesgue lemma, we obtain analogously to (4):
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(4′)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For any ε > 0 there is a number δ∗(ε,M, ρ0) ∈ (0, 1), depending only
on ε,M, ρ0, which has the following properties :
(i) δ∗ <

√
δ∗ ≤ ρ0;

(ii) for any ρ1 ∈ (0, δ∗), any δ with ρ1 < δ < δ∗, and all m >
m1(ρ1), there is a subset Jm(δ) of (δ,

√
δ) with measJm(δ) > 0, and

osc Z̃m(r, ·) < ε/2 for all r ∈ Jm(δ);
(iii) Z̃m(r, ·) is the trace of Xm on ∂Br(p) ∩ Bm for any r ∈
(ρ1, ρ0) \ Sm where 1-meas Sm = 0, and so we can assume that
Jm(δ) ⊂ (ρ1, ρ0) \ Sm.

Let us now fix some ε > 0 and then ρ1 > 0 with ρ1 < δ∗(ε,M, ρ0). Further-
more, choose some δ > 0 satisfying

ρ1 < δ < δ
∗(ε,M, ρ0).

Then it follows that, for ρ ∈ (δ,
√
δ) and m > m1(ρ1), the circle ∂Bρ(p) meets

C
(m)
j in exactly two points w′

m(ρ) and w′ ′
m(ρ), and that γ′

m(ρ) := ∂Bρ(p) ∩Bm

is a connected circular arc in Bm with the endpoints w′
m(ρ) and w′ ′

m(ρ). Their
image points Q′

m(ρ) and Q′ ′
m(ρ) under Z̃m(ρ, ·) lie on Γj and decompose this

curve into two arcs; denote the “smaller one” by Γ ∗(m, ρ). Then there is a
function η : (0,∞) → (0,∞) with η(t) → +0 as t → +0 such that

diamΓ ∗(m, ρ) < η(ρ) for m > m1(ρ1) and ρ ∈ Jm(δ).

We can arrange for

diamΓ ∗(m, ρ) < ε/2 for m > m1(ρ1) and ρ ∈ Jm(δ)

by choosing the number δ∗(ε,M, ρ0) > 0 even smaller if necessary (see the
application of the Courant–Lebesgue lemma in Section 4.3).

Instead of (∗), we even have

(∗∗)

⎧⎪⎨
⎪⎩
C

(m)
� ⊂ Bρ(p) ∩ Bm =: Sm

ρ (p) for & ∈ I ′
1,

C
(m)
� ∩ Bρ(p) = ∅ for & ∈ I ′

2,

provided that m > m1(ρ1) and ρ ∈ Jm(δ).

Choose some rm ∈ Jm(δ) ⊂ (δ,
√
δ) and set

Γ ′
m := image of γ′

m(rm) under the mapping Z̃m;
Γ ′ ′

m := Γ ∗(m, rm) = image of γ′ ′
m(rm) under Xm;

here γ′ ′
m(rm) is the connected arc on C(m)

j , bounded by w′
m(rm), w′ ′

m(rm),
which is mapped by the Sobolev trace Xm|

C
(m)
j

in a continuous way onto Γ ′ ′
m.

Then we have

diamΓ ′
m + diamΓ ′ ′

m <
ε

2
+
ε

2
= ε for m > m1(ρ1).
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Consider the closed Jordan curve γm := γ′
m(rm) ∪ γ′ ′

m(rm) in Bm, which
bounds a two-gon B∗

m in B1(0); B∗
m is a strong Lipschitz domain. Because of

(∗∗), one realizes that no homeomorphic representation cm : S1 → γm of γm

is homotopic to zero in Bm. There is a continuous representation Zm of Xm

on γm given by
Zm := Xm(rm, ·) on γ′

m

and
Zm := trace of Xm on γ′ ′

m.

Then it follows

diamZm(γm) ≤ diamΓ ′
m + diamΓ ′ ′

m < ε for m > m1(ρ1).

Since ε > 0 is arbitrary, we obtain that {Xm} contains a separating sub-
sequence, and so it cannot be cohesive, a contradiction to the assumption.

Thus we have shown that B cannot be degenerate, i.e. B ∈ N1(k). �

Proposition 5. Let {Xm} be a sequence of mappings Xm ∈ H1
2 (Bm,R

3) with
Bm = dom (Xm) ∈ N1(k), and suppose that Bm → B ∈ N1(k) and D(Xm) →
L as m → ∞. Then there is a sequence of diffeomorphisms σm from B onto
Bm such that the following holds true:

(i) X∗
m := Xm ◦ σm ∈ H1

2 (B,R3) for all m ∈ N, and if Xm ∈ C(Γ ) then
X∗

m ∈ C(Γ );
(ii) D(X∗

m) → L as m → ∞;
(iii) {X∗

m} is cohesive if and only if {Xm} is cohesive;
(iv) If Xm ∈ C(Γ ) then X∗

m ∈ C(Γ ), and {X∗
m} is C-cohesive if and only if

{Xm} is C-cohesive.

Proof. Since the limit domain is nondegenerate, it is not difficult to prove that
there is a sequence {σm} of diffeomorphisms from B onto Bm which converges
to the identity idB on B with respect to the C1(B,R2)-norm. (This would
not be true if B ∈ N1(k) \ N1(k)). Setting X∗

m := Xm ◦ σm, the assertions
follow at once. �

Theorem 2. Let {Xm} be a cohesive sequence of mappings Xm ∈ C(Γ ) with
dom(Xm) ≡ B ∈ N1(k) for all m ∈ N, k ≥ 2, whose boundary contour
Γ = 〈Γ1, . . . , Γk 〉 consists of k rectifiable, closed, mutually disjoint Jordan
curves Γ1, . . . , Γk. Suppose also that there is a constant M > 0 such that

D(Xm) ≤ M for all m ∈ N.

Then the boundary traces Xm|∂B are equicontinuous on ∂B, and there is a
subsequence {Xm


} of {Xm} such that the traces Xm

|∂B converge uniformly

on ∂B.
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Proof. We can essentially proceed as in the proof of Theorem 1 of Section 4.3
noting that Xm|Cj maps Cj continuously and in a weakly monotonic way
onto Γj . One only has to ensure that small arcs on Cj are mapped onto small
subarcs of Γj . In the case k = 1 this was achieved by imposing a three-
point condition upon {Xm}; for k ≥ 2 the same will be attained by the
cohesivity condition. In fact, mapping small arcs on Cj onto large arcs on Γj

corresponds to mapping large arcs on Cj onto small arcs of Γj , and by the
Courant-Lebesgue Lemma one would obtain Jordan curves γm in B bounding
strong Lipschitz domains B∗

m such that the continuous trace Zm := “Xm|γm”
of Xm on γm satisfies “diamZm(γm) = small”, but γm cannot be contracted
continuously in B to some point of B since B ∩ B∗

m possesses at least one
hole. �

Corresponding to Theorem 3 of Section 4.3 we obtain the following gener-
alizations of Theorems 1 and 2 above:

Theorem 3. The assertions of Theorems 1 and 2 remain valid if we replace
the assumption “Xm ∈ C(Γ )” by “Xm ∈ C(Γm)” where Γm = 〈Γm

1 , . . . , Γ
m
k 〉

are boundary contours converging in the sense of Fréchet (“Γm → Γ as
m → ∞”) to some contour Γ = 〈Γ1, . . . , Γk 〉 consisting of k rectifiable, closed,
mutually disjoint Jordan curves.

8.4 Solution of the Douglas Problem

Using the results obtained in Sections 8.2 and 8.3 we can now solve the Dou-
glas problem under the assumption that Γ = 〈Γ1, . . . , Γk 〉, k ≥ 2, bounds a
cohesive minimizing sequence in C(Γ ) for the Dirichlet integral.

Theorem 1. Let Γ = 〈Γ1, . . . , Γk 〉, k ≥ 2, be a boundary configuration con-
sisting of rectifiable, closed, mutually disjoint Jordan curves Γ1, . . . , Γk in R

3,
and suppose that Γ fulfills the following condition of cohesion: There is a
cohesive sequence {Xm} of surfaces Xm ∈ C(Γ ) with

D(Xm) → d(Γ ) := inf
C(Γ )

D.

Then there exists a minimizer X of the energy D in C(Γ ) which is of class
C0(B,R3) ∩ C2(B,R3) and satisfies

(1) ΔX = 0 in B

as well as

(2) |Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0 in B.
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Proof. Consider a cohesive sequence of Xm ∈ C(Γ ) with D(Xm) → d(Γ ) and
Bm = dom(Xm) ∈ N(k). By Lemma 4 of Section 8.2 there are Möbius trans-
formations fm mapping B

∗
m ∈ N1(k) onto Bm. Set X∗

m := Xm ◦ fm ∈ C(Γ );
then B∗

m = dom(X∗
m) ∈ N1(k), D(X∗

m) → d(Γ ), and {X∗
m} is cohesive too

on account of Proposition 4 in Section 8.3. Furthermore, there is a constant
M0 > 0 such that D(X∗

m) ≤ M0 for all m ∈ N. By Lemma 1 of Section 8.3
we can extract a subsequence {B∗

mj
} of {B∗

m} such that B∗
mj

→ B ∈ N1(k).
Applying Theorem 1 of Section 8.3 we infer that B is nondegenerate, i.e.
B ∈ N1(k), and by Proposition 5 of the same section we find diffeomorphisms
σmj from B onto B

∗
mj

such that X∗ ∗
mj

:= X∗
mj

◦σmj , j ∈ N, defines a cohesive
sequence of mappings X∗ ∗

mj
∈ C(Γ ) with D(X∗ ∗

mj
) → d(Γ ). In virtue of Theo-

rem 2 of Section 8.3, the boundary traces X∗ ∗
mj

|∂B are compact in C0(∂B,R3),
and so we can assume without loss of generality that the cohesive minimizing
sequence we have started with, satisfies also

(i) dom(Xm) ≡ B for all m ∈ N;
(ii) Xm|∂B → φ in C0(∂B,R3).

If we replace Xm by the solution Hm ∈ C0(B,R3) ∩ C2(B,R2) of the
Dirichlet problem

ΔHm = 0 in B, Hm|∂B = Xm|∂B

the sequence {Hm} possesses all properties of {Xm}. Renaming Hm as Xm,
we therefore obtain also

(iii) Xm ∈ C0(B,R3) ∩ C2(B,R3) and ΔXm = 0 in B.

Because of (ii) and (iii) there is a mapping X ∈ C0(B,R3) ∩ C2(B,R3)
which is harmonic in B and satisfies

(3) Xm → X in C0(B,R3).

Because ofD(Xm) ≤ M0 andXm ∈ C(Γ ) as well as (i) we can also assume that
Xm converges weakly in H1

2 (B,R3) to X, whence X ∈ C(Γ ), and therefore

d(Γ ) ≤ D(X).

Furthermore, the weak lower semicontinuity of D in H1
2 (B,R3) yields

D(X) ≤ lim
n→∞

D(Xn) = d(Γ ),

and so we obtain
D(X) = d(Γ ).

That is, X minimizes D in C(Γ ) and satisfies (1). Finally, Theorem 1 of
Section 8.2 leads to the conformality relations (2), and so the proof is
complete. �
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Remark 1. If we assume the existence of a C-cohesive sequence of surfaces
Xm ∈ C(Γ ) with

D(Xm) → d(Γ ) := inf
C(Γ )

D,

a similar reasoning as above leads to a minimal surface X ∈ C(Γ ) minimizing
D in C(Γ ). This is the original approach of Courant [15].

Remark 2. As we have noted earlier, C-cohesiveness implies cohesiveness.
Using Theorem 1 one can also show the converse. Thus the two conditions
actually are equivalent, and so they lead to the same result. Hence it seems
superfluous to work with cohesiveness instead of C-cohesiveness, as it is more
troublesome to work with. Its usefulness will become apparent when we will
minimize

Aε = (1 − ε)A+ εD

for some ε ∈ [0, 1], in order to prove

(4) inf
C(Γ )

A = inf
C(Γ )

A = inf
C(Γ )

D = inf
C(Γ )

D.

Then it seems impossible, or at least much more cumbersome, to operate in
C(Γ ), and it appears to be more natural to work in C(Γ ).

The same holds true if one wants to minimize a Cartan functional under
Plateau boundary conditions.

In the sequel we want to solve the Douglas problem assuming the (“suffi-
cient”) condition of Douglas, thereby verifying also (4). For this purpose we
need two technical results that will be provided in the next section.

8.5 Useful Modifications of Surfaces

First we will show that we can replace small parts of a surface by the constant
surface X0(w) ≡ 0 without gaining much energy. This argument works for
general functionals

F(X) :=
∫

B

F (X,∇X) du dv

and surfaces X ∈ H1
2 (B,R3), B = dom(X) ∈ N(k), with a Lagrangian

F (x, p) ∈ C0(R3 × R
6) satisfying

0 ≤ F (x, p) ≤ 1
2μ|p|2

for some constant μ > 0. For Ω ⊂ B we set

FΩ(X) :=
∫

Ω

F (X,∇X) du dv.
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Proposition 1. Suppose that X ∈ C(Γ ) with B = dom(X) ∈ N(k). Then, for
any δ > 0 and any point p ∈ B, there exists a number r0 ∈ (0, dist(p, ∂B)),
depending on X, δ, p, and μ, such that for any r ∈ (0, r0) there is a surface
Zr ∈ C(Γ ) with dom(Zr) = B and

F(Zr) < F(X) + δ as well as Zr(w) ≡ 0 on Br(p).

Proof. Choose any δ > 0 and p ∈ B; then there is some R ∈ (0, 1) with
R < dist(p, ∂B) such that

(1)
∫

Bρ(p)

| ∇X|2 du dv < δ0 :=
δ

2μ
for all ρ ∈ (0, R).

Then we take some ρ ∈ (0, R) such that the trace X|∂Bρ(p) is absolutely
continuous on ∂Bρ(p). Set

M := sup
∂Bρ(p)

|X|,

and choose some H ∈ H1
2 (Bρ(p),R3) with

ΔH = 0 in Bρ(p), H = X on ∂Bρ(p).

Then H − X ∈ H̊1
2 (Bρ(p),R3), and the maximum principle implies

(2) sup
Bρ(p)

|H| = M.

Furthermore, Dirichlet’s principle yields

(3)
∫

Bρ(p)

| ∇H|2 du dv ≤
∫

Bρ(p)

| ∇X|2 du dv < δ0.

For some constant ε ∈ (0, ρ) to be fixed later we set

(4) ϕ(s, ε2) :=

{
1 for ε < s,
0 for 0 ≤ s ≤ ε2

and

(5) ϕ(s, ε2) := 1 +
log ε − log s

log ε
for ε2 ≤ s ≤ ε.

By means of ϕ(·, ε2) ∈ Lip([0,∞)) we define Y (·, ε2) as

Y (w, ε2) :=

{
X(w) for |w − p| ≥ ρ,

ϕ(|w − p|, ε2)H(w) for |w − p| < ρ.
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Writing
φ(w) := ϕ(|w − p|, ε2),

we obtain ∫
Bρ(p)

| ∇φ|2 du dv = |log ε| −2

∫ 2π

0

∫ ε

ε2
r−2r dr dθ

= − 2π
log ε

=: δ1(ε) > 0

and then∫
Bρ(p)

| ∇Y (·, ε2)|2 du dv =
∫

Bρ(p)

{ |φuH + φHu|2 + |φvH + φHv |2} du dv

≤ 2M2

∫
Bρ(p)

| ∇φ|2 du dv + 2
∫

Bρ(p)

| ∇H|2 du dv

≤ 2M2δ1(ε) + 2δ0 < 4δ0 for 0 < ε < ε0

if we choose ε0 ∈ (0, ρ) so small that M2δ1(ε) < δ0 for 0 < ε < ε0. Set r := ε2

with 0 < ε < ε0 and Zr := Y (·, ε2); then

F(Zr) = FB\Bρ(p)(X) + FBρ(p)(Zr)

≤ F(X) +
μ

2

∫
Bρ(p)

| ∇Zr |2 du dv

< F(X) + 2δ0μ = F(X) + δ for r ∈ (0, ε20),

and similarly ∫
B

| ∇Zr |2 du dv ≤
∫

B

| ∇X|2 du dv + 4δ0.

Since |Zr | ≤ |X|, it follows Zr ∈ H1
2 (B,R3). Furthermore, B√

r(p) ⊂⊂ B, and

Zr(w) ≡ 0 on Br(p), Zr(w) ≡ X(w) on B \ B√
r(p).

This implies Zr ∈ C(Γ ) since X ∈ C(Γ ). Setting r0 := ε20, the assertion is
proved. �

Proposition 2 (Pinching method). Let Γ̃ be a boundary configuration
consisting of k rectifiable, closed, mutually disjoint Jordan curves in R

3. Then,
for given K > 0 and δ > 0, there is a constant η0 ∈ (0, 1) depending only on
Γ̃ ,K, δ, such that for every point Q ∈ R

3 and any η ∈ (0, η0) there is a
Lipschitz mapping Φ = Φη,Q from R

3 onto R
3 with the following properties: If

X is an arbitrary mapping of class C(Γ̃ ) with dom(X) = B and D(X) ≤ K,
then we have

(i) Γ ∗ := Φ(Γ̃ ) consists of k rectifiable, closed, mutually disjoint Jordan
curves such that the Fréchet distance Δ(Γ̃ , Γ ∗) of Γ̃ and Γ ∗ satisfies
Δ(Γ̃ , Γ ∗) < δ;
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(ii) Φ ◦ X ∈ C(Γ ∗), and dom(Φ ◦ X) = B;
(iii) Φ(x) ≡ x for x ∈ R

3 with |x − Q| ≥ η;
(iv) Φ(x) ≡ Q for x ∈ R

3 with |x − Q| ≤ η2;
(v) For Aε := (1 − ε)A+ εD, 0 ≤ ε ≤ 1, we have

Aε(Φ ◦ X) ≤ Aε(X) + δ.

Proof. Choose η0 ∈ (0, 1/3) so small that

(6) 3|log η0| −1 < δ/K

and
η0 <

1
2 min{dist(Γ̃j , Γ̃�) : j 	= &, j, & = 1, . . . , k}

where Γ̃ = 〈Γ̃1, . . . , Γ̃k 〉. For η ∈ (0, η0) we define the Lipschitz function
ϕη : [0,∞) → R by

ϕη(s) :=

⎧⎪⎨
⎪⎩

1 for η < s,
2 − log s

log η for η2 ≤ s ≤ η,

0 for 0 ≤ s < η2.

Then, fixing an arbitrary point Q ∈ R
3, we define the mapping Φη,Q ≡ Φη :

R
3 → R

3 by

Φη(x) := Q+ ϕη(|x − Q|){x − Q} for x ∈ R
3.

Clearly, Φη is a Lipschitz map from R3 onto itself which “pinches” the ball
Kη2(Q) := {x ∈ R

3 : |x−Q| ≤ η2} to the point Q and maps R
3 \Kη2(Q) in a

1 − 1 way onto R
3 \ {Q}. This immediately implies the properties (i)–(iv) of

X∗ := Φη(X). It remains to show (v). We first note that

X∗(w) = Q and ∇X∗(w) = 0 a.e. on B′ := {w ∈ B : |X(w) − Q| ≤ η2},
X∗(w) = X(w) and ∇X∗(w) = ∇X(w)

a.e. on B′ ′ := {w ∈ B : |X(w) − Q| ≥ η}.

Thus we have to compute ∇X∗ on R := {w ∈ B : η2 < |X(w) − Q| < η}. Set

e(w) := |X(w) − Q| −1{X(w) − Q} for w ∈ R;

then |e(w)| = 1 on R. Furthermore, we have on R:

X∗ = Q+ ϕη(|X − Q|){X − Q}, ϕη(|X − Q|) = 2 − log |X − Q|
log η

,

∂

∂u
ϕη(|X − Q|) =

−e · Xu

(log η)|X − Q| ,
∂

∂v
ϕη(|X − Q|) =

−e · Xv

(log η)|X − Q| .
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Then,

(7)
X∗

u = ϕη(|X − Q|)Xu − 1
log η

(e · Xu)e,

X∗
v = ϕη(|X − Q|)Xv − 1

log η
(e · Xv)e on R,

whence by 0 ≤ ϕη(|X −Q|) ≤ 1, |e| = 1,− log η = |log η| > 1 we obtain on R:

|X∗
u |2 ≤ |Xu|2 − 2(log η)−1|Xu|2 + |log η|2|Xu|2

≤ (1 + 3|log η| −1)|Xu|2,
|X∗

v |2 ≤ (1 + 3|log η| −1)|Xv |2.

On account of (6), this leads to

(8) DR(X∗) ≤ DR(X) + (δ/K)D(X) ≤ DR(X) + δ.

Now we are going to estimate AR(X∗). From (7) we infer by setting ψ :=
ϕη(|X − Q|) that

X∗
u ∧ X∗

v = ψ2Xu ∧ Xv + ψ|log η| −1{(e · Xv)(e ∧ Xu) + (e · Xu)(e ∧ Xv)}

whence

|X∗
u ∧ X∗

v | ≤ |Xu ∧ Xv | + |log η| −12|Xu| |Xv |
≤ |Xu ∧ Xv | + |log η| −1| ∇X|2 on R.

This implies

AR(X∗) ≤ AR(X) + |log η| −12DR(X)(9)
≤ AR(X) + (δ/K)D(X) ≤ AR(X) + δ.

From (8), (9), and Aε
R = (1 − ε)AR + εDR we infer

Aε
R(X∗) ≤ Aε

R(X) + δ for any ε ∈ [0, 1].

Furthermore,
Aε

B′ (X∗) = 0, Aε
B′ ′ (X∗) = Aε

B′ ′ (X).

Since B = B′ ∪̇ R ∪̇ B′ ′, we arrive at

Aε(X∗) = Aε
B′ (X∗) +Aε

R(X∗) +Aε
B′ ′ (X∗)

≤ 0 +Aε
R(X) + δ +Aε

B′ ′ (X) ≤ Aε(X)

for any ε ∈ [0, 1]. This completes the proof. �
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8.6 Douglas Condition and Douglas Problem

For ε ∈ [0, 1] we consider the conformally invariant functionals

Aε(X) := (1 − ε)A(X) + εD(X)

which satisfy
A0(X) = A(X), A1(X) = D(X)

and

(1) A(X) ≤ Aε(X) ≤ D(X) for any ε ∈ [0, 1].

Furthermore, for 0 < ε ≤ 1 we have

(2) A(X) = Aε(X) = D(X) if and only if 〈Xw, Xw 〉 = 0,

and
〈Xw, Xw 〉 = 0 ⇔ |Xu|2 = |Xv |2 and 〈Xu, Xv 〉 = 0.

As a first result we shall prove that the problem

Aε → min in C(Γ )

has a solution Xε ∈ C(Γ ) for any ε ∈ (0, ε0] with 0 < ε0 � 1 provided that
Γ = 〈Γ1, . . . , Γk 〉, k ≥ 2, satisfies the Douglas condition. The proof follows
essentially the same lines as in Section 8.4, but it is somewhat more involved.

In order to define the Douglas condition for k > 1 we have to consider the
class of mappings X : B → R

3 whose domains B are disconnected. Precisely
speaking we assume that B is a set {B1, . . . , Bs}, s > 1, of kν-circle domains
Bν ∈ N(kν) with

k = k1 + k2 + · · · + ks,

and X is a collection {X(1), . . . , X(s)} of mappings

X(ν) ∈ H1,2(Bν ,R3) ∩ C0(∂Bν ,R3)

such that X(ν)|∂Bν is a weakly monotonic mapping of ∂Bν onto a configura-
tion of kν disjoint closed, rectifiable Jordan curves Γ1, . . . , Γkν . The set C+(Γ )
of such maps X is called the class of splitting mappings bounded by Γ .

Now we define Aε(X) for X = {X(1), . . . , X(s)} ∈ C+(Γ ) by

Aε(X) := Aε(X(1)) + · · · +Aε(X(s)),

and then
d(Γ, ε) := inf

C(Γ )
Aε, d+(Γ, ε) := inf

C+(Γ )
Aε,

in particular
a(Γ ) := inf

C(Γ )
A, a+(Γ ) := inf

C+(Γ )
A,

that is, a(Γ ) = d(Γ, 0) and a+(Γ ) = d+(Γ, 0).
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Definition 1. The Douglas condition is the hypothesis

a(Γ ) < a+(Γ ).

In the following discussion we need a third function of ε besides d(Γ, ε) and
d+(Γ, ε), namely

d∗(Γ, ε) := inf
{

lim inf
m→∞

Aε(Xm) : {Xm} = separating sequence

of Xm ∈ C(Γ )
}
.

Lemma 1. The infima d(Γ, ε), d+(Γ, ε), d∗(Γ, ε) are nondecreasing functions
of ε ∈ [0, 1], and

(3) d(Γ, 0) = lim
ε→+0

d(Γ, ε), d+(Γ, 0) = lim
ε→+0

d+(Γ, ε).

Proof. Since A ≤ D we obtain for 0 < ε ≤ ε′ that

Aε(X) = A(X) + ε[D(X) − A(X)]

≤ A(X) + ε′[D(X) − A(X)] = Aε′
(X),

which shows that d(Γ, ·), d+(Γ, ·), d∗(Γ, ·) are nondecreasing, whence in par-
ticular

d(Γ, 0) ≤ lim
ε→+0

d(Γ, ε).

Suppose that
δ := lim

ε→+0
d(Γ, ε) − d(Γ, 0) > 0.

Then there is a mapping X ∈ C(Γ ) such that

A(X) ≤ d(Γ, 0) +
δ

2
= lim

ε→+0
d(Γ, ε) − δ

2
.

Choosing ε∗ ∈ (0, 1) so small that

0 ≤ ε∗[D(X) − A(X)] ≤ δ

4
,

it follows

Aε∗
(X) = A(X) + ε∗[D(X) − A(X)] ≤ A(X) +

δ

4

≤ lim
ε→+0

d(Γ, ε) − δ

2
+
δ

4

≤ d(Γ, ε∗) − δ

4
≤ Aε∗

(X) − δ

4
,

a contradiction. Thus we have δ = 0 and therefore d(Γ, ε) → d(Γ, 0) as ε → 0.
Analogously, the second relation in (3) is proved. �
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Lemma 2. Let ε ∈ (0, 1] andM ≥ 0, and consider a sequence {Γm} of bound-
ary configurations converging to the configuration Γ in the sense of Fréchet
(Γm → Γ ) as m → ∞, where Γm and Γ consist of k closed, disjoint, rec-
tifiable Jordan curves. Then for any cohesive sequence {Xm} of mappings
Xm ∈ C(Γm) with

(4) D(Xm) ≤ M for all m ∈ N

there exists a mapping X ∈ C(Γ ) with B = dom(X) ∈ N1(k) such that

(5) d(Γ, ε) ≤ Aε(X) ≤ lim inf
m→∞

Aε(Xm).

Proof. For k = 1 each sequence of mappings Xm ∈ C(Γm) is cohesive, and the
assertion follows using the results of Chapter 4. Thus we now suppose k ≥ 2.
There is a subsequence {Xmj } such that {Aε(Xmj )} converges and

(6) lim
j→∞

Aε(Xmj ) = lim inf
m→∞

Aε(Xm).

Because of (4) we can also achieve that

(6′) D(Xmj ) → L ∈ [0,M0] as j → ∞.

Applying the results of Section 8.3 (and using Theorem 3 of that section
instead of Theorems 1 and 2), we obtain by the reasoning used in the proof of
Theorem 1 of Section 8.4 that we can also assume that {Xmj } is a cohesive
sequence with dom(Xmj ) = B ∈ N1(k) for all j ∈ N, while (6) and (6′) remain
unaltered.

Using (4) and a suitable variant of Poincaré’s theorem we can in addition
assume that

Xmj ⇀ X in H1
2 (B,R3)

and
Xmj |∂B → X|∂B in L2(B,R3)

as j → ∞, and by Theorem 3 of Section 8.3 also

Xmj |∂B → X|∂B in C0(∂B,R3).

Since Xm ∈ C(Γm) and Γm → Γ it follows X ∈ C(Γ ) with dom(X) = B ∈
N1(k), and the lower semicontinuity of Aε with respect to weak convergence
of sequences in H1

2 (B,R3) yields

(7) Aε(X) ≤ lim inf
j→∞

Aε(Xmj ).

Then we infer (5) from (6), (7), and the fact that X ∈ C(Γ ) implies d(Γ, ε) ≤
Aε(X). �
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Lemma 3. For all ε ∈ [0, 1] we have

d(Γ, ε) ≤ d∗(Γ, ε) ≤ d+(Γ, ε).

Proof. For any separating sequence {Xm} in C(Γ ) we have

d(Γ, ε) ≤ Aε(Xm) for all m ∈ N,

which implies
d(Γ, ε) ≤ d∗(Γ, ε).

Thus we have to prove

(8) d∗(Γ, ε) ≤ d+(Γ, ε).

For k = 1, nothing is to be proved since then d+(Γ, ε) = ∞ as C+(Γ ) = ∅.
Thus we assume k ≥ 2. We have to show: For any partition {Γ 1, . . . , Γ s} of
Γ = 〈Γ1, . . . , Γk 〉 with s ≥ 2 one has

d∗(Γ, ε) ≤
s∑

j=1

d(Γ j , ε).

This is equivalent to the following assertion:
For every number η > 0 there is a separating sequence {Xm} of mappings

Xm ∈ C(Γ ) such that

(9) lim inf
m→∞

Aε(Xm) ≤
s∑

j=1

d(Γ j , ε) + η.

We begin with s = 2 and an arbitrary partition {Γ 1, Γ 2} of Γ . For an arbitrary
chosen δ > 0 there are X(ν) ∈ C(Γ ν) with Bν = dom(Xν) ∈ N(kν), ν = 1, 2,
k1 + k2 = k, such that

Aε(X(ν)) ≤ d(Γ ν , ε) + δ for ν = 1, 2.

Applying Proposition 1 of Section 8.5 to F := Aε we construct new mappings
Zν ∈ C(Γ ν) with dom(Zν) = Bν ∈ N(kν) and

Zν |B2r(pν) = 0 for some disks B2r(pν) ⊂⊂ Bν

such that
Aε(Zν) ≤ Aε(X(ν)) + δ for ν = 1, 2.

Shifting B2 suitably we may assume that p1 = p2; set

p := p1 = p2.

Let ρ be the inversion with respect to the circle ∂B2r(p) and set
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B∗
2 := ρ(B2 \ B2r(p)).

Furthermore, let C∗ be the “outer” boundary circle of B∗
2 , and B∗ be the disk

bounded by C∗. Set
B∗

1 := B1 \ B∗

and
Z∗

1 := Z1|B∗
1
, Z∗

2 := Z2 ◦ ρ−1|B∗
2
.

Then

X∗ :=

{
Z∗

1 on B∗
1 ,

Z∗
2 on B∗

2

defines a mapping X∗ ∈ C(Γ ) with

dom(X∗) = B∗
1 ∪ B∗

2 ∈ N(k).

Since Aε is conformally invariant, it follows that

Aε(X∗) = Aε(Z∗
1 ) +Aε(Z∗

2 )
= Aε(Z1|B∗

1
) +Aε(Z2|B2\B2r(p))

= Aε(Z1) +Aε(Z2)
= Aε(X(1)) + δ +Aε(X(2)) + δ
≤ d(Γ 1, ε) + d(Γ 2, ε) + 4δ.

Given η > 0 we choose δ := η/4 and Xm := X∗ for all m ∈ N. Then {Xm} is
a separating sequence satisfying (9) for a partition {Γ 1, Γ 2} of Γ .

Similarly, if Γ is partitioned as {Γ 1, . . . , Γ s}, we fix δ > 0 and choose
X(ν) ∈ C(Γ ν) with Bν = dom(X(ν)) ∈ N(kν), k1 + · · · + ks = k, such that

Aε(X(ν)) ≤ d(Γ ν , ε) + δ, ν = 1, . . . , s.

By the above procedure, carried out (s − 1) times, we find a mapping
X∗ ∈ C(Γ ) with dom(X∗) ∈ N(k) satisfying

Aε(X∗) ≤
s∑

ν=1

Aε(Xν) + 2sδ

whence

Aε(X∗) ≤
s∑

ν=1

d(Γ ν , ε) + (s+ 2s)δ.

Choosing δ := (s+ 2s)−1η and considering the separating sequence {Xm} in
C(Γ ) with Xm := X∗ for all m ∈ N, we obtain (9), and the proof of (8) is
complete. �
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Lemma 4. (a) Let Γm → Γ as m → ∞ in the Fréchet sense, and {Xm} be
a sequence of mappings Xm ∈ C(Γm) with

Γm = 〈Γ (m)
1 , . . . , Γ

(m)
k 〉, Γ = 〈Γ1, . . . , Γk 〉

consisting of k rectifiable, closed, mutually disjoint Jordan curves. Then

(10) d(Γ, ε) ≤ lim inf
m→∞

Aε(Xm) for any ε ∈ (0, 1].

(b) For any ε ∈ (0, 1] we have

(11) d∗(Γ, ε) = d+(Γ, ε).

Proof. We fix ε with 0 < ε ≤ 1.
(a) Inequality (10) is trivially satisfied if the right-hand side is = ∞. Thus

we may assume that {Aε(Xm)} converges as m → ∞, i.e.

(12) lim inf
m→∞

Aε(Xm) = lim
m→∞

Aε(Xm) < ∞.

Since D(Xm) ≤ ε−1Aε(Xm) we have

(13) D(Xm) ≤ M0 for all m ∈ N

and some constant M0 = M0(ε) < ∞. Then (10) follows from Lemma 2 if
{Xm} is cohesive, k ≥ 2, and for k = 1 one infers (10) for any sequence on
account of Chapter 4.

Now we are going to prove (10) by induction over k where we can restrict
ourselves to noncohesive sequences {Xm}.

Induction hypothesis. Suppose that (10) is satisfied for boundary config-
urations consisting of at most k − 1 closed curves.

Consider now a noncohesive sequence {Xm} ofXm ∈ C(Γm) with dom(Xm)
∈ N(k) satisfying (12) and therefore also (13). As {Xm} is noncohesive,
it possesses a separating subsequence which we may again call {Xm}. By
Lemma 4 of Section 8.2 and Proposition 4 of Section 8.3 we can also assume
that Bm ∈ N1(k). Then there exist points Qm ∈ R

3, numbers ηm > 0 with
ηm → 0, and closed rectifiable Jordan curves γm in Bm bounding a strong
Lipschitz interior B∗

m in R
2 such that Xm possesses a well-defined continuous

trace Zm = “Xm|γm” on γm = ∂B∗
m with

sup
γm

|Zm − Qm| ≤ η2
m,

and any topological representation cm : S1 → γm of γm is not homotopic to
zero in Bm.

Then we choose a sequence of numbers δj > 0 with δj → 0 and apply
Proposition 2 of Section 8.5 with δ := δj and K := M0(ε). Let η0,j be the
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corresponding numbers η0 ∈ (0, 1). For a suitable sequence {mj } of mj ∈ N

with m1 < m2 < m3 < · · · we have ηmj < η0,j for all j ∈ N. Renaming
Xmj , Qmj , Zmj , ηmj as Xj , Qj , Zj , ηj respectively, it follows

ηj < η0,j for all j ∈ N,

and there are mappings

Φj := Φηj ,Qj = Φηj : R
3 → R

3

with the following properties:

(i) Γ j∗ := Φj(Γ j) is a configuration of k closed, disjoint Jordan curves such
that the Fréchet distance Δ(Γ j , Γ j∗) of Γ j and Γ j∗ satisfies

Δ(Γ j , Γ j∗) < δj for all j ∈ N;

(ii) Φj ◦ Xj ∈ C(Γ j∗) and dom(Φj ◦ Xj) = Bj ;
(iii) Φj(x) ≡ x for x ∈ R

3 with |x − Qj | ≥ ηj ;
(iv) Φj(x) ≡ Qj for x ∈ R

3 with |x − Qj | ≤ η2
j ;

(v) Aε(Φj ◦ Xj) ≤ Aε(Xj) + δj .

In particular we have

Φj ◦ Zj = Qj for all j ∈ N.

Then we define
B1

j := Bj ∩ B∗
j , B2

j := Bj \ B1

j

where B∗
j is the “inner domain” of γj . This means: Cutting along γj we

decompose Bj into
Bj = B1

j ∪̇ γj ∪̇ B2
j ,

where B1
j , B

2
j are disjoint subdomains of Bj . Since γj cannot be contracted in

Bj to a point, both B1
j and B2

j contain at least one of the boundary circles
of Bj . Thus there is a circle βj in B1

j whose center does not lie in Bj . Let ρj

be the inversion with respect to βj , and set

E1
j := B

∗ ∗
j ∪ ρj(B1

j ) with B∗ ∗
j := “inner domain” of ρj(γj),

E2
j := B

∗
j ∪ B2

j .

We note that E1
j ∈ N(k′), E2

j ∈ N(k′ ′) with 1 ≤ k′, k′ ′ < k and k = k′ + k′ ′.
Now we define new mappings X1

j ∈ H1
2 (E1

j ,R
3), X2

j ∈ H1
2 (E2

j ,R
3) by

X1
j :=

{
Φj ◦ Xj ◦ ρ−1

j on ρj(B1
j ),

Qj on B
∗ ∗
j ,

X2
j :=

{
Φj ◦ Xj on B2

j ,

Qj on B
∗
j .
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Roughly speaking, this process amounts to “pinching” Xj to a point in the
neighborhood of the closed curve γj and to decomposing the resulting surface
into two surfaces of “lower topological type” by cutting through γj .

Then there is a decomposition Γ = {Γ̃ 1, Γ̃ 2} of Γ and correspondingly a
decomposition Γ j = {Γ̃ j,1, Γ̃ j,2} of Γ j such that

X1
j ∈ C(Φj(Γ̃ j,1)), X2

j ∈ C(Φj(Γ̃ j,2))

and
Φj(Γ̃ j,1) → Γ̃ 1, Φj(Γ̃ j,2) → Γ̃ 2 in the sense of Fréchet.

Furthermore, the construction yields

Aε(X1
j ) +Aε(X2

j ) = Aε(Φj ◦ Xj |B1
j
) +Aε(Φj ◦ Xj |B2

j
)

= Aε(Φj ◦ Xj),

and the induction hypothesis implies

d(Γ �, ε) ≤ lim inf
j→∞

Aε(X�
j ) for & = 1, 2.

The partition Γ = {Γ̃ 1, Γ̃ 2} leads to

d+(Γ, ε) ≤ d(Γ̃ 1, ε) + d(Γ̃ 2, ε).

Therefore

d(Γ, ε) ≤ d+(Γ, ε) ≤ d(Γ̃ 1, ε) + d(Γ̃ 2, ε)
≤ lim inf

j→∞
Aε(X1

j ) + lim inf
j→∞

Aε(X2
j )

≤ lim inf
j→∞

[Aε(X1
j ) +Aε(X2

j )]

= lim inf
j→∞

Aε(Φj ◦ Xj)

≤ lim inf
j→∞

[Aε(Xj) + δj ].

Since δj → 0, we arrive at

(14) d(Γ, ε) ≤ d+(Γ, ε) ≤ lim inf
m→∞

Aε(Xm),

which completes the proof by induction, and so we have verified assertion (a).
(b) For k = 1 we have d∗(Γ, ε) = d+(Γ, ε) = ∞, and so (11) holds true.
If k ≥ 2 then Lemma 3 yields d∗(Γ, ε) ≤ d+(Γ, ε) < ∞. Thus it suffices to

show d+(Γ, ε) ≤ d∗(Γ, ε). In fact, for given δ > 0 there is a separating sequence
{Xm} in C(Γ ) with

lim inf
m→∞

Aε(Xm) ≤ d∗(Γ, ε) + δ.
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By the same proof as in (a) we obtain (14) for this sequence. Thus,

d+(Γ, ε) ≤ d∗(Γ, ε) + δ for any δ > 0,

whence
d+(Γ, ε) ≤ d∗(Γ, ε),

which finishes the proof of (b). �

Theorem 1. If the Douglas condition a(Γ ) < a+(Γ ) is satisfied, k ≥ 2, then
there is an ε0 ∈ (0, 1] such that for each ε ∈ (0, ε0] there exists a mapping
Xε ∈ C(Γ ) with

(15) Aε(Xε) = d(Γ, ε)

and

(16) |Xε
u|2 = |Xε

v |2, 〈Xε
u, X

ε
v 〉 = 0.

Proof. Since

lim
ε→+0

d(Γ, ε) = d(Γ, 0) = a(Γ ) < a+(Γ ) = d+(Γ, 0) = lim
ε→+0

d+(Γ, ε),

there is an ε0 with 0 < ε0 ≤ 1 such that

(17) d(Γ, ε) < d+(Γ, ε) for 0 < ε ≤ ε0.

Fix some ε ∈ (0, ε0] and choose a sequence {Xm} in C(Γ ) with

Aε(Xm) → d(Γ, ε) as m → ∞.

If {Xm} were not cohesive, there would exist a separating subsequence {Xmj },
whence

d∗(Γ, ε) ≤ lim
j→∞

Aε(Xmj ) = d(Γ, ε),

and by (11) we would have

d+(Γ, ε) = d∗(Γ, ε) ≤ d(Γ, ε),

a contradiction to (17). Thus {Xm} has to be cohesive, and D(Xm) ≤ M0(ε)
for all m ∈ N since Aε(Xm) ≤ const and εD(Xm) ≤ Aε(Xm). Hence we
can apply Lemma 2 to Γm ≡ Γ for all m ∈ N, and consequently there is a
Xε ∈ C(Γ ) such that

d(Γ, ε) ≤ Aε(Xε) ≤ lim inf
m→∞

Aε(Xm) = d(Γ, ε),

which yields (15), i.e.

Aε(Xε) ≤ Aε(X) for all X ∈ C(Γ ).

By Theorem 1 of Section 8.2 this implies (16). �
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Now we can prove the main result (cf. Theorem 1 in Section 8.2):

Theorem 2. Suppose that the Douglas condition a(Γ ) < a+(Γ ) holds. Then
there is a mapping X ∈ C(Γ ) with

(18) A(X) = inf
C(Γ )

A = inf
C(Γ )

D = D(X)

satisfying the conformality relations

|Xu|2 = |Xv |2, 〈Xu, Xv 〉 = 0 in B

as well as X ∈ C2(B,R3) and

(19) ΔX = 0 in B.

Furthermore, X maps ∂B homeomorphically onto Γ .

Proof. Let ε0 > 0 be as in Theorem 1 and consider the mapping Xε ∈ C(Γ ),
0 < ε ≤ ε0, satisfying (15) and (16). Then A(Xε) = D(Xε), and consequently

d(Γ, ε) = Aε(Xε) = A(Xε) = D(Xε) for 0 < ε ≤ ε0.

For an arbitrary Y ∈ C(Γ ) we have

Aε(Xε) ≤ Aε(Y ) ≤ D(Y ),

whence

d(Γ ) ≤ D(Xε) = Aε(Xε) ≤ Aε(Y ) ≤ D(Y ) for all Y ∈ C(Γ ).

This yields
d(Γ ) ≤ D(Xε) ≤ d(Γ )

and therefore
d(Γ ) = D(Xε) for all ε ∈ (0, ε0].

Then it follows for all Y ∈ C(Γ ) and any ε, ε′ ∈ (0, ε0]:

a(Γ ) ≤ A(Xε) = Aε(Xε) = Aε′
(Xε′

) ≤ Aε′
(Y ).

Since Aε′
(Y ) → A(Y ) as ε′ → +0, we arrive at

a(Γ ) ≤ A(Xε) ≤ a(Γ ),

which implies
a(Γ ) = A(Xε).

Thus we have

A(Xε) = D(Xε) = a(Γ ) = d(Γ ) for 0 < ε ≤ ε0,
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that is,

(20) A(Xε) = inf
C(Γ )

A = inf
C(Γ )

D = D(Xε).

Fix some ε ∈ (0, ε0] and set X = Xε. From

D(X) = inf
C(Γ )

D

it follows that X is harmonic in B, and by virtue of X ∈ H1
2 (B,R3) and

X|∂B ∈ C0(∂B,R3) we conclude that X ∈ C0(B,R3), i.e. X ∈ C(Γ ). On
account of (20) we obtain

A(X) = inf
C(Γ )

A = inf
C(Γ )

A = inf
C(Γ )

D = inf
C(Γ )

D = D(X).

Finally one proves in the same way as for Theorem 3 in Section 4.5 that X
maps ∂B homeomorphically onto Γ . This completes the proof of the theorem.
�

8.7 Further Discussion of the Douglas Condition

We had formulated the Douglas condition as the assumption that

(1) a(Γ ) < a+(Γ )

holds true. Jesse Douglas [28] noted that (1) is equivalent to the assumption

(2) d(Γ ) < d+(Γ )

where d(Γ ) and d+(Γ ) are defined by

d(Γ ) := inf
C(Γ )

D, d+(Γ ) := inf
C+(Γ )

D.

Using the notation of the previous section, this means

d(Γ ) = d(Γ, 1), d+(Γ ) = d+(Γ, 1).

In fact, Douglas pointed out that the gist of his method to find a minimal sur-
face X bounded by Γ = 〈Γ1, . . . , Γk 〉 consisted in using exclusively Dirichlet’s
integral D instead of the area, replacing condition (1) by (2), cf. [28], p. 232,
and all later authors proceeded in the same way. In order to prove that his
solution is area minimizing, Douglas showed

(3) a(Γ ) = d(Γ ),

and the proof of this identity he based on a theorem by P. Koebe, according
to which every polyhedral surface possesses an a.e.-conformal representation



8.7 Further Discussion of the Douglas Condition 579

of the same topological type. Our proof of (3) in Theorem 2 of Section 8.6
required no such tool, but was based on the assumption (1). Now we want to
show that a(Γ ) = d(Γ ) and a+(Γ ) = d+(Γ ) holds for any contour Γ , without
using any conformal mapping theorem. This in turn will yield the equivalence
of the conditions (1) and (2) which are often called the sufficient condition of
Douglas.

First, however, we note that for any contour Γ = 〈Γ1, . . . , Γk 〉 one has the
two inequalities

(4) a(Γ ) ≤ a+(Γ ) and d(Γ ) ≤ d+(Γ ),

which are sometimes denoted as necessary condition of Douglas. Clearly,
(4) follows from the inequality

(5) d(Γ, ε) ≤ d+(Γ, ε) for ε ∈ [0, 1],

which was established in Lemma 3 of Section 8.6.
Furthermore we recall (cf. Theorem 2 of Section 8.6):

(6) Inequality (1) implies a(Γ ) = d(Γ ).

Theorem 1. We have

(7) a(Γ ) = d(Γ ) for k ≥ 1

and

(8) a+(Γ ) = d+(Γ ) for k ≥ 2

Proof. (i) For k = 1, the identity (7) was proved in Chapter 4.
(ii) Let k = 2 and Γ = 〈Γ1, Γ2〉.

(α) a+(Γ ) = a(Γ1) + a(Γ2)
(i)
= d(Γ1) + d(Γ2) = d+(Γ ).

(β) If a(Γ ) < a+(Γ ) then a(Γ ) = d(Γ ) by (6).

(γ) If a(Γ ) = a+(Γ ) then a(Γ )
(α)
= d+(Γ )

(4)

≥ d(Γ ), and trivially we have

(9) a(Γ ) ≤ d(Γ ) for any k ≥ 1

because of A ≤ D. Thus a(Γ ) = d(Γ ) also in case (γ), and by (4) it follows
a(Γ ) = d(Γ ) in any case if k = 2.

(iii) Let k = 3 and Γ = 〈Γ1, Γ2, Γ3〉.

(α) a+(Γ ) = min{a(Γμ) + a(Γν) + a(Γρ), a(Γμ, Γν) + a(Γρ) :
(μ, ν, ρ) ∼ (1, 2, 3)}

= min{d(Γμ) + d(Γν) + d(Γρ), d(Γμ, Γν) + d(Γρ) :
(μ, ν, ρ) ∼ (1, 2, 3)}

= d+(Γ ).
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(β) If a(Γ ) < a+(Γ ) then a(Γ ) = d(Γ ) by (6).

(γ) If a(Γ ) = a+(Γ ), then by (α), (4) and (9) it follows

a(Γ ) = d+(Γ ) ≥ d(Γ ) ≥ a(Γ ),

whence a(Γ ) = d(Γ ) in any case on account of (4), if k = 3.
(iv) The general case is proved by induction: Suppose that (7) is verified

for k ≤ N . Then we obtain for k = N + 1:

(α) a+(Γ ) = d+(Γ ). In fact,

a+(Γ ) = min{a(Γ 1) + · · · + a(Γ s) :
{Γ 1, . . . , Γ s} = partition of Γ with s ≥ 2},

d+(Γ ) = min{d(Γ 1) + · · · + d(Γ s) :
{Γ 1, . . . , Γ s} = partition of Γ with s ≥ 2},

and Γ � consists of k� closed curves, k1 + · · · + ks = N + 1, whence k� ≤ N for
& = 1, . . . , s, and since (7) holds for k ≤ N , we obtain a(Γ 1) = d(Γ 1), . . . ,
a(Γ s) = d(Γ s); therefore we have (8) for k = N + 1.

(β) If a(Γ ) < a+(Γ ) then a(Γ ) = d(Γ ).

(γ) If a(Γ ) = a+(Γ ), then by (α), (4), and (9):

a(Γ ) = d+(Γ ) ≥ d(Γ ) ≥ a(Γ )

whence a(Γ ) = d(Γ ) in any case on account of a(Γ ) ≤ a+(Γ ). �

Similarly one proves

Theorem 2. For any ε ∈ [0, 1] we have

(10) a(Γ, ε) = d(Γ, ε) = a(Γ ) = d(Γ ) if k ≥ 1

and

(11) a+(Γ, ε) = d+(Γ, ε) = a+(Γ ) = d+(Γ ) if k ≥ 2;

therefore also

(12) a+(Γ ) − a(Γ ) = d+(Γ ) − d(Γ ) = d+(Γ, ε) − d(Γ, ε) if k ≥ 2.

Corollary 1. The conditions (1) and (2) are equivalent.

Corollary 2. In Theorem 1 of Section 8.6 we can choose ε0 = 1.
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8.8 Examples

We now exhibit some examples when the sufficient Douglas condition a(Γ ) <
a+(Γ ) is satisfied.

1 Let k = 2, and consider two closed, rectifiable, disjoint Jordan curves Γ1

and Γ2 that lie in planes Π1 and Π2 which intersect in a straight line L. By
S1 and S2 we denote the two bounded planar domains in Π1 and Π2 with the
boundary contours Γ1 and Γ2 respectively. Then

a(Γ1) = area(S1), a(Γ2) = area(S2).

Suppose that S1 ∩S2 is nonempty. Then S1 and S2 intersect in a closed interval
I contained in L. The line L decomposes S1 and S2 into the pieces S+

1 , S
−
1 and

S+
2 , S

−
2 respectively with S+

1 ∩ S−
1 := I1 ⊂ L and S+

2 ∩ S−
2 =: I2 ⊂ L. Take

an interior point P ∈ L, a bisectrix L′ of one of the angles between Π1 and
Π2 meeting L at P perpendicularly, and consider a sufficiently small circular
cylinder Z with the axis L′. Then Z intersects S+

1 , S
−
1 , S

+
2 , S

−
2 in closed curves

γ+
1 , γ

−
1 , γ

+
2 , γ

−
2 consisting of semi-ellipses ε+1 , ε

−
1 , ε

+
2 , ε

−
2 and an interval j ⊂ I.

Let E+
1 , E

−
1 , E

+
2 , E

−
2 be the “full” semi-ellipses bounded by γ+

1 , γ
−
1 , γ

+
2 , γ

−
2

respectively. Then γ1 := γ+
1 ∪ γ+

2 spans a nonparametric minimal surface M1

with
area(M1) < area(E+

1 ∪ E+
2 ),

and γ2 := γ−
1 ∪ γ−

2 spans a nonparametric minimal surface M2 with

area(M2) < area(E−
1 ∪ E−

2 ).

Then the set

Σ := (S1 ∪ S2 ∪ M1 ∪ M2) \ (E+
1 ∪ E+

2 ∪ E−
1 ∪ E−

2 )

has an area less than that of S1 ∪ S2, i.e.

area(Σ) < area(S1 ∪ S2) = area(S1) + area(S2).

We can construct a mapping X ∈ C(Γ ), Γ := 〈Γ1, Γ2〉, such that

Σ = X(B), B = dom(X) ∈ N(2),

and thus we have

a(Γ ) ≤ A(X) = area(Σ) < a(Γ1) + a(Γ2) = a+(Γ ).

Hence we have

Proposition 1. Γ = 〈Γ1, Γ2〉 satisfies the Douglas condition if Γ1 and Γ2

fulfill the assumptions stated above. In particular, we have a(Γ ) < a+(Γ ) for
Γ = 〈Γ1, Γ2〉 if Γ1 and Γ2 are closed, rectifiable, disjoint planar Jordan curves
in R

3 which are linked.
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Fig. 1. An annulus-type minimal surface bounded by two interlocking closed curves

Actually, it is irrelevant that Γ1 and Γ2 are planar, and a similar reasoning
as above yields

Theorem 1. Suppose that the contour Γ = 〈Γ1, Γ2〉 consists of two closed,
rectifiable, disjoint Jordan curves in R

3 which are linked. Then a(Γ ) <
a+(Γ ) = a(Γ1) + a(Γ2), and so there is a minimal surface X ∈ C(Γ ) with
B = dom(X) ∈ N(2) and A(X) = a(Γ ), i.e. X is an area-minimizing mini-
mal surface of annulus type bounded by two linked closed curves Γ1 and Γ2.

J. Douglas (cf. [13], p. 351) obtained Theorem 1 as a corollary of the
following

Theorem 2. Let Γ1 and Γ2 be two nonintersecting, closed, rectifiable Jordan
curves in R

3, and suppose that there are minimal surfaces X1 ∈ C(Γ1), X2 ∈
C(Γ2) with A(X1) = a(Γ1), A(X2) = a(Γ2) such that X1(w1) = X2(w2)
for some w1, w2 ∈ B = B1(0) = dom(X1) = dom(X2). Then Γ = 〈Γ1, Γ2〉
satisfies the Douglas condition a(Γ ) < a+(Γ ) = a(Γ1) + a(Γ2), and so there
is an annulus-type minimal surface X ∈ C(Γ ) with A(X) = a(Γ ).

Remark 1. Instead of giving a geometric proof for a(Γ ) < a+(Γ ), Douglas
derived the inequality d(Γ ) < d+(Γ ) in an analytic way working with the
Dirichlet integral and arranging for w1 = w2 = 0. Using the harmonic mapping
H : {r < |w| < 1} → R

3, 0 < r < 1, with the boundary values H(w) = X1(w)
for |w| = 1, H(w) = X2(w) for |w| = r. Then it can be shown that

D(H) < D(X1) +D(X2) = d(Γ1) + d(Γ2) for 0 < r � 1,

which implies d(Γ ) < d+(Γ ) for Γ = 〈Γ1, Γ2〉, and we know that this inequal-
ity is equivalent to a(Γ ) < a+(Γ ).

Essentially the same proof can be found in J.C.C. Nitsche [28], pp. 531–
533.

Remark 2. Both Douglas and Nitsche assumed in addition that w1 is not a
branch point of X1 and w2 is not a branch point of X2. These requirements
are now superfluous because of the Osserman–Alt–Gulliver result.
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Remark 3. Note that for planar Γ1 and Γ2 the result of Theorem 2 is essen-
tially contained in Proposition 1. Furthermore, the proof of this proposition
can be modified to yield Theorem 2.

2 Obviously the Douglas condition a(Γ ) < a+(Γ ) = a(Γ1) + a(Γ2) for Γ =
〈Γ1, Γ2〉 is satisfied if Γ1 and Γ2 bound a doubly connected surface S with

area(S) < a(Γ1) + a(Γ2),

say, the lateral surfaces of a conical frustum, or a cylindrical surface. This
simple observation was used in the construction of a one-parameter family of
triply-connected minimal surfaces bounded by three coaxial circles Γ1, Γ2, Γ3;
see Section 4.15.

3 Finally we note that the Douglas condition a(Γ ) < a+(Γ ) is satisfied for
Γ = 〈Γ1, Γ2, . . . , Γk 〉, k ≥ 2, if the distinct, closed, rectifiable Jordan curves
Γ1, Γ2, . . . , Γk form the boundary of a bounded, k-fold connected domain Ω
in R

2:
∂Ω = Γ1 ∪̇ Γ2 ∪̇ · · · ∪̇ Γk.

In fact, each contour Γj bounds a simply connected, bounded domain Ωj in
R

2, and we may assume that

Ω = Ω1 \ {Ω2 ∪ · · · ∪ Ωk },

i.e. Γ1 is the “exterior” boundary curve of Ω. Then

(1) area(Ω) = area(Ω1) −
{

k∑
j=2

area(Ωj)

}
.

Let Γ = {Γ 1, . . . , Γ s} be an arbitrary partition of the boundary curves
Γ1, . . . , Γk, s ≥ 2. We may assume that Γ1 belongs to Γ 1, i.e. Γ 1 =
〈Γ1, Γj2 , . . . , Γj


〉 with 1 < j2 < · · · < j� and 1 ≤ & < k. Then

a+(Γ ) := inf{a(Γ 1) + · · · + a(Γ s) : {Γ 1, . . . , Γ s} = partition of Γ}

whence

(2) a+(Γ ) ≥ a(Γ 1) = area(Ω1) −
�∑

ν=2

area(Ωjν )

(
∑�

ν=2 = 0 if & = 1). From (1) and (2) we infer

a+(Γ ) > area(Ω) = a(Γ ).

Thus we can apply Theorem 2 of Section 8.6. Combining this with the rea-
soning that was used in Section 4.11 to prove Riemann’s mapping theorem
(cf. Theorem 1 in Section 4.11), we obtain Koebe’s mapping theorem:
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Theorem 3. Let Ω be a k-fold connected domain in C whose boundary con-
sists of k closed, mutually disjoint Jordan curves Γ1, . . . , Γk. Then there exists
a homeomorphism f from B onto Ω, B ∈ N(k), which is holomorphic in B
and satisfies f ′(w) 	= 0 for all w ∈ B.

P. Koebe also proved that f is uniquely determined up to a Möbius trans-
formation, i.e. if f∗ is another mapping like f from B

∗
onto Ω, B∗ ∈ N(k),

then there is a Möbius transformation τ from B
∗

onto B with f∗ = f ◦ τ . An
elegant proof of this fact can be found in Courant and Hurwitz [1], pp. 517–
519. In another form, a uniqueness result is stated and proved in R. Courant
[15], pp. 187–191: f∗ = f if f, f∗ ∈ N1(k) and f(ζ) = f∗(ζ) for a fixed point
ζ ∈ ∂B1(0).

8.9 Scholia

1. The first to study general Plateau problems for minimal surfaces of higher
topological type was Jesse Douglas; his work was truly pioneering, and his
ideas and insights are as exciting and important nowadays as at the time when
they were published, more than half a century ago. It seems that Douglas was
the first to grasp the idea that a minimizing sequence could be degenerating
in topological type, and he interpreted such a conceivable degeneration as a
change in the conformal structure. He based his notion of degeneration on the
representation of Riemann surfaces as branched coverings of the sphere. Then
degeneration meant “disappearance of branch cuts”. The intuitive meaning
of degeneration is the shrinking of handles and the tendency to separate the
Riemann surface into several components. Since degeneration is unavoidable
in general, Douglas had the idea of minimizing not over surfaces of a fixed
topological type but also over all possible reductions of the given type. In
this set of Riemann surfaces of varying topological type, Douglas introduced
a notion of convergence as convergence of branch points in the representation
of the surfaces as branched coverings of the sphere. The compactness of this
set of Riemann surfaces seemed to be a trivial matter to him since his whole
argument reads: “This is because the set can be referred to a finite number
of parameters, e.g., the position of the branch points . . .”. This reasoning
is, however, rather inaccurate since the position of branch points alone does
not determine the structure of the surface. Douglas also argued on a rather
intuitive level when it came to the lower semicontinuity of Dirichlet’s integral
with respect to the convergence of surfaces. Taking the compactness of the
above set of Riemann surfaces and the lower semicontinuity of Dirichlet’s
integral for granted, it is then obvious that an absolute minimum of Dirichlet’s
integral in the class of surfaces considered by Douglas must be achieved, either
in a surface of desired (highest) topological type or in one of reduced type. In
this way Douglas was led to his celebrated solution of the general Plateau
problem:
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Given a boundary configuration Γ = 〈Γ1, . . . , Γk 〉 consisting of k ≥ 1 closed,
rectifiable, mutually disjoint Jordan curves Γ1, . . . , Γk in R

3, there is a con-
nected minimal surface X of prescribed Euler characteristic and prescribed
character of orientability, bounded by Γ , provided that the infimum a(Γ ) of
area for all admissible surfaces is less than the infimum a+(Γ ) of Dirichlet’s
integral or of the sum of Dirichlet integrals for surfaces of lower type bounded
by Γ .

Here a possibly disconnected surface Y bounded by Γ is called of lower
type if at least one of the following degenerations occurs:

(i) Y has a smaller Euler characteristic than prescribed;
(ii) Y is disconnected and consists of several connected pieces of total charac-

teristic (= sum of the characteristics of the connected pieces) not greater
than prescribed, and each piece is bounded by complementary subsets of
{Γ1, . . . , Γk } which together make up Γ .

J. Douglas published this most general result in his 1939 paper [28]. Al-
ready in 1931 he had treated the case Γ = 〈Γ1, Γ2〉 for annulus-type minimal
surfaces (cf. [18]), and one-sided minimal surfaces in a given contour he had
discussed 1932 in his paper [15]. Further work dealing with the general Plateau
problem are his papers [27,29] and [31].

2. R. Courant [9,11], and M. Shiffman [3,5] put the pioneering work of Douglas
on a solid basis by solving the variational problem “D → min” within a class
of surfaces of fixed topological type. In this context we also mention H. Lewy’s
lecture notes [3] from 1939.

Courant gave a very clear exposition of his method in his treatise [15]
from 1950 for minimal surfaces X : B → R

3 with B ∈ N , where the class
N of parameter domains comprises either (a) schlicht k-circle domains, or
(b) slit domains, or (c) Riemann domains over the w-plane bounded by k unit
circles and having branch points of total multiplicity 2k − 2 (cf. Courant [15],
pp. 144–145, 149); other types are briefly discussed in [15], pp. 164–166.

3. Douglas has based his investigations on the use of symmetric Riemann
surfaces without boundary which are obtained as doubles of Riemann surfaces
of genus g with k boundary curves. This idea is also employed in the study
of the general Plateau problem by F. Tomi and A. Tromba [5], which will be
presented in Chapter 4 of Vol. 3.

An exposition of how to solve the Douglas problem for surfaces of higher
topological type or for nonorientable surfaces is presented in Courant [15],
pp. 160–164. In particular, the existence proof for surfaces of the topological
type of the Möbius strip with one boundary contour is worked out in detail.
For the general case, Courant refers to Shiffman [3].

Another presentation of the work of Douglas is given in the treatise [6]
of J. Jost. In Nitsche’s Vorlesungen [28], the Douglas problem for annulus-
type minimal surfaces with two boundary curves is treated. C.B. Morrey [8],
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Chapter 9, described a solution of the Douglas problem for k-fold connected
minimal surfaces.

The Douglas problem for H-surfaces was studied by H. Werner [1] for
H = const, and for variable H by S. Luckhaus [1].

Beautiful soap film experiments with minimal surfaces are described in
papers by Courant [10] and by Almgren and Taylor [1].
4. Douglas also treated the case of configurations Γ = 〈Γ1, . . . , Γk 〉 with non-
rectifiable curves. In this regard we refer to Section 17 of his paper [28],
pp. 279–287.
5. The idea to prove Koebe’s mapping theorem via the solution of the general
Plateau problem was also conceived by Douglas in [11] and [28]. Courant
presented an elaboration of this approach in Chapter 5, pp. 167–198, of his
treatise [15].

A generalization of Lichtenstein’s mapping theorem to Riemannian metrics
on multiply connected domains is due to J. Jost [6] and [17]; the original
approach by Morrey [8] is incorrect. A new proof in the spirit of Section
4.11 was given in the paper [8] by Hildebrandt and von der Mosel. Jost [6]
treated the Douglas problem for orientable minimal surfaces in a Riemannian
manifold; see also Morrey [3] and [8]. The nonorientable case was worked out
by F. Bernatzki [1].
6. The presentation of this chapter is based on the work of Courant [15] and
on the papers of Kurzke [1], Kurzke and von der Mosel [1], and Hildebrandt
and von der Mosel [6,8].



Problems

Here we formulate some major open problems for minimal surfaces, mostly
in the context of Plateau’s or Douglas’s problem. Many of them are unsolved
since a long time, see e.g. J.C.C. Nitsche [28,37].

Let Γ be a rectifiable curve in R
3, and C(Γ ) be the class of admissible

curves for Plateau’s problem defined in Section 4.2. Furthermore, for any
X ∈ C(Γ ) let A(X) be the area functional and D(X) the Dirichlet integral
of X. One has

inf
C(Γ )

A = inf
C(Γ )

D.

Hence an absolute minimizer of D is one of A, and conversely, a conformally
parametrized absolute minimizer of A is an absolute minimizer of D.

1. Is it true that a relative minimizer of D in C(Γ ) is also a relative minimizer
of A in C(Γ ) with respect to some suitable norm on C(Γ ), say, ‖ · ‖C0 ,
‖ · ‖C0 +

√
D(·), ‖ · ‖C1 , ‖ · ‖C1,α , . . . ? The converse holds for conformally

parametrized relative minimizers of A. The problem might be easier to
solve if one assumes Γ ∈ Cm,α. (See also Appendix 1.)
A similar question can be raised for the Douglas problem, for H-surfaces,
or for minimal surfaces in a Riemann surface.

Let C∗(Γ ) be the class of surfaces in C(Γ ) which satisfy a preassigned
three-point condition.

2. How many minimal surfaces of class C∗(Γ ) are bounded by a given “well-
behaved” closed Jordan curve Γ? Here well-behaved might be interpreted
as regular and real analytic, or as regular and of class Ck, or as piecewise
linear (i.e. Γ be a polygon), or in another suitable way.
An analogous question can be asked for the Douglas problem, or for cmc-
surfaces.

3. Is the number of immersed, stable minimal surfaces in C∗(Γ ) finite?
4. Can one give upper or lower bounds on the number N(Γ ) of minimal

surfaces in C∗(Γ ) in terms of bounds on the geometric data of X? Can

U. Dierkes, S. Hildebrandt, F. Sauvigny, Minimal Surfaces,
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one find such bounds for the number Ns(Γ ) of stable minimal surfaces in
C∗(Γ )? Similarly for the number Ni(Γ ) of immersed minimal surfaces in
C∗(Γ ).

A closed, connected component Kc of a level set Mc(Γ ) := {X is minimal
surface of class C∗(Γ ) with D(X) = A(X) = c}, c ∈ R, is called a block of
minimal surfaces.

5. Do blocks of minimal surfaces in R3 always consist of single elements? If
not, what is their topological and analytic structure?

6. Can one solve Plateau’s problem for minimal surfaces in a Riemann man-
ifold M , if Γ is an arbitrary Jordan curve in M? The same question can
be posed for the Douglas problem, or for H-surfaces (cf. Section 4.12,
Remark 1)?

7. Is it possible to solve Plateau’s problem within the class of immersed min-
imal surfaces, either by a continuity method or by a variational method?

8. Can minimizers of D in C(Γ ) possess boundary branch points?
9. Can one show the existence of immersed, but unstable minimal surfaces

in C∗(Γ ) via a mountain pass theorem?
10. Is it possible to derive general uniqueness theorems which include and

combine those of Radó and Nitsche as well as that for small perturbations
of certain planar curves?

11. Let M(Γ ) be the class of minimal surfaces in C(Γ ). What is the interrela-
tion between the classes M(Γ ) and M(Γ ′) if Γ is a regular Ck-curve and
Γ ′ is a polygon or another Ck-curve close to Γ? In particular, how does
N(Γ ) change under perturbations of Γ? What happens to N(Γ ), Ni(Γ )
and Ns(Γ ) if the total curvature of Γ changes beyond 6π?

12. Is there an index formula for polygons similar to the formula established
by Böhme/Tromba and Tomi/Tromba for smooth contours?

13. Given a closed polygon Γ , can one give a classification of minimal surfaces
in C∗(Γ ) by Courant’s and Shiffman’s functions, using ideas of Heinz and
Sauvigny? Is Courant’s function of class C2? Can one prove an index-sum
formula in the nondegenerate situation?

14. Is it possible to estimate the modulus of continuity of the normal of a
minimal surface up to and including the boundary, at least for special
classes of minimal surfaces?

15. Can one derive estimates of the Gaussian curvature for stable minimal
immersions, possibly up to and including the boundary?



Appendix 1

On Relative Minimizers of Area and Energy

Let Γ be a closed, rectifiable Jordan curve in R
3, and C(Γ ) be the class of

disk-type surfaces X : B → R
3 bounded by Γ . Since

infC(Γ )A = infC(Γ )D,

it follows:

Any minimizer of Dirichlet’s integral D in C(Γ ) is a minimal surface that
minimizes the area A in C(Γ ). Conversely, any conformally parametrized min-
imizer of A in C(Γ ) is a minimal surface which minimizes D in C(Γ ).

In Problem 1 we have raised the question whether a similar result holds
for relative minimizers of A and D. Clearly, a minimal surface X ∈ C(Γ ) is a
relative minimizer of D in C(Γ ) with respect to some suitable norm ‖ · ‖ if X
is a relative minimizer of A in C(Γ ) with respect to ‖ · ‖. In fact, from

A(X) ≤ A(Y ) for all Y ∈ C(Γ ) with ‖X − Y ‖ < ε

for some ε > 0 it follows that

D(X) = A(X) ≤ A(Y ) ≤ D(Y ).

Here we prove a weak converse of this result giving a partial solution to Prob-
lem 1.

Let M(Γ ) be the set of minimal surfaces X ∈ C(Γ ), and denote by Mim(Γ )
the class of immersed minimal surfaces in C(Γ ) ∩C1(B,R3). For the following
we assume that Γ is a regular contour of class C1,μ, 0 < μ < 1, which implies
M(Γ ) ⊂ C1,μ(B,R3).

For the sake of brevity, we write C0, C1, C1,ν instead of C0(B,R3),
C1(B,R3), C1,ν(B,R3), and correspondingly ‖ · ‖C0 for ‖ · ‖C0(B,R3), etc.

We have the following results, proved in Hildebrandt and Sauvigny [9]:

Theorem 1. Let X ∈ Mim(Γ ) be a relative minimizer of D in the following
sense: There is an ε > 0 such that
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D(X) ≤ D(Z) for all Z ∈ C(Γ ) ∩ C1(B,R3) with ‖Z − X‖C1 < ε.

Then there exists a δ(ε) > 0 such that

A(X) ≤ A(Y ) for all Y ∈ C(Γ ) ∩ C1,μ(B,R3)
with ‖Y − X‖C1,μ < δ(ε),

i.e. X is a relative minimizer of A.

Remark. We can rephrase this result as follows: A relative minimizer X
of D with respect to the C1-norm is a relative minimizer of A with respect
to the C1,μ-norm. Note that the C1-minimum property is stronger than the
C1,μ-minimum property since the C1-norm is weaker than the C1,μ-norm.

Similarly one can prove

Theorem 2. Suppose that the immersed minimal surface X ∈ C(Γ ) is of the
class C2(B,R2), and assume that X is a relative minimizer of D with respect
to the C1,μ-norm for some μ ∈ (0, 1). Then it is also a relative minimizer of
A with respect to the C2-norm.

Before we come to the proofs, we have to collect some results.
First, fix some X ∈ Mim(Γ ). Then X ∈ C1,μ(B,R3), and the line element

dσ on X, given by

dσ2 := 〈dX, dX〉 = Λ(X){du2 + dv2},

satisfies

(1) Λ(X) = |Xu|2 ≥ δ0(X)

for some positive constant δ0(X).
Consider a “perturbation” Y of X satisfying Y ∈ C1,μ(B,R3) and

(2) ‖Y − X‖C1,μ < η

for some η ∈ (0, 1), and let ds be the line element on Y . We write

ds2 := 〈dY, dY 〉 = a du2 + 2b du dv + c dv2

and denote by
D := ac − b2

the associate discriminant. Then a, b, c ∈ C0,μ(B), and there is a constant
κ(X) > 0 such that the matrices

(γjk) :=
(
Λ(X) 0

0 Λ(X)

)
, (gjk) :=

(
a b
b c

)
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satisfy

(3) ‖gjk − γjk ‖C0,μ(B) ≤ κ(X)η,

and for

(4) η < 1
6Λ(X)κ−1(X)

we obtain

(5)
√

D ≥ λ0 with λ0 :=
√

5/18Λ(X) > 0.

This implies
√

D ∈ C0,μ(B) and

(6) ‖
√

D − Λ(X)‖C0,μ(B) ≤ κ′(X)η

for some constant κ′(X) > 0, and we note that
√

D = Λ if Y = X.
Now we want to construct a diffeomorphism f : B → Ω of class

C1,μ(B,R2) such that the pull-back (f−1)∗ ds2 of ds2 under the inverse f−1

of f is transferred into the form

(f−1)∗ ds2 = λ{dx2 + dy2}

and that f : (u, v) �→ (x, y) = f(u, v) is close to the identical map idB

if η is sufficiently small. For this purpose we follow I.N. Vekua [2], §§1–4,
and F. Sauvigny [16], Chapter XII, especially §8. Interpreting B and Ω as
domains in the complex plane C, which is identified with R

2, the mapping
w �→ z = f(w) with w = u+ iv ∈ B, z = x+ iy ∈ C, will be constructed as a
solution of the complex Beltrami equation

(7) fw − q(w)fw = 0 in B

where the complex potential q(w) is defined by

(8) q :=
a −

√
D + ib

a+
√

D − ib
=

a − c+ 2ib
a+ c+ 2

√
D
.

Using the estimates (3)–(6) we easily verify the subsequent

Proposition 1. For each ε1 > 0 there is a number η1(X, ε1) > 0 such that
q ∈ C0,μ(B,C) and that the C0,μ(B,C)-norm ‖q‖μ := ‖q‖C0,μ(B,C) of the
mapping w �→ q(w) satisfies

‖q‖μ < ε1 provided that ‖Y − X‖C1,μ < η1.

In order to construct a solution f of (7), we use the following ansatz which
is described in Vekua [2], pp. 359–360:
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(9) f(w) = w + TB [ψ](w), w ∈ B, ψ ∈ C0,μ(B,C),

where TB is the Cauchy operator ψ �→ TB [ψ] given by

(10) TB [ψ](w) := − 1
π

∫
B

ψ(z)
z − w

dxdy, w = u+ iv ∈ B, z = x+ iy ∈ C.

When we insert (9) into (7), we are led to a Tricomi integral equation for
ψ ∈ C0,μ(B,C),

(11) ψ − qΠB[ψ] = q,

containing Vekua’s integral operator ΠB , which is defined by a Cauchy prin-
cipal value:

(12) ΠB [ψ](w) := lim
ρ→+0

{
− 1
π

∫
B\Bρ(w)

ψ(z)
(z − w)2

dx dy

}
, w ∈ B.

On account of Vekua [2], Chapter I, §8, Satz 1.33, the mapping ψ �→ ΠB [ψ]
defines a bounded linear operator on C0,μ(B,C); consequently, there is a con-
stant M(μ) > 1 such that

(13) ‖ΠB [ψ]‖μ ≤ M(μ)‖ψ‖μ for all ψ ∈ C0,μ(B,C)

where ‖ · ‖μ is the Hölder norm on E := C0,μ(B,C).
Suppose now that q satisfies the smallness condition

(14) M(μ)‖q‖μ <
1
4 .

Then the affine mapping Lq : E → E, defined by

(15) Lq[ψ] := q + qΠB [ψ]

yields a contraction on the Banach space (E, ‖ · ‖μ), and so Lq has a uniquely
determined fixed point ψ, which satisfies

(16) ‖ψ‖μ ≤ ‖q‖μ

1 − M(μ)‖q‖μ

and (15) implies (11).
By Vekua’s theorem from [2], quoted before, TB is a bounded linear map-

ping from E into C1,μ(B,C), and one has

(17) (TB [ψ])w = ΠB [ψ], (TB [ψ])w = ψ

(cf. Vekua [2], p. 52, (8.18), or Sauvigny [16], vol. 2, p. 359, (21)). Then the
equation Lq[ψ] = ψ is equivalent to

(0 + ψ) − q(1 +ΠB [ψ]) = 0,
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and therefore f(w) = w + TB [ψ](w), w ∈ B, is of class C1,μ(B,C) and satis-
fies (7).

The Jacobian Jf of f is estimated from below by

Jf = |fw |2 − |fw |2 = |1 +ΠB [ψ]|2 − |ψ|2(18)

≥ |1 − M(μ)‖ψ‖μ|2 − ‖ψ‖2
μ >

∣∣∣∣1 − 1
3

∣∣∣∣
2

− 1
32

=
1
3

on B,

and therefore f is a local diffeomorphism.
Now we want to show that f furnishes a 1–1 mapping from B onto its

image. From (13), (14), (16), (17) we infer: There is a constant c0(μ) with

0 < c0(μ) <
1

2M(μ)

such that for
‖q‖μ ≤ c0(μ)

the uniquely determined fixed point of Lq satisfies

|TB [ψ](w) − TB [ψ](w′)| ≤ 1
2 |w − w′ | for w,w′ ∈ B.

From
|f(w) − f(w′)| ≥ |w − w′ | − |TB [ψ](w) − TB [ψ](w′)|

we then infer

|f(w) − f(w′)| ≥ 1
2 |w − w′ | for all w,w′ ∈ B.

Thus the mapping f = idB+TB [ψ] yields a diffeomorphism of class C1,μ(B,C)
from B onto Ω with Ω := f(B). Since there is a constant c1(μ) such that

‖TB [ψ]‖C1,μ(B,C) ≤ 1
2c1(μ)‖ψ‖μ,

we have by (14) and (15)

‖ψ‖μ ≤ 2‖q‖μ if ‖q‖μ ≤ c0(μ).

Thus,
‖f − idB ‖C1,μ(B,C) ≤ c1(μ)‖q‖μ if ‖q‖μ ≤ c0(μ).

Summarizing the preceding results we obtain

Proposition 2. There are constants c0(μ) > 0 and c1(μ) > 0 such that for
any q ∈ C0,μ(B,C) with ‖q‖μ ≤ c0(μ) the Tricomi equation (11) has ex-
actly one solution ψ ∈ C0,μ(B,C) satisfying ‖ψ‖μ ≤ 2‖q‖μ, and the associate
mapping f := idB + TB [ψ] is of class C1,μ(B,C) and satisfies the Beltrami
equation (7). Furthermore, f is a diffeomorphism from B onto Ω where Ω is
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a simply connected domain whose boundary is a regular closed Jordan curve
γ ∈ C1,μ, and we have

‖f − idB ‖C1,μ(B,C) ≤ c1(μ)‖q‖μ.

The inverse g := f−1 transforms ds2 into the isothermal form

g∗ds2 = λ(x, y){dx2 + dy2}, z = x+ iy=̂(x, y) ∈ Ω,

and we have g ∈ C1,μ(Ω,C) and λ ∈ C0,μ(Ω), λ(x, y) > 0.

Given Y ∈ C(Γ ), we have a = |Yu|2, b = 〈Yu, Yv 〉, c = |Yv |2,D = ac − b2,
and so the potential q in (8) depends on Y . Consequently, also ψ, f, g,Ω, γ
and λ depend on Y . We express this dependence by writing f(Y ) = f(Y, ·),
g(Y ) = g(Y, ·), Ω(Y ), γ(Y ) = ∂Ω(Y ), λ(Y ) = λ(Y, ·) for f, g, etc.

A standard estimation procedure shows that g(Y ) is close to idΩ with
respect to the C1,μ-norm if f(Y ) is close to idB with respect to the C1,μ-
norm. Combining this observation with the Propositions 1 and 2, we obtain

Proposition 3. There is an ε∗
2 ∈ (0, 1) with the following property : For any

ε2 with 0 < ε2 ≤ ε∗
2 there exists a number η2(X, ε2) > 0 such that

‖f(Y ) − idB ‖C1,μ(B,C) < ε2,

‖g(Y ) − idΩ(Y )‖C1,μ(Ω(Y ),C) < ε2,

|λ(x, y) − 1| < ε2 for all z = x+ iy ∈ Ω(Y ),

provided that
‖Y − X‖C1,μ < η2(X, ε2).

Now we state a reparametrization result for perturbations Y :

Proposition 4. There is a number ε∗
3 ∈ (0, 1) with the following property :

For any ε3 with 0 < ε3 ≤ ε∗
3 and any ν ∈ (0, μ) there exists a number

η3(X, ε3, ν) > 0 such that the following holds:
For any Y with ‖Y − X‖C1,μ < η3(X, ε3, ν) there is a diffeomorphism

ϕ(Y ) = ϕ(Y, ·) ∈ C1,μ(B,Ω(Y )) from B onto Ω(Y ) which maps B confor-
mally onto Ω(Y ) and satisfies

‖ϕ(Y ) − idB ‖C1,ν(B,C) < ε3.

In complex notation this means: The mapping w �→ z = ϕ(Y,w), w ∈ B,
is holomorphic in B, univalent on B, and satisfies ϕ(Y,B) = Ω(Y ) and
ϕw(Y,w) 	= 0 on B.

Proof. Fix three different points w1, w2, w3 ∈ ∂B and set pj(Y ) := f(Y,wj) ∈
γ(Y ), j = 1, 2, 3. Then f(X,wj) = wj and pj(Y ) → wj if Y → X in C1,μ.
By the Riemann mapping theorem there is a conformal mapping ϕ(Y ) from
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B onto Ω(Y ) which extends to a homeomorphism from B onto Ω(Y ) and
satisfies ϕ(Y,wj) = pj(Y ) for j = 1, 2, 3. On account of the Proposition 2
we may assume that each γ(Y ) has an arc length representation ξ(Y, s) with
‖ξ(Y, ·)‖C1,μ ≤ H0(μ) where the constant H0(μ) is independent of Y provided
that ‖Y − X‖C1,μ < η3 � 1.

Choose a sequence {Yk } with ‖Yk − X‖C1,μ → 0 as k → ∞. Then the
Jordan curves γ(Yk) tend to γ(X) = ∂B in the sense of Fréchet, the points
pj(Yk) ∈ γ(Yk) tend to wj ∈ ∂B as k → ∞, j = 1, 2, 3, and the Dirichlet
integrals of ϕ(Yk) are uniformly bounded. Applying Theorem 3 of Section 4.3,
it follows that ϕ(Yk) tends uniformly on B to the conformal mapping of B
onto itself keeping the points w1, w2, w3 fixed. Hence,

(19) ϕ(Yk) ⇒ idB = ϕ(X) on B as k → ∞.

On the other hand, we infer from a slight variation of the Kellogg–Warschawski
theorem (cf. Kellogg [1], Warschawski [1–5], as well as Sauvigny [16], Chap-
ter IV, §8) that

‖ϕ(Yk)‖C1,μ(B,C) ≤ H(μ) for all k ∈ N

with some constantH(μ). Hence, from any subsequence of {Yk } we can extract
another subsequence {Ykl

} with

ϕ(Ykl
) → ϕ0 in C1,ν(B,C) as l → ∞

for some ϕ0 ∈ C1,μ(B,C), and by (19) it follows that ϕ0 = idB . Then a
standard reasoning yields

ϕ(Yk) → idB in C1,ν(B,C) as k → ∞.

Finally, a well-known argument yields the assertion of the Proposition. �

Now we combine the results of the Propositions 3 and 4. Introducing the
mapping τ(Y ) : B → B by

(20) τ(Y ) := g(Y ) ◦ ϕ(Y ),

we obtain

Proposition 5. There is a number ε∗
4 ∈ (0, 1) with the following property :

For any ε4 with 0 < ε4 < ε∗
4 and any ν ∈ (0, μ) there exists a further number

η4(X, ε4, ν) > 0 such that the following holds:
For any Y with ‖Y − X‖C1,μ < η4(X, ε4, ν) we can find a diffeomorphism

τ(Y ) ∈ C1,ν(B,C) from B onto itself such that

(21) ‖τ(Y ) − idB ‖C1,ν(B,C) < ε4

and Z := Y ◦ τ(Y ) is conformal in the sense

(22) |Zu|2 = |Zv |2 > 0, 〈Zu, Zv 〉 = 0 on B.
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Now we turn to the

Proof of Theorem 1. Given Y ∈ C(Γ ) with ‖Y − X‖C1,μ < η(X, ε4, ν), we
form Z := Y ◦ τ(Y ) ∈ C(Γ ) as above and consider the number ε > 0 as in
the assertion of the theorem. Then a straight-forward estimation shows the
following: Choosing ε4 > 0 sufficiently small, we can find a number δ(ε) with
0 < δ(ε) < ε/2 such that

‖Z − Y ‖C1 <
ε

2
for ‖Y − X‖C1,μ < δ(ε).

Then

‖Z −X‖C1 ≤ ‖Z −Y ‖C1 + ‖Y −X‖C1 <
ε

2
+
ε

2
= ε for ‖Y −X‖C1,μ < δ(ε).

By assumption we then have

D(X) ≤ D(Z).

Moreover, (2) and (22) yield

A(X) = D(X) and A(Z) = D(Z),

and the parameter invariance of A yields

A(Z) = A(Y ).

Finally, we also have A(Y ) ≤ D(Y ), and so we arrive at

A(X) = D(X) ≤ D(Z) = A(Z) = A(Y ) for ‖Y − X‖C1,μ < δ(ε).

This completes the proof of the theorem. �

The proof of Theorem 2 goes along the same lines.
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Minimal Surfaces in Heisenberg Groups

Recently problems concerning minimal surfaces in so-called Carnot–Cara-
théodory structures, particularly in Heisenberg groups, have found much at-
tention. This interesting work is beyond the scope of our treatise, but we
want at least to point out that problems have been treated which are in
many ways similar to questions and phenomena studied for classical mini-
mal surfaces in Euclidean and Riemannian spaces. Besides the construction
of special examples, several authors have studied existence, uniqueness, and
regularity questions, isoperimetric inequalities, Bernstein problems and cali-
brations. The literature on this work is already quite extensive, and therefore
we only quote a few recent publications whose bibliographies will give further
references: Garofalo and Nhieu [1], Garofalo and Pauls [1], Danielli, Garofalo,
and Nhieu [1–3], Ambrosio, Serra Cassano, and Vittone [1], Adesi, Serra Cas-
sano, and Vittone [1], Cheng and Hwang [1], Cheng, Hwang, Malchiodi, and
Yang [1], Cheng, Hwang, and Yang [1,2], Pauls [1,2], Ritoré [1].
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Bibliography

The following references are not complete with respect to the early literature but cover

only some of the essential papers. A very detailed and essentially complete bibliography of

the literature on two-dimensional minimal surfaces until 1970 is given in Nitsche’s treatise

[28] (cf. also Nitsche [37]). Nitsche’s bibliography is particularly helpful for the historically

interested reader as each of its more than 1200 items is discussed or at least briefly mentioned

in the right context, and the page numbers attached to each bibliographic reference make

it very easy to locate the corresponding discussion. We have tried to collect as much as

possible of the more recent literature and to include some cross-references to adjacent areas;

completeness in the latter direction has neither been aspired not attained.

We particularly refer the reader to the following Lecture notes:

MSG: Minimal submanifolds and geodesics. Proceedings of the Japan–United States

Seminar on Minimal Submanifolds, including Geodesics, Tokyo, 1977. Kagai Pub-

lications, Tokyo, 1978
SDG: Seminar on differential geometry, edited by S.T. Yau, Ann. Math. Studies 102,

Princeton, 1982
SMS: Seminar on minimal submanifolds, edited by Enrico Bombieri. Ann. Math. Stud-

ies 103, Princeton, 1983
TVMA: Théorie des variétés minimales et applications. Séminaire Palaiseau, Oct. 1983–

June 1984. Astérisque 154–155 (1987)
GACG: Geometric analysis and computer graphics. Proceedings of the Conference on

Differential Geometry, Calculus of Variations and Computer Graphics, edited by

P. Concus, R. Finn, D.A. Hoffman. Math. Sci. Res. Inst. 17. Springer, New York,

1991
GTMS: Global theory of minimal surfaces, edited by D. Hoffman. Proceedings of the Clay

Mathematics Institute 2001 Summer School, MSRI, Berkeley, June 25–27, 2001.

Clay Math. Proceedings 2, Am. Math. Soc., Providence, 2005

We also mention the following report by H. Rosenberg which appeared in May 1992:

Some recent developments in the theory of properly embedded minimal surfaces in R3.

Séminaire Bourbaki 34, Exp. No. 759 (1992), 73 pp.

Furthermore, we refer to:

EMS: Encyclopaedia of Math. Sciences 90, Geometry V, Minimal surfaces (ed. R. Osser-

man), Springer, 1997. This volume contains the following reports:
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2. Sur la généralisation du problème de Dirichlet. Math. Ann. 69, 82–136 (1910)
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51, 219–257 (1941)

Bolza, O.

1. Vorlesungen über Variationsrechnung. Teubner, Leipzig, 1909

2. Gauss und die Variationsrechnung. In: C.F. Gauss, Werke. Bd. X.2, Abh. 5, Springer,

Berlin, 1922–1923

Bombieri, E.
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8. Sur la détermination des fonctions arbitraires qui entrent dans l’équations intégrale des
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1. Über direkte Methoden bei Variations- und Randwertproblemen. Jahresber. Dtsch.

Math.-Ver. 97, 90–117 (1925)
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4. Boundary regularity for area minimizing currents with prescribed volume. J. Geom.

Anal. 7, 585–592 (1997)

Duzaar, F., Fuchs, M.

1. On the existence of integral currents with prescribed mean curvature. Manuscr. Math.

67, 41–67 (1990)



618 Bibliography

2. On the existence of integral currents with constant mean curvature. Rend. Semin. Mat.

Univ. Padova 85, 79–103 (1991)

3. Einige Bemerkungen über die Existenz orientierter Mannigfaltigkeiten mit
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Ecker, K., Huisken, G.

1. A Bernstein result for minimal graphs of controlled growth. J. Differ. Geom. 31, 337–400

(1990)

2. Interior curvature estimates for hypersurfaces of prescribed mean curvature. Ann. Inst.
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6. Beiträge zur Theorie der Flächen mit besonderer Rücksicht auf die Minimalflächen.
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Theilen ähnlich wird. Astronomische Abhandlungen herausgeg. von H.C. Schumacher,

Drittes Heft, Altona (1825)

2. Werke, Band 4 (Wahrscheinlichkeitsrechnung und Geometrie). Band 8 (Nachträge zu
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Flächentragwerke (IL, Institute for Lightweight Structures), Stuttgart, 1978

Goes, C.C., Simões, P.A.Q.

1. Some remarks on minimal immersions in the hyperbolic spaces. Bol. Soc. Bras. Mat. 16,

55–65 (1985)

Goldhorn, K.H.

1. Flächen beschränkter mittlerer Krümmung in einer dreidimensionalen Riemannschen

Mannigfaltigkeit. Manuscr. Math. 8, 189–207 (1973)

Goldhorn, K., Hildebrandt, S.
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15. Über des Randverhalten quasilinearer elliptischer Systeme mit isothermen Parametern.

Math. Z. 113, 99–105 (1970)

16. Interior gradient estimates for surfaces z = f(x, y) with prescribed mean curvature.

J. Differ. Geom. 5, 149–157 (1971)

17. Elementare Bemerkung zur isoperimetrischen Ungleichung im R3. Math. Z. 132, 319–

322 (1973)
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169–178 (1970)

9. Ein einfacher Beweis für die Regularität der Lösungen gewisser zweidimensionaler Vari-
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Math. 32, 51–57 (1980)

Jost, J., Schoen, R.

1. On the existence of harmonic diffeomorphisms between surfaces. Invent. Math. 66, 353–

359 (1982)

Jost, J., Struwe, M.

1. Morse–Conley theory for minimal surfaces of varying topological type. Invent. Math.

l02, 465–499 (1990)

Jost, J., Xin, Y.L.

1. Bernstein type theorems for higher codimension. Calc. Var. Partial Differ. Equ. 9, 277–

296 (1999)

2. A Bernstein theorem for special Lagrangian graphs. Calc. Var. Partial Differ. Equ. 5,

299–312 (2002)

Jost, J., Xin, Y.L., Yang, L.

1. The regularity of harmonic maps into spheres and applications to Bernstein problems.

arXiv:0912.0447v1 [math.DG], 2 Dec. 2009

Kapouleas, N.

1. Compact constant mean curvature surfaces in Euclidean three-space. J. Differ. Geom.

33, 683–715 (1991)

2. Constructions of minimal surfaces by gluing minimal immersions; cf. GTMS 2005

Karcher, H.

1. Embedded minimal surfaces derived from Scherk’s examples. Manuscr. Math. 62, 83–114

(1988)

2. The triply periodic minimal surfaces of Alan Schoen and their constant mean curvature

companions. Manuscr. Math. 64, 291–357 (1989)

3. Construction of minimal surfaces. Surveys in Geometry 1989/90, University of Tokyo,

1989. Also: Vorlesungsreihe Nr. 12, SFB 256, Bonn, 1989
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Math.-Phys. Kl. 109–130 (1981)

Lewy, H., Stampacchia, G.

1. On the regularity of the solution of a variational inequality. Commun. Pure Appl. Math.

22, 153–188 (1969)

2. On existence and smoothness of solutions of some non-coercive variational inequalities.

Arch. Ration. Mech. Anal. 41, 241–253 (1971)

Li, P., Schoen, R., Yau, S.T.

1. On the isoperimetric inequality for minimal surfaces. Ann. Sc. Norm. Super. Pisa Cl.

Sci., Ser. IV XI.2, 237–244 (1984)

Li-Jost, X.

1. Eindeutigkeit und Verzweigung von Minimalflächen. Thesis, Bonn University, 1991.
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1. Méthodes topologiques dans les problèmes variationnels. Actualités scient. et indust.

188. Herman, Paris, 1934

2. Functional topology and abstract variational theory. Trans. Am. Math. Soc. 35, 716–733

(1933)

Mackay, A.L.

1. Periodic minimal surfaces. Nature 314, 604–606 (1985)

Mancini, M., Musina, R.

1. Surfaces of minimal area enclosing a given body in R3. Ann. Sc. Norm. Super. Pisa, Cl.

Sci., IV Ser. 16, 331–354 (1989)

2. Surfaces of minimal area supported by a given body in R3. Prog. Nonlinear Differ. Equ.

Appl. 4, 319–327 (1990)

Manel, B.

1. Conformal mapping of multiply connected domains on the basis of Plateau’s problem.

Rev. Univ. Nac. Tucumán 3, 141–149 (1942)



Bibliography 649

Mart́ın, F.

1. Complete nonorientable minimal surfaces in R3; cf. GTMS 2005

Mart́ın, F., Nadirashvili, N.

1. A Jordan curve spanned by a complete minimal surface. Arch. Ration. Mech. Anal. 184,

285–301 (2007)

Marx, I.

1. On the classification of unstable minimal surfaces with polygonal boundaries. Commun.

Pure Appl. Math. 8, 235–244 (1955)

Massari, U., Miranda, M.

1. Minimal surfaces of codimension one. North-Holland Math. Stud. 91. North-Holland,

Amsterdam, 1984

Massey, W.

1. Algebraic topology: an introduction. Brace & World, Harcourt, 1967

Matelski, J.

1. A compactness theorem for Fuchsian groups of the second kind. Duke Math. J. 43,

829–840 (1976)

McShane, E.J.

1. Parametrizations of saddle surfaces with applications to the problem of Plateau. Trans.

Am. Math. Soc. 35, 716–733 (1933)

2. On the analytic nature of surfaces of least area. Ann. Math. (2) 35, 456–473 (1934)

Meeks, W.H.

1. The conformal structure and geometry of triply periodic minimal surfaces in R3. Ph.D.

thesis, Berkeley, 1975

2. The conformal structure and geometry of triply periodic minimal surfaces in R3. Bull.

Am. Math. Soc. 83, 134–136 (1977)

3. Lectures on Plateau’s problem. Escola de Geometria Differencial, Universidade Federal
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6, 159–161 (1830)

2. Zur Theorie der Curven kürzesten Umringes, bei gegebenem Flächeninhalt, auf krummen
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3. On the analytic continuation of H-surfaces across the free boundary. Analysis 22, 201–

218 (2002)
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Pérez, J., López, F.J.
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Séminaire Bourbaki, vol. 1991/92, 759 (1992) 66 pp.

4. Minimal surfaces of bounded finite type. Bull. Soc. Math. Fr. 123, 351–354 (1995)

Rosenberg, H., Toubiana, E.

1. Some remarks on deformations of minimal surfaces. Trans. Am. Math. Soc. 295, 491–499

(1986)



662 Bibliography

2. A cylindrical type complete minimal surface in a slab of R3. Bull. Sci. Math. 111, 241–

245 (1987)

3. Complete minimal surfaces and minimal herissons. J. Differ. Geom. 28, 115–132 (1988)

Ross, M.

1. Complete minimal spheres and projective planes in Rn with simple ends. Preprint

Rozet, O.

1. Sur une surface dont la transformée de Lie est la surface minima d’Enneper. Bull. Soc.
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2. Flächen vorgeschriebener mittlerer Krümmung mit eineindeutiger Projektion auf eine

Ebene. Math. Z. 180, 41–67 (1982)

3. Ein Eindeutigkeitssatz für Minimalflächen im Rp mit polygonalem Rand. J. Reine
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3. Instabile Minimalflächen mit halbfreiem Rand. Analysis 2, 315–335 (1982)
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Poincaré, Anal. Non Linéaire 2, 157–165 (1985)

Tomi, F.

1. Ein einfacher Beweis eines Regularitätssatzes für schwache Lösungen gewisser ellipti-
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12. Über elliptische Differentialgleichungen 4. Ordnung mit einer starken Nichtlinearität.
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Jordan contours in Rn. Astérisque 154–155, 39–50 (1987)

17. Global analysis and Teichmüller theory. In: Tromba, A. (ed.) Seminar on new results

in nonlinear partial differential equations. Aspects of Mathematics 10. Vieweg, Braun-

schweig, 1987

18. Open problems in the degree theory for disc minimal surfaces spanning a curve in

R3. In: Hildebrandt, S., Leis, R. (eds.) Partial differential equations and calculus of

variations. Lect. Notes Math. 357, pp. 379–401. Springer, Berlin, 1988

19. Existence theorems for minimal surfaces of non-zero genus spanning a contour. Mem.

Am. Math. Soc. No. 382, vol. 1 (1988)

20. Seminar on new results in nonlinear partial differential equations. Aspects of Mathe-

matics E10. Vieweg, Braunschweig, 1987

21. Intrinsic third derivatives for Plateau’s problem and the Morse inequalities for disc

minimal surfaces in R3. Calc. Var. Partial Differ. Equ. 1, 335–353 (1993)

22. Dirichlet’s energy on Teichmüller’s moduli space and the Nielsen realization problem.

Math. Z. 222, 451–464 (1996)

23. On the Levi form for Dirichlet’s energy on Teichmüller’s moduli space. Appendix E in

Tromba [19]

24. Teichmüller theory in Riemannian geometry. Lect. Notes Math. Birkhäuser, Basel, 1992
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malflächen. In: Jürgens, H., Saupe, D. (eds.) Visualisierung in Mathematik und Natur-

wissenschaften, Springer, Berlin, 1989

Wolf, J.

1. Spaces of constant curvature. McGraw-Hill, New York, 1967

Wolf, K.L.
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Fröhlich, S., 421

Fujimoto, H., 193

Fujimoto’s theorem, 193

Functional Aε, 301

Fundamental existence theorem, 339

Fundamental form

first, 10, 15

second, 10, 11, 15, 19

third, 10, 15

Fusco, N., 311

G

Gackstatter, F., 203, 206

Garnier, R., 336

Gauss, C.F., 48, 50, 239

Gauss conformal mapping, 49

Gauss curvature, 14, 23, 28

Gauss curvature K, 17

Gauss equations, 28

Gauss map, 9

Gauss map of a minimal surface, 74, 105

Gauss–Bonnet formula, 38, 404

Gauss–Bonnet theorem, 36, 50, 370, 405

Gaussian notation, 15

Gauss’s representation formulas, 24

General Douglas problem, 535

General Maximum Principle, 524

General Plateau problem, 241, 584

General problem of Plateau, 533

General Removability Theorem, 524

Generalized Dirichlet integral, 267, 272

Generalized Plateau problem, 354

Geodesic, 20, 46, 51, 130, 139

Geodesic curvature, 12, 46, 50

Geodesic curve, 20, 46

Geodesic polar coordinates, 387

Germain, S., 53

Giaquinta, M., 421

Giusti, E., 88, 345

Global Lichtenstein theorem, 337

Global minimal surface, 183, 184

Goursat transformation, 120

Gradient estimates for H-graphs, 519

Gulliver, R., 338, 339, 342, 349, 386, 496

Gyroid, 227

H

H-surface

μ-stable, 380

disk-type, 367

immersed, 367

nonstable, 380

stable, 380

strictly stable, 380

unstable, 380

Haar, A., 87, 335

Hairy disks, 248

Halfspace theorem, 207

Hamilton–Cayley theorem, 15

Hardt, R., 342, 345

Harvey, R., 88, 90

Hass, J., 338

Hattendorf, K., 201

Haubitz, I., 156

Hausdorff, F., 461

Heinz, E., 72, 87, 313, 338, 353, 354, 391,

421, 422, 473–475, 484–486, 487, 516

Heinz’s formula for the Schwarz operator,

487

Helicoid, 144

Helix, 144

Helly, E., 315



684 Index

Henneberg’s surface, 166

Heppes, A., 361

Hessian form, 45

Hessian tensor, 44

Higher order Enneper surfaces, 211

Hilbert, D., 249

Hildebrandt, S., 49, 88, 313, 327, 337, 338,

349, 357, 421, 496, 501, 530, 586, 589

Hipparch, 49

Hoffman, D., 200, 204–208

Hohrein, J., 474

Holomorphic curve, 94

Hopf, E., 87, 88

Hubbard, J.H., 341

Hurwitz, A., 584

Hyperbolic point, 19

Hyperbolic type, 189

I

Imbusch, C., 473

Immersed minimal surface

weakly stable, 411

Index theorem, 353

Index theorem for disk surfaces, 355

Inner variation, 263, 539

Inner variation ∂D(X, λ) of the Dirichlet

integral, 267

Integral-free representation, 117

Isoperimetric inequality, 327

Isoperimetric inequality for harmonic

surfaces, 454

Isoperimetric inequality for minimal

surfaces, 330

Isotropic curve, 94, 99, 104

Isotropy relation, 94

J

Jacobi, C.G.J., 335

Jacobian, 6

Jakob, R., 423, 473–475, 489

Johann Bernoulli’s principle of virtual

work, 239

Jordan domain, 495

Jordan domain in R2

2h0-convex, 495

support disk of a, 495

Jorge, L.P.M., 206

Jörgens, K., 87

Jost, J., 49, 88, 314, 337, 338, 473, 474,

585, 586

K

k-circle domain, 536

(K1)-surface, 206

Karcher, H., 139, 204, 207, 208, 219, 227

Kaul, H., 338, 357

Kellogg, O.D., 595

Kinderlehrer, D., 362

Kinds of degeneration, 552

Kneser, H., 296

Kneser’s lemma, 296

Kneser’s transversality theorem, 84

Koebe, P., 49, 578, 584

Koebe’s mapping theorem, 583, 586

Koiso, M., 354

Korn, A., 87

Kruskal, M., 352

Kurzke, M., 554, 586

Kuwert, E., 338

L

Ladyzhenskaya, O.A., 371

Lagrange, J.L., 49, 201, 239, 335

Lamarle, E., 361

Lambert, J.H., 49

Laplace, P.S., 49, 53

Laplace operator, 29

Laplace–Beltrami equation, 44

Laplace–Beltrami operator, 43

Lau, C.P., 515

Lawlor, G., 90

Lawson, H.B., 87, 88, 90

Least area problem, 240

Legendre, A.-M., 201

Leichtweiß, K., 203

Lemma on ε-conformal mappings, 274

Length functional, 46

Lesley, F.D., 339

Levi-Civita, T., 50

Levy–Courant construction, 352

Levy–Courant examples, 293, 350

Lewerenz, F., 354, 484

Lewerenz examples, 481

Lewy, H., 548

Lewy’s regularity theorem, 404

Lichtenstein’s mapping theorem, 65, 586

Lichtenstein’s theorem, 36, 77, 250, 310,

311, 314

Liebmann, H., 517

Limes Inferior of {Mj }, 461

Limes Superior of {Mj }, 462

Lin, F.H., 343



Index 685

Line of curvature, 21, 98, 114, 130

Linear isoperimetric inequality, 334

Lipschitz, R., 50

Liquid edges, 360

Local uniqueness theorem, 407

Lopez, F.J., 207, 363

Lower bound for the area, 108

Lower type, 585

Luckhaus, S., 88, 586

M

Main Theorem, 270

Mapping

anticonformal, 35

conformal, 35

strictly conformal, 35

Mappings

equivalent, 6

strictly equivalent, 7

Mart́ın, F., 363

Marx, I., 422, 475, 480

Marx–Shiffman function, 354

Marx–Shiffman function Θ∗, 480

Marx–Shiffman mapping Z∗, 480

Maximal Height Theorem, 517

Maximal Radius Theorem, 516

Mean curvature, 14, 23, 72, 76–78, 273

Mean curvature companions, 227

Mean curvature H, 17

Meeks, W.H., 204–207, 228, 342, 352

Mercator, G., 49

Metric form, 10

Meusnier, J.B., 48, 49, 201, 239

Mickle, E.J., 88

Minding, F., 50

Minding’s formula for the geodesic

curvature, 31

Minicozzi, W.P., 228

Minimal area problem, 299

Minimal path, 440

Minimal submanifold of Rn+p, 87

Minimal surface, 56, 60, 72, 76–78, 93, 184

stable, 89

strictly stable, 89

Minimal surface equation, 59

Minimal surface equation in divergence

form, 60

Minimal surface operator, 495

Minimal surfaces in Heisenberg groups, 597

Minimum problem P(Γ ), 253, 276

Miranda, M., 530

Mo, X., 193

Modifications of surfaces, 563

Modified variational problem

Aε → min in C(Γ ), 301

Monge, G., 48, 201

Monodromy principle, 294

Morgan, F., 90, 349

Morrey, C.B., 49, 87, 274, 313, 314, 326,

337, 586

Morrey’s lemma, 274

Morse, M., 335, 454, 457, 472, 473

Morse equality, 356

Mountain pass lemma, 438

Mountain Pass Theorem, 472

Müller, F., 501
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Radó’s lemma, 295

Reflection principles, 209, 289

Regular curve, xi

Regular global minimal surface, 186

Regular surface, xi

Regularity, xi

Relative minimizer of A in C(Γ ), 589

Relative minimizer of D in C(Γ ), 589

Relative minimum of area, 84

Rellich’s equation, 367

Representation formula of Monge, 104

Representation formula of Weierstrass, 117

Restricted minimum problem P∗(Γ ), 254

Ricci, O., 50

Riemann, B., 49, 201, 202, 335, 363

Riemann curvature tensor, 28

Riemann mapping theorem, 245, 270, 302,

305

Riemann’s minimal surface, 221

Ros, A., 207

Rosenberg, H., 205, 208, 228

Royden, H.L., 339

Ruchert, H., 346, 354, 386, 423

Ruled surface, 145

S

Saddle point property, 438, 445

Sauvigny, F., 49, 293, 353, 380, 389, 391,

421, 423, 475, 488, 489, 494, 501, 508,

515, 522, 530, 589, 595

Sauvigny’s uniqueness theorem, 508, 510

Scherk, H.F., 201

Scherkian tongs, 508, 509

Scherk’s doubly periodic surface, 215

Scherk’s fifth surface, 213

Scherk’s first surface, 159

Scherk’s saddle tower, 213

Scherk’s second surface, 146, 149

Scherk’s surface S(a), 508

Schlesinger, L., 484

Schneider, R., 293

Schneider’s example, 422

Schoen, A., 203, 204, 227

Schoen, R., 90, 206, 349, 394, 421

Schoenflies, A., 222
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