
Chapter 1
Concepts of Symbiotic Robot Organisms

1.1 From Robot Swarm to Artificial Organisms:
Self-organization of Structures, Adaptivity and
Self-development

Serge Kernbach

Collective systems possess very interesting properties. They are flexible, reliable,
have extended capabilities for adaptation, self-organization and self-development.
Many natural systems, such as atomic or molecular phenomena (Balzani et al., 2003),
social insects or animals (Camazine et al., 2003) are collective on the level of their
aggregation or population. Since these survived millions of years in the course of
multiple evolutionary processes, we can learn from them how to achieve long-term
stability, diverse functionality and reliability for artificial collective systems.

In technical progress, in particular in robotics (Siciliano & Khatib, 2008), arti-
ficial collective systems are also a focus of research and technological develop-
ment. However, due to a specific structural and functional organization, collective
systems represent several essential challenges for researchers. We can emphasize
three most important challenges whose solutions may contribute not only to techno-
logical advancements but also to theoretical understanding of underlying processes
in collective systems. These challenges are structural adaptability, evolvability and
self-development and, finally, a long-term independency of these systems.

Structures in natural systems, for example protein structures of bio-molecular
systems (Alberts et al., 2008) or social structures in groups of animals, are a ma-
jor factor in defining a collective functionality and finally a collective behav-
ior. Features of individuals are still important, however a collective is capable
of demonstrating a functionality not available to individuals. Designers of artifi-
cial systems are able to create not only functions and behavior, but also to de-
fine new structures (Kernbach, 2008). The interplay between structures, functions
and behavior allows multiple self-organizing and self-developmental processes.
Many holistic and reduction approaches have been suggested to deal with this
problem, such as classical and modern control theory (Kolesnikov, 1994), methods
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from distributed AI and multi-agent systems (Weiss, 1999), bio-inspired solutions
(Floreano & Mattiussi, 2008) and synergetics (Haken, 1988). However, due to an
emergence on functional and behavioral levels, the complexity of such structural
systems is very high. This, and a lack of understanding of structural phenomena, of-
ten hinders researchers in realizing desired properties of artificial systems by using
structure-function dependencies.

Adaptive and self-developmental processes in collective systems happen on dif-
ferent levels and are defined in a wide range from adaptation, self-defence and self-
healing to unbounded self-evolving. These are very attractive and desired properties
allowing systems to develop themselves from simple to complex ones, to increase
their own functional diversity and improve their own control. Working with these
processes in artificial systems, we encounter several problems. First, technical col-
lective systems are driven by two different forces: design goal and adaptive fitness.
Such issues as long-term controllability, predictability and validation are the focus
of research here. Secondly, biological concepts of adaptation and self-development
are valid for populations, involving such processes as death, birth, reproduction and
others, which are not very natural for robotics. Therefore we are looking for such
approaches, which can be applied even for a single robot, do not require very power-
ful computational resources and may be utilized in short-term operational situations.
We call them on-line and on-board self-developmental processes. It is obvious, that
an exploration of new techniques, for example a combination of evolution and self-
organization (so called “evolutionary self-organization”) or traditional AI-based de-
cision making, planning or learning with bio-inspired approaches, is required.

Long-term independency and is an integrating property of many other factors. It
can be understood as a capability to work independently a long time period with-
out the need for continuous human maintenance and supervision. This property de-
pends largely on reliability and good engineering of the system, on capabilities of
regulatory autonomy to deal with unbounded issues in self-development, and can be
considered as the most challenging task in autonomous robotics.

Research in collective robotics is intensively addressing these problems. One
methodological approach is represented by networked robotics (Kumar et al., 2008).
Networked robotics assumes that essential communication resources are necessary
for problem solving. Another alternative is given by swarm robotics (Parker, 2008),
which involves interactions instead of communication. Both approaches utilize in-
dividual functionality of robots in creating behavioral emergence, i.e. individual
functionality → emergent collective behavior. This scheme can address all three
challenges from the viewpoint of functions and behavior, such as exploring social
hierarchies, ecological dynamics or population-based evolution. However, an essen-
tial problem still remains untouched by these systems; they cannot build structures,
i.e. no structural level is available.

The structural level is important for investigating the generating dependencies
such as collective structures → emergent collective functionality → emergent col-
lective behavior. This reflects the very important role of functional emergence
which appears in such processes as embryogenetic, morphogenetic and ontogenetic
development, cell differentiation, intrinsic evolution in robot systems and others.
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To investigate dependencies between structures and functions, we need a new class
of robot systems having a cellular-like structure and capable of autonomous self-
assembling into organisms. Since these new systems possess self-developmental
features, it is expected that several system-relevant (i.e. not relevant for individual
robots) mechanisms and functions will emerge. A capability of artificial organisms
to modify their own morphology and size means that such mechanisms and func-
tions should be very flexible, scalable and be implemented in a specific cooperative
way, i.e. without essential centralization. Such cooperation between different regu-
lative, structural and behavioral aspects is the central issue of artificial organisms.
For a similar co-dependent functionality of natural systems, the notion of symbio-
sis is used. To emphasize the cooperative aspect of structural self-developmental
phenomena in these systems, we call them symbiotic multi-robot organisms.

Symbiotic multi-robot organisms allow us to address the challenges of collec-
tive robotics from the viewpoint of structures and developmental plasticity. This in-
creases the number of available degrees of freedom for emerging control, where
the system can change its own structures to adapt to its environment. This en-
ables new structural self-organization and can involve bounded and unbounded
self-developmental processes. In general, this can result in extended reliability,
adaptability and long-term independence of such artificial systems. In addition to
new technology, this may lead to deeper understanding the phenomena of collective
intelligence and artificial evolution.

1.1.1 Mono- and Multi- functional Artificial Self-organization

Collective systems consist of many independent interacting elements, we can find
them in living and nonliving nature, see Fig. 1.1(b,c); at all scales: from nano- and
micro-scales, such as bacteria in Fig. 1.1(a) to large-scales such as galaxies. Cur-
rently, we stet a growth of different artificial collective systems, see Fig. 1.1(d).

Collective systems possess many amazing properties and phenomena, which fas-
cinate researchers. These systems scale well and are very reliable, they possess
different self-regulating mechanisms, they are capable of self-organization and
emergent phenomena – when ordered macroscopic behavior emerges from interac-
tions among microscopic elements. Macroscopic behavior is often visible as differ-
ent dynamic or static patterns, as shown in Fig. 1.2. When representing the structure
of collective systems, we have to draw two representation levels:

microscopic level of consideration is the level of interacting elements
(Fig. 1.1), where individual behavior is the focus and collective properties
of the system are not observable; macroscopic level of consideration is the
level where the whole collective behavior (Fig. 1.2) is visible to an external
observer and properties of individuals are neglected.

One of the key problems in collective systems is that “we cannot proceed directly
from microscopic to macroscopic level, i.e. from individual models to emergent
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(a) (b)

(c) (d)

Fig. 1.1 Examples of collective systems – microscopic level of consideration; (a) Vib-
rio cholera bacteria in SEM micrograph (courtesy of Patrick Hunt and Andreea Seicean
phunt@stanford.edu); (b) Swarm of ants; (c) Water droplets on glass; (d) Artificial swarm
of micro-robots Jasmine.

(a) (b)

Fig. 1.2 Macroscopic patterns emerge as a result of different self-organizing processes
– macroscopic level of consideration; (a) Benard-cells, (from presentation of E. Laurien,
Rayleigh-Benard-Konvektion, University of Stuttgart,Germany); (b) Patterns in nature (with
permission of Bernhard Mühr).
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collective behavior. If we need some specific collective behavior, we do not know
which individual models can produce it” (Arnold, 1988, p.212). The main reason
is the enormous complexity generated by interactions among components. Each in-
teraction step creates a new correlation cascade and this dramatically increases the
total complexity (Prigogine, 1962). However, complexity in collective systems is
distributed in different way. To describe it, the notion of operational principle is
introduced (Kernbach, 2008).

Collective systems with vertical operational principle have strong hierar-
chies in their organization: elements on the lowest-level are ruled by a few
elements on higher levels. The organization and distribution of complexity
looks like a pyramid: high complexity below and a low complexity on the top.
Collective systems with horizontal operational principle do not have hier-
archical organization, their complexity is similar on all levels of abstraction.

Operational principles are directly related to the problem of structures and
control (Turchin, 1977). Collective systems with the vertical operational principle
utilize hierarchical control (Vinter, 2000). Systems with horizontal operational prin-
ciple use self-organizing control mechanisms (usually away from instabilities) with-
out growing hierarchies. This makes the development of such mechanisms more
difficult, however horizontal systems are very scalable and reliable.
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Fig. 1.3 Two levels of consideration –
relation between functions and behavior.

Elements on the microscopic level be-
have according some local interaction rules,
we denote them as functions Fi, see Fig. 1.3.
Moreover, all of Fi are on the same level
of hierarchy, in other words there is no ex-
plicit control in this system. Fi have some
control parameters, which can depend on
environmental conditions as well as on
internal parameters. On the macroscopic
level we observe a collective functionality
Fmacro. There are two types of Fmacro. Let us
consider the Fig. 1.4(a). This is a typ-
ical heterogeneous collective traffic sys-
tem, performing a rescue operation on
the highway. Combining microscopic func-
tionality Fi of each vehicle in this sys-
tem, we can observe a multitude of
Fmacro, such as collective transportation,
different rescue missions and others. In
Fig. 1.4(b) we show another collective sys-

tem – artificial salamander, developed in biologically Inspired Robotics Group,
EPFL (Chevallier et al., 2008). Each segment of this system is autonomous
in terms of behavioral activities and is synchronized with other segments
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(a) (b)

Fig. 1.4 Examples of collective systems with mono- and multi- functional Fmacro; (a) Hetero-
geneous multi-functional collective system; (b) Artificial salamander (biologically inspired
robotics group, EPFL), demonstrating mono-functional behavior (Chevallier et al., 2008).

through bio-inspired signal transmission. All segments are connected to each other
and the whole system can demonstrate a functional pattern of specific anguine-like
locomotion.

Fmacro is multi-functional, when it can demonstrate many different functional
patterns. Moreover, diversity degree of Fmacro depends on heterogeneity and a
common number of elements. Fmacro is mono-functional, when it can demon-
strate only one homogeneous functional pattern, parameterized by one or sev-
eral parameters.

Both, mono- and multi- functional systems possess several advantages and dis-
advantages. Most mono-functional systems (both collective and not collective) are
cheaper and simpler from a control perspective. When we consider modern manu-
facturing such as flexible (Qiao et al., 2006) or reconfigurable manufacturing sys-
tems (Galan et al., 2007), we encounter mostly only mono-functional systems. In
general, mono-functional systems are more attractive for creating technically useful
behavior. Disadvantages of mono-functional systems are low reliability and scala-
bility compared to multi-functional systems.

Collective functionality Fmacro can be random, chaotic and, in several cases, can
represent an ordered (or synchronized) pattern. This ordered collective behavior
may have forms of symmetrical patterns, as shown in Fig. 1.2 or, in general, it may
be synchronized in spatial, temporal and functional ways. The process, leading to
ordered macroscopic behavior Fmacro through interactions between Fi, is denoted as
self-organization. “The self-organization is a process by which global external influ-
ence stimulate the start of internal for the system mechanisms, which bring forth the
origin of specific structures in it” (Bushev, 1994, p. 24). We will denote this process
as functional self-organization. In artificial collective systems, the designer can
change interaction among elements and thereby modify their collective properties.
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All Fi can be created in such a specific way, that collective behavior has an ordered
character – this can be denoted as artificial functional self-organization. As al-
ready mentioned, the problem of creating purposeful self-organization, as well as a
general problem of emergent phenomena, is one of complexity. There is no way to
predict analytically such rules F , which will lead to the desired collective behavior.
However, self-organization possesses several advantages making this phenomenon
attractive in practical applications:

- Flexibility of self-organized collective behavior. Collective behavior in artificial
systems can be easily changed by modifying interactions. Even a small change, e.g.
around critical points, can qualitatively change the whole collective behavior. The
mechanisms of “adaptive self-organization” can provide a high degree of flexibility.

- Reliability and Scalability. Since all Fi are on the same level of hierarchy,
some elements can be removed (destroyed) without changing collective function-
ality. Scalability of collective systems is based on the same principle. When self-
organized mechanisms provide scalability for load parameters, like number of
elements or diversity (Constantinescu et al., 2004), collective systems may be scal-
able or even super-scalable, see Sect. 1.3.

In the following section we extend the notion of self-organization for the struc-
tural case.

1.1.2 Collective Robotics: Problem of Structures

Consider now self-organization in technical collective systems, in particular in col-
lective robotics, we remark that these systems possess additional degree of free-
dom. They are able to change their own macroscopic structures. These structures
are topologies of information networks, neighborhood connectivity or even 3D
structures. We consider an example of such structures based on collective per-
ception in a robot swarm, as shown in Fig. 1.5. To recognize large objects, small
swarm robots should create a network around the object of interest. Important are
not only topologies (open, closed, chain-like, star-like), but also connectivity of
robots because it results in different object recognition algorithms running in each
robot (Pradier, 2005). In Fig. 1.5 we can observe two different networks, open-chain
in Fig. 1.5(a) in experiments with color perception in swarm (Zetterström, 2006)
and surrounding the object in Fig. 1.5(b) in collective perception of large ob-
jects (Kornienko et al., 2005). In this way, robots have several structural rules of
how to create different networks. In turn, the emerging structure influences the local
functional rules in each robot and, finally, the whole swarm demonstrates different
collective perception behavior.

Normally, structures and functionality are closely related to each other. By chang-
ing macroscopic structure, the system also changes its own functionality and corre-
spondingly behavior (Kernbach, 2008). The relation between structures, functions
and behavior can be represented as shown in Fig. 1.6. We denote this relationship
as “generating” because the upper level generates the lower level, i.e. structures
generate functions and functions generate behavior. However, the relation between
structures and functions is non-trivial and several types of this relation are observed.
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(a) (b)

Fig. 1.5 Examples of different network structures in collective perception, lines show com-
munication between robots; (a) Experiments in color perception in swarm, robots create
open-chain network and recognize an object by a feature matching (Zetterström, 2006); (b)
Collective perception of large objects, robots create close-chain network and recognize an
object by a probabilistic approach (Kornienko et al., 2005).
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Fig. 1.6 Relation between structures, functions and behavior.

In the first case, such
as collective perception in
Fig. 1.5, structural rules
generate functional rules.
For example, the struc-
ture of the network is de-
fined by structural rules,
by the number of locally
achievable robots and by
geometry/size of the ob-
ject. In turn, the amount of
information flowing from
robot to robot depends on
the topology. Each robot
adapts its own processing
rules (i.e. functionality) to
this information flow. Col-
lective perception is finally
defined by combination of
different processing rules.
In this way, collective behavior is defined by interacting individual functionalities,
in turn, defined by the structure of the network. More generally, we can observe here
two emergent processes at functional and structural levels with multi-functional col-
lective activity.

In the second case, elements create different structures with mono-functional
macroscopic functionality. This functionality ultimately demonstrates a behavior. A
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(a) (b) (c)

Fig. 1.7 Different structures and functionality; (a) Initial not aggregated modules; (b) Aggre-
gated snake-legged structure and resulting crawling locomotive functionality; (b) Aggregated
6-leg structure and resulting legged functionality.

famous example are L-systems, proposed by Aristid Lindenmayer in 1968 (see e.g.,
(Prusinkiewicz & Hanan, 1980)). The central notion of L-systems is the concept of
rewriting, i.e. successive replacing a simple initial object using a set of rewriting
rules. These replacing rules can be viewed as structural rules, producing differ-
ent tree-like fixed patterns (they can be viewed as a mono-functional activity), see
more in Sect. 2.4. Robots, which are able to dock to each other and create 3D func-
tional organisms, are another example of mono-functional macroscopic functional-
ity. Topological models of such robots are shown in Fig. 1.7(a). These models have
rotational and bending degrees of freedom (Kornienko et al., 2007). Following spe-
cific connection (structural) rules, they can create different macroscopic structures,
such as snake-like or 6-legged systems, see Fig. 1.7(b-c). As we observe, these 3D
structures possess only mono-functional locomotion, defined by the corresponding
snake-like or legged motion principle.

Considering Fig. 1.7(b-c), we should take into account not only spatial function-
ality, but also diverse sensing, homeostatic, energetic and other processes, which
will run in real robots. Depending on a spatial position, modules can specialize in
performing different tasks. For example, in the topological model of a 6-leg organ-
ism shown in Fig. 1.7(c), we can imagine that only a few elements will perform
actuation (e.g. they specialize as active joints), elements in the middle take a role of
information processing, there are sole-, front- or back- sensor elements. We observe
in this case a combination of emergent and macro-functional approaches, as shown
in Fig. 1.6.

By analogy with functional self-organization, we define structural self - orga-
nization as a process leading to emergence of different microscopic and macro-
scopic functional patterns, which, in turn, emerge as collective phenomena on
behavioral level. Since in artificial systems corresponding structural and functional
rules can be changed, we denote self-organization in such systems as artificial
structural self-organization. In Table 1.1 we collect several characteristics of col-
lective systems capable of structural phenomena. The main difference between func-
tionally and structurally self-organizing systems consists of a higher developmental
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Table 1.1 Several characteristics of collective systems capable of structural phenomena.

Level Advantages Problems

Regulatory Self-regulation Long-term stability
Internal homeostasis and self-healing Possible communication overhead
High developmental plasticity Long-term controllability

Structural High reliability and scalability
Dynamical change of structures Predictability of functional emergence

Functional Mono-functional behavior
Dynamical change of functionality Predictability of behavioral emergence
Emergence of functionality Difficulties with analytical prediction

Behavioral New class of adaptive behavior Double emergence

plasticity in the last case. In the next section we consider using this plasticity for
adaptation and self-development.

1.1.3 Adaptability and Self-development

In previous sections we considered collective systems capable of structural self-
modification and briefly introduced the advantages of this approach in relation to
extended adaptability. This section is devoted to a deeper treatment of adaptability
and principles of self-modification.

Adaptability is often considered in biological terms of natural evolu-
tion (Williams, 1996) or environmental uncertainty (Conrad, 1999) as well as in
management and business processes (Gurvis & Calarco, 2007). There have been
several attempts to create a common theory of adaptability, such as the approach
suggested by Michael Conrad (Conrad, 1999). Overviewing the vast literature
on the field of adaptation, we can recognize three main streams driving further
development and representing different methodologies and different approaches
to adaptation. The first and oldest stream is related to the theory of adaptive
control. Several early works in adaptive control date from the late 50s - early
60s (Whitaker, 1959), (Osbourne et al., 1961). In the mid-late 70s there appeared
several issues related to temporary stabilities (Egardt, 1979), which in turn led
to iterative control re-design and identification, and contributed in the mid-80s to
robust adaptive control (Anderson et al., 1986), (Rohrs et al., 1985). Overviews of
adaptive architectures can be found in textbooks (Narendra & Annaswamy, 1989),
(Sastry & Bodson, 1989), which can be generalized as a high-level architecture,
shown in Fig. 1.8(a) (Anderson, 2005).

Adaptive control consists of two parts, a conventional feedback-based control
loop and adaptive part, depicted by the dashed line in Fig. 1.8(a). The environment
is not explicitly integrated into this model, it is implicitly reflected by introducing
disturbances and by uncertainties in the plant. The goal of the adaptive part is to
estimate the behavior of a plant (by the identifier) and to calculate dynamically
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Fig. 1.8 A high-level architecture for (a) adaptive control (b) adaptive behavioral systems.

the control law (by the control law calculator). When in optimal control, a control
law is designed off-line by a designer, an adaptive controller does it on-line. Most
challenges in adaptive control theory are concentrated around adaptation of control
to parameters of a plant when these parameters are unknown or changing.

The second mainstream of adaptation is located around adaptive behavior, which
first arises within the AI community, e.g. (Beer, 1990), and involves cognitive aspects
of adaption (Keijzer, 2003). There appear a few new components in the scheme from
Fig. 1.8(a): explicit environment, sensing and actuation, as well as the deliberative
cycle, shown in Fig. 1.8(b). When the reactive part of this scheme is in fact the opti-
mal controller from Fig. 1.8(a), the deliberative part represents a new AI component.
The adaptive system is now embedded into the unpredictable/dynamically changing
environment; these systems are often referred to as situated systems (Mataric, 2002).
Sensing and actuation represent a “body” of the system, intelligence (and so adap-
tation) is treated in term of embodiment (Pfeifer et al., 2006). Achieving adaptiv-
ity in this context is spread into several approaches: different learning techniques in
reactive and deliberative parts (Bull et al., 2007), (Butz, 2002), (Puterman, 1994),
behavior-based approaches (Kernbach et al., 2009c), adaptive planning and reason-
ing (Weiss, 1999), biological inspiration in cognition (Cliff, 2003), evolutionary ap-
proaches (Alba & Tomassini, 2002) and many others. The goal of adaption can be
formulated as achieving desired environmental responses according to some selected
fitness/reward criteria.

The third mainstream towards adaptation is related to the community around dist-
ributed and software-intensive systems, computational, communication and sensor
networks. With some degree of generalization, the business applications can be also
related to this mainstream (SAP, 2005). The environment involves explicit users;
the system itself is separated into different levels (applications), which run in par-
allel (Ledeczi et al., 2000). The goal of adaptation here is related to scalability,
self-optimization and self-protection, recognition of context, as well as to the
software-engineering issues addressing reliability (Cheng et al., 2008).

Based on this overview, we can say that adaptability represents a key point of sys-
tems working in real environments. Different uncertainties, variation of parameters
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or even the appearance of unknown situations requires adaptive mechanisms, which
allow the system to fit to these changed conditions. However, technical systems
possess a goal-oriented behavior, they should be adaptive but also still be capable
of achieving their design goals. To some extent, these systems are driven by two
different forces: by fitness and by goal. In some cases, the goal of the system can
also be focused on its own development. Here, the goal is transformed to the so-
called self-concept and the system undergoes self-developmental processes. We now
consider adaptive mechanisms and self-development in more detail.

Adaptation, Environment and Control. Since environmental changes require an
adaptive reaction from a system, which in turn requires specific control mechanisms,
we can divide changes and reactions into those forecast in advance and correspond-
ingly those not forecast in advance. This division is relative, because in practical
situations each change has forecasted and not forecasted components.

Adaptability is closely related to environmental changes and the ability of a
system to react to these changes and the capability of the designer to forecast
reaction of the environment to the system’s response. Therefore adaptability
is defined in term of the triple-relation: environmental changes→ system’s
response → environmental reaction. In general, adaptability is the ability of
a collective system to achieve desired environmental reactions in accordance
with a priori defined criteria by changing its own structure, functionality or
behavior initiated by changed environment.

In Table 1.2 we roughly specify four different categories of environmental
changes. According to environmental changes from this table, we can identify five

Table 1.2 Four types of environmental changes in robotic applications and examples of cases
both forecast and not forecast in advance.

Environmental
changes leading to:

Examples: Forecast in Advance Examples: Not Forecast in Advance

Appearance of new
situations

Installation of industrial robots in a
new workshop

Work in previously unexplored en-
vironment (e.g. landing on Mars)

Changed function-
ality

Changing a type of locomotion (e.g.
from wheeled to legged), when
changing a terrain type

Search and rescue scenario when
robots encounter unknown obstacles

Modified behav-
ioral response

Gravitational perturbance of flying
object in space and finding new con-
trol laws for engines

Distributed control of legged loco-
motion for obstacles of random ge-
ometry

Optimization of pa-
rameters

Changing of day/night light and
adapting intensity of additional light

Adapting locomotive parameters for
randomly moving obstacles
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Fig. 1.9 Different adaptivity mechanisms in collective systems.

different classes of adaptability in collective systems, capable of structural phenom-
ena: optimization mechanisms; behavioral control; functional control; derivation of
new regulatory functionality and, finally, evolving of new regulatory functional-
ity. These mechanisms are graphically represented in Fig. 1.9. To implement these
adaptivity mechanisms we need to introduce two additional levels into the collective
system from Fig. 1.6. The first level is related to control, we call it the regulative
level, see Fig. 1.10. We find on this level different controllers, such as explicit and
implicit rule-based (artificial neural networks), different bio-inspired, self-referred
or learning systems.

These controllers influence structural or functional rules as well as change pa-
rameters of a corresponding level. All controllers work on the scheme change of
input parameters → changes of output parameters/rules. The main goal of the reg-
ulative level is to maintain internal homeostasis of the system, to execute different
tasks or, more generally, to demonstrate purposeful behavior depending on external
conditions. Controllers at the regulative level allow some degree of adaptability for
the system.

In detail, it depends to which extend a designer of these controllers was able to
foresee possible changes of an environment and to integrate a reaction on these
changes into controllers. The controllers allow different degrees of reaction on
changes. However, the system at the regulative level is able to react only to changes
whose parameter range was predicted in advance during the development of con-
trollers or learning mechanisms. To react to such changes, which are not predictable
at the design stage, we need to introduce a second level, which can modify regulative
controllers – we denote this as the generating level. Following the scheme of adap-
tivity from Fig. 1.9, the generating level contains different deriving and evolving
mechanisms.
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Fig. 1.10 Functional scheme of regulative and
generating levels in structural systems.

Deriving is primarily related
to distributed problem solv-
ing and planning approaches,
known in the multi-agent commu-
nity (Durfee, 1999), symbolic tasks de-
composition (Kornienko et al., 2004b),
structural decomposi-
tion (Scassellati, 1998), self-referred
dynamics (Kataoka & Kaneko, 2000)
and others. These approaches are fast,
deliver a predictable behavior and can
be applied when a new situation is
at least structurally known. Evolving
is basically related to evolutionary
approaches, see e.g. (Koza, 1992),
and can be applied when the situa-
tion is completely unknown and a
large search space of possible solu-
tions should be explored. Recently,
evolutionary approaches have been
applied to a wide class of robotic
problems (Floreano et al., 2008a).

Invariant Goals, Self-Concept and Unbound Self-development. The mechanisms
mentioned above allow adaptive behavior on different levels. However to avoid con-
flicts between achieving a goal and adapting to the environment, the goals at the gen-
erating level should be independent of adaptation processes, in other words, they
should be formulated invariant to possible adaptations. There are several mecha-
nisms expressing such an invariant property of the generating level: symmetries,
conservation laws or e.g. “templates”. Templates are well-known in cognitive sci-
ence (Gobet & Simon, 1996) (also as “schemas” or “prototypes”), in topological
research (in knot and braid theory) (Birman, 2004), as well as known as “frames”
in the AI community (Minsky, 1977). The idea of a template is to describe most
general “stereotypical” properties or features of some common class of situation-
s/processes/objects.

As mentioned, goals can be focused on the system itself, i.e. they involve a
self-concept. To explain the idea of the self-concept, we consider the case when a
system should have a specific form, such as for the symmetric movement of legs,
segmented (as in insects) construction of body, or there are imposed constraints or a
priori desired properties. The self-concept contains in a compressed form a descrip-
tion of these “own” constraints or properties. The notion of self-concept originated
in human psychological research, e.g. (McLean et al., 2007), and is basically re-
lated to self-developmental processes. Self-development, is mostly known in human
psychology, e.g. (Maslow, 1998), (McLean et al., 2007), (Avstreih, 1981); in robo-
tics the self-development usually refers to learning (Oudeyer & Kaplan, 2004) and
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especially to ANN-based applications. Recently, there appear several works which
apply psychological ideas to robotics, e.g. (Bonarini et al., 2006), as well as the
appearance of developmental robotics (Lungarella et al., 2003) focused on ontoge-
netic processes related to cognitive science and the concept of embodiment.

Self-Development is bounded or unbounded process of functional, structural
and regulatory changes undertaken by the system itself, related to its self-
concept. A prerequisite is developmental plasticity on all levels. The self-
concept can be expressed by symmetries, conservation laws, be planning- or
fitness-driven or even have a character of unbounded metrics for open-ended
evolution. Normally, self-development is initiated by differences between the
self-concept and endogenous or environmental factors and may be unlimited
in time and complexity.

In self-development we have to point out one principal element, related to the
bounded and unbounded character of evolutionary changes. When in adaptive pro-
cesses, these driving forces are mostly bounded, expressed by reward or fitness,
the self-concept may include driving forces which are of unbounded character. In
this way, self-development does not necessary imply any evolutionary progress, but
a progress driven by the unbounded force of a self-concept. More generally, un-
bounded self-development (also denoted as open-ended evolution) is characterized
by a continued ability to invent new properties – so far only the evolution of life
on Earth (data partly from the fossil record) and human technology (data from
patents) have been shown to generate adaptive novelty in an open-ended man-
ner (Rasmussen et al., 2004). We find some first ideas about open-ended evolution
in (von Neumann, 1966) and (Waddington, 1969). Open-ended evolution is also re-
lated to indefinite growth of complexity (Ruiz-Mirazo et al., 2008) and unbounded
diversity (Maley, 1999). Ruiz-Mirazo and co-authors expressed the interesting idea
that “the combination of both self-assembly and self-organization processes within
the same dynamic phenomenon can give rise to systems with increasing levels of
molecular as well as organizational complexity”. They also proposed to decouple
genotype and phenotype from each other. A similar idea of increase homeostatic
autonomy in macroevolution was proposed by (Rosslenbroich, 2009), which leads
to us to not-fitness driven self-developmental processes. Several implementations
of open-ended evolutionary scenarios, e.g. (Spector et al., 2007), do not use any ex-
plicit behavioral fitness, moreover, there is no complexity growth in such “classical”
artificial life simulator as Tierra and Avida (Standish, 2003). In this work Russell
Standish proposed to improve these systems: “a key step in doing this is to gener-
ate a process that adaptively recognises complexity, since it will be impossible to
include humans in the loop, even when run on conventional computing platforms”.

These works lead us to an interesting question about the unbounded self-
concept: which process can generate complexity? One of the first remarks is
from von Neumann: “synthesis of automata can proceed in such a manner that
each automaton will produce other automata which are more complex and of
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Table 1.3 Several characteristics of self-developmental processes in collective systems.

Process Developmental plasticity Self-Concept

Regulatory Structural and functional plastic-
ity of the system, controllers can
change their own transfer func-
tions.

(bound) Achieving a targeted goal in
changing environment. (unbound) In-
creasing performance characteristics.

Homeostatic Like in the regulative case, but
related to maintaining steady in-
ternal states in changing environ-
ment.

(bounded) Endogenous steady state.
(unbounded) Achieving best possible
homeostasis for diverse scalability met-
rics.

Learning Changeable structure of regulative
system.

(bounded) e.g. positive or negative re-
wards. (unbounded) Fitting very large
(infinite) parameter space, e.g. by ex-
ploring structural-functional relations.

Planning-
driven

Structural, functional and regula-
tive plasticity.

(bounded) Minimizing deviations from
a plan. (unbounded) Self-referred plan-
ning.

Fitness-
driven

Structural, functional and regula-
tive plasticity.

(bounded) Explicit fitness. (unbounded)
Implicit fitness (optimizing energy bal-
ance, maximizing offsprings).

Open-ended Capability for unbounded evolu-
tionary activity.

(unbounded) Unbounded metrics.

higher potentialities than itself ” (von Neumann, 1966). A similar approach is
observed in L-Systems (McCormack, 1993) (authors used evolutionary process
but human operator in the selective loop) as well as in self-referred dynam-
ics (Kataoka & Kaneko, 2000). It seems that structural production can lead to
growth of complexity and diversity. However, considering the Kolmogorov com-
plexity of fractal structures, which is equal to the shortest production set of
rules (Kouptsov, 2008), we note the complexity of the whole fractal is indepen-
dent of its size – the self-similar structural production does not increase complexity.
Thus, we require that production systems include parameters which perturb gener-
ating structures. In this way, structural production rules parameterized by a random
(environmental) value may lead to infinite growth of complexity and diversity, and
are candidates for the unbounded self-concept. In Table 1.3 we collected several
possible self-developmental processes in structural collective systems with bounded
and unbounded self-concepts.

The final point which should be mentioned in this section is related to conflicts
between achieving a goal and adaptive behavior. When a degree of adaptation is
low, there are no essential conflicts between them. However, when plasticity is high,
and the system can be hindered by adaptive processes from reaching the main goal,
we are facing a new conceptual problem of a long-term controllability of adaptive
and self-developmental processes. Obviously, either the goal should be formulated
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in such an invariant way as allows multiple approaches for its achievements, or
adaptive processes should basically be limited.

1.1.4 Artificial Symbiotic Systems: Perspectives and Challenges

As demonstrated in previous sections, collective systems capable of structural
phenomena possess essential developmental plasticity, allow applications of hor-
izontally and vertically self-organizing, planning- and fitness- based approaches
and combine advantages provided by mono-functional and swarm-like systems.
We can find in nature several examples of such systems, one of the most fa-
mous – Dictyostelium discoideum – social amoebae, known also as cellular slime
molds (Kessin, 2001), see Fig. 1.11. These soil-living unicellular amoebae feed on
bacteria. When the food resources run out, the amoebae produce and send signal
molecules cAMP. This chemotaxis mechanism creates a gradient field towards an
aggregation point and the collection of up to 100,000 cells first into a slug, see
Fig. 1.11(a) and then into a fruiting body – a multi-cellular organism, Fig. 1.11(b).
During this process, amoebae undergo different developmental processes such as
cell differentiation, morphogenetic growth, self-protection, sexual and asexual re-
production and other. The principles of self-movement, aggregation and emergence
of macroscopic functionality can be also demonstrated by artificial systems, in par-
ticular by swarm robots (Kornienko et al., 2007). Like amoebae, swarm robots can
send aggregation signals and aggregate into artificial organisms, see Fig. 1.12, and
develop different macro-functionality through morphogenetic processes. In this way
robots can combine collective mono-functional actuation with multi-functional col-
lective phenomena, enabling advances in scalability and reliability. The research

(a) (b)

Fig. 1.11 Dictyostelium discoideum, commonly referred to as slime mold, capable of a
transition from a collection of unicellular amoebae into a multicellular organism; (a) Dic-
tyostelium Aggregation, (image source wikipedia); (b) Differentiation of unicellular amoeba
Dictyostelium discoideum into multicellular “slugs” (100x) (Taken by Matthew Springer,
University of California, San Francisco, using stereomicroscopy).
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(a) (b)

Fig. 1.12 Swarm robots and a model of multi-robot organism; (a) Aggregation of swarm
robot into several organisms; (b) Models of multi-robot organisms with different macro-
actuation.

area of artificial organisms combines approaches and techniques from swarm, re-
configurable and evolutionary robotics.

Primarily, artificial organisms consist of heterogeneous modules. We distinguish
between:

Active Module Autonomous modules, capable of locomotion and actuation
with different DoF. These modules possess independent en-
ergy source, computational and communication capabilities, see
Sect. 2.1.

Passive Module Non-autonomous modules, which do not have individual loco-
motion and actuation capabilities, however they are able to carry
additional energy sources, structural load and other specialized
passive functionality.

Tools Autonomous modules, such as active wheels and grippers, which
are specialized in some functionality. These modules also pos-
sess independent energy, computation and communication, see
Sect. 2.1.6.

Following the idea of developmental plasticity, organisms are able to self-assemble
and self-disassemble, see Sect. 4.5. In particular, this means that artificial organ-
isms have two principally different states: swarm-mode and organism-mode, and
progress through several phases: swarm, self-assembling, homeostatic regulation,
macroscopic regulation, and so on, see Table 1.4. Organisms possess a homeostatic
system, see Sect. 4.4, which performs self-regulation and energy management, com-
mon memory, common control, common event system, sensor-fusion and others, see
Sects. 2.3.1.1 and 3.2. By changing scalability conditions, e.g. increasing the num-
ber of elements or diversity of elements, the self-regulatory systems try to establish
an endogenous steady state. Finally, artificial organisms represent a combination of
totally distributed and totally centralized regulatory systems. This is for the follow-
ing reasons.
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Table 1.4 Phases of the organism life cycle with respect to behavioral, functional, structural
and self-developmental activities. Several phases can be executed simultaneously.

Phase Behavioral, functional and structural activities Self-developmental activities

Swarm Massive-parallel execution of tasks typical for
swarm: search, covering, resources localization
and so on (swarm-mode).

Creating behavioral diversity
by using population-based ap-
proaches, such as e.g. artificial
sexuality and using functional
self-organizing phenomena for
behavioral emergence.

Self-
assembling

Aggregation into planar structures, defining fu-
ture topology and macroscopic functionality of
an organism (transition from swarm-mode to
organism-mode).

Diverse self-organizing,
planning- and fitness-driven
morphogenetic processes lead-
ing to functional emergence.

Homeostatic
stabiliza-
tion

Low- and intermediate-level processes, tak-
ing place immediately after mechanical self-
assembly, and intended to regulate energetic, sen-
sor, topological, information, memory and com-
munication subsystems for the current topology
of the organism (organism-mode).

Endogenous parametric self-
regulation by using such ap-
proaches as artificial immune
network, planning- or fitness-
driven developmental mecha-
nisms.

Cognitive
regulation

Intermediate- and high-level processes of self-
recognition (self-awareness) of own cognitive ca-
pabilities such as a number and functionality
of available sensors, creating own- and world-
models, creating sensomotor couplings and so on
(organism-mode).

Creating and parameterizing
internal cognitive structures
and models basically by using
planning- and fitness-driven
mechanisms.

Macroscopic
regulation

High-level processes, creating macroscopic regu-
lative structure of the whole organism, related to
macro-locomotion and macro-actuation, learning
and evolving (organism-mode).

Main regulative self-
developmental process creating
control structures.

Self-
repairing

Process leading to re-configuration or even re-
moving of damaged modules from the organisms
in case of any malfunctions. This is a relatively
complex process based on self-diagnostic func-
tionality of homeostatic subsystems and includes
topology change phase and following homeo-
static and regulative phases (organism-mode).

Self-developmental mecha-
nisms are similar to homeostatic
phase, however more strongly
focused on self-diagnostics.

Macro-
actuation

Working in the organism-mode to achieve tar-
geted goals (organism-mode).

In this phase, organism per-
forms learning and evolving ac-
tivities related to behavioral and
functional self-development.

Topology
change

Taking a planar form for particular dissembling.
This is a complex process, where all modules
from old organism should not lose information
collected in the organism mode. This leads to new
homeostatic and regulative phases in a new organ-
ism (organism-mode).

This is the main structure-
changing process, caused by
learning, evolving or planning
mechanisms decided to create
new functionality and so a new
structure.

Self-dis-
assembling

Taking a planar form for a total dissembling
(transition from organism-mode to swarm-
mode).

Creating behavioral diversity as
in the swarm phase.



24 1 Concepts of Symbiotic Robot Organisms

By self-assembling and self-disassembling, organisms are working with different
self-concepts. They may be small or large organisms with only active or passive el-
ements, or they may have a combination of active, passive elements and tools. Thus,
organisms should be able to work over a wide range of load and diverse scalabil-
ity parameters. Obviously, strongly centralized regulatory systems have advantages
for controlling complex macro-locomotion, however they have several difficulties
with scalability and reconfigurability. Distributed swarm-like regulatory mecha-
nisms have advantages in providing flexibility and scalability, however they have
a relatively slow dynamics and can lead to communications overhead. We need
a combination of central and distributed regulatory system which is fast enough
for macro-locomotion but also flexible enough to deal with reconfigurability. This
looks like the cooperative work of different sub-systems without building strongly
centralized instances. Following bio-inspired ideas of cooperation between differ-
ent species, we label these systems as symbiotic multi-robot organisms or artificial
organisms.

Artificial Symbiotic Systems utilize structural developmental plasticity and
a two layers regulatory architecture for creating a control system with hor-
izontal operational principles. In particular, symbiotic means specific coop-
eration between different multi-functional regulative approaches, allowing
a growth of hierarchies without building strongly centralized regulation for
mono-functional collective activities.

Challenges and Perspectives. Issues of challenges in evolutionary, reconfigurable
and swarm robotics have been described several times since the early 90s. We
can refer to works (Mataric & Cliff, 1996), (Ficici et al., 1999), (Lipson, 2000),
(Sofge et al., 2003), (Teo, 2004) related to challenges with fitness estimation, “real-
ity gap” and others, whereas more recent works give overviews of challenges in ro-
botics area (Siciliano & Khatib, 2008) such as over-motorization of reconfigurable
systems or communication in swarm robotics. A combination of evolutionary tech-
niques with other approaches creates new open questions about e.g. evolution and
learning or “evolutionary self-organization” (where local rules are developed evolu-
tionary but the self-organization remains outside of the evolutionary loop) in differ-
ent scales. However, since artificial organisms combine all three areas, this results
not only in a combination of problems and advantages, but also in the appearance
of qualitatively new challenges. We believe that these new challenges are related to
developmental plasticity, a long-term independency and to the self-∗ issues.

Developmental plasticity, as already discussed, in general means the structural
and regulatory flexibility of basic elements, such as biological cells, hardware mod-
ules or software agents. The more plastic are basic elements, the more diverse
and manifold are the resulting structures. Cells or bacteria provide great plasticity,
whereas technological solutions are still far away from these biological solutions.
Achieving a similar plasticity for artificial systems, by e.g. following inspirations
from “natural chemistry”, represents a serious challenge for the next few years.
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Current robotic systems depend on maintenance, repair, specific energy sources
and other infrastructure. These are not available in human-free environments or dur-
ing long autonomous missions in e.g. space or ocean. A long-term independence
means that robots can achieve their design goals without infrastructure and services
provided by humans and in a variety of environments. This raises many different
issues not only for the robot design, energy harvesting, reliability, adaptivity and
regulatory autonomy, but also for predictability and controllability of long-term au-
tonomy and self-development.

As already mentioned, swarm-like systems possess a high degree of redun-
dancy and scalability. When some cell-modules in the organisms malfunction or
are destroyed, they can be autonomously replaced by other cells, provided that
some reserve of such cells exists. Thus, a combination of monofunctional actua-
tion and swarm-like reliability may result in a new generation of self-monitoring
and self-repairing systems. More generally, the self-∗ issues, i.e. self-awareness,
self-reflection, self-regulation, self-reproductions, self-concept and others, are a se-
quence of different “self”-related problems. One of the main problems here consists
not only in the lack of understanding of processes leading to e.g. self-reflection,
self-awareness and consciousness, but also in the collective and emergent character
of these phenomena. Thus, issues of plasticity, long-term independency and self-∗
problems are general challenges and, from this point of view, can be considered as
the main benchmarks for artificial organisms.

Concluding this section, we would like to point out one important issue: artifi-
cial organisms can be viewed as extremely simplified analogues of living organisms.
Both living and artificial organisms face similar problems – getting energy, surviving
in the environment, different forms of self-protection and self-awareness, organiza-
tion of long-term and short-term developmental processes and others. On the basis
of artificial organisms we can gain deeper insights into a long-term evolution and
its controllability, phenomena of individual and collective intelligence, mechanisms
of multi-cellular regulation and other issues, which are of a great relevance in our
understanding of the complexity of life.

1.2 Towards a Synergetic Quantum Field Theory for
Evolutionary, Symbiotic Multi-Robotics

Paul Levi, Hermann Haken

We use the profound theoretical framework of the general quantum field theory
(QFT), (Bjorken & Drell, 1965), (Penrose, 2006) to describe the interactions and
dynamics of many-body systems which are in our case robot cells (or genes) devel-
oping an organism. Here it is important to state that we just use the formal analogy
with QFT that is of purely formal nature, meaning that we operate here on a macro-
scopic level and no quantum effects appear or must be considered (Levi, 2009),
(on the opposite to (Penrose, 1994)). In near future this assumption might be re-
vised since NEMS (Nano-Electro-Mechanical-Systems) or even functional modules
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that combine Nano-technology with molecules (NEBS, Nano-Electro-Biological-
Systems) appear where quantum effects can not be excluded. The QFT-formalism is
based on creation and annihilation operators that generate quantized field operators
that in our contribution obey the non-relativistic QFT (Schrödinger field operators).
On the opposite to the relativistic QFT these field operators can obey two differ-
ent statistics (either Fermi-Dirac statistics or Bose-Einstein statistics), where these
statistics are represented by two different types of commutator rules.

The operator a†
j (x, t,sj) creates a fermionic unit j (e.g. a robot-cell) at the po-

sition x, at time t and the internal state sj. In this contribution all operators will
be written in bold letters. The operator aj(x, t,sj) annihilates such a unit. It repre-
sents in mathematical terms the Hermitian conjugate operator. These two operators
obey the exclusion principle of Pauli (e.g. no two robot-cells can take the same po-
sition and all other indices must also be different); therefore they anti-commutate
(see appendix, Sect. 1.2.5.5): {a,a†} = aa† + a†a = 1. More generally spoken
we consider every fermionic unit as an agent (Levi, 1989) that can directly in-
teract with other agents or interact via exchanges of different messages with other
agents. The notion of agent should clearly demonstrate our intention to include al-
ready on the level of robot-cells (or general to a fermionic units) cognitive abilities
(Floreano & Mattiussi, 2008), (Trianni, 2008) that allow these units to aquire in-
formation and to perform also inferences that usually cannot be performed by units
that are created by the classical QFT-theory.

In this formalism the direct interaction between different agents (on operator
level) can be described by the following expression, where O (x, x′) defines a posi-
tion dependent operator (e.g. a transition operator):

a†
j (x, t,sj) a†

k(x
′, t,sk) O(x,x′) ak(x′, t,sk) aj(x, t,sj). (1.1)

The other class of operators are bosonic creation operators b† and annihilation
operators b. They obey the commutation relation [b,b†] = bb† −b†b = 1. These two
operators obey the Bose-Einstein statistics and represent the fact that bosonic units
can generate several fields that can be -in contrast to fermionic fields- in the same
state (e.g. identical messages). In physics these operators describe all types of forces
between elementary particles that are mediated by field operatorsΨ(x) and that are
generated by the sum of corresponding particle operators. We use these operators to
generate fields that can be seen as different types of message fields (e.g modes in
the laser paradigm, (Haken, 1970)). In analogy to QFT we consider the generating
units as different virtual particles that we call infermons.

An interaction of an agent (fermionic unit) with such a bosonic field is e.g. given
by the following formula for the self-adjoint interaction Hamilton operator HI:

a†
j (x, t,sl) aj(x, t,sm) b†(x, t)+ a†

j (x, t,sm) aj(x, t,sl) b(x, t). (1.2)

The term a†
j (x, t,sl)aj(x, t,sm) describes the state transfer of a fermionic unit j from

the energetic higher state sm to a lower energetic state sl by creation of the state sl

and the annihilation of the state sm at the position x and the time t. As a result of
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this operation the bosonic operator b† generates a field of a dedicated type (sending
of a message) at the same position x and time t. The second term in this equation
describes the process that a bosonic field is annihilated (unit j receives a message)
and therefore annihilates the lower state sl and transfers to the upper state sm.

In the formalism of synergetics the generated bosonic “information fields” can
effect as an order field (order “parameter” field) that synchronises the exchanges
of different message types between robot-cells in order to generate coherent collec-
tive activities of these cells (Levi et al., 1999). This coherence can also exist if the
force mediating bosons are different. But it can also occur that the synchronisation
of messages is not achievable (e.g. evident by a strong lumping of messages) re-
sulting in a decoherence of the message flow. Such a field decoherence prevent the
cooperation of cells. In term of synergetics this means that there is a threshold for
order parameters. Beneath this threshold there is no coherency, at the threshold a
bifurcation occurs, and above the threshold the heterogeneity can be controlled.

The QFT-formalisms in the deployment of an extended operator method delivers
in addition equation of motions for each kind of creation operator and annihilation
operator by the following commutator e.g. for a†:

d
dt

a† =
i
h̄
[HI,a†]. (1.3)

A fundamental, undisturbed form of such an equation of motion for the creation
operator b† is given by use of (1.5)

d
dt

b† = cb† − db†(b†b). (1.4)

This operational equation of motion, where c is a control parameter, d is propor-
tional to a coupling parameter (often also incorrect named constant), and b† plays
the role of an order operator field (order parameter field) is very characteristic for
self-organising processes, since it represents the so-called Eigenanteile of such pro-
cesses. This equation will build the basis of our approach and will be stepwise ex-
tended by perturbation and solved.

There is an additional rationale to us to involve QFT-formalism. This is the pos-
tulation that information is represented by a quantizing field operator whose compo-
nents obey an equation of motion that is dictated by the interactions of both classes
of operators (Haken, 2004).

As mentioned above we use fermionic operators a and a† for the construction
and deconstruction of robot-cells (agents). In favour of genetic operations we use
the following naming for bosonic operators: cr† (create cross-over) and cr (anni-
hilate cross-over); mt† (create mutation) and mt (annihilate mutation). In addition
we employ a more general bosonic message operator ms† (create a message), ms
(annihilate a message) that is used to describe the temporal starting points and the
duration of actions and can be applied to characterise conditions like temperature,
pressure and concentrations under which e.g. the operations of cross-over and mu-
tation have to take place. Here we just focus on the duration of an interaction that
controls the on and off switching of individual operators. This process portrays the
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selection of operations. We involve the operators ms† and ms to handle extrinsic
and intrinsic sensor data to initiate and to terminate bosonic activities. But at last
the sensor based selections result all time in start and stop instructions. Therefore
we can describe with our “switch-model” all types of selection operations.

The activation respectively the deactivation of bosonic operators describe
the effect of the agilities of regulation networks (Dayan & Abbott, 2001),
(Alberts et al., 2008). This means that we have separated and combined equations
of motion for fermionic and bosonic operators, where the combined solutions can be
considered as self-organised processes. Fermionic units generate bosonic fields and
these exert again a feed-back “force” to the fermions. We abstain here to introduce
additional genetic operators like rp† (creation of reproduction) and rp (destruction
of reproduction), since the structure of the interactions of fermionic and bosonic
units is in our case - comparable with the three body problem - already visible if we
use three different types of mediating virtual bosonic particles (infermons).

In the construction of this chapter we are guided by the interaction of light and
material (Haken, 1985). The model pattern is a laser that operates above the thresh-
old. The quantum field approach approves in addition the beneficial separation of
field equations and matter equations. This means that we can separate the equations
of motion for the bosonic operators from the ones that are defined by e.g. for a flip
operator a†

j (m) aj(l) for fermions with different internal states.
We summarise the introduction in order to give a road map for this contribution.

Messages are represented by bosonic field quanta, they are generated and handled
by agents (represented by fermionic operators that generate cognitive units). The
message based interactions between agents generate the information that an agent
can acquire. The complete approach is ambitious: QFT theory is fused with syner-
getics, and not enough, from this combination an unusual definition of information
is deduced and distributed in a multi-agent system. It is intended that this informa-
tion can be used for the description of the development of an artificial organism
generated out from individual robot-cells. On this way we started our description
of such a development by the development of water from H2O molecules, since it
is provable in reality. The final step do describe an organism as a many-body sys-
tem where the component obey the Fermi-Dirac statistics (fermionic agents) and
their interactions are mediated by different time dependent bosonic fields that rep-
resent e.g. external signals (ms) or different communications (mt, cr) between the
components is still an ongoing work and is not finished in this contribution.

1.2.1 Cooperative (Coherent) Operations between Fermionic
Units

1.2.1.1 Interaction Hamilton Operator

As it is usually done in physics we start with a Hamiltonian that describes the in-
teraction between the fermionic operators and bosonic operators. The goal of this
sub-paragraph is to present equations of motion for the three types of bosonic op-
erators that result from their interactions with the fermionic units. This is important
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since by synergetic principles the bosonic creation operators are considered as or-
der “parameters” fields of the self-organisation process between agents and message
fields (like the interaction of mater and light). Further we are looking for the control
parameters that start such a self-organised process. To get these results we involve an
adiabatic approach. Unfortunately these calculations are complex and long. Read-
ers that are not accustomed to such operator calculus could consider this formalism
as the way to deduce the elementary QFT-based self-organised equation that we
mentioned already in the introduction (1.4).

Concerning the “agentifying” of the fermionic units this means that we have an
overlay of multi-parameter fields where we have later on to analyse which parameter
values primarily of the bosonic fields can guarantee the synchronisation (coopera-
tion) of the agents by these fields.

We model the interactions between fermionic units in analogy to the resonant
actions of a multimode laser in the representation of photonic statistics. This means
in greater detail that if the energy Em of state m is higher than the energy E1

of state l (Em − E1 > 0) and this energy is equal e.g. to the energy h̄ωms
jk of the

bosonic field h̄ωms
jk ms†

jk(n)msjk(n) then cooperative (coherent) interactions between
the fermionic agents can proceed. In this paper we work in the interaction rep-
resentation and assume exact resonance, otherwise the Hamiltonians of the free
fields must be taken into account. The interaction part of the Hamilton operator is
defined by:

HI = ih̄ ∑
j,k,l,m,n

gms
jk

(
a†

j (l)aj(m)ms†
jk(n)− a†

j (m)aj(l)msjk(n)
)
+

ih̄ ∑
j,k,l,m,n

gcr
jk

(
a†

j (l)aj(m)cr†
jk(n)− a†

j (m)aj(l)crjk(n)
)
+

ih̄ ∑
j,k,l,m,n

gmt
jk

(
a†

j (l)aj(m)mt†
jk(n)− a†

j (m)aj(l)mtjk(n)
)
.

(1.5)

The bosonic creation and annihilation operators generate or destroy a bosonic
field by the interaction with fermionic fields. The indices have the following mean-
ing: j is detached to fermionic units a†

j ,aj. The index k describes the message type
(mode) of a bosonic field. The bosonic operators mediate the “forces” between the
fermionic units and stand for the message exchange between them, where the more
specific message type (bosonic states) are notated by n. The letters l and m describe
internal states (e.g. exited state) of fermionic units. Bosonic operators that represent
the interaction e.g. with the environment, or more general sensor data, are defined by
ms†

jk(n) and msjk(n). The operators crjk and cr†
jk; respectively mtjk and mt†

jk define
the direct internal interactions, e.g. the command for to genes to mutate.

The creation and annihilation operators are Hermetian adjoint, therefore complex
coefficients should also be complex conjugated, only if they are real the coefficients
for both conjugated operators are equal. Here we make the assumption that all co-
efficients are real.
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The set of equations of motion for all three creation operators is given by (let n
be fixed, and h̄ = h

2π is Planck’s quantum of action):

d
dt

ms†
jk =

i
h̄
[HI,ms†

jk] = − i
h̄
∂HI

∂msjk
=∑

l,m

gms
jk (a†

j (m)aj(l)) =∑
l,m

gms
jk ααα

†
j (m, l) (1.6)

d
dt

cr†
jk =

i
h̄
[HI,cr†

jk] = − i
h̄
∂HI

∂crjk
=∑

l,m

gcr
jk(a

†
j (m)aj(l)) =∑

l,m

gcr
jkααα

†
j (m, l) (1.7)

d
dt

mt†
jk =

i
h̄
[HI,mt†

jk] = − i
h̄
∂HI

∂mtjk
=∑

l,m

gmt
jk (a†

j (m)aj(l)) =∑
l,m

gmt
jk ααα

†
j (m, l) (1.8)

Here we abbreviated the formulas by the use of the state flip operator ααα†
j (m, l) =

a†
j (m) aj(l). For further use we also introduce here in addition the Hermitean con-

jugated flip operator ααα j(m, l) = a†
j (l) aj(m).

The second derivative of ms†
jk has the form (n is again fixed):

d2

dt2
ms†

jk =∑
l,m

gms
jk

d
dt
ααα†

j(m, l). (1.9)

The derivation of the term ααα†
j (m, l) is calculated by

d
dt
ααα†

j (m, l) =
i
h̄

[
HI,ααα j(m, l)

]
=∑

k

gms
jk ms†

jkσσσ j(m, l)+ ∑
k,l,m

gcr
jkcr†

j σσσ j(m, l)+ ∑
k,l,m

gmt
jk mt†

jkσσσ j(m, l).
(1.10)

We used the following abbreviation for the self-conjugated operator

σσσ j(m, l) = a†
j (m)aj(m)− a†

j (l)aj(l) = σσσ†
j (m, l). (1.11)

In laser terminology σσσ j describes the activity above the laser threshold (saturated
inversion). In our case this denotes a time dependent activity of agent j where it
produces messages (bosonic fields). This message generation can be quantified by
the number of messages that are are transmitted (corresponds to the number of pho-
tons). We use the notation σσσ0

j if agent j is in an equilibrium state where it generates
no messages (typically activities below the laser threshold prescribing incoherent
interactions with the surroundings).

The resulting formulas of the second derivations of the three creation operators
are:

d2

dt2
ms†

jk = ∑
l,m

gms2
jk ms†

jkσσσ(m, l). (1.12)

d2

dt2
cr†

jk = ∑
l,m

gcr2
jk cr†

jkσσσ(m, l). (1.13)
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d2

dt2
mt†

jk = ∑
l,m

gmt2
jk mt†

jkσσσ(m, l). (1.14)

The total sum of the “acceleration” of the creation operator ms†
jk is given by

∑
j,k

d2

dt2
ms†

jk = ∑
j,k,l,m

gms2
jk ms†

jkσσσ(m, l). (1.15)

Analogue formulas also hold for the two remaining creation operators. The influ-
ences of the three creation operators ms†

jk,cr†
jk,mt†

jk on the total interaction Hamil-

tonian are determined, beside the squared coupling constants (gms
jk )2, (gcr

jk)
2, (gmt

jk )2,
(all � 1), primarily by the rate of σσσ j(m, l). Thus we calculate

d
dt
σσσ j(m, l) =

i
h̄

[
HI,σσσ†

j (m, l)
]

= −
(
∑
k

gms
jk ms†

jk +∑
k

gcr
jkcr†

jk+

∑
k

gmt
jk mt†

jk

)
ααα j(m, l)−

(
∑
k

gms
jk msjk +∑

k

gcr
jkcrjk +∑

k

gmt
jk mtjk

)
ααα†

j (m, l).
(1.16)

The commutator rules and the anti-commutator formulas must be valid for all
time. This will be violated if we introduce only damping constants κjk (dissipation)
for the creation operators, damping constants γjk for the flip operators, and a relax-
ation time Tj that defines the time span where σσσ j recovers to the stationary value σσσ0

j .
The validity of the commutator and anti-commutator formulas will be restored if we
introduce external fluctuating forces Ffluc, which are mandatory that the commuta-
tors respectively the anti-commutators are exactly fulfilled all time (Haken, 1985).
They represent the interaction with the environment. We will model these forces not
explicitly in the interaction Hamiltonian (the formalism is simpler since we have
not to calculate the expectation values of the stochastic forces) but implicitly with
the aid of different statistics representing additional, stochastic interactions between
the fields and the environmental restrictions (e.g. Poisson distribution for the mean
number of messages).

If we include damping constants κjk into the formulas (1.6), (1.7) and (1.8) then
the final set of equations is transferred to:

d
dt

ms†
jk = ∑

l,m

gms
jk ααα

†
j (m, l)−κms

jk ms†
jk. (1.17)

d
dt

cr†
jk = ∑

l,m

gcr
jkααα

†
j (m, l)−κcr

jk cr†
jk. (1.18)

d
dt

mt†
jk = ∑

l,m

gmt
jk ααα

†
j (m, l)−κmt

jk mt†
jk. (1.19)

The temporal derivation of the flip operator is transferred to the following form
if the damping constants γjk are included into formula (1.10):
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d
dt
ααα†

j (m, l) =∑
k

(
gms

jk ms†
jkσσσ j(m, l)− γms

jk ααα†
jk(m, l)

)
+

∑
k

(
gcr

jkcr†
jkσσσ j(m, l)− γcr

jkααα
†
jk(m, l)

)
+

∑
k

(
gmt

jk mt†
jkσσσ j(m, l)− γmt

jk ααα
†
jk(m, l)

)
.

(1.20)

In the last step we include the relaxation time Tj(m, l) in the formula (1.16). This
step changes this equation into the following formula:

d
dt
σσσ j(m, l) = −

(
∑
k

gms
jk ms†

jk +∑
k

gcr
jkcr†

jk +∑
k

gmt
jk mt†

jk

)
ααα j(m, l) −(

∑
k

gms
jk ms†

jk +∑
k

gcr
jkcr†

jk +∑
k

gmt
jk mt†

jk

)
ααα†

j (m, l) +

1
Tj(m, l)

(
σσσ0

j (m, l)−σσσ j(m, l)
)

.

(1.21)

All in all we get a set of coupled non-linear differential equations. They can be
solved if we assume that the damping constants and the relaxation time are different
in the orders of magnitudes in the sense of adiabatic elimination (Haken, 1970). For
example, for the “ms-constants” this estimation looks like

γms
jk >

1
Tj(m, l)

> κms
jk . (1.22)

Under the above mentioned assumption, that the damping constant γjk dominates
the other parameters, we can set (if these inequalities are not true then a synchro-
nised, self-organising process cannot start) d

dtααα
†
j (m, l) = 0 in (1.20) and solve this

equation:

ααα†
j (m, l) =∑

k

(
gms

jk

γms
jk

ms†
jk +∑

k

gcr
jk

γcr
jk

cr†
jk +∑

k

gmt
jk

γmt
jk

cr†
jk

)
σσσ j(m, l). (1.23)

This result will then be inserted into (1.21) yielding the result:

d
dt
σσσ j(m, l) =− 2

(
∑
k

(gms
jk′ )2

γms
jk′

ms†
jkmsjk +∑

k

(gcr
jk)

2

γcr
jk

cr†
jkcrjk+

∑
k

(gmt
jk )2

γmt
jk

mt†
jkmtjk

)
σσσ j(m, l)+

1
Tj(m, l)

(
σσσ0

j (m, l)−σσσ j(m, l)
)
.

(1.24)

In the next step we set d
dtσσσ j(m, l) = 0, solve the resulting equation with respect

to σσσ j(m, l) and insert the result into (1.21). These steps generate the following ap-
proximate solution:
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ααα†
j (m, l) = σσσ0

j (m, l)∑
k

gms
jk

γms
jk

ms†
jk

(
1 − 2Tj(m, l)

(gms
jk )2

γms
jk

ms†
jkmsjk

)
+

σσσ0
j (m, l)∑

k

gcr
jk

γcr
jk

cr†
jk

(
1 − 2Tj(m, l)

(gcr
jk)

2

γcr
jk

cr†
jkcrjk

)
+

σσσ0
j (m, l)∑

k

gmt
jk

γmt
jk

mt†
jk

(
1 − 2Tj(m, l)

(gmt
jk )2

γmt
jk

mt†
jkmtjk

)
.

(1.25)

In the last step we insert (1.24) e.g. into (1.16). The result for d
dtms†

jk reads then:

d
dt

ms†
jk = suml,mgms

jk ααα
†
j (m, l)−κms

jk ms†
jk

=∑
l,m

gms
jk σσσ

0
j (m, l)

(
∑
q

gms
jq

γms
jq

ms†
jq

(
1 − 2Tj(m, l)

(gms
jq )2

γms
jq

ms†
jqmsjq

)
+

∑
q

gcr
jq

γcr
jq

cr†
jq

(
1 − 2Tj(m, l)

(gcr
jq)

2

γcr
jq

cr†
jqcrjq

)
+

∑
q

gmt
jq

γmt
jq

mt†
jq

(
1 − 2Tj(m, l)

(gmt
jq )2

γmt
jq

mt†
jqmtjq

))−κms
jk ms†

jk.

(1.26)

Finally, we rearrange this equation:

d
dt

ms†
jk =∑

l,m

(
gms

jk σσσ
0
j (m, l)

(
∑
q

gms
jq

γms
jq

ms†
jq +∑

q

gcr
jq

γcr
jq

cr†
jq +∑

q

gmt
jq

γmt
jq

mt†
jq

)
−

κms
jk ms†

jk − 2σσσ0
j (m, l)Tj(m, l)

(
∑
q

(gms
jq )3

(γms
jq )2 ms†

jq

(
ms†

jqmsjq
)−

∑
q

(gcr
jq)

3

(γcr
jq )2 cr†

jq

(
cr†

jqcrjq
)−∑

q

(gmt
jq )3

(γmt
jq )2 mt†

jq

(
mt†

jqmtjq
)))

.

(1.27)

To generate the first derivative of the total bosonic field ms† (it summaries all
created ms-messages) we must sum up over all indices j and k:

d
dt

ms† = ∑
l,m,j,k

(
gms

jk σσσ
0
j (m, l)

(
∑
q

gms
jq

γms
jq

ms†
jq +∑

q

gcr
jq

γcr
jq

cr†
jq +∑

q

gmt
jq

γmt
jq

mt†
jq

)
−

κms
jk ms†

jk − 2σσσ0
j (m, l)Tj(m, l)

(
∑
q

(gms
jq )3

(γms
jq )2 ms†

jq

(
ms†

jqmsjq
)−

∑
q

(gcr
jq)

3

(γcr
jq )2 cr†

jq

(
cr†

jqcrjq
)−∑

q

(gmt
jq )3

(γmt
jq )2 mt†

jq

(
mt†

jqmtjq
)))

.

(1.28)
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Analogous equations are true for d
dt cr† and d

dt mt†. We have now defined all for-
mulas and can begin to solve them. The first step in this direction will be the calcu-
lation of the solution of (1.26). Afterwards the analogous equations for the temporal
derivations of cr†

jk and mt†
jk must be solved.

We perform this procedure step by step, and we start with the simplification of
Eq. (1.26). This yields the formula:

d
dt

ms†
jk = σσσ0

j (m, l)
( (gms

jk )2

γms
jk

ms†
jk −κms

jk ms†
jk +

gms
jk gcr

jk

γcr
jk

cr†
jk +

gms
jk gmt

jk

γmt
jk

mt†
jk

)
−

2σσσ0
j (m, l)Tj(m, l)

( (gms
jk )3

(γms
jk )2 ms†

jk

(
ms†

jkmsjq
)
+

(gcr
jk)

3

(γcr
jk )2 cr†

jk

(
cr†

jkcrjk
)
+

(gmt
jk )3

(γmt
jk )2 mt†

jk

(
mt†

jkmtjk
))

.

(1.29)

In short:

d
dt

ms†
jk = cms

jk ms†
jk − dms

jk ms†
jk

(
ms†

jkmsjk
)
+ ccr

jkcr†
jk − dcr

jkcr†
jk

(
cr†

jkcrjk
)
+

cmt
jk mt†

jk − dmt
jk mt†

jk

(
mt†

jkmtjk
)
.

(1.30)

We introduced the following abbreviations:

cms
jk = σσσ0

j (m, l)
(gms

jk )2

γms
jk

−κms
jk σσσ0

j (m, l), ccr
jk = σσσ0

j (m, l)
gms

jk gcr
jk

γcr
jk

,

cmt
jk = σσσ0

j (m, l)
gms

jk gmt
jk

γmt
jk

;

dms
jk = 2σσσ0

j (m, l)Tj(m, l)
(gms

jk )3

(γms
jk )2 , dcr

jk = 2σσσ0
j (m, l)Tj(m, l)

(gcr
jk)

3

(γcr
jk )2 ,

dmt
jk = 2σσσ0

j (m, l)Tj(m, l)
(gmt

jk )3

(γmt
jk )2 .

In analogy to (1.30) we rewrite the equation for cr†
jk:

d
dt

cr†
jk = ecr

jkcr†
jk − fcr

jkcr†
jk

(
cr†

jkcrjk
)
+ ems

jk ms†
jk − fms

jk ms†
jk

(
ms†

jkmsjk
)
+

emt
jk mt†

jk − fmt
jk mt†

jk

(
mt†

jkmtjk
)
.

(1.31)
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Similar abbreviations are:

ems
jk = σσσ0

j (m, l)
(gcr

jk)
2

γcr
jk

−κcr
jkσσσ

0
j (m, l), ems

jk = σσσ 0
j (m, l)

gcr
jkgms

jk

γms
jk

,

emt
jk = σσσ0

j (m, l)
gcr

jkgmt
jk

γmt
jk

;

fcr
jk = 2σσσ0

j (m, l)Tj(m, l)
(gcr

jk)
3

(γcr
jk )2 , fms

jk = 2σσσ0
j (m, l)Tj(m, l)

(gms
jk )3

(γms
jk )2 ,

fmt
jk = 2σσσ0

j (m, l)Tj(m, l)
(gmt

jk )3

(γmt
jk )2 .

In the end the analogous equation for mt†
jk looks like:

d
dt

mt†
jk = smt

jk mt†
jk − tmt

jk mt†
jk(mt†

jkmtjk)+ sms
jk ms†

jk − tms
jk ms†

jk(ms†
jkmsjk)+

scr
jkcr†

jk − tcr
jkcr†

jk(cr†
jkcrjk).

(1.32)

The abbreviations are again conforming to the previous one:

smt
jk = σσσ0

j (m, l)
(gmt

jk )2

γmt
jk

−κmt
jk σσσ

0
j (m, l), sms

jk = σσσ0
j (m, l)

gmt
jk gms

jk

γmt
jk

,

scr
jk = σσσ0

j (m, l)
gcr

jkgmt
jk

γmt
jk

;

tmt
jk = 2σσσ0

j (m, l)Tj(m, l)
(gmt

jk )3

(γmt
jk )2 , tms

jk = 2σσσ0
j (m, l)Tj(m, l)

(gms
jk )3

(γms
jk )2 ,

tcr
jk = 2σσσ0

j (m, l)Tj(m, l)
(gcr

jk)
3

(γcr
jk )2 .

Eqs. (1.30) - (1.32) and their three Hermitean conjugates are the differential
equations we have to solve. All these three differential equations are composed of
three symmetrical parts. Nevertheless we cannot solve each symmetrical term by
itself and then add all three together because the full equations are non-linear. In
addition the actions of these three parts e.g. of (1.30) are different. The first term
models the own contribution (Eigenanteil) ms†

jk, the remaining two parts describe

the coupling of ms†
jk to the creation operators cr†

jk and mt†
jk. The mutual interactions

of all three bosonic fields denotes a strong dependency between them, meaning
e.g. that the ms-field tries to control the mt-field, or by interference effects new
combinations of frequencies occur, or the frequency of two fields is changed. In
technical terms this means that there exist frequency lockings and phase lockings
that are generated by the interactions of these three modes.
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Transferred to symbiotic organisms these effects can stabilise e.g. the connections
of different cells since there is a strong regulative, dynamic regime that controls
the internal communications by mt-fields and cr-fields by the ms-field. But it is
also possible (depending from the settings of the various parameters) that the mt-
field (mutation) dominates the other two fields and the organism destabilises. The
kind of interactions of the three bosonic fields define whether the robot-cells can
cooperate together. In a synergetic view all this depends on the values of the control
parameters e.g. cms

jk of the ms-field and the dynamics of the order field ms†
jk, (see

next sub-paragraph).
The additional principal tools beside the above performed synergetic based calcu-

lations (e.g. control parameter, order parameter field (Haken, 1977) are the methods
of dynamical systems (Ghrist et al., 1997) and the techniques of differential ge-
ometry (Kobayashi & Nomizu, 1996), (Guckenheimer & Holmes, 1983). We start
the descriptions of the solutions by the view of dynamical systems. Hereby, as a
standard procedure, the equilibrium of a dynamical system will be studied by the
behavior of an invariant set Λ of the vector field f(Λ) = Λ. Such a set Λ can be one-
point set (fixed-point) or a manifold (e.g. circle of fixed points, see Fig. 1.13(b)). In
any case, we analyse the behavior of a dynamical system primarily in equilibrium
states in order to describe the stability of the system invariant sets.

1.2.2 Individual Contributions of the Eigenanteile

In the first step the equations of the bosonic creation operators ms†
jk and msjk are

solved. Since we are interested in the results of the measurements of these two oper-
ators we calculate the expectation values of them. It is also usual to analyse the flow
of the field. We do this in the second sub-chapter. In the third sub-chapter an ex-
ternal, periodic force affects the expectation values of the two ms-operators, where
such a field e.g. come from a periodic electro-magnetic wave. If we go deeper into
the physics such a wave can polarise the robot cells. The calculated phase portraits
demonstrate the resulting periodicity in this representation space.

1.2.2.1 Uncoupled and Unforced Contributions of the Operators and Their
Expectation Values

In order to get an impression of the first incomplete results of (1.30) we study the be-
havior of the Eigenanteile of ms†

jk (Eigenanteil-results for cr†
jk and mt†

jk are similar).
Such Eigenanteile represent in a self consistent way how the “ms-field” interact
with itself via the interaction with a fermionic agent. In more detail; we separate
from (1.30) the partial formula

d
dt

ms†
jk = cms

jk ms†
jk − dms

jk ms†
jk(ms†

jkmsjk). (1.33)

Supplementary we write down the conjugate equation

d
dt

msjk = cms
jk msjk − dms

jk msjk(ms†
jkmsjk). (1.34)
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These two formulas are the first elementary building blocks of our approach. The
operator ms†

jk plays the role of an order parameter, cms
jk defines the control parameter,

and formula (1.25) expresses the slaving principle.
The creation respectively annihilation operators are complex operators. The ap-

propriate method of solutions of the two adjoint operator equations can be done in
the space of eigenfunctions Φα of the annihilation operator msjk, where

msjkΦα = αΦα ,α ∈ C. (1.35)

We take the expectation value 〈
Φα

∣∣msjk
∣∣Φα

〉
= α, (1.36)

with the normalisation 〈Φα | Φα〉 = 1. For the adjoint operator holds
〈φα | ms†

jk | φα〉 = α∗. Below we will use the short notations 〈msjk〉 and 〈ms†
jk〉 for

these two expectation values.
For clarity we drop the indices in the two operator equations (1.33) and (1.34)

and get the equivalent equations for the expectation values

dα
dt

= cα− d|α|2α,
dα∗

dt
= cα∗ − d|α|2α∗. (1.37)

If we split the expectation values of the ms operator into the real part
u = Re

〈
msjk

〉
and imaginary part v = Im

〈
msjk

〉
then we obtain from both equa-

tions the following differential equations for u and v:

d
dt

u = cms
jk u − dms

jk u(u2 + v2) = cms
jk u − dms

jk ur2. (1.38)

d
dt

v = cms
jk v − dms

jk v(u2 + v2) = cms
jk v − dms

jk vr2. (1.39)

These equations are symmetric in (u,v). The single unstable fixed point is the
origin O = (0,0), if cms

jk > 0 and dms
jk < 0. It represents a saddle point that is physi-

cally not relevant. Fig. 1.13(a) demonstrates this fact by a phase portrait of u and v,
and it shows the influence of the unstable fixed point in the origin O1.

The alternative calculations with 〈msjk〉 = α = r(t)eiϕ(t) and 〈ms†
jk〉 = α∗ deliver

in a more elegant way the two equivalent differential equations if both coefficients
are real:

d
dt

r = cms
jk r − dms

jk r3,and
d
dt
ϕ = 0. (1.40)

1 We express our gratitude to Dr. Victor Avrutin for his uncomplaining and substantial cal-
culation support of this work.
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(a) (b)

Fig. 1.13 Phase portraits of u and v. (a) There is an unstable fixed point in the origin ori-
gin O = (0,0). The values are cms

jk = 1.5 and dms
jk = −0.3; (b) The values are cms

jk = 1.5 and
dms

jk = 0.3.

Fig. 1.13(b) demonstrates the effect if dms
jk gets positive; there arises a circle of at-

tractive fixed points with radius r0 =
√

cms
jk

dms
jk

. For physical relevant “laser actions” we

have to use a positive dms
jk in order to get a stable amplitude.

1.2.2.2 Flow of the Continuous and Uncoupled Eigenanteile

Here we specify the explicit solutions of the two Eqs. 1.33 and 1.34, and calculate
the accordant flow in terms of dynamical systems. A dynamical system dx

dt = f(x),
is a system of differential equations, where x = x(t)∈ Rn and f is a vector field that
generates a continuous flow Φt(x) =Φ(x, t), that also can be considered as a one
parameter group under the operation of composition (Φs ◦Φt(x)) =Φs+t(x) that
satisfies the equation

d
dt
Φ(x, t)|t=τ = f(Φ(x,τ)),∀ x and τ ∈ I = (a,b) ⊆ R

n. (1.41)

We repeat again the continuous Eigenanteil

d
dt

ms†
jk = cms

j,k ms†
jk−dms

j,k ms†
jk(ms†

jkmsjk). (1.42)

If we drop all indices of (1.37) then we get the solutions:

r(t) =
√

c
(
(

c

r2
0

− d)e−2ct + d
)−1/2

, ϕ = ϕ0. (1.43)

The fixed point is, as we already know, defined by r0 =
√ c

d ; its stability is calcu-
lated by
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dr
dr0

|√
c
d

= de−2ct. (1.44)

This fixed point r0 is stable, if c and d are both positive, reflecting the already
known circular orbit of radius r0. In the limit t → ∞, r(t) converges to r0. We get an
equivalent result if we consider the derivative D of the Poincaré map

DP(r0) =
dP
dr0

|√ c
d

= d3/2e−4πc < 1. (1.45)

The continuous flow operator is given by:

Φt(r0,ϕ0) =

(
√

c

(( c

r2
0

− d
)

e−2ct + d

)−1/2

,ϕ0

)
. (1.46)

Fig. 1.14 demonstrates the flow (one-parameter group) for r(t) and different constant
ϕ values.

Fig. 1.14 Schematic representation of flow (phase curves) in the (r,ϕ) plane with
r(ϕ) =

√ c
d . There is a pattern repetition for 0 < ϕ < π

2 , π < ϕ < 3π
2 , etc. Red curves are

attractive; the blue line is repulsive (unstable fixed point in the origin).

1.2.2.3 Uncoupled and External Forced Oscillations of the Operators and
Their Expectation Values

In the next step we apply an external periodic force Asin(ω t) with real amplitude
A:

d
dt

ms†
jk = cms

jk ms†
jk − dms

jk ms†
jk(ms†

jkmsjk)+ Asin(ω t). (1.47)

d
dt

msjk = cms
jk msjk − dms

jk msjk(ms†
jkmsjk)+ Asin(ω t). (1.48)

In the short notation – with coefficient dropping – these two equations read as
(α = r(t)eiϕ(t))
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d
dt
α = cα− d|α|2α+ Asin(ω t),

d
dt
α∗ = cα∗ − d|α|2α∗ + Asin(ω t). (1.49)

If we take again for granted that c and d are real then the resulting differential
equations are (α = r(t)eiϕ(t)):

d
dt

r = cr − dr3 + Asin(ω t)cos(ϕ). (1.50)

r
d
dt
ϕ = Asin(ω t)sin(ϕ). (1.51)

Represented in the Cartesian coordinates (u,v) two different solutions are
demonstrated in Fig. 1.15. In Fig. 1.15(a) the solution has a form of an eight that
twist up; in Fig. 1.15(b) the solution twists down to the plane v = 0, where it per-
forms sinus oscillations.

(a) (b)

Fig. 1.15 Phase portrait of α = u+ iv.The parameter values are: (a) cms
jk = −0.75, dms

jk = 1.3,
A = 1, ω = 10; (b) cms

jk = 0.75, dms
jk = 1.3, A = 1, ω = 10.

1.2.3 Separate Perturbations of the Eigenanteile

In the next step we disturb the Eigenanteile e.g. for ms†
jk(similar results are obtained

also for the other Eigenanteil-equations) by a mixed term ms†
jkmsjk:

d
dt

ms†
jk = cms

jk ms†
jk − dms

jk ms†
jk(ms†

jkmsjk)+ ĝms
jk ms†

jkmsjk

d
dt

msjk = cms
jk msjk − dms

jk msjk(ms†
jkmsjk)+ ĝms

jk ms†
jkmsjk.

(1.52)

A similar procedure as before, msjk = r(t)eiϕ(t), ms†
jk = r(t)e−iϕ(t), transfers Eq.

(1.50) with dropped indices into

i(
d
dt
ϕ)r +

d
dt

r = cr − dr3 + ĝr2e−iϕ . (1.53)
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The splitting of this formula into real part and imaginary part generates the result

d
dt

r = cr − dr3 + ĝr2 cos(ϕ). (1.54)

d
dt
ϕ = −ĝr sin(ϕ), (r 
= 0). (1.55)

There is an unstable fixed point for r0 = 0 and ϕ arbitrary; and a stable fixed point in

r0 =
1

2d
(ĝ+

√
ĝ2 + 4cd) and sin(ϕ0) = 0, ĝ 
= 0. (1.56)

In Cartesian coordinates Eqs. (1.52) read as:

d
dt

u = cms
jk u − dms

jk u(u2 + v2)+ ĝms
jk u(u2 + v2) = cms

jk u − dms
jk ur2 + ĝms

jk ur2. (1.57)

d
dt

v = cms
jk v − dms

jk v(u2 + v2) = cms
jk v − dms

jk vr2. (1.58)

The nontrivial fixed points in the (u,v) space are:

u0 = ±r0,v0 = 0. (1.59)

Fig. 1.16 shows the phase flow of these two equations with respect to the unsta-
ble fixed point in the origin. By comparison with Fig. 1.13(a) we see that the flow
outside the u axis turns to the right side (a) or left side (b).

In the next parameter fixation cms
jk stays unchanged and dms

jk gets positive.
Fig. 1.17 demonstrates the definite change of the flow behavior. In Fig. 1.17(a) the
fixed point in the origin stays unstable, in addition two new fixed points u0 = ±r0

are created. The right fixed point u0 = r0 is stable and the left fixed point u0 = −r0

gets a saddle point. In Fig. 1.17(b) the two fixed points u0 = ±r0 change their roles.

(a) (b)

Fig. 1.16 Phase portrait. The values are: (a) ĝms
jk = 0.25 , ĝms

jk = 0.25; (b) ĝms
jk = - 0.25. In both

cases cms
jk = 1.5 and dms

jk =- 0.3.
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(a) (b)

Fig. 1.17 Phase portrait. The values are: (a) ĝms
jk = 0.25 , ĝms

jk = 0.25; (b) ĝms
jk = - 0.25. In both

cases cms
jk = 1.5 and dms

jk = 0.3.

The interpretation of e.g. Fig. 1.17(a) in agent view can be given as follows. There
are three agents ,we call them organisators, the organisator in the origin (repulsive
fixed point) sends all messages (bosonic fields) to its neighbour to the left (saddle
point) and to the right (attractive fixed point). The organisator to the right collects
all messages that flow in asymptotically to the circle to this agent. Only the mes-
sages that start in direction of the circle from the organisator to the left stay on the
circle until they reach the right organisator. All messages that are generated by other
agents that are outside of the circle also reach the right organisator. All messages
that are generated by the organisator in the origin and that are coming from outside
of the circle build together an asymptotic flow that can be considered as a fibration
(foliation) where the circle is considered as an unstable manifold Wu that defines a
base space of a bundle.

1.2.4 Coupling of the Disturbed Eigenanteil Equations

Here our approach is oriented on equations for multimode laser (Haken, 1985). We
do this step by step and start with a small perturbation of the coupled Eigenanteile.
This means that we just add particle number operators for each type of quantized
bosonic fields e.g. ms†

jkmsjk that counts the number of “ms-messages” (nms). This
approach reads as:

d
dt

ms†
jk = cms

jk ms†
jk − dms

jk ms†
jk(ms†

jkmsjk)+ ccr
jkcr†

jk − dcr
jkcr†

jk(cr†
jkcrjk)+

(cmt
jk mt†

jk − dmt
jk mt†

jk(mt†
jkmtjk))+ ĝms

jk (ms†
jkmsjk)+ ĝcr

jk(cr†
jkcrjk)+

ĝmt
jk (mt†

jkmtjk). (1.60)

We set (with indices dropped) ms = r1eiϕ1 , cr = r2eiϕ2 , mt† = r3eiϕ3 , and get the
transformed equation:
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d
dt

r1 − ir1
d
dt
ϕ1 = cmsr1 − dms(r1)

3 + ccrr2ei(ϕ1−ϕ2) − dcr(r2)
3ei(ϕ1−ϕ2)+

cmtr3ei(ϕ1−ϕ3) − dmt(r3)
3ei(ϕ1−ϕ3) + (ĝms(r1)

2 + ĝcr(r2)
2 + ĝmt(r3)

2)eiϕ1 .

(1.61)

Here we can set (r1)
2 = nms, etc. After the splitting of this formula into a real

part and imaginary part, the resulting equations are:

d
dt

r1 = cmsr1 − dms(r1)
3 +(ccrr2 − dcr(r2)

3)cos(ϕ1 −ϕ2)+

(cmtr3 − dmt(r3)
3)cos(ϕ1 −ϕ3)+ (ĝms(r1)

2 + ĝcr(r2)
2 + ĝmt(r3)

2)cos(ϕ1).
(1.62)

r1
d
dt
ϕ1 = (ccrr2 − dcr(r2)

3)sin(ϕ1 −ϕ2)+ (cmtr3 − dmt(r3)
3)

sin(ϕ1 −ϕ3)+ (ĝms(r1)
2 + ĝcr(r2)

2 + ĝmt(r3)
2)sin(ϕ1).

(1.63)

We get equivalent formulas for the two other creation operators (the annihilation
operators deliver identical equations as the creation operators).

In the next step we multiply the summed and weighted particle number expres-
sion ĝms

jk (ms†
jkmsjk)+ ĝcr

jk(cr†
jkcrjk)+ ĝmt

jk (mt†
jkmtjk) with the different creation oper-

ators e.g. with ms†
jk. This addition models the fact that the inversion (more fermionic

message receiver are in a higher state (excited) than in a lower basic states; named
saturation in laser technology) will be reduced by all three fields (modes):

d
dt

ms†
jk = cms

jk ms†
jk − dms

jk ms†
jk(ms†

jkmsjk)+ ccr
jkcr†

jk − dcr
jkcr†

jk(cr†
jkcrjk)+

cmt
jk mt†

jk − dmt
jk mt†

jk(mt†
jkmtjk) +(

ĝms
jk (ms†

jkmsjk)+ ĝcr
jk(cr†

jkcrjk)+ ĝmt
jk (mt†

jkmtjk)
)

ms†
jk+(

ĝms
jk (ms†

jkmsjk)+ ĝcr
jk(cr†

jkcrjk)+ ĝmt
jk (mt†

jkmtjk)
)

cr†
jk+(

ĝms
jk (ms†

jkmsjk)+ ĝcr
jk(cr†

jkcrjk)+ ĝmt
jk (mt†

jkmtjk)
)

mt†
jk.

(1.64)

The solution of this equation reads now:

d
dt

r1 − ir1
d
dt
ϕ1 = cmsr1 − dms(r1)

3 + ccrr2ei(ϕ1−ϕ2) − dcr(r2)
3ei(ϕ1−ϕ2)+

cmtr3ei(ϕ1−ϕ3) − dmt(r3)
3ei(ϕ1−ϕ3)+(

ĝms(r1)
2 + ĝcr(r2)

2 + ĝmt(r3)
2)r1ei(ϕ1−ϕ1)+

(ĝms(r1)
2 + ĝcr(r2)

2 + ĝmt(r3)
2)r2ei(ϕ1−ϕ2)+

(ĝms(r1)
2 + ĝcr(r2)

2 + ĝmt(r3)
2)r3ei(ϕ1−ϕ3).

(1.65)

Finally we include cubic operator terms like ms†
jkms†

jkcrjk, they describe the in-
direct interactions between the bosonic fields (field modes) that are initiated by their
interactions with the fermionic agents a†

j and aj. For reason of simplicity we do not
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write down new coupling coefficients (for precise calculations they must be adapted
and changed)

d
dt

ms†
jk =cms

jk ms†
jk − dms

jk ms†
jk(ms†

jkmsjk)+ ccr
jkcr†

jk − dcr
jkcr†

jk(cr†
jkcrjk)+

cmt
jk mt†

jk−dmt
jk mt†

jk(mt†
jkmtjk)+(

ĝms
jk (ms†

jkmsjk)+ ĝcr
jk(cr†

jkcrjk)+ ĝmt
jk (mt†

jkmtjk)
)

ms†
jk+(

ĝms
jk (ms†

jkmsjk)+ ĝcr
jk(cr†

jkcrjk)+ ĝmt
jk (mt†

jkmtjk)
)

cr†
jk+(

ĝms
jk (ms†

jkmsjk)+ ĝcr
jk(cr†

jkcrjk)+ ĝmt
jk (mt†

jkmtjk)
)

mt†
jk+

ĝms
jk ms†

jkms†
jkcrjk + ĝms

jk ms†
jkms†

jkmtjk + ĝcr
jkcr†

jkcr†
jkmsjk+

ĝcr
jkcr†

jkcr†
jkmtjk + ĝmt

jk mt†
jkmt†

jkmsjk + ĝmt
jk mt†

jkmt†
jkcrjk.

(1.66)

The result is:

d
dt

r1 − ir1
d
dt
ϕ1 =cmsr1 − dms(r1)

3 + ccrr2ei(ϕ1−ϕ2) − dcr(r2)
3ei(ϕ1−ϕ2)+

cmtr3ei(ϕ1−ϕ3) − dmt(r3)
3ei(ϕ1−ϕ3) + (ĝms(r1)

2+

ĝcr(r2)
2 + ĝmt(r3)

2)r1ei(ϕ1−ϕ1)+

(ĝms(r1)
2 + ĝcr(r2)

2 + ĝmt(r3)
2)r2ei(ϕ1−ϕ2)+

(ĝms(r1)
2 + ĝcr(r2)

2 + ĝmt(r3)
2)r3ei(ϕ1−ϕ3)+

ĝms
jk (r1)

2r2ei(ϕ2−ϕ1) + ĝms
jk (r1)

2r3ei(ϕ3−ϕ1)+

ĝcr
jk(r2)

2r1ei2(ϕ1−ϕ2)+ĝcr
jk(r2)

2r3ei(ϕ1+ϕ3−2ϕ2)+

ĝmt
jk (r3)

2r1ei2(ϕ1−ϕ3) + ĝmt
jk (r3)

2r2ei(ϕ1+ϕ2−2ϕ3).

(1.67)

One additional possible quadratic direct coupling of the bosonic operators that is
initiated by similar atomic interactions (Zaslavsky, 2007) is given by the following
equations:

d
dt

ms†
jk = cms

jk ms†
jk − dms

jk ms†
jk(ms†

jkmsjk)+ ccr
jkcr†

jk − dcr
jkcr†

jk(cr†
jkcrjk)+

cmt
jk mt†

jk−dmt
jk mt†

jk(mt†
jkmtjk)+

gjk

(
(ms†

jk)
2 − (msjk)2 +(cr†

jk)
2 − (crjk)

2 +(mt†
jk)

2 − (mtjk)2
)
.

(1.68)

d
dt

msjk = cms
jk msjk − dms

jk msjk(ms†
jkmsjk)+ ccr

jkcr†
jk − dcr

jkcrjk(cr†
jkcrjk)+

cmt
jk mtjk−dmt

jk mtjk(mt†
jkmtjk)+

gjk

(
(ms†

jk)
2 − (msjk)2 − (cr†

jk)
2 +(crjk)2 +(mtjk)2 − (mt†

jk)
2
)
.

(1.69)
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There is not enough space in this subchapter to present all the details of the graph-
ical solutions of all before mentioned distorted equations, but we have observed in
parts that a tendency to asymptotic stability of the QFT-approach can be observed,
if the coupling constants, the damping constants κ , and γ , and the relaxation time
T are not space-time or even field dependent. The coupled equations “prefer” to
decouple in direction to their Eigenanteile. A proof of this proposition can not be
given at this time since this a problem in a very high parameter space and we are
still on the way to perform in a systematic manner the necessary calculations, and
we know that also chaotic solutions exist.

1.2.5 Information Model and Interactions of Structured
Components

1.2.5.1 Interaction Revisited

The interaction of fermionic agents and bosonic message (“force”) fields that rep-
resent different signal quanta like photons, intracellular signaling proteins or extra-
cellular signaling proteins (e.g. synaptic, endocrine (hormone based), etc.) will be
modeled in the first approach again by the interaction Hamilton operator (1.5):

HI = ih̄ ∑
j,k,l,m,n

gms
jk

(
ααα j(m, l)ms†

jk(n)−ααα†
j (m, l)msjk(n)

)
+

ih̄ ∑
j,k,l,m,n

gcr
jk

(
ααα j(m, l)cr†

jk(n)−ααα†
j (m, l)crjk(n)

)
+

ih̄ ∑
j,k,l,m,n

gmt
jk

(
ααα j(m, l)mt†

jk(n)−ααα†
j (m, l)mtjk(n)

)
.

(1.70)

We use the state flip (transition) operators ααα†
j and ααα j, that have been introduced

in Sect. 1.2.1; further we consider the state l (e.g. l = 0, here we use the cursive l in
order to avoid confusion with the number 1) as resting state, and we use the earlier
mode index k as an identification of fermionic agent. The absorption of a message
brings the receiver into an excited state m = 1. We repeated above the previous
defined interaction Hamiltonian since the application of the new definition of infor-
mation (calculated by operators that create or annihilate quantized fields) implicates
a modified version of HI that is primarily based on mutual message exchange. Be-
ing on the way to present the QFT-based description of information as an operator
whose expectation values depend on the involved states (can be considered a context
awareness) we have to consider shortly two possible probability distributions of the
message exchange since the kind of message exchange influences the definition of
information.

In addition we assume the coherence of all message exchanges (above the laser
threshold that is considered as a control parameter that defines a positive net gain)
so all expectation values of these messages obey the Poisson distribution. Hereby
all the different messages (of the fixed type n) that are exchanged in the activity
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phase of the operator pair can be considered as a “message-field” that responds to a
certain distribution function. In our case of coherency this is the Poisson distribution
for the number N of transmitted messages of type n (photonic statistics). The kind
of statistics can be expressed by the number operator e.g. for Nms = ms†

jkmsjk. The
variance (dropping of the indices ms) of this message number is defined by

〈(N−〈N〉)2〉 = 〈N2〉− 〈N〉2 = 〈(ms†
jkmsjk)2〉− 〈ms†

jkmsjk〉2.

For the Poisson distribution function the following approximation is true 〈N2〉−
〈N〉2 ≈ 〈N〉. This means that the messages are send in a fixed averaged time distance.
If the Bose-Einstein statistics is fulfilled then the value of the variance is different
〈N2〉− 〈N〉2 = 〈(ms†

jkmsjk)2〉− 〈ms†
jkmsjk〉2 = 〈N〉(〈N〉+ 1). The relevance of this

distribution function is the lumping of messages, the ramification is the decoherence
of the field and therefore no cooperation between fermionic agents come about.

1.2.5.2 Postulation of Information Rules

We define the concept of information by four characteristic rules:

1. Synchronisation. There is a mechanism that synchronises the communication be-
tween two or more agents (partners) meaning the semantic compatibility of the
agents that initiate a communication session. In practice such a communication
channel is handcrafted by a developer.

2. Compatibility. The receiver of a message has in the sense of Pulitzer not only
to acknowledge the received message; but even more important is the demand
that the receiver “understands” the matter of the sender and behaves (reacts) in a
manner as it is assumed by the sender (Haken, 1988). In more detail this request
denotes that both communication partners are in a configuration where they are
compatible in their internal states Sj, in their knowledge Wjk and even more
important their distance of information dist(Infj, Infk) is below a given threshold.
If all conditions are fulfilled then a semantic equivalence is available.

3. Component Building. Two components (agents) j and k continue the “negotia-
tion” concerning their combination as long as their common knowledge Wjk is
minimised (similar status of knowledge for both agents defined by a symmet-
ric Kullback measure), the expectation values of the individuals state operators
Sj =

〈
Sj
〉

= tr(ρρρSj) and Sk =
〈
Sj
〉

= tr(ρρρSk) are maximised, and the common
information Infj =

〈
Infj

〉
= tr

〈
ρρρInfj

〉
of agent j is minimised (for more detailed

calculations see Sect. 3.3.2).
4. Open ended evolution. The process of information collection is iterative and de-

scribes three basic algorithms. These are the information that describe the geno-
type (defining the evolution and fitness), the phenotype (defining the behaviour
and higher cognitive abilities) and the controllers coordinating the gathering
of information (learning) concerning evolution and fitness and the interactions
of these two different learning procedures. The whole process ends if a mini-
mum (infimum) of total information in a given environment has been achieved
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(open systems). Here one open question is how the fitness of a given individ-
ual influences its genome in that different species emerge that are genetically
incompatible.

Here ρρρ is the density operator (density matrix) and tr is the trace of a matrix: e.g.
tr(ρρρSj) = ∑m

〈
m
∣∣ρρρSj

∣∣m〉
. The total individual state operator Sj of an agent j with

several internal states (state sum) is defined by:

Sj =∑
k

e

(
μμμ j

(
〈N2

jk〉−〈Njk〉2
)
−Wjk

)
/〈N2

j 〉
, (1.71)

where 〈Njk〉 = 〈ms†
jkmsjk〉 is the mean value of messages that agents j and k ex-

change, and 〈N2
jk〉 = 〈ms†

jkmsjkms†
jkmsjk〉 is the expectation value of N2

jk. The ex-

pression (〈N2
jk〉− 〈Njk〉2) defines the expectation value of the quadratic fluctuations.

The knowledge Wjk is defined as the symmetric Kullback measure of the two prob-
ability distributions of agents j and k, (see Sect. 3.3, Eq. 3.8).

The activities of an agent can be compared to that one of a chemical potential
that characterise the possibilities of a substance to interact with other substrates, to
transfer into other states and to distribute all over the space. A reaction, conversion,
and redistribution can only occur without enforcement if the potential in the initial
state is greater as in the final state. These features are also relevant to statistical
physics where we have borrowed our definition (here we neglect for brevity other
contributions e.g. of crjk,mtjk)

μμμ j =
K

∑
k=0

M

∑
mj=0

ln
(

gms
jk a†

j (mj)msjk + gms∗
jk

(
aj(mj)ms†

jk

))
. (1.72)

The quantisation of μμμ j is performed by the inclusion of quantum field operators
and hereby finally we get the quantisation of the information. Further benefits of
the approach with the “chemical potential” are the possibility to combine different
agents to a bigger unit, to model diffusion and the possibility to describe the adapta-
tion of an agent performed by different phase transitions (e.g. solid state, fluid state,
gaseous state). This can be initiated by special messages and appropriate coupling
constants that generate an appropriate state transition. Thus it is possible to consider
e.g. environmental restrictions as dedicated messages from outside.

The operator of the “statistical potential” of an agent j, after it evaluates all mes-
sages it has received, is defined by:

ΩΩΩ j = −〈N2
j 〉 ln

(
∑
k

e

(
μ j

(
〈N2

jk〉−〈Njk〉2
)
−Wjk

)
/〈N2

j 〉
)

= −〈N2
j 〉 lnSj. (1.73)

Since we consider μμμ j as a dynamic variable the state operator Sj can be charac-
terised beside physical or chemical terms also by states of nonlinear dynamics like
equilibrium states, periodic states or even chaotic states. Finally we define the op-
erator of information as the derivative of the operational “statistical potential” with
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respect to
〈
N2

j

〉
that correspondsd to the temperature of the state Sj in statistical

physics:

Infj = − ∂ΩΩΩ j

∂
〈

N2
j

〉 . (1.74)

Transferred to our approach this means that the synchronisation of two agents
(e.g. robot-cells) is guaranteed, since the communicative coherence and message
exchange symmetry between all agents is established. Expressed in a new interac-
tion Hamiltonian this might look like:

H′
I =ih̄∑

j,k

gms
jk ms†

jkmsjk

(
ααα j(mj,0)ααα†

k(mk,0)−ααα†
j (mj,0)αααk(mk,0)

)
+

ih̄∑
j,k

gcr
jkcr†

jkcrjk

(
ααα j(mj,0)ααα†

k(mk,0)−ααα†
j (mj,0)αααk(mk,0)

)
+

ih̄∑
j,k

gmt
jk mt†

jkmtjk

(
ααα j(mj,0)ααα†

k(mk,0)−ααα†
j (mj,0)αααk(mk,0)

)
.

(1.75)

This interaction Hamiltonian fulfills the rule of synchronisation mentioned before
(rule 1). The equation of motion for ααα†

j (mj,0) are:

d
dt
ααα†

j (mj,0) =
i
h̄
[H′

I,ααα
†
j (mj,0)]

=2∑
k

gms
jk ms†

jkmsjk

(
ααα†

j (0,0)−ααα†
j (mj,0)

)
+

2∑
k

gcr
jkcr†

jkcrjk

(
ααα†

j (0,0)−ααα†
j (mj,0)

)
+

2∑
k

gmt
jk mt†

jkmtjk

(
ααα†

j (0,0)−ααα†
j (mj,0)

)
.

(1.76)

Consequently we can solve the equations of motion for all operators that are part
of the definition of the chemical potential μμμ j, then with the aid of the knowledge
Wjk and the aid of the “statistical potential” ΩΩΩ j a value for Infj can be calculated. If
the knowledge of two robot-cells j and k are compatible (e.g. the difference between
Infj and Infk is below a threshold) then not only the dynamic of the information
flow between every two agents but also the total information flow can be calculated
and analysed (e.g. by phase portraits) whether the combination of two robot-cells or
even of an organisms is a stable equilibrium state or this state is unstable.

1.2.5.3 Structured Objects

The activities of different genes/cells are usually clearly different and they might
have strong coupling constants. This fact implies that such units can operate as
“seeds” for agent-based (morphological) networks that are constructed by strong
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message exchange and can be considered as the predefinition of a final structure.
The result is a topological framework that describes the structure of an organism.

We try to demonstrate our approach by the example of water. A single water
molecule is build up by two hydrogen atoms H1, H2 and one molecule O that are
bounded together by two covalent bonds. This means that there is a communication
only between H1 and O, respectively H2 and O. A possible interaction Hamiltonian
is, where we only mention ms and ms† that represent primarily external effects
(dominant internal processes are manifested in a Hamiltonian that owns the same
structure):

HH2O
I = ih̄gms

HO

((
ms†

H1OαααH1 (mH1 ,0)
)(

msH1Oααα†
O (mO1,0)

)
(

ms†
H2OαααH2 (mH2 ,0)

)(
msH2Oααα†

O (mO2 ,0)
)
−(

ms†
H2OαααO (mO2 ,0)

)(
msH2Oααα†

H2
(mH2,0)

)
(

ms†
H1OαααO (mO1 ,0)

)(
msH1Oααα†

H1
(mH1 ,0)

))
= ih̄gms

HO

((
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H1OmsH1Oms†
H2OmsH2O

)
(
αααH1 (mH1 ,0)ααα†

O (mO1,0)αααH2 (mH2,0)ααα†
O (mO2 ,0)

)
−(
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H2OmsH2Oms†

H1OmsH1O

)
(
αααO (mO2 ,0)ααα†

H2
(mH2 ,0)αααO (mO1 ,0)ααα†

H1
(m1,0)

))
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HO

(
Nms

H1ONms
H2O

(
αααH1 (mH1 ,0)ααα†

O (m01 ,0)αααH2 (mH2 ,0)ααα†
O (m02 ,0)

)
−

Nms
H2ONms

H1O

(
αααO (mO2 ,0)ααα†

H2
(mH2 ,0)αααO (mO1 ,0)ααα†

H1
(mH1 ,0)
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(1.77)

Here Nms
H1O and Nms

H2O are the “message counter operators” and the index H2O does
not mean the water molecule but the message exchange between the second hy-
drogen atom and the oxygen. This approach can be considered as generalised in-
formation based diffusion approach in the sense that between all participants there
is a two-way synchronised message exchange. But till now the connection of this
Hamiltonian with the standard theory e.g. (Haken & Wolf, 1998) is not obvious,
and indeed, the consensus with the reality is still open and still has to be proofed.

The next question that arises is how we can model the structure of a H2O
molecule. This can only be done if we not only consider the message exchange
but also the activities that the receivers perform in consequence of exchange of
“news”. In our case we must consider the subelements of the three molecules. These
are the electrons (more precise: the interactions of the orbitals of the participating
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electrons) that make the covalent bond (overlapping of adjacent atomic orbitals) po-
lar. In more detail we must consider the interaction of the two 1s1 orbitals of the
hydrogen atoms with the 2p4 orbit of the oxygen under the strong observation of
the Pauli Principe. Here we do not delve into the details of quantum physic (respec-
tively physical chemistry) but argue with the relevant symmetry groups for the H2O
molecule that consider all orbitals together. The drawback of this procedural mes-
sage is that this kind of the group theory cannot explain why the water molecule is
stable but e.g. He2 is unstable. Such stability declaration can usually only be given
by direct calculations of the interaction patterns.

The oxygen nucleus draws electron orbits away and as a result an electrical
tetraeder structure is generated (Alberts et al., 2008); the symmetry group is there-
fore Td (full notation: 43m). The spatial structure of it is defined by C2v.

The stabilities of individual parts can again be calculated e.g. by

d
dt

(ms†
H1OαααH1(mH1 ,0)) =

i
h̄

[
HH2O

I ,
(
ms†

H1OαααH1(mH1 ,0)
)]

(1.78)

and analysed by the methods of nonlinear dynamics as we have done before.
The energy calculation can be done by the standard model of harmonic oscillator.

Here we couple two oscillators together. The non interacting Hamiltonian is just the
well known sum of the two separate oscillators

H = h̄
2

∑
i=1

ωp
i

(
a†

p
i
ap

i
+

1
2

)
, (1.79)

where p
i

is a 3-d momentum, and the eigenfunctions are also well known (Hermite
polynomials).

The reader recognised certainly that the symmetry groups of the H2O molecule
are not really relevant to the connection of some few robot-cells to a structured
component of a symbiotic organism, but we operate here again in strong analogy
to this algebraic method. The interaction between the participating active cells is
modeled by the contents of the exchanged messages. Thus we can describe whether
two cells own similar genomes and therefore are compatible to aggregate to a major
component. A message can also characterise e.g. pure physical effects that two cells
merge together since they are by chance (probability) sticked together close enough
and mutual attractive forces merge them to a new unit. By this approach defects
of individual cells can be modeled and detected. The remedy of such defects can be
performed by the calculation and comparison of the pairwise exchanged information
and thus even modify or exchange malfunctioning robot cells. The Hamiltonian
does not deliver these information but it will be used to describe and to analyse the
dynamics of the flow of the dedicated messages, and the symmetry of such a flow
can be defined by a relevant group. Here we can read in more detail e.g. whether
cells are attractive, repulsive, or neutral. Further such a group could deliver a hint
which symmetry group governs the information space. In sequence, this knowledge
delivers the definition of a metric in such a space and therefore provide us with the
correct calculation of the distance of two information values.
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Now we turn to the coupling of two water molecules. The two water molecules
are connected by a so called hydrogen bond between the oxygen atoms via one
mediating hydrogen molecule. We model this by the following Hamiltonian:

Hwater
I = ih̄gms
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(1.80)

Analogous to a symmetry group of water we have to search for a symmetry
group of a developed organism. This can usually be done on geometrical level (e.g
spherical or cylindrical symmetry) or, as we propose, on the level of the informa-
tion flows of different organising agents that represent different major components
(compartments) of an organism. Here we can study the flow of different message
types that are send and received among these agents hereby defining the dynamic
type of agent (e.g. attractive) and search for the symmetry groups that describe
these flows.

1.2.5.4 Action Integral as Fitness Measure

We employ the action integral

W12 =
∫ t2

t1
L

(
Φ(x) ,∂μΦ(x) ,Ψ(x) ,∂μΦ(x)

)
dt (1.81)

to describe and evaluate the propagation of an action. We will use it to define
a measure how fit (efficient) a combined structured object in comparison to its
individual components is. Here L is the Lagrangian density operator,Φ is a bosonic
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quantized field, and Ψ is a fermionic field that solves adequate Schrödinger equa-
tions. The Lagrangian density operator without interaction is:

LS = ih̄Φ† (x)Φ̇ (x) + ih̄Ψ† (x)Ψ̇ (x) − h̄2

2mΦ
∇Φ† (x)∇Φ (x) −

Φ† (x)VΦ (x)Φ(x) − h̄2

2mΨ
∇Ψ† (x)∇Ψ(x) − Ψ† (x)VΨ (x)Ψ(x).

(1.82)

In this formula∇ is the 3-d Nabla operator and the point defines the temporal deriva-
tion. The general correlation between the Schrödinger-densities (Index S) densities
and the interaction densities Ltotal = LS + LI and Htotal = HS + HI is

Htotal = πΦΦ̇ + πΦ†Φ̇† + πΨΨ̇ + πΨ†Ψ̇† − Ltotal, (1.83)

where πΦ = ∂Ltotal/∂Φ̇, etc. are the conjugated fields. For example we got for HS

the result
(
πΦ = ih̄Φ†,πΨ = ih̄Ψ†

)
, all remaining conjugate fields are zero:

HS =
h̄2

2mΦ
∇Φ†(x)∇Φ(x)+Φ†(x)VΦ(x)Φ(x)+

h̄2

2mΨ
∇Ψ†(x)∇Ψ(x)+Ψ†(x)VΨ(x)Ψ(x).

(1.84)

The field operatorΦ obeys an equal time commutation rule, whereasΨ fulfills an
equal time anti-commutation rule. The stability of a system is usually investigated
by the form of potential that defines equilibrium states. In our case we have to fix
the two potentials VΨ (x) and VΦ (x).

Typical potentials might be (Zaslavsky, 2007): the kicked oscillator, where a is
the distance of the two positions

VΨ (x) =
1
2
α∑

j

(
xj+1 − xj − a

)2 − 1
2
β∑

j

(
xj+2 − xj − 2a

)2

+γ∑
j

mjω2
j cos

(
2π j

t
T

)
, (1.85)

and the perturbed oscillator

VΨ (x) =
1
2∑j

(
p2

mj
+ mjω2

j x2
j

)
+∑

j

mjω2
j cos

(
xj − vt

)
. (1.86)

The separate insertion of each of this two potentials into the Schrödinger equation
delivers us with a standard solution. But we are more interested in the interaction
representation rather than in the Schrödinger representation. A typical part of our
information based interaction Hamiltonian HI for a water molecule is:
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HI = Nms
H1Oααα (mH1 ,0)ααα†

O (mO1 ,0)
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(1.87)

To get the equation of motion e.g. for Φ†
H1O in the interaction representation the

calculation follows the same pattern as before

d
dt
Φ†

H1O =
i
h̄

[
HI,Φ†

H1O

]
. (1.88)

Such equations have to be solved for all field operators that are part of the inter-
action Hamiltonian and afterwards inserted in the action integral

W12 =
∫ t2

t1
LI (Φ(x) ,Ψ(x)) dt = −

∫ t2

t1
HI (Φ(x) ,Ψ(x)) dt. (1.89)

Hereby we pay attention to the fact that the interaction Hamiltonian includes no
derivatives therefore we can set LI = −HI. By the calculation of this integral (with
even more elaborated formulas for HI like (1.77) we can achieve the result that a
H2O molecule is stable or not. In addition we can go on this way and calculate
whether the combination of two H2O molecules is stable and so on. Finally we can
calculate whether water can originate or not. The maximal fitness is achieved if
not only some stable liquid evolves but this liquid also holds all additional, positive
features of water. This maximal fitness can not only be accomplished by the calcula-
tions of the action integral but also by explicit calculation of the relevant information
as defined in 1.2.5.2.

The symmetry group of the Schrödinger equation and therefore for the field op-
erators Φ (x) andΨ (x) is the U(1). This implies that the local gauge transformation
for these operators is defined by the phase transformation eϕ(x) (entirely analogous
to classical electromagnetic fields) and LI must also be invariant under such arbi-
trary phase changes (analogous to classical electromagnetic fields). The Lagrangian
density mentioned above fulfills this invariance requirement.2

1.2.5.5 Appendix

Fermionic anticommutators:{
ai (l) ,a

†
j (m)

}
= δijδlm,

{
ai (l) ,aj (m)

}
= 0,

{
a†

i (l) ,a†
j (m)

}
= 0. (1.90)

2 Please remind that we mentioned in this contribution three different symmetries: symmetry
of the interaction Hamiltionian, symmetry of the information flow, and symmetry of an
organism (body compartments).
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Bosonic commutators:[
bi (l) ,b†

j (m)
]

= δijδlm,
[
bi (l) ,bj (m)

]
= 0,

[
b†

i (l) ,b†
j (m)

]
= 0. (1.91)

Here l and m stands for the set of all internal states (“quantum”) numbers including
the time (commutators respectively anti-commutators are calculated at equal time),
the indices i and j are labels of fermionic units (e.g. robot cells); in the case of
bosonic operators they characterise the message type (bosonic field). If the com-
mutator of two operators is zero then both equivalent fields (physical terms) can be
measured simultaneously.

1.3 Functional and Reliability Modelling of Swarm Robotic
Systems

Alan Winfield, Wenguo Liu, Jan Dyre Bjerknes

A robotic swarm is an example of a stochastic, dynamical and often non-linear
system. Developing models that allow overall swarm properties to be predicted
from the low-level parameters of the individual robots that comprise the swarm
is challenging. For this reason many swarm robotics algorithms are validated with
reference to simulation studies or limited real-robot experiments only, with no un-
derpinning mathematical model or proof. This approach is inherently limited since
simulation or real-robot experiments can only explore small parts of a system’s
parameter space, and hence provide only weak “inductive” proof of an system’s
correctness, or reliability. Yet if swarm robotic systems are to find real-world ap-
plication, especially in safety- or mission-critical applications (Rouff et al., 2003;
Truszkowski et al., 2004; Winfield et al., 2006b), we need the strong validation pro-
vided by mathematical models of both swarm function and swarm reliability.

This chapter is presented in two parts. In the first section we review approaches
for mathematical modelling of collective robotic systems, and outline a macro-
scopic modelling approach based upon developing a probabilistic finite state ma-
chine (PFSM) description of the overall swarm, then expressing the PFSM as a
system of differential equations that model the change in the average number of
robots in each state, with time. We then illustrate this approach with a case study
example of a mathematical model of a wireless connected swarm of mobile robots
operated in unbounded space. In the second section we use a modified version of
the same case study swarm system to develop failure modes and effects analysis
(FMEA), and a reliability model for the swarm. In particular we address the com-
mon assumption that swarm systems are automatically scalable and robust and show,
for our case study swarm system, that this assumption is incorrect.

1.3.1 Macroscopic Probabilistic Modelling in Swarm Robotics

In recent years probabilistic approaches to modelling swarm robotic systems have
been developed and successfully applied. One way to classify these is based on their
representation of the swarm and its units.
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Microscopic models reproduce each real robot in the targeted system sepa-
rately, with dedicated — more or less detailed — representations. The Macro-
scopic approach instead models the target swarm robotic system with a single
representation, for instance summarising fractions or total numbers of robots
in the swarm engaged in specific tasks.

One of the first examples of probabilistic modelling of a swarm of robots at the
microscopic level is that proposed by (Martinoli et al., 1999) to study object ag-
gregation; robot’s interactions with other robots and the environment are modelled
as a series of stochastic events, with probabilities determined by simple geometric
considerations and systematic experiments with one or two real robots. The very
same microscopic method was applied to the analysis of collaborative stick pulling
(Ijspeert et al., 2001).

In general, macroscopic models are more computationally efficient than their
microscopic counterparts. One of the fundamental elements of the macroscopic
probabilistic model are the Rate Equations, which have been successfully applied
to a wide variety of problems in physics, chemistry, biology and the social sci-
ences. For instance, Sumpter and Pratt (Sumpter & Pratt, 2003) developed a general
framework for modelling social insect foraging systems with generalised rate func-
tions (differential equations). Sugawara and coworkers (Sugawara & Sano, 1997;
Sugawara et al., 1999) first presented a simple macroscopic model for forag-
ing in a group of communicating and non-communicating robots, with analysis
under different conditions; for further work see (Sugawara & Watanabe, 2002).
(Lerman & Galstyan, 2001; Lerman & Galstyan, 2002b) proposed a more gener-
alised and fundamental contribution to macroscopic modelling in multi-agent sys-
tems. In (Lerman & Galstyan, 2002a), they presented a mathematical model of
foraging in a homogeneous multi-robot system to understand quantitatively the
effects of interference on the performance of the group. In (Lerman et al., 2004),
they developed a macroscopic model of collaborative stick-pulling, and the re-
sults of the macroscopic model quantitatively agree with both embodied and
microscopic simulations. Agassounon and Martinoli used the same approach to cap-
ture the dynamics of a robot swarm engaged in collective clustering experiments
(Agassounon & Martinoli, 2002).

Rather than using a time-continuous model, Martinoli and coworkers
(Martinoli, 2003; Martinoli & Easton, 2003; Martinoli et al., 2004) considered
a more fine-grained macroscopic model of collaborative stick-pulling which takes
into account more of the individual robot behaviours in the discrete time domain
using difference equations. They suggested that time-discrete models are the most
appropriate solution for the level of description characterised by logical operators
and behavioural states. Similarly, Correll et al. (Correll & Martinoli, 2005) used
a macroscopic probabilistic model for analysis of beaconless and beacon-based
strategies for a swarm turbine inspection system, and furthermore to find an optimal
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collaboration policy minimising the time to completion and the overall energy con-
sumption of the swarm in (Correll & Martinoli, 2006b; Correll & Martinoli, 2006a).
In (Correll & Martinoli, 2007), a macroscopic probabilistic model is proposed to
analyse self-organised robot aggregation inspired by a study on aggregation in gre-
garious arthropods.

Both microscopic and macroscopic probabilistic modelling approaches rely on
two main common assumptions (Martinoli & Easton, 2003; Martinoli et al., 2004):
Firstly, the fulfilment of Markov properties (or semi Markov properties), i.e. the
robot’s future state depends only on its present state and on how much time it has
spent in that state. This assumption is true when robots use reactive control: robots
decide on future actions based solely on input from sensors and the action they are
currently executing. Therefore the robots can be represented as stochastic Markov
processes and the system can be modelled as a probabilistic finite state machine.
Secondly, the assumption that the coverage of the arena by the groups of robots is
spatially uniform, and the low-level strategies of the robot do not play a critical role
on the metric of the system of interest. Indeed, finding an appropriate mathematical
description for the transition probabilities is the main challenge in applying both
microscopic and macroscopic probabilistic modelling approaches. The second as-
sumption becomes particularly useful for computing the transition probabilities for
the robots. In this case, the probabilities of basic events, detecting an object for in-
stance, only depend on geometrical considerations and are given by the ratio of the
total extended area of the object related to the total area of the arena where the robots
could appear. However, uniform coverage might not always be the case and depends
on the environment and the robots’ controllers. For example, (Hayes et al., 2000)
considered a more complex situation where the distribution of the robot cannot be
assumed to be uniform in the arena for an odour plume localisation task. The con-
figuration of the environment and the robots’ controllers must be taken into account
for probabilistic models.

Despite the success of the above examples, there is little existing work on
mathematical analysis of adaptive multi-robot systems in dynamic environments.
Lerman and Galstyan (Lerman & Galstyan, 2003; Galstyan & Lerman, 2005;
Lerman et al., 2006) extended the macroscopic probabilistic model to study dist-
ributed systems composed of adaptive robots that can change their behaviour based
on their estimates of the global state of the system. In their study, a group of robots
engaged in a puck collecting task need to decide whether to pick up red or green
pucks based on observed local information. They claim that the model can be easily
extended to other systems in which robots use a history of local observations of the
environment as a basis for making decisions about future actions. Liu and Winfield
(Liu et al., 2007; Liu, 2008; Liu et al., 2009) developed a macroscopic model for a
swarm of foraging robots with adaptation, where the different priorities in behaviour
selection and the heterogeneities in individual parameters pose great challenges to
modelling. Their model has been successfully used to analyse the performance of
the adaptive foraging swarm and further to design optimal parameters for individual
controllers.
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1.3.1.1 Methodology

For most behaviour-based robotic systems, although the behaviour of a particular
robot at a given time is fully determined, the transitions from one state (behaviour) to
another could exhibit some probabilistic properties over time within the population
of the swarm. The central idea of probabilistic modelling, either micro- or macro-
scopically, is to describe the experiment as a series of stochastic events and use rate
equations to capture the dynamics of these events. A general approach to developing
a macroscopic probabilistic model for swarm robotic tasks can be summarised as
follows:

step 1. describe the behaviour of the individual robots of the swarm as a finite
state machine (FSM);

step 2. transform the FSM into a probabilistic finite state machine (PFSM), de-
scribing the swarm at a macroscopic level;

step 3. develop a system of rate equations for each state in the PFSM, to
describe the changing average number of robots among states at a macro-
scopic level;

step 4. measure the state transition probabilities using experiments with one or
two real robots, or estimate them using analytical approaches, and then

step 5. solve the system of rate equations.

The controller design for individual robots may take the behaviour based ap-
proach introduced by (Brooks, 1986), in which a robot’s behaviour is normally de-
termined by its current sensor inputs. A state in the FSM may include one or more
of these low level behaviours, and the transition from one state to another will only
depend on its current state, rather than historical states; or sometimes on how long
the robot has spent in that state. In step 2, the FSM can be transformed into a PFSM
by replacing the conditions associated with the transition edges in the FSM with the
probabilities that the corresponding conditions are true. In the PFSM, each state rep-
resents the average number of robots in that state. The changes of average number
of robots in each state of the PFSM over time can then be described using a set of
rate equations, either in continuous time or discrete time. Since in a robotics system
both analog and digital sensors or actuators are used, we use difference equations
(DE) in discrete time to capture the dynamics of the system rather than ordinary
differential equations (ODE) in continuous time.

Estimating the transition probabilities for the PFSM (and the DEs) can be a sig-
nificant challenge, although in some cases these probabilities can be measured by
running experiments with one or two real robots; however such an approach is not
ideal since the ultimate goal of a mathematical model is analysis and prediction
of the effect of individual robot parameters on collective behaviour, rather than
trying to match the model to experiments. The transition probabilities are proper-
ties of the swarm — they are not design parameters but byproducts of interactions
among individuals or between the individual robots and their environment. Using
measured values as part of a mathematical model renders the model somewhat less
convincing. Moreover, changing environmental conditions or individual parameters
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might well then invalidate the measured transition probabilities. In some cases it is
not practical to measure all the required transition probabilities because they vary
dynamically (time dependent). We advocate geometrical approaches to estimating
these probabilities, based on reasonable assumptions. One such assumption is that
the distribution of robots within their operational area is, over time, uniform, so the
probability that one event is triggered, for example collision with other robots or a
bounding wall, could be calculated as the ratio of two areas that the robot covers, on
average.

The DEs can be solved analytically or numerically, depending on the complex-
ity of the model. For some tasks, obtaining a direct solution would be possible,
for example certain difference equations, in particular linear constant coefficient
difference equations, can be solved using z-transforms, see (Martinoli et al., 2004;
Agassounon, 2003) for details. For some DEs it is impossible to find a solution using
a direct approach such as the z-transform. A numerical approach is then used. In step
5, to obtain numerical solutions for the DEs, certain initial conditions are normally
applied, for example the initial number of robots in each state. Another widely used
condition is that the total number of robots in each iteration must remain constant.

We now take a simple task as an example to clarify the above approach.
Fig. 1.18(a) shows a finite state machine, with only two states, for the robots en-
gaged in a task. Clearly, at each time step, a robot could be in either state A or state
B. The robot will transfer from state A to state B whenever the condition a is true.
However, it will stay in state B for τb seconds and then will move to state A after
this time is up. Correspondingly, a probabilistic finite state machine is presented in
Fig. 1.18(b). Now the transition between two states in the PFSM is described as a
probabilistic event rather than a deterministic event triggered by certain conditions.
For example, p in this PFSM represents the probability that condition a is true,
which means that a robot will transfer from state A to B with probability p each
time step. The probability of transferring from B to state A is 1 but the transfer will
be delayed by τb seconds, which is the same as in the counterpart FSM. Although
the PFSM is derived from the FSM at the individual robot level, it will be used to in-
vestigate the changes of number of robots in each state in the swarm by introducing
another variable into each state. Here NA(k) and NB(k) are used to denote the aver-
age number of robots in states A and B respectively. A set of difference equations are
then developed to capture the changes of this specific system. Let us consider state
A first: the number of robots in state A decreases because of some robots moving to

A B
τb

condition a
true

time out

(a)

A
NA

B
NB τb

p

1

(b)

Fig. 1.18 A finite state machine (left) with two states, and its corresponding probabilistic
finite state machine (right).
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state B, but it increases because of other robots transferring back from state B, thus
we have:

NA(k + 1) = NA(k)− pNA(k)+ΔB(k − Tb) (1.92)

where pNA(k) denotes the number of robots moving to state B at time step k, and
ΔB(k) represents the number of robot transferring to state B at time step k, which is

ΔB(k + 1) = pNA(k) (1.93)

since there is a delay in the transition from state B to A, the number of robots moving
to state A from B, at time step k, is equivalent to ΔB(k − Tb), where Tb is discretised
from τb.

Similarly, for state B, we have

NB(k + 1) = NB(k)+ pNA(k)−ΔB(k − Tb) (1.94)

In fact, since the population of the swarm is constant, say N0, Eq. (1.94) can be
simplified as

NB(k + 1) = N0 − NA(k + 1) (1.95)

Assume that the transition probability p has been obtained as outlined above, then
given the initial conditions, for example NA(0) = N0 and NB(0) = 0, the number of
robots in each state at any time step, i.e. NA(k) and NB(k), can be obtained using a
numerical approach. We can therefore use these results to quantitatively analyse the
steady-state or dynamic group performance of the system.

1.3.1.2 Case Study: Functionally Modelling a Wireless Connected Swarm of
Mobile Robots

Although the simple example above covers the most common type of states and tran-
sitions in the macroscopic modelling approach, modelling real systems differs from
case to case. The complexity of the model depends very much on the specific task
and the metrics of greatest interest. Generally, a number of simplifying assumptions
and techniques must be used to model a real system. To illustrate these techniques,
a case study is presented in this section. The case study focusses on how to con-
struct a PFSM based on the metrics of interest and how to estimate state transition
probabilities in an unbounded environment.

A class of algorithms which make use of local wireless connectivity information
alone to achieve swarm aggregation have been developed in (Nembrini et al., 2002;
Nembrini, 2005). The basic algorithm, which we refer to as the α-algorithm, is very
simple. The default behaviour of a robot is forward motion. While moving each
robot periodically broadcasts an “I am here” message. The message will of course
be received only by those robots that are within wireless range: its neighbours. If the
number of a robot’s neighbours should fall below the threshold α then it assumes
it is moving out of the swarm and will execute a 180◦ turn. When the number of
neighbours rises above α (i.e. when the swarm is regained) the robot then executes
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a random turn. This is to avoid the swarm simply collapsing on itself. We say that
the swarm is coherent if any break in its overall connectivity lasts less than a given
time constant. Coherence gives rise to both swarm aggregation and a (coherent) con-
nected ad hoc wireless network. In the interests of simplicity we can consider each
robot as having three basic behaviours, or states: move forward (default); coherence,
triggered by the number of neighbours falling below α , and avoidance, triggered by
the robot’s collision (proximity) sensor.

The robot updates its connectivity information less frequently than its proximity
sensor data. The ratio of connectivity sampling rate to the sampling rate of proxim-
ity sensors, which we refer to as cadence, is introduced into the basic α-algorithm to
prevent the robot from updating its connectivity state too frequently (we need to give
the robot time to complete its turn in response to a connection loss, for example, be-
fore re-checking its connectivity). By default, the robot will move forward at a fixed
velocity. It will update its connectivity state after a certain duration, say TC (steps),
and if it finds the number of connected neighbours has dropped below the threshold
α , then it will move into the coherence state and execute the U-turn behaviour to
try to recover the lost connections; if and when the number of connected neighbours
then increases, the robot will execute a random turn. Providing the number of con-
nected neighbours remains at or above α , the robot can lose or gain connections
but remain in the forward state. Thus, depending upon its connectivity, a robot will
either remain in the forward state or switch between forward and coherence states
unless it collides with other robots (triggered by the proximity sensor). Such an
event will cause the robot to move into the avoidance state and execute a collision
avoiding turn for time TA (steps), after which the robot will return to its previous
forward or coherence state. Note that changes in connectivity take precedence over
collision avoidance, thus if a change of connectivity is detected while the robot is
in the avoidance state (i.e. taking avoiding action), the robot will - if required -
immediately transition into the appropriate coherence or forward behaviours.

Fig. 1.19 Robot Finite State Machine.

Fig. 1.19 shows the ba-
sic robot Finite State Machine
(FSM). We reflect the fact that
the avoidance behaviours are
subsumed within the two top-
level states coherence and for-
ward by showing sub-states
avoidanceC and avoidanceF .
Note that although changes in connectivity take precedence, because the proximity
sensor is sampled more frequently than the connectivity (defined above as cadence)
collision avoidance is still assured.

1.3.1.3 A Probabilistic Model of Connectivity

In the α-algorithm roboti has a number of connected neighbours di. Clearly, the
range of values for di is bounded. The maximum value dmax is determined geometri-
cally by the ratio of the areas covered by the wireless sensor range and the avoidance
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sensor range; for the robot to remain in the default forward state, the lower bound
on di is α . Now in the α-algorithm when di < α the robot moves into the coherence
state in which it turns back to try and recover the swarm and hence bring di back to
a value greater than or equal to α . However, the coherence behaviour is not always
successful and it is possible for a robot to have fewer than (α − 1) connections. In
fact, the robot will continue to try and recover the swarm for values of 0 < di < α .
Based on these observations we can now propose a PFSM which completely models
the swarm connectivity, as shown in Figs. 1.20 and 1.21.

Fig. 1.20 is, in effect, the simple FSM of Fig. 1.19 expanded to show every possi-
ble number of network connections in each of the two states coherence and forward,
together with every possible transition between the states and their probabilities.

Fig. 1.20 PFSM of the robot controller. Fi represents the forward state with i connections; Ci
represents the coherence state with i connections. NCi

and NFi
indicate the average number of

robots in corresponding states and TC indicates the number of time steps spent in each state.
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Fig. 1.21 Left: coherence state Ci expanded to show sub-states AC
i and Ci. Right: forward

state Fi expanded to show sub-states AF
i and Fi. The average number of robots in each state

is shown as N.; TA is the number of time steps spent in the avoidance states AC
i and AF

i .

Each of the discrete forward states represents a different value of di; the Fm state
is the state with the maximum number of connections dmax, the Fm−1 state is the
state with dmax − 1 connections, counting down until we reach the F0 state with 0
connections; there are a total of dmax + 1 forward states, including F0. Note that
F0 is the “lost robot” state representing the failure of the algorithm to maintain the
coherence of the swarm. Consider the forward state Fα . The loss of a connection
with probability Plα will cause a transition into the coherence state Cα−1. If the
action of that state is successful then the robot will transition, after TC steps and
with recovery probability Prα−1 back into the Fα state. If, on the other hand, the
coherence behaviour fails, the robot will move into the Fα−1 state. The likelihood
of this is the coherence failure probability Pfα−1 . A loss of connection in each of the
forward states F1 . . .Fα will trigger a transition into coherence states C0 . . .Cα−1

respectively.
Fig. 1.21 completes the PFSM by expanding the two states Ci and Fi into

their respective sub-states, again reflecting the structure of the FSM of Fig. 1.19.
Fig. 1.21(right) shows that a robot in each of the forward states Fi might collide
with another robot, with probability Pai , triggering a transition into its correspond-
ing avoidance state AF

i , returning to the initial forward state after TA steps. Similarly,
Fig. 1.21(left) shows that a robot in each of the coherence states might also collide
with another robot triggering its transition into corresponding avoidance states AC

i ,
also returning after TA steps.

1.3.1.4 Geometrical Estimation of Transition Probabilities

Given the PFSM for the α−algorithm, a set of difference equations can be derived
for the state transitions following the approach outlined in Sect. 1.3.1.1. The full
model has a number of transition probabilities, summarised in Table 1.5. Each of
these probabilities is conditional on the connectivity status for those robots and
therefore impossible to measure in experiments with one or a few real robots.

Here a novel geometry-based approach is developed to estimate these probabili-
ties in our wirelessly connected swarm. Let V denote the normal forward speed of
each robot. It follows that the relative speed between two robots varies from 0 to
2V and the relative heading varies from 0◦ to 360◦. Consider one of the robots in
the swarm, say roboti, with di neighbours at time step k. Fig. 1.22 illustrates some
of its neighbours, shown as robotA, robotB, robotC and robotD. Let us assume that
roboti is in either forward or coherence states, then after one time step (of duration
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Table 1.5 State transition probabilities, di represents the number of connections for roboti .

probabilities comments

Padi
collision with another robot

Pldi
loss of a connection in forward state

Pgdi
gain of a connection

Prdi
recovery of a connection

Pfdi
failure to recover a connection

Pladi
loss of a connection in coherence state

roboti

Ra + Rp

Rw

Ra

2V TCT

robotB

2V T

robotA

2V TCT

robotC

2V TCT

robotD

2V T

2V TCT2V TCT
A L RC F

Fig. 1.22 Roboti and its neighbours. Robots are marked with filled circles. Each robot has a
communication range Rw and avoidance radius Ra, Rp denotes the physical size (radius) of the
robot. C, A, F, L and R in the figure represent the collision, avoidance, forward, connection
loss and connection recovery areas respectively; each is an annular region bounded within
two circles with the same origin.
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T ), each of its neighbours will move a distance from 0 to 2VT . It is clear that only
the robots close enough will have a chance of moving into roboti’s collision area
(within radius Ra, marked C in Fig. 1.22), and thus drive roboti to change to state
avoidance. For instance, as shown in Fig. 1.22, robotA may possibly trigger roboti’s
avoidance sensor next time step while robotB, robotC and robotD cannot. Similarly,
after TC steps, robotC located in area L will possibly move out of roboti’s commu-
nication range resulting in roboti losing one connection, and robotD located in area
R might move into roboti’s communication range, with some probability, in which
case roboti will gain one connection at step k + TC. However, robotB located in area
F can neither trigger roboti’s avoidance sensor nor cause a change in the number
of its connected neighbours. Thus, in order to estimate state transition probabilities,
we need only consider situations where neighbouring robots fall within the annular
regions in Fig. 1.22: A, in which a collision might occur; L, in which a connec-
tion loss might occur; or R, in which a connection recovery might occur. A detailed
derivation of each of these probabilities is given in (Winfield et al., 2008).

1.3.1.5 Running the Macroscopic Model

We now run the macroscopic model with state transition probabilities estimated
using the geometrical approach. Fig. 1.23 shows the average number of robots in
states forward, coherence and avoidance, in which we merge states AC and AF from
the sub-PFSMs in Fig. 1.21, plotted against connectivity. The left-hand plots show
the results collected from a sensor-based simulation using Player/Stage, while the
right-hand side plots show the results from the PFSM model run with the estimated
state transition probabilities. The total average number of robots, summing all states,
is also plotted as the topmost curve in each graph.

First we note that the PFSM model generates the same “bell” shaped curves as the
simulation, and for all three values of α the peak occurs at or very close to the same
connectivity value. The PFSM model for α = 5 somewhat underestimates the num-
ber of robots in all three states and also shows a longer “tail” of robots with high
connectivity values than is measured from simulation; however, the model shows
reasonable agreement at very low connectivity values, especially in predicting ‘lost’
robots (with connectivity of zero). At α = 10 the macroscopic model again shows a
longer tail of high connectivity robots than the simulation; also evident is the same
overestimate in the number of robots in the forward state at connectivity values be-
low α . The overestimate in forward robots is even more pronounced at α = 15. We
also see that the ‘lost’ and very low connectivity robots are not seen in the model for
α = 10 and α = 15. In all three pairs of results the greatest discrepancy between the
macroscopic model and the simulation is in robots in the forward state. In contrast,
the macroscopic model shows much stronger agreement with simulation for the
number of robots in coherence and avoidance states. Given the simplifying assump-
tions for constructing of the PFSM and estimating of the transition probabilities, it is
perhaps surprising that the macroscopic model does generate such plausible results
for the swarm connectivity structure. For details of low-level robot parameters and
full discussion of the modelling assumptions refer to (Winfield et al., 2008).
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Fig. 1.23 Number of robots in state coherence, forward and avoidance plotted against num-
ber of neighbours (connectivity). From top to bottom, α = 5, 10 and 15. Left: Player/Stage
simulation, average of 10 runs, each simulation lasts for 10000 seconds. Right: Macroscopic
model using geometrically estimated probabilities.

1.3.2 Reliability Modelling of Swarm Robotic Systems

Research papers in Swarm Robotics frequently assert that swarm robotic systems
are both scalable and robust. We accept the defining criteria for swarm robotics set
out in (Dorigo & Şahin, 2004), which include importantly “local and limited sens-
ing and communication”, and we note that these criteria also state that swarm robo-
tics studies should “aim for scalability”. The fact that individual robots in the swarm
make decisions based only on local sensing and communication is assumed to lead
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naturally to swarms that will scale to very large numbers of robots. The high degree
of parallelism in robot swarms, which typically consist of homogeneous robots, is
assumed to lead to a high level of robustness and dependability. It is indeed true
that robot swarms can exhibit an unusual level of tolerance to failure of individual
robots, or external threats, when compared with conventionally engineered distribu-
ted systems, but it is not safe to assume that scalability and robustness are automat-
ically properties of all (or any) swarm systems. It is surprising therefore that, in the
field of swarm robotics, there has been very little systematic study of dependabil-
ity and fault tolerance; but see (Winfield et al., 2005; Winfield & Nembrini, 2006;
Christensen et al., 2009).

In this section we develop a reliability model for a case study swarm of robots that
exhibit emergent, or self-organised, swarm taxis. We first undertake a failure modes
and effects analysis (FMEA) for the case study swarm, then show that we need to
model this swarm — from a reliability perspective — as a k-out-of-N system. We
then extend the k-out-of-N reliability model to take account of worst-case partial
robot failures and swarm scaling properties, introducing the new concept of swarm
self-repair. We conclude with a model of reliability as a function of swarm size.

1.3.2.1 Case Study: Reliability Modelling Emergent Swarm Taxis

We modify the α-algorithm described above in Sect. 1.3.1.2 in two ways. Firstly,
the coherence behaviour is achieved not by making a 180◦ turn when the number
of a robot’s connected neighbours falls below α , but instead by timing the duration
since the robot last made an avoidance manoeuvre and if that value exceeds a given
threshold ω , the robot turns towards its estimate of the centre of the swarm; an
estimate based on readings from the ring of infrared proximity sensors around the
robot’s body. To increase the distance at which robots can sense each other, and
also to enable robots to distinguish between robots and ambient infra-red, each of
the robots is equipped with infra-red emitters that flash at 80 Hz. By sampling the
sensors at 400 Hz and passing the data through a bandpass filter the 80 Hz flashing
is reliably detected. Each robot can then estimate the direction of the local centre of
the swarm based on which of its sensors detect a flashing signal from other robots.
For the results obtained from hardware trials with real robots reported below we set
ω = 2.5 s; ω (like α) controls the overall swarm density.

Secondly, we add an additional “beacon” sensor to each robot. The beacon sen-
sor is a very simple sensor, in that it is unable to detect the range and bearing of
the remote beacon and has only a two-state output: on = illuminated or off = not-
illuminated. An important feature of the physical placement of the beacon sensor
is that it can be occluded by other robots, thus those robots that have a direct line-
of-sight to the beacon will have beacon sensors illuminated, and those robots that
are in the shadow of other robots will have beacon sensors not-illuminated. This
means that for a typical swarm only the robots on or close to the leading edge of
the swarm (with respect to the beacon) will have illuminated beacon sensors. In our
experimental trials we use an IR beacon and make use of the same IR sensors that
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are used for both short-range communication and collision avoidance, for beacon
sensing.

We then introduce a simple symmetry breaking mechanism. Each robot has short-
range avoidance sensors (for sensing collisions with obstacles or, more typically,
other robots). We set the avoid sensor radius for those robots that are illuminated
by the beacon to be slightly larger than the avoid sensor radius for those robots in
the shadow of other robots. This simple mechanism results in a net swarm move-
ment (taxis) toward the beacon. Note that the swarm taxis is an emergent property
of the swarm: with a simple two-state beacon sensor a single robot cannot sense
the direction of the beacon, and even with the symmetry breaking mechanism two
or three robots are not enough to give rise to emergent swarm taxis; experimen-
tally we find that swarm taxis requires at least five robots. This is important to our
case study as we are interested in determining the reliability of a swarm with emer-
gent swarm behaviours. For a detailed analysis of the swarm taxis behaviour see
(Bjerknes et al., 2007).

1.3.2.2 Failure Modes and Effects Analysis

In this section we undertake a Failure Mode and Effect Analysis (FMEA) for our
case study robot swarm. The methodology is straightforward, see (Dailey, 2004).
We attempt to identify all of the possible hazards, which could be faults in robots or
robot sub-systems (internal hazards), or environmental disturbances (external haz-
ards). Then, in each case, we analyse the effect of the hazard on each of the overall
swarm behaviours. Thus, we build up a picture of the tolerance of the swarm to both
types of hazard and begin to understand which hazards are the most serious in terms
of compromising the overall desired swarm behaviours. FMEA is, at this stage, es-
sentially qualitative. Here we consider only internal hazards; external hazards (i.e.
communications noise) were investigated in (Nembrini, 2005).

First we identify the internal hazards. In keeping with the swarm intelligence
paradigm our robot swarm contains no system-wide components or structures, thus
the only internal hazards that can occur are faults in individual robots. Since, in
our case, the robots of the swarm are all identical, then (internal) hazards analysis
requires us to consider only the faults that could occur in one or more individual
robots, and then consider their effect on the overall swarm behaviours. Table 1.6
identifies the fault conditions for an individual robot.

Table 1.6 Internal Hazards for a single robot

Hazard Description

H1 All systems failure
H2 Coherence sensor(s) failure
H3 Avoidance sensor(s) failure
H4 Beacon sensor failure
H5 Motor sub-system failure
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Table 1.6 makes the assumption that failures of robot sub-systems can occur in-
dependently. This is a reasonable assumption, given that our mobile robots are in
reality an assembly of complex but relatively self-contained sub-systems. Hazard
H1 represents a total failure of the robot; failure of the robot’s power supply would,
for instance, bring about this terminal condition. Hazards H2, H3 and H4 represent
a failure of the robot’s communication, avoidance and beacon sensing functions re-
spectively. Finally hazard H5 motor failure, covers the possibility of mechanical or
motion-controller failure in one or both of the motors in our differential drive mo-
bile robot, such that the robot is either unable to move at all or can only turn on the
spot (which from an overall swarm point of view amounts to the same thing).

Let us now consider the effects of each the hazards enumerated above on the
overall swarm behaviours. We will consider here the effect on the overall swarm
of the hazard occuring in one or a small number of the individuals in the swarm.
Of course the question of how many is a small number in this context is important,
and will return to the question of what proportion of robots need to fail in order to
seriously compromise the desired overall swarm behaviours.

Hazard H1: total systems failure. Complete failure of one or a small number of
robots caused, for instance, by power failure will clearly render the robot(s) station-
ary and inactive. They will be wirelessly disconnected from the swarm and will be
treated, by the swarm, as static obstacles to be avoided. Ironically, given that this is
the most serious failure at the level of an individual robot, it is relatively harmless as
far as the overall swarm is concerned. Apart from the loss of the failed robots from
the swarm, none of the overall swarm behaviours are compromised by this hazard -
however, we can expect the swarm to be temporarily slowed by the obstacle repre-
sented by the failed robot. We therefore label this effect E1, with an upper-case E to
denote that it is a potentially serious fault.

Hazard H2: coherence sensor failure. Failure of the coherence sensors sub-system
in one or a small number of mobile robots means that those robots cannot sense
the centre of the swarm. Given that basic swarm aggregation depends upon the co-
herence mechanism, then robots with fault H2 might become physically lost to the
swarm and wander off at random. As far as the swarm is concerned these robots
simply become (moving) obstacles to be avoided. The overall swarm behaviours
are, however, essentially unaffected. This hazard has, therefore, a relatively benign
effect, except of course that the failed robots remain mobile within the environment
and - in some circumstances - this may be undesirable. We label this effect e2, with
a lower-case e to denote that it is a non-serious fault.

Hazard H3: avoidance sensor failure. Failure of the avoidance sensor(s) in one
or a small number of robots has little effect on overall swarm behaviour. A single
robot with failed avoidance sensors will be avoided by the other robots in the swarm
and hence have no overall effect. In the unlikely event that two or more robots with
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Table 1.7 Summary of Failure Modes and Effects

Swarm Behaviour H1 H2 H3 H4 H5

Aggregation - e2 - - -
Ad hoc network - e2 - - -
Beacon taxis E1 e2 - - E5

failed avoidance sensors collide with each other then physical damage might result
from such collisions, but the overall swarm behaviours remain unaffected.

Hazard H4: beacon sensor failure. Failure of the beacon sensor in one or a small
number of robots has a practically undetectable effect on the overall swarm be-
haviour. This is because the emergent beacon taxis behaviour results from the sym-
metry breaking mechanism outlined above. Since a differential is created between
two substantive parts of the swarm, the effect of one or a small number of robots
with failed beacon sensors is negligible.

Hazard H5: motor failure. The effect of motor failure in a single robot, or small
number of robots, is interesting. Robot(s) with fault H5 become – in effect – sta-
tionary but, given that their signalling and other sensing systems continue to func-
tion, they remain within the swarm. These robots continue to fully contribute to the
swarm aggregation and ad hoc network emergent behaviours. It is only when the
swarm needs to physically translate its position. i.e. for the beacon taxis behaviour,
that hazard H5 becomes a serious problem. In this case robots with motor failure
will have the effect of physically anchoring the swarm, either impeding or, at worst,
actually preventing the swarm from moving toward its target. This is a potentially
serious hazard since one or a small number of robots with motor failure could seri-
ously compromise the desired swarm-taxis behaviour. We shall label this fault effect
as E5, with an upper-case E to denote that it is potentially serious.

To summarise, Table 1.7 shows the swarm fault effects, as defined above, gener-
ated by one or a small number of robots with hazards H1...H5, for each emergent
swarm behaviour. Table 1.7 clearly shows that the serious swarm failure effects E1

and E5 occur in only 2 out of 15 possible combinations of robot hazard and swarm
behaviour; 10 out of the 15 hazard scenarios have no effect at all on swarm be-
haviour, and the remaining 3 have only minor, non-serious, effects.

1.3.2.3 The k-out-of-N Reliability Model

The purpose of a reliability model is to enable the estimation of overall system
reliability, given the (known) reliability of individual components of the system,
see (Elsayed, 1996). Reliability R is defined as the probability that the system will
operate without failure, thus the unreliability (probability of failure) of the system,
Pf = 1 − R. In our case the overall system is the robot swarm and its components
are the individual robots of the swarm.
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From a reliability modelling perspective a swarm of robots is clearly a parallel
system of N components (robots). If the robots are independent, with equal probabil-
ity of failure p, then the system probability of failure is clearly the product of robot
probabilities of failure. Thus, for identical robots, R = 1 − pN . p can be estimated
using a classical reliability block diagram approach on the individual sub-systems
of the robot; since the individual robot does not internally employ parallelism or re-
dundancy then its reliability will be modelled as a series system, giving p less than
the worst sub-system in the robot, which is most likely to be its motor drive system.

However, this simplistic modelling approach makes a serious and incorrect as-
sumption, which is that the overall system remains fully operational if as few as one
of its components remains operational. This is certainly not true of our case study
swarm. The desired emergent swarm behaviours require the interaction of multiple
robots; our swarm beacon taxis behaviour is a dramatic example: with one robot
only the behaviour simply cannot emerge. It is a general characteristic of swarm
robotic systems that the desired overall swarm behaviours are not manifest with just
one or a very small number of robots. However, the question of how many (or few)
robots are needed in order to guarantee a required emergent behaviour in a particular
swarm and for a particular behaviour is often not straightforward.

Thus, from a reliability perspective, we need to consider the swarm as a k-out-of-
N:G system. That is, a system of N parallel elements which requires that at least k of
these elements are operational (“good”) for the overall system to function correctly.
In a swarm of N robots, if more than N − k fail, the self-organised functionality of
the overall swarm will be compromised.

In a k-out-of-N:G system, the probability that at least k out of N robots are
working at a given time t is given by:

P(k,N,t) =
N

∑
i=k

(
N
i

)
(e−tλ )i(1 − e−tλ )N−i (1.96)

where λ = 1
MT BF , (Kuo & Zuo, 2002). MTBF is the mean time before failure of an

individual robot.
Based on Eq. (1.96) we can now plot swarm reliability against time for our case

study swarm. Experimental trials indicate that at least five robots have to be work-
ing in order for the emergent swarm taxis behaviour to work properly. Thus, we
can model our swarm as a 5-out-of-N system. Consider now the individual robots’
MTBF. Carlson et al. tracked failure data for 13 robots by three different man-
ufacturers over a period of two years. They found the MTBF to be eight hours
(Carlson & Murphy, 2003). Experiments with the e-pucks used in our experimental
trials might suggest that their failure rate might be higher (because of poor design
of the e-puck battery connector). However, as no systematic data is available, the
value reported by Carlson et al. will be used here. Fig. 1.24 (top) plots Eq. (1.96) for
a swarm of ten robots, and shows that the swarm reliability starts to decline rapidly
after 100 minutes of operation.

Fig. 1.24 (bottom) plots the reliability of the same swarm of ten robots,
with the same values for k and MTBF, against the distance the swarm will travel
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Fig. 1.24 Top: The reliability of a robot swarm modelled as a k-out-of-N system, with k = 5,
swarm size N = 10 robots and MTBF = 480 m. Bottom: Reliability of the same swarm as
a function of distance travelled, based on a measured mean swarm velocity of 12.4 cm. per
min. for a swarm of 10 robots.

(the emergent swarm taxis behaviour) based on a measure mean swarm velocity of
12.4 cm per minute for a swarm of 10 robots. Although providing some insight,
the reliability assessments based on the k-out-of-N model here fail to take into ac-
count two important factors. Firstly, each robot that fails is likely - depending on
the exact nature of that failure - to slow down the swarm; if the failed robot(s) are
immobile then the swarm will slow down until it “escapes” from the failed robots,
leaving them behind. Secondly, the swarm velocity might then change after then
failed robot(s) have been left behind, typically a smaller swarm (of at least 5 robots)
will have a higher swarm taxis velocity. We now analyse these factors in more detail
in order to improve the swarm reliability model.

1.3.2.4 Swarm Self-repair

We now introduce the concept of swarm self-repair. Consider the case-study swarm
and its failure modes and effects analysis outlined above in Sect. 1.3.2.2. We have
conducted a series of trials of the emergent beacon swarm-taxis algorithm, using
10 e-puck robots (Mondada et al., 2009), in which we artificially introduce differ-
ent failure modes into one or more robots of the swarm. Our trials broadly confirm
the FMEA and demonstrate that, while all failure modes have the effect of slowing
down swarm progress toward the beacon, the swarm is tolerant to the simultaneous
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Fig. 1.25 Hardware trials using 10 e-puck robots: single robot complete failure H1, swarm
self-repair time. Two robots are tracked: the failed robot and the trailing robot from the rest
of the swarm. At about 250 s. a single robot on the leading edge of the swarm experiences
failure H1; at about 580 s. the trailing robot escapes the failed robot.

(i.e. worst case) failure of more than one robot. Furthermore, we notice two dif-
ferent categories of effect on the overall swarm: (1) sensor failures H2...H4 which
slow down progress of the swarm, but the whole swarm reaches the beacon and
(2) motor failures H1 and H5 which hold back progress of the swarm until the
swarm breaks free of the failed robots; for a detailed analysis of these results see
(Bjerknes, in press). Consider the second, and more serious category, which gives
rise to the notion of swarm self-repair.

Refer to Figs. 1.25 and 1.26. We define swarm self-repair time as the time be-
tween (simultaneous) motor failure of one (or more) robots and the point at which
the trailing robot in the rest of the swarm escapes the influence of the failed robot(s).
This is a useful metric because it varies with both the type of robot motor failure
(H1 or H5) and the number of robots. Table 1.8 lists the measured swarm self-repair
times for one and two simultaneous failures for failure modes H1 (robot completely
failed) and worst case H5 (robot partially failed - motors failed but electronics still
operational). For comparison the table also shows a baseline notional self-repair
time: the time the swarm would take to leave behind a failed robot if that robot
failure did not slow down the swarm.

1.3.2.5 Swarm Scaling and Reliability

We have argued that in the k-out-of-N reliability model above, the minimum value
of k = 5 because the swarm taxis property is present even with as few as 5 robots.
For N = 10 robots and an MTBF of 8 hours, this reliability model suggests that the
swarm will become unreliable after approximately 100 minutes. While it is clear that
we can increase the swarm reliability by increasing the individual robots’ MTBF,
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Fig. 1.26 Hardware trials using 10 e-puck robots: single robot partial failure H5, swarm self-
repair time. Three robots are tracked: the failed robot, the trailing robot from the rest of the
swarm and a third healthy robot left behind with the failed robot. At about 450 s. a single robot
on the leading edge experiences failure H5; at about 1150 s. the trailing robot of escapes the
failed robot. Observe that one healthy robot is also left behind by the swarm and only 8 robots
proceed to the beacon.

Table 1.8 Mean swarm self-repair times for the case study swarm of N = 10 e-puck robots.
Ten runs for each case. *In the final case of two partially failed robots, in only six runs did
the swarm reach the beacon.

Case Mean (s) Std. Dev. (s)

Baseline (no penalty) 328 174
One failed robot H1 387 132
Two failed robots H1 453 172
One failed robot H5 879 417
Two failed robots H5 1279 see note*

can we also make the swarm more reliable by increasing swarm size? At first it
might seem plausible to suggest that the increased redundancy in a larger swarm
would maintain reliability for a longer period. One may even be led to believe that
the swarm could be made reliable for an arbitrarily long time, given a sufficiently
large number of robots. This is not correct, and we now combine a model of swarm
self-repair with the k-out-of-N model to determine the maximum upper size for our
case-study swarm.

Consider the argument informally. When a swarm is larger it will take longer to
self-repair than a smaller swarm. There are two reasons for this. Firstly, it is a prop-
erty of our case study swarm that the swarm taxis velocity reduces with increasing
swarm size. Secondly, the swarm is physically larger and must move a longer dis-
tance before it is fully self-repaired. Thus the self-repair rate will remain constant
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with increased swarm size. However, for a given robot MTBF, the swarm failure-
rate will increase for larger swarms. It is unavoidable that at some point the failure
rate will overtake the self-repair rate of the swarm, and the swarm will come to a
complete halt - the desired emergent swarm-taxis property will fail. In fact a swarm
of sufficient size would die under its own weight, so to speak, before it has even
started to move.

We now estimate the values of k and self-repair time ts as a function of N. Thus
the k-out-of-N model written as Eq. (1.96) will be modified to take the time to self-
repair into account.

The value of k

In experimental tests it is clear that, for complete failures H1, two out of ten robots
could fail without permanently damaging the swarm. The swarm would always self-
repair. The cases with partial failure H5 fared less well. When one out of ten robots
failed, the swarm did always self repair, even though a functioning robot might
occasionally become stuck with the failed robot. But when two out of ten robots
failed, the swarm would suffer a complete breakdown in four out of ten cases, and
in the remaining six cases, as many as three healthy robots stayed behind with the
failed robots.

Based on this the value of k will be conservatively estimated as 90% of N for a
k-out-of-N:G system. In other words, when the swarm has ten percent failed robots
or less it will be assumed that it can self repair. Arguably, this may not hold true for
larger swarms - the empirical evidence is limited to swarms with ten robots. But this
is our best estimate from the evidence available.

The value of ts

We know from an analysis of the scaling properties of our case study swarm
(Bjerknes, in press), that swarm-taxis velocity v as a function of N follows this re-
lationship:

v(N) = CN− 1
2 (1.97)

Where C is a scaling constant. Thus larger swarms move more slowly. Note, as
stated already, that the minimum value of swarm size N for the swarm to exhibit
swarm taxis is 5, thus Eqn. 1.97 is not valid for N < 5.

Clearly, the diameter d, of the swarm will increase with swarm size.

d(N) = D
√

N (1.98)

Where D is the density constant for the swarm.
Since a robot can fail anywhere within the swarm: on the leading edge, in the

middle of the swarm or at the trailing edge, the average distance that the swarm
needs to move before it has moved away from the failed robot will be half the
diameter, d

2 . Thus the self-repair time becomes ts = d
2v .
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Thus,

ts(N) =
D

√
N

2C 1√
N

(1.99)

Which simplifies to

ts(N) =
D
2C

N (1.100)

Eq. (1.100) is important as it demonstrates that the self-repair time increases
linearly with N. Based on this equation it is now possible to introduce a new constant
for a given swarm, namely the self-repair-time-constant. Let this constant have the
symbol S for Self-repair, where S = D

2C . Now we have established that S is linear
with N, we can determine its value experimentally. For a swarm with ten robots
with one partially failed robot the mean self-repair time was found to be 879 s (see
Table 1.8). This was for a case with ten robots, so the self-repair constant for our case
study swarm, for the worst case partial failures H5, then becomes S = 879

10 = 87.9.
Using the estimated values for k and ts and the k-out-of-N reliability model we

can now plot swarm reliability against swarm size N.
Fig. 1.27 shows that with an MTBF of 8 hours, a swarm with as few as 40 robots

will have a reliability of only 0.5. This reliability model is based on a number of as-
sumptions (including, for instance, a circular swarm morphology that remains con-
stant with increasing swarm size), together with experimentally estimated constants.
Notwithstanding these assumptions and estimates, the main idea that the self-repair-
time increases with larger swarms is well argued based on the experiments presented
here. Even though the actual reliability for a given swarm size may be a somewhat
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Reliability for a swarm with partially failed robots

Fig. 1.27 Reliability of the case study swarm as a function of swarm size, based on a k-
out-of-N reliability model and assuming worst case partially failed robots H5; k = 0.9N,
self-repair-time-constant S = 87.9 and robot MTBF 8 h.
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Fig. 1.28 Reliability of the case study swarm as a function of swarm size, based on a k-
out-of-N reliability model and assuming worst case partially failed robots H5; k = 0.9N,
self-repair-time-constant S = 87.9 and robot MTBF 24 h.

higher or lower than the k-out-of-N model suggests, it is undoubtedly true that
our case study swarm will eventually become non-functioning with increasing size,
and that this occurs at a much lower swarm size than one might intuitively expect.
Clearly we can significantly improve swarm reliability by increasing robot MTBF,
as shown in Fig. 1.28, for a four-fold improvement of individual robot MTBF
to 24 h.

1.3.3 Concluding Discussion

In Sect. 1.3.1 we have reviewed approaches for mathematical modelling of collec-
tive robotic systems, and outlined a macroscopic modelling approach based upon
developing a probabilistic finite state machine (PFSM) description of the overall
swarm, then expressing the PFSM as a system of differential equations that model
the change in the average number of robots in each state, with time. We then illus-
trated this approach with a case study example of a mathematical model of a wire-
less connected swarm of mobile robots operated in unbounded space. The model
demonstrates a novel robot-centric approach for estimating state transition prob-
abilities. There is no doubt that proving the correctness of collective systems re-
quires mathematical modelling, and we believe that the macroscopic probabilistic
approach outlined here provides us with a powerful modelling technique.

Consider now the applicability of this functional modelling approach to sym-
biotic multi-robot organisms — the subject of this volume. Sect. 1.1, Table 1.4
identifies swarm-mode, organism-mode and the transitions between these modes.
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The PFSM modelling approach can be applied in swarm-mode during searching/re-
sources localisation (i.e. foraging) and during the transition from swarm to organism
(morphogenesis). We have already developed a PFSM model for adaptive foraging,
see (Liu et al., 2007; Liu, 2008; Liu et al., 2009). For morphogenesis the model will
be used to predict the time robots take to self-assemble into a 2D planar structure,
i.e. the energy cost of this phase. The aim here is to use the model to improve the
behaviour of individual robots and hence optimise energy consumption and achieve
faster transition from swarm-mode to organism-mode.

Sect. 1.3.2 has shown that the frequent assumption that collective systems based
upon the swarm intelligence paradigm are automatically scalable and robust is un-
safe. By undertaking a reliability analysis of a swarm system in which the desired
swarm properties are truly emergent (self-organising), we have shown that, for the
worst-case partial-failures of individual robots, overall system reliability falls very
rapidly with increasing swarm size. When compared with conventionally designed
distributed systems our case study swarm does exhibit an unusual level of toler-
ance to failure of individual robots (and indeed a self-repair mechanism) that —
in a sense — comes for free with the swarm intelligence paradigm, but that fault
tolerance does not scale well. Of course our case-study swarm has no mechanisms
for actively identifying and compensating for partially-failed robots, which leads to
the conclusion that scaling collective systems from tens to hundreds or thousands of
robots might not be achievable without such mechanisms, i.e. distributed artificial
immune systems (see Sect. 4.4).

Consider now the applicability of the reliability modelling approach to symbiotic
multi-robot organisms. We would argue that the multi-state k-out-of-N approach
can be applied to the searching/resource localisation (foraging) task during swarm-
mode. It is likely that foraging will require swarm aggregation/taxis so that a subset
of robots moves together to an object of interest thus, depending on the algorithm
design, the reliability model given in this chapter may apply in some modified form.
The k-out-of-N reliability model might also be applicable to organism-mode since,
in principle, we might expect a multi-robot organism comprising N robots to con-
tinue to function if at least k of these robots are functioning. Clearly the failure
modes and effects analysis (FMEA) will be more complex since the consequences
of a failed robot, and the type of failure, will depend on the position and function of
that robot within the organism.
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