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Foreword

It is our pleasure to contribute the foreword to this book on symbiotic multi-
robot organisms, which is largely based on the scientific findings and explo-
rations of two major EU research projects, Symbrion and Replicator, funded
under the Seventh Framework Programme for Research and Technological
development (FP7)1. FP7 emphasises consortia of European partners, trans-
national collaboration, open coordination, flexibility and excellence of re-
search and plays a leading role in multidisciplinary research and cooperative
activities in Europe and beyond. Its impact is major in terms of integrating
and structuring research communities across national borders to achieve a
critical mass, providing the leverage for high-potential fields to take off, and
encouraging healthy competition at European level while avoiding unnec-
essary duplication of research capacities. Research proposals are evaluated
through a demanding peer-review process and only the best are selected to
be funded by the European Commission (EC). The Information and Commu-
nication Technologies (ICT) theme has set out a number of challenges within
this context, which cover topics such as cognitive systems, modular robotics,
adaptive systems and societies of artefacts.

• Symbrion was selected following the Call “Pervasive Adaptation” of the
“Future and Emerging Technologies (FET)” programme area2. It started
on 1 February 2008 and will run for 5 years. FET Proactive addresses
evolutionary and revolutionary approaches through multidisciplinary co-
operation and investigates new future technology options in response to
emerging societal and industrial needs and identifies new drivers for re-
search.

• Replicator was selected under the “Cognitive Systems and Robotics”
programme area3. It started on 1 March 2008 and will also run for 5 years.

1 The views expressed in this foreword are the sole responsibility of the authors
and in no way represent the view of the European Commission and its services.

2 http://cordis.europa.eu/fp7/ict/fet-proactive/home en.html
3 http://www.cognitivesystems.eu
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The “Cognitive Systems and Robotics” challenge supports research on
the engineering of artificial cognitive systems and in particular endowing
robots with cognitive and other advanced capabilities.

These projects address major challenges for the robotics of the future that
were identified during intensive consultations with leading scientists. Robots
will have to harness and interpret information (e.g., speech, images or sensor
data), carry out useful tasks (e.g. manipulation and grasping, exploration
and navigation, monitoring and control, situation assessment, communication
and interaction) and pursue immediate or long-term goals, autonomously or
in cooperation with people or other robots. Moreover future robots will have
to be:

• Reliable and robust, able to operate in adverse conditions for a long
period of time without frequent or major maintenance.

• Learning, able to improve their capabilities through individual or social
interactions with their environment, people or other robots.

• Adaptable, able to operate autonomously in loosely-structured, unpre-
dictable, highly-dynamic and open environments, technological and user
contexts.

• Modular, able, on their own initiative, to operate as a larger system to
tackle problems or carry out tasks they would not be able to tackle or
carry out individually.

• Collaborative and social, able, on their own initiative, to collaborate
in a natural way with people or other robots, and to adapt to each others
and to changing needs.

• Evolvable, able to elaborate strategies operating at different speeds and
time scales, from the short-term development of specific skills to the long-
term evolution into different species.

To realise the potential of this exciting field, it is crucial to stimulate
contributions from and to create synergies between different disciplines, in-
cluding robotics, cognitive systems, adaptive systems, the social sciences and
biology. Symbrion and Replicator are examples of such efforts. Both projects
work towards individual robots that are capable of adapting, reconfiguring
and self-assembling into large artificial organisms. They will develop novel
principles underlying these robotic organisms, such as self-configuration, self-
adjustment and self-learning. Furthermore, they share a common platform to
avoid duplication in this area.

• Replicator aims at developing small, autonomous reliable, highly capa-
ble and sensor-rich (laser, camera, RFID, localisation) robots which are
able to self-assemble into large artificial organisms on their own initiative.
The bio-inspired evolutionary approach and evolvable hardware structure
will enable the robotic organisms to emerge new functionalities, to de-
velop their own cognitive and control structures and, finally, to work au-
tonomously in uncertain situations within open-ended or even hazardous,
environments.
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• Symbrion focuses on evolutionary and bio-mimicking approaches to ex-
plore biological concepts with robot populations (e.g., artificial evolution,
pervasive evolveability, artificial immunology, genetic self-reprogramming,
virtual sexuality). It places more emphasis on the genomic framework and
genetic learning based on feedback from the environment. Accordingly, it
uses large computation resources on the platform and more emphasis is
put on collective behaviours and on the assembly into organisms.

Considering both projects together and their respective funding, 5.4 MC
for Replicator and 5.3MC for Symbrion (with a 0.5M extension under ne-
gotiation), this is one of the largest combined grants ever in collaborative
and evolutionary robotics. In this context the research community, the Eu-
ropean Commission and both consortia recognise the crucial importance of
identifying key underlying scientific questions, deriving scientific and techno-
logical priorities from these goals and using them to obtain important and
highly-visible outcomes. Apart from the scientific impact, it is likely that
both projects will contribute to longer-term applications in various domains,
such as surveillance and intervention, exploration and inspection, and search
and rescue.

We hope that the readers will enjoy this book as much as we did, and wish
both teams success in achieving their ambitious goals.

Olivier Da Costa
(Replicator Project Officer, DG InfSo “Cognitive Systems, Interaction,

Robotics”)

Wide Hogenhout
(Symbrion Project Officer, DG InfSo “Future and Emerging Technologies

(FET) Proactive”)
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Introduction

The main question of this book is related to one of the greatest moments in the his-
tory of life – appearance of multicellular structures. The rise of multicellular from
unicellular is a huge evolutionary step, however we do not exactly know how multi-
cellular organisms appear and which mechanisms take part in this phenomenon. We
know multicellular organisms are self-adaptive, self-regulative and self-developing,
however we do not know its evolutionary origin and developmental organization.

Robotics is seen by many researchers only as a tool to improve productivity.
However, robotics can also be used as an instrument to explore unknown and un-
clear issues in nature, to model elements of organic life, to experiment with self-
development and evolution, and to propose plausible explanations. The great vision,
which consolidates many interdisciplinary researchers, is a vision of self-adaptive,
self-regulative and self-developing robots that reflect multicellularity in nature – a
vision of artificial robot organisms. Like multicellular beings, these artificial organ-
isms consist of many small cell-modules, which can act as one structure and can
exchange information and energy within this structure. Moreover, these structures
can repair themselves and undergo evolutionary development from simple to com-
plex organisms.

The vision of artificial multicellularity is very challenging. For design and pro-
duction of mechatronic artificial cells, experts in robotics are required. An artificial
organism, seen technically, is a large distributed computational system – it requires
software engineers to program a basic functionality as well as to develop computer
simulations. Organisms can autonomously harvest environmental energy and dis-
tribute it between cells – this is a deal for specialists in energetic homeostasis. Each
of these cell-modules possesses dozens of different sensors. When many modules
get integrated into one system, the problems of sensor fusion, distributed sensor pro-
cessing, world modeling and developing a cognitive functionality become a reality.
Adaptation requires aspects in machine learning and in adaptive control. Following
a genetic bio-inspiration, artificial organisms possess a genome – this involves bi-
ologists, specialized in genetics. Artificial organisms should protect themselves – it
requires an artificial immune system. To handle genetic issues, there is a demand on
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specialists in artificial evolution – computer scientists, as well as in natural evolution
– ecologists and reproduction biologists. Finally, collectively working robots create
social structures and are capable for evolving pre-semantic languages – this requires
researchers of artificial cultures. Thus, the vision of artificial organisms created one
of the largest interdisciplinary consortiums, funded by European Commission, to
investigate the way of artificial multicellularity.

Technological exploitation of multicellularity provides different practical advan-
tages not only for advanced robotics, but also for autonomous and adaptive sys-
tems in general. Three most important advantages are extended reliability, advanced
adaptivity and self-evolving properties. They are essential technological and con-
ceptual breakthroughs and are reflected in the title of this book “Symbiotic Multi-
Robot Organisms: Reliability, Adaptivity, Evolution”.

Reliability in general context is related to the ability of a system to work durably
in different hostile or unexpected circumstances. Normally, a high reliability is
achieved in two ways, by making the systems very robust, as well as by introduc-
ing backup systems, working in parallel. Multicellular organisms in nature utilize
another principle of reliability: when some cells are destroyed, they are replaced
by other cells, which overtake their functionality. When applying this concept to an
artificial organism, a part of (or the whole) organism should first self-disassemble,
the destroyed cell-modules should be removed, and then an organism self-assembles
again. Capabilities of basic robot modules for autonomous self-assembling and for
dynamic change of functionality are key points of the extended reliability.

Adaptivity is another key feature of advanced autonomous systems and indicates
an ability of a system to fit to a changing environment. There are different adaptive
mechanisms, as well as different degrees of adaptivity. Multicellularity introduces a
new component into adaptive processes – morphogenesis – the self-development
of structure, functionality and behavior during a life cycle of the organism. By
changing the structure, an organism can dynamically create such a functionality and
behavior, which are best suited to the given condition of an environment. Morpho-
genesis and morphodynamics represent a new understanding of adaptivity in com-
plex systems.

Both reliability and adaptivity mean a high developmental plasticity, where an
organism can dynamically change itself, modify its own structural and regulatory
components. As observed in nature, the developmental plasticity is a necessary con-
dition for evolutionary processes – such processes, which can potentially make a
system more complex, increase information capacity and processing power. Arti-
ficial organisms also possess a relatively high degree of developmental plasticity
(however much lower than biological organisms) and can demonstrate to some ex-
tent an artificial evolution – analogous to natural evolution – process which can po-
tentially make organisms more intelligent. Such an artificial evolution in real robotic
systems is a great challenge not only in technological aspects, but also in our under-
standing of a long term-controllability of self-developmental systems.

Not only does an artificial evolution represent a challenge for researchers and en-
gineers, but also other theoretical and technological aspects are very demanding or
generally unclear. The first essential challenge is a good engineering of mechatronic
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cell-modules, which should demonstrate 2D locomotion on a surface, 3D actuation
within a heavy organism, autonomous docking to each other, large on-board energy
resources, different sensors and sufficient computation/communication. Of utmost
importance is that the modules should be small in size and light in weight.

Cognitive functionality of artificial organisms is another essential challenge. Clas-
sical approaches of technical cognition should be supplemented by bio-inspired
mechanisms, where the sensor information is directly integrated into high-level reg-
ulative structures. Moreover, cognitive functionality should take into account a mor-
phogenetic embodiment, especially when a capability to sense and to act is changing
along a self-concept. The regulative mechanisms include artificial hormone, immune
and neural systems as well as different approaches from the theory of optimal con-
trol. Here we encounter several open problems such as an optimal combination of
bio-inspired and tech-inspired mechanisms, self-programming capabilities of high-
level controllers or conflicts between adaptive and regulatory functionality.

Finally, returning to artificial evolution, there are several conceptual challenges
related to dependencies between evolution and learning, between evolution and self-
organization, appearance of common genome in the organism from a genetic cloud
in swarm, sexual and asexual reproductive ways and other points. Due to the devel-
opmental plasticity, artificial organisms are potentially capable of a long-term un-
bound, open-ended evolution. Collective systems, evolved in groups, demonstrate
social behavior, initial forms of pre-semantic languages and are so biased from ini-
tial design goals. Such a long-term self-developmental process is a great challenge
for researchers in terms of its controllability and predictability and has serious con-
sequences for future coexistence of natural and artificial systems.

Structure of the book

The structure of this book follows the challenges and has five thematic chapters.
The first chapter is devoted to a common theoretical background of artificial or-
ganisms. It overviews swarm and organism modes, functional and structural self-
organizations taking place during morphogenesis, as well as introduces adaptive
and self-developmental processes in Sect. 1.1. Sect. 1.2 deals with general informa-
tion properties of artificial self-developmental systems, it utilizes quantum field the-
ory as an instrument for measuring sematic information and developing interactions
and dynamics of multicellularity. Sect. 1.3 treats the swarm mode of the organism
and introduces several approaches for mathematical modelling of collective robotic
systems. Based on these models, failure, reliability and scalability properties are
analyzed.

The second chapter introduces several hardware issues which are relevant for fur-
ther consideration. Heterogeneous mechanical platforms are described in Sect. 2.1.
It presents three different basic modules, composing artificial organisms, active and
passive tools as well as principles of docking. Sensing, computation and communi-
cation are described in Sect. 2.2. This section also provides an overview of a com-
mon architecture. Issues of energetic autonomy and energy harvesting are examined
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in Sect. 2.3. Attention is paid not only to energy management and distribution in
the organism, but also to different means of harvesting energy from the environ-
ment. The final Sect. 2.4 is devoted to hardware and 3D-software simulation and
addresses issues such as a representation of kinematic chains, using L-systems for
dynamic modelling and predicting morphogenetic capabilities of artificial organism
in simulation.

The third chapter covers cognitive aspects of artificial organisms from differ-
ent perspectives. Sect. 3.1 is devoted to world modelling and cognition from the
viewpoint of classical AI. Complementary to this section, several ideas of a new AI
approach (e.g. embodied cognition) are introduced in Sect. 3.2. This section stud-
ies also sensor-fusion and sensomotor awareness. Finally, Sect. 3.3 adds more gen-
eral points of self-organization, probabilistic and multi-agent systems into artificial
cognition.

The fourth chapter is one of the largest in the book and introduces dedicated ap-
proaches for controlling artificial organisms. This chapter has bio-inspired and tech-
inspired parts. An overview of different bio-inspired controllers is given in Sect. 4.1.
Hormone-based control and hormonal homeostasis are considered in Sect. 4.2.
Embryological aspects, morphogenesis, controller chapping and cell-specialization
are introduced in Sect. 4.3. Finally, artificial immune systems are considered in
Sect. 4.4. The tech-inspired part of fourth chapter starts in Sect. 4.5, which con-
sider morphogenesis as constraint assignment problem and proposes several self-
organizing mechanisms for self-assembling. Adaptive kinematics based in the crew
theory are introduced in Sect. 4.6, which can be applied for on-line and on-board
control of collective locomotion.

The fifth chapter considers learning and artificial evolution in swarm and in or-
ganism modes. It begins with machine learning in Sect. 5.1. Social learning and
computational evolutionary approaches are reviewed in Sect. 5.2. In this section,
attention is also paid to genetic issues such as a structure of genome and evolving
of controllers. Sexual mechanisms for artificial evolution and more general issues
of artificial sexuality are considered in Sect. 5.3. Asexual virus-like behavior in
the genetic cloud of swarms is introduced in Sect. 5.4, where several self-learning
approaches are considered. Social behavior and memetic evolution are finally con-
cluded in Sect. 5.5, which introduces artificial cultures emerging in groups of au-
tonomous self-developing robots.

Stuttgart, December 2009 Paul Levi,
Serge Kernbach



Chapter 1
Concepts of Symbiotic Robot Organisms

1.1 From Robot Swarm to Artificial Organisms:
Self-organization of Structures, Adaptivity and
Self-development

Serge Kernbach

Collective systems possess very interesting properties. They are flexible, reliable,
have extended capabilities for adaptation, self-organization and self-development.
Many natural systems, such as atomic or molecular phenomena (Balzani et al., 2003),
social insects or animals (Camazine et al., 2003) are collective on the level of their
aggregation or population. Since these survived millions of years in the course of
multiple evolutionary processes, we can learn from them how to achieve long-term
stability, diverse functionality and reliability for artificial collective systems.

In technical progress, in particular in robotics (Siciliano & Khatib, 2008), arti-
ficial collective systems are also a focus of research and technological develop-
ment. However, due to a specific structural and functional organization, collective
systems represent several essential challenges for researchers. We can emphasize
three most important challenges whose solutions may contribute not only to techno-
logical advancements but also to theoretical understanding of underlying processes
in collective systems. These challenges are structural adaptability, evolvability and
self-development and, finally, a long-term independency of these systems.

Structures in natural systems, for example protein structures of bio-molecular
systems (Alberts et al., 2008) or social structures in groups of animals, are a ma-
jor factor in defining a collective functionality and finally a collective behav-
ior. Features of individuals are still important, however a collective is capable
of demonstrating a functionality not available to individuals. Designers of artifi-
cial systems are able to create not only functions and behavior, but also to de-
fine new structures (Kernbach, 2008). The interplay between structures, functions
and behavior allows multiple self-organizing and self-developmental processes.
Many holistic and reduction approaches have been suggested to deal with this
problem, such as classical and modern control theory (Kolesnikov, 1994), methods
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from distributed AI and multi-agent systems (Weiss, 1999), bio-inspired solutions
(Floreano & Mattiussi, 2008) and synergetics (Haken, 1988). However, due to an
emergence on functional and behavioral levels, the complexity of such structural
systems is very high. This, and a lack of understanding of structural phenomena, of-
ten hinders researchers in realizing desired properties of artificial systems by using
structure-function dependencies.

Adaptive and self-developmental processes in collective systems happen on dif-
ferent levels and are defined in a wide range from adaptation, self-defence and self-
healing to unbounded self-evolving. These are very attractive and desired properties
allowing systems to develop themselves from simple to complex ones, to increase
their own functional diversity and improve their own control. Working with these
processes in artificial systems, we encounter several problems. First, technical col-
lective systems are driven by two different forces: design goal and adaptive fitness.
Such issues as long-term controllability, predictability and validation are the focus
of research here. Secondly, biological concepts of adaptation and self-development
are valid for populations, involving such processes as death, birth, reproduction and
others, which are not very natural for robotics. Therefore we are looking for such
approaches, which can be applied even for a single robot, do not require very power-
ful computational resources and may be utilized in short-term operational situations.
We call them on-line and on-board self-developmental processes. It is obvious, that
an exploration of new techniques, for example a combination of evolution and self-
organization (so called “evolutionary self-organization”) or traditional AI-based de-
cision making, planning or learning with bio-inspired approaches, is required.

Long-term independency and is an integrating property of many other factors. It
can be understood as a capability to work independently a long time period with-
out the need for continuous human maintenance and supervision. This property de-
pends largely on reliability and good engineering of the system, on capabilities of
regulatory autonomy to deal with unbounded issues in self-development, and can be
considered as the most challenging task in autonomous robotics.

Research in collective robotics is intensively addressing these problems. One
methodological approach is represented by networked robotics (Kumar et al., 2008).
Networked robotics assumes that essential communication resources are necessary
for problem solving. Another alternative is given by swarm robotics (Parker, 2008),
which involves interactions instead of communication. Both approaches utilize in-
dividual functionality of robots in creating behavioral emergence, i.e. individual
functionality → emergent collective behavior. This scheme can address all three
challenges from the viewpoint of functions and behavior, such as exploring social
hierarchies, ecological dynamics or population-based evolution. However, an essen-
tial problem still remains untouched by these systems; they cannot build structures,
i.e. no structural level is available.

The structural level is important for investigating the generating dependencies
such as collective structures → emergent collective functionality → emergent col-
lective behavior. This reflects the very important role of functional emergence
which appears in such processes as embryogenetic, morphogenetic and ontogenetic
development, cell differentiation, intrinsic evolution in robot systems and others.
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To investigate dependencies between structures and functions, we need a new class
of robot systems having a cellular-like structure and capable of autonomous self-
assembling into organisms. Since these new systems possess self-developmental
features, it is expected that several system-relevant (i.e. not relevant for individual
robots) mechanisms and functions will emerge. A capability of artificial organisms
to modify their own morphology and size means that such mechanisms and func-
tions should be very flexible, scalable and be implemented in a specific cooperative
way, i.e. without essential centralization. Such cooperation between different regu-
lative, structural and behavioral aspects is the central issue of artificial organisms.
For a similar co-dependent functionality of natural systems, the notion of symbio-
sis is used. To emphasize the cooperative aspect of structural self-developmental
phenomena in these systems, we call them symbiotic multi-robot organisms.

Symbiotic multi-robot organisms allow us to address the challenges of collec-
tive robotics from the viewpoint of structures and developmental plasticity. This in-
creases the number of available degrees of freedom for emerging control, where
the system can change its own structures to adapt to its environment. This en-
ables new structural self-organization and can involve bounded and unbounded
self-developmental processes. In general, this can result in extended reliability,
adaptability and long-term independence of such artificial systems. In addition to
new technology, this may lead to deeper understanding the phenomena of collective
intelligence and artificial evolution.

1.1.1 Mono- and Multi- functional Artificial Self-organization

Collective systems consist of many independent interacting elements, we can find
them in living and nonliving nature, see Fig. 1.1(b,c); at all scales: from nano- and
micro-scales, such as bacteria in Fig. 1.1(a) to large-scales such as galaxies. Cur-
rently, we stet a growth of different artificial collective systems, see Fig. 1.1(d).

Collective systems possess many amazing properties and phenomena, which fas-
cinate researchers. These systems scale well and are very reliable, they possess
different self-regulating mechanisms, they are capable of self-organization and
emergent phenomena – when ordered macroscopic behavior emerges from interac-
tions among microscopic elements. Macroscopic behavior is often visible as differ-
ent dynamic or static patterns, as shown in Fig. 1.2. When representing the structure
of collective systems, we have to draw two representation levels:

microscopic level of consideration is the level of interacting elements
(Fig. 1.1), where individual behavior is the focus and collective properties
of the system are not observable; macroscopic level of consideration is the
level where the whole collective behavior (Fig. 1.2) is visible to an external
observer and properties of individuals are neglected.

One of the key problems in collective systems is that “we cannot proceed directly
from microscopic to macroscopic level, i.e. from individual models to emergent
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(a) (b)

(c) (d)

Fig. 1.1 Examples of collective systems – microscopic level of consideration; (a) Vib-
rio cholera bacteria in SEM micrograph (courtesy of Patrick Hunt and Andreea Seicean
phunt@stanford.edu); (b) Swarm of ants; (c) Water droplets on glass; (d) Artificial swarm
of micro-robots Jasmine.

(a) (b)

Fig. 1.2 Macroscopic patterns emerge as a result of different self-organizing processes
– macroscopic level of consideration; (a) Benard-cells, (from presentation of E. Laurien,
Rayleigh-Benard-Konvektion, University of Stuttgart,Germany); (b) Patterns in nature (with
permission of Bernhard Mühr).
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collective behavior. If we need some specific collective behavior, we do not know
which individual models can produce it” (Arnold, 1988, p.212). The main reason
is the enormous complexity generated by interactions among components. Each in-
teraction step creates a new correlation cascade and this dramatically increases the
total complexity (Prigogine, 1962). However, complexity in collective systems is
distributed in different way. To describe it, the notion of operational principle is
introduced (Kernbach, 2008).

Collective systems with vertical operational principle have strong hierar-
chies in their organization: elements on the lowest-level are ruled by a few
elements on higher levels. The organization and distribution of complexity
looks like a pyramid: high complexity below and a low complexity on the top.
Collective systems with horizontal operational principle do not have hier-
archical organization, their complexity is similar on all levels of abstraction.

Operational principles are directly related to the problem of structures and
control (Turchin, 1977). Collective systems with the vertical operational principle
utilize hierarchical control (Vinter, 2000). Systems with horizontal operational prin-
ciple use self-organizing control mechanisms (usually away from instabilities) with-
out growing hierarchies. This makes the development of such mechanisms more
difficult, however horizontal systems are very scalable and reliable.
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Fig. 1.3 Two levels of consideration –
relation between functions and behavior.

Elements on the microscopic level be-
have according some local interaction rules,
we denote them as functions Fi, see Fig. 1.3.
Moreover, all of Fi are on the same level
of hierarchy, in other words there is no ex-
plicit control in this system. Fi have some
control parameters, which can depend on
environmental conditions as well as on
internal parameters. On the macroscopic
level we observe a collective functionality
Fmacro. There are two types of Fmacro. Let us
consider the Fig. 1.4(a). This is a typ-
ical heterogeneous collective traffic sys-
tem, performing a rescue operation on
the highway. Combining microscopic func-
tionality Fi of each vehicle in this sys-
tem, we can observe a multitude of
Fmacro, such as collective transportation,
different rescue missions and others. In
Fig. 1.4(b) we show another collective sys-

tem – artificial salamander, developed in biologically Inspired Robotics Group,
EPFL (Chevallier et al., 2008). Each segment of this system is autonomous
in terms of behavioral activities and is synchronized with other segments
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(a) (b)

Fig. 1.4 Examples of collective systems with mono- and multi- functional Fmacro; (a) Hetero-
geneous multi-functional collective system; (b) Artificial salamander (biologically inspired
robotics group, EPFL), demonstrating mono-functional behavior (Chevallier et al., 2008).

through bio-inspired signal transmission. All segments are connected to each other
and the whole system can demonstrate a functional pattern of specific anguine-like
locomotion.

Fmacro is multi-functional, when it can demonstrate many different functional
patterns. Moreover, diversity degree of Fmacro depends on heterogeneity and a
common number of elements. Fmacro is mono-functional, when it can demon-
strate only one homogeneous functional pattern, parameterized by one or sev-
eral parameters.

Both, mono- and multi- functional systems possess several advantages and dis-
advantages. Most mono-functional systems (both collective and not collective) are
cheaper and simpler from a control perspective. When we consider modern manu-
facturing such as flexible (Qiao et al., 2006) or reconfigurable manufacturing sys-
tems (Galan et al., 2007), we encounter mostly only mono-functional systems. In
general, mono-functional systems are more attractive for creating technically useful
behavior. Disadvantages of mono-functional systems are low reliability and scala-
bility compared to multi-functional systems.

Collective functionality Fmacro can be random, chaotic and, in several cases, can
represent an ordered (or synchronized) pattern. This ordered collective behavior
may have forms of symmetrical patterns, as shown in Fig. 1.2 or, in general, it may
be synchronized in spatial, temporal and functional ways. The process, leading to
ordered macroscopic behavior Fmacro through interactions between Fi, is denoted as
self-organization. “The self-organization is a process by which global external influ-
ence stimulate the start of internal for the system mechanisms, which bring forth the
origin of specific structures in it” (Bushev, 1994, p. 24). We will denote this process
as functional self-organization. In artificial collective systems, the designer can
change interaction among elements and thereby modify their collective properties.
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All Fi can be created in such a specific way, that collective behavior has an ordered
character – this can be denoted as artificial functional self-organization. As al-
ready mentioned, the problem of creating purposeful self-organization, as well as a
general problem of emergent phenomena, is one of complexity. There is no way to
predict analytically such rules F , which will lead to the desired collective behavior.
However, self-organization possesses several advantages making this phenomenon
attractive in practical applications:

- Flexibility of self-organized collective behavior. Collective behavior in artificial
systems can be easily changed by modifying interactions. Even a small change, e.g.
around critical points, can qualitatively change the whole collective behavior. The
mechanisms of “adaptive self-organization” can provide a high degree of flexibility.

- Reliability and Scalability. Since all Fi are on the same level of hierarchy,
some elements can be removed (destroyed) without changing collective function-
ality. Scalability of collective systems is based on the same principle. When self-
organized mechanisms provide scalability for load parameters, like number of
elements or diversity (Constantinescu et al., 2004), collective systems may be scal-
able or even super-scalable, see Sect. 1.3.

In the following section we extend the notion of self-organization for the struc-
tural case.

1.1.2 Collective Robotics: Problem of Structures

Consider now self-organization in technical collective systems, in particular in col-
lective robotics, we remark that these systems possess additional degree of free-
dom. They are able to change their own macroscopic structures. These structures
are topologies of information networks, neighborhood connectivity or even 3D
structures. We consider an example of such structures based on collective per-
ception in a robot swarm, as shown in Fig. 1.5. To recognize large objects, small
swarm robots should create a network around the object of interest. Important are
not only topologies (open, closed, chain-like, star-like), but also connectivity of
robots because it results in different object recognition algorithms running in each
robot (Pradier, 2005). In Fig. 1.5 we can observe two different networks, open-chain
in Fig. 1.5(a) in experiments with color perception in swarm (Zetterström, 2006)
and surrounding the object in Fig. 1.5(b) in collective perception of large ob-
jects (Kornienko et al., 2005). In this way, robots have several structural rules of
how to create different networks. In turn, the emerging structure influences the local
functional rules in each robot and, finally, the whole swarm demonstrates different
collective perception behavior.

Normally, structures and functionality are closely related to each other. By chang-
ing macroscopic structure, the system also changes its own functionality and corre-
spondingly behavior (Kernbach, 2008). The relation between structures, functions
and behavior can be represented as shown in Fig. 1.6. We denote this relationship
as “generating” because the upper level generates the lower level, i.e. structures
generate functions and functions generate behavior. However, the relation between
structures and functions is non-trivial and several types of this relation are observed.
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(a) (b)

Fig. 1.5 Examples of different network structures in collective perception, lines show com-
munication between robots; (a) Experiments in color perception in swarm, robots create
open-chain network and recognize an object by a feature matching (Zetterström, 2006); (b)
Collective perception of large objects, robots create close-chain network and recognize an
object by a probabilistic approach (Kornienko et al., 2005).
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Fig. 1.6 Relation between structures, functions and behavior.

In the first case, such
as collective perception in
Fig. 1.5, structural rules
generate functional rules.
For example, the struc-
ture of the network is de-
fined by structural rules,
by the number of locally
achievable robots and by
geometry/size of the ob-
ject. In turn, the amount of
information flowing from
robot to robot depends on
the topology. Each robot
adapts its own processing
rules (i.e. functionality) to
this information flow. Col-
lective perception is finally
defined by combination of
different processing rules.
In this way, collective behavior is defined by interacting individual functionalities,
in turn, defined by the structure of the network. More generally, we can observe here
two emergent processes at functional and structural levels with multi-functional col-
lective activity.

In the second case, elements create different structures with mono-functional
macroscopic functionality. This functionality ultimately demonstrates a behavior. A
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(a) (b) (c)

Fig. 1.7 Different structures and functionality; (a) Initial not aggregated modules; (b) Aggre-
gated snake-legged structure and resulting crawling locomotive functionality; (b) Aggregated
6-leg structure and resulting legged functionality.

famous example are L-systems, proposed by Aristid Lindenmayer in 1968 (see e.g.,
(Prusinkiewicz & Hanan, 1980)). The central notion of L-systems is the concept of
rewriting, i.e. successive replacing a simple initial object using a set of rewriting
rules. These replacing rules can be viewed as structural rules, producing differ-
ent tree-like fixed patterns (they can be viewed as a mono-functional activity), see
more in Sect. 2.4. Robots, which are able to dock to each other and create 3D func-
tional organisms, are another example of mono-functional macroscopic functional-
ity. Topological models of such robots are shown in Fig. 1.7(a). These models have
rotational and bending degrees of freedom (Kornienko et al., 2007). Following spe-
cific connection (structural) rules, they can create different macroscopic structures,
such as snake-like or 6-legged systems, see Fig. 1.7(b-c). As we observe, these 3D
structures possess only mono-functional locomotion, defined by the corresponding
snake-like or legged motion principle.

Considering Fig. 1.7(b-c), we should take into account not only spatial function-
ality, but also diverse sensing, homeostatic, energetic and other processes, which
will run in real robots. Depending on a spatial position, modules can specialize in
performing different tasks. For example, in the topological model of a 6-leg organ-
ism shown in Fig. 1.7(c), we can imagine that only a few elements will perform
actuation (e.g. they specialize as active joints), elements in the middle take a role of
information processing, there are sole-, front- or back- sensor elements. We observe
in this case a combination of emergent and macro-functional approaches, as shown
in Fig. 1.6.

By analogy with functional self-organization, we define structural self - orga-
nization as a process leading to emergence of different microscopic and macro-
scopic functional patterns, which, in turn, emerge as collective phenomena on
behavioral level. Since in artificial systems corresponding structural and functional
rules can be changed, we denote self-organization in such systems as artificial
structural self-organization. In Table 1.1 we collect several characteristics of col-
lective systems capable of structural phenomena. The main difference between func-
tionally and structurally self-organizing systems consists of a higher developmental
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Table 1.1 Several characteristics of collective systems capable of structural phenomena.

Level Advantages Problems

Regulatory Self-regulation Long-term stability
Internal homeostasis and self-healing Possible communication overhead
High developmental plasticity Long-term controllability

Structural High reliability and scalability
Dynamical change of structures Predictability of functional emergence

Functional Mono-functional behavior
Dynamical change of functionality Predictability of behavioral emergence
Emergence of functionality Difficulties with analytical prediction

Behavioral New class of adaptive behavior Double emergence

plasticity in the last case. In the next section we consider using this plasticity for
adaptation and self-development.

1.1.3 Adaptability and Self-development

In previous sections we considered collective systems capable of structural self-
modification and briefly introduced the advantages of this approach in relation to
extended adaptability. This section is devoted to a deeper treatment of adaptability
and principles of self-modification.

Adaptability is often considered in biological terms of natural evolu-
tion (Williams, 1996) or environmental uncertainty (Conrad, 1999) as well as in
management and business processes (Gurvis & Calarco, 2007). There have been
several attempts to create a common theory of adaptability, such as the approach
suggested by Michael Conrad (Conrad, 1999). Overviewing the vast literature
on the field of adaptation, we can recognize three main streams driving further
development and representing different methodologies and different approaches
to adaptation. The first and oldest stream is related to the theory of adaptive
control. Several early works in adaptive control date from the late 50s - early
60s (Whitaker, 1959), (Osbourne et al., 1961). In the mid-late 70s there appeared
several issues related to temporary stabilities (Egardt, 1979), which in turn led
to iterative control re-design and identification, and contributed in the mid-80s to
robust adaptive control (Anderson et al., 1986), (Rohrs et al., 1985). Overviews of
adaptive architectures can be found in textbooks (Narendra & Annaswamy, 1989),
(Sastry & Bodson, 1989), which can be generalized as a high-level architecture,
shown in Fig. 1.8(a) (Anderson, 2005).

Adaptive control consists of two parts, a conventional feedback-based control
loop and adaptive part, depicted by the dashed line in Fig. 1.8(a). The environment
is not explicitly integrated into this model, it is implicitly reflected by introducing
disturbances and by uncertainties in the plant. The goal of the adaptive part is to
estimate the behavior of a plant (by the identifier) and to calculate dynamically
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Fig. 1.8 A high-level architecture for (a) adaptive control (b) adaptive behavioral systems.

the control law (by the control law calculator). When in optimal control, a control
law is designed off-line by a designer, an adaptive controller does it on-line. Most
challenges in adaptive control theory are concentrated around adaptation of control
to parameters of a plant when these parameters are unknown or changing.

The second mainstream of adaptation is located around adaptive behavior, which
first arises within the AI community, e.g. (Beer, 1990), and involves cognitive aspects
of adaption (Keijzer, 2003). There appear a few new components in the scheme from
Fig. 1.8(a): explicit environment, sensing and actuation, as well as the deliberative
cycle, shown in Fig. 1.8(b). When the reactive part of this scheme is in fact the opti-
mal controller from Fig. 1.8(a), the deliberative part represents a new AI component.
The adaptive system is now embedded into the unpredictable/dynamically changing
environment; these systems are often referred to as situated systems (Mataric, 2002).
Sensing and actuation represent a “body” of the system, intelligence (and so adap-
tation) is treated in term of embodiment (Pfeifer et al., 2006). Achieving adaptiv-
ity in this context is spread into several approaches: different learning techniques in
reactive and deliberative parts (Bull et al., 2007), (Butz, 2002), (Puterman, 1994),
behavior-based approaches (Kernbach et al., 2009c), adaptive planning and reason-
ing (Weiss, 1999), biological inspiration in cognition (Cliff, 2003), evolutionary ap-
proaches (Alba & Tomassini, 2002) and many others. The goal of adaption can be
formulated as achieving desired environmental responses according to some selected
fitness/reward criteria.

The third mainstream towards adaptation is related to the community around dist-
ributed and software-intensive systems, computational, communication and sensor
networks. With some degree of generalization, the business applications can be also
related to this mainstream (SAP, 2005). The environment involves explicit users;
the system itself is separated into different levels (applications), which run in par-
allel (Ledeczi et al., 2000). The goal of adaptation here is related to scalability,
self-optimization and self-protection, recognition of context, as well as to the
software-engineering issues addressing reliability (Cheng et al., 2008).

Based on this overview, we can say that adaptability represents a key point of sys-
tems working in real environments. Different uncertainties, variation of parameters



16 1 Concepts of Symbiotic Robot Organisms

or even the appearance of unknown situations requires adaptive mechanisms, which
allow the system to fit to these changed conditions. However, technical systems
possess a goal-oriented behavior, they should be adaptive but also still be capable
of achieving their design goals. To some extent, these systems are driven by two
different forces: by fitness and by goal. In some cases, the goal of the system can
also be focused on its own development. Here, the goal is transformed to the so-
called self-concept and the system undergoes self-developmental processes. We now
consider adaptive mechanisms and self-development in more detail.

Adaptation, Environment and Control. Since environmental changes require an
adaptive reaction from a system, which in turn requires specific control mechanisms,
we can divide changes and reactions into those forecast in advance and correspond-
ingly those not forecast in advance. This division is relative, because in practical
situations each change has forecasted and not forecasted components.

Adaptability is closely related to environmental changes and the ability of a
system to react to these changes and the capability of the designer to forecast
reaction of the environment to the system’s response. Therefore adaptability
is defined in term of the triple-relation: environmental changes→ system’s
response → environmental reaction. In general, adaptability is the ability of
a collective system to achieve desired environmental reactions in accordance
with a priori defined criteria by changing its own structure, functionality or
behavior initiated by changed environment.

In Table 1.2 we roughly specify four different categories of environmental
changes. According to environmental changes from this table, we can identify five

Table 1.2 Four types of environmental changes in robotic applications and examples of cases
both forecast and not forecast in advance.

Environmental
changes leading to:

Examples: Forecast in Advance Examples: Not Forecast in Advance

Appearance of new
situations

Installation of industrial robots in a
new workshop

Work in previously unexplored en-
vironment (e.g. landing on Mars)

Changed function-
ality

Changing a type of locomotion (e.g.
from wheeled to legged), when
changing a terrain type

Search and rescue scenario when
robots encounter unknown obstacles

Modified behav-
ioral response

Gravitational perturbance of flying
object in space and finding new con-
trol laws for engines

Distributed control of legged loco-
motion for obstacles of random ge-
ometry

Optimization of pa-
rameters

Changing of day/night light and
adapting intensity of additional light

Adapting locomotive parameters for
randomly moving obstacles
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Fig. 1.9 Different adaptivity mechanisms in collective systems.

different classes of adaptability in collective systems, capable of structural phenom-
ena: optimization mechanisms; behavioral control; functional control; derivation of
new regulatory functionality and, finally, evolving of new regulatory functional-
ity. These mechanisms are graphically represented in Fig. 1.9. To implement these
adaptivity mechanisms we need to introduce two additional levels into the collective
system from Fig. 1.6. The first level is related to control, we call it the regulative
level, see Fig. 1.10. We find on this level different controllers, such as explicit and
implicit rule-based (artificial neural networks), different bio-inspired, self-referred
or learning systems.

These controllers influence structural or functional rules as well as change pa-
rameters of a corresponding level. All controllers work on the scheme change of
input parameters → changes of output parameters/rules. The main goal of the reg-
ulative level is to maintain internal homeostasis of the system, to execute different
tasks or, more generally, to demonstrate purposeful behavior depending on external
conditions. Controllers at the regulative level allow some degree of adaptability for
the system.

In detail, it depends to which extend a designer of these controllers was able to
foresee possible changes of an environment and to integrate a reaction on these
changes into controllers. The controllers allow different degrees of reaction on
changes. However, the system at the regulative level is able to react only to changes
whose parameter range was predicted in advance during the development of con-
trollers or learning mechanisms. To react to such changes, which are not predictable
at the design stage, we need to introduce a second level, which can modify regulative
controllers – we denote this as the generating level. Following the scheme of adap-
tivity from Fig. 1.9, the generating level contains different deriving and evolving
mechanisms.
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Fig. 1.10 Functional scheme of regulative and
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Deriving is primarily related
to distributed problem solv-
ing and planning approaches,
known in the multi-agent commu-
nity (Durfee, 1999), symbolic tasks de-
composition (Kornienko et al., 2004b),
structural decomposi-
tion (Scassellati, 1998), self-referred
dynamics (Kataoka & Kaneko, 2000)
and others. These approaches are fast,
deliver a predictable behavior and can
be applied when a new situation is
at least structurally known. Evolving
is basically related to evolutionary
approaches, see e.g. (Koza, 1992),
and can be applied when the situa-
tion is completely unknown and a
large search space of possible solu-
tions should be explored. Recently,
evolutionary approaches have been
applied to a wide class of robotic
problems (Floreano et al., 2008a).

Invariant Goals, Self-Concept and Unbound Self-development. The mechanisms
mentioned above allow adaptive behavior on different levels. However to avoid con-
flicts between achieving a goal and adapting to the environment, the goals at the gen-
erating level should be independent of adaptation processes, in other words, they
should be formulated invariant to possible adaptations. There are several mecha-
nisms expressing such an invariant property of the generating level: symmetries,
conservation laws or e.g. “templates”. Templates are well-known in cognitive sci-
ence (Gobet & Simon, 1996) (also as “schemas” or “prototypes”), in topological
research (in knot and braid theory) (Birman, 2004), as well as known as “frames”
in the AI community (Minsky, 1977). The idea of a template is to describe most
general “stereotypical” properties or features of some common class of situation-
s/processes/objects.

As mentioned, goals can be focused on the system itself, i.e. they involve a
self-concept. To explain the idea of the self-concept, we consider the case when a
system should have a specific form, such as for the symmetric movement of legs,
segmented (as in insects) construction of body, or there are imposed constraints or a
priori desired properties. The self-concept contains in a compressed form a descrip-
tion of these “own” constraints or properties. The notion of self-concept originated
in human psychological research, e.g. (McLean et al., 2007), and is basically re-
lated to self-developmental processes. Self-development, is mostly known in human
psychology, e.g. (Maslow, 1998), (McLean et al., 2007), (Avstreih, 1981); in robo-
tics the self-development usually refers to learning (Oudeyer & Kaplan, 2004) and
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especially to ANN-based applications. Recently, there appear several works which
apply psychological ideas to robotics, e.g. (Bonarini et al., 2006), as well as the
appearance of developmental robotics (Lungarella et al., 2003) focused on ontoge-
netic processes related to cognitive science and the concept of embodiment.

Self-Development is bounded or unbounded process of functional, structural
and regulatory changes undertaken by the system itself, related to its self-
concept. A prerequisite is developmental plasticity on all levels. The self-
concept can be expressed by symmetries, conservation laws, be planning- or
fitness-driven or even have a character of unbounded metrics for open-ended
evolution. Normally, self-development is initiated by differences between the
self-concept and endogenous or environmental factors and may be unlimited
in time and complexity.

In self-development we have to point out one principal element, related to the
bounded and unbounded character of evolutionary changes. When in adaptive pro-
cesses, these driving forces are mostly bounded, expressed by reward or fitness,
the self-concept may include driving forces which are of unbounded character. In
this way, self-development does not necessary imply any evolutionary progress, but
a progress driven by the unbounded force of a self-concept. More generally, un-
bounded self-development (also denoted as open-ended evolution) is characterized
by a continued ability to invent new properties – so far only the evolution of life
on Earth (data partly from the fossil record) and human technology (data from
patents) have been shown to generate adaptive novelty in an open-ended man-
ner (Rasmussen et al., 2004). We find some first ideas about open-ended evolution
in (von Neumann, 1966) and (Waddington, 1969). Open-ended evolution is also re-
lated to indefinite growth of complexity (Ruiz-Mirazo et al., 2008) and unbounded
diversity (Maley, 1999). Ruiz-Mirazo and co-authors expressed the interesting idea
that “the combination of both self-assembly and self-organization processes within
the same dynamic phenomenon can give rise to systems with increasing levels of
molecular as well as organizational complexity”. They also proposed to decouple
genotype and phenotype from each other. A similar idea of increase homeostatic
autonomy in macroevolution was proposed by (Rosslenbroich, 2009), which leads
to us to not-fitness driven self-developmental processes. Several implementations
of open-ended evolutionary scenarios, e.g. (Spector et al., 2007), do not use any ex-
plicit behavioral fitness, moreover, there is no complexity growth in such “classical”
artificial life simulator as Tierra and Avida (Standish, 2003). In this work Russell
Standish proposed to improve these systems: “a key step in doing this is to gener-
ate a process that adaptively recognises complexity, since it will be impossible to
include humans in the loop, even when run on conventional computing platforms”.

These works lead us to an interesting question about the unbounded self-
concept: which process can generate complexity? One of the first remarks is
from von Neumann: “synthesis of automata can proceed in such a manner that
each automaton will produce other automata which are more complex and of
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Table 1.3 Several characteristics of self-developmental processes in collective systems.

Process Developmental plasticity Self-Concept

Regulatory Structural and functional plastic-
ity of the system, controllers can
change their own transfer func-
tions.

(bound) Achieving a targeted goal in
changing environment. (unbound) In-
creasing performance characteristics.

Homeostatic Like in the regulative case, but
related to maintaining steady in-
ternal states in changing environ-
ment.

(bounded) Endogenous steady state.
(unbounded) Achieving best possible
homeostasis for diverse scalability met-
rics.

Learning Changeable structure of regulative
system.

(bounded) e.g. positive or negative re-
wards. (unbounded) Fitting very large
(infinite) parameter space, e.g. by ex-
ploring structural-functional relations.

Planning-
driven

Structural, functional and regula-
tive plasticity.

(bounded) Minimizing deviations from
a plan. (unbounded) Self-referred plan-
ning.

Fitness-
driven

Structural, functional and regula-
tive plasticity.

(bounded) Explicit fitness. (unbounded)
Implicit fitness (optimizing energy bal-
ance, maximizing offsprings).

Open-ended Capability for unbounded evolu-
tionary activity.

(unbounded) Unbounded metrics.

higher potentialities than itself ” (von Neumann, 1966). A similar approach is
observed in L-Systems (McCormack, 1993) (authors used evolutionary process
but human operator in the selective loop) as well as in self-referred dynam-
ics (Kataoka & Kaneko, 2000). It seems that structural production can lead to
growth of complexity and diversity. However, considering the Kolmogorov com-
plexity of fractal structures, which is equal to the shortest production set of
rules (Kouptsov, 2008), we note the complexity of the whole fractal is indepen-
dent of its size – the self-similar structural production does not increase complexity.
Thus, we require that production systems include parameters which perturb gener-
ating structures. In this way, structural production rules parameterized by a random
(environmental) value may lead to infinite growth of complexity and diversity, and
are candidates for the unbounded self-concept. In Table 1.3 we collected several
possible self-developmental processes in structural collective systems with bounded
and unbounded self-concepts.

The final point which should be mentioned in this section is related to conflicts
between achieving a goal and adaptive behavior. When a degree of adaptation is
low, there are no essential conflicts between them. However, when plasticity is high,
and the system can be hindered by adaptive processes from reaching the main goal,
we are facing a new conceptual problem of a long-term controllability of adaptive
and self-developmental processes. Obviously, either the goal should be formulated
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in such an invariant way as allows multiple approaches for its achievements, or
adaptive processes should basically be limited.

1.1.4 Artificial Symbiotic Systems: Perspectives and Challenges

As demonstrated in previous sections, collective systems capable of structural
phenomena possess essential developmental plasticity, allow applications of hor-
izontally and vertically self-organizing, planning- and fitness- based approaches
and combine advantages provided by mono-functional and swarm-like systems.
We can find in nature several examples of such systems, one of the most fa-
mous – Dictyostelium discoideum – social amoebae, known also as cellular slime
molds (Kessin, 2001), see Fig. 1.11. These soil-living unicellular amoebae feed on
bacteria. When the food resources run out, the amoebae produce and send signal
molecules cAMP. This chemotaxis mechanism creates a gradient field towards an
aggregation point and the collection of up to 100,000 cells first into a slug, see
Fig. 1.11(a) and then into a fruiting body – a multi-cellular organism, Fig. 1.11(b).
During this process, amoebae undergo different developmental processes such as
cell differentiation, morphogenetic growth, self-protection, sexual and asexual re-
production and other. The principles of self-movement, aggregation and emergence
of macroscopic functionality can be also demonstrated by artificial systems, in par-
ticular by swarm robots (Kornienko et al., 2007). Like amoebae, swarm robots can
send aggregation signals and aggregate into artificial organisms, see Fig. 1.12, and
develop different macro-functionality through morphogenetic processes. In this way
robots can combine collective mono-functional actuation with multi-functional col-
lective phenomena, enabling advances in scalability and reliability. The research

(a) (b)

Fig. 1.11 Dictyostelium discoideum, commonly referred to as slime mold, capable of a
transition from a collection of unicellular amoebae into a multicellular organism; (a) Dic-
tyostelium Aggregation, (image source wikipedia); (b) Differentiation of unicellular amoeba
Dictyostelium discoideum into multicellular “slugs” (100x) (Taken by Matthew Springer,
University of California, San Francisco, using stereomicroscopy).
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(a) (b)

Fig. 1.12 Swarm robots and a model of multi-robot organism; (a) Aggregation of swarm
robot into several organisms; (b) Models of multi-robot organisms with different macro-
actuation.

area of artificial organisms combines approaches and techniques from swarm, re-
configurable and evolutionary robotics.

Primarily, artificial organisms consist of heterogeneous modules. We distinguish
between:

Active Module Autonomous modules, capable of locomotion and actuation
with different DoF. These modules possess independent en-
ergy source, computational and communication capabilities, see
Sect. 2.1.

Passive Module Non-autonomous modules, which do not have individual loco-
motion and actuation capabilities, however they are able to carry
additional energy sources, structural load and other specialized
passive functionality.

Tools Autonomous modules, such as active wheels and grippers, which
are specialized in some functionality. These modules also pos-
sess independent energy, computation and communication, see
Sect. 2.1.6.

Following the idea of developmental plasticity, organisms are able to self-assemble
and self-disassemble, see Sect. 4.5. In particular, this means that artificial organ-
isms have two principally different states: swarm-mode and organism-mode, and
progress through several phases: swarm, self-assembling, homeostatic regulation,
macroscopic regulation, and so on, see Table 1.4. Organisms possess a homeostatic
system, see Sect. 4.4, which performs self-regulation and energy management, com-
mon memory, common control, common event system, sensor-fusion and others, see
Sects. 2.3.1.1 and 3.2. By changing scalability conditions, e.g. increasing the num-
ber of elements or diversity of elements, the self-regulatory systems try to establish
an endogenous steady state. Finally, artificial organisms represent a combination of
totally distributed and totally centralized regulatory systems. This is for the follow-
ing reasons.
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Table 1.4 Phases of the organism life cycle with respect to behavioral, functional, structural
and self-developmental activities. Several phases can be executed simultaneously.

Phase Behavioral, functional and structural activities Self-developmental activities

Swarm Massive-parallel execution of tasks typical for
swarm: search, covering, resources localization
and so on (swarm-mode).

Creating behavioral diversity
by using population-based ap-
proaches, such as e.g. artificial
sexuality and using functional
self-organizing phenomena for
behavioral emergence.

Self-
assembling

Aggregation into planar structures, defining fu-
ture topology and macroscopic functionality of
an organism (transition from swarm-mode to
organism-mode).

Diverse self-organizing,
planning- and fitness-driven
morphogenetic processes lead-
ing to functional emergence.

Homeostatic
stabiliza-
tion

Low- and intermediate-level processes, tak-
ing place immediately after mechanical self-
assembly, and intended to regulate energetic, sen-
sor, topological, information, memory and com-
munication subsystems for the current topology
of the organism (organism-mode).

Endogenous parametric self-
regulation by using such ap-
proaches as artificial immune
network, planning- or fitness-
driven developmental mecha-
nisms.

Cognitive
regulation

Intermediate- and high-level processes of self-
recognition (self-awareness) of own cognitive ca-
pabilities such as a number and functionality
of available sensors, creating own- and world-
models, creating sensomotor couplings and so on
(organism-mode).

Creating and parameterizing
internal cognitive structures
and models basically by using
planning- and fitness-driven
mechanisms.

Macroscopic
regulation

High-level processes, creating macroscopic regu-
lative structure of the whole organism, related to
macro-locomotion and macro-actuation, learning
and evolving (organism-mode).

Main regulative self-
developmental process creating
control structures.

Self-
repairing

Process leading to re-configuration or even re-
moving of damaged modules from the organisms
in case of any malfunctions. This is a relatively
complex process based on self-diagnostic func-
tionality of homeostatic subsystems and includes
topology change phase and following homeo-
static and regulative phases (organism-mode).

Self-developmental mecha-
nisms are similar to homeostatic
phase, however more strongly
focused on self-diagnostics.

Macro-
actuation

Working in the organism-mode to achieve tar-
geted goals (organism-mode).

In this phase, organism per-
forms learning and evolving ac-
tivities related to behavioral and
functional self-development.

Topology
change

Taking a planar form for particular dissembling.
This is a complex process, where all modules
from old organism should not lose information
collected in the organism mode. This leads to new
homeostatic and regulative phases in a new organ-
ism (organism-mode).

This is the main structure-
changing process, caused by
learning, evolving or planning
mechanisms decided to create
new functionality and so a new
structure.

Self-dis-
assembling

Taking a planar form for a total dissembling
(transition from organism-mode to swarm-
mode).

Creating behavioral diversity as
in the swarm phase.
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By self-assembling and self-disassembling, organisms are working with different
self-concepts. They may be small or large organisms with only active or passive el-
ements, or they may have a combination of active, passive elements and tools. Thus,
organisms should be able to work over a wide range of load and diverse scalabil-
ity parameters. Obviously, strongly centralized regulatory systems have advantages
for controlling complex macro-locomotion, however they have several difficulties
with scalability and reconfigurability. Distributed swarm-like regulatory mecha-
nisms have advantages in providing flexibility and scalability, however they have
a relatively slow dynamics and can lead to communications overhead. We need
a combination of central and distributed regulatory system which is fast enough
for macro-locomotion but also flexible enough to deal with reconfigurability. This
looks like the cooperative work of different sub-systems without building strongly
centralized instances. Following bio-inspired ideas of cooperation between differ-
ent species, we label these systems as symbiotic multi-robot organisms or artificial
organisms.

Artificial Symbiotic Systems utilize structural developmental plasticity and
a two layers regulatory architecture for creating a control system with hor-
izontal operational principles. In particular, symbiotic means specific coop-
eration between different multi-functional regulative approaches, allowing
a growth of hierarchies without building strongly centralized regulation for
mono-functional collective activities.

Challenges and Perspectives. Issues of challenges in evolutionary, reconfigurable
and swarm robotics have been described several times since the early 90s. We
can refer to works (Mataric & Cliff, 1996), (Ficici et al., 1999), (Lipson, 2000),
(Sofge et al., 2003), (Teo, 2004) related to challenges with fitness estimation, “real-
ity gap” and others, whereas more recent works give overviews of challenges in ro-
botics area (Siciliano & Khatib, 2008) such as over-motorization of reconfigurable
systems or communication in swarm robotics. A combination of evolutionary tech-
niques with other approaches creates new open questions about e.g. evolution and
learning or “evolutionary self-organization” (where local rules are developed evolu-
tionary but the self-organization remains outside of the evolutionary loop) in differ-
ent scales. However, since artificial organisms combine all three areas, this results
not only in a combination of problems and advantages, but also in the appearance
of qualitatively new challenges. We believe that these new challenges are related to
developmental plasticity, a long-term independency and to the self-∗ issues.

Developmental plasticity, as already discussed, in general means the structural
and regulatory flexibility of basic elements, such as biological cells, hardware mod-
ules or software agents. The more plastic are basic elements, the more diverse
and manifold are the resulting structures. Cells or bacteria provide great plasticity,
whereas technological solutions are still far away from these biological solutions.
Achieving a similar plasticity for artificial systems, by e.g. following inspirations
from “natural chemistry”, represents a serious challenge for the next few years.
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Current robotic systems depend on maintenance, repair, specific energy sources
and other infrastructure. These are not available in human-free environments or dur-
ing long autonomous missions in e.g. space or ocean. A long-term independence
means that robots can achieve their design goals without infrastructure and services
provided by humans and in a variety of environments. This raises many different
issues not only for the robot design, energy harvesting, reliability, adaptivity and
regulatory autonomy, but also for predictability and controllability of long-term au-
tonomy and self-development.

As already mentioned, swarm-like systems possess a high degree of redun-
dancy and scalability. When some cell-modules in the organisms malfunction or
are destroyed, they can be autonomously replaced by other cells, provided that
some reserve of such cells exists. Thus, a combination of monofunctional actua-
tion and swarm-like reliability may result in a new generation of self-monitoring
and self-repairing systems. More generally, the self-∗ issues, i.e. self-awareness,
self-reflection, self-regulation, self-reproductions, self-concept and others, are a se-
quence of different “self”-related problems. One of the main problems here consists
not only in the lack of understanding of processes leading to e.g. self-reflection,
self-awareness and consciousness, but also in the collective and emergent character
of these phenomena. Thus, issues of plasticity, long-term independency and self-∗
problems are general challenges and, from this point of view, can be considered as
the main benchmarks for artificial organisms.

Concluding this section, we would like to point out one important issue: artifi-
cial organisms can be viewed as extremely simplified analogues of living organisms.
Both living and artificial organisms face similar problems – getting energy, surviving
in the environment, different forms of self-protection and self-awareness, organiza-
tion of long-term and short-term developmental processes and others. On the basis
of artificial organisms we can gain deeper insights into a long-term evolution and
its controllability, phenomena of individual and collective intelligence, mechanisms
of multi-cellular regulation and other issues, which are of a great relevance in our
understanding of the complexity of life.

1.2 Towards a Synergetic Quantum Field Theory for
Evolutionary, Symbiotic Multi-Robotics

Paul Levi, Hermann Haken

We use the profound theoretical framework of the general quantum field theory
(QFT), (Bjorken & Drell, 1965), (Penrose, 2006) to describe the interactions and
dynamics of many-body systems which are in our case robot cells (or genes) devel-
oping an organism. Here it is important to state that we just use the formal analogy
with QFT that is of purely formal nature, meaning that we operate here on a macro-
scopic level and no quantum effects appear or must be considered (Levi, 2009),
(on the opposite to (Penrose, 1994)). In near future this assumption might be re-
vised since NEMS (Nano-Electro-Mechanical-Systems) or even functional modules
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that combine Nano-technology with molecules (NEBS, Nano-Electro-Biological-
Systems) appear where quantum effects can not be excluded. The QFT-formalism is
based on creation and annihilation operators that generate quantized field operators
that in our contribution obey the non-relativistic QFT (Schrödinger field operators).
On the opposite to the relativistic QFT these field operators can obey two differ-
ent statistics (either Fermi-Dirac statistics or Bose-Einstein statistics), where these
statistics are represented by two different types of commutator rules.

The operator a†
j (x, t,sj) creates a fermionic unit j (e.g. a robot-cell) at the po-

sition x, at time t and the internal state sj. In this contribution all operators will
be written in bold letters. The operator aj(x, t,sj) annihilates such a unit. It repre-
sents in mathematical terms the Hermitian conjugate operator. These two operators
obey the exclusion principle of Pauli (e.g. no two robot-cells can take the same po-
sition and all other indices must also be different); therefore they anti-commutate
(see appendix, Sect. 1.2.5.5): {a,a†} = aa† + a†a = 1. More generally spoken
we consider every fermionic unit as an agent (Levi, 1989) that can directly in-
teract with other agents or interact via exchanges of different messages with other
agents. The notion of agent should clearly demonstrate our intention to include al-
ready on the level of robot-cells (or general to a fermionic units) cognitive abilities
(Floreano & Mattiussi, 2008), (Trianni, 2008) that allow these units to aquire in-
formation and to perform also inferences that usually cannot be performed by units
that are created by the classical QFT-theory.

In this formalism the direct interaction between different agents (on operator
level) can be described by the following expression, where O (x, x′) defines a posi-
tion dependent operator (e.g. a transition operator):

a†
j (x, t,sj) a†

k(x
′, t,sk) O(x,x′) ak(x′, t,sk) aj(x, t,sj). (1.1)

The other class of operators are bosonic creation operators b† and annihilation
operators b. They obey the commutation relation [b,b†] = bb† −b†b = 1. These two
operators obey the Bose-Einstein statistics and represent the fact that bosonic units
can generate several fields that can be -in contrast to fermionic fields- in the same
state (e.g. identical messages). In physics these operators describe all types of forces
between elementary particles that are mediated by field operatorsΨ(x) and that are
generated by the sum of corresponding particle operators. We use these operators to
generate fields that can be seen as different types of message fields (e.g modes in
the laser paradigm, (Haken, 1970)). In analogy to QFT we consider the generating
units as different virtual particles that we call infermons.

An interaction of an agent (fermionic unit) with such a bosonic field is e.g. given
by the following formula for the self-adjoint interaction Hamilton operator HI:

a†
j (x, t,sl) aj(x, t,sm) b†(x, t)+ a†

j (x, t,sm) aj(x, t,sl) b(x, t). (1.2)

The term a†
j (x, t,sl)aj(x, t,sm) describes the state transfer of a fermionic unit j from

the energetic higher state sm to a lower energetic state sl by creation of the state sl

and the annihilation of the state sm at the position x and the time t. As a result of
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this operation the bosonic operator b† generates a field of a dedicated type (sending
of a message) at the same position x and time t. The second term in this equation
describes the process that a bosonic field is annihilated (unit j receives a message)
and therefore annihilates the lower state sl and transfers to the upper state sm.

In the formalism of synergetics the generated bosonic “information fields” can
effect as an order field (order “parameter” field) that synchronises the exchanges
of different message types between robot-cells in order to generate coherent collec-
tive activities of these cells (Levi et al., 1999). This coherence can also exist if the
force mediating bosons are different. But it can also occur that the synchronisation
of messages is not achievable (e.g. evident by a strong lumping of messages) re-
sulting in a decoherence of the message flow. Such a field decoherence prevent the
cooperation of cells. In term of synergetics this means that there is a threshold for
order parameters. Beneath this threshold there is no coherency, at the threshold a
bifurcation occurs, and above the threshold the heterogeneity can be controlled.

The QFT-formalisms in the deployment of an extended operator method delivers
in addition equation of motions for each kind of creation operator and annihilation
operator by the following commutator e.g. for a†:

d
dt

a† =
i
h̄
[HI,a†]. (1.3)

A fundamental, undisturbed form of such an equation of motion for the creation
operator b† is given by use of (1.5)

d
dt

b† = cb† − db†(b†b). (1.4)

This operational equation of motion, where c is a control parameter, d is propor-
tional to a coupling parameter (often also incorrect named constant), and b† plays
the role of an order operator field (order parameter field) is very characteristic for
self-organising processes, since it represents the so-called Eigenanteile of such pro-
cesses. This equation will build the basis of our approach and will be stepwise ex-
tended by perturbation and solved.

There is an additional rationale to us to involve QFT-formalism. This is the pos-
tulation that information is represented by a quantizing field operator whose compo-
nents obey an equation of motion that is dictated by the interactions of both classes
of operators (Haken, 2004).

As mentioned above we use fermionic operators a and a† for the construction
and deconstruction of robot-cells (agents). In favour of genetic operations we use
the following naming for bosonic operators: cr† (create cross-over) and cr (anni-
hilate cross-over); mt† (create mutation) and mt (annihilate mutation). In addition
we employ a more general bosonic message operator ms† (create a message), ms
(annihilate a message) that is used to describe the temporal starting points and the
duration of actions and can be applied to characterise conditions like temperature,
pressure and concentrations under which e.g. the operations of cross-over and mu-
tation have to take place. Here we just focus on the duration of an interaction that
controls the on and off switching of individual operators. This process portrays the
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selection of operations. We involve the operators ms† and ms to handle extrinsic
and intrinsic sensor data to initiate and to terminate bosonic activities. But at last
the sensor based selections result all time in start and stop instructions. Therefore
we can describe with our “switch-model” all types of selection operations.

The activation respectively the deactivation of bosonic operators describe
the effect of the agilities of regulation networks (Dayan & Abbott, 2001),
(Alberts et al., 2008). This means that we have separated and combined equations
of motion for fermionic and bosonic operators, where the combined solutions can be
considered as self-organised processes. Fermionic units generate bosonic fields and
these exert again a feed-back “force” to the fermions. We abstain here to introduce
additional genetic operators like rp† (creation of reproduction) and rp (destruction
of reproduction), since the structure of the interactions of fermionic and bosonic
units is in our case - comparable with the three body problem - already visible if we
use three different types of mediating virtual bosonic particles (infermons).

In the construction of this chapter we are guided by the interaction of light and
material (Haken, 1985). The model pattern is a laser that operates above the thresh-
old. The quantum field approach approves in addition the beneficial separation of
field equations and matter equations. This means that we can separate the equations
of motion for the bosonic operators from the ones that are defined by e.g. for a flip
operator a†

j (m) aj(l) for fermions with different internal states.
We summarise the introduction in order to give a road map for this contribution.

Messages are represented by bosonic field quanta, they are generated and handled
by agents (represented by fermionic operators that generate cognitive units). The
message based interactions between agents generate the information that an agent
can acquire. The complete approach is ambitious: QFT theory is fused with syner-
getics, and not enough, from this combination an unusual definition of information
is deduced and distributed in a multi-agent system. It is intended that this informa-
tion can be used for the description of the development of an artificial organism
generated out from individual robot-cells. On this way we started our description
of such a development by the development of water from H2O molecules, since it
is provable in reality. The final step do describe an organism as a many-body sys-
tem where the component obey the Fermi-Dirac statistics (fermionic agents) and
their interactions are mediated by different time dependent bosonic fields that rep-
resent e.g. external signals (ms) or different communications (mt, cr) between the
components is still an ongoing work and is not finished in this contribution.

1.2.1 Cooperative (Coherent) Operations between Fermionic
Units

1.2.1.1 Interaction Hamilton Operator

As it is usually done in physics we start with a Hamiltonian that describes the in-
teraction between the fermionic operators and bosonic operators. The goal of this
sub-paragraph is to present equations of motion for the three types of bosonic op-
erators that result from their interactions with the fermionic units. This is important
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since by synergetic principles the bosonic creation operators are considered as or-
der “parameters” fields of the self-organisation process between agents and message
fields (like the interaction of mater and light). Further we are looking for the control
parameters that start such a self-organised process. To get these results we involve an
adiabatic approach. Unfortunately these calculations are complex and long. Read-
ers that are not accustomed to such operator calculus could consider this formalism
as the way to deduce the elementary QFT-based self-organised equation that we
mentioned already in the introduction (1.4).

Concerning the “agentifying” of the fermionic units this means that we have an
overlay of multi-parameter fields where we have later on to analyse which parameter
values primarily of the bosonic fields can guarantee the synchronisation (coopera-
tion) of the agents by these fields.

We model the interactions between fermionic units in analogy to the resonant
actions of a multimode laser in the representation of photonic statistics. This means
in greater detail that if the energy Em of state m is higher than the energy E1

of state l (Em − E1 > 0) and this energy is equal e.g. to the energy h̄ωms
jk of the

bosonic field h̄ωms
jk ms†

jk(n)msjk(n) then cooperative (coherent) interactions between
the fermionic agents can proceed. In this paper we work in the interaction rep-
resentation and assume exact resonance, otherwise the Hamiltonians of the free
fields must be taken into account. The interaction part of the Hamilton operator is
defined by:

HI = ih̄ ∑
j,k,l,m,n

gms
jk

(
a†

j (l)aj(m)ms†
jk(n)− a†

j (m)aj(l)msjk(n)
)
+

ih̄ ∑
j,k,l,m,n

gcr
jk

(
a†

j (l)aj(m)cr†
jk(n)− a†

j (m)aj(l)crjk(n)
)
+

ih̄ ∑
j,k,l,m,n

gmt
jk

(
a†

j (l)aj(m)mt†
jk(n)− a†

j (m)aj(l)mtjk(n)
)
.

(1.5)

The bosonic creation and annihilation operators generate or destroy a bosonic
field by the interaction with fermionic fields. The indices have the following mean-
ing: j is detached to fermionic units a†

j ,aj. The index k describes the message type
(mode) of a bosonic field. The bosonic operators mediate the “forces” between the
fermionic units and stand for the message exchange between them, where the more
specific message type (bosonic states) are notated by n. The letters l and m describe
internal states (e.g. exited state) of fermionic units. Bosonic operators that represent
the interaction e.g. with the environment, or more general sensor data, are defined by
ms†

jk(n) and msjk(n). The operators crjk and cr†
jk; respectively mtjk and mt†

jk define
the direct internal interactions, e.g. the command for to genes to mutate.

The creation and annihilation operators are Hermetian adjoint, therefore complex
coefficients should also be complex conjugated, only if they are real the coefficients
for both conjugated operators are equal. Here we make the assumption that all co-
efficients are real.
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The set of equations of motion for all three creation operators is given by (let n
be fixed, and h̄ = h

2π is Planck’s quantum of action):

d
dt

ms†
jk =

i
h̄
[HI,ms†

jk] = − i
h̄
∂HI

∂msjk
=∑

l,m

gms
jk (a†

j (m)aj(l)) =∑
l,m

gms
jk ααα

†
j (m, l) (1.6)

d
dt

cr†
jk =

i
h̄
[HI,cr†

jk] = − i
h̄
∂HI

∂crjk
=∑

l,m

gcr
jk(a

†
j (m)aj(l)) =∑

l,m

gcr
jkααα

†
j (m, l) (1.7)

d
dt

mt†
jk =

i
h̄
[HI,mt†

jk] = − i
h̄
∂HI

∂mtjk
=∑

l,m

gmt
jk (a†

j (m)aj(l)) =∑
l,m

gmt
jk ααα

†
j (m, l) (1.8)

Here we abbreviated the formulas by the use of the state flip operator ααα†
j (m, l) =

a†
j (m) aj(l). For further use we also introduce here in addition the Hermitean con-

jugated flip operator ααα j(m, l) = a†
j (l) aj(m).

The second derivative of ms†
jk has the form (n is again fixed):

d2

dt2
ms†

jk =∑
l,m

gms
jk

d
dt
ααα†

j(m, l). (1.9)

The derivation of the term ααα†
j (m, l) is calculated by

d
dt
ααα†

j (m, l) =
i
h̄

[
HI,ααα j(m, l)

]
=∑

k

gms
jk ms†

jkσσσ j(m, l)+ ∑
k,l,m

gcr
jkcr†

j σσσ j(m, l)+ ∑
k,l,m

gmt
jk mt†

jkσσσ j(m, l).
(1.10)

We used the following abbreviation for the self-conjugated operator

σσσ j(m, l) = a†
j (m)aj(m)− a†

j (l)aj(l) = σσσ†
j (m, l). (1.11)

In laser terminology σσσ j describes the activity above the laser threshold (saturated
inversion). In our case this denotes a time dependent activity of agent j where it
produces messages (bosonic fields). This message generation can be quantified by
the number of messages that are are transmitted (corresponds to the number of pho-
tons). We use the notation σσσ0

j if agent j is in an equilibrium state where it generates
no messages (typically activities below the laser threshold prescribing incoherent
interactions with the surroundings).

The resulting formulas of the second derivations of the three creation operators
are:

d2

dt2
ms†

jk = ∑
l,m

gms2
jk ms†

jkσσσ(m, l). (1.12)

d2

dt2
cr†

jk = ∑
l,m

gcr2
jk cr†

jkσσσ(m, l). (1.13)
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d2

dt2
mt†

jk = ∑
l,m

gmt2
jk mt†

jkσσσ(m, l). (1.14)

The total sum of the “acceleration” of the creation operator ms†
jk is given by

∑
j,k

d2

dt2
ms†

jk = ∑
j,k,l,m

gms2
jk ms†

jkσσσ(m, l). (1.15)

Analogue formulas also hold for the two remaining creation operators. The influ-
ences of the three creation operators ms†

jk,cr†
jk,mt†

jk on the total interaction Hamil-

tonian are determined, beside the squared coupling constants (gms
jk )2, (gcr

jk)
2, (gmt

jk )2,
(all � 1), primarily by the rate of σσσ j(m, l). Thus we calculate

d
dt
σσσ j(m, l) =

i
h̄

[
HI,σσσ†

j (m, l)
]

= −
(
∑
k

gms
jk ms†

jk +∑
k

gcr
jkcr†

jk+

∑
k

gmt
jk mt†

jk

)
ααα j(m, l)−

(
∑
k

gms
jk msjk +∑

k

gcr
jkcrjk +∑

k

gmt
jk mtjk

)
ααα†

j (m, l).
(1.16)

The commutator rules and the anti-commutator formulas must be valid for all
time. This will be violated if we introduce only damping constants κjk (dissipation)
for the creation operators, damping constants γjk for the flip operators, and a relax-
ation time Tj that defines the time span where σσσ j recovers to the stationary value σσσ0

j .
The validity of the commutator and anti-commutator formulas will be restored if we
introduce external fluctuating forces Ffluc, which are mandatory that the commuta-
tors respectively the anti-commutators are exactly fulfilled all time (Haken, 1985).
They represent the interaction with the environment. We will model these forces not
explicitly in the interaction Hamiltonian (the formalism is simpler since we have
not to calculate the expectation values of the stochastic forces) but implicitly with
the aid of different statistics representing additional, stochastic interactions between
the fields and the environmental restrictions (e.g. Poisson distribution for the mean
number of messages).

If we include damping constants κjk into the formulas (1.6), (1.7) and (1.8) then
the final set of equations is transferred to:

d
dt

ms†
jk = ∑

l,m

gms
jk ααα

†
j (m, l)−κms

jk ms†
jk. (1.17)

d
dt

cr†
jk = ∑

l,m

gcr
jkααα

†
j (m, l)−κcr

jk cr†
jk. (1.18)

d
dt

mt†
jk = ∑

l,m

gmt
jk ααα

†
j (m, l)−κmt

jk mt†
jk. (1.19)

The temporal derivation of the flip operator is transferred to the following form
if the damping constants γjk are included into formula (1.10):
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d
dt
ααα†

j (m, l) =∑
k

(
gms

jk ms†
jkσσσ j(m, l)− γms

jk ααα†
jk(m, l)

)
+

∑
k

(
gcr

jkcr†
jkσσσ j(m, l)− γcr

jkααα
†
jk(m, l)

)
+

∑
k

(
gmt

jk mt†
jkσσσ j(m, l)− γmt

jk ααα
†
jk(m, l)

)
.

(1.20)

In the last step we include the relaxation time Tj(m, l) in the formula (1.16). This
step changes this equation into the following formula:

d
dt
σσσ j(m, l) = −

(
∑
k

gms
jk ms†

jk +∑
k

gcr
jkcr†

jk +∑
k

gmt
jk mt†

jk

)
ααα j(m, l) −(

∑
k

gms
jk ms†

jk +∑
k

gcr
jkcr†

jk +∑
k

gmt
jk mt†

jk

)
ααα†

j (m, l) +

1
Tj(m, l)

(
σσσ0

j (m, l)−σσσ j(m, l)
)

.

(1.21)

All in all we get a set of coupled non-linear differential equations. They can be
solved if we assume that the damping constants and the relaxation time are different
in the orders of magnitudes in the sense of adiabatic elimination (Haken, 1970). For
example, for the “ms-constants” this estimation looks like

γms
jk >

1
Tj(m, l)

> κms
jk . (1.22)

Under the above mentioned assumption, that the damping constant γjk dominates
the other parameters, we can set (if these inequalities are not true then a synchro-
nised, self-organising process cannot start) d

dtααα
†
j (m, l) = 0 in (1.20) and solve this

equation:

ααα†
j (m, l) =∑

k

(
gms

jk

γms
jk

ms†
jk +∑

k

gcr
jk

γcr
jk

cr†
jk +∑

k

gmt
jk

γmt
jk

cr†
jk

)
σσσ j(m, l). (1.23)

This result will then be inserted into (1.21) yielding the result:

d
dt
σσσ j(m, l) =− 2

(
∑
k

(gms
jk′ )2

γms
jk′

ms†
jkmsjk +∑

k

(gcr
jk)

2

γcr
jk

cr†
jkcrjk+

∑
k

(gmt
jk )2

γmt
jk

mt†
jkmtjk

)
σσσ j(m, l)+

1
Tj(m, l)

(
σσσ0

j (m, l)−σσσ j(m, l)
)
.

(1.24)

In the next step we set d
dtσσσ j(m, l) = 0, solve the resulting equation with respect

to σσσ j(m, l) and insert the result into (1.21). These steps generate the following ap-
proximate solution:
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ααα†
j (m, l) = σσσ0

j (m, l)∑
k

gms
jk

γms
jk

ms†
jk

(
1 − 2Tj(m, l)

(gms
jk )2

γms
jk

ms†
jkmsjk

)
+

σσσ0
j (m, l)∑

k

gcr
jk

γcr
jk

cr†
jk

(
1 − 2Tj(m, l)

(gcr
jk)

2

γcr
jk

cr†
jkcrjk

)
+

σσσ0
j (m, l)∑

k

gmt
jk

γmt
jk

mt†
jk

(
1 − 2Tj(m, l)

(gmt
jk )2

γmt
jk

mt†
jkmtjk

)
.

(1.25)

In the last step we insert (1.24) e.g. into (1.16). The result for d
dtms†

jk reads then:

d
dt

ms†
jk = suml,mgms

jk ααα
†
j (m, l)−κms

jk ms†
jk

=∑
l,m

gms
jk σσσ

0
j (m, l)

(
∑
q

gms
jq

γms
jq

ms†
jq

(
1 − 2Tj(m, l)

(gms
jq )2

γms
jq

ms†
jqmsjq

)
+

∑
q

gcr
jq

γcr
jq

cr†
jq

(
1 − 2Tj(m, l)

(gcr
jq)

2

γcr
jq

cr†
jqcrjq

)
+

∑
q

gmt
jq

γmt
jq

mt†
jq

(
1 − 2Tj(m, l)

(gmt
jq )2

γmt
jq

mt†
jqmtjq

))−κms
jk ms†

jk.

(1.26)

Finally, we rearrange this equation:

d
dt

ms†
jk =∑

l,m

(
gms

jk σσσ
0
j (m, l)

(
∑
q

gms
jq

γms
jq

ms†
jq +∑

q

gcr
jq

γcr
jq

cr†
jq +∑

q

gmt
jq

γmt
jq

mt†
jq

)
−

κms
jk ms†

jk − 2σσσ0
j (m, l)Tj(m, l)

(
∑
q

(gms
jq )3

(γms
jq )2 ms†

jq

(
ms†

jqmsjq
)−

∑
q

(gcr
jq)

3

(γcr
jq )2 cr†

jq

(
cr†

jqcrjq
)−∑

q

(gmt
jq )3

(γmt
jq )2 mt†

jq

(
mt†

jqmtjq
)))

.

(1.27)

To generate the first derivative of the total bosonic field ms† (it summaries all
created ms-messages) we must sum up over all indices j and k:

d
dt

ms† = ∑
l,m,j,k

(
gms

jk σσσ
0
j (m, l)

(
∑
q

gms
jq

γms
jq

ms†
jq +∑

q

gcr
jq

γcr
jq

cr†
jq +∑

q

gmt
jq

γmt
jq

mt†
jq

)
−

κms
jk ms†

jk − 2σσσ0
j (m, l)Tj(m, l)

(
∑
q

(gms
jq )3

(γms
jq )2 ms†

jq

(
ms†

jqmsjq
)−

∑
q

(gcr
jq)

3

(γcr
jq )2 cr†

jq

(
cr†

jqcrjq
)−∑

q

(gmt
jq )3

(γmt
jq )2 mt†

jq

(
mt†

jqmtjq
)))

.

(1.28)
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Analogous equations are true for d
dt cr† and d

dt mt†. We have now defined all for-
mulas and can begin to solve them. The first step in this direction will be the calcu-
lation of the solution of (1.26). Afterwards the analogous equations for the temporal
derivations of cr†

jk and mt†
jk must be solved.

We perform this procedure step by step, and we start with the simplification of
Eq. (1.26). This yields the formula:

d
dt

ms†
jk = σσσ0

j (m, l)
( (gms

jk )2

γms
jk

ms†
jk −κms

jk ms†
jk +

gms
jk gcr

jk

γcr
jk

cr†
jk +

gms
jk gmt

jk

γmt
jk

mt†
jk

)
−

2σσσ0
j (m, l)Tj(m, l)

( (gms
jk )3

(γms
jk )2 ms†

jk

(
ms†

jkmsjq
)
+

(gcr
jk)

3

(γcr
jk )2 cr†

jk

(
cr†

jkcrjk
)
+

(gmt
jk )3

(γmt
jk )2 mt†

jk

(
mt†

jkmtjk
))

.

(1.29)

In short:

d
dt

ms†
jk = cms

jk ms†
jk − dms

jk ms†
jk

(
ms†

jkmsjk
)
+ ccr

jkcr†
jk − dcr

jkcr†
jk

(
cr†

jkcrjk
)
+

cmt
jk mt†

jk − dmt
jk mt†

jk

(
mt†

jkmtjk
)
.

(1.30)

We introduced the following abbreviations:

cms
jk = σσσ0

j (m, l)
(gms

jk )2

γms
jk

−κms
jk σσσ0

j (m, l), ccr
jk = σσσ0

j (m, l)
gms

jk gcr
jk

γcr
jk

,

cmt
jk = σσσ0

j (m, l)
gms

jk gmt
jk

γmt
jk

;

dms
jk = 2σσσ0

j (m, l)Tj(m, l)
(gms

jk )3

(γms
jk )2 , dcr

jk = 2σσσ0
j (m, l)Tj(m, l)

(gcr
jk)

3

(γcr
jk )2 ,

dmt
jk = 2σσσ0

j (m, l)Tj(m, l)
(gmt

jk )3

(γmt
jk )2 .

In analogy to (1.30) we rewrite the equation for cr†
jk:

d
dt

cr†
jk = ecr

jkcr†
jk − fcr

jkcr†
jk

(
cr†

jkcrjk
)
+ ems

jk ms†
jk − fms

jk ms†
jk

(
ms†

jkmsjk
)
+

emt
jk mt†

jk − fmt
jk mt†

jk

(
mt†

jkmtjk
)
.

(1.31)
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Similar abbreviations are:

ems
jk = σσσ0

j (m, l)
(gcr

jk)
2

γcr
jk

−κcr
jkσσσ

0
j (m, l), ems

jk = σσσ 0
j (m, l)

gcr
jkgms

jk

γms
jk

,

emt
jk = σσσ0

j (m, l)
gcr

jkgmt
jk

γmt
jk

;

fcr
jk = 2σσσ0

j (m, l)Tj(m, l)
(gcr

jk)
3

(γcr
jk )2 , fms

jk = 2σσσ0
j (m, l)Tj(m, l)

(gms
jk )3

(γms
jk )2 ,

fmt
jk = 2σσσ0

j (m, l)Tj(m, l)
(gmt

jk )3

(γmt
jk )2 .

In the end the analogous equation for mt†
jk looks like:

d
dt

mt†
jk = smt

jk mt†
jk − tmt

jk mt†
jk(mt†

jkmtjk)+ sms
jk ms†

jk − tms
jk ms†

jk(ms†
jkmsjk)+

scr
jkcr†

jk − tcr
jkcr†

jk(cr†
jkcrjk).

(1.32)

The abbreviations are again conforming to the previous one:

smt
jk = σσσ0

j (m, l)
(gmt

jk )2

γmt
jk

−κmt
jk σσσ

0
j (m, l), sms

jk = σσσ0
j (m, l)

gmt
jk gms

jk

γmt
jk

,

scr
jk = σσσ0

j (m, l)
gcr

jkgmt
jk

γmt
jk

;

tmt
jk = 2σσσ0

j (m, l)Tj(m, l)
(gmt

jk )3

(γmt
jk )2 , tms

jk = 2σσσ0
j (m, l)Tj(m, l)

(gms
jk )3

(γms
jk )2 ,

tcr
jk = 2σσσ0

j (m, l)Tj(m, l)
(gcr

jk)
3

(γcr
jk )2 .

Eqs. (1.30) - (1.32) and their three Hermitean conjugates are the differential
equations we have to solve. All these three differential equations are composed of
three symmetrical parts. Nevertheless we cannot solve each symmetrical term by
itself and then add all three together because the full equations are non-linear. In
addition the actions of these three parts e.g. of (1.30) are different. The first term
models the own contribution (Eigenanteil) ms†

jk, the remaining two parts describe

the coupling of ms†
jk to the creation operators cr†

jk and mt†
jk. The mutual interactions

of all three bosonic fields denotes a strong dependency between them, meaning
e.g. that the ms-field tries to control the mt-field, or by interference effects new
combinations of frequencies occur, or the frequency of two fields is changed. In
technical terms this means that there exist frequency lockings and phase lockings
that are generated by the interactions of these three modes.
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Transferred to symbiotic organisms these effects can stabilise e.g. the connections
of different cells since there is a strong regulative, dynamic regime that controls
the internal communications by mt-fields and cr-fields by the ms-field. But it is
also possible (depending from the settings of the various parameters) that the mt-
field (mutation) dominates the other two fields and the organism destabilises. The
kind of interactions of the three bosonic fields define whether the robot-cells can
cooperate together. In a synergetic view all this depends on the values of the control
parameters e.g. cms

jk of the ms-field and the dynamics of the order field ms†
jk, (see

next sub-paragraph).
The additional principal tools beside the above performed synergetic based calcu-

lations (e.g. control parameter, order parameter field (Haken, 1977) are the methods
of dynamical systems (Ghrist et al., 1997) and the techniques of differential ge-
ometry (Kobayashi & Nomizu, 1996), (Guckenheimer & Holmes, 1983). We start
the descriptions of the solutions by the view of dynamical systems. Hereby, as a
standard procedure, the equilibrium of a dynamical system will be studied by the
behavior of an invariant set Λ of the vector field f(Λ) = Λ. Such a set Λ can be one-
point set (fixed-point) or a manifold (e.g. circle of fixed points, see Fig. 1.13(b)). In
any case, we analyse the behavior of a dynamical system primarily in equilibrium
states in order to describe the stability of the system invariant sets.

1.2.2 Individual Contributions of the Eigenanteile

In the first step the equations of the bosonic creation operators ms†
jk and msjk are

solved. Since we are interested in the results of the measurements of these two oper-
ators we calculate the expectation values of them. It is also usual to analyse the flow
of the field. We do this in the second sub-chapter. In the third sub-chapter an ex-
ternal, periodic force affects the expectation values of the two ms-operators, where
such a field e.g. come from a periodic electro-magnetic wave. If we go deeper into
the physics such a wave can polarise the robot cells. The calculated phase portraits
demonstrate the resulting periodicity in this representation space.

1.2.2.1 Uncoupled and Unforced Contributions of the Operators and Their
Expectation Values

In order to get an impression of the first incomplete results of (1.30) we study the be-
havior of the Eigenanteile of ms†

jk (Eigenanteil-results for cr†
jk and mt†

jk are similar).
Such Eigenanteile represent in a self consistent way how the “ms-field” interact
with itself via the interaction with a fermionic agent. In more detail; we separate
from (1.30) the partial formula

d
dt

ms†
jk = cms

jk ms†
jk − dms

jk ms†
jk(ms†

jkmsjk). (1.33)

Supplementary we write down the conjugate equation

d
dt

msjk = cms
jk msjk − dms

jk msjk(ms†
jkmsjk). (1.34)
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These two formulas are the first elementary building blocks of our approach. The
operator ms†

jk plays the role of an order parameter, cms
jk defines the control parameter,

and formula (1.25) expresses the slaving principle.
The creation respectively annihilation operators are complex operators. The ap-

propriate method of solutions of the two adjoint operator equations can be done in
the space of eigenfunctions Φα of the annihilation operator msjk, where

msjkΦα = αΦα ,α ∈ C. (1.35)

We take the expectation value 〈
Φα

∣∣msjk
∣∣Φα

〉
= α, (1.36)

with the normalisation 〈Φα | Φα〉 = 1. For the adjoint operator holds
〈φα | ms†

jk | φα〉 = α∗. Below we will use the short notations 〈msjk〉 and 〈ms†
jk〉 for

these two expectation values.
For clarity we drop the indices in the two operator equations (1.33) and (1.34)

and get the equivalent equations for the expectation values

dα
dt

= cα− d|α|2α,
dα∗

dt
= cα∗ − d|α|2α∗. (1.37)

If we split the expectation values of the ms operator into the real part
u = Re

〈
msjk

〉
and imaginary part v = Im

〈
msjk

〉
then we obtain from both equa-

tions the following differential equations for u and v:

d
dt

u = cms
jk u − dms

jk u(u2 + v2) = cms
jk u − dms

jk ur2. (1.38)

d
dt

v = cms
jk v − dms

jk v(u2 + v2) = cms
jk v − dms

jk vr2. (1.39)

These equations are symmetric in (u,v). The single unstable fixed point is the
origin O = (0,0), if cms

jk > 0 and dms
jk < 0. It represents a saddle point that is physi-

cally not relevant. Fig. 1.13(a) demonstrates this fact by a phase portrait of u and v,
and it shows the influence of the unstable fixed point in the origin O1.

The alternative calculations with 〈msjk〉 = α = r(t)eiϕ(t) and 〈ms†
jk〉 = α∗ deliver

in a more elegant way the two equivalent differential equations if both coefficients
are real:

d
dt

r = cms
jk r − dms

jk r3,and
d
dt
ϕ = 0. (1.40)

1 We express our gratitude to Dr. Victor Avrutin for his uncomplaining and substantial cal-
culation support of this work.
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(a) (b)

Fig. 1.13 Phase portraits of u and v. (a) There is an unstable fixed point in the origin ori-
gin O = (0,0). The values are cms

jk = 1.5 and dms
jk = −0.3; (b) The values are cms

jk = 1.5 and
dms

jk = 0.3.

Fig. 1.13(b) demonstrates the effect if dms
jk gets positive; there arises a circle of at-

tractive fixed points with radius r0 =
√

cms
jk

dms
jk

. For physical relevant “laser actions” we

have to use a positive dms
jk in order to get a stable amplitude.

1.2.2.2 Flow of the Continuous and Uncoupled Eigenanteile

Here we specify the explicit solutions of the two Eqs. 1.33 and 1.34, and calculate
the accordant flow in terms of dynamical systems. A dynamical system dx

dt = f(x),
is a system of differential equations, where x = x(t)∈ Rn and f is a vector field that
generates a continuous flow Φt(x) =Φ(x, t), that also can be considered as a one
parameter group under the operation of composition (Φs ◦Φt(x)) =Φs+t(x) that
satisfies the equation

d
dt
Φ(x, t)|t=τ = f(Φ(x,τ)),∀ x and τ ∈ I = (a,b) ⊆ R

n. (1.41)

We repeat again the continuous Eigenanteil

d
dt

ms†
jk = cms

j,k ms†
jk−dms

j,k ms†
jk(ms†

jkmsjk). (1.42)

If we drop all indices of (1.37) then we get the solutions:

r(t) =
√

c
(
(

c

r2
0

− d)e−2ct + d
)−1/2

, ϕ = ϕ0. (1.43)

The fixed point is, as we already know, defined by r0 =
√ c

d ; its stability is calcu-
lated by
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dr
dr0

|√
c
d

= de−2ct. (1.44)

This fixed point r0 is stable, if c and d are both positive, reflecting the already
known circular orbit of radius r0. In the limit t → ∞, r(t) converges to r0. We get an
equivalent result if we consider the derivative D of the Poincaré map

DP(r0) =
dP
dr0

|√ c
d

= d3/2e−4πc < 1. (1.45)

The continuous flow operator is given by:

Φt(r0,ϕ0) =

(
√

c

(( c

r2
0

− d
)

e−2ct + d

)−1/2

,ϕ0

)
. (1.46)

Fig. 1.14 demonstrates the flow (one-parameter group) for r(t) and different constant
ϕ values.

Fig. 1.14 Schematic representation of flow (phase curves) in the (r,ϕ) plane with
r(ϕ) =

√ c
d . There is a pattern repetition for 0 < ϕ < π

2 , π < ϕ < 3π
2 , etc. Red curves are

attractive; the blue line is repulsive (unstable fixed point in the origin).

1.2.2.3 Uncoupled and External Forced Oscillations of the Operators and
Their Expectation Values

In the next step we apply an external periodic force Asin(ω t) with real amplitude
A:

d
dt

ms†
jk = cms

jk ms†
jk − dms

jk ms†
jk(ms†

jkmsjk)+ Asin(ω t). (1.47)

d
dt

msjk = cms
jk msjk − dms

jk msjk(ms†
jkmsjk)+ Asin(ω t). (1.48)

In the short notation – with coefficient dropping – these two equations read as
(α = r(t)eiϕ(t))
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d
dt
α = cα− d|α|2α+ Asin(ω t),

d
dt
α∗ = cα∗ − d|α|2α∗ + Asin(ω t). (1.49)

If we take again for granted that c and d are real then the resulting differential
equations are (α = r(t)eiϕ(t)):

d
dt

r = cr − dr3 + Asin(ω t)cos(ϕ). (1.50)

r
d
dt
ϕ = Asin(ω t)sin(ϕ). (1.51)

Represented in the Cartesian coordinates (u,v) two different solutions are
demonstrated in Fig. 1.15. In Fig. 1.15(a) the solution has a form of an eight that
twist up; in Fig. 1.15(b) the solution twists down to the plane v = 0, where it per-
forms sinus oscillations.

(a) (b)

Fig. 1.15 Phase portrait of α = u+ iv.The parameter values are: (a) cms
jk = −0.75, dms

jk = 1.3,
A = 1, ω = 10; (b) cms

jk = 0.75, dms
jk = 1.3, A = 1, ω = 10.

1.2.3 Separate Perturbations of the Eigenanteile

In the next step we disturb the Eigenanteile e.g. for ms†
jk(similar results are obtained

also for the other Eigenanteil-equations) by a mixed term ms†
jkmsjk:

d
dt

ms†
jk = cms

jk ms†
jk − dms

jk ms†
jk(ms†

jkmsjk)+ ĝms
jk ms†

jkmsjk

d
dt

msjk = cms
jk msjk − dms

jk msjk(ms†
jkmsjk)+ ĝms

jk ms†
jkmsjk.

(1.52)

A similar procedure as before, msjk = r(t)eiϕ(t), ms†
jk = r(t)e−iϕ(t), transfers Eq.

(1.50) with dropped indices into

i(
d
dt
ϕ)r +

d
dt

r = cr − dr3 + ĝr2e−iϕ . (1.53)
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The splitting of this formula into real part and imaginary part generates the result

d
dt

r = cr − dr3 + ĝr2 cos(ϕ). (1.54)

d
dt
ϕ = −ĝr sin(ϕ), (r = 0). (1.55)

There is an unstable fixed point for r0 = 0 and ϕ arbitrary; and a stable fixed point in

r0 =
1

2d
(ĝ+

√
ĝ2 + 4cd) and sin(ϕ0) = 0, ĝ = 0. (1.56)

In Cartesian coordinates Eqs. (1.52) read as:

d
dt

u = cms
jk u − dms

jk u(u2 + v2)+ ĝms
jk u(u2 + v2) = cms

jk u − dms
jk ur2 + ĝms

jk ur2. (1.57)

d
dt

v = cms
jk v − dms

jk v(u2 + v2) = cms
jk v − dms

jk vr2. (1.58)

The nontrivial fixed points in the (u,v) space are:

u0 = ±r0,v0 = 0. (1.59)

Fig. 1.16 shows the phase flow of these two equations with respect to the unsta-
ble fixed point in the origin. By comparison with Fig. 1.13(a) we see that the flow
outside the u axis turns to the right side (a) or left side (b).

In the next parameter fixation cms
jk stays unchanged and dms

jk gets positive.
Fig. 1.17 demonstrates the definite change of the flow behavior. In Fig. 1.17(a) the
fixed point in the origin stays unstable, in addition two new fixed points u0 = ±r0

are created. The right fixed point u0 = r0 is stable and the left fixed point u0 = −r0

gets a saddle point. In Fig. 1.17(b) the two fixed points u0 = ±r0 change their roles.

(a) (b)

Fig. 1.16 Phase portrait. The values are: (a) ĝms
jk = 0.25 , ĝms

jk = 0.25; (b) ĝms
jk = - 0.25. In both

cases cms
jk = 1.5 and dms

jk =- 0.3.
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(a) (b)

Fig. 1.17 Phase portrait. The values are: (a) ĝms
jk = 0.25 , ĝms

jk = 0.25; (b) ĝms
jk = - 0.25. In both

cases cms
jk = 1.5 and dms

jk = 0.3.

The interpretation of e.g. Fig. 1.17(a) in agent view can be given as follows. There
are three agents ,we call them organisators, the organisator in the origin (repulsive
fixed point) sends all messages (bosonic fields) to its neighbour to the left (saddle
point) and to the right (attractive fixed point). The organisator to the right collects
all messages that flow in asymptotically to the circle to this agent. Only the mes-
sages that start in direction of the circle from the organisator to the left stay on the
circle until they reach the right organisator. All messages that are generated by other
agents that are outside of the circle also reach the right organisator. All messages
that are generated by the organisator in the origin and that are coming from outside
of the circle build together an asymptotic flow that can be considered as a fibration
(foliation) where the circle is considered as an unstable manifold Wu that defines a
base space of a bundle.

1.2.4 Coupling of the Disturbed Eigenanteil Equations

Here our approach is oriented on equations for multimode laser (Haken, 1985). We
do this step by step and start with a small perturbation of the coupled Eigenanteile.
This means that we just add particle number operators for each type of quantized
bosonic fields e.g. ms†

jkmsjk that counts the number of “ms-messages” (nms). This
approach reads as:

d
dt

ms†
jk = cms

jk ms†
jk − dms

jk ms†
jk(ms†

jkmsjk)+ ccr
jkcr†

jk − dcr
jkcr†

jk(cr†
jkcrjk)+

(cmt
jk mt†

jk − dmt
jk mt†

jk(mt†
jkmtjk))+ ĝms

jk (ms†
jkmsjk)+ ĝcr

jk(cr†
jkcrjk)+

ĝmt
jk (mt†

jkmtjk). (1.60)

We set (with indices dropped) ms = r1eiϕ1 , cr = r2eiϕ2 , mt† = r3eiϕ3 , and get the
transformed equation:
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d
dt

r1 − ir1
d
dt
ϕ1 = cmsr1 − dms(r1)

3 + ccrr2ei(ϕ1−ϕ2) − dcr(r2)
3ei(ϕ1−ϕ2)+

cmtr3ei(ϕ1−ϕ3) − dmt(r3)
3ei(ϕ1−ϕ3) + (ĝms(r1)

2 + ĝcr(r2)
2 + ĝmt(r3)

2)eiϕ1 .

(1.61)

Here we can set (r1)
2 = nms, etc. After the splitting of this formula into a real

part and imaginary part, the resulting equations are:

d
dt

r1 = cmsr1 − dms(r1)
3 +(ccrr2 − dcr(r2)

3)cos(ϕ1 −ϕ2)+

(cmtr3 − dmt(r3)
3)cos(ϕ1 −ϕ3)+ (ĝms(r1)

2 + ĝcr(r2)
2 + ĝmt(r3)

2)cos(ϕ1).
(1.62)

r1
d
dt
ϕ1 = (ccrr2 − dcr(r2)

3)sin(ϕ1 −ϕ2)+ (cmtr3 − dmt(r3)
3)

sin(ϕ1 −ϕ3)+ (ĝms(r1)
2 + ĝcr(r2)

2 + ĝmt(r3)
2)sin(ϕ1).

(1.63)

We get equivalent formulas for the two other creation operators (the annihilation
operators deliver identical equations as the creation operators).

In the next step we multiply the summed and weighted particle number expres-
sion ĝms

jk (ms†
jkmsjk)+ ĝcr

jk(cr†
jkcrjk)+ ĝmt

jk (mt†
jkmtjk) with the different creation oper-

ators e.g. with ms†
jk. This addition models the fact that the inversion (more fermionic

message receiver are in a higher state (excited) than in a lower basic states; named
saturation in laser technology) will be reduced by all three fields (modes):

d
dt

ms†
jk = cms

jk ms†
jk − dms

jk ms†
jk(ms†

jkmsjk)+ ccr
jkcr†

jk − dcr
jkcr†

jk(cr†
jkcrjk)+

cmt
jk mt†

jk − dmt
jk mt†

jk(mt†
jkmtjk) +(

ĝms
jk (ms†

jkmsjk)+ ĝcr
jk(cr†

jkcrjk)+ ĝmt
jk (mt†

jkmtjk)
)

ms†
jk+(

ĝms
jk (ms†

jkmsjk)+ ĝcr
jk(cr†

jkcrjk)+ ĝmt
jk (mt†

jkmtjk)
)

cr†
jk+(

ĝms
jk (ms†

jkmsjk)+ ĝcr
jk(cr†

jkcrjk)+ ĝmt
jk (mt†

jkmtjk)
)

mt†
jk.

(1.64)

The solution of this equation reads now:

d
dt

r1 − ir1
d
dt
ϕ1 = cmsr1 − dms(r1)

3 + ccrr2ei(ϕ1−ϕ2) − dcr(r2)
3ei(ϕ1−ϕ2)+

cmtr3ei(ϕ1−ϕ3) − dmt(r3)
3ei(ϕ1−ϕ3)+(

ĝms(r1)
2 + ĝcr(r2)

2 + ĝmt(r3)
2)r1ei(ϕ1−ϕ1)+

(ĝms(r1)
2 + ĝcr(r2)

2 + ĝmt(r3)
2)r2ei(ϕ1−ϕ2)+

(ĝms(r1)
2 + ĝcr(r2)

2 + ĝmt(r3)
2)r3ei(ϕ1−ϕ3).

(1.65)

Finally we include cubic operator terms like ms†
jkms†

jkcrjk, they describe the in-
direct interactions between the bosonic fields (field modes) that are initiated by their
interactions with the fermionic agents a†

j and aj. For reason of simplicity we do not
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write down new coupling coefficients (for precise calculations they must be adapted
and changed)

d
dt

ms†
jk =cms

jk ms†
jk − dms

jk ms†
jk(ms†

jkmsjk)+ ccr
jkcr†

jk − dcr
jkcr†

jk(cr†
jkcrjk)+

cmt
jk mt†

jk−dmt
jk mt†

jk(mt†
jkmtjk)+(

ĝms
jk (ms†

jkmsjk)+ ĝcr
jk(cr†

jkcrjk)+ ĝmt
jk (mt†

jkmtjk)
)

ms†
jk+(

ĝms
jk (ms†

jkmsjk)+ ĝcr
jk(cr†

jkcrjk)+ ĝmt
jk (mt†

jkmtjk)
)

cr†
jk+(

ĝms
jk (ms†

jkmsjk)+ ĝcr
jk(cr†

jkcrjk)+ ĝmt
jk (mt†

jkmtjk)
)

mt†
jk+

ĝms
jk ms†

jkms†
jkcrjk + ĝms

jk ms†
jkms†

jkmtjk + ĝcr
jkcr†

jkcr†
jkmsjk+

ĝcr
jkcr†

jkcr†
jkmtjk + ĝmt

jk mt†
jkmt†

jkmsjk + ĝmt
jk mt†

jkmt†
jkcrjk.

(1.66)

The result is:

d
dt

r1 − ir1
d
dt
ϕ1 =cmsr1 − dms(r1)

3 + ccrr2ei(ϕ1−ϕ2) − dcr(r2)
3ei(ϕ1−ϕ2)+

cmtr3ei(ϕ1−ϕ3) − dmt(r3)
3ei(ϕ1−ϕ3) + (ĝms(r1)

2+

ĝcr(r2)
2 + ĝmt(r3)

2)r1ei(ϕ1−ϕ1)+

(ĝms(r1)
2 + ĝcr(r2)

2 + ĝmt(r3)
2)r2ei(ϕ1−ϕ2)+

(ĝms(r1)
2 + ĝcr(r2)

2 + ĝmt(r3)
2)r3ei(ϕ1−ϕ3)+

ĝms
jk (r1)

2r2ei(ϕ2−ϕ1) + ĝms
jk (r1)

2r3ei(ϕ3−ϕ1)+

ĝcr
jk(r2)

2r1ei2(ϕ1−ϕ2)+ĝcr
jk(r2)

2r3ei(ϕ1+ϕ3−2ϕ2)+

ĝmt
jk (r3)

2r1ei2(ϕ1−ϕ3) + ĝmt
jk (r3)

2r2ei(ϕ1+ϕ2−2ϕ3).

(1.67)

One additional possible quadratic direct coupling of the bosonic operators that is
initiated by similar atomic interactions (Zaslavsky, 2007) is given by the following
equations:

d
dt

ms†
jk = cms

jk ms†
jk − dms

jk ms†
jk(ms†

jkmsjk)+ ccr
jkcr†

jk − dcr
jkcr†

jk(cr†
jkcrjk)+

cmt
jk mt†

jk−dmt
jk mt†

jk(mt†
jkmtjk)+

gjk

(
(ms†

jk)
2 − (msjk)2 +(cr†

jk)
2 − (crjk)

2 +(mt†
jk)

2 − (mtjk)2
)
.

(1.68)

d
dt

msjk = cms
jk msjk − dms

jk msjk(ms†
jkmsjk)+ ccr

jkcr†
jk − dcr

jkcrjk(cr†
jkcrjk)+

cmt
jk mtjk−dmt

jk mtjk(mt†
jkmtjk)+

gjk

(
(ms†

jk)
2 − (msjk)2 − (cr†

jk)
2 +(crjk)2 +(mtjk)2 − (mt†

jk)
2
)
.

(1.69)
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There is not enough space in this subchapter to present all the details of the graph-
ical solutions of all before mentioned distorted equations, but we have observed in
parts that a tendency to asymptotic stability of the QFT-approach can be observed,
if the coupling constants, the damping constants κ , and γ , and the relaxation time
T are not space-time or even field dependent. The coupled equations “prefer” to
decouple in direction to their Eigenanteile. A proof of this proposition can not be
given at this time since this a problem in a very high parameter space and we are
still on the way to perform in a systematic manner the necessary calculations, and
we know that also chaotic solutions exist.

1.2.5 Information Model and Interactions of Structured
Components

1.2.5.1 Interaction Revisited

The interaction of fermionic agents and bosonic message (“force”) fields that rep-
resent different signal quanta like photons, intracellular signaling proteins or extra-
cellular signaling proteins (e.g. synaptic, endocrine (hormone based), etc.) will be
modeled in the first approach again by the interaction Hamilton operator (1.5):

HI = ih̄ ∑
j,k,l,m,n

gms
jk

(
ααα j(m, l)ms†

jk(n)−ααα†
j (m, l)msjk(n)

)
+

ih̄ ∑
j,k,l,m,n

gcr
jk

(
ααα j(m, l)cr†

jk(n)−ααα†
j (m, l)crjk(n)

)
+

ih̄ ∑
j,k,l,m,n

gmt
jk

(
ααα j(m, l)mt†

jk(n)−ααα†
j (m, l)mtjk(n)

)
.

(1.70)

We use the state flip (transition) operators ααα†
j and ααα j, that have been introduced

in Sect. 1.2.1; further we consider the state l (e.g. l = 0, here we use the cursive l in
order to avoid confusion with the number 1) as resting state, and we use the earlier
mode index k as an identification of fermionic agent. The absorption of a message
brings the receiver into an excited state m = 1. We repeated above the previous
defined interaction Hamiltonian since the application of the new definition of infor-
mation (calculated by operators that create or annihilate quantized fields) implicates
a modified version of HI that is primarily based on mutual message exchange. Be-
ing on the way to present the QFT-based description of information as an operator
whose expectation values depend on the involved states (can be considered a context
awareness) we have to consider shortly two possible probability distributions of the
message exchange since the kind of message exchange influences the definition of
information.

In addition we assume the coherence of all message exchanges (above the laser
threshold that is considered as a control parameter that defines a positive net gain)
so all expectation values of these messages obey the Poisson distribution. Hereby
all the different messages (of the fixed type n) that are exchanged in the activity
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phase of the operator pair can be considered as a “message-field” that responds to a
certain distribution function. In our case of coherency this is the Poisson distribution
for the number N of transmitted messages of type n (photonic statistics). The kind
of statistics can be expressed by the number operator e.g. for Nms = ms†

jkmsjk. The
variance (dropping of the indices ms) of this message number is defined by

〈(N−〈N〉)2〉 = 〈N2〉− 〈N〉2 = 〈(ms†
jkmsjk)2〉− 〈ms†

jkmsjk〉2.

For the Poisson distribution function the following approximation is true 〈N2〉−
〈N〉2 ≈ 〈N〉. This means that the messages are send in a fixed averaged time distance.
If the Bose-Einstein statistics is fulfilled then the value of the variance is different
〈N2〉− 〈N〉2 = 〈(ms†

jkmsjk)2〉− 〈ms†
jkmsjk〉2 = 〈N〉(〈N〉+ 1). The relevance of this

distribution function is the lumping of messages, the ramification is the decoherence
of the field and therefore no cooperation between fermionic agents come about.

1.2.5.2 Postulation of Information Rules

We define the concept of information by four characteristic rules:

1. Synchronisation. There is a mechanism that synchronises the communication be-
tween two or more agents (partners) meaning the semantic compatibility of the
agents that initiate a communication session. In practice such a communication
channel is handcrafted by a developer.

2. Compatibility. The receiver of a message has in the sense of Pulitzer not only
to acknowledge the received message; but even more important is the demand
that the receiver “understands” the matter of the sender and behaves (reacts) in a
manner as it is assumed by the sender (Haken, 1988). In more detail this request
denotes that both communication partners are in a configuration where they are
compatible in their internal states Sj, in their knowledge Wjk and even more
important their distance of information dist(Infj, Infk) is below a given threshold.
If all conditions are fulfilled then a semantic equivalence is available.

3. Component Building. Two components (agents) j and k continue the “negotia-
tion” concerning their combination as long as their common knowledge Wjk is
minimised (similar status of knowledge for both agents defined by a symmet-
ric Kullback measure), the expectation values of the individuals state operators
Sj =

〈
Sj
〉

= tr(ρρρSj) and Sk =
〈
Sj
〉

= tr(ρρρSk) are maximised, and the common
information Infj =

〈
Infj

〉
= tr

〈
ρρρInfj

〉
of agent j is minimised (for more detailed

calculations see Sect. 3.3.2).
4. Open ended evolution. The process of information collection is iterative and de-

scribes three basic algorithms. These are the information that describe the geno-
type (defining the evolution and fitness), the phenotype (defining the behaviour
and higher cognitive abilities) and the controllers coordinating the gathering
of information (learning) concerning evolution and fitness and the interactions
of these two different learning procedures. The whole process ends if a mini-
mum (infimum) of total information in a given environment has been achieved
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(open systems). Here one open question is how the fitness of a given individ-
ual influences its genome in that different species emerge that are genetically
incompatible.

Here ρρρ is the density operator (density matrix) and tr is the trace of a matrix: e.g.
tr(ρρρSj) = ∑m

〈
m
∣∣ρρρSj

∣∣m〉
. The total individual state operator Sj of an agent j with

several internal states (state sum) is defined by:

Sj =∑
k

e

(
μμμ j

(
〈N2

jk〉−〈Njk〉2
)
−Wjk

)
/〈N2

j 〉
, (1.71)

where 〈Njk〉 = 〈ms†
jkmsjk〉 is the mean value of messages that agents j and k ex-

change, and 〈N2
jk〉 = 〈ms†

jkmsjkms†
jkmsjk〉 is the expectation value of N2

jk. The ex-

pression (〈N2
jk〉− 〈Njk〉2) defines the expectation value of the quadratic fluctuations.

The knowledge Wjk is defined as the symmetric Kullback measure of the two prob-
ability distributions of agents j and k, (see Sect. 3.3, Eq. 3.8).

The activities of an agent can be compared to that one of a chemical potential
that characterise the possibilities of a substance to interact with other substrates, to
transfer into other states and to distribute all over the space. A reaction, conversion,
and redistribution can only occur without enforcement if the potential in the initial
state is greater as in the final state. These features are also relevant to statistical
physics where we have borrowed our definition (here we neglect for brevity other
contributions e.g. of crjk,mtjk)

μμμ j =
K

∑
k=0

M

∑
mj=0

ln
(

gms
jk a†

j (mj)msjk + gms∗
jk

(
aj(mj)ms†

jk

))
. (1.72)

The quantisation of μμμ j is performed by the inclusion of quantum field operators
and hereby finally we get the quantisation of the information. Further benefits of
the approach with the “chemical potential” are the possibility to combine different
agents to a bigger unit, to model diffusion and the possibility to describe the adapta-
tion of an agent performed by different phase transitions (e.g. solid state, fluid state,
gaseous state). This can be initiated by special messages and appropriate coupling
constants that generate an appropriate state transition. Thus it is possible to consider
e.g. environmental restrictions as dedicated messages from outside.

The operator of the “statistical potential” of an agent j, after it evaluates all mes-
sages it has received, is defined by:

ΩΩΩ j = −〈N2
j 〉 ln

(
∑
k

e

(
μ j

(
〈N2

jk〉−〈Njk〉2
)
−Wjk

)
/〈N2

j 〉
)

= −〈N2
j 〉 lnSj. (1.73)

Since we consider μμμ j as a dynamic variable the state operator Sj can be charac-
terised beside physical or chemical terms also by states of nonlinear dynamics like
equilibrium states, periodic states or even chaotic states. Finally we define the op-
erator of information as the derivative of the operational “statistical potential” with
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respect to
〈
N2

j

〉
that correspondsd to the temperature of the state Sj in statistical

physics:

Infj = − ∂ΩΩΩ j

∂
〈

N2
j

〉 . (1.74)

Transferred to our approach this means that the synchronisation of two agents
(e.g. robot-cells) is guaranteed, since the communicative coherence and message
exchange symmetry between all agents is established. Expressed in a new interac-
tion Hamiltonian this might look like:

H′
I =ih̄∑

j,k

gms
jk ms†

jkmsjk

(
ααα j(mj,0)ααα†

k(mk,0)−ααα†
j (mj,0)αααk(mk,0)

)
+

ih̄∑
j,k

gcr
jkcr†

jkcrjk

(
ααα j(mj,0)ααα†

k(mk,0)−ααα†
j (mj,0)αααk(mk,0)

)
+

ih̄∑
j,k

gmt
jk mt†

jkmtjk

(
ααα j(mj,0)ααα†

k(mk,0)−ααα†
j (mj,0)αααk(mk,0)

)
.

(1.75)

This interaction Hamiltonian fulfills the rule of synchronisation mentioned before
(rule 1). The equation of motion for ααα†

j (mj,0) are:

d
dt
ααα†

j (mj,0) =
i
h̄
[H′

I,ααα
†
j (mj,0)]

=2∑
k

gms
jk ms†

jkmsjk

(
ααα†

j (0,0)−ααα†
j (mj,0)

)
+

2∑
k

gcr
jkcr†

jkcrjk

(
ααα†

j (0,0)−ααα†
j (mj,0)

)
+

2∑
k

gmt
jk mt†

jkmtjk

(
ααα†

j (0,0)−ααα†
j (mj,0)

)
.

(1.76)

Consequently we can solve the equations of motion for all operators that are part
of the definition of the chemical potential μμμ j, then with the aid of the knowledge
Wjk and the aid of the “statistical potential” ΩΩΩ j a value for Infj can be calculated. If
the knowledge of two robot-cells j and k are compatible (e.g. the difference between
Infj and Infk is below a threshold) then not only the dynamic of the information
flow between every two agents but also the total information flow can be calculated
and analysed (e.g. by phase portraits) whether the combination of two robot-cells or
even of an organisms is a stable equilibrium state or this state is unstable.

1.2.5.3 Structured Objects

The activities of different genes/cells are usually clearly different and they might
have strong coupling constants. This fact implies that such units can operate as
“seeds” for agent-based (morphological) networks that are constructed by strong
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message exchange and can be considered as the predefinition of a final structure.
The result is a topological framework that describes the structure of an organism.

We try to demonstrate our approach by the example of water. A single water
molecule is build up by two hydrogen atoms H1, H2 and one molecule O that are
bounded together by two covalent bonds. This means that there is a communication
only between H1 and O, respectively H2 and O. A possible interaction Hamiltonian
is, where we only mention ms and ms† that represent primarily external effects
(dominant internal processes are manifested in a Hamiltonian that owns the same
structure):

HH2O
I = ih̄gms

HO

((
ms†

H1OαααH1 (mH1 ,0)
)(

msH1Oααα†
O (mO1,0)

)
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)
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H1
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))
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(1.77)

Here Nms
H1O and Nms

H2O are the “message counter operators” and the index H2O does
not mean the water molecule but the message exchange between the second hy-
drogen atom and the oxygen. This approach can be considered as generalised in-
formation based diffusion approach in the sense that between all participants there
is a two-way synchronised message exchange. But till now the connection of this
Hamiltonian with the standard theory e.g. (Haken & Wolf, 1998) is not obvious,
and indeed, the consensus with the reality is still open and still has to be proofed.

The next question that arises is how we can model the structure of a H2O
molecule. This can only be done if we not only consider the message exchange
but also the activities that the receivers perform in consequence of exchange of
“news”. In our case we must consider the subelements of the three molecules. These
are the electrons (more precise: the interactions of the orbitals of the participating
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electrons) that make the covalent bond (overlapping of adjacent atomic orbitals) po-
lar. In more detail we must consider the interaction of the two 1s1 orbitals of the
hydrogen atoms with the 2p4 orbit of the oxygen under the strong observation of
the Pauli Principe. Here we do not delve into the details of quantum physic (respec-
tively physical chemistry) but argue with the relevant symmetry groups for the H2O
molecule that consider all orbitals together. The drawback of this procedural mes-
sage is that this kind of the group theory cannot explain why the water molecule is
stable but e.g. He2 is unstable. Such stability declaration can usually only be given
by direct calculations of the interaction patterns.

The oxygen nucleus draws electron orbits away and as a result an electrical
tetraeder structure is generated (Alberts et al., 2008); the symmetry group is there-
fore Td (full notation: 43m). The spatial structure of it is defined by C2v.

The stabilities of individual parts can again be calculated e.g. by

d
dt

(ms†
H1OαααH1(mH1 ,0)) =

i
h̄

[
HH2O

I ,
(
ms†

H1OαααH1(mH1 ,0)
)]

(1.78)

and analysed by the methods of nonlinear dynamics as we have done before.
The energy calculation can be done by the standard model of harmonic oscillator.

Here we couple two oscillators together. The non interacting Hamiltonian is just the
well known sum of the two separate oscillators

H = h̄
2

∑
i=1

ωp
i

(
a†

p
i
ap

i
+

1
2

)
, (1.79)

where p
i

is a 3-d momentum, and the eigenfunctions are also well known (Hermite
polynomials).

The reader recognised certainly that the symmetry groups of the H2O molecule
are not really relevant to the connection of some few robot-cells to a structured
component of a symbiotic organism, but we operate here again in strong analogy
to this algebraic method. The interaction between the participating active cells is
modeled by the contents of the exchanged messages. Thus we can describe whether
two cells own similar genomes and therefore are compatible to aggregate to a major
component. A message can also characterise e.g. pure physical effects that two cells
merge together since they are by chance (probability) sticked together close enough
and mutual attractive forces merge them to a new unit. By this approach defects
of individual cells can be modeled and detected. The remedy of such defects can be
performed by the calculation and comparison of the pairwise exchanged information
and thus even modify or exchange malfunctioning robot cells. The Hamiltonian
does not deliver these information but it will be used to describe and to analyse the
dynamics of the flow of the dedicated messages, and the symmetry of such a flow
can be defined by a relevant group. Here we can read in more detail e.g. whether
cells are attractive, repulsive, or neutral. Further such a group could deliver a hint
which symmetry group governs the information space. In sequence, this knowledge
delivers the definition of a metric in such a space and therefore provide us with the
correct calculation of the distance of two information values.



1.2 Towards a Synergetic Quantum Field Theory 51

Now we turn to the coupling of two water molecules. The two water molecules
are connected by a so called hydrogen bond between the oxygen atoms via one
mediating hydrogen molecule. We model this by the following Hamiltonian:

Hwater
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(1.80)

Analogous to a symmetry group of water we have to search for a symmetry
group of a developed organism. This can usually be done on geometrical level (e.g
spherical or cylindrical symmetry) or, as we propose, on the level of the informa-
tion flows of different organising agents that represent different major components
(compartments) of an organism. Here we can study the flow of different message
types that are send and received among these agents hereby defining the dynamic
type of agent (e.g. attractive) and search for the symmetry groups that describe
these flows.

1.2.5.4 Action Integral as Fitness Measure

We employ the action integral

W12 =
∫ t2

t1
L

(
Φ(x) ,∂μΦ(x) ,Ψ(x) ,∂μΦ(x)

)
dt (1.81)

to describe and evaluate the propagation of an action. We will use it to define
a measure how fit (efficient) a combined structured object in comparison to its
individual components is. Here L is the Lagrangian density operator,Φ is a bosonic
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quantized field, and Ψ is a fermionic field that solves adequate Schrödinger equa-
tions. The Lagrangian density operator without interaction is:

LS = ih̄Φ† (x)Φ̇ (x) + ih̄Ψ† (x)Ψ̇ (x) − h̄2

2mΦ
∇Φ† (x)∇Φ (x) −

Φ† (x)VΦ (x)Φ(x) − h̄2

2mΨ
∇Ψ† (x)∇Ψ(x) − Ψ† (x)VΨ (x)Ψ(x).

(1.82)

In this formula∇ is the 3-d Nabla operator and the point defines the temporal deriva-
tion. The general correlation between the Schrödinger-densities (Index S) densities
and the interaction densities Ltotal = LS + LI and Htotal = HS + HI is

Htotal = πΦΦ̇ + πΦ†Φ̇† + πΨΨ̇ + πΨ†Ψ̇† − Ltotal, (1.83)

where πΦ = ∂Ltotal/∂Φ̇, etc. are the conjugated fields. For example we got for HS

the result
(
πΦ = ih̄Φ†,πΨ = ih̄Ψ†

)
, all remaining conjugate fields are zero:

HS =
h̄2

2mΦ
∇Φ†(x)∇Φ(x)+Φ†(x)VΦ(x)Φ(x)+

h̄2

2mΨ
∇Ψ†(x)∇Ψ(x)+Ψ†(x)VΨ(x)Ψ(x).

(1.84)

The field operatorΦ obeys an equal time commutation rule, whereasΨ fulfills an
equal time anti-commutation rule. The stability of a system is usually investigated
by the form of potential that defines equilibrium states. In our case we have to fix
the two potentials VΨ (x) and VΦ (x).

Typical potentials might be (Zaslavsky, 2007): the kicked oscillator, where a is
the distance of the two positions

VΨ (x) =
1
2
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)2 − 1
2
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T

)
, (1.85)

and the perturbed oscillator

VΨ (x) =
1
2∑j

(
p2

mj
+ mjω2

j x2
j

)
+∑

j

mjω2
j cos

(
xj − vt

)
. (1.86)

The separate insertion of each of this two potentials into the Schrödinger equation
delivers us with a standard solution. But we are more interested in the interaction
representation rather than in the Schrödinger representation. A typical part of our
information based interaction Hamiltonian HI for a water molecule is:
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HI = Nms
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To get the equation of motion e.g. for Φ†
H1O in the interaction representation the

calculation follows the same pattern as before

d
dt
Φ†

H1O =
i
h̄

[
HI,Φ†

H1O

]
. (1.88)

Such equations have to be solved for all field operators that are part of the inter-
action Hamiltonian and afterwards inserted in the action integral

W12 =
∫ t2

t1
LI (Φ(x) ,Ψ(x)) dt = −

∫ t2

t1
HI (Φ(x) ,Ψ(x)) dt. (1.89)

Hereby we pay attention to the fact that the interaction Hamiltonian includes no
derivatives therefore we can set LI = −HI. By the calculation of this integral (with
even more elaborated formulas for HI like (1.77) we can achieve the result that a
H2O molecule is stable or not. In addition we can go on this way and calculate
whether the combination of two H2O molecules is stable and so on. Finally we can
calculate whether water can originate or not. The maximal fitness is achieved if
not only some stable liquid evolves but this liquid also holds all additional, positive
features of water. This maximal fitness can not only be accomplished by the calcula-
tions of the action integral but also by explicit calculation of the relevant information
as defined in 1.2.5.2.

The symmetry group of the Schrödinger equation and therefore for the field op-
erators Φ (x) andΨ (x) is the U(1). This implies that the local gauge transformation
for these operators is defined by the phase transformation eϕ(x) (entirely analogous
to classical electromagnetic fields) and LI must also be invariant under such arbi-
trary phase changes (analogous to classical electromagnetic fields). The Lagrangian
density mentioned above fulfills this invariance requirement.2

1.2.5.5 Appendix

Fermionic anticommutators:{
ai (l) ,a

†
j (m)

}
= δijδlm,

{
ai (l) ,aj (m)

}
= 0,

{
a†

i (l) ,a†
j (m)

}
= 0. (1.90)

2 Please remind that we mentioned in this contribution three different symmetries: symmetry
of the interaction Hamiltionian, symmetry of the information flow, and symmetry of an
organism (body compartments).
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Bosonic commutators:[
bi (l) ,b†

j (m)
]

= δijδlm,
[
bi (l) ,bj (m)

]
= 0,

[
b†

i (l) ,b†
j (m)

]
= 0. (1.91)

Here l and m stands for the set of all internal states (“quantum”) numbers including
the time (commutators respectively anti-commutators are calculated at equal time),
the indices i and j are labels of fermionic units (e.g. robot cells); in the case of
bosonic operators they characterise the message type (bosonic field). If the com-
mutator of two operators is zero then both equivalent fields (physical terms) can be
measured simultaneously.

1.3 Functional and Reliability Modelling of Swarm Robotic
Systems

Alan Winfield, Wenguo Liu, Jan Dyre Bjerknes

A robotic swarm is an example of a stochastic, dynamical and often non-linear
system. Developing models that allow overall swarm properties to be predicted
from the low-level parameters of the individual robots that comprise the swarm
is challenging. For this reason many swarm robotics algorithms are validated with
reference to simulation studies or limited real-robot experiments only, with no un-
derpinning mathematical model or proof. This approach is inherently limited since
simulation or real-robot experiments can only explore small parts of a system’s
parameter space, and hence provide only weak “inductive” proof of an system’s
correctness, or reliability. Yet if swarm robotic systems are to find real-world ap-
plication, especially in safety- or mission-critical applications (Rouff et al., 2003;
Truszkowski et al., 2004; Winfield et al., 2006b), we need the strong validation pro-
vided by mathematical models of both swarm function and swarm reliability.

This chapter is presented in two parts. In the first section we review approaches
for mathematical modelling of collective robotic systems, and outline a macro-
scopic modelling approach based upon developing a probabilistic finite state ma-
chine (PFSM) description of the overall swarm, then expressing the PFSM as a
system of differential equations that model the change in the average number of
robots in each state, with time. We then illustrate this approach with a case study
example of a mathematical model of a wireless connected swarm of mobile robots
operated in unbounded space. In the second section we use a modified version of
the same case study swarm system to develop failure modes and effects analysis
(FMEA), and a reliability model for the swarm. In particular we address the com-
mon assumption that swarm systems are automatically scalable and robust and show,
for our case study swarm system, that this assumption is incorrect.

1.3.1 Macroscopic Probabilistic Modelling in Swarm Robotics

In recent years probabilistic approaches to modelling swarm robotic systems have
been developed and successfully applied. One way to classify these is based on their
representation of the swarm and its units.
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Microscopic models reproduce each real robot in the targeted system sepa-
rately, with dedicated — more or less detailed — representations. The Macro-
scopic approach instead models the target swarm robotic system with a single
representation, for instance summarising fractions or total numbers of robots
in the swarm engaged in specific tasks.

One of the first examples of probabilistic modelling of a swarm of robots at the
microscopic level is that proposed by (Martinoli et al., 1999) to study object ag-
gregation; robot’s interactions with other robots and the environment are modelled
as a series of stochastic events, with probabilities determined by simple geometric
considerations and systematic experiments with one or two real robots. The very
same microscopic method was applied to the analysis of collaborative stick pulling
(Ijspeert et al., 2001).

In general, macroscopic models are more computationally efficient than their
microscopic counterparts. One of the fundamental elements of the macroscopic
probabilistic model are the Rate Equations, which have been successfully applied
to a wide variety of problems in physics, chemistry, biology and the social sci-
ences. For instance, Sumpter and Pratt (Sumpter & Pratt, 2003) developed a general
framework for modelling social insect foraging systems with generalised rate func-
tions (differential equations). Sugawara and coworkers (Sugawara & Sano, 1997;
Sugawara et al., 1999) first presented a simple macroscopic model for forag-
ing in a group of communicating and non-communicating robots, with analysis
under different conditions; for further work see (Sugawara & Watanabe, 2002).
(Lerman & Galstyan, 2001; Lerman & Galstyan, 2002b) proposed a more gener-
alised and fundamental contribution to macroscopic modelling in multi-agent sys-
tems. In (Lerman & Galstyan, 2002a), they presented a mathematical model of
foraging in a homogeneous multi-robot system to understand quantitatively the
effects of interference on the performance of the group. In (Lerman et al., 2004),
they developed a macroscopic model of collaborative stick-pulling, and the re-
sults of the macroscopic model quantitatively agree with both embodied and
microscopic simulations. Agassounon and Martinoli used the same approach to cap-
ture the dynamics of a robot swarm engaged in collective clustering experiments
(Agassounon & Martinoli, 2002).

Rather than using a time-continuous model, Martinoli and coworkers
(Martinoli, 2003; Martinoli & Easton, 2003; Martinoli et al., 2004) considered
a more fine-grained macroscopic model of collaborative stick-pulling which takes
into account more of the individual robot behaviours in the discrete time domain
using difference equations. They suggested that time-discrete models are the most
appropriate solution for the level of description characterised by logical operators
and behavioural states. Similarly, Correll et al. (Correll & Martinoli, 2005) used
a macroscopic probabilistic model for analysis of beaconless and beacon-based
strategies for a swarm turbine inspection system, and furthermore to find an optimal
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collaboration policy minimising the time to completion and the overall energy con-
sumption of the swarm in (Correll & Martinoli, 2006b; Correll & Martinoli, 2006a).
In (Correll & Martinoli, 2007), a macroscopic probabilistic model is proposed to
analyse self-organised robot aggregation inspired by a study on aggregation in gre-
garious arthropods.

Both microscopic and macroscopic probabilistic modelling approaches rely on
two main common assumptions (Martinoli & Easton, 2003; Martinoli et al., 2004):
Firstly, the fulfilment of Markov properties (or semi Markov properties), i.e. the
robot’s future state depends only on its present state and on how much time it has
spent in that state. This assumption is true when robots use reactive control: robots
decide on future actions based solely on input from sensors and the action they are
currently executing. Therefore the robots can be represented as stochastic Markov
processes and the system can be modelled as a probabilistic finite state machine.
Secondly, the assumption that the coverage of the arena by the groups of robots is
spatially uniform, and the low-level strategies of the robot do not play a critical role
on the metric of the system of interest. Indeed, finding an appropriate mathematical
description for the transition probabilities is the main challenge in applying both
microscopic and macroscopic probabilistic modelling approaches. The second as-
sumption becomes particularly useful for computing the transition probabilities for
the robots. In this case, the probabilities of basic events, detecting an object for in-
stance, only depend on geometrical considerations and are given by the ratio of the
total extended area of the object related to the total area of the arena where the robots
could appear. However, uniform coverage might not always be the case and depends
on the environment and the robots’ controllers. For example, (Hayes et al., 2000)
considered a more complex situation where the distribution of the robot cannot be
assumed to be uniform in the arena for an odour plume localisation task. The con-
figuration of the environment and the robots’ controllers must be taken into account
for probabilistic models.

Despite the success of the above examples, there is little existing work on
mathematical analysis of adaptive multi-robot systems in dynamic environments.
Lerman and Galstyan (Lerman & Galstyan, 2003; Galstyan & Lerman, 2005;
Lerman et al., 2006) extended the macroscopic probabilistic model to study dist-
ributed systems composed of adaptive robots that can change their behaviour based
on their estimates of the global state of the system. In their study, a group of robots
engaged in a puck collecting task need to decide whether to pick up red or green
pucks based on observed local information. They claim that the model can be easily
extended to other systems in which robots use a history of local observations of the
environment as a basis for making decisions about future actions. Liu and Winfield
(Liu et al., 2007; Liu, 2008; Liu et al., 2009) developed a macroscopic model for a
swarm of foraging robots with adaptation, where the different priorities in behaviour
selection and the heterogeneities in individual parameters pose great challenges to
modelling. Their model has been successfully used to analyse the performance of
the adaptive foraging swarm and further to design optimal parameters for individual
controllers.
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1.3.1.1 Methodology

For most behaviour-based robotic systems, although the behaviour of a particular
robot at a given time is fully determined, the transitions from one state (behaviour) to
another could exhibit some probabilistic properties over time within the population
of the swarm. The central idea of probabilistic modelling, either micro- or macro-
scopically, is to describe the experiment as a series of stochastic events and use rate
equations to capture the dynamics of these events. A general approach to developing
a macroscopic probabilistic model for swarm robotic tasks can be summarised as
follows:

step 1. describe the behaviour of the individual robots of the swarm as a finite
state machine (FSM);

step 2. transform the FSM into a probabilistic finite state machine (PFSM), de-
scribing the swarm at a macroscopic level;

step 3. develop a system of rate equations for each state in the PFSM, to
describe the changing average number of robots among states at a macro-
scopic level;

step 4. measure the state transition probabilities using experiments with one or
two real robots, or estimate them using analytical approaches, and then

step 5. solve the system of rate equations.

The controller design for individual robots may take the behaviour based ap-
proach introduced by (Brooks, 1986), in which a robot’s behaviour is normally de-
termined by its current sensor inputs. A state in the FSM may include one or more
of these low level behaviours, and the transition from one state to another will only
depend on its current state, rather than historical states; or sometimes on how long
the robot has spent in that state. In step 2, the FSM can be transformed into a PFSM
by replacing the conditions associated with the transition edges in the FSM with the
probabilities that the corresponding conditions are true. In the PFSM, each state rep-
resents the average number of robots in that state. The changes of average number
of robots in each state of the PFSM over time can then be described using a set of
rate equations, either in continuous time or discrete time. Since in a robotics system
both analog and digital sensors or actuators are used, we use difference equations
(DE) in discrete time to capture the dynamics of the system rather than ordinary
differential equations (ODE) in continuous time.

Estimating the transition probabilities for the PFSM (and the DEs) can be a sig-
nificant challenge, although in some cases these probabilities can be measured by
running experiments with one or two real robots; however such an approach is not
ideal since the ultimate goal of a mathematical model is analysis and prediction
of the effect of individual robot parameters on collective behaviour, rather than
trying to match the model to experiments. The transition probabilities are proper-
ties of the swarm — they are not design parameters but byproducts of interactions
among individuals or between the individual robots and their environment. Using
measured values as part of a mathematical model renders the model somewhat less
convincing. Moreover, changing environmental conditions or individual parameters
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might well then invalidate the measured transition probabilities. In some cases it is
not practical to measure all the required transition probabilities because they vary
dynamically (time dependent). We advocate geometrical approaches to estimating
these probabilities, based on reasonable assumptions. One such assumption is that
the distribution of robots within their operational area is, over time, uniform, so the
probability that one event is triggered, for example collision with other robots or a
bounding wall, could be calculated as the ratio of two areas that the robot covers, on
average.

The DEs can be solved analytically or numerically, depending on the complex-
ity of the model. For some tasks, obtaining a direct solution would be possible,
for example certain difference equations, in particular linear constant coefficient
difference equations, can be solved using z-transforms, see (Martinoli et al., 2004;
Agassounon, 2003) for details. For some DEs it is impossible to find a solution using
a direct approach such as the z-transform. A numerical approach is then used. In step
5, to obtain numerical solutions for the DEs, certain initial conditions are normally
applied, for example the initial number of robots in each state. Another widely used
condition is that the total number of robots in each iteration must remain constant.

We now take a simple task as an example to clarify the above approach.
Fig. 1.18(a) shows a finite state machine, with only two states, for the robots en-
gaged in a task. Clearly, at each time step, a robot could be in either state A or state
B. The robot will transfer from state A to state B whenever the condition a is true.
However, it will stay in state B for τb seconds and then will move to state A after
this time is up. Correspondingly, a probabilistic finite state machine is presented in
Fig. 1.18(b). Now the transition between two states in the PFSM is described as a
probabilistic event rather than a deterministic event triggered by certain conditions.
For example, p in this PFSM represents the probability that condition a is true,
which means that a robot will transfer from state A to B with probability p each
time step. The probability of transferring from B to state A is 1 but the transfer will
be delayed by τb seconds, which is the same as in the counterpart FSM. Although
the PFSM is derived from the FSM at the individual robot level, it will be used to in-
vestigate the changes of number of robots in each state in the swarm by introducing
another variable into each state. Here NA(k) and NB(k) are used to denote the aver-
age number of robots in states A and B respectively. A set of difference equations are
then developed to capture the changes of this specific system. Let us consider state
A first: the number of robots in state A decreases because of some robots moving to

A B
τb

condition a
true

time out

(a)

A
NA

B
NB τb

p

1

(b)

Fig. 1.18 A finite state machine (left) with two states, and its corresponding probabilistic
finite state machine (right).
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state B, but it increases because of other robots transferring back from state B, thus
we have:

NA(k + 1) = NA(k)− pNA(k)+ΔB(k − Tb) (1.92)

where pNA(k) denotes the number of robots moving to state B at time step k, and
ΔB(k) represents the number of robot transferring to state B at time step k, which is

ΔB(k + 1) = pNA(k) (1.93)

since there is a delay in the transition from state B to A, the number of robots moving
to state A from B, at time step k, is equivalent to ΔB(k − Tb), where Tb is discretised
from τb.

Similarly, for state B, we have

NB(k + 1) = NB(k)+ pNA(k)−ΔB(k − Tb) (1.94)

In fact, since the population of the swarm is constant, say N0, Eq. (1.94) can be
simplified as

NB(k + 1) = N0 − NA(k + 1) (1.95)

Assume that the transition probability p has been obtained as outlined above, then
given the initial conditions, for example NA(0) = N0 and NB(0) = 0, the number of
robots in each state at any time step, i.e. NA(k) and NB(k), can be obtained using a
numerical approach. We can therefore use these results to quantitatively analyse the
steady-state or dynamic group performance of the system.

1.3.1.2 Case Study: Functionally Modelling a Wireless Connected Swarm of
Mobile Robots

Although the simple example above covers the most common type of states and tran-
sitions in the macroscopic modelling approach, modelling real systems differs from
case to case. The complexity of the model depends very much on the specific task
and the metrics of greatest interest. Generally, a number of simplifying assumptions
and techniques must be used to model a real system. To illustrate these techniques,
a case study is presented in this section. The case study focusses on how to con-
struct a PFSM based on the metrics of interest and how to estimate state transition
probabilities in an unbounded environment.

A class of algorithms which make use of local wireless connectivity information
alone to achieve swarm aggregation have been developed in (Nembrini et al., 2002;
Nembrini, 2005). The basic algorithm, which we refer to as the α-algorithm, is very
simple. The default behaviour of a robot is forward motion. While moving each
robot periodically broadcasts an “I am here” message. The message will of course
be received only by those robots that are within wireless range: its neighbours. If the
number of a robot’s neighbours should fall below the threshold α then it assumes
it is moving out of the swarm and will execute a 180◦ turn. When the number of
neighbours rises above α (i.e. when the swarm is regained) the robot then executes
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a random turn. This is to avoid the swarm simply collapsing on itself. We say that
the swarm is coherent if any break in its overall connectivity lasts less than a given
time constant. Coherence gives rise to both swarm aggregation and a (coherent) con-
nected ad hoc wireless network. In the interests of simplicity we can consider each
robot as having three basic behaviours, or states: move forward (default); coherence,
triggered by the number of neighbours falling below α , and avoidance, triggered by
the robot’s collision (proximity) sensor.

The robot updates its connectivity information less frequently than its proximity
sensor data. The ratio of connectivity sampling rate to the sampling rate of proxim-
ity sensors, which we refer to as cadence, is introduced into the basic α-algorithm to
prevent the robot from updating its connectivity state too frequently (we need to give
the robot time to complete its turn in response to a connection loss, for example, be-
fore re-checking its connectivity). By default, the robot will move forward at a fixed
velocity. It will update its connectivity state after a certain duration, say TC (steps),
and if it finds the number of connected neighbours has dropped below the threshold
α , then it will move into the coherence state and execute the U-turn behaviour to
try to recover the lost connections; if and when the number of connected neighbours
then increases, the robot will execute a random turn. Providing the number of con-
nected neighbours remains at or above α , the robot can lose or gain connections
but remain in the forward state. Thus, depending upon its connectivity, a robot will
either remain in the forward state or switch between forward and coherence states
unless it collides with other robots (triggered by the proximity sensor). Such an
event will cause the robot to move into the avoidance state and execute a collision
avoiding turn for time TA (steps), after which the robot will return to its previous
forward or coherence state. Note that changes in connectivity take precedence over
collision avoidance, thus if a change of connectivity is detected while the robot is
in the avoidance state (i.e. taking avoiding action), the robot will - if required -
immediately transition into the appropriate coherence or forward behaviours.

Fig. 1.19 Robot Finite State Machine.

Fig. 1.19 shows the ba-
sic robot Finite State Machine
(FSM). We reflect the fact that
the avoidance behaviours are
subsumed within the two top-
level states coherence and for-
ward by showing sub-states
avoidanceC and avoidanceF .
Note that although changes in connectivity take precedence, because the proximity
sensor is sampled more frequently than the connectivity (defined above as cadence)
collision avoidance is still assured.

1.3.1.3 A Probabilistic Model of Connectivity

In the α-algorithm roboti has a number of connected neighbours di. Clearly, the
range of values for di is bounded. The maximum value dmax is determined geometri-
cally by the ratio of the areas covered by the wireless sensor range and the avoidance
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sensor range; for the robot to remain in the default forward state, the lower bound
on di is α . Now in the α-algorithm when di < α the robot moves into the coherence
state in which it turns back to try and recover the swarm and hence bring di back to
a value greater than or equal to α . However, the coherence behaviour is not always
successful and it is possible for a robot to have fewer than (α − 1) connections. In
fact, the robot will continue to try and recover the swarm for values of 0 < di < α .
Based on these observations we can now propose a PFSM which completely models
the swarm connectivity, as shown in Figs. 1.20 and 1.21.

Fig. 1.20 is, in effect, the simple FSM of Fig. 1.19 expanded to show every possi-
ble number of network connections in each of the two states coherence and forward,
together with every possible transition between the states and their probabilities.

Fig. 1.20 PFSM of the robot controller. Fi represents the forward state with i connections; Ci
represents the coherence state with i connections. NCi

and NFi
indicate the average number of

robots in corresponding states and TC indicates the number of time steps spent in each state.
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Fig. 1.21 Left: coherence state Ci expanded to show sub-states AC
i and Ci. Right: forward

state Fi expanded to show sub-states AF
i and Fi. The average number of robots in each state

is shown as N.; TA is the number of time steps spent in the avoidance states AC
i and AF

i .

Each of the discrete forward states represents a different value of di; the Fm state
is the state with the maximum number of connections dmax, the Fm−1 state is the
state with dmax − 1 connections, counting down until we reach the F0 state with 0
connections; there are a total of dmax + 1 forward states, including F0. Note that
F0 is the “lost robot” state representing the failure of the algorithm to maintain the
coherence of the swarm. Consider the forward state Fα . The loss of a connection
with probability Plα will cause a transition into the coherence state Cα−1. If the
action of that state is successful then the robot will transition, after TC steps and
with recovery probability Prα−1 back into the Fα state. If, on the other hand, the
coherence behaviour fails, the robot will move into the Fα−1 state. The likelihood
of this is the coherence failure probability Pfα−1 . A loss of connection in each of the
forward states F1 . . .Fα will trigger a transition into coherence states C0 . . .Cα−1

respectively.
Fig. 1.21 completes the PFSM by expanding the two states Ci and Fi into

their respective sub-states, again reflecting the structure of the FSM of Fig. 1.19.
Fig. 1.21(right) shows that a robot in each of the forward states Fi might collide
with another robot, with probability Pai , triggering a transition into its correspond-
ing avoidance state AF

i , returning to the initial forward state after TA steps. Similarly,
Fig. 1.21(left) shows that a robot in each of the coherence states might also collide
with another robot triggering its transition into corresponding avoidance states AC

i ,
also returning after TA steps.

1.3.1.4 Geometrical Estimation of Transition Probabilities

Given the PFSM for the α−algorithm, a set of difference equations can be derived
for the state transitions following the approach outlined in Sect. 1.3.1.1. The full
model has a number of transition probabilities, summarised in Table 1.5. Each of
these probabilities is conditional on the connectivity status for those robots and
therefore impossible to measure in experiments with one or a few real robots.

Here a novel geometry-based approach is developed to estimate these probabili-
ties in our wirelessly connected swarm. Let V denote the normal forward speed of
each robot. It follows that the relative speed between two robots varies from 0 to
2V and the relative heading varies from 0◦ to 360◦. Consider one of the robots in
the swarm, say roboti, with di neighbours at time step k. Fig. 1.22 illustrates some
of its neighbours, shown as robotA, robotB, robotC and robotD. Let us assume that
roboti is in either forward or coherence states, then after one time step (of duration
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Table 1.5 State transition probabilities, di represents the number of connections for roboti .

probabilities comments

Padi
collision with another robot

Pldi
loss of a connection in forward state

Pgdi
gain of a connection

Prdi
recovery of a connection

Pfdi
failure to recover a connection

Pladi
loss of a connection in coherence state

roboti

Ra + Rp

Rw

Ra

2V TCT

robotB

2V T

robotA

2V TCT

robotC

2V TCT

robotD

2V T

2V TCT2V TCT
A L RC F

Fig. 1.22 Roboti and its neighbours. Robots are marked with filled circles. Each robot has a
communication range Rw and avoidance radius Ra, Rp denotes the physical size (radius) of the
robot. C, A, F, L and R in the figure represent the collision, avoidance, forward, connection
loss and connection recovery areas respectively; each is an annular region bounded within
two circles with the same origin.
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T ), each of its neighbours will move a distance from 0 to 2VT . It is clear that only
the robots close enough will have a chance of moving into roboti’s collision area
(within radius Ra, marked C in Fig. 1.22), and thus drive roboti to change to state
avoidance. For instance, as shown in Fig. 1.22, robotA may possibly trigger roboti’s
avoidance sensor next time step while robotB, robotC and robotD cannot. Similarly,
after TC steps, robotC located in area L will possibly move out of roboti’s commu-
nication range resulting in roboti losing one connection, and robotD located in area
R might move into roboti’s communication range, with some probability, in which
case roboti will gain one connection at step k + TC. However, robotB located in area
F can neither trigger roboti’s avoidance sensor nor cause a change in the number
of its connected neighbours. Thus, in order to estimate state transition probabilities,
we need only consider situations where neighbouring robots fall within the annular
regions in Fig. 1.22: A, in which a collision might occur; L, in which a connec-
tion loss might occur; or R, in which a connection recovery might occur. A detailed
derivation of each of these probabilities is given in (Winfield et al., 2008).

1.3.1.5 Running the Macroscopic Model

We now run the macroscopic model with state transition probabilities estimated
using the geometrical approach. Fig. 1.23 shows the average number of robots in
states forward, coherence and avoidance, in which we merge states AC and AF from
the sub-PFSMs in Fig. 1.21, plotted against connectivity. The left-hand plots show
the results collected from a sensor-based simulation using Player/Stage, while the
right-hand side plots show the results from the PFSM model run with the estimated
state transition probabilities. The total average number of robots, summing all states,
is also plotted as the topmost curve in each graph.

First we note that the PFSM model generates the same “bell” shaped curves as the
simulation, and for all three values of α the peak occurs at or very close to the same
connectivity value. The PFSM model for α = 5 somewhat underestimates the num-
ber of robots in all three states and also shows a longer “tail” of robots with high
connectivity values than is measured from simulation; however, the model shows
reasonable agreement at very low connectivity values, especially in predicting ‘lost’
robots (with connectivity of zero). At α = 10 the macroscopic model again shows a
longer tail of high connectivity robots than the simulation; also evident is the same
overestimate in the number of robots in the forward state at connectivity values be-
low α . The overestimate in forward robots is even more pronounced at α = 15. We
also see that the ‘lost’ and very low connectivity robots are not seen in the model for
α = 10 and α = 15. In all three pairs of results the greatest discrepancy between the
macroscopic model and the simulation is in robots in the forward state. In contrast,
the macroscopic model shows much stronger agreement with simulation for the
number of robots in coherence and avoidance states. Given the simplifying assump-
tions for constructing of the PFSM and estimating of the transition probabilities, it is
perhaps surprising that the macroscopic model does generate such plausible results
for the swarm connectivity structure. For details of low-level robot parameters and
full discussion of the modelling assumptions refer to (Winfield et al., 2008).
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Fig. 1.23 Number of robots in state coherence, forward and avoidance plotted against num-
ber of neighbours (connectivity). From top to bottom, α = 5, 10 and 15. Left: Player/Stage
simulation, average of 10 runs, each simulation lasts for 10000 seconds. Right: Macroscopic
model using geometrically estimated probabilities.

1.3.2 Reliability Modelling of Swarm Robotic Systems

Research papers in Swarm Robotics frequently assert that swarm robotic systems
are both scalable and robust. We accept the defining criteria for swarm robotics set
out in (Dorigo & Şahin, 2004), which include importantly “local and limited sens-
ing and communication”, and we note that these criteria also state that swarm robo-
tics studies should “aim for scalability”. The fact that individual robots in the swarm
make decisions based only on local sensing and communication is assumed to lead
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naturally to swarms that will scale to very large numbers of robots. The high degree
of parallelism in robot swarms, which typically consist of homogeneous robots, is
assumed to lead to a high level of robustness and dependability. It is indeed true
that robot swarms can exhibit an unusual level of tolerance to failure of individual
robots, or external threats, when compared with conventionally engineered distribu-
ted systems, but it is not safe to assume that scalability and robustness are automat-
ically properties of all (or any) swarm systems. It is surprising therefore that, in the
field of swarm robotics, there has been very little systematic study of dependabil-
ity and fault tolerance; but see (Winfield et al., 2005; Winfield & Nembrini, 2006;
Christensen et al., 2009).

In this section we develop a reliability model for a case study swarm of robots that
exhibit emergent, or self-organised, swarm taxis. We first undertake a failure modes
and effects analysis (FMEA) for the case study swarm, then show that we need to
model this swarm — from a reliability perspective — as a k-out-of-N system. We
then extend the k-out-of-N reliability model to take account of worst-case partial
robot failures and swarm scaling properties, introducing the new concept of swarm
self-repair. We conclude with a model of reliability as a function of swarm size.

1.3.2.1 Case Study: Reliability Modelling Emergent Swarm Taxis

We modify the α-algorithm described above in Sect. 1.3.1.2 in two ways. Firstly,
the coherence behaviour is achieved not by making a 180◦ turn when the number
of a robot’s connected neighbours falls below α , but instead by timing the duration
since the robot last made an avoidance manoeuvre and if that value exceeds a given
threshold ω , the robot turns towards its estimate of the centre of the swarm; an
estimate based on readings from the ring of infrared proximity sensors around the
robot’s body. To increase the distance at which robots can sense each other, and
also to enable robots to distinguish between robots and ambient infra-red, each of
the robots is equipped with infra-red emitters that flash at 80 Hz. By sampling the
sensors at 400 Hz and passing the data through a bandpass filter the 80 Hz flashing
is reliably detected. Each robot can then estimate the direction of the local centre of
the swarm based on which of its sensors detect a flashing signal from other robots.
For the results obtained from hardware trials with real robots reported below we set
ω = 2.5 s; ω (like α) controls the overall swarm density.

Secondly, we add an additional “beacon” sensor to each robot. The beacon sen-
sor is a very simple sensor, in that it is unable to detect the range and bearing of
the remote beacon and has only a two-state output: on = illuminated or off = not-
illuminated. An important feature of the physical placement of the beacon sensor
is that it can be occluded by other robots, thus those robots that have a direct line-
of-sight to the beacon will have beacon sensors illuminated, and those robots that
are in the shadow of other robots will have beacon sensors not-illuminated. This
means that for a typical swarm only the robots on or close to the leading edge of
the swarm (with respect to the beacon) will have illuminated beacon sensors. In our
experimental trials we use an IR beacon and make use of the same IR sensors that
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are used for both short-range communication and collision avoidance, for beacon
sensing.

We then introduce a simple symmetry breaking mechanism. Each robot has short-
range avoidance sensors (for sensing collisions with obstacles or, more typically,
other robots). We set the avoid sensor radius for those robots that are illuminated
by the beacon to be slightly larger than the avoid sensor radius for those robots in
the shadow of other robots. This simple mechanism results in a net swarm move-
ment (taxis) toward the beacon. Note that the swarm taxis is an emergent property
of the swarm: with a simple two-state beacon sensor a single robot cannot sense
the direction of the beacon, and even with the symmetry breaking mechanism two
or three robots are not enough to give rise to emergent swarm taxis; experimen-
tally we find that swarm taxis requires at least five robots. This is important to our
case study as we are interested in determining the reliability of a swarm with emer-
gent swarm behaviours. For a detailed analysis of the swarm taxis behaviour see
(Bjerknes et al., 2007).

1.3.2.2 Failure Modes and Effects Analysis

In this section we undertake a Failure Mode and Effect Analysis (FMEA) for our
case study robot swarm. The methodology is straightforward, see (Dailey, 2004).
We attempt to identify all of the possible hazards, which could be faults in robots or
robot sub-systems (internal hazards), or environmental disturbances (external haz-
ards). Then, in each case, we analyse the effect of the hazard on each of the overall
swarm behaviours. Thus, we build up a picture of the tolerance of the swarm to both
types of hazard and begin to understand which hazards are the most serious in terms
of compromising the overall desired swarm behaviours. FMEA is, at this stage, es-
sentially qualitative. Here we consider only internal hazards; external hazards (i.e.
communications noise) were investigated in (Nembrini, 2005).

First we identify the internal hazards. In keeping with the swarm intelligence
paradigm our robot swarm contains no system-wide components or structures, thus
the only internal hazards that can occur are faults in individual robots. Since, in
our case, the robots of the swarm are all identical, then (internal) hazards analysis
requires us to consider only the faults that could occur in one or more individual
robots, and then consider their effect on the overall swarm behaviours. Table 1.6
identifies the fault conditions for an individual robot.

Table 1.6 Internal Hazards for a single robot

Hazard Description

H1 All systems failure
H2 Coherence sensor(s) failure
H3 Avoidance sensor(s) failure
H4 Beacon sensor failure
H5 Motor sub-system failure
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Table 1.6 makes the assumption that failures of robot sub-systems can occur in-
dependently. This is a reasonable assumption, given that our mobile robots are in
reality an assembly of complex but relatively self-contained sub-systems. Hazard
H1 represents a total failure of the robot; failure of the robot’s power supply would,
for instance, bring about this terminal condition. Hazards H2, H3 and H4 represent
a failure of the robot’s communication, avoidance and beacon sensing functions re-
spectively. Finally hazard H5 motor failure, covers the possibility of mechanical or
motion-controller failure in one or both of the motors in our differential drive mo-
bile robot, such that the robot is either unable to move at all or can only turn on the
spot (which from an overall swarm point of view amounts to the same thing).

Let us now consider the effects of each the hazards enumerated above on the
overall swarm behaviours. We will consider here the effect on the overall swarm
of the hazard occuring in one or a small number of the individuals in the swarm.
Of course the question of how many is a small number in this context is important,
and will return to the question of what proportion of robots need to fail in order to
seriously compromise the desired overall swarm behaviours.

Hazard H1: total systems failure. Complete failure of one or a small number of
robots caused, for instance, by power failure will clearly render the robot(s) station-
ary and inactive. They will be wirelessly disconnected from the swarm and will be
treated, by the swarm, as static obstacles to be avoided. Ironically, given that this is
the most serious failure at the level of an individual robot, it is relatively harmless as
far as the overall swarm is concerned. Apart from the loss of the failed robots from
the swarm, none of the overall swarm behaviours are compromised by this hazard -
however, we can expect the swarm to be temporarily slowed by the obstacle repre-
sented by the failed robot. We therefore label this effect E1, with an upper-case E to
denote that it is a potentially serious fault.

Hazard H2: coherence sensor failure. Failure of the coherence sensors sub-system
in one or a small number of mobile robots means that those robots cannot sense
the centre of the swarm. Given that basic swarm aggregation depends upon the co-
herence mechanism, then robots with fault H2 might become physically lost to the
swarm and wander off at random. As far as the swarm is concerned these robots
simply become (moving) obstacles to be avoided. The overall swarm behaviours
are, however, essentially unaffected. This hazard has, therefore, a relatively benign
effect, except of course that the failed robots remain mobile within the environment
and - in some circumstances - this may be undesirable. We label this effect e2, with
a lower-case e to denote that it is a non-serious fault.

Hazard H3: avoidance sensor failure. Failure of the avoidance sensor(s) in one
or a small number of robots has little effect on overall swarm behaviour. A single
robot with failed avoidance sensors will be avoided by the other robots in the swarm
and hence have no overall effect. In the unlikely event that two or more robots with
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Table 1.7 Summary of Failure Modes and Effects

Swarm Behaviour H1 H2 H3 H4 H5

Aggregation - e2 - - -
Ad hoc network - e2 - - -
Beacon taxis E1 e2 - - E5

failed avoidance sensors collide with each other then physical damage might result
from such collisions, but the overall swarm behaviours remain unaffected.

Hazard H4: beacon sensor failure. Failure of the beacon sensor in one or a small
number of robots has a practically undetectable effect on the overall swarm be-
haviour. This is because the emergent beacon taxis behaviour results from the sym-
metry breaking mechanism outlined above. Since a differential is created between
two substantive parts of the swarm, the effect of one or a small number of robots
with failed beacon sensors is negligible.

Hazard H5: motor failure. The effect of motor failure in a single robot, or small
number of robots, is interesting. Robot(s) with fault H5 become – in effect – sta-
tionary but, given that their signalling and other sensing systems continue to func-
tion, they remain within the swarm. These robots continue to fully contribute to the
swarm aggregation and ad hoc network emergent behaviours. It is only when the
swarm needs to physically translate its position. i.e. for the beacon taxis behaviour,
that hazard H5 becomes a serious problem. In this case robots with motor failure
will have the effect of physically anchoring the swarm, either impeding or, at worst,
actually preventing the swarm from moving toward its target. This is a potentially
serious hazard since one or a small number of robots with motor failure could seri-
ously compromise the desired swarm-taxis behaviour. We shall label this fault effect
as E5, with an upper-case E to denote that it is potentially serious.

To summarise, Table 1.7 shows the swarm fault effects, as defined above, gener-
ated by one or a small number of robots with hazards H1...H5, for each emergent
swarm behaviour. Table 1.7 clearly shows that the serious swarm failure effects E1

and E5 occur in only 2 out of 15 possible combinations of robot hazard and swarm
behaviour; 10 out of the 15 hazard scenarios have no effect at all on swarm be-
haviour, and the remaining 3 have only minor, non-serious, effects.

1.3.2.3 The k-out-of-N Reliability Model

The purpose of a reliability model is to enable the estimation of overall system
reliability, given the (known) reliability of individual components of the system,
see (Elsayed, 1996). Reliability R is defined as the probability that the system will
operate without failure, thus the unreliability (probability of failure) of the system,
Pf = 1 − R. In our case the overall system is the robot swarm and its components
are the individual robots of the swarm.
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From a reliability modelling perspective a swarm of robots is clearly a parallel
system of N components (robots). If the robots are independent, with equal probabil-
ity of failure p, then the system probability of failure is clearly the product of robot
probabilities of failure. Thus, for identical robots, R = 1 − pN . p can be estimated
using a classical reliability block diagram approach on the individual sub-systems
of the robot; since the individual robot does not internally employ parallelism or re-
dundancy then its reliability will be modelled as a series system, giving p less than
the worst sub-system in the robot, which is most likely to be its motor drive system.

However, this simplistic modelling approach makes a serious and incorrect as-
sumption, which is that the overall system remains fully operational if as few as one
of its components remains operational. This is certainly not true of our case study
swarm. The desired emergent swarm behaviours require the interaction of multiple
robots; our swarm beacon taxis behaviour is a dramatic example: with one robot
only the behaviour simply cannot emerge. It is a general characteristic of swarm
robotic systems that the desired overall swarm behaviours are not manifest with just
one or a very small number of robots. However, the question of how many (or few)
robots are needed in order to guarantee a required emergent behaviour in a particular
swarm and for a particular behaviour is often not straightforward.

Thus, from a reliability perspective, we need to consider the swarm as a k-out-of-
N:G system. That is, a system of N parallel elements which requires that at least k of
these elements are operational (“good”) for the overall system to function correctly.
In a swarm of N robots, if more than N − k fail, the self-organised functionality of
the overall swarm will be compromised.

In a k-out-of-N:G system, the probability that at least k out of N robots are
working at a given time t is given by:

P(k,N,t) =
N

∑
i=k

(
N
i

)
(e−tλ )i(1 − e−tλ )N−i (1.96)

where λ = 1
MT BF , (Kuo & Zuo, 2002). MTBF is the mean time before failure of an

individual robot.
Based on Eq. (1.96) we can now plot swarm reliability against time for our case

study swarm. Experimental trials indicate that at least five robots have to be work-
ing in order for the emergent swarm taxis behaviour to work properly. Thus, we
can model our swarm as a 5-out-of-N system. Consider now the individual robots’
MTBF. Carlson et al. tracked failure data for 13 robots by three different man-
ufacturers over a period of two years. They found the MTBF to be eight hours
(Carlson & Murphy, 2003). Experiments with the e-pucks used in our experimental
trials might suggest that their failure rate might be higher (because of poor design
of the e-puck battery connector). However, as no systematic data is available, the
value reported by Carlson et al. will be used here. Fig. 1.24 (top) plots Eq. (1.96) for
a swarm of ten robots, and shows that the swarm reliability starts to decline rapidly
after 100 minutes of operation.

Fig. 1.24 (bottom) plots the reliability of the same swarm of ten robots,
with the same values for k and MTBF, against the distance the swarm will travel
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Fig. 1.24 Top: The reliability of a robot swarm modelled as a k-out-of-N system, with k = 5,
swarm size N = 10 robots and MTBF = 480 m. Bottom: Reliability of the same swarm as
a function of distance travelled, based on a measured mean swarm velocity of 12.4 cm. per
min. for a swarm of 10 robots.

(the emergent swarm taxis behaviour) based on a measure mean swarm velocity of
12.4 cm per minute for a swarm of 10 robots. Although providing some insight,
the reliability assessments based on the k-out-of-N model here fail to take into ac-
count two important factors. Firstly, each robot that fails is likely - depending on
the exact nature of that failure - to slow down the swarm; if the failed robot(s) are
immobile then the swarm will slow down until it “escapes” from the failed robots,
leaving them behind. Secondly, the swarm velocity might then change after then
failed robot(s) have been left behind, typically a smaller swarm (of at least 5 robots)
will have a higher swarm taxis velocity. We now analyse these factors in more detail
in order to improve the swarm reliability model.

1.3.2.4 Swarm Self-repair

We now introduce the concept of swarm self-repair. Consider the case-study swarm
and its failure modes and effects analysis outlined above in Sect. 1.3.2.2. We have
conducted a series of trials of the emergent beacon swarm-taxis algorithm, using
10 e-puck robots (Mondada et al., 2009), in which we artificially introduce differ-
ent failure modes into one or more robots of the swarm. Our trials broadly confirm
the FMEA and demonstrate that, while all failure modes have the effect of slowing
down swarm progress toward the beacon, the swarm is tolerant to the simultaneous
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Fig. 1.25 Hardware trials using 10 e-puck robots: single robot complete failure H1, swarm
self-repair time. Two robots are tracked: the failed robot and the trailing robot from the rest
of the swarm. At about 250 s. a single robot on the leading edge of the swarm experiences
failure H1; at about 580 s. the trailing robot escapes the failed robot.

(i.e. worst case) failure of more than one robot. Furthermore, we notice two dif-
ferent categories of effect on the overall swarm: (1) sensor failures H2...H4 which
slow down progress of the swarm, but the whole swarm reaches the beacon and
(2) motor failures H1 and H5 which hold back progress of the swarm until the
swarm breaks free of the failed robots; for a detailed analysis of these results see
(Bjerknes, in press). Consider the second, and more serious category, which gives
rise to the notion of swarm self-repair.

Refer to Figs. 1.25 and 1.26. We define swarm self-repair time as the time be-
tween (simultaneous) motor failure of one (or more) robots and the point at which
the trailing robot in the rest of the swarm escapes the influence of the failed robot(s).
This is a useful metric because it varies with both the type of robot motor failure
(H1 or H5) and the number of robots. Table 1.8 lists the measured swarm self-repair
times for one and two simultaneous failures for failure modes H1 (robot completely
failed) and worst case H5 (robot partially failed - motors failed but electronics still
operational). For comparison the table also shows a baseline notional self-repair
time: the time the swarm would take to leave behind a failed robot if that robot
failure did not slow down the swarm.

1.3.2.5 Swarm Scaling and Reliability

We have argued that in the k-out-of-N reliability model above, the minimum value
of k = 5 because the swarm taxis property is present even with as few as 5 robots.
For N = 10 robots and an MTBF of 8 hours, this reliability model suggests that the
swarm will become unreliable after approximately 100 minutes. While it is clear that
we can increase the swarm reliability by increasing the individual robots’ MTBF,
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Fig. 1.26 Hardware trials using 10 e-puck robots: single robot partial failure H5, swarm self-
repair time. Three robots are tracked: the failed robot, the trailing robot from the rest of the
swarm and a third healthy robot left behind with the failed robot. At about 450 s. a single robot
on the leading edge experiences failure H5; at about 1150 s. the trailing robot of escapes the
failed robot. Observe that one healthy robot is also left behind by the swarm and only 8 robots
proceed to the beacon.

Table 1.8 Mean swarm self-repair times for the case study swarm of N = 10 e-puck robots.
Ten runs for each case. *In the final case of two partially failed robots, in only six runs did
the swarm reach the beacon.

Case Mean (s) Std. Dev. (s)

Baseline (no penalty) 328 174
One failed robot H1 387 132
Two failed robots H1 453 172
One failed robot H5 879 417
Two failed robots H5 1279 see note*

can we also make the swarm more reliable by increasing swarm size? At first it
might seem plausible to suggest that the increased redundancy in a larger swarm
would maintain reliability for a longer period. One may even be led to believe that
the swarm could be made reliable for an arbitrarily long time, given a sufficiently
large number of robots. This is not correct, and we now combine a model of swarm
self-repair with the k-out-of-N model to determine the maximum upper size for our
case-study swarm.

Consider the argument informally. When a swarm is larger it will take longer to
self-repair than a smaller swarm. There are two reasons for this. Firstly, it is a prop-
erty of our case study swarm that the swarm taxis velocity reduces with increasing
swarm size. Secondly, the swarm is physically larger and must move a longer dis-
tance before it is fully self-repaired. Thus the self-repair rate will remain constant
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with increased swarm size. However, for a given robot MTBF, the swarm failure-
rate will increase for larger swarms. It is unavoidable that at some point the failure
rate will overtake the self-repair rate of the swarm, and the swarm will come to a
complete halt - the desired emergent swarm-taxis property will fail. In fact a swarm
of sufficient size would die under its own weight, so to speak, before it has even
started to move.

We now estimate the values of k and self-repair time ts as a function of N. Thus
the k-out-of-N model written as Eq. (1.96) will be modified to take the time to self-
repair into account.

The value of k

In experimental tests it is clear that, for complete failures H1, two out of ten robots
could fail without permanently damaging the swarm. The swarm would always self-
repair. The cases with partial failure H5 fared less well. When one out of ten robots
failed, the swarm did always self repair, even though a functioning robot might
occasionally become stuck with the failed robot. But when two out of ten robots
failed, the swarm would suffer a complete breakdown in four out of ten cases, and
in the remaining six cases, as many as three healthy robots stayed behind with the
failed robots.

Based on this the value of k will be conservatively estimated as 90% of N for a
k-out-of-N:G system. In other words, when the swarm has ten percent failed robots
or less it will be assumed that it can self repair. Arguably, this may not hold true for
larger swarms - the empirical evidence is limited to swarms with ten robots. But this
is our best estimate from the evidence available.

The value of ts

We know from an analysis of the scaling properties of our case study swarm
(Bjerknes, in press), that swarm-taxis velocity v as a function of N follows this re-
lationship:

v(N) = CN− 1
2 (1.97)

Where C is a scaling constant. Thus larger swarms move more slowly. Note, as
stated already, that the minimum value of swarm size N for the swarm to exhibit
swarm taxis is 5, thus Eqn. 1.97 is not valid for N < 5.

Clearly, the diameter d, of the swarm will increase with swarm size.

d(N) = D
√

N (1.98)

Where D is the density constant for the swarm.
Since a robot can fail anywhere within the swarm: on the leading edge, in the

middle of the swarm or at the trailing edge, the average distance that the swarm
needs to move before it has moved away from the failed robot will be half the
diameter, d

2 . Thus the self-repair time becomes ts = d
2v .
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Thus,

ts(N) =
D

√
N

2C 1√
N

(1.99)

Which simplifies to

ts(N) =
D
2C

N (1.100)

Eq. (1.100) is important as it demonstrates that the self-repair time increases
linearly with N. Based on this equation it is now possible to introduce a new constant
for a given swarm, namely the self-repair-time-constant. Let this constant have the
symbol S for Self-repair, where S = D

2C . Now we have established that S is linear
with N, we can determine its value experimentally. For a swarm with ten robots
with one partially failed robot the mean self-repair time was found to be 879 s (see
Table 1.8). This was for a case with ten robots, so the self-repair constant for our case
study swarm, for the worst case partial failures H5, then becomes S = 879

10 = 87.9.
Using the estimated values for k and ts and the k-out-of-N reliability model we

can now plot swarm reliability against swarm size N.
Fig. 1.27 shows that with an MTBF of 8 hours, a swarm with as few as 40 robots

will have a reliability of only 0.5. This reliability model is based on a number of as-
sumptions (including, for instance, a circular swarm morphology that remains con-
stant with increasing swarm size), together with experimentally estimated constants.
Notwithstanding these assumptions and estimates, the main idea that the self-repair-
time increases with larger swarms is well argued based on the experiments presented
here. Even though the actual reliability for a given swarm size may be a somewhat
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Fig. 1.27 Reliability of the case study swarm as a function of swarm size, based on a k-
out-of-N reliability model and assuming worst case partially failed robots H5; k = 0.9N,
self-repair-time-constant S = 87.9 and robot MTBF 8 h.
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Fig. 1.28 Reliability of the case study swarm as a function of swarm size, based on a k-
out-of-N reliability model and assuming worst case partially failed robots H5; k = 0.9N,
self-repair-time-constant S = 87.9 and robot MTBF 24 h.

higher or lower than the k-out-of-N model suggests, it is undoubtedly true that
our case study swarm will eventually become non-functioning with increasing size,
and that this occurs at a much lower swarm size than one might intuitively expect.
Clearly we can significantly improve swarm reliability by increasing robot MTBF,
as shown in Fig. 1.28, for a four-fold improvement of individual robot MTBF
to 24 h.

1.3.3 Concluding Discussion

In Sect. 1.3.1 we have reviewed approaches for mathematical modelling of collec-
tive robotic systems, and outlined a macroscopic modelling approach based upon
developing a probabilistic finite state machine (PFSM) description of the overall
swarm, then expressing the PFSM as a system of differential equations that model
the change in the average number of robots in each state, with time. We then illus-
trated this approach with a case study example of a mathematical model of a wire-
less connected swarm of mobile robots operated in unbounded space. The model
demonstrates a novel robot-centric approach for estimating state transition prob-
abilities. There is no doubt that proving the correctness of collective systems re-
quires mathematical modelling, and we believe that the macroscopic probabilistic
approach outlined here provides us with a powerful modelling technique.

Consider now the applicability of this functional modelling approach to sym-
biotic multi-robot organisms — the subject of this volume. Sect. 1.1, Table 1.4
identifies swarm-mode, organism-mode and the transitions between these modes.
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The PFSM modelling approach can be applied in swarm-mode during searching/re-
sources localisation (i.e. foraging) and during the transition from swarm to organism
(morphogenesis). We have already developed a PFSM model for adaptive foraging,
see (Liu et al., 2007; Liu, 2008; Liu et al., 2009). For morphogenesis the model will
be used to predict the time robots take to self-assemble into a 2D planar structure,
i.e. the energy cost of this phase. The aim here is to use the model to improve the
behaviour of individual robots and hence optimise energy consumption and achieve
faster transition from swarm-mode to organism-mode.

Sect. 1.3.2 has shown that the frequent assumption that collective systems based
upon the swarm intelligence paradigm are automatically scalable and robust is un-
safe. By undertaking a reliability analysis of a swarm system in which the desired
swarm properties are truly emergent (self-organising), we have shown that, for the
worst-case partial-failures of individual robots, overall system reliability falls very
rapidly with increasing swarm size. When compared with conventionally designed
distributed systems our case study swarm does exhibit an unusual level of toler-
ance to failure of individual robots (and indeed a self-repair mechanism) that —
in a sense — comes for free with the swarm intelligence paradigm, but that fault
tolerance does not scale well. Of course our case-study swarm has no mechanisms
for actively identifying and compensating for partially-failed robots, which leads to
the conclusion that scaling collective systems from tens to hundreds or thousands of
robots might not be achievable without such mechanisms, i.e. distributed artificial
immune systems (see Sect. 4.4).

Consider now the applicability of the reliability modelling approach to symbiotic
multi-robot organisms. We would argue that the multi-state k-out-of-N approach
can be applied to the searching/resource localisation (foraging) task during swarm-
mode. It is likely that foraging will require swarm aggregation/taxis so that a subset
of robots moves together to an object of interest thus, depending on the algorithm
design, the reliability model given in this chapter may apply in some modified form.
The k-out-of-N reliability model might also be applicable to organism-mode since,
in principle, we might expect a multi-robot organism comprising N robots to con-
tinue to function if at least k of these robots are functioning. Clearly the failure
modes and effects analysis (FMEA) will be more complex since the consequences
of a failed robot, and the type of failure, will depend on the position and function of
that robot within the organism.



Chapter 2
Heterogeneous Multi-Robot Systems

2.1 Reconfigurable Heterogeneous Mechanical Modules

Kanako Harada, Paolo Corradi, Sergej Popesku, Jens Liedke

The mechanical characteristics and functionalities of individual robots in a col-
lective symbiotic system are of the utmost importance in order to confer suitable
capabilities to the symbiotic robot organisms. However, this does not necessarily
mean that the design of individual robots has to be particularly complex from a me-
chanical point of view. On the contrary, excessive complexity can lead to several
disadvantages in the assembled state of the organism, e.g. higher risk of failures
and higher electrical and computational power demand. In addition, considering the
manufacturing phase of the individual robots themselves, complexity would lead to
high development and assembling costs; this is an issue particularly relevant when
a large multi-agent symbiotic system is targeted. Finally, considering miniaturized
robots, there are severe volume constraints at the design level that may prevent the
possibility to integrate complex mechanisms. Consequently, as a rule of thumb, the
individual robots of a large collective symbiotic system can be designed to offer
the minimal mechanical functionalities able to allow the symbiotic robotic organ-
ism to assemble and develop all those collective configurations and reconfiguration
strategies that let specific collective functionalities emerge. That’s inevitably a com-
promise choice in the design.

As introduced in Sect. 1.1, a symbiotic robot organism can be seen as the phys-
ical evolution of a swarm system of individual robots into a structural system of
connected robots. From this “structural” perspective, the mechanical functionali-
ties of the individual robot could correspond to the behavioral rules of the agents
in a swarm system that arises collective emergent behaviors. The mechanical in-
teractions between the robots assembled in the organism expand consequently the
collective capabilities of the system to a structural dimension.

On the base of the above considerations, it is clear how the design of suitable
mechanical features of the individual robots represents a critical issue. In par-
ticular, the robot-to-robot connection mechanisms (docking mechanisms) and the

P. Levi and S. Kernbach (Eds.): Symbiotic Multi-Robot Organisms, COSMOS 7, pp. 79–163.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010
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mechanical degrees of freedom implemented in the individual robots deserve a deep
investigation.

From a design viewpoint, it is difficult to decide for the optimal compromises of
mechanical features (namely inter-robot docking systems and degrees of freedom)
in order to have specific advantages and capabilities both for the individual robots
and the symbiotic organism. A comparable problem occurs when one wants to as-
sign specific behavioral rules to agents in swarm systems in order to “program” de-
sired collective behaviors: the path(s) to the task solution is, indeed, not predefined
but emergent (Bonabeau et al., 1999), thus it is hard to infer which basic behavioral
rules have to be assigned to the individual robots in order to obtain a specific swarm
behavior. Faithful modeling and computer simulations could possibly guide in the
investigations of the main organism configurations and corresponding capabilities
on the base of a particular mechanical choice done for each individual robot, and
consequently give some feedbacks in order to suitably modify the mechanical ele-
ments. However, that is a hard and complex way to follow. It will evidently appear
to an expert reader that the efforts required by tuning the physical characteristics
of the mechanical elements, accordingly to kinematics and dynamics simulated in
a virtual environment, are much larger than modifying software-based behavioral
rules as it has been done for developing swarm intelligence algorithms. The general
approach in the mechanical design of the individual robots ends consequently to
be more heuristic. The performances and structure characteristics of the individual
robot tend to be optimized for its own individual functionalities while the basic ca-
pabilities are guaranteed as a modular part of the assembled organism. This can lead
to multiple design solutions as described in the following paragraph.

2.1.1 A Heterogeneous Approach in Modular Robotics

The design of each individual robot as a stand-alone unit inevitably ends to favor
specific functional characteristics such as locomotion capability, actuation power
and robustness, and this can result in multiple design solutions. This is true espe-
cially for miniaturized individual robots because focusing on one feature means
finally to degrade or loose other features due to obvious space constraints. As a
consequence of the above mentioned issues, the design process can follow different
paths:

• To try to merge the best features of all the conceived designs into a
unique individual robot design by accepting performance compromises
of the collective system while making the control of the organism eas-
ier. We refer to such a system as collective homogeneous system. This is
the path mostly followed by state-of-the art modular and reconfigurable
robotics ((Yim et al., 2003), (Castano et al., 2000), (Christensen, 2006),
(Zykov et al., 2007a), (Kamimura et al., 2005), (Salemi et al., 2006), etc.).

• To consider having two or more different individual robot types where each robot
is optimised for specific functions. Each robot can assemble into a symbiotic
organism by means of compatible docking units, thus empowering the global
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capabilities of the collective system in detriment of more complex control of
the symbiotic organism due to its heterogeneity. We refer to such a system as a
collective heterogeneous system as introduced in (Lyder et al., 2008).

• To integrate “tool modules” with the above mentioned collective homogeneous
system. Tool modules can be generally defined as devices whose functions are
dedicated to a specific task. The tool modules can simply dock with the assem-
bled organism, receive commands from the organism and possibly send data to
the organism. These tool-modules could be, for instance, wheels, sensors, grip-
pers, etc. By following this path, the system has to accept poor integration of the
robot in favor of versatility. This approach is considered to be the evolved version
of the collective homogeneous system as demonstrated in (Zykov et al., 2008).

• To integrate “tool modules” with the above mentioned collective heterogeneous
system. The main structure of the organism is composed of two or more dif-
ferent individual robots and the organism can be equipped with “tool mod-
ules”. The heterogeneity of the system becomes high, making the control more
complex. The system is the most versatile and robust to the environment and
given tasks. This is a rather new approach in the modular robotics as studied in
(Bordignon et al., 2008), (Kernbach et al., 2008b), (REPLICATOR, 2008-2012).

Taking inspiration from the biological domain, it could be observed that natural
swarms are often heterogeneous not only for the different behavioral specialization
of each swarm member but also from a strict physical viewpoint (e.g., in a same
colony there are insects with different physical capabilities, e.g. in ant colonies).
However, differently from natural insect swarms, the conceived collective system
should also be able to reach a collective structural level. This goal can be more
complicated with heterogeneous individual robots, regarding the assembly process
itself and, even more, for what concerns the onboard software (e.g., the self-learning
and behavioral control of the symbiotic organism).

A final decision about the approach to choose can be critical in terms of ca-
pability and performance of the multi-robot system and the final symbiotic or-
ganism(s). However, it should be mentioned that it depends also on the specific
application the multi-robotic system is intended to. Currently, most of the collec-
tive robotic systems are mainly thought for exploration or surveillance, nevertheless
some more targeted applications can be found in literature, e.g. in biomedical ap-
plications (Harada et al., 2009). A heterogeneous robotic system with tool modules
is likely to offer more advantages under specific applications requiring complex
and diversified tasks and/or a large interaction with the environment. The hetero-
geneous robotic system with tool modules is possibly beneficial in terms of the
collective system efficiency also from a point of view of the operation carried out
by the stand-alone robots; in such a case, each robot can contribute with its own
optimized functions in achieving the goals.

For example, it is possible to consider the operation of a heterogeneous collective
system with tool modules in exploration scenarios. A basic heterogeneous approach
could rely on the investigation of two or more different types of individual robots
having compatible docking units. As a case study, two individual robots, namely a
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Scout robot and Backbone robot, and one tool module, namely Active wheel, will
be described hereafter and shown later in the chapter:

• A “scout” robot equipped with far-range sensors and above all specialized in fast
and flexible locomotion that can be used for inspection of the environment and for
swift gathering of robots for the assembly. For this purpose, wheeled/caterpillar-
like locomotion is advantageous, in particular where challenging terrains have
to be engaged. Actuators for the 3D actuation within the organism is mandatory
but less powerful actuators are sufficient. It is because the scout robots can be
useful when they are docked to the end of a leg or arm of the organism to scan
the environment.

• A “backbone” robot, strong in main actuation and stiff in design. The main pur-
pose of this robot is to work as a part of the organism, therefore the casing is
strong to provide high stability and the main actuator is able to lift several docked
robots to perform 3D motion. The space for 2D locomotion is limited due to the
large main actuator, but the 2D locomotion drive is capable of necessary move-
ments for assembly and docking. In addition, the design of the robot allows to
use the single DOF of the main actuator for either bending or rotation of the
docked joint. Therefore, the powerful actuation is available for any joint in the
assembled organism.

• An “active wheel” module as a tool module. Tool modules are optimised for
specific functions and designed in a way to compensate aforementioned deficits
of the individual robots. The Active wheel, for example, provides the ability to
move omnidirectional, lifting and carrying heavy loads (i.e. other robots or or-
ganisms) and at the same time is able to provide an additional energy source.
This tool can act in standalone mode as well as in organism mode.

The prototypes of the Backbone robot, the Active wheels and the Scout robot are
shown in Fig. 2.1.

Following the general issues introduced above, several technical key aspects has
to be taken in consideration in the mechanical design of the individual robots. These
aspects are mainly related to:

• Integration and miniaturization;
• Locomotion mechanisms;
• Docking mechanisms and strategies;
• Mechanical degrees of freedom.

All these aspects will be discussed in the following also by using the examples of
the Scout robot and Backbone robot. The design strategy of the tool module and the
example of the Active wheels is described in Sect. 2.1.6.

2.1.2 Integration and Miniaturization

A swarm robot is intended to be part of a large group, therefore especially produc-
tion costs should be as low as possible to build groups of hundreds or thousands
of these robots. A small and simple design could significantly reduce costs, on the
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Fig. 2.1 First prototypes of robot designs (from left to right): Backbone robot, Active wheel,
and Scout robot.

other hand several key features are required by the individual robot which can be
difficult to be integrated into tiny robots. One example for this problem is the energy
source required by an autonomous swarm robot. State of the art accumulators can
store electrical energy which provide a runtime of several hours, but their dimen-
sions are too big to fit into small robots. This problem get even worse, if the robot
shall provide high torque and/or a high velocity.

Since individual robots can be part of an organism and they are used to change
the topology of it, some kind of high power actuator is usually used. This kind of
motor also requires space together with the battery pack, affecting the size of the
individual robot significantly. For a prototype, especially one used in a research
project, other features should be considered concerning integration and miniatur-
ization as well. Since only a few dozen robots can be produced in the beginning,
standard components like gears and wheels should be used to keep the cost low and
accelerate manufacturing of the robots. In addition, it should be noted that the power
output of electric motors increase with their size. If the other parts are not too small,
standard machinery can be used as well. Miniaturization therefore should not be the
key point in designing the robot if one is not aiming especially for small robots.

Another point is the integration of all the components and subsystems into the
robot. Each individual robot is equipped with different kind of sensors, actuator(s)
for 3D configuration of the organism and 2D locomotion as a stand-alone robot,
battery packs and docking units, microprocessors and motor drivers, and all of those
need to be assembled in the final state of manufacturing. If the robot is very small,
the difficulty level for this task also increases significantly.
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The design of the SYMBRION/REPLICATOR robots therefore aim mostly on func-
tionality then on size. The goal is to build a robot capable of moving around, per-
form actuation inside an organism and provide as many different sensors and high
calculation power as possible.

2.1.3 Locomotion Mechanisms

The locomotion capability allows the individual robots to be active in the environ-
ment, carrying on tasks of exploration, for instance. The locomotion capability is
evidently fundamental when docking with other robots is necessary in order to reach
the symbiotic state. Several approaches can be followed for the design of locomotion
mechanisms, depending on the requirements that the individual robots and the sym-
biotic organism have. In classical modular robotics, the individual robot or module
has been considered as a part of the modular system, thus it does not have any mech-
anisms that let it move as a stand-alone system. Instead, locomotion has generally
been considered as a capability of the assembled robot and achieved by means of
coordinated actuation among the docked modules in order to realize snake-like lo-
comotion, legged-base walking, etc. This can limit the exploration capability of the
whole system to the assembled state. In other words, individual robots or modules
need to be manually positioned and docked before initiating the operation. When
additional modules are requested by an assembled robot at the operation site, the
assembled robot needs to go back to a specific zone where individual modules are
deployed, or another assembled robot needs to be formed to reach the operation site.
Hence, it is a natural consequence to try to devise individual locomotion solutions
on each individual robot. This would guarantee the collective system much higher
independence, versatility and flexibility. The system can be autonomous and robust
especially in an unknown environment where the number of required robots and
appropriate topologies of the organism can be determined after the robots reach the
operation site.

From the functional viewpoint, locomotion required for the individual robot of a
collective symbiotic system can be categorized into three types of locomotion; fast
locomotion for the exploration on rough terrains, rather slow locomotion for ag-
gregation, and precise locomotion for the docking alignment. Each individual robot
needs to be equipped with these features, but with different priorities. Taking the
example of the above mentioned two robotic designs, i.e. the Scout robot and the
Backbone robot, the Scout robot has much priority on the exploration task with fast
locomotion, while the locomotion for aggregation and docking alignment is much
more important for the Backbone robot. For this reason, a tracked locomotion for
the Scout robot and an omnidirectional drive for the Backbone robot were chosen
for the prototypes, considering the functionalities unique to each robot.

Tracked locomotion is adequate for the quick locomotion on rough terrains. The
Scout robot with tracked locomotion is capable of going up a slight slope, climbing
over small obstacles, passing over a small hole, and also moving in soft ground.
The long-range sensors on board can be used to scan the obstacles around then to
navigate the organisms (Fig. 2.2(a)). When the tracked robots are docked together,
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(a) (b)

(c) (d)

(e) (f) (g)

Fig. 2.2 Scout robots: (a) Scout robots exploring the surface and guiding the organisms; (b)
Connected Scout robot; (c) Scout robots carrying a Backbone robot; (d) Scout robots carrying
a chain composed of the Backbone robots. (e) Snake shape of an organism; (f) 4-legs shape
of an organism; (g) Scorpion-like organism.

the assembled robot becomes more robust to the roughness of the terrains as shown
in Fig. 2.2(b). This high locomotive capability also allows the Scout robots to carry
the Backbone robot(s) (see Figs. 2.2(c)(d)). The Backbone robots can form an arm
or a leg of an organism in advance, then be carried to the operation site so as to save
the energy for 3D actuation in the organism. Thus, the Scout robots are adequate
to be “feet” of the organism thanks to its robustness and locomotive capability. The
disadvantage of the tracked locomotion is the non-holonomic drive characteristic
that hinder efficient docking procedures between the robots.

Regarding the locomotion capability of the Backbone robot, easy assembly of the
organism is of utmost importance. Therefore an omnidirectional drive is best since
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it offers optimal performance to move to a predefined position under a defined an-
gle. This is important because each individual robot provides at least four different
docking units and all of them can be used to form the structure of the organism. Ev-
ery docking unit need to be reached, regardless of the orientation of the robot which
wants to dock. Unfortunately, the integration of an omnidirectional drive requires
a lot of space due to the general construction of omnidirectional wheels. Neverthe-
less, if one look at the details of the docking procedure, complete omnidirectional
driving characteristics are not required for the Backbone robot, since the orientation
of the robot is predefined by the docking units and therefore only certain direc-
tions of movement are necessary. In general, the Backbone robot needs to be able to
move forward, backward and to turn since these are the minimum requirements for
a swarm robot. Furthermore, under the condition of docking orthogonal to the nor-
mal drive direction of the robot, it need to move sideways. A locomotion drive unit
which can provide the features of a differential drive plus the possibility to drive to
the side is therefore sufficient. Both features are provided by the screw drive, which
is used within the Backbone robot. The screw drive locomotion unit itself can be
build very small since only two driving motors are required and the driving screws
have cylindrical shapes. Beyond the normal use of the nearly omnidirectional drive
of the Backbone robot, the screw drive provides the organism with a possibility to
move sideway when the screws of all robots within the organism are synchronised.
This can be a very helpful feature if a caterpillar like organism need to steer to the
side, for example.

An example of a system composed of reconfigurable heterogeneous mechan-
ical modules, i.e. the Scout robots and the Backbone robots, are shown in the
Figs. 2.2(e)-(g). All individual robots and organisms work as autonomous stand-
alone systems.

2.1.4 Docking Mechanisms and Strategies

The docking mechanisms are of primary importance in modular robotics as well
as in symbiotic multi-robot organisms. They should assure docking and undock-
ing between individual robots, as well as electrical continuity for power shar-
ing and signal transmission. Furthermore, the docking mechanism should tolerate
at a certain degree misalignments of individual robots during the docking pro-
cess (Salemi et al., 2006). Nilsson et al. have investigated design of a docking unit
and summarized desirable connector properties (Nilsson, 2002). In this section, the
properties required for docking mechanisms are investigated and a guideline for the
docking design is proposed. Docking is composed of several phases, and each phase
has several requirements to be satisfied.

1. Approach. The approach of the docking units can be categorized into three
modes. The first is the approach of the two locomotive individual robots. Be-
cause both robots can move freely, the approach of the docking units is rather
easy. The second is the approach of an individual robot to an organism. In this
case, the individual robot should be precisely steered. When the individual robot
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Fig. 2.3 Modes of misalign-
ments.

with non-holonomic locomotion capability needs to be docked to the organism,
the docking units on the side walls are not available unless the organism itself
can approach the individual robot. Thus, the aggregation of an organism must be
carefully planned considering the locomotion capability of the individual robots.
The last one is the approach of the two assembled robots or two arms/legs of an
organism, and this is especially important for a reconfiguration of the organism.

2. Alignment. Misalignment of the docking units fall in one of the six modes of
mis-alignments illustrated in Fig. 2.3 or a combination of them. Docking design
that allows robust self-alignment is crucial for autonomous assembly of a modu-
lar robot. Ground roughness need to be taken into consideration for the docking
of locomotive individual robots. In addition, it must be noted that the accuracy of
the fabrication and assembly of each robot have strong influence on the alignment
accuracy.

3. Docking and Locking. A docking unit with hermaphroditic feature is preferable
to make the assembly plan easier. The docking must be tight and stable, and the
electrical connection between the docked robots must be ensured. In some exist-
ing docking designs, the docking is secured by an additional locking mechanism.
A simple docking/locking mechanism occupying small space and being actuated
with little energy is preferable as well.

4. Sustainment of the docked status. The docking status must be sustained with-
out or with minimum power supply. The docking status needs to be independent
from the actuation of the assembled robots, otherwise, the additional control is
necessary to maintain the docking status.

5. Unlocking and Undocking. Another important feature is the capability to allow
undocking between two docked robots in case of emergency. If one of the indi-
vidual robots undergoes failure or malfunction, the robot must be removed from
the organism by the other robots. Therefore, it is preferable to undock the robot
by activating only one of the docked units.

6. Separation. The individual robots need to be separated and move away from the
assembled robot after being undocked so as not to hinder following procedures.
When an individual robot with non-holonomic locomotion cannot move away
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after being undocked, the organism needs to move away from it or another robot
needs to come to move it away.

In addition to the above mentioned requirements, easy and low-cost manufacturing
for mass production and easy maintenance are important especially when a large
multi-agent symbiotic system is targeted. Because multiple docking units are re-
quired for an individual robot, the cost of the docking unit is important.

2.1.5 Mechanical Degrees of Freedoms: Actuation for the
Individual Robot and for the Organism

Degrees of freedoms in the individual robot set its capability to change the mor-
phology of the symbiotic organism and ultimately strongly influence the capability
of the organism to perform complex tasks. In addition, the DOFs can be exploited
for tasks to be carried out by the individual robot itself or to achieve a different
geometric morphology that is functional to perform specific tasks (e.g., different
locomotion strategies). Unfortunately, space constraint and energy issues inevitably
limit the implementation of many DOFs on board the individual robot. In the hetero-
geneous system, each individual robot can have different DOFs based on its role in
the system. As for the above mentioned Scout and Backbone robots, the Scout robot
can have more than 1 DOF with small actuation force to constitute a small organism
for the intensive sensing during exploration or to be docked to a leg of an organism,
while the Backbone robot needs strong actuation force to constitute the main back-
bone of a big symbiotic organism. Hence, in the prototype design, the Scout robot is
equipped with 2 DOFs of smaller torque and the Backbone robot has 1 DOF of high
torque. Because the docking units cannot be attached to all surfaces, the relation of
the actuation axes and the available docking planes must be carefully considered.
To the authors’ best knowledge, there is no model that can give an optimised com-
bination of the actuating direction(s) and the docking planes, and only a simulation
could handle such a large number of DOFs. However, the swam intelligence and
self-learning algorithms might not require optimised mechanical solutions as long
as all constraints are properly defined.

2.1.6 Tool Module: Active Wheel

In a heterogeneous system, robots of different design can form an organism to-
gether. The two individual robots, namely Scout robot and Backbone robot, have
been proposed as basic elements to constitute an organism. The design of this in-
dividual robot is a result of compromise to integrate all mechanical and electronic
functionaries into one robot. The features of such individual robots have to be re-
dundant to be adaptable in an unknown environment. The idea of implementing tool
modules into the heterogeneous system is to provide a few specially designed tools
to compensate deficits of the individual robots. The design of tool modules needs to
be optimized for specific tasks such as sensing with a special sensor, manipulating
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(a) (b)

Fig. 2.4 Autonomous tools; (a) CAD image; (b) Real prototype.

an object, supplying power to the organism and carrying the individual robots or an
organism quickly. The individual robots need to share external dimension to be a
part of organism and for easy reconfiguration, and they need to be equipped with
common electronics, while a tool module can has any shape as long as it can be
docked to other individual robots or an organism. As an example of tool modules,
we developed a tool module to carry individual robots, named Active Wheel (see
Fig. 2.4). This tool module is intended to carry some individual robots quickly from
one place to another without using their energy.

The Active Wheel is an autonomous tool robot that is compatible with other
two individual robots platforms (Scout robot and Backbone robot) and used for
assistance goals. An Active Wheel consist of two symmetrical arms connected in
the middle by a hinge (see Fig. 2.4(a)).

This structure gives the opportunity of banding this tool in both directions up
to ±90◦ and hence can drive on top and bottom site. Such a symmetrical design
does not require distinguishing between bottom and top or between front and rear
side. An additional advantage of such geometry is the uniform weight distribution
which is important for stable locomotion. Even if the robot is in a skew position a
or b it tilts autonomously back into a stable position a1 or b1 (Fig. 2.5). Of one of
the major tasks of this tool robot is to carry a certain number of individual robots
efficiently from one place to another. This condition can be fulfilled only if the
Active Wheel can move omnidirectional. Therefore, two omnidirectional wheels
are used on each side on the robot. Such kind of wheels have been already proved
in many robotics projects e.g. in the RoboCup (Zweigle et al., 2009). Each wheel
consists of many small single rolls which are arranged perpendicularly to the driving
axle. This assembly allows an active movement in the driving direction of the wheel
and simultaneously allow a passive movement in the normal direction. Each of these
wheels is driven by a gear motor. Corresponding sensors which are placed on the
driving axle detect the rotation speed of the motor. Those are necessary in order to
provide complex manoeuvres such as driving curves or other complex trajectories.
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Fig. 2.5 Symmetry and stability of the robot and capability to bend upwards or downwards.

(a) (b)

Fig. 2.6 Autonomous tools; (a) Symmetry ; (b) Degree of freedom.

The docking between Active Wheel and another robot requires also a very precise
control of the wheels.

Additionally to the motor control unit, the Active Wheel is equipped with similar
electronic units and components like in the Scout or in the Backbone robot. These
comprise for example similar processors, power management, IR sensing unit, Zig-
Bee module, camera etc. All these electronics is mainly required in order to navigate
and to launch other robots autonomously and at the same time allow acting as stand-
alone robot and fulfill many different tasks in robot swarms. In a stand-alone mode,
Active Wheels can be used for getting out of damaged modules or modules that are
not be able to move. One possible scenario how Active Wheel can act as a stand-
alone robot, is shown in the Fig. 2.7. Two of the Active Wheels are placing a module
that was flipped over again in the right position.

As an example of a simple organism, topology of three robots can be considered
Fig. 2.8. The idea of this configuration is based on a combination between ad-
vanced computational and sensor features, provided by these two individual robots,
and a fast movement, provided by Active Wheel. Additionally, the Active Wheel can
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Fig. 2.7 Two Active Wheels carry a defective element.

Fig. 2.8 Simple organism
- Active Wheels with two
different docked modules.

supply both individual robots with extended energy source. As a common system,
these three platforms complement each other and demonstrate commonly very out-
standing characteristics. Features of a common system essentially overstep capabil-
ity of each of these individual robots – this is typically collective approach.

2.1.7 Summary of the Three Robotic Platforms

Based on the above discussion, the requirements and solutions of the Scout robot,
the Backbone robot and the Active Wheel have been defined as shown in Table 2.1.

To summarize this section, we have to point out two essential issues: integration
with electronics, considered in Sect. 2.2 and a need of software protection from me-
chanical damages, caused during evolving different controllers, see Sect. 4.1. Both
issues are essential in a successful design and stepwise improvement of mechatronic
platforms.
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Table 2.1 Scout robot, Backbone robot and Active Wheel: requirements and solutions

Scout robot Backbone robot Active Wheel
Require. Solutions Require. Solutions Require. Solutions

Alignment Rough Tracked
locomo-
tion

Accurate Omni-
directional
drive

Accurate Omni-
directional
drive

Ground
Surface

Rough Tracked
locomo-
tion

Plain nearly
Omni-
directional
drive

Plain Omni-
directional
drive

Locomotion
after dock-
ing

Required
to carry a
robot

OK (Lo-
comotion
on three
surfaces)

Not
required

wheels
still avail-
able for
driving

Required
to carry

OK (Lo-
comotion
on two
surfaces)

Speed of
locomo-
tion

High 12.5 cm/s Low 6 cm/s High 31 cm/s

DOFs of
actuation

2 DOF Bending:
±90◦
Rotation:
±180◦

1 DOF Bending/
Rotation:
±90◦

2 DOF Bending/
Rotation:
±180◦

Torque Low 3Nm High up to 7N High up to
5Nm

Speed of
actuation

Low 30◦/s 37.2◦/s High 180◦/s Low 50◦/s

2.2 Computation, Distributed Sensing and Communication

Eugen Meister, Oliver Scholz, Jaouhar Jemai, Jiri Havlik, Wenguo Liu,
Salah Karout, Guoqiang Fu, Serge Kernbach

Besides the mechanical platform of a robot, that determines its shape and actuation
capabilities, a key part of a robot’s hardware is its electronic circuitry. It defines
resources provided to software, e.g. the size of code and/or data memory, compu-
tation speed, communication bandwidth, etc. Processing power and communication
pathways dictate how sophisticated the software can be and how much time certain
algorithms will require. From a control perspective, too lengthy processing and/or
communication time will even make a robot useless, i.e. not capable to operate in
real time. For instance, if a robotic organism should start to topple, a controller
plus the involved actuators should be fast enough to regain its stability. In addition,
sensors are required in order to evolve the robot and to determine its own state. A
communication backbone among the different modules of an aggregated organism
is mandatory for self-reconfigurable robots, in particular when processing power is
to be shared among the organism members.
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In conventional, non-reconfigurable robots, the shaping of the electronic’s cir-
cuitry can already be quite demanding. In reconfigurable robots, however, this task
becomes even more difficult since, ideally, the electronics should be designed to
be highly modular, i.e. a stand-alone robot that docks to a second should turn into
one entity, one organism, together with its fellow robot(s). Thus, a fast and reliable
communication channel between these robots is wanted so that both can contribute
to processing by task sharing.

Task sharing is very often performed even in stand-alone robot modules by incor-
porating multiple processors, each serving for a dedicated purpose such as sensor
data acquisition, sensor fusion, actuation control, high level behavioural control, etc.
This approach has the advantage that it can simplify the design due to a more mod-
ular structure. Moreover, computation speed can be dramatically increased since
multiple computational tasks are performed in parallel with no need to constantly
interrupt an on-board processor. Furthermore, this approach allows parts running
independently and increases the robustness of the software. When smartly imple-
mented, one processor may even take over the role of another in the case of a failure.
Another benefit is a scalability of processing power, so that individual processors
can be set to sleep when not required in order to save energy.

This section first gives some insight into the computational and communica-
tion architecture of state-of-the-art reconfigurable robots in Sect. 2.2.1. Then, in
Sects. 2.2.2 and 2.2.3 the electronic architecture of SYMBRION/REPLICATOR mod-
ules is presented, followed by consideration of general sensor capabilities. After this
the distributed on-board vision system, the chosen wireless communication scheme,
the employed localisation system and integration issues are described in more de-
tails in Sects. 2.2.4-2.2.7.

2.2.1 Electronic Architectures in Related Works

In the following, a few examples of hardware architectures of state-of-the-art re-
configurable robots are given. It is though difficult to directly compare these since
every project has its own emphasis, e.g. some are intended for self-reconfiguration,
others depend on manual reconfiguration. However, most – if not all – recon-
figurable systems employ distributed computation and control. For instance, the
Molecube from Cornell University, New York, is equipped with two ATMEL INC.
ATmega16 microprocessors plus a smaller ATmega8 embedded in the robot’s servo
(Zykov et al., 2007b). For more processing power, e.g. required for behavioural con-
trol, a dedicated processor module lacking actuation but incorporating a more pow-
erful ARM OLIMEX LPC-H2148 can be manually attached to the Molecubes. All
three on-board controllers are connected to a TTL-level RS232 bus, running at up to
1 Mbits/s. A similar bus is used in addition to provide inter-module communication
when multiple modules have been joined.

Superbot of the University of Southern California incorporates two 16 MHz AT-
mega128 microcontrollers. Taking account the specific mechanical platform, which
consists of 2 half-modules, each of the controllers is responsible for the actuators
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and sensors of its half-module in which it is located. However, one of the pro-
cessors in addition takes care of the behavioural algorithms. Therefore, this mi-
crocontroller is referred to as a “master” controller whereas the other as “slave”.
Both microcontrollers communicate via an I2C-bus1 at 400 kbits/s. For the inter-
modules communication, a 230 kbits/s RS232 bus is being used, with each three
of the docking ports of a half-module having its own RS232 interface. In turn, the
corresponding microprocessor of a half-module is attached to the group of dock-
ing ports via a 1 Mbit/s SPI-bus. Wireless inter-module communication when not
docked is performed via an IrDA2 similar infrared communication scheme with a
speed of 230 kbits/s (Salemi et al., 2006).

The M-Tran II platform from the National Institute of Advanced Indus-
trial Science and Technology (AIST), Japan, employs a Neuron chip (ECHELON

CORP.) as a “master” CPU plus three microcontrollers (PIC16F873 and F877).
The four on-board controllers communicate via a two-wire asynchronous serial
bus. Inter-module communications make use of RS-485 and a LON3-Protocol
(Kurokawa et al., 2003). The successor, M-Tran III, has a similar architecture but
uses a faster field bus for inter-module communication, namely 1 Mbit/s CAN, and
instead of the older controllers now relies on a 32 bit HD64F7047 as the main-
processor and a HD64F3687 plus 2 HD64F3694 (all from RENESAS CORP., Japan)
as sub-processors.

The last example given here is the architecture of the MICHE system, developed
at MIT, Boston. This lattice type reconfigurable robot incorporates 2 processors.
The main or primary processor (PHILIPS) has an ARM processing core, whereas
the secondary microcontroller is an 8 bit processor from CYPRESS MICROSYS-
TEMS. Again, I2C is used for the intra-module communication. Within an organ-
ism, IR based communications with a speed of 9600 bits/s has been implemented
(Gilpin et al., 2008).

2.2.2 General Hardware Architecture in
SYMBRION/REPLICATOR

In this section, the electronic hardware and architecture of single SYMBRI-
ON/REPLICATOR robot modules (the first prototype) is described in more detail
as another example of self-reconfigurable robots (see Fig. 2.9). In order to better
understand the design considerations, the hardware requirements of the SYMBRI-
ON/REPLICATOR robots – many of which may be generally valid for autonomous
reconfigurable robots – are given below:

1. Every robot module be capable of moving freely and autonomously in a 2-D
plane.

1 I2CTM (Inter Integrated Circuit) is a registered trademark by the PHILIPS ELECTRONICS

N.V. CORP., Netherlands.
2 IrDATM is a registered trademark of the INFRARED DATA ASSOCIATION CORP., USA.
3 LONTM (Local Operating Network) is a registered trademark by the ECHELON CORP.,

USA.
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2. Every robot module have a certain intelligence based on a pre-loaded operating
program.

3. The operating program be loadable through its communication module.
4. Every robot module be able to determine its remaining energy level.
5. Every robot module be capable of recharging its battery from a dedicated charge

station.
6. If fellow robot modules are short of energy, a module should be able to share its

energy resource through a power bus.
7. Every robot must be able to communicate with other robots disregarding if it is

a separated individual or if it is integrated in an organism.
8. Every robot be able to mechanically connect itself with other modules through

an on-board docking system to form an organism.
9. The docking system should provide not only a stable mechanical connection,

but also an electric connection for energy sharing and wired communication.
10. Every robot should have a sensing system for accurate docking.
11. The organism be capable of moving freely and autonomously in a 3-D space.
12. For orientation, self-awareness, and cognition, every robot should carry sensors,

such as accelerometers, infrared detectors for ranging, microphones or cameras.
However, not every robot must necessarily wear the same set of sensors.

Since in SYMBRION advanced control and evolutionary algorithms, such as on-
board genetic evolving, etc. needed to be implemented, here, one major design
criterion was the calculation and processing speed. On the other hand, REPLICA-
TOR required a high number of different sensors since the swarm’s objective was
to form a highly dynamic sensor network for vast applications, like surveillance,
exploration, etc. As shown in Fig. 2.9, each module hence carries a number of pro-
cessors/microcontrollers. However the major control of each robot is performed by
the “Core Processor”, an LM3S8970 Cortex4 microcontroller from LUMINARY MI-
CRO INC. The main purpose of it is to pre-process raw sensor data, to run higher
level algorithms such as an artificial immune system (AIS) or artificial homeostatic
hormone system (AHHS) as described in Sects. 4.4 and 4.2, to calculate the mod-
ule’s position, to pass this information to actuators, etc. In order to support this
processor, a shadow processor (Blackfin5 ADSP-BF537E from ANALOG DEVICES)
is included that mainly takes over computationally intensive processing tasks, i.e.
of the images taken from the 4 on-board cameras (s. Sect. 2.2.4). Due to its high
power consumption, the intention is to operate this processor unit only if required.
For example, if image processing has to be used to recognize the environment or
if the organism size (i.e. number of docked modules) reaches a certain limit so that
locomotion tasks require a lot more computational resources.

A dedicated microcontroller (ATmega1280 from ATMEL INC.) is responsible for
A/D-conversion and further processing of analogue sensor signals like microphones,
IR-based distance sensors, etc. Since at least 1 brushless motor, whose control oc-
cupies many processing resources, is on board a robot module 2 additional Cortex

4 CortexTM is a registered trademark of ARM LTD. CORP., United Kingdom.
5 BlackfinTM is a registered trademark of ANALOG DEVICES INC., USA.
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Fig. 2.9 Electronic architecture of the SYMBRION/REPLICATOR robotic modules.

controllers (LM3S8962) have been integrated, dedicated to all major actuation and
locomotion tasks. Furthermore, the robots possess a UWB-based localisation unit as
described in Sect. 2.2.6, a ZigBeeTM radio communication module, a battery manage-
ment module, Flash and SD memory, a LASER ranging module, and other sensors.

In order to be able to compare the capabilities of the various microcontrollers
mentioned in this chapter (not only those that are used by SYMBRION/REPLICA-
TOR), a brief overview is given in Table 2.2.

The main intra-module communication channel in SYMBRION/REPLICATOR is
an I2C-bus. Most of the sensors are attached to this bus. Since I2C is a multi-master
bus, it is straight-forward to connect all available processors to this bus. Depend-
ing on the implementation, I2C permits transfer rates of up to 1 Mbits/s. However,
the net data rate is lower since each device must first be addressed through address
coding which adds information to be transferred. In addition, some sensors are only
able to handle a gross rate of transmission of only up to 400 kbits/s. Two separate
SPI-buses are therefore used additionally for faster inter processor communications.
This is a true master-slave bus that uses CS-lines for addressing and interrupt re-
quests for slave communication initiations, so that very little overhead is generated.
The shadow processor is master of SPI-bus 1, whereas the core processor is master
of SPI-bus 2.
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Table 2.2 Basic features of the given microcontrollers.

Controller Architecture Clock Power Consumption SRAM Flash EEPROM

ATMega8 8 bit RISC 16 MHz 3 V, 3.6 mA at 4 MHz 1 K 8 K 512 Bytes
ATMega16 8 bit RISC 16 MHz 5 V, 12 mA at 8 MHz 1 K 16 K 512 Bytes
ATMega128 8 bit RISC 16 MHz 5 V, 17 mA at 8 MHz 4 K 128 K 4K
ATMega1280 8 bit RISC 16 MHz 5 V, 10 mA at 8 MHz 8 K 128 K 4K
LPC2148 16/32 ARM7 60 MHz 3.3 V, 40 mA at 60 MHz 42 K 512 K -
PIC16F873 8 bit RISC 20 MHz 3.3 V, 0.6 mA at 4 MHz 192 B 4 K 128 Bytes
PIC16F877 8 bit RISC 20 MHz 3.3 V, 0.6 mA at 4 MHz 368 B 8 K 256 Bytes
HD64F7047 32 bit RISC 50 MHz 5 V, 200 mA at 40 MHz 12 K 256 K -
HD64F3687 16 bit RISC 20 MHz 5 V, 21 mA at 20 MHz 4 K 56 K -
ADSP-BF537 32 bit RISC 600 MHz 1.3V, 227mA at 600MHz 32 Ka 48 Kb -
LM3S8970 32 bit RISC 50 MHz 2.5 V, 52 mA, at 50 MHz 64 K 256 K -
LM3S8962 32 bit RISC 50 MHz 2.5 V, 52 mA, at 50 MHz 64 K 256 K -

a L1 Data SRAM, b L1 Instruction SRAM; (ATMEL, 2009c; ATMEL, 2009b;
ATMEL, 2009a; ATMEL, 2007; NXP, 2008; Microchip, 2001; Renesas, 2004;
Renesas, 2005; Analog Devices, 2009; Luminary Micro, 2008; Luminary Micro, 2009)

Since the multiple modules within an organism need to cooperate and distributed
computing is envisaged for the aggregated system, a reliable communication bus is
required that is fast enough to pass on the data from module to module with accept-
able delay. For SYMBRION/REPLICATOR, distributed world modelling is strived
for, making strong use of the vision system. This implies that large amounts of data
will most probably need to be transmitted across the bus. In the first prototype,
CAN has been implemented since it is a rugged multi-master field bus, which is
most favourable for this kind of application. However, due to the speed restriction
of 1 Mbit/s this may turn out to be a bottle neck for a larger organism. Alterna-
tively, FlexRay6, a successor to CAN, provides a tenfold of speed. Since it is a
relatively new standard, only very little hardware is currently available. Therefore,
also 100 Base-T Ethernet using a network switch to handle communications from
the 4 docking ports is under consideration.

2.2.3 General Sensor Capabilities

Following the approach from the previous section, we consider now the general sen-
sor capabilities of the platform. For the application of evolutionary approaches as
well as for sensor network applications, the platform should provide a measurement
of environmental values, in particular, how robots do fit to the environment. The
local fitness measurement for collective behaviour represents a very challenging
task, therefore a serious attention during the design of SYMBRION/REPLICATOR

platform was paid to this issue. From a conceptual viewpoint, the following four

6 FlexRayTM is a registered trademark by the DAIMLERCHRYSLER AG CORP., Germany.
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Table 2.3 Several examples of on-board fitness measurement.

Type/Name Can be used for

Approximation of a global state
Exploration of a global map Goodness of behavior
Global coverage Goodness of behavior
Position/Orientation in 3D space Success of kinematic transformations
Local environment
Gradient of light Environmental feedback
Gradient of temperature Environmental feedback
Number of neighbors Feedback of collaborative strategies
Number of collisions Goodness of behavior
Distances to objects Goodness of behavior
Specific signals in environment General feedback
Explored area Goodness of behavior
Robot-Robot
Internal states of another robot Feedback of collaborative strategies
Number of received “eggs” Feedback of collaborative strategies
Trophallaxis exchange Feedback of collaborative strategies
Internal
Energy Level Individual fitness/activities
Distribution of energy Individual fitness
Number of internal failures Individual fitness

ways are available to measure the fitness: approximation of a global state by local
sensors, perception of local environment by on-board sensors, different measure-
ments during robot-robot interaction, and finally, measurements of internal states.
These factors are summarized in Table 2.3.

1. Approximation of a global state by local sensors. For an application of evo-
lutionary strategies the most appropriate feedback may be provided when knowing
a global state of the environment, including internal states of other robots. How-
ever, such information is not available for individual robots due to practical reasons.
Nevertheless, the global state can be approximated when using the world model and
several sensor-fusion approaches, see Sects. 3.1 and 3.2. Examples of global states
are map-related values, such as explored/unexplored area, coverage of some terri-
tory, position of robots in 3D space. The platform includes several sensors, such as
a localization system or laser rangers, for these purposes.

2. Sensing a local environment. Perception of local environment by on-board
sensors is the primary way of receiving information about the environment for both
evolving and sensor network applications. The overview of integrated, or considered
for integration, sensors is given in Table 2.4.
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Table 2.4 Integrated, or considered for integration, on-board sensors.

Sensor Name Interface

Environmental
Light ADPS9002 analog
Air Pressure SCP1000 I2C
Directional Sound SPM0208HD5 analog
Humidity/Temper. SHT15 I2C
IR-reflective TCRT1000 analog
Imaging Sensor OV7660FSL PPI
Laser (in the Range Finder) LS-1-650 digital
RFID sensor Lux no
Sonar sensor SRF08(or 10) I2C
Laser Range Finder URG-04LX RS232/USB
Detecting motion in environment AMN34111 analog
Hall effect (magnetic) US4881EUA analog
Color Sensor TCS230 digital
Capacitive MT0.1N-NR digital
Locomotion
3D Acceleration LIS3L02AL I2C
WTL laser mouse ADNS-7530 SPI
3D Localization Ubisense digital
Orientation-Sensor SFH 7710 SPI
IR-docking sensor IR-based analog
Force measurement sensor K100N/RB-Int-01 analog
Joint angle sensor 2SA-10-LPCC analog
Compass HMC5843 digital
Internal, Indirect Sensors
Voltage, Current BQ77PL900DL SMBus
Bus Load Sensor no software
Center of mass no software
Energy-docking sen. no software

3. Information provided by a robot-robot interaction and communication.
Robot-robot interaction is a very important source of fitness measurement. The cor-
responding sensors are the force measurement sensors, joint angle, compass or 3D
accelerations. Robot-robot communication plays also an important role here, which
allows fusing local information from different robots. This is related not only to
environmental values, but also to internal states of robots.

4. Internal states of robot organisms. There are different internal sources of
information: energy-based, mechanical, load on buses, number of internal failures,
CPU/Memory usage and other. The energy-based values, discussed in Sec. 2.3, are
very useful for many purposes, e.g. in estimation of the most efficient structure
of organisms. Generally, the number of internal sensors, most of them are virtual
sensors, can be very high.
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To give a reader an impression about sensing capabilities of the platform, we col-
lect in Table 2.4 a brief overview of on-board sensors. In the following we consider
the development of specific vision and IR-based sensors in Sect. 2.2.4, a smart laser
sensor in Sect. 2.2.5 and a localization system in Sect. 2.2.6 in more detail. This
consideration is finalized by outlining the integration issues in Sect. 2.2.7.

2.2.4 Vision and IR-Based Perception

In the previous section, we considered different off-the-shelf sensors, which will be
integrated on the platform. This section describes a development of specific vision-
and IR-based perception, where we fist concentrate on imaging system. In a robot
organism, the robot cells perform a lot of tasks ranging from locomotion, 3d actu-
ation, communication, sensing, power management and control, thus, performing
image processing creates a burden on the cells processing capabilities due to the
large amount of images.

Fig. 2.10 An example of a robot organism.

Parallel and distributed image pro-
cessing provides a solution for the
large amount of information provided
by cameras. Having four cameras on
every robot cell, a robot organism
of nine cells, as an example, has
about 20 accessible cameras depend-
ing on the cell formation of the or-
ganism. This makes parallel and dis-
tributive image processing a necessity
in such a multi-camera architecture
(Aghajan & Cavallaro, 2009). Fig. 2.10
shows an example of a robot organism
consisting nine robot cell formation and the accessible and non-accessible cameras.
Also, Fig. 2.11 shows an example of four consecutive images grabbed from the
vision prototype.

Parallel and distributive image processing relies on the Communication Back-
bone (CBB) for Load Distribution. Fig. 2.12(a) shows a diagram with an example
of a Communication Backbone in a robot organism. The communication medium
distributes the processing work load all over the whole system. For example, robot
cells busy with 3d locomotion can grab an image and transfer it over the communi-
cation medium to another robot cell for processing. Fig. 2.13 shows an example of
work load distribution in a robot organism.

Under heavy image processing, the robot cells of the organism will act as a
pipeline, where every robot cell will take an image processing subtask thus speeding
processing and increasing its image processing capabilities. To be capable of doing
immense image processing the robot organism relies heavily on its communication
medium backbone. The result of every finished subtask will be put on the communi-
cation medium for the next cell in the pipeline to process. The end result of the last
cell in the pipeline will be sent to the master robot cell running the scenario which
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Fig. 2.11 An example of four consecutive images grabbed from the robot vision prototype.

(a) (b) (c)

Fig. 2.12 (a) Communication medium Backbone of the robot organism; ; (b) Parallelism of
stereo vision task on two different robot cells having two different sets of stereo images; (c)
An example of an image processing task distribution pipeline in a robot organism showing
the master robot cell which initiated the task and the robot cell arrange with respect to their
position in the pipeline.

initiated the image processing task. Fig. 2.12(c) shows an example of a task pipeline
in a robot organism.

Initiating parallel and distributive image processing tasks relies on the Master
Robot Cell (MRC). The master robot cell is the cell which initiates the request for
distributing an image processing task. The master cell checks the processing work
load of every cell in the organism and identifies the cells needed for pipelining.
Then, it arranges the image processing subtasks for every cell creating the pipeline.
The same procedure is followed for the master robot cell to initiate two parallel tasks
that each run on a different cell performing the same task but with different set of
image data.
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Fig. 2.13 Diagram showing the processing workload of every robot cell in the organism and
the workload assigned to robot cells with low processing workload.

Fig. 2.14 An example of a consecutive image
grabbing from every accessible camera in the
robot organism showing the necessity of con-
trol in a parallel and distributed vision system.

Any robot cell in the organism is
capable of grabbing images from any
camera in any robot cell in the organ-
ism and it also capable of retrieving
any image and image processed infor-
mation in any memory in any robot
cell in the organism. This distributed
vision architecture provides the robot
organism with vision rich information,
flexibility and complete control for vi-
sion algorithms. This feature relies on
to aspects the communication medium
backbone and on an intelligent camera
and memory selection algorithm. Fig. 2.14 shows an example of a consecutive image
grabbing from every accessible camera in the robot organism showing the necessity
of camera selection control in a parallel and distributed vision system.

The selection algorithm relies on a continuously updated database of all the robot
cells and their corresponding accessible cameras in the organism. Thus, it needs
updated information of cell formation of the robot organism to know which cameras
are not accessible due to docking formation. The other aspect that the selection
algorithm relies on is complete control of any camera on the robot organism, thus,
providing an accessible medium for any robot cell in grabbing images from any
camera in the organism.

IR-based Guidance for Docking and Obstacle Detection

Another developed system of the platform is the IR-based perception. One of the
key requirements for the robots is the capability for autonomous morphogenesis:
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(1) the robots can move freely without colliding with each other and (2) can dock to
(and undock from) specific locations of the organism as required. The general idea
for the docking approach is illustrated in Fig. 2.15: once one robot (A) in the swarm
decides to initialise the docking process it will broadcast some signal to attract other
robots.
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Fig. 2.15 Scenario for autonomous docking,
B docks to A.

Another robot (B) within range can
detect the signals using an array of
sensors and move towards the sig-
nalling robot along the detected direc-
tion. Thus docking can be divided into
three stages according to the range be-
tween A and B:

1) recruitment – B detects A’s ‘dock-
ing’ signal at long range but it can
only deliver approximate direction
information;

2) docking alignment – B executes pre-
cise alignment at short range;

3) docking ready – A and B are close
enough that the physical docking
mechanism can take effect and lock
cells together.

To accomplish such a procedure, either sound or light signals can be used. How-
ever, considering the power consumption, the physical dimensions, the operational
range and also the commercial availability of the sensors, we choose to use only
Infra-Red signals in our implementation. Three different sensor units with differ-
ent operational range are developed for these purposes. The functionality of these
sensor units can be categorised to be obstacle detection (proximity sensor), beacon
detection (docking sensor) and local communication, according to their operational
range, which also correspond to stages 3, 2, 1 respectively. As each robot has a cubic
shape (size: 80 × 80 × 80mm) and docking is allowed on four sides, multiple iden-
tical sensors will be distributed around the robot, as shown in Fig. 2.16. Table 2.5
lists the essential components used in our design against the proposed functions.

Table 2.5 The usage of sensors against the functionality.

Functions
IR sensor1

LED2 IR receiver3
emitter receiver

Proximity � �
Docking � �
Communication � �

1TCRT1010; 2TSML1020; 3TSOP36236.
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Fig. 2.16 Placement of the sensors: (a) Side view; (b) Top view.

Here, obstacle detection plays two roles during the docking approach process:
(1) detecting the obstacles when approaching the signalling robots and (2) detect-
ing the distance to the signalling robots for docking alignment (with the beacon
detection sensors introduced in the next section). As illustrated in Fig. 2.16(b), 8 IR
sensors (marked with dark rectangles) are placed on the four side PCB boards, two
on each side.

Successful autonomous docking between two robots requires reasonable accu-
racy of alignment prior to docking. The idea to achieve the alignment is somewhat
like beacon detection: one robot flashes an IR LED at a fixed frequency - placed
right above the docking unit - acting as a beacon, while the other robot uses its 8
IR sensors (the same ones used for obstacle detection) to detect the signals. To deal
with the situation that the robot may turn 90◦ in both directions, on each side PCB,
two extra LEDs are placed on both the left and right sides close to the docking units,
as shown in Fig. 2.16(a).

As the obstacle detection and beacon detection approach rely on the analogue
output of the IR sensors, they work only in very limited ranges. In order to achieve
autonomous self-assembly in a large swarm of robots, sensors with longer opera-
tional range and local communication mechanism are required to recruit more robots
for the organism transform process. Four different IR communication channels are
implemented for each robot, one channel on each side. These four channels can work
individually. By default, all four channels are in ‘listening’ mode. Whenever one
robot is broadcasting messages, another robot within range will receive the message
with one or two adjacent channels, which provides the robot with rough directional
information about where the signalling robot is.
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2.2.5 Triangulation Laser Range Sensor for Obstacle Detection
and Interpretation of Basic Geometric Features

The further developed sensing system is the triangulation-based laser range sensor.
In order to perform far-range exploration of the environment, safe navigation (e.g.
obstacle avoidance), localization and mapping tasks in uncertain environment, usu-
ally several range measurement sensors are embedded on mobile robots, e.g. ultra-
sonic sensors, light (e.g.,infra red, IR) sensor and specifically laser sensor. Among
these sensors, laser-based range sensors and scanners can offer highly focused struc-
tured light, this can be used for a more refined and computationally-simpler under-
standing of the unknown environment by elaborating the structured-light pattern as
acquired by an integrated camera. In addition, structured light allows the robot to
make relatively accurate measurements of geometric features of the surrounding
objects, contributing to the decision-making process of the robot in order to accom-
plish many tasks, or more simply for safer navigation and exploration. There are two
basic working principles exploiting lasers for measuring and scanning applications:

1. Time-of-flight (TOF) or phase-shift based system: basically exploiting the known
light speed as parameter for distance calculations of (non-modulated or modu-
lated) light propagation;

2. Triangulation-based system: In the system, the laser beam emitted by a laser
diode is projected onto the surface of an object, and the reflected beam is gath-
ered back by an image sensor (CCD or CMOS). Position of reflected beam in
image plane, optical center of camera, source of laser beam and laser point on
object surface constitute basic geometrical setup, obstacle distance from camera
to object can be computed from this geometrical relation.

TOF laser sensors offer measurement range up to tenths of meters, but they need
a quite accurate and cumbersome electronics which is not suitable to be integrated
in miniaturized mobile robots. Cost issues are also relevant for large multi-robot
systems if the integration of such a device is desired for each individual robot.

Triangulation laser sensors require much simpler electronics and can be inte-
grated in small volumes, though offering much shorter distance range capabilities.
However, in particular for large multi-robot systems, and even more important if
miniaturized robots are targeted, the capability of a local sensing is perhaps the
most important, while far-range information acquired by one of modules can be
shared in a multi-agent or swarm system. Considering the target of equipping each
of the many planned robots with this system, the sensor cost turns to be the most
important factor. The simple hardware allows small size, lightweight and low power
consumption.

Taking advantage of the presence of many robotic modules and their capability
to dock to an organism, the first idea can focus on the possibility to have a coopera-
tive laser scanner, by exploiting the capability of the assembled organism to scan an
object with an “arm” equipped with a laser-line generator, while detecting the im-
age with a camera mounted on another physically displaced “arm”. In such a case
a known laser-camera distance and declination of laser beam over optical axis of
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Fig. 2.17 Configurations of triangulation laser sensor on robot: (a) Laser and camera on front
side of robot; (b) Laser and camera on rear side of robot;(c) Sketch of configuration for laser
tilting up small angle on front side of robot;(d) Sketch of configuration for laser tilting down
small angle on rear side of robot.

camera had to be precisely determined to obtain the basic geometry for distance cal-
culation by analysis of kinematic chain that connects two “arms” mentioned above.
In this way it would have possibility to explore small objects by reconstructing three-
dimensional shape of them using a 3D model building algorithm.

However, the possibility to have a reliable scanner by means of cooperative
“arms” appeared quite challenging, in particular regarding the precision that could
be obtained, heavily depending on the accuracy of kinematic chain of the organism.
In addition, the system could be exploited by the organism only in particular cir-
cumstances. Consequently, it would more preferable to try to develop a miniaturized
laser scanner onboard each robot, in order to exploit the laser scanning technique
not only at the organism level, but also in the single robotic module, thus giving
much more autonomy and capability to the individual robots themselves.

In this way, the triangulation laser sensor having both the laser-line generator and
the camera onboard each robot was chosen for the proposed system. Since the choice
of the camera and the distance between the laser and the camera can be determined
based on the other sensing requirements and the mechanical design, the relative po-
sition of the laser and the camera and the tilting angle of the laser over the optical
axis of camera are main parameters to determine the robot-object distance, reso-
lution and minimum height of the detectable objects. The possible configurations
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investigated to determine the optimized parameters are shown in Fig. 2.17. For the
configuration shown as Fig. 2.17(a), the range sensor can achieve far range and good
resolution, but short object and hole on floor will not be detected; For the config-
uration shown as Fig. 2.17(b), short object and hole on floor can be detected, but
the detectable range is limited. Both configurations can achieve 2D static scanning,
while the later configuration can achieve 3D active scanning through controlling
movement of bending part.

The distance from camera to object D under the condition of 2D static scanning
can be described:

D =
f d

u + f tanθ
, (2.1)

where f is focal length of camera, u is the distance from point of reflected laser
beam on image plane to the middle of image plane, d is the laser-camera distance,
θ is the tilting angle of the laser over the optical axis of camera. The positive value
of the θ means that the laser tilts up and the negative value means that the laser tilts
down.

The geometric features of surrounding environment(i.e. hole, gateway and cor-
ridor) can be understood after laser lines are extracted from background using im-
age processing algorithm. The output data from triangulation laser sensor such as
camera-object distance D, hole width, gate width, object height, and orientation an-
gle of object can be used for motor control of robot, thus robot will be navigated
effectively in an unstructured environment.

2.2.6 Powerful Wireless Communication and 3D Real Time
Localisation Systems

This section describes two subsystems - wireless communication and 3D locali-
sation, which are developed in a synergy. The powerful wireless communication
system and active localization of robotic modules is capable of ensuring data trans-
fer both within and outside of the robotic system. The system design comprises
both hardware, based on state-of-the-art Cortex Chips and IEEE 802.15.4/ZigBee
communication standard, and control software for those hardware components.

The powerful wireless communication system is built on a hardware and software
platform of ZigBee chips or modules, thanks to which all the standard advantages
can be exploited. The communication system is designed to exchange data from a
range of sensors, and to monitor and control the robotic network. The plan is for
hundreds of robots to co-operate within the network.

As a main software component, a Communication application interface (CAPI)
has been created. CAPI ensures:

a) sending and receipt of general messages,
b) receipt of co-ordinates,
c) sending of notification and alerts,
d) switching off of radio module and activation of power saving mode, and
e) request for messages passed off in saving mode.
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Every single radio module has its own UART driver implemented. CAPI defines
data structures, alert message codes, error messages and function prototypes. CAPI
functionality and robustness is tested within a network of about fifteen modules
(which simulate real robots), in which network communication is charged by a large
amount of data transfer. One of the main objectives of the tests is to examine the
robustness and power budget in mesh topology. PC application software is created
to drive radio modules and to simulate data.

The identification system concept starts out from two-level identification logic -
passive and active. The passive level is implemented by powerless RFID tag imple-
mentation, the active level is implemented by unique WPAN addressing. A passive
identifier serves for IdM (Identity Management) implementation. IdM, formerly es-
tablished for a “living organism world”, will ensure follow up of the entire life-cycle
of units in a “robotic world”. IdM will process such events as robot introduction into
the system, monitoring of its developing features, robot character configuration (or
skills) , activity performance, removal from the system and other events within the
life-cycle.

The active localization system (ALS) has been developed through a synergy of
two systems in project - wireless communication and 3D real time localisation. The
active localization system came into being within the framework of this project and
is useful for position detection with an accuracy of up to 15 cm within an area of
up to hundred thousands square meters. The main benefit of ALS is enhancement
of decision-making processes as a part of the artificial intelligence of the robotic
system. In principle, every entity will be aware of its own position in real time (so-
called spatial awareness), as well as the positions of other entities. Data provided
by hardware components of ALS is processed and visualized on-line using soft-
ware utilities. The essential advantage of the active localization is that allows an
autonomous effective and fully real-time mutual co-operation of the robots. Robots
do not need any commands from the upper system. Robots themselves are aware
“where who is” and “what is intended to be done by whom”. Robots would be fully
dependent on the system decision making.

Communication System

In the SYMBRION/REPLICATOR we perceive the robot primarily as an autonomous
entity, but also as an entity which is able to co-operate in a swarm. Similarly to living
organism, when the swarm executes a common task, the activity of every unit, given
by a role within the task, is different and highly dynamic. Connection via wires is
inoperable or absurd in most of these cases.

ZigBee standard ensures various ways of building a device network within a so-
called Personal area network (PAN). Profitable advantages such as - a) power saving,
b) ability of huge amount of units to co-exist within the network, c) multi-hop and
ad-hoc routing ensuring communication within a wide range – bring the first possi-
ble answer. The second answer we could look for is in the intention for which the
standard has been established – state-of-the-art technology for an efficient approach
towards automation, regulation, energy management, sensor network management,
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to make communication in this field as easy as possible. Taking into account the
fact the projects intend to create the robot as a carrier of variable sensors which
will gather an amount of environmental data to provide to the industrial domain, the
standard appears to be a good choice in order to make the robotic system industrially
usable and interoperable. The standard also complies with swarm demands in terms
of short-range communication. The operational radius of the swarm is expected to
be around hundreds of square meters.

Similarly to the human world, the robotic world needs to communicate free of
useless and redundant information flow and to use clear and unique commands.
Furthermore, robots can be taught to increase their efficiency by using message-
coding, which also helps to control the possible congestion of communication chan-
nels. Within the standard terminology, every robot in the network (swarm) is either
an End Device or a Router (depending on the functionality requested) and the en-
tire swarm controlled by the so-called Co-ordinator. In our robotic terminology the
Co-ordinator is called the Base Station. The Base Station has two basic functions -
a) to control the swarm, b) to mediate communication with other systems, e.g. the
Localization system. From the perspective of the communication system concept,
the efficiency is also affected by the implementation process. Management of the
communication has to handle the data flows on several levels of software modules
as well as hardware interfaces. Communication Management has to decide when it
is better to communicate by wire, light, sound or by air, taking into account amount
of data and the destination. Wireless communication is implemented into the Com-
munication Manager through an application interface to abstract from the protocol
implementation details and to make use of the wireless channel as simple as possible
for programmers.

Fig. 2.18 Wireless communication application inter-
face within SW architecture.

The communication princi-
ples, with respect to who is
talking with who and for what
reason, are designed so as to
approximate the behaviour of
living organisms. Even an or-
ganism in a crowd knows to
address a message only to one
or to all, as well as which
it knows what level of sound
to use to address only close
neighbours, or what message
content or language to select
in order to be understood by
the targeted organisms. Ac-
cording to the software design,
the robot uses a set of system-
and function- messages in order to achieve the objective of communication. In or-
der to set the communication principle in operation, the implementation of various
software functionalities under a robotic computation system, is required. Fig. 2.18
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shows how the wireless communication application interface is integrated into the
robotic computation system.

One of the basic assumptions for efficient communication is that every subject
has to have unique identifiers. The reasons for identifying artificial subjects is sim-
ilar to why this is obvious among living organisms - the entity when born obtains
an ID, which will be linked to every activity performed by the entity during its life
cycle until it dies. For this fundamental identification we can use a similar concept
as that developed for the human-world called Identity Management (IdM), using
RFID means functioning powerless (even non-powered entity has to be identified).
Besides RFID means we intend to utilize two other identifiers for the advanced
identification system - unique number of the RF module and unique number of the
localization Tag. All identifiers are merged in the Base Station, they are used for
message addressing within the wireless communication system.

3D Real Time localisation and Robotic Spatial Awareness

The 3D real time localisation is a very important topic as it rules the reaction of
the robot swarm towards its changing position within the surrounding environment.
Localisation techniques are mainly based on distance estimation, angle measure-
ment, neighbourhood proximity or hop-count methods. All these schemes rely on
physical signals and require their own parameters including hardware requirements,
scalability aspects, performance metrics and constraints.

A number of different location positioning systems have been proposed dur-
ing the last two decades. For instance, the active RFID and IR-based sys-
tems (Want et al., 1992) have inherently limited indoor coverage. The ToF-based
systems require an accurate synchronisation of all the nodes and any timing
error in clocks of the transceivers induces ranging errors. Localisation meth-
ods based on RSSI (received signal strength identifier) have been investigated
in (Lorincz & Welsh, 2005; Alippi & Vanini, 2006). However, all the RF based
localisation and tracking systems require a prior calibration or an indoor prop-
agation model (Jemai & Kuerner, 2008; Jemai et al., 2008), which is not simple.
Even if the model is well calibrated, the localisation errors due to unpredicted
multi-path signal fading and shadowing could not be avoided (Jemai et al., 2009;
Jemai & Kürner, 2009). However, techniques based on time-difference of arrival
(TDoA), though requiring two types of transceivers, provide more accuracy and
robustness against multipath and signal fading (Gustafsson & Gunnarsson, 2003).

These techniques have been applied in several recent localisation sys-
tems. For instance, Massachusetts Institute of Technologys Cricket sys-
tem (Gustafsson & Gunnarsson, 2003) is an indoor localisation system, which uses
TDoA between a radio and an ultrasonic signal for distance ranging to com-
pute a trilateration from pre-positioned nodes. The position is computed based on
the distance estimates from Cricket and Bayesian filtering (Priyantha et al., 2000).
In (Ansari et al., 2007), the localisation and tracking framework makes use of a non-
linear Bayesian filtering scheme (Particle filters) to handle non-linear motion even
in the presence of non-Gaussian measurement noise.
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The Active Badge infrared-based (Want et al., 1992) localisation system de-
veloped by AT&T beginning of the 90th, one of the first developments,
is based on localising people (roughly with a room accuracy) moving
within a building by single infra-red receivers placed in different rooms.
RADAR (Bahl & Padmanabhan, 2000) uses the signal strength and signal-to-noise-
ratio of wireless LAN for indoor position sensing. In practice, clock synchronisation
of all involved transceivers is often very difficult. Therefore, time difference-of-
arrival (TDoA) techniques are required. The same group who developed the Active
Badge system (Want et al., 1992) proposed later the Active Bat system (Cox, 1991).
It relies on Ultrasound-based time-of-flight lateration. A bat, which is carried around
by a person, sends an ultrasound chirp to a grid of ceiling mounted receivers. Si-
multaneously, the receivers are synchronised and reset by a radio packet that is also
transmitted by the bat.

Throughout the last decade, sensor-based real time position estimation of robots
has been recognised as a key problem in mobile robotics. Therefore, there has
been a tremendous scientific interest in algorithms for estimating a robot’s loca-
tion from sensor data (Borenstein et al., 1996; Burgard et al., 1996; Cox, 1991). In
other several recent papers, the authors have used an infrared technology for robots
localisation (Chae et al., 2006). In (Espinace et al., 2008) the structural informa-
tion is used in conjunction with Monte Carlo Localisation strategy to estimate the
robot positions. The authors in (Nuechtera & Hertzberga, 2005) presented a laser-
based approach for tracking the pose of a high-speed mobile robot. Most recently,
in (Eckert et al., 2009), the authors provided a framework for time-of-flight based
localisation systems relying on ultrasonic sensors for the localisation of quadro-
copters flying robots.

Fig. 2.19 Localisation principle with TDoA hyperboloids (blue) and AoA lines (green)
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In this work, we propose to apply a novel robotic localisation system, charac-
terised by its unique combination of the angle and distance information in order to
deduce a very accurate position. This feature makes the system distinguished from
all the previous related works described above. In order to realise a three dimen-
sional real time localisation, each robotic module has been equipped with a minia-
turised active transponder (tag) which transmits trains of very short ultra wideband
pulses in the frequency band of 6.5-8 GHz. These signals are detected and pro-
cessed by the sensor network and a location engine (running on a server station)
connected together via the Ethernet network (Ward et al., 1997; Harter et al., 1999;
Harter et al., 2002).

The sensor network in composed of a master (which rules the bidirectional com-
munication between the tags and sensors), a timing source (which provides the
synchronisation clock to receive the ultrawideband pulses) and a number of slave
sensors hearing the tag pulses and forwarding them to the master in real time. The
sensor network is installed at fixed known positions in the surrounding localisation
environment (e.g. at the corners of a room) forming a location cell. Having already
measured reference coordinates, each sensor should have its angles calibrated with
reference measurements at known positions within the tracking area. The location
engine derives, by trilateration, potential positions of the localisation tag, situated
on a hyprboloid. Furthermore, each fixed sensor has an antenna array which enables
extracting the angle of arrival (AoA) information from the coming pulses with an
accuracy around 1◦. In conjunction with the measurements, a Calman tracking fil-
ter accepts or discards the measured sighting events depending on a priori known
parameters such as speed, height of the object and the error standard deviation (hor-
izontal and vertical). The intersection of the angle of arrival lines with the TDoA
hyperboloids, see Fig. 2.19, provides the position of the tag.

Fig. 2.20 Localization principle of the robot swarm and
artificial organism.

This unique combination of
AoA and TDoA solves the
problem of TDoA pathologi-
cal geometry, which also pro-
vides the ability to gain lo-
cations from fewer sensors.
Therefore, with small sensor
density, this method delivers
repeatedly a substantially more
robust and reliable system than
a TDoA only system. Fur-
thermore, an additional advan-
tage is the ability to provide a
lower sensor density to cover
areas where less precise lo-
cation coverage is acceptable.
This flexibility allows opti-
mal price/performance trade-
offs to be made; offering the
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ability to cost-effectively configure and utilise a single homogeneous system across
the entire site.

Thus, the location engine enables an accurate real time tracking of the tags over
wide areas. Depending on the number of tags present within a sensor cell and
whether the robotic modules are moving or rather keeping static positions, the lo-
cation engine performs an automatic dynamic update rate scheduling of localisa-
tion. Hence, robotic modules can be localised each 30ms up to each 2 minutes.
Situated at a layer above the location engine, the location platform is for building
robust sensor-driven location-aware systems. It performs a scalable persistent stor-
age and publishing of real-time data and enables a user-definable 2D and 3D object
and building visualisations. Moreover, it provides a real-time monitoring of user-
definable spatial relationships between objects, robots, persons and assets.

In order for each robotic module to be aware of its position and the position of
other modules in its surrounding, the location platform is connected over the Eth-
ernet network to the ZigBee coordinator, which rules the communication between
multiple nodes (robotic modules). The location of each tag is transmitted via TCP/IP
to the ZigBee coordinator connected to the same network as shown in Fig. 2.20. The
latter forwards the localisation information to each corresponding robot in order to
react autonomously and in intelligent way.

2.2.7 Integration Issues

This last section is devoted to the challenging issue of integration of all components
on the robot platform. Designing the architecture of a robot platform becomes diffi-
cult because many decisions and compromises must be made. After all, mechanics,
electronics, software, and power sources must operate smoothly together and need
to be integrated into a geometry that complies with the original specifications of the
module and the envisaged organisms. Size, weight and power consumption should
be kept minimal to ensure reasonable operation times and allow for the key feature
of self-reconfigurable robots: flexibility of morphology. If modules are too heavy to
be lifted by fellow modules, only a very limited number of different morphologies
can be acquired, and the organisms may render themselves useless for operation
in 3D space. Furthermore, experience has shown that modules must be robust if
one of the “Grand Challenges” that have been identified in robotics should ever be
realized (Yim et al., 2007; Murata & Kurokawa, 2007). Two specific “Grand Chal-
lenges”, reflecting long-term self-sustaining and evolutionary self-development, are
selected as benchmarks for SYMBRION/REPLICATOR projects.

By definition, the robot cells closely cooperate and come into close physical con-
tact. When operating in 3D space and in particular when on-line learning algorithms
are implemented organisms will most probably topple in one or the other occasion.
Therefore, the hardware should be integrated in a way that it can cope with this
kind of “accidents”. Self-healing of organisms by reconfiguration and disposition
of broken modules does indeed increase the robustness of the whole swarm. But,
since robots cannot replicate like living beings, the probability of survival in a fixed
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time period is greatly increased when the modules are rugged. Complex architec-
tures require many interface lines within the robot module. If the structure in itself is
moveable, then it is wise to keep the number of lines from one part of the module to
the other as low as possible. The reason for this is simple: every line that goes across
and is exposed to frequent bending increases the likelihood of a system failure. This
is one explanation why communication buses with low line count (such as I2C) are
so popular in reconfigurable robots.

A few final words should be also devoted to general engineering problems.
Robotic projects, aiming not only a development of technology but also a demon-
stration, face among scientific and technological challenges a series of engineering
problems. In several situations, not proper engineering design can hinder a demon-
stration of excellent ideas and vice-versa, an excellent engineering work can make
some ordinary ideas more attractive. In this context, a serious issue is related to
the “pragmatism” of proposed solutions. It means that potentially interesting ap-
proaches are often skipped due to insufficient engineering capabilities. Normally,
during the cycle research – pre-development – development, parallel approaches in
the research phase are reduced to more pragmatic solutions during the developmen-
tal phase. Strong focusing on a low number of alternatives in research may lead to a
loss of potentially interesting solutions. It seems that finding a compromise between
pragmatism and parallelism in the pre-developmental phase is one of the essential
points for the success of projects

2.3 Energy Autonomy and Energy Harvesting in
Reconfigurable Swarm Robotics

Raja Humza Qadir, Oliver Scholz

Any creature in nature needs energy to survive and spends a lot of its life time to
regain its consumed energy resources. Similarly, in robotics, energy is a key issue
that significantly determines the level of a robot’s autonomy: A robot that is wired
to a socket can at maximum move within a circle that is dictated by the length of
the cable. But, there is no general time restriction in doing so. On the other hand,
a robot that carries its own energy source on-board can move any distance as long
as its resources are not depleted. Here, there does exist an intrinsic time restriction.
However, the operation time can be increased by fitting the robot with a feature that
enables it to harvest energy from the environment. Good examples are the diverse
solar powered robotic rovers that explore Mars.

In swarm robotics, various methodologies have been employed to increase the
autonomy, i.e. operational time without human interference, of an artificial swarm.
One such bio-inspired method is trophallaxis, where one robot “feeds” another one
in order to increase the operational range of the whole swarm (see Sect. 2.3.3). When
individual robot modules joint to form a multi-robot organism, the distribution of
energy among the modules becomes exceedingly interesting. In the very moment
when the modules dock to each other, it is very likely that the charge levels of
the batteries differ. Furthermore, although the organism as a whole will achieve
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a common goal, the individual tasks and with these the power demand will vary
among the modules within the organism. Hence, if not smartly managed, operation
time of an organism will be dictated by the weakest of its modules.

One step towards longer operation times of collective robot organisms is to dis-
tribute and share the energy that is available in the individual robots’ batteries.
However, additional problems may occur in this case. Depending on the particular
hardware and the number of modules (cells) that form the organism, care has to
be taken not to approach an overload condition. To avoid this, some kind of energy
management and task planning is required that is able to estimate the required power
levels and has information about the individual battery conditions or status.

2.3.1 Energy Autonomy

The term autonomy comes from Greek, that essentially means “independent of”, hav-
ing the “ability or freedom to determine one’s own actions and steer its behaviour”.
In philosophy, it is defined as one’s ability to self-govern, self-direct and self-rely.

In swarm robotics, the energy autonomy of an autonomous robotic module is
its ability to regain its depleted energy from the environment or surrounding in
the presence of several other competing modules. To be energetically autonomous
a robot module has to fulfil the “self-sufficiency” criteria. The self-sufficiency
of an artificial robotic system is its “ability to sustain itself in a viable state
for a longer period of time” (McFarland & Spier, 1997). For that, an autonomous
self-sufficient robotic system has to comply with the “basic cycle of work” also de-
fined by McFarland (McFarland & Spier, 1997). The basic cycle of work defines the
ability of an autonomous system to find fuel – and refuel. The applicability of such
a cycle is mainly dependent on two factors: firstly, the environment in which the
robots are deployed, and secondly, the level of autonomy that influences the robot’s
behaviour. The level of autonomy defines the control of an autonomous system over
various system parameters that influence its response or behaviour in a dynamic
environment.

“Autonomous systems, are the systems that develop for themselves the laws
and strategies according to which they regulate their behaviour: they are self-
governing as well as self-regulating. They determine the paths they follow as
well as steer along them.” (Steels, 1995)

In a multi-robotic system that involves cooperation among the modules at mul-
tiple levels of a robotic swarm the degree of autonomy of each module is coupled
with energy autonomy. The degree of autonomy also depends on the degrees of
freedom in the system, which is usually determined by the number of resources an
individual module has to manage or bring along (Spier & Mcfarland, 1986). To gain
energy autonomy an autonomous module must be capable of firstly, monitor its dy-
namically changing health status – the on-board energy source parameters, e.g. the
state of charge, remaining time to live, etc., along with the on-board component’s
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power requirement. Secondly, it must be mobile in order to explore its environment
to find the possible energy resources, e.g., recharge station. And finally, to regain
its health (energy) it should possess on-board recharging ability to recharge itself
autonomously.

In reconfigurable modular robotics, the fact that there is no theoretical upper
bound that limits the number of modules in an organism, increases the complexity
of the evolved system. To keep or to sustain the autonomy of aggregated modules in
the organism, the modules are required to establish a homeostatic control that main-
tains the equilibrium among the different system states. From the energy autonomy
perspective, to deal with the non-uniform energy distribution, the autonomous mod-
ules are required to maintain a homeostatic control in an organism.

2.3.1.1 Energy Homeostasis

Homeostasis is a self-regulating process found in biological systems to
maintain stability “while adjusting to conditions that are optimal for sur-
vival” (Britannica, 2009). In living cells, it is the innate ability of biological cells
to maintain a consistent environment that is favourable for their survivability and
well being. To sustain such a consistent environment the cells develop a strong in-
teraction that enables them to deal with many kinds of anomalies that disturbs their
equilibrium, with both the internal (intracellular) and the external (extracellular)
environment (Dictionary, 2008). One example of homeostasis in nature is the regu-
lation of body temperature in warm blooded creatures like human beings.

Modular reconfigurable robots that try to mimic the behaviour observed in na-
ture, e.g., social insects, bees, birds, etc. require homeostasis among different system
states when are docked or fused in an organism.For instance, the morphologythat de-
fines the structure of an organism, effects the utilisation of each individual module’s
capabilities docked at a particular position in the organism. Another promising ap-
plication of homeostatic control in multi-robotic systems can be seen due to the non-
uniform energy distribution among the modules in the organism. Energy homeostasis
in artificial multi-robotic systems is a process that regulates the energy or power flow
among the modules of an organism to achieve self-sustainability and self-sufficiency
for a longer period of time without human intervention (Humza et al., 2009). To reg-
ulate the energy distribution among the modules it becomes mandatory for every
module to be aware of not only its own health status, i.e., the available and the re-
quired amount of energy, but also the status of the others in the swarm. Therefore,
for online health status monitoring, every module requires a dedicated real time sys-
tem to continuously measure and interact with the internal (intra-organism) and ex-
ternal (in a swarm) system perturbations that in turn helps to adapt its behaviour
accordingly.

2.3.2 Energy Harvesting

As could be seen in Sect. 2.3.1, robots that move and operate autonomously must
have access to some external source of energy to replenish their on-board resources.
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Although in recent years considerable progress has been made regarding the out-
put power capability and energy weight ratio of batteries (Linden & Reddy, 2002),
the stored energy is still very limited compared to the power and energy demand of
a meso-scale robot module. As is easily imaginable, this shortage becomes worse
when energy-hungry, highly sophisticated sensor and processing systems are in-
volved such as vision systems. In particular for self-reconfigurable robots, it is ex-
pected that in general a higher demand of sensing and processing power is required
compared to “conventional” swarm robots that only move in 2D space, which will
simultaneously raise the energy consumption. In order to increase autonomy it is
hence wise to enable the robots to collect additional energy from the environment,
which is often referred to as energy harvesting.

Depending on the particular robot modules and their environment of operation,
different forms of energy harvesting for robots have been employed or discussed,
like solar power (Landis & Jenkins, n.d.), (Boletis et al., 2006), wind power, vibra-
tional power, etc. (Wade & Gifford, 2007). Even energy harvesting methods based
on fuelling organic substances like sugar (Wilkinson, 2000), sludge, and even flies
(Ieropoulos et al., 2005a) and slugs (Kelly et al., 2000) by applying microbial fuel
cells have been reported. The size of the latter harvesting devices were however con-
siderable compared to the generated energy and it is unlikely that with current tech-
nology such systems will be successfully included into reconfigurable meso-scale
robots: In (Ieropoulos et al., 2005b) the MFC that performed best had an average
output power of 45.5 μW over a period of 10 days and measured 6 cm×7 cm×5 cm.
Nonetheless, used in a central charging unit (s. Sect. 2.3.2.1) that includes a fer-
menter as suggested in (Kelly et al., 2000) this may become a viable solution.

When considering the energy supply of robots, size is an extremely important
factor since technologies for energy storage and harvesting do not scale down that
easily. For example, if a cube shaped robot module were shrunk in length by a factor
x, the surface area would decrease by x2, whereas its volume would be reduced by
x3. In a rough model, the energy consumption due to the weight of the module is
more or less proportional to its volume. On the other hand, solar cells generate elec-
trical energy approximately proportionally to their surface area. This implies that it
will be much easier to power a small robot with solar cells than a larger one. Reports
on energy scavengers confirm the scaling issue. Even though energy harvesting is
being employed in more and more marketed mobile electronic devices (vibrational
energy scavenging in wrist watches, thermal energy transformers for wearable sen-
sors, etc.) many of these are not very useful for robotic applications in the meso
scale. This conclusion is drawn from the fact that the reported appliances rely on
extremely low power demand electronics and lack any actuator, a key component
in robotics that due to physical limitations cannot be made energy preserving to an
arbitrary level. It is certainly not possible to give exact numbers of robots’ power
consumption in general. There are too many factors that come into play, such as
size and hence weight, processing power and grade of sophistication, principle of
locomotion, number of sensors, and many more. In (Mei et al., 2005) the author
has tried to shed some light onto mobile, i.e. wheeled, robots of meso-scale. When
looking at the given numbers (10–20 W) it is obvious that certain energy harvesting
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methods at the current state of art are not able to provide the necessary power. When
considering that self-reconfigurable robots will in most cases be more complex than
ordinary swarm robots (sensor fusion for docking approach, docking mechanism,
etc.) energy scavenging by integrating harvesting modules within the robot modules
is even less promising because of the tighter size restrictions and the expected higher
energy demand due to 3D actuation, when lifting other modules.

Nonetheless, photovoltaic cells are commonly being used for robot energy scav-
enging, in particular in space missions. The efficiency of solar cells not only depends
on the specific technology being used (Si, Ga, thin film, crystalline, etc.) but also on
the spectrum of light. Hence the cells are compared at a well defined spectrum,
which has been standardised, e.g. IEC60904-3, at 1000 W/m2. This irradiance pre-
vails approximately at a cloudless noon during spring in central Europe. The highest
reported efficiencies of PV modules – these are composed of several cells connected
together – lie between 8.2 % (thin-film polycristalline Si) and 22.9 % (crystalline
Si) (Green et al., 2009). Consequently, a solar panel made of crystalline Si with a
realistic efficiency of 15 % under ideal conditions will generate approx. 150 W per
square metre on an average bright sunny day. In order to power a reconfigurable
robot this may still not be enough, when taking a much smaller available surface
area into account. But for a base or charging station to which the robot modules
return to recharge this may be a realistic scenario.

2.3.2.1 Charge Stations

Placing charge stations into the work area to let the robots autonomously refuel
themselves is one method that has been described often in literature to provide
self-sustainability for robots. One example of a commercial robot that recharges
by itself without human aid or prior request is the “Roomba” vacuum cleaner from
iRobot Corp., MA (USA) (iRobot Corporation, 2007). The difficulty that remains
is to find and identify these stations and to successfully dock to them. However,
in self-reconfigurable robots this is a principle task that the robots must be able to
solve.

The number of charging stations will be limited and presumably much smaller
than the number of robot modules. In order to decrease the competition among
swarm members, it is advantageous to design the robot modules in such a way that
a robot that is docked to a charging station can offer additional charging ports to
others via an “energy bus” and docking interface.

For robot modules that are supposed to operate in buildings, the straight-forward
method is to actually plug into the nearest wall socket and recharge from the power
line. In an office environment, wall sockets may be regarded as a ubiquitous form
of “charging station”. In this case, the robots would need to be able to detect and
recognise wall sockets, which ideally would not need to be specially marked. So the
robots must possess a tool to connect to them and convert the voltage levels appro-
priately, all adding to the complexity of recharging on the other hand. The feature of
re-configuration may be particularly advantageous in harvesting energy from wall
sockets, since in most cases a single robot module will not be able to harvest energy
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from a socket because it simply cannot reach it. Hence it is forced to merge with
others to a larger organism and scavenge energy by collective collaboration.

Another interesting aspect is to design charging stations in a way that these them-
selves are energetically independent, i.e. they incorporate means of energy harvest-
ing, e.g. with solar panels. Since normally they are not required to move and can
be stationary, it may be easier to design harvesting facilities into these rather than
into the robot modules. Furthermore, one may think of robots foraging fuel that they
themselves cannot burn, but only the charging unit can.

2.3.3 Energy Trophallaxis

In biology, the term Trophallaxis denotes the mouth-to-mouth (stomodeal
(Korst & Velthuis, 1982)) and anus-to-mouth (proctodeal (Cabrera & Rust, 1999))
exchange and/or transfer of food among conspecifics, which is frequently ob-
served at social insects, in particular bees and ants, and some vertebral animals.
This sharing of food, however, is not limited to feeding as can be observed
when parent birds feed their breed. In fact, it seems that in many cases food is
not passed on for the pure purpose of food (energy) transfer but for communi-
cation reasons (Korst & Velthuis, 1982), (Camazine, 1993). Consequently, in ro-
botics trophallaxis has been applied for both, energy homeostasis in a swarm
(Melhuish & Kubo, 2007), and as a means of non-centralized communications
within a large robot swarm colony (Schmickl & Crailsheim, 2008).

The latter makes use of the “food” gradient that appears provided dissipation is
present, which indicates to others the direction and yield of a remote energy source.
Trophallaxis is in particular useful for insect colonies that need to regulate the in-
ternal state of the colony, e.g. the protein supply in the bee hive, and do not have
any centralized processor such as a brain and lack a communication path way like
the nervous system. Hence, for swarms of disjoint robots it can similarly aid in reg-
ulation and self-organisation. A reconfigurable robot in the context of this book,
however, does have a dedicated communication channel and may in some settings

(a) (b)

Fig. 2.21 Trophallaxis in social insects: (a) Trophallaxis between two honey bees – mouth-
to-mouth food transfer (with the kind permission of Eric Tourneret). (b) Trophallaxis between
ants – mouth-to-mouth food transfer (with the kind permission of Alex Wild).
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also provide a central “brain” by using distributed processing in only a few of spe-
cialised modules. It is even questionable if the term trophallaxis is valid at all within
a robotic system consisting of merged7 robotic modules that simply share their en-
ergy on a common energy bus. Trophallaxis may consequently not have the same
significance in reconfigurable robots, unless these themselves are a member of a
swarm of organisms. Generally, in a swarm of self-reconfigurable robots one will
find single, disjoint robot modules and robot organisms of different morphologies
consisting of a variable number of merged modules. If two such robot units, may
they be single or merged, dock together for the only sake of energy transfer, we
regard the term trophallaxis as being a valid analogy.

Fig. 2.22 Artificial energy trophallaxis: Two CISS-
bots in a state of exchanging battery (with the kind
permission of Trung Dung Ngo).

Most robots today are electri-
cally powered and store their en-
ergy in batteries or capacitors. But,
there are examples where the en-
ergy storage is done differently,
e.g. by using fuel cells and stor-
ing the energy as methanol or
even as organic fuel (fly eating
robots). The technology how the
exchange of energy is achieved
will consequently vary with the
employed storage method. Never-
theless, in the meso-scale, probably
the most simple way of sharing en-
ergy among docked robot cells may
be through a common electric bus
to which each of the modules have
access.

Trophallaxis based on recharging the other’s battery is quite time consuming
(considering today’s battery technology up to several hours) and inefficient from
an energetic perspective. Hence, Ngo et. al have devised mobile swarm robots that
exchange energy through swapping battery packs that they carry on their top out
of a specifically designed battery holster unit that can hold up to 8 ejectable bat-
teries (Ngo & Schiøler, 2006). The idea behind it is to increase sustainability of the
swarm since individual robots do not need to permanently interrupt their current
tasks and return back to the refuelling station.

It is important to stress that by trophallaxis a swarm of robots does not gain
energy. In fact, overall it loses energy since the efficiency of energy transfer will
always be less than perfect. However, a swarm may increase its autonomy through
trophallaxis since the swarm can take over the role of a “common stomach” levitat-
ing any peaks and dips of energy supply and assuring a more evenly distribution of
supply.

7 Although the robot hardware cannot literally merge, this term is being used nevertheless
to underline that the modules do not only physically aggregate and bond, but also unify
logically – they become one larger entity.
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2.3.4 Energy Sharing within a Robot Organism

We have seen that in a swarm of disaggregated robotic modules the sharing of en-
ergy is a common means to ensure energy homeostasis over the swarm – be it that
multiple robots share energy resources e.g. recharge stations, located in the work-
ing space or by direct exchange or transfer of energy from one robot to the other,
i.e., trophallaxis. In an artificial organism composed of individual robotic modules,
energy sharing becomes even more vital due to the uneven workload at each indi-
vidual that varies considerably. For example, in an artificial lizard shaped organ-
ism as shown in Fig. 2.26(d), modules that are responsible for the hip joints will
most likely require more power than the modules present or docked in the head.
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Fig. 2.23 Power sharing circuit schematic of Su-
perBot (with the kind permission of Wei-Men
Shen).

Furthermore, due to the non-
uniform energy distribution and
variable workload the longevity
of such a creature would hence
be limited by the weakest of its
docked module if energy would not
be shared among the robotic mod-
ules that constitute it. Moreover,
there may be incidences where
even a fully charged robot cell can-
not perform a certain task with-
out the energy support from fellow
robots simply because of the phys-
ical limitations of its battery pack.
Most of the reconfigurable robots
that have been reported do conse-
quently not only have a docking
unit to let them mechanically hook
themselves together. In addition,
they have an interface for the energy exchange among the modules. Different state
of the art reconfigurable modular robots such as ATRON (Jorgensen et al., 2004),
SUPERBOT (Salemi et al., 2006), incorporate energy sharing features in their sys-
tem design. But none of them highlights or investigates the energy management
issues that may arise in a multi-robotic organism. Fig. 2.23 shows the power shar-
ing circuit schematic of the SUPERBOT module. The system design includes six
docking faces, and on each docking side there is a switch and a diode combination
that controls the direction of flow of current on the power lines among the mod-
ules (Salemi et al., 2006). By default, the switch that connects the battery with the
charger leads remains ON while the rest of the switches that are present on each
of the six docking faces stays open. In this configuration, the diodes on each face
provide an alternate path to the current flow on the power lines, thus allowing the
current to flow into the system when a module is docked either to a recharge station
or to a module. The docking switches on the six docking faces that are controlled by
an onboard controller enable a module to share its battery power in the respective
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strand. Since the SUPERBOT power sharing design does not include any fault tol-
erance feature, therefore even a slight deviation from the normal on the power lines
could be disastrous for the whole organism. For example, a short circuit in a module
of an organism could shut down the organism’s power lines/bus.

2.3.5 Energy Management

Energy management refers to planning and controlling the generation, storage, dis-
tribution and dissipation of energy in a system. In order to increase the autonomy of
a robotic device, energy management is probably the most important factor. From
the energy management perspective, multi-robotic systems can be broadly classified
into systems with “harvesting” and “non-harvesting” capability. The former system
refers to those that own a dedicated energy harvester, e.g. solar panels, etc., while a
non-harvesting system lacks an on-board energy harvesting mechanism and there-
fore is completely reliant on external sources for energy replenishment, e.g. charge
stations.

In biology, another important factor known as, the dynamic energy budget (DEB)
model describes the process by which an individual organism acquires energy
through digestion in order to utilise it for their growth, reproduction, and sur-
vival (Nisbet et al., 2000). It also quantifies the energetics of an individual as it
changes during life history. This concept can be taken over to multi-robotic organ-
isms where the energy management in a swarm of reconfigurable modular robots
becomes essential when considering the autonomy of every individual. The DEB
theory not only emphasizes the energy gathering or the energy acquisition but also
its efficient utilization by means of task planning and real time task scheduling.

In the context of this chapter, one important aspect of the energy management
of a multi-robotic organism is to sustain the aggregation and collaboration of mod-
ules in an organism that is only possible when the system design incorporates fault
tolerance features. The fault tolerance is a design feature that enables a system to
operate properly or within the defined limits in the presence of failures or pertur-
bations. From the energy homeostasis perspective, as described in sec. 2.3.1.1, the
fault tolerance feature of the system design must enable the modules to keep the or-
ganism’s power bus alive at all times. In order to further improve the modules’ fault
tolerance ability an immune system concept found in biological systems can be in-
corporated into the system design. To keep the living beings healthy, the inherent
immune system provides the body a defensive mechanism against different diseases
that identifies and kills the pathogens. In the similar fashion, an artificial immune
system (AIS) that mimics the biological immune system behaviour can be added to
a robotic module’s system design. The on-line on-board artificial immune system in
conjunction with the dedicated real time energy management ensures the operation
of the organism’s energy management within the steady state. For further details on
how AIS is incorporated into the system design, please refer to Sect. 4.4.
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2.3.5.1 Methods of Energy Management

The energy management system (EMS) can be realized as a control system with
an active feedback mechanism that monitors the environment (energy resources)
and the system load (power consumption) to adapt its behaviour accordingly. The
feedback mechanism enables the system to maintain its operations within a steady
state while operating in a dynamic environment.

In purely battery powered robotic systems, where the only energy source is the
on-board battery pack, the essential task of the energy management is to reduce
the overall system power consumption without compromising the system’s per-
formance to maximise its operation time. Several algorithms have been proposed
in the literature that try to reduce or minimise the power consumption without
affecting the overall system performance at different levels, for example, Adap-
tive Voltage Scaling (AVS) (Elgebaly & Sachdev, 2004), Dynamic Power Switch-
ing (DPS) (Benini & Micheli, 1998), Dynamic Voltage/Frequency Scaling (DVFS),
adaptive shut down mechanisms, and others. Another important method that helps
to reduce the system power consumption is by “task prioritization” and “real time
task scheduling”. For instance, upon the indication of low battery voltage the “en-
ergy refuelling task” gets the highest priority or the scheduling of tasks based
on their power requirement. An example of such a system is the “Roomba vac-
uum robot” (Tribelhorn & Dodds, 2007). It is a purely battery driven robot that au-
tonomously moves to the nearest recharge station on the indication of low battery
voltage.

The energy management system in an artificial robotic system incorporating an
energy harvester is further responsible to gain long term self-sustainability by adapt-
ing the system behaviour with the availability of energy resources in the environ-
ment. To accomplish this, the energy management system can also prioritize the
utilization of harvested energy. Several EM algorithms have been proposed that pri-
oritize the utilization of harvested energy in different scenarios. For example, if the
on-board battery pack is nearly drained, then a major portion of harvested energy
will always be used for battery recharging until a safe state is reached. The stored
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Fig. 2.24 Block diagram of a robotic module with on-board energy harvester.
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energy is then being used when the harvested energy becomes insufficient to drive
the peripherals. Examples of such systems are the “EcoBot-I” (Bennetto, 1987) and
“SOLERO”, a solar-powered exploration rover (Michaud et al., 2002). Figure 2.24
shows the block diagram of a robotic module that owns an on-board energy har-
vesting unit. The system components include an energy harvester, energy stor-
age elements, an energy/power management system (PMS) and essential system
peripherals.

A fundamental difference between the harvesting and non-harvesting system de-
signs is that in the prior, the recharging of on-board battery packs can be carried out
meanwhile the energy is being harvested whereas in the latter system, it requires a
considerable amount of time and effort to replenish its energy.

Dynamic Power Management

Dynamic power management (DPM) is a design methodology that dynami-
cally controls the system’s electronic components in order to minimise the
overall power consumption without affecting the system functionality and
performance (Lorch & Smith, 1998; Benini & Micheli, 1998). The fundamental
assumption behind the applicability of DPM is the non-uniform or variable work-
load during a system’s life time that can be predicted in advance with a certain
degree of confidence. The application of dynamic power management is not just
limited to the minimisation of power consumption. Rather, in the context of collab-
orative reconfigurable multi-robotic systems, it deals with the efficient utilization of
energy in multiple modules that are physically docked together. Following are the
proposed dynamic power management techniques:

• Proactive Power Management: also known as predictive power management.
In real time systems it becomes mandatory for a system to predict or estimate
its future power requirements to ensure the autonomy and the self-sustenance
of an artificial system. The predictive power management utilizes its past ex-
perience, i.e. the knowledge of its prior energy consumption, to predict the fu-
ture consumption under different load conditions. Let the variable A represent
the overall instantaneous robot module’s power consumption, while B repre-
sents the system load (components that are in ON state or running). To pre-
dict the future power demand, p(A) represents the probability that the system
consumes A amount of power at a particular instant, and p(B) represents the
probability of having system load B. One way to estimate the module’s fu-
ture power requirement from the current and past observations is by employing
Bayes’ rule (Howson & Urbach, 1993). It uses the likelihood function and the
prior probability to maximise the posterior probability distribution, i.e.,

posterior probability = likelihood · prior probability

In our case, the conditional probability p(B|A) represents the likelihood of sys-
tem load B with the given power consumption A. The conditional probability
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p(A|B) represents the posterior probability that the system power consumption
is A when it has B load. Using Bayes’ rule,

p(A|B) =
p(B|A) · p(A)

p(B)
, (2.2)

where p(B) is the prior or marginal probability of B, and acts as a normalizing
constant.

These early power consumption estimates in the presence of dynamically
changing load conditions enable an autonomous system to steer its behaviour
according to environmental changes.

• Reactive Power Management: is the innate ability of an artificial system to re-
act to instantaneous changes occurring in the system. An important difference
that distinguishes it from the proactive power management is its instantaneous
response that does not require any learning cycle. A hardware current limiter
is one such example that limits the flow of current through a system’s power
lines. In case of an error, e.g. short circuit, the current limiter automatically lim-
its the current flow to avoid any system breakdown or major damage. Another
important application of reactive power management can be seen in case of un-
used system components. For instance, when there is no application with an open
socket, having an Ethernet controller powered up is a waste of energy. Therefore,
with respect to energy consumption, it will be wise to turn it ‘ON’ only when the
system is ready to receive or transmit data.

In order for a power management system to be effective, it should be given the
ability to turn on or off diverse peripherals. The activation of these peripherals can
be used to define a number of power saving modes. In SYMBRION/REPLICATOR,
the following major modes have been defined:

1. Active mode: All major components can be turned ON, such as actuation, pro-
cessing, sensing, and communication.

2. Doze mode: Typically the actuation and different sensing components are often
power hungry components, therefore in doze mode they will be completely shut
down. The processing (microcontrollers and microprocessors) and communica-
tion modules are turned down to a power saving duty cycle mode.

3. Hibernation mode: All components, including processing and communication
modules are switched off. Re-activation of the module is only possible by exter-
nally applying sufficient energy onto the energy bus.

These different power saving modes can be used by the energy management sys-
tem to prolong the operation life of the robotic system. Below, an example is given
when these modes are entered in a pre-engineered approach.

1. Self-sufficient state: In this state, a robotic module is regarded as being “healthy”
and the active mode is chosen. The individual robot has enough energy to perform
different tasks in the swarm. With its available energy it is also able to return to
the recharge station in the environment for refuelling. The operations in this state
last as long as the module’s on-board energy is greater than the energy required
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to move and successfully dock to a recharge station. Let Ea represent the amount
of energy available on-board, and Erq be the amount of energy required to locate
and dock to a recharge station in the vicinity. The condition for the self-sufficient
state is thus:

Ea > Erq, (2.3)

where the remaining energy Erem = (Ea − Erq) is then used by the individual to
perform its dedicated tasks or to help fellow modules in the swarm. The variable
Erq is defined as system and environment dependent. To sustain their autonomy,
every individual in the swarm continuously learns its appropriate values by mon-
itoring their load conditions with the changing environment. Also, a safe margin
for unexpected occurrences should be considered.

2. Self-sustenance state: indicates the state of a module when

Ea ≤ Erq, (2.4)

the available on-board energy falls below the safe margin of the self-sufficient
state. The module’s surviving gets the highest priority, i.e., recharge itself before
it runs out of energy. Hence, it will either dock to a recharge station autonomously
or seeks help from a fellow robot to reach a recharge station.

3. Doze state: When the available energy drops further, doze mode will be selected
to save its remaining energy. A module is forcefully entered in doze mode when
the available energy is not expected to be sufficient any longer to reach a charging
station or a fellow robot that could help. That is,

Ea < a ·Erq, (2.5)

where the scaling factor a is again system and environment dependent.
In doze mode, a module behaves passive and from time to time tries to identify
other robots in its vicinity through its sensors in order to call for help.

4. Hibernation mode: is analogous to the doze mode, in which a module by choice
after shutting down all its components enters into the sleep state. A module may
choose to enter in hibernation mode either it completely ran out of energy or
energy preservation is desired. The significant difference in the two energy saving
modes is, in doze mode a module can still communicate with other modules in the
colony that shows its existence where as in hibernation mode it may be treated as
an obstacle or a dead robot that can only be brought back to life through external
donation of energy.

5. Dead Mode: indicates the fatality of a module. The dead mode in the life of an
individual is attained only when it loses its mechanical stability or when it loses
its core processing units due to any electronic system failure.

Fig. 2.25 shows the state machine that links the different states during the life
cycle of a SYMBRION/REPLICATOR robotic module, as described above.
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Fig. 2.25 State machine that shows the different states during the life cycle of an autonomous
self-reconfigurable SYMBRION/REPLICATOR module.

Energy Management of Multi-Robotic Organisms

Like living organisms the most vital component for an artificial robotic module is the
energy supply. From the self-sustenance perspective, the energy/power management
of an autonomous robotic module has to only deal with its own survivability. On the
other hand, in an organism with multiple modules having different energy levels and
varying power requirements the ultimate objective of the energy management is to
somehow sustain the dynamic collaboration of modules in the organism. In order to
do so, the collective energy management that emerges from the individuals’ energy
management must fulfil the following criteria:

• To deal with non-uniform energy distribution in the organism it must be capable
of maintaining the energy homoeostasis in an organism, i.e., balancing the en-
ergy reserves among the modules, either by load sharing, recharging the weaker
modules from the healthy modules, or by changing the morphology of the organ-
ism,

• It must be able to regulate the energy flow among the modules to avoid overload
conditions,

• provides fault tolerance features to withstand system perturbations,
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• also, it must be capable of monitoring the organism’s health status from the indi-
vidual modules to steer and control the intra-robot actions in the organism.

In a similar way as the mechanical construction of the docking unit (male/fe-
male vs. genderless, robustness) constrains the morphologies of a reconfigurable
organism, so does the implementation of the docking contacts and the finite current
carrying capability of the “energy bus” limit the overall performance of the organ-
ism. Every contact may conduct electrical currents up to a certain amount until the
voltage drop due to its resistance gets too high. If too much current is passed through
the contacts they may even get destroyed. That means there exists an upper bound
to what size an organism can grow that is dictated by the limitations of the energy
sharing bus. It is not easy to determine this upper bound since it is influenced by a
large number of factors such as maximum power requirements of a single module,
the number of cells in a chain at a particular energy port, the load distribution within
the organism, etc. The energy management must take these factors into account.

Example 2.1. Docking contacts:
Let us consider a group of heterogeneous and homogeneous robots that are docked
to each other in the form of a chain-like structure shown in Fig. 2.26(a). To re-
duce the power losses across the docking contacts the proposed power management
scheme for the robots uses 6 serially connected lithium polymer (LiPo) cells that de-
liver a nominal voltage of 22.2 V with approximately 900 mAh of charge capacity.
In the current design, the proposed docking contacts can withstand a maximum cur-
rent of up to 8 Amp. If one battery pack would need to be recharged with a current
of 500 mAmp, then theoretically, no more than 16 modules can be recharged simul-
taneously in an organism, with the said current carrying capacity of the power bus.

In order to increase the robustness of the reconfigurable system it must be possible
to turn off the individual strands of the energy bus. Otherwise, a fault such as a
short circuit condition in one of the cells could easily destroy many more of its
fellow cells. Unfortunately, every switch and current sensing component placed into
the bus adds additional losses and voltage drops. One way to sooth the problem is
by maximising the voltage level on the bus. The electrical power conducted by the
bus is the product of the current through the bus times the voltage across the bus.
In other words, when increasing the bus voltage the current may be decreased to
maintain the provided electrical power. Since the resistances of the contacts and the
other components in the bus are constant, the various losses on the bus decrease
correspondingly.

Example 2.2. Energy sharing:
As stated earlier, the energy sharing among the self-reconfigurable modules is
achieved by establishing a wired interconnection among the modules that are docked
together in an organism. Fig. 2.26 shows the different configurations of SYMBRI-
ON/REPLICATOR modules forming biologically inspired organisms.

For collective actuation the modules in the organism are required to share their re-
sources, which in turn demands a dedicated “dynamic resource management mech-
anism” to balance and control the organism’s resources not only with the joining
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Fig. 2.26 Block diagram of self-reconfigurable robotic modules docked in different configu-
rations.

and leaving of modules but also with the changing environment. From the power
management perspective, one way to balance the uneven energy distribution among
the modules of the organism is by establishing energy homoeostasis described in
Sec. 2.3.1.1. For that, each individual module must be aware of energy distribution
among the module in the swarm. To accomplish this, a concept of residual energy
scan or eScan already known in wireless sensor networks (Zhao et al., 2002) can be
applied to a swarm of reconfigurable robot modules. The residual energy scan is a
process by which the network nodes collect residual energy information available at
each node distributed in the network. The information is then utilized for different
purposes, e.g., for dynamic load sharing, to predict sudden system failures in the
network, etc. With the periodic information exchange in case of failure detection
the faulty or weak nodes can be removed from the network.

The dynamic power management of the organism that helps in establishing the
energy homoeostasis among the modules can be realized in two forms namely the
“centralized” and the “decentralized” topology.
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• Centralized power management:
The centralized power management mechanism works by selecting a group of
healthy modules based on their state of charge in the organism which can be
called “master modules”. This multi-master architecture of modules in the organ-
ism that are responsible for dynamic resource sharing, i.e., energy homeostasis,
adds redundancy which in turn increases the organism’s fault tolerance ability.
These master modules in the organism maintain a data base containing the resid-
ual energy status of each module along with their instantaneous power require-
ment. The residual energy information is then used not only to maintain energy
homeostasis but also to adapt different morphologies.

• Decentralized power management:
In a multi-robotic organism, with centralized power management topology, due
to the variable or non-uniform workload it becomes difficult to elect and re-
elect the master modules in the organism. To overcome the said limitation, the
distributed nature of decentralized power management allows every module to
be aware of energy distribution in the swarm. For this every module in the swarm
keeps a database containing the residual energy information of each module. The
decentralized power management scheme on one hand increases the computa-
tion at each module, on the other hand, empowers every module to decide at
its own.

Energy Management System

To demonstrate the energy management principles in self-reconfigurable modular
multi-robotic systems we have chosen the SYMBRION/REPLICATOR modules as an
example. Fig. 2.27 shows the block diagram of the power management system for
an individual module. The power management design incorporates 6 lithium poly-
mer cells that provide a nominal voltage of 22.2 V with approximately 900 mAh of
charge capacity, a battery management module, a step-up converter for recharging,
core processing components, system peripherals and several software controllable
switches with current limiters. To enhance the system fault tolerance the onboard
electronics is segregated into two blocks, namely the, “core processing components”
and the “high voltage (22V2) peripherals”. The core processing components that in-
clude micro-processors, micro-controllers, etc, are continuously powered from the
battery source while the high voltage peripherals can be either powered from the
onboard battery pack or from the power bus. The “battery management module”
(BMM) is composed of an analogue front end (AFE)8 and a low powered MSP mi-
crocontroller9. It is used to extract and control the critical battery pack parameters
e.g., state of charge, charging/discharging, cell balancing, etc. A step up converter
in the system design adds the energy trophallaxis feature – recharging one module
from a fellow robot’s battery pack. The “power manager” controls the system be-
haviour by processing the low level information to monitor and control the switches

8 BQ77pl900, 5-10 cell Li-ion Battery protection and AFE by Texas Instruments (TI).
9 MSP430F2410, 16-bit Ultra-Low-Power Microcontroller by TI.
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Fig. 2.27 Block diagram of the proposed power management system for an individual robot.

and other system states. The current limiters in series with the docking switches
S1 − S4 are added to further increase the fault tolerance feature of the power man-
agement system.

To understand the purpose of the docking switches consider a group of modules
docked to each other forming a star topology as shown in Fig 2.26(b) with all the
docking switches in closed state. Suppose a fault in the form of a short circuit ap-
pears at robot R3. Due to this short circuiting at R3 a high inrush current from the
power bus flows into R3. This inrush current that exceeds the rated current limit
momentarily shuts down the current limiter present at R1 facing R3. The malfunc-
tioning of the system component is then detected by the respective power manager
in order to adapt its response accordingly. In the organism such a fault tolerance
feature enables each module to trace and get rid of faulty modules in the organism.

The switches S5,S8,S7 and S6 in the system design are included to control differ-
ent system states. The switch S5 acts as a “charging switch” that turns ON and OFF
the recharging of the on-board battery pack from the power bus. S8 connects and
disconnects the secondary peripherals to/from the on-board energy supply, whereas
the switch S7 in ON state powers the high voltage peripherals from the power bus.
At the end, switch S6 acts an “energy sharing” switch that allows the flux of the
system battery power into the power bus. Table 2.6 describes the different operating
modes of the power management system.

2.3.5.2 Energy Aware Self-Organization of Self-Reconfigurable Modular
Robots

The concept of “ecological balance” introduced by Pfeifer (Pfeifer, 1996) in the
context of a set of “design principles for autonomous agents”, describes the relation
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Table 2.6 Truth table describing the functions of switches S5,S8, and S7 in the proposed
power management system.

S5 S8 S7 Description

0 0 0 Only the core processing components are running from the on-board battery
power

0 0 1 Now, the high voltage peripherals (22V2) drive themselves from the power bus
0 1 0 The core processing components and the 22V2 peripherals both consume power

from the on-board battery pack
0 1 1 The core processing components and the 22V2 peripherals both consume power

either from the on-board battery pack or from the power bus
1 0 0 In this configuration the step up converter provides charging voltage, i.e., 25V2,

to the battery pack and to the core processing components
1 0 1 In this configuration the step up converter provides charging voltage to the on-

board battery pack and to the core processing components whereas switch S7
gives the power to 22V2 peripherals from the power bus.

1 1 0 Fault condition: Turning S5 and S7 ON overloads the step converter. Since, now
both the core processing modules and the 22V2 peripherals are hooked to the
output of the step up converter.

1 1 1 Fault condition: Turning S5 and S7 ON overloads the step converter.

between morphology, material and control of an autonomous system. In collabora-
tive multi-robotic systems, the adaptive behaviour of autonomous modular robots in
a swarm is not just limited to the adaptive control evolved over time but also greatly
depends on the morphology of these modules when are docked in an organism.
Self-organization that is the inherent ability of a self-reconfigurable multi-robotic
system, refers to both the dynamic adaptation of morphology and the control ar-
chitecture with the changing environment (Lund et al., 1997). The morphology that
defines the structure of an organism i.e., the arrangement of modules, plays a signif-
icant role in the behaviour of an organism and also in defining the capabilities that
result from the collective actuation of aggregated modules. It is the morphology that
defines the degree of freedom a module can exercise in the organism.

As mentioned earlier, an important component that effects the autonomy and
hence the morphology of an organism is the energy distribution among the mod-
ules. Energy aware self-organization is a phenomenon that defines the aggregation
of modules, i.e., their physical position, within an organism with respect to their
residual energy level. This way the modules in the organism are arranged or re-
arranged that helps them to establish energy homeostasis by sharing the residual
energy among the weaker and healthy modules.

From the system design perspective in a reconfigurable modular robotic organ-
ism where the upper limit of module count in an organism may not be defined,
the increasing number of modules in the organism imposes different constraints
that limit the efficiency of the power management system, as briefly highlighted in
Sect. 2.3.4. In such a scenario, if the particular morphology of the organism is ab-
solutely desired then the modules must reorganize themselves in the organism with
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respect to their residual energy level to continue their operations in the organism.
Again, for re-organization each module in the organism must be aware of not only
its own but also the health status, i.e., residual energy and the power requirement, of
other modules, that can be easily accomplished using an energy scanning process,
as described above.

When re-organizing, a critical situation arises when a large sized organism has to
change or adapt a new morphology. Empirically, the docking and undocking of mod-
ules in the organism consumes a considerable amount of power. Therefore, in such
a scenario, before adapting the new morphology, an organism must also consider
the overall energy required to re-organize (undock and dock) its modules. In a sim-
plest scenario, consider an organism with n modules docked to each other forming
a chain shaped organism as shown in Fig. 2.26(a). Consider Eundock represents the
amount of energy required by a module to undock to a module and Edock represents
the amount of energy required to dock to a module. For the sake of simplicity we
are not considering the amount of energy required for realigning the modules before
docking. An organism with n modules requires Eundock · (n − 1) amount of energy
to undock all its modules and for re-docking again requires Edock · (n − 1) amount
of energy. Altogether, the total energy ETotal required to an organism to change or
adapt a new morphology is thus obtained as,

ETotal = (n − 1) · (Eundock + Edock). (2.6)

This becomes an important factor when a large sized organism requires to re-
organize its modules. An optimal solution to the problem can be the decomposition
of a large organism into multiple smaller organisms. This way the energy and re-
source management in smaller organisms becomes much easier and less complex to
handle.

2.4 Modular Robot Simulation

Lutz Winkler, Heinz Wörn

At the beginning of a project hardware is often not available or not sufficient so-
phisticated, therefore simulation tools are essential. Later in a project, when such
hardware is available and experiments with real robots can be realised, the simula-
tor will still be required as such experiments are very time consuming and expensive.
It helps to evaluate different robot configurations and to identify important aspects
that have to be taken care in robot design.

The particular tasks a simulator for modular robots has to cover are:

1. Single Robot Control. Each single robot needs to is an entity and has to be sim-
ulated separately to help developing swarm algorithms. The single robot can
be simulated dynamically, but does not need to be simulated that way. A 2D-
simulator is often sufficient enough.

2. Organism Motion. When the robots are connected together, they build an
organism which also has to be simulated. As the organism often accomplishes
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movements in the 3D-space, a 3D-simulator, that either simulates the movements
kinematically or dynamically is essential.

3. Evolving Organisms Structures. Like natural evolution, different organism con-
figurations will compete each other in every generation. The best configurations
will be used for the next generation to form slightly different organisms. Over
time the population improves, and eventually a satisfactory organism will be
evolved that can be used on the real robot. The simulator has to provide func-
tions to support organism evolution.

4. Developing and Evaluating Control Algorithms. Like organism structures, organ-
ism control algorithms can also be evolved and the simulator needs also provide
functionality for evolutionary control algorithms.

5. Creating Test Scenarios towards the Grand Challenges. Grand Challenges are
defined to identify the progress of the projects. To evaluate the quality of the
software, the simulator has to support the Grand Challenge scenarios and there-
fore needs to run very stable while simulating hundreds of robots.

According to the different tasks such a simulator has to fulfill, a lot of require-
ments are arising. It has to be able to simulate large robot swarms as well as complex
organisms containing lots of degrees of freedom. Additionally, sensors and actua-
tors of each robot need to be simulated as accurate as possible. Detailed sensor and
actuator models are therefore important. The algorithms and programs that are later
meant to run on the robot platform also have to run in the simulator without major
changes in the source code. Different environmental features, either artificial like
electrical sockets or switches or natural like temperature or humidity need to be
implemented in the simulator to support different scenarios. In large project where
many partners are involved, a modular design of the simulator is mandatory, so that
for each experiment a different configuration can be used. This modular design will
also help to distribute the simulation over different computers in a network. Such
a distributed simulation is also strongly required, as the requirements to the whole
simulator are too high to be executed on a single computer.

2.4.1 Simulation Environments

We will first examine different simulation environments and APIs to figure out
which platform is the most suitable for developing the simulator. The underlying
software platform should cover all the aspects mentioned above and as the projects
are open source, open science and open hardware, an open source solution for the
simulator is also preferable. The first choice would be to evaluate general simulation
environments that are often used in robotics or in exploring swarm behaviors. The
most common open source simulation environments are:

NetLogo NetLogo is a multi-agent programming language and integrated model-
ing environment that is well suited to explore emergent phenomena and
swarm behaviors. However, as the agents need to be written in the Net-
Logo language, it is not possible to use the same program on the robot
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without having a NetLogo interpreter included. Additionally, the lack
of a dynamics simulation makes it impossible to simulate the organism
movements accurately.

Breve The breve Simulation Environment is designed to simulate multi-agent
system and artificial life in three dimensional space including simulating
dynamics. However, like NetLogo a script language is used to describe
the controller programs, which slows down the simulation and does not
fit our idea of reusing the code on the real robot. Additionally breve only
supports the Open Dynamics Engine, which does not support hardware
acceleration on the graphic processor. Distributed simulation is also not
supported.

Player The Player project combines the Player network and the Stage and
Gazebo robot platform simulators. It is deployed in many robotic re-
search projects. While Stage is a 2D simulator, Gazebo is a 3D dy-
namic simulator. For the dynamics simulation the Open Dynamics
Engine (ODE) has been chosen as well. Although Player supports the
distribution of the simulation over a network through a hardware ab-
straction layer, it does not support a state of the art distributed simula-
tion, like described in (Fullford, 1996). Such a distributed simulation is
very helpful as different simulations can interact together, e.g. an envi-
ronment simulator which simulates the distribution of a gas can interact
with the modular robot simulator. This way different sensor simulations,
which are computational intensive can be developed independently and
can run on different platforms. Additionally, the ability to use and switch
between different dynamic and non-dynamic simulators at runtime need
also be implemented as the user currently need to decide before starting
the simulation whether he wants to run a fast 2D simulation (Stage) or a
3D dynamic simulation (Gazebo). Such a feature is however important as
not all robots need to be simulated dynamically (robots in swarm mode
for example can be simulated with a 2D simulator most of the time).

All these simulations do not support dynamics simulations that support hardware
acceleration nor support state-of-the-art distributed simulation. These are key fea-
tures that we need for successfully simulating modular robots, their actuators, their
sensors and their controllers. Another solution would be to use a simulation envi-
ronment from other modular robot projects, such as:

Molecubes Molecubes is an open source project which has the aim to design a
cheap and robust modular robot system for everyone. It provide design
files, instructions and software to encourage people to build their own
Molecube robots. Within this project a simulator based on the Ogre
game engine and the Nvidia-PhysX dynamics engine has been devel-
oped. This simulator however is too much based on the Molecubes
robots. As the Molecubes need to be coupled manually, the models in
the simulator are assembled at the beginning of the simulation. Cou-
pling the robots during runtime is not possible. The Molecubes also
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do not have actuators that allow them to move separately from the or-
ganism, i.e. they do not have wheels. Therefore a swarm mode is also
not implemented in the design of the simulator. These issues can be
added in the simulator as it is open source, however as it is based on
the Nvidia-PhysX engine the dynamics engine cannot be adopted to
the requirements for the modular robot simulator as it is closed-source.
Also, there is no interface for a distributed simulation provided, which
we need strongly.

S-Bot The 15 cm small differential wheeled S-Bot robot is designed to study
inter-robot communication and team work. It is equipped with a lot
of sensors, including proximity sensors, sound detector and an omni-
directional camera. Within this project a simulator based on the Vor-
tex physics engine has been developed, where all sensors have been
implemented. Another nice feature is the dynamic model switching,
where according to the computational power and the current require-
ment, different detailed models of the robot can be loaded dynami-
cally. Though it is a good simulator it is too much designed for the
s-bot and needs huge modifications for our needs. Additionally, the
Vortex dynamics engine is commercial and stays in conflict with the
open source thought we like to pursue. Like the Molecubes simulator
it also does not support distributed simulation, which is essential for
our project.

Webots Webots is a commercial development environment to model, program
and simulate mobile robots. It has been developed together with the
e-puck robot and has a huge library of sensor and actuators. Programs
that have been evaluated in the simulation can be transferred directly
to the robots. However as it uses ODE, the computation for the dy-
namics simulation cannot be transferred to the graphics card and dist-
ributed simulation is also not supported.

All of the above mentioned simulators do not fulfill the requirements that are
needed for a simulator of modular robots. Therefore, we decided to develop a new
simulator that covers all the aspects needed for such a simulator. The first question
that arises then developing a new simulator is the underlying framework. As we do
not have the manpower to create a completely new simulation environment, we need
to use a simulation framework that is already available. Common open-source 3D
rendering engines that come in the closer choice are:

Irrlicht Irrlicht is a high-performance realtime 3D rendering engine which fo-
cuses on features for visualization like dynamic shadows, particle sys-
tems, character animation and collision detection. However, neither a
physics engine is supported which needs to be integrated, nor a distri-
buted simulation.

Ogre Ogre is another very sophisticated rendering engine with lots of fea-
tures. It also supports different dynamics engines like Bullet, ODE or
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Nvidia PhysX, however interfaces to distribute simulations are not pro-
vided and still need to be added.

Delta-3D Delta-3D, is an open source game and simulation engine that uses other
well known libraries like OpenSceneGraph (OSG) for visualization,
Open Dynamics Engine (ODE) and Nvidia PhysX for dynamic sim-
ulation. They also offer a physics abstraction layer. That way other
physics engines can be included. Other supported libraries are Ope-
nAL for three-dimensional sound effects, Distributed Interactive Simu-
lation (DIS) and the High Level Architecture (HLA) (Dahmann, 1998)
for distributed simulation and CAL3D for character animation. Delta-
3D does not only support these libraries but grants also full access to
it, therefore we are not restricted by the API of Delta3D. Through its
modular design it is also possible to introduce other libraries without
much effort.

The Delta-3D engine is not only a 3D rendering engine, but also supports dist-
ributed simulation, therefore we choose this platform as the underlying simulation
engine to develop the simulator. The Nvidia PhysX Engine allows us to run the dy-
namics simulation on the graphics card. Nvidia however is closed-source. Another
alternative is Bullet which also has a hardware acceleration support. The simula-
tor can be divided in dynamics simulations, controller simulations and environment
simulations using the HLA interface for distributed simulation. More about distri-
buted simulation will be described in the next section, where we describe the func-
tionality of the Symbricator3D simulation environment.

2.4.2 The Symbricator3D Simulation Environment

Based on the Delta-3D game and simulation API, we are developing Sym-
bricator3D, a simulation tool especially for modular and swarm robots
(Winkler & Wörn, 2009). Symbricator3D is written in C++ and consists of three
main modules, robot actors, robot controllers and simulation components. The
Delta-3D GameManager is handling all these modules and is responsible for the
communication between them. While the robot actors are the physical and geomet-
rical representation of the robot, the controller class represents the software that will
run on the real robot as well. Simulation components are responsible for the control
of the simulation, e.g. there can be components for user interaction, components for
supporting artificial evolution and for setting up various experiments or for simulat-
ing the environment.

The robot actors in Symbricator3D consists of four different elements: bodies,
actuators, connectors and sensors. Fig. 2.28 shows the configuration of the robot
model in the simulation based on the first prototype of the SYMBRION/REPLICATOR

robots.
Bodies describe the geometrical and physical properties of parts of the robot like

for example the collision shape and the mass of a wheel. A body is a single unit,
there are no parts inside a body that are movable. Actuators are those components
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Fig. 2.28 Current robot design in simulation compared with the first prototype.

that connect two bodies together and that can put a force between these two bodies
so that they move relatively to each other. Actuators are realized by using joints
provided by the dynamics engine. Connector modules for connecting two robots
together and sensors modules for perceiving the environment are attached to a body.
During the initialization phase the elements are created and put together according
to the given robot design. This way, not only different robots can be created in the
simulation, but also tools can be developed. Tools are objects which are not fully
autonomous robots, but give the organism additional sensors like a high resolution
camera or additional actuators, such as wheels to make the organism move faster
in flat terrain, or other abilities like a charging unit which enables the organism to
recharge its robots at a common power socket. The same way robots can dock to
each other, they can also dock to these tools.

2.4.2.1 Sensor Simulation

Several sensors are implemented in the Symbricator3D simulation environment.
These sensors can be divided in two different classes: internal and external sensors.
Internal sensors describe properties of the robot, such as the position of the actua-
tor or the position and orientation of the robot in a global coordinate system. These
values can be retrieved from the dynamics simulation or from Delta-3D. Table 2.7
lists the sensors that are currently supported in Symbricator3D.

External sensors are those sensors that measure the environment. The data for
external sensors are retrieved from several sources. Visual sensors such as a camera
or a color sensor are modeled by using the camera model of the Open Scene Graph
(OSG) library. Based on OpenGL, OSG builds a scene graph where we can define
several cameras, which we use for different types of sensors. With the OSG cameras
we cannot only model cameras and color sensors but also distance or light sensors,
as we can retrieve different scene data from the GPU including luminescence and
the depth component of the camera.

The second class of sensors is ray trace based, which is needed for simulating
some types of sensors accurately. For a very detailed simulation of infrared or sound
sensors for example the reflection at objects is important. This cannot be handled by
OSG or OpenGL completely. For such a simulation several rays need to be created
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that intersect with other objects in the scene. At the point of intersection a new ray
will be created which has the direction of the resulting reflected ray. This way sensor
behavior near objects, in corners and even the interference with other sensors can
be analyzed. However, such a sensor needs very much computational power and
therefore only a few can be simulated at the same time. For an overall simulation of
the whole organism this sensor simulation would take too much time. In that case
the sensor needs to be approximated by other methods, for example by the OSG
camera model.

The third class of sensors is that which needs an additional environmental model.
This is not supported by the libraries mentioned above. Temperature, humidity and
the distribution of gases for example fall into this category. For those environmental
properties a model needs to be developed that describes and simulates their environ-
mental behavior. The modeling, simulation and data storing for the environmental
property needs to be handled by a simulation component. The model of the distribu-
tion of a gas describes the diffusion and evaporation rate. This needs to be simulated
taking the environment into account (for example it cannot diffuse through walls).
Additionally it can interact with other environmental properties like temperature or
air current which are simulated by other simulation components. For each property
there is exactly one component which simulates it (using the Singleton software pat-
tern). The sensor accesses this model through the Game-Manager and receives the
current value according to its position and orientation (or velocity or acceleration if
required).

A very important point in sensor simulation is the development of an accurate
sensor model, which also includes simulation of several types of deviations, like
noise, drift and sampling rate. Some sensors are also to some extend sensitive to
properties other than the property they measure. For example, most sensors are in-
fluenced by the temperature of their environment. As it is possible that the robot can
become very warm, such behavior needs to be taken into account when modeling
the sensor. To keep the computational time of the CPU to a minimum when simulat-
ing the sensor, we need also consider simulating parts of the sensor on the graphics
card (GPU). Camera noise for example can be simulated by using shaders. In this
case we could render the camera image including noise on the GPU while using the
CPU otherwise.

2.4.2.2 Actuator Simulation

To simulate the dynamics of the SYMBRION/REPLICATOR robots, three differ-
ent actuator models are implemented. There is the main actuator, also called
the 3D-drive that enables organism movements and the chain and the screw
drive for moving the robot in single mode. Currently two different robot de-
signs (Kernbach et al., 2008a) are implemented. One design uses a chain drive and
enables the robot to move over small obstacles, while the other one uses a nearly
holonomic screw drive that enables the robot to be more flexible in building organ-
isms. Each of these designs includes the main actuator.
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Table 2.7 List of Sensors implemented in Symbricator3D and the underlying library that
have been used to implement them.

Sensor Type Supporting/
Under-
lying
Library

Description

Infrared OSG using the depth component of an OSG camera the closest
point in the camera image is chosen and the distance to the
sensor is returned

Luminance OSG the image of the luminance component of an OSG camera is
returned

Microphone OpenAL OpenAL provides the scene with 3D sound. However Ope-
nAL currently only supports one recorder (the microphone
sensor)

Docking Sen-
sor

OSG /
Delta-3D

ray trace based sensor that detects a LED of another robot to
support the docking mechanism

Laser Scanner OSG /
Delta-3D

ray trace based laser scanner

Fast Laser
Scanner

OSG simulated laser scanner using the depth component of a OSG
camera

Camera OSG returning an image based on the RGB component of a OSG
camera

Color Sensor OSG returning the mean color value of a OSG camera (RGB com-
ponent)

Light Sensor OSG returning the mean brightness value
Angular Posi-
tion

ODE angular position of a ODE joint

Angular
Velocity

ODE angular velocity of a ODE joint

Force and
Torque Sen-
sor

ODE accumulated force and torque vector which an actuator is cur-
rently applying to the robot body parts

Accelerometer ODE returns the linear and angular acceleration vector of the robot
body parts

GPS Delta-3D returns the global position and orientation of the robot

The 3D-drive can be easily implemented with a hinge joint that is provided by
the dynamics simulation engine ODE. Hereby, two bodies are connected through
a hinge. The hinge constrains the movement of these two bodies relatively to each
other, i.e. the bodies can only have a rotatory motion along one axis. According
to these constrains the dynamics engine calculates the corresponding constraining
forces, a force that moves the bodies in such a way that all constraints are fulfilled.
Additional constraint angles – the range in which the actuator can operate – and
constraints for the desired velocity of the joint and the maximum force the motor can
apply to achieve that velocity can be introduced to that joint. With these constraints
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Fig. 2.29 Simulation model of chain and screw drive. The chain drive is simulated by four
right wheels(“R”) and four left wheels (“L”). The screw drive is simulated by four wheels
(“A”,“B”,“C”,“D”).

major parts of the actuator can be modeled. For getting information about the current
state of the actuator we can use the feedback functions of the dynamics engine (see
also 2.7). The dynamics engines provide the force and torque vectors the joint is
applying to the two body parts of a robot, the current position of the joint and its
velocity. To model a sensor monitoring one of these values, deviations of this sensor
like described for sensors need also be taken into account.

The other two actuators – the chain drive and the screw drive – are mainly used
in swarm mode, i.e. when the robot is decoupled from the organism, but can also
be used within the organism with restrictions. As simulating these two actuators in
detail would consume too much computational power, the actuators will be approxi-
mated through helper wheels. These helper wheels consist of a geometrical cylinder
object that is attached through a hinge joint to the main body of the robot. The con-
figuration for the both robots are depicted in Fig. 2.29. The chain drive behaves like
a differential drive. If both chains are moved in the same direction with the same
velocity the robot is moving in the same direction with the same velocity (if no
slip is existent). If moving the chains in opposite directions with the same veloc-
ity the robot rotates at the spot. In Symbricator3D the chain drive is simulated by
four helper wheels attached at each corner of the chain and are controlled like
the real chain. In that way the simulated robot has the same behavior like the
chain-driven one.
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Table 2.8 Types of Locomotion of the Screw Drive, how they can be accomplished and how
they will be simulated.

Type of Locomotion Front Screw Back Screw A B C D

Translation:

Forward +1 +1 +1 +1 +1 +1
Backward -1 -1 -1 -1 -1 -1
Right +1 -1 +1 -1 +1 -1
Left -1 +1 -1 +1 -1 +1

Rotation:

Right around Front Screw 0 -1 +1 -1 0 0
Left around Front Screw 0 +1 -1 +1 0 0
Right around Back Screw -1 0 0 0 -1 +1
Left around Back Screw +1 0 0 0 +1 -1

Simulating the screw drive is more complicated, as depending on the usage of the
screws the locomotion behavior changes. To move the screw-driven robot forward or
backward, the screws need to rotate in the same direction. In that case the screws are
behaving like two rollers. If the robot needs to move sidewards, the screws need to be
controlled in opposite directions with the same velocity. In that case and if the floor
is penetrable the robot is screwing the floor which leads to a sidewards locomotion.
If we have a hard floor that is not penetrable like a stone floor, the mechanism does
not work and the robot cannot move sidewards. The same holds for the rotation. If
the screws cannot penetrate the floor the robot cannot rotate. For rotation one of the
screws needs to stand still while the other one is rotating. In that case the robot is
moving around the axis that stands still. According to these basic conditions we can
formulate the behavior for a pure rotational or pure translatory motion. To finally
simulate the screw drive we use four helper wheels that are attached to the robot
as depicted in Fig. 2.29. With this configuration we can generate a locomotion in
every direction and can generate every rotation. According to the locomotion model
of a pure rotational and pure translatory motion of the robot we can calculate how
we need to control the helper wheels to achieve such a locomotion. In table 2.8
the different locomotions are listed and how to control the helper wheels to achieve
these locomotions.

To simulate a combined locomotion of rotation and translation, we first divide
the screw motions into a rotational part ω1 and ω2 of the two screws which will
lead to a pure rotatory motion of the robot with

ω1 = 0, ω2 = sign(ω2)× (|omega2|− |omega1|) if |s1| < |s2| and
ω2 = 0, ω1 = sign(ω1)× (|omega1|− |omega2|) otherwise

and a translational part v1 and v2 which would lead to a pure translatory motion of
the robot with
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|v1| = |v2| .

and the actual velocity of the screws s1 and s2:

s1 = ω1 + v1

s2 = ω2 + v2

After that we calculate the ratio of rotation and translation and control the helper
wheels according the proportion of the pure rotatory and pure translatory motion.

This model approximates the behavior of the screw drive but does not represent
the screw drive exactly, as reliable hardware of the screw drive is not available yet a
more detailed model could not be developed. For the next version of the screw drive
simulation we will measure the forces and torques the screws are applying on the
real robot for different velocities of the screws and according to these values we will
develop a more precise actuator model. This new screw-drive model will provide us
with the forces the screws will apply to the robot. We can use these forces to put
them directly to the physical robot model (i.e. its body parts). The helper wheels
will be only passive allowing roll friction for the simulated screw-drive locomotion.

Additionally to all actuator models we implement deviation parameters occur-
ring in the actuator, including noise, short term and long term drifts. In this model
variations between actuators of the same type and the resulting different behavior
needs to be taken into consideration as well. Therefore we will use on the one hand
the data sheets of the actuator manufacturer, but on the other hand we will also make
experiments to figure out the behavior of the actuator, so that we can develop very
detailed actuator models.

2.4.2.3 Connectors

Connectors are the physical and graphical representation of the coupling device of
the SYMBRION/REPLICATOR robots in the simulation. The coupling device gives
the robots the ability to connect to each other to build a larger robot organism, which
can fulfill tasks the single robot cannot fulfill. Additionally, the coupling device does
not only enable the robots to communicate with each other over a internal bus system
(Ethernet) it also gives the robots the possibility to share energy and computational
power within the organism.

If two robots want to connect to each other, two conditions need to be fulfilled:
Firstly, both robots need to be ready for a connection and need to want to connect.
Secondly, both robots need to be in the right position and need to have the right
orientation. The coupling device has a little margin within the robots are able to
connect. In the connecting phase the robots will be aligned by the coupling device so
that they fit exactly together. Once connected the robots are immovable to each other.
The connectors in simulation are modeled in the same way. There are three tolerance
variables that can be set. One for the maximum distance the robot can have to be
still able to connect and two maximum angle variables: the twist angle and the pitch
angle tolerance. If the two connectors are within these tolerance ranges they can
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start the connecting phase. In this phase, forces will be applied on both connectors
that will move the two robots the connectors are attached to, to the exact position. If
this position is reached, the robots will be connected together by a joint provided by
the dynamics engine. After completing the connecting phase the simulated robots
are immovable to each other.

The connectors in simulation like the coupling devices on the real robot also pro-
vide the robots with communication inside the organism. Two kinds of communi-
cation are available within the organism, local communication between two directly
connected robots and communication within the whole organism.

2.4.2.4 Communication

Modular robots are often equipped with a variety of communication devices. For ex-
ample, the SYMBRION/REPLICATOR robots have infrared sensors with which they
cannot only detect obstacles, but can also communicate with other robots in their
vicinity. Additionally they will be equipped with a ZigBee module for global com-
munication. Within the organism they will have the ability to exchange information
with all the other robots in the organism via an internal bus system, and they can
send messages to those robots directly connected to them.

Symbricator3D supports also those communication types, whereas the commu-
nication is realized through simulation messages, which consists of the message
content and the message type. The data type of the message content can be defined
by the controller programmer. The message type can be one of the four possible
communication types:

Global Every robot in the simulation receives the message.
Infrared As the infrared sensor will also be used for communication, this sensor

will be used to determine the robots that are in its vicinity. These robots
are receiving the message.

Organism Every robot in the organism receives the message.
Local A direct neighbor in the organism receives the message. The message

will be send through the connector and the recipient is therefor defined.

Symbricator3D checks which robot controller can get the message according to
communication type and accessibility, and then sends the message automatically to
the right robots. For example, if a robot sends an infrared message, only the robots
(and those controllers) within the range of the IR emitter will receive the message.

2.4.2.5 The Controller Class

While the robot class is the physical and geometrical representation of the robot,
the controllers are the software representation. They are designed to run in the sim-
ulation as well as on the microcontroller without any changes in the source code.
This will be achieved through a hardware abstraction layer (HAL), which hides the
underlying hardware from the application software, so that the application software
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(i.e. the controller) does not need to be changed to run on different platforms. The
benefit is firstly the ability to change the underlying robot hardware without affect-
ing the application and secondly the possibility to run these applications in simula-
tion as well. Currently, there are three different operating system on which the appli-
cation need to run. Firstly, applications can run on the Cortex microcontroller. The
underlying operating system is in this case FreeRTOS, a portable open source mini
Real Time Kernel. Secondly, application can also run on the Blackfin microcon-
troller, the second type of microcontroller with which the robot will be equipped. On
this microcontroller a μC-Linux kernel is running as operating system. And thirdly,
applications run in simulation as well. The simulation can run on different operat-
ing systems, like Linux or Windows. As rewriting the application for each platform
is too expensive, we are developing the SymbricatorOS (Szymanski et al., 2009b)
which will be the HAL to all the applications and for every platform.

Depending on the underlying hardware the applications the type of multitask-
ing processes differs. On the Cortex microcontroller the applications run as FreeR-
TOS threads, while on the Blackfin controller and in simulation they run as POSIX
threads. To benefit of the full performance of the Blackfin processor it requires run-
ning the applications as tasks. On the application layer this will not be visible, as
the SymbricatorOS is hiding the type of process as well as the different hardware
the robot might be equipped with. This includes the simulation as well in such a
way that the applications cannot tell by the type of access to the sensor and actua-
tors whether they are simulated or are coming from a real robot. To achieve this a
controller base class has been developed which has access to all simulated sensors,
actuators and other accessories (e.g. LEDs or batteries). The SymbricatorOS will
run in the simulation as a controller which gains access through the controller base
class. The applications on the other hand will run on the SymbricatorOS and there-
fore they will always have the same interface to the underlying hardware, no matter
whether it is simulated or not. As on the real robot, in simulation one robot can be
controlled by several applications, but each application can only control one robot
directly. If several applications are controlling the same robot they need to com-
municate with each other. On the robot this will be achieved through inter-process
communication while in simulation we will have a message-based communication
between applications. SymbricatorOS will provide for both mechanisms a uniform
interface so that the type of communication between two applications will not be
visible to the applications.

Evaluating an application only in simulation might lead to errors. In simulation
the application might have much more computational power for example as it will
have on the microcontroller. For some microcontrollers there exist emulators which
can simulate the behavior of the microcontroller, but as the emulator needs to com-
municate with the simulation through inter-process communication which requires
additional CPU time and running several emulators at the same time would also slow
down the simulation, we did not investigate this option further. A much easier way
to test applications thoroughly is to run them on the microcontroller itself. The ap-
plication runs therefore on an evaluation board and is communicating through a se-
rial interface with Symbricator3D, which simulates the environment and within the
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Fig. 2.30 Screen shot of four robots which are connected to a small caterpillar and are con-
trolled by four programs running on four different Cortex evaluation boards which are con-
nected to the simulation.

robots including their sensors. The sensor values are being sent every time step to the
evaluation board. The applications on the board are evaluating these sensor values,
calculating how to control the actuators and sending the actuator values back to the
simulator. In Fig. 2.30 a screen shot is taken of four robots building a caterpillar or-
ganism, where each is controlled by a MDL2ε program (Szymanski & Wörn, 2007)
running on four different Cortex evaluation boards. Through coordinated move-
ments the organism is executing a caterpillar-like movement.

2.4.2.6 Simulation Components

Simulation components are responsible for controlling and observing the simula-
tion and its elements. They can be used for logging robot behaviors, evaluating con-
trollers, resetting the simulation or even simulating environmental variables or other
phenomena. As there are lots of different requirements to the simulator, there will
be also a lot of different components. Following is a list of simulation components
without making claims to be complete:

1. Dynamics Simulator. Currently we use ODE for simulating the dynamics in Sym-
bricator3D, which is integrated in the Delta-3D environment. Other dynamics
engines however will be investigated in the future to evaluate which one will
be the most suitable for simulating modular robots. Three dynamics simulation
are currently coming into the closer choice. Nvidia PhysX is a very powerful
dynamics simulator which also supports hardware acceleration. Running as a
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CUDA application on the GPU the CPU will be released and will be avail-
able for other tasks. However, it needs to be shown that the Nvidia PhysX en-
gine is stable and fast enough for our requirements. As Nvidia PhysX is closed
source, other dynamic engines which use the graphics processor for calculat-
ing the dynamics can be a better choice as it might be necessary to adopt
the simulation engine to the requirements of the modular robots simulation.
Such a dynamics simulation is Bullet, which uses shader programming on the
GPU for this task. Another very promising approach for simulating the dynam-
ics is the Impulse-Based-Dynamics-Simulation (Bender, 2007)(IBDS), which is
faster and more stable compared to the widespread Lagrange Multiplier(LM)
method (Schmitt & Bender, 2005).

2. Kinematics. At the end of the project we aim to have around one hundred robots
which are connected together. Simulating an organism with so many degrees of
freedom entirely dynamically might not be suitable as it can lead to instabilities.
To overcome this problem a solution is to switch off the dynamic simulation of
hinges that are not currently used and simulate them only kinematically. A kine-
matics component will take the task and thus support the dynamics component.

3. 2D-Simulator. In swarm mode robots are not docked together and do not use their
hinge for locomotion. In this case, simulating robots dynamically is not always
necessary. To speed up simulation, the robots will be simulated by a 2D simulator
which approximates their locomotion with a simplified locomotion model.

4. Simulation Decision Maker. The different simulators mentioned above will be
running at the same time, each responsible for simulating different parts of the
scene. During simulation runtime it is necessary to switch the robot simulation
between these simulators. Therefore, a component needs to decide how each
robot need to be simulated and assign them to the appropriate simulator.

5. Environmental Simulator. Different environmental phenomena which are not al-
ready provided by other libraries but which can be measured by the robot need
also be simulated. Such phenomena are for example the dispersion of gases, tem-
perature or humidity. Their behavior is simulated by environmental simulation
components. If a robot is equipped with such a sensor, the simulated sensors
will access the corresponding simulation component and will retrieve the current
value according to its position and orientation or if necessary to its velocity or its
acceleration.

6. Arena. One of the major aspects within the SYMBRION/REPLICATOR projects
is to develop new bio-inspired algorithms. To test and evaluate these paradigms,
whether it is online or off-line evolution or other kinds of machine learning, the
simulator needs to provide mechanisms to measure the quality of these algo-
rithms. Therefore, robot behaviors need to be logged, controllers need to be eval-
uated and diverse fitness functions need to be calculated. The arena component is
offering functions for controlling, supervising and evaluating the robot behaviors
and therefore it will help to evaluate the controllers. The arena component offers
among others the controlling of the simulation, including pausing, resetting and
loading new configuration into the simulation as well as observing and logging
robot behaviors.
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2.4.2.7 Distributed Simulation

Controllers and simulation components are not only implemented thread-safe so
that they can run on other cores but they are also implemented in such a way that
they can run distributed on other computer platforms. This way the simulation can
be easily distributed over several computers connected via an Ethernet network.
With this mechanism we can even distribute the simulation not only locally but also
through the Internet. For distributed simulation we use the High Level Architec-
ture(HLA) standard which allows to combine several simulations into one simu-
lation (Dahmann, 1998). Each simulation, in HLA terms called federate interacts
with other federates through a Runtime-Infrastructure(RTI). The RTI is the connec-
tion between each simulation. In Symbricator3D each simulation component can
run on a different computer platform, as well as the robot controllers. To reduce the
traffic controllers and their robots should run on the same platform. The dynamic
simulation of an organism however cannot be distributed and need to run on one
platform. Each computer platform is chosen in such a way that they fit their task
the best.

For example, a highly GPU powered computer runs the dynamic simulation of the
scene including all the physical robot models. If robots or other objects do not need
to be simulated dynamically, a kinematic or a fast 2D agent simulator takes the task.
Several processors simulate sensor and controller behavior and additionally some
environmental simulations can be used to simulate phenomena such as temperature
or humidity dispersion and diffusion. Each federate can run distributed. The RTI
makes sure that the information needed by other federates will be provided in time
and that the federates are synchronized regularly. Fig. 2.31 displays exemplary how
a distributed Symbricator3D simulation can look like.

The distributed simulation also offers the possibility to visualize sensor values of
the real robots or organisms. In this case the robot/organism runs a small federate
that is sending the sensor data through a W-LAN module (attached at a robot or im-
plemented as a tool). The simulation uses the sensor data and visualizes them for the
user. For example the data of the infrared sensors of all the robots in the organism
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Fig. 2.31 HLA - Distributed Simulation: Several Federates (Simulations) are simulating dif-
ferent phenomena for Symbricator3D and communicating over the Runtime Interface (RTI).
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are gathered together and are sent to the simulation, which uses the data to visualize
the surrounding obstacles. Using the simulation the user can also control the robot-
s/organism remotely, whereas his commands will be sent back to the organism. As
the wireless LAN connection is fast enough even camera images can be broadcasted
to the simulation. This way debugging algorithms on the robot will become easier.
Additionally through this mechanism an organism can source additional computa-
tional power out to a more powerful workstation.

2.4.3 Showcase: The Dynamics Predictor

To show how Symbricator3D can be used in each stage of developing a controller
program, we like to introduce the idea of the dynamics predictor. The aim of the dy-
namics predictor is to compute how each joint needs to be controlled so that a given
movement pattern can be obtained. A movement pattern is a recurrent sequence of
actuator movements to move the organism. This can be a walking pattern or a pat-
tern for rotating the organism for example. For each type of organism, there exist
different types of movement patterns. To evaluate the quality of an organism, the
best movement patterns need to be known. Evaluating each possible configuration
would take an enormous amount of time as the possibilities are growing exponential
with the number of robots in the organism. While there are four different possibil-
ities for a two-robot-organism in 2D, there are already eight different possibilities
for an three-robot-organism. 2D means in this case that the robots are only rotated
around the Z-axis.

2.4.3.1 L-Systems

As the search space is enormous and the time needed to evaluate an organism, it is
essential to develop an intelligent, heuristic search strategy to find suitable organism
forms. One approach is to define families of organism forms whereas in an organism
family there are all these organisms with the same applicable movement patterns.
Caterpillars with different size for example can be controlled with the same algo-
rithm, hence they are in the same family. Before describing how to control robots in a
family with the same algorithm we need to describe organism families. One promis-
ing approach are the L-forms, which have been introduced by the Hungarian theoret-
ical biologist and botanist Aristid Lindenmayer in 1968 to model the growth process
of plants (Rozenberg & Salomaa, 1980) and which have also been used to develop
and simulate artificial creatures in computer animation (Hornby & Pollack, 2001).
L-systems are defined as a tuple:

G = {V,S,ω ,P}
where
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V is a set of variables
S is a set of constants
ω the starting sequence
P a set of production rules

Using his L-system, Lindenmeier described the growth of algae as follows:

V : A, B
ω : A
P : (A :→ AB), (B :→ A)

which produces:

t = 0 : A
t = 1 : AB
t = 2 : ABA
t = 3 : ABAAB
t = 4 : ABAABABA
t = 5 : ABAABABAABAAB

At the first step, at t = 0 only the first rule A → AB can be applied and we get the
term AB. In the next step we have to use both rules once. While A becomes AB again
B becomes A and we get the term ABA.

Hornby and Pollak (Hornby & Pollack, 2001) have used parametric L-Systems
to produce families of structures to create different creatures in simulation. In
parametric L-Systems production rules can also have parameters and algebraic
expressions can be applied as parameter values for the successors. In the next
example are the following production rules P given:

a(n) : ((n > 1)∧ (n mod 3 = 0)) → Aa(n − 1)
a(n) : ((n > 1)∧ (n mod 3 = 0)) → Ba(n − 1)
a(n) : (n ≤ 1) → A

With the starting sequence ω = a(6) the following string will produced:

t = 0 : a(6)
t = 1 : Ba(5)
t = 2 : BAa(4)
t = 3 : BAAa(3)
t = 4 : BAABa(2)
t = 5 : BAABA(1)
t = 6 : BAABAA

As with the parametric L-System any kind of configuration can be described, we
will use the L-system to model the morphology of our organisms.
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2.4.3.2 Describing the Structure of a SYMBRION/REPLICATOR Organism
Using L-Systems

To use the parametric L-systems for creating different families of organism forms,
we need to define where and how a robot can connect to the organism. We define
the following variables and constants:

V : X ′
i

S : Xi, A, B, C, D, :, [, ]

with Xi the robot in the organism, A, B, C, D the sides of the robot, “:” the rep-
resentation of a connection between two robots, “[” the operator which saves the
current position in the organism and “]” the operator which restores that position. Xi

describes a robot in the organism while X ′
i describes a position where a robot still

needs to dock to the organism.
Using this grammar we can describe every 2D organism. If we want to describe

a 3D organism we need to extend the constants for the sides A, B, C, D with an
index indicating how the robot is docked to the organism. The docking device is 90◦
symmetric, meaning the robot can be rotated by n × 90◦,n ∈ N around the coupling
device axis and it is still possible to be docked to the organism (in case the robot will
be rolled to the side, the robot will loose its ability to locomote alone). To indicate
that a robot is docked in such a way, we’ll add an index n to the side constants, e.g.
A1 means the robot is docked with its A-side, rotated by 90◦.

With this grammar we can describe the organism either by using identifiers for
each robot or by classifying them. In the first case Xi represents a robot with the
unique identifier i. In the later case Xi defines a class of robot. This class de-
fines different robot types in case of a heterogeneous organism and the function-
ality of the robot at that position (e.g. the spine or a leg in the organism). If we
have an organism consisting only of homogeneous robots, we can even resign the
identifier i completely. A mechanism to figure out the structure of an organism
without using identifiers has already been achieved with the CONRO robots
(Salemi & Shen, 2004). Based on hormone-inspired messages, a protocol has been
developed that enables each robot module to discover its location and correct type
within the organism. With little modifications the mechanism can be adopted for the
SYMBRION/REPLICATOR robots.

If X1 and X2 are two robots that are connected to each other, whereas X1 is con-
nected with the side H1

0 and X2 is connected with the side H2
0 we describe it as:

X1[H1
0 : H2

0 X2] with H1
0 ,H2

0 ∈ {A,B,C,D}
With this L-System representation we can describe every possible connection be-
tween two robots and therefore we can describe every organism. In Table 2.9 a few
examples of different organism types are given including their L-System represen-
tation and their production rules for the organism family. Within this list there are
two special cases. The first one is the wheel. For this organism it is necessary to
give one robot an identifier (in this case it is also the initializing robot X0), so that
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another module in this organism knows where to dock. With this mechanism, we can
create and display every circular dependency in an organism. The second case is the
alternated caterpillar, where one robot has been rotated around its connector axis.
As this robot cannot rotate itself by its own, it needs first be rotated by an organism
(It can be the same organism or a different organism which is specialized for this
task). Afterwards the organism needs to dock to the robot, as the robot cannot move
anymore. In the L-System representation as well as in the production rules, it is eas-
ily visible when such an action needs to be executed before further building up the
organism. In the given example the third robot needs to be rotated, as it is described
in the grammar, indicated by the index of the side variable (. . . X1[A : C1X2 . . . ). The
forth robot on the other hand has been rotated back, also indicated by the index of
the side variable (. . . X2[A : C3X1 . . . ) and therefore can connect to the organism as
usual. However not every configuration, that has been created by the generator can
be achieved. Therefore a validation step is necessary.

2.4.3.3 Validating the String Representation

An organism representation for the SYMBRION/REPLICATOR robots is valid when
the following requirements are fulfilled:

1. Maximum one robot can dock at each side. There are four sides.
2. If Xi and Xj in a L-System representation s represent the same robot, a valid joint

angle representation q1, . . . ,qn needs to exist so that Xi = Xj

3. If Xi and Xj in s represent two different robots Xi and Xj, a valid joint angle
configuration q1, . . . ,qn needs to exist so that Xi does not collide with Xj and the
second postulation is still valid with this joint angle configuration.

The first point can be easily assured by validating the string s. that has been
generated by the L-System. The string s is valid when it has the following structure:

s = X0[A : s1]0..1[B : s2]0..1[C : s3]0..1[D : s4]0..1

with si a substring with the following structure:

si = Hi
0Xi[Hi

1 : s j]0..1[Hi
2 : sk]0..1[Hi

3 : sl]0..1

with Hi
k the sides of the robot Xi, whereas Hi

k = Hi
l , k = l, k, l ∈ {0,1,2,3} and

s j, sk, sl are substrings with the same structure as si. The expression [...]0..1 means
that the expression [...] can occur not once or once at this position in the string. Ac-
cording to these restrictions to the string representation, we can define the structure
of production rules. The production rules for the initializing robot X0 and the other
robots Xi need to have the following structure:

X ′
0 :→ X0[A : H1

0 X ′
1]

0..1[B : H2
0 X ′

2]
0..1[C : H3

0 X ′
3]

0..1[D : H4
0 X ′

4]
0..1

X ′
i :→ Xi[Hi

1 : H j
0 X ′

j]
0..1[Hi

2 : Hk
0 X ′

k]
0..1[Hi

3 : Hl
0X ′

l ]
0..1
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Table 2.9 Organisms, their L-System Representation and their Production Rules.

Wheel Caterpillar

Dragon Alternated Caterpillar

Organism: Wheel
L-System Representation: X0[A : CX[A : CX[A : CX[A : CX[A : CX0]]]]]
Production Rules: X ′

0(n) :→ X0[A : CX ′(n−1)]
X ′(n) : (n > 1) → X[A : CX ′(n−1)]
X ′(n) : (n ≤ 1) → X0

Organism: Dragon
L-System Representation: X0[A : CX[A : CX]][B : CX][D : CX]
Production Rules: X ′

0(n) :→ X0[A : CX ′(n−1)][B : CX ′(n−2)][D : CX ′(n−2)]
X ′(n) : (n > 1) → X[A : CX ′(n−1)]
X ′(n) : (n ≤ 1) → X

Organism: Caterpillar
L-System Representation: X0[A : CX[A : CX[A : CX[A : CX]]]]
Production Rules: X ′

0(n) :→ X0[A : CX ′(n−1)]
X ′(n) : (n > 1) → X[A : CX ′(n−1)]
X ′(n) : (n ≤ 1) → X

Organism: Alternated Caterpillar
L-System Representation: X0[A : CX1[A : C1X2[A : C3X1[A : CX1]]]]
Production Rules: X ′

0(n) :→ X0[A : CX ′(n−1)]
X ′(n) : ((n > 1)∧ (n mod 3 = 0)) → X2[A : C3X ′(n−1)]
X ′(n) : ((n > 1)∧ (n mod 3 = 1)) → X1[A : C1X ′(n−1)]
X ′(n) : ((n > 1)∧ (n mod 3 = 2)) → X1[A : CX ′(n−1)]
X ′(n) : (n ≤ 1) → X1
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Regarding these rules when defining the production rules the initializing robot
can have maximum four connections to other robots and at each side only one robot
can be docked. The same holds for the rest of the robots. They are docked to their
parent robot at one side and maximum three other robots can be docked to them.
This way the first point has been assured. The other two points however cannot be
so easily gained, without restricting several organism forms that might be possible.

The second two points can only be proven by the inverse kinematics. Using the
L-System representation, the kinematic chain of the organism can be developed.
Therefore the representation string s needs to be transformed into several equations
which describe the transformation between the robots in the organism.

2.4.3.4 Kinematic Representation

A kinematic description of the robot is essential for the organism, as it helps to find
out the relative position and orientation of other robots or tools. With this knowl-
edge sensor fusion of gyroscopes in different robots for example will become pos-
sible. With the inverse kinematic it is also possible to move a robot or a tool to a
given position to allow docking with other organisms or to plug into a power socket.
The previously described L-System representation of the organism can be used to
develop a kinematic representation of the organism. Therefore each robot Xi is a ho-
mogeneous matrix that describes the position and orientation of that robot relatively
to another robot or to the world coordinate system. The sides of the robot A, B, C
and D can also be understood as homogeneous matrices, which describe the trans-
formation of the docking elements relatively to the center of the robot. In Fig. 2.32
the assembly of the two robots is displayed. The side A and D are in both designs
fixed to each other, while the other two sides are connected to AD via a hinge in the
one design and via two different hinges in the other design. We define A and D as
independent to the hinge, i.e. the orientation of A and D define the orientation of the
robot. The orientation of B and C are joint dependent, with B(0) and C(0) the initial
state of the two sides. The matrices of the sides are defined as:

A =

⎛⎜⎜⎝
1 0 0 −d
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ B(0) =

⎛⎜⎜⎝
0 −1 0 0
1 0 0 −d
0 0 1 0
0 0 0 1

⎞⎟⎟⎠
C(0) =

⎛⎜⎜⎝
−1 0 0 d

0 −1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ D =

⎛⎜⎜⎝
0 1 0 0

−1 0 0 d
0 0 1 0
0 0 0 1

⎞⎟⎟⎠
As the robot and its coupling devices are symmetric to 90◦ rotations there are four
possibilities how two coupling devices can connect to each other. These rotation is
described by the roll matrix Rn:
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Rn =

⎛⎜⎜⎝
1 0 0 0
0 cosn′ −sinn′ 0
0 sinn′ cosn′ 0
0 0 0 1

⎞⎟⎟⎠ with n′ =
π
2

n, n ∈ {0,1,2,3}

B and C are also joint dependent and to calculate their final orientation a pitch matrix
P(q) is necessary:

P(q) =

⎛⎜⎜⎝
cosq 0 −sinq 0

0 1 0 0
sinq 0 cosq 0

0 0 0 1

⎞⎟⎟⎠
Using these transformation matrices, we can finally describe the exact transforma-
tion of each side of the robot:

An = Rn A
Bn(qB) = P(qB) Rn B(0)
Cn(qC) = P(qC) Rn C(0)
Dn = Rn D

whereas qB is the joint angle of the actuator at the B-side and qC the joint angle at
the C-side. There are two different SYMBRION/REPLICATOR robots. One has one
degree of freedom, the other two. In the case of only one degree of freedom qB = qC.

Chain Drive Robot Screw Drive Robot

Top View

A

B

C

D

C

B

D

A

Fig. 2.32 Rotatory Axes of the Chain Drive Robot and the Screw Drive Robot.
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To obtain an equation that describes the transformation of robot Xi to another
robot Xj, we need to transform the L-System representation into an equation. In a
valid representation string s, we will find a substring in the form of Xi[H

j
i : Hi

jXj] (the

side H j
i of robot Xi is connected to side Hi

j of robot Xj). As this substring defines the
connection between robot X1 and X2, we can describe the kinematic transformation
between these two robots with the equation:

H j
i Xi = R Hi

j Xj (2.7)

with R the rotation matrix of 180◦ around the z-axis (The two robots are rotated by
180◦ towards each other when docked):

R =

⎛⎜⎜⎝
−1 0 0 0

0 −1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠
Referring to Eq. 2.7 we introduce the transformation matrix T i

j which transforms
the coordinate system of robot Xi to Xj so that Xi = T i

j Xj applies:

T i
j = (H j

i )
−1

R Hi
j

whereas Hi
j and H j

i are one of the four homogeneous matrices listed in Sect. 2.4.3.4.
Let X0 and Xn be two arbitrary robots in the organism and X1, ...,Xn−1 robots in the
organism, whereas X1 is connected to X0 with its side H0

1 (and X0 is connected to X0

with its side H1
0 ), X2 is connected to X1 with its side H1

2 and so on, then the equation

X0 = T 0
1 X1 = T 0

1 T 1
2 X2 = T 0

1 T 1
2 T 2

3 . . . T n−1
n Xn = T 0

n Xn

applies, with the transformation matrix T 0
n

T 0
n = (H1

0 )
−1

R H0
1 (H2

1 )
−1

R H1
2 . . . (Hn

n−1)
−1 R Hn−1

n

In case of one degree of freedom per robot, T 0
n depends on maximum m ≤ n + 1

joint angles, with two degrees of freedom it is a maximum of m ≤ 2 × (n + 1) joint
angles.

Given the kinematic chain as described above, we can now solve the forward
kinematic problem, meaning we can determine the position and orientation of
a robot module relative to another robot module in terms of the joint variables.
Especially, we can determine the position and orientation of an end-effector,
a tool for example. The inverse kinematics problem is to find a suitable joint
configuration so that the end-effector or any other part of the organism is at a
desired position with the right orientation. This is very important, as it is necessary
for docking two robot organism, docking an organism to a tool or to interact with
the environment like plugging the organism to a power socket. To solve the inverse
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kinematic problem a joint angle configuration q0, . . . ,qm needs to be found so that
the equation X0 = T 0

n (q0, . . . ,qm) Xn applies. The inverse kinematic problem can be
solved numerically or analytically. Numerical methods are computationally inten-
sive. They can become unstable or can oszillate. Different numerical methods have
been implemented by Kelmar and Khosla (Kelmar & Khosla, 1988) and Höpfler
and Ottler (Hopler & Mosterman, 2001; Hopler & Otter, 2001) for example. Ana-
lytical methods on the other hand are exact and not as computational intensive.
However, for a kinematic redundant robot, there does not exist a closed-form so-
lution. The same holds for a robot with six degrees of freedom in general. As the
geometry of the organism is unknown, a general solution for the inverse kinemat-
ics would result in a numerical solution. For reasons of stability and computational
intensity however it should be aimed for an analytic solution for most of the organ-
ism structures, which means that the organism geometry needs to fulfill particular
requirements (Hollerbach, 1984; Manseur & Doty, 1992a; Manseur & Doty, 1992b;
Tourassis & Ang, 1995).

2.4.3.5 Example: Caterpillar

In the following, we will explain the parametric L-System description for the SYM-
BRION/REPLICATOR organism and the kinematic equation along at hand of the
caterpillar organism. Later we will use this example to further extend the L-System
grammar to also describe the dynamic behavior of the organism and to introduce
movement patterns. The caterpillar form for example is one of the simplest organ-
ism families, which is able to overcome small obstacles and gaps in the environment.

It can be described with the following production rules:

X ′
0(n) : → X0[C : AX ′(n − 1)],

X ′(n) : (n > 1) → X [C : AX ′(n − 1)],
X ′(n) : (n ≤ 1) → X ,

which initialized with ω : X ′
0(4) produces:

t = 0: X ′
0(4)

t = 1: X0[C : AX ′(3)]
t = 2: X0[C : AX [C : AX ′(2)]]
t = 3: X0[C : AX [C : AX [C : AX ′(1)]]]
t = 4: X0[C : AX [C : AX [C : AX ]]]

In this case we have only one type of robot, as each robot in the caterpillar has the
same function to fulfill. We have also no identifier declared, as we do not need it in
this example. The only robot, that slightly differs from the others in the organism is
the X0 robot. This robot initializes the organism and will be responsible for generat-
ing impulses that will trigger an organism movement. According to the production
rules all robots know their location in the organism and if other robots need to dock
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to them. Additionally they also know their function. The scenario for the caterpillar
organism is the following.

At the beginning X0 is in swam mode and encounters a problem that it cannot
solve alone, like climbing a wall. The robot needs to classify the problem and needs
to decide which organism type is suitable for that kind of problem. Let’s assume
the robot decides to create a caterpillar with four elements. It sends locally (via
infrared) a message to other robots, that it wants to create an organism. Another
robot gets this message and moves towards X0. The new robot now receives from
X0 further information about type of organism, where to dock with which side to
dock and how many robots are left (parameter n) and its function (X). The new
docked robot will now look for further robots. This will be done as long as robots are
missing in the organism or a timeout aborts the procedure. The timeout is essential
as we do not want the robots to wait infinitely. If there are not enough robots to
build the organism, necessary to fulfill the task, the robots need to detach from the
organism again and need to look for more robots. This is another challenging part
in the project.

We assume we have enough robots and the last robot just docked to the organism.
This robot will broadcast a message that the organism has been completed and robot
X0 begins to send reflex messages periodically. The behavior of the caterpillar and
its robot modules has the following structure:

1. The robot X0 begins moving its hinge up- and downwards using a wave function
and after Δ t seconds it sends a reflex signal to its direct neighbor. It keeps sending
this signal with the period of the wave function.

2. All the other robots are beginning the same motion when receiving the reflex
signal. After the same Δ t they are forwarding that signal to the next robot.

This way the organism is executing a wave function defined by the particular wave
function of the modules and the velocity of propagation c = l/Δ t is defined by the
robot length l and Δ t the time between receiving a reflex and forwarding it to the
next robot.

2.4.3.6 Movement Patterns

Based on the L-system that defines the organism structure, we can now easily de-
velop such movement patterns. A movement pattern is a set of rules for each mod-
ule type in the organism, whereas each robot is deciding what to do, according to
its function (i.e. the module type) in the organism and its sensor and communica-
tion input. There is no central mechanism to control the organism. The movement
patterns can for example be described in the motion description language MDL2ε .
For our example, the caterpillar organism, we need to define the movement pattern
of the initializing robot X0 and the other robots in the organism, which are in this
case all of the same type. As both behaviors only differ in creating or forwarding
the reflexes, the behavior can be described in one plan.
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Listing 2.1 MDL2ε plan for a caterpillar movement

<PLAN name=” C a t e r p i l l a r M o v e m e n t ” d u r a t i o n =” i n f i n i t e ”>

<BEHAVIOUR name=” noL oca lMessageReceived” i n t e r r u p t =”OR(NOT(
ILOCAL MESSAGE LIST EMPTY ) , EQ( ITYPE , 0 ) ) ”>

<ATOM name=”AROTATE HINGE” i n t e r r u p t =”ITRUE” d u r a t i o n =”1 ” a rg0 =” −0.5” />
<ATOM name=”ASEND LOCAL MESSAGE” i n t e r r u p t =”ITRUE” d u r a t i o n =”1 ” a rg0 =”1 ” />
<ATOM name=”AROTATE HINGE” i n t e r r u p t =”ITRUE” d u r a t i o n =”1 ” a rg0 =”0 ” />
<ATOM name=”AROTATE HINGE” i n t e r r u p t =”ITRUE” d u r a t i o n =”1 ” a rg0 =” 0 . 5 ” />
<ATOM name=”AROTATE HINGE” i n t e r r u p t =”ITRUE” d u r a t i o n =”1 ” a rg0 =”0 ” />
<ATOM name=”ACLEAR MESSAGE LIST” i n t e r r u p t =”ITRUE” />

</BEHAVIOUR>

</PLAN>

In this plan two different elements are appearing, the ATOM and the BE-
HAVIOUR. An ATOM describes what to do, e.g. moving the hinge, sending a mes-
sage or switching the red LED on. An ATOM will be executed as long as the boolean
interrupt expression is true and the time given in duration has not been elapsed. Ad-
ditionally arguments can be given to the atom, like moving the hinge to the angular
position −0.5 radians. The BEHAVIOUR is in this case an aggregation of ATOMs,
but it can also include additional BEHAVIOURs or other MDL2ε elements. A com-
plete description of MDL2ε can be found in (Szymanski & Wörn, 2007).

At the beginning all robots are waiting to receive a local message (i.e. a message
from a direct neighbor), except robot X0 (ITY PE = 0) which starts to move its hinge
at first to position arg0 = −0.5 for one time step. Afterwards it is sending a local
message. The robot next to it starts the same movement after receiving the message
and so on. This way all the robots begin their movement time-delayed by one time
step. At the end of the movement the robots are clearing their message list, so that
they do not enter the BEHAVIOUR element again. Through this mechanism all the
robots are synchronized in their movement and a caterpillar movement establishes.
Fig. 2.33 shows that movement using this plan.

Fig. 2.33 Caterpillar Movement: Several robots are docked in a row and by only moving the
hinges of each robot like a caterpillar the organism moves forward.

2.4.3.7 Evolving the Organism

MDL2ε has already been successfully used to evolve different behaviors for differ-
ential - driven swarm robots, beginning with obstacle avoidance and wall-following
to more complex patterns like escaping a labyrinth (Szymanski et al., 2009a). As
our example is not much more complex as a wall following pattern, MDL2ε can
also be used to evolve these movement patterns. However, evolving more complex
behaviors will take a few days even with a network of state-of-the-art computers. To
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evolve movement patterns for every possible organism configuration would take too
much time. Therefore, movement patterns for organism families need to be evolved.
As simulating small organisms is less time consuming, evolving movement patterns
for them is faster. Therefore we aim the following strategy:

1. Create an organism family using the parametric L-System.
2. Evolve movement patterns for the first member of the family (Create the organ-

ism with the smallest parameter possible).
3. After evolving the movement, evaluate the fitness of the organism family.
4. If the fitness is high enough, it is allowed to grow. That means, generate a new

member of that family with more modules.

Only organism families with the best fitness are allowed to grow and are eval-
uated again. While growing the organism another interesting aspect would be to
additionally change the production rules. This way, it gives the possibility to first
generate a caterpillar, which is later be able to evolve legs for example. After grow-
ing the organism, the best movement patterns of the previous organism will be used
as a starting point for evolving movement patterns for the new one. This way, the
organism can become very complex and we will still be able to evolve movement
patterns as we rely on previous gained knowledge.

As not every organism is suitable for every task, the organism needs to change its
phenotype during runtime. For example, the organism has found a suitable structure
for moving over a gap, but then needs to climb a stair. It is forced to change its phe-
notype. In simulation we can easily establish different scenarios and different fitness
functions to establish an organism library where for each situation a suitable organ-
ism structure will be saved. This library will be saved on the real robot afterwards
and if the organism encounters a new situation it access the library and chooses a
new – for the new situation suitable – form. The movement patterns are also saved
within the library, which the organism can access.

2.4.3.8 Dynamic Representation

Like the kinematic representation describes the geometrical relations between the
robots in an organism, the dynamic representation describes the physical relations
between these robots and therefore the motion of the organism. When for example
a robot in the organism moves its main actuator, the main actuator applies a torque
to both parts of the robot. These torques will be forwarded to the next robots. At the
same time the torques of the main actuators of the other robots are also applied to
the bodies of that robot. As we know, the geometrical structure of the robot and its
physical properties we can use the L-System representation to model the dynamics
of the organism. The knowledge about the dynamics gives the possibility to control
the actuators more precisely. To achieve a given movement pattern, we will develop
a dynamics predictor which will calculate the required torques for each robot in
the organism. It will also be able to constrain robot velocities in the organism and
therefore can prevent these modules from damage.
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The dynamics predictor will react to divergences and external events that inter-
fere in the desired movement that need to be achieved. Based on sensor data from
the main actuator, it will calculate the current positions, velocity and acceleration of
each actuator and it will detect with touch sensors which robots lie on the floor. Ad-
ditionally, gyroscopes will provide information about the orientation towards Earth
and the acceleration of the module and air pressure sensors will give information
about the elevation of each robot module. These sensor data will be fused together
and in a second step it will be fused with sensor data of other robots, so that we
get information about position and orientation of the whole organism, as well as
its kinematic and dynamic behavior. Using this information the dynamics predictor
will calculate which forces need to be applied on each joint to achieve the posi-
tion of each joint for the next step. The positions of each joint (and therefore each
module) will be provided by the movement pattern. As divergences – either through
simulation errors or disturbances from outside – need to be compensated, actuators
need to be able to apply higher forces than in simulation. It is therefore essential to
have margins in simulations when evolving movement patterns, so that the organism
in reality is able to perform the movement patterns.

To calculate how to control the actuators, the dynamic predictor needs to calcu-
late the inverse dynamics of the organism. This calculation however is very com-
putationally intensive and cannot be solved by one micro processor in time, but as
each robot module in the organism has a powerful micro processor which is con-
nected by an internal bus the organism itself possesses a distributed computer net-
work. The larger the organism the more computational power will be available, but
the more complex will be the calculation of the inverse dynamics as well. To be
scalable the dynamics predictor needs to have a memory and a calculation complex-
ity of not more than O(n). Additionally the calculation needs to be easily distributed
through the organism. As a base for the dynamics predictor we will take the impulse-
based dynamics simulation IBDS (Bender, 2007), which we already introduced in
Sect. 2.4.2. It is not only a suitable dynamics simulator for the Symbricator3D simu-
lation, its impulse based approach also fulfills all the requirements for the dynamics
predictor.

In (Schmitt & Bender, 2005) Bender compared his impulse based simulation
with different implementations of the Lagrange multiplier (LM) method according
to stability and accuracy. The Lagrange multiplier method is well-known and widely
used, amongst others in the Open Dynamics Engine. He simulated a single, double
and a triple pendulum and compared constraint, energy and oscillation time drift.
He came to the concussion that applications using the LM method become unstable
and inaccurate if not fully stabilized, while the impulse-based methods characterize
a high stability. Additionally, the impulse-based dynamics simulation has a compu-
tational and memory complexity of O(n). Therefore and because the algorithm can
be distributed to multiple cores, it cannot only be integrated in a network of power-
ful micro processors such as we have in our organism, but it is also scalable towards
simulating dynamics for larger organisms.
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2.4.4 Conclusion and Future Work

In this section, we presented the Symbricator3d simulation environment to simulate
modular robots such as the SYMBRION/REPLICATOR robots that are currently being
developed in the these European projects. The simulator is designed in such a way
that it can simulate modular robot organisms as well as robot swarms. Additionally
different kinds of sensors and actuators are implemented. As the computational re-
quirements are too high to be fulfilled by one computer the simulator is designed
to be distributed over a network. As there are different simulations involved which
need to interact with each other, the distributed simulation standard HLA has been
chosen. This way simulations for dynamic behaviour, robots and their controllers
and the environment can be developed independently and communicate through a
uniform interface. To illustrate each stage of the controller development using the
simulator, we presented the L-System to represent the structure of the organism and
we used movement patterns and a dynamics predictor to achieve the correspond-
ing organism motions. Using these algorithms, different movement patterns will be
developed in the simulator and later, when reliable hardware is available, will be
evaluated on the real robots.

The simulator will also be extended to be able to simulate robots and the organ-
isms in different ways depending on the current requirements, e.g. robot swarms

Fig. 2.34 Several robots that are connected to a six legged organism. The transparent boxes
around the robots display their current collision model.
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will be simulated with a fast 2D simulator and organisms with a dynamics simula-
tor. When the organisms become too large to be simulated completely dynamically
a kinematic simulation will support the dynamics engine in such a way that not all
joints are simulated dynamically anymore. Additionally we will have different col-
lision models for the robots which can be exchanged during runtime. In Fig. 2.34
for example the robots in the organism are approximated by boxes to reduce the
computing time for the dynamics simulation. In other cases such as the docking ma-
neuver of two robots a very detailed collision model of the connectors is mandatory.
Depending on the current requirements the simulator will decide which collision
model needs to be used.

The different motion simulators (for robot swarms and organisms), as well as
environment and robot-controller simulators will be distributed using the HLA stan-
dard. The interface therefore will be developed and implemented into the Symbri-
cator3D environment in the next months. As the real robots will be equipped with
wireless communication devices such as ZigBee or W-Lan modules it will even be
possible to connect these robots to the simulator. The simulator will be able to dis-
play the robots and their senor data and therefore will offer a good debugging and
observation tool for developing modular robot controllers.



Chapter 3
Cognitive Approach in Artificial Organisms

3.1 Cognitive World Modeling

Libor Přeučil, Petr Štěpán, Tomáš Krajnı́k, Karel Košnar,
Anne van Rossum, Alfons Salden

The chapter introduces possibilities and principal approaches to knowledge gath-
ering, preprocessing and keeping in autonomous mobile robots’ artificial organ-
isms. These may comprise “classical AI” concepts as well as “new AI principles”,
whereas both approaches themselves may bring up either major advantages, or suf-
fer from certain drawbacks.

The classical approach relying on sensor-fusion-model-planning and actuation
schema takes the advantage of explicit representation of the organism knowledge
which may be represented by varied types of world model structure (Barrera, 2005).
Subsequently, these structures are mainly understood as geometric and other envi-
ronmental features carriers. Features and data are considered for explicit representa-
tion of world properties and typically have precisely known location, meaning and
confidence. These properties serve for inputs to cognitive or planning subsystems al-
lowing to execute reasoning processes over this data. Major advantages of this stand
in predictable behaviors, strong data reduction ratio, and therefore better possibility
of tracking and safety of the robot operation.

The disadvantage of this class of methods remains in a stiff way of combin-
ing specific cognitive methods, typically capable of adjustment to slowly changing
organism operating conditions. Therefore, the process of adaptation/evolution to
rapidly changing environment condition becomes a hard problem in this approach.

The other approach aiming to store knowledge in an implicit form tends to be
more flexible in adaptation/learning and evolution aspects and ranges from Brooks’
principles to Neural Net knowledge representations. Hence, this advantage is bal-
anced by unknown or fuzzy localization and form of particular knowledge. Esti-
mation of particular behaviors and possibility of their determination remains low.
Moreover, due to undetermined meanings of particular knowledge/data components,
efficient filtration of data amounts becomes ineffective.

P. Levi and S. Kernbach (Eds.): Symbiotic Multi-Robot Organisms, COSMOS 7, pp. 165–228.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010
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The leading target in here stands in elaboration of novel approaches to represen-
tation of world knowledge based of combination of selected features of the above
mentioned methods. A hybrid approach, that combines strong data amount reduc-
tions and easy understanding of a World Map content with high flexibility of the
“new AI” principles is proposed.

3.1.1 Methodology

The world model captures knowledge the robot has about its surrounding environ-
ment. The aim is to store world information and world-robot interaction in a com-
mon structure allowing efficient distribution, merging and combination of various
knowledge.

The world can be described amongst a connectionist versus symbolist axis,
as well as a spatial or non-spatial axis. Is there any way to reconciliate those
different views on the world model? An ad-hoc combination of those different
strategies on a robot platform is not desired. A fruitful combination of the mod-
ules developed from the different angles, can be found in the multi-agent system
(MAS) (Wooldridge, 2002) methodology.

Conventionally, the agents in MASs are considered as entities that are rule-based
or algorithm-based. There is however no reason to extend this to more adaptive con-
trol architectures, such as neural networks. Conventionally, agents in MAS research
are static. There is also with respect to this no reason that there are no composition
operators defined on the agents. Multiple agents might be merged to single agents
and agent-boundaries do not necessarily have to be predefined.

In the field of neurodynamics, Kozma (Kozma, 2008) implements a multi-agent
system built out of so-called multi-scale Kachalsky-sets or K-sets. A hierarchy of K-
sets originating from an individual level of inhibitory and excitatory cells leads from
limit cycle oscillations, to chaotic oscillations towards spatio-temporal dynamics
with global phase transitions.

A modular approach is also taken by Edelman in the field of neural darwin-
ism, which field is currently exploding. For example, read the work of Maniadakis
and Trahanias (Maniadakis & Trahanias, 2006). Their supposed model consists out
a collection of neural agents, each one representing a brain area. They argue for
the use of evolution because implementing architectures with hundreds of modules
might be unfeasible (Popescu-Belis, 1997).

The above mentioned examples are heavily skewed to neural implementations.
There is however no reason to only build neural agents, but a wide diversity of
machine learning mechanisms might actually be applied (Drogoul & Zucker, 1998).

3.1.2 Spatial World Modeling

As a first-sketch approach may be assumed insertion of known representations of
world and world-robot interaction knowledge between the sensor subsystem and
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the reasoning and evolutionary engine of the robot. This improves observation pos-
sibilities of the system performance and strongly reduces sensor data flows from
the sensors via execution of data fusion techniques. Suitable data fusion methods to
achieve this are presented herein.

The next step elaborates on possibilities and approaches to distribution of these
data representations. These are needed to handle knowledge organization in both the
organism and the swarm modes and outline necessary procedures during transition
between these two modes.

Another foreseen dimension of abstraction to be used is found in diverse granu-
larities of the contained data representations. The basic investigated world abstrac-
tion includes the geometric and simple symbolic representations. The latter ones
allow to come up with topological models of the environment. As a result, this en-
ables to design multi-leveled environment model (map) comprising the topological,
geometrical and procedural knowledge representation levels at once. The knowl-
edge stored in a topological map node is constrained only by limitation of hardware
and it can describe any property of the environment including its dynamics.

The aforementioned approaches are tested and studied with respect to their em-
bodiment into low-power/low performance hardware to enable real-world testing of
the design principles in laboratory experiments.

Therefore, certain sensing technologies will be preferred. This will include a
smart camera system integrated with structured light-based ranging device, vari-
ous proximity sensors, inertial units for organism body determination in space, RF
based localization system etc.

3.1.3 Evolution Map

The Evolution Map (EMa) is a modular framework dedicated to provide information
suitable for evolution, navigation, localization and spatial reasoning. Moreover, the
EMa has been suited also for action planning and to support human-robot interac-
tion and knowledge exchange. Methods incorporated in the EMa framework design
build together a unified approach to the environment and the robot-environment in-
teraction representation. As the robot-environment interaction patterns depend on
robot body configuration, the robot morphodynamics can be modeled as well.

The map in this framework is rather understood as a mean, or a process, in-
corporated into the robot control system, than considered for a fixed result created
before. In these terms it may be considered as a knowledge base providing particular
information for an intelligent acting, i.e. the representing database contains the pro-
cedural (“how”) as well as the declarative (“what”) knowledge. This forms the EMa
content, which mainly stores information necessary to know “how to get from one
place to another” and/or “how to distinguish one place from another”. Moreover, the
stored information can be easily converted into human-oriented and understandable
form and can be used in communication with a human.

The EMa modular architecture is open to incorporation of new methods into
the framework and therefore open for use with evolutionary techniques. Different
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behaviors and algorithms contributing to robot performance can be switched on and
off during run time and even cooperate together to achieve improved robustness and
reliability. Nevertheless, individual modules do not need to be completely “aware”
of each other, their coordination is handled by EMa itself. All the used algorithms,
behaviors and their coordination and cooperation are executed by an Executor as
well as a Reasoning module.

Consequently, EMa framework consists of the following modules:

• The Map holds gathered information about the environment and provides inter-
faces for data storage, modification and retrieval, i.e. the map works as a knowl-
edge base.

• The Reasoning module is ordering the data in the map. The module is respon-
sible for insertion of vertices and arcs into the map as well as it is capable to
generate the most proper hypothesis consistent with the map content and ex-
plaining the given set of observation. The generated hypotheses are subsequently
verified with assistance of the Executor. This step stands in suggestion of recom-
mended actions to support verification, rejection or adoption of the hypothesis in
question.

• Jockeys are modules that are responsible for sensing and conducting various ac-
tions in the environment as well as the map keeping, i.e. insertion of data into the
map through predefined interfaces.

• The Executor module provides data abstraction and planning on higher level.
This module decides selection and launch of various Jockeys as well as ensures
data interchange between Jockeys and the map.

This structure hides the implementation details and enables handling all types of
knowledge in unified way. It also enables coordination and cooperation of navigat-
ing, learning and localizing algorithms.

Fig. 3.1 EMa Architecture.
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3.1.4 Map

The map is a core part of the framework which holds all information about the envi-
ronment and the environment-robot interaction. The main structure used to represent
the map is a directed graph which consists of vertices and arcs representing known
topological relations. In this topological structure, the vertices stand for places in the
environment, whereas the arcs represent possible navigation paths. If needed, metric
representation of related environment parts (local metric maps) can be attached to
each vertex and/or arc as an additional information, see Fig. 3.2.

Moreover, the vertices can also be interpreted as points of interest or signifi-
cant milestones in the environment. Typically, these are assigned to places that the
robot can reliably recognize and even where the robot can undertake certain deci-
sions about its future behavior for planning purposes. Therefore, each vertex needs
to carry labeling information possibly distinguishing it from other vertices as well
as information used to localize the robot inside the local frame of reference. The
labeling information is typically related to certain features of the environment and
allows detection of the robot position whenever found in the particular vertex. Nev-
ertheless, the existing vertices do not need to be distinguishable exclusively by their
description. A full and unambiguous definition of particular vertex needs both the
vertex label and its relation to the rest of the graph.

Each arc stores procedural knowledge, giving a description how to traverse from
its initial location denoted by the start vertex to a target place given by the goal
vertex. The subsequent behavior of the robot is expected to be deterministic, i.e. the
robot placed in the starting position and using certain procedural knowledge navi-
gates always to the same destination. The violation of this expectation is classified
for a failure which can be recovered only and only in the navigation phase, but can
lead to fatal situations in the exploration phase. To deal with this issue, a probabilis-
tic extension of the traversing behavior may be applied (Ephraim & Merhav, 2002).

Fig. 3.2 Graphical representation of the map.
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As mentioned, every vertex and arc can carry further additional information as
metric map of the neighbourhood, its certain features (area, length, curvature, rela-
tive position) etc. The additional information and knowledge is intended for further
use for planning, reasoning about the environment, and interfacing the map to sen-
sors, actuators and controllers.

Map elements are stored in transaction database-like structure, i.e. every vertex
and arc is identified by a unique label. Corresponding arcs then hold identifiers of
source and target vertices. If an extension into more detail is required, the basic
database elements vertices and edges can be refined by attaching additional infor-
mation at any level.

Interfaces create abstract layer above the specific type of the data in the map.
Each interface takes care about storage of specific information about vertices or
arcs. The interface mechanism is transparent so one can request vertices with all
available information as well as one can specify the exact desired information. Since
the particular information does not affect each other, extension of the existing map
with a new class of knowledge without affecting functionality of all other previous
algorithms, is trivial. Undesired information is ignored and masked to be invisible
to these algorithms. Distribution of the global world model into several submaps
bound by topological relations allows keeping these local submaps sufficiently small
to reduce a risk of excessive demands on processing power.

3.1.5 Jockeys

Jockeys are modules responsible to perform “riding” of the robot. It means that these
modules are dedicated to control the robot actuators and to read the robot sensors in
order to achieve certain behaviors. A Jockey has direct access to the robot hardware
or can be connected to another module with direct access to the robot hardware.
Moreover, the Jockey may be related to one or more map interfaces.

Jockey modules are connected to the core part of the EMa framework through
sockets and XML-based protocol. The socket communication allows splitting the
executive part from the deliberative part in a logical as well as in a spatial way.
The XML protocol itself is easy to be extended and customized, as well as ensures
connectivity of different types of control programs and remains independent on the
background operating system.

Let us define four different types of Jockeys for the purpose of the EMa frame-
work as:

• Localizing Jockey is responsible for determination of position and orientation of
the robot in the world.

• Navigating Jockey is responsible for control the robot along an arc.
• Learning Jockey is responsible for gathering new information about navigation

along a robot path.
• Evolution Jockey combines properties of Navigating Jockey and Learning Jockey

into a single module.
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The Localizing Jockey is related to a specific type of vertices and sensors. Di-
verse sensors need different Localizing Jockeys for handling specific hardware and
processing data, but these Jockeys can utilize the same map interface and therefore
they may also share the stored information.

On the other hand, Localizing Jockeys with different algorithms can share the
same sensors. If the robot arrives into a vertex, the Jockey in question gathers in-
formation about the vertex, computes and stores specific descriptors into the map
and determines outgoing edges from the current vertex. Diverse types of Localiz-
ing Jockeys can produce different vertex descriptions and also discover different
outgoing edges.

A running Localizing Jockey is able to distinguish vertices of the specific type
from each other and compare the actual vertex with other vertices stored already
in the map. As result, this provides probabilities of being located in some cer-
tain and known vertex. In addition, relative positions in these vertices can be
estimated. This behavior is used for global localization and loop-closing. A clas-
sical examples of Localizing Jockey would be the iterative closest point (ICP) al-
gorithm (Mazl & Preucil, 2000) based on rangefinding methods or a Jockey fusing
position from odometry and global localization system by Kalman filtering meth-
ods (Thrun et al., 2005b).

The Navigating Jockey takes care for traversing along arcs of a specific type. The
Jockey guides the robot along the given edge and determines the end of this edge
whenever approaching a next vertex. This Navigating Jockey procedure can have
two different outfits: memoryless and memory-based implementations.

A memoryless Jockey relies on a reactive navigating strategy. The algorithm has
no a priori information about particular arc except the information needed to dis-
tinguish outgoing arcs from others. Main advantage of reactive navigation stands in
the ability of traversing along completely unknown edges.

A memory-based Jockey needs to have certain data about the arc in advance.
Such information is acquired by the Learning Jockey. Being more informed, the
memory-based navigation approach can provide much better performance in terms
of higher preciseness, repeatability of actions, etc. than the reactive one. It is impor-
tant to depict, unless the memory-based approach can reliably recognize a failure to
traverse a certain (preexisting) arc while the memoryless Jockey cannot.

Navigating Jockeys can either directly link sensory outputs to actuators, e.g. link
camera color recognition to motor actuators to realize path finding or describe com-
plex sensorimotor patterns to realize movement of the organism.

The role of the Learning Jockeys stands in gathering environmental informa-
tion while robot is driven by a Navigating Jockey. In result, the collected in-
formation is stored in a descriptor, valid for the arc the robot has been driven
along. The collected data can subsequently be utilized by memory-based Navigat-
ing Jockeys. In other words, the Learning Jockey creates a parallel arc with a dif-
ferent navigating strategy to the actually traversed one. Learning Jockeys use the
same representation of the environment as the relevant navigating memory-based
Jockey. For example, the Learning Jockey can remember color blobs or other image
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features (Bay et al., 2008) detected along the way and use these to navigate the
learned path later (Matsumoto et al., n.d.).

The Evolution Jockey applies self-organizing techniques to navigate the robot
along arcs in order to improve performance of the so far existing Navigating Jock-
eys. An evolutionary approach is used to improve robustness and efficiency of the
robot movements, the list of which may contain: neural networks, homeostasis or
hormone system control. Evolutionary activity results into new populations of Jock-
eys with diverse properties. The Evolution Jockeys can mutually cross-over to mod-
ify themselves or to create a completely new Jockey entity.

3.1.6 Reasoning

The map can be understood as a knowledge base containing a set of facts about the
environment and robot-to-environment interactions. Having a proper formal tool it
becomes possible to infer new facts from this knowledge base and the set of rules
that allow interpretation of the database content. The knowledge in the map is not
limited to “crisp” facts, but models uncertainty and probability as well. The sub-
jective logic approach (Josang, 2009) is proposed as a suitable formal logic system
to handle uncertain and probabilistic knowledge in the EMa framework. It is suit-
able also for conditional reasoning which is useful for hypothesis generation and
verification.

Facts in subjective logic are called opinions. The opinionω has four components:
believe b, disbelieve d, uncertainty u and atomicity a:

b + d + u = 1.

The first three parameters define position in the opinion space. The atomicity
represents a priori knowledge and is useful in evaluating highly uncertain opin-
ions. The used definitions of belief and disbelief follow the Dempster-Shafer
theory (Shafer, 1976). The uncertainty stands for lack of evidence for the given
proposition. It is something that fills “void” in the absence of the both belief and
disbelief terms. A case with zero uncertainty (u = 0) is equivalent to traditional
probability, i.e. the believe b is a probability, that a fact is true. Therefore, an opin-
ion with b = 1 or d = 1 is equivalent to a true or false fact in “crisp” binary logic.
For example, an opinion α with u = 1 is different from opinion β with b = d = 0.5.
The β would be an opinion about the outcome of a fair coin toss, while α means
that there is no knowledge about the coin fairness.

Above classic logic operators like AND, OR, NOT etc., the subjective logic offers
further additional operators: discounting and consensus. These two operators are
very useful to combine results from two or more algorithms. Given an opinion about
correctness of an algorithm A. Then, the discounting operator takes the resulting
outcome of this algorithm and adjusts it making-use of the given opinion about the
correctness of A.
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The consensus operator allows to combine two opinions on the same proposition
provided by two different algorithms. Therefore, this operator may be applied for
fusion of the results from Localizing Jockeys. As for the Localizing Jockey result
can be a value in range < 0,1 > or < 0,∞ >, it becomes necessary to transform
this value into the form of an opinion. Desired transformation parameters for the
conversion can be acquired using machine learning techniques from training sets of
annotated vertices.

Subjective logic also provides mechanism for abductive reasoning. The abduc-
tion allows inference of the precondition ϕ as an explanation for the observed con-
sequence ψ . It is a method of reasoning which finds the hypothesis that would best
explain the relevant evidence. Herein, it is possible to apply the abduction to model
the map based on a set of observations.

Subjective logic is computationally and memory undiscerning and therefore can
easily be implemented on a SYMBRION/REPLICATOR robot.

3.1.7 Executor

The Executor is responsible for the execution of a plan made by the reasoning mod-
ule. According to the requested action sequence in the plan, the Executor recalls
proper Jockeys. If there are multiple Jockeys admissible to fulfill a certain action,
the one with the best expected performance is chosen. The Executor supervises the
behavior of the executed Jockey on the fly and in the case the Jockey tends to fail, it
tries to substitute the requested behavior by executing another Jockey with a similar
function.

During the exploration phase, the Executor aims to run Jockeys to collect the
largest possible portion of information about the environment. It tries to run all rel-
evant Learning Jockeys during arcs traversing and all available Localizing Jockeys
after traversing ends in the target vertex. Both the multiplicities are aimed at gath-
ering as much as possible data to traverse along arcs and to precisely determine
position of vertices.

While the robot is learning the arc, it may also appear, that one or more Learn-
ing Jockeys need to stop the robot and/or access specific actuators of the robot. The
reasons for this event may originate from a need for more sensor data or lack of pro-
cessing power for sensor data streams. The Executor grants access to hardware for
the requesting Learning Jockey only if it is possible to interrupt the currently navi-
gating Jockey. After the reason for interrupt vanishes, the Executor returns control
to the navigating Jockey.

Besides, the Executor also performs localization at the newly visited vertex. The
localization stands in undertaking a decision if a robot just has entered a new vertex
or just revisited an already mapped (known) one. To approach optimal performance,
the Executor evaluates time consumption of each Jockey and optimizes gathered
information against the required time. The Executor calls Jockeys in order of their
efficiency, until the result is convincing enough.
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3.1.8 Porting the EMa onto a Robot

The EMa approach has been suggested to serve for one component in a control
system for self-evolvable robot. The term “development of robot capabilities” may
not cover only changes in the robot behavior but the evolutionary process can also
influence the robot organism physical shape as well as configuration of its body
parts (cells).

Allowing such a dynamically changing robot raises a question concerning inter-
nal organization of the system. Specifically, assignment of functional components
(i.e. control methods and implicit capabilities) to physical parts of the robot (control
units and actuators) and their interlinking gives subjects to further investigation.

A standard GOFAI type of robot (Barrera, 2005) comprises all the functional and
physical components in one body, which remains unchanged. This approach allows
keeping the robot internal configuration fixed over time in majority of cases.

On the other hand, evolvable robots change shape and structure over time in
the manner that it cannot be unambiguously pre-determined which part of the robot
body shall fulfill what functionality and what knowledge it needs. This fact becomes
more critical in the cases, which do not allow access to particular robot capabil-
ity, method, or data/knowledge. Such a situation appears typically in cases, repre-
sented by the process of physical reconfiguration of the robot body cells. These cells
typically comprise certain actuators, sensors and computational power allowing to
implement data processing and decision-making methods, data and knowledge stor-
age, etc. These, whenever detached from the robot body cannot be accessed any
more. Further extension of the previous idea leads to a robot built of similar body
cells functional components providing very basic capabilities alone, but strengthen-
ing their performance when merged together. The latter represents the main driving
force of the evolutionary process and takes the advantage of sharing own and using
other’s resources and knowledge. Since robot body cells are similar, it can easily
be estimated, that the resulting robot after (or in) the evolution process will have
evenly distributed available resources, i.e. computing power and data/knowledge
storing capabilities over the whole body.

Once the data processing units and the memory are the main features to place the
overall behavior of the robot into, it appears straightforward that the “integrated”
knowledge/experience and high level behaviors are to be spread over the body cells
as well.

Due to evolutionary behaviors, the robot is expected to attach new and detach
undesired cells. The newly attached cells have either no knowledge or their knowl-
edge is very different from the rest of the robot body. This fact forms a new problem
how to align the newcomer cell with the rest of the body in the sense of sharing re-
sources and knowledge in the robot body with the cell and vice versa. This process
of cross-breeding pre-learned knowledge belongs to one of the evolutionary mech-
anisms and enables functional evolution via qualitative improvement (or collection)
of specific knowledge, that allows execution of particular new functionalities. In the
case of intentional detaching a cell from the robot body, a complementary situation
has to be handled. The knowledge contained by this cell has to be either salvaged
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(i.e. replicated into another part of the remaining robot) or will be lost. As the for-
mer case preserves the knowledge database (the EMa), the latter necessarily has to
fix possible inconsistencies in the map as a consequence of losing a certain part of
the data.

3.1.9 EMa Care-Taking Procedures

Simplified procedures presented below (see also Fig. 3.4) for resolution of the afore
sketched core problems determine backbone solutions in complex cases. Consid-
ering a single-cell case, to keep the EMa representation functional over the whole
robot body the following services, in terms of extension to the set of Jockeys, have
to be applied:

• The Attach Jockey overtakes responsibility for all necessary operations in the
case of annexing new body cells. The cell connection procedure itself is in-
voked and performed by the evolutionary control system running on the robot,
but the Jockey is activated whenever physical connection of a newcomer cell
is completed and its part of the EMa database becomes activated. The goal of
the Attach Jockey is to incorporate the newcomer EMa into the EMa of the
rest of the robot body. This means primarily to unify both the sets of knowl-
edge, in particular by unifying the coordinate systems for submaps followed
by a fusion procedures of local (Štěpán et al., 2005) and global topological
maps (Huang & Beevers, 2005). This process leads to improvements in the re-
sulting robots EMa by execution of a procedure similar to “select and store the
best only”.

• The Detach Jockey becomes activated whenever a request for disconnection of
a cell (or set of cells) appears. Again, as the requirement for the detach opera-
tion (under normal operating conditions) originates from the evolutionary control
system the Jockey fulfills its role prior to physical disconnecting of the selected

Fig. 3.3 Physical and logical distribution of resources over the robot body.
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part from the body and acknowledges this state. Core role of the Jockey is to
possibly preserve all the data in the determined cell for the main robot body, i.e.
to make a physical reprint of that content somewhere into the remaining part of
the robot. Nevertheless, the data salvation process may not always necessarily
be successful. Salvation procedure may fail in the cases of insufficient space for
data storage in the remaining robot body. As the operation may be executed in
both directions, from detaching cell towards the remaining robot body and from
the robot body to the detaching part, a single cell is not able to accept all the
knowledge from a large body of the robot. This invokes typical situation of data
salvation failures from principle. The latter situation can also be interpreted as
the larger remains the robot, the more knowledge it may contain and take the
advantage of. Once the original robot decides to split into cells or comparable
parts, it may be considered for true replication. Flagging successful completion
of the Detach Jockey role avoids losing EMa content from the determined cell
(or set of cells). The unsuccessful performance of the Detach Jockey falls either
into the afore mentioned cases of insufficient space for knowledge replication or
denotes a case of forced detach or malfunction of the cell. The latter case can be
adjusted by the Recovery Jockey, explained in the following. On the other hand,
the insufficient space substantially differs from the forced detach situation as it
can preserve consistency of the EMa content. This case may be maintained by
choosing only the most informative knowledge to be preserved.

• The Recovery Jockey holds for a self-healing procedure in the cases the body
cell detach has not been successfully completed, i.e. EMa consistency cannot be
guaranteed. Unless Attach and Detach Jockeys are initiated from above by the
evolutionary controller, the Recovery Jockey is invoked always if an inconsis-
tency of EMa content is indicated by an instant background procedure checking
for EMa self-consistence. Preconditions for EMa recovery appear exclusively in
the forced detach or cell malfunction cases. The role of the Recovery Jockey
is to recover consistency (linkage of proper geometric features, mutual refer-
ences in the database, etc.) in the remaining part of EMa. This healing procedure
brings the EMa again back into fully operational shape, nevertheless lacking the
lost content of the detached or broken cell. Runtime of the Recovery Jockey is
flagged as a “not ready” state of EMa for the rest of the robot.

3.1.10 Physical Layout

Physical implementation of the EMa system is twofold. It is being executed on
evenly distributed hardware over the robot body, represented for this case by a set
of mutually interconnected CPUs and memory modules physically attached to each
particular body cell, see Fig. 3.3. Due to relatively low computational power and
memory space available on each cell, stand-alone performance of this setup re-
mains far from the requirements possibly imposed on the system by execution of
more sophisticated behaviors than primitive ones (i.e. simple reflex responses, etc.).
Therefore, to establish high-level and smart behaviors the evolutionary system is
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Fig. 3.4 Ensuring consistence of the EMa system.

expected to take the advantage of all available computational and knowledge stor-
age resources onboard the robot organism. The larger the robot appears, the more
space for knowledge processing and storage remains available. On the other hand,
once the computational/storage system is physically distributed over the robot body,
requirements for particular tasks and launching as well as corresponding data shar-
ing needs to be governed by unique authority. This supervising entity keeps track
on momentary computational load and usage at certain cells. The overall goal is
to achieve optimal distribution and assignment of raising tasks to be processed and
data to be stored to ensure the robot functionality as a whole. This functionality
is partially be resolved by the used operating system (Szymanski et al., 2009b) on
the lowest level. Nevertheless, proper managing of the tasks and memory usage for
EMa system remains on an EMa Executor. The main role of the Executor is the in-
ternal coordination and handling of data and procedure executions within the EMa
framework. All EMa functionalities are exported through a unified interface. That
way, the EMa system finally appears from the external view to be a self-healing
and self-updating carrier of spatial data (knowledge), with unified interface which
is available to other (typically higher level) control procedures running onboard the
robot organism.

3.1.11 Logical Layout and Communication

The EMa Executor implementation is approached either in centralized way or in a
fully distributed form. As the centralized outfit appears to be the simplest way to
achieve the desired performance, it suffers from certain disadvantages. The major
weakness of the central implementation is the unique location of the Executor code,
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Fig. 3.5 Centralized and distributed approach.

which may be easily affected by occasional malfunction of the physical cell which
executes the code. Moreover, unique localization of the Executor code has to rely on
functional communication with all the cells it supervises. In other words, once any
physical communication link (or a routing cell) fails, all the cells behind this point
become inaccessible. This situation may cause malfunction (lost supervision) over
a large part of the robot body, the recovery from which may not be easy.

To avoid the afore sketched bottleneck, the EMa Executor can be implemented
in a fully distributed way, making use of MAS technologies (Wooldridge, 2002).
The distributed approach runs all equal Executor instances (agents) in parallel on
all robot cells at once, see Fig. 3.5. These agents communicate and negotiate/bid
needs and resources what in fact implements the task allocation/resource assign-
ment optimization process. All the processes can always be established within a
maximum communication reach in terms of number of cells in a chain. The typical
limits are - up to an end cell of a body branch or a malfunctioning routing cell. It is
straightforward, that this setup allows all the interconnected (communicating) cells
to create one logical unit and to stay always alive as a single robot. Thus the distribu-
ted approach overcomes the previous undesired behavior in the case of medial cell
failure within a large robot body. Moreover, the MAS-based approaches allow treat-
ing specifically situations with communication inaccessibility within the system. In
such cases, the inaccessible agents may be, up to a certain level, substitute by their
models (stand-in-agents) to bridge temporary dropouts. To take into account vary-
ing conditions (i.e. to adjust task priorities important for the robot survival) MAS
systems allow to modify negotiating strategy on the fly (Kulich et al., 2007). Unfor-
tunately, the latter MAS methods tend to be computationally intensive and therefore
less suitable for use with the SYMBRION/REPLICATOR robots unless a light-weight
implementation is developed.



3.1 Cognitive World Modeling 179

3.1.12 Experiments

This EMa framework was tested on different platforms. The laser based localization
and navigation Jockeys were tested in simulator Stage as a part of the Player/Stage
system. The robot drives in the environment and on each crossing randomly chooses
next corridor for traversing. An example run is depicted in Fig. 3.6. After the robot
traverses predefined number of edges (20 in this case), the reasoning module starts
its activity to close existing loops in the EMa structure.

(a) (b) (c)

Fig. 3.6 (a) Simulated environment; (b) gathered map; (c) Park pathway map.

The laser based localization and navigation Jockeys were also tested in an indoor
environment. These experiments were performed with the G2Bot robotic platform
equipped with two Sick LMS 200 laser range-finders in configuration where lasers
provide whole 360◦ view. Alternatively, the robot was equipped with Hokuyo URG
laser range-finder with 240◦ view.

The vision based localization and navigation Jockeys tests were reformed in real
outdoor environment “Stromovka” park1. The park pathways were denoted by char-
acters A to W (see Fig. 3.6) while the robot was manually guided by a human
operator along them while EMa SURFNav Learning Jockey was recording detected
arcs and vertices.

The size of the mapped area was approximately 400 × 300 m. While there is a
need to guide the robot along each pathway in both directions, the total arc length
was approximately 5 km. It took eight hours to guide the robot along all arcs and the
resulting world representation created by the SURFNav Learning Jockey consisted
of half a million recognized features. After that, the SURFNav Navigating Jockey
was used to navigate the robot in the mapped environment.

The outdoor experiments were conducted with a Pioneer P3AT robotic platform
with a TCM2 compass for heading determination. Other onboard equipment for the
experiment was a Fire i-601c camera with 30fps in 1024x768 pixel resolution with

1 Královská obora Stromovka, Prague 50◦6’18.778”N, 14◦25’33.395”E.
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wide angle lens - focus length 3.5 mm. Obtained image data were processed in real
time by an Intel Core 2 Duo 1.6GHz laptop.

All the tests were performed on more powerful hardware compared to the SYM-
BRION/REPLICATOR robot platform. The only purpose was to verify capabilities of
the used approaches. Nevertheless, the achieved results have shown that the princi-
pal approaches used herein are well suitable in terms of the desired performance.
The experiments have verified, that using the EMa approach, several “Jockey”
agents can cooperatively explore the environment in order to build a distributed
world model. The suggested methods remain subject of downscaling for the tar-
get HW platform and its computational power. Additionally, a special hardware for
image-based world modeling (Svab et al., 2009) can be considered.

3.1.13 Functional World Modelling

The SYMBRION/REPLICATOR robots perform tasks in an unknown and dynamic
environment. The ability to build up a spatial world model is necessary for naviga-
tion, path planning and in general position-awareness. Such a spatial world model is
however not sufficient to operate in such an environment. These tasks are embedded
in a general controller framework (see Sect. 4.1). This controller framework can be a
subsumption architecture or a more dynamic alternative, implementing for example
a computational model for action selection (see Sect. 5.1.3). The controller archi-
tecture has to be operating on a world model. It has to interpret the world model.
Granlund recognizes the importance of viewing a world model from a functional
angle. In the article (Granlund, 2006) Granlund states:

“Much of the lack of success in vision for complex problems can be traced to
the early view that percepts should generate a description of the object or the
scene in question. ... This description has typically been in geometric terms
with a conceptual similarity to CAD representations. ... The major problem
with this structure is that we primarily do not need a description of an object
or a scene. What we need is an interpretation ...”

Objects and locations have spatial dimensions, however a SYMBRION/REPLICA-
TOR robot needs to assign functional roles to objects and spatial entities. A hole in
the wall can be interpreted as being big enough to crawl through. A block can be
moved such that a power socket can be reached. This type of knowledge about the
world is not accounted for by labeling objects in a 3D world model (with for exam-
ple colour and other perceptual information). It constitutes a type of knowledge that
is more easily implemented by associative memory models and non-spatial sensori-
motor learning (see Sect. 3.2). This viewpoint can be summarized in this one-liner:
The world as a toolbox.

A labeled spatial world model can be very useful, notwithstanding the fact
that the labels are not a replacement for a functional context. The hippocampus is
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often described as a collection of space cells elaborated with additional nonspatial
information. Eigenbaum summarizes this (Eichenbaum, 2000):

[S]patial firing patterns of these cells are strongly affected by the direction and speed
of movement, by the targets of movement within the environment, and by demands of
the behavioural test. Furthermore, hippocampal cell firing is also associated with many
nonspatial events, including conditioned behavioural responses, olfactory cues and, in
humans, categories of visual stimuli.

A functional world model extends a basically spatial representation with a func-
tional dimension. This is contrary to adding a spatial dimension to a functional rep-
resentation. The latter has been fruitfully applied in the form of cognitive maps.
Even high-level cognitive phenomena like language can be considered as being spa-
tial. The neurological substrate for spatial recognition, the hippocampus, is not just
seen as a mere collection of space cells. It is just as well involved in episodic mem-
ory and declarative (relational) memory.2

The acquirement of a functional world model can be mediated by sensorimo-
tor learning. Sensorimotor awareness (see Sect. 3.2) is not just about sensorimo-
tor locomotion, sensorimotor aggregation nor about sensorimotor morphodynamics
(this would include learning or modelling invariances between percepts and move-
ment commands, aggregation commands and morphodynamic commands.) It is also
about sensorimotor manipulation. This would enable the robot to move objects
aside, crawl across complex obstacles, locomote through narrow passages, open
doors, etc.

3.1.13.1 Problem Statement

A functional world model addresses the interface between a spatial, allocentric rep-
resentation of the world and a repository of sensorimotor skills. In other words, the
functional world model addresses the interactions between a cognitive map and pro-
cedural memory. This concerns sensorimotor skills that are not based on ordinary
locomotion (this is accounted for in Sect. 3.1.3).

How to adapt a spatial world model after achieving sensorimotor skills?

This research question addresses a transfer of meta-knowledge about learnt skills
to the world model. If this type of meta-knowledge is available, we might be able to
anticipate them:

How to predict and anticipate changes in a spatial world model before per-
forming a sensorimotor skill?

2 Hippocampal involvement can be in the form of gating, filtering or selective learning. It
does not mean that the representations are located in the hippocampus.
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Fig. 3.7 The functional world model appends a spatial model (a cognitive map) with emu-
lation capabilities. The emulator is visualized by a sort of H component with an additional
upper leg. The cognitive map gets it input at S0 which can originate from the sensor fusion
modules or from the emulator. Between S1 and S2 different sensorimotor controllers can be
emulated and the results tested with respect to the output of the cognitive map. In the emula-
tion modus the forward models are enabled. In the runtime modus the output of the controllers
results in actual actions in the real world.

A SYMBRION/REPLICATOR organism learns certain sensorimotor skills. What
was impossible before this learning process becomes possible after. The organism
learns to climb on a box, it learns to crawl through a hole in the wall. How is the
cognitive map adapted when an organism obtains such a capability?

An organism should not blindly obtain sensorimotor skills. It learns them for
a reason, for example to reach a place in the environment that was not reachable
before. Performing a certain sensorimotor skill can change the spatial world model.
If this change can be predicted, the organism can implement anticipation on this
level. If an organism knows how the spatial world model changes when a box is
moved, it can slide such a box under a power outlet.

3.1.13.2 Models

A collection of sensorimotor models have to be maintained in parallel. The use of
paired forward and inverse models for motor control is part of sensorimotor aware-
ness (see Sect. 3.2). This entails selective learning (Wolpert & Kawato, 1998), an-
ticipation (Hoffmann, 2007) and (Pezzulo, 2008), planning (Toussaint, 2006). It is
not only possible to emulate sequences of sensor-motor-sensor sequences. It is also
possible to internally simulate higher level abstractions (this is done for higher-level
sensor fusion, see Sect. 3.2). In the same way an internal simulation loop can use
a forward model that predicts not raw sensor input, but new input for a spatial map
(see Fig. 3.7).
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The functional world model extends both the cognitive map (see Sect. 3.1.2)
and low-level procedural memory (see Sect. 3.2). The benefit of such an integrated
approach is, that it allows “reasoning” in spatial terms about the consequences of
sensorimotor actions.

3.2 Emergent Cognitive Sensor Fusion

Anne C. van Rossum, Stephen P. McKibbin, Alfons H. Salden, Ted P. Schmidt

SYMBRION/REPLICATOR robots are modular robot organisms. They boldly go
where no wheeled robot has gone before. The normally fixed architecture of tradi-
tional robots allows designers to make assumptions about their physical interactions
and dynamics they experience. This may make the designer’s job easier but it is at
the cost of the adaptivity and flexibility of the final solution. Modular robots have
the ability to change their architecture in a way that fixed uni-module robots can-
not. They can purposefully adapt to their surroundings to enable better locomotion,
sensing and recovery from damage. Where a wheeled robot might become stuck
at an obstacle in its path, a modular robot can detect the problem and reconfigure
its shape to allow it to crawl over the obstacle. The SYMBRION/REPLICATOR are
different from other modular robots in a number of ways but not least due to the
huge amount of sensors they carry. A model of emergent cognitive sensor fusion
allows robots to make use of or dismiss this sensory data in a dynamic framework
that works in synchrony with the robot organism, the environmental conditions and
the current task being performed.

Fig. 3.8 One of the first
prototypes of robot mod-
ules, see more in Sect. 2.1.

The robot organism is a modular organism. Contrary
to many modular robots that have been built, the SYM-
BRION/REPLICATOR robots distinguish3 themselves by
the plethora of sensors they possess. Imagine a robot
organism that consists of 10 robot modules. Each of
those robot modules is equipped with many sensors
(cameras, ultrasound sensors, microphones, infra-red
sensors, laser scanner) and actuators (wheels, docking
elements, LEDs). This amounts to large bandwidth re-
quirements compared to robots that only use infra-red
or bumper sensors4. Moreover, the docking possibility
enables a robot to form an organism rather than a phys-
ically disconnected swarm. The sensor fusion model

3 The abundance of sensors and the powerful dual core BlackFin processor sets the robots
apart from previous modular robots. There is no literature about such powerful modu-
lar robots. The literature describes mono-module cognitive systems, multi-module robots
with simple, for example, infra-red sensors and swarm robots. There is no comparable
framework that implements cognitive sensor fusion on robot organisms.

4 One camera streaming images at a rate of 10 Hz, of a size of 256*256 pixels, coded by 3
8-bit RGB values amounts to a bandwidth of almost 16 Mbit/s.
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needs to implement sensor configuration, sensor data fusion, sensory learning and
sensory-motor coordination that fits the organism body form, as well as the task and
the environment at hand.

The scientific challenge addressed in the sensor fusion model:

Designing for emergent cognitive sensor fusion in a robotic organism that is
subject to developmental, evolutionary and self-controlled metamorphosis?

Cognitive sensor fusion has to be performed on a modular robotic organism that
changes its own body form — it exhibits metamorphosis. For that reason the cogni-
tive sensor fusion architecture most likely has to change itself. Internal change, in-
ternal metamorphosis, is necessary to adapt to the outer changes of the robot body.
The body changes can be governed by evolutionary means; caused by a develop-
ment process or initiated by morphodynamic control. Moreover, as the body of the
organism changes, so too does its exhibited behaviour. This can happen as the direct
result of a corresponding change in control strategy or it can be as the result of the
new dynamics the body shape has in interaction with the environment. The cogni-
tive sensor fusion architecture must continually monitor and integrate the effects of
morphology on the exhibited behaviour and the robot organism’s perception.

The proposed architecture consists out of five layers (Fig. 3.9). The lower three
layers address the topic of sensory-motor and sensor fusion:

• The sensory-motor layer is described in Sect. 3.2.3.1. It is built on top of the
distributed forward models by Tani, see (Tani, 2005);

• The sensor fusion layer is described in Sect. 3.2.3.2. It uses the saliency-
based Itti, Koch and Niebur attention model, see (Itti et al., 1998), an adaptive
resonance theory model as associative memory (Grossberg, 1987) and global
workspace theory for anticipation (Baars, 1988);

• The eco-devo layer is described in Sect. 3.2.3.3. It uses a gene regula-
tory network for (genetic) indirect encoding of the sensor fusion layers
(Bongard & Paul, 2001), (Quick et al., 2003).

This section will describe sensor fusion that survives metamorphic changes on
an artificial organism. It will not describe metamorphic control itself! It makes a
considerable effort to provide a framework that can be used by controllers, with-
out touching actuators5. This section addresses a modular robot organism, in which
modules have to cooperate in fusing incoming sensor data. It does not address a
robot swarm.

The rest of the section is organised as follows. Sensory-motor awareness and
sensor fusion scenarios illustrate what the sensor fusion model needs to be able to
implement (Sect. 3.2.1). The background of embodied cognition and emergent sen-
sor fusion is described in Sect. 3.2.2. And the actual integrated model for cognitive

5 If the sensor fusion layer would drive the wheels or turn on the LEDs, conflicts with higher
layers have to be accounted for.
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Fig. 3.9 The proposed sensor fusion architecture in the context of other functionality on the
organism. At the bottom an eco-devo engine — using a gene regulatory network (GRN) —
allows for a grown distribution of modules across the organism. The sensory-motor layer
adds sensory-motor categorisation and prediction. The sensor fusion layer adds multi-modal
associations, as well as attention. The controller layer contains controllers and a winner-take-
all (WTA) mechanism. The action selection layer translates control into a series of actions
that has to be undertaken or internally simulated.

emergent sensor fusion on a robot organism, that is being developed, is presented in
Sect. 3.2.3.

3.2.1 Scenarios

As discussed in Sects. 1.1 and 2.2.7, two “Grand Challenges” for self-reconfigurable
artificial organisms robotics are defined. One of them is related to a long-term in-
dependency and self-sufficiency in an unknown and changing environment, where
essential tasks for energy harvesting include recognition and localisation of power
sources, collective locomotion, collective reaching and energy sharing. This “Grand
Challenge” is the background setting for the following sensory-motor categorisa-
tion and sensor fusion scenarios. The scenarios described below are arranged in
increasing complexity starting with relatively simple yet dynamic tasks focusing on
physical interactions to more elaborate tasks that require morphing and collaborative
sensing.

Pushing Walls
The envisioned sensory-motor skills on modular robotics range from multi-robot
organism locomotion and purposeful manipulation of objects in the environment, to
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cognitive capabilities such as learning sensory-motor patterns and anticipation of
self-movements. Those scenarios test specific design principles for sensory-motor
awareness. Pfeifer et al.’s robotic agent design principles has been used as a guide-
line (which will be explained later in Table 3.1).

Fig. 3.10 A single robot in
a walled arena. The push-
able wall is only high-
lighted red for clarity but
it appears identical to other
walls. The robot must inter-
act with the arena to estab-
lish the physical dynamics
of its environment.

When interacting with its environment, a robot, or
any embodied agent, will experience various sensory
stimuli. This stimulation maybe internal (temperature,
current in motors, sound), proprioceptive (joint torques,
joint encoders, balance) or it may be external (external
sound, vision, pressure, tactile). These stimuli may oc-
cur as the result of the agent acting in the environment
causing self-stimulation (active) or being acted upon by
something in the environment (passive) or a combina-
tion of both. These 5 factors of internal, proprioceptive,
external, active and passive sensory experiences inter-
twine to produce a perception experience for the agent.
Moreover, the way that the agent detects stimulus in
its environment is also very context dependent and can
rely on the “intentions” of the agent at the time. It has
been shown that descending motor commands can have
a large influence on sensory information that is sent from
the periphery to the central nervous system in human-
s/animals (Cullen, 2004).

When a robot is moving in its environment it is gener-
ating internal, proprioceptive and external sensory sen-
sations and often it is useful for the robot to be able to
integrate these sensations to determine something about
the environment or the situation it is not experiencing.

For example, if a robot is trying to explore its environment it may have to establish
the dynamics of the objects in it (of which it itself is one).

Coordinated Locomotion
An extension of this scenario is in coordinated locomotion. A robot should be able
to coordinate its actions with another conjoined robot without necessarily sharing
its intentions, or motor commands, and sensory information (internal and exter-
nal). This way, coordinated movement can emerge from the interaction of two log-
ically separate, but physically connected agents. Through this agent, environment,
control system interaction, computationally difficult tasks can be achieved. For a
number of conjoined robots to move in a coordinated manner they must be able
to cooperate in a useful way and also possibly combine such coordinated move-
ment with other behaviours like obstacle avoidance (repulsion) or wall pushing
(attraction).

This task can be achieved by communicating between the robots what each
robot is doing, what each robot is sensing and what each robot is trying to do. An
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alternative solution to this problem would be to solve in a distributed manner. This
approach negates the need for extensive communication and thus the processing of
the data that is received from each robot. By relying on the fusion of information
that is available to each robot through the wheel encoders, motor commands and
infra-red sensors, robots can interact with each other and, through this interaction,
they produce coherent behaviours.

Fig. 3.11 Several robots
joined together to make
a chain. The linked robot
chain is made articulated by
the joining robots turned on
their sides that can bend in
the middle.

Articulated Chain
The coordinated movement scenario that is outlined
above is based on a number of robots that are physically
coupled at their sides, or “joined at the hip”. Another
extension to this scenario is based on the coordinated
movement of a more articulated robot organism. This or-
ganism again consists of a number of conjoined robots
but this time, instead of each robot being connected at
its sides, every other robot in the line is connected at its
front and back and is rotated by 90 degrees to make a
hinge joint perpendicular to the floor. These hinge joint
robots do not contribute to the forward motion of the
chain but simply facilitate its articulation. This articu-
lated chain is able to coordinate its movement in order to
locomote quickly and effectively on a flat (or quite flat)
surface. This task will allow the organism to surround an
object or cordon off a dangerous area. Sensory-motor
fusion must take place in order for the robot organism to
navigate towards the target or target area by fusing in-
formation from docking sensors, wheel encoders, joint
encoders, infra-red sensors, camera as well as motor
control commands.

Argus Panoptes scenario

Fig. 3.12 The flatworm-like or snake-
like organism in the simulator. After
cutting it in two parts, both parts should
still be able to pursue its goal of follow-
ing a moving target.

The Argus Panoptes scenario refers to the
Greek god Argos who had so many eyes that
there were always some of them open. An
organism contains sensors on each module,
so it is important to have sensors turned off
to reduce the bandwidth of processing all
that data.

In the Argus Panoptes scenario a robot or-
ganism can be approached from different di-
rections by a moving object. The robot has to
detect the incoming target as quickly as pos-
sible. The organism works in its entirety as a
rocket shield where each module does have
its role in detecting incoming missiles as quick as possible. This scenario does not
pose locomotion demands or locomotion agility demands. Experiments will probe



188 3 Cognitive Approach in Artificial Organisms

the ability of the robot to disregard sensory information. This scenario necessarily
includes attention mechanisms.

Planarian scenario
The Planarian is a flatworm that when divided into two parts, regenerates both parts,
so that the result contains two full-grown Planaria. Moreover, there is evidence that
an unconditional response that is learnt before the fission moment, is still remem-
bered after the division (Mueller & Levin, 2002). The Planarian scenario contains a
robot snake following a moving target (see Fig. 3.12). Subsequently a human oper-
ator issues a split event which is performed by the middleware. The resulting two
snakes should still be able to follow this moving target on their own. Their sen-
sory perception should not be so severely hampered that they can’t perform this task
any more. Performance in this scenario is related to the gradual degradation of the
robot’s perceptual capabilities when the hardware becomes limited.

Fig. 3.13 The spider-like organism in
the simulator. It should be able to retain
learnt patterns even after morphing to a
snake-like organism and morphing back.

Musca Domestica scenario
The Musca Domestica, a fly, remembers ol-
factory information across metamorphosis
(Ray, 1999). The metamorphosis process is
autonomous and self-initiated.

The Musca Domestica scenario assumes
a robot that actually can change its body
form6. Both forms correspond to an en-
tirely different way of locomotion. The robot
morphs from spider to snake, and the other
way around (see Fig. 3.13). The scenario
contains two phases. In the first phase a
robot learns to follow a certain object of
specific visual-acoustic properties by posi-
tive reinforcement. In the second phase, the
robot is able to follow this object, while re-
versible (back-and-forth) metamorphosis occurs during this task. Observe that this
scenario demands metamorphosis of the internal sensor fusion architecture.

3.2.2 Towards Embodied and Emergent Cognition

Artificial organisms conceive of their environment in a situated, and even an em-
bodied way. However, what does this term embodiment mean?

Types of embodiment
Ziemke discusses the types of body that might be required for embodied cognition
and whether a body is actually needed at all (Ziemke, 2002). He outlines six types
of embodiment as follows:

6 Observe that body metamorphosis is (again) a given for sensor fusion. Body changes are
covered by the control layer. Cognitive sensor fusion is concerned with surviving such
external changes of the body.
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1. Structural Coupling - at any time, the states of two embodied systems can be, and
are, affected by perturbation from the other;

2. Historical Embodiment - a systems embodiment is the result of a historical process
that results in its current embodiment;

3. Physical Embodiment - as opposed to software agents, embodied agents require a
physical body that can operate in the real world;

4. “Organismoid” Embodiment - the physical body of an agent should have organism-
like qualities such as body shape, sensory-motor capacities, etc;

5. Organismic Embodiment - only biological bodies perform cognition. There are fun-
damental differences between natural and man-made bodies. Natural bodies grow
into collections of specialised organs, machines are built from pre-designed spe-
cialised parts;

6. Social Embodiment - social interactions have an effect and are affected by the em-
bodiment of others. This relates to the production and interpretation of body lan-
guage.

An artificial organism is embodied in a structural, physical and organismoid
sense. The sensory-motor and sensor fusion layers learn respectively sensory-motor
and sensory categories (see Sect. 3.2.3). This introduces historical embodiment. A
bio-inspired process grows a set of modules in the eco-devo layer (see Sect. 3.2.3.3).
A borderline case of organismic embodiment. In the sensor fusion model the organ-
ism mode is emphasised above the swarm mode however social embodiment will
still be present when robot organisms interact with each other for purposes of dock-
ing or even for imitative learning.

Robotic design principles
A number of design principles have been laid out by Pfeifer et al. for building intel-
ligent robotic systems (Pfeifer et al., 2005a).

The list of design principles are divided into two types:

1. Design procedure principles: these are a general methodology one should apply
in approaching the design of the system as a whole;

2. Agent design principles: these principles are guidelines for designing the intelli-
gent agents themselves.

The design procedure principles apply to creating a SYMBRION/REPLICATOR robot
as an intelligent adaptive, embodied system. P-Principles 2, 3 and 4 describe the
self-organising aspect of creating an organism. The configuration of the robot, at
any given point in time, is the result of many decoupled processes occurring dis-
persed across the system in accordance to the affordances or constraints of the en-
vironment. These constraints tend to have the effect of imposing coordination on
these processes in order to improve the overall system performance. The system
will evolve over long time scales, while it will learn and physically change shape
over short time scales. The model largely relies on the A-Principles 3 and 4. Loosely
coupled processes (Sect. 3.2.3.2) and sensory-motor coordination (Sect. 3.2.3.1).
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Table 3.1 Robotic agent design principles by Pfeifer et al. The P-principles 1 till 5 describe a
general system design methodology. The A-principles 1-8 describe specific aspects of agent
design that should be attended to.

Label Name Description

Design procedure principles
P-Princ 1 Synthetic methodology Understanding by building
P-Princ 2 Emergence Systems should be designed for emergence (for in-

creased adaptivity)
P-Princ 3 Diversity-compliance Tradeoff between exploiting the givens and generat-

ing diversity solved in interesting ways
P-Princ 4 Time perspectives Three perspectives required: “here and now”, ontoge-

netic, phylogenetic
P-Princ 5 Frame of reference Three aspects must be distinguished: perspective, be-

haviour versus mechanisms, complexity

Agent design principles
A-Princ 1 Three constituents Ecological niche (environment), tasks, and agent

must always be taken into account
A-Princ 2 Complete agent Embodied, autonomous, self-sufficient, situated

agents are of interest
A-Princ 3 Parallel, loosely cou-

pled processes
Parallel, asynchronous, partly autonomous processes,
largely coupled through interaction with the environ-
ment

A-Princ 4 Sensory-motor coordi-
nation

Behaviour sensory-motor coordinated with respect to
target; self-generated sensory stimulus

A-Princ 5 Cheap design Exploitation of niche and interaction; parsimony
A-Princ 6 Redundancy Partial overlap of functionality based on different

physical processes
A-Princ 7 Ecological niche Balance in complexity of sensory, motor, and neural

systems; task distribution between morphology, ma-
terials, and control

A-Princ 8 Value Driving forces; developmental mechanisms; self-
organisation

Emergent sensor fusion
An organism consisting of 10 modules contains a lot of sensors. The most recent
module prototype (see Fig. 3.8) contains 4 cameras, a laser, microphone and infra-
red sensors. A robot of 10 modules would contain, a stunning, 40 cameras! There is
a need to restrict this sensory stream in a body-aware and situation-aware manner.
This is accounted for in two ways in the sensor fusion model. Cognitive capabili-
ties like attention, multi-modal association and anticipation are incorporated in the
sensor fusion layer. This allows for turning off entire sensors, but it also allows for
disabling sensor fusion filters on a finer granularity. The eco-devo layer implements
a growth process of the modules within the sensor fusion layer. This allows for
adaptation of the sensor fusion modules to the growing and morphing robot body.
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Table 3.2 The differences between cognitivist and emergent cognition as summarised by
Vernon et al. The approach undertaken in this work, pursues the emergent paradigm. Sensor
fusion as considered as a concurrent self-organising networked process, with which comes a
lot of other characteristics that are exemplary for the emergent approach. Republished with
kind courtesy of the primary author David Vernon.

Cognitivist versus Emergent Paradigms of Cognition

Characteristic Cognitivist Emergent

Computational Oper-
ation

Syntactic manipulation of sym-
bols

Concurrent self-organisation of
a network

Representational
Framework

Patterns of symbol tokens Global system states

Semantic Grounding Percept-symbol association Skill construction
Temporal Con-
straints

Not entrained Synchronous real-time entrain-
ment

Inter-agent episte-
mology

Agent-independent Agent-dependent

Embodiment Not implied Cognition implies embodiment
Perception Abstract symbolic representa-

tions
Response to perturbation

Action Causal consequence of symbol
manipulation

Perturbation of the environment
by the system

Anticipation Procedural or probabilistic rea-
soning typically using a priori
models

Self-effected traverse of
perception-action state space

Adaptation Learn new knowledge Develop new dynamics
Motivation Resolve impasse Increase space of interaction
Relevance of Auton-
omy

Not necessarily implied Cognition implies autonomy

The literature (Vernon et al., 2007) makes a distinction between cognitivist and
emergent cognition. In the sensor fusion model, the emergent paradigm will be fol-
lowed. As can be seen from Table 3.2 by Vernon et al. this involves self-organising
networks, rather than syntactic manipulation of symbols. In the context of cognitive
sensor fusion, this means that fusion takes place by an interacting network of sen-
sor fusion agents. The world is not directly interpreted as a set of symbols: doors,
birds, left, right, red, blue, robot, human. Instead of that, agents deliver functionali-
ties on the level of sub-symbolic feature maps.7 The feature maps can be combined
on a sub-symbolic level and directly drive the motors. Perception is represented in
an emergent paradigm by raw perceptual input rather than perceptual symbols. The
sensor input does not need to be translated into a symbolic representation in this
case. However, higher level controllers might pose a symbolic representation as a

7 An example of what is meant by a sub-symbolic feature map, is the saliency-based map
described in 3.2.3.2.
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prerequisite for their operation. How such symbolic or category labels can be learnt
in an emergent paradigm is described in the end of Sect. 3.2.3.1 about the sensory-
motor layer.

3.2.3 Sensor Fusion Model

The sensor fusion model concerns itself with the lower three layers in Fig. 3.14 (see
also the introduction):

• The sensory-motor layer is described in Sect. 3.2.3.1. It is built on top of the
distributed forward models by Tani, see (Tani, 2005);

• The sensor fusion layer is described in Sect. 3.2.3.2. It uses the saliency-
based Itti, Koch and Niebur attention model, see (Itti et al., 1998), an adaptive
resonance theory model as associative memory (Grossberg, 1987) and global
workspace theory for anticipation (Baars, 1988);

• The eco-devo layer is described in Sect. 3.2.3.3. It uses a gene regula-
tory network for (genetic) indirect encoding of the sensor fusion layers
(Bongard & Paul, 2001), (Quick et al., 2003).

3.2.3.1 Sensory-Motor Layer

The robot needs to be able to categorise what it is doing as well as what it is per-
ceiving. By integrating the intent of carrying out an action (a motor command) with
the resulting sensory stimulus (proprioception or external sensing), context can be
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Fig. 3.14 The proposed sensor fusion architecture. Repetition of Fig. 3.9.
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developed for the robot organism. For example, in the wall pushing scenario, the
robot should be able to establish that a wall is pushable if its wheels are turning, it
senses an obstacle and the command to go forward was issued (disregarding wheel
slip). Without the information that the robot had issued the go forward command,
the context could not be established. It would be unclear if the robot was pushing
the wall or the wall was pulling the robot. It is necessary that the robot’s perceptual
system integrates the bodily aspect of sensing not just the environmental or external
aspect. The sensory-motor layer is concerned with integrating sensory-stimulus that
is generated by the robot’s own actions along with the commands that caused them
and also the external stimulus that arose from the environment.

Natural organisms are able to integrate sensory-motor information in a con-
text dependent manner. A version of what is known as the efference copy model
(von Holst & Mittelstaedt, 1950) suggests that when motor commands (efferent sig-
nals) are issued, a copy of the command signal is sent, or held, for internal process-
ing (see Fig. 3.16). The signal that returns, the afferent signal, should correspond
with the command that was sent unless an external event or force has caused the
command to not be executed. Subtracting the afferent signal from the efferent copy
the result should be zero (or below some threshold) otherwise an external event
has occurred and the resulting difference signal (reafference) should be processed.
One benefit of using this method is that self-generated and externally generated
movements can be distinguished. Viewed another way, the organism has an inherent
model of how its body works and how it affects its sensory experience. With the “ef-
ference copy” model, the organism can also determine how the environment affects
its sensory experience.

Forward model. It has been suggested that vertebrates and invertebrates may use a
more sophisticated method known as a forward model to predict the possible out-
come of certain inputs given a particular context (Webb, 2004). In the case of for-
ward models, the organism uses knowledge of its sensory-motor system in order
to predict the resulting sensation it should experience when a motor command is
issued in a given context. This model holds information on the sensory-motor flow
and produces a mapping that is capable of outputting expected sensations. Using
this expected sensation, that is calculated by the forward model for a given motor
command, an organism can determine if an action command was carried out inten-
tionally or if any sensation was due to outside factors.

Forward-inverse pairs. Wolpert and Kawato have proposed using a forward model
that is able to learn the dynamics of sensory-motor system by minimising the
error between the expected input and the actual sensed input at the next step
(Wolpert & Kawato, 1998). As discussed previously, this model allows the system
to have a mapping between its sensory and motor apparatus and it can establish
causality for its sensations. The authors propose using a different forward model for
each sensory-motor behaviour, in essence representing sensory-motor primitives.
Each forward model has a paired inverse model (or controller) that is able to pro-
duce the motor commands that would be required to generate the desired sensa-
tion for the given context. By matching each inverse model to a forward model the
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system is able to determine which model to use at any point in time from the pre-
diction error generated by the forward model.

Distributed model. The model described by Wolpert and Kawato uses what is
known as a “local representation scheme” for encoding each sensory-motor prim-
itive (Wolpert & Kawato, 1998). In this scenario, when a new primitive is to be
learnt, a new forward-inverse pair must be created to include it in the system. Tani
suggests that this is untenable and that the system would require large numbers of
models in order to produce the necessary sensory-motor behaviours (Tani, 2005).
Instead, Tani suggests to use a distributed model where all the sensory-motor map-
pings are mapped in a single neural network, a so-called Recurrent Neural Network
with Parametric Bias (RNN-PB). When additional mappings are to be learnt, they
are distributed across the network according to their relationship with already stored
mappings. In Tani’s model, the recognition of sensory-motor patterns is achieved by
performing an inverse regression operation in order to produce the correct Paramet-
ric Bias (PB) values that correspond with the current sensory-motor pattern. This is
not a biologically plausible operation whereby a network steps back through time in
order to settle to the correctly recognised PB value.

Fig. 3.15 MtSt = Sensor-motor flow, Pt = Predicted sensory-motor flow, Et = Prediction error,
PBt = Parametric bias vector associated with sensory-motor flow. 1.) The Ego Forward Model
is based on the self-generated stimuli of the body. This is trained using a single robot module
as this unit is indivisible and remains constant. The Ego Forward Model predicts the bodily
sensations caused by bodily actions. 2.) The Interaction Forward Model predicts the sensory
consequences of interactions with the environment that includes exogenous (external) sens-
ing. External senses are also affected by the actions of the robot, for example, the variation of
light stimulus as the robot bends in the middle pointing its sensors upwards. The Interactive
model receives the error signal from the Ego model, which describes the part of the stimulus
that is not body based, and the PB value, which describes the model’s “best guess” as to what
is being perceived. 3.) The Exo Forward model is concerned with predicting sensations that
are passively experienced, for instance, the resulting stimulus caused by effects originating
outside the body.
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The sensory-motor layer will use features of both the distributed model and
the local representation scheme. It is proposed that the distributed representation
scheme, used by Tani et al, will be useful to learn relational structures in the
sensory-motor flow of the robot organism. Also, the ability to associate these distri-
buted representations with a point in the self-organised PB space makes it possible
to chunk many sequences together at higher levels of granularity. The local repre-
sentation scheme is useful to establish individual models for certain aspects of the
learning process without interfering with already learnt models. This ability is to be
utilised in the system by implementing different aspects of sensory-motor learning
across different models of increasing abstraction. This is shown in Fig. 3.15. There
are three different abstraction levels:

1. The Ego Forward model learns the relational structures between an individual
robot’s actions and the generated sensory feedback. Such feedback will be purely
internal and based on modalities such as wheel encoders, joint encoders, gyro-
scope and possibly force sensors. By implementing a process of “body babbling”
the relational structures between control commands and sensory feedback can be
learnt and predicted by the model. Any deviation from this model implies that
there is something else in the environment causing new, unknown, sensations;

2. Another model, the Interaction Forward Model, learns to associate the sensory-
motor flow with the deviations from the Ego model. This association allows the
sensory-motor system to predict and represent the active interactions that it has
with both the environment and with objects in it. For example, the movement
of the robot will impinge on its wheel encoders, but also on its cameras and
distance sensors. A robot that is physically linked to another robot will receive
information of this link by the docking sensor but also it will experience forces at
its joints caused the additional mass of the other robot. Sensory-motor categories
can be learnt, such as isPushable, isRollable, isTraversible (bridge), isEnterable
(door);

3. The final model is the Exo Forward Model that is used to establish and predict
the passively experienced dynamics of the environment, such as a rolling ball,
a falling object or a swinging door. Moreover, the prediction of the actions of
another robot may be useful in collaborative tasks such as docking. The ability
to predict the actions of another robot may also prove to be critical if the robot is
to perform imitative learning.

Symbolic sensory-motor categorisation. The sensory-motor layer does not nec-
essarily have to communicate with the controllers with PB vectors. Tani et al. in-
troduce the possibility of learning sensory-motor categories (Tani et al., 2004). This
is shown in Fig. 3.16. In this setup, there is a separate set of inverse and forward
models that learn symbolic category names in parallel with PB vectors. A higher
level controller can be using those category names instead of PB vectors that in-
dicate, for example, the isPushable, isRollable and isTraversible primitives men-
tioned above. Moreover, in this scheme, a higher level controller can interface with
the learnt categories by instantiating the mirror-system capabilities of the forward-
inverse model. For example, the controller can use the symbolic representation of
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Fig. 3.16 The sensory-motor layer. The model communicates internally with parametric bias
(PB) vectors (Tani et al., 2004). The PB vectors are abstractions of sensory-motor input. In
this figure, a symbolic/linguistic module allows to send not only PB vectors as abstractions,
but also category names. Those category names (symbols) can be used by controllers to label
sensory-motor skills.

the learnt sensory-motor sequence that allowed the model to establish isPushable to
initiate that particular action sequence. In this case the controller is using the learnt
inverse model to generate a desired sensory-motor sequence from its associated rep-
resentation. This facility is not the focus of the sensory-motor categorisation as it
incorporates actuation into the process however it might be useful to investigate the
role of actuation in perception or active sensing.

The symbolic categories highlighted above are subjective in the sense that they
involve an interaction between the robot and its environment. It is foreseen that it
will also be useful for the robot to identify certain aspects in its environment in a
more objective way. The robot is not a “blank slate”, it will need to possess some
innate abilities to categorise sensory stimulus. For example, one aspect of the envi-
ronment that is predictable is the fact the individual robot modules will share their
environment with other modules. On this basis we can assume that the robot should
be able to identify their conspecifics as it is almost guaranteed that they will meet
and interact at some stage. This is an example of an innate category that the robot
should recognise. Another innate categorisation that is useful for the robots is that
of a power socket. The “Grand Challenge” explains that the robot system should
“survive” without human assistance and this will inevitably require the ability to
identify energy sources (or at least potential energy sources). This categorisation
ability still requires the integration of a subjective element in its implementation be-
cause the current actions of the robot will still affect the sensory stimulus associated
with objects such as robots or power sockets. Other such categories will be the focus
of investigation as the project progresses.
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3.2.3.2 Sensor-Fusion Layer

The sensor fusion layer is divided into three large blocks: Feature and saliency ex-
traction; attention mechanisms and cross-modal associations (see Fig. 3.17).
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Fig. 3.17 The sensor fusion layer. The sensor fusion layer is divided into three large blocks.
The first block implements feature and saliency extraction. The second block contains atten-
tion mechanisms. The third block enables cross-modal associations.

There are four cognitive capabilities in the sensor fusion model:

• Attention: the ability to focus on certain visual, acoustic, tactile objects, and to
switch attention from one entity to another;

• Association: the ability to associate information from different modalities to be
able to recognise, for instance, visual-acoustic entities;

• Anticipation: the ability for inner rehearsal, sensor fusion categories lead to sim-
ulated actions, which lead to sensor fusion categories, etc;

• Awareness: the inclusion of systemic sensors;

Cognitive Models. There are two famous cognitive architectures that are worth
mentioning. The Kismet robot is developed at MIT (Breazeal, 2003). In Kismet, the
perceptual system processes visual and auditory information. It performs feature
extraction, focusing on, amongst others, the emotional “vibe” of speech. Acoustic
processing is specialised to detect emotional undertones in speech. The architecture
does not address the fusion process between vision and audition. It does however
address an attention mechanism that is able to bias the system’s interest for faces
versus objects (Breazeal & Scassellati, 1999). This attention model is derived from
the Itti, Koch and Niebur (IKN) model, see below. The Kismet architecture im-
plements attention and awareness, but does not address association or anticipation
explicitly.



198 3 Cognitive Approach in Artificial Organisms

Another famous cognitive architecture is the iCub cognitive architecture8. The
iCub architecture contains a network of competing and cooperating distributed
multi-functional subsystems, resembling a multi-agent system. Subsequently, im-
portant characteristics are implemented like adaptation, self-modification, anticipa-
tion and embodiment (in the form of crawling, sitting, reaching, grasping, imitation
and social interaction). The cognitive architecture in the iCub robot is very explic-
itly based on sensory-motor skills (see Sect. 3.2.3.1). Those skills can be modulated
or inhibited by a less reactive system. This modulation system is formed by auto-
associative memory that builds percepts out of different modalities, a motivation
system and an action selection module. Besides that there is a second-order loop
that simulates the outer world and rehearses sequences of sensory-motor events. In
this way the overall system is able to anticipate the consequences of its own actions.
The iCub architecture implements association, anticipation and awareness, but does
not address attention explicitly.

The sensor fusion model addresses all cognitive capabilities, from attention, as-
sociation, anticipation to awareness.

Attention. The sensor fusion model implements the saliency-based sensor fusion
model as described by Itti, Koch and Niebur (the IKN model). The IKN model
has been studied and applied multiple times (Itti et al., 1998), (Itti & Koch, 1999),
(Itti & Koch, 2001a), (Itti & Koch, 2001b). The model combines different visual
sub-modalities, like colours, intensity and orientations into an overall saliency map.
Subsequently, a winner-take-all network defines what spatial position on this map
will be considered as the next focus of attention. The weights of the different sub-
modalities can be adjusted in the process. This gives the opportunity to steer those
weights by a top-down attention mechanism. It can bias the system for colour or
orientation and it enables the robot to prioritise moving objects (like other robots)
above static objects (like energy sockets) in an office environment.

Association. Sensor data fusion concerns the creation of a fused representation of
several sensors from different modalities. A fused representation does not necessar-
ily need to be local e.g. an associative memory maintains a distributed representa-
tion. Integration of sensory information is achieved by dynamic binding9 rather than
fusion into a more abstract representation. Such an associative model is Adaptive
Resonance Theory (ART) by Grossberg. This theory dates back to 1976. There are
versions that perform supervised, as well as ones that perform unsupervised, learn-
ing (Grossberg, 1987), (Carpenter & Grossberg, 1994). Unsupervised means that it
only extracts statistics from the offered input patterns and stores those in a (prefer-
ably) compact representation. It has benefits to do this, because it is for example
possible to offer “input patterns” that are incomplete and the system will be able
to “fill in the gaps”. Basically, Grossberg’s approach was an attempt to fight the

8 The iCub cognitive architecture is developed in a European FP6 project called RobotCub.
9 Binding is meant in a neuroscientific sense rather than a computer science sense. It con-

cerns the binding problem: “When I see a blue square and a yellow circle, what neural
mechanisms ensure that the sensing of blue is coupled to that of a square shape and that of
yellow is coupled to that of a circle?”.
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problem of “catastrophic forgetting” or the “stability-plasticity dilemma”. After
learning pattern A, as well as pattern B, the former pattern A should not be forgot-
ten by the system.

Anticipation. A global workspace for controllers allows for anticipation,
see (Baars, 1988) about global workspace theory (GWT). Implementations of
GWT (Shanahan, 2006), (Franklin & Ferkin, 2006), allow an organism to emulate
motory-sensor patterns in advance. The cognitive architecture contains data process-
ing modules as well as associative memory. Besides these, it needs forward models
to implement this type of sensory forecasting. The forward models predict the next
sensory input on a certain actuator output. Forward models can be learnt as ex-
plained in Sect. 3.2.3.1 about the sensory-motor layer. However, forward models do
not necessarily have to map raw motor commands to raw sensory data. For instance,
shifts of the camera when the robot moves. No, on a cognitive level it operates on a
more abstract level. A multi-modal percept is predicted, rather than raw visual data.
It is an amodal emulator. Chains of tasks and higher-level percepts are emulated
beforehand, disregarded and finally accepted. This implements anticipation.

Awareness. The inclusion of systemic sensors, makes a multi-modal percept also
aware of the internal state of the robot. Awareness is implemented in the sensory-
motor layer (Tani, 2005). Hence, the cognitive sensor fusion architecture contains
attention, association, anticipation, as well as environmental and self-awareness
mechanisms.

3.2.3.3 Eco-Devo Layer

There are evolutionary and morphodynamic controllers that control the shape of the
organism due to changes in the environment or the task at hand. The multitude of
different shapes leads to a combinatorial explosion of ways in which data can be
processed within the organism. A camera that is continuously seeing the organism’s
own body, might be turned off, or it might focus on colour rather than motion. A so-
called eco-devo layer allows the sensor fusion model to code for cognitive sensor
fusion components and their interactions, see Fig. 3.18.

There are several encoding schemes within genetic algorithms. They differ in
their compressibility10, use of self-organisation and dynamics of the resulting topol-
ogy. The term sensor fusion topology, or the shorthand topology, has to be under-
stood as a directed graph in which nodes denote sensor fusion components (like a
sensor, a saliency map, a bias component or an adaptive resonance theory module)
and edges denote weighted connections between those components.

The direct encoding scheme is for example used in evolution strategies
(Salomon, 1996). Evolution strategies implement coordinated mutations.
An example of indirect encoding scheme is HyperNEAT, Hypercube-based
NeuroEvolution of Augmented Topologies, (D’Ambrosio & Stanley, 2007),

10 A computable object is called compressible in computer science, if there is an algorithm
that computes it, but has fewer bits. This is related to Kolgomorov complexity.
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Fig. 3.18 The eco-devo layer. The picture shows which elements of the sensor fusion layer
can be genetically represented. The picture has to be visualised on each robot module in
the organism. At the far right, individual sensors can be turned off, by disabling the feature
extraction module. The saliency map option, and, at the left, the biasing filters can geneti-
cally code preferences for movement versus colour, or vision versus sound. At the far left,
associative networks can be organised in a genetically defined hierarchy.

(Gauci & Stanley, 2008). HyperNEAT allows for compression in the form of gene
reuse (Inden, 2007), (Roggen & Federici, 2004), (Kumar & Bentley, 2000). One
of the indirect encoding schemes that uses self-organisation are gene regulatory
networks (GRN). Such a self-organised encoding scheme provides possibilities
to interact with the environment (Pfeifer et al., 2005a), (Inden, 2007). The eco-
devo approach takes this one step further, so, that this interaction between the
genes and the environment never ceases (Quick et al., 2003). This means that
game-of-life-like morphing behaviour can be implemented.

The sensor fusion model uses the eco-devo approach. The continuous morphing
of the body of the artificial organism is analogue to the process of metamorpho-
sis in nature. The corresponding morphing of the internal architecture of the robot
is called mesomorphosis. Mesomorphosis addresses the adaptation of a caterpillar
brain to a butterfly life. Artificial metamorphosis or mesomorphosis does not stop
when a certain body morphology has been reached. It is a life-long process of con-
tinuous encoding the genotype into a phenotype.11

There is one important aspect that has to be mentioned. The co-evolution of robot
body and robot brain. The metamorphosis and mesomorphosis can be done by one

11 An example might be clarifying. Suppose a morphodynamic controller that implements a
game-of-life-like snake. This is a plastic snake. It continuously adds a robot module to the
head of the snake, and removes a module from the tail. The process of mesomorphosis now
needs to turn on appropriate sensors in the new head module, connect it to existing body
modules and disconnect the virtual “sensor fusion wires” to the detached tail module.
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Table 3.3 This table is an overview of different encoding schemes for genetic algorithms.
The term compressibility is meant in a computer science sense. The term topology is meant
in a network topology sense in which phenotypes can be presented as a directed graph of
interacting components. In this context, those components are sensors, sensor fusion filters
or associative memory modules.

Methodology Corresponding scope

Direct encoding without self-
organisation

There are no large scale, coordinated, changes in
network topology from robot to its offspring possi-
ble. There is no compression of the topology;

Indirect encoding without self-
organisation

Large scale, coordinated changes in network topol-
ogy across generations are possible. There is
compressibility of the topology. The indirect encod-
ing mechanism itself does not provide for eventual
post-developmental dynamics.

Indirect encoding with self-
organisation (evo-devo)

Large scale, coordinated changes in network topol-
ogy across generations are possible. There is com-
pressibility of the topology. Post-developmental
dynamics is possible, but not necessarily imple-
mented.

Life-long indirect encoding (eco-
devo)

Large scale, coordinated changes in network topol-
ogy across generations are possible. There is com-
pressibility of the topology. Post-developmental
dynamics is implemented. The environment can in-
fluence development and post-development (meta-
morphosis).

and the same gene regulatory network. This is done by Bongard for morphogenesis
in “Making Evolution an Offer it Can’t Refuse: Morphology and the Extradimen-
sional Bypass” (Bongard & Paul, 2001). The sensor fusion model is not allowed to
exert control. However, the sensor fusion can be interfaced very easily with mor-
phodynamic control if the latter also uses a gene regulatory network.

A summary of the layers in the sensor fusion model:

• The sensory-motor layer, see (Tani, 2005);
• The sensor fusion layer, see (Itti et al., 1998), (Grossberg, 1987) and

(Baars, 1988);
• The eco-devo layer, see (Bongard & Paul, 2001) and (Quick et al., 2003).

Those individual models all lack certain functionality. However, in its entirety, the
three layers implement a sensor fusion model that respects sensory-motor and sensor
fusion categorisation, as well as cognitive capabilities like attention, association,
anticipation and awareness.
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3.3 Application of Embodied Cognition to the Development of
Artificial Organisms

Paul Levi

Cognition accepts many definitions depending on the various disciplines it embraces
like philosophy, psychology, artificial intelligence, robotics, etc. Let us consider the
overall, general-purpose definition proposed by an authority as the Encyclopedia
Britannica: “cognition includes all processes of consciousness by which knowledge
is accumulated, such as perceiving, recognizing, conceiving, and reasoning. It is
one of the only words that refers to the brain as well as to the mind.” Put differently,
cognition in general view is the set of all processes of thinking (thoughts) and the
ability to generate high level patterns of behaviour and interaction (communication)
in a society where other thinking creatures act or to adapt to the restrictions of the
inanimated (lifeless) nature. In this chapter we focus on a more restrictive definition
of cognition that is relevant to the distributive perspective, including inference tech-
nologies, planning, decision-making, learning, adaptability, context-awareness, and
communication (negotiation).

This chapter will first investigate models of self-organisation and adaptability in
inanimated nature relying e.g. on diffusion, Brownian motion, and impacts. Here
all such processes are considered as usually force-based that can be described as
implicit communications. This was the historical way how the phenomena of self-
organisation and collectivity have been detected and modeled e.g. by the methods of
synergetics or by the techniques of dynamical systems. An example of the synergetic
approach is given by the continuous selection equations. An additional example is
presented by the discrete and numerical unstable process of grazing impact.

In the next step we use in addition probabilistic methods in order to define in a
formal way the basic concept of information and knowledge. We apply this defini-
tion on the computation of the knowledge of the communication complexity during
the ongoing compatibility check of robot cells that are involved in the development
of an organism (body phase).

All methods of inanimated nature can also be applied to living systems. The
significant difference between animated nature and inanimated nature is the abil-
ity of living beings to be cognitive and therefore e.g. gather information, evaluate
this information and perform autonomous decisions. In the second part we extend
the methods of inanimated nature of the first part to cognitive agents that are able
to check the compatibility of their knowledge base, their functionalities, their be-
haviour in order to develop an organism and to control the sustainability of this
organism. The merits of this second approach will be demonstrated in more detail
by this assembling and surviving process of an organism. The basis for this appli-
cation is the assumption that creation of living beings is from the very beginning
the collection and appropriate managing of information. This means that cognitive
processes are not only a matter of an already developed brain and body but are also
active during the development of an organism.
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3.3.1 Natural vs. Artificial Systems: Collectivity and Adaptability
in Inanimated Nature

Many natural phenomena of inanimated nature, such as clouds, rainbows, and
sunrises are considered as self-organised processes. Some of them are shown in
Fig. 3.19. Self-organisational phenomena that have been observed in laboratories are
for example Bénard-Cells, the Belousov-Zhabotinsky-reaction, and the operation of
a laser. Our goal in this section, focusing more on the laser example (Haken, 1983),
is to propose a general model accounting for collectivity and adaptability in lifeless
environments.

A main difference compared to most physical approaches is to consider the sys-
tem under consideration as an open one, meaning that we have to consider dis-
sipation effects and fluctuating forces representing the environmental influences.
This difference is characteristic of self-organising processes and makes it possible
to account for the creation and annihilation of information (decrease of entropy),
whereas closed systems can only see their entropy increasing after the 2nd law of
thermodynamics. Fig. 3.20 summarizes the self-organisation in the synergetic view
(Haken, 1988).

The meaning of an order parameter and a control parameter can be clearly de-
scribed in the example of a laser. Control parameter: this parameter is defined by
the laser threshold. It is an artful combination of relaxation time and the proportion
of spontaneous emissions to thermal emissions. Order parameter: this corresponds
to the amplitude of the electromagnetic field. Behaviour of the field : beneath the
threshold the laser operates like a lamp (no synchronisation) and the order parameter
is connected to a high damping constant that circumvents its influence to the atoms
(no real order operations). Above the threshold the field gets coherent and slaves all
atoms to synchronise their photon emission. The behaviour within the threshold is
characterised by the emergence of a bifurcation of the control parameter.

More generally spoken, a control parameter connects typical constraints like tem-
perature, humidity, pressure, conductivity, vector fields etc. into a relevant combi-
nation. A further famous control parameter for fluids is the Reynold number R.

Fig. 3.19 Self-organisation
processes in inanimated
nature (source: Wikipedia).
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• non-linear
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Fig. 3.20 Synergetic representation of self-organisation.

A basic equation of self-organisation, rested upon on Quantum Field Theory, has
been presented in Sec. 1.2 and will be here repeated here:

db̂
dt

= cb̂− d(b̂†b̂)b + F̂f luct . (3.1)

Here b̂† and b̂ are bosonic creation respectively annihilation operators. The opera-
tor b̂† describes an amplitude of an order parameter field (better naming would be
order operator field), c plays the role of a control parameter (primarily describing
damping), d is a constant and F̂f luct represents fluctuating forces exerted by the en-
vironment. These forces can be described by the fluctuation of position and phase
of a fictive particle that correspond to Brownian motion and diffusion in classical
systems. In a non-physical mathematical way fluctuations are unavoidable, since
only with them the commutation rules between the bosonic operators can be exactly
fulfilled for all times.

Typical to this non-linear differential equation is that they define the temporal
solution of an operator and not, as usual, that of variables or parameters; and that
also for quantizing operators exist self-organising differential equations that define
coherent states of fields (e.g. multi-mode light fields). Characteristic of the solu-
tions of 3.1 is that they find (without additional strong perturbations) only solutions
that are elements of an invariant set of fixed points representing asymptotic system
stability.

At the latest we have now to explain to the reader why we mention this quan-
tum mechanical description here. There are two main reasons. Firstly, we assume
that the dynamic of regulatory biological networks of genes or cell networks can
be modeled by quantization effects since in these dimensions such effects occur for
sure. In our application field we are also forced in this direction if we are able later
on to develop organisms that are e.g. based on the NEMS (Nano Electronic Me-
chanical System) technology or even on molecular level. Secondly, we assume that
information in general is a quantized term that can be defined by an appropriate gen-
eral operator. The specialized information is given by the expectation values of this
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operator describing its application in a dedicated context. In the logical consequence
this means that we replace in our thinking e.g. quantized light field by quantized
message fields.

Later on we will present the so called selection equations; these are also self-
organising equations but for order parameters of macroscopic systems (no operator
equations) that converge only to fixed points (“winner takes it all”) depending from
the initial values.

Irrespective of the equation that will be solved, it has to be pointed out that the
solutions show asymptotic stability (resistance to perturbations) and adaptability
e.g. as a series of stable pattern formations if conditions change. This fact again
demonstrates that the methods of non-linear systems are in both cases well suited to
describe the states of systems and their deviations if restrictions change.

3.3.1.1 Collectivity in Inanimated Nature

Let us contrast a complex natural phenomenon like water and clouds with an ar-
tificial one, the laser. We can observe in both cases a standard pattern of self-
organisation as it has been presented in Fig. 3.20. All these systems are controlled by
an external control parameter, respectively a combination of temperature, humidity,
and pressure for cloud (water). This control parameter commands the aggregation of
elements (here, H2 molecules). This cluster (“collectivity”) is called water. This ag-
gregation might be unstable, resulting in a “flickering clustering” effect, responsible
for phenomenas like such as the water surface tension and the building of dynamic
clusters. What matters in the perspective of a complex natural system is the dynam-
ics (self-organisation) of the element clusters; elements go through the so called
water-cycle, alternating evaporation (clouds) and condensation (rain)12.

The control parameter for a laser is defined by a combination of the damping
constant of the light field, the life span of an atom, the unsaturated inversion, etc.
It represents a threshold, beneath it the light field is not coherent, above it the light
field is coherent and operates as a laser. In analogy to the water-cycle we observe
a laser-cycle that describes the interactions between the atoms e.g. of a resonator
and the light field. The atoms of the resonator (correspond to water) generate a
light field (corresponds to vapour) that consists of individual quanta (corresponds to
vapour droplets); this field hits on atoms of the resonator and generates again a light
field by absorption, enforcing the field, and so on. If we go deeper into details, we
observe a self-organising process that generates in addition a coherent light field;
its base is the feedback between the field and the atoms that initiate the correlated
12 This means the existence of H2O molecules that only exist if there are covalent bindings

between two H atoms and one Oxygen atom (typical length of an O-H binding is about
197 pm) can be established (interactions of the electron shells). Whether this connection
is stable or not is dominantly depending on the existing temperature. Up to approximately
100◦C (sea level) the water molecule is stable, above it will be vaporized. The aggrega-
tion is possible since these molecules have electrical dipole moments that generate the
connection between these molecules (hydrogen bridges).
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stimulated emission, where the field acts as an internal regulative parameter (order
parameter) on the atoms (enslaving principle).

After this parallel, three key properties of the system under investigation must be
emphasized in order to point out the differences of the methods that are applied in
inanimated nature and animated nature to build collectives:

1. CONTROL. The trigger to start the control of a process is usually set externally
(control parameter); the environmental conditions allow the activation of a self-
organising process (e.g. temperature for molecules). If such a process is activated
then internal control (order parameter) stabilises and monitors this process. Cog-
nitive agents operate similarly but their increased abilities allow the utilisation
of more complex regulative methods. But the dominant difference between nat-
ural creature and processes of the inanimated nature is the fact that living beings
control information explicitly, whereas non living control information only im-
plicitly. Another difference is the fact that in inanimated nature the participating
units (e.g. molecules) are pure passive and are not autonomous like agents that
are active by themselves as e.g. living beings.

2. COMMUNICATION/INTERACTION. The methods of inanimated nature are
usually restricted to fluctuations, diffusion and Brownian motion. If coupled dif-
ferential equations are solved then partial solutions between the participating
computers are exchanged, but this exchange is not comparable to negotiations
between autonomous agents that are using a high level language. But in the sense
of embodied cognition communication is not only focused on this abstract level.
Chemical/physical effects that generate smells, perfumes, and the like have also
to be considered as a very elementary form of communication. A striking ex-
ample for this statement are pheromones (example of prophylaxis) that are used
by bees. Basic ingredients of such chemical/physical processes are again e.g.
fluctuations and diffusion, therefore we cannot state convincingly that only an
information exchange in a high level language is a communication and the inter-
actions by smells, forces, etc. is no real communication. This strong distinction is
brittle; the transition from low level communication to high level communication
is fluent13.

3. DECISION. The ability of an autonomous agent to make a decision that is more
than just to say Yes or No is a concise feature of living beings since such an
agent can perform cognitive processes like articulation in a language, inference
capabilities, planning capabilities, context awareness, etc. On the other hand, the
reactions e.g. of water molecules that depend also on the spin configurations of
the participating atoms can be considered as an elementary form of a Yes or
No decision. Thus also the ability of decision is not a clear feature of animated
nature, since the difference with spin of atoms is not that striking.

Especially the third point explains why in a not animated nature explicit
(conscious) justifications to form cooperative groups that are valid for cognitive

13 In inanimated nature the coupling between two passive units is usually generated only
by chemical/physical attractive forces if the units are close enough (e.g. distance of some
hundred pm’s for H2O molecules).
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agents - like increase of performance, scalability of performance, increase of sta-
bility (robustness), increase of reliability etc. - cannot be given by the participating
“particles”. However the methods that have been developed for the modeling of
processes of inanimated nature can also be applied to biological systems as e.g. has
been demonstrated by (Meinhardt, 1995). For us it is important to note that such
methods can also be deployed for the generation of creatures as an integrative and
additive part of cognitive agent abilities. The essential point is that such an agent
can learn which procedure is the best one and how to implement its brain (body).

The inhibitor and activator model of Meinhardt describes the external pattern
formations of sea shells by the interactions of different concentrations by the way of
methods of chemical reactions. But his wording has to be interpreted in the sense of
morphogenesis and not in the sense of cognitive agents. The differential equations
defined by him are:

∂a
∂ t

= s(
a2

b
+ ba)− raa + Da

∂ 2a
∂x2 (3.2)

∂b
∂ t

= sa2 − rbb + Db
∂ 2b
∂x2 + bb. (3.3)

Here are a(x) the autocatalytic activator and b(x) the inhibitor. Da and Db are the
diffusion coefficient, and ra and rb are the decay rate of a and b. Fig. 3.21 shows the
result of this method to decorate sea shells.

Fig. 3.21 The robe of a sea
shell computed by the Eqs.
(3.2) and (3.3).

3.3.1.2 Adaptability in Inanimated Nature

The description of adaptability (ability to adaptation) of non creature is at best given
by aggregation states of a H2O cluster. We differentiate the following phases: solid
(ice), liquid (water) and vaporous (steam). The aggregated states of such molecule
clusters are primarily controlled by the external conditions temperature and pres-
sure. Ice has a rigid lattice structure (e.g. crystalline hexagonal (snowflake) struc-
tures, Ice Ih; or cubic structures, Ice Ic) since the hydrogen bonds are fixed by more
bonds between the oxygen atoms than in a liquid state. The hydrogen bonds are
forced to open if the temperature is higher than e.g. 100◦C (vapour). These phase
transitions describe a perfect adaptation to external thermal (pressure, temperature)
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restrictions. These state transitions have been described so far by the usual and more
understandable classical physic-chemical explanations.

For our field of applications we prefer a more mathematical description of adapt-
ability in the sense of nonlinear dynamic systems (Guckenheimer & Holmes, 1983),
(Mikhailov & Calenbuhr, 2002). Here our first specification is devoted to fixed
points (equilibrium points) that are stable or asymptotically stable. In more detail
this means that we are looking for differential that generates solutions that are ele-
ments of an invariant set of fixed points. Small perturbations (e.g. impact of a water
drop on a water surface, small deviations of components in a rigid body caused
by stress) do not disrupt the whole system but there can be observed a pull back
from the perturbations to the original or another fixed point of the invariant set of
equilibrium states. A second example of such an adaptive behaviour is the disrup-
tion of input data (e.g. distorted images) that does not change the general solution
(recognition of distorted images). A third example is the disruption of some cou-
pling constants between interacting units that are dynamically processed by short
time deviations but end up again, in a maybe different, stable solution.

If the external or initial conditions dominantly change then adaptability implies
that a series of different pattern formations (e.g. different aggregations of H2O clus-
ters, or different morphological forms of artificial organisms) as a series of bifurca-
tions starts without ending in chaotic states. An elegant method to describe such a
bifurcation series is the symbolic dynamic (Avrutin, 2009).

We now start with the description of two different differential equations in order
to demonstrate what kind of mathematical effects are generated if collectivity or/and
adaptability are demanded. We start with the selection equations that are followed
by the map for a grazing impact.

Selection Equations

There already exist different methods to solve assignment problems (e.g. Hungarian
method), but we choose here the selection equations since they guarantee a unique
assignment between two sets (2-index problem) in real time. A possible disadvan-
tage of this method is the fact that no guarantee can be provided that the global
maximum has been selected. The original selection equation is an equation for or-
der parameters (modes) ξi and is defined by

d
dt
ξi = κξi(1 − ξ 2

i −β ∑
i′ �=i

ξ 2
i′ ) (3.4)

If the initial value for ξi is greater than zero, and β > 1, then the mode with the
greatest initial value converges to 1 and all other modes “die out”. The parameter κ
will be used to accelerate or slowdown the calculation. In distributed computations
of the ξi’s the different modes exchange mutually the terms β ∑i′ �=i ξ 2

i′ during the
iterating process of problem solving.

The operation mode of this equation is at best represented by Fig. 3.22. It demon-
strates the recognition of a horse (emblem of Stuttgart) from a distorted (noisy) input
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Fig. 3.22 Adaptability of
the original selection equa-
tions to associate a corrupted
input image with a correct
reconstruction of the origi-
nal object.

image in some pattern formation steps where each mode represents a different po-
sition of this horse and the mode that represents the correct orientation of the horse
is the sole winner (Haken, 1988). Each mode ξi represents a different attractor in a
configuration space (possible states of all modes) with different basins of attraction.
The structure of such a space can be descriptively represented in the adequate po-
tential field, the attractors are the minima and the symmetry breaking ridges are the
borders of the basins of attractions. Such a space is also named associative memory.
Further it should be mentioned that the adaptation abilities of the Eq. (3.2) are very
similar to that one of Kohonen nets.

The standard selection Eq. (3.2) can also be considered as a method to solve
the 2-index assignment problem of combinatorial optimization. If the two sets of
the assignment problem have the same cardinality then each mode can be consid-
ered as permutation matrix that describes different patterns. The original equation
can be extended to an assignment matrix (ξi j)-element i from the first set is as-
signed to j of the second set - and by two additional, time dependent parameters
α(t) and β (t) in order to increase adaptability and robustness of this approach
(Lafrenz et al., 2008). The adaptability means that the assignment is performed dy-
namically (on line change of assignment if e.g. initial conditions change). The in-
creased robustness assures the correctness of the solution even if some of the ex-
changed partial results are distorted. The modified coupled selections equations have
the form:

d
dt
ξi j = κξi(α(t)i j(λi j(t)− ξ 2

i j)− 2βξ 2
i j −β (∑

i′ �=i

ξ 2
i′ j + ∑

j′ �= j

ξ 2
i j′) (3.5)

Here α(t)i j are context based utility functions and ξi j(t) ∈ {−1,1} are switching
parameters to activate or deactivate assignment processes in order to perform the
mapping stepwise between selected subsets of the original sets.

Grazing Impact

Impacts with zero velocity are called grazing impacts (Molenaar et al., 2001). In
this special case the usually continuous description of the collision of a harmonic
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Fig. 3.23 Bifurcation diagram (τ2 = 1) of the Nordmark map. For ρ < 0 there is an attracting
period-1 orbit, Eq. (3.6), after the bifurcation at ρ = 0 the reverse period incrementing starts,
Eq. (3.6).

oscillator that is sinusoidal forced and hits a hard (or compliant) wall with zero
velocity can be transferred into discrete equations, so called maps. This step is im-
portant since there are two sources of discontinuity in reality: the impact itself and
the energy loss by the impact (collisions that are inelastic). In the context of our con-
tribution this is important for e.g. ball bearings, loosely fitting joints, abrasive elec-
trical contacts and for multi-legs robots. The original simplified (hard wall) Nord-
mark map demonstrates how such a phenomena can be discretized and numerically
solved. This map is given by:{

xn+1 = αxn + yn +ρ
yn+1 = −γxn

f or xn ≤ 0 no impact, (3.6){
xn+1 = −√

xn + yn +ρ
yn+1 = −γτ2xn

f or xn > 0 impact, (3.7)

Here xn and yn are the discrete position and velocity calculated at time tn (dis-
crete phase space), and the most important parameter is the bifurcation parameter
ρ (|ρ | 	 1,ρ = 0 (grazing incidence)). The point that is interesting for us is the

square-root singularity ( ∂xn+1
∂xn+1

= − 1√
xn

, singular at xn = 0). This special singularity
causes the effect of period incrementing that is shown in Fig. 3.23 (remember here
the case of period doubling bifurcations of the quadratic nonlinearity considered by
Feigenbaum). We observe a reverse period incrementing (window of stable periodic
behaviour) that is followed by a chaotic band (Chin et al., 1994).

After we have presented some selected differential equations that primarily have
been developed to model processes of natural and artificial processes we continue
this procedure and consider probabilistic methods in order to integrate a concept of
information and knowledge into our considerations.
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3.3.2 Definition of Information and Knowledge Related to
Restrictions

We clearly have to differentiate between the phase where an organism is created
and the phase where an organism “lives” and operates in some environment. In the
second phase energy homeostasis, harvesting and cooperation for task performance
are essential. In natural living beings these activities are supported by usually un-
conscious periodic actions like breathing, heartbeat or synchronisation signals in the
brain. This second phase will be evaluated by one or more fitness functions.

For us information is a concept that does not stand alone as it is usually defined
but it has to be formed in a strong connection with the restrictions that are to be
satisfied in the actual context (context-awareness). Therefore we have at least to dis-
tinguish the boundary conditions for the two mentioned phases. Nevertheless there
exist methods to calculate a probabilistic concept of information by general proba-
bility constraints (e.g. expected number of messages, expected energy expectation,
the compliance of Kullback’s minimum cross entropy principle, or Jayne’s maxi-
mum entropy principle entropy (Kapur & Kesavan, 1992)).

We use the notion of information in the sense of the concept of generalised en-
tropy, meaning that we stand away from the original thermodynamically defined
concept (e.g. order, disorder of a closed or open system) but enlarge it in direction
of uncertainty, equality, diversity, similarity, randomness, etc. Therefore if we speak
of information we mean all the time the “augmented” concept of entropy that also
can be characterised as information-based entropy.

In this chapter we demonstrate how the information-based entropy is usually cal-
culated in probabilistic approaches, in physics and in physical chemistry. The main
missing part in all of these mathematics-based methods is the concept of learning
and deciding which is typical for cognitive approaches. After we present these clas-
sical methods we enlarge our proceeding in the fourth chapter by cognitive agent
technology as a clear enlargement of pure mathematical procedures.

3.3.2.1 Information Related to Probabilistic Restrictions

We begin our discussion by the proposal to measure information by information-
based entropy that in addition has to fulfill a set of constraints. Here we consider
first the restrictions of probability distributions have to satisfy. We start again (see
Sect. 1.2) with a simplified (without field operators) state sum for the total state of
agent j:

S j =∑
k

e(μ j(<N2
jk>−<Njk>

2)−Wjk))/<N2
j >), (3.8)

where < Njk > is the mean value of messages that agent j gets from agent k and
< N2

j > is the expectation value of the squared number of all messages agent j
has been get. This magnitude is selected by the correspondence to the Boltzmann
term kT .
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In the first category of constraints we focus ourselves to probability constraints.
We describe the knowledge state distribution Wjk by a symmetric Kullback-Leibler
cross-entropy that calculates the difference of two probabilities:

Wjk = J(p( jk) : q
j
) =∑

i
p( jk)i ln

p( jk)i

q ji
+∑

i
q ji ln

q ji

p( jk)i
. (3.9)

Here p( jk)i describes the wanted probability that agent j transfers in the internal state
i of r states if it gets a message from agent k; and q ji describe the a priori probability
that an agent j is in the knowledge state i. This expression must be minimised by
the following restrictions:

n

∑
j=1

p( jk)i = 1,
n

∑
j=1

q ji = 1, i = 1, ...,r. (3.10)

r

∑
i=1

p( jk)igs(xi) = as,s = 1,2, ...,m. (3.11)

A typical example for the side condition (3.11) is:

r

∑
i=1

n

∑
j=1

jp( jk)i =
r

∑
i=1

< Nki >=< Nk >, (3.12)

this is the expected number of agents that changes in a new knowledge state if agent
k sends to all agents the same message. Another restriction is the expected total
energy consumption for all state transitions.

r

∑
1=1

Ei

n

∑
j=1

jp( jk)i =< E > (3.13)

With the aid of Lagrange multipliers λi, i = 0, ...,m, and the restrictions for the p( jk)
distribution we get the general result for this distribution (Kapur & Kesavan, 1992):

p( jk)i = q jiexp(λ0 −λ1g1(xi)−λ2g2(xi)− ...−λmgm(xi)). (3.14)

For example the Poisson distribution

q ji = e−b bi

i!
(3.15)

with the expectation value b and the mean of the p( jk) distribution is prescribed as

m then the resulting distribution is

p( jk)i = e−mmi/i!, i = 0,1,2, . (3.16)
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The fact that this distribution is again Poisson with the claimed mean m demon-
strates that the form of p( jk)i is dictated by the a priori distribution q ji while the
mean m is independent from the mean b. The result for Wjk is as follows

Wjk = (∑
i

e−m mi

i!
ln(e−m mi

i!
/e−b bi

i!
)+∑

i
e−b bi

i!
ln(e−b bi

i!
/e−b bi

i!
)

= ∑
i
(b − m+ i(ln(m)− ln(b))[p( jk)i − q ji]. (3.17)

In the next step we calculate the statistical potential

Ω j = − < N2
j > lnS j. (3.18)

Afterwards agent j holds the information:

In f j = − ∂Ω j

∂ (< N2
j >)

= − lnS j +
1

< N2
j >

∑
k

(μ j(< N2
jk > − < Njk >2)−Wjk)e

(μ j(<N2
jk>−<Njk>

2)−Wjk)/<N2
j >

S j
=

−lnS j +
1

< N2
j >
∑
k

μ j(< N2
jk > − < Njk >2)p̃ jk (3.19)

Here

p̃ jk =
eμ j(<N2

jk>−<Njk>
2)−Wjk/<N2

j >

S j
(3.20)

represents the standard probability definition of a state sum.
For the special case that all distributions are Poisson with different means we can

calculate (3.19). For S j we assume that the individual probabilistic distribution for
the message exchange has mean c jk and the total probabilistic distribution for the
message exchange has mean c j. It follows

< N2
jk > − < Njk >2= c jk and < N2

j >= c j(c j + 1), and S j (3.21)

can now expressed as
S j =∑

k

e(μ jc jk−Wjk)/c j(c j+1). (3.22)

The total information that agent j can calculate till now is

In f j = − lnS j +
1

c j(c j + 1)∑k
(μ jc jk −Wjk)e(μ jc jk−Wjk)/c j(c j+1)

S j

= − lnS j +
1

c j(c j + 1)∑k
(μ jc jk −Wjk)p̃ jk,

(3.23)
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with the Boltzmann like probability

p̃ jk =
e(μ jc jk−Wjk)/c j(c j+1)

S j
. (3.24)

What is still missing in formula (3.23) is the definition of the “chemical” potential.
We set it here to μ j = μ0

j + ln(activity j), whereas μ0
j is the standard potential and

the activity is calculated with respect to a standard activity (normalized activity).
By the direct indication what kind of activity will be described, e.g. interaction with
other agents (substances), phase transition or spatial diffusion detail, the dependen-
cies of μ j respectively activity j from other magnitudes must be modeled separately
for each different context. In chemistry the chemical potential defines the direction
of diffusion between two chemical substances (e.g. fluid, gaseous). If the chemi-
cal potential is equal for both sides of the chemical reaction then the inter mixture
stops and equilibrium employs. We use the chemical potential e.g. in an elementary
way by

μ j =< N0
j > + ln

< Njk>

< N2
j >

. (3.25)

Here < N0
j > is the standard expectation value of the number of messages that agent j sends

out to all other agents, the means in the quotient have been defined above. So in the end one
possible elementary formula for the information (information based entropy) for agent j is:

In f j = − ln∑
k

e
((<N0

j >+ ln(
<N jk>

<N2
j >

))c jk−Wjk)/c j(c j+1)

+
1

c j(c j +1)∑k
((< N0

j > + ln <Njk>

<N2
j >

)c jk −Wjk)e
((<N0

j >+ ln(
<N jk>

<N2
j >

))c jk−Wjk)/c j(c j+1)

S j
,

(3.26)

where S j is given by the argument sum within the ln expression. We have observed
that in our definition of information the knowledge Wjk defined in (3.17), is a basic
and important ingredient. We calculate this term by a measure of symmetric diver-
gence. In the following two sub-chapters we calculate first the discrete probabilistic
knowledge for the compatibility test of individual components by constructing an
artificial organism. Hereby we consider the individual components as agents that
send themselves mutually their individual information in order to prove the compat-
ibility of two components that are able to build a new compound, stable component.
Afterwards we calculate the structural stability of a finished organism by a continu-
ous knowledge representation of the probability of failure.

3.3.2.2 Information Related to Creating Restrictions (Construction
Problem)

Let Cj be the number of components (robot cells) of type j, where j = 1, ...,n,
defining n different types of basic bricks. Let Ok be the number of all operations
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that can be performed on component k in order to establish a pair wise stable and
functional successful connection between all components j and the individual com-
ponent k, k = 1, ...,n. If Ok = 0 then no connection can be established at all. Let
Mjk be the number of message exchanges of pair wise successful information trans-
fers between component j and component k, where both parts are considered as
synchronized agents. The result of these information exchanges correspond to a
compatibility check between component j and component k. The task we have to
perform is now to estimate the n2 Mjk’s as individual probabilities in order to get
an assessment of the communication complexity (modified transportation problem).
The natural constraints are:

n

∑
k=1

Ck = Cj, j = 1,2, ...,n, (3.27)

n

∑
j=1

Mjk = Ok,k = 1,2, ...,n, (3.28)

n

∑
k=1

n

∑
j=1

Mjkc jk = c̃. (3.29)

Constraint (3.27) reduces the number of messages that agent (component) j can send
to other agents k by the number of available components of type j. Constraint (3.28)
restricts the number of messages that all components j can send to component k by
the total number of operations that can be performed with component k. Constraint
(3.29) gives a measure of the message transfer costs c jk.

From the two constraints (3.27) and (3.28) we deduce a constant M:

n

∑
k=1

n

∑
j=1

Mjk =
n

∑
k=1

Ok =
n

∑
j=1

Cj = M. (3.30)

The constant M will be used to interpret the proportions Mjk/M as probabilities. We
minimise the symmetric Kullback-Leibler measure

D(
Mjk

M
:

CjOk

M
)+ D(

CjOk

M
:

Mjk

M
) =

n

∑
k=1

n

∑
j=1

Mjk

M
ln(

Mjk/M

CjOk/M
)+

n

∑
k=1

n

∑
j=1

CjOk

M
ln(

CjOk/M
Mjk/M

), (3.31)

under the consideration of the constraints (3.27) - (3.29). This gives

Mjk = A jBkCjOke−c jk , (3.32)

where A j,Bk, and λ have to be determined by using the three constraints (3.27) -
(3.29). If the cost constraint (3.27) is neglected (λ = 0), the result is
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Mjk = CjOk. (3.33)

Both Mjk’s divided byM are the two different probability distributions. If we apply
the last two formulas to calculate the individual knowledge

Wjk =
Mjk

M
ln(

Mjk/M

CjOk/M
)+

CjOk

M
ln(

CjOk/M

Mjk/M
)

=
Mjk

M
[ln(A jBk)−λc jk]− CjOk

M
[ln(A jBk)+λc jk]

= ln(A jBk)[Mjk −CjOk]−
λc jk

M
[Mjk +CjOk]. (3.34)

The total knowledge W is

W =
n

∑
k=1

n

∑
j=1

Wjk. (3.35)

This approach can be improved a little bit if we involve the knowledge of the
results of previous assemblies M0 and Mjk0, then it is more appropriate to consider
the term

Wjk0 =
Mjk

M
ln(

Mjk/M

Mjk0/M0
)+

Mjk0

M0
ln(

Mjk0/M0

Mjk/M
). (3.36)

This calculation delivers a better estimation.

3.3.2.3 Information Related to Structural Restrictions

The classical physical method to calculate equilibrium condition of deformable rigid
bodies with a fixed structure is to construct a stress tensor Sαβ (α,β = 1, ...,3) that
can be used to calculate for each normal direction a stress vector, and in addition
to evaluate a dilatation tensor Dαβ (α,β = 1, ...,3) that describe the kind of de-
formation (e.g. strain, torsion) if external forces affect the body. By the use of the
elastic potential U it is possible to establish the stress-strain connection. The elastic
potential can further be engaged to calculate the final basic integral equations for
equilibrium conditions (resultant law and momentum law). We now consider the
stability of a completed artificial body that is rigid by a continuous probability cal-
culation of failure. Let p f (x) be the probability density that a component fails if it
is subjected to a stress x, where (pF(x)dx) is the probability that a component fails
if it subjected to a stress between x ± dx). What we search for is the estimation of
this probability density and we do it by formulation of an adequate constraint. The
distribution function of failure (cumulative probability) is as usual defined by

PF(x) =
∫ x

0
pF(x)dx, (3.37)

it determines the probability of failure if a component is subjected to a stress up
to x. From a fraction of components ps(x)dx that are experimentally subjected to
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stress up to x the expectation value for the distribution function Pf ail is known. This
expectation value of PF(x) is given by

Pf ail =
∫ X

0
PF(x)ps(x)dx. (3.38)

All components fail (brake) definitely if they are subjected to the maximal stress X .
Integration of (3.38) by parts delivers the result

Pf ail = [Ps(x)PF(x)]X0 −
∫ X

0
Ps(x)pF(x)dx. (3.39)

Now it is valid that Ps(X) = 1,PF(X) = 1,Ps(0) = 0,PF(0) = 0, so that we get the
wanted constraint for pF(x)

1 − Pf ail =
∫ X

0
Ps(x)pF(x)dx. (3.40)

The second constraint is the unavoidable standard constraint∫ X

0
pF(x)dx = 1. (3.41)

If we use Jaynes’ maximum entropy principle then we maximize

−
∫ X

0
pF(x) ln pF(x)dx (3.42)

The Lagrange function L subjected to the two constraints with additional two mul-
tipliers λ0 and λ1 looks like

L = −
∫ X

0
pF(x) ln pF(x)dx − (λ0 − 1)(

∫ X

0
pF(x)dx − 1)−

λ1(
∫ X

0
Ps(x)pF(x)dx − 1 + Pf ail). (3.43)

If we set the derivative of L with respect to pF equal to zero we get

−1 − ln pF(x)− (λ0 − 1)−λ1Ps(x) = 0. (3.44)

From this equation we deduce the result

pF(x) = e−λ0−λ1Ps(x) =
e−λ1Ps(x)∫ X

0 e−λ1Ps(x)dx
, (3.45)

where λ1 can be determined by inserting this result into constraint (3.40). The final
distribution density pF(x) is a continuous variate version of the Maxwell distribu-
tion. This was the classical calculation of pF(x), but closer to our developmental
line is the deployment of the continuous symmetric Kulback-Leibler measure (cross
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entropy). Here we involve in addition to the failure distribution density pF(x) a new
different failure distribution density qF(x) together with a new stress probability
density qs(x) and distribution function

Qs(x) =
∫ x

0
qs(x)dx,

dQs(x)
dx

= qs(x). (3.46)

The new q distribution density and Q distribution function result from other experi-
mental series. We have therefore to minimize the expression

W = J(pF(x) : qF(x)) =
∫ X

0
pF(x) ln(

pF(x)
qF(x)

)dx +
∫ X

0
qF(x) ln(

qF(x)
pF(x)

)dx. (3.47)

This expression defines also our total continuous knowledge about the failure of all
components that comes from two experimental series.

We begin the evaluation of this expression by the first term, where the constraints
stay unchanged and only the Lagrange function includes∫ X

0
pF(x) ln(

pF(x)
qF(x)

)dx instead −
∫ X

0
pF(x) ln pF(x)dx. (3.48)

The result is

pF(x) = qF(x)e−λ0−λ1Ps(x) = qF(x)
e−λ1Ps(x)∫ X

0 e−λ1Ps(x)dx
. (3.49)

For the second term in Eq. (3.47) we obtain

qF(x) = pF(x)e−λ0−λ1Qs(x) = pF(x)
e−λ1Qs(x)∫ X

0 e−λ1Qs(x)dx
. (3.50)

After we insert these two equations into (3.47) we get the final formula

W = qF(x)
e−λ1Ps(x)∫ X

0 e−λ1Ps(x)dx
[ln(

qF(x)
pF(x)

)+λ1(Qs(x)− Ps(x))+

ln(
∫ X

0 e−λ1Qs(x)dx∫ X
0 e−λ1Ps(x)dx

]+ pF(x)
e−λ1Qs(x)∫ X

0 e−λ1Qs(x)dx
[ln(

pF(x)
qF(x)

)−λ1(Qs(x)− Ps(x))+

ln(
∫ X

0 e−λ1Ps(x)dx∫ X
0 e−λ1Qs(x)dx

)]. (3.51)

This is the total knowledge that we can get from two experimental series. We in-
crease our knowledge if we make more experiments that deliver two further fail-
ure probability densities rF(x) and sF(x). For convenience we assume that all four
probability densities are independent then we can e.g. calculate the non symmetric
Kulback-Leibler measure (a joint probability distribution of two distributions p and
q we denote by p ∗ q):
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D(pF(x)∗ qF(x) : rF(x)∗ sF(x)) =
∫ X

0

∫ X

0
pF(x)qF(x′) ln(

pF(x)qF(x′)
rF(x)sF (x′)

)dxdx′ =∫ X

0

∫ X

0
pF(x)qF(x′) ln(

pF(x)
rF(x)

)dxdx′ +
∫ X

0

∫ X

0
pF(x)qF(x′) ln(

qF(x′)
sF(x′)

)dxdx′ =∫ X

0
pF(x) ln(

pF(x)
rF(x

)dx +
∫ X

0
qF(x′) ln(

qF(x′)
sF(x′)

)dx′ =

D(pF(x) : rF(x))+ D(qF(x) : sF(x)). (3.52)

For our knowledge calculation this means that we can just add the individual mea-
sures if the probability densities are independent:

W = D(pF(x) : rF(x))+ D(qF(x) : sF(x))+ D(rF(x) : pF(x))+ D(sF(x) : qF(x)).
(3.53)

If the distributions are not independent then such formulas are more complex and
no more additive, but it is still possible to calculate W . By this way we can go
on and append two more new distributions (new experimental series) to the old
one in order to increase the knowledge we can get from such experiments. This
procedure resembles an elementary learning process. Therefore we stop here with
the description of probabilistic methods and focus in the next chapter to agent based
cognition (learning).

3.3.3 Collectivity and Adaptability in Animated Nature

The main reason to operate in a team is given if the participating active units (agents)
are not able to perform a complex task since none of the participants has the skills
and the capacity to solve the problem alone (Ferber, 1999). Further points for col-
lectivity are the increase of performance, scalability and flexibility (Parker, 2008). If
the team members are agents that operate on a higher and more abstract level since
they posses cognitive abilities, they know explicitly about all possible conflicts like
the common goal (e.g. completion of a global task from which they benefit), the
individual goals (beliefs, intensions), individual missing capabilities, insufficient re-
sources, etc. So they start to solve the problem by direct negotiations (Weiss, 1999),
(Wooldridge, 2002). Very typical for this agent-based approach is the definition of
roles (e.g. organiser or planner), the knowledge based performance of roles, the
interactions between the agents with the result that the fittest survive (e.g. energy
homeostasis), the emergence of “social” behaviour patterns (e.g. egoistic agent, al-
truistic agents).

The adaptivity inside an organism is more than only the adaptation to parame-
ters. It is also the structural change, the functional differentiation or the creation of
regulative rules (see Sect.1.1). For example the cascaded regulation of an organism
is at least at the lower of locomotion completely changed if legs of a creature are
replaced by wheels.

The basic assumption of this work is that all living beings posses a kind of cogni-
tion and can therefore also communicate by some kinds of a “language”. This fiction
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is obvious true for deliberative agents, but we go further and also guess that this is
also true for swarms or even on the component (cell) level. The main difference of
these two levels is that on lower levels there is no explicit and conscious deliberation
(inference, decision), instead it is completely driven by evolution. This means in our
application field e.g. that no team member has a global plan or a complete distribu-
ted plan but there exist different, elementary cognitive abilities in the multi-agent
system. Independent of the level of organism (high or primitive cognitive abilities),
we model all phases of development and adaptability of an organism by agents.

For the creation and the survival of artificial organisms we introduce e.g.
evolution-agents (organisers) and fitness-agents as distinguished agents, where both
types of agents operate only in common restricted regions (Nüsslein-Volhard, 2004).
The whole system can only be generated if these agents exchange information from
the beginning among themselves and between evolution-agents and fitness-agents in
order to generate an information field that synchronises all together in direction of
pairwise compatibility. Such a field operates as an order parameter field. Each agent
stores its collected information in its own information-base, and all these local basis
together represents a distributed information-base for the whole organism.

We consider the information exchange at each level of creation of an organism
as the basic operation that is in nature initiated e.g by physical forces and that is a
dominant part of evolution. The result of an evolutionary process e.g. of individual
connection of cells is created by a learning process where the result of this process
is stored as the sum of separate information values. In this sense the “construc-
tion” of a body can be considered as an exploration where at each developmental
phase the criteria that have to be learned are different (Fukuda & Ueyama, 1994),
(Lungarella et al., 2003). We further assume that the optimisation criteria of evo-
lution is the decrease of information (open systems). Living systems have to be
considered as open systems (e.g. dissipation, fluctuations), therefore we consider
the process of minimisation of information. This procedure corresponds to the re-
duction of entropy, whereas we assume that e.g. each state S j is positive and ≤ 1,
see Eq. (3.19).

A fitness function describes the best adaptation of an organism to a task in a given
environment, e.g. the ability of locomotion in an environment with existing restric-
tions can be mandatory for survival. This fact forces, on the other side, the evolution
to re-evaluate the so far developed (learned) information value in order to generate a
new information that is minimised respectively to the new restrictions. Therefore a
fitness function is comparable only in part with a function of reinforcement learning
since there is no interaction with the evolution process. The decision which is the
best balance between information-based evolution and fitness of an organism will
usually be given by the fitness of the body if stringent conditions like survival have
to be fulfilled. This is true in the developmental phase.

If the organism is finished and is fit to perform a task then the evolutionary pro-
cess might define this balance. We will involve evolution-agents and fitness-agents
in order to establish the above mentioned balance. This is even e.g. in the lower level
of cells true where the fitness-agent has to assure the survival of individual cells and
aggregated cells. For higher levels of an organism this might be more obvious where
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for example in biological systems the survival is given by the unconscious processes
of the organs. Examples are: blood transport by a heart, supply of oxygen by lungs,
dialysis of blood by kidneys, etc. All these organs take care that an organism can
live, meaning primarily the adaptability and the chance of survival of a creature. We
consider therefore the creation of such vital organs from the very first of develop-
ment since these organs are build from differentiated cells.

3.3.4 Information Based Learning to Develop and Maintain
Artificial Organisms

3.3.4.1 Establishing the Individual Information by Mutual State Exchange

We start our consideration from bottom in the sense that each component is repre-
sented by an agent that can communicate, and gather information by learning.

This kind of reflection is also inspired by the details of a bio-inspired production
process. The combination of two components (cells) is in the first step dictated by
the calculation of the individual states defined by (3.8). The knowledge Wj j (k = j,
self-information) is zero in the beginning since the two discrete probability distri-
butions p( j j) and q

j
in Eq. (3.9) are equal, e.g. equal to the uniform distribution

uj = (1/n,1/n, ...,1/n), where n is the number of different knowledge states.
Further we assume that there exist two different coupling mechanisms for the

connection of two components (in the sense of fitting joints) that are refined by
additional attributes like strength and angle of joint. Fig. 3.24 demonstrates the two
types of mechanical connections we adopt, where only spherical ends bond together
or only rectangular ends join (we neglect in the first step electrical connections).

Fig. 3.24 (a) Possible forms of components; (b) and (c) Successful connections, (d) Broken
joints (thanks to Mr. Oliver Zweigle).
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Here it is also very ambitious to fabricate and assemble carbon nanotubes (CNT’s),
(Fukuda et al., 2007).

Like biological cells do it from the beginning, one component searches in a strong
limited environment for other similar components in order to combine with them,
we consider this process as the gathering of information that describes whether
there can be found another part that fits, or not. This process mimics physical forces
that affect the type of connection. In our probabilistic approach of information and
knowledge this stands for a knowledge base (better wording would be information
base) that an agent starts to fill up with probabilities that a joint is possible or not
(since they do not fit, or one component is broken). By this way each component-
agent j acquires the knowledge Wjk for the component pairs j and k. A fitness
agent j gathers by the same way facts about e.g. the stability, energy consump-
tion, and duration of a combined new component (pair j and k). All these additional
attributes are stored in the knowledge-base as part of the information-base of the
fitness-agent j. This knowledge can be transfered to the information-base of the
component-agent, or the organiser has access to the information-base of the fitness-
agent. With the aid of this knowledge each component-agent j (and fitness-agent j)
can calculate its state S j in relation to the connection partner k. Such a state does not
include only Wjk, but also the kind of pairwise message exchange (statistical view)
and the matter of activities to join together with component k.

In the next step the individual information In f j is calculated by mutual message
exchanges e.g. between component-agents under the regard of the state j and the so
long acquired knowledge Wjk. Already at this level we assume that the individual
information of the two agents might be different, since e.g. the message transfer
was disrupted or the separate sensor readings produce different results. In order to
resolve this conflict additional cognitive methods must be employed. Typically this
might concern the stability of a pairwise connection. The applied cognitive proce-
dures have to handle the two possible situations: (a) the construction process is con-
tinued since the joint is stable and the information is wrong (e.g. inconsistent sensor
data), or (b) the component is indeed not intact and the developmental process can
not be continued. In the latter case a new connection partner must be detected, the
failing component removed and replaced by a new intact component .

3.3.4.2 Levels of Developmental Phases in Creation of an Organisms

The two cognitive methods mentioned previously can be considered as part of a
process that many individual pairs of components join pairwise together usually
with different joint attributes (e.g. different work spaces). The result of these mutual
activities is again the definition of the individual states S j, the knowledge Wjk and
the information In f j, where all descriptions are acquired by message exchanges. If
the set of pairwise connected components is completed then the first developmental
phase is finished.

Before we pass to the next construction level we would like to summarise the
principle cognitive methods of our approach. There exist two parallel processes to
acquire evolutionary information and fitness information. Each process stops if its
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information is minimised. Afterward the two information minima are compared by
the evolution-agent respectively fitness-agent and the adjustment between both min-
imal information values is performed by “negotiations” between these two agents.
A third authority like a deciding-agent is thinkable but we exclude such agents in
order not to be too sophisticated in our approach description. The process to acquire
the minimum of information is a learning process (typically by try and fail). It ends
with the storage of the local minima of the evolutionary information respectively the
fitness information. These two types of information collection are considered as two
different information gathering cycles that are horizontally connected in one level
and vertically connected between different levels.

In the second developmental phase the aggregation of all combined components
to a pre-shaped organism takes place. On this second level similar processes (mes-
sage exchange, knowledge acquisition, state description) are performed as on the
previous first level, but the main difference lies in the fact that the information is
different, the basic methods are not replaced. In each restricted region there are or-
ganising agents and fitness evaluating agents that gather all available information
of their common regions. These agents again arrange a distributed information stor-
age by message exchange that delivers facts about the stability, etc. of the “erected”
structure. Afterwards the selection of correct and incorrect operating parts and the
replacement of the defect connections (if possible) or the repair of not intact parts
(if possible) goes on by the pattern (a) or (b) mentioned before. The developmen-
tal process of the second level is repeated as long as the stability, adaptability, and
survival of a pre-formed organism is guaranteed in a given environment.

On the third level the significant regions defining the global structure of the or-
ganism are fixed and the distinguished components that create the structure of the
organism are determined. In addition the “interfaces” between the basic components
are established. Further the basic parts of these components are determined. These
are primarily the “differentiated cells” that later on build up all different components
(including all sensors), but also elementary parts that can develop the “organs” of an
organism. These are very important for the viability of the finished organism. This
assembly process of the whole structure of the organism and its ability to operate
together is again “managed” by the set of evolution-agents (organisers) and the set
of fitness-agents.

Very typical operations of this phase are the operators for differentiation and re-
production. Those “cells” are differentiated that are in particular suited to generate
the different components (for example wheels, body, arms, head, and eyes (sensors)
of an artificial creature) and the organ-like internal components like power supply
and communication links. The fitness-agents have to inspect whether all components
fit together to sustain the whole organism, and the differentiated bonded components
(“cells”) are e.g. robust and durable enough to develop a whole, pre-structured or-
ganism. If the correct functionality and fitness under given environmental restriction
is achieved then all “cells” are reproduced. An elementary model for the reproduc-
tion is a finite automaton or a Turing machine.

On the fourth level of the construction process occurs the inspection of the
more global functionality of the whole organism together with the compatibility of
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function and structure. A typical function is the ability to move in order to survive
(e.g. search of foraging grounds). Here we need, in a more visible way, again the en-
gagement of fitness-agents, since it might be possible that the constructed organism,
especially the components that are foreseen for mobility, cannot perform this task.
By a direct interaction between the two types of agents a rearrangement of the sec-
ond level has to be activated. The result will usually be a new aggregation with e.g.
passive and active joints. If this is possible then on the fourth level of this new evo-
lutionary information and fitness information are stored. If a movable aggregation
is not possible since e.g. only a tree structure is possible.

Typical operations of such a rearrangement are the operators for selection of the
before differentiated elements and their reproduction. Only such combinations are
selected that are able to work as hinges, stability elements, or gears for the move-
ment, etc. The fitness-agents have to inspect whether the selected bonded compo-
nents are e.g. robust and durable. If the correct functionality and fitness under given
environmental restriction are achieved then these parts are reproduced.

If the new aggregation is considered in the light of exploration since the available
components do not fulfill the demanded functionality then the operator of exper-
imental crossover is engaged in order to generate new types of components that
are tested again. If the tests are satisfied then again the selection and reproduction
processes start. Here the minimisation of information again stops these processes.

Fig. 3.25 Hierarchical, cas-
caded model of the develop-
ment of an organism (thanks
to Mr. Oliver Zweigle).
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On the fifth level the coordinated regulation of all body components that are ar-
ticulated occurs. The evolutionary information describes the closed loops that exist,
and the fitness-information stores the parameter that optimise the loop. The inter-
action patterns between the evaluation-agents and the fitness-agents obey the same
scheme as on all levels. The resulting total information of this level is the ability to
control the orchestra of all articulated components of an organism.

On the sixth organism level the perception of all available sensor data, and, more
important, the cognitive fusion of the received signals are performed. This is the
first cognitive level of the organism in the sense of the implementation of an internal
world model. It follows the seventh level where the internal world model is used to
create different behavioural patterns (e.g. social behaviour). The eighth and all other
succeeding levels implement more and more powerful cognitive abilities.

Fig. 3.25 summarises our statements as a cascaded model of two different types
of evolution-cycles and fitness-cycles that are lateral and vertical connected. In addi-
tion there are control-loops that supervise the articulation of organism-components,
of synchronised body movement, of “organs”, of behaviour and so on. These
control-loops are connected with the two other cycles in each layer since e.g. a
structural change of an organism automatically tighten a revision of all three cycles.
All lateral and vertical connections are driven in both directions, this means e.g.
that a rearrangement of level 4 by level 2 is possible and foreseen. This model can
also be implemented by layers of different neural nets that are in addition mostly
recurrent.

Here we would like to remark that more cognitive agents can benefit of the pure
mathematical algorithms of inanimated nature of Sect. 3.3.1. The processes that
support the information collection will get more and more powerful and efficient if
the cognitive abilities to handle the information e.g. in order to evaluate the context
or making decisions grow up. One example of the optimising handling of informa-
tion was given by the interactions of evolution-agents and fitness agents. The reader
who prefers the more conventional view of information handling and artificial in-
telligence can consider it in direction of the more and more complex interactions
between the two just mentioned types of agents in order to generate a total Turing
test that is applied to machines (robots) and evaluated by machines and not humans.

3.3.4.3 Adaptability and Survival of an Artificial Organism

On the molecular level the connection of H2O connection to water is a perfect ex-
ample of adaptation to constraints of inanimated nature. But also in human bodies it
plays a dominant role. In both cases it is adaptability to react on parameter changes.
In this sub-chapter we investigate the adaptability of an organism on a higher level
e.g. ability of structural changes (morphological ability). The ability for adaptation
is closely connected with evolutionary processes and these are again strongly asso-
ciated with the ability to survive e.g. in a rough ambiance.
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3.3.4.4 Adaptability of an Artificial Organism

Here we try to describe a model of adaptability that is oriented on the MAS-model
and the architecture of an organism that has been presented in the previous chapter.
In our approach adaptability is the reorganisation of the acquired total information
on each level or in dedicated levels in such a way that the organism is fit to respond
in an appropriate manner if e.g. environmental alterations occur. This definition is
in the sense of the formal definition of the behaviour scientist Conrad or it can be
considered in terms of neuro-plasticity (change of brain structure to a better cope
with external or internal alterations) or even in the meaning of phenotypic plasticity
(determination of the phenotype by the genotype, e.g. Lamarckian learning). An
adaptive organism can supplementary also be flexible in the range of the motion
of a joint or it has a sheltering skin on the outside (in both examples temporarily
modifications revert back to the original position).

In more technical expressions this means that we can define a kind of taxonomy
in two directions. The first way to describe this taxonomy is to look from outside
to inside. Here we consider the type of external restrictions and look for the adap-
tation operations of the organism in order to fulfil these new challenges. So a para-
metric change like a noticeable temperature increase can be coped with parameter
variations without changing all three loops in the affected tiers. If for example a be-
havioural change is indicated or even a functional alteration is required then all three
cycles on different levels must be changed. By application of our information-based
view of adaptability this means that the number of all levels and cycles within all ex-
isting levels are fixed. The methods to acquire the new information are not changed,
there are only new information values. For example the different internal states of
the knowledge Wjk are not changed but their probabilities get modified values. In
the same manner also the states S j and finally the information In f j of an agent j
will be modified in that way that the new total “fitness-information” of agent j gets
very high (bad fitness) and the “evolution-information” is not dominantly changed.
But by the interaction of both cycles the “fitness-information” is decreased (better
fitness) by the start of a new evolutionary process. This interaction goes on in a
recursive manner as long as the combined information (evolution and fitness) is as
small as possible.

Now it might happen that the acquired information of an organism is not adaptive
enough to match the new requirements. This is mainly true if extreme form changes
are required (e.g. doubling of the height) or new functional conditions must be ful-
filled (e.g. transfer from legs to wheels in order to increase the speed). In this case it
might be that the principle architecture is powerful enough to perform the required
alterations by the collection of new information in order to change all cycles. This
corresponds to the generation of new regulative structures and rules.

In the last and most interesting case the whole or main part of the architecture is
not able to cope with the completely new requirements, and therefore new methods
for information gathering, new layers and within these layers new cycles and new
horizontal and vertical connections must be evolved. The result of such an evolving
and fitness evaluating process is creation of a new quality of information and as a
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consequence of this process a new architecture of the organism. Such a phenomena
is called emergency and this is the modality how natural beings are created.

This emergency is unfortunately till now in a big scope like a miracle. Please just
think how a set of thousand of eye cells coordinate themselves in order to be an eye.
Even if an eye is created in the head then a complete new information collection and
information handling must evolve in order perform the interpretation of the images.
This is one “hour of birth” for the creation of the cognitive capability of perception
that can only be done by one or more layers in the architecture of an organism. Here
we hope that with our MAS-model of the previous chapter it will be incrementally
possible to bring light in such an evolutionary process.

The taxonomy of adaptability will be completed if we describe this ability in
a reverse way that points from inside to outside. For sake of brevity we skip this
description here.

3.3.4.5 Survival of an Artificial Organism

The adaptability of an organism is closely connected with the homeostasis of the
organism that is given by all inner “organs”. Only if the homeostasis is able to
generate and maintain stable states then an organism can survive. For example a
robot will “die” if it gets not enough power supply (or e.g. a man gets no more
air to breathe). The homeostasis of an organism is primarily defined by the control
cycles for energy harvesting from outside, for energy distribution in the organism,
for message passing in the body, etc. In mathematical terms these mechanisms for
adjustments and regulation can be described by the methods of nonlinear dynamics.
So we are searching for the invariant set of fixed points (set of dynamic equilibria),
for bifurcation diagrams, the presentation of extended phase diagrams and for the
behaviour of the solution if parameters are changing(for more details see Sect. 1.2).

If we try to go a similar way to define a taxonomy for survival changes then
we have at first to consider the adaptability of the “inner organs” to the parame-
ter changes caused by environmental alterations and task that an organism has to
perform under the given conditions. The organism cannot survey if the given con-
straints are too extreme and can therefore not be fulfilled if all other activities to
collect and handle information in the different layers to regulate the control-loops
go on unaltered. If the restrictions are not so severe that an organism “dies” and our
last assumption is still true then dysfunction in the movement, in the behaviour, and
in the functionality of the organism occur.

Then the next step would be to change all regulatory controls but not change the
whole architecture of an organism. This step is similar to that one we have done in
the interrelationship to adaptability. This might be comparable with a strong training
of a sportsman. In technical sense the frequency of the cycles can be increased,
the power consumption can be enlarged by new accumulators, the frame rate of a
camera might be reduced, and finally the body increases the pressure on the joints.

The appearance of new “organs” can also be stipulated by minimal survival
changes (the organism must survive) and there is no possibility that an organism
can adapt to the new challenges. Then an evolutionary process together with a
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fitness process must be activated to acquire the new information and create new
differentiated “cells” that can replace the old organ at the same position in the or-
ganism. If this is not possible the whole structure of the organism must be redesigned
by the evolution in order to find a new site for the new “organ”. A similar process
has to be launched if e.g. components of the organism are missing in order to sur-
vive. A robot that cannot see, grip and move cannot survive if the power sources
are not reachable to it. It must then change its form meaning that new components
have to be developed and then attached to a new body. And again the interaction
between evolution and fitness must evaluate the new “products” as long as the robot
can see, grip and move somehow. If this is achieved then the optimisation goes on
recursively until a (may be local) optimum is found. The result of such optimisation
process delivers very different components depending from the environment.

In animated nature we have perfect examples for such emergency processes. For
fishes the eyes (e.g. in deep see), arms (flippers) and legs (tail fin) are different from
that one of birds (sharp seeing eyes, wings and legs), and these structuring elements
are again modified e.g. for horses that live on the ground(small viewing angles, no
arms but four legs). There strong efforts in our laboratory to use this biological based
inspiration to rebuild artificial creatures as bees, fishes, ants, and robots in order to
study how these evolutionary “models of success” can be constructed and prosper-
ous applied in different applications of all three mentioned different environments.



Chapter 4
Adaptive Control Mechanisms

4.1 General Controller Framework

Guy Baele, Yao Yao, Yves Van de Peer, Alan Winfield, Serge Kernbach

Various control mechanisms can be used to control robotic entities. In this chapter,
we consider two different classes of such control mechanisms: bio-inspired such as
hormone-based controllers in Sect. 4.2, embryogenetic controllers based on ANN
in Sect. 4.3 and artificial immune systems in Sect. 4.4; and tech-inspired such as
morphogenetic controllers in Sect. 4.5 and controllers for adaptive macroscopic
locomotion in Sect. 4.6. The split between bio-inspired and tech-inspired strate-
gies is intentionally chosen for several reasons: in many situations both strategies
supplement each other, they correspond to differences between SYMBRION and
REPLICATOR concepts, moreover this allows performance comparison of different
strategies depending on environmental conditions. However, independently of the
strategy used, these controllers can use different evolutionary (Baele et al., 2009)
and self-organizing mechanisms (Kernbach et al., 2009b).

In this section we consider a general controller framework: Sect. 4.1.1 describes
problems, challenges and design principles of such a framework, Sect. 4.1.2 intro-
duces the biological inspiration for the artificial genome, and Sect. 4.1.3 introduces
the action-selection mechanism. Finally, Sect. 4.1.4 provides an overview of the
above mentioned controllers.

4.1.1 Controller Framework in SYMBRION/REPLICATOR

In robotics, several different control architectures are well-known, as e.g. subsump-
tion/reactive architectures (Brooks, 1986), insect-based schemes (Chiel et al., 1992)
or structural, synchronous/asynchronous schemes, e.g. (Simmons, 1991). An over-
view of these and other architectures can be found in (Siciliano & Khatib, 2008).
Recently, multiple bio-inspired and swarm-optimized control architectures have
appeared, e.g. (Tianyun et al., 2008), (Kernbach et al., 2009c). In designing the

P. Levi and S. Kernbach (Eds.): Symbiotic Multi-Robot Organisms, COSMOS 7, pp. 229–336.
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general control architecture for the SYMBRION/REPLICATOR system, we face sev-
eral essential challenges:

Multiple processes Artificial organisms execute many different processes, such
as evolutionary development, homeostasis and self - or-
ganizing control, learning, middle- and low-level man-
agement of software and hardware structures. Several of
these processes require simultaneous access to hardware or
should be executed under real-time conditions.

Distributed execution Hardware provides several low-power and high-power mi-
crocontrollers and microprocessors in one robot module.
Moreover, all modules communicate through a high-speed
bus. Thus, the multiprocessor distributed system of an arti-
ficial organism provides essential computational resources,
however their synchronization and management present a
challenge.

Multiple fitness Fitness evaluation by using local sensors is already men-
tioned in Sect. 2.2.3. Here we need to mention the problem
of credit assignment related to the identification of a re-
sponsible controller, see e.g. (Whitacre et al., 2006). Since
many different controllers are simultaneously running on-
board, the problem of credit assignment as well as interfer-
ence between controllers is vital.

Hardware protection Since several controllers use the trial-and-error principle,
the hardware of robot platform should be protected from
possible damage caused during the controllers’ evolution.

An overview of the hardware architecture and comparison to other reconfigurable
robot systems is given in Sects. 2.2.1 and 2.2.2. Corresponding to the hard-
ware architecture, the general controller framework is shown in Fig. 4.1. This
structure follows the design principles, originating from hybrid deliberative/reac-
tive systems, see e.g. (Arkin & Mackenzie, 1994). It includes a strongly rule-based
control component, see e.g. (Li et al., 2006) as well as multiple adaptive compo-
nents (Kernbach et al., 2009b). The advantage of the hybrid architecture for SYM-
BRION/REPLICATOR is that it combines evolvability of reactive controllers, and
their high adaptive potential, with deliberative controllers that provide planning and
reasoning approaches required for the complex activities of an artificial organism.

Controllers are started as independent computational processes, which can
communicate with each other and with different sensor-fusion mechanisms, such
as virtual sensors, see Sect. 3.2 or the world model, see Sect. 3.1. Processes are
running on different modules, synchronization and interaction between them is
performed through message-based middleware system. There are controllers, which
use evolutionary engines, see more in chapter 5, and their structure is coded in
the artificial genome. Several bio-inspired ideas towards such an artificial genome
are described in Sect. 4.1.2. It is assumed that there are also a few task-specific
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Fig. 4.1 General controller framework in SYMBRION/REPLICATOR. All controllers/pro-
cesses are distributed in the computational system of an artificial organism, OS – operating
system. Structure of controllers utilizes hybrid deliberative/reactive principle.

controllers, which are placed hierarchically higher than other controllers. These
task-specific controllers are in charge of the macroscopic control of an artificial or-
ganism. They may use deliberative architectures with different planning approaches,
see e.g. (Weiss, 1999).

The action-selection mechanism is one of the most complex elements of the
general controller framework. This mechanism reflects a common problem of in-
telligent systems, i.e. “what to do next”, see (Bratman, 1987). An overview of
the action-selection mechanism is presented in Sect. 4.1.3. Finally, a hardware
protection controller closes the fitness evaluation loop for the evolvable part of
controllers (Kernbach et al., 2009a). This controller has a reactive character and
monitors activities between the action-selection mechanism and actuators as well
as exceptional events from the middleware. It prevents actions that might immedi-
ately lead to destroying the platform, e.g. by mechanical collisions.
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4.1.2 Bio-inspiration for the Structure of Artificial Genome

As shown in Fig. 4.1, an artificial genome stores the information for the evolv-
able controllers. In (molecular) biology, the genome is the entirety of an organ-
ism’s hereditary information, encoded in DNA (or RNA). The genome includes
both genes (coding regions) and non-coding regions in its DNA. The information
encoded in the genes is used in the synthesis of a functional gene product by a pro-
cess called “gene expression”. Such gene products are often proteins (or functional
RNAs for non-protein coding genes), essential parts of organisms which participate
in virtually every process within cells. Cells are the basic structural and functional
units of all known living organisms and are often called the building blocks of life.

Within cells, deoxyribonucleic acid (DNA) is organized into structures called
chromosomes. DNA is a nucleic acid that contains the genetic instructions used in
the development and functioning of all known living organisms and some viruses.
The main role of DNA molecules is the long-term storage of information and con-
tains the instructions needed to construct other components of cells, such as proteins
and RNA molecules. The information in DNA consists of a sequence of four bases
(A, C, G and T).

In evolutionary robotics, different representations can be used to store a robot’s
artificial genome (illustrated in Fig. 4.2). Common to these approaches is the pres-
ence of a number of genes in the artificial genome, which possibly also consists of a
number of chromosomes. The most biologically plausible approach is to use a string
of digits (i.e. 0, 1, 2 and 3 instead of A, C, G and T) to encode the information. Such
an approach requires biological structures, such as promoter regions or so-called
start codons, to be present in this string of digits to indicate where each gene be-
gins and ends (an artificial genome based on such principles was used in the work
of (Reil, 1999) to simulate a gene regulatory network). This way, the evolutionary
engine can parse the information present in the genome when constructing a robot’s
controller. Such a bio-inspired approach to an artificial genome allows for the design
of mutation and variation operators that are known to have occurred through time in
biological evolution.

A bit string can also be used to store information in an artificial genome. Given
that unique patterns of bits cannot be encoded this way, for example to indicate

Genome

Evolutionary
engine

Controller

0231010122210120112321312...

01010011110101101110101011...

0.2135 1.298 2.658 -3.984...

Array of real values

String of bits

String of digits

Fig. 4.2 Different representations of an artificial genome that need to be transferred, by the
evolutionary engine, to the controller.
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the start position of a gene, fixed length genes (and hence fixed length genomes)
are often used (see Fig. 4.2). Such a binary representation is easily translated to
real values which can then be used in a robot’s controller, for example as synap-
tic weights in an artificial neural network (ANN; see Sect. 4.1.4). Mutation and
variation operators for this type of representation then consist of changing the state
of one or more bits in the sequence (Calabretta et al., 1996; Calabretta et al., 1997;
Calabretta et al., 2000; Calabretta et al., 1998). To avoid the translation process into
real values, often the artificial genome contains these values (for example, the synap-
tic weights for a neural network) directly in an array, see e.g. (Bredeche et al., 2009).

Of these three types of encoding, the string of digits is the approach most able
to mimic biological reality and incorporate genomic properties inherently in the
representation. Instead of straight forwardly encoding real values, as the bit-string
representation does, more complex systematics for constructing a robot’s controller
can also be incorporated in the sequence of digits. For example, in biology, gene
regulation is essential for viruses, prokaryotes and eukaryotes as it increases the ver-
satility and adaptability of an organism by allowing the cell to express proteins when
needed. Furthermore, gene regulation drives the processes of cellular differentiation
and morphogenesis (the biological process that causes an organism to develop its
shape), leading to the creation of different cell types in multi cellular organisms
where the different types of cells may possess different gene expression profiles
even though they all possess the same genome sequence.

Such a genetic regulatory system can be modelled in an artificial genome, see
(Reil, 1999), adding different elements to the genome such as promoter regions,
binding sites and the gene products that are the result of a gene regulatory network
(GRN). Indeed, Reil has developed an artificial genome with biologically plausi-
ble properties to study gene expression(Reil, 1999). The author uses the concept
of a standard promoter to define genes in the genome and achieves gene regula-
tion by the binding of gene product to matching sequences of the artificial genome,
corresponding to the action of transcription factors in DNA-based genomes. More
recently, other approaches have been developed to study the evolution of genetic
regulatory network (see e.g. (Kuo et al., 2004; Quayle & Bullock, 2006)).

A GRN approach can be also be used to regulate a collection of genomes (or parts
of genomes). Indeed, as can be seen in Fig. 4.1 different genomes can be used, re-
sulting in different controllers for a given robot. This collection of genomes may be
prefixed by a regulatory part that regulates the expression of each artificial genome.
In its simplest form, the regulatory part provides the necessary information to de-
cide which genome (or which part of the genome) will be expressed as a controller
(before the action-selection mechanism takes place, see Sect. 4.1.3). More complex
regulatory mechanisms at this level are also possible. For example, the regulatory
part could indicate that parts of a given genome (i.e. one or more of its genes) should
be more expressed, resulting in a different robot controller.

A biologically plausible artificial genome allows us to incorporate many inter-
esting features for a given robot controller. Further, such a representation allows
for a straightforward implementation of bio-inspired operators. For example, the
process of gene duplication (i.e. any duplication of a region of DNA that contains
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a gene) has been shown to play a major role in evolution and is easily translated
onto a bio-inspired artificial genome. However, a common (biologically plausible)
representation for a series of different robot controllers as suggested in Fig. 4.1 is
far from trivial. Different controllers require genomes that may need very specific
mutation and variation operators, so even though the genome representation may
be highly similar, the operators may not be. Well-known control mechanisms such
as artificial neural networks (ANNs) may not even benefit from such a bio-inspired
genome representation since adequate convergence towards optimal fitness values
can be reached without such a representation (see e.g. (Floreano et al., 2008a)).

4.1.3 Action Selection Mechanism

Formally, action selection is defined as follows: “given an agent with a repertoire of
available actions ... the task is to decide what action (or action sequence) to perform
in order for that agent to best achieve its goals” (Prescott, 2008). Within the context
of the SYMBRION/REPLICATOR general controller framework shown in Fig. 4.1,
the role of the action selection mechanism is to determine which controller(s) are
driving the actuators at any given time. At one level the action selection mechanism
can be thought of as a switch, selecting which of the controllers is connected to
the actuators; however a simple switch would fail to provide for, firstly, smooth
motor transitions from one controller to another and, secondly, the fact that in this
hybrid deliberative/reactive architecture some controllers will need to be prioritised
for short time periods (e.g. for obstacle avoidance) whereas others need periods of
control over longer time spans (perhaps subsuming low-level reactive elements) to
achieve high level goals. In practice, therefore, the action selection mechanism will
need to combine some or all of the following elements:

• prioritisation of low-level reactive controllers so that they are given control with
very low latency;

• vector summation or smoothing between some controller outputs in order to
achieve jerk free motor transitions on controller switching, and

• a time multiplexing scheme to ensure that different controllers are granted control
with a frequency and for time periods appropriate to achieving their goals.

Action selection mechanisms have been the subject of research in both
artificial and natural systems for some years, see for instance (Maes, 1990;
Hexmoor et al., 1997; Prescott et al., 2007). However, in a recent review Bryson
suggests that no widely accepted general-purpose architecture for action selection
yet exists (Bryson, 2007). Relevant to the present work is a review of compro-
mise strategies for action selection (Crabbe, 2007). A compromise strategy is one in
which instead of selecting a single controller, the action selection mechanism com-
bines several controller outputs in such a way as to achieve a compromise between
their (otherwise conflicting) goals; (Crabbe, 2007) suggests that a compromise strat-
egy is more beneficial for high-level than low-level goals.

It is important to note that the action selection mechanism embeds and encodes
design rules which will critically influence the overall behaviour of the robot. In
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order to arbitrate between, possibly conflicting, controller goals the action selection
mechanism will certainly need to access internal state data for the robot (i.e. from the
homeostatic controllers), and may need to access external sensor data. Furthermore,
given that those action selection design rules and their parameters may be difficult to
determine at design time, we are likely to require an evolutionary approach; hence
the connection between the genome structure/evolutionary engine and the action
selection mechanism shown in Fig. 4.1. We may, for instance, evolve the weights
which determine the relative priority of controllers as in (González et al., 2006), or
co-evolve both controllers and action selection parameters (González, 2007).

4.1.4 Overview of Different Control Mechanisms

This section briefly overviews several controllers, discussed further in this chapter
in more detail.

ANN-based Controllers

In many cases, the control systems of evolutionary robots are artificial neural net-
works (ANNs), which are used in many controllers. An ANN is a collection of units
(neurons) connected by weighted links (called synapses or connection weights) used
to transmit signals. Input and output units receive and broadcast signals to the envi-
ronment, respectively. Oftentimes, the input signals correspond to reads from prox-
imity (or distance) sensors and the output signals correspond to commands for the
robot’s actuators (or wheels). Input sensors can also include cameras or light sen-
sors, actuators can include screw drives or docking elements. The output of a unit
can be the sum of all incoming signals weighted by connection strengths. The behav-
ior of a neural network is largely determined by the values of connection weights,
also known as synaptic strengths, and except for a few simple cases, it is difficult
to determine the strengths required for achieving a desired input/output mapping
(Nolfi & Floreano, 2000a). The number of connections that need to be optimized is
often relatively small. On many occasions, a fully interconnected network is used
(connecting each input neuron to each output neuron, with the addition of a bias
neuron for each output neuron). More complex network topologies with, for ex-
ample, additional hidden layers of neurons are however possible. For many cases,
simple neural networks have been shown to work well, as we will illustrate in this
section. Different robots are equipped with different input and output possibilities.
As an example, we have performed a simulation experiment with E-puck robots.
Fig. 4.3 shows a schematic representation of the eight infra-red (IR) proximity sen-
sors of the E-puck robot (Mondada et al., 2009) and the artificial neural network
connecting these eight input units to the robot’s two wheels (or output units).

Given that the initial population of robots for our example (as for most simu-
lation experiments) consists of randomly generated artificial neural networks, an
evolutionary strategy is required to obtain a population of well-performing robots
(measured using a fitness function) after a given number of generations. Such a strat-
egy proposes changes to the connection weights of the network, but might propose
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Fig. 4.3 Left: schematic display of the proximity sensors on an E-puck robot. Right: artificial
neural network (ANN) as the controller of choice for the E-puck robot.

topological changes as well. It can however take a large number of generations be-
fore the population evolves the required properties. Determining a well-performing
evolutionary scheme may not be feasible on real robots, as the serial evaluation of
individuals through a large number of generations might require a long time when
only a limited number of physical robots are available. One way to avoid this prob-
lem is to evolve robots in simulation and then run the most successful individuals
on the physical robot. This way, the power of parallel computers can be exploited to
run more individuals at the same time.

In our example of ANN-based controllers, we consider experiments with 50
robots in simulation. The connection weights are evolved during 100 generations
by using a mutation operator (no cross-over). We have performed the simulations in
the Player/Stage simulation environment (Gerkey et al., 2003) and the neural net-
work shown in Fig. 4.3 is used. We assume real values for these connection weights
and have implemented the mutation operator as a Gaussian mutation, meaning that a
value drawn from a Normal distribution N(0,σ) is added to the connection weights
undergoing the mutation. Small values for σ will only allow small changes to the
connection weights to be tested. This can prevent the robot population from reaching
optimal fitness levels but also prevents disadvantageous mutations from occurring
(which decrease the robots’ performance). Large values for σ will result in more
disadvantageous mutations but will also prevent the robot population from getting
stuck in local optima in terms of fitness level. Each connection weight is allowed to
evolve with a given probability (which we assume to be equal for all weights).

Fig. 4.4 shows peak and average fitness values of a simulation experiment in a
square area with two (rectangular) obstacles. The objective for each robot is to avoid
the obstacles in the area and explore the area without getting stuck. The robots are
also expected to cover as much territory in the simulation area as possible. Two
simulation experiments that last 100 generations for a population of 50 robots are
shown in Fig. 4.4, for a mutation operator with σ = 0.1 (left part of the figure) or
σ = 0.5 (right part of the figure) and a fixed mutation probability of 10%. The first
experiment, with σ = 0.1, has problems reaching optimal fitness levels because the
proposed values for the connection weights do not differ much from the current
values. The second experiment, with σ = 0.5, overcomes this problem by allowing
more drastic mutations to occur. As can be seen in generation 55, large mutations
may have a drastically negative influence on both peak and average fitness.
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Fig. 4.4 Peak and average fitness curves for an obstacle avoidance / area reconnaissance
simulation experiment where a connection weight of the ANN has a probability of 10% to be
updated with σ = 0.1 (left) and σ = 0.5 (right).

Hormone-based Controller

Homeostasis is the ability of an organism to achieve a steady state of internal body
function in a varying environment. The endocrine system and the immune system
are central to an organism’s ability to maintain homeostasis. Within an organism
hormones implement a regulatory mechanism acting directly at the level of individ-
ual cells. Hormones are chemicals, released by one or more cells, that affect cells
in other parts of the organism. The endocrine system is responsible for the produc-
tion and storage of these hormones. Cells respond to a hormone when they express
a specific receptor for that hormone. Hormones have many functions which affect
behaviour, stimulate or inhibit growth or control the reproductive cycle. Hormones
are released into the blood or lymph system and are able to reach virtually all the
tissues within the organism. The response to hormones is highly specific, i.e. not all
cells react to all hormones (Neal & Timmis, 2003).

Biosynthesis, a phenomenon wherein chemical compounds are produced from
simpler reagents, is responsible for the production of hormones. Sensor inputs trig-
ger secretions of hormones which are then transported across the organism. When
a hormone locates its particular target cells, binding takes place through specific re-
ceptors on the cells. When a hormone binds with a receptor on the cell membrane, it
stimulates internal signals to the appropriate sites within the cell, which in turn alter
the cell’s activity. Hormones decay over time and are ultimately removed from the
organism.

Fig. 4.5 shows a reproduction of a representation of the hormone-based robot
controller introduced by Schmickl and Crailsheim (Schmickl & Crailsheim, 2009),
where hormone input is triggered by sensor inputs. Sensors only affect the hormone
secretion in the compartment they are associated with, but all hormones spread
through the system by a diffusion process. Fig. 4.5 shows three virtual compart-
ments, of which the central compartment acts as a time-delaying compartment for
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Fig. 4.5 Schematic rep-
resentation of a hormone
controller, assuming an in-
ternal compartmentalization
of the robot’s body. Sen-
sors excrete hormones into
one compartment, actuators
get activated by local hor-
mone concentrations and
hormones diffuse between
compartments.
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the diffusion processes. A full description of an Artificial Homeostatic Hormone
System (AHHS) is discussed in Sect. 4.2.

Embryology-based Controllers

As discussed, the morphological structure of an ANN is very important for its func-
tionality as basic structural features of such networks can determine the basic capa-
bilities of the network (Elman, 1990). Frequently used approaches include finding
optimal values for the connections of fully-linked networks of cells using a genetic
algorithm and manually defining the network structure. The former approach has the
disadvantage that increasing numbers of cells lead to a drastic increase in computa-
tion time while the latter approach has a poor ability to adapt to unknown situations
or problems that were not accounted for when designing the network.

Sect. 4.3 discusses a method to organize the nodes and links of an ANN using
virtual embryogenesis. Embryogenesis is the process by which an embryo is formed
and develops. The virtual embryo consists of individual cells, which can develop to
nodes in the ANN during the embryologic process. These cells can duplicate, die,
specialize, emit chemical substances or build links to other cells. It is these links
that represent the connections between the nodes of the resulting ANN. An impor-
tant aspect of the approach discussed in Sect. 4.3 is the abstraction of complex bio-
logical processes because of the need for fast simulations and the limited hardware
resources available in robotic systems.

Immune-system-based Controller

Like the endocrine system, the immune system plays an important role in an organ-
ism’s ability to maintain homeostasis. The immune system is an organism’s defense
against attacks by “foreign” invaders (called pathogens). Through a series of steps
called the immune response, the immune system attacks organisms and substances
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that invade a system and cause disease. The immune system is made up of a network
of cells, tissues, and organs that work together to protect the body. The immune sys-
tem detects a wide variety of agents, from viruses to parasitic worms, and needs
to distinguish them from the organism’s own healthy cells and tissues in order to
function properly.

The natural immune system protects organisms from infection with layered de-
fenses of increasing specificity. Most simply, physical barriers prevent pathogens
such as bacteria and viruses from entering the organism. If these barriers are
breached, the innate immune system, which is found in all plants and animals, pro-
vides an immediate but non-specific response. However, if the innate response is
evaded, vertebrates possess a third layer of protection (the adaptive immune system),
which is activated by the innate response. The adaptive immune system “adapts” its
response during an infection to improve its recognition of the pathogen. This im-
proved response is then retained after the pathogen has been eliminated, in the form
of an immunological memory, and allows the adaptive immune system to mount
faster and stronger attacks each time this pathogen is encountered.

Disorders in the immune system can result in disease. Immunodeficiency occurs
when the immune system is less active than normal, resulting in recurring and life-
threatening infections. Immunodeficiency can be the result of a genetic disease. In
contrast, autoimmune diseases result from a hyperactive immune system attacking
normal tissues as if they were foreign organisms.

A robotic swarm can be defined as a society of robots that coordinates its be-
haviour via interaction and cooperation with other robots in the society to reach a
common goal. The robots are constantly exposed to changes in their environment,
which can alter the states of the robots. An artificial immune system is therefore
necessary to assure that those changes will not affect the robots’ behaviour in a neg-
ative way, both in organism and in swarm mode, so that a given goal can still be
accomplished. A detailed description of AIS is discussed in Sect. 4.4.

Morphogenetic and Locomotive Controllers

The robot organism can function in either swarm mode or organism mode. When a
situation is encountered where one or more single robots fail to reach a given goal,
the robots can enter “organism mode” in order to form a morphology that will allow
the collection of robots to reach the goal. The search space to evolve such morpholo-
gies is not large, especially when the symmetry of modules is taken into account.
Three different subsets of all possible topologies are discussed in Sect. 4.5, i.e.
pattern-based, forbidden/non-efficient and specific topologies. The pattern-based
subset is the largest one, containing variations of a priori known efficient patterns.
These pre-generated patterns lead to a range of new topologies by performing small
perturbations. In Sect. 4.5, it is shown that a set of pre-evolved solutions (along with
topologies that are deviations from these solutions) will be beneficial in terms of re-
source requirements. An important consideration for morphogenesis is the structural
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stability of organisms. In order to provide stability several element in the structure
should be strongly connected by, for example, making multiple connections between
them.

From a mechanical point of view such multi-robot organisms consist of con-
nected joints and links, which are described by kinematic parameters. However,
this description is troublesome as the morphology of the system is not known in
advance. The number of possible configurations of the robots in organism mode re-
quires adaptive model mechanisms to analyse such multi-body organisms, as tradi-
tional approaches will result in a high level of complexity. As discussed in Sect. 4.6,
promising approaches stem from the theory of Lie groups and Lie algebras in combi-
nation with screw theory for body kinematics. Further, the restriction of most motion
planning and motion control approaches to fixed kinematics requires an adaptive
motion trajectory planning system for the multi-robot organisms.

4.2 Hormone-Based Control for Multi-modular Robotics

Thomas Schmickl, Heiko Hamann, Jürgen Stradner, Karl Crailsheim

In this research we aim for an application of multi-modular reconfigurable robots
in a way that has not been targeted before. Our objective is to create a swarm of
autonomous robot modules which dynamically aggregate to organisms and which
also dynamically reconfigure themselves to other body shapes. In our approach, it
will be possible to break one robot organism consisting of a given number of linked
modules into two pieces. What makes our approach unique is the fact that our system
is able to react in three different ways to such a disturbance:

• These two pieces will not only continue their “old” behaviours. Instead, both –
now separated – parts will act like new organisms, change the mode of operation
of their modules in a way that allows them to efficiently navigate and move in
the environment.

• In addition, they are able to attract other singular, moving swarm modules to
incorporate them to their body. Thus, they possibly grow back to their original
size and form. This way we will be able to replicate one organism into two.

• Alternatively, the smaller separated organisms could locomote their bodies in a
way that they approach each other and re-join to their original organism.

To achieve such behaviours in modular robotics, a high degree of decentralisa-
tion in the control process is needed. Controlling algorithms of autonomous modules
should not be controlled by centralised decision making systems. Their behavioural
programs of individual modules should be chosen according to the collective goal of
the organism and according to their positions in the organism’s topology. Thus, po-
sitional information should be used in communication instead of fixed ID numbers
of modules.

In addition to these requirements, our target system should work on different lev-
els. In singular moving robots, in swarms of singular robots, and in joined modules
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that form an organism. For our intended reconfigurable modular robotic systems,
we describe the “life cycle” of the robot swarm by the following phases:

Swarm phase: The modules have to move independently. They have to perform
basic functionality, that is present in almost every swarm robotic system, e.g.,
collision avoidance and obstacle detection. To form a multi-modular robot, the
independent modules have to aggregate, which means that they have to approach
each other. If the body formation process should act in a “swarm-intelligent”
manner, directed motion (taxis) is necessary as well as several forms of interac-
tion and communication.

Body formation: The modules should arrange in the desired manner and, by link-
ing to already aggregated modules, they should contribute to the growth of the
multi-modular “organism”. This process will again involve interaction and com-
munication.

Organism phase: While the modules are aggregated, they have to move and be-
have in a coordinated manner to allow the desired collective movement of the or-
ganism. Again, this coordination requires interaction and communication among
the organism’s modules.

We continue with a detailed biological motivation of our approach and subse-
quently define our hormone-based control system: We describe first the sources of
inspiration that led to the development of the AHHS controller. In the next section,
we discuss the existing state-of-the-art in the field of bio-inspired robot control and
in multi-modular reconfigurable robotics. Then we describe the mathematical for-
mulation of the robot controller, as well as the definition of the data-structure that
we call “genome”. After this section, we give two examples on bio-inspired dy-
namic compartmentalization of the virtual inner space of the robot modules. Then,
we describe our evolutionary mechanism that produces behavioural programs in
the AHHS. We describe several examples of such evolved behaviours for singular
robots and for joined robot organisms. In addition, we show the major feedback
loops that govern the overall system and discuss implications and outlooks of our
AHHS technology.

4.2.1 Micro-organisms’ Cell Signals and Hormones as Source of
Inspiration

Although today’s robotic modules are more sophisticated than in recent decades,
they are still far behind the capabilities of real organisms. Thus, in our case of bio-
inspired systems, it is a good idea to search for organisms that are rather old from
an evolutionary perspective and simple from a morphological and physiological per-
spective.

Unicellular life forms like algae, bacteria, protozoa and slime mould have evolved
billions of years ago, and they are able to show all the required processes mentioned
above: movement of singular cells, taxis (movements directed by environmental stim-
uli), aggregation of organisms, coordination among cells, communication among
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cells and even joining to organism-like “colonies” which are able to perform taxis
and aggregation also at the colony level.

To achieve these features, they do not exploit neurons, brains or muscles. In con-
trast, it is a set of surface receptors, cell signalling (cell hormones), and simple
actuators (flagella, cilia) that allow all these collective behaviours.

Fig. 4.6 (a) Aggregation of slime mould
amoebas. A chemical signal (cAMP) is
excreted by amoebas and used as environmen-
tal gradient in positive chemo-taxis. (b) Life-
cycle of the slime mould Dictyostelium dis-
coideum. Source of both pictures: Wikimedia
Commons.

The amoebas of the slime mould
Dictyostelium discoideum and Dic-
tyostelium mucoroides show fascinat-
ing collective abilities in their aggrega-
tion behaviour (Camazine et al., 2003).
They excrete a chemical substance,
cyclic adenosine 3’,5’-monophosphate
(cAMP), at small portions periodically.
If the cAMP concentration in the local
environment exceeds a given threshold
Θ , it excretes a much higher amount
of cAMP molecules. Thus, it produces
a chemical “pulse” signal in response
to a received input signal. After such
a pulse was emitted, an amoeba can-
not respond with another pulse for a pe-
riod of time, as it has to refill its cAMP
depot by taking cAMP molecules from
the local environment. After this re-
fractory period, amoebas are ready to
fire the next cAMP pulse, as long as
the environment still holds a cAMP
concentration above the threshold Θ .
In a habitat with densely aggregated
amoebas, cAMP concentration is high
enough to repeatedly trigger this be-
haviour, thus one could interpret slime
mould amoebas as acting like oscil-
lators. These oscillators interfere with

each other. Thus, they represent a network of coupled oscillators, which is able to
produce chemical signals in a spiral-wave like pattern (Müller et al., 1998).

In contrast, in habitats with low population densities, amoebas excrete chemical
“pulses” not frequently, because cAMP concentrations do seldom exceedΘ . Thus,
no spiral waves emerge, due to the low degree of connectivity between amoebas. In
addition, non-refractory amoebas tend to move uphill (taxis) in the cAMP gradient
and refractory amoebas tend to remain on place. This leads to the following group-
level behaviours. In habitats with low amoeba density, amoebas walk uphill in lo-
cal cAMP gradients and, thus, increase the density of amoebas (positive feedback).
The steady degradation of local cAMP produces negative feedback, thus creating an
equilibrium cAMP concentration that correlates with amoeba density.
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Whenever enough amoebas have joined such a local aggregate, local cAMP con-
centration jumps quickly to a much higher level, thus attracting even more amoebas
from other nearby aggregates. Due to the motion principles of amoebas, they move
uphill in a trail-like formation towards the centre of aggregation, see Fig. 4.6(a).

At this location a three-dimensional snail-like pseudo organism is formed. This
aggregation of up to 105 cells is usually called “slug” state of the slime mould. It is
not a real organism from the biological point of view. In fact, it is an aggregation of
cooperating cells, similar to our desired multi-modular robot organism. At this point
of the development, the cells that form this slug split up into three groups indepen-
dently from their (random) positions. They become “pre-stalk” cells, “pre-spore”
or “anterior-like” cells (Siegert & Weijer, 1992). This differentiation process is cor-
related to chemo-tactic cell sorting, resembling a sort of low-level ad-hoc morpho-
genesis in the freshly formed pseudo-organism. The differentiated cells are located
in different positions and are expressing different behaviours, just like we want our
robot modules to reflect their position in the organism and to perform different be-
haviours at different locations.

Finally, the amoebas coordinate their movements and synchronise, so that the
slug is able to move like one single organism. It is driven forward by spiral screw-
like pattern of contraction (synchronised by cAMP secretion) which is still pro-
duced by the same simple amoeba-to-amoeba interaction rules. The only difference
is that in the dense three-dimensional pattern of the slug phase, the initially flat spi-
ral waves are automatically converted into a three-dimensional screw-like pattern
(Dormann et al., 1997; Steinbock et al., 1993; Siegert & Weijer, 1992). This motion
pattern allows these organisms to morph into a spore-releasing plant-like structure,
which is important to close the life-cycle of this species, see Fig. 4.6(b).

Unicellular algae and bacteria also show very impressive capabilities concerning
taxis (Zonia & Bray, 2009; Darnton et al., 2007; Khan et al., 1998). The bacterium
Echerichia coli, see Fig. 4.7(a), is propelled by a set of flagella which can be ac-
tuated in two modes of operation: Counter-clockwise (CCW) and clockwise (CW).
The first mode drives the bacterium almost straight forward, the second mode pro-
duces a sort of chaotic tumbling behaviour, because the flagella cannot synchronise
well if they – or some of them – are rotated CW. This is due to the three-dimensional
form of these flagella, thus these features basically derive from their chemical prop-
erties and from the process that constructs them. The bacterium moves uphill in the
gradient of nutrients, which surrounds it in the local environment, by the following
strategy. On the surface of the bacterium a set of “methyl accepting chemo-taxis pro-
teins” (MCP) senses the environmental nutrient concentration, pH value and oxygen
saturation. MCP are fixed on the outside of the bacterium cell, but reach through the
membrane to the inner cytoplasm. Binding of substances to the outer parts of the
MCP triggers chemical reaction on their inner parts, producing a chemical signal.
These receptors induce a chain (network) of intra-cellular chemical reactions. This
way all different signals originating from many MCP get integrated by diffusion in
the inner space of the bacterium, reaching equilibria that correspond to the envi-
ronmental situation. These equilibria of chemical signals finally affect the flagellum
motor. If the bacterium is facing uphill in the gradient, the flagellum is moved in
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CCW direction. In contrast, if the direction is not favourable, it is rotated in CW
mode, thus is reorienting the bacterium. This way, the bacterium (averaged over
many timesteps) moves faster in uphill direction than in all other directions, which
gives it the needed bias to find its target areas in the environment. This integration
of a spectrum of environmental stimuli and their memorisation over some time, as
it is the case in chemicals in a cell, is assumed to be an important and easy way to
achieve adaptive and directed behaviours. Resembling such systems in autonomous
robots will perfectly fit to the small memories and to the low and noisy sensor capa-
bilities of common swarm robots.

Fig. 4.7 (a) Bacteria of Echerichia
coli navigate in environmental nutri-
ent gradients by simple integration of
chemical pathways linked to actuator
modulation. For details see text. (b)
The unicellular algae Euglena gra-
cilis is able to navigate towards a
light source by using just one single
sensor device. For details, see text.
Source of both pictures: Wikimedia
Commons.

Also the unicellular algae Euglena gra-
cilis, see Fig. 4.7, performs a comparable
strategy (Bound & Tollin, 1967). It possesses a
flagellum, a photoreceptor and a pigmenting
shading unit (eye-spot), all combined together
to one functional unit for photo-taxis. As Eu-
glena gracilis moves, it rotates and the eye-
spot shades the photoreceptor periodically. The
periodic pattern of light and shade on the
photoreceptor frequently switches the organ-
ism’s behaviour between phobic reactions and
straight swimming. In medium-intense lumi-
nance (≤ 50lux), this behaviour leads to pos-
itive photo-taxis, while in intense light (≈
500lux, see (Häder et al., 1981)) it leads to neg-
ative photo-taxis. This is important for effi-
cient photosynthesis. Again in this example,
it is chemical signal processing and spread-
ing by diffusion that induces phobic reactions
on the flagellum. Chemical signal transduction
and processing allows a proper mapping of sen-
sor input (eye spot and photoreceptor) onto the
behavioural program of the actuator. In conclu-
sion, this organism exploits body features (eye-
spot) and feeds this embodied information into
a chemical signal processing system. Again,
this is probably a good inspiration for the in-
expensive improvement of sensor precision and
bias exploitation in swarm robotics.

Another algae Volvox aureus (Holmes, 1903)
is living in spherical aggregates consisting of

hundreds or thousands of singular algae cells, all equipped with flagellae, see
Fig. 4.8. The pseudo-organisms (usually termed “colony” in biology) is able to
perform collective photo-taxis to stay in favourable light conditions. This is achieved
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Fig. 4.8 Microscopical images of Volvox aureus. Each sphere is a colony of hundreds
or thousands of cells. The spheres perform frequently photo-tactic movements to stay in
favourable light conditions. Inside of the spheres, offspring (daughter spheres) can be seen.
For details, see text. Source of all three pictures: Wikimedia Commons.

by modulating the flagellar activity of singular cells in a favourable way. Cells are
ceasing their flagellar motion on the light exposed side of the spherical body while
cells on the other side intensify their flagellar activity (Hand & Haupt, 1971). This
pattern of flagellar activity turns the colony towards the light-stimulated side. It is
also reported that the response to the light stimulus is stronger in the anterior re-
gion of the stimulated side (seen from the light source) compared to the rear side of
the sphere, forming a gradient of flagellar activity. This gradient formation suggests
that inter-cellular coordination, be it chemical, electrical or mechanical, might be
involved in a further integration of environmental stimuli to allow colony-wide cell
coordination. These colonies are not an organism, just like it was the case in the
slime mould. Of course, they posses no colony-wide neuronal system, so cell coor-
dination will be based on simple nearest-neighbour interactions of any kind. Again,
it is a good source of inspiration for swarm robotics and for coordination principles
in multi-modular robotics.

We propose that multi-modular robotic systems, especially if evolutionary com-
putation (EC) will be used for shaping controllers, should draw inspiration from
these evolutionary old micro-organisms. They demonstrate that simple reactive rules
combined with chemical processes produce enough complexity to create complex
behaviours. This way these organisms achieve high-level goals, even if they are ag-
gregated to pseudo-organisms. The observed complexity in these systems is a prod-
uct of self-organisation, that is based on simple networks of positive and negative
feedback, coupled with delays and non-linear reactions. Our proposed hormone-
inspired control system mimics those chemical processes that are either found in
the form of cell-messengers in unicellular life forms or in the form of hormones in
multi-cellular, higher life forms. In the following, we give a mathematical formula-
tion of our proposed hormone-inspired robot control system, which was inspired by
the above-mentioned chemical pathways in unicellular and multi-cellular life forms.
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4.2.2 Related Work

The studies of (Braitenberg, 1984) demonstrated that a robot can be programmed
to approach a target just by exploiting environmental gradients (e.g., light, sound,
temperature). In cybernetics, the idea of homeostatic control of animal-inspired
machines was an important component (Wiener, 1948). This theory demands for
communication (see (Shannon, 1948), (Pierce, 1980)) of sensor values to central
“control components”. This component exerts positive and negative feedback via ac-
tuators back onto the future sensor input. The cybernetics approach focused on pre-
dicting and approaching future positions of mobile targets. Our hormone-inspired
approach to control robots is inspired by the ideas of cybernetics, but expands it to
a modern version of the “animat”-approach (McFarland & Bösser, 1993), which is
aimed to mimic organisms. By involving evolutionary computation in shaping these
“animats”, we achieve a novel system of multi-modular robot control: AHHS.

Hormone-inspired control was suggested several times in literature for multi-
modular robotics. Several studies suggest a hormone-inspired control system
to coordinate movement of singular modules within a multi-modular robot
organism. In these approaches hormones are more like messages (and/or hop-
counts) that are routed among several robot modules in the CONRO sys-
tem (Castano et al., 2000), (Shen et al., 2002) and in the SUPERBOT system
(Hou & Shen, 2006a), (Hou & Shen, 2006b). In comparison to that, our AHHS
hormones are modelled like fluid chemicals, which flow through a compartmen-
talised robotic organism. For example, in an AHHS the “conservation of mass” is
a feature that is important. Another variant of hormone-inspired control was sug-
gested by (Neal & Timmis, 2003) and by (Avila-Garcı́a & Cañamero, 2005). Our
hormone controllers regulate the behaviour of the robot without any other controller.
In contrast, (Neal & Timmis, 2003) and (Avila-Garcı́a & Cañamero, 2005) use vir-
tual hormones to affect an underlying artificial neural Network. A different kind
of hormone-inspired control is described by (Ogata & Sugano, 2000). A hormone-
model was used to express “moods” of the robot and triggering of hormone secretion
was affecting different pre-programmed and hand-coded behavioural controllers.

In the study of (Støy et al., 2002), a multi-modular robot was controlled by iden-
tical programs on all robots, but behaviours of specific modules could be different,
according to the position of the robot in the organism, as each of the modules picks
out a subset of behaviours in accordance to its “role” in the organism. Also in our
AHHS approach, all modules are driven by the same AHHS controller, initially de-
rived from the same “genome”. According to the past experience of the module and
due to its specific sensor pattern on its position in the robotic organism, it possibly
falls into specific modes of operation (roles).

The idea to coordinate robots by virtual gradients was used for body formation by
(Stoy, 2006). To control robots in swarm mode, multiple approaches were published.
The study of (Shen et al., 2004) simulated the spread of virtual hormones to the lo-
cal environment of robots. In biology such externally acting substances are called
“pheromones”. A “pheromone-based” approach to control a robot swarm was also
published by (Payton et al., 2001). Messages were routed among a robotic swarm
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and hop-counts of messages were also considered by the robots to coordinate them-
selves. In (Schmickl & Crailsheim, 2007) the authors mimicked the behaviour of the
slime mould dictyostelium discoideum to control a robot swarm by simulated chemi-
cal waves. The studies of (Schmickl & Crailsheim, 2008), (Schmickl et al., 2007b),
(Schmickl et al., 2007c), and (Schmickl et al., 2007a) used the exchange of virtual
nectar (instead of virtual hormones) to control a robot swarm in various ways. A
similarity to our system proposed here is that also the virtual nectar is subject to ad-
dition (secretion) and decay, thus is forming a homeostatic system. In contrast to our
proposed AHHS, no evolutionary adaptation of rules, and thus no newly generated
behaviours, emerge in these systems.

4.2.3 Artificial Homeostatic Hormone System (AHHS)

In the following, we describe the concept of AHHS (Artificial Homeostatic
Hormone System) which mimics those evolutionary old controlling systems men-
tioned above. In our AHHS, a physiological model of the robot’s inner body is con-
trolling the robot’s behaviours. Sensors trigger hormone excretions, which increase
hormone concentrations in the robot’s virtual inner body. These hormones diffuse,
integrate, decay, interact and finally, affect actuators. To facilitate the emergence
of complex behaviours, the virtual inner body is partitioned into several compart-
ments, whereas each compartment is associated with a specific region of the real
robot’s body. This method of embodiment allows behaviours to act in the appropri-
ate spatio-temporal context.

In our system, the change of hormone concentration Hi of hormone h in compart-
ment c at time t is described by

ΔHc
h

Δ t
= αh + Dh∇2Hc

h(t)− μhHc
h(t)+∑

i
Si(t)+∑

j
H j(t), (4.1)

for hormone specific production rate αh, diffusion coefficient Dh, decay rate μh, and
the summed influence of all applicable sensor rules Si and all applicable hormone
rules H j. The applicability of rules depends on the availability of sensor and actu-
ators in compartment c. The numbers of rules and of hormones are defined through
the genome. Hormones have maximal concentrations Hmax

h that cannot be exceeded
(i.e., ∀h, t : 0 ≤ Hh(t) ≤ Hmax

h ).
The current actuator control value A of actuator a in time step t is defined by

Aa(t) =

⎧⎪⎨⎪⎩
Amin

a , if σa∑i Ai(t) ≤ Amin
a

σa∑i Ai(t), if Amin
a < σa∑i Ai(t) < Amax

a

Amax
a , if σa∑i Ai(t) ≥ Amax

a

, (4.2)

for actuator rule Ai, maximum actuator value Amax
a , minimum actuator value Amin

a ,
and actuator scaling constant σa that linearly scales hormone concentrations to
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the relevant actuator control value interval. In the following, we define the three
types of rules: sensor rule S , actuator rule A , and hormone rule H . We define the
sensor rule

Si(t) =

{
σsSs(t)λi +κi if σsSs(t) |=i θi

0 else
, (4.3)

which is applied to a defined output hormone concentration Hc
h of hormone h in

compartment c (cf. Eq. (4.1)), for sensor input Ss(t) from sensor s, sensor scaling
constantσs, dependent dose λi, fixed dose κi, and the trigger check for sensor thresh-
old θi, and comparison operator |=i∈ {<,>,≶} (whereas ≶ represents the rule that
triggers always).

We define the actuator rule

Ai(t) =

{
Hkλi +κi if Hk(t) |=i θi

0 else
, (4.4)

which is applied to a defined output actuator control value Aa of actuator a (cf.
Eq. (4.2)), input hormone concentration Hk of hormone k, dependent dose λi, fixed
dose κi, hormone concentration threshold θi, and comparison operator |=i defined
as above.

We define the hormone rule

Hi(t) =

{
Hkλi +κi if Hk(t) |=i θi

0 else
, (4.5)

which is applied to a defined output hormone concentration Hc
h of hormone h in each

compartment c (cf. Eq. (4.1)) and all parameters as defined above. Note that h = k
is allowed, thus self-referencing of a hormone is possible. This is essential to allow
the emergence of feedback loops which in turn are crucial for self-organisation and
homeostasis.

Hormones diffuse from all compartments to neighbouring compartments in our
AHHS. They reach different concentration levels at equilibrium, see Fig. 4.9(a),
because they are subject to decay in all compartments but are usually excreted
just in some specific compartments. If, for example, just one sensor triggers a hor-
mone secretion, the equilibria of this hormone will decrease spatially throughout the
compartmentalised space. The further away compartments are from the triggering
sensor, the lower is their steady-state hormone value. This way hormone values
sometimes represent distance measures in the virtual body of the organism.

By linking compartments of several adjacent robotic modules, the diffusion pro-
cess of AHHS is not restricted to a singular robot. In contrast, in the organism
phase, the hormones flow throughout the whole organism, see Fig. 4.9(b). Hence,
the same controller acts within the single free robot and within the joined multi-
modular organism, similar to the case of dictyostelium discoideum aggregation,
where chemo-taxis and cAMP excretion lead to different collective behaviours
depending on the density of amoebas (singular moving, trail formation, slug
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Fig. 4.9 (a) A sensor triggers excretion of a hormone in the right front compartment (sensor-
rule). This higher hormone equilibrium modulates the actuator output on this side of the robot
(actuator rule). It diffuses also to the left front compartment where it reaches a lower equi-
librium, thus is modulating the left actuator to a lower extent. The sensor-excreted hormone
interacts with another hormone (hormone-rule), which in turn affects the local actuator (ac-
tuator rule). (b) In organism phase, robotic modules are coupled. Through these couplings,
hormones can diffuse and thus affect also distant actuators located on other robots.

movement, see (Camazine et al., 2001)). The topology of the internal compart-
ments, the physical properties of the hormones, as well as the network of hormone-
to-hormone interactions is manifested (and evolved) in the artificial genome, which
is an essential part of the AHHS. In the following, we give a formal description of
the evolvable data structure that we call genome and that is used to parametrise the
AHHS at starting time.

4.2.4 Encoding an AHHS into a Genome

Since evolution operates on a genome, a specific data structure, which parametrises
the AHHS controller, is introduced. This data structure is called “genome” of the
controller. It keeps the specific configuration of the controller persistent and it is the
point of application of the artificial evolution.

The genome is a 2-tuple Γ = (Ch,Cr) consisting of two logical entities: hormone
chromosomeCh and rule chromosomeCr. If the self-organised compartmentalisation
(see Sect. 4.2.5.1) is part of the evolution as well, we would have an additional chro-
mosome Cm that encodes the morphogenesis-rules. There is one hormone gene GH

for each of the N hormones in the hormone chromosome Ch = (GH
1 ,GH

2 , . . . ,GH
N )

which is an N-tuple. There is one rule gene GR for each of the M rules in the rule
chromosome Cr = (GR

1 ,GR
2 , . . . ,GR

M) which is an M-tuple. In Table 4.1 a listing of
the genes in the two types of chromosomes is given. The hormone genes contain the
actual parameters in a 5-tuple GH = (n,α,μ ,D,Hmax). The rule genes contain the
actual parameters in a 9-tuple GR = (|=,T,θ ,λ ,κ ,s,a,h,k).
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Table 4.1 The genome of the AHHS controller.

Hormone Chromosome
Gene Description Range

hormone ID n 0
base production rate α amount that is produced without sen-

sory stimulation
0 ≤ α ≤ Hmax

decay rate μ cf. Eq. (4.1) 0 ≤ μ ≤ 1
diffusion coefficient D cf. Eq. (4.1) 0 ≤ D ≤ 1
maximum value of hor-
mone Hmax

value at which a saturation is reached Hmax ∈ +

Rule Chromosome
Gene Description Range

rule comparison opera-
tor |=

partially defines the condition that is
to be met for triggering action, see
Eqs. (4.3) to (4.5)

|=∈ {<,>,≶}

rule type T type of triggered action (I represents
the idle action)

{I ,S ,A ,H }

threshold θ partially defines the condition that is
to be met for triggering action, see
Eq. (4.3) to (4.5)

0 ≤ θ ≤ Hmax

dependent dose λ cf. Eq. (4.3), Eq. (4.4), and Eq. (4.5) 0 ≤ λ ≤ Hmax
fixed dose κ cf. Eq. (4.3), Eq. (4.4), and Eq. (4.5) 0 ≤ κ ≤ Hmax
sensor input s ID of the sensor that influences the hor-

mone through a sensor rule S
0

actuator output a ID of the actuator that is influenced by
the hormone through an actuator rule A

0

hormone input h ID of the hormone that is influenced
through a sensor rule S or that influ-
ences another hormone through a hor-
mone rule H

0

hormone output k ID of the influenced hormone (through
a hormone rule H )

0

4.2.5 Self-organised Compartmentalisation

The generation of appropriate compartment configurations is an important aspect of
the AHHS. The compartment structure partially determines the space of potential
behaviours of the controller. We present two variants of generating compartment
topologies.



4.2 Hormone-Based Control for Multi-modular Robotics 251

4.2.5.1 Compartmentalisation by Recursive Usage of AHHS

In the first approach to the compartmentalisation, we did not want to introduce ad-
ditional functionality to the system to allow a dynamic and evolvable process that
produces the compartment structure. Therefore, we developed a method to reuse
many simple-configured AHHS in a specific manner to produce the compartment
structure for a complex-configured AHHS. The advantage of this approach is that
the same genome structure and the evolutionary operators can be used to evolve
compartment structure and runtime behaviour of an AHHS.

We generate an additional set of morphogenesis-hormones and an additional set
of morphogenesis-rules. These hormones and rules are similar to the rules described
in the Sect. 4.2.3 and 4.2.4. The only difference is that they are used only at the
initial start of the AHHS to generate compartments without having runtime-rules
and runtime-hormones being computed. After the compartment-creation phase is
over, no morphogenesis-rules and no morphogenesis-hormones are computed, as
the AHHS switches to compute only runtime-rules and runtime-hormones.

To generate the compartments we start with a cube consisting of n3 sub-cubes,
each one being one AHHS (in the following, the term AHHS corresponds to these
AHHS associated with a certain sub-cube) having just one compartment and a set
of special morphogenesis-sensors which report the local morphogenesis-hormone
concentrations. All robot sensors and actuators are associated to specific positions in
this cube, which represent also their position on the real robot. This way, the grown
compartments should allow embodiment of the robot morphology in the AHHS that
is shaped by the process of compartmentalisation.

In analogy to Eq. (4.1), the concentration change ΔHh of morphogenesis-
hormone h in a AHHS at position (x,y,z) is defined by

ΔHh(t,x,y,z)
Δ t

= αh + Dh∇2Hh(t,x,y,z)− μhHh(t,x,y,z)+∑
i

Mi(t), (4.6)

for production rate αh, diffusion coefficient Dh, decay rate μh, and the summed
influence of all morphogenesis-rules Mi.

Each of these AHHS checks the set of available morphogenesis-rules, which ei-
ther trigger a morphogenesis-hormone excretion (Hj(t,x,y,z) |=i θ in analogy to
Eq. (4.5)) or which trigger the growing of a compartment-wall at the location of the
triggered AHHS (in analogy to Eq. (4.4), but with a binary effect of the triggering
event, e.g., build wall or build no wall). Whenever a wall is built, one compartment
is divided into two sub-compartments. The wall building action is implemented as
a virtual actuator, the rest of the system acts similar to the description in Sect. 4.2.3.
Another virtual actuator is merging of two compartments. If such an action is trig-
gered by a morphogenesis-rule, the compartment, in which the triggering AHHS is
currently located, is merged with one of its neighbouring compartments. The neigh-
bour is chosen according to special rule parameters. It could be the oldest neigh-
bouring compartment, the newest one, the biggest one or the smallest neighbouring
compartment.
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Fig. 4.10 (a) Layout variations resulting from combinations of two morphogenesis-rule mu-
tations. The robot’s internal layout was depicted by a two-dimensional system. Reprinted
from (Schmickl et al., 2009). (b) Compartments arising after 5 iterations over the set of the
morphogenesis-rules. (c) After 22 iterations. (d)-(g): Shape of randomly picked compart-
ments that emerge after 22 iterations.

After m steps of time, the process is stopped and the created compartment struc-
ture is parsed into a simple graph-shaped data structure, showing all neighbours for
every compartment, compartment sizes and wall area of boundaries between neigh-
bouring compartments. These information will later be used in calculating the diffu-
sion of hormones among compartments and for calculating hormone concentrations.
Sensors and actuators are linked to compartments according to their previously set
position in the virtual space of the robot’s body. At the end, all n3 AHHSs are re-
moved from memory, the explicit spatial representation of the robots inner space is
removed from the robot’s memory, as it was already compressed into the graph-like
data structure mentioned above. After finishing the compartment-creating process,
the compartmentalised AHHS starts to operate with processing runtime-hormone
values and runtime-rules, as described in Sect. 4.2.3.

This process allows dynamic creation of compartment structure, which is well
evolvable. It is able to generate many patterns by still keeping mutations similar to
parental patterns in most cases. Fig. 4.10(a) shows how mutations of two variables in
the genome affect the resulting compartment structure in a two-dimensional system.
Fig. 4.10(b)-(g) demonstrates the high variability of compartment shapes in a three-
dimensional system.

4.2.5.2 Compartmentalisation by Mimicking Slime Mould Behaviour

This second variant of generating compartment topologies was originally inspired
by the behaviour of a slime mould species. This approach is based on an artificial
self-organising multi-particle system consisting of reactive, mobile agents. These
agents are virtual. The dynamics of this multi-particle system and the resulting
compartment topology are computed offline before the AHHS-controlled robot is
deployed.
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The movements of the virtual agents, that constitute this multi-particle system,
are governed by a few simple rules and interact indirectly via a virtual pheromone
field. High values of this pheromone field are attractive to the agents. However, the
agents are not allowed to turn with arbitrarily large angles. Instead, they can only
turn with a defined angle velocity. Based on a few parameters, that are easily inte-
grated into the genome, the system generates a wide variety of complex patterns.
Some of these patterns show a notable property: seemingly never-ending, high dy-
namics in forming and reconfiguring complex patterns. For appropriate parame-
ters, the multi-particle system generates network-like patterns that are converted
into compartment configurations. This method of generating compartment configu-
rations is assumed to be easily evolvable.

In the following, we define the multi-particle system as introduced
in (Hamann, 2009; Jones, 2009). The agents move in two-dimensional space (gen-
eralisation to 3-d is straight forward) with periodic boundary conditions (torus). The
change of an agent’s position x is defined by

dx
dt

=
(

cosφ
sinφ

)
v, (4.7)

for a constant velocity v > 0, except for the case of a local pheromone value that is
bigger than a threshold Pmax, then we set v = 0. The change of the agent’s direction
φ is defined by

dφ
dt

= α(sl(t),sc(t),sr(t))γ(t), (4.8)

for α(sl(t),sc(t),sr(t)) ∈ {1,0,−1} defining the direction of the turns (clockwise,
no turn, or counterclockwise), γ defining the absolute value of the turn angles, and
for sensor values sc and sl that are defined by

sc(t) = P

(
x1 + cos(φ)d
x2 + sin(φ)d

)
, (4.9)

sl(t) = P

(
x1 + cos(φ −ψ)d
x2 + sin(φ −ψ)d

)
, (4.10)

for a pheromone field P, x =
(

x1

x2

)
, sensor angle ψ , and sensor distance d. sr is

defined analog to sl . Closely following (Jones, 2009), we define the process that
determines whether there is a turn and its direction

α(sl(t),sc(t),sr(t)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for sc(t) > sl(t)
∧sc(t) > sr(t) (no turn)

±1, for sc(t) < sl(t)
∧sc(t) < sr(t) (random turn)

+1, for sl(t) < sr(t) (right turn)

−1, for sr(t) < sl(t) (left turn)

, (4.11)
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whereas the order (top to bottom) of the conditions matters. The random turn has a
probability of 50% for +1 and 50% for −1. We define the absolute turning angle

γ(t) =

{
φrot, for t ∈ {0,τ,2τ, . . .}
0, else

, (4.12)

for a constant rotation angle φrot and a time interval τ at which the agents turn
and their directions are updated (typically τ = 1). Thus, we obtain a synchronised
system that is discrete in time. The pheromone field P is, in principle, defined by the
standard diffusion equation

∂P(x,t)
∂ t

= D∇2P(x,t)−ηP(x,t)+θ
N

∑
i=1

δ (x − xi(t)), (4.13)

for diffusion D, evaporation rate η , addition θ (the Dirac delta δ indicates that
an agent only contributes to the pheromone field at its position), number of
agents N, and agent positions xi(t). However, for simplicity and to reduce the
computational complexity the diffusion and the evaporation are only executed at
t ∈{0,10τ,20τ, . . .} unlike the addition process that is executed at t ∈{0,τ,2τ, . . .}.

The patterns, that are generated by this system, show a high variety depending on
the used parameters (Hamann, 2009). Only those that form erratic and network-like
structures are relevant here. An appropriate parameter setting is given in Table 4.2.

A typical pheromone field generated by this system is shown in Fig. 4.11(a)
(higher pheromone intensities are shown in warmer colours). Using a simple thresh-
old method, the pheromone field is reduced to a binary image, see Fig. 4.11(b).
The underlying compartment topology is identified by applying edge detection, see
Fig. 4.11(c).

Table 4.2 Used parameters.

Parameter Value

sensor angle ψ 45o

rotation angle φrot 45o

rotation period τ 1 [time units]
sensor distance d 0.01 [length units]
velocity v 0.01 [length units/τ]
diffusion D 0.05 [(1/L)/(10τ)]
evaporation η 0.06 [1/(10τ)]
addition θ 5 [1/τ]
number of agents N 700
max. pheromone value Pmax 300
simulated steps 1×103 [time units]
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(a) Pheromone field. (b) Binary image. (c) Underlying compartment
topology.

Fig. 4.11 Extraction of the compartment topology out of the pheromone field. Using a thresh-
old the pheromone field (a) is reduced to a binary image (b). Based on this image the under-
lying topology (c) is extracted through edge detection.

4.2.6 Evolutionary Adaptation

In order to synthesise AHHS controllers for any desired behaviour we apply evolu-
tionary algorithms. That is, we start with randomly generated AHHS controllers that
are evaluated, selected, mutated, and recombinated. We restrict ourselves to offline
evolution (i.e., controllers are evolved before the robots are deployed), since this
process typically needs many generations to evolve useful behaviour. The evalua-
tion of the behaviour generated by the AHHS controllers is done using the Symbri-
cator3D Simulation (see Sect. 2.4.2). This standard evolutionary approach is shown
in Fig. 4.12.

The application of a recombination is determined by a stochastic process and the
defined recombination probability. The recombination operator is a standard two-
point crossover, whereas the description of the hormones and the description of
the rules are treated as two independent chromosomes (resulting in two two-point
crossovers).

Fig. 4.12 The evolutionary loop: evaluation of population, selection, and generating the new
population through elitism, mutation, recombination, and immigration.
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In contrast, the definition of the mutation operator is more relevant and more
interesting. In fact, there are two independent mutation operators – one for each
chromosome type.

The mutation operator acting on the genes of the hormone chromosome changes
with a probability PH one of the parameters p ∈ {μ ,Hmax,α} (decay rate μ , maxi-
mum hormone value Hmax, and base production rate α). The hormone ID and also
the diffusion coefficient are usually not varied. The mutated parameter p′ is ensured
to stay within a defined interval p′ ∈ [(1 − m)p,(1 + m)p], for a mutation range
parameter m ∈ [0,1]. Hence, the hormone gene mutation operator in pseudo-code
notation is defined by:

Algorithm 1. Mutation operator for the hormone gene.

foreach hormone gene GH in hormone chromosome Ch do1

r ← RandomUniform(1)2

if r < PH then3

p ← ChooseOne({μ ,Hmax,α})4

if RandomUniform(1)< 0.5 then5

sign ← +16

else7

sign ← -18

end9

change ← RandomUniform(m)10

p ← (1 + sign * change) * p11

end12

end13

whereas randomUniform(a)returns a random number out of [0,a] based on a
uniform distribution. In addition, the resulting values are checked to stay within
certain bounds as indicated in Table 4.1 (usually Hmax would also be bounded).

The mutation operator acting on the genes of the rule chromosome is analog to
the mutation of hormones and changes with probability PR one of the parameters p ∈
{|=,T,θ ,λ ,κ}. Again the mutation range parameter m is applied to the continuously
defined variables. In case of the discrete valued rule comparison operator |= and rule
type T , one of the possible values is picked randomly (e.g., T = S might change to
T = I , T = A , or T = H ).

Furthermore, the number of rules could be changed by addition or deletion of
rule chromosomes. Changing the number of hormones is more complex because the
rule chromosomes include hormone IDs. Hence, the case of rules, that refer to a
deleted hormone, would need a clarification beforehand.

4.2.7 Single Robots

The feasibility of the evolutionary algorithm applied on the AHHS controller was
tested on single robots. In a simple “explore the environment” task the initially
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(a) (b)

Fig. 4.13 Trajectories of the robot of two different evolutionary runs in an environment with
walls. Reprint from (Stradner et al., 2009).

randomly configured controllers were optimised in order to activate the screws (see
Sect. 2.1.3) of the robot correctly to cover some distance. A further increase of the
fitness value was achieved, if the controller learned to react on sensor inputs. By
recognising walls and avoiding or following them a better performance could be
achieved. Thus, the fitness function was chosen in that way that moving and gaining
distance from the starting point led to an increased fitness value.

The evolvability of the AHHS controller could be shown by the fact that the
task described above was solved after at most 50 generations. As a result of these
experiments different motion patterns were observed. For example two different
patterns are shown in Fig. 4.13: wall follower and wall avoider.

A closer look on the evolved hormones and rules reveals the mechanism of the
controller that steers the robot in a post evaluation. Three hormones are responsible
for the motion behaviour of the robot (Fig. 4.14(a)): Two hormones are insensitive
on sensor input and reach different equilibria (H0 → 9, H2 → 84, see Fig. 4.14(b)),
during run time. In connection with the third hormone, H7, a different driving be-
haviour occurs depending on whether a wall is nearby. In the absence of obstacles,
a straight trajectory is accomplished because of the simultaneous activation of actu-
ator A0 by H7 and H2. Only this combined activation is strong enough to match the
activation of actuator A1 by H0 for straight driving. In the case of sensor S3 detects
an obstacle, the production of hormone H7 ceases and the different activation of the
two screws leads to a left turn. Thus, even in this simple task an already complex
network consisting of three hormones and 4 rules was evolved by the evolutionary
algorithm.

The dynamics of the hormone concentrations which generate the behaviour of
the wall follower and the wall avoider are plotted in Fig. 4.15.

4.2.8 Forming Robot Organisms

The AHHS controller is not only responsible for the behaviour of the single au-
tonomous robot modules but also for the robot organism. One major point of this
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Fig. 4.14 (a) Schematic overview of the sensor-hormone-actuator interaction in the wall fol-
lower controller (see Fig. 4.13(a)). (b) Values of the three participating hormones. Reprint
from (Stradner et al., 2009).
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Fig. 4.15 The value of the critical hormone in (a) the wall follower controller (com-
pare Fig. 4.13(a)) and (b) the wall avoider controller (compare Fig. 4.13(b)). Reprint from
(Stradner et al., 2009).

topic is the formation and reconfiguration of the robot organisms. To keep the mor-
phology of the robot flexible, the AHHS should be able to perform this task in
a self-organised manner. Because robustness of a robot organism is often in con-
trast to flexibility, the trade-off between these two features must be balanced and
resolved.

Starting to build a robot organism out of a swarm of single modules and the re-
configuration of an existing robot organism are similar processes. In both processes
an additional number of nearby single robot modules must be available. Further-
more, a trigger from the environment leads to an addition or removing of modules
or a change of the morphology of the organism body shape. This trigger event has
to be perceived by one of the modules. Then it has to be communicated externally
to other single modules nearby or internally to the other robots of the organism in a
self-organised manner through hormone value changes.
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Fig. 4.16 The development
of the body formation. The
process of the progress from
single module formation
in a swarm to robot organ-
ism with legs is depicted
in four steps. One possi-
ble way of achieving this
with AHHS is denoted as a
schematic graph of hormone
values of two hormones in
step 2. For further explana-
tion see text. Reprint from
(Schmickl et al., 2009).

An example of a body formation process is depicted in Fig. 4.16. The module,
which detects the environmental trigger, changes its state which in turn is a trigger
for the nearby modules for docking. After the docking process is finished the hor-
mones diffuse between the single modules inside the organism. Starting from one
module different shapes depending on the gradients of the hormones can be built.
Rules, which underlie artificial evolution, define thresholds, for example, where
limbs should start to grow (see Fig. 4.16, step 2 and 3). Self-organisation of the
morphology of the robot organism is established by changing these rules through
evolution, learning or by a new occurring environmental trigger.

4.2.9 Locomotion of Robot Organisms

After we tested the AHHS on singular moving robots using various types of loco-
motion (differential drive, screw drive), we wanted to test the system also in or-
ganisms of coupled autonomous modules. We introduced a randomised AHHS with
15 randomly parametrised hormones and with 60 randomly parametrised rules, 12
distance sensors and 1 hinge as the only actuator. The hinge is generally not able
to move a single robot module, as it just bends the module. A single module will
just fall to the side after a significant hinge contraction. In contrast, two joined mod-
ules that oscillate their hinges in a synchronised way, are potentially able to move
in the environment efficiently. We allowed the virtual hormones to diffuse through
the robot-to-robot connectors from each robot module to its neighbouring modules,
as it is depicted in Fig. 4.9. This way sensory input and hormone secretion in one
module could affect also hormones and actuators in other modules, establishing an
organism-wide hormone-based communication system.

We initially coupled two robot modules in the Symbricator3D Simulation, see
Sect. 2.4.2, and allowed it to perform 1000 time steps. Those organisms that moved
the longest distance in the arena were selected for seeding the next generation (popu-
lation size: 20 organisms). Before that they were recombined and mutated. In several
experiments we encountered the first moving organisms within a few generations.
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(a)

(b)

Fig. 4.17 Stroboscopic
snapshots of an organism
consisting of: (a) two au-
tonomous modules. The
only locomotion that was
possible was periodic
bending of the modules
by modulating the hinge-
angle; (b) six autonomous
modules. With this body
form, the robots exhibited
a caterpillar-like motion
pattern, which was evolved
from a randomly initialised
AHHS controller; (c) four
autonomous modules in a
T-shaped organism. With
this body form, two distinct
forms of motion evolved.
(top) Synchronised os-
cillation of modules in
a flat body constitution.
(down) Leg-like walking
in an erected body con-
stitution. Reprints from
(Schmickl et al., 2009).

(c)

After approximately 20 generations we always found several fast moving organisms,
see Fig. 4.17(a), in the population.

After this was observed, we added another module to the organism and contin-
ued our artificial evolution. Initially, the change of body form slowed down the
organisms significantly, but after additional 10-15 generations they reached almost
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the same motion speed again. After this AHHS was evolved, we added again three
modules. Within 20-30 generations, these larger organisms evolved an effective and
well coordinated motion pattern. Hinge contractions moved like a travelling wave
from the tail to the front, resulting in a caterpillar-like movement, see Fig. 4.17(b).
The head module in front was most of the time erected, minimising friction and
supporting the organism’s motion this way.

Finally, we investigated our AHHS oscillator that was initially evolved in the two-
module setup in a more complex body shape. Four modules were connected in a T-
shape manner. During the course of evolution two distinct motion strategies evolved.
First, a behaviour of synchronised contraction of hinges evolved that was similar to
the caterpillar-motion but adapted to the distinct body shape. After some time, a
totally different behaviour emerged from evolution. The central unit in the T-shape
body contracted permanently, this way erecting the whole body. The three branch-
modules then contracted in an oscillatory manner, moving the whole organism like
a walking tri-pod, see Fig. 4.17(c).

In all of the body shapes that we tested, artificial evolution was able to produce
novel motion patterns that were well adapted to the body morphology and to the sur-
rounding environment. We observed that it is significantly more efficient to evolve
body shape together with body control. Thus, a dynamic and genetically adaptable
method of body formation is assumed to be advantageous, as both adaptations can
be performed in the same evolutionary loop using the same genome.

4.2.10 Feedbacks

Feedback loops (Fig. 4.18) emerge within the functionality of the single robot mod-
ules and the robot organism and the artificial evolution. Some of these feedback
loops are found in “classical” evolutionary robotics concerning single robots, oth-
ers exist in non-evolutionary multi-modular robotics. In the context of AHHS and

Fig. 4.18 The feedback loops that affect the evolution of the AHHS controller and organism
shapes. Reprint from (Schmickl et al., 2009).
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their ability to control the single modules and joined organisms, these loops interact
with each other. This interaction plays a crucial role in the pluripotent function of
the AHHS.

Six feedback loops can be identified: classic control, learning, evolution, con-
troller morphogenesis, robot organism morphogenesis, and body motion; for de-
tails, see (Schmickl et al., 2009). All six feedback loops can be implemented in real
robotic hardware and in a sophisticated simulation software and they can be tested
separately. For example, by using hand-coded body shapes the motion behaviour of
the robot organism can be investigated. In case of learning and evolution, it depends
on the situation whether both of them are necessary in the system. They only differ
more or less in their time scales. The duration of learning lasts for one life time
while evolution is focused on generations. For example, there might be scenarios in
which the performance during runtime cannot be improved significantly such that
no optimisation by learning is needed. However, all feedback loops interact with
each other in a complex way which is one of the key points of this approach. These
intertwined feedback loops encourage and challenge evolution to generate adaptive
behaviour.

4.2.11 Conclusion

AHHS controls the behaviours of robots in a way that allows achieving internal
homeostasis of intrinsic hormone levels. In the simple case of collision-avoidance
this is achieved by sensor-rules that disturb homeostatic set-points by triggering
additional hormone secretion as the robot approaches an obstacle. Already in cy-
bernetics filtering of sensory input was an important aspect. The hormone values
in our AHHS integrate past sensory inputs over time. Another important feature of
our AHHS is the steady decay of such integrated information. This feature allows
“forgetting” of outdated information.

Another novel feature of our controller is the compartmentalisation of our robot’s
virtual inner space, which allows embodiment of the controller. Sensors are linked
to specific compartments and trigger hormone secretion only there. Compartments
allow spatial computation of sensory input. In the joined robot organism, whole
robot modules support this compartmentalisation, reacting to their local hormone
values and supporting embodiment on the organism level this way.

As mentioned above the AHHS controller shows inherent homeostatic processes.
This tendency towards moderate values is in contrast to other controller types such
as artificial neural networks which sometimes tend towards extreme values. Another
advantage of the AHHS is that its functionality is the same for a single robot mod-
ule as in the case of the whole robot organism. There is no difference between the
diffusion based on compartments inside a robot module and the diffusion based on
whole robot modules. Such a change of topology would most likely result in a drop
of performance in case of standard robot controllers. For most other kinds of robot
controllers, two classes of controllers would be needed to be produced: one control-
ling a single module and one controlling the whole robot organism. The verification
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of these assumed advantages of the AHHS including the above mentioned will be a
main objective of our future work.

4.3 Evolving Artificial Neural Networks and Artificial
Embryology

Ronald Thenius, Michael Bodi, Thomas Schmickl, Karl Crailsheim

In contrast to the above mentioned controller, Artificial Neural Networks (ANNs),
are used since decades, also for autonomous robots. A rather novel approach is
to combine such standard ANNs with a virtual internal neuromodulator system,
which allows regulation of a whole ANN via the linkage of sensors of the robot to
virtual neuromodulator glands. Many parameters of the morphological structure of
the neural network can be shaped by a simulated embryological process at startup
time of the robot (after booting the robot). Such embryological processes can be
tuned by various evolutionary computation methods. The resulting controllers are
called “Evolving Embryogenetic Brainstructures” (εεB)

For εεB controllers, the life-cycle of the robotic units (of a robotic swarm) can
be broken down into the following 4 phases:

Initial phase of the robot: The εεB, that controls the robot at runtime, devel-
ops during the embryological process. Depending on the calculation power and
memory available onboard the robot, the neural network is then uploaded to the
robot at the beginning of its lifetime, or calculated directly onboard the robot.
The network is then executed by an ANN interpreter running on the robot.

Swarm phase: While Robots are moving around ’alone’ in the arena, and are not
linked to other robots, they perform basic tasks like data collection or exploring
the area. During this phase, the neural network is already shaped by embryoge-
nesis, but is still able to be adapted by learning techniques. Under certain con-
ditions, for which the controlling neural network is trained or evolved for, the
robots start to aggregate. The reason for such an aggregation can be: linkage of
robots to use faster inter-robot communication channels, the exchange of energy
via an energy bus, or the forming of a higher level organism.

Body formation: The decision about the bodyshape to form is an important one
and will be shaped by training or evolution to the environments (or conditions)
the swarm is intended to work in. The robots have to arrange themself into spatial
patterns and call predefined routines for linking to its neighbours.

Organism phase: If robots are linked together in one big robotic organism, the
εεBs of the robots are able to communicate through direct neuron-to-neuron
interfaces, which are established by the internal communication bus of the or-
ganism. Still each unit is responsible for its own motors and the processing and
passing through of sensory information. A special case of the organism phase is
when small groups of robots have linked to small autonomous organisms, thus
when swarms of relatively simple organisms start to explore the area. This might
be advantageous to increase the search radius of the whole robot swarm.
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We simulate virtual embryologic processes to allow the εεB-controller to “grow”
in a structured way. Many parameters of the εεB-controller are shaped by these
processes: the number of cells, their degree of connectivity to their neighbours, and
the spatial distance between clusters of highly connected nodes. We use this novel
method to organise the growth of the embryo, that later form the neural network. As
guide for this development we used processes that are observable in biology during
the developmental phase of most multicellular lifeforms. The growth process of the
virtual embryo is controlled by a genome that is defining the reaction of a cell under
certain conditions during the developmental phase.

Building an evolutionary system enables us to shape controllers. It is important
to find or develop an “evolution friendly” method. For the approach described in the
following, we chose the biological process of embryogenesis as a model. During
biological evolution the processes of embryogenesis showed to be an ideal tool for
shaping the bodies (including the control structures) of all multicellular lifeforms
(Carroll, 2006). The mechanisms working within an embryo (known as “EvoDevo”)
are perfectly able to work as a substrate for evolutionary processes. In biology, four
phases can be observed in the evolution of multicellular organisms:

1. Optimisation: A morphometrical structure (including controlling structures,
such as neural ganglia) are optimised by evolutionary processes.

2. Serialisation: Due to changes on genetic level the optimised morphological
structure is built identically several times within an animal.

3. Exploration: Former identical morphological structures start to differ in their
shape and function. Because of the presence of functioning copies of these struc-
tures, the evolutionary pressure on a single functional unit is low. In this way
even disadvantageous changes in shape and function of a single functional unit
are not punished by evolution. In this way “fitness-valleys” can be overcome.

4. Specialisation: If a new shape becomes advantageous for a new function, the
optimisation process is repeated. Disadvantageous structures are discarded.

One process comparable to EvoDevo, found in technical optimisation methods, is
“simulated annealing”, whereby, in opposite to the biological analogon, the changes
in the fitness function are induced externally, and do not arise from within the
system.

The method of morphological shaping of a controller is interesting for a wide
field of controller types: besides the ANNs, which are the main focus of this sec-
tion, other controllers that also include a morphological component, like the Arti-
ficial Homeostatic Hormone controller (AHHS, (Schmickl & Crailsheim, 2009)) or
GasNets can gain advantages from the ideas of morphological shaping by artificial
embryogenesis.

4.3.1 Shaping of ANN in Literature

Structured ANNs can provide highly interesting auto-teaching structures as men-
tioned by Nolfi in (Nolfi & Parisi, 1993) and (Nolfi & Parisi, 1997). “Auto-teaching
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networks” consist of two subnets, a “teaching network” and a “controlling network”.
The authors describe, that such a network, if it is shaped by an artificial evolutionary
process, has “genetically inherited predispositions to learn”. The virtual embryoge-
netic approach described in this section aims for the evolution of neural networks
with substructures with this ability.

Other concepts of the influence of bodyshape (and neural controller shape) to
the function of the controller itself and to the control process are described in
(Pfeifer & Bongard, 2006) and (Pfeifer et al., 2005b). The main idea of these publi-
cations is the intense influence of the morphological shape of the agent (or robot) on
the learning and controlling process. As described later in this section, the positions
of sensor input interfaces and actuator output interfaces within the virtual embryo’s
growing space represent the positions of sensors and actuators on the real robot.
This way, we expect advantageous effects, e.g., from the accumulation of sensory
input interfaces on one side of the embryo.

Other interesting approaches to the problem of shaping ANNs (with fo-
cus on the French flag problem described in (Wolpert, 1998)) are described in
(Miller & Banzhaf, 2003). In this work, the function of a node is not determined,
but can be shaped by the genome. Another work that deals with the problem of dif-
fering functions within an ANN is (Timmis et al., 2009), in which different predis-
positions for learning are implemented by “virtual adaptive neuro-endocrinology”.
Within such a network, different types of cells exist: gland-cells, which influence the
learning of the network, and regular cells, which are influenced by the gland-cells.

A different approach to shape the structure of an ANN has been described in
(Hampton & Adami, 2004). In the system described, the position of the cell is fixed
from the beginning, the growth of axons is controlled by morphogenes diffusing
throughout the embryo. The advantages of this system seem to be the higher ten-
dency for self-similarity of network structures during evolutionary processes, but
on the other hand it seems that it has a low probability to develop differentiating
cell-types with different functions.

A very detailed model of artificial embryogenesis is described by Bongard in
(Bongard & Pfeifer, 2003). In this work, 16 genetic commands are defined that are
needed to build an embryo and link neural cells within this embryo. These 16 com-
mands are comparable to the genetic commands described in this section (for a
simplified list see 4.3.5). The main difference between the work described in this
chapter and the work of Bongard is the possibility of the development of non-neural
cells, which are advantageous for morphological shaping of the embryo (for details
see Sect. 4.3.8). State-of-the-art neuro-evolutionary techniques are also described
in (Floreano et al., 2008b). Other inspiration for our work comes from the field of
evolving electrical circuits (e.g., (Mattiussi & Floreano, 2007)), in which electrical
devices (like resistors, capacitors or ICs) and their position in a circuit are coded in
a genome and evolved.

Models of developmental processes of embryos in nature have been inves-
tigated since decades. First ideas about possible self-organisation processes
shaping or structuring a living creature can be found in (Turing, 1952), where
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the authors describe the interaction of different antagonistic chemical sub-
stances diffusing in a medium. Early models investigating growth-processes,
repair mechanisms and structuring processes of organisms (mostly on simple
live forms like Hydra sp.) were published in (Gierer & Meinhardt, 1972) and
(Babloyantz & Hiernaux, 1974), an interesting hydra model was published in
(Meinhardt & Gierer, 2000). Early concepts of pattern formation in animals and em-
bryos are described in (Gierer & Meinhardt, 1972). First discussions of mechanisms
controlling the growth processes in insects are made by Kalthoff (Kalthoff, 1978).
This field of research is called evolutionary developmental biology, also known
as “EvoDevo”. A good overview over the field of EvoDevo can be found in
(Müller, 2007) and (Carroll, 2006).

One important field of research, influencing the work described in this section,
is the modelling of repair mechanisms of cell-clusters. The work done on this
topic is not primarily aiming at the shaping of ANNs, but at dealing with prob-
lems like coordination of groups of cells, especially the control of growth processes
(Basanta et al., 2008; Andersen et al., 2009), which helps stabilising the growth of
virtual embryos and helps determining the size of ANNs.

4.3.2 Overview over Section

In this section, we describe how the organisation of nodes and links of an
ANN using virtual embryogenesis is implemented. In our concept of virtual
embryogenesis, which is described here, we are mimicking processes observ-
able in biology during the developmental phase of most multicellular life-forms,
like Drosophila m. or other species (Jaeger et al., 2004; Meinhardt & Gierer, 2000;
Babloyantz & Hiernaux, 1974). We also included general concepts of biological
embryogenesis and artificial embryogenesis (Wolpert, 1969; Basanta et al., 2008)
into our concept. Complex processes, like physics or diffusion, are strongly ab-
stracted in our virtual embryogenesis to enable a later optimisation of the resulting
εεB, by using artificial evolutionary processes, see Fig. 4.19. The fast calculation
of single embryological processes is necessary, due to the requirement for fast sim-
ulation of embryological processes on systems with limited hardware resources,
especially for projects dealing with evolution in autonomous robotic systems, such
as SYMBRION/REPLICATOR.

4.3.3 Concept of Adapting Virtual Embryogenesis for Controller
Development

In our concept of virtual embryogenesis the embryo consists of individual cells.
Within the developmental process cells can become nodes in the ANN. The cells
of our virtual embryo can duplicate, die, specialise, emit morphogenes (chemical
substances that can diffuse throughout the whole embryo), or build neural links to
other cells in the embryo. An important aspect that we implemented in our model,
is that a cell has no ability for active movement, but can be “pushed around” in
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Fig. 4.19 Optimisation of an ANN using artificial evolutionary processes and artificial em-
bryogenesis. For details please see 4.3.15. Reprinted from (Thenius et al., 2009).

space, due to growth processes (duplication processes of other cells). The genome
of a cell defines the cells’ actions. Genes (subunits of the genome) can be triggered
by virtual morphogenes. Due to the ability of genes to produce other morphogenes
if activated, a network of feedbacks emerges. The growth of the embryo (and the
embedded neural network) is governed by the resulting self-organised process. As
soon as the embryological process is finished, the developed network is analysed,
translated into a data structure which is compatible to a standard ANN-interpreter,
and tested in a simulation.

4.3.4 Diffusion Processes

We implemented the embryo in our model as a multi-agent model. A single cell
is represented by an agent. The space and time in our model is discrete. The time
step is indicated by Δ t. Each spatial unit (patch) can be occupied by only one cell.
The cells interact with each other by virtual physics and virtual chemistry. Cells are
able to emit morphogenes, which diffuse throughout the embryo (Crick, 1970). The
concentration c(m,x,y,t) of a morphogene m at the position (x,y) at time step t is
calculated according to Eq. (4.14), whereby cmax(m) is the maximum concentration
of the morphogene m. The maximum concentration cN

max(m,x,y, t) of the morpho-
gene m in the cell z at the position (x,y) and in all neighbouring cells (N denoting
the Von Neumann neighbourhood and the cell itself) at the time step t is calculated
according to Eq. (4.15). The amount of the decrease of the morphogene concentra-
tion when diffusing from one patch to another is d(m). When a cell at position x,y
emits a morphogene, its value c(m,x,y, t) is set according to Eq. (4.16). Please note
that no conservation of mass is implemented in our model. This simplification of
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real physical diffusion processes is necessary to achieve the required computational
speed. The result of this abstract diffusion model suffices for our needs to achieve
the desired embryogenesis.

c(m,x,y,t) = min(cmax(m),cN
max(m,x,y,t −Δ t)− (d(m)∗Δ t)), (4.14)

cN
max(m,x,y, t) = max

(x,y)∈N
(c(m,x,y, t)). (4.15)

c(m,x,y, t) = cmax(m). (4.16)

4.3.5 Genetics and Cellular Behaviour

A virtual cell z with the position (x,y) in our model measures the concentrations
of morphogenes every time step and reacts in a pre-programmed way. The type of
the reaction to the presence of a moprphogene as well as the measured concentra-
tion k(m,z,t) of a morphogene m in the timestep t, needed to trigger the reaction
is specified in the genome of the cell. The genome Γ is a set of N genes G (see
Eq. (4.17)), whereby each gene is a tuple of numeric values (see Eq. (4.18)). The
gene determines which cell-reaction r is triggered if a defined morphogene m is
measured with a concentration k(m,z, t) higher than cmin and lower than cmax at the
position of the cell. The measured concentration k(m,z, t) of the morphogene m in
the cell z can be modified by the receptivity-value v(m,z, t) (see Eq. (4.19)), which
is an internal value of the cell z, see Sect. 4.3.7. The genome does not change during
the embryogenetic process. All cells share the same genome.

Γ = {G1, . . . ,GN} (4.17)

Gi = (m,cmin,cmax,r), i ∈ {1, . . . ,N} (4.18)

k(m,z, t) = c(m,x,y, t)− v(m,z, t) (4.19)

A cell in our model can react to a given morphogene concentration in different
ways, e.g., emission of another morphogene, cell duplication and cell death. They
are described in detail in Table 4.3.5. The ability of the “genes” in our model to
get triggered by morphogenes is comparable to the mechanisms of gene expression
and protein synthesis found in nature, e.g., in concepts of second-messenger mech-
anisms (Gomperts et al., 2002) or transcription-coregulator mechanisms found in
biological cells (Näär et al., 2001). To achieve the required computational speed we
simplified these processes for our concept of virtual embryogenesis. Further de-
tails about the genome and the interactions of genes can be found in Sects. 4.3.9
and 4.3.10.
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Table 4.3 Possible reactions of a virtual cell.

Cell reaction Description

Production of morphogenes A cell emits a morphogene into the embryo, which dif-
fuses throughout the embryo. The interaction of dif-
ferent morphogenes leads to the self-organisedprocess,
mentioned in Sect. 4.3.3.

Cell duplication The cell duplicates, which leads to a change of the em-
bryo, due to virtual physics (mentioned in Sect. 4.3.6).
The new shape can influence the diffusion process of
morphogenes.

Cell death The cell dies, which leads to a change of the embryo,
due to virtual physics. For details see Sect. 4.3.6. Due
to cell death, structures that where important during an
early growth process, can be eliminated.

Changes in responsiveness Changes the cell’s responsiveness towards a morpho-
gene. By changing these values the cell is able to differ-
entiate. In the beginning of the virtual embryogenetic
process cells are receptive to all morphogenes.

Changes of internal values Internal values represent the predisposition for certain
functions in the final neural network e.g.: the belonging
to a defined subnet (as mentioned in Sect. 4.3.1)

Linking to neighbours Builds a neural connection (dendrite) to a neighbour-
ing cell. The weights between the neural cells are not
touched by the embryogenesis.

4.3.6 Simulated Physics

In case of cell duplication or cell death the morphometrical structure of the embryo
has to be reorganised. This process was implemented by assuming that cells interact
physically with each other via pushing. Other complex interactions (e.g., cellular co-
hesion or adhesion) were not simulated. A duplicating cell determines the numbers
of cells in the directions up, down, left and right. The cells in continuous rows are
counted (until a gap is found). The whole continuous row of cells is shifted by one
position in the respective direction where the number of cells is the smallest. The
new cell is then placed on the new free position next to the duplicating cell. This
way, the movement of cells during the growth process is simulated. Analogously to
cell duplication, in case of a cell death the free patch of the dead cell is filled by
shifting the whole row of cells towards the empty space. In both cases, cell death
and cell duplication, always the smallest possible number of cells is moved. This
way we simulate the physical situation in groups of cells without any physical con-
nection like adheasion, where the physical inertia of subgroups of cells determines
which cells move.
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Fig. 4.20 Screen-shot of cell specialisation process in a virtual embryo. Specialised cells have
a high value of a given internal status variable (indicated as grey dots, non-specialised cells
are not drawn). Lines indicate the boundaries of the virtual embryo. A: Starting condition,
B: Status of the embryo after 25 time steps. C: Status after 30 time steps. D: Status after 40
time steps. E: Final status of the embryo.

In our model some morphogenes can induce growth, other morphogenes can re-
duce growth. The interplay between these two groups of morphogenes during the
embryogenetic process determines the size and the shape of the embryo. A big va-
riety of shapes can emerge from this system, due to the different locations and the
different time phases during embryogenesis when growth factors can be emitted.

4.3.7 Cell Specialisation

Morphogenes do not only influence the growth of the embryo by regulating cell
duplication and cell death. They can also change internal status variables of cells
(see Fig. 4.20). These values code for the receptivity for other morphogenes, the
probability of building neural connections to other cells (mentioned below), or for
properties that are necessary for the function of the resulting εεB (e.g., whether a
cell belongs to a teaching or a controlling net, as mentioned in Sect. 4.3.1). Usually,
the processes of cell specialisation take longer than the development of the shape
of the embryo during embryogenesis, due to the fast response of cells that induce
growth. Especially the shape of the embryo has a big influence on the interactions of
different morphogenes, which leads to the specialisation of groups of cells. This cor-
responds to results found in nature (Müller, 2007). Some of the emerging processes
can be interpreted as being “Turing processes” (Turing, 1952). Further details about
cell specialisation can be found in Sect. 4.3.11.

4.3.8 Linkage

During the simulated embryogenesis, cells can build neural connections to other
cells, see Fig. 4.21. The probability of a cell to build these connections, as well as
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the distance to the linked cells, depends on the interplay between the morphogenes
and the genome, see Fig. 4.22. The linkage process is a genetically defined action, as
described in Sect. 4.3.5. In this way the degree of connectivity within a certain area
of the embryo is determined by the embryological process. A cell remains linked,
even if the cell is moved after linking. This can lead to long-distance connections
throughout the whole embryo and to a structuring of the resulting εεB, see Fig. 4.23.
If a cell is deleted during the embryological process (due to cell death) its links are
also deleted. Not all cells within the embryo have to link to other cells. Although
the virtual embryo has the purpose to shape a εεB, unlinked cells are not without
function. They operate as morphological structuring cells in our model: these cells
are needed for shaping the embryo due to growth or dying, as well as for shaping the
gradients of morphogenes by functioning as spacer between areas of morphogene
production and morphogene reception.

Fig. 4.21 Neural links between cells.
For depicting reasons inter-cellular
neural links (indicated by lines) are
drawn in the embryo. The area of
linked cells is zoomed. Cells are in-
dicated by white circles. Reprinted
from (Thenius et al., 2009).

To investigate the outcome of the virtual em-
bryologic process, the modelled embryo is al-
lowed to grow and differentiate, until all growth
and cell-differentiation is finished. That means
that no more cell duplication events, cell death
events, or cell linking events occurred over a
long timespan. Also the distribution of growth
factors within the embryo has to stay stable for
the same timespan. If an embryo reaches this
stable point of a complex equilibrium of devel-
opment, it is defined as “finished”. If the growth
processes are not regulated well by the genome,
the embryo can grow infinitely or vanish, due
to triggering of cell death in all cells. To deal
with “pathological” forms of embryos growing
infinitely in our simulation, the embryological
process is stopped if the number of cells reaches
a certain bound. Resulting embryos with infinite
growth or no stable result are rejected from fur-
ther analysis.

After the embryogenesis is finished success-
fully, the embryo is analysed and optimised, see
Fig. 4.24. The network topology of the εεB is
transferred into a structure that is readable for a
neural network interpreter. Cells that had only
a morphological structuring function during the
embryogenesis and did not link during the em-
bryogenetic process (as mentioned above) are excluded from the translation process
to save computational time. These cells have no more influence on the shape or func-
tion of the ANN after the embryogenesis has finished. For details see Sect. 4.3.13.
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Fig. 4.22 Scheme of the linking process: The degree of connectivity and the distance of cells
selected for connection is determined by the genome, by the morphogene level and by the
internal state of the cell (e.g., the receptivity for a morphogene). A: A focal cell links with its
closest neighbours with a high probability, resulting in a high density of local connections. B:
Another cell has a low probability to build long distance connections, what results in a few
long distance connections with cells further away. Reprinted from (Thenius et al., 2009).

Fig. 4.23 Movement of linked cells. Once the focal cell is linked, the connections to other
cells persist for the rest of the embryological process (except the focal cell dies), even if the
cell is moved within the embryo. Reprinted from (Thenius et al., 2009).

4.3.9 Depicting Genetic Structures and Feedbacks

While investigating the developing embryos we discovered several levels of com-
plexity. Please notice, that every embryo in our model needs an initial external signal
in form of a local morphogene gradient. In a first step, this gradient is placed in the
centre of the world, directly below the first cell of the embryo. In the following, this
external gradient is called the “prime gradient”. It represents an external morpho-
gene, influencing the embryo, e.g., gravity, light, temperature, morphogenes emitted
by a maternal tissue.

The genome of the embryos is represented by a two-dimensional array, as de-
scribed in Sect. 4.3.5. For better understanding we translated the genome into a
graphic chart with our “Genome Logic Analyzer”, see Fig. 4.25. In this graphic
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Fig. 4.24 Concept of shaping Artificial Neural Networks by virtual embryology. A genome
(sub-figure A) that is able to perform complex operations including operations regarding the
interpretation of the genome (sub-figure B), codes for the building process of a virtual embryo
(sub-figure C). Some cells of this virtual embryo are able to develop links to other cells in the
embryo and become neural cells this way (sub-figure D). After the embryogenetic process
is finished, the Artificial Neural Network is extracted from the virtual embryo (sub-figure
E). “Dead-end” connections within the network (that might develop during embryological
process) are removed for the sake of calculation speed (sub-figure F). The Artificial Neural
Network is then linked to sensor-interfaces and actuator-interfaces according to the defini-
tions of the robot the network has to work in (sub-figure G). After this step, the network is
translated into a data structure, that can be parsed by and Artificial Neural Network interpreter
(sub-figure H) and tested in the robot or the simulation environment (sub-figure I).

chart, boxes indicate genes that lead to the emission of a morphogene, e.g. morpho-
gene - coding gene “m1”. Solid arrows indicate the triggering morphogene. Num-
bers next to solid arrows indicate the threshold for the triggering of a gene by a
morphogene (for a detailed description of the triggering process and the genome
please see Sect. 4.3.5). Other symbols indicate genes that lead to the produc-
tion of proteins that influence the growth of the embryo. Upright hexagons (e.g.,
protein-coding gene “p102”) indicate genes that produce proteins that lead to verti-
cal growth, horizontal hexagons (e.g., protein-coding gene “p136”) indicate genes
that lead to horizontal growth. Triangles indicate genes that produce proteins (e.g.,
protein-coding genes “p13” and “p31”) that increase or decrease the receptivity of
a cell for a defined morphogene. Triangles pointing upwards (e.g., protein-coding
gene “p13”) indicate proteins that increase the receptivity of a cell, triangles point-
ing downward (e.g., protein-coding gene “p31”) indicate proteins that decrease the
receptivity of a cell. Genes that produce proteins that lead to the decreasing of
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Table 4.4 Symbols used in the graphical chart of the genome

Symbol Function of the gene

box emission of morphogene
upright hexagon vertical growth
horizontal hexagons horizontal growth
diamond omnidirectional growth
triangles pointing upwards increase of receptivity for a morpho-

gene
triangles pointing downwards decrease of receptivity for a morpho-

gene
pentagon pointing upwards increase of internal value
pentagon pointing downwards decrease of internal value
circle linkage between cells

internal values are indicated by pentagons (e.g., protein-coding genes “p51” and
“p68”). Pentagons pointing (upwards, e.g., protein-coding gene “p51”) indicate pro-
teins which increase an internal value of a cell. Pentagons pointing downwards (e.g.,
protein-coding gene “p68”) indicate proteins which decrease an internal value of a
cell. Genes that lead to the production of protein, that control the linking of cells
are indicated by circles (e.g., protein-coding gene “p155”). Dashed lines indicate
influences (and feedbacks) of proteins on morphogenes. The algebraic signs beside
dashed lines indicate positive or negative feedback. All symbols which are used in
the graphical charts are listed in Table 4.4.

Fig. 4.25 “Genome Logic Analyzer”: With this tool we are able to make graphical charts of
the genome. The symbols are described in detail in Table 4.4.
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4.3.10 Stable Growth due to Feedbacks in Genetic Structure

To solve the problem of cancerous (=infinite) growth in virtual embryos, mentioned
in Sect. 4.3.8, the embryo has to evolve the ability to limit the growth process. This
is possible through genetic structures that stop the emission of growth inducing
morphogenes, or by lowering the effectiveness of growth inducing morphogenes.
In the example depicted here, see Fig. 4.26, the lowering of the effectiveness of a
morphogene is shown.

Fig. 4.26 shows a growth controlling genetic structure that is started by the
morphogene producing gene “m2”. This morphogene leads to its own emission
(positive feedback), as well as the emission of the protein “p13”. This protein de-
creases the receptivity of cells for the morphogene “m1”, that induces the production
of the growth inducing protein “p119” (negative feedback). The growth of the em-
bryo depicted in Fig. 4.26 is limited. The growth process of the embryo is depicted
in Fig. 4.27.

First, the embryo starts to grow. After 10 time steps, the speed of growth is de-
creasing. The reason for this slower growth is a decrease in cell receptivity for the
growth inducing protein “p119” due to protein “p13”. The production of the pro-
tein “p13” is induced by the genetic substructure beginning with morphogene “m1”
which leads to a spreading of the morphogene “m2” throughout the whole embryo

Fig. 4.26 Virtual embryo with limited growth: Right: The embryogenetic process results in
a “stable” embryo, that stops growing. Cells are indicated by black dots. Left: Genetic Struc-
ture. The reason for the ability to stop growing lies in the genetic structure associated with
morphogene “m2”. It leads to the emission of protein “p13”, which lowers the cells receptiv-
ity for morphogene “m1”, that induces the emission of growth inducing protein “p119”. The
feedback, that limits the growth of the embryo, is depicted by a dashed line.
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Fig. 4.27 Growth of a virtual embryo with limited growth: After a starting phase of about
9 time steps the growth of the embryo is reduced. After this point in time, the shape of the
embryo stays the same, no more growth processes occur. A: time step 3; B: time step 6; C:
time step 9; D: time step 12; E: time step 15; F: time step 18; Cells are indicated by black
dots. Explanations of the symbols in the depiction of the genome can be found in Sects. 4.3.3
and 4.3.9.

as soon as the growth-inducing morphogene “m1” falls below a certain level in the
far outer parts of the growing embryo.

4.3.11 Developing Complex Shapes

The combination of different genetic structures allows the design of complex shapes.
In Figs. 4.28 and 4.29, two examples of embryos of more complex shape are shown.

As described in Sect. 4.3.7, the cells of the virtual embryo are able to dif-
ferentiate into different kinds of tissues, including neural cells. The differentia-
tion of cells is not only important for the coordination of growth, but also for
structuring the embryo and the resulting εεB controller. Especially if different
learning mechanisms, learning speeds or structured self-learning architectures (like
in (Nolfi & Parisi, 1993)) should be used in a neural network (as mentioned in
Sect. 4.3.1), it is necessary to mark areas within the network to behave differently
during runtime. The process of cell-differentiation during embryogenesis is com-
parable to the process of branching the embryo during the growth process: under
defined conditions (which are coded in the genome) very local combinations of
morphogene levels trigger a defined protein, which leads to cell differentiation. The
belonging of a cell to a certain tissue is defined by a group of internal variables
that are modified by a cell-differentiating protein. In Fig. 4.30, an embryo with
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Fig. 4.28 Example for a complex shaped embryo. In the genome of the virtual embryo (left)
we can see 2 main branches, one beginning with the morphogene-coding gene “m2” and one
beginning with morphogene-coding gene “m4”. The “m2” branch induces and regulates the
horizontal growth of the embryo and is responsible for the development of the central part
during embryogenesis (right: final shape of the embryo). The “m4” branch of the genome
codes for the two vertical structures placed beside the embryo. Cells are indicated by black
dots. Explanations of the symbols in the depiction of the genome can be found in Sects. 4.3.3
and 4.3.9.

differentiated cells is shown. In this simple example the differentiated cells are ar-
ranged to layers within the embryo.

4.3.12 The Growth of Neurons

One of the most important steps on the way from a genome to a εεB via virtual em-
bryogenesis is the definition and linkage of neural cells within the virtual embryo.
As described in Sect. 4.3.8, defined genes can trigger the growth of neural links
of a cell. In Fig. 4.31 a simple multi-layered neural structure is shown. Due to lo-
cally differing concentrations of morphogenes it is possible, that sub-networks grow
within differing parts of the embryo. Due to the possibility to modify internal val-
ues of the neural cells (as mentioned in Sect. 4.3.11), these sub-networks can differ,
e.g., in their pre-disposition for leaning or in their function. One of the main advan-
tages of the method described in this section is the possibility to structure neural
networks this way via a genome which can be modified by artificial evolution (see
also Sect. 4.3.1).

The genetic structure shown in Fig. 4.31 is comparable to the genetic structure of
the embryo depicted in Fig. 4.30, but instead of decreasing or increasing of internal
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Fig. 4.29 Example for a complex shaped embryo. By using long, linear genetic structures
(left), time delays between triggering and emission of morphogenes can be coded in the
genome. These time delays determine the positioning of branches in the shape of the embryo
(right). Cells are indicated by black dots. Explanations of the symbols in the depiction of the
genome can be found in Sects. 4.3.3 and 4.3.9.

values, genes (“p165” and “p185”) code for proteins that lead to a linkage of neural
cells. The protein, coded by the gene “p165”, is part of the genetic substructure (be-
ginning with the morphogene coding gene “m2”) that controls the vertical growth
of the embryo. Due to its position, this gene induces the building of “long distance
connections” all over the embryo. This process already takes place very early in the
growth process of the virtual embryo, so that linked cells move in different direc-
tions and the neural connections reach throughout the whole embryo. The protein
resulting from the triggering of the gene “p185” leads to the development of the spa-
tially concentrated subnetworks. The subnetworks with high density are depicted by
white lines in the right sub-figure of Fig. 4.31.

4.3.13 Translation

After the virtual embryo has stopped growing, it is necessary to extract the εεB
from the embryo and to translate it into a structure that is readable for a neural
network interpreter (as described in Sect. 4.3.8). In a first step, the network gets
consolidated, see Fig. 4.24. This means, all neural cells that have no input or output
are removed from the network. This “consolidation process” is an optimisation step
which prevents unnecessary structures (like “dead end” connections). In a second
step, the εεB has to be linked to the inputs (sensors) and outputs (actuators) of the
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Fig. 4.30 Cell differentiation leads to structures within a virtual embryo. Left: The protein,
expressed by the gene “p51”, leads to a modification (increase) of a defined internal value.
Right: The position of cells with a high internal value within the embryo is indicated by
coloured dots. Cells with a low internal value are not depicted. The differentiated cells form
stripes within the embryo. These cells can perform special functions within the final neural
network.

robot, controlled by the network. The cells that become connected to the inputs and
outputs are selected by their relative position in the virtual embryo corresponding to
the position of sensors and actuators on the robot. In a third step the finalised neu-
ral network is translated into a structure of one-dimensional and two-dimensional
arrays that can be parsed by a standard neural network interpreter. After this step
the embryogenetically shaped εεB is ready for upload to the robot. The finalised
neural network is uploaded to the robot. The neural network interpreter running on
the robot parses the networks and operates on the network using adequate learning
mechanisms.

4.3.14 Usability of Virtual Embryogenesis in the Context of
Artificial Evolution for Shaping Artificial Neural
Networks and Robot Controllers

One important ability of the described system, on which an artificial evolutionary
process works, is the stability against lethal mutations, along with the ability to
forward changes from the genetic level to the phenotypic (morphological) level. As
shown in Fig. 4.32, (slightly) different embryological shapes can emerge from one
“ancestor” by applying small changes to the genome. Please notice that these new



280 4 Adaptive Control Mechanisms

Fig. 4.31 Growth of an Artificial Neural Network in a virtual embryo. Right sub-figure:
Screenshot of the neural network in the embryo. White lines indicate “short distance con-
nections” within local subnetworks, red lines indicate “long distance connections” that reach
throughout the whole embryo and connect the subnetworks with each other. Middle sub-
figure: Shape of the embryo, neural connection not drawn. Left sub-figure: The genome
defining the number and location of neural subnetworks in the embryo via self organisation
processes (for details please see section 4.3.9).

Fig. 4.32 Variations in the genome lead to variations in shape: If the genome of one
“ancestor” (left sub-figure) is changed slightly, resulting embryos differ slightly in shape
(right sub-figures). Changes in the genome are marked with red boxes. Reprinted from
(Thenius et al., 2009).
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Fig. 4.33 Variations in the genome lead to variations in the shape of the resulting Artifi-
cial Neural Network: If the genome of on “ancestor” (left sub-figure, network with 2 lay-
ers) is changed, the resulting networks also change (right sub-figures, networks with 1, re-
spectively 4 layers). Changes in the genome are marked with red boxes. Reprinted form
(Thenius et al., 2009).

shapes do not look completely different from its ancestor, but differ only slightly.
These changes do not only take place on the level of shape, but also on the level of
resulting εεB. As shown in Fig. 4.33, changes in the genome lead also to changes
in the structure of the resulting network (i.e., the robot controller). This way the
parameters of the εεB can change, e.g., the the number of layers, the number of
cells within a layer, the micro-structure of a layer.

4.3.15 Subsumption of Section

Using the described approach of virtual embryogenesis we can simulate the develop-
ment of an embryo from a simple hand-coded genome for the purpose of structuring
an εεB, see Fig. 4.34. The final shape of the embryo, the connectedness of the em-
bryo’s cells, as well as the internal specialisation of cells (Fig. 4.34 D) are controlled
by a system of feedbacks (Sect. 4.3.10) and delays, which arise due to the spreading
speed of morphogenes (for details of morphogene implementation see Sect. 4.3.4).
These feedbacks arise from the rule set described above, from the genome, from
the spatial distribution of the cells within the embryo (see Fig. 4.34 A) and from
the diffusion abilities of the morphogenes (see Fig. 4.34 B, C). The specialisation
of cells within the embryo allows the development of different tissues, neural cells
or structure cells, which have no neural but morphological function. The resulting
patterns found in simulations of our model are comparable to patterns found in na-
ture during embryological development. In Fig. 4.34 we compare the self-organised
segmentation processes in our virtual embryo (Fig. 4.34A-D) to images from natu-
ral embryogenesis in Drosophila m. (Fig. 4.34 E). Similar segmentation patterns are
also described by Kalthoff (Kalthoff, 1978).



282 4 Adaptive Control Mechanisms

Fig. 4.34 Comparison of virtual embryogenesis in our model and real-world embryoge-
nesis: A: Virtual embryo, consisting of cells (dots); B: Morphogene gradient in embryo;
C: Gradient of another morphogene, inducing cell differentiation. D: Embryo consist-
ing of differentiated cells (white dots) and non-differentiated cells (invisible) ; E: Natu-
ral example of gene expression: Activity domains of gap genes in larva (lateral view) of
Drosophila m. (from (Jaeger et al., 2004); ’Kr’ and ’Gt’ indicate gap genes.). Reprinted from
(Thenius et al., 2009).

For the described approach of virtual embryogenesis we used ideas from evolu-
tionary developmental biology (EvoDevo). This approach produces results that are
comparable to the products of natural developmental processes. The virtual embryo-
genetic processes described in this section have the potential to structure groups of
cells on the level of body shape as well as at the level of micro-structure.

It is planned to combine the presented virtual embryogenesis with artificial evo-
lution. The εεB that develops during the embryological process will be tested in a
simulation environment. The fitness of a genome will be determined by the qual-
ity (e.g., learning ability) of the resulting “grown” εεB . Using this methodology
novel and efficient ANN-structures are planned to be evolved, see Fig. 4.19. Addi-
tionally, much can be learned about the properties of basic processes that act during
the biological evolution of brain structures (e.g., evolution of hierarchical brain-
structures).

4.4 An Artificial Immune System for Robot Organisms

Jon Timmis, Andrew Tyrrell, Maizura Mokhtar,
Amelia Ritahani Ismail, Nick Owens, Ran Bi

Artificial Immune Systems (AIS) is a diverse area of research that attempts to
bridge the divide between immunology and engineering and is developed through
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the application of techniques such as mathematical and computational model-
ing of immunology, abstraction from those models into algorithm (and system)
design and implementation in the context of engineering (Timmis et al., 2008).
AIS has become known as an area of computer science and engineering that
uses immune system metaphors for the creation of novel solutions to problems
(de Castro & Timmis, 2002).

The natural immune system consists of millions of immune cells performing vari-
ous functions throughout the body, some identify various perturbations in the body’s
internal environment and produce appropriate response(s) to eliminate or reduce the
effect of the perturbation. This perturbation can be the affect of an invasion from
infectious body(s), cellular damage, unusual cellular behaviour (cancerous cells) or
unusual chemical in-balance in the body. The immune system provides a response
by balancing the degree of perturbation, the strength of the detected infection and
the type and severity of the immune response. This balance is to prevent the immune
system from attacking its own-self that could create an auto-immune response. This
balance ensures that the homeostasis of the body is maintained despite perturbation
occurring to the body. We argue that these functions provided by the immune sys-
tem are essential for the creation of homeostatic operation of robotic systems, where
long term autonomy is required and tolerance to errors is essential.

Robotic swarms and robotic organisms, the subject of this book, falls within the
context of collective robotics system. These systems can be defined as a society
of robots that coordinates its behaviour via interaction and cooperation with other
robots in the society. This allows for the robotics system to achieve a collective goal.
Two important issues that need to be addressed for these system are the assurance
that (1) the stability of the collective system is maintained and (2) each robot in
the collective provides useful information to afford stability. These two issues are
important as the robots are constantly exposed to changes in the environment. Such
changes can alter the states of the robot itself, and the entire organism. Therefore,
it is necessary to regulate and modulate such changes so that the changes will not
significantly affect the system behaviour in a detrimental way such as to effect the
accomplishment of the system goal.

This chapter outlines a method, that we argue, is able to provide artificial im-
munity to both swarm and organism level robotic systems. Such artificial immu-
nity affords homeostasis at both the individual and collective level by means of
fault tolerance in a variety of guises. The idea of immune inspired homeostasis
is not new, indeed, the authors have proposed an outline of such an approach in
(Owens et al., 2007).We build on those ideas and propose a vision of an immune-
inspired framework for homeostasis in the context of modular robotic systems.

4.4.1 A Biological and Engineering Perspective

4.4.1.1 Robustness, Self-organisation and Adaptation

Robustness, self-organisation and adaptation are key properties that have been a
source of inspiration for research in swarm robotic systems. From a biological
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perspective, robustness is a fundamental characteristic (Kitano, 2007). In biologi-
cal systems robustness is defined by (Kitano et al., 2004) as:

“robustness is a property that allows a system to maintain its functions despite
external and internal perturbations. It is one of the fundamental and ubiqui-
tously observed systems-level phenomena that cannot be understood by look-
ing at the individual components. A system must be robust to function in
unpredictable environments using unreliable components.”

Self-organisation, or decentralised control, is widespread in biological systems,
including cells, organisms, and groups that possesses a large number of sub-
units, and these subunits lack either the communicational abilities or the com-
putational abilities, or both, that are needed to implement centralised control
(Camazine et al., 2001). Self-organisation is defined by (Camazine et al., 2001) as:

“a process in which pattern at the global level of a system emerges solely from
numerous interactions among the lower-level components of the system. The
rules specifying interactions among the system’s components are executed
using only local information, without reference to the global pattern.”

Adaptation is a basic phenomena in biology (Williams, 1966), whereby an organ-
ism becomes better suited to its habitat. The term also may refer to the adaptation
of the organism, which is especially important for an organism’s survival. For ex-
ample, the adaptation of horses’ teeth to the grinding of grass, or their ability to run
faster and escape from predators. Such adaptations are produced in a variable pop-
ulation by the better suited forms reproducing more successfully, that is, by natural
selection (Williams, 1966). As discussed in (Williams, 1966), adaptive traits may
be structural, behavioural or psychological. In addition, (Williams, 1966), mentions
that structural adaptations are physical features of an organism such as shape, body
covering, defensive or offensive armament. Behavioural adaptations are composed
of inherited behaviour chains and/or the ability to learn: behaviours may be inherited
in detail (instincts), or a tendency for learning may be inherited for example search-
ing food, mating and vocalisation. Finally, physiological adaptations may permit the
organism to perform for instance making venom or secrete slime (Williams, 1966).
What is interesting to note is that there are multiple timescales of adaptation, rang-
ing from short term to long term. This idea of multiple timescale adaptation, is
something that we wish to exploit in our robotic system.

4.4.1.2 Swarm Robotics

It has been argued that the key benefit of swarm robotics approach is robustness,
which manifests itself in a number of ways (Şahin & Winfield, 2008). Firstly, as
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a swarm of robots consists of a number of relatively simple, and typically, ho-
mogeneous robots which are not pre-assigned to explicit roles or tasks within the
swarm, the swarm should self-organise, or dynamically restructure, the way in-
dividual robots are arranged. Secondly, it is claimed that the swarm approach is
highly tolerant to the failure of individual robots. The failure of an individual robots
should, in principle, not affect the goal of the system as a whole. Thirdly, due to
decentralised control in a swarm there is, in principle, no common-mode failure
point or vulnerability in the swarm. Indeed, it could be said that the high level of
robustness evident in robotic swarms comes for free in the sense that it is intrinsic to
the swarm approach, which contrasts with the high engineering cost of fault toler-
ance in conventional robotic systems (Şahin & Winfield, 2008). However, this view
is potentially problematic, as if the underlying behaviours of the swarm were not
designed carefully, this could have major impact on the performance of the swarm,
irrespective of the size. Furthermore, (Şahin & Winfield, 2008) highlight a number
of challenging problems in swarm robotics systems that need attention, namely algo-
rithm design, implementation and testing, and, analysis and modelling. In algorithm
design, swarm roboticists face the problem of designing both the physical morphol-
ogy and behaviours of the individual robots such that when those robots interact
with each other and their environment, the desired overall collective behaviours will
emerge. At present, there are no principled approaches to the design of low-level
behaviours for a given desired collective behaviour. Secondly, in implementation
and test: to build and rigorously test a swarm of robots in the laboratory requires
a considerable experimental infrastructure. Real-robot experiments thus typically
proceed hand-in-hand with simulation and good tools are essential. Thirdly, in anal-
ysis and modelling: a robotic swarm is typically a stochastic, non-linear system and
constructing mathematical models for both validation and parameter optimisation is
challenging, this again is a topic contained within this book, see Sect. 1.3.

Winfield et al (Winfield & Nembrini, 2006) claim in their paper that even though
swarms exhibit high level of robustness, such claims are frequently not supported
by empirical or theoretical analysis. Winfield et al also raise questions regarding
robustness: such as what does robustness actually mean and how can one measure
robustness or the fault tolerance of a robotic swarm. In answering those questions,
(Winfield & Nembrini, 2006) explores fault tolerance in robot swarms through Fail-
ure Mode and Effect Analysis (FMEA)1 illustrating by a case study of wireless
connected robot swarm, in both simulation and real laboratory experiments.

There is a clear connection between these issues raised in the context of swarm
robotics, and collective robotics (the subject of this book). Issues of fault tolerance
are paramount in either application, and the ability of systems to detect errors, and
recover from those errors is central to survivability of the organism or swarm.

1 A failure modes and effects analysis (FMEA) is a procedure for analysis of potential fail-
ure modes within a system for classification by severity or determination of the effect of
failures on the system. Failure modes are any errors or defects in a process, design, or item,
leading to the studying the consequences of those failures to the systems.
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4.4.1.3 Fault Tolerance and Dependable Swarms

From an engineering standpoint, the design of complex distributed systems based
upon the swarm intelligence paradigm is compelling but problematical. Due to the
characteristics of the system itself where no hierarchical command and control
structure are needed and hence no common mode of failure point or vulnerabil-
ity can be identified. Each individual agent makes decisions autonomously, based
upon local sensing and communication (Bonabeau et al., 1999). Systems with these
characteristics could, potentially, exhibit very high levels of robustness, in the sense
of tolerance to failure of individual agents and much higher levels of robustness
(Winfield et al., 2006b). Simple units can, in fact, collaborate in achieving their
common goal without the need of being aware of the rest of the group. Resilience
achieved in this way makes the paradigm very appealing in many applications; how-
ever one or more faulty robots may jeopardise the success of the overall mission. As
noted by (Winfield et al., 2006b), there are two reasons for undesirable behaviours
in swarm robotics: random errors, or systematic (design) errors . Random errors are
those due to hardware or component faults. The likelihood that random errors cause
undesirable behaviours can be reduced, in the first instance, by employing high re-
liability components (Winfield et al., 2006b). However, these systems also need to
be fault tolerant, through redundancy for example. Systematic errors are those as-
pects of the design that will allow the system to exhibit undesirable behaviours.
Analysis of systematic errors for the swarm as a whole is much more problem-
atical, particularly if the desired behaviours are emergent (Winfield et al., 2006b).
(Winfield et al., 2006b), proposed the idea of dependable swarm, which is
described as:

“complex distributed system, designed using the Swarm Intelligence
paradigm, which meets standards of analysis, design and test that would give
sufficient confidence that the system could be employed in critical applica-
tions” - Alan Winfield

As highlighted by (Winfield et al., 2006b), in the swarm intelligence literature,
robustness sometimes refers to simplicity and hence functional and mechanical re-
liability of simple, even minimalist robots that comprise a swarm. Sometimes, ro-
bustness also refers to the ability of the swarm to cope with a demanding operational
environment (Mondada et al., 2002) but most often robustness refers to the swarm’s
tolerance to the failure of one or more individual robots (Kazadi et al., 2004).
Thus, (Winfield & Nembrini, 2006) summarised that a robot swarm is robust if the
swarm is:

• a completely distributed system and therefore has no common-mode failure point
• comprised of simple and hence functionally and mechanically reliable individual

robots
• tolerant to noise and uncertainties in the operational environment
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• tolerant to the failure of one or more robots without compromising the desired
overall swarm behaviours

• tolerant to individual robots who fail in such a way as to thwart the overall desired
swarm behaviour.

4.4.1.4 Artificial Immune Systems

Artificial Immune Systems (AIS) have been defined by (de Castro & Timmis, 2002)
as:

“adaptive systems, inspired by theoretical immunology and observed immune
functions, principle and models, which are applied to problem solving.”

The immune system is a complex system that undertakes a myriad of tasks.
The abilities of the immune system have helped to inspire computer scientists to
build systems that mimic, in some way, various properties of the immune system.
This field of research, Artificial Immune Systems (AIS), has seen the application
of immune inspired algorithms to problems such as robotic control, network intru-
sion detection, fault tolerance and machine learning (Hart & Timmis, 2008). From
a computational point of view, the immune system has many desirable properties
that might be emulated in computer systems. These properties are such things as
robustness, adaptability, diversity, scalability, multiple interactions on a variety of
timescales and so on. The main developments within AIS, have focussed on four
main immunological theories: clonal selection, immune networks, negative selec-
tion and danger theory (Timmis et al., 2008). Researchers in AIS have concentrated,
for the most part, on the learning and memory mechanisms of the immune system
inherent in clonal selection and immune networks, and the negative selection princi-
ple for the generation of detectors that are capable of classifying changes in self, and
ideas from innate immunity, for correlating multiple signals over time to attempt to
identify breaches in computer networks (Timmis et al., 2008). In our work, we have
chosen to focus on both the innate and adaptive aspects of the immune system, so
we briefly outline some basic immune system terminology to prepare the reader for
the rest of the chapter.

The vertebrate immune system (the one which has been used to inspire the vast
majority of AIS to date) is composed of diverse sets of cells and molecules. These
work in collaboration with other systems, such as the neural and endocrine, to main-
tain a steady state of operation within the host: this ability is termed homeosta-
sis. The role of the immune system is typically viewed as one of protection from
infectious agents such as viruses, bacteria, fungi and other parasites. On the sur-
face of these agents are antigens that allow the identification of the invading agents
(pathogens) by the immune cells and molecules, which in turn provoke an immune
response. There are two basic types of immunity, innate and adaptive. Innate im-
munity is not directed towards specific pathogens, but against any pathogen that
enter the body. The innate immune system plays a vital role in the initiation and
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regulation of immune responses, including adaptive immune responses. Specialised
cells of the innate immune system evolved so as to recognise and bind to common
molecular patterns found only in microorganisms. However, the innate immune sys-
tem is by no means a complete solution to protecting the body.

Adaptive, or acquired immunity, is directed against specific invaders, with adap-
tive immune cells being modified by exposure to such invaders. The adaptive im-
mune system mainly consists of lymphocytes, which are white blood cells, more
specifically B and T cells. These cells aid in the process of recognising and destroy-
ing specific substances. Any substance that is capable of generating such a response
from the lymphocytes is called an antigen or immunogen. Antigens are not the in-
vading microorganisms themselves; they are substances such as toxins or enzymes
in the microorganisms that the immune system considers foreign. Adaptive immune
responses are normally directed against the antigen that provoked them and are said
to be antigen-specific.

The clonal selection theory (CST) (Burnet, 1959) is the theory used to explain
the basic response of the adaptive immune system to an antigenic stimulus. It estab-
lishes the idea that only those cells capable of recognising an antigenic stimulus will
proliferate, thus being selected against those that do not. Clonal selection operates
on both T cells and B cells. In the case of B cells, when their antigen receptors (anti-
bodies) bind with an antigen, the B cell becomes activated and begins to proliferate
producing new B cell clones that are an exact copy of the parent B cell. The clones
then undergo somatic hypermutation and produce antibodies that are specific to the
invading antigen (Berek & Ziegner, 1993). After proliferation, B cells differentiate
into plasma cells or long-lived B memory cells. Plasma cells produce large amounts
of antibodies which will attach themselves to the antigen and act as a type of tag for
other immune cells to pick up on and remove from the system. This whole process
is known as affinity maturation.

Memory cells help the immune system to be protective over periods of time. In
the normal course of the evolution of the immune system, an organism would be
expected to encounter a given antigen repeatedly during its lifetime. The initial ex-
posure to an antigen that stimulates an adaptive immune response is handled by
a small number of B cells, each producing antibodies of different affinity. Storing
some high affinity antibody producing cells (memory cells) from the first infection,
so as to form a large initial specific B cell sub-population for subsequent encoun-
ters, considerably enhances the effectiveness of the immune response to secondary
encounters. Such a strategy ensures that both the speed and accuracy of the immune
response becomes successively stronger after each infection.

Danger theory attempts to explain the nature and workings of the im-
mune response in a way different to the more traditional clonal selection view
(Matzinger, 1997). Matzinger criticises this idea, as she states that observations
demonstrate that it may sometimes be necessary for the body to attack itself and
conversely the immune system may not attack cells it knows to be foreign (this is
not possible under the classical clonal selection theory). Matzinger argues a more
plausible way to describe the triggering of an immune response is a reaction to a
stimulus the body considers harmful. This might be seen as a very small change but
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in reality this is real shift in thinking about how the immune system responds to
pathogens. In essence, this model allows for foreign and immune cells to exist to-
gether, a situation impossible in the traditional standpoint. When under attack, cells
dying unnaturally may release a danger signal, that disperses to cover a small area
around that cell: a danger area. It is within this and only within this area that the
immune system becomes active and will concentrate its attack against any antigen
within it. The complex interaction of B-cells, dendritic cells, and T-cells takes place
in lymph nodes which are located throughout the body.

The immune system is complex, and there are many actors and processes within
the immune system. For our work, we have decided to focus on a number of areas
which can be combined to a unique fault tolerance mechanism that has the ability
to detect many types of errors, over multiple time-scales, and also has the ability to
initiate repairing mechanisms within the robotic collective.

4.4.1.5 Homeostasis and Fault Tolerance: Requirements for an Artificial
Immune System

Fault tolerance is defined as the “ability to achieve dependability or reliance when
the system is functioning with faults” (Timmis et al., 2002). A fault is hypothesised
as the cause of error. An error is part of the system that is liable to lead to subsequent
failure. A failure occurs when a system service deviates from its expected behaviour.
Fault tolerance consists of:

1. Error processing: aims to identify an error in the system before such error can
cause failure. Error processing consists of error detection and error diagnosis that
pin-points the cause of a fault.

2. Fault recovery: error recovery that provides methods of recovering the system to
normal behaviour when an error is detected and processed.

3. Fault treatment: prevents faults from re-occurring in the system after its initial
error detection.

Previous work in (Owens et al., 2007) outlines the concept of immune homeosta-
sis in the context of electronic systems and fault tolerance. The authors develop the
concept of three desirable properties for homeostatic control systems, taken from
(Owens et al., 2007):

• Prediction. Vander (Vander et al., 1990) determines this as feed-forward regulation.
In response to an environmental change the homeostatic control system manipu-
lates the internal environment in order to avoid a deviation from a set point before
it has happened.

• Innate and Adaptive Response. The homeostatic control system is built up of innate
and adaptive reflexes which are used to bring homeostatic variables back to set
points. The innate reflexes are involuntary, unpremeditated and unlearned, and are
instigated in response to a particular stimulus, internal or external. As one would
imagine, adaptive reflexes are learned to correct unforeseen deviations from set
points. Vander also states that all reflexes, innate or adaptive, are subject to further
learning.
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• Acclimatisation. Although encompassed by both adaptive responses and re- set-
ting of set points, it is an important enough property in its own right. It repre-
sents the ability for a set point to semi-permanently change in response to semi-
permanent change in the environment. To aid explanation we take the analogy in
(Vander et al., 1990) of a runner who is asked to run for 8 consecutive days in a hot
room (a room hotter than the runner’s normal environment). Details of the runner’s
sweating are recorded. By the 8th day the runner starts to sweat earlier and in far
greater quantities than the 1st day, this allows to the runner to limit the deviation
of the temperature homeostatic variable from its set point. The “sweating” homeo-
static set point has acclimatised to the new environment. When the runner returns
to running in the original environment the set point will, over a number of days,
acclimatise back to the original.

In (Owens et al., 2007), building on their early desirable properties for a home-
ostatic systems, the authors provide an outline of what such an artificial system
needs to meet those properties. First, the control system must have the ability to
arbitrate, by which is meant that given a certain error and operational state of the
unit, the control system must be able to decide (arbitrate) between various possible
responses. Second, the control system will be able to correlate between the sensor
values and any homeostatic error. Third, the control system should be able to learn
by experience and improve over time. Fourth, the control system should be capable
of prediction, that is be able to identify ahead of time the consequence of an er-
ror and be able to recommend corrective action and finally, the system should have
the ability to acclimatise, which is linked to the ability of the system to learn, in
that should the normal operational environment change over time, then the control
system should adapt to that change without raising an alarm of an error.

In this chapter, we do not propose a control system in the classic sense, but a
system that sits between the world of the sensors (discussed in Sect. 3.2) and the
behaviour based controller discussed in Sect. 4.1.

4.4.2 An Immune-inspired Architecture for Fault Tolerance in
Swarm and Collective Robotic Systems

4.4.2.1 Overview of Architecture

Fig. 4.35 outlines, at a high level, our proposed framework. We split the framework
into two separate levels: innate and adaptive, around the concept of an artificial
lymph node. The natural immune system can be conceptually divided into two lay-
ers, known as the innate and adaptive immune system. The innate level is akin to
a pre-programmed ability to identify specific patterns which then results in specific
responses. The adaptive level is akin to a non-specific response which adapts over
the life-time of the host, which in some cases may improve over time. It is envis-
aged that the AIS is encoded in a genome that is held within the robotic unit, and
this itself will adapt over time. More information on the genome can be found in
Chapter 5.
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Fig. 4.35 A Lymph Node Framework to be instantiated on a single robotic unit. Input is de-
rived from the world model, learnt context information, and genome information and passed
to the innate layer. Evolutionary information is also passed to the adaptive layer to act as a
reinforcement feedback during the learning process
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Fig. 4.36 Mapping the Lymph Node Framework to Functional Lymph Node Areas. Here
input is the same as for Fig. 4.35, but we we show the receiving agents of the external signals,
the dendritic cells, B-cells and T-cells (genome information only)

To clarify what is meant by anomaly detection we define the following three types
of anomaly:

• type 0: There are some constraints on a system’s operation for which we have a
priori knowledge. An example could be the valid operating temperatures for a
component in the system. We may build these constraints directly into our innate
anomaly detection system. We determine a violation of one of these a priori
constraints a type 0 anomaly.
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• type 1: We wish to evaluate the probability of readings from a set of sensors
conditional on the history of those sensors. That is, are the new sensor readings
“similar to” recent sensor readings. We detect a type 1 anomaly if new sensor
readings are sufficiently different from their history (e.g. below a threshold prob-
ability, or far away under an appropriate metric).

• type 2: The detection of a type 1 anomaly relies on the assumption that the history
of sensor readings provides a good model with which to evaluate new sensor
readings. Consequently, we wish to test the validity of this assumption and we
may do so by tracking macroscopic changes in the sensor history. When the
macroscopic properties of the history of sensor readings are too large or occur
too quickly we may be unable to perform type 1 detection. Further, large and fast
macroscopic changes can be an indicator of a large environmental change or that
a relationship between multiple sensors has broken. As such, we detect a type 2
anomaly when there is an appropriately large or fast change in a history of sensor
readings.

Our innate anomaly detection system performs type 0 anomaly detection and our
adaptive anomaly detection system performs type 1 & type 2 anomaly detection.

Examples of the three anomaly types can be given in terms of detecting the ambi-
ent light level on the outside of a building. The light sensor may have the operational
constraint that its readings are only reliable in a restricted range of light levels, out-
side this range the sensor may be inaccurate. A type 0 anomaly should be detected
if the sensor provides a reading that falls outside the region of reliability. Next, if
a new sensor reading reports a dark ambient light and all previous light readings
report very bright conditions it is likely that the sensor is faulty so a type 1 anomaly
is detected. Then type type 2 anomalies are concerned with tracking the changes
in light from day to night. There is an expected rate at which the ambient light
level will change, deviations from this rate could suggest a faulty sensor or an unex-
pected change in the environment and so a type 2 anomaly. In this situation the rate
of change of light levels which cause a type 2 anomaly are slow enough that a type
1 anomaly is never detected. That is, the changes are slow enough that every sensor
reading is similar to the other readings in surrounding time window used for type 1
detection.

Such detection can be used at two levels in the collective. First, it can be useful
at the individual level, as identifying potential problems within a unit allows the
AIS to inform the controller that certain sensors might not be reliable, so alternative
strategies might be employed, or alternative data sources might be used as a conse-
quence of the error. Importantly in the context of collective robotics, if we identify
a malfunctioning robot before it joins the collective, a decision can be made disal-
lowing the robot joining the collective: thus protecting the overall stability of the
organism. Likewise, during organism function, if a faulty robot is identified, then
it might be able to be removed from the organism in an attempt to preserve the
overall functionality of the organism. We now explore how such a system might be
implemented.
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4.4.3 Innate Layer

Our innate component, Fig. 4.35, consists of a process of anomaly detection that
takes data from internal and external sources. The innate system only adapts on
an evolutionary timescale, that is directed by the genome. As such, the transfer of
immunological genetic information between robotic units can be implemented. We
make use of the innate immune system antigen presenting cell (APC), or Dendritic
Cell (DC) analogy (Mokhtar et al., 2008), see Fig. 4.36. This layer will allow for an
effective “filtering” of the data for detecting potential anomalies in the data stream,
in this case of type 0 anomalies. The innate layer has the ability to correlate a va-
riety of input sources over time and identifies the presence of an error based on the
correlations of these signals. The innate layer also has the ability for prioritising an
alarm, by indicating the severity of the danger and; learning by the incorporation of
new knowledge over time on an evolutionary timescale via changing at the genome
level. In the context of Fig. 4.35 we now describe, at a functional level, the operation
of our proposed system.

At the innate level, which is different from a more traditional approach for
anomaly detection, we do not need to define the normal operational state before-
hand, but we do need to define operational boundaries of the components being
monitored, hence type 0 error detection. Operational boundaries of the components
can be defined from the component’s datasheet or the module’s parameters. The
innate AIS will perform this detection by correlating these parameters values over
time, and attempt to detect the occurrence of errors based on these values. Therefore,
faults and other environmental changes (anomaly) that can affect the performance
of the robotic unit will be identified according to the changes in the operational ac-
tivity of the unit over a certain period of time. Should such an anomaly be detected,
a message is passed to the fault identification process (part of the adaptive AIS),
and also to the adaptive learning process and is used to help make decisions on any
remedial action that should be taken.

Our proposed approach, produces an output value (DangerSig) that provides a
normalised collective indication that the weighted sum, OC(t) of the three signals
(PAMP (P) , danger (D) and safe signals (S)) (Eq. 4.20) is greater (or lesser, de-
pending on its application) than a threshold value within a certain time window.
These three signals assimilate to how the biological dendritic cells discriminate self
and non-self antigens. Dendritic cells differentiate to its full maturation state when
it receives more signals corresponding to non-self antigen: the PAMP and danger
signals than the signal corresponding to self antigen: the safe signal. PAMP signal
is the signal produced when the innate immune cell detects PAMPs or Pathogen-
Associated Molecules Patterns. Danger Signals are signals produced when cells die
necrotically. Safe signals are signals produced because of cells apoptosis.

This weighted sum provides an indication of the state of the component or mod-
ule at time t:

Oc(t) =
wpP(t)+ wsS(t)+ wdD(t)

wp + ws + wd
(4.20)
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We then apply a threshold to Oc(t):

Dτ(t) =

{
0 Oc(t) < τ
1 Oc(t) ≥ τ

(4.21)

We can now describe the danger count over a time window (t −ω) to (t):

DangerSig =
1

ω+ 1

ω

∑
i=0

Dτ (t −ω) (4.22)

We must define the PAMP, danger and safety signals.

1. PAMP (P) provides an indication of definite anomaly in the module.
For example, if we are monitoring the power module of the unit: PAMP = 1 when
the remaining charge capacity for the robot falls below a threshold. The threshold
could be sensibly defined by statistics of the dissipation rate of the power module.

2. Danger signal (D) provides an indication of possible anomaly in the monitored
input space of a module. If it is the case that certain sensors in the system should
exhibit a slow rate of change then a fast rate of change in these sensors could be
a good indication of danger. Giving an example relating to the power module,
a high rate of change in the dissipation rate could be a good indication a faulty
power module or component in the system and so a good choice for a danger
signal.

3. Safe signal (S) provides an indication of normal behaviour (homeostasis) to the
module. Safe signal is calculated based on the input values.

DangerSig is a normalised value in the range [0,1] which indicates the number
of times the value of OC is less than a threshold value within a time window. If
the value of DangerSig is 1, then this provides an indication, that during the time
window, there is zero confidence of anomalous behaviour in the monitored module,
i.e. everything is operating as it should be. If the value of DangerSig decreases,
the confidence of anomaly present increases. If DangerSig is 0, therefore, there are
definite anomalous behaviour occurring in the module.

4.4.4 Adaptive Layer

The adaptive artificial layer, Fig. 4.35, is analogue to the collaborative effort of B-
cells and T-cells, key actors in the natural immune system’s adaptive layer. Our
system, therefore, employs two distinct and complimentary methods of identifying
anomalies, one taking inspiration from the behaviour of B-cells, the other takes in-
spiration from the operation of T-Cells. The B-cell approach maintains a B-cell pop-
ulation and is akin to instance based learning approach where actual instances of data
are stored in a feature vector and are used to compare against the current readings
from the robot sensors. We employ a time window, similar to the approach taken in
(de Lemos et al., 2007) where we build up a population of detectors capable of iden-
tifying potential anomalies based on examples seen in the past and learnt over time.
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The T-cell approach takes inspiration from the T-cell receptor and performs estimates
of the densities associated with the distributions of sensor values. A type 1 anomaly
occurs when a new sensor reading has a probability below a threshold with respect
to the distribution estimate. The type 2 anomaly is then defined through statistics on
this probability distribution estimate, such as the rate of change of the distribution.

Whilst the two approaches are inspired by complimenting and interacting im-
munological concepts they are fundamentally related by two distinct approaches
that arise when learning from data. Many anomaly detection algorithms are con-
cerned with learning/encoding the probability that a sample point will fall within a
region R of input space. As shown in (Duda et al., 2001) is R is sufficiently small
this probability can be approximated by K/NV , with K the number of sample points
that fall in R; N the sample size; and V the volume of R. Then, two possible meth-
ods of estimating K/NV are: fix V and count the number of points, K, that fall in
R; or fix K and calculate how large V , the size of R, must be to contain K points. If
we follow the first method we arrive at histogram and Parzen-window density esti-
mation techniques which are related to our T cell approach. If we follow the second
method we arrive at k-nearest neighbour techniques which are closely related to the
B cell approach.

For both systems, the mean-time-to-failure (MTTF) is an important considera-
tion. This is simply the time between when an anomaly (error) is detected and the
failure manifesting itself in the system. Clearly, the MTTF needs to be of a suitable
time window to allow for corrective action to be undertaken.

In terms of the requirements of an anomaly detection system outlined in Sect.
4.4.2, the adaptive layer can correlate by taking into account various signals over
varying time windows (some of which comes from the innate system) and identify-
ing the correlation between inputs and errors; learning via the incorporation of new
knowledge into a pool of “detectors” that affords the system the ability to identify
errors that it has not previously seen; prediction in that artificial T and B-cells can
identify, with a suitable mean-time-to-failure the occurrence of a fault through the
early identification of an error and finally acclimatisation as the adaptive layer is
endowed with the ability to alter the way in which it detects anomalies depending
on environmental conditions. In the adaptive layer, as seen in Fig. 4.35, we employ
not only anomaly detection, but also a process of learning and tolerisation which af-
fords the adaptive system with the ability to improve over time. As the robot moves
and undertakes tasks in its environment, the robot should learn to define what it con-
siders as its normal operating states; the robot learns to classify the normal range of
input and output values when it is performing a task. We now describe at a high-level
how the B-cell and T-cell based AIS will operate.

4.4.4.1 Dynamic Clonal Selection Based Artificial Immune System

An AIS which takes its inspiration from discrimination abilities of the B lymphocyte
(B Cell) can provide a realisation of anomaly detection problems type 1 with scope
to address type 2 problems.
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Our dynamic clonal selection anomaly detection system for robots, dynamicCSR,
is based on concepts on a combination of clonal selection and B-cells as outlined in
Sect. 4.4.1.4. We adopt an instance based approach, where we maintain a population
of self-detectors (analogous to B-cells); with each detector encoding for a feature
vector of the system that represents a particular normal state of a robotic unit (or
self state) when performing a task. This differs from the biological B-cells which is
used to detect non-self antigen.

The dynamicCSR approach allows for variability to be introduced into the
population of detectors via an evolutionary process based on clonal selection:
where new instances are created that are slight variations of previous self-detectors.
With this, the AIS affords the robot the ability to identify new errors that it may
not have seen before. We now explore in more detail how this would be achieved,
taking into account the AIS framework outlined in (de Castro & Timmis, 2002).

Representation
We discuss two aspects of representation: the antibody which is a representation of
the robot states and the antigen a representation of the input values from the robot
sensors.

Antibody: An artificial B-cell (self-detector) consists of an array of values that de-
scribes the state of the system during a particular task. This array of values as-
similates to the antigen receptor of the B-cell, which is used to detect the antigen
presented to the cell. The antigen for the self detector is the current state of the robot
illustrated in Fig. 4.38.

The receptor array, for example, might include, (i) the type of task being under-
taken (Task No.) and the power demand required to perform a task (Power Out),
(ii) the status of the components and/or modules monitored by the innate layer or
DangerSigN; with N being the component and/or module identification number, and
(iii) the actuation output when performing the task, ActuationM; where M is the ac-
tuation identification number.

We propose the use of a fuzzy approach to the representation to allow for the
capturing of the uncertainties inherent in the data. Definition of fuzzy set: If U is a set
of ordered pairs of elements denoted generically as u and its respective membership
function μA(u), then a fuzzy set, A is defined as Eq. (4.23) (Zimmermann, 2001):

A = (u,μA(u))|u ∈ U (4.23)

Example of a membership function for a fuzzy set is the Gaussian membership
function, Eq. (4.24), where c and σ is the centre and width of the fuzzy set A.

μA(u) = exp(− (c − u)2

2σ2 ) (4.24)

An example of a self-detector is given in Fig. 4.37.
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Task Power Actuation0 .... ActuationM DangerSig0 . . . DangerSigN Health
No. Demand Measure

Fig. 4.37 An example of a self-detector. N is the number of components monitored by the
innate layer and M is the number of actuation modules for the robot.

The actuations outputs can either be fuzzy or binary in value, and would indicate
if a module is either on or off. Examples of fuzzified outputs are:

• Motor output: fuzzy set 1 with μ(speed) = 1 at speed = slow, set 2 with
μ(speed) = 1 at speed = medium and set 3 with μ(speed) = 1 at speed = f ast.

• Tilt angle: fuzzy set 1 with μ(tilt) = 1 at tilt = 0.0◦, set 2 with μ(tilt) = 1 at
tilt = 22.5◦, set 3 with μ(tilt) = 1 at tilt = 45.0◦ and set 4 with μ(tilt) = 1 at
tilt = 90.0◦.

Each self-detector includes a measurement of “health”, Hd . The value of Hd is
calculated at each sampling time point. The DangerSigN values from the innate
layer (HM(t)) when the robot is performing that particular task contribute to the
calculation of Hd ; N is the identification number of the monitored module. Note
that there are two types of Health Measure to the adaptive layer:

• Health measure for the system (robot), HM(t), which provides for the descrip-
tion of health to the system at a sampling time. This is calculated from the
DangerSigN values from the innate layer.

• Health measure for the detector, Hd(t), that provides for an adaptive measure to
the self-detector in the pool. This is calculated based on the difference in affin-
ity of the detector with its Antigen Vector, ΔHd . This measure is defined as the
Activity Measure, AM and AM is the derivative of the affinity, A of the antigen
towards the self detector over time, ΔHd = AM = dA

dt .
If ΔHd is positive: indicating a positive increase in health to the detector, then

AM is also positive. This reinforces the healthy detector. If ΔHd is negative, AM

is also negative, thus assimilates to natural cell death occurring to the biological
cell. ΔHd can therefore provide for an adaptive measure to the detector whereby
it can be use to quantify if the detector still falls within the steady state region of
the system.

If a self-detector’s Hd ≤ 0, this self-detector no longer represents the normal
state of the robot, and has a probability of being removed from the pool. The pool
is updated by the algorithm described below. Self-detectors with Hd ≥ϒ can be
considered as stable states of the system.

Antigen: To ensure that the robot is performing within acceptable operational con-
ditions, system vector of the robot, at sampling time t, will be presented as the
antigen for self detector. Example of the antigen for the adaptive layer is illustrated
in Fig. 4.38.
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Task Power Actuation0 .... ActuationN
No.(t) Demand(t) (t) (t)

Fig. 4.38 Antigen Vector.

Affinity Measure
A self detector provides a representation of the system vector of the robot when the
robot is performing a task and is in a particular state. If the Task No. and Power
Demand of the antigen (Fig. 4.38) and an antibody (Fig. 4.37) match, affinity, A
between an antigen and an antibody is defined as:

A =
N

∑
i=0

ai

N
(4.25)

with:

ai = 1 −
∣∣∣∣Di

Mi

∣∣∣∣ (4.26)

where: Di = Antigen Vector’s Actuationi - Self-Detector’s Actuationi.
Mi = Maximum difference between the two values. For example: if Actuationi is
[−x,x], Mi = 2x.
i is the actuation identification for the robot.

If A is close to 0, 0 < A ≤ φ , a fault may have occurred in the system.

Algorithm and Processes

We employ a dynamic clonal selection process that maintains a population of self-
detectors. Algorithm 2 outlines the basic process.

DynamicCSR has the ability to predict the occurrence of an error, based on the
previous states of the robot. Antigens are constantly compared to self-detectors. If
(Hd ≥ϒ ), (HM ≥ α) and (a f f inityhigh > φ ), we say that no anomaly has occurred
in the system, else anomaly is detected. In addition, we might also be able to say
that module with DangerSigx < θ may well be the source of error. dynamicCSR
has the ability to predict the occurrence of an error by taking into account the rate
of change in the health measures associated with the detectors over time, Hd . This
affords great flexibility to the robots, as if such an error is predicted, then a mes-
sage can be sent to the controller informing them that this particular unit might be
removed from the organism, or prevented from entering the organism. To allow for
flexibility, dynamicCSR has to be able to generate new detectors, and learn or adapt
the population. For this we employ the idea of a gene library (Secker et al., 2003;
Cayzer et al., 2005). Simply put, a gene library consists of data that we can use for
mutations, or to create new detectors. This allows us to restrict possible combina-
tions of new detectors in such as way as only to allow new self-detectors that map
into possible real combinations that are possible to observe in the robotic unit. We
may employ a number of libraries that map directly to features in the self-detector.
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Algorithm 2. Dynamic Clonal Selection Algorithm for Anomaly Detection in
SYMBRION/REPLICATOR robots

Input : A = set of actuation outputs; Ds = set of DangerSig from the innate layer;ϒ health
measure threshold for a single detector; α a health measure threshold for a robot
and φ a binding threshold between an antigen and antibody

Output: M = set of memory self-detectors describing the behaviours of the robot and each
detector has a health measure, Hd and is a normalised value in the range of [0 . . .1].

Output: HM(t) = health measure of the robot and is a normalised value in the range [0 . . .1])
begin1

Perform On-line
repeat2

i = 03

forall self-detectors in M do4

Update the health of a detector (Hd(t)) according to its activity measure, AM ;5

Determine the best match self-detector (a f f inityhigh) that has the highest6

affinity against its Input;
if (Hd(t) ≤ 0.0) then Remove detector from population; else Determine the7

weakest self-detector, sel fweak;
end8

Save y number of healthy detectors in pool H;9

if a f f inityhigh then10

Calculate HM(t) according to the Ds, its best match self-detector affinity11

measure and its Hd(t) values;
Update the best match self-detector’s Hd(t) as a function of the HM(t);12

if ((HM ≥ α) and (a f f inityhigh > φ ) then13

No anomaly is detected;14

Reward this detector for correct classification of self;15

else16

Anomaly is found;17

Punish detector;18

end19

end20

if (If no match between Input and detectors) then21

New sel f is detected;22

Create a new sel f detector;23

Calculate HM(t) according to Ds and AM values;24

Calculate Hd(t) of the new detector as a function of the HM(t);25

if ((HM ≥ α) and (a f f inityhigh > φ ) then26

No anomaly is detected;27

Save the new detector to the pool;28

else Anomaly is found;29

end30

Clone and mutate randomly selected self-detector(s) in H, SDmutate31

if (M has no empty self-detector) then Replace SDmutate with self-detector with32

sel fweak

else Save SDmutate to an empty detector in M33

until forever34

end35
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Diversity in the pool, therefore, can be achieved by cloning the healthiest self-
detector, detector with Hd ≥ ϒ , and performing mutation on the cloned detector.
Mutation is performed on the value for one (or more than one) randomly selected
Actuationy variable(s) in the detector and on the value for the Power Demand vari-
able, using the gene library as a basis for selecting new data to be inserted in the
self-detector. The mutated values are selected from its respective immune gene li-
brary, with the values selected are from another healthier detector, detector with
Hd ≥ϒ ; irrespective of its Task No. value.

All detectors generated must go through a process of tolerisation to ensure that
the detector is still useful for defining the state of a robot. This is important because
the set of self -detectors is built online and throughout the life of the robot. This
might well be driven by feedback from the robot controller as to the usefulness, or
otherwise, of the prediction and/or detection. A new self-detector is generated when
a f f inity = 0 and HM(t) is greater than a threshold value, HM(t) ≥α . To help ensure
that an acceptable size of the pool is constantly maintained, self detector with Hd ≤
0.00 after AM is deleted from the pool and all its variables values are emptied.

When an anomaly is detected, the recommendation of response is produced by
selecting the best “identified” response from the pool of self detectors. The best
“identified” response is the actuation values provided in variables Actuationy that
has the closest matching DangerSigx values but of a better Hd value.

This process is continual, with new detectors being generated, old ones being
removed. The effect is a dynamic population of detectors that affords a predictive
ability to the robotic units.

4.4.4.2 T Cell Signalling Inspired Anomaly Detection

An AIS which takes inspiration from discrimination abilities of the T lymphocyte
(T Cell) can provide a realisation of anomaly detection problems type 1 and type 2.

The T cell (another important agent in the adaptive immune system) must dis-
criminate between “self” and “non-self” molecules on the surface of a antigen-
presenting cell (APC). The discrimination abilities are remarkable, a T cell can
reliably detect “non-self” despite this signal comprising only 0.01 − 0.1% of the
total presented by an APC (Germain & Stefanova, 1999). The discrimination is per-
formed via the T Cell Receptor (TCR). There is evidence that this discrimination
ability is partially explained by the specificity of the TCR and partially explained
by the complex and tunable information processing pathways emanating from the
TCR (Germain & Stefanova, 1999).

In (Owens et al., 2010) Owens et al. develop computational models of the
TCR signalling pathways which elucidates the T Cell’s discrimination abilities. In
(Owens et al., 2009) Owens et al. develop an AIS inspired by this TCR signalling to
produce an anomaly detection algorithm which addresses type 1 and type 2 problems.
The modelling work revealed the conceptually important ideas of TCR signalling.
These features are depicted in figure 4.39 as a generalised receptor. We will use the
term receptor to refer to computational structure that is the generalised receptor and
we will use the acronym TCR to refer to the biological T Cell Receptor. In most, the
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Fig. 4.39 The Generalised Receptor. The receptor receives in input u ∈ U and advances the
receptor position p. If p ≥ β the receptor linearly generates negative feedback which arrests
and reverses the progression of p. Should p = � then the receptor generates an activation
signal c ∈ C .

concepts associated with a receptor are features of the internal (to the T Cell) com-
ponent of the TCR. A description of the behaviour of a receptor in a computational
language suitable for AIS is as follows 2. A receptor has a position p and a length
� > 0. The initial position is set p = 0 and the receptor is said to be activated if p
reaches or exceeds � (p ≥ �). The receptor receives an input ut ∈ R+ at time t, the
receptor’s position will be advanced by a function of ut . A receptor has a negative
feedback barrier, β , if p ≥ β the receptor will linearly generate negative feedback
through variable n. The negative feedback will arrest and reverse the progression of
p. The negative feedback is generated proportional to the time period that p ≥ β and
not the displacement of p above β (p−β ). The receptor position p and the negative
feedback n are also subject to a decay, without input they will both return to zero. A
common behaviour, subject to appropriate input, is that the negative feedback will
rise to hold the receptor position at equilibrium point p = β .

In (Owens et al., 2009) it is shown that receptors can be used to exactly re-
construct a conventional anomaly detection technique on static data, namely
Kernel Density Estimation (Silverman, 1986) applied to Bayesian Classification
(Bishop, 1994). This technique exactly solves type 1 anomaly detection. Further
(Owens et al., 2009) shows that receptors may be used to address type 2 problems
when presented with dynamic data. We provide an overview of this type 2 approach:

In a system of n sensors each of which provide a real input, we write that in-
puts x1,x2,x3, . . . ∈ x = Rn occur at times t1, t2, t3, . . . ∈ R+ respectively. We define
a receptor everywhere in input space, the receptor position at point x at time t is
written as rp(x,t) and the negative feedback at x and t is similarly written rn(x,t).
We employ two important ideas from biology to determine the update of rp and rn

in response to an input ut . The input at position x will stimulate the receptor at x
and receptors in a neighbourhood around x; the negative feedback generated by a
receptor at x will spread to dampen those receptors in an appropriate neighbourhood
around x. Due to the continuous distribution of receptors a kernel function provides
a sensible description of the neighbourhood surrounding a receptor. The kernel func-
tion should be symmetric, non-negative and integrate to one, the standard Gaussian

2 For detailed biological descriptions of the behaviour of the TCR see (Owens et al., 2009),
(Owens et al., 2010)
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kernel is an example. Then rp(x,t) and rp(x, t) can be described by the following
recurrences:

rp(x,t + 1) = rp(x,t)φb +Δ(S(x,xt)− arn(x, t))
rn(x,t + 1) = rn(x,t)φd +ΔgH(rp(x,t)−β )

H(x) =

{
0 if x < 0

1 if x ≥ 0

(4.27)

Here φα ≡ 1 −Δα; S(x,xt) is an appropriately scaled kernel function; b is the re-
ceptor position decay rate; d is the negative feedback decay rate; a is the negative
feedback efficacy; g is the negative feedback generation rate; β the negative feed-
back barrier; Δ the time step granularity; H(x) is the Heaviside step function.

A type 2 anomaly can be detected if rp(x, t) ≥ �, see (Owens et al., 2009) for de-
tails of why this condition is appropriate. An intuitive explanation is as follows: the
rates associated rp and rn dictate how quickly the underlying distribution of x may
change. If the distribution changes too rapidly the negative feedback at certain lo-
cations may not have enough time to build to contain rp(x, t) < �, and so a receptor
activation will occur. If the distribution changes at or below the desired rate then the
negative feedback will adapt to always ensure that rp(x, t) < �. The intuition also
explains type 1 anomaly detection. Regions of input space in which the underlying
input distribution is below a threshold receive little or no stimulation. As a con-
sequence the receptor positions will never break the negative feedback barrier and
these regions will have no negative feedback. The parameters may then be set such
that an input to a receptor with zero negative feedback will result in the receptors
position exceeding �. Thus an input in a below threshold region will cause a receptor
activation which is the condition for type 1 anomaly detection.

4.4.4.3 Sharing of Immunological Information

One of the main drives behind the SYMBRION/REPLICATOR is to allow for robotic
units to share resources, thus allowing for the organism to function effectively. With
this in mind, we propose to allow for the sharing of “immunological” information
between units via an artificial lymphatic system. In the previous sections we have
discussed a combined innate and adaptive artificial immune system capable of af-
fording fault tolerance. To promote greater fault tolerance to the collective robotic
system such information should be shared. The artificial lymph node contained
within a robot detects an anomaly to its internal state, this is achieved either at
the innate, or adaptive level. It then provides an appropriate response to the high
level controller. If a beneficial action has been undertaken, the “immunological”
information that was responsible for that should be shared with neighbouring (or
connected) robots. If this is to be undertaken, then care needs to be taken to ensure
that new “immunological” information does not overwrite, older, but still potentially
useful information.

This can be achieved in a similar manner to how network wide learning was
achieved in work by (de Lemos et al., 2007), where a collaborative system was pro-
posed, in the context of a network of automated teller machines (ATM’s) where
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Table 4.5 Properties of granuloma formation

Properties of swarm robotics Properties of Granuloma Formation

Large number of robots Large number of cells
Few homogenous groups of robots Few homogenous cells
Relatively incapable or inefficient robots Each cell needs each other to perform the

desired task
Robots with local sensing and communica-
tion capabilities

Chemokines, cytokines

a second pool of ‘immunological” information was maintained, in that case, this
was done centrally, something that can not be implemented in a collective robotic
system. In this second pool, known as the pool of network detectors, if similar de-
tectors were also present or observed over a period of time (these are detectors that
were sent in from local error detection systems on an individual ATM) then this was
taken to be an indicative error detector and shared with other ATM’s in a logical or
physical neighbourhood. A similar process could be employed on the robotic units.
A secondary immunological memory can be maintained, that stores either danger
signal indicators from the innate AIS; detectors from the dynamicCSR algorithm,
or receptor parameters from the T Cell AIS. A period of tolerisation is required to
ensure that only relevant and useful information is preserved, and a special guard
placed on the transferring of information from this secondary pool to the primary
pool needs to be in place.

With this system in place, the robotic collective will be able to learn about new
errors both at a local and also a collective level, affording a greater degree of fault
tolerance across the collective.

4.4.4.4 Aggregation of Robots

Within our proposed AIS approach, not only will we be able to detect errors and
make recommendations as outlined above, which operate at the individual robot
level, we can also afford the swarm a collective behaviour of aggregation in order to
isolate a faulty robot, and in some cases allow for the repair of the robot, both when
operating in swarm mode or organism mode: this affords a self-healing property on
the system. For this, we take our inspiration from an immunological process known
as granuloma formation. Granuloma formation is a complex process involving a va-
riety of mechanisms acting in concert to bring an inflammatory lesion that is able to
contain and destroy intracellular pathogens. While it is crucial to host defence, inap-
propriate granulomatous inflammation can also consider as damage to host defence.
The main actors in granuloma formation are: macrophages, T-cells and cytokines.
Granuloma formation is comprised of four main steps (Sneller, 2002):
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• The triggering of T cells by antigen presenting cells, represented by certain types
of macrophages and dendritic cells.

• The release of cytokines and chemokines by such macrophages, which are es-
sentially activated lymphocytes and dendritic cells. Cytokines and chemokines
attract and retain cell populations in the area of activity, inducing their survival
and proliferation at the site of ongoing inflammation.

• The cytokine release results in the stable and dynamic accumulation of immuno-
competent cells (cells that can act in an immune response) and the formation of
an organised structure of the granuloma.

• The last phase of granuloma formation generally ends in fibrosis (large amounts
of extra tissue which could be harmful). Granuloma formation begins when an
infectious diseases enters a host.

Fig. 4.40 Simple Scenario: Formation of robots

Macrophages will “eat”
or engulf bacteria to pre-
vent the bacteria spreading,
however, the bacteria will
infect macrophages and
duplicate as much as pos-
sible. Thus, despite the
macrophages ability to stop
the infections, bacteria will
use macrophages as a “taxi”
to spread disease within the
host leading to the cell lysis
(death) or breaking down the
structure of the cell. Infected
macrophages will emit sig-
nals indicating that they are
infected. This signal will
attract other macrophages
to the site of infection, and
form a barrier around the
infected macrophage by
isolating the infected cells.
This ultimately leads to
the formation of a either
a chronic granuloma (one
that persists over time and
is not harmful to the host);
a healing scenario where the infection is removed from the host; or in the worst
case the granuloma continues to expand and will harm the host potentially leading
to death.

In granuloma formation, macrophages form a wall around the chronically in-
fected macrophages as well as the bacteria leading to the formation of granu-
loma with the objective of separating the infected and uninfected cells as well as
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separating the bacteria from the healthy cells. By separating the infected
macrophages, the robustness of the system will be maintained and the failure of
one or more cells should not affect other cells and the overall operation of the sys-
tem. We propose to take this idea into swarm and organism robotics. Key actors in
the formation of granulomas are macrophages, cytokines and chemokines which act
as the signalling mechanisms and T-cells.

Applying the granuloma formation concepts to collective robotics allows us to
perform two related tasks. First, we may isolate faulty robots. Given that above we
have described how we detect faulty robots, during swarm mode this may effect the
performance of other robots and act as an “anchor” to other robots when they are
moving. This occurs due to the local signalling mechanism employed by the robots
to allow them to navigate around the environment. Fig. 4.40 shows different phases
of aggregation used to isolate the faulty robot based on concepts from granuloma
formation.

Consider the case when a permanent fault is located in a robot, and the robot
ceases to move. We can assume that certain visual signals can be sent by the robot
which other functional robots nearby can recognise. These functional robots are
then attracted towards the faulty robot, akin to how T-cells are attracted by cytokines
emitted by an infected macrophage. A limited number of these robots then isolate
the fault robot, akin to T-cells surrounding an infected macrophage, but still move
around the fault robot so that other functional robots in the swarm are no longer
drawn to the “anchor” point that could be the faulty robot. This approach would
be ideally used when certain repairs could be initiated by the robots themselves.
Consider the case then a transient fault occurs in robot that results in a large power
drain in the robot. What is required now, is for other robots to share power with
each other to re-charge the “faulty” robot. Employing the approach above allows
us to surround the faulty robot with functional robots that are able to share power.
In SYMBRION/REPLICATOR robots, such power sharing is possible. So, once the
faulty robot is surrounded, then power sharing can being. Once a power share oper-
ation has been completed, then robots in artificial granuloma will then carry on with
the tasks they were doing before the fault was identified. This extra layer of fault
tolerance at the collective level, allows for a fully integrated fault tolerant system in
the robots, something that is unique to any collective robotic system.

4.4.5 Summary

In this chapter we have proposed an integrated Artificial Immune System for fault
tolerance in collective robotic systems. Fault tolerance in swarm and collective ro-
botics has not received the attention that is should in the past, and we see that for
such systems to be truly successful they need to be able to cope with changing envi-
ronments and the presence of faults. We proposed error detection in these systems
in the context of anomaly detection, and defined three types of anomaly: types 0, 1
and 2 all of which have different “signatures”. Type 0 are associated with deviations
from known constraints on sensors; type 1 are associated comparisons between cur-
rent sensor readings and a recent history of sensor readings; type 2 are associated
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with macroscopic changes in the history of sensor readings. Our integrated AIS ap-
proach allows us to identify all three types of anomaly. Our innate AIS identifies
type 0 anomalies by looking for deviations from known operational boundaries of
sensor values. This artificial innate immune system also provides vital information
for one aspect of our adaptive AIS. At the adaptive level, we have a two pronged
approach, one instance based anomaly detection system based on ideas taken from
clonal selection theory in immunology, and the second based on the tuning ability of
T-cells, which is translated to a statistical anomaly detection system. Both of these
systems are able to identify types 1 and 2 anomalies. Through the dual approach, we
engineer in redundancy into the fault tolerant AIS, so if one arm of the adaptive AIS
does not identify a potential error, the second will. Both of the adaptive systems are
capable of learning about new and different anomalies in an automatic manner: thus
affording a great deal of flexibility to the robotic units. In addition to the identifica-
tion of errors on a robotic unit, we have discussed how not only those units can share
learnt information, thus allowing the collective of robots to improve individual im-
mune systems, but also how ideas from the formation of granulomas in the natural
immune system can act as a metaphor for the aggregation of robots to isolate and
repair faulty robots, thus reducing the impact of failing robots on overall collective
behaviour. Once realised, this AIS will be the first fully integrated bio-inspired fault
tolerant system for collective robotics, which will allow for greater flexibility and
autonomy of the collective robotic system than was previously possible.

4.5 Structural Self-organized Control

Serge Kernbach, Olga Kernbach

Running evolutionary algorithms for evolving morphology and functionality has
an advantage of finding very specific solutions in a large search space. As demon-
strated in this book, this approach is useful for evolving topologies, kinematics and
control without a human assistance in a priori unknown situations. However, envi-
ronments normally contain many known and unknown components. For such situ-
ations, which have more known than unknown elements, the task is rather to select
and to adapt one of pre-evolved (or pre-developed) solutions instead of evolving the
required topology and functionality anew.

Combination of off-line pre-development and on-line selection/adaptaton of
structural solution has several advantages. Firstly, different topologies require kine-
matic, controlling, homeostasis, energetic and many other mechanisms. Evolving
a new organism often means not only a new topology, but also new control and
regulatory elements. This requires multiple tests and resources such as time or en-
ergy. Performing this development on-line can seriously damage the system, for
example, evolving the collision avoidance by using physical contacts with other ob-
jects can mechanically destroy the system. Embodied evolving is normally done in
a test environment, which possesses enough required resources, is less constrained
and prevents the system from damages. Secondly, due to technological constraints
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(e.g. a maximal weight of organism or reasonable kinematics) and different symme-
tries the realistic search space for middle-size organisms (up to 20-25 modules) is
not so large. As shown later in this section, only the centipede-like, planar fungi-like
and wheeled topological generators (see Tables 4.6 and 4.7) cover a large number
of scalable topologies, representing an essential part of the structural search space.

More generally, the set Φ of all possible topologies can be split into three dif-
ferent subsets: the subset of pattern-based topologies ΦP, the subset of forbidden/
not-efficient topologies Φυ , and finally the subset of specific topologies ΦS. The
largest group represents the pattern-based subset ΦP. It consists of variations of a
priori known efficient patterns φi, such as caterpillar-like, dragon-like, 4- and 6-
legs-like, or wheeled topologies. When we allow a perturbation of the pattern by
at least 1 module (i.e. one module in the dragon-like shape can be connected ran-
domly – there are 20 possible dragon-like shapes) perturbations of these 5 patterns
cover over 100 possible structures of an organism. Forbidden and not-efficient com-
binations Φυ appear when some constraints υi are not satisfied. For example, when
the modules are connected so closely to each other that they can mechanically be
destroyed, this configuration is forbidden. The set of specific combinations ΦS rep-
resents such topologies, which are unusual-but-efficient, typically they are result of
evolving in specific environments. Due to the generators structure → function →
behavior, the impact of structures on functionality and behavior is in the loop of
improvements – this represents an advantage of ΦS.

The idea of this section consists in the following observation. The set of pre-
generated patterns ΦP can be maximized so that to cover the most functionally
useful behaviors in different predictable environmental situations. For example, this
can be performed by off-line evolutionary simulation, by following a bio-inspiration
from insect or animals and in general is done in advance. These patterns can struc-
turally be perturbed by a few modules on-line. This perturbation creates some devi-
ation in the expected functionality and behavior, which can be handled by different
on-line adaptation mechanisms. Then, we assume that a subset of specific topolo-
gies ΦS (with such an on-line adaptation) is almost-functionally-equivalent to the
subset of perturbed pre-generated patterns ΦP.

In this way, the problem of evolving a specific solution is replaced by the problem
of optimizing a deviation from one of the pre-generated patterns, for which all con-
trolling mechanisms exist. Since linear optimization is very fast, for example, the
linear sum assignment problem is of O(n3) complexity (Burkard et al., 2009), this
approach can be run on-board and on-line. Moreover, optimization can be consid-
ered as a mean of synchronization between different modules (i.e. two independent
optimizers receive the same results when they use the same initial data). This allows
us to use self-organizing mechanisms for a structural regulation.

Further we focus on two issues: firstly, effective representation of topologies
and their perturbations, on-line generation by a structural generator and the related
points of scalability (Sect.4.5.1 – Sect. 4.5.3) and, secondly, on-line distributed self-
assembling (Sect. 4.5.4 – Sect. 4.5.5). Both issues complement each other. Finally,
in Sect. 4.5.6 we discuss collective memory and draw some conclusions.
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4.5.1 Representation of Structures

Since assembling and disassembling is performed on a 2D plane (due to mechani-
cal stress in docking elements, see more in Sect. 2.1), moreover since each docking
element can be connected only to one another docking element, most topologies of
artificial organisms generally belong to 2D grid-based reconfigurable systems. The
matrix-based (and correspondingly a graph-based) representation of such topolo-
gies is common in reconfigurable robotics, see e.g. (Chiang & Chirikjian, 2001),
(Salemi & Shen, 2004) or (Lau et al., 2008).
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Fig. 4.41 (a) Example of three robot modules going to aggregate into the organism,
(b) Schematic representation, (c) Initial topological matrix C.

Let us first consider the small case of three different robot modules, see Fig. 4.41,
which are going to connect to each other and to create a small organism. Each
module has a different number of docking elements and has different capabilities.
We denote placeholders for robot modules as Rt

r, where the upper index t denotes
the type of a robot, the lower index r - a sequential number of a robot. The index r is
mainly used in topological calculations, where the index t indicates functionality of



4.5 Structural Self-organized Control 309

modules. Each docking element will be denoted as xr
i , where the upper index indi-

cates a robot r and the lower index i indicates a docking element. All i are numbered
clockwise as “1” - front, “2” - right, “3” - back and “4” - left connector. In general,
this notion can be chosen in another way, see e.g. in Sect. 2.4, it does not change the
following idea of generators.

When we place all xi sequentially, a topology of the organism can be represented
by the adjacency matrix C, as shown in Fig. 4.41(c). This is a low-level representa-
tion of the topology and this matrix has several properties. Firstly, elements of the
matrix xi, j are integers, which indicate connections and rotations between elements.
For example, “1” between x1 and x5 means that R1 and R2 are connected via x1

1 and
x2

1 without rotation; the “0” between x1 and x6 means that R1 and R2 are not con-
nected via x1

1 and x2
2. The “2”, “3” or “4” indicates that corresponding element is

rotated clockwise by 90◦, 180◦ and 270◦. The “1” on the main diagonal means that
xi is connected with itself, i.e. not connected with any other docking element. Thus,
the adjacency matrix C can represent both the connection and the rotation between
elements.

The adjacency matrix can be essentially simplified by considering symmetries of
modules (i.e. equal functionality at 90◦ and 270◦). However, all modules have differ-
ent symmetries and to generalize their treatment we assume that the same module,
but rotated in different ways, represents different robots. This allows a separation
between functionality and connections of modules and also makes more evident a
transition from topologies to kinematics. Thus, C can have only “0” or “1” and each
xi can be connected only one time, i.e.

xi, j =
{

1 i f xi is docked to x j,
0 otherwise.

n

∑
i

xi, j = 1,
n

∑
j

xi, j = 1. (4.28)

Now we take look at the square elements on the main diagonal of C. There are 16
combinations, which will be denoted as A (connectivity four), B (connectivity three),
C (connectivity two) and D (connectivity one). Zero sub-matrix is denoted as 0.

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

= A,

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

= B1,

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

= B2,

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

= B3,

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

= B4,

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

= C1,

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

= C2,

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

= C3,

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

= C4,

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

= C5,

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

= C6,

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

= D1,

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

= D2,

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

= D3,

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

= D4 (4.29)
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Square 4×4 sub-matrices, which are not on the main diagonal, have an additional
property ∑4

i, j xi, j = 1, i.e. they contain always only one “1” element in the whole
sub-matrix. There are also only 16 such elements, which will be denoted as Zi.

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

= Z1,

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

= Z2,

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

= Z3,

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

= Z4,

0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

= Z5,

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

= Z6,

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

= Z7,

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

= Z8,

0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

= Z9,

0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

= Z10,

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

= Z11,

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

= Z12,

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

= Z13,

0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

= Z14,

0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

= Z15

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

= Z16

All Zi are symmetrical, i.e.:

ZT
2 = Z5, ZT

3 = Z9, ZT
4 = Z13, ZT

7 = Z10, ZT
8 = Z14, ZT

12 = Z15, (4.30)

where ZT means a transpose of Z. All Zi with “1” on the main diagonal are the same,
i.e. ZT

i = Zi. Relations (4.30) are useful in finding symmetrical representation of
topologies. This basic symbolic representation is similar to (Castano & Will, 2001).
In Fig. 4.42 we show a few examples of simple structures and their symbolic
representations. We can intuitively say, the more regular is the structure of the or-
ganism, the more compact is the matrix representation of this topology. The macro-
wheel, shown in Fig. 4.42(a), has the most compact representation. When we denote
as M the n × n square matrix, the macro-wheel from n modules has the circulant
form (Davis, 1979), defined by

Cn
macro−wheel

= M(circ{C5,Z9,0,0,0, ...,ZT
9 }). (4.31)

The caterpillar (snake) from Fig. 4.42(b) is in fact a band matrix, whose first and
last elements are perturbed. We can represent this topology as a difference between
a regular band matrix and corresponding deviation

Cn
sn

= M(band{ZT
9 ,C5,Z9,0,0,0, ...,0})− M({x

1,1
= D1,x n,n

= D3}). (4.32)

The (4.32) can be generalized as

C = Regular Matrix ± Deviation Matrix. (4.33)

The (4.33) represents a general way of dealing with basic topologies – each basic
topology can be represented as some regular pattern and some perturbation. This
also means that a topology can have several representations. To be more ordered in
the notation, we propose to use the following numeration rules:
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Fig. 4.42 Different topologies of the organism and their representations, see also Table 2.9.
(a), (d), (g) Macro-wheel, where all modules have two connections; (b), (e), (h) Caterpillar
(snake), where the R1 and R5 are marginal (connected only one time); (c), (f),(i) Dragon,
where R3 and R4 are connected to R1.

1. Firstly such elements are numbered, which have a maximal degree of connectiv-
ity;

2. All other elements are numbered in order of decreasing their connectivity and
increasing a distance to the first elements;

3. Lastly all marginal (closing) elements are numbered.

For example, “the dragon” from the Fig. 4.42(c) is numbered by following this
scheme. As we can see, the symbolic representation in Fig. 4.42(i) has a well-
structured form: the lowest square matrix of marginal R3 −R5 elements is a diagonal
one. We can extend this idea for larger topologies with 9 and 16 modules, shown
in Fig. 4.43. Here we consider a symmetric cross and 2x-Centipede (“dog”), made
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Fig. 4.43 Examples of 9x and 16x topologies. (a) Extended cross; (b) 2x-Centipede (“dog”),
obtained as a combination of two extended crosses.

as a combination of two crosses. Their corresponding symbolic representations are
shown in Figs. 4.43(c),(d). Basically, it repeats the pattern from Fig. 4.42(i) – strong
core elements and weak marginal elements on the main diagonal, as well as connec-
tions between them on the upper right sector. The lower left sector is just a symme-
try of the topology matrix. Exploring the symmetry of matrix models, see more in
(Flener et al., 2002) or (Kiziltan & Milano, 2002), we can draw conclusions about
topology of organisms even when different notation systems has been used (e.g.
before and after merging two structures).

The notations shown in Figs. 4.42, 4.43 involve placeholders Ri instead of real
robot ID’s. In the morphogenetic process, we have to map real robot ID’s into
the placeholder Ri (ID j → Ri) and to solve the appearing constrained assignment
problem. This approach is treated in Sect. 4.5.4, where we demonstrate several self-
organizing properties of that approach. In the next section we consider more com-
pact representation of the topology with topological generators.
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4.5.2 Compact Representation: The Topology Generator

As demonstrated by (4.31) or (4.32), the topology can be represented as a compact
generator. This representation has many advantages, such as a low memory con-
sumption, low communication effort, possibilities of topological analysis. The idea
to introduce a generator is not new, see e.g. Sect. 2.4 with an example of L-systems
or the work of (Brener et al., 2008) for an application of the group-based approach.
For a generator, we involve not only a well-defined group-based formalism, but also
several pragmatic considerations.

The first pragmatic consideration is related to a structural stability of recon-
figurable systems. To provide a mechanical stability, several elements should be
strongly connected, in terms of multiple connections between them. We denote such
an aggregation as a strong core. The strong core is clearly visible in Fig. 4.43(d) -
elements R1 − R5 and R6 − R10 builds two strong cores. Making the system larger,
but still structurally stable, requires insertion of more core elements – this reflects
the structural scalability, see Sect. 4.5.3. Strong cores should be connected with
each other and with weakly connected marginal elements. This idea is represented
in Fig. 4.44.

Now we denote the core matrix as C
c

and the marginal matrix as C
m

, as well as
corei-core j coupling as C

c,c
and corei-margin j couplings as C

c,m
. The topology of

an organism can be represented as:

C = M(C
c
+C

m
+C

c,c
+C

c,m
), (4.34)

where M acts as an operator, which creates C, see Fig. 4.44.
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Fig. 4.44 Generalized representation of the
topology matrix from Fig. 4.43(c).

Each of the matrices C
c
, C

m
, C

c,c
,

and C
c,m

is a low-dimensional ma-
trix, which can be generated in the
way of (4.33) i.e. analytically. The
whole topology matrix can be then re-
constructed by using the pattern from
Fig. 4.44. The expression (4.34) is an
example of a topological operator, de-
fined over a set of templates C

c
and C

m
.

The idea of templates and opera-
tors can be generalized in the following
way. Considering the topology of ele-
mentary modules, we can define four
basic core elements: 1x-core as one
separate module Ri, 4x-core is a T-like
shape from Fig. 4.42(c) (when to re-
move the element R5), 5x-core is a cross of 5 elements from Fig. 4.43(a) (when
to remove R6 − R9), defined both as:
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C
1xc

= A, C
4xc

=

D1 Z5 Z9 Z13

ZT
5 B1 0 0

ZT
9 0 B1 0

ZT
13 0 0 B1

, C
5xc

=

0 Z1 Z5 Z9 Z13

ZT
1 C5 0 0 0

ZT
5 0 C5 0 0

ZT
9 0 0 C5 0

ZT
130 0 0 0 C5

(4.35)

and, finally, the caterpillar topology, defined by (4.32). These four cores represent
four basic templates. Now, in order to generate different topologies, we need to
define several operators over these templates. Generally, the number of possible
topological operators can be large and depends on the heterogeneity of modules and
practical requirements. Further we define only three operators and show that even
this small number of operators can compactly generate a large set of topologies.

Connection (join) operator. This operator connects two different topologies into
one structure. We will denote it as Con(Top1,Top2,x1

i, j,x
2
k,l), which connect topolo-

gies 1 and 2 between elements x1
i, j, x2

k,l . Application of this operator can be consid-

ered in Fig. 4.43(c) and 4.43(d). It basically changes connectivity of the x1
i, j, x2

k,l on
the main diagonal and introduce corresponding elements into the connection parts
of C

c,c
. Conn() means an iterative n-time application of Con(). After connecting two

topologies, all modules needs to be renumbered, this is normally done by middle-
ware system of a robot organism.

Margining operator. This operator is a symmetric one and creates a margin of
robots around an existing structure. We denote this as Mar(Top1,xi,x j).
For example, Mar(C

5xc
,x3,x1) connects a new robot by using the docking xi

1 to

each free docking element xi
3 of the C

5xc
. As a result we receive the shape shown in

Fig. 4.43(a). Like in the previous case, Marn() means an iterative n-time application
of Mar().

DoF swap. Connecting robots in the caterpillar-like way, shown in Fig. 4.42(b),
creates actuation only in the vertical plane. To extend this actuation into a horizontal
plane, one robot should have a horizontal degree of freedom, i.e. it has to swap its
own DoF. The operator DoF(xi, j) swaps the DoF of a robot in the position xi, j (e.g.
it changes a connection from horizontal to vertical one or vice versa).

Table 4.6 and Fig. 4.45 demonstrate several generators and examples of generated
structures.

4.5.3 Scalability of Structures and Appearing Constraints

The generator allows considering structures not only as a fixed set of elements, but
as a scalable organization. Examples are n-centipedes, shown in Fig. 4.43(b) and
Fig. 4.45(d) for 16 and 21 robots, generated by Mar(Conn(C

5xc
,C

5xc
,x4

3,x
2
3),x3,x1),

and the n-Dragon (5x Core), generated by Con(C
5xc

,Cn
sn

,x3
3,x

1
1). Different scalable

structural elements, such as Cn
sn

, or scalable operators, such as Conn(), provide a way
of dealing with scalability of structures. Table 4.7 shows several types of structures
and their scalability classes.
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Table 4.6 Examples of topological generators.

Topology N Generator Example

1x-Core 1 C
1xc

4x-Core 4 C
4xc

5x-Core 5 C
5xc

Caterpillar n Cn
sn

Fig. 4.42(b),
n=5

2x Cross-caterpillar 10 Con(C5
sn

,C5
sn

,x8,x1) Fig. 4.45(a)
3x Cross-caterpillar 14 Con(C4

sn
,Con(C5

sn
,C5

sn
,x8,x1),x14,x1) Fig. 4.45(b)

2x QuadroPod 9 Mar(C
5xc

,x3,x1) Fig. 4.43(a)
3x QuadroPod 13 Mar2(C

5xc
,x3,x1)

4x QuadroPod 17 Mar3(C
5xc

,x3,x1)
4x QuadroPod sw.
DoF

17 Mar2(Mar(C
5xc

,x3,x2),x4,x1) Fig. 4.45(c)

Macro-wheel n M(circ{C5,Z9,0,0,0, ...,ZT
9 }) Fig. 4.42(a)

n-Dragon with 4x Core n+3 Con(C
4xc

,Cn
sn

,x3
3,x

1
1) Fig. 4.42(c),

n=1
n-Dragon with 5x Core n+4 Con(C

5xc
,Cn

sn
,x3

3,x
1
1)

2x-Centipede (“dog”) 16 Mar(Con(C
5xc

,C
5xc

,x4
3,x

2
3),x3,x1) Fig. 4.43(b)

3x-Centipede (C
5xc

) 21 Mar(Con2(C
5xc

,C
5xc

,x4
3,x

2
3),x3,x1) Fig. 4.45(d)

3x-Centipede (C
4xc

) 18 Mar(Con2(C
4xc

,C
4xc

,x4
3,x

2
3),x3,x1) Fig. 4.45(e)

Scorpion (C
5xc

) 25 Con(C4
sn

,Mar(Con2(C
5xc

,C
5xc

,x4
3,x

2
3),x3,x1),x54,x1)

Fig. 4.45(f)

(a) (b) (c)

(d) (e) (f)

Fig. 4.45 Different topologies, produced by generators from Table 4.6.



316 4 Adaptive Control Mechanisms

Table 4.7 Types of structures and scalability (hom. – homogeneous, het. – heterogeneous).

Type of Structure Scalability Class

Caterpillar-like, hom. n of segments Cn
sn

, n of cross-caterpillars Conn() scalable

Dragon-like, hom. n of marginal elements Marn(), n of segments Cn
sn

scalable

Centipede-like, hom. n of marginal elements Marn(), n of leg’s segments Cn
sn

,
n of cores in the body Conn()

scalable

Planar grid (fungi-
like), see Fig. 4.46(a),
het.

n of modules super-
scalable

Wheeled, het. see
Fig. 4.46(b), Fig. 2.6

n of modules, degree of heterogeneity scalable

(a) (b)

Fig. 4.46 Examples of topologies from Table 4.7. (a) Planar “fungi-like” mesh, where mod-
ules are connected to each other only to share computational and energy resources, without
any collective actuation; (b) Several example of wheeled organisms, where wheels are, for
example, the active wheel from Sect. 2.1.6, see e.g. Fig. 2.6.

Basically, there are several ways to scale up and down the topologies: to scale
the number/diversity of strong cores (this makes the topology structurally stable),
typically this is the way of making n-Centipedes; to scale the number and diversity
of segments (legs); to scale the number/diversity of marginal elements; finally to
connect several organisms, however this can be applied mostly to planar structures,
as shown in Fig. 4.46(a). Thus, during the self-assembling phase, robots can con-
sider not only the choice of one pre-selected pattern, but also can scale up/down this
pattern, see Sect. 4.5.4.

However, we face here the scalability problem, expressed by the fact that sev-
eral topologies are not very scalable (i.e. they are not super-scalable, see e.g.
(Constantinescu et al., 2004)). There are several reasons why some structures are
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not scalable, most important are appearing constraintsϒ , which limit size and func-
tionality. Below are listed several from such constraints:

N of available robotsϒN a topology can be self-assembled only when there are
enough available robots;

Functional constraintsϒF imposed on the kinematics, for example specific de-
gree of freedom to allow e.g. legged locomotion;

Weight of the modulesϒW the total weight of an organism is limited by capabili-
ties of motors to drive this weight;

Structural constraintsϒ S docking mechanisms allow only a specific static and
dynamics stress, overstepping can destroy them. Scal-
ing up structures should not overstress the docking el-
ements.

Generally, the more functional requirements are imposed on the topology, the
less scalable is the structure. For example, the fungi-like planar grid, shown in
Fig. 4.46(a) is the best scalable topology, exactly because it does not have any col-
lective actuation.

4.5.4 Morphogenesis as an Optimal Decision Problem

Morphogenesis or a topology generation is a distributed process, undertaken by all
robots going to aggregate into the organism. It means that each robot module Ri has
two independent decision processes about:

• topology of a future organism C, where all robots are represented by a place-
holders Ri. This is a selection process, where the best topology is selected from
a set of possible topologies. This also means that each robot module has its own
topology matrix C, i.e. its own view on the topology of a future organism. The
self-organization means in this case that all robots finally select the same topol-
ogy without having a centralized decision process;

• mapping IDi → Ri, i.e. choosing a partner Ri for docking, i.e. the generation of
xi

l ↔ x j
k is independent of each other. This task is a constrained assignment prob-

lem, where a generation of the topology matrix underlies several requirements:
firstly it should satisfy local constraints υi, secondly, each xi

l ↔ x j
k pair has an as-

sociated local cost, and finally, the whole appearing topology has its own global
costs.

Further we briefly introduce a generation of topologies and mapping IDi → Ri lead-
ing to dynamic self-aggregation.

I. Generation of a topology. One of the key elements of this approach consists in
a priori definition of topologies, which involves human and computational intelli-
gence. We can imagine here three possible scenarios:

1. All allowed topologies are in advance predefined patterns φi, without any
perturbations of these patterns. The dynamics in this case consists of two steps.
Firstly, a set of predefined patterns φi (defined symbolically or by generators) is
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Fig. 4.47 Local R1 robot’s view: estimation of distances between robots.

compared with the current situation. For example, when other robots are already
building some structure, this structure has a higher priority in the decision pro-
cess. When there are no such structures, a robot compares current positions of
known robots in order to decide which pattern is the most suitable for this con-
figuration or which pattern is the most suitable for the given surface. Secondly,
when a pattern is selected, a robot solves constrained assignment problem in or-
der to determine a position in this pattern, where it goes to dock.

2. Perturbation of any of the predefined patterns φi is allowed. This pertur-
bation can be considered as a learning factor. The dynamics in this case also
consists of two steps. Firstly, a robot decides about the pattern φi, as in the first
case. However, it is not constrained by this pattern, a robot can perturb the pattern
φi by templates. This can happen only in two following cases. In the first case,
the pattern, generated for n robots, already has n robots. The n+1 robot, joining
to this organism, starts building a new scalability core. For example, when an
organism with n robots has four legs, the n+1 robot can start building additional
legs. In the second case, based on observation in the environment a robot can es-
timate a need of specific perturbation, e.g. to make legs longer to overstep some
obstacles. However, the difficulty is that other robots may not know about this
initiative and the whole pattern become desynchronized. Solution of this prob-
lem involves more communication between robots, as indicated in Sect. 4.5.5.

3. The topologies are dynamically generated on demand by applying struc-
tural operators. This is most complex case, because the generation should be
performed also in distributed way and requires multiple synchronization steps.
Moreover, the global costs, which are necessary for distributed self-assembling,
should be also generated on-demand; this represents an unsolved issue so far.
Therefore this case is not considered here (see Sect. 4.2 for a dynamic generation
of topologies).
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Before considering the second point of mapping IDi → Ri, we introduce the is-
sues of local and global costs, which are necessary for optimization processes.

Local costs. Robots have different on-board capabilities to measure dis-
tances between robots, their orientation, relative rotation and other parame-
ters (Kernbach et al., 2009a). Moreover, as shown in Fig. 4.47, robots can measure
distance not only to direct neighbors, but also to any visible object/robot. However,
the further away the robots are, the less accurate is the measurement.
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Fig. 4.48 Prediction of robot intentions
through the topology matrix C.

The measured distance Si, j between
Ri and R j is one of the local costs for
docking: the closer Ri and R j are to
each other, the “cheaper” is their dock-
ing xi

l ↔ x j
k. Other costs of xi

l ↔ x j
k are

the distance cost αSi− j
l−k, rotation cost

βSi
rot , cost of “being hidden” Si

k−hid ,
where α,β are coefficients. The cost
Si

k−hid is the price for the robot Ri of
not-knowing the situation around Ri.
For example, when the costs of connec-
tion between x1

1 ↔ x2
1 are S1−2

1−1 =αS1−2
1−2

+ βS2
rot + S2

1−hid . More generally, local costs can include also any other factors,
which determine a value of a particular connection. All local costs between all
xi

l ↔ x j
k are collected in the local costs matrix S.

Since morphogenesis is distributed and egocentric, the generations of xi
l ↔ x j

k

and x j
k ↔ xi

l are asymmetric, i.e. from the viewpoint of the module Ri a cost of
connection between Ri and R j may be different then the connection between R j and
Ri from the view point of the module R j. This leads to the effect, that the robot Ri

knows precisely only its local costs, all other costs can be estimated only roughly.
This situation is demonstrated in Fig. 4.48, where the first row represents an exact
plan of the robot R1, whereas all other rows are predictions of possible activities of
other robots. When robots are close to each other and their local costs are similar,
all topology matrices are expected to converge to each other.

Global costs. Issue of global costs represents a crucial point. In general, it means
how good the whole organism fits the environment and can be expressed as velocity
of motion, energy consumption, weight and any other global factor for a specific
environment. Normally, it requires multiple tests with different configurations and is
very expensive or even impossible for on-line estimation in real situations. Therefore
the proposal is to use a set of different a-priori-tested topologies, whose global costs
for different environments are known. For example, following the scenario 1 or 2
from the previous section, the efficiency of legged, wheeled or other topologies
can be tested before experiments. During experiments, depending on availability
of tools and sensed environment, robots have to agree in which configuration they
should collectively work.
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Fig. 4.49 Illustration of the constrained assignment problem. (a) Position and local costs of
the robots, IDi is a robot’s number; (b) Topology of an organism, Ri is a place holder for a
robot.

II. Mapping IDi → Ri. The generation of the mapping IDi → Ri represents a clas-
sical assignment problem with one additional element: not only one docking el-
ement should be connected only one time (i.e. constraints (4.28)), but also these
connections should be concentrated in specific parts of the adjacency table, which
correspond to the selected topology. We illustrate this problem in Fig. 4.49(a) with
a random placement of 5 robots, whereas Fig. 4.49(b) demonstrates a topology in
which these robots should self-assemble. To make this consideration as simple as
possible, we set local costs as only distances between robots (not between docking
elements).

The problem, shown in Fig. 4.49, can be formulated as e.g. quadratic
assignment problem (QAP), see e.g. (Loiola et al., 2007) or as constraint-
satisfaction problem (CSP) and constraint-optimization problem (COP), see e.g.
(Kornienko et al., 2004a). Since QAP is a NP hard problem, we will solve this in
the CSP+COP way.

Classical assignment means that each IDi → Ri is unique. However in our case,
when for example ID1 → R1, two additional robots should be connected to ID1 (so
that the costs of such connections are minimal). In the following table we display
horizontally costs of all possible permutations between IDi → R j and vertically the
connections Ri → R j from the Fig. 4.49. The cost matrix takes the following form

S
R1

=

1 : 2 1 : 3 1 : 4 1 : 5 2 : 3 2 : 4 2 : 5 3 : 4 3 : 5 4 : 5
1 : 2 35 40 80 36 41 42 31 32 55 60
1 : 3 35 40 80 36 41 42 31 32 55 60
1 : 4 35 40 80 36 41 42 31 32 55 60
2 : 5 35 40 80 36 41 42 31 32 55 60

(4.36)

where additionally to the constraints (4.28), the assignment should satisfy

CID1→R1 =
4

∑
i

4

∑
j

Si, j = 3. (4.37)
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The constraint (4.37) is a degree of connectivity for the main core element R1. Solv-
ing the assignment problem, taking into account (4.37), we receive the following
assignment matrix

1 : 2 1 : 3 1 : 4 1 : 5 2 : 3 2 : 4 2 : 5 3 : 4 3 : 5 4 : 5
1 : 2 1 0 0 0 0 0 0 0 0 0
1 : 3 0 1 0 0 0 0 0 0 0 0
1 : 4 0 0 0 0 0 0 1 0 0 0
2 : 5 0 0 1 0 0 0 0 0 0 0

(4.38)

where the associated costs are SR1 = 186.
When, for example, solving (4.36) without considering (4.37), we obtain

1 : 2 1 : 3 1 : 4 1 : 5 2 : 3 2 : 4 2 : 5 3 : 4 3 : 5 4 : 5
1 : 2 0 0 0 0 0 0 1 0 0 0
1 : 3 0 0 0 0 0 0 0 1 0 0
1 : 4 1 0 0 0 0 0 0 0 0 0
2 : 5 0 1 0 0 0 0 0 0 0 0

(4.39)

which has associated costs 138 (lower than in (4.38)), however it does not represent
the dragon-like topology from Fig. 4.49(b).

Now we should repeat the step (4.36), however for ID2 → R1, i.e for the following
cost matrix with the same constraint (4.37) which creates the following assignment

S
R2

=

2 : 1 2 : 3 2 : 4 2 : 5 1 : 3 1 : 4 1 : 5 3 : 4 3 : 5 4 : 5
1 : 2 35 41 42 31 40 80 36 32 55 60
1 : 3 35 41 42 31 40 80 36 32 55 60
1 : 4 35 41 42 31 40 80 36 32 55 60
2 : 5 35 41 42 31 40 80 36 32 55 60

(4.40)

2 : 1 2 : 3 2 : 4 2 : 5 1 : 3 1 : 4 1 : 5 3 : 4 3 : 5 4 : 5
1 : 2 1 0 0 0 0 0 0 0 0 0
1 : 3 0 1 0 0 0 0 0 0 0 0
1 : 4 0 0 0 1 0 0 0 0 0 0
2 : 5 0 0 0 0 0 0 0 1 0 0

(4.41)

with SR2 = 139 as costs. Proceed further for ID3 → R1, ID4 → R1 and ID5 → R1 we
can compose the following costs table

SR1 SR2 SR3 SR4 SR5

186 139 148 165 157
, (4.42)

where we immediately ascertain that the assignment (4.41) has the minimal costs.
In other words, when the robot ID2 is used as a central core element, this will create
the smallest movement in the whole group, as it is well visible from the Fig. 4.49.
The considered example does not involve docking elements (i.e. it is not specified
from which side robots should dock to each other) and is intended only to illustrate
the constrained assignment problem.
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In the example above, we imposed only one constraint (4.37) on the elements
with the maximal degree of connectivity. More generally, we should consider the
degree of connectivity for all involved elements Ri and to impose corresponding
constants on the cost matrix S.

Revising the approach based on (4.36)-(4.42), we can make three remarks:

• The (4.38) contains direct connections between IDi, e.g. ID1 → ID2, ID1 → ID3,
ID1 → ID4, ID2 → ID5, moreover they are related to corresponding connections
between Ri, for which all kinematic properties are known – this represents an
advantage of the representation style (4.38).

• The list of all possible permutations of IDi → ID j may be large.
• The whole approach consists of considering all IDi as candidates for R1 connec-

tivity degree 3), then for R2 (connectivity degree 2) and then all other elements.

The last point opens the way of stepwise solving a series of the low-dimensional
constrained assignment problems, which can have the following form:

1. All topologies have a list of associated constraints ϒ : total N of robots, degrees
of connectivity, requirement on heterogeneous modules and so no. Moreover,
each topology has a list of global costs: consumed energy, velocity of motion on
a normal surface, geometry of concave and convex obstacle treatable with this
topology or a possible geometry of docking elements.

2. Before start self-assembling, robots check whether N of available robots match
the set of possible topologies. For instance, when there are topologies requir-
ing {15,17,22,25} robots and there is only 20 available robots, they can self-
assemble only into first two topologies.

3. Several topologies require tools or specialized robots. Robots should check avail-
ability of these specialized robots and correspondingly limit the set of possible
topologies.

4. Self-assembling starts from the core element with the highest degree of connec-
tivity. When such a core element is already built, robots consider the next element
with the lower degree of connectivity and so on, until the whole structure is as-
sembled.

5. When the selected topology is already partially assembled, and more free robots
arrived to the assembling place, robots can decide instead of disassembling and
new assembling to create a new core in the already assembled structure. Prereq-
uisite is that the topology can be scaled up in the number of cores.

The considered approach involves the costs matrix S where all costs are globally
observable. In real situation this is not feasible without the use of a central element.
In the next section we demonstrate conditions when even a partially observable ma-
trix S leads to the same assignment as a full costs matrix. This feature can underlie
the self-organized morphogenesis, performed in a completely distributed way.

4.5.5 Self-organized Morphogenesis

As already mentioned, self-organization is a process, when ordered collective be-
havior appears without a central coordination or control. The approach, represented
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in Sect. 4.5.4, assumes that the cost matrix (4.36) collects global information about
all robots, i.e. requires a central instance. In this section we demonstrate, that local
multiple views, as shown in Fig. 4.47, even when some costs are not observable, can
lead to the same or to similar assignment. In other words, this approach represents
a synchronization mechanism, underlying a self-organizing solution.

Firstly, we formalize the algorithm from the previous section. It is assumed, that
all topologies are accessible through the index i in φi, all constraints are collected in
ϒ in two following groups: structural constraints (e.g. υN

i - imposed on the number
of robots, υS

i - specialization of robots), and environmental constraints υEnv
i im-

posed on the functionality of an organism (e.g. the length of legs or already built
cores).

Algorithm 3. Morphogenetic algorithm

Communicate(with everybody) → to collectϒ Env and Φ1

// Step 1. Removing such φi which does not satisfy ϒ
forall elements of φ do2

forall elements ofϒ do3

if constraints υ j != satisfied then remove φi from Φ4

end5

end6

// Step 2. Decide/Generate a final topology
Select φi with minimal global costs7

// Step 3. Solve iterative assignment problem
Create local cost matrix S for all observable IDi → ID j8

forall Ri with decreasing degree of connectivity do9

Solve particular assignment problems10

end11

// Step 4. Self-assembling phase
Communicate(with the selected neighbor) → to confirm docking intention12

if confirmation == successful then Dock to the selected partner else goto 113

Now we comment this algorithm. First of all, robots should create common
knowledge about the current situation, namely the number of robots N, the environ-
mental constraintsϒ Env (which include also information about already built cores)
and known patterns Φ . Such a collection of common information can be achieved
based on distributed (e.g. token-based) algorithms and is done in the line 1. After
the robot removes such patterns, which do not satisfy constraints (lines 2-6). From
the remaining patterns, only one (or one core) should be selected by minimal lo-
cal costs (line 7). When some core (or even part of an organism) is already built,
corresponding pattern will be automatically selected here (because only this pattern
satisfies the environmental constraints). For all required connection Ri → R j, a robot
measures local costs for the corresponding IDi → ID j, creates the local cost matrix
S (line 8) and iteratively solves assignment problems (lines 9-11) as described in
the previous section. Finally, a robot contacts the selected partner and performs a
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Fig. 4.50 Solution of 32×32 assignment problem with noise added to the cost matrix. Shown
is the number of wrong assignments related to the original assignment without noise. Num-
bers x:x (e.g. 1:50) demonstrate a relation of “low” costs leading to “1” in the assignment
to those costs which lead to “0” in the assignments, for example 1:50 means that “0-leading
costs” are 50 times larger than “1-leading costs”. (a) Five cases (1:50, 1:5, 2:5, 3:5 and 4:5)
of assignments where the noise is added only to “0-leading costs”; (b) The same five cases of
assignments, where the noise is added to all costs.

docking approach. When the selected partner refuses docking, a robot updates the
list of constraints and repeats the whole procedure (line 12).

Due to the same sets of constraints and initial topologies, all robots have the same
selected pattern φi. The difference between robots appears first at the line 8, when
generating a local cost matrix. Basically there are two sources of such a difference:
poor measurement accuracy for large distances and non-visible situation for a par-
ticular robot. The distributed generation of the cost matrices leads to deviations in
those matrices, i.e. the estimated costs will differ from each other and from real
“original” cost matrix.

We investigate this process in more detail. Let us consider the matrix (4.40) (the
square part separated by the line), for 32×32 assignments (8 robots with 4 docking
elements, the notation is same as suggested in Sect. 4.5.1). Each cost matrix con-
tains such a combination of costs, which leads later to “1” in assignments. We call
these costs as “1-leading costs”, whereas other are “0-leading costs”. There are five
different relations between these costs, shown in Fig. 4.50 as 1:50, 1:5, 2:5, 3:5 and
4:5. Each element of the cost matrix is perturbed by the noise value ±k from k = 0
(0%) until k = max cost (100%). We also consider two cases, when noise is added
only to “0-leading cost” and to all costs. All these results are shown in Fig. 4.50.

It is clearly visible that the level of noise and the relation between 1- and 0-
leading costs are contrary factors: the higher is this relation, the lower should be the
noise level. Considering realistic values of 3:5, 4:5, we see that correct assignments
can be achieved for the noise level of 35% and 15% correspondingly for the first case
(Fig. 4.50(a)) and 20% and 10% correspondingly for the second case (Fig. 4.50(b)).
Obviously, that within these boundaries, distributed generation of the costs matrices
will lead to the same assignment, i.e. this process is self-synchronizing without a
need of central instances. When the level of noise (i.e. accuracy of measurements) is
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outside of these boundaries, robots should communicate in order to improve quality
of the cost matrix S – it is enough to transmit only own well-estimated costs to other
robots.

4.5.6 Collective Memory and Further Points

There are several further and concluding points to this section. First, it needs to
consider the problem of environmental constraintsϒ Env, which generally speaking,
may be unknown at the begin of self-assembling. Even exchanging ofϒ Env between
robots does not solve this problem, because some constraints should be first encoun-
tered by exploring the environment. Therefore the exportation and adaptation loop
is a part of the morphogenetic process. Below in Algorithm 4 we demonstrate a
general view on morphogenetic processes in artificial organisms.

The iterative process of exploring environment and changing a topology repre-
sents a basic feature of structurally adaptive systems. There are two points here,
which need further consideration. Firstly, encountering a new environmental con-
straint υEnv

i can basically change the solution space for CSP+COP, this new υEnv
i

can make the problem unsolvable. In other words, it may happen, that all topolo-
gies Φ , even their perturbations and scaling, do not satisfyϒ Env. In this case, a new
topology φi should be generated in trail-and-error manner. Such a on-line genera-
tion of topologies is considered in other sections of this book. Secondly, achieving
the task, robots collect experience about a structure of environment and about pos-
sible ways of solving problems in this environment. Related to topologies, there
are two important sets ϒ Env and Φ , which represent environment and solutions.
This experience is distributed among all robots, we can associate it with a collec-
tive memory of the organism. An obvious question is what will happen with this
memory after disassembling ?

Algorithm 4. General morphogenetic process

// Step 1. Initialization
Communicate(with everybody) → to spread initial common knowledge (e.g. tasks)1

Communicate(with everybody) → to collectϒ Env and Φ2

Collectively choice a topology φi and Self-assemble into φi3

// Step 2. Achieving the task
while task not achieved do4

if new constraint in υEnv
i encountered then5

Update ϒ Env, Disassemble from old φi6

Collectively choice a new topology φi, Self-assemble into this new φi7

end8

end9

// Step 3. Save collective experience & disassemble
Save updatedϒ Env and updated Φ10

Disassemble11
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There are several ideas about such a collective memory. We should remark, that
each module can act within different organisms and with different tasks. Individ-
ually saved information about ϒ Env and Φ may be inconsistent and even have a
conflicting character. Therefore it may be important to have a kind of central “wise
robot” or “oracle”, which collects all information and stores it in a consistent way.
This may lead to social specialization, when robots have such roles, which do not
lead directly to solution of a task, but maintain a collectiveness of the group (i.e. this
decreases collective energetic efficiency). Another solution consists in storing all
organism’s relevant data locally in each robot (for example, using large flash mem-
ory), i.e. each robot can reconstruct the whole organism (e.g. information, stored in
DNA). The question about effectiveness of social and genetic way of representing
collective memory is open and required further research.

In summary, we have introduced representations of topologies by matrices, in
symbolic way and by a generator. This provides different possibilities to handle on-
line and off-line morphogenesis, on-line adaptation and scalability. The constrained
assignment in the form of CSP+COP was introduced to on-line morphogenesis. Lin-
ear optimization, performed in the distributed way, can underlie the self-organized
self-assembling process, when the accuracy of local measurement lies within the
indicated noise level.

We point out that using optimization of off-line pre-evolved topologies instead
of on-line evolving has an advantage of faster and more efficient morphogenesis.
However, we also indicated that for unknown local costs in S or for unsolvable
ϒ Env and Φ , on-line evolving loop is required. In other words, for such situations,
which cannot be a priori evaluated, robots should perform on-line and on-board
morphogenesis.

4.6 Kinematics and Dynamics for Robot Organisms

Eugen Meister

From a mechanical perspective, a self-reconfigurable multi-robot organism is a
set of connected joints and links which are determined by kinematic parameters
(joint angles, accelerations, acting forces etc.). Traditionally, in order to analyze
kinematics and dynamics of a rigid body system, several synthetical and analyti-
cal approaches such as Newton, Euler, Hamilton or Lagrangian formulations are
dominating. In the area of self-reconfigurable robotics, we face the problem that a
morphology of the robot after configuration is not predefined at all and hence a
formulation of kinematics and dynamics with these standard approaches is pos-
sible only in a limited way. The kinematical model cannot be fixed in advance
due to different tasks which require environment-dependent topology. Those au-
tonomous systems should first be able to recognize all interconnections between
all links in a body and to build a map (graph, adjacency matrix etc.) of the whole
topology. In SYMBRION/REPLICATOR we primarily consider all possible shapes of
such multi-robot organisms, however after performing some analysis in Sect. 4.5 of
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reasonable topologies, we came to the conclusion that unsymmetrical structures re-
quire more complex description. Classification of all reasonable morphologies into
“unbranched” (snake, wheel etc.), “branched” (snake-like, spider-like etc.), “small-
scale” or “large-scale” multi-robot organisms is useful for assignment between tasks
and topologies (Chen, 1994). This classification can simplify, however not solve the
problem of how to generate a model for kinematics and dynamics automatically.
Here adaptive methods are required, which are capable of automatical formulation
and reformulation of required models for kinematics and dynamics. Therefore, the
first challenge is to create a scalable model which is autonomously able to change
and to extend/reduce parameters, depending on the structure of the robot organism.
Another big challenge is the reduction of complexity of such a model, so that organ-
ism’s dynamics can be calculated and controlled in real time. In this section, several
approaches are discussed, analyzed and compared in order to find a suitable solution
for the robot platforms.

Recently, a collection of efficient algorithms for analysis, syntheses and con-
trol of kinematics and dynamics has been developed. However, the performance of
such dynamic algorithms often does not only depend on the algorithm itself, but
also on the chosen representation techniques. The big classification can be done
by separating the algorithms either by using absolute or relative coordinates. Ab-
solute coordinates use a fixed frame as the reference frame. In contrast to absolute
coordinates, relative coordinates take local link frames as their reference. Repre-
sentation in absolute coordinates is often used for analyzing and control of rigid
body systems, especially in industrial applications. Several advantages such as uni-
formity or easy representation of constraints make this approach dominant for using
in many commercial packages. However, every interaction between bodies in this
representation technique has to be represented by a large set of constraint equa-
tions and the dynamic equations get difficult to solve. By contrast, the number of
constraint equations can be minimized by using relative coordinate approaches and
these approaches nowadays become more popular, especially in the field of self-
reconfigurable, modular and mobile robotics.

The performance and efficiency of dynamic algorithms depend also on their
mathematical notation. The 3D vector notation in Euclidean space is one of the tradi-
tional methods for the formulation of rigid body kinematics and dynamics, however
in the last few years, the so called “spatial notation” built on the 6D vector notations,
became widely accepted in many different solutions for kinematics and dynamics
problems. The 6D vector notation, dated back to 1866 first introduced by Pluecker
and nowadays representation in Pluecker coordinates, is often used because it leads
to efficient computer implementation (Selig, 2004). In order to express the dynam-
ics of a rigid body with six degrees of freedom in 3D space, we usually need two
equations: the first expression for formulating the relationship between forces and
linear accelerations, and the second equation in order to relate moments and angular
accelerations. The representation in spacial notation combines these two equations
into a single one. The idea behind this notation is to merge linear and angular ve-
locities into a common vector as well as to merge forces and moments in the same
manner. This notation has additional advantages and simplifications:



328 4 Adaptive Control Mechanisms

1. The equations of motion are simplified;
2. Algebraic calculations are reduced at least by factor four, compared to traditional

3D vector notation;
3. Writing computer code is simplified, since code gets shorter and easier to under-

stand.

Several rules and further advantages of this notation are summarized
in (Featherstone, 2008).

The spatial notation in Pluecker coordinates can be described by a line, linear and
angular magnitudes are closely related to the screw theory (Ball, 1900). One power-
ful extension applied to this theory was introduces by (Murray et al., 1994), where
all general quantities (velocities, accelerations, forces etc.) are expressed in terms of
linear operators on se(3), which is related to the Lie Algebra of Special Euclidean
Group SE(3). There exist also several implementations for serial and branched
multi-rigid body systems based on this extension, introduced in (Chen, 1994).

In the following sections, we explain several representation and modeling
techniques for self-reconfigurable robots and show how they can be applied to the
described multi-robot organisms. The results are based on a careful analysis and
provide a basis for developing new modeling concepts.

4.6.1 Modeling of Multi-robot Organisms

In the last view years, several new modeling techniques for reconfigurable rigid
body systems appear. In the industrial applications, reconfigurability has an advan-
tage because the same robots are able to perform different tasks only by changing
their shapes and functionality. Since in most industrial applications, the number of
possible structures is limited, it is enough to determine only a few models for kine-
matics and dynamics and to switch between them if a new configuration is required.
In this case, the level of adaptability is well-arranged. However, if we can expect
a scalable number of possible configurations, adaptive modelling mechanisms are
required, which are able to handle the complexity in a smart way without using a
predefined set of possible configuration models for kinematics and dynamics.

Traditionally, the analysis for multi-body systems is done by using algebraic for-
mulations, however the complexity increases rapidly with the number of degrees of
freedom (DOF) or with the number of redundant modules in a robot. In other words,
the methods are not scalable.

Opposed to these traditional formulations, there exists another possibility to
threat the problem in a geometrical way and with analytical set of tools. One of
the most promising approaches is based on the screw theory for body kinematics.
It is often combined with mathematical methods based of Lie groups and Lie alge-
bras (Chen, 1999). This geometrical formulation has several advantages:

• Screw theory provides the geometrical description of rigid motion;
• To distinguish between prismatic, revolute or other kind of joints is not re-

quired opposed to traditional Denavit and Hartenberg (DH) parameters ap-
proach (Denavit & Hartenberg, 1995);
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• No suffer from numerical ill conditions like those in DH parameters;
• Allow global description of rigid body motion. The problem of singularities dis-

appears due to using local coordinates.

Screw theory is an old theory, developed more than 100 years ago by Sir Robert
Stawell Ball and unfortunately falls into oblivion during the last 80 years. The prin-
ciple is based on the screw motion which is a combination of translation along the
screw axis and a rotation around it. Hence, any general motion in 3D can be rep-
resented by a screwing motion described in the Chasles’s Theorem (Fig. 4.51). In
screw theory terminology, such a motion is called a “twist” and the forces acting
along a screwing line are called “wrenches”.

In Fig. 4.51, to explain used quantities: “$” symbolize the instantaneous screw
axis, ω represent the angular velocity measured in radian/s, h is a pitch of the screw
motion and v is the velocity vector of the point A.

4.6.1.1 Automatic Model Generation

One of the biggest challenges in modular reconfigurable robotics is to achieve a high
degree of adaptivity with regard to the model of the system. In order to avoid manual
human intervention, a multi-robot organism has to adapt their models for kinematics
and dynamics according to the tasks which should be fulfilled. Automatically gen-
erating a model means, autonomously recognize the topology of the organism and
based on it derive a closed-form equation of motions. In order to start automation
process, a starting point is required and therefore a “base module” should be chosen
by the system itself. In the starting phase of aggregation it is obviously that the first
module that gets the desired task allocation starts with building the organism and
hence becomes the base module. It is not necessary that the first module stay as a

Fig. 4.51 Principal of screw displacement which is a combination of translation along the
screw axis and a rotation around it (Davidson & Hunt, 2004).
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Fig. 4.52 Dragon-like organism structure. (a) 3D model, (b) Directed graph representation,
(c) Accessibility Matrix.

base for the whole time period, the role of a base module can be assigned to ev-
ery module during run time. Since aggregation of modules to an organism is better
performed in planar configuration when robots are on the ground (see Sect. 4.5),
negotiation for selecting the base frame can happen during the docking phase. Af-
ter the base frame has been chosen, forward kinematics for each branch outgoing
from the base element can be calculated as a next required step. In (Chen, 1999),
an Accessibility Matrix based on graph representation has been introduced which
provides connectivity information from the base module to every pendant module
in each branch. In this matrix elements are equal to one if there is a directional/bidi-
rectional path between modules, otherwise the elements are zero. This matrix has
for example the following form if we look to dragon-like organism in Fig. 4.52.

However, what is still missing is the information about the docked sides of each
robot. This information can be obtained from the topological matrix C introduced
in Sect. 4.5. Combining this information from both matrices the organism is able to
start calculating the forward kinematics.

4.6.1.2 Forward Kinematics

Calculation of forward kinematics is one of the first steps required to get a model
of a multi-robot organisms. Based on dyad kinematics (a pair of connected links in
a kinematic chain), with combination of topology matrix, we are able to calculate
forward kinematics for a branched/unbranched robot recursively. The core of for-
ward kinematics formulation in screw coordinates is based on matrix-exponential
formula, a mapping onto SE(3)

map exp : se(3) �−→ SE(3) (4.43)

and usually defined as

e
ˆζα = I + ˆζα+

ˆζα
2

2!
+

ˆζα
3

3!
+ ..., (4.44)
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where eζα ∈ SE(3) map a point from an initial to the final pose. This formulation
is usually used for open-chain rigid body systems, but can be extended to threat as
well closed-loop type of robots, however this is not considered in this book.

Forward kinematics for each branch can be calculated recursively starting from
the base module. For example, in a multi-legged robot organism, the base module
can be one in the middle of the structure. In order to give the model representation
in screw coordinates, determining of twists vectors are necessary. Twists is a skew-
symmetric matrix representation of the joint axis, it represents the velocity of a rigid
body motion geometrically.

ζ j = (v j,ω j) (4.45)

where ω j,v j ∈ R3 and are the linear and the angular velocities expressed in spatial
notation. Starting from initial configuration in a plane gst(0), the forward kinematics
map gst(α) for open chain manipulators can then be obtained by using the Product of
Exponential method (POE) made popular by Roger Ware Brockett (Brockett, 1984).

gst(α) = eζ̂1α1eζ̂2α2 ...eζ̂nαngst(0), (4.46)

where α is a measure angle for rotation about axis, ζ1..ζn are the corresponding
twists numbered sequentially starting from base frame. The equation can be con-
sidered as a Product of Exponentials of twists. The fact that we need only two
coordinate frames, the base frame and the final frame in a chain combined with
geometrical significance of twists make this approach to a favorably in comparison
to traditional approaches.

Let us consider a simple set of modules forming a snake-like robot. First of all,
it is necessary to determine all interconnections. In Sect. 4.5, a topological matrix
C was introduced, which give us the information about how robots are connected
with each other. To determine twists from this matrix, we should be able at least to
read out the angular velocities direction vectors. Therefore we fist need to fix the
directions according to the face site of the module
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and as a next step apply this definition to our robot.

Starting with the base module and following for each module in the organism,
the corresponding twists and the forward kinematics using the Eq. (4.46) can be
calculated recursively for all branches in the organism.
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Fig. 4.53 Principal of connected modular robots and their twists directions.
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4.6.1.3 The Jacobian

The forward kinematics (Eq. 4.46) provide information about the positions repre-
sented by the joint angles αi, however of a big interest are often the velocities,
especially of the last module in the chain, ussually called a tool frame. The relation-
ship between the velocities of joint motors and the velocity of the tool frame is often
named as “differential kinematics”. Traditionally, going from position kinematics to
the differential kinematics is just a matter of taking the time derivate, however this
hold only if the Jacobian is a linear map. Choosing coordinates for SE(3), to obtain
the Jacobian is not that simple anymore and this formulation holds only locally. In
order to correct this problem, the Jacobian can be written in terms of twists. Con-
sequently, the instantaneous spatial velocity of the tool frame can be represented as
follows:

V̂st = ġst(α)g−1
st (α). (4.47)

Applying the chain rule and writing in twist coordinates we obtain

V̂st = Jst(α)α̇ , (4.48)

where
Jst(α) =

(
( ∂gst
∂α1

)gst
−1∨

... ( ∂gst
∂α1

)gst
−1∨ )

(4.49)

is called the spatial manipulator Jacobian. The operator ∨ (vee) extract 6-
dimensional vector which parameterizes a twist. Using the Eq. (4.46) for the forward
kinematics we derive an elegant formula for Jst:

Jst(α) =
(
ζ1 ζ ′

2 ... ζ ′
n

)
(4.50)

where
ζ

′
i = Adζi

, (4.51)

where Ad is the adjoint transformation associated with ζi. This relationship between
joint velocity and the tool velocity allow us to move this open chain from one con-
figuration to another without calculating the inverse kinematics:

α̇(t) = (Jst(α))−1Vst(t), (4.52)

If we know Vst , we need to integrate this differential equation over the time interval
[0,T ] along the workspace path.

4.6.2 Inverse Kinematics

Given a desired configuration or trajectory for the last links (tool) in the chains
of robot modules, the goal for the inverse kinematics is to find joint angles for all
joints to achieve that configuration. Traditionally, inverse kinematics solutions are
separated in two classes: closed-form solution and numerical solutions. There exist
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different methods for solving inverse kinematic problem, however all of them are
faced with similar problems like:

• Obtain a close-form solution;
• Reduction of complexity;
• Reduction of number of possible solution;
• Performance of the algorithm under real-time conditions.

To find a closed-form solution if often desired because it gives an efficient calcula-
tion but cannot always be obtained. In such cases, there is still a possibility to solve
the problem numerically for example applying Newton Raphson’s Iteration Method.
Considering formulations based on screw calculus described in sections above, there
exist another possibility to solve the inverse kinematics, namely with the geomet-
ric algorithm based on the POE formula for the forward kinematics map. In this
method, the inverse kinematics problem is reduced into set of subproblems which
are geometrically meaningful and numerically stable. To explain all possibilities and
all tricks how to reduce the inverse kinematics problem into a set of subproblems
would go beyond the scope of this book. Therefore, detailed explanations can be
found in (Paden, 1986), (Kahan, 1983).

In a branched multi-robot organism, the calculation of inverse kinematics in order
to reach a desired position of the tool in every branch shall perform simultaneously
for all branches since branches may not be independent driven and share modules
with each other. Therefore, the inverse kinematics for such a multi-robot organism
is the calculation of a set of joint angles that will place every end-link to its desired
pose simultaneously. For this reason, the kinematic equations should be combined
to a single equation for example of the form:

T = J dα, (4.53)

where in spacial coordinates T ∈ R6n×1 is a pose vector and J ∈ R6m×6n is a gen-
eralized body manipulator Jacobian. The dimensions of T and J depends on how
many modules are in each branch and how many branches does the organism have.
Looking to this big matrix which is growing proportionally with the number of mod-
ules the question arises if this method is scalable or not. In the previous section we
learned that the Jacobian grow with the number of modules however the represen-
tation in twist coordinates and SE(3) give us the possibility to solve the problem in
elegant way and without high calculation costs.

4.6.3 Dynamics

The biggest challenge in order to control a robot, especially a multi-rigid body sys-
tem with many degrees of freedom, is to find a solution for dynamics that is usually
described by ordinary differential equations. These equations are often called mo-
tion equations because it describe the movement of the robot in response to actuator
forces. There exist several of standard formulation methods for motion equations,
however, two of them are mostly preferred: the Lagrangian and the Newton-Euler
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equations. Both methods create similar sets of equations however the derivation
of the equations has different backgrounds. Lagrangian method, often of complex-
ity O(N4), relies on energy properties of mechanical systems and give a general
method for deriving the equations of motion. However it cannot be directly used
as long as the configurations space is parametrized by a subset of Rn, where n
is the number of DOFs in a multi-body system. In order to apply this method
for rigid bodies with configuration in SE(3) like described in sections above, we
need to choose local parameterization. Newton-Euler equations, often of a com-
plexity of O(N), are probably the most frequently used approach in the literature
to formulate motion equations. Newton-Euler equations describe the dynamics of
a multi-body system in terms of forces and torques applied to the object. Looking
for computer implementation techniques, the recursive Newton-Euler method is the
most widely spread dynamic algorithm and has been proved by many researchers
like (Luh & Paul, 1980), (Orin & Hartoch, 1979) or (Stepanenko & M., 1976) to
be more efficient, recursive and to adapt to be capable of real-time conditions. In
general, looking to different dynamic algorithms we must distinguish the purpose it
is to be used. In (Featherstone, 2008), algorithms for dynamics have been classified
in two major classes:

• Forward Dynamics (FD);
• Inverse Dynamics (ID).

In forward dynamics, an acceleration response of a rigid body to applied forces has
to be calculated. This technique is mostly used in simulations. In contrast to forward
dynamic, the inverse dynamic performs calculation of the force that must be applied
to a rigid body in order to produce desired acceleration response. This technique can
be used for control design of the system, trajectory planning etc. Using either the
Lagrangian or the Newton-Euler method we obtain a closed form motion equations
of the form:

M(q)q̈ +C(q, q̇)q̇+ N(q) = τ, (4.54)

where q, q̇ and q̈ variables represent position, velocity and acceleration, M(q) is
a mass matrix, C(q, q̇) is a Centrifugal and Coriolis accelerations and N(q) repre-
sents gravitational and external forces. Due to the elegant representation technique
mentioned in the sections above, our intension is to represent all quantities in terms
of twists and wrenches. Wrenches are force/moment pairs contain forces and mo-
ments usually applied at the center of mass. The values of wrenches depend on the
coordinate frame in which they are represented:

F =
(

f
τ

)
(4.55)

where f ∈ R
3 is a linear force component, τ ∈ R

3 represents a rotational component
and F is ∈ R6. Transformation of wrenches or twists can be performed by using
Adjoint transformation presented above,

Fa = AdT
gba

Fb, (4.56)
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where forces acting on the body coordinate frame B are written with respect to co-
ordinate frame A. In spatial representation, this is equivalent as if the coordinate
frame A were attached to the object. For a branching type of robot, the recursive
Newton-Euler algorithm provides the best opportunity for fast calculation of kine-
matics and dynamics. This algorithm can be separated into two cycles. The first cal-
culation propagate simultaneously from the chosen base module of the multi-robot
organism to all branches in order to calculate general velocities and accelerations.
In order to produce these accelerations, general forces have to be calculated and this
is performed in backwards manner from the end modules in each branch to the base
module. Finally the results for all branches are summed up. This strategy have been
applied in different works (Chen, 1999), (Featherstone, 2008).

In (Featherstone, 2008), detailed considerations about the implementation is-
sues, complexity etc. can be directly compared with the complexity we expect in
calculations for robots. Several different algorithms for Forward Dynamics (Iner-
tia Matrix Method, Propagation Method, The Articulated-Body Algorithm), Inverse
Dynamics and even some Hybrid Dynamics (HD) algorithms (Articulated- Body
Hybrid Dynamics, Floating-Base Forward/Inverse Dynamics) are introduced and
compared with each other. We can use these algorithms in our projects and our in-
tension is to profit from the experiences made in the past and additionally to extend
these algorithms with additional features and use this knowledge to develop our own
methods adapted to our platforms. As we can see in (Chen, 1994), the technique of
using the Lie Algebra bring some additional advantages and allow an elegant repre-
sentation and calculation techniques. Our first goal is to combine these two research
areas and try to profit from both, on the one hand make use of effective dynamic
algorithms and on the other hand reduce the calculation complexity additionally by
using spacial Lie Algebra notation.

4.6.4 Computational Analysis

Among many different representation techniques, two have been emerged and found
a particular popularity in the robotics community. One of traditional representation
is the homogeneous transformation, based on 4 × 4 real matrices of homogeneous
coordinates. Another representation discussed in sections above is a quaternion/
vector pair representation based on unit quaternions. In (Funda & Pual, 1990), four
mathematical formalisms and therefore four distinct representations of a spatial
screw displacement (dual orthogonal 3×3 matrix, dual unit quaternion, dual special
unitary 2×2 matrix and dual Pauli spin matrices) are proposed. They are often used
to describe spatial transformation (translation, rotation etc.) for lines in space. They
have been analyzed regarding computational complexity and costs in terms of the
required number of CPU cycles. These four representations have been analyzed in
terms of their computational behavior in performing two basic operations:

1. General spacial screw displacement of a line;
2. Composition of two general spatial screw displacement operators.
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All test algorithms in that paper have been implemented in sequential, as well as in
parallel way. The paper concludes that the dual unit quaternions are the most effi-
cient representation of screw displacement of lines (joint axes) in space. Since the
computational capabilities of a multi-robot organism are quite limited, this analysis
is important in order to decide about the used method in the concept development.
Additional criterion contributing to the popularity of screw calculus is the fact that
this can be applied not only for kinematics but also for statistics, trajectory planning
or dynamics of spatial linkages problems. These can be formulated and analyzed in
a uniform and consistent fashion.

4.6.5 Conclusion

Before we are able to control the multi-robot organisms during a locomotive phase,
we need a model of kinematics and dynamics. In this section we described a possible
alternative usage of a spatial notation based on the screw calculus. A combination
of algorithms developed in (Featherstone, 2008) and in (Chen, 1999) is suggested.
Both approaches describe the model in spatial notation, however with different fo-
cuses. The goal followed in (Featherstone, 2008) was to develop efficient dynamic
algorithms, to find methods of how motion equations can be efficiently implemented
even in a distributed manner. In the second approach, the aim was to generate mo-
tion equations, however more focused on automatical generation. This allows the
robots to calculate autonomously the model according to the chosen topology. Ad-
ditional elegant formulation technique, which uses the Lie Algebra, provides a better
performance in comparison to standard techniques. Our final conclusion consists in
the recommendation to merge both approaches into a single method, argued by the
limited resources of multi-robot organisms and their distribution among the whole
structure.



Chapter 5
Learning, Artificial Evolution and Cultural
Aspects of Symbiotic Robotics

5.1 Machine Learning for Autonomous Robotics

Marc Schoenauer, Michele Sebag

In the early days of Robotics, Machine Learning (ML) used to be mentioned as a
key perspective for further study; on the one hand, intelligent robots should indeed
be endowed with learning abilities; on the other hand, whenever possible, manu-
ally designing competent robotic controllers is more effective than learning them
(Brooks, 1986).

As fully demonstrated since the 2005 Grand Darpa Challenge
(Montemerlo et al., 2006) however, ML can play a central role in Autonomous
Robotics. The grand Darpa Challenge 2005 was concerned with Autonomous
Vehicle Driving in desert areas; the following Challenge was concerned with Urban
Driving (Darpa-Urban, 2007). Another famed Robotic Challenge is the Robot
Soccer Cup (Iocchi et al., 2009). While robot soccer might appear to be more
indirectly relevant to the everyday life than autonomous vehicle driving, the soccer
game constitutes an ideal benchmark for collective decision in an uncertain and
adversarial world. In all above cases, Machine Learning was the core enabling
technology used to achieve individual decision making based on complex sensor
data and aimed at a high level goal.

More specifically, in the last decade ML has played three main roles in Robotics,
respectively related to design, dialogue, and debug.

Design. In some cases, the robot task can hardly be specified in a complete way
(e.g. grasping objects of any shape and putting them in the dish washing machine
(Saxena et al., 2008a) or guiding visitors in a museum (Kobayashi et al., 2008)).
The ML-based alternative to manual design shifts the focus from designing to train-
ing the controller. Specifically, the robot controller is optimized to solve a restricted
set of “case studies” during the training phase, and some guarantees about the gener-
ality of the acquired skills (the probability that the robot would solve other, similar,
case studies) are provided.

Dialogue. ML is viewed as a core enabling technology for establishing a bridge
between human and robotic worlds (Lang et al., 2009). Human beings have forged

P. Levi and S. Kernbach (Eds.): Symbiotic Multi-Robot Organisms, COSMOS 7, pp. 337–433.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010
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semantic representations, e.g. a language, for their sensory patterns (Lakoff, 1987);
robots need to learn how to associate these words to their own sensory patterns in
order to decipher user’s orders or indications.

Debug. Last, but not least, ML can be used to support the verification and debug of
a robotic controller (Fox et al., 2006): a simplified model of a complex controller is
more amenable to introspection, in order to identify the causes of potential failures
and/or assess an empirical validation setting.

The recent advances in, and need for, ML-based robotics have motivated a num-
ber of workshops and summer schools in the last years: IEEE-RAS / IFRR School of
Robotics Science on Learning 2007, Robotics Challenges for Machine Learning at
NIPS 2007, Workshop on Robotics Challenges for Machine Learning at IROS 2008,
Workshop on Interactive Robot Learning 2008, From motor to interaction learning
in robots workshop at IROS 2008 Robot Learning Summer School 2009, Work-
shop on Approaches to Sensorimotor Learning on Humanoid Robots at ICRA 2009,
Workshop on Machine Learning and Data Mining for Robotics at ECML/PKDD to
name a few.

This section will present some related work, without pretending to exhaustiv-
ity (Sect. 5.1.1), discuss some major issues for ML-based Autonomous Robotics
(Sect. 5.1.2), and report on some work in progress done in the context of Swarm
Robotics, specifically the SYMBRION/REPLICATOR projects, in Sect. 5.1.3.

5.1.1 Related Work

Most generally, ML proceeds by solving optimization problems. The state of the
art in ML-based robotics will thus be naturally structured along three interdepen-
dent dimensions: the objective function (the targeted applications), the search space
(the controller representation), and the algorithmic approaches (how to navigate the
search space and find a quasi-optimal solution).

Algorithmically, the ML art is to define the learning criterion, i.e. the function
to be optimized, depending on i) the empirical evidence, ii) the search space, iii)
the computational budget and iv) the guarantees required about the optimality and
generality of the solution.

5.1.1.1 Learning Robot Skills

Robotic applications are hierarchically organized, depending on the skills required
to achieve the goal at hand. The primary level aims at perceptual skills; it is con-
cerned with the structuration and interpretation of the raw sensor data. Interestingly,
perceptual skills can hardly be assessed per se: they are essentially meant to support
other skills1.

1 Arguably, a perceptual subsystem can be assessed in isolation, e.g. determining whether
targeted objects are recognized from video data. In a robotic perspective however, percep-
tual skills must be assessed along an integrated setting, allowing the robot to control its
moves in order to confirm/infirm its current interpretations of the sensor data (using e.g.
active vision).
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Fig. 5.1 Quadrupedal Locomotion (from (Abbeel, 2008)).

Fig. 5.2 Grasping objects (from
(Saxena et al., 2008b)).

On the top of perceptual skills, are
motor skills: locomotion, specifically
biped or quadrupedal locomotion
(see e.g., (Raibert et al., 2008),
Fig. 5.1) and grasping (e.g.,
(Saxena et al., 2008b), Fig. 5.2). It
must be emphasized that the difficulty
of any locomotion or grasping-based
task widely varies depending on the
context: climbing a frozen hill requires
significantly more efforts than moving
on a plane ground; likewise, being able
to grasp any type of cup in any posi-
tion, or to grasp a moving ball, resorts
to solving different sub-problems.

One touchstone for the difficulty
of the task is whether it can be
solved using reactive strategies, or
whether some type of anticipatory/-
planning behaviour is required. Reac-
tive approaches can be illustrated by
the early ALVINN system (Pomerleau, 1989), pioneering the Learning by Imitation
approach (Sect. 5.1.1.4). Exploiting empirical evidence gathered from the teacher’s
demonstration, ALVINN learned to predict the steer angle from the current road
image in order to avoid obstacles; the approach was shown to be able to drive a
vehicle. Based on the same principles, Le Cun showed in 2006 that convolutional
neural networks can be trained from ample empirical evidence in order to achieve
fast driving in non-trivial environments (LeCun et al., 2005).

The limitations of reactive behaviours can be illustrated as follows. When the
environment plus the robot sensors are subjected to the so-called perceptual aliasing
phenomenon2, predicting the best direction depending on the current information

2 The robot cannot make differences between different locations on the basis of its only
sensor values.
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does not enable the robot to arrive at the prescribed location. Perceptual aliasing
can be addressed using elaborate feature engineering, e.g. providing the robot with
some information about the long-term effects of the current decisions (e.g., do not
engage in a cul-de-sac). Feature engineering indeed constitutes a considerable part
of the Robotics literature; how to get beyond guess-and-check approaches is a main
challenge for ML-based robotics.

On the top of motor skills are more elaborate goals, involving planning at
least to some extent. On the locomotion side are all activities related to naviga-
tion. While obstacle avoidance is a reactive behaviour, goals such as mowing the
grass or vacuum cleaning can either be tackled using reactive stochastic strategies
(Tribelhorn & Dodds, 2007) or more elaborate ones, e.g. based on building a map
of the environment (Durrant-Whyte & Bailey, 2006). Along the same line are pa-
trolling (same as mowing or cleaning, but addressed by a team of robots as op-
posed to, by an individual robot) and rescue (patrolling in order to find targeted
patterns, e.g. individuals buried by a earthquake); and, of course, military activities.
The underlying challenge in such activities is to elaborate an operational model of
the visited world as complete as possible, listing all objects in the environment in a
principled way, and supporting the object retrieval when needed.

On the grasping side are all activities related to assembling things, e.g. Lego
building blocks in order to build a tower, a plane, and so forth. A main challenge here
is to acquire the specifications of the task, using Learning by Imitation (Sect. 5.1.1.4)
or by direct communication with human teachers, see below.

Besides motor skills are communication skills. As claimed by the Nobel prize
winning Herbert Simon, founder of Artificial Intelligence and of the Bounded
Rationality principles, intelligence cannot be separated from social interactions.
In assembling activities for instance, the specifications of the task (put the small
blue piece in the round one) can be acquired using multiple cues integrating visual
and speech information (Aboutalib & Veloso, 2007). The point here is to ground
the teacher’s words (nouns and verbs) within the robot perceptual and operational
apparatus.

On the top of communication skills are collective tasks, e.g. soccer playing. Af-
ter H. Simon again, robot soccer demonstrates a “social grammar”; mastering this
grammar definitely is one of the biggest Robotic challenges.

5.1.1.2 Controller Representation

The controller space, also referred to as search space, is a space of functions map-
ping the raw sensor data and possibly the internal state values of the robot, onto
actuator values. This mapping can be deterministic (e.g. neural net) or probabilistic
(e.g. Markov Decision Process).

Most commonly, the raw sensor data is pre-processed. The pre-processing step
can correspond to (manual) feature engineering, defining intuitive state variables
in order to facilitate the controller design (Bain & Sammut, 1995). Another moti-
vation for sensor pre-processing is dimensionality reduction. The sensor data (data
stream in IRD) usually lives in a much smaller space dimension (IRd ,d << D) since
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sensor values (e.g. camera pixels) are correlated in the sense that they provide
different information about the same robot environment. Getting rid of the sensor
redundancy is beneficial in two ways; on the one hand, dimensionality reduction
improves the quality of the information provided to the controller, through remov-
ing the sensor noise. On the other hand, the amount of empirical evidence needed
to train a controller up to a certain degree of accuracy exponentially increases with
the dimension of the input space, everything else being equal. In a pre-processing
stage, the raw sensor data thus is decorrelated and denoised, using either Princi-
pal Component or Independent Component Analysis (Hyvarinen et al., 2001), as in
(Calinon & Billard, 2005), or non-linear dimensionality reduction techniques, e.g.
Isomap (Tenenbaum et al., 2000). Note that sensor pre-processing, also referred to
as sensor fusion (see Sect. 3.2), is done on-line. It might be required to replace
well-founded dimensionality reduction algorithms with approximations thereof.

Various controller spaces have been considered in the literature, ranging from
rule-sets to self-organized maps, (recurrent) neural nets, graphical models, Hid-
den Markov Models (HMM) and Partially Observable Markov Decision Processes
(POMDP). The choice of the search space depends on the targeted application, on
the desired properties of the solution (e.g. rule-sets are more easily interpreted than
neural nets) and specifically on the prior knowledge of the designer. For instance,
the invariance properties of perceptual skills (the interpretation of an image does
not change much if the image is slightly rotated, translated, or undergoes a homo-
thety) can be directly encoded in the topology of neural nets, as shown by Le Cun’s
convolutional nets (LeCun et al., 2005). The spatial context of the robot can be used
to guide the structure of a graphical model. The robot dynamics can be encoded
through the HMM (Gienger et al., 2008). Rule-sets enable to directly exploit frag-
ments of expert knowledge (Kavka et al., 2005); they also are easier to debug than
e.g., neural nets. Oscillators have been used for locomotion. Self-organized maps
arguably enable non-linear input-output mappings while supporting dimensionality
reduction (Barreto et al., 2003).

A very general framework is that of Markov Decision Processes (MDP). In
MDPs, the world model is made of a set of states S , a set of actions A connecting
the states, and a transition function indicating the probability of arriving at state s′ by
selecting action a when in state s. The task at hand is further modelled by a reward
function, associating a quality (∈ IR) to each state. Defining a policy as a function
mapping each state onto an action, the MDP problem amounts to finding an optimal
policy, that is, one maximizing the value of the reward expectation on a finite, or an
infinite, time horizon3.

How to build such an optimal policy, aka controller, is tackled by Reinforcement
Learning (Sect. 5.1.1.3). Another main approach, referred to as Learning by Imita-
tion (Sect. 5.1.1.4), exploits the teacher’s demonstrations. Finally, Inverse Optimal
Control bridges the gap between RL and LI (Sect. 5.1.1.5).

3 In the infinite horizon case, one considers discounted rewards to enforce a finite expecta-
tion.
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5.1.1.3 Reinforcement Learning

Reinforcement Learning (RL) (Sutton & Barto, 1998; Ng & Russell, 2000) aims at
optimizing the reward expectation along the considered time horizon: by construc-
tion, the best policy is the one maximizing the reward expectation. The RL principle
is based on iteratively computing some value function, associating to each state s
(each pair state, action s,a) the reward expectation reaped when the robot initial
state is s (resp. when the robot initial state and action are s and a).

The main strength of RL is to provide a sound framework for building provably
optimal policies. In counterpart, this nice setting is expensive in size and/or efforts;
some discretization is needed to map a continuous world onto a discrete set of states;
the number of states exponentially increases with the number of relevant features.
The main research priority in RL thus is: scalability.

A key issue, referred to as Function Approximator, uses various supervised ML
settings to estimate the value function Q(s,a) from the empirical evidence, using
look-up tables, nearest neighbours, neural networks, decision trees, or tile coding
(CMAC, or Cerebellar model arithmetic computer).

Another issue is to face the curse of dimensionality, through reducing the state
space and/or the action space. For instance, the state space can be reduced through
abstraction. The simplest type of abstraction is to discretise a continuous search
space. When the state space is described through the (continuous) sensor value
vector, the discretization aims at minimising the variance of the value function
(Munos & Moore, 2002). Another possibility is to generalise across states.

Independently, the action space can also be reduced. One possibility is to consider
“options” (Sutton & Barto, 1998; Precup et al., 2006). An option is a macro-action,
or sequence of actions; an option o is a triple (Ao,πo,βo) where Ao is the set of
states where option o can be selected, πo is the policy followed during option o,
and βo is the probability of terminating option o in each state (βo : S �→ [0,1]).
Formally, the introduction of options leads to considering Semi-Markov Decision
Processes. Practically, options correspond to sub-goals; their introduction leads to
implementing modular controllers. The benefits of options are those of modularity:
reusability of partial controllers; faster learning; better understandability/inspection
of the solution policy.

Predictive State Representations (PSR) (Littman et al., 2002) offer a new frame-
work for representing states and actions. The challenge in some sense is to overcome
the long known failure of AI to provide sound and robust descriptions of useful
concepts. For instance, providing a comprehensive description of what a “chair” is
was found an elusive task, due to the number of possible exceptions, the diversity
of the contexts, and more generally, the openness of the world. A way out of this
trap is offered by the so-called sensorimotor contingencies, inspired from Cognitive
Sciences: a chair is characterised by the fact that, when I sit upon it, I don’t fall
down. More generally, a concept is viewed as an elementary predictive model: if
action a is applied, and the result is such and such, then the robot was in state s.
Formally, PSRs are characterised in terms of core tests (discovered from traces);
learning the world model corresponds to associating to each history a probability
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of satisfying every core test. In other words, a state is described as the conditional
probability of the core tests. In a theoretical perspective, PSRs with k core tests en-
able to represent dynamical systems of dimension k (strictly including POMDP with
k states). In practice, two main issues are open: i) how to define the core tests; ii)
shouldn’t one go beyond linear PSRs (e.g. using Predictive Linear Gaussian instead
(Wingate & Singh, 2006)).

5.1.1.4 Learning by Imitation

While RL provides sound guarantees of optimality through a sufficient ex-
ploration of the search space, Learning by Imitation (LbI) (Pomerleau, 1989;
Bain & Sammut, 1995; LeCun et al., 2005) is provided with an example of al-
legedly optimal behaviour, namely the teacher’s traces (e.g. acquired by motion
capture). These traces define a supervised learning problem: learn to associate
the desired action to each sensor input. For instance (Bain & Sammut, 1995) aim
at “cloning” a plane pilot; (LeCun et al., 2005) exploit driving traces, where each
video frame is associated to the steering angle of the driver; the controller learned is
demonstrated on a four wheeled robot, driving in the forest. As mentioned earlier on
however, this supervised learning setting is limited to training reactive controllers:
when considering a deliberative task, a low average prediction error does not guar-
antee that the final performance will be satisfactory (missing one single critical step
is enough to fail the job). Another limitation of LbI is that the teacher’s traces reflect
both the teacher’s errors and her efforts to correct these errors; the reproduction of
the traces verbatim thus becomes a deceptive goal from the perspective of effective
control. Along the same lines, the variability of the traces (e.g. different teachers
might operate with different tempos) requires some generalization to be done. For
instance, the demonstrations provided by different teachers, e.g. knocking at the
door (Fig. 5.3) are generalized using an HMM framework.

Yet another difficulty is that human beings and robots operate in different percep-
tual and operational spaces. Typically, human and robot arms might differ by their
degrees of freedom (Calinon & Billard, 2005). Human teachers must be provided
with more precise visual cues than will be given to the robot on-line (e.g. using
camera with better definition) in order to enable demonstration.

One of the most effective heuristics involved in the Darpa Challenge winning
Stanley vehicle (Montemerlo et al., 2006) participates to some extent to Learning by
Imitation. Stanley, aimed at autonomous fast driving in the desert, is endowed with
a variety of sensors, including high-definition cameras and long-distance infra-red
sensors. Clearly, cameras provide a much richer information than infra-red sensors;
in the meanwhile, they are limited to near-environment.

One of the main sub-problems faced by STANLEY is to tell drivable from non-
drivable (bush, rocks, water) ground, in order to reach the target location as fast as
possible. In the preliminary training phase, much data has been gathered to provide
a “sufficiently complete” catalogue of the diverse situations the robot vehicle can
meet, and train efficient classifiers. As could have been expected however, there is
no such thing as a complete catalogue; lifelong learning thus is required.
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(a) Demonstration

(b) Input data

Fig. 5.3 Learning by Imitation (from (Calinon & Billard, 2005)).

A partial solution can be found, based on high-definition cameras; these provide
enough information to reliably classify the ground in front of the vehicle. The lim-
itation is that the prediction, being available only when the vehicle is close to the
zone, does not enable fast driving.

This limitation is addressed as follows. At any time t, the robot is provided de-
tailed information about its close environment, and coarse information about farther
away locations x. The close environment can thus be reliably classified as, say, road
and non-road. After a while, some formerly far away locations x have become close
ones. For some locations, the robot is thus provided with: i) the coarse description
(available at t); ii) the high-definition description (available at t +Δ ); ; iii) and thus
the label, road or non-road, which can be inferred from the high-definition location.
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Fig. 5.4 Grand Darpa Challenge: The environment (from (Montemerlo et al., 2006)).

A problem analogous to Learning by Imitation can thus be formulated, where the
input is made of the coarse description of location x, and the associated label is given
by the “expert” classifier, operating on the detailed description of x. An embedded
learning component seamlessly resolves the long-range classification problem, esti-
mating whether a far-away location is road or non-road. While the obtained classifier
is only available at t +Δ +Learning time, after the landscape continuity assumption
this classifier is competent to classify the currently far-away locations.

The bottom-line is that, although long-range classifiers are less reliable than the
short-range ones, they nevertheless allow the vehicle for speeding ahead toward the
safe locations. More precisely, the detection range goes to about 70 meters, as op-
posed to 20 meters when using the high definition camera only (Thrun et al., 2005a).

5.1.1.5 Inverse Optimal Control

Inverse Reinforcement Learning (IRL), also referred to as Inverse Optimal Control,
bridges the gap between Reinforcement Learning and Learning by Imitation by us-
ing the teacher’s demonstrations to infer some reward function; this reward function
makes it possible to use the RL machinery in order to mimic and/or generalize the
teacher’s behaviour.

IRL relies on two main assumptions. Firstly, it assumes that the world space
(sensor × action space) can be mapped one-to-one onto some feature space. In a
parking task for instance, the features include the curvature, smoothness, distance
to obstacles, and alignment with principal directions. Like early robotic approaches
(Brooks, 1986), the approach thus critically depends on feature engineering.

Secondly, it assumes that the targeted behaviour is obtained by minimizing some
cost function over the trajectory in the feature space. The linearity of the cost func-
tion was assumed in early work devoted to IRL (Abbeel, 2008); the linearity as-
sumption has been relaxed later on (Ratliff et al., 2009).

The IRL goal thus is to learn the reward function, based on the assumption
that the teacher’s demonstration reflects an optimal policy, that is, it must get a
greater cumulative reward than all other controllers in the search space. For the sake
of scalability (as the size of the controller space is exponential in the size of the
state and action space), the constraint is equivalently translated into: the teacher’s



346 5 Learning, Artificial Evolution and Cultural Aspects of Symbiotic Robotics

demonstration should get a greater cumulative reward than the best controller ac-
cording to the current reward function.

IRL thus proceeds iteratively. Let ξ denote the sequence of (state, action) cor-
responding to the teacher’s trace. Given an initial reward function r0, let π0 denote
the optimal policy based on r0. At every step t, let Rt(πt) define the cumulative
reward associated to the (state, action) sequence obtained by following πt from
the initial state, after rt ; let Rt(ξ ) be likewise the cumulative reward associated to
the (state,action) sequence coding the teacher’s demonstration. If Rt(πt) is close to
Rt(ξ ), the process stops; otherwise, the reward function is modified in order to ac-
count for the fact that πt is not an optimal policy. Formally let S denote the feature
space, and let ξ ∈ {0,1}S be the indicator vector of the teacher trace (ξ j = 1 iff s j

belongs to the trace). In a linear setting, the reward function is given as a weight
vector wt , with

Rt(ξ ) =< w,ξ >

The optimisation problem can be formalised as, where πt denotes the thus-far found
policies:

Find wt maximising γ s.t.||w|| = 1,Rt(ξ ) ≥ Rt(π ′
t )+ γ, for 0 ≤ t ′ ≤ t − 1

A new policy πt is learned after reward wt , and the process is iterated until Rt(πt)
is sufficiently close to Rt(ξ ). Contrasting with the myopic decision problem ad-
dressed by Learning by Imitation (find the appropriate action depending on the cur-
rent state), IRL thus considers and optimizes the whole (state,action) sequence.

The formalization can be further improved within the Maximum Margin Planning
framework (Ratliff et al., 2009), associating to each policy/trajectory π and each
demonstration ξi, i = 1 . . .K a loss function �i(π). Let π∗

i denote the optimal policy
in the sense of the reward minus loss function:

π∗
i = minπ < w,π > −�i(π)

Then the margin-based formulation of the reward function is such that

< w,π > ≤ < w,π∗
i > −�i(π∗

i ),∀i = 1 . . .K

Avoiding trivial solutions related to small weight vectors w, and associating slack
variable ζi to each constraint above, it comes:

Find min 1
2 ||w||2 + 1

K ∑i ζi

subject to < w,π > ≤ < w,π∗
i > −�i(π∗

i )+ ζi,∀i = 1 . . .K

In brief, the Inverse Reinforcement Learning claim is that one should explore the
reward function space, rather than the policy space. The main rationale for this claim
is that, if one gets the reward function right, then RL provides guarantees about the
optimality of the policy; further, as shown by Abbeel (Abbeel, 2008), the number of
steps and examples in the iterative IRL process can be upper bounded.
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5.1.2 Challenges for ML-Based Robotics

The quality of the learning output primarily depends on the quality of its input. The
quality of the information provided to the robot, specifically whether the world is
observable or partially observable, on the one hand, and whether it is deterministic,
on the other hand (Taylor et al., 2006) must govern the complexity of the controller
model and the experimental setting of the training process. An additional difficulty
is related to the use of simulators, providing a fast noisy approximation of both
the environment and the robot behaviours. The first challenge for ML-based Robo-
tics thus is to devise an integrated training process, combining in-silico and in-situ
training.

Another key issue is to assess the robot behaviour. As amply demonstrated in
Evolutionary Robotics (Nolfi & Floreano, 2000b), the assessment criterion must en-
able to gradually improving the robot behaviour; Needle in the Haystack-like prob-
lems should be avoided. How to guide the learning search through the interaction
with the designers, thus constitutes a main methodological challenge for ML-based
Robotics.

5.1.2.1 Quality of the Controller Input

Autonomous controller design mainly comes into two flavours, in-situ and in-silico
training. In-silico approaches extensively rely on robotic simulators, encoding a
world model and specifically sensor and actuator models; in-silico trained con-
trollers reflect the quality of the underlying simulators. Acquiring reliable models of
the sensor and actuator devices however raises significant difficulties, e.g. relatively
to the noise model4 and the many parameters involved in real world modelling (e.g.,
light conditions and texture of the obstacles for visual sensors). Physics-compliant
simulators (e.g. modeling elastic shocks, gravity, etc) are slow, to such an extent that
simulations might take about as long as in-situ experiments.

In short, in-silico approaches offer either cheap and unreliable, or computation-
ally expensive and more accurate, environments for robotic controller training. In
both cases, controllers are prone to suffer from the so-called Reality Gap: their ac-
tual performance does not match the simulated one, in other words they overfit the
simulators5.

In opposition, in-situ approaches always are time-demanding: experiments
take time and they require the full participation of the human designer
(Floreano & Mondada, 1994; Nolfi & Floreano, 2000a). Furthermore, they put the
robotic devices at high stress, increasing the chances of failure. The exploration of
the environment and the controller space also requires special care to preserve the

4 It is widely acknowledged that sensors provide noisy information; actuators likewise are
noisy. The noise model however proves to be elusive (Thrun et al., 2005a).

5 A possibility investigated by (Kolter et al., 2008) is based on using an ensemble of sim-
ulators; the ensemble of controllers learned from these simulators is used to reduce the
dimensionality of the controller search space.
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robot integrity. Lastly, in-situ training itself does not necessarily offer decent guaran-
tees about the controller generality, for two reasons. On the one hand, robot sensors
and actuators might sensibly differ from one robot to another; the controller trained
on one physical robot might present some inaccuracies when transfered on another
robot. On the other hand, autonomous robots cannot be trained under all possible
experimental conditions; a modest change in the light conditions might hinder the
effectiveness of the robot controller.

One promising direction for handling the in-silico vs in-situ (ISIS) dilemma
is to consider that the Reality Gap (RG) is unavoidable, whatever the training
mode of the controller is. Accordingly, a core task in Autonomic Robotics be-
comes to deal with the RG phenomenon. Interestingly, Autonomic Computing
(Kephart & Chess, 2003) faces similar challenges, related to building self-adaptive
and self-healing systems. A key milestone toward such autonomic systems is to
make them self-aware, i.e. able to anticipate the effects of their decisions. Some
promising steps toward self-awareness, specifically self-modeling resilient robots
have been done by (Bongard et al., 2006). This approach can be extended along the
lines of multi-task aka transfer learning (Bickel et al., 2009), offering a principled
learning approach when the training environment might be different from the tar-
geted environment.

5.1.2.2 Quality of a Controller

A second core issue is to provide the robot with some criterion of quality, decently
encoding the desired behaviour. How critical the design of a robotic fitness function
is (all the more so due to Evolutionary Opportunism), has been extensively dis-
cussed in Evolutionary Robotics (Nolfi & Floreano, 2000a); the design of reward
functions in Reinforcement Learning raises similar difficulties. Specifically, the fit-
ness/reward function defines an optimization problem, with two requirements. On
the one hand, the optimization problem should be tractable (avoiding Needle-In-
The-Haystack-like optimization landscapes). In practice, the criterion should enable
making differences between inappropriate robotic behaviours and very inappropri-
ate behaviours, conducive to the discovery of appropriate ones. On the other hand,
the criterion should not admit trivial and undesirable solutions; typically, an undesir-
able way of achieving obstacle avoidance is to stay motionless, or to rotate without
advancing (Nolfi & Floreano, 2000a).

As shown in Sect. 5.1.1.4, Learning by Imitation (LbI) is a promising alter-
native to the definition of a quality criterion, in the spirit of Machine Learning:
instead of providing rules or criteria, the human teacher provides examples. The
literature (Bain & Sammut, 1995; Abbeel & Ng, 2004; Calinon & Billard, 2005)
suggests that LbI both addresses some known difficulties and raises some new diffi-
culties. One of those is the presence of noise in the teacher traces, making it neces-
sary to edit the teacher traces in order to effectively guide the robot. While some LbI
limitations are addressed by Inverse Reinforcement Learning (IRL; Sect. 5.1.1.5),
the latter approach still depends on the teacher’s expertise. A Game Theoretical ap-
proach developed by (Syed & Schapire, 2008; Syed et al., 2008) has been shown to
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overcome the teacher’s weaknesses, subject to the identification of the desired fea-
tures (e.g. speed, obstacle avoidance,..); basically, the ultimate policy maximizes the
minimal reward expectation over all reward functions described as weighted com-
binations of the features.

Another approach directly aims at learning the expert’s preferences,
through either interactive optimization (Llorà et al., 2005), or preference learning
(Cohen, 2000; Freund et al., 2003; Burges et al., 2007). Basically, the idea is to
present the designer with several behaviours, ask for a partial ordering of these
behaviours and infer a preference model from this partial order. Such a preference
model corresponds to the sought reward or fitness function. Interestingly, preference
learning could be further coupled with active learning (Dasgupta, 2006), allowing
the learning controller to ask the teacher about the most appropriate actions in criti-
cal situations.

5.1.3 The WOALA Scheme

This section presents a Machine Learning-based scheme for Swarm Robotics, de-
vised in the SYMBRION/REPLICATOR framework, and incorporating some of the
ideas described above. The specific principles and requirements guiding the pre-
sented scheme, called WOALA, are first discussed. An overview of WOALA is
presented together with a proof of concept of the approach. aimed at making the
distinction between seeing an obstacle and seeing another robot. It is worth em-
phasizing that making this distinction is not a trivial problem6, while it is a critical
milestone in a swarm robotic framework.

In the following, perceptual apparatus is meant as a set of descriptive features,
hierarchically built on the raw sensor data; operational apparatus is a set of actuator
patterns, related to the perceptual apparatus.

5.1.3.1 Working Hypotheses

The WOALA scheme has been devised with two main issues in mind. The first one
regards the division of labour between programming and learning, or the distinction
between “innate” vs “acquired” skills. The second one aims at the scalability of the
approach w.r.t. the complexity of the targeted behaviour, through capitalizing the
robotic know-how (perceptual, motor, and/or deliberative skills) acquired along the
process.

One of the central issues in Autonomous Robotics is to distinguish between what
should be given to the robot (“innate” skills) and what should be learned (“acquired”
skills). Clearly, there is no point in learning skills which can be easily and efficiently
programmed. While the distinction between innate and acquired skills has long been
debated and various interpretations have been proposed in Ethology (Lorenz, 1941),

6 Making the distinction between mobile and motionless obstacles in all generality requires
active vision, that is, planning skills.
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their relevance to Robotics remains unclear. Biological entities participate in an in-
tegrated, partially observable, spatio-temporal system; the goal of Ethology is to
analyse how this system has been deployed “from scratch”. Quite the contrary, the
goal of Robotics is to create (mechatronical) entities, with a focused goal and con-
trolled initial conditions.

Nevertheless, several milestones for Autonomous Robotics have been defined
from Ethology studies, ranging from foraging skills (Koza, 1992) to latent learning
(Tolman, 1948; Lanzi, 2000; Hartland et al., 2009). The proposed approach is in-
spired by a particular experiment reported by Konrad Lorenz, shedding some light
on the distinction between innate and acquired skills, relevant to our purpose. After
(Lorenz, 1941), the young goose is programmed to follow its mother (innate be-
haviour); the “mother” pattern however is acquired, to such an extent that the young
goose might mistake the ethologist for its mother and follow him, under appropriate
experimental conditions. In these experiments, it is suggested that the operational
apparatus is built-in (innate following behaviour) whereas the perceptual apparatus
(the mother pattern) is learned along a well-defined scenario (a shape present at the
young goose’ birth, moving with an appropriate speed).

Another major issue regards the computational effort, and even more impor-
tantly, the human design effort, required to acquire or specify the diverse skills (per-
ceptual, motor, deliberative) involved in Autonomous Robotics. The early robotic
trend, e.g. illustrated by Brook (Brooks, 1986), used to define specific acquisition
sub-problems, the solutions of which were integrated within a global subsump-
tion architecture. The ML-based approach defines generic tools addressing diverse
goals; for instance the optimal inverse control approach proposed by Ratliff et al
(Ratliff et al., 2009) can indifferently be applied to quadrupedal locomotion, car
parking or object grasping problems. None of these approaches however seems
to be able to gracefully scale up, due to intrinsic limitations. On the subsumption
side, skills are independently acquired, lending themselves to a capitalization of
the know-how; the integration of the know-how however relies on the subsumption
architecture, which is manually engineered. On the ML-side, the stress is put on
the genericity of the algorithms; the approach however relies on the choice of an
appropriate representation (state and action spaces), which governs the efficiency
of the approach. Further, how to capitalize the know-how − how to reuse former
controllers − is not considered.

A more promising framework, scalability-wise, is offered by the Action Selec-
tion framework (Humphrys, 1997; Godzik et al., 2003). This framework involves a
generic action space; typically, elementary actions correspond to the basic actuator
patterns (go ahead, left, right; grasp). On the top of this initial action space, the AS
framework enables to define simple controllers (obstacle avoidance, light search).
The AS framework however lends itself to the capitalization of the know-how, in
the sense that formerly acquired controllers can be considered as (macro-)actions
and selected when tackling new goals. The AS framework thus enables one to deal
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Fig. 5.5 Shallow vs Deep Structures (from (Larochelle et al., 2007)).

with a hierarchically structured action space, where i-level actions are defined using
i− 1-level actions as building blocks7.

The fact that functional spaces with deep structures are (exponentially) more
compact than shallow ones everything else being equal has been known for long
(Hastad, n.d.), and can be illustrated on the toy n-bit parity problem (the target func-
tion value is 1 iff the sum of the n bits is even). In Disjunctive Normal Form (the dis-
junction of conjunctive monoms, corresponding to a shallow network), n-bit parity
is expressed through 2n−1 monoms (hidden neurons). The use of nested expressions
(a network with logn layers) makes it feasible to characterize the n-bit parity with n
neurons (Fig. 5.5).

As argued by Y. Bengio and G. Hinton (Larochelle et al., 2007;
Hinton et al., 2006), the major reason why shallow topologies/representations
have been preferred over deep ones for over two decades despite their compara-
tively poor expressiveness is their better controllability. More precisely, supervised
learning within a deep network architecture defines an optimization problem
plagued with local optima, many of which have a quite poor generalization
performance. This limitation has been sidestepped in the Deep Network framework
(Hinton et al., 2006; Larochelle et al., 2007), iteratively building the hidden layers
of the Deep Networks using an auxiliary optimization criterion8.

7 It might be objected that complex tasks are not optimally addressed by concatenating sim-
ple actions, in the general case. The considered hierarchical structure however makes it
feasible to find a satisfying solution for a complex problem; an eventual fine-tuning phase
will enable to adjust and polish the simple actions involved with the complex goal in
mind. In brief, modularity is viewed as a core enabling principle to achieve complex goals
(Dawkins, 1986 - 1996).

8 Formally, the i-th layer of the network is defined as an (invertible) encoding of the i − 1-
layer, the 0-th layer corresponding to the initial representation of the data. The actual su-
pervised learning task is taken into account when the current layer of the Deep Network is
deemed to provide an adequate representation of the available information. The interested
reader is referred to (Hinton et al., 2006; Larochelle et al., 2007) for a comprehensive pre-
sentation of Deep Networks.
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Along this line, it is suggested that complex goals can be tackled by i) using a sin-
gle generic learning algorithm; ii) iteratively building more complex representations
(the successive topology layers); iii) solving a sequence of learning goals (the i-th
layer encodes the i−1-th layer). Such a strategy is remotely reminiscent of Piaget’s
theories about cognitive development (Piaget, 1937), where concepts are iteratively
acquired, and each set of concepts (e.g. space or time invariance) paves the way for
representing and acquiring more complex concepts.

5.1.3.2 Overview of WOALA

Taking inspiration from the above mentioned theories and approaches, the proposed
scheme aims at gradually acquiring a complex robotic perceptual and operational
apparatus, by applying generic ML algorithms to robotic logs.

Formally, the division of labour between “innate” and “acquired” development
goes as follows. On the innate side, the designer is in charge of devising a scenario
conducive to the observation of “interesting” events and sequences of events in the
scope of available (programmed or evolved) controllers. Running the controller after
this scenario generates a log file, recording the sensor and actuator data experienced
by the robot. The designer additionally annotates the log, labelling some (sequence
of) time steps as corresponding to interesting events.

On the acquired side, the annotated log is processed, using available features to
describe the learning instances; these instances, together with the labels provided
by the oracle, define learning problems. The resolution of these learning problems
derives hypotheses, enriching the perceptual and operational apparatus of the robot.
The increase in complexity is achieved by i) using the perceptual features acquired
in the previous phase to represent the learning examples; ii) learning gradually more
complex target concepts, using the human designer as oracle.

Specifically, the WOALA scheme is a 5-step process: Write-Observe-Annotate-
Learn-Assess.

Write In the first step, the human designer writes a controller π based on
the existing perceptual and operational apparatus. Additionally, the de-
signer defines a scenario conducive to “interesting events” (see below).
Initially, the controller might be a standard Braitenberg controller
(Braitenberg, 1984), simply achieving obstacle avoidance. The pro-
posed scenarios are detailed in Sects. 5.1.4.3 and 5.1.4.4.

Observe In the second step, controller π is launched along the defined scenario,
either in simulation or in situ. The robotic log is recorded, indicating
the perceptual and operational events holding true for each time step,
together with the events prescribed from the scenario.

Initially, the robotic log only stores the raw sensor and actuator data
stream perceived and acted by the robot.

Annotate In the third step, the robotic log is annotated after the prior knowl-
edge, either from the available resources (Sect. 5.1.4.3, Sect. 5.1.4.4)
or from the designer. In the first case, the annotations define a standard
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supervised learning problem: this (sequence of) sensorimotor data cor-
responds to seeing i/ a wall, ii/ another robot. In the second case,
the annotations define a preference learning problem (Cohen, 2000;
Freund et al., 2003; Burges et al., 2007): after the designer, this se-
quence of sensorimotor data is more appropriate (to the ultimate goal)
than this other sequence.

Initially, some resources will be developed to enable the automatic
annotation of simple target concepts (Sect. 5.1.4.3).

Learn In the fourth step, the learning problems set in the former step are solved
and hypotheses are built. Notably, hypotheses built from a supervised
learning setting can be viewed as virtual or educated sensors; they cor-
respond to perceptual primitives (I see a wall). Hypotheses built from
a learning to rank setting correspond to surrogate rewards. Such surro-
gate rewards contrast with the Inverse Optimal Control (Sect. 5.1.1.5) in
two ways. Firstly, they are learned by comparing fragments of robotic
behaviours, as opposed to, from the teacher’s demonstrations; secondly,
the reward applies to a sequence of time steps.

Assess In the fifth step, the hypotheses built in the previous step are assessed,
typically using a test set extracted from the robotic log. The best hy-
potheses are added to the robot perceptual and operational apparatus,
and they become available to write another controller.

The originality of the WOALA scheme lies in the division of labour between the
innate and the acquired elements of the controller. The acquired (learned) elements
constitute a hierarchically structured set of perceptual primitives and rewards.

The acquisition of these primitives relies on the human designer in two differ-
ent ways; firstly, the designer puts the robot in situation (writing the controller and
the scenario); secondly, she provides a feedback through annotating the empiri-
cal evidence. In some sense, this approach closely reflects Herbert Simon’s claim
(Sect. 5.1.1.1), rooting robot intelligence in social interactions with the designer.

The main limitation of the approach regards its bootstrap, i.e. the definition of a
scenario and a controller conducive to the observation of interesting events, and the
learning of the first perceptual features and rewards.

5.1.4 First Experiments with WOALA

In order to assess the viability of the proposed approach and the validity of the
WOALA scheme, some simple experiments involving the complete WOALA loop
have been designed. The aim is to learn some advanced primitives, namely distin-
guishing between seeing a robot and seeing a wall, which are mandatory in the
context of swarm or cellular robotics.

The challenge lies in dealing with the most simple model of robot that has been
proposed within the project. While this robot should be able to detect other similar
robots in order to either adopt a swarm behaviour, or to join a multi-cellular organ-
ism, it is only endowed with 2 infra-red sensors, with a limited focus and range.



354 5 Learning, Artificial Evolution and Cultural Aspects of Symbiotic Robotics

The methodology detailed below is to gather logs of wandering robots, to filter
out all non-events (the robot sees nothing at all), to label the (sequence of) sensori-
motor data on the basis of the available resources, to acquire a hypothesis about the
target concepts, to test this hypothesis and use it to enrich the available resources.

5.1.4.1 Getting Started

A randomized Braitenberg controller was used for the Write step of all initial experi-
ments. Whenever one sensor detects some obstacle, the robot starts rotating to avoid
it9, either leftward or rightward for symmetry reasons. The total rotation angle is uni-
formly drawn in [0,180]. The rationale for such randomization is to prevent the robot
from engaging into periodic behaviours, e.g. oscillating in a corner of the arena.

A mechanism allowing the designer to take control of the robot independently
of the Braitenberg controller has also been implemented. Specifically, the designer
controls the robot moves from a joystick or from the keyboard. Such a manual con-
trol is useful in some scenarios, e.g. to ensure that desirable events (two robots
meeting) will occur sufficiently often; it will also be used in the preference learning
step of the WOALA scheme (on-going experiments not described here).

Before describing the actual experiments, next section will briefly introduce the
learning algorithm that has been used for all learning tasks involved in this work.

5.1.4.2 Learning Algorithm

While many learning algorithms (decision trees or random forests
(Breiman, 2001), neural nets (LeCun et al., 2005), Support Vector Machines
(Cristianini & Shawe-Taylor, 2000)) can be used in principle, an any-time and
frugal learning algorithm is needed to address the constraints of embedded robotics.
The results presented below are based on the ROGER algorithm (Jong et al., 2004),
using Evolution Strategies to optimize the Area Under the ROC curve, also known
as Mann Wilcoxon criterion.

Learning criterion: Formally, let us consider a training set E

E = {(xi,yi), i = 1 . . .n,xi ∈ IRd ,yi ∈ {−1,1}}

where xi denotes the description of the i-th example (a vector of IRd) and yi is the as-
sociated label10. Let h define a hypothesis mapping IRd onto R. The Mann Wilcoxon

9 An additional difficulty is raised by the particular motor system of the robot, which is
moved by two screw-drive wheels (see Sect. 2.4, Fig. 2.29 right). While these wheels allow
the robot to make a smooth move on its left, a complete stop and backward rotation are
required to perform a right-turn. It is hence impossible to get a turning speed proportional
to some sensor-based value, and the standard Braitenberg controller had to be modified
accordingly.

10 To fix the ideas, the dimension d in the reported experiments is 120, corresponding to 2
sensors and 2 actuators along 30 time steps.
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criterion computes the fraction of examples xi,x j such that xi is a positive example,
x j a negative one, and h(xi) is greater than h(x j):

MW (h) =
|{(xi,x j) s.t. yi > y j,h(xi) > h(x j)}|

|Z|
where Z denotes the number of pairs of (negative, positive) examples. As shown by
(Rosset, 2004), this criterion is stable; it is quadratic w.r.t. the number of examples
whereas the standard misclassification cost is linear with the number of examples).

The computation complexity of MW (h) is actually O(n logn) (examples are
ordered w.r.t. their h value to ease the computation of the criterion).

Hypothesis model: Several hypothesis spaces have been considered, including
Echo State Networks (Hartland et al., 2009). In the reported experiments, a hypoth-
esis is described from two vectors w and c each in IRd

h(x) =
d

∑
i=1

wi|xi − ci|

The main rationale for this choice of hypothesis model is to allow for non linear
hypothesis while preserving a linear complexity w.r.t. the size of the input space (as
opposed to e.g. standard neural nets).

Hypothesis learning: The maximization of the Mann Wilcoxon criterion over the
hypothesis space described above amounts to standard parametric optimization. Due
to the high number of local optima, it is performed using a standard self-adaptive
non-isotropic Evolution Strategy (Bäck et al., 1997).

Once a good (with respect to the Mann Wilcoxon criterion) hypothesis h has
been found, a threshold τ is determined in order to use h for further classification
purposes: an unknown example x will be classified as positive if h(x) > τ , negative
otherwise. The value of τ is determined so as to minimize the classification error
(i.e. to maximize the sum of the number of true positive and true negative) over the
training set.

The confidence of the classification is further assessed from the margin of h(x):
the higher |h(x) − τ|, the more certain the classification is. Formally, the margin
mh(x) is defined as:

mh(x) =
h(x)− τ

mini=1...nh(xi)− τ
Ensemble learning: It is widely known in the Machine Learning community that
ensembles of hypotheses can often be more robust than single accurate hypothe-
ses – this is the ground basis for techniques such as bagging (Shapire et al., 1997;
Derbeko et al., 2002) and boosting (Freund & Shapire, 1996; Freund et al., 2003).
The use of evolutionary optimization as learning engine gives a source of variabil-
ity “for free” (Gagné et al., 2007), which is exploited to independently extract 15
hypotheses from each training set.
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The predicted class is then obtained by summing the margin mhi(x) over all gen-
erated hypotheses hi. A confidence threshold τg is used to classify x as unknown if
the sum of mhi(x) is less than τg:

class(x) =

⎧⎨⎩
unknown if |∑i mhi(x)| < τg

1 if ∑i mhi(x) > τg

−1 if ∑i mhi(x) < −τg

5.1.4.3 Building Resources

The annotation step (Sect. 5.1.3.2) aims at labelling the log events according to the
targeted concept. Whereas manually annotating the events is tedious whatever the
scenario, it is hardly feasible when the annotation is related to the perception of the
robot (as opposed to its visible behaviour). Indeed, a human being can hardly know
what it is like to be a specific robot (Nagel, 1974); one can hardly guess whether the
robot sees the wall or another robot in any given situation.

As a starting point, the only reliable primitive is “I see something”, that holds
true whenever the value of the infrared sensors is different enough from the default
value.

In order however to reach the target goal, being able to tell a wall from
another robot, a preliminary phase is performed in order to acquire resources
(“pseudo-ground truth” or oracles), which will be used to automatically annotate the
robotic logs.

Two oracles will be constructed: one determines if the Wall is in View of the
current robot, based on its 2D location; the other determines if the current robot can
see another robot, based on the distance and angle between the two robots. It must
be emphasized that these oracles are not, and cannot be, used in the robot life, for it
does not know its location and does not know the location of the other robot either.

However, these oracles encapsulate a raw model of the sensors, the vision range
of the robot; they can be acquired in-silico (reverse engineering the simulator) or
in-situ, from actual experiments. A specific scenario is devised to learn each oracle.
In each scenario, the sensorimotor stream of the robot is recorded and preprocessed.
The robotic log stores for each robot and each time step the value of the two infra-
red sensors, the speed of the right and left motor, and the position of the robot in the
arena11.

The enriched events are used as training examples in order to learn the oracle
primitives “I can see a wall” (respectively “I can see a robot”), as follows.

Seeing the walls. In this scenario, a robot is wandering around some empty arena,
“bouncing” on the walls according to the randomized Braitenberg controller (Fig.
5.6). For each training sample, the label is No if both sensor values are the default
value (the robot does not see anything) and Yes otherwise (if the robot sees anything,

11 The orientation information is not reliably available from the simulator, in part due to the
asymmetrical screw-drive system.
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(a) Simulator view (with artificial limitation)
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(b) Result of learning along the trajectory

Fig. 5.6 Learning the Wall-In-View oracle. (a) A single robot moves in the artificially re-
stricted arena; (b) shows the parts of its trajectory where it can see the wall, according to the
hypothesis learned: the wall is visible from black parts of the trajectory, and not from the grey
parts.

it is bound to be the wall). The input features are the coordinates and the orientation
of the robot. These training examples are processed by a supervised learning
algorithm (Sect. 5.1.4.2) to build a hypothesis, the Wall oracle. The Wall-in-View
oracle is obviously specific to the current arena; it must be retrained for different
arenas.

Seeing another robot. This scenario involves 2 robots. One is motionless while
the other one performs prescribed trajectories, moving up and down at different
distances around the other robot (see a sample trajectory in Fig. 5.7(c)). For each
time step, the sensor values of the first robot are used to label the event: as for the
Wall oracle above, the label is No if both sensors take the default value (the robot
does not see anything) and Yes otherwise(if the motionless robot sees something it
has to be the other robot). The input features are the distance between both robots
and the angle θ between the orientation of the motionless robot and the azimuth
of the moving robot (more precisely, cos(θ )). Figs. 5.7(c) and 5.7(d) show plots of
the arena space, with the trajectory of the moving robot and the learned hypothesis
(5.7(c)), and the error on the training set (5.7(d)). The learning task is here very
easy, and the error is of only 2% on the training set and 4% on test sets involving
other robots and trajectories.

Note that Robot-In-View oracle learned with this procedure actually describes
the vision scope of the robot; it only depends on the robots, not on the arena.
Hopefully, this oracle does not depend on the specific instance of robot used, but
on the class of robot. However, whereas this can be reasonably argued within the
simulator, it might not be exactly true with real robots12.

12 Typically, when the hardware ages, possibly modifying the sensor performances, the vision
scope might change as well; the oracles must then be retrained.
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(a) Simulator view (vision cone added) (b) Result of learning in (dist × cos) space:
Black points are visible, grey points are not

(c) Trajectory of white robot and ground truth
learned

(d) Error on the training set (< 2%)

Fig. 5.7 Learning the Robot-In-View oracle. The top robot on plot (a) is motionless, while
the other robot moves along the trajectory visible on plot (c), thanks to a manual control.
The resulting vision cone can be visualized on the (distance ×cos(θ ) space on plot (b). It is
clearly visible on the colour version of plot (c), but has been emphasized with the artificial
vision cone of the motionless robot. The same cone also makes clear the errors made on the
learning examples on plot (d) (similar errors, i.e. only at the border of the vision cone, happen
on the test set).

These oracles constitute the first layer of the WOALA scheme; they use an in-
formation that the robot will never have in real-world experiments, and they will
never be called again. They only support the automatic annotation of more complex
logs, when several robots are moving in the same arena, meeting other robots and
wall. These oracles can thus be viewed as robotic resources, akin an operational
description of the physical system.

5.1.4.4 Learning Advanced Primitives

The proof of principle of the WOALA scheme concerns the distinction between
viewing a wall, and viewing another robot. As already mentioned, acquiring a
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primitive supporting this distinction constitutes a very first and key step in swarm
and cellular robotics.

The difference between this learning task and the previous one, is that the avail-
able information in order to tell a wall from another robot only includes the sensori-
motor information of the robot itself, contrasting with the use of the robot position
in Sect. 5.1.4.3. On the one hand, the sensorimotor information is very poor; on the
other hand, this is the only information actually available on-board for the robot.

The different scenarios involve up to five robots wandering in wall-surrounded
arenas. For each time step and each robot, one out of four labels holds:

• I do not see anything (the sensors take the default value). These events are filtered
out.

• I see a wall. This label holds true when i) the robot sees something (one sensor
value differs from the default value); ii) the Wall-In-View oracle is triggered; iii)
the Robot-In-View oracle is not triggered.

• I see a robot. Symmetrically, this label holds true when i) the robot sees some-
thing; ii) the Robot-In-View oracle is triggered; iii) the Wall-In-View oracle is
not triggered.

• I see a complex scene. This label holds true when i) the robot sees something (one
sensor value differs from the default value); ii) both the Wall-In-View and the
Robot-In-View oracles are triggered. In the first stages of the WOALA scheme,
as the robot does not yet have the faculty to follow another robot, the Complex
events are rare (about 2%), and they will be discarded in the following.

• Aberration. This label holds true when the robot sees something, although none
of the Robot-In-View and Wall-In-View oracles are triggered. At the moment,
these examples are filtered out: they correspond to some aberration of the sensors,
or to oracle mistakes.

A supervised learning step of the WOALA scheme can then take place. A training
example is described as the sensorimotor data collected at time t, t − 20, . . .t − 600;
the associated label corresponds to the label computed as above for time t. The goal
is to endow the robot with an on-board virtual binary sensor (I see a Wall or I see
a Robot), conditioned by the fact that something is visible (after the current value
of its sensors). Further, the robot is assumed to have memorized its sensorimotor
information within the last 600 time steps. Further work will be devoted to dimen-
sionality reduction (Sect. 5.1.5).

5.1.4.5 First Results

The experiment. In order to assess the WOALA scheme in a somehow realistic
scenario, a restricted arena is used (a 20×20 square for a robot size of approximately
2, Fig. 5.8(a)); 5 robots are wandering in the arena, leading to a sufficient number
of encounters, while nevertheless remaining tractable computational-wise. A typical
trajectory for one robot is depicted on Fig. 5.8(b) (displaying the trajectories of more
than one robot would not remain readable).
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(a) The 5 robots in the arena
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(c) Robot 0 correctly detects another robot
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(d) Robot 0 fails to detect another robot
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(e) Robot 0 correctly detects the wall
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Test with Robot 0: error when detecting wall

(f) Robot 0 fails to detect the wall

Fig. 5.8 Results of a complete WOALA loop. (a) shows the experimental setup – 5 robots
in an empty arena. The robots wander around for some time, each trajectory being logged;
(b) is an example of the trajectory of one robot; (c) and (d) represent respectively the correct
predictions and the errors along the trajectory of plot (b) for the primitive “I see a robot”
while plots (e) and (f) are similar displays for the primitive “I see a wall”. Value of threshold
τglobal was 0.001. See text for details.

The training set involves 10% of the events recorded for all 5 robots. The re-
maining events form the test set. 10 hypotheses are learned from 10 independent
runs of the ROGER algorithm (Section 5.1.4.2), using the stochastic nature of the
underlying optimization algorithm.
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Table 5.1 Error rates when hypotheses learned on the trajectory of robot 0 are tested on
trajectories of different robots in a different experiment.

τglobal 0.01 0.001

Robot 0 21 9.5 24 2.7
Robot 1 23 12 26 5.6
Robot 2 23 11 25 5.3
Robot 3 23 12 26 4.6
Robot 4 24 12 27 5.9

The learned hypotheses are then tested on some test trajectory not involved of
course during the training (such as the one shown on Fig. 5.8(b)), and all events
(i.e. where the robot actually sees something according to its sensor values) are
classified by the hypotheses thanks to a majority vote. The aggregated results are
presented in Table 5.1, for 2 values of the global threshold τg for ensemble learning
(see Sect. 5.1.4.2). The error cases are visually represented in Fig. 5.8.

5.1.5 Discussion and Perspectives

A first lesson to be drawn out of those results is that altogether, the learned hypothe-
ses seem to be able to predict with 70 to 75% accuracy whether the robot is seeing a
wall or another robot, based only on the very raw data of two infrared sensors. This
is visually confirmed by the plots on Fig. 5.8. The WOALA scheme can be consid-
ered to be validated by those preliminary results, although many more experiments
are required to assess the robustness of the approach.

A question under investigation regards the scalability of the approach as SYM-
BRION/REPLICATOR robots will typically use many more and much richer sen-
sors (cameras, lasers) than the two infra-red sensors considered here. Interestingly,
the presented log-based approach offers room for off-line dimensionality reduction
(DR), regardless of whether the robot log has been acquired in-silico or in-situ.
The state of the art provides quite a few effective approaches for (linear or non-
linear) dimensionality reduction, ranging from Principal Component Analysis to
Random Projection (Achlioptas, 2004), Isomap (Tenenbaum et al., 2000) or LLE
(Roweis & Saul, 2000). Furthermore, being an unsupervised method dimensional-
ity reduction can be done off-line; the compression of the robot raw input can be
optimized using extensive computational resources. The only requirement is that
the resulting coding module be computationally frugal.

Another question regards the complexity of the WOALA decision. Whereas the
full ensemble of hypotheses has been used in the experiments, on-line learning
(Cesa-Bianchi & Lugosi, 2003) can be used to identify the most reliable hypotheses,
discard the others and more generally enable lifelong learning through hypothesis
update. The WOALA scheme would thus enable to build good enough primitives
off-board, using remote computational resources; these primitives can be refined to
some extent on-board, using the robot own computational resources.
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The main weakness of the WOALA loop identified so far regards the early learn-
ing stage. Typically, labelling errors within the first learning stages can hardly be
recovered, for it injects noise in all training evidence used to learn further concepts.
While several revision steps have been performed so far, there is still room for im-
provement. A second weakness is that the learned primitives reflect the available
evidence, which itself depends on the controller used to gather the robotic log. As
new primitives are built and used to modify the controller, the distribution of the
sensori-motor data is modified too.

A main perspective for further research regards the communication with the other
robots, which is mandatory to the deployment of social intelligence. As discussed
in Sec 5.1.2.2, the robot must be provided with a way to assess its behaviour. A
preliminary step along this line is to make the robot self-aware through an anticipa-
tion module or a model of itself (Godzik et al., 2004; Bongard et al., 2006). Such a
module indeed enables the robot to decide whether it is in normal mode (it correctly
anticipates the effects of its actions) or not (the anticipation errors might be caused
by e.g. a change in the environment, or a sensor or a motor failure); in the latter
case, the robot can switch to a conservative mode (go to the nest).

The exploitation of the robotic log can however provide the robot with a much
richer description of its state: clustering the sensorimotor data will define “states”
(clusters). These states can be used to endow the robot with self-driven criteria using
tools from Information Theory. On-going experiments show that maximizing the
quantity of information of the robot trajectory enforces an exploratory behaviour
(Delarboulas & Sebag, 2010).

Furthermore, the state information can be emitted and received by every robot,
in the sense that any robot can compare its current state to the received state. How
to build a proto-language from the sensori-motor states raises new challenges for
collective intelligence.

5.2 Embodied, On-Line, On-Board Evolution for Autonomous
Robotics

A.E. Eiben, Evert Haasdijk, Nicolas Bredeche

Artificial evolution plays an important role in several robotics projects. Most com-
monly, an evolutionary algorithm (EA) is used as a heuristic optimiser to solve some
engineering problem, for instance an EA is used to find good robot controller. In
these applications the human designers/experimenters orchestrate and manage the
whole evolutionary problem solving process and incorporate the end result –that is,
the (near-)optimal solution evolved by the EA– into the system as part of the de-
ployment. During the operational period of the system the EA does not play any
further role. In other words, the use of evolution is restricted to the pre-deployment
stage.

Another, more challenging type of application of evolution is where it serves
as the engine behind adaptation during (rather than before) the operational period,
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without human intervention. In this section we elaborate on possible evolutionary
approaches to this kind of applications, position these on a general feature map and
test some of these set-ups experimentally to assess their feasibility.

The main contributions of this section can be summarised as follows:

• It provides a taxonomy of evolutionary systems encountered in related work. This
taxonomy helps to identify the essence of particular approaches, to distinguish
them from each other, and to position various options for a robotics project.

• It offers the first results of experiments aiming at the practical evaluation of (some
of) these options.

5.2.1 Controllers, Genomes, Learning, and Evolution

In this subsection we elaborate on the fundamental notions of controllers, pheno-
types, genotypes, learning, and evolution. We do not aim for universally valid def-
initions of these concepts (if such things are possible at all), rather at a consistent
taxonomy and terminology reducing the chances of mis-communication.

An essential design decision when evolving robot controllers is to distinguish
phenotypes and genotypes regarding the controllers. Simply put, this distinction
means that:

• We perceive the controllers with all their structural and procedural complexity as
phenotypes.

• We introduce a (typically structurally simpler) representation of the controllers
as genotypes.

• We define a mapping from genotypes to phenotypes, that might be a simple map-
ping, or a complex transformation through a so-called developmental engine.

For example, a robot controller may consist of a group of artificial neural nets
(ANNs) and a decision tree, where the decision tree specifies which ANN will be
invoked to produce the robot’s response in a given situation. This decision tree can
be as simple as calling some ANN-1 when the robot is in stand-alone mode (not
physically connected to other robots) and calling some ANN-2 when the robot is
physically aggregated, i.e., connected to other robots. This complex controller, i.e.,
phenotype, could be represented by a simple genotype of two vectors, showing the
weights of the hidden layer in ANN-1, respectively ANN-2. The two ovals and the
link between them (including the developmental engine) in the middle of Fig. 5.9
shows this division.

A technical distinction between learning and evolution is now straightforward if
we postulate that learning acts at phenotypic level, while evolution only affects the
genotypes. As a consequence, we obtain two feedback-loops for adaptation, a learn-
ing loop and an evolutionary loop as shown in Fig. 5.9. There are a couple of things
to be noted about this scheme. First, note that, just like the learning loop, the evolu-
tionary feedback-loop includes the controllers, since the genotypes do not interact
directly with the environment. Instead, the genotype determines the phenotype (con-
troller) which in turn determines the robot behaviour. This behaviour in turn causes
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Fig. 5.9 General scheme of evolution and learning based on the genotype – phenotype dis-
tinction.

changes in the environment, including other robots. Second, both loops involve a
utility measure, required to direct adaptation. For reasons of clarity we distinguish
these measures also by name, using the term reward for learning and the term fit-
ness for evolution. Third, please note that this simple diagram might become more
complicated through the addition of more complex interactions. For instance, using
Lamarckian operators we obtain learning on the genotype level, while an additional
social learning mechanism can be naturally perceived as an evolutionary process
on the phenotype level. Having noted all this, and keeping possible variations in
mind, in essence we distinguish learning and evolution by their point of impact and
the related time scale. Simply put, learning acts on phenotype level on the short
term, within the lifetime of an individual (robot controller), while evolution works
on genotypes on the long term, over consecutive generations.

5.2.2 Classification of Approaches to Evolving Robot Controllers

There are a number of features that allow us to position evolutionary robotics ap-
proaches. In (Schut et al., 2009) we elaborated on the notion of situated evolution so
that we could clarify similarities and differences between, for instance, regular GAs,
spatially structured GAs, evolving ALife systems and evolutionary robotics. We
now zoom in on evolutionary robotics and discuss different approaches by specify-
ing a set of descriptive features and identifying a particular approach by the combi-
nation of features it belongs to. A previous attempt in this direction by Watson et al.
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Fig. 5.10 Classification
of evolutionary robo-
tics approaches from
(Watson et al., 2002).

offers a classification scheme in (Watson et al., 2002). This scheme is exhibited in
Fig. 5.10. The figure shows that the primary distinction, i.e., the topmost junction in
the graph, is based on embodiedness. This is also a key notion for us, since we are to
apply evolution in real physical robots, hence in an embodied fashion. However, we
want to go further in embodying evolution than doing the fitness evaluations through
“embodied trials”. We also want to embed the management and execution of evo-
lutionary operators for selection and variation (i.e., mutation and crossover) in the
robots. For a precise terminology we need to distinguish two essential components
of an evolutionary process: the fitness evaluations, a.k.a. trials, on the one hand and
the evolutionary operators on the other hand. Then we can also distinguish two ba-
sic types of embodied evolution: one where the fitness evaluations are embodied
and one where the (management and execution of) evolutionary operators are em-
bodied. The most common interpretation of the term embodied evolution coincides
with the first case. Therefore, to prevent confusion, we will avoid using this term for
the second case and will use the term on-board/intrinsic as introduced below.

Our classification scheme is based on a set of three features concerning the evo-
lution of controllers from temporal, spatial, and procedural perspective. That is, we
distinguish types of evolution considering when it happens, where it happens, and
how it happens:

1. off-line or design time vs. on-line or run time (when),
2. on-board or intrinsic vs. off-board or extrinsic (where),
3. in an encapsulated or centralised vs. distributed manner (how).

Note, that we do not include embodiedness (of fitness evaluations) in this classi-
fication scheme. The reason is that the system we have in mind is one with real
robots, where fitness evaluation always happens in reality. In other words, our
whole scheme falls in the category of embodied evolution in the terminology after
Watson et al.
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In off-line evolution, the evolutionary development13 of robot controllers takes
place before the robots start their “real” operation period. On-line evolution is the
opposite in that the evolutionary development of robot controllers takes place during
the “real” operation period of the robots (although off-line evolution might precede
on-line evolution as an educated initialisation procedure) and is an ever-continuing
process. Obviously, the distinction between these two options lies in the release
moment when the evolved controllers are deployed in the robots. If the evolutionary
operators are no longer applied after the release moment and the controllers remain
fixed (or only change by other mechanisms), we are dealing with the off-line case,
otherwise we have on-line evolution.

From the spatial perspective, we distinguish the on-board or intrinsic case where
the evolutionary operators such as selection, crossover, and mutation are performed
exclusively inside the actual robot hardware, from the off-board or extrinsic case,
where they are performed with the help of external equipment outside the robots.
Such external equipment could be a computer, interfaced with the robots, that plays
the role of “puppet master” in an on-line evolutionary process: based on fitness in-
formation it collects from the robots (embodied trials!) it manages the evolution-
ary operators for selection and variation and injects newly produced controllers
into the existing robot bodies. If we view a system such as this in terms of par-
allel EAs –where there are many corresponding considerations– we would describe
it as a master-slave parallel EA with the slaves calculating fitness and the mas-
ter orchestrating evolution. Here we can recall our elaboration on embodiedness
in the beginning of this section. As we observed there, it would be formally cor-
rect to describe what we call on-board or intrinsic evolution as embodied evolu-
tion because the evolutionary operators are embodied in the robots. The reason
to choose other terms here is twofold. First, the usual terminology associates em-
bodied evolution with embodied trials, which is a completely different thing. Sec-
ond, introducing new terms here facilitates precise phrasing: embodied evolution
means that fitness evaluations (trials) are done in real-life by the robots, while
on-board or intrinsic evolution means that the evolutionary operators executed by
the robots.

Last, but not least, we consider how the evolutionary operators are managed.
First, we distinguish the distributed approach, where each robot carries one geno-
type and is controlled by the corresponding phenotype. Robots can reproduce au-
tonomously and asynchronously to create offspring controllers by recombination
and/or mutation. Here, the iterative improvements (optimisation) of controllers re-
sult from the evolutionary process that emerges from the interactions between the
robots. In terms of parallel EAs, such a distributed system is analogous to a cellular
parallel EA. This approach is complemented by the encapsulated or centralised
approach: each robot has a completely autonomous EA implemented on-board,
maintaining a population of genotypes inside itself. These EAs can be differ-
ent for different robots and are executed in a traditional, centralised manner

13 Development is meant here in the engineering sense, the “making of” or “building of” con-
trollers, rather than the biological, embryo-genetic sense as “creating it from an embryo”.
We use the term development to hint at the iterative nature of this process.
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Fig. 5.11 Proposed (partial)
classification of evolution-
ary robotics approaches.
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locally, inside each robot. This is typically done by a time-sharing system, where
one genotype from the inner population is activated (i.e., decoded into a phe-
notype controller) at a time and is used for a while to gather feedback on its
quality. Here, the iterative improvements (optimisation) of controllers are the re-
sult of the EAs running in parallel inside the individual robots independently.
In terms of parallel EAs, such a distributed system is analogous to an island-
model parallel EA (without migration). Observe, that both the encapsulated and
the distributed approaches yield a population of heterogeneous robot controllers.
Furthermore, it is important to note that we distinguish distributed and centralised
control of the EA, not of not the robots per se: they perform their tasks au-
tonomously in all cases. Finally, a remark on the term centralised and encap-
sulated as defined here. To some extent, we use them as synonyms, both being
the counterpart of the distributed approach. Strictly speaking the adjective “cen-
tralised” would already suffice, but we also introduce “encapsulated” to empha-
sise the fact that a (centralised) evolutionary algorithm is running entirely inside
a robot.

Fig. 5.11 shows a classification graph along the lines described here. At first
glance, this might seem at odds with the one in Fig. 5.10. However, the distinction
between on- and off-line renders the two dichotomies based on “trials” (simulated
vs embodied and serial vs parallel) superfluous: on-line adaptation only makes sense
in real robots (although for experimental purposes, the whole system may be sim-
ulated): adaptation takes place as the robots go about their tasks and performance
evaluation is inherently parallel across robots. Thus, the distinction between extrin-
sic and intrinsic EA operators matches the one between centralised and distributed
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EA and the further distinctions under the intrinsic case could be seen as a refinement
of the “Distributed EA” leaf in Fig. 5.10.

5.2.3 The Classical Off-Line Approach Based on a Master EA

Using the classification scheme based on the three features we have dis-
cussed it is possible to characterise existing approaches to evolutionary robotics
(Floreano et al., 2008a; Nolfi & Floreano, 2000a). The usual approach to ER is to
use a conventional EA for finding good controllers in a fashion that can be identi-
fied as

• off-line,
• extrinsic (off-board)
• centralised (encapsulated in an external computer).

Fig. 5.12 illustrates this approach. Note, that the arrow from the external computer to
the robot represents the final deployment of the best found controller after the evo-
lutionary search is finished. The figure does not show how the fitness evaluations are
done during the evolutionary search. In other words, this figure covers the possibili-
ties of evaluations in simulation as well as in real-life, i.e., in an embodied fashion.

The on-line evolutionary system we have in mind is radically different from this
approach in that adaptation of the robots never stops. From our perspective, this
means that evolution is being performed on-the-fly, possibly combined with other
adaptive processes, such as individual learning or social learning. In the next section
we discuss a number possible systems for on-line evolution.

Fig. 5.12 The common off-line approach to evolutionary robotics, where the population of
genotypes is evolved on a computer that executes the evolutionary operators (variation and se-
lection), managed in a centralised fashion. As for fitness evaluation, the computer can invoke
a simulator or send the genotype to be evaluated to a robot to test it (embodied evaluation).
Evaluation of genotypes can happen in parallel. At the end of the evolutionary process the
best genotype is deployed in the robot(s).
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5.2.4 On-Line Approaches

5.2.4.1 Encapsulating the EA in the Robots

This option amounts to implementing the EA to the robots to run it inside the robots
while they are operating. Obviously, this implies a whole population of genotypes
being hosted in one robot, while the robot can have only one controller at a time.
This means that at any given time only one of the genotypes is activated, i.e., de-
coded into a controller. Fig. 5.13 illustrates this matter.

Phenotype = actual

robot controller

One of the genotypes

decoded for phenotype

Genotype = code of a

possible robot controller

Fig. 5.13 Encapsulated evolution illustrated in one robot hosting an evolving population of
genotypes. At any given time one of these genotypes is activated, i.e., decoded into a con-
troller. Execution of evolutionary operators (variation and selection) takes places inside the
robot, on-board, managed in a centralised fashion. Fitness evaluations are typically performed
by activating the genotypes one by one through a time-sharing system and using them for a
while.

We will use the term encapsulated EA to designate this approach14. This ap-
proach is seldomly used with only two examples we know of (Nehmzow, 2002;
Usui & Arita, 2003). Such a system, illustrated in Fig. 5.14, can be described as

• on-line,
• on-board (intrinsic),
• encapsulated (centralised).

The most natural option, matching the on-line character of this set-up, is in vivo
fitness evaluation of genotypes by transforming them into phenotypes and using
them to control the given robot for a while. After this evaluation period, another
genotype can be transformed into phenotype/controller to undergo its own evalua-
tion. Thus, all robots run their own EA on-the-fly, so we have a number of parallel
evolutionary processes running independently as shown in Fig. 5.14.

14 In (Nehmzow, 2002) this is called “embedded”, but we feel that embodied and embedded
can be easily confused, therefore choose “encapsulated”.
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Fig. 5.14 Encapsulated evolution in a group of robots, where each robot is running a (cen-
tralised) evolutionary algorithm on-board independently. The evolutionary process does not
require communication and interaction between robots.

5.2.4.2 Distributed Evolution

Our next example illustrates a set-up that is similar to ALife-like evolution with nat-
ural selection and natural reproduction (Eiben et al., 2007). The difference with such
ALife systems is caused by the practical constraint that robot bodies do not multiply.
This implies that we have a fixed number of placeholders for controllers, the bod-
ies, hence we cannot add a new controller to the population without removing an old
one. Death of a controller without immediate replacement is in principle possible,
but would amount to a waste of resources (inactive robot), thus we expect a mecha-
nism to prevent this. This all means that we have a “half-natural” reproduction,where
reproduction and survivor selection are not independent, but mating is autonomous
and asynchronous. Using our feature set this approach can be described as

• on-line,
• on-board (intrinsic),
• distributed.

Obviously, a decentralised system lacks a global puppet master orchestrating the
process of evolution. Rather, the evolutionary process is a result of activities of
the individual robots. In other words, all evolutionary operators for selection and
reproduction are managed autonomously. Fig. 5.15 illustrates this type of on-line
evolution.

5.2.4.3 Distributed and Encapsulated Evolution

Obviously, it is possible to combine the mechanisms of encapsulated and distri-
buted evolution. From the encapsulated EA perspective, this means extending the
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Fig. 5.15 Distributed on-board evolution, where each robot carries its own single genotype
and evolution emerges from the reproductive interactions between robots. These interactions
are indicated by the grey arrows.

system with migration of genotypes between robots. In this case we obtain interact-
ing evolutionary processes, similar to the island model with migration for parallel
evolutionary algorithms. This option is depicted in Fig. 5.16. Using our feature set
this approach can be described as

• on-line,
• on-board (intrinsic),
• distributed and encapsulated.

5.2.4.4 Master EA Orchestrating On-Line Evolution

The basis of this approach is the existence of a central authority to manage the
evolutionary operators for selection and reproduction, while running in the on-line
mode. Technically, this means that the given group of robots acts as a group of
slaves (purely in terms of the EA). In this (heterogeneous) group each robot carries
one genotype and sends fitness information to the master. Then it is the master who
decides –using the global information it possesses– which robot controllers are to
be recombined and/or mutated and which ones should be replaced with newly cre-
ated controllers. The creation of new genotypes can take place inside this computer
and the result deployed in the robots whose controller is selected for replacement.
The genotype sent by the master is decoded/activated into a phenotype, i.e., into
a working controller. From the perspective of the master this means that fitness
evaluations can be done in real life and in parallel. If the group size of the robots
equals the population size within the EA then the whole population can be evalu-
ated simultaneously. From the perspective of the robots this means that they form
a heterogeneous group and their controllers are repeatedly replaced by new ones –
that might be better or worse than the one used before.
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Fig. 5.16 On-board evolution where each robot is running an evolutionary algorithm inside
and genotypes can migrate between robots. Execution of evolutionary operators takes places
inside the individual robots, but communication and interaction between robots is required
for the migration of genotypes. These interactions are indicated by the grey arrows.

In terms of the classification scheme of Watson et al. in Fig. 5.10, this option
belongs to the leaf on the path Embodied Trials – Parallel Trials – Centralised EA,
with no known examples. The describing properties of this system are:

• on-line,
• extrinsic (off-board),
• centralised (encapsulated in an external computer, not in the robots).

A possible argument for using such a system is that the global information of the
master and its ability to fully control selection and reproduction makes it easier to
evolve good controllers than using a decentralised architecture. This type of evolu-
tion is illustrated in Fig. 5.17.

5.2.5 Testing Encapsulated Evolutionary Approaches

In this section we report on the first experiments with encapsulated evolution.

5.2.5.1 The (μ+ 1)-ONLINE Evolutionary Algorithm

These experiments validate an encapsulated EA that is based on the classical (μ+1)
evolution strategy (Schwefel, 1995), where a population of μ individuals is main-
tained within each robot.15 Here, each individual is the genotypic code of a robot

15 Note that the population size μ within the EA should not be confused with the group size,
i.e., the number of robots in the arena.
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Fig. 5.17 Off-board on-line evolution where each robot carries one genotype and evaluates
its fitness by using the controller it encodes. Evolution is managed by an external master
computer that executes all evolutionary operators for selection and reproduction. Communi-
cation between the robots and the master is required for transmitting genotypes and fitness
information. These interactions are indicated by the grey arrows in the figure.

controller that is in the form of an artificial neural net (ANN). This ANN is a per-
ceptron with a hyperbolic tangent activation function using 9 input nodes (8 sensor
inputs and a bias node), no hidden nodes and 2 output nodes (the left and right mo-
tor values), 18 weights in total. These 18 weights are to be evolved, therefore, the
evolutionary algorithm will use the obvious representation of real-valued vectors of
length 18 for the genomes. For the first experiments we decide to set the population
size μ = 1, restricting ourselves to a (1 + 1) evolution strategy and consequently
we omit recombination. We use a straightforward Gaussian mutation, adding values
from a distribution N (0,σ) to each xi in the genotype x̄. This simple scheme de-
fines the core of our EA, but it is not sufficient to cope with a number of issues in
our particular application. Therefore, we extend this basic scheme with a number of
advanced features, described below.

1. Adapting σ values. A singleton population is inherently very sensitive to pre-
mature convergence to a local optimum. To overcome this problem, we augment
our EA with a mechanism that varies the mutation step-size σ on the fly, switch-
ing back and forth between local and global search, depending on the course
of the search. In particular, σ is set to a pre-defined minimum to promote local
search whenever a new genome is created. Then, σ gradually increases up to a
maximum value (i.e., the search shifts towards global search) as long as the no
improvements are found to the best genome found so far (the so-called champion,
stored in the robot’s archive). If local search leads to improvements, σ remains
low, thus favouring local search. Otherwise the increasing σ values will move
the search into new regions in the search space.
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2. Recovery period. Because we use in vivo fitness evaluation, a new genome needs
to be “activated” to be evaluated: it has to be decoded into a controller and take
control of the robot for a while. One of the essential design decisions is to avoid
any human intervention during evolution, such as repositioning the robot before
evaluating a new genome. Consequently, a new controller will start where the
previous one finished, implying the danger of being penalised for bad behaviour
of its predecessor that may have manoeuvred itself into an impossibly tight cor-
ner. To cope with this effect, we introduce a recoveryTime, during which robot
behaviour is not taken into account for the fitness value computation. This favours
genomes that are efficient at both getting out of trouble during the recovery phase
and displaying efficient behaviour during the evaluation phase.

3. Re-evaluation. The evaluation of a genome is very noisy because the initial con-
ditions for the genomes vary considerably: an evaluation must start at the final lo-
cation of the previous evaluation, leading to very dissimilar evaluation conditions
from one genome to another. For any given genome this implies that the mea-
surement of its fitness, during the evaluation period, may be misleading, simply
because of the lucky/unlucky starting conditions. To cope with such noise, we re-
evaluate the champion (i.e., current best) genome with a probability Pre−eavulate.
This is, in effect, a resampling strategy as advocated by Beyer to deal with noisy
fitness evaluations (Beyer, 2000). As a consequence, the robots needs to share
its time between producing and evaluating new genomes and re-evaluating old
ones. The fitness value that results from this re-evaluation could be used to refine
a calculation of the average fitness of the given genome. However, we choose
to overwrite the previous value instead. This may seem counterintuitive, but we
argue that this works as a bias towards genomes with low variance in their perfor-
mance. This makes sense as we prefer controllers with robust behaviour. It does,
however, entail an intrinsic drawback as good genomes may be replaced by infe-
rior, but lucky genomes in favourable but specific conditions. Then again, a lucky
genome which is not good on average will not survive re-evaluation, avoiding the
adaptive process getting stuck with a bad genome.

The resulting method is called the (μ + 1)-ONLINE evolutionary algorithm; its
pseudo code is shown in Algorithm 5.

5.2.5.2 (1 + 1) Encapsulated Evolution in a Hybrid Set-Up

These results have been published more extensively in (Bredeche et al., 2009),
therefore here we only give a brief summary of the method and the most impor-
tant outcomes.

In the first series of experiments we tested the (μ + 1)-ONLINE algorithm in a
hybrid set-up that features actual robotic hardware, a Cortex M3 board with 256kb
memory. This controls a simulated autonomous e-puck in a Player/Stage environ-
ment. After N time-steps, the evaluation of the current controller is complete and
the controller parameters are replaced with values from a new genome, which is
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Algorithm 5. The (μ+ 1)-ONLINE evolutionary algorithm.

// Initialisation
for i = 1 to μ do1

population[i] = CreateRandomGenome2

population[i].Fitness = Fitnessmin3

end4

for evaluation = 1 to N do5

Parent = SelectRandom(population)6

if random() < Pre−evaluate then7

// Don’t create offspring, but re-evaluate selected
parent itself

// Get out of bad situations due to previous
evaluation

Recover(Parent)8

// Combination depends on re-evaluation strategy:
// overwrite, average or exponential moving avg.
Parent.Fitness = Combine(Parent.Fitness, RunAndEvaluate(Parent))9

Sort(population)10

end11

else12

// Create offspring and evaluate that as challenger
Challenger = Mutate(Parent, Parent.σ )13

// Get out of bad situations due to previous
evaluation

Recover(Challenger)14

Challenger.Fitness = RunAndEvaluate(Challenger)15

if Challenger.Fitness > population[μ].Fitness then16

population[μ] = Challenger17

population[μ].Fitness = Challenger.Fitness18

population[μ].σ = σmin19

Sort(population)20

end21

else22

Parent.σ = Parent.σ ·223

end24

end25

end26

evaluated from the location the previous controller left it in. This means that no
human intervention is ever needed. We run the experiment 12 times.

Fig. 5.18 illustrates the experimental set-up, with a Cortex board connected to
the computer running Player/Stage. The simulated robot is modelled after an ePuck
mobile robot with two wheels and eight proximity sensors. The maze environment
used in our experiment is as shown in this figure.

For each run of the experiment, the robot starts with a random genome and
a random seed. The fitness function promotes exploration and is inspired by a



376 5 Learning, Artificial Evolution and Cultural Aspects of Symbiotic Robotics

Fig. 5.18 The experimental setup: the Cortex board connected to Player/Stage. The numbers
in the player-stage arena indicate the starting positions for the validation trials.

Table 5.2 Experiment description table for the (1+1)-ONLINE evolution tests

Experiment details

Task fast forward
Arena see Fig 5.18
Robot group size 1
Simulation length 1000 time steps

Controller details

ANN type perceptron
Input nodes 9 (8 sensory inputs and 1 bias node)
Output nodes 2 (left and right motor values)

Evolution details

Representation real valued vectors with −4 ≤ xi ≤ 4
Chromosome length L 18
Fitness See equation 5.1
Recovery time 30 time steps
Evaluation time 30 time steps
Preevaluate 0.2
Population size μ 1
Mutation Gaussian N(0,σ) with adaptive σ values, σinitial = 1
Crossover n/a
Parent selection n/a
Survivor selection replace when better
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Fig. 5.19 Performance on validation scenarios for various re-evaluation schemes. Top:
overwrite-last-fitness scheme; Middle: average-fitness scheme; Down: no re-evaluation
scheme. X-axis shows the results on the six different validation setup (see Fig. 5.18), y-axis
shows normalised fitness performance for each run. For a given genome, results in the six
validation set-ups are joined together with a line.

classic one, described in (Nolfi & Floreano, 2000a) which favours robots that are
fast and go straight-ahead, which is of course in contradiction with a constrained
environment, implying a trade-off between translational speed and obstacle avoid-
ance. Equation 5.1 describes the fitness calculation:
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Fig. 5.20 Traces for the ten best controllers (using fitness replacement after re-evaluation).

f itness =
evalTime

∑
t=0

(speedtranslational · (1 − speedrotational) · (1 − minSensorValue))

(5.1)
The overview of experimental details is given in Table 5.2.

To provide an indication of the true performance and reusability of the best in-
dividuals found by (μ + 1)-ONLINE evolution, a hall-of-fame is computed during
the course of evolution from the champions of all runs. The 10 best genomes from
the hall-of-fame are validated by running each from six initial positions in the envi-
ronment, indicated in Fig. 5.18. Starting from each of these positions, the genomes
are evaluated for ten times the number of steps used for evaluation during evo-
lution. Note, that one of the validation starting positions has certainly never been
visited during development (test no.4, within a small enclosed area) and provides
an extreme test case in a very constrained environment. This decomposition into an
evolution (development) phase and a post-experiment testing phase is similar to the
learning and testing phases commonly seen in Machine Learning and does not imply
a deployment phase as in traditional, off-line evolutionary robotics approaches.

We conducted a series of twelve independent experiments (μ + 1)-ONLINE evo-
lution, with parameters set as stated above. Each experiment started with a different
random controller (with very poor behaviour indeed) and a different random seed.
The experiments ran for 500 evaluations and displayed different overall fitness dy-
namics with very similar patterns. In all our experiments, we saw a similar pattern
of initial random search characterised by many different genomes with poor fitness;
then, local search characterised by subsequent genomes with increasing fitness un-
til a robust genome is found that survives re-evaluation for some time and then a
switch to another region that yields good results or towards an inferior genome that
got lucky (almost a restart, in effect).
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(a) (b) (c) (d)

Fig. 5.21 The four arenas used in the second series of experiments; (a): arena 1, (b): arena 2,
(c): arena 3, (d): arena 4.

During the course of the experiments a hall-of-fame was maintained for further
validation of the best genomes. Fig. 5.19 shows the results of the validation of the
hall-of-fame for three different schemes for re-evaluation: overwrite-last-fitness,
where the champion’s fitness is overwritten after every re-evaluation, average-
fitness, where the fitness is the average of all re-evaluations and a scheme where
there is no re-evaluation at all. This allows us to assess two things: whether high
ranking genomes in the hall-of-fame are also efficient in a new set-up and whether

Table 5.3 Experiment description table for the (μ+1)-ONLINE encapsulated evolution tests

Experiment details

Task fast forward
Arena 4 different arenas, see Fig 5.21
Robot group size 5
Simulation length 1000 time steps

Controller details

ANN type perceptron
Input nodes 9 (8 sensory inputs and 1 bias node)
Output nodes 2 (left and right motor values)

Evolution details

Representation real valued vectors with −4 ≤ xi ≤ 4
Chromosome length L 18
Fitness See equation 5.1
Recovery time 30 time steps
Evaluation time 30 time steps
Preevaluate 0.2
Population size μ 1, 3, 9, 13
Mutation Gaussian N(0,σ) with adaptive σ values, σinitial = 1
Crossover none
Parent selection random
Survivor selection replace worst when better
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the “overwrite fitness” re-evaluation scheme is relevant. The y-axis shows the nor-
malised performance: the best of all individuals for a scenario is set to 1.0, the per-
formance of the other individuals is scaled accordingly. For each scenario (arranged
along the x-axis), the graphs show a mark for each individual from the hall-of-fame.
All results for a given genotype are linked together with a line.

The graphs clearly show that re-evaluation improves performance substantially;
from the ten best solutions without re-evaluation, only a single one performs at a
level comparable to that of the ones with re-evaluation. It is harder to distinguish
between the two algorithm variants using re-evaluation: averaging the fitness mea-
surements for the genome in question or overwriting the archived fitness value with
the last measurement. On the one hand, the spread of performance seems greater for
the case with averaging fitness than it does for overwriting fitness, which would en-
dorse the reasoning that overwriting after re-evaluation promotes individuals with
high average fitness and low standard deviation. On the other hand, however, the
nature of real world experiments have a negative impact on the amount of data
available for statistically sound comparison of re-evaluation strategies, as is of-
ten the case with real hardware, and keep from formulating a statistically sound
comparison.

Further analysis of the ten best individuals with the overwrite-fitness re-
evaluation scheme shows that the controllers actually display different kinds of be-
haviour –all good, robust, but different wall avoidance and/or open environment
exploration strategies, ranging from cautious long turns (reducing the probability of
encountering walls) to exploratory straight lines (improved fitness but more walls to
deal with). Fig. 5.20 illustrates this by showing the pathways of these individuals,
starting from an initial position on the left of the environment. This reflects the geno-
typic diversity observed in the hall-of-fame and hints at the algorithm’s capability
to produce very different strategies with similar fitness.

5.2.5.3 (μ+ 1)-ONLINE Evolution in a Simulated Set-Up

The second series of experiments increases the population size μ beyond 1. These
experiments are performed in a pure simulation environment (Delta3D-based) util-
ising four different arenas shown in Fig. 5.21. An additional difference with the first
series of experiments is that here we use a group of five robots that are active in the
given arena simultaneously. The robots obviously pose additional, moving obstacles
for each other, but do not otherwise interact. For each arena and value of μ , we con-
ducted 10 trials. To keep the experimental setup as close as possible to the previous
one, we decided not to use crossover and not to use fitness-based parent selection
either, because none of them was possible in the (1 + 1) case. In this way we can
study the effect of population size in isolation.

The (μ+1)-ONLINE algorithm allows individual robots to maintain a larger pop-
ulation. We hypothesise that using larger populations has a positive effect on the
quality of the evolved controllers and test this hypothesis by experiments using
μ = 1,3,9,13 in each of the four arenas. The overview of experimental details is
given in Table 5.3.
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Fig. 5.22 Typical runs for μ = 1,3,9,13. The y-axis shows the performance of the current
champion, the y-axis the number of generations . Each graph shows five plots; one for each
of the five robots in the arena.

Fig. 5.22 shows the development of champion performance as evolution pro-
gresses for typical runs with varying values of μ . We clearly see that lower values
of μ display considerable drops in champion fitness–much more so than large val-
ues. Such drops are, as noted in Sect. 5.2.5.2 the effect of the inherently noisy fitness
calculation when an actually quite poorly performing genome is evaluated as having
a high fitness due only to auspicious circumstances. Obviously, small populations
are more susceptible to removing a good individual after evaluating such a lucky
challenger. For example, for μ = 10, evolution would have to encounter 10 lucky
challengers before actually removing the champion, but with μ = 1, the champion
is dropped immediately.

By the same token, the champion fitness at the end of the runs as shown in Fig.
5.23 is better for larger values of μ : good individuals are more easily forgotten
for low values of μ , thus more runs will end with low champion fitness. The peak
performance (best champion ever), however, does not vary with μ .

To analyse actual robot performance, we show the average fitness including chal-
lengers and re-evaluations over the last 20 evaluations in Fig. 5.24. Here, we see



382 5 Learning, Artificial Evolution and Cultural Aspects of Symbiotic Robotics

Size=1 Size=3 Size=9 Size=13
−5

0

5

10

15

20

25

30
B

es
t f

itn
es

s 
at

 te
rm

in
at

io
n

Population size
Size=1 Size=3 Size=9 Size=13

−5

0

5

10

15

20

25

30

B
es

t f
itn

es
s 

at
 te

rm
in

at
io

n

Population size

Size=1 Size=3 Size=9 Size=13
−5

0

5

10

15

20

25

30

B
es

t f
itn

es
s 

at
 te

rm
in

at
io

n

Population size
Size=1 Size=3 Size=9 Size=13

−5

0

5

10

15

20

25

30

B
es

t f
itn

es
s 

at
 te

rm
in

at
io

n

Population size

Fig. 5.23 The effect of increasing the population size μ on champion fitness. Each box sum-
marises champion performance in 10 runs with μ set to 1, 3, 9 or 13; the central mark is
the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to
the most extreme data points not considered outliers, and outliers are plotted individually.
Top-left: arena 1, top-right-arena 2, lower-left: arena 3, lower-right: arena 4.

that the actual performance does not increase with μ–in fact, it is worse. This may
be explained by the fact that, just as it takes time to forget a good champion, it takes
time to forget lucky but actually bad genomes that made it into the population. We
expect to be able to mitigate this effect by introducing non-random parent selection,
reducing the likelihood of selecting poorly performing genomes from the popula-
tion. Also, increasing the re-evaluation rate (fixed at 0.02 for these experiments) is
likely to reduce the time needed to recognise poorly performing genomes.

5.2.6 Conclusions and Future Work

In this section we presented a new taxonomy to classify evolutionary robotics ap-
plications, based on three main features belonging to the “when”, “where”, and
“how” dimensions. We deliberately focused on systems with in vivo (embodied)
fitness evaluations, where the evolutionary algorithm is running on-line without
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Fig. 5.24 The effect of increasing the population size μ on actual fitness. Each box sum-
marises actual performance in 10 runs with μ set to 1, 3, 9 or 13; the central mark is the
median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the
most extreme data points not considered outliers, and outliers are plotted individually. Top-
left: arena 1, top-right-arena 2, lower-left: arena 3, lower-right: arena 4.

human intervention, and the evolutionary operators are managed on-board either
in a centralised/encapsulated or distributed or mixed fashion.

We also reported on the first experiments with on-line, on-board, encapsulated
evolution using different population sizes (not to be confused with the number of
robots) by means of a feasibility study within the projects. The results indicate that
the approach is feasible even in a most simple setup, with random parent selection
and no crossover, and show that increasing the population size improves the quality
of evolved controllers. Currently we are conducting experiments with advanced evo-
lution strategies with covariance matrix adaptation that form a promising option if
the controllers can be represented by real-valued vectors. In the future we will inves-
tigate the evolution of controllers using distributed evolution and the combination
of the encapsulated and distributed variants (island model with migration).

In conclusion, we can state that the two greatest challenges embodied, on-line,
on-board evolutionary systems have to face is the short time period for evolution
and the very noisy fitness evaluations. Technically speaking, the robots can only
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evaluate a few candidate solutions (genomes) in total and cannot perform enough
re-evaluations. The source for both problems lies in the physical constraints of the
system: a robot can only use one controller at a time and it should be using it for a
“long” period to gain solid information about its quality. Thus, a possible cure for
these two challenges is circumventing those physical constraints by incorporating
and using a (possibly rough) simulator inside the robots for preliminary candidate
assessment; only genomes that pass this quick test are further evaluated in real life.
The costs will occur in the increased storage, memory and CPU power. The benefits
will be the increased number of candidate solutions that can be evaluated and the
increased number re-evaluations per candidate solution. It is very likely that both
will contribute to more powerful evolutionary search still fitting within the limited
physical time frame.

5.3 Artificial Sexuality and Reproduction of Robot Organisms

Christopher Schwarzer, Christoph Hösler, Nico K. Michiels

We envision an autonomous robot that is much more flexible than a smart machine;
one that can adapt to unforeseen situations by reconfiguring itself. Our approach to
this vision is the robotic organism: a robot entity that consists of many modular, au-
tonomous robots analogous to the cells in a biological organism. This robot swarm
can reconfigure itself both by changing controllers as well as its physical configu-
ration by docking and as such can form a myriad of possible solutions. However,
this vision imposes many new dimensions in design complexity. The most striking
additional degrees of complexity are the robot interactions within the swarm, the
physical configuration to create various body shapes and the coordination among
many different robot cells within the robotic organism. In addition to the complexity
of single robots with sensory processing, actuator coordination and artificial intelli-
gence, the design of a robot organism is much more complex.

One method to obtain optimized solutions in the face of the drastic increase in
design complexity is to employ evolution. Since the multi-robot organism is inspired
by multi-cellular life, it makes sense to borrow inspiration from biology. Biological
evolution can be seen as a design process that has developed an uncountable number
of well-adapted organisms and, as a concept, can be used in robotics to take over
parts of robot development. Instead of designing the robot in its entirety, we just
design an elementary system with mechanisms that make it adapt itself to whatever
challenge it is faced with. While there are other good approaches for this, such as
learning, evolution is promising because natural evolution has developed fascinating
complex multi-cellular organisms.

A key attribute of this evolutionary approach is to run it directly on the robot
(on-board) while it is performing in its task (on-line). While this allows the robot
swarm and organism to be truly independent and autonomous, it also requires that
the evolutionary process is very fast and efficient as it is running in real-time. The
faster the evolution, the sooner and better the robots can perform in their task. How-
ever, we are facing here a large difference to natural evolution because it has much
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more resources available, both in time and number of individuals, than current robot
swarms. Also, the pressures in natural evolution are much more numerous because
many species cooperate and compete together for many types of resources and nat-
ural environments are less structured than man-made ones. Therefore, it is a major
concern to employ an evolutionary process with a high evolutionary speed and ef-
ficiency while keeping some of the adaptability to complex environments. We can
achieve this by using inspirations from biology in the form of bio-inspired evolu-
tionary mechanisms.

Artificial sexuality is one such mechanism with promising potential and in this
section, it is explained how sexuality can be adapted to robotics. Additionally, an
entire set of bio-inspired evolutionary mechanisms is introduced here that is also
related to artificial reproduction but can also be applied to asexual reproduction.

5.3.1 The Role of Sexuality for Robots

Sexuality in robotics is the system of exchanging genetic information between
robots. While we might hold a romantic impression about sexuality, its essence is
the exchange of information. The transmission of any genetic information between
robots is already sexuality. Sexuality is a term from biology to describe analogous
processes in artificial evolution. Sexuality is actually present in most models of arti-
ficial evolution in the cross-over or recombination operations. In a model of artificial
evolution without sexuality, genetic information may not be exchanged between in-
dividuals and the only way to create new genomes is to mutate the genome of an
individual. For robotics, sexuality becomes obvious when robots communicate ge-
netic information to each other; genetic information “leaves” one physical robot and
is received by another physical robot.

Artificial Sexuality. For creating artificial sexuality in robots, it is necessary to
have a robotic genome, an encoding of variable parts of of the robot controller. And
the basic element to realize sexuality is an exchange mechanism of this genome,
which can be efficiently done by data communication between robots, and genetic
recombination operators. However, the more interesting aspect of sexuality, which
is the focus of our approach, is the mechanism used by robots to choose their part-
ners for genome exchange; in other words the sexual strategy and mating behaviour.
For this we can draw upon lots of knowledge in natural evolutionary sexuality. For
example, the anisogamy of gametic cells in nature (Parker et al., 1972) can be trans-
lated into two elementary robotic sexual functions: male function sends gametic
genomes; female function receives gametic genomes, creates zygotic genomes and
produces offspring by transmitting zygotes to other robots. In nature, many different
strategies can be seen regarding male and female sexual functions. Two notable and
widespread strategies are hermaphrodism, where an organism has both sexual func-
tions, and gonochorism, where each organism has only one sexual function. Both
strategies have advantages and disadvantages, which are the focus of the implemen-
tation described in Sect. 5.3.3.
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Fig. 5.25 Sex and Repro-
duction, the two modes of
exchange of genetic infor-
mation between robots. In
sex, a gametic genome is
transferred to another robot
(A) and then recombined to
create a zygotic genome (B).
In reproduction, the zygotic
genome is transferred to a
different robot (C), where
it is activated to take con-
trol of this robot and be
evaluated (D).
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Sex and Reproduction. The notion of artificial sexuality as genetic exchange over-
laps with another concept of artificial evolution: reproduction. Reproduction is when
a new individual is created with a genome constructed from the information of other
genomes. In swarm robotics, this requires exchange of genetic information. Unlike
in nature, offspring cannot be constructed from scratch and the number of robots in
the swarm is limited and constant. Therefore, genomes have to be communicated
between robots to redistribute them in the swarm. Think of the robot as a resource,
like the shell of a hermit crab, that is required for an individual to live but when
the individual dies, the robotic shell persists and can be used by another individ-
ual. Hence in order to reproduce, genomes are transferred between robots. When a
genome in a robot is deactivated to reuse the robot for another genome, it is analo-
gous to death. Likewise, the activation of a new genome to take over the control of
a robot can be seen as the birth of an individual. Fig. 5.25 illustrates the differences
between the genetic exchange of sex and reproduction in the robotic evolutionary
context. In sex, the copy of an active genome is transferred to another robot where it
is stored. The copied genome is then used to create a new genome, possibly recom-
bining a number of genomes. In reproduction, a genome is transferred to another
robot where it is activated. Also variations of the model are possible where the con-
sequences of sex and reproduction are delayed when sperm and egg genomes are
stored or passed on for later usage.
Any genome in this system falls into one of three categories:

Active The genome is being used in a robot as part of the controller. The genome
controls this robots behaviour and the performance of the genome is
evaluated.

Gametic The genome is a copy of an active genome. This genome can be a partial
copy of a whole genome, analogue to haploid biological gametes. This
genome is transmitted between individuals for being processed to create
zygote genomes.
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Fig. 5.26 Different states
of genetic information. A
complete genome is active
and evaluated. Parts of an
active genome are copied as
gametic genomes. Genetic
information from one or
more gametes is processed
to create a zygotic genome,
which is a fully functioning
set of genes which can be
activated.

Active Genome

Gametic
Genome

Zygotic
Genome

(Partial) Copy

Processed

Activated

Additional
Genomes

Zygotic The genome is a product of a processing operation which used other
genomes as input. This a complete genome and is transmitted to a new
individual where it can turn into an active genome.

Advantages of Robot Sexuality. The advantages of sex over asexual reproduction
is a heavily debated topic in evolutionary biology. While it could not be proven
conclusively that sex is better than asex, it is assumed that sex increases the speed
of evolutionary adaptation (Colegrave, 2002). We think that robot sexuality, with
implicit fitness by reproductive competition and bio-inspired mating mechanisms, is
a strong addition or alternative to using classical approaches with an explicit fitness
function, such as evolutionary algorithms.

Sex is ubiquitous in nature. It is very rare that species exclusively stick to asex-
ual reproduction for long periods of time in evolution and examples of such species
are known as the ancient asexual scandals (Judson & Normark, 1996). Virtually all
organisms from vertebrates to invertebrates and even bacteria have some method
to exchange genetic information. However, the reasons for the predominance of
sex is a highly debated topic. The predominance of sex in nature suggests it is ad-
vantageous overall but theoretical models are not conclusively able to compensate
for the disadvantages of sex (Kondrashov, 1993). A common theory is that sex in-
creases the speed of evolutionary adaptation, especially when coevolving with other
species. For example in host-parasite-interactions, sex allows the host to change the
genetic footprint of its offspring to evade excessive adaptation and exploitation by
the parasite.

From an engineering standpoint, the method of asexual reproduction seems more
efficient because no effort needs to be expended for mating behaviour and genetic
exchange mechanisms. However, as it can be seen in the field of genetic algorithms
(Eiben & Smith, 2003), sex is a useful element in the form of crossover operators
(Doerr et al., 2008). Sexual recombination is known to speed up evolution because
it is able to merge rare beneficial mutations that appeared in distinct individuals in
the population. Beneficial phenotypes that emerge from a combination of mutations
can be more rapidly produced and malicious mutations more easily purged from
the population. In algorithmic terms, sex is utilized for coarse grained jumps in the
search space to get into and out of local optima.
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Lastly with sexual selection, sexuality offers many mechanisms to further in-
crease the rate of adaptation. These mechanisms take place in the decision of the
individual about who to mate and exchange genes with. Here, sexuality has the po-
tential to predict good compatible genes using evolving heuristics; a mechanism
can evolve to recognize honest and reliable indicators of partner fitness. A concep-
tual sketch about how this sexual selection can be applied to robotics is given in
Sect. 5.3.4.

5.3.2 Artificial Reproduction

Reproduction is an essential element in natural evolution and the reproductive per-
formance of natural organisms is the decisive factor in whether the species goes
extinct or thrives and succeeds in evolution. Compared to evolutionary algorithms,
artificial biological reproduction is just an agent-based view on evolution rather than
a top-down, omniscient view. Thus any evolutionary algorithm does reproduction
when genomes are copied as data structures and computing resources are allocated
to evaluate them. A genome is reproduced when parts of it (after recombination)
get additional resources for evaluation. Because swarm robotics is an agent-based
approach, without a central supervisor, it is beneficial to adopt the view of repro-
duction for evolution.

Fig. 5.27 illustrates the fundamental pattern in agent-based and robotic evolu-
tion. Because the number of robots in the population is constant, the mean number
of offspring is exactly one. Differences in number of offspring come from the im-
plemented robot sexuality, which creates competition for the robots reproductive
efficiency. The idea for the design of the evolutionary system is as follows: A robot
which performs averagely in the current scenario should have one offspring. A robot
which performs worse than most should have no offspring. A robot which has one of
the best solutions currently should have more than one offspring, virtually by taking
over offspring of less fit robots.

Fig. 5.27 The basic pattern
of reproduction for a robot
in embodied evolution. The
average reproductive rate
is exactly one offspring be-
cause the number of robots
in the population is con-
stant. A robot with high
fitness must create more
than one offspring, which
implies that other robots
have no offspring and thus
low fitness.

How many robots
will carry on my genes?

One None More than one

Average
Fitness

Low
Fitness

High
Fitness



5.3 Artificial Sexuality and Reproduction of Robot Organisms 389

Death

Lifetime

Fig. 5.28 The lifecycle of a robot. The lifetime of a genome lasts from activation in a robot
until deactivation or “death”. During lifetime, the genome participates in genetic exchange by
creating and transmitting gametic and zygotic genomes. At the end of its lifetime, the robot
goes into a temporary death state until a new zygote genome is provided, which is activated
in the robot and takes over control.

Robot Life and Death. As indicated above, the creation of offspring is realized
by a robot deactivating its current genome and instead activating a zygote genome,
which controls the robots behaviour and is evaluated. Note that in any model of
evolution, genomes have to be deactivated or their evaluation has to be stopped to
free resources to evaluate other, potentially better genomes. This is an analogy to
death and raises the question of how long a robot should live? The advantage of
such a viewpoint can be shown in an example. Assume an evolving robot swarm
where the genome in a robot is only replaced with another genome when two robots
meet. Here an undesirable outcome could be that a particularly bad genome leads
the robot away from other robots, potentially getting stuck somewhere. Without a
limited lifetime, this robot is lost to the swarm and to the evolutionary process.
Robot death can be realized as a default or fallback behaviour which helps to return
the robot to the swarm. Note that it is also a bad solution to allow the genome to
clone itself upon death if no zygote-genome is available, as it may prolong the active
time of poor genomes.

With the adoption of a genome lifetime, it is possible to create a lifecycle of the
genome, which is illustrated in Fig. 5.28. Genome lifetime begins with the activation
of the genome in a robot. During life, the genome is part of the control of the robot
and its performance is evaluated. This evaluation can be done explicitly, for example
with a fitness function or by summing up a score over time, or implicitly by integrat-
ing mechanisms for reproductive competition, which will be shown in an example
in Sect. 5.3.3. The end of the lifetime should be enforced by some mechanism and
is marked by the deactivation of the active genome. The robot is then in a temporary
“dead” state which means that this robot, as a resource of the evolutionary system, is
now free to be used by a new genome. This notion of robot death may seem absurd
but it is fundamental and it is subtly present in most approaches. For example in the
original approach of embodied evolution by Watson (Watson et al., 2002), genomes
are overwritten by other genomes. This overwrite is the “death” of the overwritten
genome because its original state is lost. It can also be seen in this example that the
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dead state does not have to extend over a long period of time but it can be arbitrarily
short. The goal is to keep death downtime minimal but the decision which genome
to use to reactivate a dead robot is a big selection factor in the evolutionary system
and should not be neglected.

5.3.3 Implementation of Artificial Sexuality on Real Robots

The concepts of a bio-inspired embodied evolution, which have been laid down in
the previous sections, have been implemented on a swarm of up to 40 Jasmine III
robots in the University of Stuttgart. These swarm robots have a cube-like shape
with an edge length of 2.5cm. They are very quick with a two-wheel drive achiev-
ing a velocity of about 0.5 m/s and able to do a full turn in less than a second.
They are equipped with a battery capable of providing over an hour of runtime,
an ATmega168 microcontroller and 6 infrared sensors for obstacle detection and
communication. With this platform, the feasibility of an evolutionary system which
uses limited life time, robot death downtime, competitive reproduction and artificial
sexuality could be shown and analysed.

Implementation. Our evolutionary approach has been embedded in a model of a
reproductive cost-benefit trade-off, which is designed to reflect empirical observa-
tions about principles of sexual reproduction strategies. The primary aim of most
living individuals is to spread their genes in the population. Factors like physio-
logical constitution or environmental conditions build the framework of how to be
successful at this costly task. Different species have evolved diverse methods to
spend their energy in a competitive but efficient way. This is the playground of
sexual competition and sexual conflict. In our scenario the competition happens in
females and dead robots, as both genders accept multiple genomes for consideration
but select only a good one for processing. The quality of the donor genome is equal
to the amount of energy spent in its production. Therefore, a donor has to decide
whether to distribute its fixed lifetime energy in few highly competitive genomes or
invest less at more opportunities. This trade-off has been simulated in populations
of gonochoristic and hermaphroditic reproducing robots at different densities. The
idea was to test the effects of differences in the mating system and environmental
perturbations on the evolutionary adaptation.

Physically, the genomic exchange is done via the robots’ infrared communication
modules. The genomic structure was kept very simple (one byte per gene) to enable
a very fast drive-by communication mode and therefore a high mating frequency.
The benefit of this is in keeping the generation time short and, thus, speeding up
evolution. Besides the genome exchange, the robots task has been limited to explo-
rative movement.

The populations were kept in plane walled areas of different sizes but similar
rectangular shape. Each Strategy×Density combination was simulated for at least
50 minutes. At a simulation start, the robots have been placed equally dispersed with
the maximum Virtual Life Energy (VLE) of 100, 50/50 gender ratio and random
genome. For each second in the alive state of the behaviour cycle, a robot loses 1
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Fig. 5.29 The distribution of the trait MaleEffort in the population over time. In the upper
plot cost and benefits of the trait are disabled and they are enabled in the lower plot. Without
cost and benefits, the pattern of the upper plot shows a highly scattered, random distribution
of the trait value, which indicates neutral evolution. With cost and benefits of the trait, the dis-
tribution in the lower plot is mostly restricted to the lower range, which shows an adaptation
of the trait to low values.

VLE. The loss due to reproduction effort are encoded by a gene which is affected
by recombination and mutation and therefore able to evolve inside the population.
If a robots VLE drops below the minimum requirement for a reproductive task, it
immediately switches to the death cycle in order to provide itself as a new offspring
resource.

Observations. A first series of experiments with the described system showed that
the populations adapt to the modelled competition (Fig. 5.29). Furthermore, both
the density of the population and the sexual strategy in question have an influence
on the trait expression value and the investments able to make per lifetime. With
increasing density, the time to find a potential partner decreased for both strategies.
Though the hermaphroditic system has to maintain two reproductive functions, the
advantage that every conspecific is a potential partner, seemed not only to outweigh
this drawback, but also to make this strategy superior in terms of a faster genera-
tion time. Most interesting was an unexpected observation in populations at high
density. The temporary accumulation of robots at narrow spaces created barriers
that were difficult to pass and made potential mates more difficult to find. Unsur-
prisingly, gonochorists suffered more from this environmental induced change than
hermaphrodites.

Apart from the simulation results, preliminary tests also provided valuable in-
sights in general properties of a bio-inspired robot population. First, as do natural
populations, robot populations using the concept of life and death have a minimal
viable population size. Too few robots lead to extinctions at a very high frequency.
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Second, a reliable low range wireless communication network is a crucial property
of an optimal robot swarm. Failures in the communication of reproductive mech-
anisms can be costly for individuals, which are situated in time and space. The
speed of the entire evolutionary process depends on the speed and amount of genetic
exchanges.

5.3.4 Evolutionary Engineering

The design and tuning of an embodied evolutionary process is an open challenge
because there are many evolutionary mechanisms available which can be adapted
from natural evolution but there is little known about the conditions and depen-
dencies under which those mechanisms are beneficial in an artificially constructed
evolutionary process. For example, while the concept and implementation of sexual
genetic exchange are transferred conservatively from biology and common practice
(transfer and recombination of genetic information), there are many open details not
yet taken into account. What is the most suitable sexual system (hermaphroditism,
gonochorism or something completely new)? Should selection work passively by
costly reproduction or designed by the human observer? Another big question
is the design of the sexual competition. How is the reproductive competition re-
alized to give good genomes an advantage? Should competitive advantages be
evolvable (including precopulatory gifts or postcopulatory harm ((Vahed, 1998),
(Michiels & Newman, 1998))? And, as a third example in context of multi-robot
organisms, how to design the evolutionary advantages of multicellularity?

It is an extensive task to design an efficient artificial evolutionary process for
a given application scenario. This is comparable to the difficulty of developing a
good fitness function that actually represents the goals of the designer. In embod-
ied evolution the goal is rather implemented with the design of the evolutionary
system and the competitive mechanisms therein. Thus, embodied evolution works
without the need for an explicit function that evaluates the fitness of individuals;
instead, it is the amount of offspring an individual manages to produce that describe
its fitness. Rather than testing the individual actively with a fitness function, it is
the active agent that struggles to prevail and reproduce well within passive selection
mechanisms. The major goals of this “Evolutionary Engineering” are: high speed
of evolutionary adaptation in a dynamic environment, high quality of evolved solu-
tions, low loss of robot work time for reproductive tasks. Much more investigation
is needed to evaluate different approaches and mechanisms and to gain experience
in their usage and applicability.

Design of Embodied Evolution

In this section suggestions are given for the design of an evolutionary system of
embodied evolution with robots. These are based on the discoveries from the work
done in the aforementioned experiments on Jasmine III robots to include facets that
proved useful and provided improvements for apparent flaws.
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Challenge Gradient. A gradient of increasing challenges from one stable condi-
tion to the next is required by evolutionary adaptation to be efficient. Some evo-
lutionary transitions might seem to have taken a steep step because of the severe
differences in the required adaptations like those from fish to land animals. But in
as in this example actual evolution is always expected to have taken place in a “gra-
dient zone”: vast areas of shallow waters, which were rich in nutrients because of
falling leaves of trees but low on dissolved oxygen. This habitat could be entered
by fishes and they could evolve adaptations which would give them gradual advan-
tages like lungs to breath atmospheric oxygen, and simple limbs to hop from a dried
out pond to the next (Clack, 2005). Similarly, the design of an evolutionary process
for robots requires that the steep goal we set can be reached by a series of small
steps. This is analogous to the problem of smooth fitness landscapes in evolutionary
algorithms but, in embodied evolution and robotic organisms, we literally speak of
smooth landscapes of the environment. It will be virtually impossible for a swarm
of individual robots to evolve into a legged organism of dozens of robots that climbs
over high walls without offering them a series of smaller walls first.

Limited Lifetime. In Sect. 5.3.3, we have shown a basic approach on regulating
lifetime by basing it on a virtual life energy. Lifetime begins with an amount of life
energy which depletes over time; there is a regular, steady base cost and additional
costs depending on behaviour. Lifetime ends when the energy is depleted, however
problems arise when means are available for gaining life energy, for example as
rewards in a goal oriented approach. If gaining energy is possible, it is necessary to
prevent infinite lifetimes. One possible solution is to use additionally a hard limit to
the lifetime, like a maximum age.

Death. As stated before, genome death is essential and unavoidable in the evolu-
tionary system. However it is a large hit to the efficiency of the system if robots
spend much time in a dead state without a genome in control. The difficulty arises
because there has to be a competition about which parent supplies a zygote genome
for the dead robot, for example with a bidding contest. However such a process
takes time if a sufficient number of competitors should be involved, especially if
communication means are limited in the robot swarm and interested parties have
to find the dead robot. A simple solution would be to give the dead robot a fixed
behaviour to make it more likely to meet other robots. A more advanced solution
would be to begin the competition for the robot before its lifetime is over. For exam-
ple the robot would carry besides its active genome a slot for the successor genome
and parallel to the lifetime of the current genome there is competition for the suc-
cessor slot. However, any interference between the behaviour of the current genome
and the competition for the successor may lead to complications. Ideally, the present
genome behaviour and competition for successor genomes should not influence each
other.

Development. Organisms of many natural species undergo a developmental phase
at the beginning of their life cycle. While the main purpose of this development
is to build the organism according to its building plan, the developmental phase is
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also a first test of the functionality of this genetic setup. Natural fertilized egg cells
often contain severe gene defects that prevent the formation of an embryo, or lead to
its early death. In the same manner, evolutionary controllers could be forced to die
early as well. The limited resources in the evolutionary process can be used more
efficiently if the basic functionality of a genome and the corresponding controller
can be tested cheaply early in the life cycle. If these tests fail, the genome can be
classified as lethal, leading to an immediate death and freeing the robot as a resource.

Virtual Energy. The virtual energy is the currency of the evolutionary system.
The basic design principle of passive selection is that reproduction costs energy
and reproductive success is linked to the amount spent and the efficiency of the
reproductive strategy. The success of a reproductive strategy and investment de-
pends on those of other robots, a relative higher investment or better efficiency gives
more offspring. So one part of virtual energy is spent on tasks directly related to re-
production, like mating and creating offspring. The other part is spent on tasks and
activities that do not relate to reproduction directly, like base costs for staying alive,
harvesting energy or movement. The idea is that the activities that are costly in re-
ality also have a somehow related cost with this virtual energy. For example using a

Life�me Energy Balance

Spending on
Survival and Tasks

Spending on
Reproduc�on

A B C

Fig. 5.30 The distribution of the virtual life energy investments of an individual can be bal-
anced over its entire lifetime. A higher investment in reproduction relative to the competition
yields more offspring. There are three strategies to increase reproductive success:
A: Gain more energy and thus have more total energy to spend.
B: Solve other tasks with less energy so a larger ratio of total energy can be invested into
reproduction.
C: Improve the reproductive strategy to increase the efficiency and effective fitness with the
same amount of energy investment. This is symbolized by a darker colour of the reproductive
investment.
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very power consuming motor or doing computationally expensive processing may
be designed to incur energy costs and so evolution will optimize their usage. Be-
cause of costly reproduction, evolution always optimizes energy efficiency which is
the reason for many highly efficient structures seen in nature that baffle engineers,
for example shark skin (low friction in water), spider silk (high tensile strength) and
the visual cortex of humans (vision processing).

There are three possible strategies for fitness optimization, which are also shown
in Fig. 5.30. [A] Gain more energy, by harvesting more rewards from the environ-
ment for example, and thus more energy can spent on reproduction. [B] Spend less
energy on other tasks by optimization so a higher portion of energy can be spent
on reproduction. [C] Increase efficiency of reproductive investment by optimizing
reproductive strategy. The first two ways [A] and [B] are related in that they both
revolve around optimizing other tasks, either gaining more rewards or being more
efficient. This can be easily translated into goal driven optimization, performing a
desired and rewarding task either more often or faster for example. Strategy [C]
differs slightly because it revolves around optimizing reproductive behaviour; it is
more an optimization of the evolutionary process itself - a meta evolution. Here lies
an advantage of artificial sexuality because it is self-optimizing to find better and
more efficient selection criteria. For example, the evolutionary system we imple-
mented on Jasmine III allows only strategy [C], individuals can evolve the tactic
of their mating investment. Strategy [A] could be added integrating evolution of
a foraging behaviour, to gain more energy than their base amount. Strategy [B] is
available if the robots could also evolve their movement pattern, to spend less energy
on finding mates.

Sexuality. Mating in sexually reproducing animal species often involves harsh sex-
ual selection. Usually females only mate with the “best” males according to some
sexual criterion, for example females of a species of poison frogs mate with males
with the best quality of calling and it was found that the call quality is a reliable
predictor of good offspring quality. The quality of frog calls improves with age, and
only frogs that are able to escape predators and find food well grow old, thus call
quality is an indicator of the ability to survive (Forsman & Hagman, 2006).

Also other examples of chosen phenotypes in nature show that those indicators
must be costly or else it would be easy to cheat by developing the preferred attribute
without any correlation to fitness. The classic example of a costly sexual trait is the
long, ornate tails of peacocks, which costs a lot of energy to produce and is a serious
hindrance of mobility. However, males with long tails show their strength and health
by being able to maintain such a luxurious attribute and are thus preferred in mating.

Thus, traits that are used in mate selection must be costly, honest and either
directly linked to fitness, like the poison frogs call quality, or indirectly, like the
peacocks tail. These requirements can be transferred to embodied evolution as an
evolvable criterion that determines mate preference. Robots can be built to display
individual traits that are physically detectable with some perceptual modality but it
is probably more simple to virtualise a display trait with communication. In some
kind of mate protocol, the robots expose some information about their internal state,
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for example with a neural network controller this could be the values of certain neu-
rons and the number of neurons or links; some characteristic footprint of the net-
work. Another robot receiving this message may then base its willingness to mate
depending on the provided information. This mate preference can be implemented
efficiently in a postcopulatory manner as shown in Fig. 5.31 by storing genomes of
sexual partners in a gametic pool together with a rating of each partner. Now this
preference itself is able to evolve. Assume that mate preference is random in the
beginning and random values of this network footprint are preferred. However once
an individual evolves to prefer a trait that correlates with good fitness, this individ-
ual has a strong advantage. This individual spends its energy for reproduction more
efficiently because it prefers to create offspring with partners that indicated good
fitness and thus the produced offspring has a higher fitness. This is what is expected
by the theory of sexual selection, a mate preference evolves to choose those traits
that are honest indications of good genes and this speeds up evolution.

Goal-Driven Sexual Evolution

How does sexuality help the robots solve a given goal? First of all, let us assume
a scenario where we, as robot developers, do not know beforehand the best solu-
tion and the robots have to adapt autonomously to achieve their goal. Evolution is a
mechanism for autonomous adaptation and sexuality is an addition to increase the
rate of evolutionary adaptation. We propose to use a virtual energy currency in the
robots to enable goal-driven evolution. Robots need this energy for reproduction
and having more energy available for reproduction is a selective advantage. A robot
is rewarded with energy for succeeding in certain activities that help in achieving
the goal and thus has more energy available to spend on reproduction. Alterna-
tively, costly and essential activities can be optimized to consume less energy like,
for example, exploration or mating. Unlike an explicit fitness evaluation however,
energy rewards do not directly translate into offspring. Consider an individual that
spends its entire time working and harvesting rewards but does not participate in
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Fig. 5.31 Concept of postcopulatory mate choice via a gamete pool. During mating, the robot
receives the gametic genome and also characteristic information of its partner. The robot rates
this information and stores the gametic genome with the rating, symbolized here with stars.
Higher rated genomes have a higher chance of being picked from the pool to create offspring.
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reproductive competition—the accumulated rewards are lost when its lifetimes ex-
pires. Thus, the gained rewards are an incentive that has to be transformed into
higher fitness by finding a balance between exploiting rewards and reproductive
competition. The sexual mechanism itself evolves to increase the efficiency of re-
productive investment, by making a smarter mate choice for example. This in turn
increases the rate of adaptation even more as time is saved by focusing on repro-
ducing with partners that promise offspring with the potential to gain a lot of virtual
energy, in other words which are closer to reaching the goal.

5.3.5 Evolution of Multicellular Organisms

One interesting application of sexuality and bio-inspired reproduction is the evo-
lutionary transition of single cells into multicellular organisms. Swarm robots are
ideal for this because the robot swarm is like a population of single celled organ-
isms that can exploit synergies by cooperation. While common swarm robots can
only cooperate at the level of communication, by exchanging knowledge or coor-
dinating movement, much tighter cooperation is available with reconfigurable ro-
botics. Physical docking and linking between robots allows the exchange of energy
and the formation of larger articulated structures, which is a level of coordination
similar to multicellular life.

Advantages of Few-Celled Organisms. Natural evolution has produced the de-
sign innovation of multicellular organisms out of single-celled elements and we can
attempt the same for robotics. The goal is to evolve robot controllers that produce
small robot organisms of 3–4 robots that exploit some advantage. The challenge in
this goal is to start with a plain robot swarm of independently, autonomous robots
that are stable in this stage. From this single cellular starting point, evolution de-
velops multicellularity because it has advantages in the evolutionary system. This
setup is also shown in Fig. 5.32. Note that advantages of a robot organism with only

Fig. 5.32 Robotic evolution of multicellularity. Starting with a swarm of individual (single-
celled) robots, evolution produces simple robot organisms consisting of a few robot cells.
Incentive for docking can be implemented by reproduction; docking is needed to reproduce.
In addition to genes that allow keeping the link after creating an offspring, reproductive ad-
vantages for multi-robot organisms must be integrated, like longer lifetime, to make this
evolutionary transition possible.
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few cells are less powerful than those of organisms with many cells. Having only a
few cells limits the formation of articulated structures, like legs or snake-like bod-
ies. But still synergies are possible depending on the hardware design. For example
energy consumption can be reduced by turning off processors in linked robots and
locomotion can be stronger because of joint drive power. The design of the evolu-
tionary system can simply model these advantages for linked organisms with lower
costs for certain actions and longer lifetimes.

Different Swarm and Organism Environments. One approach to this evolu-
tion of robotic multicellularity is now explained. Assume that there are two
environmental conditions for the robot swarm: one swarm condition in which indi-
vidual robots are more efficient and one organism condition in which linked robots
are more efficient. Imagine for example solar powered robots that can conserve en-
ergy under low light conditions by linking and turning off some hardware. Such a
population of robots is deployed in the swarm environment. They are equipped with
an evolutionary controller which initially produces swarm behaviour and which is
evolutionary stable in the swarm environment. Then the environmental conditions
for organism mode is gradually introduced and the robot swarm should adapt by
evolving multicellular shapes. To give a general incentive for docking with each
other, reproduction and sexuality are very useful tools in the design of the evolution-
ary process. Reproduction can be designed to require a docking manoeuvre to trans-
mit the zygotic genome. The docked transfer of a zygotic genome should be either
the only way, or have a competitive advantage if other, wireless, ways of transmis-
sion are available. This serves to establish docking as a regular activity, which makes
the transition to multicellular, permanently docked units much smoother. From the
occasional, short-term docking, a mutation of the genome can be designed that gives
a likelihood of keeping this docked state. Such a mutation will become stable in the
population if there are advantages of the dual-cellular state, like this team of two
robot cells has a longer lifetime than operating independently.

Organism Mode of the Controller. Given sufficient mechanisms of information
exchange between the cells, like virtual hormones, the two robots can recognize
being linked and controllers can evolve to operate such a minimal multicellular or-
ganism. This is the most critical point in the evolutionary transition because the
controller of a single robot has complete autonomy but as soon as two robots are
linked and want to perform as one entity, there are two controllers that are depen-
dent on each other. It is easiest to assume that the controllers assume certain roles,
that one controller takes the lead and the other submits. Though it is conceivable
that other distributions of roles are possible including roles that are limited in time
or to specific functions. However with the concept of reproduction by docking, cer-
tain plain approaches are an interesting option. For example, a parent robot creates
offspring in another robot by docking. The linked state is kept and the parent robot
is now leading the child robot for a while until the child matures and separates.
This behaviour would match theories about parental investment and parental care in
biology.
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5.3.6 Sex and Reproduction of Symbiotic Robots

For sex and reproduction of a multi-robot organism, we have to ask ourselves about
the main focus of this multi-robot entity because our vision of symbiotic robots can
be split in two parts with very different reproductive implications (Fig. 5.33). One
part of the vision is that robots form a multicellular organism with high cooperation
and dependence between cells. This organism should have cellular specialization
in the way that, for example, only some cells use certain hardware to conserve en-
ergy, like some cells do computationally expensive sensor processing and planning
(brain), some do actuation (muscles) and others might just serve as skeletal ele-
ments and energy storage (bone and fat). And there is another part of our vision,
that the robot modules form an aggregated structure just adapting to the current sit-
uation, may it be a distributed swarm for exploration, a bridge for crossing a gap
or a closely packed block for hibernation. A natural example of organisms that can
perform such a structural cooperation are social insects, like ants building bridges
with their own bodies or the slime mold Dictyostelium discoideum whose amoeboid
individuals can aggregate into a multicellular slug for migration.

Multicellular Organism

(a)

Structural Cooperation

(b)

Fig. 5.33 Two possible approaches of symbiotic robotics: (a) A complex multicellular or-
ganisms with and genetically identical but highly specialized cells. Such an organism keeps
its shape during its lifetime. The natural example is any multicellular organism like humans
for example. (b) A robot swarm that aggregates to solve environmental challenges by using
structural cooperation. All robots of the population are individuals with their distinct genome.
The robots aggregates into an ad-hoc shape that is formed and maintained just for a specific
situation. As biological example might serve the society of weaver ants (genus Oecophylla),
which are able to form a bridge with their bodies.
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However, there is no known example in nature of a species that has both abili-
ties, tight symbiosis and ad-hoc aggregation and disaggregation of the same units.
Note that all examples of organisms that dynamically aggregate into structures do
not actually form a multicellular organism, these are rather swarm-like coordinated
movements and specialization between participating individuals is low. Also all cells
that separate from a multicellular organism always serve reproduction and form a
new organism by fusion (sex) and cell division but never by aggregation. The lack
of natural examples may be seen as an indication that it is more difficult to evolve
organisms that can be both a swarm of independent units and flexibly aggregate
into an organism of specialized cells. A theory that might explain this is Hamilton’s
Formula (Hamilton, 1964) which predicts that the evolution of altruism is relative
to the relatedness of participating parties. In other words, the more genes organisms
have in common, the higher is their potential for altruistic cooperation, which is
required for tight cooperation of cells in an organism. This theory can explain the
various forms of cooperative systems in nature among organism, in the order of in-
creasing cooperation and relatedness: Animal swarms are all conspecifics, colonies
of social insects are all siblings and cells of a natural organism are all clones.

1

4

2 3

Fig. 5.34 Example of sexuality and reproduction of a multi-robot organism with a homoge-
neous genome.
1: Two organisms mate and exchange genomes. One or more robot cells of the organism be-
come egg cells with a new genome.
2: The egg cells are detached from the organism and become independent.
3: The detached egg searches for lone robot cells. These come from dead organisms which
have fallen apart into separate robot cells.
4: The found cells are assimilated by overwriting them with the genome of the egg cell and
are used to build a new multi-robot organism. This ontogeny is initiated by the egg cell and
can form a new organism with a different structure.
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Multicellular Organisms

We assume that the way to achieve highly complex cooperation between and spe-
cialization of the robots is in the form of a multicellular organism in analogy to a
proliferated germ cell. With a copy of a single genome in each cell, negotiations
and stability have a higher chance to get reached. Reproduction in such a struc-
ture is quite simple with a homogeneous genome forming the super-organism. The
evaluation of the organisms performance is directly related to this genome and any
reproductive action uses this one genome.

Robotic Ontogeny. An example of the envisioned reproduction of such an organ-
ism is shown in Fig. 5.34. Two organisms mate and exchange genomes. Some cells
of the organism can be considered egg cells, recombining the received genome and
activating it; they are now fertilized egg cells. The egg cells are detached from the or-
ganism and begin their lifetime as an independent, new organism. First the newborn
needs to undergo ontogeny and grow into a new organism. Lacking the capability
for cell division, the newborn must assimilate other robotic modules. One possibility
would be that when the lifetime of a robot organism is up, it falls apart into sepa-
rated, “dead” robot modules that can be taken over by the newborn by linking with
them and copying over its genome. The parents that lost some cells of their body
by detaching the eggs can look for replacements in a similar fashion. The advantage
of this process is that the detached egg has a relatively simple ontogeny by linking
to the assimilated modules in a determined way to grow into the new adult shape.
The alternative of taking over a parent organism would possibly require the recon-
figuration of its cellular structure, which is more complicated. In this case it might
be easier to disintegrate the parent and then starting growth from a single cell that
reacquires the now separated modules.

The approach mimicking biological organisms also has limitations. A natural
organism does not spontaneously disassemble because formation and disintegration
of the organism is bound to the lifetime of this individual. The shape of the organism
is also less flexible as it is determined by the genome. If such an organism encounters
a situation that it cannot solve with its current shape, the whole organism first has
to die for the modules to be reused with a different genome to produce a different
shape.

Structurally Cooperative Swarms

The second approach is to focus on the single robots as autonomous individuals and
their physical ability of structural cooperation. The idea is to extend the evolution
of the distribution of labour in the population to the distribution of morphological
functions. A biological inspiration is for example, the weaver ants which use their
bodies to form a bridge (Fig. 5.33(b)). Despite this being a simple structure, it still
has two distinct regions: a border where ants anchor the bridge to the leaf, and the
middle section where ants link with other ants. Compared to a multicellular organ-
ism however, this aggregated structure is much more simple but it can be formed
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and disassembled quickly, within the lifetime of the participating individuals. This
ability for ad-hoc aggregation makes this approach very interesting but the open
question is how complex those cooperative structures can be. There are fascinating
examples of swarm cooperation in nature but the overall structural complexity rarely
exceeds that of a huddle of individuals.

From a genetic point of view, the cooperative structure would consist of heteroge-
neous individuals, each with a different genome which has important complications
considering reproduction. Such cooperative behaviour will not be sustained in evo-
lution if the reproductive costs and benefits for participating do not match up. A
robot that cooperates with others, to form such a bridge for example, has costs for
this cooperation because it could evolve to stop cooperating and use the time instead
for harvesting and reproduction on its own. What are the reproductive advantages
of participating in structural cooperation for the individual? The entire aggregated
group might gain a reward but as soon as it comes to reproduction the individuals
are competing harshly against each other and selfish behaviour will likely appear.

Social Cooperation. The dilemma of selfishness can be tackled by integrating so-
cial rules to provide enough incentive for the individuals to cooperate and enough
reassurance that their investments will not be abused by others; similar to a human
company where hundreds of employees cooperate with large investments of each
individuals lifetime because of social rules. Note that the prominent examples from
social insects alleviate the issue by only allowing the queen of a swarm to repro-
duce. The members of one swarm are actually all siblings and their reproductive
gain is assured because they share half their genes with the queen. Thus for a swarm
of truly heterogeneous individuals, social ruling has to be more advanced than that
of social insects.

Cooperation and Competition Phases. A possible approach to solve the conflict
between our desired structural cooperation and reproductive competition necessary
for evolution can be to establish two distinct phases by social rules in the swarm. The
swarm undergoes structural cooperation where rewards are gained and distributed
among the participants but then also a phase of competition can be allowed. The in-
dividuals of the aggregated structure fall apart and compete for reproduction where
individuals that were especially helpful during the cooperative phase have a com-
petitive advantage by having earned higher rewards for example. After competition,
mating and reproduction has taken place the swarm unites again in the cooperative
phase to replenish their energy.

Overall, the structurally cooperation of a swarm is the more powerful approach
because it is more flexible than a multicellular organism. In theory the ideal is con-
ceivable: a swarm that can transform into any complex, articulated aggregated struc-
ture at will. However, there are many open questions about how to achieve this.
Currently it seems plausible that for the given effort there is a trade-off between
organism complexity and aggregation flexibility.
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5.3.7 Conclusion

In this section we discussed why sex has its definite place in the evolutionary pro-
cess, both natural and artificial. In natural evolution, sex increases the rate of adap-
tation and helps to deal with unforeseen challenges. Thus, artificial sexuality has a
high potential to improve the evolution of robots in their behaviour and their struc-
tural cooperation. Sexuality is a starting point which allows us to adapt many evo-
lutionary mechanisms from nature into robotics which promise further increases in
the speed of evolution, like gender expression and mate choice. Yet, it is a chal-
lenging task to design the rewards and costs mechanisms for such a bio-inspired
reproduction scheme, similar to the difficulty of designing a fitness function in tra-
ditional evolutionary algorithms. Although, the ability of sexual reproduction to
self-optimise mating strategies may overcome this burden. We are just beginning
to understand how many of these evolutionary mechanisms can be employed ef-
ficiently in robotics and have yet to discover their implications and opportunities,
which also benefits research in evolutionary biology.

Regarding multicellular robotics, we see two approaches: A multicellular organ-
ism like natural organisms which can be complex but stay in one shape over their
lifetime; and a structural cooperative swarm like an ant swarm that forms simpler
shapes but can aggregate and disintegrate at random. We assume that investigations
in both of these directions are necessary as an intermediate step before a hybrid
approach can be reached that combines both advantages: complex organism and
spontaneous change of shape.

From the current perspective, sexuality seems costly considering the limitations
of current robotics, especially short runtime and small population, but future ad-
vances in technology will reduce those limitations. And the benefits of sexuality
will become stronger once the robotic application scenario leaves static environ-
ments and the robots face unknown, dynamic challenges.

5.4 Self-learning Behavior of Virus-Like Artificial Organisms

Vladimir Red’ko, Serge Kernbach

Artificial organisms are represented by their genotypes and phenotypes. Genotype
is basically a symbolic string, which codes structural, homeostatic, regulative and
other functionalities. However, an organism consists of many aggregated robots with
different genomes, the genotype of an organism can be considered as a cloud of
these basic genotypes. Such a representation is very close to the ideas of Eigen’s
quasispecies (Eigen, 1971). Quasispecies are a genetic model of an organism, rep-
resented as informational strings, analogous to the RNA molecules. The quasis-
pecies model can be considered as a simple canonical model of evolution with
well defined scheme, which supposedly took place on the prebiological stages of
evolution (Eigen & Schuster, 1979). This model is equivalent to the genetic algo-
rithm (Holland, 1992), (Goldberg, 1989) without crossovers. The quasispecies ap-
proach allows us to understand asexual properties of artificial organisms and a
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virus-like behavior of modules within an organism with a high mutation rate, see
e.g. (Hoffmann, 1994).

More generally, considering artificial organisms as multi-genome virus-like sys-
tems enables us to concentrate on cooperative and adaptive genetic properties of
simplistic co-working systems. In particular, this approach can be used for studying
self-learning properties and represents the second topic of this section. Here aggre-
gated and disaggregated robots are viewed as general swarm agents, which possess
different controllers: adaptive critic design ANN in Sect. 5.4.2, ANN with similarity
genes in Sect. 5.4.3, logical behavioral rules in Sect. 5.4.4. All these models imple-
ment simple behavioral primitives, characteristic for viruses: looking for energy,
self-reproduction, local environmental prediction, competition or simple forms of
self-protection (Carter & Saunders, 1997).

The first model is intended to analyze evolutionary properties of autonomous
adaptive systems (Red’ko et al., 2005b) and an interaction between learning and
evolution. Agents are involved into a homeostatic regulation of an organ-
ism and are controlled by ANN based on the adaptive critic design (ACD)
(Prokhorov & Wunsch, 1997). The ACD includes two artificial neural networks:
model and critic. The model-ANN predicts the state of an environment for the next
step, and the critic-ANN is used to select actions on the basis of model predictions.
These ANNs can be optimized by both learning and evolution. Learning uses the
reinforcement approach (Sutton & Barto, 1998), whereas evolution includes muta-
tions of ANN synaptic weights and selection of best agents. It turned out that a
non-trivial Baldwin effect (Baldwin, 1896), (Turney et al., 1996) can be observed
in the model, i.e. originally acquired adaptive policy of best agents becomes inher-
ited over the course of evolution. In particular, some features, which are obtained by
learning in initial generations, become inherited in the fifth generation. This means
that ANN synaptic weights, which are initially adjusted by reinforcement learning,
are then rediscovered during mutations and selections.

As an extension of this model, we outline evolutionary emergence of cooperation
between agents (Burtsev & Turchin, 2006) during an aggregation phase of artificial
organisms. Agent is controlled by ANN, which connects receptors to effectors. Each
effector corresponds to a particular action. The agent spends its energy by perform-
ing any action and its the energy level is increased by a foraging. The genome of
the agent codes the structure of neural network and synaptic weights of neurons. An
evolutionary process modifies this structure and synaptic weights by mutations. The
genome includes so-called “gene of similarity”. This similarity gene is obtained by
the agent from its parent; so the difference in these genes between the child and
its parent is small because it is created only by small mutations. Families of agents
with almost identical similarity genes are evolutionary formed and we observe an
emergence of cooperation between agents of one family.

An interesting phenomenon was observed in the early version of this model,
which does not consider similarity genes (Burtsev, 2002). Some evolutionary pro-
cesses create surprising peaks in the size of population. Analysis demonstrated that
these peaks arise because of competitive “fight” effectors disappear from control
systems of all agents in the population. So, agents do not compete with each others,
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instead they use their energy for other useful actions. However, duration of such
peaks is small: fighting effectors are restored by mutations and the population size
is decreased again. In the last model, we use the same structure of agents, however
the agent is controlled by logical “if – then” rules (Red’ko & Beskhlebnova, 2009),
optimized by reinforcement learning and through evolution in the population. As
turned out, such agents can produce chains of rules with some logical inferences,
leading to adaptive collective behavior and can be used during pre-aggregative and
aggregative phases of artificial organisms.

5.4.1 Effectiveness of Evolutionary Optimization for Genetic
Cloud

As already mentioned in the introduction, artificial organisms represent an aggre-
gation of swarm robots. Each of these robots possesses its own genome. During
aggregation into an organism, there are different scenarios of how these individual
genomes can compose one organism’s genome. Such a common genome is nec-
essary for an effective macroscopic control, for example for macroscopic locomo-
tion (Kernbach et al., 2008b). We briefly sketch different possible approaches for a
genetic transition between swarm and organism in Fig. 5.35.

In the first, most evident case, shown in Fig. 5.35(a), we assume that all swarm
robots have the same the structure of a genome. Such an artificial genome can have
either a simple form of “switches”, which turn on or off some functionality, or have
a complex structure of context-sensitive grammars. During aggregation, robots ba-
sically reconfigure this common structure. When leaving the organism, a robot can
store common genetic memory or, alternatively, reset it by returning to its previous
genome.

Another approach is shown in Fig. 5.35(b). Common genome of an organism is
a combination of different genes from the swarm mode. Principles of such a com-
bination are different (several possible approaches are considered in Sects. 4.3 and
5.3). In general case we can assume that all genomes possess a common part, pro-
grammed initially into all robots, and a variable part, which can be individually
changed (only one of these parts is also possible). The last part creates a genetic
variability in the population of aggregated or disaggregated robots.

In the last case, shown in Fig. 5.35(c), such an organism’s genotype is in fact a
cloud of different genetic codes from a swarm-mode. From the biological perspec-
tive, such an organism corresponds to a “colony” (Camazine et al., 2003). In the
genetic cloud, efficient individuals are less relevant and their collective effect is of
interest. Such a formulation is very similar to the quasispecies model proposed by
Manfred Eigen (Eigen, 1971) and developed further by (Eigen & Schuster, 1979).
In this terminology, genome is an informational string, which codes different reg-
ulative processes, and we can use evolutionary algorithms to optimize them. Since
quasispecies model is equivalent to the genetic algorithm without crossovers, this
approach uses asexual way of reproduction and is similar to the behavior of viruses,
see e.g. (Domingo & Holland, 1997). From this point of view, multi-genome ar-
tificial organisms may be considered as virus-like structures, or colony of viruses,
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whose cooperative behavior is determined by a collective effect of the genetic cloud.
Further in this section, we intend to demonstrate that such a genetic cloud can rep-
resent an efficient evolutionary and regulative mechanism for artificial organisms.

Firstly we estimate evolutionary rate and effectiveness of evolutionary search
(Red’ko & Tsoy, 2005), (Tsoy & Red’ko, 2006a), (Tsoy & Red’ko, 2006a) by the
quasispecies model, assuming that the symbols of informational strings take only
two values: +1 or -1. The main assumptions of the model are as follows:

1. The evolution of a population of organisms {Sk} is considered, where each or-
ganism Sk is determined by a string of symbols Ski , and the symbols take two
values, Ski = +1 or − 1; i = 1,. . . , N; k = 1,. . . , n; N is the length of the strings;
and n is the population size.

2. It is assumed that the fitness function f (s) is unimodal and there is the optimal
string Sm, that has a maximum fitness value and fitness of any other string S
exponentially decreases as the Hamming distance ρ(s,Sm) between S and Sm (the
number of non-coinciding symbols at the respective positions of these strings)
increases. The fitness function is defined as follows:

f (s) = exp [−βρ(s,Sm)], (5.2)

where β is the parameter of selection intensity.
3. The evolution process consists of a number of generations. In each generation,

selection of the organisms into next generation (in accordance with their fitness)
and mutations (random replacements of symbols Ski) take place.

swarm

genomes of
swarm robots

genomes of
swarm robots

organism‘s
genome

aggregation dis-aggregation
swarmorganism

a)

b)

c)

Fig. 5.35 Different approaches for transition between genome in swarm- and in organism-
modes. (a) Switching genome; (b) Combining genome; (c) Genetic cloud.
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4. The string length N and the population size n in a certain evolution process are
invariable and large: N, n � 1.

The formal scheme of the evolution process in the considered model is repre-
sented in Table 5.4.

Table 5.4 The scheme of evolution

Step Action

Step 0 The formation of the initial random population {Sk(0)}. For each k = 1,
2,. . . ,n and each i = 1, 2,. . . ,N, a symbol Ski is chosen at random; it equals
either +1 or -1.

Step 1 Selection.
Substep 1.1 Fitness calculation. For the population {Sk(t)} (t is the number of the gener-

ation), f (Sk) is evaluated for each k = 1, 2,. . . ,n.
Substep 1.2 Formation of the new population {Sk(t +1)}. n strings are selected from

{Sk(t)} with probabilities proportional to f (Sk) to form {Sk(t+1)}.
Step 2 Mutations. For each k = 1, 2,. . . ,n and for each i = 1,2,. . . ,N, the sign of the

symbol Ski(t+1) is changed with probability P; P is the mutation intensity.
Step 3 Organization of the sequence of generations. Steps 1, 2 are repeated for t = 1,

2,. . .

According to substep 1.2, a new population is formed as follows. Imagine that
we have a roulette with the arrow. For each generation, the roulette is divided into n
sectors so that the fraction of the kth sector (in the entire disk) is qk = fk

∑n
j=1 f j

, where

fk = f (Sk). Then, we start the roulette n times; every time, the number of the sector
to which the arrow comes to rest is determined, and the string corresponding to this
number is included in the next generation of the population. Thus, precisely n strings
are included in the next generation. For each run of the roulette, the probability
that the kth string is selected for the next generation is proportional to its fitness
f (Sk). Some strings can be selected several times; this means that the new population
includes several descendants of these strings. It should be noted that the described
model is characterized in full extent by the following four parameters: N, n, β , P.

Qualitative Picture of Evolution

Computer simulations demonstrate that if the mutation intensity is sufficiently small
(β ≥ PN, 1 ≥ PN), then the evolution can be characterizes as follows (Red’ko, 1986;
Red’ko, 1990; Red’ko & Tsoy, 2005):

• initial distribution Pr0(ρ) with respect to ρ in the population (for t = 0) is close to
the normal distribution with mean <ρ> = N/2 and variance N/4 (Red’ko, 1986);
< ρ > is the average (over the population) Hamming distance to the optimal
string Sm ;
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Fig. 5.36 The evolution of distribution Pr(ρ) of Hamming distance ρ from the optimal string
in the population. Pr(ρ) is the fraction of organisms with certain value ρ in the population,
t is the number of the generation. N = 500, n = N = 500, β = 1, P = 1/N = 0.002. The
distribution for t = 500 corresponds to quasispecies.

• the dynamics of the distribution Pr(ρ) can be characterized by two stages, rapid
and slow;

• during the first (rapid) stage, organisms from the left side of the initial distribution
Pr(ρ) are selected and the distribution Pr(ρ) contracts;

• during the second (slow) stage, new organisms with smaller values of ρ can ap-
pear in the population only through mutations, and the distribution Pr(ρ) drifts
to small values of ρ with low rate;

• the final distribution characterizes the quasispecies, that is the distribution in a
neighborhood of the optimal string Sm;

• at small selection and mutation intensities (1 � β ≥ PN), the quasispecies distri-
bution Pr(ρ) is close to the Poisson distribution with mean PN/β (Red’ko, 1986).

An example calculation is represented in Fig. 5.36. We suppose that 2N � n, i.e.,
the length N of each string S is sufficiently large. The number of strings correspond-
ing to certain species in the population is not large, and many species are absent
at all. For this reason, fluctuations of the number of species are essential, and the
evolution processes under consideration have stochastic character. In particular, the
neutral selection, i.e., the selection independent of fitness, must be taken into ac-
count. Characteristic number of generations for the neutral selection Tn is of the
order of population size n (Kimura, 1983; Tsoy & Red’ko, 2006a).

Analytical Estimations

Let us estimate the efficiency of the algorithm described above under the assumption
that the population size n is sufficiently large, i.e.:
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Tn ≥ T,
[
1 − (1 − P)N]n 	 1, (5.3)

where Tn is the characteristic time of neutral selection (Tn ∼n), T is the characteristic
time of the convergence of the entire evolution process. The first inequality in (5.3)
means that the influence of the neutral selection is sufficiently small. The second
inequality corresponds to ignorance of the mutation losses of already found “good
organisms” in the population.

Let us estimate characteristic convergence time T of the evolution process. For
large N the value of T is determined by the second (slow) stage of the evolution (see
Fig. 5.36). At this stage, new strings with smaller values of ρ arise because of the
proper mutations and are fixed in the population through selection. Let us estimate
the characteristic time t−1 during which < ρ > decreases by 1. This time can be
approximated by the expression

t−1 ∼ tm + ts, (5.4)

where tm ∼ (NP)−1is the characteristic time during which the strings mutate and
ts ∼ β−1 is the characteristic time during which the strings with ρ = (<ρ > −1)
replace in the population the strings with ρ =<ρ> in the course of the selection.
The total decrease of <ρ> at the evolutionary process is approximately equal to
N/2. Setting T ∼ t−1N , we obtain

T ∼ P−1 + Nβ−1. (5.5)

The total number of strings involved in the evolution is ntotal = nT . Let us esti-
mate the value of ntotal for given N by choosing the remaining parameters β , P, n
so as to minimize ntotal . We assume that the intensity of the selection is sufficiently
large, i.e., β ≥ PN; this allows us to ignore the second term in (5.5). For mutation
intensity we set P ∼ N−1; this corresponds approximately to one mutation per string
in each generation. For this value of P, on the one hand, new strings appear in the
population via mutations sufficiently quickly and, on the other hand, it is possible
to ignore the mutation losses (the second inequality in (5.3) holds). Thus, we have
T ∼ N. We assume also that the first inequality from (5.3) is valid at the utmost limit,
i.e., Tn ∼ T (Tn ∼ n); in other words, we assume that the population has minimum
admissible size for which the loss of felicitous strings caused by neutral selection is
inessential. So, we have: n ∼ Tn ∼ T ∼ N. With respect to all the assumptions we
have:

T ∼ N, ntotal ∼ N2. (5.6)

Several Results

In order to verify the analytical estimations (5.6), the dependence of the evolution-
ary search effectiveness on the string size N is investigated by computer simula-
tions (Red’ko & Tsoy, 2005; Tsoy & Red’ko, 2006a; Tsoy & Red’ko, 2006a). The
other parameters of evolutionary processes are set to values corresponding to the
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Fig. 5.37 The dependencies <ρ>(t) for various values of N. The scheme for estimating the
values TR and TS for N = 600 is shown. The dependencies are averaged over 50 independent
runs.

conditions for obtaining the analytical estimates, namely: n = N,P = N−1,β = 1.
The computations are organized as follows. The time dependencies <ρ>(t) of the
average (over the population) distance to the optimum are obtained for various N
(see Fig. 5.37), and these dependencies are used to estimate the characteristic time
T of the convergence of the evolution in two ways:

1. The characteristic relaxation time TR in the dependencies <ρ> (t) is calculated
from the initial slopes of these dependencies;

2. The time TS of reaching the stationary value < ρ > (t) attained at large t is
evaluated.

The scheme of estimation of values TR and TS is shown in Fig. 5.37. In addition, the
time TO of the first appearance of the optimal string Sm in the population is deter-
mined. The resulting dependencies TR(N), TS(N) and TO(N) are shown in Fig. 5.38.
We see that, for sufficiently large N, these three dependencies are approximately
linear, namely, TR(N) = kRN +TR0, TS(N) = kSN +TS0, TO(N) = kON +TO0, where
kR = 0.1772, kS = 0.3903, kO = 0.3685, TR0 = 8.2709, TS0 = 38.7356, and TO0 =
2.1288. These dependencies are in a good agreement with estimates (5.6).

Comparison of the Evolutionary Search with Other Methods

Let us compare the evolution method of optimization of the fitness function (5.2)
under consideration with the two simplest methods, sequential search and random
search. The sequential search is organized as follows. We start from an arbitrary
string S which symbols are Si = 1 or -1. Then, for each i (i = 1, 2, . . . , N), we
sequentially change the sign of the ith symbol (Si → −Si). If the fitness f (s) at this
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Fig. 5.38 The dependencies of relaxation time TR , stabilization time TS and time TO required
to find an optimal solution on the string length N. The dependencies are averaged over 50
independent runs.

Table 5.5 Comparison of the search methods efficiency.

Search method ntotal ntotal for N=1000

Sequential N 1000
Evolutionary ∼ N2 ∼ 106

Random ∼ 2N ∼ 10300

change increases, then we accept the new value of the symbol; otherwise, we return
the old value Si. As a result, after N tests, we obtain an optimal string Sm. Thus, for
the sequential search, the total number of strings, which should be processed before
the optimal string Sm is equal to N: ntotal = N.

To find an optimal string by random search, the number of strings to be tested is
of the order of 2N : ntotal ∼ 2N . The estimates obtained are given in Table 5.5. These
estimates demonstrate that the evolution process as an optimization algorithm is
“suboptimal”: it does not ensure the maximal speed of search (for particular prob-
lems, more efficient algorithms are possible; in the case under consideration, such an
algorithm is sequential search); nevertheless, it is much more efficient than random
search.

Note that, although the estimates were obtained for unimodal fitness function
(5.2), similar estimates can be made for the spin-glass evolution model, in which
the number of local maxima of the fitness function exponentially increases with the
string length N (Red’ko, 1990).

Thus, estimations of efficiency of evolutionary search in simple canonical quasis-
pecies model, which have a virus-like nature, have been made. According to these
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estimations, the optimal string of the length N can be found in certain evolution
processes during N generations under the condition that the total number of fitness
function calculations is of the order of N2. Since the evolution method of search is
simple and universal, it can be qualified as a good heuristic optimization method for
a large class of problems. In particular, this method can be used to run on-board and
on-line for optimizing genetic cloud from swam mode into organism mode, in other
word, to obtain coherent collective properties from different genomes. In the next
section, the virus-like model will be extended further to demonstrate self-learning
and self-adapting features.

5.4.2 Interaction between Evolution and Learning in an
Evolutionary Process

The ideas of simplistic evolutionary approach, which improves collective proper-
ties of a genetic cloud, can be extended further when to embody informational
string into an agent. This approach allows studying not only a collective behav-
ior, but also an interaction between learning and evolution for the collective behav-
ior (Red’ko et al., 2005a), (Red’ko et al., 2005b). This interaction can be observed
by using the ACD ANN, described in the introduction to this section. The model
and critic ANN can be optimized by both learning and evolution: learning via the
reinforcement learning approach (Sutton & Barto, 1998) and evolution via the Dar-
winian type evolution that includes mutation of ANN synaptic weights and selection
of agents with the best control systems.

Description of Agents

Agents are assumed to work in an organism without a common genome, i.e all
agents behave independently from each other. Such a behavior can be useful in
homeostatic processes, described e.g. in Sect. 2.3.1.1 or in Sect. 4.4. The agent tries
to predicts future changes of the homeostatic energetic value, see Sect. 2.3 (or a hor-
mone as suggested in Sect. 4.2) and tries to increase its energetic potential by taking
and giving energy from a common bus. Since each agent can exchange and store
energy, it is useful to consider “investment” of resources, i.e. when an agent cannot
store resources locally, it can invest them into other agents. In this way, each agent
has its resource distributed into locally stored ones (so called “cash resources”) and
invested ones (“stock resources”). The sum of these is the net potential C(t). The
agent decision is to modify the variable u(t), which is the fraction of the agent’s
potential that is currently invested in other agents. The homeostatic behavior of an
organism is determined by the time series X(t), t = 1,2, . . . , where X(t) is the need
of resources at the moment t. The higher is the need, the expensive they are for
the systems, i.e. the value X(t) is a global cost factor. The goal of the agent is to
increase its potential C(t) by changing the value u(t). The potential dynamics is
described by
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C(t + 1) = C(t){1 + u(t + 1)ΔX(t + 1)/X(t)}× [1 − J|u(t+ 1)− u(t)|], (5.7)

where ΔX(t + 1) = X(t + 1)− X(t) is the current change of the need of resources,
and J is a parameter that takes into account losses of energy by transfer through a
bus. The factor in the braces corresponds to the change of the potential as the result
of a global changes on energy demand. The factor in the square brackets reflects the
losses by the energy transfer. For convenience, the logarithmic scale for the agent
resource is used, i.e., R(t)= logC(t). The current agent reward r(t)= R(t +1)−R(t)
is defined by the expression:

r(t) = log{1 + u(t + 1)ΔX(t + 1)/X(t)}+ log[1 − J|u(t + 1)− u(t)|]. (5.8)

For technological reasons and for simplicity it is assumed that the variable u(t) takes
only two values, u(t) = 0 (agent switches on a local recharging and taking energy
from a bus) or u(t) = 1 (local recharging is switched off and giving energy to a bus).

Such a stock-like representation is useful in a genetic cloud, because it allows
finding steady stationary states (i.e. homeostasis) without common regulatory el-
ements. Applied to energetic homeostasis, it allows to optimize the global energy
distribution and the energy consumption in the organisms by egoistic behavior of
virus-like agents.

Agent Learning

As stated previously, the agent control system is a simplified ACD that consists of
two ANNs: a model and a critic (see Fig. 5.39). The goal of the adaptive critic is to
stochastically maximize the utility function U(t) (Sutton & Barto, 1998):

U(t) =
∞

∑
j=0

γ jr(t + j), t = 1,2, . . . , (5.9)

where r(t) is an instantaneous reward obtained by the agent and γ is the discount
factor (0 < γ < 1). Under the realistic assumption |ΔX(t +1)|	 X(t), it is supposed
that the ACD state S(t) at moment t depends on two values, ΔX(t) and u(t): S(t) =
{ΔX(t),u(t)}.

The role of the model ANN is to predict changes of the homeostatic time
series. The model output ΔX pr(t + 1) is based on m previous values of ΔX :
ΔX(t − m + 1), . . . ,ΔX(t), which are used as the model inputs. The model ANN
is implemented as a multilayer perceptron (MLP) with one hidden layer of tanh
nodes and linear output. The operation of this neural network is described by the
following expressions:

xM = {ΔX(t − m+ 1), . . . ,ΔX(t)},

yM
j = tanh(∑iw

M
i jx

M
i),

ΔX pr(t + 1) = ∑ jv
M

jy
M

j, (5.10)



414 5 Learning, Artificial Evolution and Cultural Aspects of Symbiotic Robotics

where xM is the neural network input vector, yM is the vector of outputs of hidden
layer neurons, wM

i j and vM
j are neuron synaptic weights.

The critic ANN is intended to estimate the state value function V (S) (estimate
of U in (5.9)) for the current state S(t) = {ΔX(t),u(t)}, the next state S(t + 1) =
{ΔX(t + 1),u(t + 1)}, and its predictions Spr

u(t + 1) = {ΔX pr(t + 1),u(t + 1)} for
two possible actions, u(t + 1) = 0 or u(t + 1) = 1. The critic ANN is also a MLP
of the same structure as the model. The operation of the critic neural network is
described by the following expressions:

xC = S(t) = {ΔX(t),u(t)},

yC
j = tanh(∑iw

C
i jx

C
i),

V (t) = V (S(t)) =∑ jv
C

jy
C

j, (5.11)

where xC is the neural network input vector, yCis the vector of outputs of hidden
layer neurons, wC

i j and vC
j are neuron synaptic weights.

At any moment t, the following operations are performed:

1. The model ANN predicts the next change of the time series ΔX pr(t + 1).
2. The critic ANN estimates the state value function for the current state V (t) =

V (S(t)) and the predicted states for both possible actions V pr
u(t + 1) =

V (Spr
u(t + 1)), where Spr

u(t + 1) = {ΔX pr(t + 1),u(t + 1)}, and u(t + 1) = 0
or u(t + 1) = 1.

3. The ε-greedy rule (Sutton & Barto, 1998) is applied: the action corresponding
to the maximum value V pr

u(t + 1) is selected with probability 1 − ε , and an
alternative action is selected with probability ε(0 < ε 	 1). (For example, if

Model

Critic

Critic

ΔX
pr

(t+1)

{ΔX(t), u(t)} V(t)

{ΔX(t-m+1),…,ΔX(t)}

{ΔX
pr

(t+1), u(t+1)} V
pr

u (t+1)

V(t+1){ΔX(t+1), u(t+1)}

Fig. 5.39 The scheme of the considered adaptive critic design (ACD). The ACD con-
sists of two neural networks: a model and a critic. The model ANN predicts changes of
the time series. The critic ANN (the same ANN is shown in two consecutive moments)
forms the state value function for the current state S(t) = {ΔX(t),u(t)}, the next state
S(t + 1) = {ΔX(t + 1),u(t + 1)}, and its predictions Spr

u(t + 1) = {ΔX pr(t + 1),u(t + 1)}
for two possible actions, u(t +1) = 0 or u(t +1) = 1.
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the action u(t + 1) = 0 corresponds to the maximum of V pr
u(t + 1), then it is

selected with probability 1 − ε ; alternatively, the action u(t + 1) = 1 is selected
with probability ε.).

4. The selected action is carried out. The transition to the next time moment t + 1
occurs. The current reward r(t) is calculated in accordance with (5.8) and re-
ceived by ACD. The value ΔX(t + 1) is observed and compared with its pre-
diction ΔX pr(t + 1)). The weights of the model ANN are adjusted to minimize
the prediction error by means of the usual method of error backpropagation
(Rumelhart et al., 1986) and the gradient descent with αM > 0 as the model learn-
ing rate.

5. The critic computes V (t + 1). The temporal-difference error
(Sutton & Barto, 1998) is calculated:

δ (t) = r(t)+ γV(t + 1)−V(t). (5.12)

6. The weights of the critic ANN are adjusted to minimize the temporal-difference
error (5.12) using its back propagation and the gradient descent with αC > 0 as
the critic learning rate.

Evolution of Agents

The Darwinian evolution of agent populations is considered. An evolving popula-
tion consists of n agents. Each agent has a resource R(t) that changes in accordance
with values of agent rewards: R(t + 1) = R(t) + r(t), where r(t) is calculated in
(5.8). Evolution passes through a number of generations, ng = 1,2, . . . .The dura-
tion of each generation ng is T time steps (agent lifetime). At the beginning of any
generation, initial resource of each agent is zero, i.e., R(T (ng − 1)+ 1) = 0.

The initial synaptic weights of both ANNs (model and critic) form the agent
genome G = {WM0,WC0}. The genome G does not change during the agent life
and it is fixed when the agent is born. However, synaptic weights of the ANNs WM

and WC are changed during agent life via learning described above.
At the end of each generation, the agent having the maximum resource Rmax(ng)

is determined (the best agent of the generation ng). This best agent gives birth to
n children that constitute a new (ng + 1)−th generation. The children genomes G
differ from their parent genome by small mutations taken from a normal distribution.

At the beginning of every new (ng + 1)−th generation, we set for each agent
Gi(ng + 1) = Gbest,i(ng) + randi, W0(ng + 1) = G(ng + 1), where Gbest(ng) is
selected from the best agent of the previous ng−th generation, and randi is
N(0,P2

mut), i.e., a normally distributed random number with zero mean and stan-
dard deviation Pmut (mutation intensity), which is added to each synaptic weight.

Thus, the genome G changes only via evolution, whereas the synaptic weights
W are adjusted only via learning.
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General Features of Agent Learning and Evolution

Two examples of the time series X(t) are considered: sinusoidal (with the period of
20 time moments) and smoothed stochastic time series. The simulation parameters
are as follows: discount factor γ = 0.9, number of inputs of the model neural net-
work m = 10, number of hidden neurons of the model and critic NhM = NhC = 10,
learning rate of the model and critic αM = αC = 0.01, parameter of the ε-greedy
rule ε = 0.05, mutation intensity Pmut = 0.1, population size n = 10. Generation du-
ration T is specified below. Agent expenses are neglected (J = 0) in the main part
of simulations.

The following cases are analyzed:

• Case L (pure learning); i.e., a single agent that learns by means of temporal
difference method, see Eqs. (5.8), (5.9), (5.12);

• Case E (pure evolution), i.e., evolving population without learning;
• Case LE, i.e., learning combined with evolution, as described above.

The results are illustrated by Fig. 5.40, where maximal resource values attained by
agents during 200 time steps for these three cases of adaptation are shown. For the
cases E and LE, the maximal value of agent resource in a population Rmax(ng) at
the end of each generation ng is recorded; generation duration T is equal to 200. For
the case L, just one agent whose resource is reset R(T (ng − 1)+ 1) = 0 after the
passing of every T = 200 time steps is considered; the index ng is also incremented
by one after every T time steps. The plots Rmax vs. ng for the sinusoidal time series
are shown in Fig. 5.40. In order to exclude the decrease of the value Rmax(ng) that is
due to the random choice of actions when applying the ε-greedy rule for the cases
LE and L, it is set ε = 0 after ng = 100 for the case LE and after ng = 2000 for the
case L. The results are averaged over 1000 simulations.

Analysis of agent actions demonstrates that both cases E and LE ensure the find-
ing of optimal policy, i.e. the agent performs the action u(t +1) = 1 or u(t +1) = 0
at prediction of rises or falls of the time series X(t) (see the curves E and LE in
Fig. 5.40). With this policy, the agent attains asymptotic value Rmax = 6.5. The pure
learning is able to find only the satisfactory policy (see the curve L), namely, the
agent performs the action u(t + 1) = 1 when the time series X(t) rises (or falls by a
small amount) and performs the action u(t + 1) = 0 when the time series X(t) falls
significantly. The asymptotic value of Rmax for the case L is only 5.4.

The described results outline main features of modeled processes for the sinu-
soidal time series. Similar learning and evolutionary processes are observed for
smooth stochastic time series (Red’ko et al., 2005b).

Interaction between Learning and Evolution: Baldwin Effect

So, pure learning is imperfect; nevertheless, learning helps evolution to attain larger
values of Rmax faster (see the curves E and LE in Fig. 5.40). Some other simulations
(at rather large generation durations) also confirm that learning helps evolution to
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Fig. 5.40 The plots of Rmax(ng) for the sinusoidal time series. The curves LE, E and L cor-
respond to the cases of learning combined with evolution, pure evolution and pure learning,
respectively. T = 200. Results are averaged over 1000 simulations.

find a good policy. For example, Fig. 5.41 demonstrates that during the early gen-
erations (ng = 1 − 2) a satisfactory policy is found via learning (only after 200-300
time steps of the agent life).
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Fig. 5.41 The plots of the resource Rmax(t) of the best
agent in the population for the first five generations, see
description in text.

This is the case of learning
combined with evolution on
the sinusoid time series; gener-
ation duration T = 1000. The
ends of generations are shown
by vertical lines. During early
generations (generations 1 and
2), there is an obvious delay
in the increase of the agent re-
source. An advantageous pol-
icy is found only after some
learning period during first 200
to 300 time steps. By the fifth
generation, the rapid increase

of the resource begins at the start of the generation, demonstrating that the ad-
vantageous policy has become inherited. In this generation, the agents exhibit a
satisfactory policy from the beginning of the generation, and the learning does
not improve the policy significantly. Thus, we can see that the initially learned
policy becomes inherited; this corresponds to the Baldwin effect (Baldwin, 1896),
(Turney et al., 1996).

Thus, the model demonstrates that the evolutionary optimization can be more
effective, than training with the reinforcement learning. The behavior of simulated



418 5 Learning, Artificial Evolution and Cultural Aspects of Symbiotic Robotics

agents is interesting; in particular, nontrivial genetic assimilation of acquired fea-
tures in Darwinian evolution takes place.

5.4.3 Evolutionary Emergence of a Cooperation between Agents

The previous section was devoted to a homeostatic behavior of purely software
virus-like agents in a genetic cloud. In this section we consider an aggrega-
tion behavior of the same agents, which however are embodied into a physical
robot (Kernbach et al., 2009a) and demonstrate evolutionary emergence of cooper-
ation (Burtsev & Turchin, 2006). Each physical robot can have several such agents,
running as separate processes on MPU and being in charge of different activities. In
this context agents are “virtual” in contract to real robots. A robot can be “dead”;
this basically means an “empty” physical body, which can be occupied by differ-
ent virtual agents. An agent can reproduce itself in the same physical robot or it
can be transferred to such “empty” robots. We can imagine that initially there are
more “empty” robots, than virtual agents and during evolution, population of virtual
agents occupies more and more physical bodies, see also Sect. 5.3 about artificial
sexuality. In the following we assume that only one virtual agent occupies one phys-
ical robot.

A population of autonomous agents evolves in two-dimensional plane, see Fig.
5.42. Each robot normally occupies some area, which can be considered as a “cell”.
Each such “cell” contains a robot or is empty. A robot can occupy an empty area
with a certain probability per time step. An area becomes empty when two robots are
aggregated (any “cell” can contain several agents) or a robot moves away. Agents
interact each with others, in particular, any agent can compete with other agents for
resources. As in the previous section, the control system of agents is an ANN, which
connects sensors to motors. The operation of the neural network is described by the
expression:

O j(t) =∑
i

wi jIi(t), t = 1,2, . . . , (5.13)

where I(t) and O(t) are input and output vectors of the neural network, wi j are neu-
ron synaptic weights. The input vector I(t) provides information about the presence
of resource in the field of vision, the level of internal resource and the Euclidean dis-
tance between marker vectors of the agent and its partner for potential interaction.
At each time step t, the agent performs the action associated with the maximum
output value O j(t).

Agents can do nothing (rest), finding energy source (eating), aggregate, produce a
virtual offspring (divide), go forwards (move), make a turn to the left or right (turn),
and compete with another agent (fighting). The agent spends its energy resource
at any action; the resource is increased when aggregating (by taking energy from
a common bus) or when finding energy source for individual recharging. If agent
resource is completely depleted, the agent virtually dies. The least energetically
demanding action is rest, the most demanding is fighting. When an agent divides,
one virtual offspring is created and placed in the same cell as the parent; the parent
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resources

Fig. 5.42 The agent in two-dimensional world. Agents can rest, looking for resources (e.g.
other robots for aggregate), divide, move forward, turn to the left or right, and compete with
other agents.

then transfers half of its energy to the offspring. When one agent hits another, the
victim loses an amount of energy resource, which is transferred to the attacker.

Sensory inputs of agents include its energy resource and how many other agents
are in the field of vision, see Fig. 5.42. Each agent has external phenotype that is
coded by a vector of integer values (marker). The markers do not influence agent
behavior but function only as indicators of similarity. The Euclidian distance be-
tween an agent’s marker and the marker of another agent is also a sensory input of
the agent neural network. Both weights of the neural network and the marker are
inherited by the offspring when an agent divides.

The genome of the agent codes its neural network (the neural network struc-
ture and synaptic weights of neurons). Additionally, the agent genome includes the
marker that is the gene of similarity. This marker is obtained by the agent from its
parent; so the marker difference for the offspring and the parent is small, because
this difference is created only by small mutations. Agents are able to perceive mark-
ers of neighboring agents. An evolution of an agent population is considered; neural
network structures and neuron synaptic weights are modified during genome muta-
tions. Behavioral strategies of agents are not predetermined; instead, the process of
evolution constructs and reconstructs them from elementary actions. Agents of an
initial population are unaware of markers. Thus, the use of markers in a population
has to emerge during the evolution.

Analysis of the model without markers (Burtsev & Turchin, 2006) shows that the
strategies evolving in the simulation correspond to those in the well-known game of
dove-hawk-bourgeois (Smith, 1974). Doves never attack other agents and attempt to
escape when attacked, whereas hawks make a living by predation on other agents.
The bourgeois strategy in the considered model is to stay in the same cell and im-
mediately attack any invader, while ignoring agents in neighboring cells (unlike the
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hawks). In the model without markers the dominant strategy is bourgeois, provided
that the energy resource is sufficiently large.

In the full model, in which agents can evolve the ability to detect phenotypic sim-
ilarity (distance between the markers), three kinds of cooperative strategies emerge.
The first one is simply the cooperative version of the dove. Cooperative doves ignore
out-group (phenotypic distance is large) members, but leave cells containing within-
group (phenotypic distance is small) members to avoid competing with them. In the
second strategy, agents also leave cells containing within-group members, but when
they detected out-group members they attacked them. This strategy can be called
“raven”, corresponding to the Russian proverb, “a raven will not peck out the eye of
another raven”. The third cooperative strategy is to stay in the same cell containing
within-group members and collectively fight with any out-group invader. Having to
share limited energy of the cell means that agents using this cooperative defense
strategy have small internal energy resource, but they still have a good chance of
defeating a large invader because of their advantage in numbers. This strategy re-
sembles the “mobbing” behavior that many species of small birds, such as starlings,
use to drive away large predators. For this reason, this strategy is called the “star-
ling” strategy.

Thus, in the absence of phenotypic markers, three distinct strategies emerge.
These strategies correspond to the dove, the hawk, and the bourgeois. In the pres-
ence of markers, the evolution results in some predictable modifications of these
basic strategies, but also in the emergence of a new one. Cooperative doves avoid
competition with in-group members, whereas cooperative hawks - “ravens” - avoid
attack on phenotypically similar agents. The new strategy is the starlings, which
live in groups and defend living territory cooperatively against predation. These
results indicate that cooperative strategies can evolve even under certain minimal-
ist assumptions, provided that agents are capable of perceiving heritable external
markers of other agents. In should be noted that the cooperation emerges internally
in evolving population, during an evolutionary self-organization.

Evolutionary Disappearance of Fighting Genes

The early version of this model does not consider similarity genes (Burtsev, 2002).
Nevertheless, disappearance of fight effectors from agent control systems during
evolutionary processes is observed. Similar to the model described above, an evolv-
ing population of embodied autonomous agents is considered. An agent can rest, eat,
divide, move forward, turn to the left or right, and fight with another agent. Sensors
and effectors can be removed and restored via mutations of agent neural networks.
The main difference with the model described above is absence of agent markers.
The interesting phenomenon in this model is observed, namely, surprising peaks in
population size N, see Fig. 5.43, the curve below.

In order to analyze this phenomenon, fight effectors are externally excluded from
the agent control systems. In this case population size N(t) is significantly increased,
see Fig. 5.43, the curve above. Thus, the observed peaks in the full model are due
to disappearance of fight effectors from agent control systems via mutations during



5.4 Self-learning Behavior of Virus-Like Artificial Organisms 421

agentagent

Fig. 5.43 Time dependence of population size N(t) in the full model (curve below) and after
externally removing of fight effectors from agent control systems (curve above).

evolutionary processes. These fight effectors are removed from control systems of
all agents of the population. So, agents do not fight each with others, instead they
use their energy resource for other useful actions. It should be noted that duration of
peaks of population size is small: fighting effectors are restored via mutations and
the population size is decreased.

5.4.4 Discovering of Chains of Actions by Self-learning Agents

In this section the described above virus-like agent in a genetic cloud is slightly
modified: agent does not have markers, any “cell” can contain only one agent, the
agent control system is a set of logical rules instead of a neural network. The logical
rules of an agent have the form “if situation S(t) is present, then the action A(t)
should be executed”, where t is time moment. All actions and other behaviors are
equal to the described in the previous section. The evolving population consists of
n agents. Any agent has an energy potential R(t) that is increased by recharging and
decreased at executing of actions by the agent, for R(t) = 0 an agent is dead. The
aim of this models is to demonstrate that agents are able to discover chains of actions
leading to replenishment of R(t). In other words, virus-like agents can demonstrate
a self-adapting behavior, which increase their surviving chances.

The agent control system is a set of logical rules:

Sk(t) → Ak(t), (5.14)

where Sk(t) is the current situation, Ak(t) is the action corresponding to this rule.
Each rule has the weight Wk that is modified at agent learning. Components of the
vector Sk(t) are equal to 0 or 1. Values 0 or 1 correspond to absence or presence of
energy or another agent in “the field of vision” of the agent. The set of logical rules
{Sk(t),Ak(t),Wk} constitutes the genome of the agent.
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Each time step t any agent selects an action and is learned. Additionally, analog of
annealing method (Kirkpatrick et al., 1983) is used: at initial time moments, when
set of logic rules of agents is generated, actions are selected randomly with probabil-
ity ε ∼ 1, then the value ε is gradually decreased to zero; at further time moments,
the agent uses the rule that has maximal weight Wk among rules corresponding to
the current situation Sk(t).

At learning weights of rules W are adjusted by reinforcement learning
(Sutton & Barto, 1998). The change of the weight of the rule used at time moment
t-1 is determined by the following expression:

ΔW (t − 1) = α[R(t)− R(t − 1)+ γW(t)−W(t − 1)] , (5.15)

where W (t − 1) and W (t) are weights of rules applied at time moments t − 1 and t,
R(t)− R(t − 1) is the change of agent resource at time transition from t − 1 to t, α
is the parameter of the learning rate, γ is the discount factor.

Several Results

Simulation is performed for the full described model and for the simplified version
of the model. In the simplified version only one agent is studied. In case of the
full version of model, the population consists from 50 agents, the two-dimensional
world contains 100 cells, energy sources are randomly distributed in 50 cells. The
parameters of simulation are as follows. The decrease of agent energy resource at all
actions (except fighting) is 0.01. At fighting the decrease of agent energy resource
is 0.02; the amount of energy resource that is transferred to the attacker from the
victim is 0.05. The increase of agent energy by recharging is 1.0. Parameters of re-
inforcement learning are α = 0.1,γ = 0.9. The annealing method is used as follows.
At t = 0 it is set ε = 1.0, then the probability of random choice of action ε is ex-
ponentially reduced to zero, characteristic time of reduction ε is equal to 1000 time
steps. The initial energy resource of the agent (at t = 0) is R(0) = 1.0.

Fig. 5.44 Time dependence of the agent energy re-
source R(t).

Simulations for the case
of the full version of model
demonstrate that rather nat-
ural behavior of autonomous
agents is formed via learning
and evolution. The main ac-
tions of agents are “to eat” and
“to fight”; these actions lead
to increase of energy resource
of the agent. Agents avoid the
action “to divide” which leads
to resource reduction. Each of
other actions is executed with
small frequency.
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In the simplified version of model a single autonomous agent is analyzed. The set
of agent rules is formed by means of reinforcement learning. The agent can execute
5 actions: to eat, rest, move forward and turn to the right or left. The main parameters
of simulations are equal to parameters of the full model. Simulations demonstrate
that in this case chains of actions (unknown to the agent in advance), leading to
recharging by the agent are formed.

The example of time dependence of the agent resource R(t) is shown in Fig. 5.44.
Each situation S is characterized by presence/absence of energy in 4 “cells” (4
bodylength) of a field of vision. So, there are 16 possible situations S. Taking
into account that there are 5 possible actions, we have that there are 80 possible
rules. Note that in any simulation at initial time steps during random search all these
possible rules are formed. However, weights of these rules modified in the course of
reinforcement learning are different.

The essential logic rules that have large weights (greater than 1.0) at the end of
simulation are selected. The number of these selected rules for typical simulation
is equal to 16; each rule corresponds to the certain situation S and the action exe-
cuted in this situation. Just these rules are applied by the agent. This set of rules can
be considered as the heuristics, formed by the agent in the course of self-learning.
These of heuristics are as follows. 1) If energy is located in the same cell, where the
agent is present, then the agent executes the action “eat”; this corresponds to the sim-
ple one-link chain of actions. 2) If energy is not present in the agent cell and there is
the energy in the cell forward to the agent or in the right/left cell, then the agent exe-
cutes the action “to move forward” or “turn to the right/left”; this corresponds to the
two-link or three-link chain of actions, respectively. These chains consisting from
one/two/three actions result in energy consuming at the end of a chain. Additionally,
if there is no energy in the agent field of vision, the agent prefers the action “to move
forward”. This can be explained to the fact that moving forward corresponds to the
two-link chain, whereas turning corresponds to the three-link chains. Note that the
action “to rest” is ignored in all simulations. In some simulations there was a small
number other rules having large weights; nevertheless, properties of rules applied
by an agent can be only slightly differed from described above. The dependence
R(t) presented in Fig. 5.44 corresponds to 16 selected rules described above. So, in
the course of self-learning the agent forms quite natural rules defining reasonable
strategy of behavior.

Thus, the chains of actions are discovered by self-learning autonomous agents.
The result of these chains is energy recharging and increasing of energetic potential
of the agent. These chains are unknown to the agent in advance; they are formed
by means of reinforcement learning in accordance with (5.15). It should be noted
that the current model can be developed further in two interesting directions. The
first important direction of the future researches is more detailed analysis of behav-
ior of agents that have several needs, for example, needs of energy, reproduction,
and safety. It is natural to suppose that there is certain competition between needs.
Any need can be accompanied with the corresponding motivation M(t). Dynamics
of a motivation can be modeled similar to the work (Nepomnyashchikh et al., 2008)
that takes into account the inertia of motivation change, random variations and the
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directed change of the motivation M(t). Competitions between motivations and
needs could be also analyzed. The second direction of further research is inclusion
of predictions of next situations S(t + 1) into the model. It is possible to estimate
the sum of future energy resource increase for situations (states) S(t) and execute
that actions which results in situations S(t +1) corresponding to maximal estimated
resource increase. It is natural to use agent resource change R(t) − R(t − 1) as a
component of situation vector S(t). Such version of the model can be similar to the
model of autonomous agents described in Sect. 5.4.2.

Additionally, we can note that forming chains of actions corresponds actually to
generalization of processes of agent behavior. Namely, only 5 heuristics are used,
whereas the whole agent control systems have 80 logical rules. Generation of these
heuristics can be considered as origin of some form of semantics of agent behavior.
Moreover, using such predictions and heuristics, an agent can produce “inferences”
and some “logic” of adaptive behavior. So, basing on this approach, we can study
evolutionary steps of creating adaptive behavior and appearance of certain “logical
conclusions”. This process is supposed to be similar not only to simple virus-like or-
ganisms, but also to more higher animals with cognitive capabilities (Red’ko, 2008).

5.4.5 Virus-Like Organisms: New Adaptive Paradigm ?

This chapter16 introduced a new paradigm towards self-adapting systems with cloud
genotype and structurally flexible phenotype. This concept may be especially useful
for artificial organism during the swarm mode, initial aggregation and several self-
regulation phases, see Table 1.4. Since in the literature such features are usually
related to viruses, we proposed virus-like organization of artificial organisms for
these activities. It is demonstrated that evolutionary process in cloud genotype (i.e.
quasispecies model) provides a good heuristic optimization properties, which can
be used for on-line and on-board evolving of controllers.

Several such controllers, denoted as agents, are considered. These agents are sup-
posed to run in organism’s computational system, as described in Sect. 5.4.2 and per-
form homeostatic activities, or be physically embodied, as indicated in Sect. 5.4.3
and execute behavioral tasks. These agents are based on ANN and logical rules,
where the behavior is optimized by means of both reinforcement learning and evo-
lutionary optimization. It is shown that evolutionary optimization can be more ef-
fective as compared with reinforcement learning that includes random search. The
evolutionary emergence of cooperation between agents is described. It is demon-
strated that in addition to well-known strategies of dove, hawk, and bourgeois, sev-
eral forms of colony-like cooperative strategies evolutionary emerge, e.g. the “star-
ling” strategy, when a family of virus-like agents collectively fights with any foreign
invader. Moreover, such agents can demonstrate self-learning properties, leading

16 This work is partially supported by the Russian Foundation for Basic Research, Grant
No 07-01-00180 and the Program of the Presidium of the Russian Academy of Science
“Intelligent informational technologies, mathematical modeling, system analysis and au-
tomatics”, Project No 2.15.



5.5 Towards the Emergence of Artificial Culture in Collective Robotic Systems 425

to adaptive behavior in unknown situations. The chains of actions can be thought
as of a generalization of input information by the agent and formation of certain
forms of semantics. This model can be further developed in order to analyze how a
genetic cloud can use certain “logical collective conclusions” for achieving useful
results.

Based on this work, we assume that genetic cloud can provide certain collective
properties related to optimization, self-learning and adaptive collective behavior. It
is worth to look more carefully for adaptive properties of real viruses and virus
colonies to utilize their high adaptivity for artificial systems.

5.5 Towards the Emergence of Artificial Culture in Collective
Robotic Systems

Alan Winfield, Frances Griffiths

This chapter explores the possibility that we might be able to engineer a robot col-
lective (“society” of robots) in which we observe the emergence of “cultural” tra-
ditions or traits: an artificial, robot culture. However, this is not merely a gedanken
experiment: a current project is presented here with the title “the emergence of artifi-
cial culture in robot societies”, which aims to demonstrate — or at least take the first
steps toward demonstrating — behaviours that can be argued as evidence for emerg-
ing cultural traits in a society of real robots. We first outline the aims and inspiration
for the project, then describe the experimental infrastructure (artificial culture lab).
Then follows a discussion of the significant challenges the project faces in observa-
tion and interpretation of experiments within the artificial culture lab, followed by a
consideration of robot memes and how meme evolution might be tracked.

5.5.1 Project Aims

The Artificial Culture project aims to address and illuminate the question “how can
culture emerge and evolve as a novel property in groups of social animals?” by
building an artificial society of embodied intelligent agents (real robots), creating
an environment (artificial ecosystem) and appropriate primitive behaviours for those
robots, then free running the artificial society. The aims of the project lie primarily
in modelling the processes and mechanisms by which a group of embodied agents
(robots) might make the transition from social to cultural. Even with small popula-
tions (a few tens) of relatively simple robots we see, in a short time, a very large
number of interactions between robots. Compared with computer simulated robots
the inherent heterogeneities of real robots, and the noise and uncertainty of the real
world, vastly increase the space of possibilities and the scope for unexpected emer-
gence in the interactions between robots.

In the project we are attempting to create the conditions and primitives in which
proto-culture can emerge in a robot society. Robots will, for example, be able to
copy each other’s behaviours and select which behaviours to copy. Dawkins coined
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the term “meme” to describe a unit of cultural transmission (Dawkins, 1976), and
we use this terminology here. Imitated behaviours (memes) will mutate because of
the noise and uncertainty in the real robots’ sensors and actuators, and successful
memes will undergo multiple cycles of copying (heredity), selection and variation
(mutation). Furthermore we will explore a bi-phased approach in which we alter-
nate between real-time (with real physical robots) in which the emergence, selec-
tion and refinement of these discrete behavioural artefacts (memes) takes place; with
evolutionary time, in which we run a genetic algorithm (GA) process to grow and
evolve the robots’ controllers so that the behaviours and premiums associated with
the emerging memes become hard-wired into the robots’ controllers.

The project is inspired by the Copybots suggested by (Blackmore, 1999), pages
106-107, and by Dautenhahn’s 1995 paper “Getting to Know Each Other - Ar-
tificial Social Intelligence for Autonomous Robots” (Dautenhahn, 1995). From
a technical perspective the project draws upon a multi-disciplinary body of lit-
erature in imitation (Nehaniv & Dautenhahn, 2007); for instance the work of
(Alissandrakis et al., 2007) describing imitation leading to “cultural transmission of
behaviours and emergence of proto-culture” between two simulated 2D two-jointed
robotic arms. However, we argue that a multi-robot “society” is a necessary substrate
for this work and bring key concepts from the field of swarm robotics (Beni, 2005).
Furthermore, our robots need to combine social learning with evolution, and we thus
aim to integrate techniques from evolutionary robotics (Nolfi & Floreano, 2000a;
Trianni, 2008). We believe this project to be the first to attempt meme-gene co-
evolution with multiple real robots.

5.5.2 The Artificial Culture Laboratory

Core to the project is the creation of an artificial environment: the artificial culture
lab. The artificial culture lab comprises a physical space (“arena”) designed for and
populated by miniature wheeled mobile robots. The arena is closed in the sense
that its physical boundaries define the edges of the robots’ world, out of which they
cannot physically stray. The arena is not hermetically sealed, thus robots (since they
have both light and sound sensors) are affected by ambient lighting or noise levels.
Providing that these external environmental influences do not overwhelm (blind) the
robots’ sensors, they are not a problem. Indeed, a certain level of background noise
in the environment is considered essential as it will contribute to imperfect robot-
robot imitation or communication, and changing light levels (day and night) may be
useful in providing the robots with a circadian rhythm.

We will divide the population of robots into physically separate, but not isolated,
sub-groups or “villages”. Each village consisting of say 5-10 robots, with perhaps
four or five villages in the arena. This is to allow for the possibility of the parallel
emergence and evolution of different memes or meme complexes in the (relatively)
separated villages, and the potential for emergent meme trading between villages.
We also believe that the “village” approach will encourage diversity in both gene-
and meme-pools across the whole population. We will encourage this diversity by
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providing slightly different artificial ecosystems within each village. The ecosys-
tems will be necessarily simple (because the robots are simple) but various possi-
bilities present themselves: for instance resources (energy) will be represented by
active artefacts (small beacons with sound or light emitters). Another possibility is
that of other robots programmed to behave as prey. Environmental pressures could
then be introduced: famine for instance.

The robots, called e-pucks, are wheeled, differential-drive, robots capable
of moving forwards or in reverse, or turning (including turning on the spot)
(Mondada et al., 2009). They are equipped with a range of sensors, including short-
range infra-red and/or ultra-sound proximity and ranging sensors that allow the
robots to sense the presence, direction and range of obstacles and other robots close
by. Importantly, robots can sense and track the movements of other robots nearby
(albeit imperfectly because of their limited sensors); thus robots have the physi-
cal means for imitation. They have multi-coloured programmable lights (LEDs),
and simple cameras; microphones and speakers. We have a wide range of options
for robot-robot interaction. Robots can signal to each other with movement, light,
or sound, one-to-one or one-to-many, and with or without active consent (i.e. one
robot can eavesdrop on the communication between two others). The robots are
not equipped with manipulators (grippers), thus the only way they can physically
act upon the world is with their own bodies (i.e. by pushing light objects, or co-
operating with other robots to push heavier objects).

The artificial culture lab is fully instrumented. A tracking system allows the
movements of all robots to be captured and recorded for analysis and interpreta-
tion. Wireless communication with each robot allows data logging, allowing the
emerging memotypes to be captured for analysis. Webcams provide video capture
for analysis, and importantly video for project web-pages for open access to support
interpretation. Fig. 5.45(a) shows the artificial culture lab in the Bristol Robotics
Lab (BRL); Fig. 5.45(b) shows one of the e-puck robots fitted with Linux extension
board and tracking “hat”.

The use of real physical robots in an artificial ecosystem as described above,
rather than computer simulated agents, is central to the methodology proposed for
this project. The rationale is that real robots provide vastly more scope for emer-
gence in their interactions than simulated agents. The combination of imperfect
sensors; sensing errors that occur because of the distance between robots; multi-
ple robots sharing the same environment (i.e. occlusion of robots by each other) and
sharing the same communications modality (i.e. all talking at once); small differ-
ences between sensors and actuators (motors) which mean that the robots are not
all identical; real-world physics which means that each experimental run (even with
the same starting conditions) will quickly diverge into a new space of possibilities;
noise in the environment and, unexpected non-fatal faults (i.e. a faulty wheel which
gives the robot a “limp”), we argue could not be created in simulation (to do so each
of the factors listed would have to be separately modelled, and those models would
inevitably lead to simplification thus chronically limiting the space of possibilities).
Even in the designed artificial environment we propose here, the use of real physical
robots provides vast scope for unexpected emergence. Thus, we argue, behavioural
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(a) (b)

Fig. 5.45 (a) Artificial culture lab showing about 10 robots in the arena. (b) An e-puck with
Linux board fitted in between the e-puck motherboard (lower) and the e-puck speaker board
(upper). Also note the yellow “hat” which here serves three different functions: (1) it provides
a matrix of pins for the reflective spheres which allow the tracking system to identify and
track each robot; (2) it provides a mounting for the USB WiFi cardwhich slots in horizontally
(the wires connecting to the WiFi card are above the USB connector); and (3) it provides an
inverted cone to reflect sound from the e-puck’s speaker horizontally so that it can be heard
by other e-pucks.

artefacts that might be interpretable as artificial memes – elements of an artificial
proto-culture – will emerge for no other reason than that they can.

5.5.3 The Challenges and the Case for an Emerging Robot
Culture

The project outlined here has clearly made some very significant assumptions about
the pre-requisites for the emergence of culture. In essence we have assumed two ba-
sic requirements in the embodied agents of the Artificial Culture Lab: social learn-
ing and artificial evolution. Furthermore the social learning, through imitation, is
designed to undergo a Darwinian process so that behavioural artefacts (memes)
evolve within the population. Not least because it lends itself to an empirical ap-
proach, we accept – as a working hypothesis – the memetic theory of cultural evolu-
tion (Blackmore, 1999), and we consider the initiation of gene-meme co-evolution
to be a key underlying mechanism in the transition from no culture to proto-culture.

Assuming that our starting assumptions are not fatally flawed the project still
presents significant technical as well as philosophical challenges, as follows.
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(a) Following (Richerson & Boyd, 2001) culture as an adaptation requires the
correct dynamics between individual and social learning, and genetic evolu-
tion: there must be environmental variation — not in a single agent’s lifetime
but over (say) tens of generations. Given that the emergence of culture is prob-
ably highly contingent then, even if we do have the right artificial ecosystem,
initial conditions and dynamics, we have no guarantee that robot culture will
emerge within the lifetime of the project.

(b) Even if interesting behavioural artefacts do emerge how can we make sense
of what we observe, given that it will be robot- rather than human-culture,
and what tests must we apply in order to make any robust claims that the
behaviours observed really are evidence of an emerging robot proto-culture,
rather than merely social behaviours?

(c) If we believe we do see evidence of the emergence of a robot proto-culture
then is what we have learned about how that proto-culture has emerged, gener-
alisable from robots to humans (or indeed any social species)? In other words,
could there be a universal theory of cultural evolution?

Let us focus on the hermeneutic problem, (b) above. We address this challenge
in two ways. Firstly, by proposing a definition of artificial culture as follows:

sustained and measurable emerging differences in behaviour between two or
more groups of robots, where those groups have divided or split off from a
common ancestral group, and the behaviours are traceable to common root
behaviours in the ancestral group.

This definition has the merit that it is differential and measurable it essentially en-
codes emerging different traditions between groups. If we accept Whiten’s view of
cultures as “defined by multiple traditions” (Whiten et al., 2007), then if we observe
the emergence of a number of sustained traditions we should be able to label these,
with some confidence, as evidence of artificial culture. We expect to recognise these
traditions through noticing differences in the behaviour of robots in different groups,
when engaged in similar actions. Within the capability of the robots it is possible that
robots in one group might, for instance, configure themselves in a particular pattern
when co-operating to push an object, whereas robots in another group configure
themselves differently when pushing a similar object. Both might be equally ef-
fective in moving the object although the efficiency (however evaluated) may differ.
Another example may be that one group of robots emits a particular sound within an
interaction (perhaps picked up during imitation from an extraneous noise) whereas
another group does not (perhaps they were not imitating at the time of the extrane-
ous noise or they were positioned such that their sensors did not pick it up — there
could be many reasons for the origin of the difference). An important point here is
that our approach does not rely on some subjective judgement of what constitutes
“cultural” and hence avoids the trap of anthropomorphism. The necessary corollary
is, of course, that the robot traditions — the artificial cultures we measure — will
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not make sense from a human cultural perspective. But why should they? This is
robot not human culture and essentially alien: an exo-culture.

However, we do not completely reject the subjective, and the second strand of our
approach to mitigating the hermeneutic challenge will be to employ an open science
approach. Our thinking here is that human beings are very good at identifying the
emergence of new patterns, even within complex structures. By placing video of the
artificial culture lab online, together with visualisations of the data the experiments
are generating, we hope that interested third parties will engage with and support
the project in interpretation of its results. We are open to the engagement of others
with very different perspectives on the project. What we hope is that through their
observation they are able to discern patterns of behaviour that become traditions.
Our exploratory engagement with school children suggests that they are enthusiastic
about robots and enjoy watching them. Their comments about what they observe
may provide us with prompts about emerging traditions. Although the childrens
talk about robots is heavily influenced by their exposure to robots in films and robot
toys, it is possible to hear within this discourse talk about what they observe the
robots doing and how they differ from each other (Buckingham & Willett, 2006).
By relating these comments in time to our record of what the robots were doing
we are able to take a close look at the patterns they discern. The project team has
considered whether the use of data mining techniques could suggest patterns that
would be missed by people. At present we consider the use of data mining may be
more powerful when guided by human observation. Given that we will have very
detailed data tracking robot activity, it is likely we will be able to trace the roots of
any robot traditions that emerge.

5.5.4 Robot Memes and Meme Tracking

Social learning, or robot-robot imitation, is clearly a key requirement of this project.
Consider now what is being imitated and how we might track the evolution of robot
memes through our robot society. We choose to limit ourselves to two modes of
robot imitation, movement and sound. Thus, we propose a definition of a robot meme
as follows:

a contiguous sequence or package of movements, or sounds, copied from one
robot to another, by imitation.

It is important to note here that we make no special distinction between move-
ment memes or sound memes. Although sound is often a medium of communica-
tion (and hence language) in animals and humans we are careful to not assume that
sound memes will form the basis for communication or proto-language in our robot
society. Indeed we are decidedly neutral on the question of whether any emerging
proto-cultural behaviours or traditions may or may not tend toward proto-language.

Fig. 5.46 illustrates robot-robot imitation of movement by graphically showing
tracking data for both the original sequence of movements (describing a square) and
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Fig. 5.46 Robot-robot movement imitation (captured by tracking two real robots). Robot A
(upper, tracked in blue) has executed a sequence of movements to describe a square. Robot
B (lower, tracked in red) has watched A then executed its imitated copy of A’s movement
sequence.

the imitated sequence. It is easy to see that qualitatively, the imitated movement
sequence does indeed describe a square, but with some variation. Notably the im-
itated movement sequence shows both magnification and some rotation relative to
the original; importantly these variations are emergent artefacts of the process of
imitation and were not coded into the robot’s imitation controller. Clearly we can
measure the quantitative difference between the original sequence and its copy: the
quality of imitation Qi, where Qi = 1 would represent perfect imitation.

Consider now not one imitation “event”, as shown in Fig. 5.46, but a large number
of such events taking place within our robot collective. Several different movement
sequences (robot memes) might be active (i.e. being copied) at the same time. In
order to begin to address the challenges and research questions discussed above we
clearly need to be able to track the progress and evolution of these robot memes
through the robot collective, over time. Fig. 5.47 suggests an approach for visually
representing the evolution of robot memes within the robot collective. Each hori-
zontal line represents an active meme, i.e. a meme that is being enacted and perhaps
being copied; those enactions that are not imitated (possibly because no robot was
watching at the time) are not shown. Imitation events (i.e. one robot successfully
imitating another), such as the one shown in Fig. 5.46, are shown as blue diamonds.
After a single imitation event we have a copy of the meme plus the original meme;
the copy is clearly not identical to the original but, providing the quality of imitation
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Fig. 5.47 A visualisation of a short time period during meme evolution within the robot
collective. At the start of the period memes m1...m5 are present in the collective; horizontal
lines represent the “life course” of the meme from left to right. Memes represent here either
movement or sound sequences. (Note: this visualisation is not based on real data collected
from experiments.)

is sufficiently high, the copy will be both quantitatively and qualitatively similar
to the original. Thus we see in Fig. 5.47 memes m1 and m3 give rise to groups of
related memes (m11,m12,m13) and (m3,m31,m32,m33), respectively where, for in-
stance m11 is a copy of m1 (characterised by a given value of Qi), and m13 is a copy
of m11, i.e. a second generation copy.

Also shown in Fig. 5.47 are meme death events, as red diamonds. Meme death
could, for instance, occur when the robot or robots which have an internal represen-
tation of that meme die. This is not so far fetched when we consider that in order
for genetic evolution of robot controllers to take place (in parallel with memetic
evolution), then robots will need to (genetically) evolve through successive gener-
ations. Thus it is necessary that the real physical robots in the artificial culture lab
will have a time limited “life”, after which the same physical robot is rebooted with
an evolved controller (it becomes, in effect, a descendent). To retain biological plau-
sibility a robot’s imemes17 will die with that robot. A second and equally plausible
reason for meme death is that memes arguably should either have direct utility, or
be directly associated with robot behaviours with utility; if a learned meme has no
utility or value then the robot will not enact the meme, it therefore cannot be copied
and will die when the robot comes to the end of its “life” (although we need to be
cautious here as in observing robot culture we may have difficulty discerning util-
ity). A third reason for meme death is that a robot may have sufficient memory only
for a fixed number of imemes, so that older or low value memes are “forgotten”

17 Here we use the word imeme as shorthand for “internal representation of a meme”.
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when new memes are learned. In Fig. 5.47 meme m1 dies, but not until after it has
been copied three times; in contrast meme m2 dies before it is copied (perhaps for
entirely contingent reasons). A third event is shown in Fig. 5.47, meme merge, as a
green diamond. This represents the possibility that a robot may merge two memes
into a third, perhaps because two robots are in its field of view, or within earshot,
and are mistaken as a single robot.

This consideration of robot meme flow and meme evolution through a robot col-
lective raises many interesting research questions. For instance, when is a copy suf-
ficiently different to the original sequence (perhaps after several successive genera-
tions of imitation) that it can no longer be regarded as part of the same meme group,
but a new meme in its own right? What are the upper and lower bounds of imitation
fidelity (Qi) outside which meme evolution breaks down either because there is no
variation, or too much variation?

Finally we should note that the visualisation of meme evolution in Fig. 5.47 can
readily also represent meme evolution within a system of gene-meme co-evolution
simply by annotating imitation (and merge) events with the controller generation of
the imitating robot for that event.

5.5.5 Concluding Remarks

At the time of writing it would be premature to draw any general conclusions with
respect to either the overall aims of this project, or the subsidiary research questions
generated by the project. However, we can be confident that within the context of
multi-robot systems, especially those which utilise mechanisms of symbiosis and
evolution, there is very considerable value in the development of techniques for
robot-robot social learning. Whether those techniques will lead to the emergence
of artificial culture in collective robot systems remains, for the time being, an open
question18.

Finally, let us briefly consider the work presented in this chapter in the context of
multi-robot artificial organisms, the subject of this volume. The agents which col-
lectively comprise the “robot society” are, in this chapter, single robots (e-pucks),
and social learning (imitation) takes place between these single robots. However, we
could choose a different level of abstraction for a society of robots so that the agents
are instead multi-robot organisms, rather than single robots. In this case social learn-
ing (imitation) would need to take place between multi-robot organisms and all of
the definitions (i.e. of robot memes) and arguments presented in this chapter ap-
ply equally. This raises the intriguing possibility of artificial culture emerging in a
society of multi-robot organisms.

18 The Artificial Culture project is funded by the UK Engineering and Physical Sciences Re-
search Council (EPSRC), grant reference EP/E062083/1. The authors gratefully acknowl-
edge project co-investigators Alistair Sutcliffe, James Bown, Jenny Tennant Jackson and
Robin Durie. Also gratefully acknowledged is the contribution of Wenguo Liu, BRL, for
the design of the e-puck Linux extension board shown in Fig. 5.45(b).



Final Conclusions

Artificial multicellularity is a huge research field and this book only slightly touches
several first conceptual issues. It must be developed and implemented further within
a large interdisciplinary framework. Pursuing it must be seen as an essential con-
ceptual and technological breakthrough for achieving extended reliability, advanced
adaptivity and artificial evolution. It is a main enabler of sustainable development
for the next generation of collective robotics and adaptive autonomous systems.

As presented in this book, artificial organisms reflect many similarities with bi-
ological organisms. This, in turn, opens a way for many great ideas, like artificial
sexuality or inspiration from “natural chemistry”, which may seen speculative on
this moment, but are very promising in term of their biological analogies. Since re-
search projects should be focused in concrete targeted goals, many of these ideas
will be not followed further until their implementation into real systems. Therefore,
one of the goals of this book is to provide to the readers possible earliest look at
envisaged concepts and approaches, before Occams Razor will cut currently-not-
feasible-ideas.

This book was not intended to give final answers, it is more intended to look for
questions: what are plausible mechanisms of genetic deceases, does have the self-
concept a leading role in a long-term unbound evolution, are information principles
more relevant than energetic principles, unbounded artificial evolution vs. human-
designed self-organization. The list of these question is long, we achieved at least
one of our goals, when the reader starts to think about the same questions.
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Barreto, G.D.A., Araújo, A.F.R., Ritter, H.: Self-Organizing Feature Maps for Modeling and

Control of Robotic Manipulators. Journal of Intelligent and Robotic Systems 36(4),
407–450 (2003)

Basanta, D., Miodownik, M., Baum, B.: The Evolution of Robust Development and Home-
ostasis in Artificial Organisms. PLoS Computational Biology 4(3) (2008)

Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). Com-
puter Vision and Image Understanding 110(3), 346–359 (2008)

Beer, R.D.: Intelligence as Adaptive Behaviour: An Experiment in Computational Neu-
roethology. Academic Press, London (1990)

Bender, J.: Impulse-based dynamic simulation in linear time. Computer Animation and Vir-
tual Worlds 18(4-5), 225–233 (2007)

Beni, G.: From Swarm Intelligence to Swarm Robotics. In: Şahin, E., Spears, W.M. (eds.)
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