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José M. Jerez (Eds.)
Constructive Neural Networks, 2009
ISBN 978-3-642-04511-0

Vol. 259. Kasthurirangan Gopalakrishnan, Halil Ceylan, and
Nii O.Attoh-Okine (Eds.)
Intelligent and Soft Computing in Infrastructure Systems
Engineering, 2009
ISBN 978-3-642-04585-1

Vol. 260. Edward Szczerbicki and Ngoc Thanh Nguyen (Eds.)
Smart Information and Knowledge Management, 2009
ISBN 978-3-642-04583-7

Vol. 261. Nadia Nedjah, Leandro dos Santos Coelho, and
Luiza de Macedo de Mourelle (Eds.)
Multi-Objective Swarm Intelligent Systems, 2009
ISBN 978-3-642-05164-7

Vol. 262. Jacek Koronacki, Zbigniew W. Ras,
Slawomir T.Wierzchon, and Janusz Kacprzyk (Eds.)
Advances in Machine Learning I, 2009
ISBN 978-3-642-05176-0

Vol. 263. Jacek Koronacki, Zbigniew W. Ras,
Slawomir T.Wierzchon, and Janusz Kacprzyk (Eds.)
Advances in Machine Learning II, 2009
ISBN 978-3-642-05178-4

Vol. 264. Olivier Sigaud and Jan Peters (Eds.)
From Motor Learning to Interaction Learning in Robots, 2009
ISBN 978-3-642-05180-7

Vol. 265. Zbigniew W. Ras and Li-Shiang Tsay (Eds.)
Advances in Intelligent Information Systems, 2009
ISBN 978-3-642-05182-1

Vol. 266.Akitoshi Hanazawa, Tsutom Miki,
and Keiichi Horio (Eds.)
Brain-Inspired Information Technology, 2009
ISBN 978-3-642-04024-5

Vol. 267. Ivan Zelinka, Sergej Celikovský, Hendrik Richter,
and Guanrong Chen (Eds.)
Evolutionary Algorithms and Chaotic Systems, 2009
ISBN 978-3-642-10706-1

Vol. 268. Johann M.Ph. Schumann and Yan Liu (Eds.)
Applications of Neural Networks in High
Assurance Systems, 2009
ISBN 978-3-642-10689-7

Vol. 269. Francisco Fernández de de Vega and
Erick Cantú-Paz (Eds.)
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Preface 
 
 
 
 
 
 
 
 
Sound waves propagate through various media, and allow communication or 
entertainment for us, humans. Music we hear or create can be perceived in such 
aspects as rhythm, melody, harmony, timbre, or mood. All these elements of 
music can be of interest for users of music information retrieval systems. Since 
vast music repositories are available for everyone in everyday use (both in private 
collections, and in the Internet), it is desirable and becomes necessary to browse 
music collections by contents.  Therefore, music information retrieval can be 
potentially of interest for every user of computers and the Internet. There is a lot 
of research performed in music information retrieval domain, and the outcomes, as 
well as trends in this research, are certainly worth popularizing. This idea 
motivated us to prepare the book on Advances in Music Information Retrieval. 

Music is present in our lives in various ways. We enjoy listening to the music, 
sometimes singing, maybe playing, or even creating our own music. In general, 
musical activities can be divided into four categories: Performing, Composing, 
Improvising, Listening and Music Perception. From the technical point of view, 
Performing music means taking a high level representation, and transforming it 
into an acoustic waveform, in front of listeners. The interpretation of a musical 
score can differ from performer to performer and it depends on the artist’s 
understanding of the structure and meaning of a piece of music. Emotional 
expression allows a performance to portray certain moods or emotions. The 
classical view of musical composition is that of a composer creating a piece of 
music which is represented using some representation format designed for this 
purpose. For example, a widespread representation format is common music 
notation (sheet music). This format uses specially devised symbols to represent 
information on the music such as the pitch and the duration of notes. This 
representation reflects composer’s wishes, to be followed by performers. 
Improvisation is an impenetrable skill based very much on instantaneous intuition, 
inspiration and insight. Listening and Music Perception is highly intertwined with 
both emotions and context. Not surprisingly, many of the users' information 
seeking actions aim at retrieving music songs based on these perceptual 
dimensions - moods and themes, expressing how people feel about a piece of 
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music or which situations they associate it with.  In order to successfully support 
music retrieval along these dimensions, powerful methods are needed.  

The websites providing music services usually support text-based searching 
and/or category based browsing only. For content-based search or feature-based 
filtering systems, one important problem is to describe music by its parameters or 
features, so that search engines or information filtering agents can use them to 
measure the similarity of the target and the candidates. MPEG-7 is an international 
standard, which describes the multimedia content data to allow universal indexing, 
retrieval, filtering, control, and other activities supported by rich metadata. 
However, the metadata about the multimedia content itself are still insufficient, 
because many features of multimedia content are quite perceptual and user-
dependent. For example, emotional features are very important for multimedia 
retrieval, but they are hard to be described by a universal model since different 
users may have different emotional responses to the same multimedia content.  In 
the last few years a wealth of research effort has been invested to analyze 
multimedia content, including music. Many techniques for music information 
retrieval related to harmony, chord progression, timbre, rhythm, and tempo have 
been proposed. 

This book covers some of the above and closely related topics. It is divided into 
four sections: MIR Methods and Platforms, Harmony, Music Similarity, and 
Content Based Identification and Retrieval. Glossary of basic terms is given at the 
end of the book, to familiarize readers with vocabulary referring to music 
information retrieval. 

 
The first section of this book contains five contributions in the area of Music 
Information Retrieval: Indexing, Representations, and Platforms. 

The first chapter is written by Rainer Typke and Agatha Walczak-Typke. It 
gives an overview of some existing approaches to building an indexing structure 
that makes efficient retrieval possible even if the underlying dissimilarity measure 
is not a metric. Authors show that by tailoring an indexing structure to the non-
metric distance measure at hand, it can be possible to guarantee that no false 
negatives are introduced by indexing. They also give an overview of some more 
generally applicable statistical methods, as well as embeddings into metric spaces. 

The second chapter titled “Clustering Driven Cascade Classifiers for Multi-
Indexing of Polyphonic Music by Instruments” concerns the problem of automatic 
indexing of polyphonic music by instruments and their categories. A large 
database of music instrument sounds was built by authors and used for training a 
number of classifiers. It is shown that automatic indexing systems for polyphonic 
music driven by a cascade classifier outperforms standard flat classifiers. 
Clustering analysis is used to build a new hierarchical schema for classifying 
music instruments. Authors show that a cascade classifier based on this new 
hierarchical schema outperforms related classifiers based on Hornbostel-Sachs 
tree. Presented methods for automatic indexing of polyphonic music do not use 
sound separation algorithms. 

In the third chapter titled “Representations of Music in Ranking Rhythmic 
Hypotheses", Jarosław Wójcik and Bożena Kostek examine the problem of 
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finding the rhythmic structure of music in a symbolic format. Authors present a 
new method for retrieving a hypermetric structure of rhythm of a musical piece 
consisting of rhythmic motives, phrases, and sentences. On the basis of the 
retrieved hypermetric structure, they propose a system capable of creating 
automatic drum accompaniment to a given melody supporting the composition. 

The fourth chapter is written by Tetsuro Kitahara. Author describes various 
mid-level representations of music. In the early 2000s, it was common to use low-
level features such as spectral and cepstral features extracted directly from 
polyphonic audio signals. Various researchers have pointed out the importance of 
higher-level, musically meaningful representations and have been engaged in 
discovering such new music representations. The presented review is a brief 
survey of the latest results of these attempts. 

The last chapter of the first section is written by J. Stephen Downie, Andreas F. 
Ehmann, Mert Bay, and M. Cameron Jones. Since the Music Information 
Retrieval Evaluation eXchange (MIREX) began in 2005, it has fostered great 
advancements not only in many specific areas of MIR, but also in our general 
understanding of how MIR systems and algorithms are to be evaluated. Authors 
outline some of the major highlights of the past four years of MIREX evaluations, 
including its organizing principles, the selection of evaluation metrics, and the 
evolution of evaluation tasks. 

 
The second part of the book contains three contributions in the area of Harmony. 

Current chord analysis techniques often disregard specific note information in 
favor of a chord color or, in other words, pitch class profile technique. Pitch class 
profiles cannot disambiguate between inversions or voicing of a single chord, nor 
can they identify where in the musical range a chord may have been played. By 
enumerating possible and common chord voicings, it is possible to improve 
standard pitch class profile techniques by identifying the chord voicing. In the first 
chapter written by David Gerhard and Xinglin Zhang, authors demonstrate these 
techniques in a chord detection system they developed. The system makes use of 
voicing constraints to increase accuracy of chord and chord sequence 
identification.  

In the second chapter written by Daniele Radicioni and Roberto Esposito, 
authors present BREVE, a system for performing chord recognition. The system 
relies on a conditional model, where domain knowledge is encoded in the form of 
Boolean features. They cast the tonal harmony analysis problem to a sequential 
one, and adopt a Supervised Sequential Learning (SSL) approach. The 
implemented system is validated on a corpus of J.S. Bach’s chorales.  

In the third chapter titled “Analysis of Chord Progression Data” authors study 
the problem of comparing a chord progression against others using chord N-
grams. Various approaches for simplifying chord names are compared.  Prominent 
Jazz composers are compared against each other using the distribution of N-grams 
obtained from their compositions. The authors also explore the use of chord N-
grams as the query to retrieve chord progressions by the same composer. 
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The third part of the book contains five contributions in the area of Content-based 
Identification and Retrieval of Musical Information. 

The first chapter is written by Riccardo Miotto, Nicola Montecchio and Nicola 
Orio. Authors describe a methodology for the statistical modeling of music works. 
Starting from either the representation of the symbolic score or the audio 
recording of a performance, a hidden Markov model is built to represent the 
corresponding music work. The model can be used to identify unknown 
recordings and to align them with the corresponding score.  

The second chapter titled “Harmonic and Percussive Sound Separation and its 
Application to MIR-related Tasks” presents a simple and fast method to separate a 
monaural audio signal into harmonic and percussive components. The 
convergence is guaranteed in the method and it can be implemented in real time. 
The usefulness is shown in application to automatic chord recognition and rhythm 
pattern extraction. 

In the third chapter written by Piotr Wrzeciono and Krzysztof Marasek, authors 
describe properties of violin modes, related search methods, and a violinist’s 
reaction for their presence in the energy spectrum. This description also contains a 
mathematical model of violin sound, and chromatic scales played on this 
instrument. Presented classifier is used to evaluate the jurors’ appraisals in the 
tone quality category. It takes into account both subjective and objective 
parameters. The objective parameters are the instrument’s modes – frequency and 
the mutual energy factor. The subjective qualities are the consonances or 
dissonances between mode frequencies. 

In the fourth chapter titled “Emotion Based MIDI Files Retrieval System”, 
authors present a cooperative query answering system driven by classifiers for 
automatic indexing of music by emotions. It includes visualization module which 
is used to boost emotions envoked by music. The training database is multi-
labeled and describes music files on different granularity levels using collection of 
harmonic and rhythmic attributes, and a hierarchical structure of emotions based 
on Thayer's model. Personalization aspect of the query answering system related 
to subjectivity in emotion perception is also considered. 

In the fifth chapter titled “On Search for Emotion in Hindusthani Vocal 
Music”, authors present the experiments used to extract meaningful emotional 
sequences of sounds from ragas, and to test what emotions were evoked by these 
sequences. The listening tests were performed on two groups of listeners: 
Hindustani listeners, and Western listeners not familiar with Hindustani music. 
For both groups, authors investigated what emotions were evoked, for the audio 
segments used in listening test, and for sequences of notes of minimal length, 
specific for each raga. 

 
The fourth part of the book contains four contributions in the area of Music 
Similarity. 

Its first chapter is written by Joan Serra, Emilia Gomez, and Perfecto Herrera. 
It comprehensively summarizes the work done in cover song identification while 
encompassing the background related to this area of research. The most promising 
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strategies are reviewed and qualitatively compared under a common framework, 
and their evaluation methodologies are critically assessed. 

The second chapter is written by Rudolf Mayer and Andreas Rauber. Authors 
show the influence of so called text statistic features on song similarity. Musical 
similarity can be defined on textual analysis of certain parts-of-speech (POS) 
characteristics. Analogously to the common beats-per-minute (BPM) descriptor in 
audio analysis, they introduce the words-per-minute (WPM) measure to identify 
similar songs. The rationale behind WPM is that it can capture the ‘density’ of a 
song and its rhythmic sound in terms of similarity in audio and lyrics 
characteristics. 

The third chapter is written by Marcus T. Pearce, Daniel Mullensiefen, and 
Geraint A. Wiggins. Authors examine the problem of melodic segmentation in 
music information retrieval. They review a number of existing algorithms before 
introducing a new method called IDyOM (Information Dynamics of Music) based 
on unsupervised statistical learning. The proposed model exploits a putative 
relationship between predictive modeling and grouping boundaries and, in 
contrast to rule-based models, is sensitive to stylistic differences between music 
corpora. The performance of the models is compared in segmenting a large 
collection of German folk songs and the four best-performing models (including 
IDyOM) are combined into a hybrid model that outperforms each of its 
component models. 

The last chapter is written by Shyamala Doraisamy and Shahram Golzari. 
Authors investigate the Artificial Immune Recognition System (AIRS) as a 
classifier for musical genres from differing cultures. Musical data of two cultures 
were used – Traditional Malay Music (TMM) and Latin Music (LM). The 
performance of AIRS for the classification of these genres is compared with 
performances using several commonly used classifiers. 

 
We wish to express our thanks to all the authors who contributed the above 
seventeen chapters to this book.  

 

 

October 2009  Z.W. Raś 
A.A. Wieczorkowska 
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Music Information Retrieval: Indexing,

Representations, and Platforms



Indexing Techniques for Non-metric Music
Dissimilarity Measures

Rainer Typke and Agatha Walczak-Typke

Abstract. Many dissimilarity measures suitable for music retrieval do not satisfy
all properties of a metric. This rules out the use of many established indexing struc-
tures, most of which rely on metricity. In this chapter, we give an overview of some
existing approaches to building an indexing structure that makes efficient retrieval
possible even if the underlying dissimilarity measure is not a metric.

For symmetric prametrics with metric subspaces, a tunneling technique allows
one to search a non-metric space efficiently without false negatives. We give a de-
tailed example for this case. In a query-by-example scenario, if queries are already
part of a collection, and the triangle inequality is violated, one can enforce it in sub-
sets of the collection by adding a small constant to the distance measure (Linear
Constant Embedding). By embedding a non-metric distance function into a metric
space in a way that preserves the ordering induced by the function on any query, one
can make indexing methods applicable that usually only work for metrics (TriGen).
Also, we present several probabilistic methods, including distance based hashing
(DBH), clustering (DynDex), and a tree structure with pointers to near neighbours
(SASH).

1 Non-metric Distance Measures of Musical Interest

1.1 Metrics and Partial Matching

A distance function d : X −→ R is a metric if it satisfies the following conditions
for every x,y,z ∈ X :

Rainer Typke
Austrian Research Institute for Artificial Intelligence (OFAI)
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1. d(x,y) ≥ 0 (non-negativity)
2. d(x,y) = 0 if and only if x = y (identity of indiscernibles)
3. d(x,y) = d(y,x) (symmetry)
4. d(x,z) ≤ d(x,y)+ d(y,z) (triangle inequality)

Some distance measures (such as the basic Levenshtein distance [10]) applicable
for music retrieval are metrics. However, these metric distances are usually used for
matching complete queries to complete database items.

If one alters the distance to allow for partial matching, the distance may fail one
or more of the conditions of a metric. By partial matching we mean that a distance
measure determines two objects to be close to each other if one object is similar to
either parts of the other or the complete other object.

More generally, some distance measures which capture human notions of simi-
larity well will fail one or more conditions of a metric. The authors of [14] point out
psychological studies and experimental evidence that self-similarity is not constant
(some things are more ”similar to themselves” than others), and that in addition,
human similarity assessment can be asymmetrical. Experimental evidence specific
to human perceptions of musical similarity [12] seem to support this view.

1.2 Commonly Applied Distance Measure Examples

1.2.1 Edit Distances

Edit distances are a class of distances that measure the distance between two strings
of characters by the number of operations required to transform one of them into
the other. The various distance measures in this class vary by the type of editing
operations allowed, and the cost-weights of the various operations.

The Hamming distance between two strings of equal length is the number of
positions in which characters differ. In other terms, the Hamming distance allows
the operation of substitution, with each use of this operation having cost 1. In a
space composed of strings of a fixed length n, the Hamming distance is a metric.
The Hamming distance can be viewed as the simplest edit distance.

The Levenshtein distance [10] (often called editing distance) allows the opera-
tions of insertion, deletion, and substitution of a single character. If each operation
has the same cost-weight, the Levenshtein distance is a metric. Generalized Leven-
shtein distances allow different cost-weights for different replacement, insertion, or
deletion operations. The metricity of a generalized Levenshtein distance depends on
the choice of cost-weights.

A different generalization of Levenshtein distance is the Damerau-Levenshtein
distance. This distance allows all the operations allowed in Levenshtein distance,
with the addition of the ability to transpose two characters.

For music retrieval, editing distances are suitable for comparing melodic con-
tours, rhythms, or chords. In the past they have also been used for informa-
tion theory, coding theory and cryptography (Hamming distance), spell checkers



Indexing Techniques for Non-metric Music Dissimilarity Measures 5

(Levenshtein distance), natural language processing, DNA and protein comparisons
(Damerau-Levenshtein distance).

1.2.2 Earth Mover’s Distances

We describe the class of Earth Mover’s distances (EMD) in more detail here be-
cause we will show an exact indexing solution for a variant of the EMD in Section
2.2.1. Also, it illustrates a common reason for non-metricity: partial matching, and
matching only similar subparts of two compared objects.

The EMD measures the distance between weighted point sets. Intuitively speak-
ing, a weighted point set ai can be imagined as an array of piles of dirt each equal to
wi units, situated at position xi. The role of the supplier is arbitrarily assigned to one
array and that of the receiver to the other one, and the arrays of piles are made to
look as similar as possible by shifting dirt from piles in the supplier array to piles in
the receiver array. The EMD then measures the minimum amount of work needed
to make two arrays of piles as similar as possible in this way. See [4] for a more
detailed description of the EMD. We now define the EMD formally:

Fix a ground distance d on R
k. The ground distance can, but need not be, a metric.

Let A = {a1,a2, . . . ,am}, B = {b1,b2, . . . ,bn} be weighted point sets such that
ai = {(xi,wi)}, i = 1, . . . ,m, b j = {(y j,v j)}, j = 1, . . . ,n, where xi,y j ∈ R

k with
wi,v j ∈ R

+∪{0} being the respective weights.
Let WA = ∑m

i=1 wi be the total weight of set A; the total weight WB of the set B is
defined analogously.

Let di j = d(xi,y j) denote the ground distance between individual coordinates in
A and B, without regard to their weight.

A flow matrix F = ( fi j) between A and B is an m× n matrix of non-negative
real numbers, such that for each 1 � i � m, ∑n

j=1 fi j � wi, and for each 1 � j � n,
∑m

i=1 fi j � v j. Furthermore, we require that ∑i∑ j fi j = min(WA,WB). Denote by F
the collection of all possible flow matrices between A and B.

The Earth Mover’s Distance, EMDd(A,B), between A and B is defined as

EMDd(A,B) =
minF∈F ∑m

i=1∑
n
j=1 fi jdi j

min(WA,WB)
.

For the remainder of this chapter, we will assume that the ground distance for the
EMD is the Euclidean metric l2. With this assumption in mind, we drop the subscript
referring to the ground distance from our formulas, writing EMD(A,B) instead of
EMDl2(A,B).

The EMD is a useful measure for music similarity, as was demonstrated
at the annual MIREX comparison of music retrieval algorithms in 2006
( http://www.music-ir.org/mirex/2006/index.php/Symbolic_
Melodic_Similarity_Results). Useful properties of the EMD include
its continuity, its ability to support partial matching, and its robustness against
distortions of tempo and pitch when measuring melodic similarity for symbolically
encoded music. For doing so, one can represent every note by a point in the

http://www.music-ir.org/mirex/2006/index.php/Symbolic_
Melodic_Similarity_Results
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two-dimensional space of onset time and pitch. The weights of points can be used
to encode the importance of notes. See [18] for details.

The EMD is in general not a metric. Specifically, the triangle inequality does
not hold, and while the EMD of a point to itself is 0, there can exist distinct points
that are also EMD 0 from one another. While there is no universally accepted ter-
minology in the mathematical literature for weak distance measures, there is some
precedent for calling weak distance measures with properties like the EMD symmet-
ric prametrics [13].

It should be emphasized that the EMD does behave as a metric if one restricts the
domain of the EMD to point sets having a given weight, assuming that the ground
distance is a metric [4]. One can take advantage of this property when working with
an EMD which is a prametric by decomposing the space of possible point sets into
subspaces each containing only point sets having a given weight. We will refer to
such subspaces as metric subspaces of the EMD space.

1.3 Other Commonly Used Measures

There are other dissimilarity measures which are suitable for music information re-
trieval applications, many of which are not metric. Examples include statistical mod-
eling of melodic and rhythmic content with Hidden Markov Models (HMM), where
the distance measure is the probability of an HMM (which represents a melody in
the database) generating the query [16]; the presence of identical or slightly modi-
fied n-grams [5] (metricity here depends on how one treats deviations in n-grams);
and many others. The focus of this chapter, however, is not to give an overview of
dissimilarity measures used in Music Information Retrieval, but an overview of how
one can use non-metric measures efficiently.

2 Strategies for Non-metrics

In Table 1, we will give an overview of the indexing methods for non-metrics that
will be described in this section.

In our presentation below, we divide these methods into four broad categories:
metric embedding, metrizable partition, other partition, and other. Metric embed-
ding approaches embed the non-metric space into a metric space with as little dis-
tortion of distance as possible. Then, some known indexing method which relies
on metricity is applied. We follow Skopal [17] and call such an indexing method
a metric access method (MAM). Metrizable partition methods partition the search
space into pieces which are themselves either metric spaces, or can be easily altered
to allow the use of a MAM. Other partition methods partition the search space into
pieces but do not make any assumptions about metric-like behavior of the distance
on the pieces. Finally, other methods are ones that do not fall into any of the above
three categories.

Within each category, there is a tradeoff between generality on one side and ac-
curacy and efficiency on the other. If one exploits specific properties of a particular
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distance measure, as we do for the combined tunneling and vantage indexing method
described in Section 2.2.1, one is more likely to be able to achieve a recall of 100 %
and few false positives than if one only assumes symmetry and the availability of a
pairwise distance matrix.

Note that some methods become feasible only if one restricts queries to objects
that are already in the database – Chen’s “Local Constant Embedding” (see Section
2.2.2) is an example.

2.1 Metric Embedding Methods

2.1.1 BoostMap: Embedding into a Metric Space

Athitsos et al. [1] propose to combine “line projection functions” for embedding
data items into a multidimensional space. At first, only a distance matrix is given.
The line projection functions have the form:

Fx1,x2(x) =
d(x,x1)2 + d(x1,x2)2 −d(x,x2)2

2d(x1,x2)

If two items x1,x2 from the database are given, such a function can be used to project
any other item onto a line, and thus embed it in a one-dimensional space, such that
proximity to x1 and x2 is preserved if the triangle inequality holds. If it does not
hold, in practice, such embedding functions may still preserve proximity most of
the time.

One can view each line projection function as a weak classifier that reports, with
a relatively high error rate, for any triplet (q,x1.x2), whether q is closer to x1 or to
x2. By combining a suitable group of different line projection functions (functions
that differ in their x1 and/or x2), one can obtain a multidimensional embedding that
behaves as a strong classifier. A suitable group can be identified with the AdaBoost
framework [15].

The AdaBoost-inspired training algorithm delivers an embedding and a weighted
Manhattan distance. The latter is usually not a metric because some of the weights
can be negative, but it can probably be evaluated more efficiently than the original
function.

For an excellent survey and analysis of more embedding methods (SparseMap,
FastMap, MetricMap), see [8].

2.1.2 TriGen: Embedding a Semi-metric into a Metric Space

Introduction and Assumptions

TriGen, introduced by Skopal [17], is a method for embedding a semi-metric space
into a metric space in which an appropriate metric-access method for similarity
search can then be used. Generally, in similarity search, dataset objects are ordered
according to a single query object, and then the most similar, based on distance, are
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chosen. TriGen finds an function that embeds the original similarity measure into a
metric, but does not alter similarity orderings.

In this method, the initial similarity measure is treated as a black box, and none
of its particular topological or geometric properties are utilized. Only one main as-
sumption is made on a similarity measure: it is assumed to have bounded value.
For the purposes of the method, the measure is assumed to be a semi-metric, that
is, a distance measure that fails the triangle inequality, but otherwise has the same
properties of non-negativity, symmetry, and identity of indiscernibles as a metric.

In case a given similarity measure fails some more of the properties of a metric,
the measure is slightly and easily modified. Non-negativity can be guaranteed by a
shift of values. Identity of indiscernibles can be guaranteed by requiring every two
non-identical objects be at least ε distant, for ε some positive lower bound. Symme-
try is enforced by taking the distance between two points to be the minimum of their
asymmetric distances. None of these modifications change similarity orderings.

Enforcing the triangle inequality

Enforcement of the triangle inequality is then the only property left, and one that
requires much more effort.

We reintroduce some of Skopal’s notation: A triangular triplet is a triplet of non-
negative real numbers (a,b,c), a,b,c � 0, such that a+b � c b+c � a, and a+c � b.
A distance measure d generates a triangular triplet if there are objects oi,o j,ok ∈ S

in the search space S such that (d(oi,o j),d(o j,ok),d(oi,ok)) is a triangular triplet.
Of course, a metric only generates triangular triplets, and if a measure only generates
triangular triplets, then it satisfies the triangular inequality.

Given a similarity measure d, we call d f (oi,o j) = f (d(oi,o j)) a similarity-
preserving modification of d (or SP-modification) if f is a strictly increasing bounded
function for which f (0) = 0. Here, the function f is referred to as an SP-modifier.

We define a similarity ordering SOd(q) for d with respect to a query q as (oi,o j)∈
SOd(q) ↔ d(q,oi) < d(q,o j), for oi,o j ∈ S objects in the search space. Then, SOd is
the space of similarity ordering for a given similarity measure d.

The goal is to find an SP-modifier, called metric-preserving, that maps triangular
triplets to triangular triplets and so preserves the triangle inequality. Skopal shows
that an SP-modfier that preserves the triangular inequality must be subadditive, that
is, f (x)+ f (y) � f (x + y), for all x,y. He also shows that any concave SP-modifier
is metric-preserving.

Indeed, the strictly concave SP-modifiers are good candidates for embedding
functions, as shown by Theorem 1 of [17]:

Theorem 1. Given a semi-metric d, there always exists a strictly concave SP-
modifier f such that the SP-modification d f is a metric.

The proof of this theorem demonstrates that the more concave a function is, the
more triplets become triangular.

Having too concave a function can be problematic. Too concave a function in-
creases the intrinsic dimensionality of the search space with respect to the modified
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distance. This in turn lowers efficiency of search. Thus, the problem becomes one
of finding a function that is concave enough to produce the correct number of trian-
gular triplets, but convex enough to give good efficiency. The TriGen algorithm is
an optimization algorithm that finds such a convex function.

2.2 Metrizable Partition Methods

2.2.1 Tunneling and Vantage Indexing

Manhattan EMD

The instance of the EMD described in this subsection is of particular interest for
searching rhythmic patterns. We call this EMD the Manhattan EMD.

Rhythmic patterns can naturally be represented as sequences of onset times. Each
onset is represented with a one-dimensional point of weight 1. The EMD between
point sets which represent onset sequences can be used to identify rhythmic patterns
which contain a subset or superset of the query, that is, many onsets with similar
relative positions. Both queries and results would be onset sequences, and the infor-
mation need would be onset sequences which contain the query, are contained by
the query, or contain sequences of onsets whose relative positions deviate as little as
possible from those of the query.

To render irrelevant a musical segment’s tempo and location within a piece of
music, we scale every segment’s numeric representations to a fixed segment duration
(say, 60) and translate them so that they start at position 0.

When comparing normalized sequences of onsets containing the same number
of onsets, the Manhattan EMD equals the sum of the absolute differences between
corresponding onsets ai and bi in onset sequences A = a1 . . .an and B = b1 . . .bn,
divided by the number of onsets:

EMD(A,B) = ∑n
i=1 |ai−bi|

n . Thus, if we restrict ourselves to point sets of a certain
given length, the Manhattan EMD (with l2 as ground distance) is a metric and is
equal to the l1 norm (also known as “Manhattan norm”). For unequal numbers of
onsets, however, the Manhattan EMD violates the triangle inequality, and a distance
of zero between two sequences of onsets does not imply that they are identical. In
this case, the EMD calculation cannot be simplified like this, but has to be done like
in the general case.

Since every normalized segment starts with 0 and ends with 60, we omit these
two numbers and view n-onset segments as points in an (n−2)-dimensional space.
All segments lie in the subset of R

n−2 where the coordinates are strictly increasing.

Vantage indexing for metric subspaces

Vantage indexing (as described, for instance, by Vleugels and Veltkamp [20]) is an
approach to the retrieval of objects from a large database which are similar to a
given query. The search is restricted to items whose pre-calculated distances to a
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small set of prechosen vantage objects are similar to the query’s distances to the
same vantage objects.

If one works with the l1 norm, a ball (the set of all points whose distance lies
within a certain radius around a point of interest) has the shape of a cross-polytope.
A one-dimensional cross-polytope is a line segment, a two-dimensional cross-
polytope is a square, for three dimentions, an octahedron, and so forth.

In [19], we show how, by optimally placing vantage objects, we can achieve
100 % recall and 100 % precision for retrieving the contents of balls in the shape of a
cross-polytope: for a j-dimensional space, we need at least 2 j−1 vantage objects be-
cause a cross-polytope has 2 j facets (a facet is a ( j−1)-dimensional structure). We
place those vantage objects in the corners of the space that is inhabited by database
objects. Since our database objects have a known maximum coordinate (they are
onset sequences with onsets between 0 and a known upper limit), it is known that
only a limited area of the space can hold objects.

Partial matching by tunneling between metric subspaces

When searching sequences of onsets that were detected in audio files, there are
two problems: the detection is not always completely reliable, producing both false
negatives and false positives, and often there will be multiple voices with onsets,
while a user might want to search for rhythmic patterns which occur only in one
voice. Therefore, for successfully searching sequences of onsets from audio data,
one should be able to ignore a certain number of onsets and still find matching
subsequences or supersequences. Also in [19], we show how one can use tunnels
between metric subspaces to achieve partial matching while still benefiting from the
optimum vantage indexing within the subspaces of sequences with equal numbers
of onsets.

The EMD provides partial matching as described above for point sets whose
weight sums are unequal. Unfortunately, the EMD does not obey the triangle in-
equality in such a case. This makes it impractical to directly apply vantage indexing
since there would be no way of controlling the number of false negatives. Also,
the locality sensitive hashing method, which also relies on the triangle inequality,
becomes unusable.

To find near neighbours according to the non-metric EMD, we pre-calculate “tun-
nels” between metric subspaces. Those tunnels link items to their nearest neigh-
bours in other subspaces. Finding all near neighbours of a given query then involves
searching the metric subspace where the query resides, as well as following, for ev-
ery near neighbour of the same dimensionality, the tunnel to its nearest neighbours
in other metric subspaces. This yields almost the same result as an exhaustive linear
search, but requires only logarithmic complexity.

To be more precise: it is still possible to avoid any false negatives (by sufficiently
enlarging the search radius), but false positives can occur.

The database shown in Figure 1 contains 6 point sets P1, . . . ,P6. Three, P1, . . . ,P3,
are two-dimensional, the others, one-dimensional. The query Q is one-dimensional.
The area of interest within the search radius r around Q is marked grey.
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P1

P2

P3

P4 P5 Q P6

r

Fig. 1 False negatives and false positives resulting from tunneling, and how to avoid them

False positives: It is conceivable that the projection of a higher-dimensional ob-
ject onto Q’s subspace lies just outside the search radius, but its nearest neighbour
in Q’s subspace happens to lie within the search radius. An example is P1, whose
projection onto the subspace (shown as a circle) has a nearest neighbour beyond the
border of the grey area.

False negatives: It is also possible that while the projection of a higher-
dimensional object onto Q’s subspace lies inside the search radius, the closest object
in Q’s subspace lies outside the search radius. In this case, illustrated with P3 and P6,
the higher-dimensional object will not be retrieved. In the extreme case that there
is no single object inside the search radius in Q’s subspace, no higher-dimensional
objects whatsoever will be retrieved.

Controlling false negatives and false positives. To avoid all false negatives and
limit the badness of false positives to a threshold e, one can add the projections as
additional “ghost points” to the database if their nearest neighbour in the subspace
is further away than e/2, and extend the search radius by e/2.

The distance of false positives to the query will be at most e higher than desired
because in the worst case, the nearest neighbour of the projection will lie on the line
connecting the projection with the query. The nearest neighbour can be up to r+e/2
away from the query, while the projection can be another e/2 away from the nearest
neighbour, leading to a total maximum distance of r + e for false positives.

Such additional ghost points would be added as part of the task of building the
index, and so would not slow down the search process. It would also not increase the
computational complexity of building the index – the only price is some extra space
for storing ghost points wherever some point from higher dimensions gets projected
into a sparsely populated area in a subspace. There is a tradeoff between the required
additional space and the maximum possible distance error for false positives.

2.2.2 Local Constant Embedding: Creating Subspaces Where the Triangle
Inequality Holds

Chen and Liang [3] suggest to partition the database and enforce the triangle in-
equality within each partition by creating a new distance measure. This new distance
measure is created from the original one by adding a constant c. This constant varies
between the partitions and is kept as small as possible. Note that despite the authors’
claim of the contrary, the new distance measure still generally is not a metric – even
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if it obeys the triangle inequality, it will violate the identity of indiscernibles if c > 0,
that is, d′(x,y) will always be greater than zero, even if x = y, because d′(x,y) ≥ c.

To build the index, all possible combinations of three items from the database
are inspected for violations of the triangle inequality. Unfortunately, there are quite
a few triplets: a database with n elements contains

(n
3

)
= n!

6(n−3)! of them. For each
triplet, the smallest possible constant can be determined quite easily – if the distance
measure obeys the triangle inequality for the triplet, it is zero, and otherwise it equals
the severity of the violation. For instance, if d(a,b) = 1,d(b,c) = 2, and d(a,c) = 7,
the new distance measure could be chosen as d′(x,y)= d(x,y)+4, because the direct
route from a to c is 4 larger than the indirect route via b.

Once the severities of triangle violations are known for all triplets, the items are
grouped into partitions such that as many items as possible belong to a group with
an added constant that is as small as possible.

The index then is searched by searching each partition and merging the results.
Each partition can be searched with a method that relies on the triangle inequality,
for instance by using vantage objects, without introducing any false negatives. How-
ever, the added constant will lead to false positives. In the worst case, the constant
can be big enough to prevent any pruning effect.

Such an index can only be searched efficiently for near neighbours of items that
are already in the database. After all, the knowledge that the triangle inequality is not
violated is only given for the existing partitions. Unknown queries might introduce
violations of the triangle inequality to any partition of the database. Chen and Liang
suggest a “dynamic” method for supporting unknown queries, but the necessity to
look at all possible triplets essentially remains. For a new query, one has to consider
all triplets involving the query, that is, all

(n
2

)
pairs from the database combined with

the query.

2.3 Other Partition Methods

2.3.1 DynDex: Clustering

Goh, Li, and Chang [7] propose a cluster-based method for indexing with non-
metric distance functions. The underlying assumption here is that near neighbours
of a query are probably in the cluster that is closest to the query, thus once a good
clustering has been determined, one can always limit the search to a small part of
the database by determining the closest cluster or clusters and searching only these
clusters or this cluster exhaustively.

As a preparation, all items in the database are clustered using an algorithm which
only needs a distance matrix and the desired number of clusters as input, such as
CLARANS [11]. For each cluster, a small set of representative items is calculated,
for example one single, very central item.

To find the nearest neighbours of a query, the representatives of every cluster are
compared to the query, and the closest cluster (the cluster belonging to the represen-
tative that is closest to the query) is then exhaustively searched for near neighbours
of the query.
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To improve recall, one can search more than one cluster. Also, to reduce the
impact of errors that were introduced by the clustering, one can use a bagging tech-
nique. A “bag” is a set of clusters. Different sets of clusters are generated by using
different seed objects for the clustering algorithm, and then all bags are searched in
the same way; finally, the search results are merged.

DynDex works well in practice for some data, but it does not guarantee a re-
call of 100 %. It does guarantee that some pruning takes place – the fewer clusters
one searches exhaustively, the larger the pruning effect. However, the part of the
database that needs to be considered grows linearly with the size of the database,
since more items in the database will lead to either larger clusters or the need for
more clusters.

2.3.2 Distance-Based Hashing

Athitsos et al. [2] propose an indexing method for arbitrary distance measures,
called Distance-Based Hashing (DBH), that is inspired by locality-sensitive hash-
ing (LSH) [6]. For LSH, one needs hash functions that are locality-sensitive, that
is, likely to hash items which are close to each other into the same bucket. LSH is
therefore only applicable if one has locality-sensitive hash functions for the given
distance measure. DBH, on the other hand, generally uses “line projection” func-
tions (the same functions that are used for BoostMap) to construct hash functions.
Parameters t1 and t2 for a discretized version of a line projection function are cho-
sen such that its value is 0 for about half the database items (it is 0 for items that
are projected into the interval [t1, t2]), and 1 for the rest of the items. k of these dis-
cretized functions are combined to be used as a k-bit hash function. Several such
hash functions are used to hash each database item into several buckets. The query
object is then compared to each database object that is hashed into the same bucket
as the query by at least one of the used hash functions.

Since DBH does not assume anything about the distance measure, and the hash
functions are not necessarily locality-sensitive, one cannot say much about the num-
ber of false negatives and false positives without sampling the database and counting
them. There is no guarantee for the absence of either false negatives or false pos-
itives, but in practice the method seems to offer a good tradeoff between pruning
the database and finding almost all near neighbours for some databases. How well
it works depends on the data and the distance measure.

2.4 Other Method

2.4.1 Spatial Approximation Sample Hierarchy

Houle and Sakuma [9] propose a multi-level structure of random samples, where
data items are connected to their approximate near neighbours.

On every level but the top level, each data item is connected to some limited
number of near neighbours on a higher level (“parents”). On every level except
for the lowest one, each data item is also connected to a limited number of near
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Table 1 Indexing methods for non-metrics

METHOD
ACCURACY APPLICABILITY

No false negatives
(100% recall)?

No false
positives
(100%
precision)?

Handles
lack of
triangle
inequality

Query need
not be in
collection

Tunneling for
Manhattan
EMD [19],
Section 2.2.1

� Only in metric
subspaces

� �

LCE [3], see
Section 2.2.2

� � � �

TriGen [17], see
Section 2.1.2

Preserves the order
of most similar
items. Recall
depends on the
chosen metric
access method.

Depends on the
chosen metric
access method.

� �

DynDex [7], see
Section 2.3.1

� � � �

BoostMap [1],
see Section
2.1.1

� � � �

DBH [2], see
Section 2.3.2

� � � �

SASH [9], see
Section 2.4.1

� � � �

neighbours on lower levels (“children”). When the index structure is built, already
existing connections are used to limit the number of nodes that need to be considered
for adding another node to the index structure.

Candidates for near neighbours of a query are found in a way very similar to what
would be done if the query were to be added to the index structure. That way, only
a limited part of the database is considered.

This index method relies on a pairwise distance measure, but makes no other
assumptions. It does not guarantee a perfect recall. Its performance varies greatly
depending on the kind of data indexed.

3 Overview

In this section, we give a brief overview of the basic ideas, the efficiency, and – in
Table 1 – the accuracy and applicability of each of the methods that were presented
in this chapter.
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• Tunneling for Manhattan EMD [19], Section 2.2.1: Search metric subspaces
with vantage objects, use pointers to near neighbours to search across subspaces.
Efficiency: Logarithmic if the number of crossed dimensions is bounded.

• Linear constant Embedding (LCE) [3], see Section 2.2.2: Enforce the triangle
inequality in separate subsets of the database by adding a small constant to each
distance. Efficiency: Might be worse than an exhaustive search – if the added
constants are large enough, the pruning effect can be zero. Building an index is
extremely expensive (involves looking at each of the

(n
3

)
= n!

6(n−3)! groups of 3
elements from the database).

• TriGen [17], see Section 2.1.2: For a bounded non-metric, enforce the triangle
inequality using a convex function which embeds the non-metric into a metric
space. Then use an access method developed for metric spaces. TriGen is the al-
gorithm that indentifies an optimal convex embedding function. Efficiency: de-
pends on the particular non-metric in question, and on the metric access method
subsequently applied. Can be very efficient thanks to metricity.

• DynDex [7], see Section 2.3.1: Clustering, searching clusters whose represen-
tatives are close to the query. Efficiency: Linear and always better than an ex-
haustive search (query is compared to representatives of all clusters, and a fixed
number of clusters are searched exhaustively).

• BoostMap [1], see Section 2.1.1: Embed all items into a metric space such that
the similarity rankings are approximately preserved. Efficiency: Efficient search
in a metric space is a solved problem.

• DBH [2], see Section 2.3.2: Hash each item into l buckets using line projection
functions. Search all buckets into which the query gets hashed. Efficiency: It
depends on the data – usually better than linear.

• SASH [9], see Section 2.4.1: A hierarchical graph with connections between ap-
proximate near neighbours. Efficiency: Never worse than an exhaustive search,
usually better. Otherwise no guarantee.

4 Conclusions

Efficient near neighbour search for non-metric distance measures is important for
many MIR applications. Many distance measures which reflect human notions of
dissimilarity well are not metrics. One common way of losing metricity is partial
matching. Music collections which are of interest in real life often contain millions
of items, which makes indexing techniques necessary which allow for faster than
linear searching.

There are various approaches to the problem of indexing data for the purpose of
efficient near neighbour search where the distance measure is non-metric. We have
looked at methods which enforce the triangle inequality for all data [17] or at least
within partitions of the database [3], at hashing [2], clustering [7], and linking near
neighbours [9]. We also presented a specialized indexing method for a non-metric
variant of the Earth Mover’s Distance.
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One cannot achieve perfect recall or precision with the known most generally
applicable methods – methods which do not assume anything besides the existence
of a pairwise distance matrix and which work for queries that are not known at
the time the index is built. TriGen comes closest to this goal among the generally
applicable methods we surveyed, but preserving order is not necessarily sufficient
for avoiding false negatives and/or false positives for r-near neighbours since the
distance estimate gets distorted even if the ordering is preserved. Perfect recall is
attainable if one drops the requirement of supporting queries that are unknown at the
time the index is built ([3]). However, for guarantees about recall and/or precision
even if the query is unknown when the index is built, one needs to tailor the indexing
method to the underlying distance measure. If one does that, one can achieve high
efficiency and perfect recall even for some non-metric distance measures.
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Clustering Driven Cascade Classifiers for
Multi-indexing of Polyphonic Music by
Instruments

Wenxin Jiang, Zbigniew W. Raś, and Alicja A. Wieczorkowska

Abstract. Recognition and separation of sounds played by various instruments is
very useful in labeling audio files with semantic information. Numerous approaches
on acoustic feature extraction have already been proposed for timbre recognition.
Unfortunately, none of these monophonic timbre estimation algorithms can be suc-
cessfully applied to polyphonic sounds, which are more usual cases in the real mu-
sic world. This has stimulated the research on a hierarchically structured cascade
classification system under the inspiration of the human perceptual process. This
cascade classification system makes first estimate on the higher level of the decision
attribute, which stands for the musical instrument family. Then, the further estima-
tion is done within that specific family range. However, the traditional hierarchical
structures were constructed in human semantics, which are meaningful from human
perspective but not appropriate for the cascade system. We introduce the new hier-
archical instrument schema according to the clustering results of the acoustic fea-
tures. This new schema better describes the similarity among different instruments
or among different playing techniques of the same instrument. The classification re-
sults show a higher accuracy of cascade system with the new schema compared to
the traditional schemas.

1 Introduction

Different classifiers have been used in musical instrument estimation domain, usu-
ally for a small number of instruments [1], [7], [12]. Still, it is a non-trivial problem
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to choose the one with the optimal performance in terms of estimation accuracy for
most western orchestral instruments. It is common to try different classifiers on the
same training database which contains features extracted from audio files and select
the classifier which yields the highest accuracy for the training database. The se-
lected classifier is used for the timbre estimation on analyzed music sounds. There
are also boosting systems [3], [2] consisting of a set of weak classifiers and iter-
atively adding them to a final strong classifier. Boosting systems usually achieve a
better estimation model by training each given classifier on a different set of samples
from the training database, which uses the same number of features (attributes). In
other words, boosting system works under assumption that there is a (big) difference
between different groups of subsets of the training database, so different classifiers
are trained on the corresponding subset based on their expertise. However, due to
the homogeneous characteristics across all the data samples in a training database,
musical data usually cannot take full advantage of such panel of learners because
none of the given classifiers would get a majority weight. Thus the improvement
cannot be achieved by such a combination of different classifiers. Also, in many
cases, the speed of classification is also an important issue.

To achieve the applicable classification time while preserving high classification
accuracy, we introduce the cascade classifier which may further improve the instru-
ments’ recognition of the MIR system.

Cascade classifiers have been investigated in the domain of handwritten digit
recognition. Thabtah [18] used filter-and-refine processes and combined it with k-
Nearest Neighbor (KNN) classifier to give the rough but fast classification with
lower dimensionality of features at filter step and to rematch the objects marked by
the previous filter with higher accuracy by increasing dimensionality of features.
Also, Lienhart [8] used CART trees as base classifiers to build a boosted cascade of
simple feature classifiers to achieve rapid object detection. It is possible to construct
a simple instrument family classifier with a low recognition error, which is called
a classification pre-filter. When one musical frame is labeled by a specific family,
the training samples in other families can be immediately discarded, and further
classification is then performed within small subsets, which could be identified by
a stronger classifier through adding more features or even calculating the complete
spectrum. Since the number of training samples is reduced, the computational com-
plexity is reduced while the recognition rate still remains high.

2 Hierarchical Structure of Musical Instrument Sound
Classification

According to the experience regarding human recognition of musical instruments,
it is usually easier for one to tell the difference between violin and piano than violin
and viola. This is because violin and piano belong to different instrument families
and thus have quite different timbre qualities. Violin and viola fall into the same in-
strument family which indicates they share quite similar timbre quality. If we build
the classifiers both on the family level and the instrument level, then the polyphonic
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music sound is first classified at the instrument family level. After a specific instru-
ment family label is assigned to the analyzed sound by the classifier, it can be further
classified at the instrument level by another classifier which is built on the training
data of that specific instrument family. Since there is a smaller number of possible
instruments in this family, the classifier trained on this family has the appropriate
expertise for the classification of the instruments within it.

Before we discuss how to build classifiers on different levels, let us first have a
look at the hierarchical structure of the western instruments. Erich von Hornbostel
and Curt Sachs published an extensive scheme for musical instrument classifica-
tion in 1914. Their scheme is widely used today, and is most often known as the
Hornbostel-Sachs system. Figure 1 shows a part of the Hornbostel/Sachs instru-
ment classification tree. The Hornbostel-Sachs system includes aerophones (wind
instruments), chordophones (string instruments), idiophones (made of solid, non-
stretchable, resonant material), and membranophones (mainly drums). Idiophones
and membranophones are called percussion. Additional groups include electro-
phones, i.e. instruments where the acoustical vibrations are produced by electric
or electronic means (electric guitars, keyboards, synthesizers), complex mechan-
ical instruments (including pianos, organs, and other mechanical music makers),
and special instruments (include bullroarers, but they can be classified as free aero-
phones). Each category can be further subdivided into groups, subgroups etc. and
finally into instruments. Idiophones’ subcategories include instruments classified as:
struck (e.g. gongs), struck together (by concussion - e.g. claves, clappers, castanets,
finger cymbals), scrapped, rubbed, stamped, shaken (e.g. rattles), and plucked (e.g.
Jew’s harp). Membranophones include the following subgroups: cylindrical drum,
conical drum, barrel drum, hourglass drum, goblet drum, footed drum, long drum,
kettle or pot drum, frame drum (e.g. tambourine), friction drum, and mirliton/kazoo.
Chordophones’ subcategories include: zithers, lutes plucked (e.g. mandolins, gui-
tars, ukuleles), lutes bowed (e.g. viols - fretted neck, fiddles, violin, viola, cello,
double bass, and hurdy-gurdy - no frets), and harp. Aerophones are classified into
the following subgroups: free aerophone (e.g. bullroarers), end-blown flute, side-
blown flute, nose flute, globular flute (e.g. ocarina), multiple flutes, panpipes, whis-
tle mouthpiece (e.g. recorder), air chamber (e.g. accordion); single reed instruments
(such as clarinet, saxophones), double reed (such as oboe, bassoon) and lip vibrated
(trumpet or horn) - instruments classified according to the mouthpiece used to set
air in motion to produce sound. Some of aerophones subcategories are also called
woodwinds (single reed, double reed, flutes) or brass (lip vibrated), but this crite-
rion is not based on the material the instrument is made of, but rather on the method
of sound production. In woodwinds, the change of pitch is mainly obtained by the
change of the length of the column of the vibrating air. Additionally, over-blow is
applied to obtain second, third or fourth harmonic to become the fundamental. In
brass instruments, over-blows are very easy because of wide bell and narrow pipe,
and therefore over-blows are the main method of pitch changing.

Sounds can be also classified according to the articulation, i.e. the method the
instrument is played. According to articulation, sounds can be basically classified
in the following 3 ways: (1) sustained or non-sustained sounds, (2) muted or not
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Fig. 1 A part of the Hornbostel-Sachs hierarchical tree

muted sounds, (3) vibrated and not vibrated sounds. This classification may be dif-
ficult, since the vibration may not appear in the entire sound; some changes may
be visible, but no clear vibration. Also, brass is sometimes played with moving the
mute in and out of the bell. According to MPEG7 classification [9], there are four
classes of musical instrument sounds: (1) Harmonic, sustained, coherent sounds -
well detailed in MPEG7, (2) Non-harmonic, sustained, coherent sounds, (3) Percus-
sive, non-sustained sounds - well detailed in MPEG7, (4) Non-coherent, sustained
sounds.

Musical instruments may produce sound of definite or indefinite pitch. Still, most
of musical instrument sounds of definite pitch have some noises/continuity in their
spectra. In our experiments, we do not include membranophones because the in-
struments of this family usually do not produce the harmonic sound, so they need
special techniques to be identified. This chapter focuses on the instruments produc-
ing basically harmonic sounds.

Figure 2 shows another tree structure of instrument sound classification, in which
sounds are grouped according to the way how the musical instruments are played.

Fig. 2 A part of the play method (articulation) hierarchical tree
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3 MIR Framework Based on Cascade Classification System

In this section, we describe cascade classification strategy investigated for musical
instruments estimation [15]. Based on how the hierarchical instrument family struc-
tures, we have implemented the cascade classification system for the polyphonic
sound estimation, as shown in the Figure 3.

Fig. 3 Timbre estimation with classifier and feature selection

Let S = {F,C,D} be the multiple-classifier timbre estimation system, where
D = {d1, . . . ,dn} is the set of all possible decision values of musical instruments
in S , F = { f1, . . . , fm} is the collection of all available feature sets which could be
extracted from the input signal and then used by the classifiers to identify the target
frame. C = {C1, . . . ,Cw} is the set of classifiers built on feature sets F after they
are extracted from the standard instrument sounds and saved as the feature training
database. Let X = {x1, . . . ,xt} be the set of segmented frames from the input au-
dio sound. There are multiple processes of classification for each frame xt . First at
the root of the hierarchical tree, then down to its lower level, we have pairs (Cz, fy),
1≤ z≤w, 1≤ y≤m, where (Cz, fy) means ”use classifier Cz on the feature set fy”, to
perform classification at each level and get the estimation confidence, i.e. the proba-
bility of the classification result given by classifier (related to the similarity between
the analyzed frame and reference frames), con f (xi,α) = Cz( fy), where α is the spe-
cific node of the tree. The result should satisfy two constraints: con f (xi,α) ≥ λ1

and sup(xi,α) ≥ λ2, where λ1 is the minimum confidence for the correct classifica-
tion and λ2 is the threshold for minimal support (λ1 and λ2 are given by the user).
Support is defined as the number of matched frames of a particular instrument from
the reference database (during classification process, the algorithm tries matching
frames to all available frames representing all instruments in the database, and the
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most similar ones are returned as the matched frames). Confidence is the ratio of
support over the total number of matched frames.

After classifications are finished at all the levels, we get the final instrument esti-
mations {dp} for the frame xi (multiple instrument estimations are given by classi-
fier for each frame), where dp ∈ D, and the overall confidence for each instrument
estimation is calculated by multiplying the confidence obtained previously at each
classification level con f (xi,dp) =∏v

α=1 con f (xi,α),where v is the total number of
ancestors for node xi in the path of hierarchical tree. After all the individual frames
are estimated by the classification system, a smoothing process is performed within
a smoothing window. It is done by calculating the average confidence for each possi-
ble instrument within the window con f (dp) =∑s

q=1 con f (dp)q/s where s is the size
of a smoothing window. The smoothing window is an indexing granule, which is
the smallest segment of the signal on which the estimation of instruments is yielded
by the indexing system - the indexing system yields the list of instruments for each
smoothing window instead of each frame; the smoothing window size usually is 1-2
seconds, whereas the analyzing frame is 0.12 second, which would be rather short
for such labeling, and too short for the users to estimate instruments by themselves.

Next, the output of the final results is further controlled by the threshold λ3. If the
mean value of the confidence within smoothing window con f (dp) > λ3, where λ3 is
given by the user, the instrument candidate is kept, otherwise it is discarded as the
noise signal which only occurs in a very short time period. According to the indexing
resolution requirement, smoothing window can be adjusted to the desired size.

The advantage of this process is that it uses the information of music context
to further adjust the results from the frame-wise estimation phase. The system will
perform timbre estimation for the polyphonic sound with high accuracy while still
preserving the applicable analyzing speed by choosing the best feature and classifier
for the classification process at each level based on the knowledge derived from the
training database.

4 Hierarchical Structure Based on Clustering Analysis

Clustering is the classification of data objects into similarity groups (clusters) ac-
cording to a defined distance measure. It is widely used as one of the important
techniques of machine learning and pattern recognition in such fields as biology,
genomics and image analysis. However, it has not been well investigated in the mu-
sic domain, since the category information of musical instruments has already been
defined by musicians as the two hierarchical structures demonstrated in the previ-
ous section. These structures group the musical instrument sounds according to their
semantic similarity which is concluded from the human experience. However, the
instruments that are assigned to the same family or subfamily by these hierarchi-
cal structures often sound quite different from another. On the other hand, instru-
ments that have similar timbre qualities can be assigned to very different groups by
these hierarchical structures. Thus, the inconsistency between the timbre quality and
the family information causes the incorrect timbre estimation, given by the cascade
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classification system based on Hornbostel-Sachs instrument classification, used in
our previous research [5].

For instance, the trombone belongs to the aerophone family, but the system often
classifies it as the chordophone instrument, such as violin. In order to take the full
advantage of the cascade classification strategy, we have built a new hierarchical
structure of musical instruments by the matching learning technique.

Cluster analysis is commonly used to search for groups in data. It is most effective
when the groups are not known a priori. We use the cluster analysis methods to re-
organize the instrument groups according to the similarity of timbre relevant features
among the instruments.

4.1 Clustering Analysis Methods
There exist many clustering algorithms. Basically, all the clustering algorithms can
be divided into two categories: partitional clustering and hierarchical clustering.
Partitional clustering algorithms determine all clusters at once without hierarchi-
cal merging or dividing process. K-means clustering is most common method in
this category [11]; K is the empirical parameter. Basically, it randomly assigns in-
stances to K clusters. Next, new centroid for each of the K clusters and the distance
of all items to these K centroids are calculated. Items are re-assigned to the clos-
est centroid and the whole process is repeated until cluster assignments are stable.
Hierarchical clustering generates a hierarchical structure of clusters which may be
represented in a structure called dendrogram. The root of the dendrogram consists of
a single cluster containing all the instances, and the leaves correspond to individual
instances. Hierarchical clustering can be further divided into two types according
to whether the tree structure is constructed by following agglomerative or divisive
approach. Agglomerative approach works in the bottom-up manner, it recursively
merges smaller clusters into larger ones till some stoping condition is reached. Algo-
rithms based on divisive (or top-down) approach begin with the whole set and then
recursively split this set into smaller ones till some stoping condition is reached.

We have chosen the hierarchical clustering method to learn the new hierarchical
schema for music instruments, since it fits our scenario well. There are many options
to compute the distance between two clusters. The most common methods are the
following [19]:

• Single linkage (nearest neighbor). In this method, the distance between two clus-
ters is determined by the distance of the two closest objects (nearest neighbors)
in different clusters. This rule will string objects together to form the clusters,
and the resulting ones tend to represent long ”chains”.

• Complete linkage (furthest neighbor). In this method, the distances between clus-
ters are determined by the greatest distance between any two objects in different
clusters (the ”furthest neighbors”). This method usually performs quite well in
cases when the objects actually form naturally distinct ”clumps.” If the clusters
tend to be of a ”chain” type, then this method is inappropriate.

• Unweighted pair-group method using arithmetic averages (UPGMA). In this
method, the distance between two clusters is calculated as the average distance
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between all pairs of objects in two different clusters. This method is also very
efficient when the objects form natural distinct ”clumps” and it performs equally
well with ”chain” type clusters.

• Weighted pair-group method using arithmetic averages (WPGMA). This method
is identical to the UPGMA method, except that in the computations, the size of
the respective clusters is used as a weight. Thus, this method should be used
when the cluster sizes are suspected to be greatly uneven [17].

• Unweighted pair-group method using the centroid average (UPGMC). The cen-
troid of a cluster is the average point in the multidimensional space, calculated
as the mean value (for each dimension separately). In a sense, it is the center
of gravity for the respective cluster. In this method, the distance between two
clusters is determined as the difference between centroids.

• Weighted pair-group method using the centroid average (WPGMC). This method
is identical to the previous one, except that weighting is introduced into the com-
putation. When there are considerable differences in cluster sizes, this method is
preferable to the previous one.

• Ward’s method. This method is distinct from all other methods because it uses an
analysis of variance approach to evaluate the distances between clusters. In short,
this method attempts to minimize the Sum of Squares of any two hypothetical
clusters that can be formed at each step. In general, this method is good at finding
compact, spherical clusters. However, it tends to create clusters of small size.

To complete the above definitions of a distance measure between two clusters, we
also have to define the distance between their instances or centroids. Here are some
most common distance measures between two objects:

1. Euclidean: Usual square distance between the two vectors. Disadvantages: not
scale invariant, not for negative correlations

dxy =
√
∑ (xi − yi)2

2. Manhattan: Absolute distance between the two vectors.

dxy = ∑ |xi − yi|
3. Maximum: Maximum distance between any two components of x and y

dxy = max|xi − yi|
4. Canberra: Canberra distance examines the sum of series of a fraction differences

between coordinates of a pair of objects. Each term of fraction difference has
value between 0 and 1. If one of coordinates is zero, the term corresponding to
this coordinate become unity regardless the other value, thus the distance will not
be affected; if both coordinates are zero, then the term is defined as zero.

dxy = ∑ |xi−yi|
|xi|+|yi|

5. Pearson correlation coefficient (PCC) is a correlation-based distance. It measures
the degree of association between two variables.

ρxy = [cov(X ,Y )]2

var(X)var(Y ) , dxy = 1− ρxy where cov(X ,Y ) is the covariance of the two

variables, var(X) and var(Y ) - the variance of each variable.
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6. Spearman’s rank correlation coefficient is another correlation based distance.

ρxy = 1− 6∑d2
i

n(n2−1) , dxy = 1−ρxy

where di = xi − yi is the difference between the ranks of corresponding values
xi and yi, and n is the number of values in each data set (same for both sets).
Rank is calculated in the following way: 1 is assigned to the smallest element
of each data, 2 to the second smallest element, and so on; the average ranking is
calculated if there is a tie among different elements.

It is critical to choose an appropriate distance measure for objects in a musical do-
main because different measures may produce different shapes of clusters which
represent different schema of instrument family. Different features also require the
appropriate measures to be chosen in order to give better description of feature vari-
ation. The inappropriate measure could distort the characteristics of timbre which
may cause the incorrect clustering.

4.2 Evaluation of Different Clustering Algorithms for Different
Features

As we can see, each clustering method has its own different advantage and dis-
advantage over others. It is a nontrivial task to decide which one is the most ap-
propriate method for generating the hierarchical instrument classification structure.
Not only the specific cluster linkage method needs to be decided in the hierarchi-
cal clustering algorithms, but also the good distance measurement has to be cho-
sen in order to generate the good schema that represents the actual relationships
among those instruments. We designed quite intensive experiments with the ”clus-
ter” package in R system [14]. The R package provides two hierarchical clustering
algorithms: hclust (agglomerative hierarchical clustering), and diana (divisive
hierarchical clustering). Table 1 shows all the clustering methods that we tested. We
evaluated six different distance measurements (Euclidean, Manhattan, Maximum,
Canberra, Pearson correlation coefficient, and Spearman’s rank correlation coeffi-
cient) for each algorithm. For the agglomerative type of clustering (hclust), we
also evaluated seven different cluster linkages that are available in this package:
Ward, single (single linkage), complete (complete linkage), average (UPGMA), mc-
quitty (WPGMC), median(WPGMA), and centroid (UPGMC).

We have chosen the middle C pitch group which contains 46 different musical
sound objects. We have extracted three different feature sets (MFCC [10], spectral
flatness coefficients [9], and harmonic peaks [9]) from those sound objects. Each
feature set produces one dataset for clustering. Some sound objects belong to the
same instrument. For example, ”ctrumpet” and ”ctrumpet harmonStemOut” are ob-
jects produced by the same instrument: trumpet. We have preserved these particular
object labels in our feature database without merging them as the same label be-
cause they could have very different timbre quality which the conventional hierar-
chical structure ignores. We have tried to discover the unknown musical instrument
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Table 1 All distance measures and linkage methods tested for agglomerative and divisive
clustering

Clustering algorithm Cluster Linkage Distance Measure

hclust (agglomerative) average 6 distance metrics
centroid 6 distance metrics
complete 6 distance metrics
mcquitty 6 distance metrics
median 6 distance metrics
single 6 distance metrics
ward 6 distance metrics

diana (divisive) N/A 6 distance metrics

group information solely by the unsupervised machine learning algorithm, instead
of applying any human guidance. Each sound object was segmented into multiple
0.12s frames and each frame was stored as an instance in the testing dataset. Since
the segmentation is performed with overlap of 2/3 of the frame, there were totally
2884 frames from the 46 objects in each of the three feature datasets.

When our algorithm finishes the clustering job, a particular cluster ID is assigned
to each frame. Theoretically, one may expect the same cluster ID to be assigned to
all the frames of the same instrument sound object. However, the frames from the
same sound object are not uniform and have variations in their feature patterns as
the time evolves. Therefore, clustering algorithms do not perfectly identify them as
the same cluster. Instead, some frames are assigned into other groups where majority
of the frames come from other instrument sounds. As a result, multiple (different)
cluster IDs are assigned to the frames of the same instrument object.

Our goal is to cluster the different instruments into the groups according to the
similarity of timbre relevant features. Therefore, one important step of the evaluation
is to check if a clustering algorithm is able to cluster most frames of an individual
instrument sound into one group. In other words, a clustering algorithm should be
able to differentiate most of the frames of one instrument sound from the others.
It is evaluated by calculating the accuracy of a cluster ID assignment. We use the
following example to illustrate this evaluation process. A hierarchical cluster tree
Tm is produced by a clustering algorithm Am. There are totally n instrument sound
objects in the dataset (n=46). The clustering package provides function cutree to cut
Tm into n clusters. One of these clusters is assigned to each frame. Table 2 shows a
contingency table (xi j represent numbers) derived from the clustering results after
the cutree is applied. It is a n× n matrix, where xi j is the number of frames of
instrumenti that are labeled by cluster j, and xi j ≥ 0.

In order to calculate the accuracy of the cluster assignment, we need to decide
which cluster ID corresponds to which instrument object. If cluster k is assigned to
instrumenti, xik is the number of correct assignments for instrumenti, the accuracy
of the clustering for instrumenti is βi = xik/(∑n

j=1 xi j).
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Table 2 Format of the contingency table derived from clustering result

Cluster1 · · · Cluster j · · · Clustern

Instrument1 x11 · · · x1 j · · · x1n
· · · · · · · · · · · · · · · · · ·
Instrumenti xi1 · · · xi j · · · xin

· · · · · · · · · · · · · · · · · ·
Instrumentn xn1 · · · xn j · · · xnn

During clustering process, each frame of the sound object is clustered into one
particular group, and the group ID (i.e. instrument) is assigned to this frame. For
each row, the maximum value is found among n columns, and next the column
corresponding to the position of this maximum becomes the class label for frames
represented in this row. However, it may happen that the maximum value is found
in the same column also for other rows, and then the same group ID is linked to two
different sound objects, which means these two different instrument sounds could
not be distinguished by this particular clustering scheme. Clearly, we would like
to avoid such an ambiguity. On the other hand, we have to cluster many frames of
one sound object into a single group. Therefore, we would need permutations to
calculate the theoretic best solution for the whole table, but such a large number of
computations cannot be performed.

The overall accuracy for the clustering algorithm Am is the average accuracy of all
the instruments β = (∑n

i=1βi)/n. To find the maximum β among all possible clus-
ter assignments to instruments, we should permute this matrix in order to find the
maximum accuracy for the whole matrix (for each row of matrix, there are multiple
values that could be selected among n columns), but it is not applicable to perform
such a large number of calculations. This is why we have chosen maximum xi j in
each row to approximate the optimal β .

Since it is possible to assign the same cluster to multiple instruments, we have
taken the number of clusters as well as accuracy into account. The final measure-
ment to evaluate the performance of clustering is scorem = β ·w, where w is the
number of clusters, w ≤ n. This measure reflects how well the algorithm clusters
the frames from the same instrument object into the same cluster. It also reflects the
ability of algorithm to separate instrument objects from each other.

In the experiments, we used two hierarchical clustering algorithms, hclust and
diana. Table 3 presents 15 results which yielded the highest score among 126
experiments based on hclust algorithm.

From the results, the Ward linkage outperforms other methods and it yields the
best performance when Pearson distance measure is used on the flatness coefficients
feature dataset.

Table 4 shows the results from diana algorithm. In this algorithm, Euclidean
yields the highest score on the mfcc feature dataset.

During the clustering process, we cut the hierarchical clustering result at a certain
level, when obtaining groups which could represent instrument objects. If most of
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Table 3 Evaluation result of hclust algorithm

Feature method metric β̄ w score

Flatness Coefficients ward pearson 87.3% 37 32.30
Flatness Coefficients ward euclidean 85.8% 37 31.74
Flatness Coefficients ward manhattan 85.6% 36 30.83
mfcc ward kendall 81.0% 36 29.18
mfcc ward pearson 83.0% 35 29.05
Flatness Coefficients ward kendall 82.9% 35 29.03
mfcc ward euclidean 80.5% 35 28.17
mfcc ward manhattan 80.1% 35 28.04
mfcc ward spearman 81.3% 34 27.63
Flatness Coefficients ward spearman 83.7% 33 27.62
Flatness Coefficients ward maximum 86.1% 32 27.56
mfcc ward maximum 79.8% 34 27.12
Flatness Coefficients mcquitty euclidean 88.9% 33 26.67
mfcc ward average 87.3% 30 26.20

Table 4 Evaluation result of diana algorithm

Feature metric β̄ w score

Flatness Coefficients euclidean 77.3% 24 18.55
Flatness Coefficients kendall 75.7% 23 17.40
Flatness Coefficients manhattan 76.8% 25 19.20
Flatness Coefficients maximum 80.3% 23 18.47
Flatness Coefficients pearson 79.9% 26 20.77
mfcc euclidean 78.5% 29 22.78
mfcc kendall 77.2% 27 20.84
mfcc manhattan 77.7% 26 20.21
mfcc pearson 83.4% 25 20.86
mfcc spearman 81.2% 24 19.48

the frames from the same instrument object are clustered into one group, then this
algorithm is selected to generate the hierarchical tree.

When we compare the two algorithms (hclust and diana), hclust yields
better clustering results than diana. Therefore, we chose agglomerative clustering
algorithm to generate the hierarchical schema for musical instruments, using Ward
as the linkage method, Pearson distance measure as the distance metric, and Flatness
Coefficients as the feature dataset to perform clustering analysis.

5 New Hierarchical Tree

Figure 4 shows the dendrogram result generated by the hierarchical clustering al-
gorithm we chose (i.e. agglomerative clustering), as mentioned in Section 4.2.
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From this new hierarchical classification, we discover some instrument relationships
which are not represented in the traditional schemas.

A musical instrument can produce sounds with quite different timbre qualities
when different playing techniques are applied. One of the common techniques is
muting. A mute is a device fitted to a musical instrument to alter the sound produced.
It usually reduces the volume of the sound as well as affects the timbre. There are
several different mute types for different instruments. The most common type used
with the brass is the straight mute - a hollow, cone-shaped mute that fits into the
bell of the instrument. This results in a more metallic, sometimes nasal sound, and
when played at loud volumes can result in a very piercing note. The second common
brass mute is the cup mute. Cup mutes are similar to straight mutes, but attached to
the end of the mute’s cone is a large lip that forms a cup over the bell. The result
is removal of the upper and lower frequencies and a rounder, more muffled tone.
In the case of string instruments of the violin family, the mute takes the form of a
comb-shaped device attached to the bridge of the instrument, dampening vibrations
and resulting in a ”softer” sound.

In the hierarchical structure shown in Figure 4, ”trumpet” and ”ctrumpet har-
monStemOut” represent two different sounds produced by the trumpet. ”ctrumpet
harmonStemOut” is produced when a particular mute is applied, called Harmon
mute (different from the common straight or cup mutes). It is a hollow, bulbous
metal device placed in the bell of the trumpet. All air is forced through the middle
of the mute. This gives the mute a nasal quality. Protruding at the end of the device,
there is a detachable stem extending through the centre of the mute. The stem can be
removed completely or can be inserted to varying degrees. Name of this instrument
sound object shows whether the stem is extended or completely removed, which
darken the original piercing, strident timbre quality.

From the spectra of various sound objects (Figure 5), we can clearly observe big
differences between them. The spectra also show that ”Bach trumpet” has more sim-
ilar spectral pattern to ”trumpet”. The relationships between C trumpet, C trumpet
muted (Harmon, stem out) and Bach trumpet are accurately represented in the new
hierarchical schema. Figure 4 shows that ”ctrumpet” and ”bachtrumpet” are clus-
tered into the same group. ”ctrumpet harmonStemOut” is clustered in one single
group instead of merging with ”ctrumpet” since it has a very unique spectral pattern.
The new schema also discovers the relationships among ”French horn”, ”French
horn muted” and ”bassoon”. Instead of clustering two ”French horn” sounds in one
group as the conventional schema does, bassoon is considered as the sibling of the
regular French horn. ”French horn muted” is clustered in another different group to-
gether with ”English Horn” and ”Oboe” (the extent of the difference between groups
is measured by the distance between the nodes in the hierarchical tree).

According to this result, the new schema is more accurate than the traditional
schema, because it represents the actual similarity of timbre qualities of musical
instruments. Not only it better describes the differences between instruments, but
it also distinguishes the sounds produced by the same instrument that have quite
different timbre qualities due to different playing techniques.



32 W. Jiang, Z.W. Raś, and A.A. Wieczorkowska

Fig. 4 Clustering result from hclust algorithm with Ward linkage method, Pearson dis-
tance measure, and Flatness Coefficients used as the feature set

6 Experiments and Evaluation

In order to evaluate the new schema, we developed the cascade classification system
based on the multi-label classification method and tested it with the new schema, as
well as with the two previous conventional hierarchical schemas: Hornbostel-Sachs
and Playing Method. The system used MS SQLSERVER2005 database system to
store training dataset and MS SQLSERVER analysis server as the data mining server
to build decision tree and process the classification request.

Training data: The audio files used in this research consist of stereo musical pieces
from the McGill University Master Samples (MUMS, [13]). Each file has two chan-
nels: left channel and right channel, in .au (or .snd) format. These audio data files are
treated as mono-channel, where only left channel is taken into consideration, since
successful methods for the left channel can also be applied to the right channel, or
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Fig. 5 Spectrum comparison of different instrument objects. On the left hand side: C Trum-
pet, C Trumpet muted (Harmon, Stem out) and Bach Trumpet; on the right hand side: French
horn, French horn muted, bassoon

any channel if more channels are available. 2917 single instrument sound files were
used, representing 45 different instruments.

Each sound stands for one note played by a specific instrument. Many instru-
ments can produce different timbres when they are played using different tech-
niques. Therefore, sounds of various pitch and articulation were investigated for
each of these 45 instruments.

Power spectrum and 33 spectral flatness coefficients were extracted from each
frame of these single instrument sounds, according to the equations described by
the MPEG-7 standard [9]. The frame size was 120 ms and the overlap between two
adjacent frames was 80ms, to reduce the information loss caused by windowing
function (therefore, the hop size was 40ms). The total number of frames for the
entire feature database reaches to about one million, since each sound is analyzed
in many frames. For instance, the instrument sound which only lasts three seconds
is segmented into 75 overlapped frames. The classifier is trained by the obtained
feature database.

Testing data: 308 mixed sounds were synthesized by randomly choosing two sin-
gle instrument sounds from 2917 training data files. Spectral flatness coefficients
were extracted from the frames of mixes, in order to perform instrument family es-
timation on the higher level of the hierarchical tree. After reaching the bottom level
of the hierarchical tree, we used the power spectrum from the frames representing
mixes, in order to match against the reference spectral database. Since the spectrum
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matching is performed in a small subgroup, the computation complexity is reduced.
The same analyzing frame size and hop size were used for the mixes as in the case
of training data.

Table 5 Comparison between non-cascade classification and cascade classification with dif-
ferent hierarchical schemas

Experiment classification
method

Description Recall Precision F-Score

1 Non-Cascade Feature-based 64.3% 44.8% 51.4%
2 Non-Cascade Spectrum-Match 79.4% 50.8% 60.7%
3 Cascade Hornbostel-Sachs 75.0% 43.5% 53.4%
4 Cascade play method 77.8% 53.6% 62.4%
5 Cascade machine Learned 87.5% 62.3% 69.5%

The average recall, precision and F-score of all the 308 sounds estimations were
calculated to evaluate each method. The definitions of recall and precision are shown
in Figure 6. I1 is the number of actual instruments playing in the analyzed sound.
I2 is the number of instruments estimated by the system. I3 is the number of correct
estimations.

 
Fig. 6 Precision and Recall

Recall is the measurement to evaluate the recognition rate and precision is to
evaluate the recognition accuracy. The F-score is often used in the field of informa-
tion retrieval for measuring search, document classification, and query classification
performance. It is the harmonic mean of precision and recall. F-score is calculated
as

F-score= 2×precision×recall
precision+recall

Since timbre estimation was performed for indexing segments (smoothing win-
dow), containing multiple frames, as described in Section 3, the measures mentioned
above were calculated for indexing segments of size 1 second.

K-Nearest Neighbor (KNN) [6] was used as the classifier, with k = 3. As shown
in Table 5, in Experiment 1 we applied the multiple label classification [5] based
on features representing spectral flatness coefficients only. In Experiment 2 we used
the power spectrum matching method, instead of features [4]. In Experiment 3 and
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Experiment 4 we used two traditional hierarchical structures (Hornbostel-Sachs and
play method) in order to perform cascade classification based on both the power
spectrum and spectral flatness coefficients. In Experiment 5 we applied the new
hierarchical structure as the basis of the cascade system. The indexed window size
for all the experiments is one second, and the output of total number of estimations
for each indexed window is controlled by confidence threshold λ = 0.4, which is
the minimum average confidence of instrument candidates.

Fig. 7 Comparison between non-cascade classification and cascade classification with dif-
ferent hierarchical schemas

Figure 7 shows that generally the cascade classification improves the recall
compared to the non-cascade methods. The non-cascade classification based on
spectrum-match (Experiment 2) shows higher recall than the cascade classification
approaches based on the traditional hierarchical schema (Experiment 3 and Exper-
iment 4). However, the cascade classification based on the new schema learned by
the clustering analysis (Experiment 5) outperforms the non-cascade classification.
It increases the recall by 8 percent points, precision by 12 percent points and gen-
eral F-score by 9 percent points. This shows that the new schema yields significant
improvement in comparison to the other two traditional schemas. Also, since the hi-
erarchical tree has more levels, the size of the subset on the bottom level is reduced
to a very small size, which significantly reduces the cost of spectrum matching.

We evaluated the classification system by the mixed sounds which contain two
single instrument sounds. In the real world recordings, there could be more than two
instruments playing simultaneously, especially in the orchestra music. Therefore,
we also created 49 polyphonic sounds by randomly selecting three different single
instrument sounds and mixing them together. Next, we tested those three-instrument
mixes, using various classification methods (Table 6).

As we can see from Table 6, the lowest precision and recall is obtained for
the algorithm based on sound separation, i.e. separating sounds of mixes and then
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Table 6 Classification results of 3-instrument mixtures with different algorithms

Experiment Classifier Method Recall Precision F-Score

1 Non-Cascade single-label based on
sound separation

31.48% 43.06% 36.37%

2 Non-Cascade feature-based multi-label
classification

69.44% 58.64% 63.59%

3 Non-Cascade spectrum-match multi-
label classification

85.51% 55.04% 66.97%

4 Cascade
(Hornbostel-Sachs)

multi-label classification 64.49% 63.10% 63.79%

5 Cascade
(playmethod)

multi-label classification 66.67% 55.25% 60.43%

6 Cascade (machine
learned)

multi-label classification 63.77% 69.67% 66.59%

performing instrument estimation on separated sounds. This is because there is no
much information left in the sound mix for the further classification of the third
instrument after two signal subtractions corresponding to the first two instrument
estimations are made. The cascade method based on multi-label classification again
yields high recall and precision of results.

This experiment shows the robustness and effectiveness of the algorithm for the
polyphonic sounds which contain more than two timbres. As the dendrogram in
Figure 4 shows, the new schema has more hierarchical levels and looks more com-
plex and obscure to users. However, we only use it as the internal structure for the
cascade classification process, and we do not use it in the query interface. Therefore,
when the user submits a query to QAS defined in the user’s semantic structure (e.g.
searching instrument sounds which are close in Hornbostel-Sachs classification, or
with respect to the play method), system translates it to the internal schema (based
on clustering). After the estimation is done, the answer is converted back to the user
semantics. The user does not need to know the difference between French horn and
French horn muted since only French horn is returned by the system as the final esti-
mation result. The internal hierarchical representation of musical instrument sound
classification is used as an auxiliary tool, assisting answering user’s queries.

7 Conclusion

In this chapter we have discussed the timbre estimation based on hierarchical classi-
fication. In order to deal with polyphonic sounds, multi-label classifiers were used,
with classification based on spectrum matching and also based on feature vectors
extracted from spectra. Given the fact that spectrum matching in a large training
database is much more expensive than feature based classification, the cascade clas-
sifier was introduced to give a good solution for achieving both high recognition rate
and high efficiency. Cascade classification system needs to acquire knowledge how
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to choose the appropriate classifier and features at each level of hierarchical tree. The
experiments have been conducted to discover such knowledge based on the training
database. As a result, we introduced a new hierarchical structure for the cascade
classification system based on the obtained hierarchical clustering. Compared to the
traditional schemas which are manually designed by the musicians, the new schema
better represents the relationships between musical instrument sounds in terms of
their timbre similarity, since the hierarchical structures are directly derived from
the acoustic features based on their similarity matrix. This new hierarchical schema
shows better results in the cascade classification of musical instrument sounds.
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Representations of Music in Ranking Rhythmic
Hypotheses

Jaroslaw Wojcik and Bozena Kostek

Abstract. The chapter presents first the main issues related to music information
retrieval (MIR) domain. Within this domain, there exists a variety of approaches to
musical instrument recognition, musical phrase classification, melody classification
(e.g. query-by-humming systems), rhythm retrieval, retrieval of high-level- musi-
cal features such as looking for emotions in music or differences in expressiveness,
music search based on listeners’ preferences, etc. The objective of this study is to
propose a method for retrieval of hypermetric rhythm on the basis of melody. A
stream of sounds in MIDI format is introduced at the system input. On the basis of a
musical content the method retrieves a hypermetric structure of rhythm of a musical
piece consisting of rhythmic motives, phrases, and sentences. On the basis of the
hypermetric structure retrieved, a system capable of creating automatic drum ac-
companiment to a given melody supporting the composition is proposed. A method
does not use any information about rhythm (time signature), which is often included
in MIDI information. Neither rhythmic tracks nor harmonic information are used in
this method. The only information analyzed is a melody, which may be monophonic
as well as polyphonic. The analysis starts after the entire piece has been played. Re-
currence of melodic and rhythmic patterns and the rhythmic salience of sounds are
combined to create an algorithm that finds the metric structure of rhythm in a given
melody.

1 Introduction

Music Information Retrieval (MIR) is a multi-discipline area. In this Chapter, some
aspects related to MIR are shortly reviewed in the context of possible and ac-
tual applications within this domain with the main stress on rhythm retrieval. To

Jaroslaw Wojcik . Bozena Kostek
Multimedia Systems Department, Electronics, Telecommunications and Informatics Faculty
Gdansk University of Technology, Poland
e-mail: bozenka@sound.eti.pg.gda.pl
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categorize MIR, a list of topics may be recalled after ISMIR (International Confer-
ences on Music Information Retrieval) [12]:

• MIR systems (content-based querying, instrument/ genre/ style/ mood classifica-
tion, recommendation/ play-list generation, fingerprinting/ DRM (Digital Rights
Managements), transcription/ annotation, text/ web mining, OMR (Optical music
recognition), database systems/ indexing, etc.).

• Human issues (user interfaces, user models, emotion,aesthetics, perception, cog-
nition, social, legal and ethical issues, etc.).

• Data and metadata (audio, MIDI, score, libraries and collections, etc.).
• Musical knowledge (melody and motives, harmony, chords and tonality, rhythm,

beat, tempo and form, timbre, instrumentation and voice, genre, style and mood,
performance, composition, etc.).

Prospective applications related to MIR envision the management of virtually un-
limited quantities of music information contained in vast Internet repositories, how-
ever such an ambitious aim is not yet fulfilled.

MIR research area lies within scientists’ interest because of wide possibilities
to use retrieval methods in practical applications. Such applications let composers
check effortlessly whether a similar melody has already been created. They also
can serve as easy-to-use tools to seek certain music given only the humming of
a melody and thus making any other knowledge about the piece, e.g. its author,
unnecessary. Computer programs with MIR software installed offer facilities in both
music composing and performing.

Music analysis is clearly a hierarchical approach, since music itself is hierar-
chically structured. This implies that MIR, being a hierarchical domain, should be
analyzed from this point of view. There are numerous papers published about the
application of the hierarchical approach to music recognition [8][23][31][35].

It should also be emphasized that the diversity of music, musical styles, genres,
and instruments, as well as the variety of performers and performance techniques
implies the multiplicity of MIR-based systems, and at the same time numerous clas-
sification methods [16][17][35][37].

Rhythm is one of the elements of musical style, which may be valuable in re-
trieval. The rhythmic structure together with patterns retrieved carry information
about the genre of a piece. The important feature of a rhythm finding model is
whether it accepts audio or symbolic input [9]. The difference between those types
of models is fundamental – in case of audio input a method to extract sounds from
an acoustic signal is employed first, then the quantization or metric analysis can be
performed. The process to convert audio data into symbolic representation of mu-
sic is called audio transcription. It should be remembered that audio transcription
methods were engineered to extract pitches, onsets and durations of sounds from
raw audio data. The same transcription methods can be employed in rhythm re-
trieval systems if it is assumed to find the musical rhythm in raw audio recordings.
Current transcription methods work well for signal containing melody contour only,
the results get worse if the piece is polyphonic (an example of research by Dovey
can be studied in this context [4]) multi-instrumental, contains drum tracks (a paper
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by Ryynanen & Klapuri is a good example of such research - [28]) non-instrumental
tracks, human singing voice or if the signal is distorted. After the transcription stage,
the symbolic representation is available, thus high level analysis of musical content,
retrieval or classification methods can be performed.

Beat tracking is part of automatic music transcription systems, and is also used in
music information retrieval, metadata generating and accompaniment [5]. A good
example of a beat tracking system is the one proposed by Goto [8], recognizing the
hierarchical structure of rhythm up to a measure level. The system processes popu-
lar music sampled from compact discs in real time, and the method deals with audio
performances also if they contain drum tracks. The knowledge used to accomplish
this includes onset times, changes in harmony and drum patterns. It is to remind that
notes are defined by note onset time, pitch, and duration. The note onset is the be-
ginning of the note. The note onset detection aims to find the start of musical events.
In the real-life performances the onsets of sounds are not equally spaced, because
of performer’s inaccuracies in playing. The process of rounding the inter-onset in-
terval (interval between onsets) and durations of sounds to the time grid is named
quantization. The quantization of onsets of sounds is a process modifying the on-
sets to be placed in the particular locations of bars, namely in the multiplies of the
shortest rhythmic values in a song, the differences between two subsequent onsets
after quantization are thus equal to the natural multiple of an atomic period. Sound
durations also are a subject of quantization – they should belong to a finite set of
possible durations. In this case, rhythm quantization is the operation aiming at qual-
ify the sound as a note of particular rhythmic value, i.e. one-eights, quarter-notes,
half-notes or their multiplies. A paper by Desain [3] provides a concise overview of
past approaches to the quantization of time intervals.

Possible applications of metric rhythm retrieval method, i.e. to find the en-
tire hierarchic structure of related rhythmic levels, are: music recommendation,
plagiarism detection, automatic synchronization of music with other elements of
multimedia applications, support in creating musical scores that base on MIDI in-
struments played melodies, automatic drum accompaniment or retrieval based on
musical genre.

The Chapter is organized as follows: Section 2 reviews computational rhythm
retrieval-related studies. Then, in Section 3 the experimental setup is presented and
as well as the layout of all experiments performed within this study is shown. Also,
the method proposed by the Authors is visualized as a block diagram. Experiments
1-3 have been already presented by the authors in other publications that is why only
their experimental outcome is recalled, since it is used as the basis in Experiments 4
and 5, the most important part of this Chapter. To this end, some notions such as cre-
ating and ranking rhythm hypotheses were introduced in the consecutive Sections.
Especially important is the representation of music used in the context of ranking
rhythmic hypotheses. Experiment 6 is devoted to subjective tests to validate the au-
thors’ theoretical and experimental approach to rhythm retrieval. Detailed results of
experiments and Concluding remarks are contained in Sections 4-5.
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2 Related Works

The scope of the studies concerning rhythm is very wide and, among other issues,
involves the quantization process of the onsets and durations of notes, the extraction
of rhythm events from audio recordings, and the search for meter of compositions.
A good review of automatic rhythm description systems is brought by Gouyon and
Dixon [9], and Schuller et al. [30].

The task of computational rhythm retrieval is complex; it consists of a few stages.
The simplified approach to this task may be reduced to retrieving the sequence of
onset times and/or durations of sounds from the musical data – this process is called
quantization or rhythm parsing. In some other approaches, the time signature is re-
trieved on the basis of a musical content. For clarifying, the time signature appears
at the beginning of a piece of music, it is the symbol that tells the meter of the
piece [13]. It looks like a fraction written without a horizontal line between numer-
ator and denominator. The lower number is the main rhythmic value appearing in
the piece, and the upper number determines how many rhythmic values are stored
within one measure. In the class of computational rhythm retrieval methods, usually
the period of time is found, which divides the stream of sounds into repeating frag-
ments. This task may additionally be combined with phenomenal accent retrieval
in such a way, that the phase of phenomenal accentuations in a piece is found. If
the algorithmically discovered accentuations line up with human feet taping to the
melody, it may be concluded that the rhythmic level and a period equal to the me-
ter have been found correctly. The next complication is to retrieve metric rhythm.
Existing metric rhythm research usually focuses on retrieving low rhythmic levels –
usually to the level of a measure, those methods are enough to emulate human per-
ception of a local rhythm. According to McAuley & Semple [24] trained musicians
perceive more levels, though. High-level perception is required from drum players,
thus computational approach needs to retrieve the so-called hypermetric structure
of a piece. If it reaches high rhythmic levels such as phrases, sentences and periods,
automatic drum accompaniment applications can be developed. That is the motiva-
tion behind the authors’ approach to the rhythm retrieval, namely creating the drum
accompaniment automatically.

Most of the methods in related research retrieve either single rhythmic levels or a
rhythmic structure, of which highest rhythmic level reaches the meter. First we will
try to describe the term rhythmic/hypermetric structure more thoroughly. Metric
structure includes meter, tempo, and all rhythmic aspects which produce temporal
regularity or structure, against which the foreground details or durational patterns
are projected. Hypermeter is large-scale meter (as opposed to surface-level meter)
created by hypermeasures which consist of hyperbeats [13].

Lester proposed: “Meter is ... an organization of pulses that are of functionally
equivalent duration. For a meter, and, by extension, a hypermeter, to exist, there
must be a stream of pulses to be organized”. Hypermeter, if it is to be analogous to
meter, must concern itself with groupings of equivalent pulses, not with the pairing
of structural events. Meter is thus an aspect of grouping, or partitioning, which is in
turn a vital aspect of rhythm [11].
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For Kramer, distribution of accents is crucial to the perception of meter. Musical
events cause accents, and the recurrence of accents at specific timepoints creates
meter. He identifies three types of accent.

1) Stress accent: performance/notational conventions, e.g. dynamics;
2) Rhythmic accent: a point of stability (e.g. a cadence; probably also agogic);
3) Metric accent: a point of initiation.

His, third category is a statement of a simple musical reality: accents often coincide
with the notated beat. Where the accents coincide regularly with the notated down-
beat, he draws the analogy of measure beat. At this point, hypermetric structures are
obtained [7].

There exist two significant works concerning retrieval of the hypermetric struc-
ture of rhythm with rhythmic levels exceeding meter. The first approach, being at the
same time one of the first methods of creating and ranking hypermetric hypotheses,
was proposed by Rosenthal [26][27], but performance of the method does not ex-
ceed 65%. The method was implemented in the “Machine Rhythm” system. It takes
unquantized musical data presented in a symbolic format as inputs. The model is
able to cope with slight changes in tempo. Temperley & Sleator [32], authors of
the second approach, the so-called preference-rule method, admit, that the rhyth-
mic levels above the meter are not retrieved correctly with their method. Therefore
one of the aims of this study was to propose an approach overcoming limitations of
existing methods.

Rhythm retrieval models proposed by various researchers are usually based on
the same assumptions coming from the domain of music theory, but the ways they
operate and music representations might be different. The theory constituting the
foundations of most computational models of metric rhythm retrieval is the Gen-
erative Theory of Tonal Music (GTTM) by Lerdahl & Jackendoff [22]. Main ideas
postulated in GTTM, used to construct rhythm finding models, concern phenome-
nal accent and hierarchy of rhythmic structure. Phenomenal accent depends on such
features of a piece as: local amplitude stresses, duration of sounds, frequencies of
sounds, locations of sound onsets and changes in dynamics and harmony. The hierar-
chy of rhythmic structure concerns either low rhythmic levels or so-called groupings
corresponding to phrases, sentences or periods. Rhythm finding systems very often
rank the hypotheses, using the sound salience function. In fact, Lerdahl & Jackend-
off, the authors of GTTM [22] claim that the physical attributes of sounds such as
pitch, duration and amplitude influence the rhythmical salience of sounds. A num-
ber of research studies are based on this theory. An approach proposed by Rosen-
thal citero ranks higher hypotheses in which long sounds are placed in accented
positions. Similar approaches were presented by Povel & Essens citepo, Allen &
Dannenberg [1] and Parncutt [25]. In a multiple-agent approach by Dixon [6] two
salience functions are proposed, combining duration, pitch and amplitude. First of
them is a linear combination of physical attributes – Dixon calls it an additive func-
tion (Eq. 1) the other – multiplicative function can be calculated with Eq. 2. Both
Equations use p[pmin, pmax] values satisfying conditions of Eq. 3.
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sadd(d, p,v) = c1 ·d + c2 · p[pmin, pmax]+ c3 · v (1)

smul(d, p,v) = d · (c4 − p[pmin, pmax]) · log(v) (2)

p[pmin, pmax] =

⎧⎨
⎩

pmin, p ≤ pmin

p, pmin < p < pmax

pmax pmax ≤ p

⎫⎬
⎭ (3)

In the above Eqs., pmin, pmax and ck,k = 1,2,3,4 are constants set experimentally, d
denotes the duration of sound expressed in seconds, p is MIDI pitch and v is the am-
plitude of a sound (MIDI velocity). The values of pmin, pmax and c1, k=1,2,3,4 were
set experimentally and received values: pmin = 48, pmax = 72, c1= 300, c2 = -4, c3 =
1, c4 = 84. Either additive or multiplicative functions count the rhythmical salience
of sounds. The real influence of physical attributes on the rhythmical salience was
not estimated experimentally. The authors of this Chapter used and verified these
functions in their experiments.

As mentioned before, the literature about metric rhythm is vast, but only a few
works refer to the hypermetric rhythm retrieval. A prototype system of automatic
drum accompaniment, created on the basis of hypermetric structures, had not as
yet been proposed by researchers, that is why one of our aims was to build such a
system. The working principle of the system engineered will be shown later.

3 Hypermetric Rhythm Retrieval Approach

The block diagram of the experiments that were conducted by the authors is pre-
sented in Fig. 1. The experimental setup consisted of the rhythm retrieval and auto-
matic hypothesis creating and ranking processes is visualized in Fig. 2. The method
proposed was validated through experiments conducted on a database of national
anthems, retrieved from the Internet [39]. Binary MIDI files were converted to the
textual form, that enabled musical analysis and MIDI commands insertion. Note on-
sets were quantized then, and atomic period u was calculated. Rhythmic hypotheses
are formulated with a method proposed by the authors, i.e. periods and phases of
rhythmic levels are created first, then related rhythmic levels are grouped into fam-
ilies (hypotheses). The entire hypothesis forming stage has already been described
by the authors [18] and presented in Wojcik’s Ph.D. thesis [39], thus in the following
Chapters we will focus on the hypothesis ranking and then the drum accompaniment
creation.

3.1 Experiments 1-3

The aim of Experiments 1-3 was to estimate the rhythmic salience of sounds. The
salience-based approach employed artificial neural networks, association rules from
the data mining domain as well as rough sets [19][20][21]. The main conclusion
coming from that research was that duration is the only attribute of sound, that
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Fig. 1 Experiment layout

Fig. 2 Block diagram of the method
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should be considered in ranking of the rhythmic hypotheses. The outcome of these
studies showed also a strong tendency of “long notes to be placed in accented posi-
tions” [21].

Thorough analysis of Experiments 1-3 have already been presented by the au-
thors in previous publications [21][38][40], thus they will only be recalled here. For
further analysis only their outcome is needed. The aim of the Experiment 1 was to
examine whether physical attributes influence the rhythmic salience of sounds and
how the stability of results depends on the choice of data for experiments. It also
included study on the influence of the number of discretization subranges on the
precision/recall of the method, and the way in which the rhythmic salience of sound
depends on its physical attributes. This was done by using Data Mining Association
Rules.

To judge both the ranking functions and at the same time Dixon’s additive
and multiplicative functions, a precision/recall evaluation measure is to be em-
ployed. With the same measure, it is possible to choose the most optimal number of
discretization subranges. In Information Retrieval (IR) domain precision and recall
are calculated with expressions (4) and (5).

Precision = N/number o f documents in answer (4)

Recall = N/number o f relevant documents in database (5)

In the above expressions, N denotes the number of relevant documents in the answer.
In the evaluation method proposed, a single sound plays the role of a document.
Relevant documents are those sounds which are accented. The sounds are sorted de-
scending, according to the value of each ranking function. N highly ranked sounds
are placed in the answer. The number of sounds placed in the answer equals to the
number of the relevant documents (sounds placed in the accented positions). De-
nominators of precision and recall get the same value, which results in the equality
of precision and recall giving a single measure, allowing for an easy comparison of
ranking approaches. This measure will be called PR (precision/recall). The best of
the proposed functions or approaches is the one, which gets the highest the highest
PR of retrieval, calculated according to Eq.6.

PR = numbero f soundsdenominated asaccented/numbero f accented sounds (6)

The aim of the Experiment 2 was to apply another computational intelligence tech-
nique, namely Artificial Neural Network (ANN) to resolve salience problem. ANNs
were fed with musical data to train them to recognize accented sounds on the basis
of physical attributes. In particular, it was expected to receive confirmation whether
physical attributes influence a tendency of sounds to be located in accented posi-
tions. Further, it was to answer how complex is the way the rhythmic salience of
sound depends on its physical attributes, and moreover to observe the stability of
ANNs answers.
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Experiments 1 and 2 showed that the dependency between physical attributes
of a sound and its salience is simple – an approach taking only one attribute into
account (i.e. duration, pitch, amplitude) ranks accented sounds even slightly better
than a method considering a combination of attributes. Therefore the aim of the
Experiment 3 was to examine whether the proposed simplified sound duration-based
approach to the salience problem performs equally well as the one based on complex
Dixon’s functions [6].

The results obtained from these experiments (1-3) proved that regardless of what
type of melodies were used, the findings were similar. The accuracies of methods
retrieving accented sounds using the salience approach, proposed and verified in
Experiments 1-3, were compared to the approach proposed in related literature.
Dixon’s additive and multiplicative functions are the only ones which express quan-
titatively the value of salience, thus they could be treated as a reference in the study
of salience. Therefore computational intelligence-based approach verified experi-
mentally that both intuitive considerations of researchers and functions proposed
by Dixon are correct. In this way our approach was verified with other literature
findings and we could use the outcomes for the experiments carried out previously.

Further analysis in this study will be limited to the description of Experiments 4,
5 and 6 and to the presentation of the results. Since assumptions in Experiments 1-3
(i.e. salience approach) were different from those in Exp. 4-6, i.e. they were carried
out on monophonic melodies, also the context of the previous and consecutive notes
was not considered, thus the results are not straightforward comparable. However,
as mentioned before, they were very similar to those obtained by other researchers
in the rhythm retrieval area.

As explained later, in Experiments 4-5 the context of neighboring notes was taken
into account. In addition, Experiments 4 and 5 are conducted on polyphonic versions
of national anthems. The proposed method can also process polyphony, i.e. melodic
contours are extracted automatically. If two or more sounds appear simultaneously,
two approaches are verified – either the upper or the lowest sound of a chord is
included into a melodic contour. In Experiment 6, experts could listen to a refer-
ence musical piece, which was polyphonic. Experiments 4-5 were conducted on 80
national anthems. In Experiment 6, experts listened to 47 anthems in alphabetical
order, starting from the anthem of Afghanistan. The number of anthems had to be
limited, because the duration of a single session of subjective listening test should
not exceed 20 minutes. Exceeding this time could result in the loss of objectivity of
experts’ answers, because of tiredness, which may affect the auditory system. Sub-
jective listening tests were conducted according to criteria taking into account the
influence of test conditions on human perception, studied by Kostek [14].

3.2 Experiment 4 - Creating and Ranking Rhythmic Hypotheses

In the salience-based approach (Experiments 1-3), the context of neighboring sounds
was not considered. However, human perception of rhythm is based on the recur-
rence of musical patterns, thus a succession of sounds should be taken into account.
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Another interesting problem is how to represent music to achieve high performance
of hypothesis ranking method. Therefore, in Experiment 4, it was examined what
is the influence of the representation of a melody on the correctness of ranking the
rhythmic hypotheses. This issue will be discussed later on.

The accuracy of salience approach applied to rank rhythmic hypotheses is com-
pared to accuracies of methods of recurring melodic and rhythmic patterns.

A method to generate rhythmic hypotheses related to a given melody has been
proposed. All sets of related rhythmic levels must be found. To find all possible
periods, the engineered algorithm searches for the atomic period (u) of the piece,
which can be found in two steps: subtracting onsets between all pairs of two adja-
cent sounds in the piece and finding the smallest of differences, which will further
be called the atomic period. The assumption is made that musical data are quan-
tized, and there are no ornaments in a piece. Quantized data is devoid of slight time
differences between onsets of sounds, which should appear simultaneously or in
particular locations in the piece, that is in multiplies of the atomic period. The dif-
ferences in non-quantized music performed by a professional player are very little,
thus they may be not be perceived by human ear. There exist several methods of
quantization, they can be easily found in the literature e.g. by Cemgil et al. [2]. The
remaining possible periods of the piece are found by multiplying an atomic period
by prime numbers – in Western music in most cases those numbers are 2 or 3. Divi-
sions such as 5, 7 happen very rarely, 11 – almost never. That is why in this approach
double and triple divisions are considered. Let us call the atomic period a period of
layer number zero. By multiplying atomic period u by 2 or 3 two new onsets in the
first layer are obtained. Onsets in the second layer are derived by multiplying all
first layer onsets by 2 or 3. Creating new layers is finished when the smallest onset
in the recently created layer exceeds half duration of the piece.

For each created period onsets are counted. The first onset of each period is the
onset of the first sound in the piece. Adding subsequent natural numbers of atomic
periods to the first onset creates the consecutive onsets. For each period as many
onsets are generated as is the period length, expressed in the number of atomic peri-
ods. All related rhythmic levels form the hypothesis. The first step in this experiment
was to assign a correct hypothesis to each of the melody pieces. The hypothesis is
a sequence of rhythmic levels as shown in the example in Fig. 3. The hypothesis
is presented there in a graphical form as a series of dots over a score of a piece.
The hypothesis is written in square brackets. Each rhythmic level in a hypothesis is
a pair of numbers – the first number denotes a period and the second is the onset
of a rhythmic level. A rhythmic level with a period equal to the atomic period is the
first rhythmic level in each hypothesis. This level is the child of all other rhythmic
levels in the hypothesis.

3.2.1 Musical Piece Representations

Computational representations of any of the elements of a musical piece are sim-
plified to the extent allowing optimal processing. However, it cannot lose too much
information, since it is supposed to provide high precision and recall of retrieval. In
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the aspects mentioned above, melody can be represented in a number of the ways.
The most suitable representations of non-polyphonic melodies, are as follows:

- melody profile,
- sequence of frequencies,
- sequence of intervals,
- sequence of approximate intervals
- sequence of directions of intervals.

The sequence of directions of intervals is often employed in Music Information
Retrieval systems, and it is sufficient enough for successful melody retrieval. In
recent works, one may also find examples of studies that use melodic (or fraction
of) intervals as the melody representation. However, the authors decided to check
the above cited melody representations, only.

Melody Profile

Melody profile contains information in the frequency domain (pitches of sounds)
and in the time domain (onsets and durations of sounds). This representation gives
information on the rhythm and tonality of a melody. For the example given in
Fig. 3, the melody profile would be:

C1 (1/16) C1 (3/16) C1 (1/16)
F1 (1/4) F1 (1/4) G1 (1/4) G1 (1/4)
C2 (11/16) A1 (1/16) F1 (3/16) F1 (1/16)
A1 (3/16)

1 0
2 1

8 5
4 1

16 5

C

F

A
G

D

Fig. 3 Correct hypothesis [<1, 0> <2, 1> <4, 1> <8, 5> <16, 5>] and a melody pro-
file to the score of “La Marseillaise”

Numbers shown in Fig. 3 denote the consecutive rhythmic levels and they refer
to the correct hypothesis. The correct hypothesis is achieved through adding sub-
sequent rhythmic levels. The first step to build the hypothesis is to add the first
rhythmic level <1, 0>, which exists in each hypothesis. Then one of the following
levels <2, 0>, <2, 1>, <3, 0>, <3, 1> or <3, 2> is added. After adding each
single rhythmic level to the existing hypothesis, authors of this Chapter listened
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to drum accompaniment, in order to determine the adequateness of the hypothe-
sis, which for the excerpt above is as seen in Fig. 3. The hypothesis is presented
n a graphical form as a series of dots over a score of a piece. Dots regard loca-
tions of drum fill-ins. The accompaniment is added to the melody by inserting a
drum channel, whose number is 10 in the MIDI file. Hi-hat hits are inserted in the
locations of rhythmic events associated with the first rhythmic level. The consecu-
tive drum instruments associated with higher rhythmic levels are: bass drum, snare
drum, open triangle, splash cymbal, long whistle and a Chinese cymbal, as shown in
Table 1.

Table 1 Drum instruments added at a particular rhythmic level

Rhythmic level
Name of the instrument

1 Closed hi-hat
2 Bass drum
3 Snare drum
4 Open triangle
5 Splash cymbal
6 Long whistle
7 Chinese cymbal

Sequence of Frequencies

In comparison to the melody profile, the sequence of frequencies representation con-
tains information about the tonality of a piece, but loses rhythmic information – i.e.
the duration of all sounds is noted as equal. The graphical representation of sequence
of frequencies representation to the melody of “La Marseillaise” is presented in
Fig. 4.a. The textual representation in this example would be:

C1 C1 C1 F1 F1 G1 G1 C2 A1 F1 F1 A1

Sequence of Intervals

Sequence of intervals representation is a further simplification of music. It contains
neither rhythmic nor tonal information. The sizes of intervals are preserved, how-
ever. If frequencies were expressed in halftones, and the first sound of a melody was
marked by an asterisk ‘*’, the textual sequence of intervals drawn in Fig. 4.b would
be:

∗ 0 0 5 0 2 0 5 −3 −4 0 4

Sequence of Approximate Intervals

Music representations described above, i.e. melody profile, sequence of frequencies,
sequence of intervals, as well as sequence of directions of intervals are represen-
tations commonly used in MIR research. Wojcik in his P.D. work proposed a new
representation of music [39], which is a sequence of approximate intervals. This
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is very similar to the MelodyContour descriptor designed in the MPEG-7 standard
as a five-level contour [10]. In the sequence of approximate intervals, intervals are
reduced and classified depending on their size and shift. The idea of approximate
intervals is presented in Table 2. The first column in the table, C(1 0), presents the
consecutive intervals, expressed in semitones, which represents a sequence of in-
terval representation. The second column simplifies intervals to entire tones. Since
intervals approximated by entire tones (range of two semitones) can be rounded to
the upper semitone or the lower one, two shifts are distinguished in the table, namely
C(2 0) and C(2 1). The methods work analogically with approximation by the range
of three semitones, in this case there are three possible shifts. The next column in
the table would be C(4 0). The values inserted in the table are equal to the lowest
interval in each range as seen in the first column.

Table 2 Approximate intervals music representation

C(1 0)
C(2 0) C(2 1) C(3 0) C(3 1) C(3 2)

-2 -2 -3 -3 -2 -4
-1 -2 -1 -3 -2 -1
0 0 -1 0 -2 -1
1 0 1 0 1 -1
2 2 1 0 1 2
3 2 3 3 1 2

Sequence of Directions of Intervals

The sequence of directions of intervals preserves no information of intervals sizes.
In this representation, it is only known whether the consecutive sound has lower (d
– down), higher (u – up) or equal frequency (s – the same) in comparison to the
previous sound. Example illustrated in Fig. 4.c would be represented textually as
follows:

* s s u s u s u d d s u

3.2.2 Creating and Ranking Rhythmic Hypotheses

After the system generated all rhythmic hypotheses according to the approach pro-
posed in this Chapter, then the hypotheses were ranked employing approach pro-
posed by the authors:

1. sound duration-based hypotheses ranking method,
2. repeating melodic patterns represented as:
- sequences of frequencies,
- sequences of intervals,
- sequences of approximate intervals,
- sequences of directions of intervals;
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Fig. 4 Representations of a melody: a) sequence of frequencies, b) sequence of intervals, c)
sequence of directions of intervals

3. repeating rhythmic patterns.
In each of the above mentioned approaches for all pieces, the accuracy of the

method is counted with the aid of Eq. 7, the obtained method accuracies are then
averaged. The aim of this experiment is to find the most accurate methods to rank
rhythmic hypotheses.

For each ranking method, hypotheses are sorted descending, according to the
ranking values, each hypothesis gets a ranking position RP, belonging to the range
1..NoH, where NoH is the number of the hypothesis. The accuracy of the method is
equal to the expression given below:

Accuracy = 100%− RP−1
NoH

(7)

Each musical piece in the dataset receives the accuracy calculated. The authors val-
idate engineered methods by averaging the accuracy of a single hypothesis ranking
function for all pieces.

Sound Duration-Based Hypothesis Ranking Method

The idea for the hypothesis ranking approach based on sound duration comes di-
rectly from the salience research proposed in previous studies by the authors [18].
Since the experiments performed proved experimentally that sounds of long dura-
tion are placed in the accented positions, the hypotheses ranking function awarding
duration is employed (see Eq. 8). Let the rhythmic levels, expressed as a sequence
of equally spaced rhythmic events, described by pairs <T,ϕ1> be given, where ϕ1

is an onset of the first rhythmic event in a piece, and a period T is the time between
two adjacent events. T is constant for each rhythmic level. A hypothesis containing
the set of rhythmic levels receives the ranking value HypRANKdur calculated with
Eq. 8, where NoL is the number of rhythmic levels in the hypothesis, NoN is the
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number of notes in a piece and NoRE is the number of rhythmic events belonging
to the rhythmic level.

HypRANKdur =
NoL

∑
i=(1 0)

NoN

∑
k=1

{
Notek ·Duration ← j ∗T +φ1 = Notek ·Onset, j = 1..NoRE
0 ← otherwise

(8)

3.2.3 Recurrence of Melorhythmic Patterns

Recurrence of Melody Patterns

In each of the above mentioned approaches (melodic patterns are represented as a se-
quence of frequencies, a sequence of intervals and a sequence of directions of in-
tervals), for each hypothesis and for each rhythmic level, a sum of repetitions of
each pattern was calculated and assumed to be a hypothesis ranking value. Each
pattern is a fragment of a melody which begins at locations calculated with Eq. 9
and ends at locations calculated with Eq. 10, where ϕ1 is the onset of the first onset
in a song, n is a natural number and T is the period of the rhythmic level. Rhythmic
level <1,0> is a descendant of all rhythmic levels in the hypothesis, for which the
value of ranking is currently calculated, so the repetitions of this constant element
of each sum can be skipped.

ϕ1 + n ·T (9)

ϕ1 +(n + 1) ·T (10)

In the hypothesis ranking methods with the recurrence of melodic patterns, a
polyphony problem should also be treated. Two approaches to this problem can
be proposed. In the first approach, a sequence of the highest sounds of the chords
were treated as a melody, in the second one a sequence of the lowest sounds in the
chords were considered to create a melody. For this reason, the hypothesis ranking
method for each of the three representations of a melody has two accuracy values
calculated, thus all melody pattern representations will receive six average accuracy
values.

Recurrence of Rhythmic Patterns

The influence of repeating rhythmic patterns on the ranking of the rhythmic hy-
potheses is also examined in this experiment. The recurrence of repeating rhythmic
patterns was proposed by Wojcik in his doctoral thesis to rank the rhythmic hy-
potheses [39]. The rhythmic pattern is a binary vector in this approach. Period T,
expressed in the number of atomic periods u, is the length of the vector. Values ‘1’
are set at the positions where the note onsets appear, the remaining positions are
zeros. In the example from Fig. 3, the first full pattern in the piece on rhythmic level
<4, 1> is 1001. For rhythmic level <8, 5>, the first full pattern is placed in the
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first half of the second bar – this pattern is 10001000. The ranking value of each
hypothesis with rhythmic patterns is calculated in the same manner as in the case of
melody patterns, proposed above – the sum of repetitions of each pattern is calcu-
lated for each hypothesis and for each rhythmic level in the hypothesis. Rhythmic
levels with short periods belong to more hypotheses than the levels with long pe-
riods. Since a single rhythmic level may belong to many hypotheses, it is possible
to use the recurrence matrix, proposed in the next Section, to count the number of
repetitions only once, and then to use this value as many times as necessary.

Melorhythmic N-gram Recurrence Detection Algorithm

The main aim of the analysis of a piece rhythm is to extract repeating patterns from
the stream of notes. The rhythmic structure of a piece is hierarchical – longer rhyth-
mic levels contain shorter ones, which creates a hierarchical structure, that are called
rhythmical families by Rosenthal [27]. The frequencies of all patterns are calculated
in order to be used in the hypothesis ranking stage. Neither the onsets of patterns nor
their durations are assumed to be known. Thus, this task can be performed by find-
ing all repeating patterns with all possible durations. If the representation of rhythm
is textual, the task might be formulated as follows:

A text string R, representing melodic or rhythmical phrases is given. The length
of R is m. The algorithm should calculate the frequency of the appearance of all
n-grams, which are the substrings of text string R. The length of the n-gram is n.
The matrix M[i,j] is created i, j = 1...m. Each cell of Mi, j is a natural number equal
to the number of identical n-grams in string R, which begin at the ith position, and
have the length equal to j.

Example:

Let R = 110011001011. The matrix M for such a string is presented in Table 3.
Cells in matrix M contain values, which indicate how often the n-gram begin-

ning in the column over the particular value appears in the whole string of signs.
The length of that n-gram equals to the number of a row (from 1 to 6 in Table 3)
in which the particular value lies. Thus, each number 5 in 1st row means that 1-
gram ‘0’ appeared five times in the whole string, number 2 in the 5th row means
that 5-gram ‘11001’ appeared twice in the whole string. Recurrence of (k+1)-gram
is not calculated if the k-gram appeared only once in the whole string. Those cells
are marked with a hashmark ‘#’. In each row but ”1”, there also exists an l-gram,
whose last sign is the last note of a piece, thus this pattern cannot become longer,
and, as a result, a recurrence of (l+1)-gram also is not calculated. Such cells are
marked with an asterisk ‘*’.

The graphical representation of repeating patterns is a tree. A node of such a tree
is a structure containing each substring of R and its frequency in string R, separated
by two vertical dots (R:FrqR). A descendant in the tree is a substring, one symbol
longer than its ancestor. The proposed representation contains patterns:

– of all possible durations,
– onsets in all possible places in the piece,
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Table 3 N-gram recurrence matrix for string 110011001011

n 1 1 0 0 1 1 0 0 1 0 1 1
1 7 7 5 5 7 7 5 5 7 5 7 7
2 3 3 2 3 3 3 2 3 3 3 3 *
3 2 2 2 2 2 2 2 1 1 2 * *
4 2 2 1 1 2 2 1 # # * * *
5 2 1 # # 2 1 # # * * * *
6 1 # # # 1 # # * * * * *

– repeating at least once in the piece.
With all possible n-grams extracted, it is possible to calculate the frequencies

of all patterns in the piece. Pattern frequency information contained in the matrix
is used in experiments in hypothesis ranking approaches based on repetitions of pat-
terns represented as sequences of pitches, intervals or directions of intervals. Re-
peating some of the fragments in the piece is also one of the basic rules of music
composition. It can be assumed that long, repeating fragments of a melody are char-
acteristic motives for a particular piece. Those motives are called key melodies by
Tseng [33][34]. They can represent binary rhythmic patterns or melodic patterns in
any of the above-mentioned representations. The patterns in turn might be treated
as indexes or descriptors of a musical piece and can also be retrieved with a pattern
recurrence matrix. The onset of the key melody is located in each column having a
value 1 in the last row of the matrix (n=6 in the example shown in Table 3), the du-
ration of the key melody is then equal to n-1. In the above example, a key melody is
11001.

Further the repeating patterns in all proposed representations are used to rank hi-
erarchical rhythmic hypotheses. In the frequency domain patterns, represented as the
sequence of frequencies, sequence of intervals, sequence of approximate intervals
and sequence of directions of intervals, were utilized. In the time domain, binary
rhythm patterns were used. Influence of the representation of music on the accuracy
of the hypotheses ranking method is also analyzed.

3.3 Experiment 5 - Hybrid Approach

The performance of a few hypotheses ranking methods might be relatively high.
Thus, it is worth combining those methods and creating a hybrid approach, which
could result in high accuracy of the final method. Let the methods of high accuracies
be called promising methods. Hybrid approach could be stated as follows: a set of
hypotheses ranking methods {M1,M2, . . . ,Mp}, pieces {U1, U2, . . . , Uq}, and rhyth-
mic hypotheses {H1(Uj),H2(Uj), . . . ,Hr(Uj)} for each piece Uj are given. Hypoth-
esis Hk is ranked with the method Mi, the position occupied by Hk is RankPos(Mi).
For each hypothesis of a piece, a sum of RankPos(Mi) is counted for all promising
methods Mi in a set of promising methods PromMeth. For each set of promising
methods PromMeth, hypotheses are sorted ascending, according to the sum of rank-
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ing values. Then, the accuracy of the hybrid is counted in an analogous manner to
the accuracy of a single method i.e. with the aid of an expression proposed in the
previous Section (Eq. 7).

Therefore in Experiment 5, a hybrid approach of ranking rhythmic hypotheses is
verified. Accuracy and stability of the results of the hybrid approach and methods,
examined in Experiment 4, are also compared. Experiment 5 is conducted with the
aid of an application realizing the hypermetric rhythm approach. A system, named
DrumAdd, accepting melodies in MIDI format analyzes a given melody and gener-
ates drum accompaniment automatically [21][39].

3.4 Experiment 6 – Subjective Listening Tests

Experiment 6 is the final one, in which subjective listening tests were conducted
in order to verify whether the proposed ranking hypothesis approach remains in
a good agreement with the human perception of rhythm. Subjects listened to the
musical pieces with automatically added drum accompaniments.

The aim of subjective tests was to verify, whether the method of ranking hyper-
metric hypotheses, proposed in this Chapter, agrees with the human perception of
rhythm. A group of ten subjects was formed of students, undergraduate students
and Ph.D. students of the Multimedia Systems Department of Gdansk University
of Technology, most of them having some musical background. The age of experts
was between 23 and 34, since it is assumed that listeners in this age group have a
good perceptual memory.

Experts listened to the reference pieces, which were polyphonic national an-
thems, not containing drum tracks. After listening to the reference piece, each expert
listened to a pair of melodies of the same anthem with drum accompaniment added
automatically. One of accompaniments in a pair was created on the basis of the hy-
pothesis, which was highly evaluated by the hypermetric rhythm retrieval approach
proposed in this Chapter. The second version of each anthem contained a drum
track, created either on the basis of the last or on the middle rhythmic hypothesis in
the ranking list.

Each expert was expected to indicate which accompaniment in a pair is more ad-
equate to the rhythm of the reference piece. Of course, the experts did not know the
positions of the hypotheses in the ranking list. The non-parametric paired compari-
son test [14][15] conducted within this experiment does not require a judgment scale
– experts were expected to indicate a better accompaniment in a pair. Each expert
evaluated the accompaniments ordered alphabetically, starting from the anthem of
Afghanistan. The experiment was conducted on 47 pieces (as already mentioned),
the reason for this is that the duration of a single session of subjective listening
test should not exceed 20 minutes. The last was Guyana anthem. The anthems of
Bangladesh, Bulgaria and Dominica are musical pieces of non-constant meter, so
they were not included in the set. From the point of view of the objectification of re-
sults, the duration of compared pieces is one of the important factors. Experts could
listen to a piece for until they perceived its rhythm well – usually it was enough to
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listen to few bars. Listeners could decide when to end their listening to the piece or
they could start listening to the piece again for deeper analysis of its rhythm.

Two sessions were conducted. In the latter one, each expert evaluated the same
accompaniments as in the first session, but in a different order. With tests conducted
this way, it is possible to estimate the extent to which experts’ votes are consistent.
Stability of each expert’s judgment is based on the statistical paired test [14] and
determines a listener’s reliability. The critical value of inconsistent answers should
not exceed the value calculated with Eq. 11:

0.5 · (n−1 + xα
√

n) (11)

In this experiment the critical value equals 28.64, it was calculated for the number
of n=47 pairs and significance level α = 5%. The value of xα = 1.645 was taken
from statistical tables. As presented in Fig. 5, all experts made fewer mistakes than
the critical value, so they can be considered as reliable listeners.
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Fig. 5 Experts’ reliability

4 Results

For each rhythmic hypothesis, eight ranking positions are calculated – one per each
ranking method mentioned below:

- sound duration-based method (salience-based method),
- repeating melodic patterns with melody created of highest sounds of the chords;

melody represented as a sequence of frequencies,
- repeating melodic patterns with melody created of highest sounds of the chords;

melody represented as a sequence of intervals,
- repeating melodic patterns with melody created of highest sounds of the chords;

melody represented as a sequence of directions of intervals,
- repeating melodic patterns with melody created of lowest sounds of the chords;

melody represented as a sequence of frequencies,
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- repeating melodic patterns with melody created of lowest sounds of the chords;
melody represented as a sequence of intervals,

- repeating melodic patterns with melody created of lowest sounds of the chords;
melody represented as a sequence of directions of intervals,

- repeating melodic patterns, where a melody is represented as a sequence of
approximate intervals,

- repeating rhythmic binary patterns.

The results for all hypothesis ranking approaches are shown in Tables 4 and 5. The
values in rows B, C and D of Table 4 are accuracy methods, where the melodic
contour, automatically extracted from polyphonic pieces, consists of the pitches of
the highest sounds in chords, whereas the values in rows O, P and Q are respec-
tive accuracies, but the lowest sounds of the chords constitute the melodic contour.
Results in the Table 5 present accuracies for melody represented as ‘sequence of
approximate intervals’. The hypothesis ranking method which received the smallest
accuracy is a recurrence of melodic patterns represented as ‘sequence of intervals’,
however its performance is still high (92.74% - row C in Table 4 and in Table 5).
The accuracy of the remaining methods exceeded 95%, performances of 10 of 17
methods exceeded 97%. Since the accuracies of all methods in Tables 4 and 5 are
high, thus it might be concluded, that all melorhythmic patterns and the duration-
based approach are good enough to rank rhythmic hypotheses. For this reason, the
authors recommend to contain all methods in the hybrid approach.

Table 4 Average accuracies of ranking hypothesis methods (Part 1 – sound duration-based,
upper and low sounds of melodic patterns, rhythmic patterns)

Ranking method Average method
accuracy [%]

Standard
deviation

A. Salience-based (sound duration-based) 96.12 7.5
B. Sequence of frequencies, highest sounds 96.33 8.5
C. Sequence of intervals, highest sounds 92.74 16.7
D. Sequence of directions of intervals, highest sounds 98.99 4.3
O. Sequence of frequencies, lowest sounds 97.98 5.8
P. Sequence of intervals, lowest sounds 97.62 7.5
Q. Sequence of directions of intervals, lowest sounds 98.95 3.9
R. Rhythmic patterns 96.49 9.4

Remark 1

The level to which a melody is simplified influences ranking accuracy. This con-
clusion is deduced from the results presented in Table 5, where performances of re-
curring melodic patterns, represented as approximate intervals consisting of highest
sounds of chords are presented. It may be observed that the larger the size of approx-
imate interval, the larger the accuracy of the method associated with this interval.
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Table 5 Average accuracies of ranking hypothesis methods (Part 2 – sequence of approxi-
mate intervals, highest sounds of chords)

Ranking method Average method
accuracy [%]

Standard
deviation

C. C(1 0) (Sequence of intervals) 92.74 16.6
F. C(2 0) 95.40 11.4
G. C(2 1) 95.52 10.9
H. C(3 0) 97.05 7.7
I. C(3 1) 97.01 7.7
J. C(3 2) 96.85 8.2
K. C(4 0) 97.50 6.7
L. C(4 1) 97.66 6.2
M. C(4 2) 97.86 5.1
N. C(4 3) 97.82 5.7

Results from Table 5 are visualized in Fig. 6, where accuracies of approximate in-
tervals are clearly clustered within separable ranges of accuracies. The authors did
not observe the influence of shifts of approximate intervals on the accuracy of the
method.

92 

93 

94 

95 

96 

97 

98 

99 

Accuracy 

  L - C(4_1) 
  K - C(4 0) 

  J  - C(3_2) 
  G  - C(2 1) 
  F  - C(2_0) 

  M - C(4_2) 
  N - C(4_3) 

  H - C(3_0) 
   I  - C(3_1) 

  C - C(1_0) 

 

 

 Fig. 6 Accuracy of method based on recurrence of melodic patterns represented as approxi-
mate intervals (size 1-4, all possible shifts)

Remark 2

There exists a relation between the performances of the methods and their standard
deviations. This can be observed in Fig. 7, which presents the average performance
of each approach (value in coordinate 0Y is equal to the accuracy averaged for all
anthems) and standard deviation in the first coordinate (0X), calculated from the
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series of accuracies of all anthems. It can be concluded from Fig. 7 that the higher
accuracy, the smaller standard deviation. In other words: results are more stable for
methods having good performances.

Fig. 7 presents also the performance and stability of the hybrid approach (exper-
iment 5) in comparison to the performances and stabilities of elementary methods.
Hybrid approach achieved accuracy equal to 99.11%, which is the highest value
in comparison to all elementary methods. The results are also the most stable –
standard deviation achieved the value of 2.2, which is the smallest among all ele-
mentary methods. It can be easily noticed that the performance of the hybrid method
is located closer to an ideal ranking method than all elementary methods - the coor-
dinates of the ideal ranking approach are (0, 100).

 

91
92
93
94
95
96
97
98
99

100 

5.0 10.0 15.0 20.0
Standard deviation

Accuracy

A

B

C

D

FG

H,IJ
KLM

O

R

Q P
N

hybrid

 Fig. 7 Relation between accuracies of all hypothesis ranking methods and their standard
deviations

In Figs. 8 and 9, the percentage of votes given by listeners for the rhythmic hy-
potheses which were ranked by hypermetric approach as the first ones in the ranking
list (upper plots) and percentage of inconsistent answers (bottom plots) can be seen.
Fig. 8 presents the results for the ‘last’ series, whereas in Fig. 9, the results of the
‘middle’ series can be observed. Fig. 10 presents the comparison of inconsistencies
between ‘last’ and ‘middle’ series.

Remark 3

The inconsistency of votes is strongly related to the percentage of votes given on a
hypothesis ranked as the highest one. This relation can be easily noticed in Figs. 8
and 9. Listeners were not confident about their answers, when they compared two
hypotheses, one of which was not significantly better than the other one. It can thus
be concluded that although a single hypothesis is considered as a correct one, there
exists a degree of acceptance for the remaining hypotheses.
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Fig. 8 Inconsistency of votes (bottom plot) and percentage of votes on a highly ranked hy-
pothesis (upper plot), when compared to the last hypothesis
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Fig. 9 Inconsistency of votes (bottom plot) and percentage of votes on a highly ranked hy-
pothesis (upper plot), when compared to a middle hypothesis

Remark 4

The average percentage of inconsistent answers in the ‘last’ series equals 3.62,
whereas the average percentage of inconsistent answers in the ‘middle’ series is
equal to 8.09. The percentage of inconsistent answers for each anthem for the ‘last’
and ‘middle’ series, which can be seen in Fig. 10, confirms this remark visually. In
addition, the average percentage of votes, given on the first hypothesis was equal
to 96.91%, when the first and last listed hypotheses were compared, whereas aver-
agely 93.62% of votes were given on the first hypothesis, when it was compared to
the middle one. Above results indicate that:

- hypothesis ranked as the highest one is usually recognized by expert as the best
one, when compared to either middle or last hypotheses,

- experts were more confident about their votes, while comparing the first hy-
pothesis against the last one rather than against the middle one.
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Fig. 10 Percentage of inconsistent answers in the ‘last’ and ‘middle’ series

It can thus be concluded that the middle hypothesis is usually more adequate to
human rhythm perception than the last one, and the highest ranked hypothesis is
more adequate than the middle one. Therefore, hypermetric rhythm retrieval method
based on hypotheses ranking approach, proposed by authors, remains in a good
agreement with the human perception of rhythm.

5 Conclusions

In this Chapter, the hypermetric rhythm retrieval approach, engineered on the basis
of computational intelligence systems, as well as on the recurrence of melorhythmic
patterns approach was studied, and in addition its adequacy compared to the human
perception of rhythm was verified in subjective tests. Automatic hierarchical rhythm
retrieval is analogous to the retrieval of musical words from the stream of sounds.
The experiments proved that it is possible to separate musical words automatically
using melorhythmic patterns and computational intelligence systems. If the separa-
tion of words in musical piece is made correctly, it is used to generate automatic
drum accompaniment to the given melody.

Overall, employing an approach to create and then rank rhythm hypotheses has
two major advantages over methods that are based on searching for beats in music,
namely it reveals that it is possible to extend existing automatic music transcription
systems by automatically generating rhythm accompanying a given melody.
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Mid-level Representations of Musical Audio
Signals for Music Information Retrieval

Tetsuro Kitahara

Abstract. In this chapter, we introduce mid-level representations of music for
content-based music information retrieval (MIR). Although low-level features such
as spectral and cepstral features were widely used for audio-based MIR, the neces-
sity for developing more musically meaningful representations has recently been
recognized. Here, we review attempts of exploring new representations of music
based on this motivation. Such representations are called mid-level representations
because they have levels of abstraction between those of waveform representations
and MIDI-like symbolic representations.

1 Introduction

From a physical point of view, music when recorded in mono is just a vibration
represented as one-dimensional time-series data but it obviously has the nature of
the multiple dimensionality. Melody, harmony, timbre, and rhythm are important
aspects of music. Composers carefully organize the sounds of musical instruments,
often sounding simultaneously, to express the ideas of these aspects in their mind.

To handle music data on a computer, we have to represent these aspects in a
machine-readable form. In fact, the musical instrument digital interface (MIDI)1,
MusicXML [1], and WEDELMUSIC Format [2] are widely used for representing
the melodic aspect on a computer. It is, however, still a challenging problem to
transform musical audio signals to such representations.
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1 MIDI has originally been developed and is widely used as an industry-standard protocol
that enables electronic musical instruments to communicate. It is, however, also used as
a representation of music; in fact, standard MIDI files are one of the most popular file
formats for storing music data. In this chapter, we focus on the properties of MIDI only as
a representation of music.
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In this chapter, we introduce state-of-the-art machine-readable representations of
the melodic, harmonic, timbral, and rhythmic aspects of music. In particular, we fo-
cus on non-symbolic representations. Because converting audio signals to symbolic
representations involves the process of deterministic estimation, a lot of estimation
errors are inevitable. Non-symbolic representations, which will be introduced be-
low, can be obtained without deterministic estimation processes and therefore would
be robustly obtained. These representations are called mid-level representations be-
cause they are lower-level than symbolic representations but higher-level than the
waveforms themselves.

The rest of this chapter is organized as follows: In Section 2, we discuss an issue
in music representation. In Section 3, we briefly review various mid-level repre-
sentations of music for the melodic, harmonic, timbral, and rhythmic aspects. As
an example of the representations introduced in Section 3, we describe an Instro-
gram, a mid-level representation of instrumentation that we developed, in detail in
Section 4. In Section 5 we discuss these representations from different perspectives
and finally we conclude the chapter in Section 6.

2 Representations of Music

Representing music—this has been an important subject since early times. When
the people did not have audio recording technology, writing music on sheets was
the only way for recording music. The invention of sheet music (also called musical
scores) has enabled us to communicate about music over the temporal and spatial
restrictions.

Since the era of computers came, various forms of music representations have
been invented. These are classified based on their levels of abstraction. The repre-
sentations equivalent to the commonly used European modern music notation, for
example, belong to the group of the highest level of abstraction. MIDI belongs to
the group of the secondary highest level because MIDI sequences are closer to the
actual performances. These representations are called symbolic representations be-
cause music is represented as a sequence of symbols: every note is represented as
one symbol (in the music notation) or a pair of Note-On and Note-Off messages
(in the MIDI sequences). These representations are indispensable for us to create
music on a computer. On the other hand, it is difficult to obtain these representa-
tions from audio signals with sufficient accuracy. With the current technology, only
a mixture of three or four sound sources can be transcribed [3] even though it has
approximately a 20-year history.

A spectrogram (Figure 1) is the most basic representation of audio signals. It is
an image, with the time and frequency axes, that shows how the spectral density
of a signal varies with time. It can be easily obtained from audio signals with a se-
ries of band-pass filters or the short-time Fourier transform (STFT). A spectrogram
contains most information about the original signal except the phase, but reading
musical semantics from it is not easy. This representation is therefore considered to
belong to the group of the lowest level of abstraction.
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Fig. 1 An example of spectrogram. This is generated from an audio signal of trio music.
Although only up-to-three tones simultaneously sound, many simultaneous frequency com-
ponents (shown like horizontal bars) can be seen because each tone has many overtones.

Mid-level representations of music could be a solution to the problem of the
gap between symbolic and low-level representations. This kind of gap is known as
the symbol grounding problem or semantic gap, which is a common problem in
many research fields dealing with the real world. Improving the accuracy of sym-
bol grounding is a very important research subject, and indeed, various researchers
around the world have been tackling the improvement of symbol grounding (see [3]
etc. for details). There is, however, a different approach to the symbol grounding
problem. This approach is based on the idea that a symbol system is not always
necessary to capture semantics from real-world objects. Music representations with
certain levels of abstraction are usable enough for sophisticated MIR even if they
are not accurately transformed into symbols. Selecting appropriate abstraction levels
and designing representations with the levels are also important research subjects.

The concept of mid-level representation was introduced by Ellis et al. [4] and has
been widely accepted as an important concept in the field of computational auditory
scene analysis (CASA). They pointed out the following as properties desirable in
auditory mid-level representations:

• Sound source separation. The representations should decompose sound to a
granularity at least as fine as the sources of interest: in the situation that Bill is
playing the trombone with TV in the background, pieces that can be labeled as
TV noise or trombone.

• Invertibility. The original sound should be regenerated from its representation.
In particular, the representation should make it possible to regenerate a meaning-
ful part of the sound (e.g., the trombone without the TV noise).
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• Component reduction. The sound should be represented in a relatively small
number of objects corresponding to meaningful structure.

• Abstract salience of attributes. The features made explicit by the representa-
tions should approach the perceptual attributes of the final result dependent on
the tasks or applications.

• Physiological plausibility. The researchers on CASA should respect the phys-
iological knowledge and should not pursue hypothesis clearly inconsistent with
physiology.

The representations that have all these properties are also useful for MIR, but there
can be many representations useful for MIR even if they do not have all these prop-
erties. Not limiting mid-level representations to those having all these properties,
we are dealing here with those having the following two properties:

• They are not symbolic.
• They represent musical semantics as clearly as possible.

Here, the musical semantics include melodic, harmonic, timbral, and rhythmic as-
pects which are not clearly or separately represented in spectrograms.

3 Examples of Mid-level Music Representations

In this section, we review various mid-level representations of music motivated by
the above-mentioned discussion. The representations are sorted by two different
dimensions as shown in Figure 2. One dimension refers to which aspect in music is
represented. Here we address the melodic, harmonic, timbral, and rhythmic aspects.
The other dimension refers to the level of abstraction.

Note, however, that the order of abstraction is not determined between all pairs
of representations (even though the figure is drawn as it is possible). This is because
the representations represent slightly different content even if they are classified into
the same aspect group.

3.1 Representations of Melodic Aspect

The most commonly used representation of the melodic aspect is the modern nota-
tion originated in European classical music, where notes are placed on a five-line
staff. This can represent almost all elements for reproducing music except the tim-
bre, so it is still its important representation. XML versions of this representation,
such as MusicXML [1] and WEDELMUSIC Format [2], have therefore been pro-
posed and are used for creating and exchanging sheet music on a computer.

In MIDI sequencers, a piano roll (Figure 5) is also commonly used for repre-
senting music, especially as a visualization of MIDI data. A piano roll in MIDI
sequencers represents notes as colored bars on a plane with the time and frequency
axes. The onset time, pitch, and duration of each note is represented as the horizontal
position, vertical position, and horizontal length of the bar, respectively.
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Fig. 2 Overview of mid-level representations reviewed in this chapter. Note that, although
the representations are sorted by the levels of abstraction, some orders are not necessarily
admissible.

Fig. 3 An example of piano-roll representations

These, however, cannot be considered as mid-level representations; these sym-
bolic representations is difficult to accurately obtain from audio signals. New rep-
resentations of the melodic aspect have recently been proposed where a melody is
represented as a sequence of continuous values.
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Continuous Trajectory of Melody’s F0

Goto proposed a new method for estimating the F0 of the melody and bass lines
contained in real-world CD recordings2 [5]. He claimed that the result of F0 esti-
mation should not be represented in a symbolic form because musically untrained
people understand music without representing its score in their mind. He therefore
represented the melody and bass lines as a sequence of continuous quantitative val-
ues: Sm(t) = {Fm(t),Am(t)} and Sb(t) = {Fb(t),Ab(t)}, where Fi(t) and Ai(t) are
the F0 and amplitude at time t and “m” and “b” denote the melody and bass lines,
respectively.

The basic idea of his F0 estimation method, PreFEst, is to estimate the most
predominant harmonic structure at every frame after a high-pass (for the melody)
or low-pass (for the bass) filter is applied. The melody and bass lines, in general,
have the strongest tones in the high- and low-pitch regions, respectively. When the
relative dominance of each harmonic structure contained in these filtered signals
is calculated, the most predominant harmonic structures in the high- and low-pass-
filtered signals can be considered the melody and bass tone, respectively.

To measure the relative dominance of harmonic structures, Goto focused on the
analogy of a mixture of harmonic structures to a mixture of probabilistic distri-
butions. A complex probabilistic distribution is often approximated as a mixture
(weighted sum) of simpler distributions (typically, Gaussians) using the Expectation-
Maximization (EM) algorithm. If a harmonic structure is represented as a paramet-
ric model, a complex power spectrum can also be approximated as a weighted sum
of the harmonic-structure models using the EM algorithm. The calculated weight
for each harmonic-structure model can be considered the relative dominance of the
harmonic structure.

In the first version of the PreFEst [6], the harmonic-structure model (he calls it
the tone model), given the F0 F , is designed as follows:

p(x|F) = α
N

∑
h=1

c(h)G(x;F + 1200log2 h,W),

G(x;m,σ) =
1√

2πσ2
exp

(
− (x−m)2

2σ2

)
,

where α is a normalizing factor, N = 16, W = 17 cent, c(h) = G(h;1,5.5), and x is
the log frequency. Then, the observed power spectrum after the high- or low-pass
filter is approximated as the mixture density

p(x;θ (t)) defined as

p(x;θ (t)) =
∫ Fh

Fl
w(t)(F)p(x|F)dF,

θ (t) = {w(t)(F) | Fl ≤ F ≤ Fh},
2 http://staff.aist.go.jp/m.goto/PROJ/f0.html
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Fig. 4 Continuous trajectory of melody’s F0 estimated with the PreFEst. The solid and
dashed line represent the estimated F0 trajectory and ground truth, respectively. The result
of estimation was provided by Dr. Masataka Goto.

where Fl and Fh denote the lower and upper limits, respectively, of the possible F0
range, and w(t) is the weight of a tone model p(x|F) that satisfies

∫ Fh
Fl w(t)(F)dF = 1.

Once the weights w(t)(F) are estimated using the EM algorithm, the frequency F
maximizing the weights is considered the most predominant and is output as the
result of F0 estimation.

An example of melody’s representations obtained with the PreFEst is shown in
Figure 4. This is the temporal trajectory of the frequency that maximizes the above-
mentioned weights at every frame.

Marolt also proposed a mid-level representation that is obtained with a PreFEst-
based F0 estimator [7]. The estimated F0s for every frame are linked in time, result-
ing in a series of pitch tracks called melodic fragments. After that, the fragments are
clustered based on their timbral similarity.

Pianoroll-like Representation

A pianoroll-like but non-symbolic representation was proposed by Sagayama
et al3 [8]. The basic idea is to suppress the components of overtones in a spectrogram
by using the deconvolution of the observed spectrum v(x) with a common harmonic
structure pattern h(x). That is, the pianoroll-like representation is obtained at every
frame as u(x) = h−1(x) ∗ v(x), where ∗ denotes convolution and x is the log fre-
quency also here. All tones appearing in a signal to be analyzed are assumed to have
a common harmonic structure pattern. Although the harmonic structure patterns of
tones with different F0s are different in practice even for the same instrument, the
specmurt analysis successfully suppresses the overtones to some extent.

A similar representation can be obtained using other multi-F0 estimation meth-
ods. An example of pianoroll-like representations obtained using the PreFEst is
shown in Figure 5. In this figure, all elements of {w(t)(F) | 0≤ t ≤ T, Fl ≤ F ≤ Fh},

3 http://hil.t.u-tokyo.ac.jp/index-e.html
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Fig. 5 Pianoroll-like representation of the same piece of trio music as that used in Figure 1,
obtained with the PreFEst. Unlike Figure 1, each note is clearly represented because the
overtones have been successfully suppressed.

where T is the end time of the signal, are represented as the intensity of color at every
point in the time-frequency plane. Sparse coding and non-negative matrix factoriza-
tion (NMF) [9] can also be used for obtaining a pianoroll-like representation (see
[10] for detailed information).

The common principle of these techniques is to decompose a power spectrum xxxt

at every frame into a weighted sum of basis functions4 bbbn (n = 1, · · · ,N), that is,

xxxt ≈
N

∑
n=1

gn,tbbbn.

For T frames, this can be written in a matrix form as

X = BG,

where X = [xxx1, · · · ,xxxT ] is the observed matrix (typically a spectrogram), B =
[bbb1, · · · ,bbbN ] is the matrix of the basis functions, and G = [gn,t ] is the gain matrix.
When the basis functions bbb1, · · · ,bbbN represent a typical harmonic spectrum for ev-
ery semitone, the gain gn,t for the basis function bbbn represents the relative amplitude
of the corresponding semitone at frame t. By imaging the gain matrix G, one can
obtain a pianoroll-like representation.

This decomposition is, however, an ill-posed problem because B and G cannot
be uniquely determined from the given X . To solve this ill-posed problem, a certain
constraint for B or G is required. In the first versions of both specmurt analysis [8]

4 They are actually vectors even though the name is function.
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and PreFEst [6], B was pre-designed; it was not estimated from the given signal.
Because this simplification affects the approximation accuracy, both methods were
extended so that the quasi optimal B was estimated from the signal [5, 11]. On the
other hand, sparse coding introduces the constraint that the gain matrix G is sparse,
that is, as many components as possible are zero. NMF introduces the constraint that
the all components of both B and G must be non-negative (i.e., equal to or greater
than zero), as the name implies.

Instrument-specific Harmonic Atoms

Instrument-specific Harmonic Atoms is a sparse-based representation with explicit
instrument labels, proposed by Leveau et al [12]. The key idea behind this is to
prepare and train sinusoidal models for each target instrument. Let x(t) be a given
musical audio signal, then it is reprenseted as a weighted sum of atoms hλ (t) plus a
residual r(t) as follows:

x(t) =∑
λ
αλhλ (t)+ r(t),

where λ is an atom index. The atom hλ (t) is taken from a dictionary D = {hλ (t)}λ
consisting of sinusoidal representations of the sounds of each target instrument with
every possible F0. The atom is, specifically, reprenseted as a weighted sum of sinu-
soidal partials, where the weights (the relative amplitudes of the partials) are trained
for each target instrument. After this training, the optimal description of a given
signal is estimated using the Viterbi algorithm.

3.2 Representations of Harmonic Aspect

The highest-level representation of the harmonic aspect would be a sequence of
chord symbols such as “Cm” and “G7”. This representation is very useful espe-
cially for popular music because it represents a harmonic progression with quite a
limited amount of symbols. Obtaining a chord-symbol representation from an audio
signal is a typical problem of pattern recognition and has obtained successful results
(e.g., [13, 14, 15, 16, 17, 18]). Estimating chord symbols is easier than transcribing
every note but estimation errors are still inevitable. Mid-level representations of the
harmonic aspect would therefore be desired.

Chroma Vector

A chroma vector, also known as a pitch class profile, is a 12-dimensional vector
where each element represents the cumulative magnitude of each pitch class. This
has been widely used in almost all studies into chord recognition (e.g., [13, 14, 15,
16, 17, 18]) and other many tasks including detection of chorus sections [19]. In
[19], the chroma vector is introduced as follows:

The chroma vector is a perceptually motivated feature vector using the concept of
chroma in Shepard’s helix representation of musical pitch perception [20]. According
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Fig. 6 Example of visualization of a sequence of chroma vectors. The figure shows that
the elements corresponding to the component pitch classes of each chord tend to show high
values.

to Shapard [20], the perception of pitch with respect to a musical context can be graph-
ically represented by using a continually cyclic helix that has two dimensions, chroma
and height. Chroma refers to the position of a musical pitch within an octave that cor-
responds to a cycle of the helix; i.e., it refers to the position on the circumference of the
helix seen from directly above. On the other hand, height refers to the vertical position
of the helix seen from the side (the position of an octave).

An example of the results of calculating chroma vectors is shown in Figure 6.

Psychophysical Representation of Harmony Perception

Although chroma vectors represent the acoustic characteristics of chords, they do
not represent their perceptual properties, that is, the subjective impression that hu-
mans perceive from the chords. Fujisawa et al. [21] therefore proposed, according
to their psychophysical study [22], a three-dimensional representation where each
dimension corresponds to the dissonance, tension, and major/minor modality. For
simplicity, we limit target chords to two-tone chords for calculating the dissonance
and to three-tone chords for calculating the others in the following explanation.

The dissonance D between two complex tones A and B is calculated based on the
interval xi j between every pair of A’s i-th partial and B’s j-th partial as follows:

D =∑
i
∑

j
vi jγ[exp(−αxi j)− exp(−βxi j)],

where vi j is a coefficient based on the normalized intensities of A’s i-th partial and
B’s j-th partial, and α , β , and γ are experimentally determined constants.

On the other hand, the tension T and major/minor modality M in three complex
tones A, B, and C are calculated based on two kinds of intervals xi j and y jk; the
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Table 1 Low-level timbral features commonly used in MIR studies

Spectral Centroid Center of gravity of the magnitude spectrum of the STFT
Ct = ∑N

n=1 nMt [n]
/
∑N

n=1 Mt [n]
Spectral Rolloff Frequency Rt below which 85%, for example, of the magnitude dis-

tribution is concentrated
Rt s.t. ∑Rt

n=1 Mt [n] = 0.85∑N
n=1 Mt [n]

Spectral Flux Squared difference between the normalized magnitude of successive
spectral distributions
Ft = ∑N

n=1(Nt [n]−Nt−1[n])2

Zero Crossing Rate Number of times that the time-domain signal changes its sign.
Mel-frequency Cep-
stral Coefficients
(MFCCs)

Coefficients that collectively make up an mel-frequency cepstrum,
which represents a coarse spectral envelope in the mel frequency
scale

Mt [n] and Nt [n] denote the magnitude and normalized magnitude of the Fourier transform at
frame t and frequency bin n. N is the number of the frequency bins.

definition of xi j is the same as the above-mentioned one while y jk is defined as the
interval between B’s j-th partial and C’s k-th partial. That is, T and M are calculated
as follows:

T =∑
i
∑

j
∑
k

vi jk exp

[
−
( zi jk

δ

)2
]
,

M =∑
i
∑

j
∑
k

{
−vi jk

2zi jk

ε
exp

[
−
(−z4

i jk

4

)]}
,

while zi jk = y jk−xi j, vi jk is a coefficient determined by the normalized intensities of
A’s i-th, B’s j-th, and C’s k-th partials, and δ and ε are experimentally determined
parameters.

They also developed a music mood visualizer that intuitively represents harmonic
characteristics in the color determined by this three-dimensional representation [21].

3.3 Representations of Timbral Aspect

The most commonly used timbral representation in current MIR-related studies are
low-level features, such as spectral and cepstral features, listed in Table 1 (e.g.,
[23, 24, 25, 26]). These features represent the characteristics of spectral envelopes,
which consider one aspect of the timbre of musical instruments5. These features are
extracted from the power spectrum at every frame and then are often summarized
as their temporal means and variances (therefore the information about how these
features evolve over time is lost). The spectra may contain the sounds of more-than-
one sources but the features are extracted without separating the sources. Because a
mixture of sounds is treated as if it has a single timbre, these features are sometimes

5 The zero crossing rate is calculated in the time domain but it describes the amount of
high-frequency energy in the signal (i.e., brightness) [27].



76 T. Kitahara

called polyphonic timbre [26]. They can capture the content of music to some extent
with a low computational cost because it does not need sound source separation, but
has a clear limit to capture higher-level content [25].

Strictly speaking, timbre is a very difficult concept because it does not clearly put
on a physical scale. Timbre is considered multidimensional and has not been fully
defined. In fact, the American Standards Association has defined timbre as follows:

Timbre is the attribute of auditory sensation in terms of which a listener can judge that
two sounds having the same loudness and pitch are dissimilar.

This definition is indirect and has serious limitations. In order for this definition to
apply, for example, two sounds need to be able to be presented at the same pitch.

There are two acceptable standpoints for the definition of timbre. One is to con-
sider timbre to be acoustical characteristics corresponding to all aspects of the im-
pression that humans receive from sounds. In this case, timbre would be described
verbally. The other is to consider timbre to be acoustical characteristics linked to
differences between the sounds of different instruments. In this case, the names of
the instruments can be used as labels for the timbres [28, 29].

From the latter standpoint, the names of musical instruments are the highest-level
representation of the timbral aspect. Recognition of musical instruments from audio
signals has therefore been studied in the last 20 years. Although most of the existing
studies on musical instrument recognition dealt only with solo musical sounds (e.g.,
[30, 31, 32, 33, 34, 35, 36, 37]), the number of studies dealing with polyphonic mu-
sic has been increasing in recent years [38, 39, 40, 41, 42, 43, 44, 45]. The common
problem in these studies is to require preceding note (or F0) estimation process. For
example, OPTIMA [38], Ipanema [39], Kinoshita et al.’s method [40], and Kita-
hara et al.’s method [45] identify the instrument for each note (notewise processing)
and hence have to estimate the onset time and fundamental frequency (F0) of each
note in advance. Eggink and Brown’s methods [41, 42] identify instruments for each
frame. Although they do not require onset detection, they still require the estimation
of F0s of notes played at each frame. Because onset detection and F0 estimation
are difficult in polyphonic music in general, the performance of instrument recog-
nition in these studies are greatly suffered from their errors. In the experiments of
most studies mentioned above, therefore, correct data on onset times and F0s were
manually given.

Recently, new representations of the timbre or instrumentation (orchestration) of
musical audio signals have been proposed. These representations can be obtained
without requiring the deterministic estimation of the onset times or F0 of each note.
They would therefore be obtained with accuracy for complex real-world musical
audio signals.

Instrogram

An Instrogram [46, 47, 48] is a spectrogram-like graphical representation that en-
ables users to find when which instruments are used in a musical piece. An Instro-
gram consists of several images each of which corresponds to each of the target



Mid-level Representations of Musical Audio Signals for MIR 77

N
ot

e 
N

um
be

r
Piano

0 10 20 30

50

60

70

80

N
ot

e 
N

um
be

r

Violin

0 10 20 30

50

60

70

80

N
ot

e 
N

um
be

r

Clarinet

0 10 20 30

50

60

70

80

N
ot

e 
N

um
be

r

Flute

Time [sec]
0 10 20 30

50

60

70

80

Fig. 7 Example of Instrograms. The rough content of the performance of each instrument
can be seen from the Instrogram. An Instrogram can be considered a decomposition of a
pianoroll-like representation, shown in Figure 5, into the representation for each instrument.

instruments. Each image has horizontal and vertical axes representing time and fre-
quency, and the intensity of the color of each point (t, f ) shows the probability
p(ωi;t, f ) that the target instrument ωi is used at time t and at F0 of f . An example
is presented in Figure 7. This example shows the results of analyzing an audio signal
of “Auld Lang Syne” played on the piano, violin, and flute. The target instruments
for analysis were the piano, violin, clarinet, and flute. If the Instrogram is too de-
tailed for some purposes, it can be simplified by dividing the entire frequency region
into a number of subregions and merging the results within each subregion. A sim-
plified version of Figure 7 is given in Figure 8. The original or simplified Instrogram
shows that the melodies in the high (approx. note numbers 70–80), middle (60–75),
and low (45–60) pitch regions are played on flute, violin, and piano, respectively.

TimbreGram

TimbreGrams, which have been proposed by Tzanetakis [49], map audio files to se-
quences of vertical color stripes where each stripe corresponds to a short slice of
sound. The similarity of different files is shown as overall color similarity; similar
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Fig. 8 Simplified (summarized) Instrogram for Figure 7. The melodic aspect was removed
(accordingly the timbral or instrumental aspect was relatively enhanced) by the simplification.

musical pieces are represented in similar colors. The similarity is calculated based
on low-level features. The concept of TimbreGrams is close to that of Instrograms
but it is important to note that TimbreGrams are relative representation unlike In-
strograms. The TimbreGram for each musical piece represents only the similarity
to other musical pieces within a music collection. This fact means that the Timbre-
Gram for a certain piece in a certain music collection may be different from the
TimbreGram for the same piece in a different music collection. This is an important
difference from the Instrogram representation.

3.4 Representations of Rhythmic Aspect

The research of rhythm recognition/classification has a long history. The simplest
way for representing rhythm is to list all onset times or inter-onset intervals (IOIs).
To obtain this type of representation from audio signals, onset detection has been
conducted by various researchers [50]. From a musical point of view, the list of
actual onset times is not always essential. The list of the onset times intended by
the composer could rather be sometimes desired. This is represented as a list of note
values, which is obtained by quantizing the actual onset times based on metrical
structure. Beat tracking is necessary to do this and has been achieved with high
accuracy for real-world CD recordings (e.g., [51]). The list of actual onset times
and that of intended note values are equivalent to (and accordingly have the same
levels of abstraction as) a MIDI sequence (or a piano roll) and a musical score,
respectively.

The typical method of onset detection mainly consists of three steps: pre-process-
ing, reduction, and peak-picking [50]. The pre-processing step aims to transform the
original audio signal in order to accentuate the onsets of the notes in the signal.
The reduction step calculates a detection function, also sometimes called a novelty
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function, which is a time series of values whose peaks are intended to coincide with
the times of note onsets. In the final peak-picking step, the peaks of the detection
function are extracted as the onset times. The design of the detection function is
one of the most important issues in onset detection, and several functions have been
proposed such as a high frequency content (HFC) function, a spectral difference
function, and a phase deviation function (see [50] for the details).

Detection functions satisfy our two requirements for mid-level representations.
They can therefore be used for various rhythm-related tasks as well as onset detec-
tion. In fact, Davies [52] used detection functions for beat tracking without extract-
ing onset times from them.

Describing the onset times of all the notes or onset detection functions for the
whole signal is an important approach, but the overall characteristics of rhythm are
also an important description. In general, musical pieces of different genres have
different characteristics of rhythm: rock music, for example, tends to have stronger
beats than classical music. To describe or classify such characteristics, various fea-
tures have been attempted. A beat histogram, used in [23], is one of the descriptors
of the overall rhythmic characteristics. The beat histogram maps tempi (beats per
minute, BPM) to beat strengths. When a beat histogram has two strong peaks at the
BPM of 80 and 160, it implies that the main tempo is 160 and that the half-note-
level beats are as strong as the quarter-note-level beats. When a beat histogram do
not have particularly strong peaks in any BPM, it implies that the piece has no strong
pulsed sounds at beat times as shown in classical music. As a similar representation,
the histogram of IOIs (IOIH) is also used [53].

The beat histogram and IOIH are useful as concise representations but they dis-
card important temporal information: two rhythmic patterns “x...x...x...x.x.” and
“x...x.x...x...x.” are completely different from a musical point of view but they
cannot be distinguished from their IOIHs. Dixon et al. [54] pointed this out and
proposed a representation of rhythm patterns that does not discard the temporal
information. Dixon et al.’s representation is basically an averaged within-measure
amplitude envelope. The bar lines of a given signal are first detected and then the
amplitude envelope within each measure is calculated. After outliers are removed,
the average of the amplitude envelopes is finally calculated.

Paulus and Klapuri [55] dealt with the measurement of the similarity of rhythmic
patterns. Based on the idea that rhythmic patterns are characterized by the sounds
of percussive instruments, rhythmic patterns are represented after suppressing non-
percussive (pitched) instrument sounds. The given musical signal is first approxi-
mated with a sinusoidal model. In the residual of the approximation, the drum sound
is enough enhanced. From this drum-sound-enhanced signal, timbral features, such
as MFCCs, are extracted, and finally, the similarity is calculated with the dynamic
time warping (DTW).

Tsunoo et al. [56] proposed a new visual representation, called a Rhythm Map,
that shows what kind of rhythm pattern is played in each measure from the beginning
to the end of a musical signal. The Rhythm Map has the horizontal axis representing
time and the vertical axis representing rhythm pattern indices. The index of the
rhythm pattern being played in each measure is colored black. From the Rhythm
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Map, one can see that, for example, Rhythm Pattern 1 is repeatedly played and once
in four measures, Pattern 2 is played as a fill-in pattern, Pattern 3 is played in a
bridge section, and this piece ends with Pattern 4. Similarly to Paulus and Klapuri’s
method [55], the Rhythm Map is also obtained by analyzing the spectrogram after
suppressing the non-percussive sounds.

See also [57] for more details of rhythmic representation.

4 Instrogram: Probabilistic Representation of Instrumentation

An Instrogram is a mid-level representation of instrumentation developed by the
author and collegues as introduced in the previous section. Here, we try a case study
by describing the Instrogram representation, especially its formulation, calculation
algorithm, and applications, in detail.

4.1 Formulation of Instrogram

Let Ω = {ω1, · · · ,ωm} be the set of target instruments. We then have to calculate
the probability p(ωi;t, f ) that a sound of the instrument ωi with an F0 of f exists at
time t for every target instrument ωi ∈ Ω . This probability is called the instrument
existence probability (IEP). Here, we assume that multiple instruments are not being
played at the same time and at the same F0, that is, ∀ωi,ω j ∈ Ω : i �= j =⇒ p(ωi ∩
ω j;t, f ) = 0. Let ω0 denotes the silence event, which means that no instruments are
being played, and letΩ+ =Ω ∪{ω0}. The IEP then satisfies ∑ωi∈Ω+ p(ωi; t, f ) = 1.
When the symbol “X” denotes the union event of every target instrument sounding,
which stands for the existence of some instrument (i.e., X = ω1 ∪·· ·∪ωm), the IEP
for each ωi ∈Ω can be calculated as multiplication of two probabilities:

p(ωi;t, f ) = p(X;t, f ) p(ωi|X;t, f ),

because ωi ∩X = ωi ∩ (ω1 ∪·· · ∪ωi ∪·· · ∪ωm) = ωi. Above, p(X;t, f ), called the
nonspecific instrument existence probability (NIEP), is the probability that the sound
of some instrument with an F0 of f exists at time t, while p(ωi|X;t, f ), called the
conditional instrument existence probability (CIEP), is the conditional probability
that, if the sound of some instrument with an F0 of f exists at time t, the instrument
is ωi. The probability p(ω0;t, f ) is given by p(ω0; t, f ) = 1−∑ωi∈Ω p(ωi; t, f ).

4.2 Algorithm for Calculating Instrogram

Figure 9 shows an overview of the algorithm for calculating an Instrogram. Given
an audio signal, the spectrogram is first calculated. The short-time Fourier trans-
form (STFT) shifted by 10 ms (441 points at 44.1 kHz sampling) with an 8,192-
point Hamming window is used in the current implementation. We next calculate
the NIEPs and CIEPs. The NIEPs are calculated by analyzing the power spectrum
at each frame (timewise processing) using the PreFEst [5], described in Section 3.1.
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Fig. 9 Overview of the algorithm for calculating Instrograms

The CIEPs are, on the other hand, calculated by analyzing the temporal trajec-
tory of the harmonic structure for every F0 (pitchwise processing). The trajectory
is analyzed with a framework similar to speech recognition, based on left-to-right
hidden Markov models (HMMs) [58]. This HMM-based temporal modeling of har-
monic structures is important because temporal variations in spectra characterize
timbres well. This is the main difference from framewise recognition methodolo-
gies [42, 59]. Finally, the NIEPs and CIEPs are multiplied.

The advantage of this technique lies in the fact that p(ωi;t, f ) can be estimated
robustly because the two constituent probabilities are calculated independently and
are then integrated by multiplication. In most previous studies, the onset time and F0
of each note were first estimated, and then the instrument for the note was identified
by analyzing spectral components extracted based on the results of the note esti-
mation. The upper limit of the instrument identification performance was therefore
bound by the precedent note estimation, which is generally difficult and not robust
for polyphonic music. Unlike such a notewise symbolic approach, our non-symbolic
and non-sequential approach is more robust for polyphonic music.

Nonspecific Instrument Existence Probability

The NIEP is calculated by using the PreFEst, mentioned in Section 3.1. The PreFest
calculates the relative dominance of the harmonic structure with an F0 of F at time
t as the weight w(t)( f ) for the corresponding tone model, we calculate the NIEP
p(X; t, f ) by considering it equal to the weight w(t)( f ).

Conditional Instrument Existence Probability

The CIEP is calculated based on left-to-right HMMs prepared for every semitone. In
a typical speech recognition framework, the recognizer calculates which phoneme
is likely spoken at every frame using HMMs. This framework cannot be straightly
applied to instrument recognition in polyphonic music because the possibility of
more-than-one sources existing is not considered. Once the harmonic structure for
every semitone is separated, this framework can be applied, because we assume that
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Table 2 Overview of 28 features extracted for calculating Instrograms

Spectral features

1 Spectral centroid

2 – 10 Relative cumulative power (up to 9th partials)

11 Odd/even power ratio

12 – 20 Number of components having a duration that is p% longer than the longest
duration (p = 10,20, · · · ,90)

Temporal features

21 Gradient of straight line approximating power envelope

22 – 24 Temporal mean of differentials of power envelope from t to t + iT/3 (i = 1, · · · ,3)
Modulation features

25 , 26 Amplitude and frequency of AM

27 , 28 Amplitude and frequency of FM

multiple instruments are not being played at the same time and at the same F0. The
details of the algorithm are as follows:

• [Step 1] Harmonic structure extraction
The temporal trajectory of the harmonic structure with every semitone is ex-
tracted. This is represented as

H (t, f ) = {(Fi(t, f ),Ai(t, f )) | i=1, · · · ,h},

where Fi(t, f ) and Ai(t, f ) are the frequency of amplitude of i-th partial of the
sound with F0 of f at time t.

• [Step 2] Feature extraction
For every time t (every 10 ms in the implementation), we first excerpt a T -length
bit of the harmonic-structure trajectory {Ht(τ, f ) | t ≤ τ < t +T} from the whole
trajectory {H (t, f )} and then extract a feature vector xxx(t, f ) consisting of 28
features listed in Table 2 from {Ht(τ, f )}. Then, the dimensionality is reduced
to 12 dimensions using the principal component analysis with the proportion
value of 95%. T is 500 ms in the current implementation.

• [Step 3] Probability calculation
We train left-to-right HMMs, each consisting of 15 states, for target instru-
ments ω1, · · · ,ωm, and then basically consider the time series of feature vectors,
{xxx(t, f )}, to be generated from a Markov chain of these HMMs. Then, the CIEP
p(ωi|X; t, f ) is calculated as

p(ωi|X ; t, f ) = p(Mi|xxx(t, f ))

=
p(xxx(t, f )|Mi)p(Mi)

m

∑
i=1

p(xxx(t, f )|Mi)p(Mi)
,
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where Mi is the HMM corresponding to the instrumentωi, p(xxx(t, f )|Mi) is trained
from data prepared in advance, and p(Mi) is the a priori probability.

In the above formulation, p(ωi|X; t, f ) for some instruments may become greater
than zero even if no instruments are played. Theoretically, this does not matter be-
cause p(X; t, f ) becomes zero in such cases. In practice, however, p(X;t, f ) may
not be zero, especially when a certain instrument is played at an F0 of an integer
multiple or factor of f . To avoid this, we prepare an HMM, M0, trained with feature
vectors extracted from silent signals (note that some instruments may be played at
non-target F0s) and consider {xxx(t, f )} to be generated from a Markov chain of the
m+ 1 HMMs (M0,M1, · · · ,Mm). The CIEP is therefore calculated as

p(ωi|X ;t, f ) =
p(xxx(t, f )|Mi)p(Mi)

m

∑
i=0

p(xxx(t, f )|Mi)p(Mi)
,

where we use p(Mi) = 1/(m+ 1).

4.3 Examples of Instrogram Representation

Examples of Instrograms obtained from real performances of classical music are
shown in Figure 10. For the lack of space, we show the simplified versions only.
The piece for Figure 10 (a) is string music. The color for the violin only should
therefore be deep. The obtained Instrogram shows a significantly deeper color for
the violin than the other instruments although the color for the piano is also slightly
deep in part. On the other hand, the piece for Figure 10 (b) is an ensemble of
the piano and the strings, where the introduction is played on the piano only and
the strings begin to play later. Also in the obtained Instrogram, the color for the
piano only is deep at the beginning and that for the violin become deeper later,
though the color for flute is also sometimes deep. Other examples are available at
http://ist.ksc.kwansei.ac.jp/˜kitahara/instrogram/.

4.4 Applications to Content-Based MIR

Instrumentation is an important factor in content-based MIR because it is deeply
connected to listeners’ impression. When the same musical piece is played on dif-
ferent instruments, listeners sometimes have different impressions on the piece.
This shows a deep connection between instrumentation and listeners’ impression.
Here, we introduce some MIR applications based on instrumentation represented as
Instrograms.

1. Query-by-Example (Figure 11)
The first application of the Instrogram representation is a so-called Query-by-
Example retrieval system. Query-by-Example is the retrieval approach that aims
to search for musical pieces that are similar to the piece specified by the user.
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Fig. 10 Results of calculating Instrograms from real-performance audio signals (simplified
versions only)

This approach is useful because it does not require users to have special musical
knowledge. As mentioned above, we consider that the similarity of the instru-
mentations between two musical pieces is deeply connected to the similarity of
the impressions that listeners receive. This is why we adopt the similarity of In-
strograms as a measure for musical similarity.

After searching for a musical piece, the user can listen to it while seeing the
instrument existence probabilities evolving with time through two kinds of visu-
alization of the Instrogram, one of which is a standard visualization like Figure 8
and the other of which is bar graphs moving up and down being synchronized
with the instrument existence probabilities.

2. Playlist generation with music thumbnailing function (Figure 12)
The second application is an extension of the above Query-by-Example system.
In the left-bottom panel of the window, the musical pieces that the user has are
listed with Instrogram-based thumbnails. This thumbnail consists of the images
of target musical instruments, in which the color depth of each image represents
the possibility that the sound of the corresponding instrument exists. On the other
hand, the right-bottom panel shows a playlist. The user can pick musical pieces
from the left-bottom panel and drag and drop them on any items of the playlist.
For example, the user can assign a piece with a brass section to the first item and
a piano solo to the last item. The blank items of the playlist can be interpolated
so that the instrumentation gradually changes [60].

5 Discussion

5.1 Common Properties among Mid-level Representation

Here we discuss the properties of the above-mentioned mid-level representations
from several different perspectives.
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Fig. 11 First application of Instrogram-based MIR. Users (1) learn what kind of instruments
are sounding by seeing two kinds of visualization of Instrograms, synchronized with the
playback, and (2) search for musical pieces that have similar instrumentation to their favorite
piece. The left window shows the result of similarity-based retrieval, where the values in the
parentheses are the dissimilarity to the query piece.

• Reproducibility
Although Ellis claimed that mid-level representations for CASA should be usable
for regenerating sounds [4], almost no representations that have been reviewed
here can regenerate them. This is because MIR does not require the reproduction
of sound6. In addition, it has been pointed out that, from the viewpoint of CASA,
the reproduction of each source from a mixture of sounds is not essential [62].

• Correspondence to a Single Aspect
Correspondence to a single aspect is a very important property to achieve user-
adaptive MIR systems. In general, different MIR users may pay attention to dif-
ferent aspects when listening to music. Some users may listen attentively to the
melody or harmony while others to the timbre or rhythm. The criteria used for re-
trieval, typically music similarity measures, therefore, should adapt to such user
preferences. It is, however, difficult if such different aspects are represented in
a jumbled form. Because each of the above-mentioned representations basically

6 On the other hand, representations that can reproduce sounds have recently been proposed
such as [61]. This representation is close to what Ellis says [4] because it can reproduce
the sound where interested part is enhanced.
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Fig. 12 Second application of Instrogram-based MIR. Users learn the instrumentations of the
musical pieces that they have from the Instrogram-based thumbnails without need to listen
to them. The system also has a function of automatic playlist generation where the system
interpolates musical pieces in a playlist so that the instrumentation gradually changes.

corresponds to a single aspect, it would be usable for user-adaptive MIR by ap-
propriately combining them.

• Symbolizability
Although we mentioned the importance of non-symbolic representations, sym-
bolic representations, such as musical scores and MIDI, are still important. Most
of the mid-level representations reviewed here are applicable not only to MIR
directly but also to obtain symbolic representations.

• Temporality
Almost all representations reviewed here, except the beat histogram, are func-
tions of time. We believe that it is very important to represent music without
removing the time axis because music is an art form organized in time. In studies
using spectral and cepstral features, in contrast, the time axis is often removed
by calculating the temporal means and variances of these features. Although it is
practically useful and effective in most cases, we believe that this process must
lose an important nature of music.

5.2 Potential Applications

By using these mid-level representations, the characteristics of each aspect (e.g., the
melody, harmony, timbre, and rhythm) can be separately calculated. This method
can be used in various applications related to MIR.
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The first one is user adaptation, as mentioned above. Suppose the situation when
a user is trying to search for similar musical pieces to a certain piece. The retrieval
system has to measure the similarity between the query piece and each piece con-
tained in the collection. If the musical pieces are represented in a combination of
different representations corresponding to different aspects, the similarity can be
calculated by a weighted sum of the similarities measured in each representation.
The user’s preference (for example, he/she tends to listen attentively to harmony)
can be considered by giving an appropriate weight to each similarity.

The second one is music visualization. Music visualization is an important sub-
ject because music is difficult to overview at once. Indeed, some of the mid-level
representations reviewed here have already been applied to graphical visualization
of music [21, 48, 49]. Achieving effective graphical visualizations, however, is not
a trivial problem even if the mid-level representations are determined. Where what
elements in a mid-level representation are displayed in what color is an important
issue, and some attempts have been made [63, 64].

Music thumbnailing [65], another potential application, is also an important sub-
ject that is different from but related to music visualization. Music thumbnailing
helps users choose musical pieces from a large-scale music list. We achieved music
thumbnails that represent instrumentation by using Instrograms [60].

5.3 Support in MPEG-7

MPEG-7 is a well-known standard for distributing metadata for multimedia content
including musical content. MPEG-7 provides various descriptors for representing
audio content listed in Table 3, but it does not directly support such mid-level mu-
sic representations as the ones mentioned above. The audio descriptors adopted in
MPEG-7 can be classified into Low-level Audio Descriptors and High-level Descrip-
tion Tools. The Low-level Audio Descriptors include waveforms themselves, spectral
envelopes, fundamental frequency, log attack times, and temporal and spectral cen-
troids. The Musical Instrument Timbre Tool provides a way for describing percep-
tual features of sounds as a combination of low-level audio descriptors. The Melody

Table 3 Framework for describing audio content in MPEG-7

Basic Descriptors
Basic Spectral Descriptors

Low-level Audio Signal Parameter Descriptors
Descriptors Timbral Temporal Descriptors

Timbral Spectral Descriptors
Spectral Basis Descriptors
Musical Instrument Timbre Tool

High-level Melody Description Tools
Description General Sound Recognition and Indexing Description Tools
Tools Spoken Content Description Tools

Audio Signature Description Scheme
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Description Tools provide some symbolic representations of melodies. The General
Sound Recognition and Indexing Description Tools provide a framework for describ-
ing sound recognizers. The Spoken Content Description Tools provide a framework
useful for automatic speech recognition. The Audio Signature Description Scheme
can be used in audio fingerprinting. However, mid-level representations are not di-
rectly supported in the current MPEG-7 standard. Hence establishing a standard sup-
porting them is an important task for future research (see [66] for details).

6 Conclusion

In this chapter, we described various mid-level representations of music. In the early
2000s, it was common to use low-level features such as spectral and cepstral features
extracted directly from polyphonic audio signals. This approach brings successful
results to some extent, but it has been clarified that the performance of MIR has
been mostly saturated; a significant further improvement will be difficult as long
as low-level features are used [26]. Various researchers have therefore pointed out
the importance of higher-level, musically meaningful representations and have been
engaged in discovering such new music representations. The review here is a brief
survey of the latest results of these attempts.

These representations have a potential to be applied to various tasks other than
MIR. For example, they could be effective for developing a computational theory
of music perception. Although existing music theories are one of the greatest in-
ventions related to music, they have problems from the viewpoint of studying how
humans perceive music. One of the major problems is that they are constructed
based on musical scores. Obviously what we perceive from music is different from
the score, and therefore new representations for describing music theories are re-
quired. Attempts to develop mid-level representations will bring us a new solution
to this problem.
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The Music Information Retrieval Evaluation 
eXchange: Some Observations and Insights 

J. Stephen Downie, Andreas F. Ehmann, Mert Bay, and M. Cameron Jones*

Abstract.  Advances in the science and technology of Music Information  
Retrieval (MIR) systems and algorithms are dependent on the development of ri-
gorous measures of accuracy and performance such that meaningful comparisons 
among current and novel approaches can be made. This is the motivating prin-
ciple driving the efforts of the International Music Information Retrieval Systems 
Evaluation Laboratory (IMIRSEL) and the annual Music Information Retrieval 
Evaluation eXchange (MIREX). Since it started in 2005, MIREX has fostered 
great advancements not only in many specific areas of MIR, but also in our gen-
eral understanding of how MIR systems and algorithms are to be evaluated. This 
chapter outlines some of the major highlights of the past four years of MIREX 
evaluations, including its organizing principles, the selection of evaluation me-
trics, and the evolution of evaluation tasks. The chapter concludes with a brief in-
troduction of how MIREX plans to expand into the future using a suite of Web 
2.0 technologies to automated MIREX evaluations.  

Keywords: MIREX, Music Information Retrieval, Evaluation. 

1   Introduction 

Since 2005, a special set of sessions has convened at the annual International Con-
ference on Music Information Retrieval (ISMIR). At these special sessions, which 
include a poster exhibition and a plenary meeting, Music Information Retrieval 
(MIR) researchers from around the world come together to compare, contrast and 
discuss the latest results data from the Music Information Retrieval Evaluation 
eXchange (MIREX). MIREX is to the MIR community what the Text Retrieval 
Conference (TREC) is to the text information retrieval community: A set of  
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community-defined formal evaluations through which a wide variety of state-of-
the-art systems, algorithms and techniques are evaluated under controlled condi-
tions. MIREX is managed by the International Music Information Retrieval  
Systems Evaluation Laboratory (IMIRSEL) at the University of Illinois at Urbana-
Champaign (UIUC).  

This chapter builds upon and extends Downie [5]. While some overlap is un-
avoidable, the reader is strongly encouraged to consult the earlier work for it  
covers important issues that will be missing detailed discussion in the current 
chapter. Unlike Downie [5], the present chapter will focus on the evolution of 
MIREX throughout the years. It will highlight some specific issues, problems and 
challenges that have emerged during the running of MIREX.  

Section 2 reviews the history, special characteristics and general operations of 
MIREX. Section 3 examines the important primary metrics used to evaluate the 
algorithms. Section 4 takes an in-depth look at two closely related tasks, Audio 
Music Similarity (AMS) and Symbolic Melodic Similarity (SMS), as a kind of 
case study in the evolution of MIREX. Section 5 summarizes the chapter and 
briefly introduces the NEMA (Networked Environment for Music Analysis) 
project which is designed to support and strengthen MIREX and the ongoing for-
mal evaluation of MIR systems. 

2   History and Infrastructure 

While MIREX officially began in 2005, it took a considerable amount of time and 
collective effort to make it a reality. In 1999 Downie led the Exploratory Work-
shop on Music Information Retrieval as part of the 1999 ACM Special Interest 
Group Information Retrieval (SIGIR) Conference at Berkeley, CA. One of the 
primary goals of this workshop was the exploration of “(…) consensus opinion on 
the establishment of research priorities, inter-disciplinary collaborations, evalua-
tion standards, test collections (…) and TREC-like trials” [2]. In 2001, the  
attendees of ISMIR 2001 at Bloomington, IN passed a resolution calling for the 
establishment of formal evaluation opportunities for MIR researchers. This resolu-
tion helped garner modest feasibility study grants from the Andrew W. Mellon 
Foundation and the National Science Foundation. With the funds provided by the 
grants, a sequence of workshops was convened and a collection of evaluation 
white papers was compiled [3]. The recommendations based upon these work-
shops and white papers were subsequently published as [4] and worked into sever-
al grant applications. In late 2003, both the Andrew W. Mellon Foundation and the 
NSF awarded the substantial grants that were to make MIREX possible. ISMIR 
2004 was held in Barcelona, ES and was hosted by The Music Technology Group 
(MTG) of the University Pompeu Fabra. At this meeting the MTG convened an 
evaluation session called the Audio Description Contest (ADC) [1]. While more 
limited in scope than MIREX, it is from the ADC that MIREX learned many valu-
able lessons. MIREX made its debut as part of ISMIR 2005, held at Queen Mary 
College, University of London, in September, 2005. 
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TREC, ADC and MIREX share a common intellectual foundation. All three are 
predicated upon the standardization of: 

1. Test collections of considerable size; 
2. Tasks and/or queries to be performed against the collections; and, 
3. Evaluation procedures to compare performances among systems. 

It is important to note that MIREX differs from TREC in one significant way. Unlike 
TREC, where the evaluation datasets are sent out to the participant labs, MIREX oper-
ates under an “algorithm-to-data” model. This means that algorithms are sent to 
IMIRSEL to be run on IMIRSEL equipment by IMIRSEL personnel and volunteers. 
While the algorithm-to-data model puts a considerable burden on IMIRSEL resources 
in terms of workload, data management and equipment, it is currently the only feasible 
solution to working within the boundaries of the highly restrictive and litigious legal 
environment surrounding music intellectual property law. 

Beyond computational infrastructure, IMIRSEL also hosts the basic communi-
cations infrastructure for MIREX which includes the MIREX wikis1 and the 
MIREX mailing lists. The MIREX wikis serve two purposes. First, during the 
spring and summer each year, they are used by the community to define the task 
sets, evaluation metrics and general rules for the year’s upcoming MIREX. 
Second, the wikis are used to publish and archive the raw and summarized results 
data for each task and associated algorithms just prior to ISMIR convening each 
autumn. These results data are used by participants to help them put together their 
mandatory poster presentations and for further use in follow up publications. The 
MIREX “EvalFest”2 mailing list is the general purpose mailing list that is used to 
solicit task ideas and collections and to foster broad discussions about evaluation 
issues. On a case-by-case basis, IMIRSEL also creates task-specific mailings lists 
through which finely detailed discussions and debates about metrics, collections 
and input/output formats, etc. are undertaken.  

Table 1 MIREX Descriptive Statistics 2005-2008 

  2005 2006 2007 2008 

Number of Task (and Subtask) “Sets”  10 13 12 18 

Number of Individuals 82 50 73 84 

Number of Countries 19 14 15 19 

Number of Runs 86 92 122 169 

MIREX has enjoyed considerable growth over its four year history. As Table 1 
indicates, the number of task sets (including subtasks) has grown 80% from 10 
(2005) to 18 (2008). The number of individual algorithms evaluated has similarly 
grown 95% from 86 (2005) to 169 (2008). In total, MIREX has evaluated 469  
algorithm runs. 

The range of MIREX tasks broadly reflects the varied interests of the MIR research 
community. Many tasks, such as Audio Artist Identification (AAI), Symbolic  

1 See http://music-ir.org/mirexwiki 
2 Subscription information at https://mail.isrl.illinois.edu/mailman/listinfo/evalfest 
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Genre Classification (SGC), Audio Genre Classification (AGC), Audio Mood Classi-
fication (AMC), and Audio Tag Classification (ATC), represent classic machine  
learning train-test classification evaluations. These classification tasks accounted for 
28% (129) of MIREX’s 469 evaluation runs. Other tasks, such as Audio Beat Tracking 
(ABT), Audio Chord Detection (ACD), Audio Melody Extraction (AME), Audio On-
set Detection (AOD) and Multiple F0 Estimation (MFE), etc. are “low-level” tasks that 

Table 2 The MIREX Tasks and Number of Runs per Task 2005-2008 

KEY TASK NAME 2005 2006 2007 2008 

AAI Audio Artist Identification 7  7 11 

ABT Audio Beat Tracking  5   

ACD Audio Chord Detection    15* 

ACC Audio Classical Composer ID   7 11 

ACS Audio Cover Song Identification  8 8 8 

ADD Audio Drum Detection 8    

AGC Audio Genre Classification 15  7 26* 

AKF Audio Key Finding 7    

AME Audio Melody Extraction 10 10*  21** 

AMC Audio Mood Classification   9 13 

AMS Audio Music Similarity  6 12  

AOD Audio Onset Detection 9 13 17  

ATC Audio Tag Classification    11 

ATE Audio Tempo Extraction 13 7   

MFE Multiple F0 Estimation (Frame Level)   16 15 

MFN Multiple F0 Note Detection   11 13 

QBSH Query-by-Singing/Humming  23* 20* 16* 

QBT Query-by-Tapping    5 

SF Score Following  2  4 

SGC Symbolic Genre Classification 5    

SKF Symbolic Key Finding 5    

SMS Symbolic Melodic Similarity 7 18 ** 8  

* task comprised two subtasks ** task comprised three subtasks  

represent tools and techniques upon which many MIR systems depend. For example, 
many systems use melody extractors as a first step toward building searchable indexes. 
The development and evaluation of low-level MIR subsystems is important to the 
MIR community as this category of evaluation comprised 201 (43%) of the MIREX 
evaluation runs. Audio Cover Song Identification (ACS), Audio Music Similarity 
(AMS), Query-by-Singing/Humming (QBSH), Query-by-Tapping (QBT) and Sym-
bolic Melodic Similarity (SMS) are those tasks related to what most people would 
consider to be MIR, that is, the idea of searching for music given some type of music 
query. QBSH has been the single most evaluated task with over 59 individual runs 
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evaluated over 2006-2008 (or 13% of runs evaluated). As a category, these searching 
tasks represented 139 or 30% of all MIREX runs. 

3   Overview of MIREX Primary Evaluation Metrics 

Table 3 Top MIREX Scores and Primary Evaluation Metrics 2005-2008 (normalized 0-1) 

KEY PRIMARY METRIC 2005 2006 2007 2008 

AAI Average Accuracy  0.72  0.48 0.48 

ABT Average Beat P-Score  0.41   

ACD1 Overlap Score    0.66 

ACD2 Overlap Score    0.72 

ACC Average Accuracy   0.54 0.53 

ACS Average Precision  0.23 0.52 0.75 

ADD Average F-Measure 0.67    

AGC1 Average Hierarchical Accuracy 0.83  0.68 0.66 

AGC2 Average Accuracy    0.65 

AKD Average Hierarchical Accuracy 0.90    

AMC Average Accuracy   0.62 0.64 

AME1 Average Accuracy 0.71 0.73  0.70 

AME2 Average Accuracy  0.83  0.85 

AME3 Average Accuracy    0.76 

AMS Average Fine Score  0.43 0.57  

AOD Average F-Measure 0.80 0.79 0.81  

ATE Average F-Measure    0.28 

ATE Average Tempo P-Score 0.69 0.81   

MFE Average Accuracy   0.62 0.67 

MFN Average F-Measure   0.61 0.61 

QBSH1 Average Precision (Mean Reciprocal Rank)  0.93 0.93 0.93 

QBSH2 Average Precision  0.93 0.94 0.94 

QBT Average Precision (Mean Reciprocal Rank)    0.52 

SF Average Precision  0.83  0.67 

SGC Average Hierarchical Accuracy 0.77    

SKD Average Hierarchical Accuracy 0.91    

SMS1 Average Dynamic Recall [Binary Score]3 0.66 0.72 [0.73]   

SMS2 Average Dynamic Recall [Binary Score]  0.82 [0.44]   

SMS3 Average Dynamic Recall [Binary Score]  0.78 [0.83]   

SMS4 Average Dynamic Recall [Fine Score]   0.72 [0.56]  

3 The SMS tasks used two different metrics as “primary” scores. Each year the Average Dynamic 
Recall (ADR) score was reported along with either the Binary Score or the Fine Score (pre-
sented in square brackets). More information about these metrics found in Sections 3.6 and 4.2. 
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The selection or creation of appropriate evaluation metrics is crucial to the 
proper scientific evaluation of MIR system performance. The selection of evalua-
tion metrics also has a strong emotional component as participants strive to show 
off the success of their algorithms and systems in the best possible terms. Thus, it 
is not surprising that the selection/creation of MIREX evaluation metrics under-
goes a great deal of sometimes heated discussion while the tasks are being devel-
oped by the community. Table 3 summarizes the primary evaluation metrics used 
in each task along with the top-ranked score using that metric for each year. These 
are the primary, or “official,” metrics used to rank order the MIREX results each 
on the master MIREX results poster published each year at ISMIR. It is important 
to note, however, that most tasks are actually evaluated using a wide variety of 
metrics. For each task, the results using the other metrics are summarized and 
posted on each respective results wiki page. Notwithstanding all the debate over 
which metric should become the “official” metric, we are discovering a general 
trend among the tasks that the rank order of system performances within a task 
appears remarkably stable regardless of the metric chosen [14]. As one can see in 
Table 3, MIREX uses many different primary metrics; some are used over a range 
of related tasks, others are tailored specifically to one. We will now discuss the 
primary evaluation metrics used by MIREX in evaluating MIR performance along 
with some of the justifications for using the metrics. 

3.1   Average Accuracy and Hierarchical Accuracy 

In classification tasks such as Audio Artist Identification (AAI), performance can 
be measured using classification accuracy. Given Ntotal pieces to be classified, the 
average accuracy of a classifier, Acc, can be defined as  

  (1) 

where Ncorrect is the number of correctly classified instances. Average accuracy is 
also applicable to such tasks as Audio Melody Extraction (AME) where accuracy 
measures the number of analysis frames where fundamental frequencies (F0s) are 
correctly estimated versus the total number of frames in a piece.  

For Multi-F0 Estimation (MFE) accuracy is calculated as 

  (2) 

where TP is the count of true positives, FP is the count of true negatives and FN is
the count of false negatives. In the MFE task, where the number of active F0s in 
the ground-truth changes per frame, TP is the number of correctly detected F0s per 
frame summed over all frames. FP is the number of detected F0s that are not in the 
ground-truth list for that frame summed over all frames and FN is the number of 
F0s in the ground-truth list minus the number of detected F0s for that frame 
summed over all frames. 
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In some cases, misclassifications can occur that are not as “erroneous” or “of-
fensive” as others. For instance, it is generally consider “better” to misclassify a 
Baroque work as Classical than Heavy Metal. Similarly, having a system misclas-
sify a hard-driving Blues song as a Rock & Roll song is quite understandable as it 
is the same kind of “error” that many humans might make. In the cases of the 
Symbolic and Audio Key Detection (SKD and AKD) tasks, misclassifying a key 
with its perfect fifth is also considered a somewhat acceptable mistake (i.e., many 
humans make the same error). For these reasons, some tasks are also evaluated us-
ing hierarchical accuracies, which discount certain acceptable errors. For example, 
in the two key finding tasks, correct keys were awarded 1.0 point, perfect fifth er-
rors were given 0.5 points, relative major/minor errors 0.3 points, and parallel ma-
jor/minor errors 0.2 points. Therefore, the hierarchical accuracy,  
AccH can be expressed as  

  (3) 

where Efifth represents the number of perfect-fifth errors, Erelative the number of 
relative major/minor errors, and Eparallel the number of parallel major minor errors. 
Similarly, for the Audio Genre Classification (AGC) and Symbolic Genre Classi-
fication (SGC) tasks, a genre hierarchy was employed such that errors between 
similar genres were only discounted a half point (e.g., Jazz and Blues, Classical 
and Romantic, etc.). 

3.2   Precision, Recall, and F-Measure 

Consider a system that when given a query, returns a list of documents/items that 
it “believes” are the proper responses to the query. If an item is returned, and it is 
relevant, it can be considered a true positive, TP. If a document is returned and it 
is not relevant it is a false positive, FP. If a document is not returned, but is rele-
vant it is a false negative, FN. Finally if a document is not returned and is not  
relevant, it is a true negative, TN. Using this system of TP, FP, TN and FN docu-
ments we can now define the two “classic” information retrieval evaluation me-
trics whose use predates the use of computers: precision and recall.

We can define the precision, P, as 

  (4) 

Put simply, precision is the ratio of relevant returned documents to the total num-
ber of returned documents. Recall, R, on the other hand is the ratio of relevant  
returned documents to the total number of relevant documents available in a sys-
tem, and is expressed as 

  (5) 
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These two measures can be combined into a single measure called the F-Measure, 
F, which is the harmonic mean of precision and recall: 

  (6) 

As an example of how precision, recall, and F-Measure are appropriate to a MIR 
task, consider the Audio Onset Detection (AOD) task. AOD concerns itself with 
finding the start times of all sonic events in a piece of audio. In the AOD task, 
each system outputs its predicted onset times for a piece of audio, and these pre-
dictions are compared to a ground-truth of manually annotated onsets. Assume, 
for example, the ground-truth annotation of an audio snippet contains 100 onsets 
of audio events. Furthermore, let us assume an algorithm returns 80 onsets, 60 of 
which are correct. In this case, the precision would be 60/80 (0.75) and the recall 
60/100 (0.60).  

To better understand why we are interested in the F-Measure, let us now con-
sider some extreme situations. Assume an algorithm predicts that there are one 
million onsets and, because these predicted onsets are so densely spaced, it has 
subsequently managed to predict the locations of the 100 true onsets in the piece. 
In this case, because all of the onsets that were in the ground-truth were correctly 
recalled, we have a case of perfect recall, i.e., 100/100 (1.0). However, only 100 
of the one million returned onsets were correct, causing precision to drop to 
100/1,000,000 (0.0001). Conversely, let us assume that an algorithm only returns 
one single onset, which is correct. In this case the precision is perfect 1/1 (1.0), 
but the recall is quite small, 1/100 (0.01). In general, recall and precision are 
traded at the expense of the other. The two measures are combined in the F-
Measure. If either recall or precision are very low, the F-measure will be as well. 
Therefore, F-Measure rewards those systems that have the best balance of simul-
taneously high recall and precision scores. 

3.3   Mean Reciprocal Rank 

In query-based tasks such as Query-by-Singing/Humming (QBSH), system per-
formance can be measured with mean reciprocal rank. Consider a system that  
returns a ranked list of results given a query. For example, QBSH systems are de-
signed to return a ranked list of songs in response to a user singing a melody into a 
microphone. If the desired response to a query such a “Twinkle Twinkle Little 
Star” is third in the returned list (i.e., rank 3), the reciprocal rank is 1/3. If we take 
the mean of the reciprocal ranks over all queries, we arrive at the mean reciprocal 
rank (MRR) which can be formally expressed as 

  (7) 

where N is the number of queries, and rankn is the rank of the correct response of 
query n in the returned response list. This metric rewards systems for placing the 
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desired items near the top of the ranked lists and quickly penalizes those systems 
that returned the desired items lower in the list. 

3.4   Audio Tempo and Audio Beat P-Score 

In some MIREX tasks, more heuristic measures, derived from the outcomes of 
real-world user experiments, are used for evaluation. For example, in the Audio 
Tempo Extraction (ATE) task, two dominant tempi were required to be returned 
by each algorithm. This two tempi approach was adopted based on the work of 
McKinney and Moelants [13] which showed that perceived tempi vary among real 
listeners in a relatively discrete and integer-based manner (i.e., some persons hear 
a given song at 60 beats per minute (bpm) while others hear the same song at 120 
bpm). The ATE ground-truth contained the two true dominant tempi, as well as a 
salience of the first tempo. Denoting this salience as , we compute the Ptempo

score as 

                                                  (8) 

where T1 is 1 if the first tempo is identified within ± 8% of the ground-truth tempo 
value and 0 otherwise. Likewise, T2 takes the value 1 if the second tempo was 
identified and 0 otherwise. 

In the Audio Beat Tracking (ABT) task, the work of Moelants and McKinney 
also was used as a basis for the choice of metric. For the ABT task each evaluated 
system provided beat times extracted from a piece of audio, akin to the tapping of 
a foot along with the music. These extracted beat times are compared to 40 
ground-truth beat tracks for each musical piece collected from humans tapping to 
the beat of the piece. The beat times for the algorithms and each ground-truth are 
converted to an impulse train (at a 100 Hz sampling rate), and a cross correlation 
of the algorithm output impulse train, y[n], and the ground-truth, as[n], is meas-
ured. The cross correlation is calculated across a small window of possible delays 
between –W and +W (where W is 1/5th of the beat length). The correlations are 
then averaged across the S (S=40) ground-truths. Therefore, the beat P-Score, 
Pbeat, can be expressed as 

                               (9) 

where Np is a normalization factor for the number of beats and is calculated as 

                                          (10) 

3.5   Chord Detection Overlap Score 

The chord detection overlap score was specifically designed for the MIREX Au-
dio Chord Detection (ACD) task. For the ACD task, each system had to return the 
chord names along with their associated onset and offset times within a piece of 
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music. A good performance criterion in such a situation is to measure the amount 
of overlap in time between the detected chords and the ground-truth. A system’s 
returned chords can be represented as  

  (11) 

Then the overlap score can be calculated as 

  (12) 

where Cdt(c,t) and Cgt(c,t) are the detected and the ground-truth chords.  
In the 2008 MIREX ACD task, the systems were restricted to return one of 25 

different chord types rooted on the 12 pitches of the chromatic scale (i.e., 12 major 
chords, 12 minor chords, and no chord). Therefore,  is a discrete variable. More-
over, systems were only allowed to return one active chord at any given time.  

3.6   Average Dynamic Recall 

For such similarity tasks as Audio Music Similarity (AMS) and Symbolic Melodic 
Similarity (SMS) where systems return relevant items as a list ranked according to 
“similarity” to a given query, the underlying relevance measure is subjective be-
cause it is based on the biases, tastes, levels of expertise and foibles of the human 
assessors providing the assessments. For example, in the MIREX 2005 Symbolic 
Melodic Similarity (SMS05) task, systems returned a ranked list of songs whose 
melodies were “similar” to the query song. The ground-truth for SMS05 task was 
generated by humans manually scoring every query against every returned result 
in a set of pre-MIREX experiments conducted by researchers at Utrecht Universi-
ty [16]. It was Rainer Typke, then a graduate student at Utrecht University, who 
took the lead on proposing and organizing the SMS05 task. Using the Répertoire 
International des Sources Musicales (RISM). Serie A/II, manuscrits musicaux 
après 1600 collection [15] of incipits, Typke and his colleagues at Utrecht created 
a ground-truth set of similarity judgments. For each of 11 queries, the Utrecht 
team had 35 music experts rank order the pre-filtered individual results (about 50 
per query) based on similarity to the original query. The median ranks assigned to 
the retrieved incipits were subjected to the Wilcoxon rank sum test. This statistical 
testing procedure allowed the Utrecht team to create groups of results that con-
tained items of comparable similarity while at the same time being able to order 
the groups themselves with regard to similarity to the query. It was these 11 lists 
of group-ordered incipits that formed the SMS05 ground-truth set.  

Because the ground-truth generation involved highly subjective human judg-
ments, it is quite reasonable to treat the ground-truth rank list not in an absolute 
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item-by-item sense but rather in a more relativistic sense of ranked groups of 
equivalently similar items. For example, the first and the second items in a list 
might have slightly different scores but for all intents and purposes they are equi-
valently similar to a given query. To reflect this state of affairs Typke and his 
Utrecht colleagues developed the Average Dynamic Recall (ADR) metric [17]. 

ADR measures the average recall over the first n documents with a dynamic set 
of relevant documents where n is the number of documents in the ground-truth 
list.  The set of relevant documents grows with the position in the list but not just 
by one item. For example if the ground-truth has two groups of equally relevant 
items such as <(1, 2), (3, 4, 5)>, then at position number 2 there are 2 relevant 
documents whereas, at position number 3 there are a total of 5 relevant docu-
ments. However, at each position in the results list the recall is calculated by di-
viding the number of relevant items with the position number, not the total number 
of relevant documents. Thus, the above definition can be written formally as 

  (13) 

  (14) 

where  is the returned results list. The ground-truth list has g groups 

such as . The ranking does 

not matter within each group. For example we do not know if  is less 

than . However, we do know that  is less than  giv-

en that . Also c in the above equation is the group number that contains the 

 item in its group. The key point to remember about ADR is that it represents 
an attempt to mitigate the distorting effects of relying solely on absolute (mostly 
minute) differences in human-generated similarity scores by allowing for grouping 
of functionally similar items.  

4   Evolution of Similarity Evaluation Tasks 

The set of similarity tasks, Audio Music Similarity (AMS) and Symbolic Melodic 
Similarity (SMS), comprises those tasks that most closely resemble a classic in-
formation retrieval scenario. That is, for a given piece of music submitted as a 
query, the systems under evaluation are expected to return a ranked list of music 
pieces that are deemed to be similar to the query. In many ways, it is this scenario 
that most people think of when they think of MIR systems in real-world deploy-
ments. In this section we explore this issues raised in running the set of similarity 
tasks run by MIREX between 2005 and 2007. We will also examine how respond-
ing to these issues caused the structure of the similarity tasks to evolve over time. 
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4.1   2005 Symbolic Melodic Similarity 

In 2005, there was no running of an AMS task as the community could not decide 
how it would set up the ground-truth for such a task. However, as mentioned in 
Section 3.6, it was Rainer Typke who was the intellectual leader of SMS05 be-
cause he had the ground-truth set in hand that he and his Utrecht colleagues had 
already created (SMS1 in Table 3). SMS05 had 7 algorithms evaluated. The best 
algorithm had an ADR score of 66% while the worst had a 52% ADR score. 
Overall, participants were pleased with the 2005 running of SMS. However, sev-
eral important issues arose that would influence future similarity task runs at 
MIREX. First, it was obvious that the 11 queries contained in the Utrecht ground-
truth set was not a big enough set upon which to make broad generalizations about 
system behaviors. Second, there was some concern that Utrecht’s pre-filtering step 
might have removed potentially relevant items from the ground-truth. Third, gene-
rating new ground-truth data for MIREX 2006 using the Utrecht method would 
not be possible given the time and manpower constraints of MIREX. Fourth, the 
RISM collection does not encompass a wide enough range of music to represent 
all the musical tastes, genres and styles of interest to MIR developers and users. 
Fifth, no one in the MIREX community could come up with a feasible way to rep-
licate the Utrecht method to generate ground-truth for a meaningful collection of 
audio-based music files. 

4.2   2006 Symbolic Melodic Similarity and Audio Music Similarity  

Given the issues raised after the running of SMS05, the IMIRSEL team worked 
with the MIREX community to define a general framework for MIREX 2006 that 
could be used to construct both the SMS06 and Audio Music Similarity (AMS06) 
tasks. The principal difference that would set the 2006 tasks apart from the 2005 
task would be the adoption of a more TREC-like evaluation scenario. That is, ra-
ther than creating and using a pre-compiled ground-truth set, the evaluation of re-
trieved results would be conducted post-hoc using human judges (or “graders”) to 
score the similarity between queries and their respective returned items.  

Acceptance of the post-hoc set up was not controversial. However, as with 
many things community-based, three issues became hotly debated. The first 
point of contention was the choice of evaluation metric. The second was the 
number of graders that would be used to evaluate the results. The third issue was 
basic feasibility. 

Many community members, including the authors of this chapter, favoured a 
simple binary measure of similarity/relevance. That is to say, a returned piece (also 
known as a “candidate”) was, or was not, similar/relevant to the query piece. The 
binary approach would make the use of classic precision (see Section 3.2) easy to 
calculate. Others fought vigorously for some type of graduated “broad” judgment 
(e.g., Not Similar (NS), Somewhat Similar (SS), Very Similar (VS)) to better re-
flect the nuances in perceptions of similarity. Deciding upon methods for weighting 
the relative importance of NS, SS and VS opened up another debate thread. A  
continuous fine-scaled approach was also suggested to more “accurately” capture 
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subtle differences in similarity. This fine-scale could be represented using some 
kind of slider that a grader could position between 0.0 (NS) and 10.0 (VS). The 
sum or averages of the slider-generated values could then be used to evaluate the 
success of each system for each query/candidate pair.  

The number of graders per query/candidate pair was another contentious issue. 
One group, including this set of authors, wanted to mimic the traditional TREC 
approach of one grader per query. Others argued strongly that music relevance and 
text relevance were not equivalent and that music similarity most likely required a 
number of judges to overcome personal biases with regard to expertise and taste.  

Issues of feasibility became intertwined with the number-of-graders debate. As 
stated before, MIREX has an algorithm-to-data model that means the bulk of the 
evaluation work has to performed and managed by the IMIRSEL team. Under eth-
ics guidelines as advised by the University of Illinois’ Institutional Review Board, 
volunteers cannot be expected to perform more than 3-4 hours of work without 
compensation (and added administrative rights and protections). This range of 
180-240 minutes set an upper bound on the scope of the similarity tasks. Thus, the 
IMIRSEL team had to juggle a set of factors that would influence the scope (and 
hence the workload) of the similarity evaluations. These factors included: 

1. Number of Algorithms submitted 
2. Number of Queries 
3. Number of Candidates returned per query 
4. Number of Minutes spent evaluating each query/candidate pair 
5. Number of graders per query/candidate Pair
6. Number of Graders available 

These combined to form the basic feasibility equation outlined below. 

(per Grader) (15) 

As one can see, there are many trade-offs involved. When developing the guide-
lines for the 2006 similarity tasks under these conditions it was also problematic 
that one does not know in advance with any certainty such things as how many al-
gorithms will actually be submitted (A), how many people will volunteer to be 
graders (G) and/or how long it will actually take to evaluate each query/candidate 
pair (M).  

So, given all the debate over the issues of metrics, graders and feasibility, what 
decisions were actually made? On the metric issue, Table 4 shows the breakdown 
of the set of new post-hoc similarity metrics tabulated for both AMS06 and 
SMS06. Fine-scaled scoring (FINE in Table 4) and graduate BROAD scores (NS, 
SS, and VS) were both included. Binary scoring (Greater0 and Greater1) was ac-
complished by treating Somewhat Similar (SS) scores as either Not Similar (NS) 
or Very Similar (VS). A trio of different broad score weighting schemes was 
created (PSum, WCsum and SDsum) to emphasize the relative importance of sys-
tems returning Very Similar (VS) results (see Table 4). As Table 5 shows, both 
SMS06 and AMS06 tasks ended up having 3 graders per query/candidate pair. 
Most importantly, the combination of factors outlined in the feasibility equation 

( * * * * ) / 240minutesA Q C M P G ≤
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yielded an average number of query/candidate pairs per grader of 205 for SMS06 
and 225 for AMS07. Under the relatively realistic assumption of 1 minute per 
evaluation, this brought the time commitments of the graders within our upper 
bound of 240 minutes. 

Table 4 Basic Metrics used in the 2006 Similarity Tasks

METRIC COMMENT RANGE or VALUE 

FINE Sum of fine-grained human similarity decisions 0-10 

PSum  Sum of human broad similarity decisions NS=0, SS=1, VS=2 

WCsum 'World Cup' scoring (rewards Very Similar) NS=0, SS=1, VS=3 

SDsum  'Stephen Downie' scoring (strongly rewards Very Similar) NS=0, SS=1, VS=4 

Greater0 Binary relevance judgment NS=0, SS=1, VS=1 

Greater1 Binary relevance judgment using only Very Similar NS=0, SS=0, VS=1 

Table 5 Summary Statistics for the AMS and SMS Tasks 2006-2007 

 SMS06 AMS06 SMS07 AMS07 

Number of algorithms 7 6 6 12 

Number of queries  17 60 30 100 

Total number of candidates returned  1360 1800 2400 6000 

Total number of unique query/candidate pairs graded  905 1629 799 4832 

Number of graders available  20 24 6 20 

Number of evaluations per query/candidate pair  3 3 1 1 

Number of queries per grader  15 7~8 1 5 

Number of candidates returned per query 10 5 10 5 

Average number of query/candidate pairs per grader 225 205 133 242 

Number of grading events logged 23491 46254 3948 21912 

For SMS06, each system was given a query and asked to return the 10 most 
melodically similar songs from a given collection. The collections were RISM
(monophonic; 10,000 pieces; SMS1 in Table 3), Karaoke (polyphonic; 1,000 
pieces; SMS2), Mixed (polyphonic; 15,741 pieces; SMS3). There were 6 RISM
queries, 5 Karaoke queries and 6 Mixed queries for a total of 17 queries. Then, for 
each query, the returned results from all participants were grouped and anony-
mized into collections of query/candidate pairs. These pairs were evaluated by 
human graders, with each query/candidate pair being evaluated by the 3 different 
graders. Each grader was asked to provide a categorical BROAD score with 3 cat-
egories: NS, SS, VS as explained previously, and one FINE score (in the range 
from 0 to 10). Along with the basic FINE and BROAD scores, Utrecht’s Average 
Dynamic Recall (ADR) was also calculated to provide some continuity with 
SMS05. 
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For AMS06, each system was given 5000 songs chosen from IMIRSEL’s 
USPOP, USCRAP and CoverSong collections. The USPOP collection was  
donated to IMIRSEL by Dan Ellis’s Lab Rosa at Columbia University and 
represents hit pop songs from 2002. The USCRAP collection was an eclectic mix 
of tracks bought by IMIRSEL from a music wholesaler specializing in remain-
dered CDs (thus the music quality was quite varied). The 330 member CoverSong
collection is described in [6] and contains a set of 30 titles each of which is 
represented by 11 variants. The CoverSong collection was included in the AMS06 
data set to test an ancillary hypothesis that explored whether standard spectral-
based similarity techniques were suitable to detect the musically similar but acous-
tically disimilar cover songs.4 Each system returned a 5000x5000 distance matrix 
that recorded the similarities between each song in the collection. After all the ma-
trices were submitted, IMIRSEL randomly selected 60 songs to act as “queries.” 
The first 5 most highly ranked songs out of the 5000 were extracted for each query 
from each system’s matrix (after filtering out the query itself, returned results 
from the same artist and members of the CoverSong collection). Then, for each 
query, the returned results from all participants were grouped and anonymized into 
collections of query/candidate pairs. Like SMS, each query/candidate pair was 
evaluated by 3 different graders using the same set of BROAD and FINE scoring 
metrics.  

It is interesting to note here that the AMS community did not adopt the ADR 
metric as its primary evaluation metric. The differences in primary metrics be-
tween SMS06 and AMS06 reflects the fact that the symbolic and audio research 
communities are quite independent of each other and hold different worldviews on 
the notion of what the similarity task is meant to achieve. As the respective task 
names suggest, the SMS community is interested in notions of “melodic” similari-
ty regardless of such externalities as timbre or orchestration while the AMS com-
munity is interested in notions of “musical” similarity which does include timbre 
and orchestration as contributory factors.  

In order to collect grader scores and manage the whole grading process for 
both SMS06 and AMS06, the IMIRSEL team developed the Evalutron 6000 
(E6K) [7, 9, 10]. The E6K (Figure 1) was coded by IMIRSEL team member Ana-
toliy Gruzd using the “CMS Made Simple” open-source content management 
system5 which both reduced the development time and simplified system man-
agement. As a web-based application, E6K adheres to a Client-Server model: the 
client consists of HTML, CSS and JavaScript; and, the server – PHP and 
MySQL. E6K’s web-based approach has the benefit of allowing graders to use 
the system from anywhere they have a browser and an Internet connection. This 
was particularly important for MIREX given the international scope of its partic-
ipants. E6K employs the popular Web 2.0 programming technique referred to  
as AJAX (Asynchronous JavaScript and XML)6 to save similarity/relevance 
judgments and other interaction events in real time, allowing graders to leave the 

4 The answer to this hypothesis was a resounding no [5]. 
5 See http://www.cmsmadesimple.org 
6 See http://en.wikipedia.org/wiki/Ajax_(programming). 
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system and come back as they wish. The ability of graders to come and go as 
they saw fit was a formal requirement mandated by UIUC’s research ethics 
board. As a side benefit, however, adoption the AJAX approach helped to pre-
vent data loss during unexpected service interruptions or system failures.  

The E6K gives graders a choice of three audio players: Flash, Windows Media 
Player, and Quicktime to ensure cross-platform usability. All players draw from a 
common set of query/candidate MP3 files. The E6K tracks and records all user-
interactions with the system. For MIREX 2006, this consisted of 69,745 logged 
events across both SMS06 and AMS06. 

To better understand the effects that the various evaluation design decisions had 
on running both the AMS06 and SMS06 tasks, the IMIRSEL team performed a 
range of analyses on the results data [10]. One such analysis examined the inter-
grader reliability (or inter-subjectivity) of the judgments made by trio of graders 
assigned to each query/candidate pair. The IMIRSEL team chose Fleiss’s Kappa 
to evaluate the inter-grader reliability as it was a metric that it had worked with 
before. It is a measure of inter-grader reliability for nominal data and is based 
upon Cohen’s two-grader reliability Kappa but is intended for use with an arbi-
trary number of graders [8]. Fleiss’s Kappa is defined as 

                                                  (16) 

where: 

  (17) 

  (18) 

In the context of the AMS06 and SMS06 tasks, N is the total number of 
query/candidate pairs that need grading; n is the number judgments per 
query/candidate pair; k is the number of BROAD response categories (here equal 
to 3); and, nij is the number of graders who assigned the i-th query/candidate  
pair to the j-th BROAD category. Fleiss’s Kappa scores range from 0.0 (no 
agreement) to 1.0 (complete agreement). 

Two sets of BROAD category configurations were evaluated. First, we com-
puted the Kappa score using all three BROAD categories (VS, SS, NS). Second, 
we computed the Kappa score after collapsing the VS and SS categories into a 
single “similar” (S) category to create a classic binary classification scheme of 
Similar (S) and Not Similar (NS). Table 6 below presents the Kappa scores for 
AMS06 and SMS06 under the 3-level and 2-level schemes. 
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Fig. 1 Screenshot of the Evalutron 6000 (E6K) interface 

Table 6 Fleiss’s Kappa Scores for SMS06 and AMS06  

 3-level (VS, SS, NS) 2-level (S, NS) 

SMS06 0.3664 0.3201 

AMS06 0.2141 0.2989 

According to Landis and Koch [11] who studied the consistency of physician 
diagnoses of patient illnesses and then derived a scale for interpreting the strength 
of agreement indicated by Fleiss’s Kappa, the scores reported in Table 6 show a 
“fair” level of agreement. While not ideal, the fair level of agreement is remarka-
ble given the diversity in levels of music skill, tastes and cultural backgrounds of 
the MIREX 2006 graders. Also noteworthy is the difference in score agreements 
between the SMS06 and AMS06 tasks with the SMS06 graders being in stronger 
agreement with each other than the AMS06 graders. For example, when compared 
under the 3-level scheme, 7.1% of the query/candidate pairs had no agreement 
among the graders while only 2.2% percent of the SMS06 query/candidate pairs 
had no agreement. Partial disagreements (where two graders agreed and the third 
did not) occurred in 51.9% of the SMS06 cases and 62.8% of the AMS06 cases. 
30.1% of the query candidate/pairs for AMS06 had perfect agreement among the 
three graders while the SMS06 grader reached perfect agreement on 45.9% of 
their query candidate pairs. Under the 2-level scheme, things even out between the 
two tasks as the AMS06 graders reached perfect agreement on 48.3% of the 
query/candidate pairs and the SMS06 graders reached perfect agreement on 49.8% 
of the query/candidate pairs. We believe this overall disparity in agreement levels 
between the two tasks is attributable to the different notions of similarity held by 
the two task communities.  
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Fig. 2 Distribution of FINE scores within BROAD categories for the SMS06, SMS07, 
AMS06 and AMS07 tasks. The Box-and-Whisker plots show the median FINE score 
bounded by the first and third quartiles in the box, with whiskers extending to one-and-half 
times the inter-quartile range (i.e., the distance between the first and third quartiles) and 
outliers denoted with +’s. 

To measure the consistency between the BROAD category and FINE scores, 
we calculated the distribution of FINE scores within each BROAD category. Fig-
ure 2 shows box-and-whisker plots for both SMS and AMS tasks from 2006 and 
2007. The boxes have vertical lines at the 1st, 2nd, and 3rd quartiles. The whiskers 
bound the minimum and maximum values which fall within 1.5 times the inter-
quartile range (IQR), outliers are denoted by + symbols. The box-and-whisker 
plots illustrate the relative differences between tasks in terms of the assignment of 
FINE and BROAD scores to musical works. Not only do they reveal the distribu-
tion of FINE score responses for a given BROAD score for a given task, they also 
speak to the variation among graders of what constitutes two pieces being not sim-
ilar (NS), somewhat similar (SS), or very similar (VS). 

In all four of the AMS06, SMS06, AMS07 and SMS07 tasks, the NS and VS 
categories have the most compact distributions of FINE scores. Similarly, the SS 
category has the largest IQR in both sets of SMS and AMS tasks. SS scores over-
lap with the NS values from both task sets. In AMS, however, note how SS greatly 
overlaps both the NS and VS values. The data presented in Figures 2 lead us to 
two important observations. First, and again, there appears to be a fundamental 
difference in the interpretations of “similarity” between the SMS and AMS task 
communities. Second, the SS category, regardless of task, appears problematic. 
The overly broad term “somewhat similar” (SS) is open to many interpretations 
and meanings, allowing graders to judge two pieces “similar” at any number of 
ranks. This is not only what would be expected given our natural intuitions about 
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labels like “somewhat similar”, but is also evidenced in the data which clearly il-
lustrate a wide distribution of FINE scores corresponding to the SS category for 
all tasks. 

4.3   2007 Symbolic Melodic Similarity and Audio Music Similarity  

The single biggest difference between the running of the 2006 similarity task set 
and its 2007 running was the adoption of a single grader per query/candidate pair 
model for both SMS07 and AMS07. This single grader model was adopted for two 
reasons. First, it greatly reduced the administrative overhead of finding and man-
aging a large number of graders needed. This lessening of load allowed the 
AMS07 community to significantly increase the number of queries that could be 
evaluated from 60 in AMS06 to 100 in AMS07. Similarly, the SMS07 query set 
increased to 30 from its 2006 17 queries. Second, the two communities were con-
vinced that general state of agreement among graders shown in the analyses of the 
2006 data indicated that there was less of a need to control for inter-grader va-
riance by having multiple graders than they had originally thought.  

Both the AMS07 and SMS07 tasks kept the FINE and the 3-level BROAD  
categories scoring systems available on the E6K system. Notwithstanding the 
problematic nature of the SS category, the 3-level system was kept in part to have 
consistency between years, in part to see if any differences could be noted across 
years, and in part because it really cost very little to collapse the VS and SS cate-
gories into a single S category to create a binary relevance score. The SMS07 
community also kept ADR as its primary evaluation metric while AMS07 com-
munity continued to ignore it in favour of average FINE score. 

SMS07 differed from SMS06 in several significant ways. First, the underlying 
dataset chosen (SMS4 in Table 3) was changed to 5274 pieces drawn from the  
Essen Associative Code and Folksong Database.7 Second, for each query, four 
classes of error-mutations were created to test the fault-tolerance of the systems. 
Thus the query set comprised the following 5 query classes: 

1. No errors 
2. One note deleted 
3. One note inserted 
4. One interval enlarged 
5. One interval compressed  

For each query (and its 4 mutations), the returned candidates from all systems 
were then grouped together (query set) for evaluation by the human graders. The 
graders were provided, via the E6K system, with the perfect version to represent 
the query. It was against this perfect version that the graders evaluated the candi-
dates. Graders did not know whether the candidates came from a perfect or  
mutated query. Each query/candidate pair was evaluated by 1 individual grader. 
Furthermore, each query was the sole responsibility of only 1 grader to ensure un-
iformity of results within that query. 

7 More information about the Essen Collection available at http://www.esac-data.org 
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While the basic premise of AMS07 was kept, there were several subtle changes 
from AMS07. First, the size of the returned matrices increased to 7000 X 7000 as 
the dataset also included additional new music drawn from IMIRSEL’s Classical
and Sundry collections. Second, 30 second clips were used for AMS07 rather than 
the full songs used in AMS06 to speed up processing and to ensure that the grad-
ers would listen to the exact same music as the systems. This change came about 
after analyzing the 2006 AMS E6K time-on-task data where it became apparent 
that many graders were making their judgments without listening to the entire 
pieces of music provided. Second, 100 songs were randomly selected from the re-
turned matrices with the constraint that the 100 songs equally represent each of the 
10 genres found in the database (i.e., 10 queries per genre). The 5 most highly 
ranked songs were then returned per query (after filtering for the query song and 
songs from the same artist). As with SMS07, a query became the sole responsibili-
ty of 1 grader to ensure uniformity of scoring within each query. 

The actual running of the 2007 similarity tasks was much less stressful on the 
IMIRSEL team primarily because the need to manage multiple graders per query/ 
candidate pair was eliminated. The SMS07 ADR highest score of 0.72 along with 
the highest FINE score of 0.56 indicates that the best performing SMS systems are 
quite tolerant of query input errors. These scores compare favourably with the 
SMS1 scores (found in Table 3) from 2005 (0.66 ADR) and 2006 (0.72 ADR). 
The AMS07 highest average FINE score increased to 0.57 from 0.43 for AMS06. 
We believe this increase in score is jointly attributable to improvements in the  
algorithms (primarily) and the shortening of the query/candidate pair lengths to 30 
seconds to ensure the synchronization of “listening” between the systems and the 
graders (secondarily). 

There was no running of either an SMS or AMS task during MIREX 2008. The 
first reason for this was a general consensus that developers needed more time to 
make non-trivial improvements to their systems. The second and perhaps more 
daunting reason is the data shortage issue. For SMS in particular, there is an acute 
shortage of available trustworthy symbolic music from which to build meaningful, 
large-scale test collections. Even with AMS, where more data is available, it still 
takes considerable effort and expense to acquire and then prepare the audio files 
(i.e., cutting to length, normalizing data formats, etc.) for use in a proper test col-
lection. Of course, it is possible to re-use the datasets from previous years. How-
ever, constant reuse of data will most likely lead to the “overfitting” of algorithms 
to the data leading to meaningless apparent improvements in results.  

If the two communities can decide on how to deal with the data issue, the 
IMIRSEL team looks forward to running future iterations of both the AMS and 
SMS similarity tasks. Based on the smoothness with which both SMS07 and 
AMS07 ran, we recommend keeping the basic 2007 format for each task with one 
caveat. As Figure 2 shows, the SS BROAD category continues to be problematic 
with its wide variance in both the AMS and SMS tasks. We need to encourage 
these communities to think hard about either how to reduce this variability or to 
consider eliminating the SS BROAD category altogether, particularly with regard 
to the AMS task. 



The Music Information Retrieval Evaluation eXchange 113

5   Summary and Future Directions 

In this chapter we have examined the history and infrastructure of MIREX. 
MIREX is a community-led endeavour that reflects the wide range of research 
streams being undertaken by MIR researchers from all around the world. The 
growth of MIREX over the period from 2005 to 2008 has been remarkable with 
the number of algorithms evaluated increasing steadily each year. We have dis-
cussed the numerous primary evaluation metrics used to “officially” report the 
performance results of each tasks. We have highlighted that the choice and/or  
creation of particular primary metric is influenced by a mixture of scientific im-
peratives, previous empirical research, traditions of practice, participant desires to 
succeed and the pragmatics of actually getting the evaluations completed within 
constraints of acceptable time and effort expenditures. By looking at the two simi-
larity tasks, AMS and SMS, we have illustrated how MIREX tasks have evolved 
through time as the MIREX research community builds upon its successes and ad-
dresses the problems it encounters.  

We have also suggested that one major problem facing the MIREX community 
is the lack of useable data upon which to build realistic test collections. In an ef-
fort to solve this problem, along with the potential problem of having IMIRSEL 
overcome by the increase in the number of algorithm submissions, a new interna-
tional research collaboration called the Networked Environment for Music  
Analysis (NEMA) has been formed. NEMA comprises research labs from the 
Universities of Waikato, Illinois at Urbana-Champaign, Southampton, London 
(both Goldsmiths and Queen Mary Colleges), and McGill. One important goal of 
NEMA is the construction of a web-service framework that would make MIREX 
evaluation tasks, test collections and automated evaluation scripts available to the 

Fig. 3 An illustration of how NEMA will be used to gather remote resources for evaluation 
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community on a year-round basis. It would also expand the availability of data by 
developing the On-demand Metadata Extraction Network (OMEN) [12]. OMEN is 
designed to acquire metadata and features from remote music repositories while at 
the same time respecting copyright laws. NEMA hopes to incorporate OMEN 
within a system that would allow researchers to locate and use bits and pieces of 
algorithms from other researchers. Thus, as Figure 3 illustrates, a team at Lab A 
could build a hybrid experimental system quickly from the classifiers and feature 
extractors from other participating labs. It could run a MIREX-based evaluation 
from the comfort of its lab any time it chose using its new system. It could then 
report its findings and, if successful, redeposit its new hybrid algorithm into the 
NEMA repository for others to build upon.  
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Chord Analysis Using Ensemble Constraints

David Gerhard and Xinglin Zhang

Abstract. Many applications in music information retrieval require the analysis of
the harmonic structure of a music piece. In Western music, the harmonic structure
can be often be well illustrated by the chord structure and sequence. This chap-
ter presents a technique of disambiguation for chord recognition based on a priori
knowledge of probabilities of voicings of the chord in a specific musical medium.
The main motivating example is guitar chord recognition, where the physical lay-
out and structure of the instrument, along with human physical and temporal con-
straints, make certain chord voicings and chord sequences more likely than others,
and make some impossible. Pitch classes are extracted, and chords are then recog-
nized using pattern recognition techniques. The chord information is then analyzed
using an array of voicing vectors indicating likelihood for chord voicings based on
constraints of the instrument. Chord sequence analysis is used to reinforce accuracy
of individual chord estimations. The specific notes of the chord are then inferred by
combining the chord information and the best estimated voicing of the chord.

1 Introduction

Traditional Western music is performed by instruments, including the human voice,
and instruments are constrained. All the instruments have their characteristic ranges,
timbres, playing styles and techniques. Each instrument (including voice parts) has
a standard range of notes that are playable. For example, the modern piano has
a total of 88 keys, ranging from A0 to C8. Instruments also have corresponding
standard playing techniques, which can often be derived from the physical structure
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and layout of the instruments as well as the physical abilities of human player, and
are sometimes related to the style of music being played. For example, the guitar
is commonly played in one of two styles: chording, where a group of strings is
sounded simultaneously, and picking, where individual notes are played to create a
melody.

1.1 Prescriptive and Descriptive Constraints

A distinction should be made between prescriptive and descriptive constraints. Pre-
scriptive means that there is a rule prescribing a musical constraint. The rule can be
about composition, technique or any other aspect of the musical characteristics of
a piece, but what makes a rule prescriptive is that it can be broken. It is a common
practice, put in place by earlier composers and it suggests ways of making music
which “sounds good”. An example is the prescription to avoid the motion of parallel
fifths. Composers have found that motion of parallel fifths can be distracting, can
lead to a reduced sense of the perception of the key or chord pattern of the piece,
and can make musical critics unhappy. The prescriptive constraint comes from real
or imagined reasons for not using a particular construct, but there is no physical rea-
son a composer cannot use motion of parallel fifths. A renegade composer needing
just that distraction or wanting to upset critics in this way, is not physically pre-
vented from using parallel fifths. It is a convention, not a requirement. The term
“prescribe” means “to write before” and prescriptive constraints are rules which are
written before the composer begins to write the song.

A descriptive constraint, on the other hand, is a physical condition of the in-
strument, ensemble or player which is being asked to produce sounds. And some
constraints are so rigid that they cannot be broken. For example, no matter how con-
vincing the request is, a clarinet can never produce more than one note. No matter
what enticements or threats are brought to bear, a trumpet cannot play a C two oc-
taves below middle C. And no human can play a chord containing notes that are five
octaves apart using a single hand on a piano. Descriptive constraints detail charac-
teristics of the music which cannot be changed usually. There are other descriptive
constraints that can be broken by using some certain techniques. For example, the
musical range of an instrument is an example of a descriptive constraint. This is a
standard measure of the notes that an instrument can play, and are so rigid that they
are often programmed into musical composition software1. However, it is possible,
for example, to use some overtone techniques to produce higher pitches that are
theoretically “out of range” for a guitar. Another example is on an alto saxophone,
where it is possible to achieve a note lower than concert D�3 by partially blocking
the bell against the player’s leg, both causing a resonance node and slightly elongat-
ing the effective pipe length, producing a lower pitch. The term “describe” means
“to write down” and descriptive constraints are used to describe the instrument itself
and the “standard” playing techniques ascribed to that instrument.

1 For example, the Sibelius composing software (http://www.sibelius.com/) col-
ors a note red when it is out of range for the staff instrument.

http://www.sibelius.com/
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In the context of music information retrieval, prescriptive and descriptive con-
straints can both be used as additional information to enhance analysis and disam-
biguate results. Developers must take care when using these constraints, because
while prescriptive constraints yield an increased or decreased probability of occur-
rence from the norm, depending on the rule, rigid descriptive constraints theoret-
ically lead to musical events or characteristics with zero probability. In practice,
however, it should be noted that musicians and composers are, by nature, creative,
and often seek ways to overcome constraints both prescriptive and descriptive, as
mentioned above. The piano, however, has no such techniques and the playable
range (A0 to C8) is a true descriptive constraint.

1.2 Application of Constraints in Music Information Retrieval
Research

Although these constraints limit the extent of the sounds which can be produced,
they can be used by researchers studying music to narrow down the possible an-
swers to the questions they are asking. Researchers have made use of prescriptive
and descriptive constraints in music information retrieval in the past, but the dis-
tinction between the types of constraints is rarely made, and estimated probability
distribution measures are often used in place of identified constraints. Automatic
generation of musical instrument fingerings is a research area in which algorithms
are used to calculate an optimal fingerings (hand positions and movements) for a
sequence of given notes, either monophonic or polyphonic.

Tuohy and Potter [20] present a genetic algorithm for the automatic generation
of playable guitar tablature through the use of a fitness function that assesses the
playability of a given set of fretboard positions. Though not explicitly using the
term “constraints”, their fitness function takes into account some physical charac-
teristics of the guitar. “Hand movement” and “Hand manipulation” are considered
by the fitness function, which favors easier situations and penalizes complicated sit-
uations. In [9], a system for generation of piano fingerings is proposed. The system
constrains fingerings by requiring that the same finger be used as long as a note per-
sists and no finger substitution is allowed2; each finger may only depress one note.
What’s more, they use “vertical cost”, “horizontal cost” and “user specification of
cost function” to measure the playability of the underlying fingering. The three costs
take into consideration different kinds of constraints.

Radicioni et al [18] explicitly use the term “constraints-based approach” in their
system for modeling guitar performers’ gestures and annotating a musical score.
They believe that the physical gestures used to operate musical instruments are re-
sponsible for the characteristics of the sound being produced in a performance. They
make use of the highly constrained nature of performers’ gestures to build a model
of music performance, coupled with a strategy aimed at maximizing the gestural
comfort of performers. They draw on physical and bio-mechanical constraints for
their model, from the implications of the fact that notes have certain positions on

2 Finger substitutions happen in reality for long notes.
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the guitar fretboard and human’s hands have a certain range of span, making certain
fingerings more frequent than others.

When the music score is known a priori, an interesting problem is to dis-
cover the fingerings for automatic performance environments [2], learning aid sys-
tems [13, 22] and so on. These approaches make use of constraints to achieve this
goal. In the situation that we do not know the music scores, i.e. that we only have the
recorded audio signal, we are interested in discovering both the score and the fin-
gering information. If a system already exists that can discover fingerings based on
a score, one can concentrate on the transcription of music signals into scores which
can then be passed to the fingering system. Since the audio signals contain sounds
which are produced by instruments according to a score (written or not) using spe-
cific fingerings which provide us with useful information for the possible combi-
nation of notes, we can use the fingering information to assist our transcription.
Moreover, fingerings have a constrained nature, thus a constraint-based approach
can be applied to chord detection.

This chapter is based around a detailed example of constraint-based chord analy-
sis and tracking, using descriptive constraints based on chordal strumming technique
for a standard-tuned guitar with six strings (E4, B3, G3, D3, A2, E2), considering
the physical layout of the instrument along with human physical and temporal con-
strains. The following subsection introduces current research on chord detection
in general. Several standard chord-detection techniques will be employed in our
constraint-based approach.

1.3 Chord Detection

The harmonic structure of a musical work depicts the content of the music in a
high level, illustrating how the music is organized. Many applications in music in-
formation retrieval such as semantic analysis of music, finding similar music and
segmentation into characteristic parts, require the harmonic structure as a mid-level
representation of the musical piece under analysis. The chord, which is defined as
several notes played simultaneously, is used to represent the harmonic structure in
the form of a sequence, or temporal arrangement, of chords depicting the overall
structure of the music. Thus the recognition of chords plays an important role in
music information retrieval. Many researchers have expended great effort on the
chord detection task, and many MIREX3 tasks begin with chordal analysis. Audio
chord detection was a separate task in the 2008 MIREX competition.

The most popular method used for chord detection is a pattern classification ap-
proach, which first extracts low-level features describing harmonic content, e.g.,
pitch class profile (PCP) vectors (introduced in Sect. 2), or, in other words chroma

3 The Music Information Retrieval Evaluation eXchange (http://www.music-ir.
org/mirex/2008) is a competition between researchers to compare the accuracy of
algorithms written to solve common music information retrieval problems. It takes places
as a part of the International Conference on Music Information Retrieval (ISMIR).

http://www.music-ir.org/mirex/2008
http://www.music-ir.org/mirex/2008
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vectors, then uses a classifier such as a hidden Markov model (HMM) to perform
the recognition. PCP and HMM techniques are described in more detail in Sect. 2.

Ryynänen and Klapuri [19] follow the general method, but instead of one PCP
vector, they use two-pitch class profiles, one for low-register notes D1–C�3 and one
for high-register notes D3–C�5. They argue that the low-register profile captures
the bass notes contributing to the chord root whereas the high-register profile has
more clear peaks for the major/minor third and the fifth. Instead of estimating chord
profiles for all chords, they estimate the profiles only for major and minor triads
to prevent the problem of insufficient training data for particular chords. A chord
HMM with 24 states is defined, twelve states each for both major and minor triads4.
The observation likelihoods for each chord are calculated by comparing the low
and high-register profiles with the estimated trained profiles. Then Viterbi decoding
through the chord HMM produces chord labeling for each analysis frame.

Ellis and Poliner [4] models the distribution of the chroma vector using a single
Gaussian Model. They make use of beat tracking, and extract the chroma vector
one per beat. Because chords usually change at the beginning of a beat, features
extracted using beat boundaries are believed to be more confident. They also use
an ergodic5 HMM with states corresponding to chord labels. It is worth noting that
chord changes on beat boundaries is a prescriptive constraint, rather than a descrip-
tive constraint, however, it is a very common composition practice in Western music.

Instead of using an ergodic chord HMM, where the hidden states represent chords
and all possible transitions between states are allowed, Khadkevich and Omol-
ogo [10] create a separate model for each chord. Their approach also differs from
others in that they use 512 Gaussian mixtures (a weighted sum of guassian distri-
butions) representing the chroma vector probabilities rather than the standard 12. In
order to prevent difficulties from lack of training data, similar to [19], they also only
train 2 models: a major profile and a minor profile. The parameters of the HMMs are
obtained using expectation maximization, which iteratively estimates the maximum
likelihood estimates of parameters in a probabilistic model.

Weil and Durrieu [23] add a preprocessing step which attenuates the main melody
of the musical piece. They believe that the main melody often contains intention-
ally anharmonic notes. This is an example of breaking a prescriptive constraint, that
of ensuring melody notes fall within the notes of the underlying chord structure.
While these anharmonic notes are crucial for the perceived richness of the global
timbre, they also blur the accompanying harmonies and make chord detection diffi-
cult, which is why they attempt to remove these notes with pre-processing. To make
the chroma vectors robust, they also estimate the offset of the tuning frequency rel-
ative to A4=440Hz6. In this system, they use a system of tonal centroid vectors [8],

4 According to the Audio Chord Detection task in MIREX20008, the chord vocabulary
for the task is restricted to 12 major triads (Cmaj, C�maj,...,Bmaj) and 12 minor triads
(Cm,C�m,...,Bm).

5 not sensitive to initial conditions.
6 A4 or Concert A is the 440 Hz tone that serves as the standard for musical pitch. A4 is the

musical note A above middle C (C4).
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where a 6-D vector is obtained from the 12-D PCP vector as features, and an ergodic
HMM is trained.

While the abovementioned systems have to be trained to get the HMM param-
eters, Papadopoulos and Peeters [14, 15] derive the HMM parameters manually,
taking into account the presence of high harmonics of pitch notes and some mu-
sic knowledge. In this approach, no training is needed. They represent each chord
profile as a vector which contains the theoretical amplitude values of the notes and
their harmonics comprising a specific chord. The observation possibilities are then
obtained by computing the correlation between the observation vectors and a set of
chord profiles. An ergodic HMM is also used.

Pauwels et al [16] use a novel feature extractor which first uses multiple pitch
tracking techniques to couple the higher harmonics to their fundamental frequency
and then compute the chroma vector from these harmonics. Different from [19],
they require that the bass-notes with fundamental frequencies lower than 100Hz are
not allowed to contribute to the chroma vector. They argue that although bass-notes
could make a significant addition to the chord, which agrees with [19], bass notes
are often duplicates of notes in the higher register, or they do not contribute to the
chord (e.g. a walking bass).

There are many other works that also have great contribution to this problem.
Uchiyama et al [21] use pre-processing step which eliminates percussive sounds
from audio, because percussive sounds are non-harmonic and they interfere with
chord detection. Lee [11, 12] builds key-dependent HMMs for chord transcription
and key extraction, using an HMM for each of the 24 keys, thus detecting the key and
chord sequence concurrently. Bello and Pickens [1] present a system for detecting
harmonic content in music signals, using chroma vectors and HMMs.

Although some researchers are not explicitly using the term constraint, it is clear
that constraints are a common theme in chord detection research. Playability con-
straints, physical layout constraints for both the instruments and human abilities, and
stylistic constraints have appeared in the literature. The “standard” model for chord
detection, that of feature extraction using a chroma-type technique combined with
some form of pattern classification system, makes several assumptions that many
researchers use because they are considered standard. In the following sections, we
will describe a new approach in detail, including many of the low-level details and
why certain decisions are appropriate in this domain. Before that, there are a few
common terms in the chord detection research field that should be explained.

2 Term Explanation

Several concepts in the area of chord recognition are well known to researchers
immersed in the work but may not be as familiar to occasional readers. We present
here a detailed description of some of these concepts. Readers familiar with chord
recognition and pattern analysis techniques may be inclined to bypass this section.
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2.1 Pitch Class Profile (PCP) Vector

A played note gives us many perceptual properties: one is pitch, which corresponds
to the frequency of the note: the higher the frequency, the higher the pitch. The
second property, related to pitch, is the note name regardless of octave, and corre-
sponds to one of the twelve pitch classes. This property can be termed the “color”
of the note. Although chords are made up of notes perceived as absolute pitches, the
sensation of a chord is more often that of a coherent sound, with the color property
of the notes being dominant over the pitch. Thus, “color” can be used as a term to
represent a chord based on its root, corresponding to one of the twelve pitch classes,
i.e. C, C�/D�, D, D�/E�, E, F, F�/G�, G, G�/A�, A, A�/B�, B. If we know the power
distribution of a chord in each of the twelve pitch classes, which can be represented
as a twelve-dimensional vector, the color of a chord can be quantitatively repre-
sented. This vector is called the chroma vector or Pitch Class Profile (PCP) vector,
which maps the notes in several octaves into 12 bins of pitch classes. The PCP vec-
tor technique was first proposed by Fujishima [5] in 1999 for the representation of
audio and it is widely used today to represent the features of a chord for analysis
and classification.

2.2 Artificial Neural Networks

An artificial neural network (ANN), often just called neural network for short, is
a mathematical model simulating biological networks of neurons. It is composed
of a group of interconnected processing elements. Each such “neuron” is in fact a
function, taking some input and producing an output based on the input, usually as
a type of summative threshold function. A nerual network can be used for pattern
classification [3] through a learning process. The most common type of ANN used
for pattern classification is a three-layer feedforward network. Feedforward means
connections between units do not form a directed cycle. The information moves
in only one direction, forward from the input layer to the output layer through the
hidden layer. Although a complete description of ANNs is beyond the scope of
this work, the interested reader will find a complete description in many pattern
recognition or information theory textbooks, including [3].

2.3 Hidden Markov Models and the Viterbi Algorithm

Hidden Markov models are the pattern recognition technique most commonly used
for detecting patterns in temporal sequences. The sequence of chords in a musical
piece is an example of a temporal sequence. HMMs work by building a model of an
underlying system the states of which are unobserved (hidden) but which produces
a series of observations based on the internal hidden states. HMMs are used for clas-
sification by lining up an observed sequence with the possible observed sequences
generated by the model. Often, a number of HMMs are compared and the one most
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likely to have produced the observed sequence is judged to best model the internal
structure of the system being classified.

The Viterbi algorithm is a standard process for finding the sequence of hidden
states with the highest likelihood in a particular HMM. Given a set of hidden states
and transition probabilities between them, the Viterbi algorithm proceeds by finding
the most likely state at each time increment, and maintaining a list of the most likely
historical sequences of states that would lead to the current state. Again, a complete
description of both HMMs and the Viterbi algorithm is beyond the scope of this
work, and interested readers are encouraged to consult [17] for details.

3 Chord Analysis in Guitar Music

The remainder of the chapter will present, in detail, the analysis and classification of
guitar chords using constraints based on the physical construction of the instrument.
The chords in the experiments are played in an acoustic guitar. We call this tech-
nique “voicing constraints” because it can identify different chord voicings based
on constraints of the instrument and chord voicings which might be less easy to
play or even impossible.

Our approach deviates from the approaches presented in the introduction sec-
tion in several key areas. The use of voicing constraints (described below) is the
primary and fundamental difference, but our low-level analysis is also somewhat
different from current work. First, current techniques will often combine PCP with
hidden Markov models. Our approach analyzes the PCP vector using Neural Net-
works since Neural Networks are a more stable method and are more capable of
capturing the probability distribution of the PCP vectors than a single Gaussian or
a Gaussian Mixture Model (GMM) and using a pseudo-Viterbi algorithm to model
chord sequences in time. Second, current techniques normally use small window
size. Our technique makes use of comparatively large window sizes (500ms). The
description and justification of these methods is presented in the following sections.
Although the constraints and system development are based on guitar music, similar
constraints (with different values) may be determined for other ensemble music.

3.1 Large Window Segmentation

Choosing the size of the analysis window for feature extraction is always a chal-
lenge. Small windows are able to localize higher-frequency events in time, while
larger windows can localize longer-time events in frequency. Depending on the ap-
plication, a larger or smaller window may be appropriate, but it should be noted that
no window size is appropriate for all applications. A type of “uncertainty princi-
ple” exists between time-localization and frequency-localization: in order to know
the exact instant when an event takes place, down to the sample, one cannot know
anything about the frequency content of the event, since the event consists of a sin-
gle sample. Likewise, in order to fully analyze the frequency content of an event,
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the event must be of infinite length7. In chord recognition, some constraints can be
identified which will allow us to use a larger window than most researchers do, and
therefore produce a more detailed frequency analysis.

Guitar music varies widely, but common popular guitar music maintains a tempo
of 80–120 beats per minute. Because chord changes typically happen on the beat
or on beat fractions (a prescriptive constraint as mentioned earlier), and because of
physical limitations of the way guitar chords are played, we can see that statistically,
the time between chord onsets is typically 600–750 ms. Segmenting guitar chords
is not a difficult problem, since the onset energy is large compared to the release
energy of the previous chord. The chord pitch class profile pattern does not change
from onset to onset (although local relative changes will occur), even taking into
account effects such as slides and hammer-ons, since those would produce small
but measurable onsets themselves. Because of this, the entire signal from one onset
to the next can be taken as a single frame when calculating the pitch class. This
results in a more accurate pitch class analysis than for small window sizes. Further,
using a larger window like this has the effect of blurring the analysis of percussive
(fast, high-frequency) events, which makes them easier to ignore.

Experimentation has shown that onset detection, while a useful addition to the
algorithm, is not entirely necessary. Universal 500ms frames provide sufficient ac-
curacy when applied to guitar chords for a number of reasons. First, if a chord
change happens near a frame boundary, the chord will be correctly detected because
the majority of the frame is a single pitch class profile, as shown in Fig. 1. If the
chord change happens in the middle of the frame, the chord will be incorrectly iden-
tified because contributions from the previous chord will contaminate the reading.
However, if sufficient overlap between frames is employed (e.g. 75%), then only
one in four chord readings will be inaccurate, and the chord sequence rectifier (see
Sect. 3.4) will take care of the erroneous measure.

The advantage of the large window size is the accuracy of the pitch class profile
analysis, and, combined with the chord sequence rectifier, this outweighs the pos-
sible drawbacks of incorrect analysis when a chord boundary is in the middle of a
frame. The disadvantage of such a large window is that it makes real-time process-
ing impossible. At best, the system will be able to provide a result half a second
after a note is played. Offline processing speed will not be affected, however, and
will be comparable to other frame sizes. In our experience, real-time guitar chord
detection is not a problem for which there are many real-world applications.

3.2 PCP with Neural Networks

We have employed an Artificial Neural Network to analyze and characterize the
pitch class profile vector and detect the corresponding chord. A network was first
constructed to recognize seven common chords for music in the keys of C and G, for
which the target chord classes are [C, Dm, Em, F, G, Am, D]). It is common practice

7 Theoretically, Fourier analysis requires an infinite-length signal, however, in practice, we
add 0 outside.
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Fig. 1 Large frames at 75% overlap across a chord boundary. Frames that cross the bound-
ary will either be dominated by one chord and successfully recognized, or contain similar
contributions from both chords and possibly be mis-recognized.

for chord detection systems under development to begin with this or a similar subset
of all possible chords. These chords were chosen as common chords for “easy”
guitar songs. The network architecture was set up in the following manner:

• 1 input layer, 2 hidden layers, and 1 output layer;
• 12 input cells corresponding to 12 elements the of PCP vector;
• 10 cells for each of the hidden layer;
• 7 output cells corresponding to the 7 chosen chords.

With the encouraging results from this initial problem (described in Sect. 4), the
vocabulary of the system was expanded to recognize chords in the seven roots (C,
D, E, F, G, A, B). The system was trained to recognize Major (I, III, V), Minor (I, iii,
V) and Seventh (I, III, V, vii) chords for each key, totaling 21 chords. Recognition
rates were lower than with the seven-chord system, as may be expected, but still
very good. The complete set of major, minor and seventh chords for all 12 chord
roots would include 36 chords. With the multitude of complex and colorful chords
available, it is unclear whether it is possible to have a “complete” chord recognition
system which uses specific chords as recognition targets, however a limit of 4-note
chords would provide a reasonably complete and functional system8.

3.3 Supervised Training with Real-World Data

Unlike Gagnon, Larouche and Lefebvre [6], who use synthetic chords to train the
network, we use real recordings of chords played on a guitar. In the research dis-
cussed in the introduction section which adopts HMMs as the classifier, the training
material is a labelled chord sequence, including many chords in one training sample,
typically a song with the chord labels. However, our system is trained using separate
chords, i.e. one training sample contains only one chord. A guitar is connected to
the audio input of the computer, and chords are recorded using Audacity9 , an open
source audio editor. These recorded chords are then labeled and fed into the system
as training data.

8 Only Major, Minor and Seventh Chords are considered in this system.
9 http://audacity.sourceforge.net/
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3.4 Sequence Rectifier

Chord recognition rarely operates on a single isolated chord. This is primarily a
prescriptive constraint, since there is no physical reason why any chord can’t follow
any other. The only descriptive aspect of this constraint is the time it takes to move
from one chord to another. Chord transitions that are faster that the human hand can
move would be disallowed. Some chord transitions are easier to make, for example,
while maintaining a common finger position, and some transitions are unlikely to
happen, for example briefly switching to a relative minor chord and then to the
subdominant chord. These constraints, combined with a measure of the certainty of
the initial chord detection result, can increase the recognition accuracy of individual
chords.

After the chord detection system is trained, it can be used to classify the chord for
each frame. Because the frame length is usually smaller than the time interval during
which a chord is played, we are likely to have several instances of the same chord
recognized in a sequence. For example, if a C chord is played for 1 second, and
assuming a 500ms frame overlapped at 75% as justified above, the correct output
should contain 6 instances of the C chord. If a chord boundary falls in the middle
of one of the frames, or if noise or other difficulties are present, the network might
erroneously produce an Am chord (for example) instead of a C chord. Based on
the confidence level of the chord recognition as well as changes in analyzed feature
vectors from one frame to the next, we construct a sequence rectifier which will
select the second-most-likely chord if it fits better into the sequence. In this way, the
rectifier improves the overall accuracy of the system.

For each frame, the neural network gives a rank-ordered list of the possible chord
candidates, each with a confidence value in the range of [0 1]. The sequence rectifier
algorithm is:

1. Estimate the chord transition possibilities for each key pair (Major and relative
minor) through large musical database.

2. The Neural Network provides a matrix S, which has N rows and T columns. Each
column gives the chord candidates with ranking values for each frame. N is the
size of the chord dictionary. T is the number of frames.

3. Based on the first row of matrix S, calculate the most probable key for the entire
piece of music. For the 24 possible keys, the key corresponding to the maximum
number of the chords in the first row of S wins. This is an example of key finding,
another common MIREX task.

4. Using the estimated key, construct the transition matrix A from step 1.
5. Calculate the best sequence from S and A using the Viterbi Algorithm.

3.5 Voicing Constraints

Many chord recognition systems assume a generic chord structure with any note
combination as a potential match, or assume a chord “chromaticity”, assuming all
chords of a specific root and “color” (see Sect. 2.1) are the same chord. For example,
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Table 1 Typical note ranges for SATB choir

Voice Range

Soprano C4-C6
Alto E3-E5
Tenor C3-C5
Bass C2-C4

a system like this would identify [C4-E4-G4] as identical to [E4-G4-C5], the first
inversion10 of the C Major triad. Although these chords have the same chromaticity
(all contain C, E, and G components), they will sound different to the ear. A system
which not only identifies [C-E-G] as a C Major triad, but also can identify a unique
C Major triad depending on whether the first note was middle C (C4) or C above
middle C (C5), would be preferable in most circumstances.

For a chord, allowing any combination of notes regardless of the voicings11 pro-
vides too many similar categories which are difficult to disambiguate, and allowing
a single category for all versions of a chord does not provide complete informa-
tion since equivalent chords in different octaves are not disambiguated. What is
necessary, then, is a compromise which takes into account statistical, musical, and
physical likelihood constraints for chord patterns.

The goal of our system is to constrain the available chords to the common voic-
ings available to a specific instrument or set of instruments. The experiments that
follow concentrate on guitar chords, but the technique would be equally applicable
to any instrument or ensemble where there are specific constraints on each note-
producing component. As an example, consider a SATB choir, with typical note
ranges as shown in Table 1.

In this example, then, some chord voicings are more likely than others, depending
on the key of the piece, the chord progression, and the melodic movement. Further,
compositional practice (a prescriptive constraint) means that depending on the mu-
sical context, certain voicings may be more common, for example, it is common
compositional practice to have the Bass singing the root (I), Tenor singing the fifth
(V), Alto singing the third (III or iii) and Soprano doubling the root (I) when the
chord being sung is the root of the key.

This a priori knowledge can be combined with statistical likelihood based on
measurement to create a Bayesian analysis resulting in greater classification accu-
racy using fewer classification categories. A similar analysis can be performed on
any well-constrained ensemble, for example a string quartet, and on any single in-
strument with multiple variable sound sources, for example a piano. At first, the

10 An inversion of a chord is an arrangement of notes where the triad begins with the root
(root position), the third (first inversion), or the fifth(second inversion).

11 A chord voicing is a specific way of arranging the notes which make up the chord. An
inversion is a special case of a voicing.
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piano does not seem to benefit from this method, since any combination of notes
is possible, and likelihoods are initially equal. However, if one considers musical
expectation and human physiology (hand-span, for example), then similar voicing
constraints may be constructed.

One can argue that knowledge of the ensemble may not be reasonable a priori
information—will we really know if the music is being played by a wind ensemble
or a choir? The assumption of a specific ensemble is a limiting factor, but is not un-
reasonable: metadata may tell us the instrumentation, and timbre analysis methods
can be applied to detect whether or not the music is being played by an ensemble
known to the system, and if not, PCP combined with Neural Networks can provide
a reasonable chord approximation without voicing or specific note information.

For a chord played by a standard 6-string guitar, we are interested in two fea-
tures: what chord is it and what voicing of that chord is being used. The PCP vector
describes the chromaticity of a chord, hence it does not give any information on spe-
cific pitches present in the chord. Given knowledge of the relationships between the
guitar strings, however, the voicings can be inferred based the voicing vectors (VV)
in a certain category. VVs are produced by studying and analyzing the physical, mu-
sical and statistical constraints (both prescriptive and descriptive) on an ensemble.
Here, the process was performed manually for the guitar chord recognition system
but could be automated based on large annotated musical databases.

Thus the problem can be divided into two steps: determine the category of the
chord, and then determine the voicing. The chord category is determined using
the PCP vector combined with Artificial Neural Networks, as described previously.
Chord voicings are determined by matching harmonic partials in the original wave-
form (extracted using Fourier or Constant-Q transforms, for example) to a set of
voicing templates.

When the chord is strummed, it is possible that not all the strings are sounded.
For example, we may strum the first 4 strings or the middle 3 strings in a chord.
Because it is impossible to identify which strings may be missing in a particular
chord, we must take into account that the VVs against which we are matching may
be missing one or more feature values. This kind of problem can be described as
pattern recognition with incomplete feature vectors. Standard methods are available
for this type of problem.

4 Guitar Chord Recognition System

The general chord recognition ideas presented above have been implemented here
for guitar chords. Figure 2 provides a flowchart for the system. The feature extractor
provides two feature vectors: a PCP vector which is fed to the input layer of the
neural net, and a voicing vector which is fed to the voicing detector. The rectifier
corrects the errors, which are marked in purple.

Table 2 gives an example of the set of chord voicing arrays and the way they
are used for analysis. The fundamental frequency ( f0) of the root note is presented
along with the f0 for higher strings as multiples of the root f0.
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Table 2 Chord pattern array, including three forms of five of the natural-root chords in their
first voicings (root always the lowest). S1–S6 are the relative f0 of the notes from the lowest
to highest string, and H1–H6 are the first harmonic partial of those notes. For example, in the
E chord, String 2 plays the ≈123.6Hz B (1.5× f0), and the first harmonic is twice that(3× f0).
See text for further explanation of boxes and symbols.

Chord S1 S2 S3 S4 S5 S6
f0, in Hz H1 H2 H3 H4 H5 H6

E 1 1.5 2 2.52 3 4
82.4 2 3 4 φ φ φ
Em 1 1.5 2 2.38 3 4
82.4 2 3 4 φ φ φ
E7 1 1.5 1.78 2.52 3 4

82.4 2 3 3.56 φ φ φ
F 1 1.5 2 2.52 3 4
87.31 2 3 4 φ φ φ
Fm 1 1.5 2 2.38 3 4
87.31 2 3 4 φ φ φ
F7 1 1.5 1.78 2.52 3 4

87.31 2 3 3.56 φ φ φ
G 1 1.26 1.50 2 2.52 4

98 2 2.52 3 4 φ φ
Gm 1 1.19 1.50 2 3 4

98 2 2.38 3 4 φ φ
G7 1 1.26 1.50 2 2.52 3.56
98 2 2.52 φ φ φ φ
A – 1 1.5 2 2.52 3
110 2 3 φ φ φ
Am – 1 1.5 2 2.38 3
110 2 3 φ φ φ
A7 – 1 1.5 1.78 2.52 3

110 2 3 φ φ φ
B – 1 1.5 2 2.52 3
123.5 2 3 φ φ φ
Bm – 1 1.5 2 2.38 3
123.5 2 3 φ φ φ
B7 – 1 1.26 1.78 2 3

123.5 2 2.52 φ φ φ
C – 1 1.26 1.50 2 2.52
130.8 2 2.52 φ φ φ
Cm – 1 1.19 1.5 2 –
130.8 2 φ φ φ φ
C7 – 1 1.26 1.78 2 2.52
130.8 2 2.52 φ φ φ
D – – 1 1.5 2 2.52
146.8 2 φ φ φ
Dm – – 1 1.5 2 2.38
146.8 2 φ φ φ
D7 – – 1 1.5 1.78 2.52

146.8 2 φ φ φ
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Fig. 2 Flowchart of the chord recognition system. Note: the yellow lines showing segmenta-
tion do not show overlap, but overlap is done as shown in Fig. 1.

The Guitar has a note range from E2 (82.41Hz, open low string) to C6 (1046.5Hz,
20th fret on the highest string). Guitar chords that are above the 10th fret of which
the highest note is D5 are rare, thus we can restrict the chord position to be lower
than the 10th fret, that is, the highest note would be 10th fret on the top string, i.e.
D5, with a frequency of 587.3Hz. Thus if we only consider the frequency com-
ponents lower than 600Hz, the effect of the high harmonic partials would be elimi-
nated. And because the guitar has only six strings, if the six strings are all strummed,
we only have 6 fundamental frequencies. The relationship between fundamental fre-
quencies of the notes in the chord can be used to identify the voicing.

Each chord entry in Table 2 provides both the frequencies of all sounded notes
on each string (or an indication that the string is not played) as well as an indica-
tion of the first harmonic of each note. “Standard” chords such as Major, Minor and
Seventh, contain notes for which f0 is equal to the frequency of harmonic partials
of lower notes, providing consonance and a sense of harmonic relationship. Indeed,
this is why these chords are pleasant to hear. This can be seen as a liability, since
complete harmonic series are obscured by overlap from harmonically related notes.
Current systems attempt to overcome this by reinforcing, re-interpolating or dupli-
cating harmonics, but our system takes advantage of this by observing that a specific
pattern of harmonic partials equates directly to a specific voicing of a chord. Table 2
shows this by detailing the pattern of string frequencies and first harmonic partials
for the root voicings of these chords. Harmonic partials above 600Hz are ignored,
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since there is no possibility to overlap the fundamental frequency of higher notes (as
described above). These are indicated by the symbol “φ” In this way, we construct
a pattern of components that are expected to be present in a specific chord as played
on the guitar, and similarly for other voicings.

4.1 Harmonic Coefficients and Exceptions

If we make an assumption that the lowest sounded note on the guitar is the root of
the chord (which is prescriptive but not unreasonable), it can be seen from Table 2
that there are three main categories of chords on the guitar, based on the frequency
of the second note in the chord. The patterns for the three categories are:

• (1.5), where the second note is (V): F, Fm, F7, E, Em, E7, A, Am, A7, B, Bm, D,
Dm, D7

• (1.26), where the second note is (III): B7, C7, G, G7
• (1.19), where the second note is (iii): Cm, Gm.

Thus, from the first coefficient (the ratio of the first harmonic peak to the second)
we can identify which group a certain chord belongs to. After identifying the group,
we can use other coefficients to distinguish the particular chord.

In some situations (e.g., F and E; A and B ), the coefficients are identical for
all notes in the chord, thus the chords themselves cannot be distinguished in this
manner. Here, the chord result will be disambiguated based on the result of the
Neural Network and the f0 analysis of the root note. Usually, all first harmonic
partials line up with f0 of higher notes in the chord. When the first harmonic falls
between f0 of higher notes in the chord, they are indicated by boxed coefficients.

Underlined coefficients correspond to values which may be used in the unique
identification of chords. In these cases, there are common notes within a generic
chord pattern, for example the root (1) and the fifth (1.5). String frequencies corre-
sponding to the Minor Third (1.19, 2.38) and Minor Seventh (2.78) are the single
unique identifiers between chord categories in many cases.

4.2 Feature Extractor

The feature extractor in Fig. 2 includes two parts: a PCP extractor and a voicing
extractor.

4.2.1 PCP Extractor

As introduced in Sect. 2, a PCP vector has 12 dimensions, corresponding to the 12
pitch classes. The value for each dimension represents the energy in the correspond-
ing pitch class, and this value is usually normalized with the largest value equal to 1.
PCP begins from a frequency representation of the audio of a chord, for example, in
our implementation, we use the fast Fourier transform (FFT). To calculate the PCP
vector, first we use FFT to get the frequency components of the frame and then map
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the frequency components into the 12-bin pitch classes. After the frequency com-
ponents have been calculated, we get the corresponding notes of each frequency
component and find its corresponding pitch class. Then we add the power of each
frequency component to the corresponding pitch class. In this way, PCP provides a
profile of the frequency components in an audio signal, regardless of octave.

4.2.2 Voicing Extractor

The voicing extractor uses FFT to get the frequency components for each frame,
and then a peak finding algorithm12 is used to find the most evident peaks from the
frequency components that are lower than 600Hz. After the peak frequencies are
obtained, the lowest frequency among them is selected as the bass note and then
the voicing vector is obtained by dividing all the frequency component by the bass
frequency.

5 Accuracy and Obstacles

In this section we describe the accuracy of this implementation of a chord constraints
system, taking into account the relative severity of common chord errors, and we
compare this system to an off-the-shelf system.

5.1 Common Chord Errors

It is important to recognize that chord detection errors do not all have the same level
of what can be called “severity”. A major chord (e.g. C) may be recognized as the
relative minor of the same chord (e.g. Am) since they are based around the same set
of accidentals, and many of the harmonic partials are the same because they share
two notes. In many musical situations, although the Am chord is incorrect, it will
not produce dissonance if played with a C chord. This can be seen as analogous
to the problem of octave errors in pitch detection, where the pitch is incorrect but
would not produce dissonance if played with the correct note. Relative Minor chords
are perceptually more similar to a Major chord than is the corresponding same-root
Minor chord. Mistaking an F chord for an Fm chord, for example, is a significant
problem. Although the chords again differ only by one note, the note in question
differs in more harmonic partials. Further, it establishes the mode of the scale being
used, and if played at the same time as the opposing mode, will produce dissonance.

5.2 Comparison

Chord Pickout13 is a popular off-the-shelf chord recognition system. Although
the algorithm used in the Chord Pickout system is not described in detail by the

12 http://terpconnect.umd.edu/ toh/spectrum/PeakFindingandMeasurement.htm
13 http://www.chordpickout.com/
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developers, it is not unreasonable to make a comparison with our system since Chord
Pickout is a commercial system with good reviews. We applied the same recordings
to both systems and identified the accuracy of each system. We were more forgiv-
ing with the analysis for Chord Pickout in order to better detail the types of errors
that were made. If Chord Pickout was able to identify the root of the chord, ignor-
ing Major, Minor or Seventh, it is described as “correct root”. If the chord and the
chord type are both correct, it is described as “correct chord”. Inconsistencies be-
tween the correct root and correct chord include Major-Minor, Major-Seventh, and
Minor-Major confusions.

We also make a comparison with CLAM Chorddata14, which implements a chord
detector using the algorithm proposed by Christopher Harte [7]. For each frame,
CLAM gives several chord candidates. If the correct chord is contained in the can-
didates, we regard this as a correct recognition.

For our system, all chord errors are treated as incorrect, regardless of severity.
The complete results for 5 trials are presented in Table 3. The results of the inversion
constraints are of the same order of magnitude as other modern techniques, which
is encouraging but not particularly impressive. It is important to keep in mind that
this new system is also able to determine specific voicings of a chord, as will be
described below. The main result is that we are able to identify these voicings while
maintaining overall chord detection accuracy.

Table 3 Comparison of our Inversion Constraints system to CLAM Music Annotator and
Chord Pickout

Inversion Constraints CLAM Chord Pickout
Trial Frames Correct Rate Correct Rate Root Rate Chord Rate

1 281 255 90.8% 240 85.4% 190 67.6% 42 14.9%
2 322 286 88.8% 301 93.4% 172 53.4% 72 22.4%
3 405 356 88.0% 368 90.8% 225 55.6% 56 13.8%
4 466 396 84.9% 410 87.9% 293 62.9% 50 10.7%
5 472 387 81.9% 403 85.3% 321 68.0% 101 21.4%

5.3 Independent Accuracy Trials

To evaluate the overall accuracy of our system, independent of a comparison with
other systems, we presented a set of chord exemplars (50 of each type) to the system
and evaluated its recognition accuracy. Two systems were trained for specific subsets
of chord detection, and the results are presented in three tables. The first set of
results, presented in Table 4 shows the recognition accuracy of a system trained to
detect chords appropriate to the key of C and D, as discussed above. The system
used seven chord classification targets, and produced 93.2% accuracy over all trials.
Misclassifications in this case were normally toward adjacent chords in the scale.

14 http://clam.iua.upf.edu/index.html
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Table 4 Recognition results for common chords. Overall accuracy is 93.2%

Chord C Dm Em F G Am D
Rate 50/50 48/50 43/50 50/50 48/50 42/50 45/50

The second system was trained to recognize Major, Minor and Seventh chords
of all seven natural-root keys, resulting in 21 chord classification targets. Classifica-
tion results are presented for Major versus Minor comparisons as shown in Table 5,
which produce good results (86.8% accuracy). The most common errors were be-
tween a Major chord and its relative Minor, although errors between the Major chord
and the same-root Minor were also detected. Table 6 provides a confusion matrix
for chord recognition between Major and Seventh chords. The accuracy is reduced
in these results, for two reasons: in some cases the first three notes (and correspond-
ingly the first three harmonic partials detected) are the same between a chord and
its corresponding Seventh. Also, in some cases the first harmonic of the root note
does not line up with the fundamental frequency of a note an octave above, and thus
contributes to the confusion of the algorithm.

Table 5 Recognition results for natural-root Major and Minor chords. Overall accuracy is
86.8%

Chord C Cm D Dm E Em
Rate 50/50 39/50 48/50 41/50 46/50 38/50

Chord F Fm G Gm A Am
Rate 47/50 42/50 50/50 36/50 49/50 35/50

Recognition accuracy is higher for the Major chords and lower for Seventh
chords. Taking E7 for example, there are 9 samples where the E7 chord is rec-
ognized as E Major. Examining Table 2, the voicing vectors for E Major and E7
are [1, 1.5, 2, 2.52, 3, 4] and [1, 1.5, 1.78, 2.52, 3, 4]. Since the first element in E7
produces a harmonic at twice the fundamental, the detected vector is [1, 1.5, 1.78,
2, 2.52, 3, 4]. If the third element 1.78 is too weak for the peak picking algorithm to
detect, we may erroneously detect [1, 1.5, 2, 2.52, 3, 4] instead, which is exactly the
voicing vector for E major. Since E Major and E7 have the same root, we recognize
E7 as an E Major in this situation.

For the B7 chord, in addition to recognizing it as the corresponding Major chord,
20% are recognized as C7, one semitone above B7. The voicing vector for B7
is [1, 1.26, 1.78, 2, 3] in which the second element 1.26 produces a second har-
monic peak at 2.52, leading to the array [1, 1.26, 1.78, 2, 2.52, 3], the first five
elements of which are the same as that of C7. Moreover, since there a small differ-
ence (130.8Hz−123.5Hz = 7.3Hz) between the root f0 of B7 and C7, if the guitar
is tuned slightly higher, B7 might be recognized wrongly as C7. And we notice
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Table 6 Confusion Matrix for Major and Seventh chords of natural-root keys. Overall accu-
racy is 78.6%.

chord was recognized as:
Chord Rate C C7 D D7 E E7 F F7 G G7 A A7 B B7

C 50/50 50
C7 35/50 12 35 3
D 50/50 50
D7 26/50 14 26 3 6 1
E 45/50 45 2 3
E7 26/50 9 26 3 12
F 48/50 1 1 48
F7 32/50 2 2 14 32
G 50/50 50
G7 35/50 15 35
A 48/50 48 2
A7 31/50 2 17 31
B 45/50 2 45 3
B7 29/50 10 11 29

the same error happens for E7, where the difference between the frequencies of the
roots of E7 and F7 is 4.91Hz. This indicates that correct tuning as well as correct
peak identification are significant problems for chord recognition, and will manifest
more obviously in chords which differ by a semitone (B-C and E-F) than chords
which differ by a tone.

Another difficult case is with D7, which contains only 4 notes (the two lowest
notes are not sounded for D chords in the root position), and the first note produces
a harmonic that does not correspond to a higher played string. From Table 2, we
can see that the string f0 multiplier pattern for D7 is [1, 1.5, 1.78, 2.52], and the
first harmonic partial of the root note inserts a 2 into the sequence, producing [1,
1.5, 1.78, 2, 2.52] for the sequence of harmonics within the range [82.4Hz–600Hz]
as previously justified. This is very similar to the sequence for F7, which is why
the patterns are confused. It would be beneficial, in this case, to increase the weight
ascribed to the fundamental frequency when the number of strings played is small.
Unfortunately, detecting the number of sounded strings in a chord is a difficult task.
Instead, f0 disambiguation can be applied when a chord with fewer strings is one
of the top candidates from the table, if that information is known. Further, the con-
fusion matrix adds to the measure of certainty of the chord recognition, indicating
when other methods should be employed to increase confidence.

5.4 Recognition of Voicings

After the chord labels are recognized, our system then gives the voicing information.
For the guitar chords, different voicings correspond to different hand positions on
the guitar neck. Figure 3 shows 3 voicings of the C Major chord and 3 of the F
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Major chord, which correspond to positions that are usually used by guitar players.
An empty circle means an open string while a filled circle means the string is pressed
on the corresponding fret. Numbers in the left-top represent the fret. For example,
”‘5”’ denotes the 5th fret. If there is no number, it means the first fret by default.

It is reasonable to assume that all the strings involved in the chord are played,
but sometimes the bass note might be ignored. Thus we present 2 voicing vectors
for a particular voicing, the first one including all the strings and the second one
with the bass note missed. For voicing C1, the first voicing vector is [1 1.33 1.68
2 2.67 3.36] with a bass frequency 98 Hz. The second voicing vector is [1.33 1.68
2 2.67 3.36]. To keep a constant no. of elements in the voicing vector, we add a
sixth element “4”, which is caused by the third harmonic of 1.33 and the second
harmonic of 2. Normalizing it, we get [1 1.26 1.5 2.0 2.52 3] with the bass frequency
98×1.33=130.8 Hz. Table 7 shows the voicing vectors for the C Major and F Major
Voicings.

A total of 55 recorded samples played by 3 persons for each voicing were
recorded and tested, the strumming style was used and they were not told whether
to play the bass note or not. Table 8 and Table 9 show the confusion matrix for the
disambiguation of the voicings for C Major and F Major respectively. The system

3 8 5 8

C1 C2 C3 F1 F2 F3

Fig. 3 Three different possible voicings of the C Major and F Major chords

Table 7 Voicing vectors For C Major voicings and F Major voicings, including root-played
and root-missing

Voicing Bass (Hz) Voicing Vectors
98 1 1.33 1.68 2 2.67 3.36

C1
130.8 1 1.26 1.5 2 2.52 3
98 1 1.33 2 2.67 3.36 4

C2
130.8 1 1.5 2 2.52 3 4
130.8 1 1.5 2 2.52 3 4

C3
196 1 1.33 1.68 2 2.67 3
87.3 1 1.5 2 2.52 3 4

F1
130.8 1 1.33 1.68 2 2.67 3
110 1 1.59 2 2.38 3.17 4

F2
174.6 1 1.26 1.5 2 2.52 3
130.8 1 1.33 2 2.68 3.36 4

F3
174.6 1 1.5 2 2.52 3 4
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Table 8 Confusion Matrix for Disambiguating C Major Voicings. Multiple recognitions are
possible.

recognized as:
Voicing C1 C2 C3

C1 48 15 1
C2 45 55 24
C3 0 52 55

Table 9 Confusion Matrix for Disambiguating F Major Voicings. Multiple recognitions are
possible.

recognized as:
Voicing F1 F2 F3

F1 51 4 30
F2 0 55 0
F3 2 5 55

compares the detected voicing vector with the vectors in Table 7 and recommends
the most likely voicings. The sum of each row in the confusion matrices is larger
than the number of testing samples because the system can recommend more than
one voicing in certain circumstances. Table 8 shows that the system is able to rec-
ommend the right voicings at a rate of (48 + 55 + 55)/3×55=95.7%, though there
are extra recommendations. There are many circumstances where C2 is recognized
as C1 because of the similarity between the second vector of these voicings and the
same bass notes. Also, many C3 chords are recognized as C2 because the first vector
for C3 is the same as the second vector for C2. Table 9 shows that the system works
better for disambiguating F Major voicings, with a correct recommendation rate of
(51+55+55)/(3×55)=97.6% and fewer overlapping incorrect recommendations.

6 Conclusions

When performing music information retrieval on recorded audio, applying con-
straints can greatly reduce the number of candidate recognition results which must
be considered. Such constraints can be either prescriptive or descriptive. Descriptive
constraints usually indicate physical constraints of the player or instrument which
are quite unlikely to be broken. Prescriptive constraints usually indicate stylistic or
cultural choices which can be broken but are statistically relevant.

Chord analysis in particular can benefit from applying physical constraints. Not
every chord can be played by a specific polyphonic instrument or monophonic in-
strument ensemble. Depending on the key, style, instrumentation and other parame-
ters, certain chord candidates can be discarded.
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Current chord analysis techniques often disregard specific note information in
favor of a chord color or, in other words pitch class profile technique. Pitch class
profiles cannot disambiguate between inversions or voicing of a single chord, nor
can they identify where in the musical range a chord may have been played. By
enumerating possible and common chord voicings, it is possible to improve standard
Pitch class profile techniques by identifying the chord voicing.

These techniques are demonstrated in a chord detection system we developed
which makes use of voicing constraints to increase accuracy of chord and chord
sequence identification. Although the system is developed for guitar chords specif-
ically, similar analysis could be performed to apply these techniques to other con-
strained ensembles such as choirs or string, wind, or brass ensembles, where specific
chords are more likely to appear in a particular voicing given the constraints of the
group.
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BREVE: An HMPerceptron-Based
Chord Recognition System

Daniele P. Radicioni and Roberto Esposito

Abstract. Tonal harmony analysis is a sophisticated task. It combines general
knowledge with contextual cues, and it is concerned with faceted and evolving ob-
jects such as musical language, execution style and taste. We present BREVE, a sys-
tem for performing a particular kind of harmony analysis, chord recognition: music
is encoded as a sequence of sounding events and the system should assing the ap-
propriate chord label to each event. The solution proposed to the problem relies on
a conditional model, where domain knowledge is encoded in the form of Boolean
features. BREVE exploits the recently proposed algorithm CarpeDiem to obtain
significant computational gains in solving the optimization problem underlying the
classification process. The implemented system has been validated on a corpus of
chorales from J.S. Bach: we report and discuss the learnt weights, point out the
committed errors, and elaborate on the correlation between errors and growth in the
classification times in places where the music is less clearly asserted.

Keywords: Chord Recognition; Machine Learning; Music Analysis.

1 Introduction

The musical domain has always exerted a strong fascination on researchers from
diverse fields. In the last few years a wealth of research effort has been invested
to analyze music, under an academic and industrial pressure [31]. Techniques of
intelligent music search and analysis are crucial to devise systems for various pur-
poses, such as for music identification, for deciding on music similarity, for music
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classification based on some set of descriptors, for algorithmic playlist generation,
and for music summarization. Indeed, recent technological advances significantly
enhanced the way automatic environments compose music [5], expressively perform
it [12], accompany human musicians [23], and the way music is sold and bought
through web stores [11].

Music analysis is a necessary step for composing, performing and –ultimately–
understanding music, for both human beings and artificial environments (see, e.g.,
the works in [30] and [18]). Within the broader area of music analysis, we single
out the task of chord recognition. This is a challenging problem for music students,
who spend considerable amounts of time in learning tonal harmony, as well as for
automatic systems. It is an interesting problem, and a necessary step towards per-
forming a higher-level structural analysis that considers the main structural elements
in music in their mutual interconnections. In Western tonal music at each time point
of the musical flow (or vertical) one can determine which chord is sounding: chord
recognition typically consists in indicating the fundamental note (or root) and the
mode of the chord (Figure 1).

In our present approach the analysis task is cast to a supervised sequential learn-
ing (SSL) problem. From a methodological viewpoint, we transport to the musical
domain the state-of-the-art machine learning conditional models paradigm, origi-
nally devised for the part-of-speech (POS) tagging problem [4]. A set of Boolean
features has been designed in the attempt to encode the main cues used by human
experts to analyze music.

One particular difficulty in dealing with sequential prediction is the computa-
tional complexity of inference algorithms. Intuitively, this problem can be cast to a
path finding problem over a layered graph (described below) with vertices represent-
ing chord labels. In particular, given T layers and K label classes per layer, the graph
representing the corresponding search space is a T ×K graph. The problem of find-
ing an optimum path over such graph is customarily solved by using the Viterbi al-
gorithm, a dynamic programming algorithm havingΘ(TK2) time complexity [29].
Instead, to perform such decoding step our system relies on a recently developed de-
coding algorithm, CarpeDiem, that finds the optimal path in O(T K log(K)) time
in the best case, degrading to Viterbi complexity in the worst case [9].

We presently illustrate BREVE, a system for chord recognition that takes as input
musical pieces encoded as MIDI files, extracts the corresponding sequence of mu-
sic events, and computes the corresponding sequence of chord labels. Our approach
puts together various insights from the fields of Machine Learning, Cognitive Sci-
ence and Computer Music in an interdisciplinary fashion. The work is structured
as follows. We start by formulating the problem of chord recognition (Section 2).
Subsequently, we survey some related works on the problem of chord recognition
(Section 3). In Section 4 we introduce the system BREVE: we illustrate how musi-
cal information is represented (Section 4.1), we introduce tonal harmony analysis
as a sequential problem (Section 4.2), and motivate the adoption of a conditional
model (Section 4.3). In particular we introduce the Boolean features framework
(Section 4.4), and we illustrate the set of implemented features (Section 4.5). In
Section 4.6 we briefly summarize the functioning of the CarpeDiem algorithm
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Fig. 1 The chord recognition problem consists of indicating for each vertical which chord is
currently sounding. Excerpt from Beethoven’s Piano Sonata Opus 31 n.2, 1st movement.

and then report the results of the experimentation in Section 5. We both examine
in detail the computed weights to analyze which sorts of knowledge they overall
describe (Section 5.1) and elaborate on the errors committed (Section 5.2). Finally,
we draw some conclusions on future directions of BREVE and on the technologies
currently adopted.

2 Chord Recognition Problem

The task of chord recognition consists in indicating a chord label for each music
event in a music piece. Equivalently, one could individuate segments as portions
of the piece with same harmonic content, and then assign the appropriate label to
each segment [20, 27]. Several types of notation can be adopted in analysing music,
such as Figured Bass, Roman numeral notation, classical letter, Jazz notation, and
different representations for musical chord symbols are possible [13]. Furthermore,
chord recognition is the first step toward a higher level structural analysis, mainly
concerned with individuating the main building blocks of a composition along with
the structural relationships underlying whole pieces [26].

We define the problem of chord recognition as follows. A chord is a set of (three
or more) notes sounding at the same time. Chord recognition consists in indicating
the fundamental note (or root) and the mode of the chord, e.g., CMaj or Fmin, at
each time point of the musical flow (Figure 1). Given a score, we individuate sets of
simultaneous notes (verticals), and associate to each vertical a label 〈fundamental
note, mode 〉. Additionally, we individuate the added notes that possibly enrich the
basic harmony: we handle the cases of seventh, sixth and fourth. By considering 12
root notes × 3 possible modes (see below) × 3 possible added notes, we obtain 108
possible labels.

Tonal harmony theory encodes two key aspects in music: how to build chords
(that is, which simultaneous sounds are admissible)1 and how to build successions
of chords (that is which chord sequences are admissible). In the following we re-
fer to them as vertical and horizontal information, respectively. For example, three

1 Admissible are sounds perceived as consonant ones within a given musical style.
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(a) Incompletely stated chords (b) Passing tones, retards

Fig. 2 (a) Cases in which triads are incompletely stated, and (b) in which triads are stated
together with further notes like passing tones and retards can make chord recognition a harder
problem.

main kinds or modes of chords are defined: major, minor and diminished chords.
This sort of information is proper to states, and we denote it as vertical information.
Moreover, tonal harmony theory encodes rules to concatenate chords, thus describ-
ing which successions are acceptable: for example, after a CMaj chord one could
expect FMaj or GMaj , rather than C�Maj. Typically, this sort of information can be
represented as proper to transitions between states, and we denote it as horizontal
information.

If we assign a label y to an event x and we only use information about the notes
sounding around x, then our analysis relies on vertical information. By converse,
if to predict the label y we consider only the previous label regardless the notes
currently sounding, we are using only horizontal information.

Chord recognition is a hard task that requires integrating both kinds of informa-
tion. In fact, music harmony can be incompletely stated (i.e., we are given only 2 el-
ements of a chord, as in Figure 2(a)), or it can be stated by arpeggio (i.e., one note at
a time); moreover, passing tones, retards, etc., can further complicate chord recog-
nition (Figure 2(b)). Even fully stated chords can be ambiguous: let us consider, e.g.,
a chord composed of the notes A-C-D-F. This set of notes can be labeled as a Dmin7
or FMaj6 , depending on the inversion, on the harmonic flow of surrounding events,
and on voicing information. In addition, one has to handle ambiguous cases, where
the composer aims at violating the listener’s expectation, deliberately contravening
“grammatical” rules [3].

3 Related Works

Much work has been carried out in the field of automatic tonal analysis: since the
pioneering grammar-based work by Winograd [32], a number of approaches have
been proposed that address the issue of tonal analysis. A survey of past works is
provided by Barthelemy and Bonardi [1]; we focus on the closest approaches.

One of the preference-rules systems described by Temperley [28] is devoted to
harmonic structure analysis. It relies on the Generative Theory of Tonal Music [17],
providing that theory with a working implementation. In this approach, preference
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rules are used to evaluate possible analyses along a given dimension, such as har-
mony, also exploiting meter, grouping structure, and pitch spelling information. A
major feature of Temperley’s work concerns the application of high level domain
knowledge, such as “Prefer roots that are close to the roots of nearby segments on
the circle of fifths”, which leads to an explanation of results.

The system by Pardo & Birmingham [21] is a simple template matching system.
It performs tonal analysis by assigning a score to a set of 72 templates (that are
obtained from the combination of 6 original templates transposed over 12 semi-
tones of the chromatic scale). The resulting analysis is further improved by 3 tie-
resolution rules, for labeling still ambiguous cases. This approach has been recently
extended in the COCHONUT system by taking into account sequential information,
in the form of chord sequence patterns [27].

Raphael & Stoddard [24] proposed a machine learning approach based on a Hid-
den Markov Model that computes Roman numeral analysis (that is, the higher level,
functional analysis mentioned above). A main feature of their system is that the gen-
erative model can be trained using unlabeled data, thus determining its applicability
also to unsupervised problems. In order to reduce the huge number of parameters
to be estimated, they make a number of assumptions, such as that the current chord
does not affect the key transitions. Also, the generative model assumes conditional
independence of notes (the observable variables) given the current mode/chord.

Lee & Slaney [16] propose a system where 24 distinct HMMs are trained from
acoustic signals. Two aspects are interesting in their work. First, by modelling 24
distinct HMMs they account for the differences in the chord transition probabilities
that characterize different keys. Second, they train the HMMs using an input syn-
thesized starting from a MIDI input. The MIDI files they use are downloaded from
the Internet and annotated using Melisma music analyzer [28]. This approach has
the advantage that large annotated corpora can be easily produced, however it can
be argued that the final system learns the Melisma way of annotating music instead
of the supposedly correct and unbiased way.

4 BREVE: An SSL System for Chord Recognition

In current Section we illustrate the design choices and the working of BREVE.
We introduce the input representation, the Boolean-features framework, the mo-
tivations behind the sequential classification approach and the actual algorithms
implemented.

4.1 Encoding

BREVE takes as input music pieces encoded as MIDI files. The fundamental repre-
sentational structure processed is the music event; whole pieces are represented as
event lists. An event is a set of pitch classes sounding at the same time; each new
onset or offset determines a new event. Each event may be accented or unaccented.
For each event we retain information about the bass.
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Pitch classes are categories such that any two pitches one or more octaves apart
are members of the same category. Their psychological reality received solid exper-
imental evidence (e.g., see [6, 28]). Provided that we take as input MIDI files where
pitch information is encoded as a number, pitch classes are computed by means of
modulo-12 of MIDI pitches. E.g., if we consider the notes G3 and G4 corresponding
to MIDI pitches 55 and 67, respectively, they both are mapped onto the same pitch
class: 55 ≡ 67 mod 12. Then, a vertical composed of the notes C4-E4-G4 corre-
sponding to the MIDI pitch numbers 60-64-67 is converted into an event composed
of the pitch classes 0-4-7. Although loosing some information, pitch classes still
permit to grasp the differences between chords. Also, they allow one to better char-
acterize different modes. In fact, the characterizing aspect of a particular mode is
the distance between the pitch classes that are present in the chord. For instance,
distances intervening in 〈0,4,7〉, 〈0,3,7〉 and 〈0,3,6〉, correspond to major, minor and
diminished modes respectively. In other terms, a chord mode is invariant under ro-
tations of its constituting pitch classes (see Figure 3). If we consider major chords,
whose pitches are 4 and then 3 semitones apart, we see that by rotating a major
chord like C Major two 2 steps clockwise, we obtain the D major triad; by further
rotating D Major 2 steps clockwise we obtain the E Major triad. The same holds if
the chords are enriched with one or more added notes (Figure 3).
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Fig. 3 The three main modes of chords

In our representation, for each event we retain some information about the event
duration as well: if a note i is held while a new note j is played, we consider an event
containing i, and an event composed of both i and j, in that also the held note i affects
the harmonic content of the vertical (see the C4 and F4 spanning over the second
and third event in Figure 4). Most of the information required to perform tonal
harmony analysis lies in the notes currently sounding and in their metrical salience:
in particular, since harmonic content is mainly conveyed by accented events [17],
we also annotate whether an event is accented or not. Meter estimation is based on
the work of Temperley [28]. We annotate input events also with bass information,
that provides valuable insights about inversions and more in general on harmonic
flow. The final input representation and the information actually used through the
analysis process is illustrated in Figure 4.

Our present representation disregards some musically relevant though secondary
aspects, among which doubled notes, absolute pitches, pitch spelling, actual dura-
tions and voicing information are the most prominent.
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Fig. 4 The main steps performed by BREVE: it takes as input MIDI files, it extracts the event
list with annotated bass and metrical accents (⇓ indicates an accented event, while ⇑ indicates
an unaccented event) and then it assigns a chord label to each event

4.2 Tonal Harmony Analysis as a Sequential Classification
Problem

To analyze the harmonic structure of a piece is a sequential task, where contex-
tual cues are widely acknowledged to play a fundamental role [2]. We have earlier
argued that vertical and horizontal (that is, sequential) information grasp distinct
though connected aspects of the musical flow. It follows that standard classifica-
tion approaches such as decision trees, naive bayes, etc. are arguably less likely to
produce good classification hypotheses, since they do not take into account the con-
textual information. This information is provided by surrounding observations, as
well as nearby labeling.

In our view, the sequential aspects in the harmonic flow require to consider the
problem of tonal harmony analysis as a sequential one. In particular, we adopt a
Supervised Sequential Learning (SSL) approach. The task, known as the supervised
sequential learning task, is not novel to the machine learning community. In recent
years a wealth of research has been invested in developing algorithms to solve this
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kind of problem, and a number of interesting algorithms have been proposed [7, 4].
The SSL task can be specified as follows [8]:

Given: A set L of training examples of the form (Xm,Ym), where each Xm =
(xm,1, . . . ,xm,Tm) is a sequence of Tm feature vectors and each Ym = (ym,1,
. . . ,ym,Tm ) is a corresponding sequence of class labels, y ∈ {1, ...,K}.

Find: A classifier H that, given a new sequence X of feature vectors, predicts the
corresponding sequence of class labels Y = H(X) accurately.

In our case, each Xm corresponds to a particular piece of music; xm,t is the informa-
tion associated to the event at time t; and ym,t corresponds to the chord label (i.e.,
the chord root and mode) associated to the event sounding at time t. The problem is,
thus, to learn how to predict accurately the chord label given the information on the
music event.

4.3 Conditional Models Approach

The SSL problem can be solved with several techniques, such as Sliding Windows,
Hidden Markov Models, Maximum Entropy Markov Models [19], Conditional Ran-
dom Fields [15], and Collin’s adaptation of the Perceptron algorithm to sequencial
problems [4] (henceforth, HMPerceptron). All these methods, with the exception of
Sliding Windows, are generalizations and improvements of Markovian sequence
models, culminating in Conditional Random Fields and HMPerceptrons. Condi-
tional Random Fields (CRFs) are state-of-the-art conditional probabilistic models,
which improve on Maximum Entropy models [15, 7] while maintaining most of the
beneficial properties of conditional models.

The major benefit of using conditional models is that fewer parameters need to
be estimated at learning time. In fact, while generative models need to estimate the
“complete” distribution governing the random variables involved in the problem,
conditional models only need to estimate the distribution of the output variables
given the observed variables. This allows the learning algorithm to disregard many
aspects of the problem that are not directly needed for the current classification task.
On the other hand, in contrast with generative models which can be used to solve
any conceivable inference problem, conditional models are specifically targeted to
a given inference problem and cannot be extended beyond that.

CRFs, Maximum Entropy Markov Models and the HMPerceptron exploit the
same way of interacting with the data. The “Boolean features” they use are func-
tions of the current sequence. They are devised to return 1 if the label currently
predicted for a variable of interest is coherent with the data, and to return 0 other-
wise. Not only does this simplify the specification of the system, but also it allows
domain knowledge to be easily plugged into the system. The algorithm, which is
an extension to sequential problems of Rosenblatt’s Perceptron algorithm [25], is
reportedly at least on par with Maximum Entropy and CRFs models from the point
of view of classification accuracy [4]. To the best of our knowledge, a direct com-
parison of HMPerceptron and CRFs has not been provided, even though they both
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were applied to the same Part-Of-Speech tagging problem, with analogous results
[4, 15].

Therefore, on the basis of the above-mentioned literature, we have chosen the
HMPerceptron as the main learning algorithm for the harmonic labeling prediction
task. We briefly introduce the main facts about the working of the HMPerceptron,
which has been investigated in [10].

The hypothesis acquired by the HMPerceptron has the form:

H(X) = arg max
Y ′={y′1...y′T }

∑
t
∑
s

wsφs(X ,y′t ,y
′
t−1)

where φs is a Boolean feature, i.e., it is a function of the sequence of events X and
of the previous and current labels. The HMPerceptron has been defined within the
Boolean features framework [19]. In this setting, the learnt classifier is built in terms
of a linear combination of Boolean features. Each feature reports about a salient
aspect of the sequence to be labelled in a given time instant. More formally, given
a time point t, a Boolean feature is a 1/0-valued function of the whole sequence
of feature vectors X , and of a restricted neighborhood of yt . The function is meant
to return 1 if the characteristics of the sequence X around time step t support the
classifications given at and around yt .

4.4 The Boolean Features Framework and the HMPerceptron
Algorithm

The φs functions are called features and allow the algorithm to take into consider-
ation different aspects of the sequence being analyzed. To devise properly the set
of features is a fundamental step of the system design, since this is the place where
both the domain knowledge and the model simplifications come into play. The ws

weights are the parameters that need to be estimated by the learning algorithm. To
these ends, the HMPerceptron applies a simple scheme: it iterates over the training
set updating the weights so that features correlated to correct outputs receive larger
values and those correlated with incorrect ones receive smaller ones.

This is actually the same kind of strategy adopted by Rosenblatt’s perceptron
algorithm [25], the main difference between the two algorithms is in the way the
hypothesis is evaluated. In the classification problem faced by the perceptron al-
gorithm, in fact, it is sufficient to enumerate all the possible labels and to pick the
best labelling. In the case of the SSL problem, however, this cannot be efficiently
done: the labelling of a single “example” is a sequence of T labels, the number
of such labelling is thus exponential in T . To enumerate all the possible label se-
quences and to pick the best is clearly unfeasible. In order to tame the complex-
ity of the hypotheses evaluation, a first order Markov assumption can be made.
In a conditioned model, this amounts to assume that the probability of observing
any given label yt depends only on the previous label yt−1, given the observations:
Pr(yt |y1, . . .yt−1,X) = Pr(yt |yt−1,X).
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The first order Markov assumption has two important consequences. The first
one is that features cannot exploit any information about labels besides that cur-
rently assigned and the previous one. Vice versa, they can collect information from
the whole sequence of observations. Secondly, the Viterbi decoding [22] can be used
to decide about the best possible sequence of labels with a computational complex-
ity in the order of Θ(T K2). Viterbi can be interpreted as an optimum path finding
algorithm, suitable for particular kinds of graphs. In our setting, the graph is con-
structed starting from K ×T nodes: one for each label/time position pair (Figure 5).
All vertices that correspond to a given time instant are fully connected to the nodes
that correspond to the following time event (the absence of all other edges in the
graph is the fingerprint of the first order Markov assumption). A left-to-right path
in this graph corresponds to computing T labels, i.e., a labelling of T events. In this
setting, the classifier acquired by the HMPerceptron can be though of as an assign-
ment of weights to the vertices and the edges in the graph such that the best scoring
path corresponds to the most likely sequence of labels.

The HMPerceptron algorithm estimates the weights associated to the features
so to maximize H accuracy over the training set. The algorithm is very similar to
Rosenblatt’s Perceptron [25]: W is initialized to the zero vector; then, for each ex-
ample (Xm,Ym) in the training set, H(X) is evaluated using the current W . Two
situations may occur: the sequence of labels predicted by H is identical to Ym or this
is not the case, and a number of errors are committed. In the first case nothing is
done for that example, and the algorithm simply jumps to the following one. In the
second case the weight vector is updated using a rule very similar to the Perceptron
update rule:

ws = ws +
T

∑
t=1

φs(X ,y′t ,y
′
t−1)(Iy′t=yt

− Iy′t �=yt
).
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Fig. 5 Graphical representation of the labelling problem for K = 6
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In the formula φs represents a Boolean feature, yt represents the t-th correct label,
y′t denotes currently predicted t-th label, and IP represents the function that returns
1 in case P is verified and 0 otherwise. By noticing that (we omit the arguments of
φs for brevity):

φs · (Iy′t=yt
− Iy′t �=yt

) =

⎧⎪⎨
⎪⎩

+1 if φs = 1∧ y′t = yt

−1 if φs = 1∧ y′t �= yt

0 if φs is 0

it is immediate to verify that the rule emphasizes features φs positively correlated
with good classification and de-emphasizes those that are negatively correlated with
it.

4.5 Features Design

The features are used to provide discriminative power to the learning system and
incorporate domain knowledge. They are evaluated at each time point t in order to
compute an informed prediction about the label to be assigned to the event. Formal
definitions are reported in Table 1. Before illustrating the features in detail, let us
start by summarizing few elements that have been introduced:

1. We distinguish between vertical and horizontal information. The former one is
concerned with the portion of tonal harmonic theory that describes rules govern-
ing simultaneous sounds, whilst the latter one is concerned with the part of tonal
harmony describing successions.

2. We cast the chord recognition problem to a supervised sequential learning prob-
lem, that can be solved as a path-finding problem by means of the HMPerceptron
algorithm.

3. In particular, given T events and K labels available for each event, we build a
T -layered graph. In this setting, labelling a sequence of chords corresponds to
finding an optimum (with maximal reward) path throughout the graph, from the
leftmost to the rightmost layer.

In the following, we describe the implemented set of features. We denote the current
event with x·,t , and with yt the currently predicted label.

Vertical features typically report about the presence (or absence) of some note
in a given event, thus providing a proof for (or against) a given label. The features
class Asserted-notes is composed of the features CompletelyStatedChord, As-
sertedAddedNote, ChordRootAssertedInTheNextEvent and AssertedRoot-
Note. For instance, the feature AssertedRootNote reports about whether the root
note of label yt is present in event x·,t . This feature can provide precious cues, since
the root note is the most salient sound in any chord. CompletelyStatedChord col-
lects information about whether all the notes in chord yt are present in event x·,t , and
so forth.
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Features named Asserted v NotesOfChord are triggered when exactly v notes
of yt are present in x·,t . In principle, the smaller is v, the lesser evidence exists for
yt . There are, thus, five different realizations of this feature. Some of them (for v= 3
or 4) strengthen current predictions, while those with low v are actually used to vote
against the label yt . In fact, cases where few notes of a predicted label are sounding
should be taken as an evidence that the chord prediction is unreliable.

Features using bass information are grouped in the Bass-At-Degree features
class, reporting information about which (if any) degree of the chord yt is the bass
of event x·,t . The bass is the most relevant pitch in any chord, often providing cues
about the root note of current chord yt . The other degrees of yt can be present as
the bass of the event x·,t . However this class of features should enable the system
to apprehend that the third degree, the fifth degree and the possible added note are
progressively less informative about the appropriate label.

Horizontal features have been arranged in two classes. One reports about how
meter and harmonic changes relate. The other one reports about some transitions
relevant in tonal harmony theory. ChordChanges features account for the corre-
lation of label changes and the beat level of a neighborhood of x·,t . We distinguish
two kinds of beat: accented and unaccented (1 and 0, respectively). In analyzing
event x·,t , we consider also events x·,t−1 and x·,t+1. We denote with triplets of 1 and
0 the eight resulting metrical patterns. For instance, 010 denotes an accented event
surrounded by two weak beats. The associated feature returns 1 if yt−1 �= yt (i.e., the
chord changes) in correspondence with such a pattern.

Human analysts are known to focus at first on a reduced set of transitions fre-
quent in tonal music. Successions features are used to model them, as a way for
biasing the system to behave accordingly. We represent a transition as a pattern, like
[Maj7,5,Maj], composed of i) a starting mode and added note; ii) a distance between
root notes, expressed as the number of intervening semitones; iii) an ending mode
and added note. That is, [Maj7,5,Maj] refers to a transition from a major chord with
added seventh to a major chord, whose roots are five semitones apart (e.g., from
FMaj7 to B�Maj). Both ChordChanges and Successions features can be used
to capture musical aspects that are deeply ingrained with musical style. On the one
hand, this implies that restrictive constraints are posed to the stylistic homogeneity
between training and testing sets. On the other hand, such style sensitivity grasps
valuable ‘linguistic’ aspects that characterize musical language.

It is relevant to point out that both vertical and horizontal features have been
devised so as to generalize to unseen labels. For instance, CompletelyStated-
Chord will fire any time when all the notes of label yt are present in x·,t , regard-
less of whether yt was present in the training set or not. Similarly, the transition
[Maj7,5,Maj] will provide useful information also about transitions between labels
never met in the training set. This is in stark contrast with common learning systems.
For instance, the transition matrix used in most HMMs-based systems provides de-
tailed accounts of the probabilities of transitions which were observed in the training
set. When used on a new dataset containing unseen transitions, the transition ma-
trix cannot provide any useful information about it. On the contrary, based on the
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generalization power of the features, BREVE can abstract the transition between
chords a perfect fifth apart,thereby recognizing transitions between any two chords
such as (FMaj7-B�Maj), (C�Maj7-F�Maj), (D�Maj7-G�Maj) as instances of a tran-
sition of type [Maj7,5,Maj]. To give an intuition of the generalization power of
BREVE, we ran a preliminary experimentation. BREVE has been trained on two
chorales by J.S. Bach: one in major key, one in minor key. It then has been tested
on 58 chorales by the same author. We repeated this test 5 times, each time with
two different training sequences. We obtained an average accuracy of 75.55%. This
datum is surprisingly good if we consider that the whole dataset contains 102 differ-
ent labels, while the training sets, each one composed of a pair of sequences only,
contained 24.8 labels on average.

4.6 CarpeDiem Algorithm

As mentioned, BREVE mainly exploits vertical information, resorting to horizontal
cues primarily to resolve ambiguities. In other words, to label a given vertical, we
first look at information provided by the current event, and then use surrounding
context to make a decision if still in doubt. In BREVE, this ‘least effort principle’
is implemented by the CarpeDiem algorithm [9]. CarpeDiem is an algorithm
allowing one to evaluate the best possible sequence of labels given the vertical and
horizontal evidence. It solves the same problem solved by the Viterbi algorithm, but
saves some computational effort. In particular, by exploiting vertical information
CarpeDiem is able to reduce the number of labels taken into consideration by the
system.

To provide an intuitive description of the algorithm, it is worth recalling that
Viterbi algorithm [29] spends most computational resources to compute:

max
yt ,yt−1

⎡
⎢⎣weight of the best path to yt−1︷ ︸︸ ︷

ωyt−1 +

weight for transition yt−1 ,yt︷ ︸︸ ︷
∑

s
wsφs(X ,yt ,yt−1, t)

⎤
⎥⎦ . (1)

If we partition the set {1,2, . . . p} of all feature indexes into the two sets Φ0 andΦ1,
corresponding to indexes of vertical and horizontal features respectively, then the
equation (1) can be rewritten into:

max
yt

[
∑

s∈Φ0

wsφs(X ,yt ,t)+ max
yt−1

[
ωyt−1 + ∑

s∈Φ1

wsφs(X ,yt ,yt−1,t)

]]
. (2)

Equation (2) is equivalent to Equation (1); in addition, it emphasizes how features
in Φ0 need to be evaluated only once per yt label, and not once for each yt ,yt−1

pair. It is then obvious (and in accord with the intuition) that whenever Φ1 = /0 the
cost of the Viterbi algorithm can be reduced to be linear in the number of labels.
The core idea underlying CarpeDiem is to exploit vertical information to avoid
the evaluation of the inner maximization as long as possible.
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5 Evaluation of the System

A corpus of 60 four-parts chorales harmonized by J.S. Bach (1675-1750) was anno-
tated by a human expert with the bass and the appropriate chord label, as described
in Section 4.1. Additional information on metrical salience of the music events has
been computed by using the meter program by Temperley [28]. The sequences in the
dataset are composed, on average, by 94.5 events; on the whole, the corpus contains
5,664 events.

BREVE has been validated using 10-fold cross validation: the estimated gener-
alization error is 19.94%, thus providing an accuracy rate of 80.06%. Previous re-
sults of a preceding implementation of the system, tested on a less homogeneous
dataset (namely, the Kostka-Payne corpus [14]), obtained a 73.8% accuracy. Also,
BREVE exploits the state-of-the-art ‘decoding’ algorithm CarpeDiem, which al-
lows BREVE to run in just 7.35% of the time required by an implementation based
on the Viterbi algorithm [10].

In the following we elaborate on the quality of the output of BREVE and, specifi-
cally, i) we examine the learnt parameters from a musical perspective; ii) we inspect
the errors committed in the classification and consider whether the analysis of er-
rors can be useful in suggesting any improvement to the set of features or to the
classification strategy.

In the next sections we elaborate on the weights learnt by the system and on the
errors it commits. Since it is unclear how to aggregate the weights of the ten classi-
fiers acquired during the cross validation, we will consider the weights obtained by
training an individual classifier on half of the music sequences in the dataset. Also,
we will examine errors committed by the same classifier, which has been tested on
the second half of the dataset.

5.1 Musical Interpretation of Acquired Classifiers

In Appendix 7 we present the features list with the learnt weights, arranged into the
four classes outlined in Section 4.5.

As expected, information about which notes are currently sounding prevails
over contextual information. The highest positive weights involve vertical features,
namely Asserted v NotesOfChord with v=3 and v=2 (features number 7 and 8
in Table 2) and CompletelyStatedChord. In considering Asserted v NotesOf-
Chord features, we see that the case v=3 received more emphasis with respect
to the case v=4. This is likely due to the fact that in the examined corpus, events
composed of 4 or more pitches mostly contain passing tones which mislead the As-
serted 4 NotesOfChord feature. Furthermore, the lower frequency with which the
feature is asserted may have affected the magnitude of the learned weight as well.
As regards v=1, the feature has been used by the system as evidence against a given
label, rather than supporting it. We also observe how the feature with v=1 received
a penalty analogous, in magnitude, to the reward obtained by the feature with v=2.
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Fig. 6 The fundamental steps involved in cadence

By looking at the AssertedDegrees features class, we observe that the features
CompletelyStatedChord (feature number 4), AssertedRootNote (feature num-
ber 1), and Asserted (2|3) NotesOfChord necessarily fire simultaneously. In such
situations, the ‘amount of evidence’ in favour of yt is overwhelming and BREVE will
probably investigate only few alternative labels.

Let us now consider horizontal features (numbered from 14 to 43). Horizon-
tal features are arranged in two classes, Successions and ChordChanges. The
former ones collect information about some recurrent transitions, whilst the latter
ones are mainly concerned with the correlation between harmonic change and meter
strength. Weights associated to harmony changes in correspondence with weak beats
(patterns with shape ?0?) receive the highest penalty among all features. While har-
mony change is globally discouraged, the system assigns only weak penalties to
harmonic changes in correspondence with accented beats (feature 17 over metrical
pattern 011 and feature 20, over metrical pattern 110). The preference for chord
transitions in correspondence with accented events substantially fits to experimen-
tal evidences and analytical strategies known in literature, e.g., the Strong beat rule
proposed by Lerdahl & Jackendoff [17], and implemented by Temperley as the pref-
erence for “chord spans that start on strong beats of the meter” [28]. The speed of
harmony changes is deeply with musical style as well as with the musical form un-
der consideration: since these features are a simple –though effective– way of mod-
eling the harmonic rhythm, they provide interesting high-level information about
style.

ChordDistance m1 i m2 features identify roughly three kinds of transitions: 1)
those providing strong positive evidence in favor of a given label yt ; 2) those used
as refinement criteria; 3) those used to forbid the transitions that have associated
large negative numbers. All transitions involved in the cadence have been identified
among the most relevant horizontal features (see features number 30, 22, 34, 25, 26,
32, 23, 24 in Table 2) and Figure 6.

Having identified the main components of the cadence shows that the system
recognizes the relevance of such transitions in the considered corpus. In facts, four-
parts chorales where harmonized by starting from melodies (properly, the chorales
themselves) composed of phrases. Typically, the end of each phrase is marked by
a cadence, so that the harmonization of chorales corresponds to a good extent to
harmonizing the cadences, and then to connecting such ‘fixed’ points with further
chords.
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5.2 Errors Analysis

As mentioned, BREVE incorrectly classifies chords in about 20% of cases. A closer
look at the errors reveals some well-defined error classes. First, in about 30% of
errors, labels computed are wrong: in these cases BREVE has been totally misled.
Also, determining why the system provided incorrect output is not simple. Some-
where, it has been caught in interpretative nuances that are hardly avoided given the
simplified input representation (e.g., the system has no information on double notes,
contrapuntal structure, which provide useful cues to human analysts). In other cases,
the resistance to chord changes forces the system to inherit by mistake previously
attributed labels (this is especially true for chord changes on weak beats).

Among other mistakes, only few errors appear execrable from the viewpoint of
harmony theory. For instance, those due to confusing chord modes such as major
with minor chords or viceversa. This is an error seldom committed by human an-
alysts, and by BREVE, too. Precisely, only 8.60% (i.e., 1.71% of the labels in the
dataset) of the overall errors fall in this class. One may argue that a lager context
would be helpful to improve on this issue.

The errors due to confusion between relative keys (e.g., Amin instead of Cmaj)
amount to 14.81% of the total error. Relative keys are intrinsically connected tones,
in that they share the same key signature while having different roots, and to confuse
between them is not a serious error from a musical viewpoint.

Many errors (namely 21.02%) are due to misclassifying the added note (root and
mode being correct): in these cases the chord is analyzed in a substantially correct
fashion. In most cases such errors are to be imputed to the resistance of the system
to chord changes. For instance, this is the case of the succession FMaj ⇓-FMaj ⇑-
B�Maj ⇓ when the seventh occurs in correspondence with the second –unaccented–
FMaj chord. This case can be controversial even for human analysts, in that both
FMaj and FMaj7 can be considered correct classifications for the second vertical. A
human expert would make a decision inspecting whether the E� can be considered
a passing note or not. For example, a clue in favor of FMaj7 would be provided by
the resolution of the seventh a semitone below, on the third degree of the new chord.

Additionally, we observe that many errors occur on unaccented beats. Namely, if
we consider that only 34.87% of events in the dataset fall on unaccented beats, the
fact that 38.85% of errors involve weak events shows that some improvement in this
direction is possible.

On average, BREVE inspects only a fraction of all possible labels.2 If we con-
sider that the complexity of the Viterbi is Θ(T K2) (see Figure 5), this datum help
explaining how the implementation of BREVE based on CarpeDiem saves 92.65%
of computation time with respect to implementation based on the Viterbi algorithm.

2 We note that the number of inspected nodes reported here is not a direct measure of the time
required by the algorithm to run over the dataset. In facts, even for nodes that we consider
as visited, not necessarily all incoming edges have been inspected by CarpeDiem.
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Fig. 7 How computational effort, in terms of label evaluations, and incorrect predictions co-
occur. Excerpt taken from the four-parts chorale BWV 6.6 by J.S. Bach.

In particular, we can define an effort measure to characterize the amount of prob-
lem space explored, and compute such effort as the percentage of labels inspected
by CarpeDiem with respect to Viterbi to compute the optimal label for current
event. Such figure surpasses 100% when CarpeDiem visits some labels in pre-
vious layers (of course, this happens if the corresponding vertices had been left
previously unvisited). Since on average CarpeDiem does not explore more than
100% of available labels, this fact provides an intuitive argument to corroborate the
fact that CarpeDiem is never asymptotically worse than the Viterbi algorithm [9].
Interestingly, we observed that such effort correlates (though only mildly) with the
classification error. On average, in correspondence with correctly predicted labels
BREVE inspected the 65.47% of available labels; on the contrary, in correspondence
with incorrectly predicted labels, BREVE inspected the 78.59% of available labels.
In Figure 7 we report an excerpt with annotated above the staves the effort required
by the analysis, along with –below the staves– the events for which BREVE provided
incorrect predictions. As outlined above, errors are more frequent in correspondence
with weak beats, where harmony quickly changes. For example, the first event in
measure 3 only requires considering the 1% of available labels, whilst the subse-
quent, unaccented, event requires inspecting 127% of labels (thus implying the need
to backtrack to previous level of the graph). This is clearly due to a harmonic move-
ment faster than usual, where evidence provided by vertical features (considering
the asserted pitches) is contradicted by the horizontal ones, highly penalizing label
changes on unaccented events surrounded by accented events (see feature number
19 in Table 2).

In summary, our review of the errors committed reveals that most errors are either
venial, or justifiable on musical accounts. Moreover, more difficult passages require
increased effort, and BREVE has been proved to spend more computational resources
exactly on those events.
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6 Conclusions

This chapter described BREVE, a system for chord recognition, a task that is at the
ridge of AI, Cognitive Science and Computer Music. The approach implemented by
BREVE is to cast the chord recognition problem to a Supervised Sequential Learning
approach: the musical flow is mapped onto a sequence of events, each one labelled
with a chord. BREVE exploits a corpus of annotated musical pieces in order to ‘learn’
how to label new excerpts.

Among several possible approaches to solve this kind of learning problems,
BREVE exploits the HMPerceptron algorithm: it converges faster than most com-
petitor approaches, meanwhile retaining comparable classification performance. In
BREVE few tens of Boolean features encode rich domain knowledge. This is in stark
contrast with many recently proposed generative models where the number of pa-
rameters to be learnt ranges in the thousands.

The experiments over a corpus of chorales from J.S. Bach show that the system
has performances similar to competitor systems. However, the fewer number of pa-
rameters involved in BREVE arguably allows for better explanation of the results and
a deeper understanding of the system. In facts, the learnt weights turned out to be be
musically meaningful; also the errors committed fall in few and clearly identifiable
classes, therefore leaving room to future refinements.

Future refinements may address two aspects: from a musical viewpoint, the music
representation could be extended so as to allow taking into account the role played
by key as a center of gravity of the whole composition, and functional analysis. From
a machine learning perspective, the system could be extended to take into account
also information about transitions between non-adjacent layers, thereby exploiting
higher order Markov assumptions.
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7 Features Used by BREVE

Table 2 The feature list with the learnt weights. For each feature φ we report its class, its
number, its name, and the weight learnt by the HMPerceptron.

φ class φ number φ name weight

Asserted-notes 1 AssertedRootNote 2.600
2 ChordRootAssertedInTheNextEvent 12.000
3 AssertedAddedNote -3.200
4 CompletelyStatedChord 45.400
5 Asserted 0 NotesOfChord -70.600
6 Asserted 1 NotesOfChord -23.400
7 Asserted 2 NotesOfChord 22.800
8 Asserted 3 NotesOfChord 52.000
9 Asserted 4 NotesOfChord 19.200

Bass-At-Degree 10 BassIsRootNote 17.400
11 BassIsThirdDegree 13.400
12 BassIsFifthDegree 0.200
13 BassIsAddedNote -0.600

ChordChanges 14 ChordChangeOnMetricalPattern 000 -9.600
15 ChordChangeOnMetricalPattern 001 -95.200
16 ChordChangeOnMetricalPattern 010 -23.600
17 ChordChangeOnMetricalPattern 011 -1.800
18 ChordChangeOnMetricalPattern 100 -84.600
19 ChordChangeOnMetricalPattern 101 -552.200
20 ChordChangeOnMetricalPattern 110 -10.800
21 ChordChangeOnMetricalPattern 111 -82.200

Successions 22 ChordDistance M 5 M 20.000
23 ChordDistance M 5 m 8.200
24 ChordDistance M7 5 m 21.600
25 ChordDistance M7 5 M 18.600
26 ChordDistance m 5 M 4.000
27 ChordDistance m 5 M7 -2.400
28 ChordDistance m7 5 M 6.800
29 ChordDistance m7 5 M7 0.400
30 ChordDistance M 7 M 13.800
31 ChordDistance M 7 M7 -13.200
32 ChordDistance M 2 M 8.200
33 ChordDistance M 2 m 7.800
34 ChordDistance M 2 M7 18.800
35 ChordDistance m6 2 M -3.600
36 ChordDistance m6 2 M7 1.200
37 ChordDistance d 1 M 6.800
38 ChordDistance d 1 m 1.400
39 ChordDistance m 3 M -36.600
40 ChordDistance m 8 M -17.400
41 ChordDistance M 9 m 15.600
42 ChordDistance M 9 m7 -13.000
43 ChordDistance M4 0 M7 0.400



Analysis of Chord Progression Data

Brandt Absolu, Tao Li, and Mitsunori Ogihara

Abstract. Harmony is an important component in music. Chord progressions, which
represent harmonic changes of music with understandable notations, have been used
in popular music and Jazz. This article explores the question of whether a chord
progression can be summarized for music retrieval. Various possibilities for chord
progression simplification schemes, N-gram construction schemes, and distance
functions are explored. Experiments demonstrate that such profiles can be used for
artist grouping and for composition retrieval via top-k queries.

1 Introduction

The chord progression is an important component in music. Musicians and listeners
speak of novel and influential chord progressions. A well-known example of famous
chord progressions is the Tristan Chord of Richard Wagner, the very first two chords
in the First Act Prelude of “Tristan und Isolde” and a motif that reappears over
and over again in the ensuing four hours of drama. Another example is “Because”
by The Beatles, whose main theme runs on an eight-bar chord sequence that is
sometimes rumored to have been produced by reversing the chord progression for
the main theme of the “Moonlight” Piano Sonata, one of the most famous piano
compositions by Ludwig van Beethoven (Sonata Op.27 No.2). Yet another example
is “Giant Steps” by John Coltrane, which uses a combination of dominant-to-tonic
[V7-I] cadence and repeatedly raises the key by major third.
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Among many genres of music the role of chord progressions appears to be
the most significant in Jazz. The performance in Jazz takes the form of Theme -
Improvisation - Theme, where the middle part is improvisation in which the melody
is spontaneously created while the chord progression of the main theme is being
played repeatedly. Keeping in mind that the melody has to be created spontaneously,
Jazz performers select tunes with chord progressions having certain characteristics.

Many Jazz compositions are based on one of two well-known chord progression
forms. One is the 12-bar blues progressions and the other is “I Got Rhythm” by
George Gershwin, where the chord progression of a tune is constructed out of the
base progression and a new melody is played over the new progression. The abun-
dance of such tunes witnesses the fact that Jazz music is highly improvisational (the
tunes themselves might have been composed spontaneously by way of improvisa-
tion) and the fact that chord progressions play an extremely important role in that
genre.

Quite often in studio recordings and live performances of Jazz, their performance
programs consist of many tunes. Sometimes the tunes are compositions by the per-
formers themselves, but more frequently they are compositions by someone else.
If one surveys a large collection of Jazz recordings he/she will notice that many
of them contain compositions from a small set of famous Jazz composers, such as
Duke Ellington, Wayne Shorter, and Thelonius Monk. The high popularity of these
composers, along with the fact that Jazz performers select tunes based on chord
progression, suggests that there are Jazz composers with a unique chord progres-
sion style. Thus we here hypothesize:

there is a group of popular Jazz composers whose composition style can be well
represented by chord progressions.

This article explores this hypothesis from the perspectives of clustering (the problem
of grouping data according to their similarity) and similarity search (the problem of
finding data objects similar to an input data object).

Fundamental to this exploration is a method for assigning a distance value
given two chord progressions. An approach for designing a distance measure is
sequence alignment, which is often used in melody-based music retrieval systems
(see, e.g., [2, 6, 12, 13]). The basis for the sequence-alignment approach is a the-
ory that models transformation of a chord progression to another (see, e.g., [9, 11]).
Such a generative theory can offer a highly understandable explanation as to why
two progressions are similar or why they aren’t, but has a substantial limitation that
computing a transformational path might be very difficult for tunes that have mu-
sically little to do with each other. It may be possible to deal with this issue by the
use of partial alignments, as has been done in other scientific disciplines, but such a
solution for chord progression analysis is yet to be established.

Also, the sequence alignment approach has a limitation that the pairwise similar-
ity does not enable calculation of the mean—the chord progression that represents
a collection of progressions as a whole—that is an essential component in cluster-
ing. Furthermore, computation of pairwise distance via sequence alignment is very
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expensive, which might limit its practical usage if alignment must be computed on
the spot for a large number of chord progression pairs.

This consideration suggests the use of statistics to summarize chord progressions
and then to compare chord progressions. The simplest of such statistics will be fre-
quency counts of chords, i.e., how often the chords or chord components are used
in a composition. The use of statistics has two major advantages. One, a single scan
will be sufficient to compute frequencies of chords in a progression, so such statis-
tics are easy to compute. Two, the instrument a composer uses for composing may
result in a certain bias in the statistics. However, the simple statistics are insufficient
for our purpose, since the frequencies chords do not provide information about the
order in which chords appear.

We address the above issue by using of N-grams—the patterns consisting of N-
consecutive chords that appear in a chord progression. The N-gram is a standard tool
in natural language understanding (see, e.g., [5]), and has been used in the area of
music information retrieval, in particular, in the melodic contour analysis [3, 4, 10].
Notably, the recent work of Mauch et al. [7] use 4-grams of triads to compare the
compositions by The Beatles and Jazz tunes. The work used triads because a large
portion of the chords in the Beatles compositions are simply triads.

The present article, extending an earlier work by a subset of the authors [8], con-
siders the use of other chord tones in the analysis. Highly prominent in the Jazz
harmony are the tone group of the 6th, 7th and major 7th notes and the group of ten-
sion notes (the 9th, the 11th, and the 13th notes). The former signifies the functions
that chords possess while the latter adds color to triads. Chord progression analysis
in terms of triads is likely to enable fundamental understanding of the chord struc-
ture. However, deeper understanding perhaps cannot be obtained without examining
these non-triad notes, in particular, for comparing Jazz compositions.

While the chord progressions are an important subject in musicology, one might
ask how chord progressions can be successfully incorporated into a music informa-
tion retrieval system. One possible scenario is where tunes are retrieved by frag-
ments of chord progression and accompanying metadata. In such a system, the user
provides a chord sequence (either typed or copy-pasted from a sequence on screen)
as input and the system retrieves tunes that contain a part with either exactly the
same as (with the possibility of allowing transposition of the key) or similar to the in-
put sequence, where the input chord progression is specified using an unambiguous
notation system (such as the one in [1]). Also, the accompanying metadata (artist,
genre, etc.) is used to narrow the scope of the search.

Another possible scenario is the retrieval of tunes with a certain set of chords as
a constraint. In such a system, the user specifies the set of chords he/she can play
well on his/her instrument (for example, a guitar) and metadata (again, artist, genre,
etc.), and the system retrieves the tunes that meet the criteria. For example, the user
may say “I need a Beatles song that uses chords only from { G, EMI, A, C, B7 }”
and then the system retrieves “Run For Your Life” (which actually is based on the
five chords with BMI in place of B7).
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1.1 Contributions of This Article

This article presents a novel concept of N-gram profiles for the purpose of comput-
ing numerical representation of a single chord progression as well as a collection of
chord progressions. First, the efficacy of the proposed profiles is tested using hier-
archical clustering of famous Jazz composers according to their profiles. There are
too many possible N-grams because the native chord space is gigantic. Thus, the
chord name space has to be reduced using some chord simplification. With respect
to two selected N-gram formats the hierarchical representation of Jazz composers
reflects very well the historic development of the Jazz compositional idioms. Next,
the use of N-gram profiles for similarity search is tested using a larger set of com-
positions and composers. Here different formats of profiles can be mixed together
to represent a composition. The best combination of formats is searched for using
a greedy algorithm with the effectiveness of top-K queries as the guide. Finally, the
combinatorial search for the top-K queries is applied to the problem of identifying
the composer given a composition as input.

1.2 Organization of the Article

This article is organized as follows. The next section discusses in detail how a chord
is defined and how N-grams of a chord progression can be computed. Section 3
presents a proof-of-concept analysis of chord progression profiles via hierarchical
clustering of Jazz composers. Section 4 presents exploration of best chord progres-
sion profiles using top-K query analysis.

2 Chord and N-grams Profiles

2.1 Chord Name Space

The Oxford University Press defines a chord as: “Any simultaneous combination of
notes, but usually of not fewer than 3. The use of chords is the basic foundation of
harmony.” This definition readily accepts as a chord any multiple number of simul-
taneously played notes and thus a smash of keys on the piano is considered to be
a chord. However, since the focus of this article is chord progression analysis that
is useful for retrieving tunes, the definition of chords must be narrowed so that all
the chords can be presented using a compact and clear notational scheme without
specifying a chord as the collection of pitch names that are present in it. Chords
presented with such a scheme are instrument-independent in the following manner.
Given any instrument or any ensemble of instruments, as long as all the chord notes
are presented in the harmony and no others are, we must think that the chord is
correctly presented.

Such notational schemes indeed exist. Books of popular music often present
chord names in addition to the the melody, lyrics, piano accompaniment chart,
and somewhat less frequently present guitar tabs. There even exist “fakebooks” that
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present only the melody, lyrics, and chords, which are often used by Jazz musicians
for free-style interpretation of compositions. While the chord names that appear in
these books have their basis in the Western classical music theory, as pointed by
Brandt and Roemer in [1], there exists conspicuous, and curious, ambiguity in the
notation. The 7th chord of G with the augmented fifth and with the 9th note (that
is, the chord consisting of notes G, B, D�, F and A with the G at the bottom), can be
written in six different ways: GAUG9, G+9, G9(� 5), GAUG7(9), G+7(9) and
G7(� 59). Since the first three are also used for the same chord without the 7th, the
coexistence of various chord name scheming is very confusing. To resolve this issue
Brandt and Romer [1] proposed a unified chord naming scheme that is both succinct
and compact. The chord names considered in this article are all representable using
this unified scheme.

In the chord notation scheme by Brandt and Roemer, a chord consists of four
major parts: (1) the triad (the root, the 3rd, the 5th), (2) the 6th/7th, (3) the tension
notes (the 9th, the 11th, the 13th), and (4) the added bass note. In the proposed chord
notation the names start with the root and the triad together (the triad being denoted
as empty for the major triad, MI for the minor triad, and SUS for the suspended 4th
triad) followed by the 6th/7th note specification (6 for the sixth, 7 for the seventh,
and MA7 for the major 7th). This is followed by additional information presented
within a pair parentheses, which consists of alterations to the 3rd and the 5th notes
and of the tension notes, and then a special keyword “on” and the bass note name if
there is an added bass note. Also, the combinations (the 7th and the 9th), (the 7th,
the 9th and the 11th), and (the 7th, the 9th, the 11th, and the 13th) are respectively
represented by the numbers 9, 11, and 13 attached immediately after the root name
for short-hand, with the exception that (a) if the triad is major then the second com-
bination will be used and the third combination does not include the 11th; and (b)
the 7th note may be the major 7th note, in which case, the numbers 9, 11, and 13
will be preceded by letters “MA”. For example, DMIMA11 is equivalent to DMIMA7
(9 11). (The interested reader is encouraged to consult with the book for more
detail.) An implicit restriction here is that not more than one note can be present
from each of the four note groups: the 6th/7th notes, the 9th notes, the 11th notes,
and the 13th notes.

2.2 Chord N-grams

2.2.1 Formal definition of an N-gram

For a set of symbols, U , for an integer N ≥ 1, an N-gram over U is an ordered
N-tuple (u1, . . . ,uN) such that u1, . . . ,uN ∈ U . An N-gram (u1, . . . ,uN) is said to be
proper if for all i, 1 ≤ i ≤ N −1, it holds that ui �= ui+1.

2.3 Chord Simplification

The chord name space defined in Section 2.1 is enormous. There are twelve possible
choices for the root (without distinguishing between two notes that refer to the same
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note in the equal temperament); four for the 3rd (Minor, Major, Suspended 4th, and
Omitted 3rd); four for the 5th (�5, �5, �5, and Omitted 5th); four for the 6th/7th (6th,
Minor 7th, Major 7th, and none of the three being used); four for the 9th (�9, �9,
�9, and none of the three being used); four for the 11th (�11, �11, and neither of the
two being used); four for the 13th (�13, �13, and neither of the two being used); and
finally 12 for the added bass note. These make the total number of choices more
than 320,000. This means that the total number of possible N-grams is more than
100 billions for N = 2 and 27 trillions for N = 3.

One must, however, be cautioned that although the space of N-grams is enor-
mous, the N-grams that actually appear in a chord progression are very small in
quantity. In fact, for a sequence of M chords, there are only M −N + 1 positions
from which an N-gram can be started, the number of unique N-grams appearing
in the sequence is at most M −N + 1. Even though the distributions of chords are
often very skewed (towards certain keys and towards chords without tension notes),
the vastness may make it unlikely for the N-gram profile of a chord progression
with highly enriched chords to intersect with the N-gram profile of another chord
progression. This problem can be overcome by simplifying chords.

The concept of chord simplification corresponds well with the concept of stem-
ming in document processing, which is the process of removing modifiers of words
thereby making words generated from the same root with difference modifiers
treated as identical words. The process of simplifying a chord can be divided into
two parts: (1) turning a chord with an attached bass note (such as AMI7onB) into
a non-fractional chord and (2) simplifying the tensions and the use of 6th and 7th
notes.

There are three options for the first part:

• (B0) simply removing the bass note (for example, AMI7onB is changed to
AMI7),

• (B1) reorganizing the chord notes so that the bass note becomes the root (for
example, AMI7onB is changed to B7SUS4(� 5 � 9)), and

• (B2) incorporating the bass note as a tension (for example, AMI7onB is
changed to AMI9).

There are three options for the second part:

• (T0) removing entirely the tensions and the 6th/7th note,
• (T1) removing entirely the tensions but keeping the 6th/7th note, and
• (T2) replacing the whole tension notes with a single bit of information as to

whether the chord has any tension and keeping the 6th/7th note.

Also included in the list of possibilities are the possibility to keep the bass note,
which will be denoted by B3, and the possibility to keep all the tensions intact and
keeping the 6th/7th note, which will be denoted by T3.

The simplification options that are considered here then can be denoted by a pair
(Bi,Tj) such that 0 ≤ i ≤ 3 and 0 ≤ j ≤ 3. The most aggressive simplifications are
(Bi,T0),0 ≤ i ≤ 3. Each of these simplifications has the effect of reducing any chord
to a triad or a chord that is a proper subset of a triad and therefore reduces the
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number of possibilities for a chord name to 192. For a progression Π and a sim-
plification method τ , we will use τ(Π) to denote the progression Π after applying
τ . Table 1 shows an example of how these simplifications work. The listed are the
chords generated by simplifying AMI7(11)onF. For T2 simplification, we will
use the symbol of (9) to show that there is a tension. Note that the incorporation

Table 1 Various simplifications of the chord AMI7(11)onF

T0 T1 T2 T3

B0 AMI AMI7 AMI7(9) AMI7(11)

B1 AMI AMI7 AMI7(9) AMI7(11 �13)
B2 F FMA7 FMA7(9) FMA7(91113)
B3 AMIonF AMI7onF AMI7(9)onF AMI7(11)onF

of the bass note as a chord note required in the B1 simplification may make the ac-
companying melody inconsistent with the chord. This characteristic is highly more
prominent in the T2 simplification, where all the tension notes are represented by the
(9) tension symbol.

2.3.1 Measuring the Length of an N-gram

There are two important issues to consider when defining chord N-grams. The first
is whether consecutive repetitions of the same chord should be permitted in a chord
N-gram. The second is how to consider the number of beats assigned to each com-
ponent of an N-gram. The two issues are related to each other and come directly
from the fact that an arbitrary number of beats can be allocated to a single chord.
For example, considering a 12-bar chord progression with the rhythm signature of
4/4 where the first four measures are [F-F(�5)-F6-F7], the next two are B�7,
the next two are F7, and then during the next two bars the chord moves G7 G�7,
F7, E7, E�7, D7, D�7, and C7, resolving to F7 in the last two measures. If the pro-
gression is scanned with a sliding window of two measures, the chromatic descent
in measures 9 and 10 are captured in three windows, while the [I-IV-I] mo-
tion that occurs in measures 4 through 7 can never be captured within such a small
window. One may suggest to use a double-sized window for the scan, but then the
clone of the progression in which each chord has twice as many number of beats as
the original creates exactly the same problem.

To resolve these issues, an N-gram here is considered to be proper. This allows
an N-gram to have an arbitrarily large number of beats in it. In the above example,
the [I-IV-I] motion is captured as a 3-gram [F7-B�7-F7] with the weight
of 32 beats, and the eight-chord chromatic descent is captured as a collection of six
3-grams [G7-G�7-F7], . . ., [D7-D�7-C7] with the weight of 3 beats each.
Also, after simplification, all the consecutive entries whose chord-part are identical
to each other should be merged into a single entry. Once this modification has been
done, the simplified chord progression has the property that every neighboring pair
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of chords are different and thus every one of its subsequences is a proper N-gram.
Such a chord progression is called a proper chord progression. The reader might be
cautioned that application of simplification to a proper chord progression without
neighbor merging may produce a non-proper N-gram. For example, in the above
example, the original sequence with the inclusion of duration can be represented as:

[F:4-F(�5):4-F6:4-F7:4-B�7:8-
F7:8-G7:1-G�7:1-F7:1-E7:1-E�7:1-

D7:1-D�7:1-C7:1-F7:8].

Applying the T0-simplification and merging identical neighbors yields

[F:16-B�:8-F:8-G:1-G�:1-F:1-
E:1-E�:1-D:1-D�:1-C:1-F:8].

2.3.2 N-gram Transposition

Since popular songs are transposed to different keys, one might be interested in
studying chord changes relative to the first chord of the N-gram. One can thus
transpose each N-gram locally, in such a way that each N-gram starts with a code
having A as the root. Since A is simply nominal, the Roman numerals I, II, III,
and so on, can be used. For example, from a five-chord sequence [FMI7, B�7,
E�MA7, CMI7, B7], three 3-grams can be obtained, [FMI7-B�7-E�MA7],
[B�7-E�MA7-CMI7], and [E�MA7-CMI7-B7], which are then trans-
posed respectively to [IMI7-IV7-VII�MA7], [I7-IVMA7-IIMI], and
[IMA7-VIMI7-VI�7]. This transposition process is called the A-transpose.

2.3.3 Chord Sequences and Weight of N-grams

As mentioned earlier, a chord progression is a series of chord names such that each
chord name is accompanied by a positive rational that represents the number of beats
during which its chord is to be played. For an N-gram of a chord progression, its
weight represents the contribution that the N-gram makes to the whole progression.
For example, the weight has to be assigned so as to distinguish the contribution of
a 4-chord pattern DMI7-G7-EMI7-A7 with one beat assigned to each of the
four chords from the contribution of the same 4-chord pattern appearing elsewhere
in the same chord progression progress with four beats assigned to each chord. The
contribution of an N-chord pattern can be approximated by the total number of beats
assigned to the chords. Let Π = [a1 : �1, . . . ,aM : �M] be a progression; that is, it is
a series of M chord names a1, . . . ,aM and for each i, 1 ≤ i ≤ M, �i is the number
of beats assigned to the chord name ai. Then, for each i, 1 ≤ i ≤ M −N + 1, the
contribution of the N-gram at position i, (ai,ai+1, . . . ,ai+N−1), is defined to be �i +
· · ·+ �i+N−1.

2.3.4 N-gram Profile of a Chord Progression

Figure 1 shows the melody and the chord progression of “Witch Hunt” composed
by a Jazz giant Wayne Shorter. Without any simplification the progression is
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[CMI7:32-E�7:16-CMI7:16-G�7:4-F7:4 -
E7:4-E�7:4-A�MI7(11):4-A on A�:4 -

A�MI7(11):4-G7(�5):4].

With the B0 (remove bass) simplification and the T1 (no tension notes) simplifica-
tion, the progression becomes

[CMI7:32-E�7:16-CMI7:16-G�7:4-F7:4 -
E7:4-E�7:4-A�MI7:4-A:4 - A�MI7:4-G7(�5):4].

Without transpose, the progression has the following 3-grams:

• [CMI7-E�7-CMI7] (64 beats),
• [E�7-CMI7-G�7] (36 beats),
• [CMI7-G�7-F7] (24 beats),
• [G�7-F7-E7] (12 beats),
• [F7-E7-E�7] (12 beats),
• [E7-E�7-A�MI7] (12 beats),
• [E�7-A�MI7-A] (12 beats),
• [A�MI7-A-A�MI7] (12 beats), and
• [A-A�MI7-G7(�5)] (12 beats).

With transpose, the fourth and the fifth ones become identical, so we have

• [IMI7-III�7-IMI7] (64 beats),
• [I�7-VIMI7-III�7] (36 beats),
• [IMI7-V�7-IV7] (24 beats),
• [I7-VII7-VII�7] (24 beats),
• [I7-VII7-IIIMI7] (12 beats),
• [I7-IVMI7-V�] (12 beats),
• [IMI7-II� -IMI7] (12 beats), and
• [I-VIIMI7-VII�7(�5)] (12 beats).

Now we obtain the profile of this composition with respect to the (B0,T1)-
simplification by dividing the weight in terms of the number of beats by their sum.

2.3.5 An Alternative Weighting Scheme

An alternative to the number-of-beats-based weight is the simple frequency count.
Let Π be a proper chord progression generated from a given input progression after
a certain simplification. Let g1, . . . ,gk be an enumeration of all unique N-grams
appearing in Π and for each i, 1 ≤ i ≤ k, let mi be the number of times that the N-
grams gi appears in Π . Then for each i, 1 ≤ i ≤ k, we define the weight ci assigned
to gi to be mi/(m1 + · · ·+ mk).

Table 2 shows the weights of the N-grams of “Witch Hunt” in the two schemes.

2.3.6 Mathematical Notation

We view an N-gram profile construction scheme is a triple consisting of the N-gram
length N, the choice of whether or not to transpose, and the choice of weighting
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Fig. 1 The melody and the chord progression of “Witch Hunt” by Wayne Shorter

Table 2 A comparison between the two weight schemes on “Witch Hunt”

3-gram
Weight Scheme

Number of Beats Frequency
[IMI7-III�7-IMI7] 0.3265 0.1111
[I�7-VIMI7-III�7] 0.1837 0.1111
[IMI7-V�7-IV7] 0.1224 0.1111
[I7-VII7-VII�7] 0.1224 0.2222
[I7-VII7-IIIMI7] 0.0662 0.1111
[I7-IVMI7-V�] 0.0662 0.1111
[IMI7-II� -IMI7] 0.0662 0.1111

[I-VIIMI7-VII�7(�5)] 0.0662 0.1111

scheme. For an N-gram profile construction ν and a (simplified) chord progression
θ , ν(θ ) represents the chord progression profile created from θ by applying the
N-gram construction scheme ν . For a collection of some k tunes, θ1, . . . ,θk, the
collective N-gram profile of the collection with respect to ν is

ν({θ1, . . . ,θk}) =
1
k
ν(θi).

We can view an N-gram profile as the set of all pairs w : c, where w is a proper
N-gram appearing in Π and c is the total contribution of w (since w may appear at
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more than one place in Π ) scaled by the total contribution of all N-grams appearing
in Π . Since the N-gram profile is created using a fixed length for N-grams, the total
number of N-grams that can appear is finite. By assuming that the weight is 0 for
all N-grams not appearing in Π , Θ [τ,N](Π) can be viewed as a vector of finite
dimension, whose entries are all nonnegative and add up to 1.

2.4 Comparison Using Cosine-Based Similarity Measure

Given two vectors with the same number of dimensions, u = (u1, . . . ,ud) and
v = (v1, . . . ,vd), their mutual distance can be measured using various methods. In
particular, we test the cosine distance

1− u1v1 + · · ·+ ukvk√
u2

1 + · · ·+ u2
k

√
v2

1 + · · ·+ v2
k

,

and the Hellinger distance,
∑d

i=1(
√

ui −√
vi)2

2
.

Both distance measures have the value range of [0,1]. Also, both have the property
that the value is 0 if and only if u = v.

Let π and σ be two chord progressions. Let τ be a simplification and let ν be an
N-gram scheme. Let δ be a distance function. Then the distance between π and σ
with respect to the triple ξ = (τ,ν,δ ) is defined to be

dist[(τ,ν,δ )](π ,σ) = δ (ν(τ(π)),ν(τ(σ))). (1)

In other words, it is the distance with respect to δ between the vector representation
of the N-gram profile constructed from π by applying τ and ν and the one from σ by
applying τ and ν . Given a collection D of such triples, [(τ1,ν1,δ1), . . . ,(τm,νm,δm)],
the distance between π and σ with respect to the collection is the average of the m
distance values, that is,

dist[Δ ](π ,σ) =
1
m

m

∑
i=1

dist[(τi,νi,δi)](π ,σ) =
1
m
δ (ν(τ(π)),ν(τ(σ))). (2)

3 Proof-of-Concept Analysis

A proof-of-concept analysis has been carried out on a data collected from ten com-
poser groups to test the efficacy of N-gram chord progression profiles.

3.1 Data

A data base of 301 chord progressions is constructed from various sources. The data
base consists of the following:
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• 218 compositions of composers John Coltrane (28 tunes), Chick Corea (25
tunes), Duke Ellington (25 tunes), Herbie Hancock (16 tunes), Freddie Hubbard
(17 tunes), Thelonius Monk (27 tunes), Wayne Shorter (47 tunes), and Horace
Silver (33 tunes), collected from Jazz fake books (Real Book 1, 2, and 3; New
Real Book 1, 2, and 3; Jazz Limited);

• 63 “standard” tunes from Real Book 1, excluding compositions by modern Jazz
musicians and Bossa Nova tunes;

• 20 compositions of The Beatles from the Hal Leonard Publishing “Anthology
Volume 3”.

The Beatles compositions are considered to be something very different from stan-
dards or Jazz composer tunes. The data can be obtained at the first author’s web
page: http://www.cs.miami.edu/∼ogihara/chord-sequence-files.zip.

3.2 Comparison of the Simplification Methods

3.2.1 The choice of N and bass note simplification

To determine the value for N and to choose the bass note simplification, we calculate
the cosine-based similarity between the standards and D. Ellington with respect to
each of the twelve simplification methods and for N = 1,2,3,4. Since D. Ellington
played the most prominent role in founding the modern Jazz theory and the chord
progressions of the Fakebook standard tunes in some sense summarize the chord
sequences resulting from Jazz reharmonization, it is anticipated that the two groups
are very similar, in particular, when the tension notes are excluded (namely, T0 sim-
plification). The similarity values are shown in Table 3. It appears that either N = 3
or N = 4 will be a good choice.

The choice of the bass note simplification (the B-part) does not seem to affect
much the similarity measure, while the choice of the tension note simplification (the
T -part) makes a substantial difference, in particular, for 3-grams and 4-grams. The
phenomenon that the selection on the bass note simplification does not change much
the similarity value can be explained by the fact that only a small fraction (less than
5%) of the chords appearing the data had a bass note. This observation leads us to

Table 3 The cosine-based similarity between the standards and D. Ellington with respect to
various simplification methods and for N = 1,2,3,4.

Method N Method N
T B 1 2 3 4 T B 1 2 3 4

B0 0.990 0.950 0.818 0.579 B0 0.950 0.798 0.504 0.197
T0 B1 0.990 0.950 0.818 0.579 T2 B1 0.949 0.797 0.500 0.190

B2 0.990 0.950 0.818 0.576 B2 0.947 0.796 0.497 0.187
B0 0.954 0.835 0.628 0.319 B0 0.952 0.805 0.502 0.194

T1 B1 0.953 0.836 0.630 0.320 T3 B1 0.951 0.804 0.500 0.189
B2 0.952 0.834 0.626 0.310 B2 0.950 0.804 0.500 0.185
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choose B0 (bass note omission) for the bass note simplification, because it is the
simplest operation.

3.2.2 Tension Simplification

We next examine how the similarity values vary depending on the choice of the T -
part. It is anticipated that the more aggressive the simplification is, the higher the
similarity value becomes. This anticipation is clearly confirmed in Table 3, which
shows the similarity values between the standards and the D. Ellington tunes. Ac-
cording to the table, there isn’t much difference between the T2 and T3 simplifica-
tions. Since T2 is more aggressive than T3, and thus, the resulting chord notation is
generally simpler with T2 than with T3, we should choose T2 over T3.

We then compare T0 and T1 using the songs by The Beatles and those by the
others. The similarity values are shown in Table 4. There is a substantial difference
in the similarity value between T0 and T1. Given that The Beatles is in the Pop/Rock
genre and the rest are in Jazz, we feel that T1 is more appropriate than T0. Since the

Table 4 Comparison between T0 and T1

Composer 1-gram 2-gram
T0 T1 T0 T1

CC 0.933 0.594 0.527 0.250
DE 0.993 0.521 0.715 0.239
FH 0.921 0.570 0.456 0.114
HH 0.827 0.354 0.346 0.078
HS 0.962 0.483 0.621 0.178
JC 0.983 0.562 0.790 0.241
TM 0.998 0.551 0.691 0.243
WS 0.950 0.373 0.500 0.164

similarity of The Beatles to these composers seems very high for T0, we consider
using T1 instead of T0. These observations narrow our choices down to (B0,T1) and
(B0,T2).

Table 5 shows the comparison of the standards against The Beatles, T. Monk,
and H. Hancock with respect to the (B0,T1)-simplification and the (B0,T3)-
simplification. We note that as N increases the similarity of the standards more
quickly decays with The Beatles and Herbie Hancock than with Thelonius Monk
and the decay with respect to the (B0,T1) simplification appears to be more dra-
matic than the decay with resect to the (B0,T2) simplification.

Figure 2 shows the cosine-based similarity of the profiles among the Jazz com-
posers with respect to 3-grams and (B0,T2)-simplification. Two composers are con-
nected if the similarity is 0.2500 or higher. The thicker the line is, the higher the
similarity value is. Since the similarity is symmetric, the upper right portion of the
table is left blank and the two <’s appearing in the last line indicate that the similar-
ity value is not more than 0.2500.
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Table 5 Cosine-distance-based similarity between the standards and each of The Beatles,
T. Monk, and H. Hancock

(B0,T1)-simplification (B0,T3)-simplification
Standards Versus Standards Versus

N The Beatles T. Monk H. Hancock N The Beatles T. Monk H. Hancock
1 0.430 0.922 0.875 1 0.414 0.886 0.829
2 0.163 0.716 0.390 2 0.162 0.676 0.185
3 0.040 0.437 0.114 3 0.040 0.378 0.051
4 0.017 0.199 0.038 4 0.018 0.1580 0.010

STD

TM HS

DE

JC

CC

WS

FH

HH

(a) The similarity graph of the
Jazz composers.

STD DE HS
DE 0.504
HS 0.349 0.376
TM 0.379 0.422 0.363
JC 0.402 0.278 0.349
WS 0.267 < <

(b) The similarity table.

Fig. 2 The composer similarity

This graph seems to reflect well the relations among the composers from the
historical perspective. According to the year of the first recording session as a
leader, these composers are ordered as follows: Ellington (1924), Monk (1947), Sil-
ver (1955), Coltrane (1957), Shorter (1959), Hubbard (1960), Hancock (1962), and
Corea (1966). The graph connects among the first five along with the standards and
disconnects the remaining three from every one else.

3.3 Artist Clustering Using Profiles

The observation that the 3-gram similarity with respect to the (B0,T2) simplification
reflects relations among artists from the Jazz historical perspective appears to be
more strongly represented in hierarchical clustering of the composers. Figures 3
shows the hierarchical clusters of the composers generated using 3-grams.

4 Exhaustive Analysis Using Top-K Queries

The analysis presented in the previous section shows that among all possible triples
of distance measure, simplification method, and N-gram scheme, there exist some
combinations that very well reflect the development of Jazz music when they are
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H. Hancock

F. Hubbard

C. Corea

W. Shorter

J. Coltrane

H. Silver

T. Monk

D. Ellington

Standard
0.504

0.433

0.428

0.418

0.295

0.216

0.111

0.087

H. Hancock

F. Hubbard

C. Corea

W. Shorter

J. Coltrane

H. Silver

T. Monk

D. Ellington

Standard
0.628

0.539

0.553

0.456

0.478

0.265

0.170

0.146

Fig. 3 Hierarchical clustering of the composers. Left panel: with respet to the (B0,T1)-
simplification. Right panel: with respect to the (B0,T2)-simplification.

used for the purpose of comparing different composers. This section considers the
problem of distinguishing a composer from the others in a top-k query environ-
ment by bringing together more than one triple of distance measure, simplification
method, and N-gram scheme.

4.1 Method

Let k be a fixed integer. Suppose that a data base of chord progressions D is given.
Let dist[Δ ] be a distance measure. That is, Δ is a series of triples, ξ1, . . . ,ξr, where
for each i, 1 ≤ i ≤ r, δi is a triple of distance function, simplification method, and
N-gram scheme. We define the precision of dist[Δ ] on a given data set D to be the
proportion of compositions Π in D such that the set of k compositions in the data
base D − {Π} that are the closest to Π with respect to dist[Δ ] have at least one
composition by the composer of Π .

Let wmax ≥ 1 be a parameter that bounds from above the N-gram length. Let
rmax ≥ 1 be a parameter that bounds from above the number of triples in Δ . Let
cmax ≥ 1 be a parameter that specifies the number of elements carried over from a
stage to the next in the algorithm below. We search for the best distance measure in
terms of the aforementioned precision value, in a greedy manner as follows:

Step 1 Set T to the collection of all N-gram schemes where the N-gram length
is at most wmax. Set U to the collection of all distance functions of interest. Set
Δ = [], C = {Δ}, and W = /0.

Step 2 For i = 1 to rmax, do the following:

Step 2a For each member Δ in C, for each distance function δ in U , for
each simplification method τinS, and for each N-gram scheme ν ∈ T , do the
following:

Step-2a(i) Let Δ ′ be the series constructed from Δ by appending (τ,ν,δ ).
Step-2a(ii) Compute the precision of dist[Δ ′] with respect to top k-queries.
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Step-2a(iii) If C0 has less than cmax elements, add [Δ ′] to C0; otherwise,
if dist[Δ ′] has precision higher than the distance measure in C0 with the
lowest precision among of the group, then replace that distance measure
by [Δ ′].

Step 2b Set C = C0. Add to W the element in C0 having the highest precision
value.

Step 3 Output the element in W having the highest precision value.

Note that the members of C at the end of each loop body with respect to i has i com-
ponents each, so the distance measure with the highest precision value produced by
the algorithm has at most rmax components. Note also that components in a distance
measure may be identical. Since the components are assigned an equal weight, a
triple that appears n times receives weight n times as high as the weight a triple ap-
pearing only once receives. This in a naive way makes it possible to assign unequal
weights to triples.

4.2 Experiments

4.2.1 Data set

A data set consisting of 340 chord progressions is used. The set covers 17 com-
posers and from each composer 20 compositions are selected. The composers are
the previous 10 plus seven new: Richie Beirach, Bill Evans (pianist), Keith Jarrett,
Pat Metheny, and Steve Swallow; a Brazilian Bossa Nova composer Antonio Carlos
Jobim; and an Argentinian “Nuevo Tango” composer Astor Piazzolla.

4.2.2 Parameter Choices

We set rmax, the maximum number of rounds, to 10, set cmax, the number of distance
measures carried over to the next round, to 10, and set wmax, the maximum N for
the N-gram length N, to 4.

4.3 Results

Figure 4 shows the result of the experiment with respect to top-k queries for k =
2, . . . ,k = 10. The precision is the proportion of chord progressions for which at
least one of the three closest progressions is composed by the same composer.

In all cases, the precision increases steadily in the first three rounds and then, for
a majority of the k-values, the growth tapers off.

Table 6 shows the plotted precision values in a chart. The last row of the ta-
ble is the baseline precision; that is, the probability that a set of randomly selected
pairwise-distinct k compositions from the pool of compositions other than the query
contains the composition by the same composer. The query fails when the selected
k distinct elements are compositions by someone else. There are 320 compositions
composed by someone else and so the number of selections that lead to failure is
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Fig. 4 The accuracy of the best performer in each round for each value of k,2 ≤ k ≤ 10

Table 6 The precision table

k 2 3 4 5 6 7 8 9 10

Round

1 0.3500 0.4500 0.5059 0.5618 0.6118 0.6500 0.6882 0.7118 0.7382
2 0.4000 0.4971 0.5676 0.5941 0.6500 0.7000 0.7382 0.7676 0.7912
3 0.4206 0.5059 0.5824 0.6206 0.6647 0.7118 0.7618 0.7941 0.8118
4 0.4382 0.5324 0.6000 0.6324 0.6735 0.7118 0.7618 0.7912 0.8118
5 0.4441 0.5324 0.6059 0.6471 0.6824 0.7176 0.7588 0.7882 0.8118
6 0.4441 0.5235 0.6118 0.6500 0.6853 0.7118 0.7559 0.7853 0.8118
7 0.4441 0.5176 0.6206 0.6500 0.6794 0.7118 0.7559 0.7824 0.8059
8 0.4441 0.5235 0.6206 0.6471 0.6882 0.7235 0.7559 0.7824 0.8029
9 0.4441 0.5265 0.6206 0.6441 0.6882 0.7235 0.7471 0.7824 0.8029

10 0.4412 0.5235 0.6088 0.6353 0.6912 0.7265 0.7471 0.7824 0.8029

Best 0.4441 0.5324 0.6206 0.6500 0.6912 0.7265 0.7618 0.7941 0.8118
Baseline 0.1091 0.1593 0.2069 0.2519 0.2944 0.3347 0.3728 0.4088 0.4428

Gap 0.3350 0.3731 0.4137 0.3981 0.3968 0.3918 0.3890 0.3853 0.3690

(320
k

)
. On the other hand, since there are 339 compositions other than the query itself,

the number of possible selections of k distinct elements is
(339

k

)
. Thus, the proba-

bility of failure is
(320

k

)
/
(339

k

)
and the probability of success is: 1 − (320

k

)
/
(339

k

)
.

Note that the gain from the baseline by the use of chord progression profile ranges
from 0.33 to 0.41. This indicates that the chord progression profile can be a highly
effective method for identifying compositions by the same composer.

Table 7 shows the summary of precision values of the 17 composers over the ten
rounds for top-5 query analysis. At each round, 10 distance measures that achieved
the highest precision are selected. For each such measure (there are a total of 100
measures), the precision (or accuracy) is calculated with respect to each artist. The
maximum, minimum, the average, and the standard deviation of the 100 values for
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Table 7 Composer-wise accuracy distribution for top-5 queries. The composers are presented
in the decreasing order of average accuracy.

Composer Max Min Average StdDev
BEATLES 1.0000 0.8500 0.9335 0.0332

STANDARDS 1.0000 0.7500 0.9025 0.0597
ASTOR PIAZZOLLA 0.9500 0.7500 0.8915 0.0469
THELONIUS MONK 0.8500 0.5000 0.7685 0.0599
WAYNE SHORTER 0.8500 0.2500 0.7360 0.1229
DUKE ELLINGTON 0.8500 0.4000 0.7500 0.0745

BILL EVANS 0.8500 0.2000 0.6595 0.0999
PAT METHENY 0.8000 0.3500 0.6140 0.0645

RICHIE BEIRACH 0.6500 0.4000 0.5930 0.0806
KEITH JARRETT 0.7000 0.2500 0.5625 0.0931
HORACE SILVER 0.6500 0.3500 0.5345 0.0523

ANTONIO CARLOS JOBIM 0.7000 0.3500 0.5275 0.0676
STEVE SWALLOW 0.6000 0.3000 0.4945 0.0509
JOHN COLTRANE 0.7500 0.4000 0.4845 0.0695

HERBIE HANCOCK 0.5000 0.2000 0.4325 0.0694
FREDDIE HUBBARD 0.7500 0.2000 0.3890 0.0780

CHICK COREA 0.5500 0.2000 0.3325 0.0719

each artist are presented. The 10 top composers in this ranking are: The Beatles,
Standards, Astor Piazzolla, Thelonius Monk, Wayne Shorter, Duke Ellington, Bill
Evans, Pat Metheny, Richie Beirach, and Keith Jarrett. The standard deviation is
small for The Beatles, Standards, Astor Piazzolla, Thelonius Monk, Horace Silver,
and Steve Swallow. This indicates that for these composers the top-k query makes
consistent performance.

Next, for each value of k the distance measure components (that is, the triples
of simplification, N-gram scheme, and distance function) are collected from the
best performing distance measure. A total of 58 components are collected, which
are shown in Table 8. The most frequently occurring simplifications are (B0,T1),
(B0,T2), and (B2,T0). They appear 11 times, 9 times, and 7 times, respectively. The
N-gram length is 1 for 15 times, 2 for 11 times, 3 for 7 times, and 4 for 15 times.
The average length is 2.07.

5 Conclusion

This article explores the question of whether a chord progression can be summa-
rized for music retrieval. Various possibilities for chord progression simplification
schemes, N-gram construction schemes, and distance functions are explored. Ex-
periments demonstrate that such profiles can be used for artist grouping and for
composition retrieval via top-k queries. The precision of nearly 65% is achieved
with top-5 queries involving 17 composers, with a large margin of 40% from the
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Table 8 The table of components appearing in the best performing distance measures

Bass Count Tension Count Transpose Count Length Distance Count

B0 29

T0 4
No 2

4 Cosine Frequency 1
2 Hellinger Weight 1

Yes 2
4 Hellinger Frequency 1
2 Hellinger Weight 1

T1 11
No 10

1 Cosine Frequency 1
1 Hellinger Frequency 2
1 Hellinger Weight 3
3 Cosine Weight 1
4 Cosine Frequency 2
4 Hellinger Weight 1
4 Cosine Weight 1

Yes 1 4 Cosine Weight 1

T2 9
No 5

1 Hellinger Frequency 3
4 Cosine Weight 1
4 Cosine Frequency 1

Yes 4 2 Cosine Frequency 4

T3 5
No 2

4 Hellinger Weight 1
4 Cosine Frequency 1

Yes 3
2 Cosine Frequency 2
2 Hellinger Frequency 1

B1 5

T1 1 No 1 1 Hellinger Frequency 1

T2 2 Yes 2
1 Hellinger Frequency 1
2 Cosine Frequency 1

T3 2 Yes 2
1 Cosine Weight 1
4 Hellinger Weight 1

B2 12

T0 7
No 4

3 Hellinger Weight 1
3 Cosine Frequency 3

Yes 3
4 Hellinger Weight 1
4 Cosine Frequency 2

T1 4
No 2

3 Hellinger Frequency 1
4 Cosine Weight 1

Yes 2
1 Hellinger Frequency 1
3 Cosine Weight 1

T2 1 No 1 4 Cosine Frequency 1

B3 2
T1 1 Yes 1 1 Hellinger Frequency 1
T1 1 Yes 1 1 Cosine Weight 1

baseline of 25%. This result seems highly promising. An interesting question will
be how the performance decays for much larger sets of diverse composers. Another
question is whether the N-gram profiles will be effective in identifying composers
in terms of composer classification or genre/style classification. Finally, it will be
interesting to study extensions of such approaches to include melodic fragments.
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Part III
Content-Based Identification and
Retrieval of Musical Information



Statistical Music Modeling Aimed at
Identification and Alignment

Riccardo Miotto, Nicola Montecchio, and Nicola Orio

Abstract. This paper describes a methodology for the statistical modeling of music
works. Starting from either the representation of the symbolic score or the audio
recording of a performance, a hidden Markov model is built to represent the corre-
sponding music work. The model can be used to identify unknown recordings and
to align them with the corresponding score. Experimental evaluation using a col-
lection of classical music recordings showed that this approach is effective in terms
of both identification and alignment. The methodology can be exploited as the core
component for a set of tools aimed at accessing and actively listening to a music
collection.

1 Introduction

The act of performing a music work, which has been coded in a music score by a
composer, can be considered as a process that converts score symbols into acoustic
features. To this aim, performers allow composers to communicate with the audi-
ence by transforming a sequence of symbols into something that can be perceived:
the sound. While playing the role of intermediaries, musicians can also add their
own interpretation to the music work, because music is both a composing and a
performing art. The degree of freedom allowed to the performers is mostly genre-
dependent. For instance, Western art music – also called tonal Western music, or
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more generally classical music – imposes a strict adherence to the score, which gen-
erally prescribes all the notes that have to be played by each instrument (in most
cases it also indicates which are the instruments associated to each part) and gives
indications about timing, articulation, and dynamics. Other genres, such as jazz or
fusion, grant performers the freedom to make substantial changes to the main mu-
sic dimensions – melody, rhythm, and even harmony – and music scores usually do
not even represent articulation or dynamics. In between these two extremes, gen-
res such as pop and rock let performers change the arrangement and the orchestra-
tion, but usually the main melody and the chord progression are subject to minor
modifications.

While listening, the audience can associate a performance to a given composition
according to different strategies, which depend on the degree of personal interpreta-
tion that is expected by the performers for a given music genre. Similar strategies are
exploited when the listeners try to follow an ongoing performance along a symbolic
score. In both cases the expected acoustic parameters, that are inferred from the sym-
bolic representation of the music work, are compared with the perceived acoustic
parameters, and a number of hypotheses are formulated considering the probability
that differences are the result of the personal interpretation by the performers. This
process of identification and alignment is probably related to the central role that
symbolic representation plays in Western art music. Although a music score is only
an approximate representation of a music work, because it cannot express all the
possible nuances of a music performance [21], the score is often considered as the
ideal version of a music work, to which performances are only approximations [16].

Given these considerations, it can be assumed that there is a statistical depen-
dence between the symbolic representation and the acoustic performance of a given
music work. The degree of correlation between symbols and acoustic parameters is
clearly connected to the freedom of interpretation granted to performers. Moreover,
it can be assumed that a statistical dependence exists between the acoustic parame-
ters of two different performances of the same music work.

This paper presents an approach to statistical music modeling based on an ap-
plication of Hidden Markov Models (HMMs). To this end, we provide a unified
methodology that allows us to generate a HMM, which is the abstraction of a music
work and models the possible differences of its performances, starting from either
a symbolic representation of the score or an acoustic recording. Once a HMM is
created to represent a music score, it can be used to simulate the listener’s behavior
both in identifying a music work given a performance and in following a perfor-
mance along the corresponding score.

As an initial step towards the definition of the statistical dependence between
different representations of a music work, we focus on Western art music that, as
previously mentioned, has a clear definition of the musical parameters that can or
cannot be modified by performers. This genre is also particularly suitable for the
main application domain that we envisage, which is the access to music cultural
heritage in an educational context.

This paper is structured as follows. In Sect. 2 we provide a short review of
the main problems addressed through HMMs and the description of different
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approaches to music identification and alignment that have been presented in the lit-
erature. The feature extraction steps are described in Sect. 3, while Sect. 4 presents
the methodology to automatically build HMMs from either a symbolic representa-
tion or a digital recording of a music score. The two main applications of HMMs
proposed in this paper are described in Sect. 5 and evaluated in Sect. 6. The last sec-
tion draws some conclusions about the proposed approach and discusses directions
for future work.

2 Background

There is an increasingly large literature addressing music access and retrieval. In this
review we focus only on the aspects that are directly connected to the proposed ap-
proach. Thus, after reviewing HMM-based recognition and alignment, we describe
related work on these two topics in the music domain.

2.1 Review of Hidden Markov Models

HMMs are a powerful statistical tool that has been applied to several different tasks,
ranging from speech recognition [19] and music information retrieval [30] to bio-
logical sequence analysis [8]. The tutorial written by Rabiner [27] in the late eighties
is still one of the most complete introductions to HMMs.

HMMs are stochastic finite-state automata where transitions between states are
ruled by probability functions. At each transition, the new state emits a random
vector with a given probability density function. A HMM λ is completely defined
by a set of N states Q = {q1, . . . ,qN}, a probability distribution for state transitions,
which defines the probability to go from state qi to state q j ∀i, j ∈ {1 . . .N}, and a
probability distribution for observations, which defines the probability to observe a
particular feature vector r when in state q j ∀ j ∈ {1 . . .N}, for each possible feature
vector r. Rabiner described the three main problems that can be addressed using
HMMs: recognition, decoding, and training. Given the aims of this paper, we focus
on the first two problems.

The recognition, or identification, problem applied to the music domain can be
stated as: given an unknown audio recording, described by a sequence of audio fea-
tures R = {r(1), · · · ,r(T )}, and given a set {λi} of competing models, find the model
that most likely generates R. This can be described by the simple maximization:

λ = argmax
i

P(R|λi) (1)

which can be computed efficiently using forward variables [27]. In particular, for-
ward variables allow the computation of the probability that model λ generates the
sequence R in O(N2T ), where N is the number of states of λ and T is the length of
the observation vector R.

The decoding problem applied to the music domain can be stated as: given an au-
dio recording, described by a sequence of audio features R = {r(1), · · · ,r(T )}, and
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given the model λ that generated it, find the state sequence W = {q(1), · · · ,q(T )}
that most likely corresponds to the generation of R. Also in this case, the definition
does not impose a particular optimality criterion, although in general it is assumed
that the state sequence should be globally optimal, thus it can be described by the
maximization

Ŵ = argmax
W

P(W |R,λ ) (2)

which can be computed using the Viterbi algorithm [27] in O(N2T ), where as usual
N is the number of states of model λ and T is the length of vector R.

Clearly, the optimal path can be computed only after all observations are avail-
able, thus this strategy cannot be exploited in a real time task. Moreover, a globally
optimal path may be less robust to local mismatches, for instance due to additional
noise in the recordings or to large variations in the performance. In this case, a local
criterion of optimality can be introduced,

q(t) = arg max
i∈{1...N}

P(qi(t)|R,λ ) (3)

which can be computed using the forward probabilities in O(N2T ), obtaining the
final state sequence W = {q(1), . . . ,q(T )}. It is important to note that W may not
correspond to a real state sequence, that is the transition probability between states
q(t) and q(t + 1) may be zero. This characteristic allows the approach to recover
faster from local mismatches, because the computed paths do not need to be feasible.

Although HMMs are the state of the art in speech recognition, alternative ap-
proaches are more common for music identification, as described in the following
section.

2.2 Music Identification

In literature different methodologies have been proposed for music identification.
One of the most common feature set applied to an identification task is chroma
vectors, which was introduced initially in [9]. The concept behind chroma is that
octaves play a peculiar role in music perception and composition [1]: the perceived
quality of a given chord – i.e. major, minor, diminished – depends only marginally
on the actual octaves where it spans, while it is strictly related to the pitch classes of
its notes. This characteristic has been exploited in a number of identification tasks
related to harmonic features, such as chord estimation [10, 26] and detection of
harmonic changes [12].

Following the considerations about the freedom of interpretation typical of dif-
ferent genres, chroma features can be applied to an identification task when the
harmonic structure and the chord progressions are expected to be only marginally
altered by a performer. This is typical of pop and rock music (and classical music
of course) where the sequence of chroma features of the song to be identified can
be aligned and compared with the songs in the database either using Dynamic Time
Warping (DTW), as described in [13, 14] for cover identification task in pop music,
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or using linear warping of the music features in [15] for a classical music matching.
It is interesting to note that in [13] identification is carried out using a collection
of MIDI songs that are synthesized automatically in order to compute the chroma
features, while in [14, 15] features are directly extracted from audio recordings.
In Sect. 4 we present a methodology that can be applied both to score-based and
performance-based identification.

An alternative representation of the spectral content of the music signal has been
proposed in [22, 24], where the first harmonics of the notes to be modeled are rep-
resented by a set of rectangular filters, while the application of HMMs to a music
identification task instead of DTW has already been proposed in [17]. This paper
partially builds from these two contributions.

2.3 Music Alignment

Approaches to music alignment reported in the literature are usually based on the
assumption that a digital recording has to be aligned with a symbolic representation
of the corresponding score. Yet, audio to score alignment must deal with the fact
that at least one of the two forms has to be transformed in order to compute a match
with the other. For example, the information in the score can be used to create a
set of filterbanks, where each filter is centered on the expected harmonics of the
signal, and the local match can be computed by measuring the energy that is output
by the filterbank [24]. Alternatively, the concept of filterbank can be substituted by
modeling the main statistical parameters of the expected harmonics [28]. The score
can also be used to create an artificial performance, that is then matched against the
real performance [32].

One of the main applications of automatic audio to score alignment is score fol-
lowing. In this case a local alignment is computed in real time between an ongoing
performance, which is digitized and processed in real time, and a digital score stored
in the system. The goal is to perform an automatic accompaniment capable of fol-
lowing the time deviations of the performance and possibly resynchronize in case
of errors made by the musicians. Applications range from tools for instrumental
practising to complete systems for public performances.

Early score following systems were based on dynamic programming approaches,
such as [5], using MIDI format to represent both the score to be followed and the
ongoing performance. It is interesting to notice that, already in 1993, an information
retrieval approach was applied to a score following task [31], where DTW was used
with MIDI signals. While early approaches focused on the alignment of a mono-
phonic solo instrument, and were based on external pitch trackers, more recent ap-
proaches directly deal with the audio signal, using statistical models [11], hidden
Markov models [2, 20, 23, 28], and hierarchical hidden Markov models [4] (a sta-
tistical model derived from HMMs, in which each state is considered to be a self
contained probabilistic model).

Audio to audio alignment has been less investigated, probably because fewer ap-
plications can be based on such technology. In particular, the idea of exploiting the
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alignment to provide additional information to the listeners assumes that the sym-
bolic score contains metadata – e.g., the instruments that are playing, the individual
themes played by any single voice, composer’s indications, performers’s annota-
tions – which can increase the quality of the listening experience. To this end, the
alignment of two acoustic performances can be used only if one of the recordings
has already been annotated. For this reason, although the presented model is general,
the experimental evaluation presented in this paper does not include audio to audio
alignment. Alternative applications of the alignment between two acoustic record-
ings have been the comparison of the style of different performances of classical
music [6], or the development of aiding tools for musicological analysis of electroa-
coustic music [25]. In both cases, DTW has been used to align the spectral features
of two performances.

3 Description of the Music Works

The main idea presented in this paper is that the most relevant acoustic features of a
music performance can be modeled by a HMM. As discussed in Sect. 1, the process
of converting a music work into an acoustic performance is stochastic because of
the freedom of interpretation granted to the performers. Yet, the knowledge of a
music work that can be obtained either from the score or from a performance can
be exploited to create a statistical model alternative performances. To this end, both
sources have to be processed to highlight the parameters that better describe a music
work and their main features.

3.1 Segmentation in Events

A music work can be considered as a sequence of music events. In this context, an
event can be a single note, a rest, or a chord, which corresponds either to a group of
symbols explicitly represented in a score or to a segment of the signal representing
a performance. The methodologies to segment a music work into its events clearly
depend on the kind of media.

3.1.1 Parsing Acoustic Recordings

The audio recording of a music performance is a continuous flow of acoustic fea-
tures, which depend on the characteristics of the music notes – pitch, amplitude, and
timbre – that vary with time according to the music score and to the choices of the
musicians. In order for these features to be structured, the audio information must
undergo a segmentation process where the goal is to segment music signals into
subsequences bounded by (consecutive) music events. An event occurs whenever
the current pattern of a music work is modified; in particular, such modifications
can be due to one or more new notes being played or stopped. This approach to seg-
mentation is motivated by the central role that pitch plays in music language: in fact
the segmentation may be considered as the process of highlighting audio excerpts
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described by a stable pitch. The granularity of the segmentation can vary consider-
ably, ranging from being very fine (at individual notes level), or very general (at the
level of music themes). Alternative segmentation strategies can be considered, for
example, according to timbre or instrumentation criteria.

In the methodology described in [17], the first step of the algorithm is the com-
putation of the similarity between audio frames. This is computed as the cosine of
the angle between the frequency representations of two audio frames. Thus, given
X and Y as column vectors containing the magnitude of the Fourier transforms for
two frames, their similarity is defined as

sim(X ,Y ) =
XTY
|X | |Y | (4)

A high similarity value is expected for frames where the same notes are playing,
while a drop is related to a change in the active notes. A similarity matrix S can be
defined as (si j) = sim(Xi,Yj).

Pure similarity values based on this measure may not be completely reliable for
a segmentation task, as it has been shown for text segmentation, because changes in
the local correlation could be more relevant than its absolute value. For instance, the
value of local correlation of a note sung with vibrato is expected to be lower than
in case of a steady tone played with a keyboard. Yet, in both case it is expected a
decrease in local correlation when the note changes.

For this reason, segmentation has been carried out according to the methodol-
ogy proposed in [3] for text segmentation. The basic idea is that in non-parametric
statistical analysis one compares the rank of data sets when qualitative behavior is
similar but the absolute quantities are unreliable. Thus, for each couple (X ,Y ) of
frames that represents an element of the similarity matrix, the similarity value is
substituted by its rank, which is defined as the number of neighbor elements whose
similarity is smaller than sim(X ,Y ). That is

r(X ,Y ) = ||{(A,B) : sim(A,B) < sim(X ,Y ),(A,B) ∈ N(X ,Y )}|| (5)

where N(X ,Y ) denotes the set of neighbors of (X ,Y ) in the similarity matrix.
Once the rank is computed for each couple of frames, hierarchical clustering on

the similarity matrix is used to divide a sequence of features into coherent passages.
The clustering step computes the location of boundaries using Reynar’s maximiza-
tion algorithm [29], a method to find the segmentation that maximizes the inside
density of the segments. A preliminary analysis of the segmentation step allows us
to set a threshold for the optimal termination of the hierarchical clustering. It is in-
teresting to note that it is possible to tune the termination of the clustering step to
obtain different levels of granularity.

3.1.2 Parsing Symbolic Scores

Score parsing is carried out automatically starting from the information stored in
the symbolic format. Due to their large availability, MIDI files can be used as an
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approximate representation of the music score, even though more expressive formats
such as Lilypond (http://lilypond.org) could be more appropriate for this
task. In the case of a monophonic score, each note (or rest) corresponds to an event,
while in a polyphonic score events are bounded by the different onsets and durations
of all the notes being played by the various instruments/voices. Fig. 1 reports an
example of score parsing.

Fig. 1 A polyphonic excerpt and the corresponding event sequence: long notes can be divided
into multiple shorter events depending on other voices (for example the first note, a G5, is
divided in five parts and assigned to the first five events)

3.2 Feature Extraction from Events

The main goal of this step is to define a uniform set of features, which can be com-
puted from both symbolic and audio formats. Unfortunately, there is a small overlap
between the kind of features that can be reliably extracted from the two formats.
On the one hand, symbolic notation directly represents the pitch of all the voices,
which is particularly relevant for the application to classical music, where melody
plays a central role, while there is often no information about timbre (and little
about dynamics). On the other hand, audio processing techniques are still far from
reliably identifying the pitches in a polyphonic source. We propose a description of
the events of a music work through an intermediate representation of the melodic
content of the events, representing the expected spectral content corresponding to
the notes that are contained in each event.

3.2.1 Extraction from Acoustic Recordings

In order to obtain a general representation of a music performance, each segment
needs to be described by a compact set of features that are automatically extracted.
Similarly to the segmentation approach, parameter extraction is based on the idea
that pitch information is the most relevant for a music identification task. Since
pitch is related to the presence of peaks in the frequency representation of an audio
frame, the parameter extraction step is based on the computation of local maxima
in the magnitude of the Fourier transform of each segment, averaged over all the
frames in the segment.

The positions of local maxima are likely to be related to the positions along the
frequency axis of the fundamental frequency and the first harmonics of the notes
that are played in each frame. Considering differences in performing styles, timbre,
room acoustics, recording equipment, and audio post processing among different

http://lilypond.org
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versions, a general assumption is that alternative performances will have at least
similar local maxima in the frequency representations, that is the dominant pitches
will be in close positions.

In order to deal with noise due to signal windowing, imprecise tuning and differ-
ent reference frequency, features are computed by averaging the FFT values of all
the frames in a segment, selecting the positions of the local maxima, and associating
to each maximum a frequency interval of the size of a semitone (the frequency of
the maximum plus/minus a quarter tone). Fig. 2 exemplifies the approach: the light
lines depict the average FFT of a segment, while the darker rectangles show the
selected intervals.

The number of intervals is computed automatically, by requiring that the sum
of the energy components that fall within the selected intervals is above a given
threshold. The threshold is computed as a fraction of the overall energy of the frame.
Peaks are taken starting from the highest and continuing in decreasing order. Fig. 2
depicts two possible sets of relevant intervals, depending on the percentage of the
overall energy required: 70% on the left and 95% on the right. It can be noted that
a low threshold may exclude some of the peaks, which are thus not used as content
descriptors.

3.2.2 Extraction from Symbolic Scores

The extraction of the event pitches from a score is straightforward, because the in-
formation is readily available from symbolic formats. Since our goal is to obtain the
same statistical modeling from both acoustic and symbolic sources, pitch informa-
tion is used to compute a set of relevant frequency intervals in the form of a bank
of bandpass filters. Each filter is centered on the harmonic frequencies of the notes
forming the event, with a bandwidth that should deal with possible differences in
tuning.

Different settings for the number and type of harmonics and for the width of each
filter play a significant role in the accuracy of the alignment system. Typically, the

0  50 100 150 200 250

1000

2000

3000

Segment FFT Filtering

FFT Bins

F
F

T
 V

al
u

es

0 50 100 150 200 250

1000

2000

3000

Segment FFT Filtering

FFT Bins

F
F

T
 V

al
u

es

Fig. 2 Parameters extraction considering the peaks that carry, on the whole, 70% (left) and
95% (right) of the overall energy
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first four harmonics are used, each filter being a semitone wide; the use of only odd
harmonics can be useful when following a single instrument such as a clarinet, char-
acterized by the absence of even harmonics. It can be noted that it is also possible to
adjust the width of the filters to find a tradeoff between the robustness to intonation
differences, the number of bins in the frequency domain, and the effect of leakage
due to signal windowing. For instance, in case of low frequency notes, the effect
of windowing may become more relevant than imprecise intonation, requiring to
modify the size of a bandpass filters accordingly.

A simple approach, in the case of a single-note event with fundamental frequency
f0 is to create the filterbanks through equation

Hv( f ) =
{

1 p f0c−1 < f < p f0c
0 otherwise

(6)

where c = 24
√

2 is the quarter tone interval and p = 1,2, . . . ,P is the number of
modeled harmonics. Polyphonic events can be modeled through the superposition
of individual filterbanks.

4 Generation of the Hidden Markov Models

HMMs are a particularly suitable tool for identifying and aligning music. In fact, an
ideal representation of a music performance can be considered to be a hidden pro-
cess, because the evolution of the music itself and the actual position on the music
work cannot be directly observed. As in any application of HMMs, what is observed
is only the result of this process, because a listener can hear the sound produced by
the musician but can only guess which are the notes in the score that the musician is
actually looking at. Moreover, given the sequential nature of a music performance, it
can be reasonably assumed that the process is Markovian, because a position along
the music work summarizes all the information about the expected acoustic features
that are observed and the expected future position. Each music work is modeled by
a HMM providing that states are labeled with music events, transition probabilities
model the temporal evolution of music events, and observations model the audio
features that are related to each event.

4.1 Topology of the Model

The sequence of events is converted into a graph, where states correspond to music
events and edges are associated to their interconnection (i.e. their adjacency in the
score). Two levels of abstraction can be distinguished for the graph, namely a higher
level, corresponding to the sequence of the music events, and a lower level, used to
model each event. This separation reflects the origin of two different sources of pos-
sible mismatch: the higher level addresses discrepancies between the “ideal” music
work and its representation in a score or a performance – or possible errors in the
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two representations – while the lower level models the duration and the acoustical
features of each event.

4.1.1 Higher Level

In its simplest form, the topology of the higher level graph resembles the idea of
a score as a succession of events: the states, each corresponding to a single music
event, form a linear chain, as shown in Fig. 3.

Fig. 3 The simplest possible
structure for the higher level
of the score graph

N1 N2 N3 N4

This approach however is not robust enough for modeling complex music perfor-
mances, because there is no explicit model for local differences between the repre-
sentation and the actual performance that has to be identified or aligned. This limi-
tation becomes particularly relevant for the alignment task: for instance, a skipped
event, which should create only a local mismatch, can extend its effect also when
subsequent correct events are played resulting in larger differences in the alignment;
in the worst case, this could result in a completely wrong alignment.

A solution to this problem is the introduction of a special type of states, namely
ghost states – as opposed to event states, which correspond to real events in the
music work. In the proposed approach, each event state is linked to an associated
ghost state, which in turn is linked to subsequent event states, forming a parallel
series of states as shown in Fig. 4.

Fig. 4 Improved structure
for the higher level of the
score graph: the chain of
event states is supported
by a parallel chain of ghost
states

N1 N2 N3 N4

G1 G2 G3 G4

This approach allows us to model the possibility of wrong, additional or miss-
ing events: in case of a correct performance, the most probable path obtained via
decoding will pass through the lower chain of Fig. 4 (the chain of events), while
in case of an error it will pass through one or more ghost states during the mis-
match and realign on the lower chain when the performance corresponds again to
the representation of the music piece.

The transition probabilities from event states to corresponding ghost states are
typically fixed, whereas the transition probabilities from a ghost state to subsequent
event states follow a decreasing function of distance: this resembles the idea of
locality of a mismatch due to an error. Extensive testing showed that this approach
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gives a considerable improvement over setting a constant value. Ghost states were
initially proposed, although in a different form, in [23]. Their introduction has been
motivated by their positive effect on real time alignment when complex orchestral
pieces are to be followed, while experiments showed that ghost states do not play a
significant role when aligning monophonic performances.

4.1.2 Lower Level

The lower level models the expected features of the incoming audio signal. Each
state of the higher level is modeled as a chain of sustain states of the lower level,
which can be follower by a rest state. Each sustain state has a self-loop probability
p, as shown in Fig. 5. Sustain states model the features of the sustain part of an
event, while rest states model the possible presence of silence at the end of each
event that can be due to effects such as staccato playing style. Event attacks and
decays are not explicitly represented. As regards attack, initial experiments showed
that the modeling of the initial part of an event did not improve the alignment, while
sometimes degraded the performances in terms of identification. As regards decay,
we preferred to introduce a simple representation which is robust to dynamics rather
than create a complex representation.

The number of states in the model is proportional to the number of events in
the performance. In particular, experimentation has been carried out using a fixed
number of n states for each segment, where states can either perform a self-transition
or a forward transition. As described in [28], if all the states in a given event have
the same self-transition probability p, the probability of having a segment duration
d is modeled by a negative binomial distribution

P(d) =
(

d −1
n−1

)
pd−n(1− p)n (7)

Parameters n and p are calculated in such a way to get the desired expected value,
which corresponds to the event duration, and the variance for the distribution, which
models the possible differences due to interpretation. A simple approach is to set the
value of n and to compute p accordingly. Because small values of n have a positive
impact on the computational complexity, experiments have been carried out using a
fixed value of n = 4.

Fig. 5 Lower level model of
an event state
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4.2 Modeling Observations

States of the lower level emit the acoustic features of the incoming signal. Ideally,
the most useful information would be the pitch of the notes simultaneously played
during each event. Because polyphonic pitch detection is still unreliable, the signal
spectrum is directly compared to the expected features of the HMM emissions. A
detailed description of the observation probability computation strategy follows for
each type of state.

4.2.1 Sustain states

As described in Sect. 3.2, each state is associated to a bank of bandpass filters. At
each audio frame a Fourier analysis is carried out on the incoming signal, and the
spectrum is compared to the spectra corresponding to each sustain state. A graphical
example is presented in Fig. 6.

Fig. 6 Spectrum of a two-
notes piano chord (E4, G4);
the darker shaded regions
represent the frequency
bands of the filters, each
of which is centered on
a different harmonic fre-
quency of the notes and is
characterized by a width
corresponding to a semitone
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The emission probability bi for the i-th sustain state is computed as

b(s)
i = F(

Ei

Etot
) (8)

where Etot is the energy of the incoming signal, Ei is the energy of the incoming
signal filtered by the i-th state’s associated filterbank, and F(·) is a continuous prob-
ability density function.

To this end, two different distributions, namely unilateral exponential and re-
versed Rayleigh, are used as probability density functions for sustain states emission
observation.

The unilateral exponential distribution, shown in Fig. 7(a) and initially presented
for an alignment task in [23], is a variant of the traditional exponential distribution,
from which it differs in the domain (the interval [0,1]), in the fact that it is mirrored
and translated and that a scale factor is present in order to obtain

∫ 1
0 f (x)dx = 1. The

density function for the unilateral exponential distribution is
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Fig. 7 Probability distribution functions for the observation modeling of sustain states

f (x) =
eλ

eλ −1
λ · eλ (x−1) 0 ≤ x ≤ 1, λ > 0 (9)

and it is characterized by an expected value μ = (λ−1)eλ+1
λ (eλ−1)

.

The reversed Rayleigh distribution’s density function is

f (x) =
−(x−1)
σ2 e

−(x−1)2

2σ2 ·C(σ) 0 ≤ x ≤ 1, 0 < σ <

√
2
π

(10)

and is depicted in Fig. 7(b). The function, in order to be a proper distribution, con-
tains a scaling factor C(σ), which is approximately 1 for typical values of σ and
can be automatically computed from σ . Its expected value is μ = 1−σ√π

2 .
The reversed Rayleigh distribution has been introduced in [20] to overcome a

problem posed by the unilateral exponential distribution. For example, suppose that
a dense chord made of many notes is followed by a single note which was part of
the former chord; using a unilateral exponential distribution, the state associated to
the chord would always be more probable than the one associated to the single note,
because this distribution is always increasing in [0,1] (thus having more harmonics
in the filter spectrum increases the observation probability). The reversed Rayleigh
distribution is instead decreasing after a certain point, to allow less dense chords to
become more probable than denser ones.

It is important to note that both distributions are governed by a single parameter:
this was an explicit choice, since having a single parameter eases model training;
moreover, they have another peculiarity: the higher their expected value is, the more
selective they become. This is in agreement with the intuitive hypothesis that a very
high observation probability corresponds to a high confidence about the observed
features; having a lower expected value means that uncertainty is higher, thus giving
a lower observation probability even in case of reaching the maximum value of the
function.
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4.2.2 Ghost States

According to the modeling strategy introduced in [20], the observation probability
of the i-th ghost state is computed as

b(g)
i =

i+k

∑
j=i

wi( j)b(s)
j (11)

that is a weighted average of the sustain observation probabilities of the following
event states. The weighting function wi(·) is tipically a decreasing discrete distribu-
tion function (such as a geometric distribution); its presence is motivated by the fact
that, intuitively, in case of wrong or skipped notes, the notes played instead would
probably be the nearest (in the score) to the expected one. This also makes sense in
case of errors in the reference file, which are likely to happen in case of MIDI files,
because the weighting function induces the system to quickly realign on near notes.
This strategy turned out to work particularly well in case of complex polyphonic
performances.

4.2.3 Rest States

The observation probability for the i-th rest state is computed as a decreasing func-
tion of the ratio of the current audio frame energy Etot over a reference threshold
Emax representing the maximum signal energy

b(r)
i = F(

Etot

Emax
) (12)

5 Identification and Alignment

After generating the HMMs, identification and alignment tasks can be carried out
using classical techniques. As described in Sect. 2.1, identification and decoding
are typical problems of HMMs, that can be solved using dynamic programming
approaches. In our approach both tasks are carried out locally: music works are di-
vided into overlapping parts of about 20 seconds, and identification (and subsequent
alignment) is carried out on these excerpts. This approach reflects the fact that local
information about the music structure is normally used to define whether or not a
given recording corresponds to a music work.

Recalling the definitions presented in Sect. 2.1, identification is carried out using
Eq. 1, while alignment is carried out using Eq. 3.

Although based on the same modeling of the music works, the identification task
is based on a simpler topology of the HMM graph. In particular, extensive testing
showed that the use of ghost states at the higher level and rest states at the lower level
did not significantly improve the identification rate, while decreasing efficiency. The
simplified version of the HMM topology used for music identification is shown in
Fig. 8.
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Fig. 8 Graphical representation for two segments of an HMM in the simplified representation
used for the identification task

5.1 Regression Factor

The computation of Eq. 1 is based on the summation over all the states of the values
given by Eq. 3. This means that an alignment between the events and the acous-
tic features is available while computing the probability that a model generated an
observation sequence. This information can be useful to compute an additional pa-
rameter, which measures the distance between the computed path and an estimated
linear path. In fact, in case of a potential correct match, the alignment of the query
through the model is likely to have a linear trend. Such linear path can be estimated
by considering a regression analysis of the computed alignment points. In fact, by
computing the best fit line among the forward values and the distance of the points
from the line, it is possible to have a parameter that measures how the path evolves
through the model.

The best fit line associated with the n points (x1, y1), (x2, y2), . . ., (xn, yn), where xi

represents the generic state i of the model and yi is the value of the forward variable,
has the form

y = ax + b (13)

where coefficients a and b are computed following the Ordinary Least Squares
(OLS) method. The deviation Γ from the best fit line is computed as

Γ =∑
i
(yi − (axi + b))2 (14)

In case of high values of Γ , a forward path can be considered unfeasible and then
discarded in the final rank. Moreover, the forward path can be discarded when the
slope of the line is outside a certain interval of values, because the evolution across
the states of the HMM is likely to be either too slow or too fast to correspond to a
realistic performance (a typical situation being when the optimal path is based on a
long sequence of self-transitions).

It has to be noted that the best fit line represents an abstraction of a correct align-
ment. In reality, tempo fluctuations, changes in articulations, the presence of ac-
celerando or rallentando, never let the correct alignment being on a simple line.
For this reason, information about the the best fit line cannot be used to adjust the
alignment but can give only a general description of the alignment trend.
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5.2 Computational Complexity

The computation of either the identification or the alignment task can be carried
out using a dynamic programming approach. As already mentioned in Sect. 2.1,
the computational complexity of both identification and alignment tasks is O(N2T ),
where N is the number of states and T is the length of the observation sequence.

Yet, the proposed topology defines a limited number of transitions for each state.
In particular, states can perform either a self-transition or at most two forward-
transition, depending on the presence of a rest state (see Figure 5); if ghost states
are used, the most distant transition is further, but still limited. It can be shown that
the computational complexity becomes O(NT ), thus linear also with the number of
states in the model.

The task of music identification requires that each model in the collection is com-
pared against the unknown performance, thus implying a linear search in the num-
ber of models. This approach can create scalability problems when large collections
are used. For instance, with our experimental setup the identification of a single
recording from a collection of one thousand models can be carried out in about two
seconds, implying efficiency issues. To this end it is proposed to perform a cluster-
ing of the collection, as described in [18], in order to carry out linear search only on
a limited number of models. Experimental results show that a cluster of about one
hundred models is sufficient for achieving scalability without a loss in effectiveness.

6 Experimental Results

The proposed approach to HMM-based music modeling has been tested using a
collection of classical music. The effectiveness of the identification task has been
evaluated by using the audio excerpt of a performance as the query – that is the
music piece that has to be recognized – and a collection of both MIDI and digital
audio files to create the HMM. We did not consider the identification of symbolic
as a relevant task, because it can be done using either metadata contained in the
MIDI format or music retrieval techniques such as the one described in [7, 33] for
polyphonic music. The effectiveness of the alignment task has been tested matching
an audio recording with the corresponding symbolic score.

We did not evaluate the audio to audio alignment, because we believe that the
most useful application for alignment is to annotate – and present to the user –
a performance with the information carried in the score, or added by performers,
musicologists, and music teachers.

6.1 Music Identification

The music identification methodology has been evaluated with real acoustic data
from original recordings taken from the personal collections of the authors. Or-
chestral music repertoire has been used as a testbed because of the high number
of instruments that play simultaneously, making the identification a particularly
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difficult task. The audio performances to be identified were all recordings of well
known composers of Baroque, Classical, and Romantic periods. All the audio files
have a sampling rate of 44.1 kHz, and they have been divided into frames of 2048
samples, applying a Hamming window, with an overlap of 1024 samples. With these
parameters, observations are computed every 23.2 ms. It is worth mentioning that
with this resolution a quarter note played at a fast tempo (Presto at 200 bpm) will
last for more than 10 observations.

The aim of both tests was to measure the effectiveness of the methodology in
terms of identification.

6.1.1 Audio to Midi Identification

In this experiment the collection was composed of 115 MIDI files representing the
scores of different orchestral music works. All of these works were modeled by
HMMs following the process described in Sect. 4. The audio files to identify were
49 audio recordings of some of the works stored in the collection. Fig. 9 reports the
precision obtained with this dataset.

Fig. 9 Precision at different
cutoff levels for the audio to
score identification
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As it can be seen all the queries were correctly identified within the first 20 po-
sitions, and 71.4% of them were correctly identified at the first position. The mean
average precision was 81.2%. The results are satisfactory, proving the validity of
the model even if the size of the collection is not large enough to provide a reliable
evaluation.

It is interesting to note that the results were consistent among the repertories.
In particular, we did not find a correlation between the repertoire – e.g., Baroque,
Classic, Romantic – and the effectiveness of the retrieval. Precision depended more
on the adherence of the performance to the score, either because of an imprecise
notation in the MIDI files or because the score did not include all the information,
as in the case of the music works with basso continuo.



Statistical Music Modeling Aimed at Identification and Alignment 205

6.1.2 Audio to Audio Identification

In this second test, the identification methodology has been evaluated with a larger
testbed made up of a database of 1000 recordings and a query set of 50 different
performances of a subset of the works in the database. The query set the same as in
the previous experiment. Fig. 10 shows the precision without using the regression
factor described in Sect. 5.1.

Fig. 10 Precision at dif-
ferent cutoff levels for the
audio to audio identification
without the regression factor
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After removing the models with an incorrect alignment according to the regres-
sion factor, the results improve and almost reach the ones presented in Sect. 6.1.1,
as it can be seen in Fig. 11. In particular, the regression factor allowed us to increase
the precision of the query correctly identified in the first position. The mean average
precision was 77.1%.

Fig. 11 Precision at dif-
ferent cutoff levels for the
audio to audio identification
using the regression factor
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This result is very important, especially considering that it has been achieved
with a collection almost ten times bigger than the MIDI collection. Although the
parsing of a symbolic representation should not introduce errors, it could be argued
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that the score does not carry all the information required for an identification task.
For instance, in most cases dynamics was not reported in the files. Moreover, MIDI
files were usually provided by non-expert users and thus may be an approximate
representation of the music work, because not all the voices are represented and
many transcription errors often occur. Instead, audio recordings were all taken from
high quality commercial CDs.

6.2 Music Alignment

An objective evaluation of an audio to score alignment system is a particularly diffi-
cult task, because of the lack of a manually annotated test collection, i.e. a collection
of recordings in which the onset times relative to the events in the score are manually
tagged by an expert.

In order to deal with this issue, a simple evaluation methodology is presented and
used to measure the effectiveness of the proposed alignment system on two different
test collections, the former made up of single-instrument, monophonic pieces and
the latter comprising excerpts from complex orchestral polyphonic music. The audio
files are professionally recorded (monophonic pieces) or extracted from commercial
CDs (orchestral music), while the scores are parsed from MIDI files.

6.2.1 Evaluation Methodology

The output of the alignment system for a single performance/score couple is a list
of value pairs in the form (audiotime,miditime). Once all the performances in a
collection are aligned to their corresponding score, these alignments are analyzed to
extract a measure of precision based on the average deviation from the best fit line.

This measure is based on the hypothesis that a performer plays more or less
“a tempo”: while the tempo of the performance might be different from the MIDI
tempo marking, the deviations are supposed to be negligible. Under this assumption,
it is clear that a graphic representation of the alignment should follow a straight line,
similarly to the situation described in Sect. 5.1. While this is clearly a strong and
potentially incorrect assumption, the suitability of the particular performances in the
test collections was verified by the authors.

The best fit line associated with the alignment data is assumed to be the correct
alignment; once its slope a and intercept b are computed, the average deviation Δavg

from the n data points is computed as

Δavg = ∑n
i=1 |yi − (axi + b)|

n
(15)

Clearly, under the assumption of a performance characterized by a steady tempo,
the lower Δavg is, the higher is the adherence of the alignment data points to the best
fit line and hence the alignment accuracy. An example of such situation is pictured
in Fig. 12.
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Fig. 12 Alignment data
(continuous-dotted), cor-
responding best fit line
(dashed) and absolute dif-
ference (dotted). In this ex-
ample, where the alignment
is correct and the tempo is
quite steady, Δavg = 0.38s
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An alignment is then classified as “wrong” when at least one of the following
situations occurs:

• the slope value, that is the ratio between the performance and the MIDI tempo
markings, is outside the interval [0.5,2] (half/double speed);

• not enough alignment data pairs are present, which usually happens when the
system is not able to perform properly;

• Δavg is larger than a fixed threshold (when Δavg > 3s the resulting alignment
makes no sense at a visual inspection);

A typical situation is presented in Fig. 13(a) where glitches are observed in the time
alignment. Those are usually caused by sudden “jumps” of the forward variables
due to the effect of ghost states (as can be seen in Fig. 13(b)) and can be effec-
tively corrected using simple heuristics, which have not been applied to the results
presented below.
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Fig. 13 Alignment of the first movement from Haydn’s Symphony n. 104



208 R. Miotto, N. Montecchio, and N. Orio

6.2.2 Experimental Results for Monophonic Recordings

The evaluation with monophonic recordings has been carried out using 28 phrases
(typically characterized by a length of about 10s) played by different monophonic
instruments. The compositions where these phrases are taken from include:

• J. S. Bach - Flute Sonata BWV 1013, Goldberg Variations (performed on a cello);
• J. Brahms - Clarinet Sonata Op. 120 No. 1;
• M. Mussorgsky - Pictures at an Exhibition, orchestrated by M. Ravel (excerpts

of flute, trumpet and violin parts);

The system performs well with solo instruments excerpts, as can be seen from the
histogram in Fig. 14.

Fig. 14 Percentage of files
for which Δavg is inferior
to given thresholds, for the
monophonic collection
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In one case an alignment is considered “wrong”: a closer analysis revealed that a
single score event was misaligned, but this difference was large enough to make the
slope of the best fit line fall outside the [0.5,2] range.

6.2.3 Experimental Results for Polyphonic Recordings

The collection comprises the same 49 recordings used for testing the identification
effectiveness described in Sect.6.1.1. All the excerpts have a length of 20 seconds
and were taken from:

• L. v. Beethoven - Symphonies No. 3, 7, 9 and Egmont Overture;
• F. J. Haydn - Symphony No. 104 “London”;
• F. Mendelssohn - Symphony No. 4;
• W. A. Mozart - Divertimento K136, Horn Concerto K412, Eine Kleine Nacht-

musik K525, Symphony No. 40 K550;
• F. Schubert - Quartettsatz D703;
• A. Vivaldi - The Four Seasons;
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Fig. 15 Percentage of files
for which Δavg is inferior
to given thresholds, for the
polyphonic collection
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Experimental results with this collection are presented in Fig. 15. The system was
not able to properly align 7 out of 49 files; those files are the ones whose scores
are particularly different from an accurate transcription of the recording: a notable
example is Vivaldi’s “Winter”, where the basso continuo, played by a harpsichord,
is not transcribed. It is worth mentioning that, historically, the basso continuo had a
different notation that can be interpreted by trained performers.

This provides additional evidence to the fact that the efficacy of the alignment
is highly dependent on the accuracy and completeness of the score file, tough the
proposed system proves to be generally robust with the provided scores, which were
downloaded from generic Web sites and not modified by the authors.

7 Conclusions

This paper presents a unified approach to the statistical modeling of a music work,
starting from either a symbolic representation of the score or from a digital recording
of a performance. Statistical modeling is based on an application of HMMs, that are
generated automatically starting from a segmentation of the music work into events.
The approach has been applied to identify and align pieces of the classical music
repertoire.

The proposed methodology can have several applications, in particular in the
field of music education and dissemination. The first application is the identification
of unknown recordings, in order to retrieve relevant metadata to be presented to
the user. It should be noted that the identification can be carried out locally, by
comparing an audio excerpt with fragments of the music works of the collection. In
this way it is possible to identify at the same time the music work and the position
in the corresponding file stored in the collection, which can be either in MIDI or in
audio formats.

Once the recording has been identified, it is also possible to exploit alignment
techniques to provide a more active listening experience. In fact, there is a gap be-
tween the access to music content by musicians and musicologists, who normally
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take most of the information about a music work directly from a structured music
score, and musically untrained listeners, who are not able to read a music score. The
alignment of the recording of interest with the score can allow the user to: read
annotations made by the composer, be aware of changes in tempo and tonality,
identify which are the instruments that are playing at any moment, and selectively
listen to them. Visual cues can be added to particular events in a score and syn-
chronously presented to the listeners each time they are listening to a different
performance.

The approach presented in this paper, although experimental results show that
there is still room from improving its effectiveness, can be exploited to build the core
components of music teaching tools. To this end, the choice of classical music as
the targeted genre becomes particularly suitable, in order to promote music cultural
heritage through the use of new technologies.
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Harmonic and Percussive Sound Separation and
Its Application to MIR-Related Tasks

Nobutaka Ono, Kenichi Miyamoto, Hirokazu Kameoka, Jonathan Le Roux,
Yuuki Uchiyama, Emiru Tsunoo, Takuya Nishimoto, and Shigeki Sagayama

Abstract. In this chapter, we present a simple and fast method to separate a monau-
ral audio signal into harmonic and percussive components, which leads to a use-
ful pre-processing for MIR-related tasks. Exploiting the anisotropies of the power
spectrograms of harmonic and percussive components, we define objective func-
tions based on spectrogram gradients, and, applying to them the auxiliary function
approach, we derive simple and fast update equations which guarantee the decrease
of the objective function at each iteration. We show experimental results for sound
separation on popular and jazz music pieces, and also present the application of the
proposed technique to automatic chord recognition and rhythm-pattern extraction.

1 Introduction

Recently, music signal has become an important target in the signal processing field.
In the Music Information Retrieval Evaluation eXchange (MIREX), various tasks
related to music information retrieval (MIR) have been discussed such as audio
onset detection, multiple fundamental frequency estimation, audio chord detection,
and so on [1]. Since music signals consist of various kinds of tones due to different
instruments and different expressions, these tasks are difficult and challenging.

The many tones which form a music piece can be broadly classified into two com-
ponents: a harmonic one and a percussive one. Their simultaneous presence makes
some tasks much harder because of their very different spectral structures. For in-
stance, most of the multi-pitch analysis methods are disturbed by percussive tones,
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while the suppression of harmonic components would facilitate drum detection or
rhythm analysis.

The separation of a monaural audio signal into harmonic and percussive com-
ponents has been discussed in several pilot works. Uhle et al. applied Indepen-
dent Component Analysis (ICA) to the magnitude spectrogram, and classified the
extracted independent components into a harmonic group and a percussive group
based on several features like percussiveness or noise-likeness [2]. Helen et al. uti-
lized Non-negative Matrix Factorization (NMF) for decomposing the spectrogram
into elementary patterns and classified them by pre-trained Support Vector Machine
(SVM) [3]. Through the modeling of harmonic and inharmonic tones at the spectro-
gram level, Itoyama et al. aimed at developing an instrument equalizer and proposed
a method for separating an audio signal into single-instrument tracks based on MIDI
information synchronized to the input audio signal [4].

For pre-processing of MIR-related tasks, it is often not practical to exploit a pri-
ori knowledge of the score or of the included instruments of the input audio signals
as such information is in general not available, and a simple and fast algorithm
which does not require such knowledge is preferable. Aiming towards such an algo-
rithm, we have developed the so-called harmonic and percussive sound separation
(HPSS) technique, which relies solely on the difference between the structures of
the spectrograms of harmonic and percussive components and does not need any
pre-learning.

While the approaches mentioned above are pattern recognition oriented, our ap-
proach is closer to a “sinusoid plus transient model”. Because many audio signals
including speech and music consist of steady-state parts and transient parts, this
modeling can be widely applied for signal enhancement, time stretching, pitch con-
version, coding, information retrieval, etc. Daudet, in his very good review paper,
has classified recent algorithms for the separation of sinusoid and transient compo-
nents into three categories [5]:

1. Linear prediction: provides a decomposition of the sound into its excitation signal
and a resonating filter.

2. Tonal extraction: does not define transients directly, but rather extract from the
signal its “tonal” part (also called sinusoidal part). The residual is then assumed
to contain mostly transients. Adaptive phase vocoder, sinusoidal model and sub-
space methods are classified into this category.

3. Sines + Transients + Noise Models: based on some explicit model for sinusoids
and transients, decomposes the sound into a sinusoidal part, a transient part, and
a residual noise part. Sequential estimation in orthonormal bases, adapted time-
frequency tiles, matching pursuit, etc., are classified into this category.

Because HPSS has explicit models for both harmonic (sinusoid) and percussive
(transient) components, it should be classified into the third category. The remark-
able features of HPSS are the following.

• The model is very simple: the harmonic and the percussive components should
be smooth horizontally and vertically, respectively, in the spectrogram domain.

• No dictionaries are used, and the method does not need pre- learning.
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• The two separated components are obtained in the spectrogram domain, and can
thus be directly used to perform some feature extraction without having to go via
the time domain.

• The iterative calculation can be performed sequentially by sliding-block analysis
(described in section 4), which enables us to implement it in real time.

In the following, we present the formulation of the separation as an optimization
problem, derive a fast iterative solution to that problem through the auxiliary func-
tion approach, and evaluate the separation performance by experiments on popular
and jazz music pieces. As applications of the proposed technique to MIR-related
tasks, automatic chord detection and rhythm pattern extraction are also described.

2 Formulation of Harmonic/Percussive Separation

2.1 Anisotropy of Harmonic and Percussive Spectrograms

Let Fω,τ be the short-time Fourier transform (STFT) of a monaural audio signal f (t)
and Wω,τ = |Fω,τ |2 be its power spectrogram, where ω and τ represent the angular
frequency bin and time frame indices, respectively.

A typical spectrogram of a popular music piece is shown in Fig. 1, where the
vertical and horizontal structures are clearly observed. The harmonic component
usually has stable pitch and forms parallel horizontal ridges with smooth temporal
envelopes on the spectrogram, while the energy of the percussive tone is concen-
trated in a short time frame, which forms vertical ridges with wide-band spectral
envelopes. Hence, at the power spectrogram level, the harmonic component Hω,τ
and the percussive component Pω,τ should have the following properties:

Fig. 1 A typical spectrogram of a popular music piece
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• Hω,τ is horizontally smooth.
• Pω,τ is vertically smooth.
• The sum of Hω,τ and Pω,τ is close to the original power spectrogram Wω,τ , al-

though additivity does not rigorously hold in the power spectrogram domain.
• Hω,τ and Pω,τ are non-negative since they represent power.

The problem here is to find Hω,τ and Pω,τ satisfying these properties from the ob-
served power spectrogram Wω,τ . It can be formulated as an optimization problem,
that of minimizing

J(H,P) =∑
ω,τ

D(Wω,τ , Hω,τ + Pω,τ)

+
1

2σ2
H
∑
ω,τ

(Hγ
ω,τ−1 −Hγ

ω,τ)2 +
1

2σ2
P
∑
ω,τ

(Pγω−1,τ −Pγω,τ)2 (1)

under the conditions that Hω,τ ≥ 0 and Pω,τ ≥ 0, where H = (Hω,τ)ω,τ and P =
(Pω,τ)ω,τ represent the sets of all Hω,τ and Pω,τ , respectively. The first term of the
objective function measures the distance between Wω,τ and Hω,τ + Pω,τ , while the
second and third terms are cost functions on the smoothness of Hω,τ and Pω,τ , re-
spectively, with σH and σP determining their weights. A range-compression factor
γ is introduced for balancing the first term and the second and the third terms as
described later. There are several possibilities for selecting the distance measure
function D(·, ·) and the balance parameter γ . Among them, we shall investigate in
particular two different objective functions in the following sections.

2.2 Method 1: I-Divergence-Based Method

As power spectrograms can be considered more generally as non-negative distribu-
tions, a measure of the difference between two power spectrograms Aω,τ and Bω,τ
can be obtained through their I-divergence [6] defined by

I(Aω,τ ,Bω,τ) =
(

Aω,τ log
Aω,τ

Bω,τ
−Aω,τ + Bω,τ

)
. (2)

Strictly speaking, it is not a distance but a divergence since it is not symmetric in
Aω,τ and Bω,τ . But due to its logarithmic nature which fits well auditory perception
and the fact that it is easy to handle mathematically, the I-divergence has been used
in several power-spectrogram-based signal processing methods such as NMF and
Harmonic Temporal Clustering (HTC) [7, 8, 9, 10] and can also be used in our
problem [11].

When using I-divergence as a distance measure in eq. (1), a desirable property is
to keep the balance between the distance measure (the first term) and the smooth-
ness cost (the second and third terms) under scale change. Since I(aAω,τ ,aBω,τ) =
aI(Aω,τ ,Bω,τ) for any non-negative scale parameter a, the range-compression factor
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γ should be set to 0.5 to ensure scale invariance. The objective function can then be
written as

J1(H,P) =∑
ω,τ

{
Wω,τ log

Wω,τ

Hω,τ + Pω,τ
−Wω,τ + Hω,τ + Pω,τ

+
1

2σ2
H

(
√

Hω,τ−1 −
√

Hω,τ)2 +
1

2σ2
P

(
√

Pω−1,τ−
√

Pω,τ)2
}

. (3)

2.3 Method 2: L2-Norm-Based Method

Another approach aims at obtaining a simpler formulation [12]. Since the intersec-
tion of the horizontal and vertical ridges is small, it can be assumed that they are
approximately disjoint. If either Wω,τ = Hω,τ or Wω,τ = Pω,τ are almost satisfied at
each time-frequency bin (ω ,τ), we can assume that

W̃ω,τ = H̃ω,τ + P̃ω,τ , (4)

for any γ where

W̃ω,τ = W γ
ω,τ , H̃ω,τ = Hγ

ω,τ , P̃ω,τ = Pγω,τ . (5)

Although eq. (4) is a rather rough assumption, it leads to a simple formulation.
Under the constraint of eq. (4), the distance term in eq. (1) vanishes and the objective
function is given by

J2(H̃, P̃) =
1

2σ2
H
∑
ω,τ

(H̃ω,τ−1 − H̃ω,τ)2 +
1

2σ2
P
∑
ω,τ

(P̃ω−1,τ − P̃ω,τ)2, (6)

where H̃ = (H̃ω,τ )ω,τ and P̃ = (P̃ω,τ)ω,τ represent the sets of all H̃ω,τ and P̃ω,τ ,
respectively. As eq. (6) is a quadratic form in H̃ω,τ and P̃ω,τ , it has a single global
minimum. Hence, when using this objective function, we do not need to worry about
local minimum problems.

3 Derivation of Update Equations through the Auxiliary
Function Approach

3.1 Auxiliary Function Approach

Minimizing eq. (3) is a nonlinear optimization problem for which there is no closed-
form solution. Although eq. (6) is a quadratic form in H̃ω,τ and P̃ω,τ with a linear
constraint and has a closed-form solution, its computation requires that of the in-
verse of a matrix with a very large number of variables, which is equal to the num-
ber of time-frequency bins. In order to avoid this computation and derive an effective
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iterative algorithm, we apply the auxiliary function approach, which is an extension
of EM algorithm and has been recently applied to solve optimization problems in
the signal processing field [7, 8, 9, 10].

In order to introduce the auxiliary function approach, let us here consider the
general optimization problem of the minimization of an objective function J(θ )
where θ represents a parameter vector. The problem is to find θ = θ ∗ satisfying

θ ∗ = argminθ J(θ). (7)

A simple way to solve this problem is, under sufficient smoothness conditions, to
find a solution of the following equation:

∂J(θ )
∂θ

= 0. (8)

But, in many cases, this equation has no closed-form solution.
In the auxiliary function approach, a function Q(θ , θ̄ ) is designed such that it

satisfies
J(θ ) = minθ̄ Q(θ , θ̄ ). (9)

Q(θ , θ̄ ) is called an auxiliary function for J(θ ), and θ̄ are called auxiliary variables.
Then, instead of directly minimizing the objective function J(θ ), the auxiliary func-
tion Q(θ , θ̄ ) is minimized in terms of θ and θ̄ , alternatively, the variables being
iteratively updated as

θ̄ (l+1) = argminθ̄ Q(θ (l), θ̄ ), (10)

θ (l+1) = argminθ Q(θ , θ̄ (l+1)), (11)

where l denotes the iteration index.
The principle of the auxiliary function method is based on the fact that J(θ )

is non-increasing under the above updates, as can be seen in the following simple
proof:

1. Q(θ (l), θ̄ (l+1)) = J(θ (l)) from eq. (9) and eq. (10),

2. Q(θ (l+1), θ̄ (l+1)) ≤ Q(θ (l), θ̄ (l+1)) from eq. (11),

3. J(θ (l+1)) ≤ Q(θ (l+1), θ̄ (l+1)) from eq. (9),

thus,
J(θ (l+1)) ≤ J(θ (l)), (12)

which guarantees that the objective function is non-increasing. Note that even if eq.
(7) has no closed-form solutions, in some cases we can design an auxiliary function
Q(θ , θ̄ ) satisfying eq. (9) such that both eq. (10) and eq. (11) have closed-form so-
lutions. In such situations, the auxiliary function approach gives us efficient iterative
update rules.
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3.2 Derivation of Update Rules for Method 1

One way to design an auxiliary function for a given objective function is to exploit
an inequality. Here, we would like to find an auxiliary function for J1 defined by eq.
(3). Focusing on the term logWω,τ/(Hω,τ + Pω,τ) included in eq. (3), which is the
reason why eq. (3) cannot be directly minimized in terms of Hω,τ and Pω,τ , we can
consider applying Jensen’s inequality:

λ1 f (x1)+λ2 f (x2) ≥ f (λ1x1 +λ2x2), (13)

which holds for any convex function f (a function f is said to be convex if
f (βx1 +(1−β )x2) ≤ β f (x1)+ (1−β ) f (x2) for any x1 and x2 and any 0 ≤ β ≤ 1,
which simply means that the graph of y = f (x) is convex upward), and non-negative
weights λ1, λ2 such that λ1 +λ2 = 1.

Let f (x) = − logx in eq. (13). Replacing x1 and x2 by x1/λ1 and x2/λ2, respec-
tively, we have

λ1 log
λ1

x1
+λ2 log

λ2

x2
≥ log

1
x1 + x2

(14)

for non-negative λ1 and λ2 under λ1 +λ2 = 1, where the equality is satisfied when
λ1 = x1/(x1 + x2) and λ2 = x2/(x1 + x2). Let us now look more closely at the term
log1/(x1 + x2) in the right-hand side in eq. (14). Letting x1 = Hω,τ/Wω,τ and x2 =
Pω,τ/Wω,τ in eq. (14), we have

λ1 log
λ1Wω,τ

Hω,τ
+λ2 log

λ2Wω,τ

Pω,τ
≥ log

Wω,τ

Hω,τ + Pω,τ
. (15)

Consequently, it is clear that the following function:

Q1(H,P,mH ,mP) =

∑
ω,τ

{
mHω,τWω,τ log

(
mHω,τWω,τ

Hω,τ

)
+ mPω,τWω,τ log

(
mPω,τWω,τ

Pω,τ

)
− (Wω,τ −Hω,τ −Pω,τ)

+
1

2σ2
H

(
√

Hω,τ−1 −
√

Hω,τ)2 +
1

2σ2
P

(
√

Pω−1,τ −
√

Pω,τ)2
}

(16)

verifies
J1(H,P) ≤ Q1(H,P,mH ,mP), (17)

for any H, P, mH , and mP under the condition that

mHω,τ + mPω,τ = 1. (18)

It means that Q1(H,P,mH ,mP) is an auxiliary function for J1(H,P) where mHω,τ
and mPω,τ are auxiliary variables and mH and mP denote the sets of all mHω,τ and
mPω,τ , respectively. The equality in eq. (17) is satisfied for
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mHω,τ =
Hω,τ

Hω,τ + Pω,τ
, (19)

mPω,τ =
Pω,τ

Hω,τ + Pω,τ
. (20)

Since eq. (19) and eq. (20) correspond to eq. (10), the auxiliary function Q1 always
decreases through the update of its auxiliary variables and then reaches J1.

Meanwhile, the update rules corresponding to eq. (11) are obtained by solving
∂Q1/∂Hω,τ = 0 and ∂Q1/∂Pω,τ = 0. First, differentiating Q1 with respect to Hω,τ ,
we have

∂Q1

∂Hω,τ
= −mHω,τWω,τ

Hω,τ
+ 1 +

1

2σ2
H

√
Hω,τ

(
√

Hω,τ −
√

Hω,τ+1)

− 1

2σ2
H

√
Hω,τ

(
√

Hω,τ−1 −
√

Hω,τ). (21)

Setting the above derivative to zero and multiplying by 2Hω,τ , we get

−2mHω,τWω,τ + 2Hω,τ +

√
Hω,τ

σ2
H

(
√

Hω,τ −
√

Hω,τ+1)

−
√

Hω,τ

σ2
H

(
√

Hω,τ−1 −
√

Hω,τ) = 0. (22)

It can be rewritten as a simple quadratic equation in
√

Hω,τ , in the following form:

aHω,τ(
√

Hω,τ )2 −bHω,τ(
√

Hω,τ )− cHω,τ = 0, (23)

whose well-known closed-form solution gives the update rule for Hω,τ . The update
rule for Pω,τ is obtained in a similar way. Altogether, the update rules are summa-
rized as follows.

Update of the auxiliary variables

mHω,τ←
Hω,τ

Hω,τ + Pω,τ
(24)

mPω,τ← Pω,τ
Hω,τ + Pω,τ

(25)

Update of the parameters

Hω,τ←
⎛
⎝bHω,τ +

√
bH

2
ω,τ + 4aHω,τcHω,τ

2aHω,τ

⎞
⎠

2

(26)
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Pω,τ←
⎛
⎝bPω,τ +

√
bP

2
ω,τ + 4aPω,τcPω,τ

2aPω,τ

⎞
⎠

2

(27)

where

aHω,τ =
2

σ2
H

+ 2, (28)

bHω,τ =
(
√

Hω,τ−1 +
√

Hω,τ+1)
σ2

H

, (29)

cHω,τ = 2mHω,τWω,τ , (30)

aPω,τ =
2

σ2
P

+ 2, (31)

bPω,τ =
(
√

Pω−1,τ +
√

Pω+1,τ)
σ2

P

, (32)

cPω,τ = 2mPω,τWω,τ . (33)

Since the update rules for Hω,τ and Pω,τ include the neighboring parameters (Hω,τ−1,
Pω+1,τ , etc.) in eq. (29) and eq. (32), they should be applied sequentially, leading to
the following algorithm: 1) update the auxiliary variables mHω,τ and mPω,τ at a cer-
tain time-frequency bin (ω ,τ), 2) update the parameters Hω,τ and Pω,τ at the same
bin (ω ,τ), 3) move to the next time-frequency bin and go back to 1), iteratively.
Note that their update rules keep Hω,τ and Pω,τ non-negative.

3.3 Derivation of Update Rules for Method 2

As eq. (6) is a quadratic form, sequential update rules are easily obtained from the
differentiation of eq. (6) with respect to H̃ω,τ and P̃ω,τ with Lagrange multiplier
terms for the constraints of eq. (4). Here, however, through the auxiliary function
approach, we shall derive a parallel update scheme for each time-frequency bin,
which we call complementary diffusion due to its interesting resemblance with a
physical diffusion process.

Let us begin by noticing that the inequality

(A−B)2 ≤ 2(A−X)2 + 2(B−X)2 (34)

holds for any A, B, and X , since

2(A−X)2 + 2(B−X)2− (A−B)2 = 4

(
X − A + B

2

)2

(35)

is obviously non-negative and equal to zero when X = (A + B)/2. Applying the
above inequality to eq. (6), we can show that the following function is an auxiliary
function for J2:
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Q2(H̃, P̃,U ,V ) =
1

σ2
H
∑
ω,τ

{
(H̃ω,τ−1 −Uω,τ)2 +(H̃ω,τ −Uω,τ)2}
+

1

σ2
P
∑
ω,τ

{
(P̃ω−1,τ −Vω,τ)2 +(P̃ω,τ −Vω,τ)2} , (36)

where Uω,τ and Vω,τ are auxiliary variables, and U and V are the sets of all Uω,τ and
Vω,τ , respectively. Equality in the inequality J2(H̃, P̃) ≤ Q2(H̃, P̃,U ,V ) is obtained
for

Uω,τ =
H̃ω,τ−1 + H̃ω,τ

2
, (37)

Vω,τ =
P̃ω−1,τ + P̃ω,τ

2
, (38)

which are the update rules for the auxiliary variables corresponding to eq. (10).
To obtain the update rules for the parameters, corresponding to eq. (11), under

the constraint of eq. (4), we introduce Lagrange multipliers λω,τ and consider

Q′
2(H̃, P̃,U ,V ) = Q2(H̃, P̃,U ,V )+∑

ω,τ
λω,τ(H̃ω,τ + P̃ω,τ −Wω,τ). (39)

Setting to zero the derivatives of the above function with respect to H̃ω,τ , P̃ω,τ and
λω,τ yields

2

σ2
H

(2H̃ω,τ −Uω,τ+1 −Uω,τ)+λω,τ = 0, (40)

2

σ2
P

(2P̃ω,τ −Vω+1,τ−Vω,τ)+λω,τ = 0, (41)

H̃ω,τ + P̃ω,τ−Wω,τ = 0. (42)

Solving the above system of equations, we obtain

H̃ω,τ =
α
2

(Uω,τ+1 +Uω,τ)+
(1−α)

2
(2Wω,τ −Vω+1,τ−Vω,τ), (43)

P̃ω,τ =
(1−α)

2
(Vω+1,τ +Vω,τ)+

α
2

(2Wω,τ −Uω,τ+1 −Uω,τ), (44)

where

α =
σ2

P

σ2
H +σ2

P

. (45)

By substituting eq. (37) and eq. (38) into the right-hand sides of eq. (43) and eq. (44)
we can remove the auxiliary parameters Uh,i and Vh,i from the update rules, leading
to the following simple expressions:
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H̃ω,τ ← H̃ω,τ +Δω,τ , (46)

P̃ω,τ ← P̃ω,τ −Δω,τ , (47)

where

Δω,τ = α
(

H̃ω,τ−1 −2H̃ω,τ + H̃ω,τ+1

4

)
− (1−α)

(
P̃ω−1,τ−2P̃ω,τ + P̃ω+1,τ

4

)
(48)

However, we have to note that as a result of these updates, H̃ω,τ and P̃ω,τ may be-
come negative. In order to keep H̃ω,τ and P̃ω,τ non-negative, the update rules are
applied as follows.

Update of the auxiliary variables

Δω,τ ← α
(

H̃ω,τ−1 −2H̃ω,τ + H̃ω,τ+1

4

)
− (1−α)

(
P̃ω−1,τ −2P̃ω,τ + P̃ω+1,τ

4

)
(49)

Update of the parameters

H̃ω,τ ←
⎧⎨
⎩

0 (H̃ω,τ +Δω,τ < 0)
W̃ω,τ (P̃ω,τ −Δω,τ < 0)

H̃ω,τ +Δω,τ (otherwise)
(50)

P̃ω,τ ←
⎧⎨
⎩

W̃ω,τ (H̃ω,τ +Δω,τ < 0)
0 (P̃ω,τ −Δω,τ < 0)

P̃ω,τ −Δω,τ (otherwise)
(51)

These update rules can be applied in parallel. The update procedure is summarized
as follows.

1. Update the auxiliary variables Δω,τ for all the time-frequency bins.
2. Update the parameters H̃ω,τ and P̃ω,τ for all the time-frequency bins.
3. Go to Step 1.

Since the auxiliary update variable Δω,τ consists of the discrete second-order deriva-
tive of H̃ω,τ and P̃ω,τ , the updates of eq. (50) and eq. (51) have basically the same
form as the diffusion equation:

d f
dt

= C
d2 f
dx2 , (52)

which represents the dynamics of diffusion phenomena. For example, in the case
of heat conduction process, f , t and x represent temperature, time and spatial co-
ordinate, respectively, corresponding in our case to power spectrogram, iteration
index and time or frequency, respectively. But unlike the physical diffusion process,
in our case, each update of H̃ω,τ and P̃ω,τ includes a negative diffusion term de-
rived from the other. With iterative calculations, the energy distribution of H̃ω,τ
on the spectrogram diffuses horizontally and concentrates vertically, while P̃ω,τ
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follows the inverse way, the two always satisfying H̃ω,τ + P̃ω,τ = W̃ω,τ . We denote
this diffusion-like process of two energy distributions with a balance as complemen-
tary diffusion. The balance parameter α (0 < α < 1) controls the strength of the
diffusion along the vertical and the horizontal directions. Moreover, in Method 2,
any value is allowable for the parameter γ , which can thus be tuned. According to
our experiments, setting γ to about 0.3 gives a good performance.

4 Real-Time Processing by Sliding-Block Analysis

Although the objective functions eq. (3) and eq. (6) should include all time-
frequency bins, the iterative updates for the whole bins are much time- and memory-
consuming. In order to obtain an approximate solution in real time and make the
computation feasible for signals of any length we propose a sliding-update algo-
rithm. Based on the assumption that the separation of a certain time-frequency bin is
weakly affected by bins far away, we limit the processed frames to n≤ τ ≤ n+B−1,
where B is the size of the analysis block, and make n slide iteratively. The real-time
version of Method 1 is summarized as follows.

1. Set the new frame as Hω,n+B−1 = Pω,n+B−1 = Wω,n+B−1/2.
2. Update variables by eq. (24), eq. (25), eq. (26) and eq. (27) sequentially for n ≤
τ ≤ n + B−1.

3. Convert the nth frame to a waveform by inverse STFT.
4. Increment n to slide the analysis block.

time

sliding analysis block

fr
e

q
u

e
n

c
y

Not yet

processed

time

fr
e

q
u

e
n

c
y

harmonic

percussive

Already

processed

Being

processed

Fig. 2 Illustration of the sliding-block analysis process



Harmonic and Percussive Sound Separation 225

The real-time version of Method 2 is processed in the same way. In step 3, the
original phase is used to convert the STFT frame back to the time domain. Note that
the overlap due to frame shift should actually be considered for the conversion.

Each time-frequency bin is updated only once at each step 2. Altogether, it is
totally updated B times after passing through the analysis block shown in Fig. 2. Al-
though larger block sizes B show better performance, the processing time from step
1 to step 4 must be less than the length of the frame shift for real-time processing.

5 Implementation and Evaluations

We have implemented our algorithms in several environments. An implementation
for the MS Windows environment with graphical user interface (GUI) is shown in
Fig. 3. After clicking the start button, the separation process begins. The processing
steps are as follows.

1. Load the next frame-shift long fragment of the input audio signal from the WAV-
format file.

2. Calculate the FFT of the new frame.
3. Update stored frames as described in the previous section.
4. Calculate the inverse FFT of the oldest frame.
5. Overlap-add the waveform and play the frame-shift long output fragment.
6. Go to Step 1.

Fig. 3 GUI of the HPSS implementation on MS Windows
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The two bar graphs shown in Fig. 3 represent the power spectra of the separated
harmonic and percussive components. The sliding bar named “P-H Balance” en-
ables the user to change the volume balance between the harmonic and percussive
components while playing. The evolution of the separated spectrograms throughout
the course of the sliding-block analysis is illustrated on an example in Fig. 4, where
Method 1 was used. We can see that the input power spectrogram is sequentially
separated as it passes through the analysis block. Through auditory evaluation, we
could make the following observations.

• The pitched instrument tracks and the percussion tracks are well separated by
both Method 1 and 2.

• For the same analysis block size, Method 1 gives a slightly better performance
than Method 2.

• Method 1 requires about 1.5 ∼ 2 times the computational time of Method 2 be-
cause of square root calculations. Thus, Method 2 allows for larger block size.

• The separation results depend on several parameters such as σH , σP, the frame
length, and the frame shift. However, the dependency is not so strong.

Another implementation with character user interface (CUI) on the Linux envi-
ronment has been developed for fast execution, which is suitable to perform pre-
processing for MIR-related task. The current fastest implementation separates a
WAV-formated audio signal into harmonic and percussive components about thirty
times faster than real time on a PC with 3GHz Pentium CPU and 2GB memory. It
means that a song with 3-minute length can be separated into the two components
in about 6 seconds.

In order to quantitatively evaluate the performance of the harmonic/percussive
separation and its relationship to the block size, we prepared data for each track
of two music pieces (RWC-MDB-J-2001 No.16 and RWC-MDB-P-2001 No.18 in
[13]) by MIDI-to-WAV conversion and used the summation of all the tracks as input
to our algorithms. The experimental conditions are given in Table 1. As a criterion of
the performance, the energy ratio of the harmonic component h(t) and the percussive
component p(t) included in each track was calculated as

rh =
Eh

Eh + Ep
, rp =

Ep

Eh + Ep
, (53)

with
Eh =< fi(t),h(t) >2, Ep =< fi(t), p(t) >2, (54)

where <,> represents the cross-correlation operation and fi(t) the normalized sig-
nal of each track. The results are shown in Fig. 5. The pitched instrument tracks
and the percussion tracks are represented by solid and dotted lines, respectively. We
can see that the separation was generally well performed. Only the bass drum track
has a tendency to belong to the harmonic component, which can be considered as
a consequence of the long duration of the bass drum sounds. Fig. 5 also shows that
a large block size is not required and that the separation performance converges for
block sizes of 30 or 40 frames in this condition.
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Fig. 4 Example of evolution of the spectrograms of the separated harmonic component (left)
and percussive component (right) through sliding-block analysis. The first frame of the anal-
ysis block is 0, 50, 100, and 200 from top to bottom, respectively.
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Table 1 Experimental conditions

Signal length 10 s
Sampling rate 16 kHz
Frame size 512
Frame shift 256
Range-compression factor (Method 1) γ = 0.5
Range-compression factor (Method 2) γ = 0.3
Gradient variance σP = σH = 0.3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  20  30  40  50  60

en
er

gy
 r

at
io

 o
f h

ar
m

on
ic

 c
om

po
ne

nt

block size

piano
bass

snare drum
high-hat 1
high-hat 2
bass drum

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  20  30  40  50  60

en
er

gy
 r

at
io

 o
f h

ar
m

on
ic

 c
om

po
ne

nt

block size

piano
bass

snare drum
high-hat 1
high-hat 2
bass drum

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  20  30  40  50  60

en
er

gy
 r

at
io

 o
f h

ar
m

on
ic

 c
om

po
ne

nt

block size

piano
bass

synthesizer
bell 1

snare drum
high-hat
melody

brass

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  5  10  20  30  40  50  60

en
er

gy
 r

at
io

 o
f h

ar
m

on
ic

 c
om

po
ne

nt

block size

piano
bass

synthesizer
bell 1

snare drum
high-hat
melody

brass

Fig. 5 Energy ratios of the separated harmonic component in each track (rh) for different
block sizes. Top left: Results for Method 1 on RWC-MDB-J-2001 No.16; Top right: Results
for Method 2 on RWC-MDB-J-2001 No.16; Bottom left: Results for Method 1 on RWC-
MDB-P-2001 No.18; Bottom right: Results for Method 2 on RWC-MDB-P-2001 No.18.

6 Application 1: Automatic Chord Detection

Automatic chord detection is one of the most important tasks in content-based anal-
ysis of music, with many applications such as music information retrieval, music
identification and automatic music transcription. A chord detection task from audio
data has been included in MIREX since 2008 [1].

Kawakami et al. [14] applied Hidden Markov Models (HMM) to chord-sequence
modeling back in 1999, modeling the hidden chord progression as Markovian state
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Fig. 6 Comparison of chromagrams before and after applying HPSS for “I Need You” by the
Beatles

transitions and considering melody as a stochastic output from the hidden states.
This formulation was used to find the optimal chord sequence for an input melody
represented in a symbolic (MIDI) form by the Viterbi algorithm. To deal with multi-
arrangements of chords, Fujishima used Pitch Class Profiles (PCPs) [15] and a sim-
ilar idea was proposed by Bartsch with chroma vectors [16]. Both PCPs and chroma
vectors are calculated by accumulating the power spectrogram of each chromatic
note over octaves to roughly represent the intensities of the twelve chromatic notes.
Fujishima exploited this feature to perform symbolic (MIDI) chord detection, while
Sheh and Ellis [17] applied the chroma vectors to audio chord detection with HMM.
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Since then, the framework using HMM and chroma vectors has become mainstream
in audio chord detection [18, 19]. However, popular and jazz music usually contain
not only melodic and chordal sounds but also percussive sounds. Since strong per-
cussive tones overwrite the information of the intensities of the chromatic notes in
the chroma vectors, they are very harmful in this modeling.

The HPSS technique works as a useful pre-processing to reduce the percussive
sounds. Fig. 6 shows the effect of HPSS on a chromagram, where vertical and hor-
izontal axes respectively represent the components of chroma vector and time, and
the intensity of the chromatic notes is represented in gray-scale. The upper and
lower figures respectively represent the original chromagram and the percussion-
suppressed chromagram computed on the power spectrogram obtained by apply-
ing HPSS, for the song “I Need You” by the Beatles. The input audio data was
first down-sampled to 11.025kHz, then a constant-Q Gabor filter bank was applied,
where the Q value was 60 and the center frequencies of the 60 filters were ranged
from 55.0Hz (A1) to 1661.2Hz (G6). Finally, the chromagram was computed by ac-
cumulating the subband energies into twelve elements corresponding to the twelve
pitch classes every 0.1 s intervals. To obtain the percussion-suppressed chroma-
gram, the harmonic component was extracted from the original audio signal by the
I-divergence-based HPSS with 2048-point frame length and 1024-point frame shift,
and the chromagram was calculated from it in the same way as the original chroma-
gram. In both figures, the ground-truth chords and the recognition results obtained
by our HMM-based automatic chord detection system described in [21] are also
shown.

The original chromagram looks blurred and the dominant chroma element is not
clear in several frames due to the presence of strong percussive tones. On the other
hand, in the percussion-suppressed chromagram, the contrast between elements be-
comes much stronger, which leads to the correction of the original errors on chords
A and F#min.

To evaluate our audio chord recognition system, composed of percussion sup-
pression by HPSS and an HMM-based recognizer, the following experiment was
conducted. The data set consisted in 180 songs from 12 albums of The Beatles. In
this experiment, 25 chord categories (major and minor triads and no chord) were
used. For the HMM, each category was modeled by a single hidden state, and the
output probability distribution was modeled by a single Gaussian with a diagonal
covariance matrix. In two-fold cross-validation, the recognition rate without HPSS
was 45.73%, while it increased to 72.48% by suppressing the percussive compo-
nents with HPSS.

Our system was also evaluated in the audio chord detection task (train test) in
MIREX 2008, where submitted programs were trained on 2/3 of the Beatles dataset
including 176 songs and evaluated on 1/3. The performance was evaluated by over-
lap score, which was calculated as the ratio between the overlap of the ground truth
and the detected chords and ground truth duration. As shown in Table 2, our system
showed the best performance in MIREX 2008.
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Table 2 Results of the audio chord detection task (train test) in MIREX 2008 [20]

Rank Participant Overlap Score
1 Uchiyama, Miyamoto, Ono & Sagayama 0.72
2 Ellis, D. 0.69
3 Weil & Durrieu (2) 0.62
4 Weil, J. (1) 0.60
5 Lee, K. (withtrain) 0.58
6 Khadkevich & Omologo 0.55
7 Zhang & Lash 0.36

7 Application 2: Extraction of Unit Rhythmic Patterns and
Rhythmic Structure

Rhythm is a fundamental element of music and a very significant cue to characterize
it. Generally, a music piece is constituted of multiple fundamental rhythmic patterns.
These unit rhythmic patterns segment the music piece into measures and determine
its structure at the beat and measure levels, while the global structure of the piece
can be represented by the way the multiple rhythmic patterns appear in the whole
music piece. Being able to properly extract multiple unit rhythmic patterns from
a music piece and analyze its musical structure in terms of the use of these unit
rhythmic patterns would thus be very helpful in music genre identification and music
information retrieval.

The most fundamental aspect of rhythm analysis is beat tracking [23], which is
a technique to detect the temporal positions of the beats in a piece of music. To
extract the periodicity of the beats, Tzanetakis and Cook proposed a beat histogram
in [24], which is obtained by collecting the dominant peaks of the enhanced auto-
correlation of temporal envelopes on subbands. Instead of the histogram, Peeters
applied the Discrete Fourier Transform (DFT) and the Auto-Correlation Function
(ACF) to the onset-energy function in [25]. Extracting rhythmic patterns from audio
signals is also an important issue. Paulus and Klapuri represented rhythmic patterns
by feature vectors containing loudness, spectral centroid, and MFCCs for measur-
ing similarity [26]. Dixon et al. automatically extracted a dominant rhythmic pattern
in an audio signal by bar detection in the amplitude envelope and k-means cluster-
ing [27]. The effectiveness of temporal and rhythmic features in genre classification
has also been investigated [24, 25, 27].

To extract multiple rhythmic patterns in a piece of music, it is essential to ac-
curately measure the similarity between the patterns. However, the simultaneous
presence of melodic and chordal sounds makes this problem much harder. Even if
percussive sounds are to a certain extent extracted, the automatic segmentation of
a piece into multiple patterns is not an easy task. Although the segmentation and
the extraction of rhythmic patterns have been independently handled in conven-
tional approaches [26, 27], there is inherently a mutual connection between them,
as in a “chicken-or-egg” problem: a fundamental bar-length rhythmic patterns may
be determined only after unit boundaries in the music piece are given, while unit
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Fig. 7 Original spectrogram (left) and percussion-emphasized spectrogram (right) of a piece
of popular music (RWC-MDB-G-2001 No.6) [30]

boundaries can be determined only after unit patterns are given. Another problem is
tempo fluctuation, which makes unit rhythmic patterns stretch or shrink. Altogether,
the problems to be solved for the extraction of unit rhythmic patterns from an input
audio signal can be summarized as the following four points:

(i) an input acoustic signal may contain not only percussive sounds but also melodic
and chordal sounds,

(ii) there may be fluctuations in tempo and in pattern itself made by the performer,
(iii) unit segmentation is unknown, and
(iv) unit rhythmic patterns are unknown.

Applying the HPSS technique and extracting the percussive component strongly
emphasizes the percussive rhythmic patterns as shown in Fig. 7, giving a very satis-
fying solution to problem (i).

To solve problems (ii) and (iii), we focus on the analogy with speech recognition.
If the set of unit rhythmic patterns is given as templates, problem (iii) can be consid-
ered as parallel to the continuous speech recognition problem where the One-Pass
DP (Dynamic Programming) algorithm [28] can be employed to find the sequence
of uttered words. Accordingly, One-Pass DP can be used to divide a music piece into
segments, each optimally corresponding to a template pattern. Moreover, because of
One-Pass DP’s flexibility in time alignment, problem (ii) is solved simultaneously.

Conversely to problem (iii), problem (iv), the estimation of the unit rhythmic pat-
terns, can be solved by a clustering algorithm if the segmentation is given. Hence, to
solve both problems (iii) and (iv), it is necessary to estimate segmentation and unit
patterns simultaneously. While this kind of unsupervised training problems have
been solved in various ways, the k-means clustering algorithm is employed in com-
bination with the One-Pass DP algorithm in our system, where the unit rhythmic
patterns and the music structure are trained iteratively. The details are described
in [29, 30].

Fig. 8 shows an experimental result for a piece of dance music, RWC-MDB-
G-2001 No. 16 from the RWC music database [31] down-sampled to 22.05 kHz.
We obtained the percussive spectral patterns using the I-divergence-based HPSS
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Fig. 8 Four extracted unit rhythmic pattern spectrograms from a piece of dance music (RWC-
MDB-G-2001 No. 16) (left) and the corresponding alignment, or “Rhythm Map” (right)
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Fig. 9 Four extracted unit pattern spectrograms from a piece of dance music (RWC-MDB-
G-2001 No. 16) (left) and the corresponding alignment (right) without HPSS

with 1024-point frame length and 512-point frame shift. Then, to reduce the dimen-
sions of the patterns, the spectrum of each frame was summed up to eight subbands.
The number of unit patterns was determined by the Bayesian information criterion
(BIC), which was four in the case of the piece. The estimated unit rhythmic patterns
are shown in the left part of Fig. 8 and the estimated alignment in the right part. By
listening to the music, we were able to tell that pattern 1 was repeatedly played and
once in four measures, pattern 2 was played. Following such fundamental rhythms,
an interval rhythmic pattern was played (pattern 3), followed by a pattern in the
climax part (pattern 4). This can be clearly seen in the right part of Fig. 8, which
depicts the music structure in the form of a map of rhythmic patterns, and which
we named “Rhythm Map”. For comparison, extracted unit patterns and a map of
patterns without the pre-processing to emphasize percussive component by HPSS
are shown in Fig. 9. Due to strong melodic and chordal sounds, the extracted pat-
terns do not represent characteristic rhythm patterns and the map of patterns are also
very different from the rhythm structure of this song. Another example of Rhythm
Map on a piece of popular music (RWC-MDB-G2001 No. 6) is illustrated in the
right part of Fig. 10, while the left part of Fig. 10 shows the three corresponding
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Fig. 10 Three extracted unit rhythmic pattern spectrograms from a piece of popular music
(RWC-MDB-G-2001 No. 6) (left) and the corresponding Rhythm Map (right)
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Fig. 11 Three extracted unit pattern spectrograms from a piece of popular music (RWC-
MDB-G-2001 No. 6) (left) and the corresponding alignment (right) without HPSS

rhythmic patterns. We are currently investigating the exploitation of the extracted
patterns as features for genre classification [32, 33].

8 Conclusion

In this paper, we presented the HPSS technique, which is a simple and fast separa-
tion algorithm of a monaural audio signal into harmonic and percussive components
that does not require any a priori knowledge of the score or of the included instru-
ments. Its principle is based on the anisotropies of the power spectrograms of the
harmonic and percussive components. The update rules derived through auxiliary
functions enable us to make the processing faster than real time. We also presented
examples of applications of HPSS to automatic chord detection and rhythmic-
pattern extraction, where HPSS works as an effective pre-processing for enhanc-
ing harmonic or percussive components. Applying it further to other MIR-related
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tasks such as audio onset detection, melody extraction and multi-pitch analysis is
our current concern.
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Violin Sound Quality: Expert Judgements and
Objective Measurements

Piotr Wrzeciono and Krzysztof Marasek

Abstract. Searching for objective and subjective parameters is very important in
automatic classification of multimedia databases containing recordings of musical
instruments sounds. This paper describes these parameters and methods of obtain-
ing them for a violin sound. The objective parameters are violin modes with their
properties: frequency and mutual energy factor. The subjective parameter is evalu-
ation of sound quality done by experts. Based on violin modes parameters, expert
judgements and harmony perception, a sound quality classifier was created. The es-
timated value of sound quality evaluation is consistent with expert judgements for
75.5% of instruments from AMATI multimedia database containing recordings of
violins from 10th International Henryk Wieniawski Violin Maker Competition.

1 Introduction

1.1 Multimedia Databases of Musical Instruments

There are many kinds of multimedia databases. They contain recordings of songs
and various pieces of music, samples of natural sounds, etc. Special kinds of such
databases are used for storing sounds of musical instruments. They are created
mainly to provide data for psychoacoustic research and for search of specific param-
eters of instrument sounds. Most multimedia databases of sound contain recordings
of a variety of instruments [4, 17, 19]. Other focus on one type of instrument, e.g. a
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violin [14, 15]. These databases also contain some additional information on instru-
ments such as an evaluation of sound quality made by experts. All the data make
it possible to analyze the correlation between subjective and objective properties of
sound.

Another aspect of multimedia databases of musical instruments is their useful-
ness both for musicians and instrument makers. Reliable data sets enable experts to
find the relations between musicians’ opinions and physical properties of the sound.

1.2 Automatic Classification in Databases

The most of sound parameters used in instruments quality evaluation have a subjec-
tive character. When creating multimedia databases, one can ask experts to exploit
their preferences, but if the database is very large, this method proves ineffective.
Experts judgments depend on numerous factors, e.g. on tiredness, current mood,
etc. This is the main reason for creating automatic classifiers which can estimate
jurors’ evaluations. Another approach involves calculation of just the objective pa-
rameters [11], but it is very difficult to find the relation between these properties and
the physical characteristics of instruments. Therefore, the best way to create reliable
classifiers is to search for the relation between jurors’ opinions and the physical
properties of the instrument.

1.3 Violin Sound Description and Classification

Musicians at present play a variety of music, from the Middle Ages to the modern
period. Each kind of music requires a different set of instruments and interpretation
[2, 7, 12]. This is also true for the violins. Both soloists and string ensembles want to
choose the best instruments for a particular musical performance. This means that
the proper description will depend on a reference point. This is especially impor-
tant in evaluation of dependencies between subjective and objective properties of
sound. For instance, spectral analysis of violin sound returns objective parameters,
but musicians specialized in baroque music and those who specialize in romantic
music will differ in their opinions on quality of the instrument [2, 7]. Therefore, the
reference point has to depend on the historical period and the age of the analyzed
instrument. Besides, the dependencies found between the objective parameters and
the subjective properties cannot be directly applied to the violin from another period.

This is why musicians and violin makers have worked out two main manners
of describing the violin sound. First of these is based on concepts derived from
subjective terms which describe a sound [1, 24]: classical mean (soprano), bright,
noble (soft), nasal, tight and constricted. The other is the evaluation using a point
scale of violin sound quality [14, 15] and is typically used during violin makers
competitions. Categories used in the latter one are following: sound timbre, loudness
of a string, the ease with which a sound is generated by the string, the levelling
between the strings and the individual properties of the violin sound [14, 15]. The
sound timbre category is similar to the former description, but in fact, it describes
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the quality of the violin sound, not the kind of sound. Those concepts can be used
as subjective classifiers in multimedia databases, although evaluation on the point
scale are probably much better than the verbal terms for a sound, as two violins with
different kinds of timbre can produce high quality sound [7, 12].

2 AMATI Multimedia Database

This section describes the main source of analyzed violin sounds, the AMATI mul-
timedia database.

2.1 Instruments

The International Henryk Wieniawski Violin Maker Competition is organized in
Poznań every five years. Its first edition was held in 1935 in Warsaw, and in 1952
the contest was relocated to Poznań [8]. It was in 2001, during the 10th competition,
that the idea of multimedia database of violins used in the event was first offered. Dr
Ewa Łukasik is the author of this idea and the Henryk Wieniawski Musical Society
of Poznań agreed to create such the database which contains recordings of violin
sounds, evaluations made by jury and violins’ photos [14, 15].

All the instruments were made especially for this event. The violins came from
many countries, e.g. Poland, Russia, Japan, South Korea, Italy, USA and have been
designed for romantic and modern music. Seventy instruments were recorded, fifty
four of which were included in the multimedia database. One of the violins, an
instrument built in the 19th century by Dallenz, was not used in the competition, but
was recorded to compare modern and old violins. The instruments in the AMATI
multimedia database are marked by randomly assigned numbers.

2.2 Recordings

The violin maker competition was held at two places: the Marcin Groblicz Cham-
ber in the Museum of Musical Instruments and the Concert Hall of Adam Mick-
iewicz University, both in Poznań, Poland. The recordings, however, were done only
at the Marcin Groblicz Chamber to enable a correlation between jurors’ opinions
and the objective properties of sound. The conditions during the recording session
were the same as those during the second stage of the competition. The violinist used
the same bow during the entire session. The following sounds were recorded: whole
strings (G,D,A,E) in both directions of a bow, pizzicatos on each string, chromatic
scales on each string, diatonic scale and Sarabanda from Partita d-minor BWV 1004
by Johann Sebastian Bach. The same repertoire was performed during the second
stage of the competition in the Marcin Groblicz Chamber. The scales and whole
strings were played without tremolo and vibrato . The recordings were made in the
near and far field. The following equipment was used: BRÜEL & KJÆR DPA4011
microphone with a cardioid characteristics for the near field, TONSIL MC358
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microphone with a supercardioid characteristic for the far field, SONOSAX SX-
M2 microphone preamplifier, and PHILIPS CDR880 CD-recorder. The sampling
frequency was 44.1 kHz. The PCM signal had a 16-bit resolution. The recordings
were made by Ewa Łukasik and Piotr Wrzeciono. First channel contains near field
signal, while the second the far field signal. The near field recordings were made at
about 1-m distance from the instrument. The far field recordings were made at about
10-m distance from the violin (Fig. 1).

Fig. 1 Positioning of mi-
crophones in the Marcin
Groblicz Chamber

2.3 Jury

Four independently working musicians formed the jury during the second stage of
10th Henryk Wieniawski International Violin Maker Competition. They judged ac-
cording to the following categories:

• loudness of sound (per string – from 4 to 20 points),
• timbre of violin sound (per string – from 4 to 20 points),
• ease of sound generation (from 1 to 20 points),
• levelling between strings (from 1 to 15 points),
• correctness of the instrument’s assembly (from 1 to 10 points)
• individual properties of the violin sound (from 1 to 15 points).

During each performance the jurors knew only the number assigned to the violin.
The evaluation of the violin’s assembly was made after the hearings. The members
of the jury came from different countries. The final score of instrument was calcu-
lated as the arithmetic mean value of four evaluations given by jurors.

The AMATI database contains the complete evaluation from all four jurors.

3 Violin Modes Determination

Violin modes are used as the main parameter in description of instruments and are
also very important for violin maker. This section describes properties of modes,
methods of searching for them, and a violinist’s reaction for their presence in energy
spectrum.
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3.1 The Violins Modes – Definition

The main parts of a violin body are its belly (table), back and sound post [1, 12]. The
belly is the upper wooden plate under the strings, and the back is the lower wooden
plate. The sound post is a small rod between the belly and the back. The role of
the sound post is to transmit vibrations from the belly to the back. Both plates act
as membranes. On these surfaces, as well as inside the violin body, standing waves
appear [1,9,12]. These standing waves, which come from the belly, the back and the
inside, are called violin modes [1,9,12]. Violin makers distinguish six modes [1,9]:
C1, A0, C2, T1, C3 and C4. The C1 mode, which is determined by the shape of
plates, has a frequency of 198 Hz. The frequency of the A0 mode is about 270 Hz
and comes from the violin body. The T1 mode is named the main wood resonance.
Typically, the relation between frequencies of the T1 mode and the A0 mode is 1.5
[1,9]. The C2 and C3 modes are close to the T1 mode. The C2 mode frequency is
lower than that of the T1 mode, whereas the C3 frequency is higher than that of the
T1 mode. The C4 mode lies in the range from 650 Hz to 810 Hz. A violin may have
many more modes, but the presented modes have the highest energy in the spectrum
of violin sound.

3.2 Impulse Response of Violin Body

The impulse response of the violin body is an instrument’s reaction to an impact by
a normalized weight [1, 24]. The normalized weight is dropped onto the bridge of
a violin. Next, the vibrations of the instrument are measured by accelerometers and
spectrally analyzed. The main assumption of this method is the linearity of the violin
body [1, 24]. In reality, the violin is a nonlinear system [18]. Because of this, the
analysis of an impulse response cannot be used to predict the instrument’s timbre,
but it is useful for searching of the violin modes. This method makes possible to find
the frequencies of modes but is ineffective when searching for energetic relations
between modes or for nonlinear analyses [18].

3.3 Chromatic Scales Played on Violin and Their Spectra

The analysis of the violin sound generated in a normal way (using the bow) is neces-
sary when searching for significant correlations. For proper analysis of violin sound
also normally generated sound must be used, e.g. recordings of musical scales. They
contain sounds with different fundamental frequencies and harmonics of scale tones.
There are numerous musical scales, e.g. major, minor, etc. One of them, the chro-
matic scale, is very special. It contains all the sounds that can be played on an instru-
ment [6], making the recordings of chromatic scales very useful for the research. In
Fig. 2 four energy spectra of chromatic scales played on the violin are shown. These
spectra were calculated by DTFT with a 1 Hz frequency resolution. The scale of
normalized energy is linear, whereas the scale of frequency is logarithmic.



242 P. Wrzeciono and K. Marasek

Fig. 2 Sample energy spectra of the chromatic scales played on G string (a), on D string (b),
on A string (c) and on E string (d) (violin no. 30)

The energy spectra of chromatic scales have a very interesting property. All of
them have the most prominent maximum for the same frequency and also the greater
energy is concentrated in the neighborhood of these extrema. The frequencies of the
maxima are the same as the modes frequencies, e.g. on Figures 2a, 2b, and 2c,
the global maximum has the same frequency as the T1 mode. The modes are also
present in the violin sound spectrum [20, 21, 22, 23].

3.4 Violin Player and His Reaction to Mode

It is possible to find modes in the energy spectrum of the violin sound (Fig.2). The
question, however, is: can the violinist hear them? And how this affects his play?
The hearing process is very complex, and so is the violin sound. In an attempt to find
an answer to this question analysis of spectral neighborhood of modes was done.

First a statistical analysis of the violinist’s precision when playing a chromatic
scale was done [23]. In this research, statistical analysis of the fundamental fre-
quencies was used. It was observed that the distributions of fundamental frequency
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of the tones for frequencies close to the modes were not Gaussian, while the fre-
quency distributions of another tones of chromatic scales were Gaussian. Because
of this, we hypothesize that the violinist hears the modes. The musician reacts to the
mode and modifies his own style of performance. For this reason, the distribution
of the fundamental frequency for tones close the violin modes was not the Gaussian
distribution.

In the second analysis a comparison of energy spectra of the chromatic scale
tones which are close to the violin modes frequencies was done. It was observed that
the resonance curve of the string was modified when the relation between the energy
of the fundamental frequency and the mode is less than 10 dB. If this difference was
bigger than 10 dB, an unmodified resonance curve was observed. This effect was
observed for the most of the instruments from the AMATI database. Fig.3 illustrates
this effect for the C3 mode.

Fig. 3 a. The violinist did not hear the mode. The fundamental frequency: 533.68 Hz, the
frequency of the mode: 536.38 Hz (violin no. 118) b. The violinist heard the mode and modi-
fied his own performance. The fundamental frequency: 531.58 Hz, the frequency of the mode:
534.58 Hz (violin no. 85).

All the instruments from the AMATI multimedia database were analyzed in this
research. For all the modes the result was the same – when the difference between
the energy of the fundamental tone and the energy of the mode is greater than ca
10 dB, the violinist does not hear the mode. In other cases, the violinist always
modifies the resonance curve of the string.

Very similar results were obtained by Hafke [5] and Yoshida, Hasegawa and Ka-
suga [25].

4 Methods of Searching for Violin Modes

This section presents a method of searching for violin modes in energy spectra of
chromatic scale. Description contains also a mathematical model of violin sound,
and chromatic scales played on this instrument.
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4.1 Mathematical Model of Violin Sound

As follows from our analysis the modes are present in the energy spectrum of vio-
lin sound and are also recognized by musicians. This can be used in an automatic
search of modes [21, 22]. Violin sound consists of a fundamental frequency tone
from the string, harmonics of the fundamental tone and the modes. A frequency and
amplitude of the fundamental tone and its harmonics are stochastic processes. The
amplitude of the modes are also stochastic, but the frequencies of all the modes are
deterministic. Therefore, the violin sound can be described as a random process in
the time domain:

U(t) =
N

∑
k=1

Fk(t)Ak cos(kΩ t +Φk)+
M

∑
l=1

Gl(t)Bl cos(ωlt +Θl) (1)

where U(t) is a random process which describes the violin sound. The first part
describes the signal which comes from a string, the second describes the signal from
the violin modes. Ω is the fundamental pulsation of the sound, N is the number
of the harmonics, Φk is the phase of k-th harmonic. Ak is the amplitude of k-th
harmonic, Fk(t) is the envelope of k-th harmonic. M is the number of the violin
modes, ωl is the pulsation of the l-th violin mode,Θl is the phase of the l-th violin
mode, Bl is the amplitude of the l-th mode and Gl(t) is the envelope function of the l-
th mode. The Fk(t) and Gl(t) are also random processes. Ak,Ω ,Φk, Bl andΘl are the
random variables. Only the pulsations of the modes are deterministic. The envelope
functions Fk(t) and Gl(t), the amplitudes and the phases depend on many factors e.g.
the violinist’s performance. The Formula (1) shows the main properties of the violin
sound – the deterministic modes of the belly, the back and the whole violin body
and the random character of the other components of the sound signal. This formula
does not contain any components which come from the non-linear effects of the beat
frequencies in the spectral neighborhood of the modes. This effect is clearly visible
in the energy spectra of the violin sound, but it does not have any influence on the
algorithm of searching for violin modes. Typically, the energy of beat frequencies is
lower by at least 10 dB than the energy of the mode or the fundamental frequency.
In Figure 4 an energy relations between the C4 mode, the fundamental frequency of
the string (the C5 tone) and the beat frequencies are shown.

4.2 Mathematical Model of Chromatic Scale

Formula (1) describes a single violin tone. The chromatic scale have many tones.
There are four chromatic scales containing all the possible tones which can be
played on the violin [2, 6, 7, 12]. The table below describes all of them with the
assumption that the A4 tone has been tuned to 443 Hz. The instruments recorded
in the AMATI multimedia database were tuned to this reference frequency. The fre-
quencies in Table 1 are the fundamental frequencies of the tones.
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Fig. 4 The beat frequencies in the neighborhood of the C3 mode and the C5 tone played on
violin. The global maximum is the fundamental frequency of the tone, the second maximum
is the violin mode. (violin no. 85)

Table 1 The chromatic scales on violin

The G string The D string The A string The E string
Tones Frequencies Tones Frequencies Tones Frequencies Tones Frequencies

G3 197.33 Hz D4 295.67 Hz A4 443.00 Hz E5 663.75 Hz
÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷
G5 789.34 Hz D6 1182.67 Hz A6 1772.00 Hz E7 2655.00 Hz

Using this information, we can write a formula which describes the chromatic
scale played on the violin. This is also a random process.

Uscale(t) = U1(t)+U2(t − t̃sound1)+U3(t − (t̃sound1 + t̃sound2))+ ...+
+U25(t − (t̃sound1 + t̃sound2 + ...+ t̃sound24)) (2)

Uscale(t) is the random process for the one chromatic scale. U1(t),U2(t), ...,U25(t)
are the random processes as described by Formula (1). Indexes represent the tones of
the chromatic scale. Number 1 is the first, 2 is second, etc. t̃sound1 , t̃sound2 , ..., t̃sound24

are duration times of the tones which are also random variables. Using (1) in substi-
tution of U(t):

Uscale(t) =
M

∑
l=1

Ǧl(t)cos(ωlt + θ̃l)+
N1

∑
k1=1

F̌k1(t)cos(k1ω̃1t + φ̃k1)+

+
N2

∑
k2=1

F̌k2(t − t̃sound1)cos(k2ω̃2(t − t̃sound1)+ φ̃k2)+ ...+ (3)

+
N25

∑
k25=1

F̌k25(t −
24

∑
r=1

t̃soundr)cos(k25ω̃25(t −
24

∑
r=1

t̃soundr)+ φ̃k25)
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This formula describes the single chromatic scale, where N1,N2, ...,N25 are the num-
bers of the harmonics for each tone of the chromatic scale. The tones are indexed
as in Formula (2). F̌k1(t), F̌k2(t), ..., F̌k25(t) where F̌km(t) = Fkm(t)Akm are the enve-
lope of the harmonics for the tones, ω̃1,ω̃2,...,ω̃25 are the fundamental pulsations,
Φ̃k1 ,Φ̃k2 , ...,Φ̃k25 are the phases of k-th harmonic for the tone of the chromatic scale
marked by number in index of k, M is the number of the violin modes, Ǧl(t) where
Ǧl(t) = Gl(t)Bl is the envelope function for the l-th mode. The remaining symbols
in Formula (3) are the same as in Formula (1).

4.3 Correlation between Different Chromatic Scales

Four chromatic scales were played on each instrument, with one scale on each string.
In the time domain, these scales are described by Formula (3), which was used to
search for an instrument’s modes within its sound.

Mode frequencies are the only deterministic components in Formula (3), while
the other elements of the formula are either random variables or stochastic pro-
cesses. Accordingly, the use of a statistical analysis in the stochastic process (3)
made it possible to isolate an instrument’s modes from a recorded sound. The au-
tocorrelation function and the cross correlation function were used in the statistical
analysis below.

The autocorrelation function is used to isolate the most important temporal ele-
ments, whereas the cross correlation function helps to search for common elements
in at least two stochastic processes. Both functions were used to study the recordings
of chromatic scales.

The power density function, also called the energy spectrum, is a frequency
equivalent of the autocorrelation function, the product of Fourier transforms of au-
tocorrelation functions corresponds to the cross correlation function between them
in the time domain.

In the energy spectra of chromatic scales energy visibly concentrates around fre-
quencies where modes are expected to be present. What could also be seen there are
components derived from the fundamental frequencies of a chromatic scale. Thus,
the application of the autocorrelation function alone to establish mode frequencies
proved insufficient. However, since four recordings of chromatic scales for different
strings and frequencies were available, it was possible to calculate the cross cor-
relation function between autocorrelation functions calculated for each of the four
scales.

Just like in the case of the autocorrelation function analysis, the calculations were
made in the frequency domain. Prior to that, however, it was necessary to make sure
if in this kind of analysis mode-related components would not be accompanied by
component from the sounds of a chromatic scale.

A violin is a non-fretted instrument, and so the accuracy of the fundamental fre-
quency of the sound generated by the instrument depends on the precision with
which a violinist handles it. If the probability of a violinist hitting the right pitch is
very high, the analysis of sound based on the cross correlation function will prove



Violin Sound Quality: Expert Judgements and Objective Measurements 247

useless for the isolation of mode components from those produced by a string. To
see whether spectrum components derived from the sounds of a chromatic scale
would also be present in the spectrum of the cross correlation function, the study
into the precision of a violinist’s performance was conducted [23]. The recordings
used in the analysis came from the AMATI database.

The study involved the searching for the fundamental frequency of a scale sound,
testing the type of distribution that contains a set of fundamental frequencies for
each sound of a chromatic scale, calculating the Q-factor of a string [23], and esti-
mating the probability with which a sound from the same chromatic scale will be
played with the accuracy defined by the Q-factor of a string [23].

It was found that in the 197 Hz – 470 Hz band the probability of a violinist
hitting the right pitch is considerably high, i.e. 11.73% – 66.6% [23]. Beyond this
band, the probability of hitting the right pitch shrinks to 0. Therefore, a spectrum
of the correlation between the autocorrelation functions of chromatic scales in the
197 Hz – 470 Hz band will contain mode-related components of the instrument
as well as those related to the sounds of a chromatic scale. Consequently, it was
necessary to use recordings which did not contain frequencies related to the sounds
of the scale within the 197 Hz – 470 Hz band. The recording of a chromatic scale
played on E string, where the first sound of the scale (E5) has the frequency of
663.75 Hz (in relation to A4 tuned to 443 Hz), possesses this particular property. In
this frequency band, the spectrum of a chromatic scale played on E string contains
only those components that are of the mode origin. However, these components have
low energy values and are considerably distorted by noise. The application of the
cross correlation function in this case led to the isolation of violin modes and the
attenuation of the components derived from a vibrating string.

To sum up, the whole analysis is made in the frequency domain, and it is the
calculation of the energy spectra of chromatic scales. In the 197 Hz – 650 Hz band,
the recordings of chromatic scales on G and E strings are used, whereas in the
650 Hz – 3200 Hz band, all the recordings are used.

The reason why the recordings of chromatic scales on G and E strings were se-
lected is that in the frequency band of 197 Hz – 650 Hz the recording of a chromatic
scale played on G string has frequencies in the neighborhood of the C1, A0, C2,
T1 and C3 modes, and the recording of a scale played on E string contains only
the components related to these modes. For this reason, the spectrum of the cross
correlation function for the autocorrelation of recordings on G and E strings in the
197 Hz – 650 Hz band has considerable maxima only for the instrument’s frequency
modes.

The cutoff frequency of the correlation analysis was determined empirically for
the instruments in the AMATI database. For these violins, all the modes above
3200 Hz have very low energy values – approximately 90 dB lower than the max-
imum value in the energy spectrum. This is true for all the violins in the AMATI
database.
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4.4 Algorithm of Mode Search

As mentioned above, both the autocorrelation and the cross correlation functions
can be used to search for modes in the spectrum of the violin sound. The search is
implemented in the frequency domain, and the spectrum is calculated with using the
DTFT (Discrete Time Fourier Transform). The application of this transformation is
determined by the fact that regardless of the number of signal samples in the time
domain, it is possible to calculate a spectrum for any frequency. Each recording
of a chromatic scale has a different number of samples. Besides, the number of
chromatic scale samples for any of the instruments in the database is not a power of
2. Thus, the application of FFT proves very difficult.

Also, due to the fact that the number of samples of each recording is different it
was necessary to normalize each spectrum with reference to the maximum energy
value found in the band as explained below.

The band where modes were searched for was divided into three sub-bands: the
first covers the 197 Hz – 650 Hz frequency range, the second 650 Hz – 810 Hz, and
the third 810 Hz – 3200 Hz.

The 197 Hz – 650 Hz band was isolated on the basis of the study results described
in Section 4.3. The 650 Hz – 810 Hz frequency band covers the range where the C4
mode should be present. The third sub-band, 810 Hz – 3200 Hz, contains higher
violin modes, whose energy values are considerably lower than those of C1, A0,
C2, T1, C3 and C4. The recordings of chromatic scales on G and E strings are used
to search for modes within the first band, whereas all of the recordings of chromatic
scales are used for the other sub-bands. Consequently, three algorithms of mode
search were made [21, 22].

As a result two parameters are found for each mode: frequency fmod and the
mutual energy factor E f . The mutual energy factor E f is the product of the values
of normalized energy spectra Enk for the frequency f ; k is the index of normalized
energy spectrum.

E f = En1( f ) ·En2( f ) · . . . ·Enk( f ) where minimal value of k is 2 (4)

The algorithms search for the most important maxima in the product of normalized
energy spectra. The first method uses the recordings of chromatic scales on G and
E strings in the 197 Hz – 650 Hz band [21]. In the second, all the recordings of
chromatic scales are searched in the 650 Hz – 810 Hz frequency range [22]. The
algorithm for finding modes in the 810 Hz – 3200 Hz band is the same as the one
used for finding modes in the 650 Hz – 810 Hz band.

4.5 Application of BST in the Elimination of Redundant Maxima

Due to the presence of noise in recordings the number of found maxima may ex-
ceed the number of modes. This happens most often in the 197 Hz – 650 Hz fre-
quency range, where a scale played on E string is used. For the other frequency
range (650 Hz – 3200 Hz), all the modes are marked correctly.
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In order to avoid an incorrect recognition of modes it was necessary to determine
the maximum band that can be occupied by a single mode in the energy spectrum of
the violin sound. Following the analysis of 20 spectra of recordings on E string in the
197 Hz – 650 Hz band, it was found that the maximum relative 10 dB bandwidth
occupied by a single mode is approximately that of 100 cents in each spectrum
separately.

It was then necessary to find extrema which were less than 50 cents apart, and
mark the highest one as the proper mode. This was done with using the BST (Binary
Search Tree). The reference value is the absolute value of the ratio of two frequen-
cies expressed in cents. If the value of this measure is lower than 50 cents, the
maximum value is saved in the left sub-tree. In any other case the maximum value
is saved in the right sub-tree. The maximum value is recorded as an object com-
prising two variables: mode frequency and mutual energy factor. When the BST is
complete, the number of leaves in the right sub-tree equals the number of the modes.
The correct frequencies of modes are determined by finding the highest maximum
value in the left sub-trees.

4.6 Results and the Interpretation of Parameters

The modes were found for the all instruments in the AMATI database. Recordings
from the near field were used, spectra calculations were done with 1 Hz frequency
resolution and modes were found using above mentioned method based on the BST.
The value of an acceptance threshold variable was 0.1. The acceptance threshold is
the variable which decides about an acceptance or a rejection of the found mode.
If a quotient of the mutual energy factor of found mode and the maximum value of
mutual energy factor for the all found modes is less than the acceptance threshold
value, the mode will be rejected. Sample results for two instruments are shown in
the table below, where the following symbols are used: the mode frequency fmod and
the mutual energy factor E f (the value of the mutual energy factor for the frequency
is indicated on the right).

The C1 mode (198 Hz) is missing from the results shown in Table 2. The same
happens for the other instruments in the AMATI database. Also, the A0 mode (about

Table 2 Modes found for two violins in the AMATI database

Instrument no. 23
fmod [Hz] E f fmod [Hz] E f fmod [Hz] E f

265 2.32E-02 279 1.96E-02 420 1.12E-001
489 1.58E-01 558 4.17E-02 758 3.22E-003
901 1.48E-04

Instrument no. 80
fmod [Hz] E f fmod [Hz] E f fmod [Hz] E f

279 7.47E-02 503 5.92E-02 523 2.80E-01
760 3.95E-03 884 3.90E-04
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270 Hz) was not found for some of the instruments. In both cases the reason is low
energy value for C1 and A0 modes. Presumably, a reduced value of the acceptance
threshold would have made it possible to find the C1 and A0 modes in each studied
case. Nevertheless, if a mode was not found with the value 0.1 of the acceptance
threshold, the influence of the undetected mode on the violin tone is negligible.

A mode frequency is interpreted as a standing wave frequency. Additionally,
though, these calculations yield another parameter called mutual energy factor,
which is a result of calculations involving normalized energy spectra. This parame-
ter can have the values of 〈0,1〉 interval. The higher its value, the higher the energy
of a given mode in the spectra of chromatic scales. For example, for many instru-
ments the mutual energy factor reaches its highest values for the T1 mode. This
mode also has the highest amplitude in studies involving the impulse response. In
the 810 Hz – 3200 Hz band, on the other hand, the values of the mutual energy
factor are very low.

In the 197 Hz – 650 Hz band, the mutual energy factor can also be interpreted as a
parameter describing the behavior of the modes during the violinist’s performance.
If, for example, the value of this factor of the mode is close to 1, the mode have the
same behavior for different energy levels of excitation.

To sum up, as a result of the implementation of the above-mentioned algorithms,
a set of pairs of parameters (frequency, mutual energy factor) is obtained for each
violin. These parameters describe the behavior of an instrument being played.

5 Analysis of Jurors’ Evaluation of Sound Quality

The jurors’ evaluation of sound quality is a subjective parameter in point-based
scale. It is possible to make an error analysis of the sound quality evaluation. This
section presents results of this analysis for AMATI database.

5.1 Modes and Quality of Sound

The research study was aimed at finding correlations between modes and the ap-
praisal of the violin tone quality. The quality of tone is a subjective parameter,
whereas the parameters of the modes of violins are objective. What proves to be
a major problem is the subjective description of a sound. The way musicians assess
the sound of an instrument depends on the repertoire they play, and may vary ac-
cordingly [7]. Presumably, since violins differ from each other in their modes, the
modes themselves that may substantially affect on expert’s opinion.

Therefore, it would seem that more appropriate to implement the point-based
evaluation of sound quality, as used in violin maker competitions, rather than a
verbal evaluation, as suggested in Yankovski’s work [24]. The assessment in the
AMATI database is point-based and was expressed in the form of numeral values
during the competition. The jurors may then be regarded as measurement devices,
for which an error analysis can be made and based on that a classifier can be build.
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The classifier, based on mode parameters (frequency, mutual energy factor), will
make it possible to assess the expert evaluation in the instrument sound category.

5.2 Error Analysis of Jurors’ Assessment

The AMATI database contains the jurors’ complete assessments (in all the cate-
gories) of all the instruments that took part in the second stage of the competition.
79 instruments qualified for this stage. Since each instrument constitutes an indepen-
dent object of measurement, such a number of violins is sufficient for the calculation
of the real accuracy value of the jurors’ assessments. This kind of analysis was made
for the assessments in the sound quality category.

In accordance with the competition regulations, each juror gave marks in the
timbre of violin sound in the range of 4 – 20 points, with 1 point accuracy. Such a
mark is treated as a numeral value, the ultimate mark being an arithmetic mean of
all the jurors’ marks. The same statistics as the ones applied in the error analysis [3]
should then be applied here.

The following estimators were used in the error analysis:

1. Arithmetic mean μ :

μ =
1
N

N

∑
i=1

ki (5)

2. Standard deviation σ :

σ =

√
1

N −1

N

∑
i=1

(ki − μ)2 (6)

In the above formulas, N is the number of random samples, whereas ki is the i-
th value in the random sample. In the case of a small number of measurements
the standard deviation σ must be modified by the Student-Fisher factor [3]. The
modification involves the multiplication of the value obtain from Formula(6) by
the Student-Fisher factor tn,a [3], which value depends on the number of random
samples n and the required probability a [3].

The error analysis was made independently for each instrument. The value of the
Student-Fisher factor was 1.197, with the assumption that the number of measure-
ments was 4 (the same as the number of jurors), and the probability was 0.6826
(which corresponds to the confidence level standard deviation for normal distribu-
tion [3].) Sample results for 15 instruments are shown in Table 3.

On the basis of the calculated statistics, it was found that juror’s accuracy was
lower than that assumed in the competition regulations. As a result, the average ac-
curacy of the jurors was assessed as the arithmetic mean of all the values of standard
deviations. The measurement error of the jurors’ evaluation in the sound quality cat-
egory is ±1.98 points.
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Table 3 Sample error analysis for 15 instruments in the AMATI database in the sound quality
category

Instrument Mark Juror I Mark Juror II Mark Juror III Mark Juror IV μ σ σ · t4,0.6826

15 10 10 9 10 9.75 0.5 0.6
23 11 11 9 11 10.5 1 1.2
24 10 9 8 10 9.25 0.96 1.15
30 18 17 15 18 17 1.41 1.69
32 15 14 12 15 14 1.41 1.69
43 9 12 4 9 8.5 3.32 3.97
66 12 12 8 12 11 2 2.39
72 16 16 12 16 15 2 2.39
80 14 16 11 14 13.75 2.06 2.47
85 15 14 12 19 15 2.94 3.52
89 17 16 16 19 17 1.41 1.69

100 12 14 9 12 11.75 2.06 2.47
109 11 12 9 11 10.75 1.26 1.51
111 12 11 8 12 10.75 1.9 2.27
118 17 15 17 17 16.5 1 1.2

6 Sound Quality Appraisal

Classifier for sound quality evaluation calculates a value of this subjective param-
eter basing on objective properties of violin sound and information about hearing
process . This section describes assumptions of estimating experts’ judgements and
results of comparing calculated sound quality evaluation with juror’s evaluation in
this category.

6.1 Harmony and Four Categories of Intervals

The research study shows that the entire complex spectrum of the violin tone in-
cludes mode-related components, and that these components can be isolated from
the spectrum. The next task is to investigate the problem of how a listener reacts to
modes and which mechanism in the hearing process is responsible for this reaction.
The answer to this question can be found in the results of neurobiological studies
concerning the hearing process and the distinction of the musical and non-musical
sound. The latest studies make use of neuron activity imaging of MRI (Magnetic
Resonance Imaging) [16]. On the basis of the results of these studies it is possible
to predict a listener’s reaction to the presence of modes in the violin sound.

In the numerous studies of musical hearing [16], it has been observed that the
main reason for deciding whether a sound possesses a musical quality are the har-
monic relations between the elements of spectrum [16]. The ability to effectively
distinguish these harmonic relations depends on listener’s musical education as well
as energy relationships in a spectrum. A similar reaction may then be expected when
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listening to a violin sound, because the spectrum of this instrument contains mode-
related components. As a result, the appraisal of the violin tone quality should de-
pend on the type of harmony and energetic relationships between the modes of an
instrument. This hypothesis can be verified by designing an appropriate classifier
that will estimate the jurors’ appraisals of tone quality, and which will take into
account mode parameters (mutual energy factor and frequency), energetic relation-
ships between these modes and the principles of harmony.

Musical harmony is a set of rules with regard to chords and progressions of
sounds. The concept of harmony is by all means subjective – there are a number
of theories of harmony with distinct definitions of consonance, dissonance, and the
rules of how they should be combined [2, 6, 7, 13]. The concept of harmony keeps
changing and may depend on the historical period or geographical location. In the
western world, however, the principal harmony evolved on the basis of the equal
tone temperament system where the semitone, always has the same size (100 cents),
is the smallest unit [2, 13].

Consonances and dissonances are axioms in harmony. In classic harmony, the
unison interval (0 cents), the major third interval (400 cents), the perfect fifth in-
terval (700 cents) and the octave interval (1200 cents) are all consonances. The
minor third (300 cents) is also a consonance, as it is part of a minor chord. The other
intervals are dissonances. However, due to the existence of other harmony rules, dis-
sonances can be divided into three categories [13]: strong dissonance, dissonance,
and light dissonance. The tritone (600 cents), the augmented octave (1300 cents)
and the minor second (100 cents) should be regarded as strong dissonances. The
major sixth interval (900 cents), in turn, should be regarded as a light dissonance.
The reasons for such a division of intervals are quite complex – the fact that the
tritone, for example, belongs to strong dissonances can be traced back to the Mid-
dle Ages, when it was referred to as devilish (diabolus in musica) and its use was
forbidden [13].

The above-mentioned distinction is common in the western musical tradition
and is seen as something obvious. Consequently, it can be assumed that musicians
trained in this tradition will respond accordingly.

Therefore, a hypothesis was put forward that, when assessing the violin tone
quality, the jurors mainly took into account the consonance between the instru-
ment’s modes, subconsciously applying the interval classification that follows from
the rules of harmony. The division into the four groups of intervals – strong dis-
sonance, dissonance, light dissonance and consonance – was also assumed to be a
rule.

6.2 Weighted Average as Classifier of Violin Tone Quality

The classifier which used to evaluate the jurors’ appraisals in the tone quality cate-
gory should take into account both subjective and objective parameters. The objec-
tive parameters are the instrument’s modes – frequency and the mutual energy factor.
The subjective qualities are the harmony relationships between mode frequencies.



254 P. Wrzeciono and K. Marasek

The relationships between mode frequencies were arranged in accordance with the
rules of the equal temperament system and were then assigned to one of the four
categories: strong dissonance, dissonance, light dissonance and consonance. All the
intervals expressed in cents were normalized by modulo 1200 cents to allow all the
relationships to be octave-related.

The intervals were classified in accordance with the rules described in Table 4.

Table 4 Classification of intervals used in the classifier for the appraisal of violin tone quality

Interval [cent] Name Class

〈0,50) Unison Consonance
〈50,150) Minor second Strong dissonance
〈150,250) Major second Dissonance
〈250,350) Minor third Consonance
〈350,450) Major third Consonance
〈450,550) Perfect fourth Dissonance
〈550,650) Tritone Strong dissonance
〈650,750) Perfect fifth Consonance
〈750,850) Minor sixth Dissonance
〈850,950) Major sixth Light dissonance
〈950,1050) Minor seventh Dissonance
〈1050,1150) Major seventh Dissonance
〈1150,1200) Octave Consonance

Each category was assigned a value defined as the weight of interval evaluation:
WSD for strong dissonance, WD for dissonance, WLD for light dissonance and WCN

for consonance.
In order to describe the energetic relationships, an importance factor, with the

〈0,1〉 value range, was formulated. The 0 value means that a given interval is not
significant in terms of its energetic qualities, whereas 1 means that the interval must
be considered in the analysis. Intermediate values between 0 and 1 are the measure
of the importance of a given interval. The importance factor is described with the
following formula:

ξk,i = mk ·mi (7)

ξk.i in this formula is the importance factor, mk is the value of the mutual energy
factor for the k-th mode, and mi is the mutual energy factor for the i-th mode.

The following weight factor array for M modes is calculated for each instrument:

Ξ =

⎡
⎢⎢⎢⎣
ξ1,1 ξ2,1 · · · ξM,1

ξ1,2 ξ2,2 · · · ξM,2
...

...
. . .

...
ξ1,M ξ2,M · · · ξM,M

⎤
⎥⎥⎥⎦ (8)
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Since ξk,i = ξi,k and the comparison of a mode with itself do net add any new infor-
mation, only the upper triangular matrix derived from the matrix Ξ is used. Each im-
portance factor is also linked to the musical relationship between mode frequencies.
This relationship is expressed in cents and belonging to one of the four categories:
strong dissonance, dissonance, light dissonance and consonance.

All the above-mentioned parameters enable a numeral description of objective
energetic relationships as well as subjective harmonic relationships between violin
modes. A weighted average was used to combine these parameters and to design a
classifier for the appraisal of the violin tone quality. This classifier is described by
the following formula:

eq =

WSD

MSD

∑
k=1

ξ SD
k +WD

MD

∑
k=1

ξD
k +WLD

MLD

∑
k=1

ξ LD
k +WCN

MCN

∑
k=1

ξCN
k

MSD

∑
k=1

ξ SD
k +

MD

∑
k=1

ξD
k +

MLD

∑
k=1

ξ LD
k +

MCN

∑
k=1

ξCN
k

(9)

The following symbols were used in Formula (9): eq – estimated value of the ap-
praisal of tone quality, SD – strong dissonance, D – dissonance, LD – light disso-
nance, CN – consonance, MSD – number of strong dissonances, MD – number of
dissonances, MLD – number of light dissonances, MCN – number of consonances,
WSD – weight for the strong dissonance category, WD – weight for the dissonance
category, WLD – weight for the light dissonance category, WCN – weight for the
consonance category, ξ SD

k – importance factor for the k-th strong dissonance, ξD
k –

importance factor for the k-th dissonance, ξ LD
k – importance factor for the k-th light

dissonance, ξCN
k – importance factor for the k-th consonance.

The weights for four types of intervals – WSD, WD, WLD and WCN – cannot be
calculated directly with Formula (9). In order to calculate WSD, WD, WLD and WCN , a
Monte Carlo method was used (Section 6.3). The mutual energy factors come from
the upper triangular part of the matrix Ξ .

6.3 Calculation of Weights with Monte Carlo Method

As mentioned above, the weights for four types of intervals cannot be calculated
directly. In order to find them it is necessary to use the jurors’ assessments for a
group of instruments, establish their mode parameters and calculate their weights.
Algorithms from the Monte Carlo family [10] prove to be useful in this case.

Formula (9) contains four unknown parameters: WSD, WD, WLD and WCN . To find
them, we need to use different violins. Each instrument was assessed for its tone
quality, with the final mark being the arithmetic mean of the jurors’ four individual
marks. This average mark was treated as the required value eq. The error function
used to measure the difference between the calculated values and the jurors’ marks
was expressed as follows:
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err =
1

Nv
·

Nv

∑
k=1

|eqk − ẽqk| (10)

Formula (10) contains the following symbols: err – error value, Nv– number of in-
struments used for the calculation of interval weights, eqk – average jurors’ mark in
the tone-quality category for the k-th instrument, ẽqk – mark value calculated with
the use of the classifier described by Formula (9) for the k-th instrument.

The algorithm applied in the search for the interval weights is as follows:

I. Input data

1. Number of instruments: NV.
2. VIOLINS array of PARAM objects. The VIOLIN array has NV elements.

Each element represents one instrument. The PARAM object has the follow-
ing properties:
• average jurors’ mark: quality eval,
• number of modes of the violin: MN,
• number assigned to instrument NUMBER,
• VIOLIN MODE array of objects.

These object have two properties: mod freq (mode frequency) and mu-
tual energy factor. The number of elements in this array is equal to the
number of modes of the instrument.

3. Initial weight values WSD, WD, WLD, WCN
4. Maximum step of modification of WSD, WD, WLD, WCN max step,
5. Assumed minimum error value err min.

II. Output data

1. Weight values: WSD, WD, WLD, WCN,
2. Actual error level err,
3. EVALUATIONS array. This array has NV elements and containins the calcu-

lated mark values for the instruments whose parameters are in the VIOLINS
array.

III. Method

1. Enter the input data.
2. Create matrix Ξ for each of the instruments in the VIOLINS array.
3. Calculate the mark value for each instrument with Formula (9).
4. Calculate the err value with Formula (10).
5. Is the value err < err min ?
6. If so, complete the calculations and close the program.
7. If err ≤ err min, then:
8. Generate random value of

modification step of WSD from the 〈−max step,max step〉 range.
9. Generate random value of

modification step of WD from the 〈−max step,max step〉 range.
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10. Generate random value of
modification step of WLD from the 〈−max step,max step〉 range.

11. Generate random value of
modification step of WCN from the 〈−max step,max step〉 range.

12. Save the current weight values WSD, WD, WLD, WCD, the value of the all
calculated marks for the instruments, and the current value of the variable
err.

13. Modify all the weights by adding the previously randomized diversion steps.
14. Calculate a new err value.
15. If the new err value is smaller than the previous value of this variable, return

to step 5.
16. If the new err value is bigger than the previous one, restore the previous

weight values and return to step 8.

The algorithm above was used to calculate the interval weights for 15 instruments
from the Table 3. The minimum error value obtained (err), calculated with Formula
(10), was 1.97 (1.96650644697478). The near-field recordings were used for the
purpose of the calculations. When searching for the weights, only the modes from
the 197 Hz – 810 Hz band were taken into account. The values of the calculated
mode weights in this band for four interval categories are shown in Table 5.

Table 5 Weights for four interval categories calculated with a Monte Carlo method

Interval category Calculated weight Symbol

Strong dissonance 14.3990523557032 WSD

Dissonance 6.9185314074039 WD

Light dissonance 5.7049333116643 WLD

Consonance 17.9895114267725 WCN

The minimum error value calculated with Formula (10) is almost identical to the
average value of the standard deviation obtained from the error calculus. It means
that the sound quality classifier has the same measurement error (section 5.2) as
experts.

6.4 Analysis of Results

In order to verify the effectiveness of the algorithm it was necessary to introduce
clear criteria that would help to decide if the calculated mark has a similar value
to that of the jurors’ within a measurement error. Since the standard deviation of
the jurors’ appraisal of tone quality is different for each instrument, the value of the
measurement error was defined as follows:

1. If the standard deviation of the jurors’ assessment is greater than the average
standard deviation, the error value is the same as the standard deviation of the
jurors’ assessment.
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2. If the standard deviation of the jurors’ assessment is less than or the same as the
average standard deviation, the error value is the same as the value of the average
standard deviation.

If the calculated mark of sound quality is within the range of the measurement error
(section 5.2), or within the range between the jurors’ lowest and highest mark, it is
thought to be correct. The results obtained for the instruments are shown in Table 6.
Recordings from the near field were used for the calculation of the modes.

Table 6 Results of the application of classifier (9) for 15 instruments in the AMATI database

Violin Min mark Max mark μ σ ·t4,0.6826 Measurement error Calculated mark Decision

15 9 10 9.75 0.60 1.98 12.75 NO
23 9 11 10.50 1.20 1.98 12.40 YES
24 8 10 9.25 1.15 1.98 11.23 YES
30 15 18 17.00 1.69 1.98 12.70 NO
32 12 15 14.00 1.69 1.98 13.47 YES
43 4 12 8.50 3.97 3.97 11.67 YES
66 8 12 11.00 2.39 2.39 13.38 YES
72 12 16 15.00 2.39 2.39 17.37 YES
80 11 16 13.75 2.47 2.47 10.01 NO
85 12 19 15.00 3.52 3.52 10.33 NO
89 16 19 17.00 1.69 1.98 16.56 YES

100 9 14 11.75 2.47 2.47 14.00 YES
109 9 12 10.75 1.51 1.98 12.52 YES
111 8 12 10.75 2.27 2.27 10.72 YES
118 15 17 16.50 1.20 1.98 15.51 YES

In Table 6, the minimum mark is the jurors’ minimum mark, and the maximum
mark is the jurors’ maximum mark. The “Decision” column provides information
on whether the calculated mark matches that of the jurors’ within the range of the
measurement error or within the range between the minimum and the maximum
mark made by jurors. The measurement error column is the measurement error of
jurors.

The calculations of the tone quality appraisal with the help of the classifier de-
scribed by Formula (9) were made for 53 instruments in the AMATI multimedia
database. Modes found within the 197 Hz – 810 Hz frequency range, as well as the
WSD, WD, WLD, WCN weights from Table 5, were used for this purpose. With this
assumption, the calculated values proved to be compatible with the jurors’ marks in
the case of 40 instruments, i.e. 75.5% of all the instruments in the AMATI database.
Despite the lack of any assumptions for the Formula (9), all the calculated marks
fell within the range specified by the competition regulations. The minimum value
of the calculated mark was 6.92, and the maximum value was 17.98. The average
value of all the calculated marks is 12.11. The jurors’ minimum an maximum val-
ues are 4 and 19 respectively. The average of all jurors’ marks is 13.35 points. The
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standard deviation calculated for all the marks given by all the jurors (σ = 2.63) is
very similar to that of the marks calculated by the program (σ = 2.5).

On the basis of the obtained results it can be asserted that the classifier is capable
of estimating a tone quality mark with an accuracy of 75.5%. With this relatively
high value, the proposition that a subjective appraisal of the violin tone quality is
influenced mainly by energetic and frequency relationships within the modes of an
instrument (with the assumption that the frequency relationships comply with the
rules of harmony) appears to be a legitimate hypothesis.

7 Conclusions

The methods presented in this paper are designed for automatic classification within
multimedia databases containing the recordings of violins and other bowed string
instruments. By employing them, it is possible to create a set of objective parameters
for each instrument, where sound quality, which itself is a subjective parameter, can
be assessed by the automated classifier. Another advantage offered by the classifier
is its possible application for the search for similar instruments within the same
database. Moreover it was discovered that the modes which affect this parameter at
most are to be found in the 197 Hz – 810 Hz band.

The performance of the jurors as well as that of the sound quality classifier are
similar. The range of marks calculated with Formula (9) for the violins in the AM-
ATI database falls within the range stipulated by the competition regulations despite
the fact that the classifier itself does not have any such restrictions. The standard
deviation calculated for all the marks given by all the jurors is very similar to that of
the marks calculated by the program. For this reason, it is fair to assert that the meth-
ods presented in this paper fulfill their main function, i.e. the ability to find objective
parameters of violin sound and to estimate the subjective violin tone quality.
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Emotion Based MIDI Files Retrieval
System

Jacek Grekow and Zbigniew W. Raś

Abstract. This chapter presents a query answering system (QAS) associated
with MIDI music database and a query language which atomic expressions
represent various types of emotions. System for automatic indexing of music
by emotions is one of the main modules of QAS. Its construction required
building a training database, manual indexation of learning instances, find-
ing a collection of features describing musical segments, and finally building
classifiers. A hierarchical model of emotions consisting of two levels, L1 and
L2, was used. A collection of harmonic and rhythmic attributes extracted
from music files allowed emotion detection in music with an average of 83%
accuracy at the level L1. The presented QAS is a collection of personalized
search engines (PSE), each one based on a personalized system for automatic
indexing of music by emotions. In order to use QAS, user profile has to be
built and compared to representative profiles of PSE’s. The nearest one is
identified and used in answering user query.

1 Introduction

The development of computer technology in recent years has led to a huge ex-
pansion of Internet multimedia databases creating the need to develop tools
for searching through their content. Systems searching for files according to
the title, author, date of creation, etc. that operate on the basis of manu-
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ally filled descriptions of the given multimedia file are no longer sufficient.
Searching tools enabling object identification of higher levels of content have
become much more in demand. One of the challenges on the way to create
such advanced searching tools is an automatic detection of emotions in music
pieces. Since emotions change in the course of a music piece and are differ-
ently perceived by people, the task of detecting them is quite complex. This
chapter presents a system for a personalized automatic indexing of MIDI
music files according to emotions and construction of a personalized query
answering system.

1.1 Input Data

Many research papers deal with the problem of emotion detection. Some of
them rely on audio files [8], [9], [10], [16], [17], [19] and others on MIDI files
[1], [11]. In our research, we concentrated on emotion detection in MIDI files
containing symbolic representation of music (key, structure, chords, instru-
ment). The means of representation of musical content in MIDI files is much
closer to the description which is used by musicians, composers, and musicol-
ogists. To describe music, they use key, tempo, scale, notes, etc. This way, we
avoid the difficult stage of extraction of separate notes, tracks, instruments
from audio files, and we can concentrate on the deciding element which is the
musical content.

1.2 Mood Model

There are several models describing emotions contained in music. One of
them is the model proposed by Hevner [6]. It is made up of a list of adjectives
grouped in 8 main categories. After modification it was used by Li et al. [8]
and Wieczorkowska et al. [17]. This model is quite developed and complex,
too complicated to be used in our experiment. However, it illustrates the
intricacy of describing emotions.

Another model is the two-dimensional Thayer model [14] in which the main
elements are Stress and Energy laid out on 2 perpendicular axes. Stress can
change from happy to anxious, and Energy varies from calm to energetic. This
way, 4 main categories form on the plain: Exuberance, Anxious, Depression
and Contentment. This model was used by Liu et al. [10], DiPaola et al. [1],
Wang et al. [16], and Yang et al. [19].

The model we chose for our automatic indexing system is based on Thayer’s
model (Fig. 1). Following its example, we created a hierarchical model of
emotions consisting of two levels, L1 and L2.

The first level L1 contains 4 emotions. To ease the indexing of files, group
names were replaced with compound adjectives referencing to Arousal and
Valence. Our mood model contains the following groups (Table 1):
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Fig. 1 Arousal-valence emotion plane

Table 1 Description of mood groups in L1, the first level

Abbreviation Description

e1 energetic-positive
e2 energetic-negative
e3 calm-negative
e4 calm-positive

In the first group (e1), pieces of music can be found which convey positive
emotions and have a quite rapid tempo, are happy and arousing (Excited,
Happy, Pleased). In the second group (e2), the tempo of the pieces is fast,
but the emotions are more negative, expressing Annoying, Angry, Nervous.
In the third group (e3) are pieces that have a negative energy and are slow,
expressing Sad, Bored, Sleepy. In the last group (e4) are pieces that are calm
and positive and express Calm, Peaceful, Relaxed.

The second level is related to the first, and is made up of 12 sub-emotions,
3 emotions for each emotion contained in the first level (Table 2):
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Table 2 Description of mood groups in L2, the second level

Abbreviation Description

e11 pleased
e12 happy
e13 excited
e21 annoying
e22 angry
e23 nervous
e31 sad
e32 bored
e33 sleepy
e41 calm
e42 peaceful
e43 relaxed

1.3 System Construction

Fig. 2 presents the construction of a personalized QAS for music database D
where queries relate to emotions. The system deals with enquiries defined as
a logical conjunction of emotions in E = {E1, E2, ...En} with corresponding
percentage content C = {C1, C2, ...Cn} in a segment of music piece. User
emotional profile P = {P1, P2, ...Pi} is also taken into consideration. The

Fig. 2 The construction of personalized QAS for music database
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system allows placing enquiries including the order of distribution of emotions
dominating in segments S = {S1, S2, ...Sj}. When placing a query, the user
may choose the desired level of emotions L = {L1, L2}. One of the possible
enquires could be: ”using user profile P find all segments in database D which
contain emotions E from the level L of the percentage content C” or ”using
user profile P find all segments in database D which contain emotions E
from level L in the order of appearance S”. First, the system determines user
profile P on the basis of a filled out form. Next, it searches database D for
music files matching the query.

2 Mood Detection

2.1 Database

A database with 83 MIDI files of classical music (F. Chopin, R. Schuman,
F. Schubert, E. Grieg, F. Mendelssohn-Bartholdy, etc.) was created specif-
ically for the needs of the experiment. Starting from the 5th bar, 16 sec-
ond segments were isolated from each piece. The shift forward was chosen
with the aim of avoiding various, unstable introductions at the beginning
of many pieces. Each of these segments was divided into 6 subsegments of 6
seconds each with a mutual overlap (overlapping 2/3). There were 498 result-
ing 6-second subsegments. Overlapping allows precise tracking of emotions
contained within musical segments.

2.2 Indexing

The 498 subsegments were annotated with emotions by a listener-tester, a
person with a formal music education/background, who has professional ex-
perience in listening to music.

2.3 Feature Extraction

The next stage was to extract features describing the files in music database.
Specially written software AKWET simulator - Features Explorer jointly with
MATLAB was used for that purpose. Finally, every record in the created
database was described by 63 features.

2.3.1 Harmony Features

Harmony, along with rhythm, dynamics and melody, is one of the main ele-
ments of music upon which emotion in music is dependent. Harmony Features
reflect dissonance and consonance of harmony of sounds. They are based on
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Table 3 Example of consonance sound frequency ratios

k Notes Consonance sound frequency ratios
NR1 : NR2 : ... : NRk

2 C1, G1 2:3
3 C1, E1, G1 4:5:6

4 E1, G1, B�1, D2 25:30:36:45

previous work by the author [3], [4]. To calculate the harmony parameters,
we used the frequency ratio of simultaneously occurring sounds (Table 3).

A given consonance (interval, chord, polyphony) constitutes simultane-
ously resonant sounds, the frequency ratio of which can be noted as following:

NR1 : NR2 : ... : NRk (1)

where k is the number of sounds comprising the consonance. NRi is taken
from the just intonation tuning system, where the frequencies of the scale
notes are related to one another by simple numeric ratios.

From the frequency ratios, we calculated the AkD parameter, which mir-
rors the degree of dissonance in a single chord. The higher its value, the more
dissonant is the consonance, when the AkD value is lower, the consonance is
more consonant - more pleasant for the ear.

AkD = LCM(NR1, NR2, ..., NRk) (2)

where k is the number of sounds in a given sample. If k = 1, then AkD = 1.
LCM means Least Common Multiple.

From the sequence of consonance samples collected from a musical segment
(Fig. 3), we can define AkD(s) as:

AkD(s) = (AkD1, AkD2, ..., AkDp) (3)

where p is the number of samples collected from a given segment s.

Fig. 3 Process of sample collection from a segment
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The moments of sample collection from a segment have been defined ac-
cordingly to two criteria. The first is the collection of samples at every eighth,
and the second is the collection of samples at every new chord in a segment.

Table 4 Main harmony features

Feature group Main features

Basic statistical Average AkD(s)
functions Standard deviation of AkD(s)

Number of samples in AkD(s)

Common values First most frequent value in AkD(s)
Second most frequent value in AkD(s)
Third most frequent value in AkD(s)
Percentage share in the first most frequent value in AkD(s)
Percentage share in the second most frequent value in AkD(s)
Percentage share in the third most frequent value in AkD(s)

Harmony features describe what kind of harmony occurs in a given seg-
ment, which ones dominate, how many of them occur, etc. (Table 4). Below is
a presentation of AkD samples (chords) collected at every eighth in a segment
from Etude Op.10 No 5 by F. Chopin (Fig. 4).

Fig. 4 AkD for fragment of F. Chopin’s Etude Op.10 No 5

2.3.2 Rhythmic Features

Rhythmic features represent rhythmic regularity in a given segment of music.
These features were obtained from the beat histogram, which was acquired
from the calculation of autocorrelation [15].
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autocorrelation[lag] =
1
N

N−1∑
n=0

x[n]x[n − lag] (4)

where n is the input sample index (in MIDI ticks), N is total number of
MIDI ticks in a segment and lag is delay in MIDI ticks (0 < lag < N).
The value of x[n] is the velocity of Note On MIDI events. The histogram
was transformed so that each bin corresponded to a periodicity unit of beats
per minute (Fig. 5). The histogram values were normalized in relation to the
highest value of the most frequent beat (beat with the highest bar).

Fig. 5 Beat histogram for fragment of F. Chopin’s Etude Op.10 No 5

Rhythmic features describe the strongest pulses in the piece (beats with the
highest value in the Beat histogram), relations between them, their quantity,
etc. (Table 5). From the example of the image in (Fig. 5), it is apparent that
the First Strongest Rhythmic Pulse has a value of 240 BPM, the Second
Strongest Rhythmic Pulse - 60 BPM, and the Third Strongest Rhythmic
Pulse - 120 BPM.

Table 5 Main rhythmic features

Feature group Main features

Strongest First Strongest Rhythmic Pulse (FSRP)
Rhythmic Pulses Second Strongest Rhythmic Pulse

Third Strongest Rhythmic Pulse

Pulse Ratios Ratios of Strongest Pulses

Relatively Strong Number of Relatively Strong Pulses
Pulses The number of beats with values greater than 50% of the FSRP value

The number of beats with values greater than 30% of the FSRP value
The number of beats with values greater than 10% of the FSRP value

Rhythmic Note Average Note Duration - Average duration of notes in seconds
values Note Density - Average number of notes per second
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2.3.3 Correlations between Features

Individual features, such as harmony or dynamics, are related to rhythm.
They are often correlated. The moment of appearance of a given accent,
chord, etc. in the bar is of great significance. The most important and signif-
icant parameters were obtained through the correlation of parameters with
rhythm.

We created an AkD(B) data table, where B is a beat histogram. It com-
prises of AkD samples collected from musical segments at moments of the
Strongest Pulses (beginnings of bars, repeating accents that dominate in a
given fragment).

AkD(B) = (AkD1, AkD2, ..., AkDb) (5)

where b is the number of collected samples at moments of the Strongest
Pulses. All values from the beat histogram which are more than 50% of
the First Strongest Rhythmic Pulse in a beat histogram were accepted as
the Strongest Pulses. Next, statistical features were calculated, just as with
AkD(s) (Table 4).

2.3.4 Dynamic Features

Dynamic features are based on the intensity of sound, the length of sounds,
and their development in a segment (Table 6).

Table 6 Main dynamic features

Feature group Main features

Basic statistical functions Average of loudness levels of all notes
Standard deviation of loudness levels of all notes

The last stage consisted of exporting the obtained data to Arff format,
allowing for data analysis in the WEKA program.

2.4 Multi-label indexing

Describing emotions contained within a given segment is not always unam-
biguous. Some segments contain a single emotion, while others can contain
several emotions simultaneously. This is why an assignment of more than one
emotion per segment was permitted in our system. It allowed testers to assign
several emotions to each of the consecutive examples, if needed. Marking an
emotion from the lower level, L2, automatically caused the marking of the
appropriate emotion from the higher level, L1.
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3 Mood Tracking

Emotions in music pieces are not constant. In fragment lasting several seconds
there may be just one emotion or it may change many times. It depends on
the musical content of the music piece. The system described in this chapter
enables tracking emotions present in a given musical fragment during the
playback of the piece as well as the analysis of the diagrams generated by the
program. The following information may be found there:

• the kind of emotions dominating in the piece,
• the kind of emotions in particular fragments,
• the transition from one emotion into another,
• the time when many emotions appear together or when only single emo-

tions are present.

Fig. 6 shows an example of emotion distribution of level L1 and Fig. 7 of
level L2 in Asturias by Isaac Albeniz.

Fig. 6 Emotions of the first level L1 in Asturias by Isaac Albeniz

First level L1 emotions diagram (Fig. 6) leads to the conclusion that As-
turias begins with a strong emotion e2 (energetic-negative), next after about
80 seconds there comes a part containing many emotions with dominating
e3 (calm-negative) and e4 (calm-positive). Next around the 170th second
of the piece’s duration, just like at the beginning, there comes a fragment
of 80 seconds with one emotion e2 (energetic-negative). In the final part
of the piece (from the 250th second), it is possible to notice the return of
emotions e3 and e4. Considering the emotions of the second level L2 (Fig. 7)
we notice the appearance of emotions e21 (annoying) and e23 (nervous) in the
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Fig. 7 Emotions of the second level L2 in Asturias by Isaac Albeniz

Fig. 8 Emotions of the first level L1 in the Moonlight Sonata part 3 by Ludwig
van Beethoven

first fragment (s. 0-80). In the second fragment (s. 80-170) the majority con-
sists of e31 (sad), e32 (bored) with moments of e43 (relaxed), e42 (peaceful),
e23 (nervous), e22 (angry) and e11 (pleased). The third fragment is again
dominated by e23 (nervous) with e42 (peaceful) in the final part.

Another example (Fig. 8 and Fig. 9) presents the emotions in the Moon-
light Sonata part 3 by Ludwig van Beethoven. The e2 emotion (energetic-
negative) dominates throughout the entire piece and is interlaced with emo-
tions e21 (annoying), e22 (angry), e23 (nervous). In the course of the piece,
emotion e2 is often complemented by emotion e1 (energetic-positive) or more
precisely, e12 (happy).
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Fig. 9 Emotions of the second level L2 in the Moonlight Sonata part 3 by Ludwig
van Beethoven

4 Emotion-Based Music File Searching System

4.1 Database

The process of building automatic indexing system involved using a database
consisting of 83 musical files and containing pieces of classical music. This
database was also used for creating an emotion based MIDI files searching
system. It was created in MySQL technology.

4.2 File Indexation

In order to enable automatic searching of the database according to the emo-
tions it contained, the database needed special adjustments. Indexing large col-
lections of data by one person through listening to and categorizing every piece
is practically impossible. The ideal solution would be to automatically index
the files according to emotions. The process was divided into several stages:

1. Manual indexation of a learning collection (musical fragments) by testers
(45 persons) according to emotions (multi-label indexing),

2. Constructing classifiers for detecting emotions (for every representative
user profile),

3. Automatic indexation of entire musical pieces on the basis of decisions
made by the classifiers.

4.3 Emotion-Based Musical Piece Searching

The query answering system (QAS) not only enables the search according
to the composer and title, but also to the percentage content of a particular
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emotion in the piece as well as the one dominating at the beginning, in the
middle, and at the end. Fig. 10 presents emotion based MIDI files searching
system. Searching for percentage emotion content in a piece takes place on
levels L1 and L2.

Fig. 10 A view of the searching system on the first level L1

The QAS enables the use of its 3 modules simultaneously: 1. standard
search, 2. search according to the amount of emotions, 3. search according to
emotion dominating at the beginning, in the middle, and at the end of the
piece (Fig. 11).

An example of a query could be the following: ”find all F. Chopin’s Pre-
ludes which are at least 60% exciting”. In this case from the collection of 12
preludes present in the database, 2 have been identified by the system - Pre-
lude 5 and 8 (Fig. 12). Another example of a query could be: ”find all pieces
which begin with the energetic-positive emotion (e1), are calm-positive in the
middle (e4) and again energetic-positive at the end (e1)”. Fig. 13 presents
5 pieces being a result to the above query. Results of queries depend on the
user representative profile that is granted by the system after filling out a
questionnaire.
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Fig. 11 QAS module searching according to emotion amount on the second level
L2

Fig. 12 Search results - example 1

In some situations when we place a complex, ”demanding” query, it hap-
pens that the system does not find any files. It is due to the fact that the
number of pieces in the database is relatively small (83) and it does not guar-
antee results for all combinations of queries. In order to improve the search-
ing system, it should be enhanced with a generalization module for queries
to which a precise result is not found, providing possibly closest answer [2],
[13].
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Fig. 13 Search results - example 2

4.4 Constructing User Profiles

The emotions contained in musical pieces may be perceived differently by
particular listeners. This depends on such factors as musical preferences, ed-
ucation, emotional profile. It may happen that the same piece e.g. Prelude
no. 5 by F. Chopin will be qualified by one person as energetic-positive (e1)
and as energetic-negative (e2) by another. Yet another listener would choose
both emotions simultaneously (e1 and e2). This was confirmed by experiments
with tester-listeners conducted for the purpose of working on this chapter.
Because people may feel emotions in music differently, it was decided to find
and build profiles which would adjust the searching process in the database
to the personality of the user.

4.5 Indexation of Musical Fragments by the Testers

The first stage of building the profiles involved indexing a collection of music
pieces on the basis of emotions and completing a questionnaire by the listen-
ers. The research was carried out on 45 tester-listeners who listened to 498
musical fragments each. The listener matched one or more emotions from the
levels L1 and L2 with every piece.
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Table 7 Questions for the tester

Question Possibile answers

Sex female, male

Profession freelancer, specialist, entrepreneur/businessman,
farmer, physical worker, services sector worker,
housewife, student, pupil, pensioner, unemployed,
education, administration, technician

Education basic, vocational, secondary school, college degree

Age 10-20, 20-30, 30-40, 40-50, 60-70, 70-

How do you feel at the moment? happy, sad, calm, nervous

Do you like reading books? classical, professional literature, fantasy,
If yes, give two genres. crime fiction, history, hobby, comic book, other

What is your hobby? music, science, computers and the Internet,
Give two examples. fashion and style, tourism, motoring, cinema,

drawing, other

What kind of music do you prefer? classical, pop, rock, metal, jazz, gospel,
blues, disco, funk, rap, electro, Latino,
world, reggae, soul

What is you favourite instrument? guitar, violin, cello, bass, drums, flute, oboe,
Give two examples. clarinet, saxophone, trumpet, trombone,

accordion, piano, harp, keyboard, other

What are your two favourite vanilla, chocolate, tiramisu, yoghurt, cream,
ice-cream flavours? cappuccino, mint, coconut, strawberry, lemon,

blueberry, cherry, banana

If you had $3,500.00 what would a car, tourism, savings, renovation, other
you most likely spend it on?

How big is the city where you live? village, town up to 50 thousand people,
town 50 thousand to 100 thousand people,
city 100 thousand to 500 thousand people,
city over 500 thousand people

Are you happy with you life yes, rather yes, rather no, no
and what you have so far achieved?

Do you consider yourself to be yes, no, I cannot tell
a calm person?

Do you live with your family? yes, no

Does your job give you pleasure? yes, rather yes, rather no, no

Do you like playing with and taking yes, rather yes, rather no, no
care of little children?

Do you have or would like to have yes, no
a little dog at home?

How do you see that you have done because I know, because my boss/friends tell me,
something well? because I achieved a goal, I’m never quite sure

What is important to you in carrying doing the task, staying out of trouble
out tasks given you by your boss?

What do you do when you have you start working it out at once, you read
a new complicated piece of equipment the manual thoroughly, you ask somebody
(e.g. electronic device) to help you, you leave it for somebody else

to work out

When you relate a film you liked in detail, in general (in order not to spoil
to your friend, you talk about it: the pleasure of watching it), you relate

a particular scene in detail

You work hard for: others, yourself, yourself and other,
others and yourself

How do you remember your fun you see pictures, you hear sounds, you feel
vacation? the warmth, wind, water, feel everything

at once like in a movie
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4.6 A Testers Questionnaire

Each tester also filled out a questionnaire used for building user profiles.The
set of questions is presented in Table 7. The testers had the option of not
responding to particular questions from the questionaire.

5 The Experiment Results

5.1 Mood Detection

The program WEKA was used to carry out the experiments, which allowed
for testing data utilizing many methods [18].

Because many musical segments were labeled by many labels simultane-
ously, multi-label classification in emotion detection was used (multi-label
decision attribute was replaced by a set of binary decision attributes repre-
senting emotions). The same, we transformed data into several binary types
of data and tested one against the rest of the data. For each class, a data set
was generated containing a copy of each instance of the original data, but
with a modified class value. If the instance had the class associated with the
corresponding dataset it was tagged YES, otherwise, it was tagged NO. The
classifiers were built for each of these binary data sets. The proposed strategy
greatly simplified the process of building classifiers for a decision system with
a multi-label decision attribute.

The classification results were calculated using a cross validation evaluation
CV-10. We used attribute selection to find the best subset of attributes. The
best result was achieved by using Wrapper Subset Evaluator. After testing
the data utilizing many methods, one of the best results was achieved with the
use of the k-NN classifier (k-nearest neighbor). The use of attribute selection
improved the accuracy of classifiers by an average of about 10% (Fig. 14).

A classifier was created for each emotion separately. The results of classifi-
cation after attribute selection are presented below (Table 8, Table 9). Level
one classifiers are more accurate than level two classifiers. This is connected
to the fact that the groups of examples containing emotions from the first
level are larger. Also, the emotions from level one are much easier to recognize
for the listener, since there are only 4. The highest accuracy was attained for
emotion classifier e1 - energetic-positive (90%), and the lowest accuracy was
attained for emotion classifier e3 - calm-negative (74%).

Table 8 Coverage factor of L1 first level classifiers

Classifier Emotion No. of objects Coverage factor

e1 energetic-positive 151 90%
e2 energetic-negative 172 87%
e3 calm-negative 111 74%
e4 calm-positive 103 82%
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Fig. 14 Comparison of results attained using the k-NN algorithm with and without
the use of attribute selection

Table 9 Coverage factor of L2 second level classifiers

Classifier Emotion No. of objects Coverage factor

e11 pleased 66 74%
e12 happy 69 82%
e13 excited 19 92%
e21 annoying 37 78%
e22 angry 52 59%
e23 nervous 82 66%
e31 sad 47 56%
e32 bored 52 59%
e33 sleepy 12 94%
e41 calm 17 40%
e42 peaceful 30 67%
e43 relaxed 56 81%

The accuracy of L2 second level classifiers (Table 9) is somewhat less ac-
curate than L1 first level classifiers, and fluctuates from 40 to 92%. This is
connected with the fact that the example groups for specific emotions are
smaller as well as that the recognition of these emotions - on this more pre-
cise level - is more difficult for the listener. The least accuracy was attained
for emotion classifier e41 - calm. Also, e42 is low, which is connected to the
fact that the division of emotions into groups e41 - calm and e42 - peaceful
is not the most apt. These are rather difficult for the listener to distinguish.
In the future, for further research, these two groups should be combined into
one. The best results (80-90%) were obtained for emotions e12 (happy), e13
(excited), e33 (sleepy), and e43 (relaxed). These are the most easily recog-
nized emotions by the listeners, and it is rather difficult to confuse them with
other emotions.
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5.2 Clustering and Searching for User Profiles

5.2.1 Clustering

498 musical fragments were indexed by 45 testers according to emotions.
Listeners came from different professional groups (students, musicians, scien-
tists, engineers, teachers, medical workers) and different age groups (from 20
to 50 years old). Each listener assigned one or more emotions from the levels
L1 and L2 to every piece. All listeners also filled out the questionnaire which
was used to create a table of user profiles. The data was used to create a deci-
sion table with rows of tester listeners (45). Each row contained 7969 features
received through labeling the pieces by tester-listeners. Features represent the
tester’s binary (Yes, No) answers to whether or not a given emotion is found
in a given musical fragment (16 emotions * 498 fragments = 7969 answers).
Searching for representative groups and related classification was conducted
with the use of tools in the WEKA package.

In the first stage, the optimal number of groups was established. Cross-
validation EM (expectation maximization) [12] and K-means [7] were used for
that purpose. When choosing the number of groups, their size was also taken
into consideration. Bearing in mind that a relatively small number of different
groupings was tested, groups of size smaller than 9 were abandoned. Small
groups seemed to be less credible because they are confirmed by a smaller
number of examples. In our case, the optional number of groups was set to
either 2 or 3. Finally, two grouping sets ZG1 and ZG2 were used (Table 10,
Fig. 15, Fig. 16).

Table 10 Grouping sets

Name Grouping algorithm No. Number of examples in groups
of grouping set of groups cluster0/cluster1

ZG1 EM 2 36 /9
ZG2 K-means 2 16/29

5.2.2 The Classification of Grouping Sets ZG1 and ZG2

These two grouping sets were linked to the testers’ questionnaires and tested
with the following classifying algorithms: PART, J48, RandomTree, k-NN,
BayesNet [18]. At this point, the sets ZG1 yielded classifiers all having con-
fidence above 70% and on average 15% higher than the sets ZG2 (Fig. 17).

The next step involved selection of attributes. The WrapperSubsetE-
val evaluator was used (weka.attributeSelection.WrapperSubsetEval) [5] and
tested with the algorithms PART, J48, k-NN, NaiveBayes. There were two
options for selecting attributes:

• with nominal attributes: 31 nominal attributes found in testers’ question-
naires + decision class
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Fig. 15 The visualization of EM algorithm grouping

Fig. 16 The visualization of K-means algorithm grouping

Fig. 17 Comparing the precision of ZG1 and ZG2 classification before selecting
the attributes
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• with binary attributes: (all nominal attributes were changed to binary
attributes) 170 binary attributes + decision class

In both instances, the decision class is the value of a cluster that had been
defined for the tester during clustering the testers’ answers pertaining to
emotion in musical fragments.

When using the binary attributes, the results were 10% better. In both
cases (ZG1 and ZG2) the best collections of attributes were found using
WrapperSubsetEval and k-nearest neighbor.

Fig. 18 Comparing the precision of ZG1 and ZG2 classification after selecting
attributes

Comparing the results of classification of grouping sets ZG1 and ZG2, it
was found that the best results were achieved by the ZG1 set, that is division
performed by the EM algorithm (Fig. 18). The best results were achieved
with the k-NN classifier (96%) and Random Tree (91%).

The k-NN classifier built from ZG1 set grouping was used in QAS to assign
a new user’s profile to one of the groups. Classifiers created on the basis of
group representatives from grouping set ZG1 were used for indexing files from
the database according to emotions.

From the selected attributes, it could be seen what were the most mean-
ingful questions and answers from the questionnaire (Table 11).

Table 11 The most meaningful questions and answers in establishing the user
profile for ZG1

Question Answer

Profession freelancer, specialist
Age 40-50
What kind of music do sou like? classical
What is your favourite instrument? the piano
What are your favourite flavours of ice-cream? vanilla
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Explaining the meaning of questions chosen in the process of attribute
selection, one may draw the conclusion that people who do not like classical
music, perceive emotions differently than the people who like it (Table 12).

Table 12 Group characteristics for ZG1

Group Number of people Description

Cluster0 36 People who:
- like music other than classical
- do not prefer the piano
- like ice-cream other than vanilla

Cluster1 9 People who:
- like classical music
- like vanilla ice-cream
- prefer the piano, represent a freelance profession, specialist

Additionally, the grouping set ZG2, which had a slightly worse compliance
with the questionnaires (classifier confidence - 86% for RandomTree and 88%
for k-NN), was also tested. In this case the selected attributes showed that
the most meaningful questions and answers from the questionnaire are the
ones listed in Table 13.

Table 13 The most meaningful questions and answers during establishing the user
profile for ZG2

Question Answer

Profession Education sector
Age No decision
What kind of books do like to read? Criminal-fiction
What is your hobby? Science
What kind of music do you like? Pop, Disco
What are your favourite flavours of ice-cream? Strawberry
Does your work give you pleasure? Rather no

Table 14 shows the characteristics of groups found through grouping set
ZG2.

Because ZG2 grouping gave worse results than ZG1 grouping, it was not
used in QAS. However it is an interesting and different look at dividing
listeners into groups and the meaning of the questions in the questionnaire.

Increasing the number of tester-listeners for indexing musical instances to
e.g. 200 people would cause creating a larger collection of data for analysis
and could result in:

• a more precise division into groups,
• finding a greater number of groups,
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Table 14 The group characteristics for ZG2

Group Numbe of people Description

Cluster0 16 People who:
- like pop music
- do not choose strawberry ice-cream
- like Criminal-fiction books
- do not choose science as a hobby
- do not choose the ”rather no” option in the question:
Does your work give you pleasure?

Cluster1 29 People who:
- do not choose pop and rap music
- like strawberry ice-cream
- do not choose Criminal-fiction books
- do not find pleasure in their work

• finding additional interesting relations between questionnaires and tester
groups.

On the other hand, collecting listeners’ opinions is a time consuming task
for both sides taking part in the experiment, which influenced setting the
minimum number of testers who took part in labeling musical pieces to 45.

6 Conclusion

This chapter presented a query answering system connected with MIDI music
files database, enabling the search for music files according to emotions. Dur-
ing its construction, a task of automatic file indexation was also attempted.
This required building a database, manual indexation of learning instances,
finding a collection of features describing musical segments, and constructing
classifiers. A hierarchical model of emotions consisting of two levels, L1 and
L2, was used. A collection of harmonic and rhythmic attributes extracted
from music files made emotion detection with an average of 83% accuracy
at level L1 possible. The continuing development of features describing mu-
sical segments as well as expanding the database should further improve the
precision of classifiers of the lower level L2. In order to base the searching
system’s results on the user’s preferences, a detection of the emotional profile
was suggested. The profile alters the system for the user’s needs and solves
the problem of a subjective emotion perception. The application was enriched
with an emotion-tracking user’s mood module, which provides information
about the distribution of emotions in the course of the musical piece.

One of the directions of continuing works is expanding the searching mod-
ule through adding a mechanism of generalizing queries to which a precise
result is not found and providing possibly closest results.
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1 Introduction

Emotions give meaning to our lives. No aspect of our mental life is more important
to the quality and meaning of our existence than emotions. They make life worth liv-
ing, or sometimes ending. The English word ’emotion’ is derived from the French
word mouvoir which means ’move’. Great classical philosophers-Plato, Aristotle,
Spinoza, Descartes conceived emotion as responses to certain sorts of events trig-
gering bodily changes and typically motivating characteristic behavior. It is difficult
to find a consensus on the definition of emotion [9]. Most researchers would proba-
bly agree that emotions are relatively brief and intense reactions to goal-relevant
changes in the environment that consist of many subcomponents: cognitive ap-
praisal, subjective feeling, physiological arousal, expression, action tendency, and
regulation. It therefore suggests that some part of the brain would be selectively
activated [21]. Origin of emotion may be traced back to 200,000 years ago to semi-
nomadic hunter-gatherer [16]. It is argued that their way of living, which involved
cooperating in such activities as hunting, avoiding predators, finding food, rearing
children, and also competing for resources, could be related to the origin of emotion.
Most emotions are presumably adapted to living this way. Several of the activities
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are associated with basic survival problems that most organisms have in common.
These problems, in turn, require specific types of adaptive reactions. A number of
authors have suggested that such adaptive reactions are the prototypes of emotions
as seen in humans [17], [24].

If various emotions are cognitively differentiable, as is again likely to be publicly
agreed upon, there should be differences in sites of brain being excited for different
emotions. Bower further suggested [3] that every emotion is associated with auto-
nomic reactions and expressive behaviors. These expressive behaviors or responses
to the same stimuli can vary depending on many factors external to the stimuli, like
the mood of a person [9], [25], memory association of the person to the applied
stimuli [9], [14], etc.

Objects or a sequence of objects elicit feeling through a sequence of psychophys-
ical processes. The sensory organs convert the signals from the objects to neural
pulses. These pulse trains are processed in sub-cortical neural structures, which are
primarily inherited. These processed signals produce perception in brain. Through
the process of learning and experience we cognize the objects or sequence of ob-
jects from these perceived signals. Again through the process of learning we learn to
associate these with some emotive environment in the past. This ultimately evokes
emotion or feeling.

The evaluation of emotional appraisals of stimuli may be done by having the
person report the emotions they perceive as reaction to the stimuli. This can be done
in several different ways such as verbal descriptions, choosing emotional terms from
a list, or rating how well several different emotional terms describe the appraisal [9],
[22]. The emotional terms used should be limited in number and as unambiguous as
possible. It is also possible to represent these terms in vector forms. The splitting of
emotion into dimensions is consistent with Bower’s network theory of emotion [8],
[18]. However, the number of components and the type of components vary between
studies [7], [18], [22], [27].

While sound stimuli may cause general physiological changes (”arousal”), these
changes must be interpreted cognitively in order for a specific emotion to emerge.
The listener does not come to the listening experience as a blank slate. He or she
already has existing musically pertinent knowledge. Even for a musically untrained
listener the general exposure to listening to music since childhood is also learning,
though not formal.

Thus any emotional behavior, even habitual and seemingly automatic and natural,
is actually learned. In case of music this behavior serves as a means of communi-
cation, since often emotional behavior is differentiable and intelligible. One major
problem that arises in the study of the emotional power of music is that the emotional
content of music is very subjective. A piece of music may be undeniably emotionally
powerful, and at the same time be experienced in very different ways by each person
who hears it. The emotion created by a piece of music may be affected by memories
associated with the piece, by the environment it is being played in, by the mood
of the person listening and their personality, by the culture they were brought up
in; by any number of factors both impossible to control and impossible to quantify.
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Under such circumstances, it is extremely difficult to deduce what intrinsic quality
of the music, if any, created a specific emotional response in the listener.

It seems that the listeners experience gross emotion through the unfolding of
successive events. If the successive events are always predictable, the emotion is
boredom, unless an association of past evokes a specific emotion. Again, extensive
uncertainties are likely to lead to apprehension and anxiety. These two emotional
experiences may therefore be the robust ones. As soon as the unexpected is expe-
rienced, the listener attempts to fit it into the general system of beliefs relevant to
the theme. This may happen in one of the following three ways: (1) The mind may
suspend judgment, expecting that the subsequent event will bring in clarity. (2) If
no clarification takes place, irritation will set in. (3) The expected consequent may
be seen as a purposeful blunder.

When we expect music to convey emotion, we accept it to be a language, as
emotion is built upon the meaning. In order to extract the right emotion, it is essential
that the listener is acquainted with the grammar, and thus the extra-musical world
of concepts, actions, emotional states, and character. Even if he does not have the
appropriate grammar in his mind, he can still extract some emotional meaning out
of it, with some of his own stock grammar. In this sense emotion in music may
be called referential. A piece of music can be universally pleasant or universally
irritating.

On the other hand, a musical stimulus or series of stimuli can be considered to
indicate and point to other musical events, which are about to happen, rather than
extra-musical concepts and objects. That is, one musical event (be it a tone, a phrase,
or a whole section) has meaning because it points to and makes us expect another
musical event. Even then the affective experience is still dependent on cognition (in-
volving a process of intellection, conscious or unconscious) that cannot be restricted
to the musical concepts alone. The musical expectations and experience grow out
of the innate processes of grouping, closure, and good continuation in Gestalt
psychology.

Hevner (1936) studied grouping of emotions described by listeners using adjec-
tives through listening experiments [11]. The experiments substantiated a hypoth-
esis that music inherently carries emotional meaning. Hevner discovered the exis-
tence of clusters of descriptive adjectives and laid them out in a circle. These are:
a) cheerful, gay, happy, b) fanciful, light, c) delicate, graceful, d) dreamy, leisurely,
e) longing, pathetic, f) dark, depressing, g) sacred, spiritual, h) dramatic, emphatic,
i) agitated, exciting, j) frustrated, k) mysterious, spooky, l) passionate, m) bluesy.
Actually, emotion detection in musical information is better considered as a ’Multi-
label Classification problem’, where the music sounds are classified into multiple
classes simultaneously. That means that a single music sound may be characterized
by more than one label, e.g. both ”dreamy” and ”cheerful.”

Emotions recognized in music can be represented in a two-dimensional space
(Figure 1), with valence (positive vs. negative feelings) and arousal (high-low) as
principal axes [20]. These are the dimensions suggested by Russell to describe
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Fig. 1 Possible descriptions of emotion using valence and arousal [12]

emotion [19]. Valence refers to the happiness or sadness of the emotion and arousal
is the activeness or passiveness of the emotion [23]. A positive valence corresponds
with positive emotions such as joy, happiness, relaxing and a negative valence cor-
responds with negative emotions such as fear, anger and sadness.

Emotions are denotative signs. When a listener reports an emotion, particularly in
case of ragas in Indian Music, he may actually be describing only what he believes
the passage is supposed to indicate, not anything he has experienced by himself.
Even when a genuine emotional experience is reported, it is liable to become garbled
and perverted in the process of verbalization. Some emotional states are much more
subtle and varied than are the few crude and standardized words which we use to
denote them. In such cases reports may contain a large amount of what psychiatrists
call ”distortion”.

In India, music (geet) has been a subject of aesthetic and intellectual discourse
since the times of Vedas (samaveda). Rasa was examined critically as an essential
part of the theory of art by Bharata in Natya Sastra, (200 century BC). The rasa
is considered as a state of enhanced emotional perception produced by the pres-
ence of musical energy. It is perceived as a sentiment, which could be described
as an aesthetic experience. Although unique, one can distinguish several flavors ac-
cording to the emotion that colors it. Several emotional flavors are listed, namely
erotic love (sringara), pathetic (karuna), devotional (bhakti), comic (hasya), horrific
(bhayanaka), repugnant (bibhatsa), heroic (vira), fantastic, furious (roudra), and
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peaceful (shanta). Italics represent the corresponding emotion given in the Indian
treatises. The individual feels immersed in that mood to the exclusion of anything
else including himself. It may be noted that during the musical experience, the mind
experiences conscious joy even in the representation of painful events because of the
integration of perceptual, emotional, and cognitive faculties in a more expanded and
enhanced auditory perception, completed by the subtle aesthetic of sensing, feeling,
understanding and hearing all at the same time. The Eastern approach to emotional
aesthetics and intelligence treats rasa as a multi-dimensional principle that explains
thoroughly the relation between a sentiment, a mood, the creative process and its
transpersonal qualities. This transpersonal domain includes the super-conscious or
spiritual state and therefore acts as an interface between individual and collective
unconscious states. This transpersonal quality is a germinating power hidden be-
hind aspects of great musical creation that can reveal it, and is able to induce the
complete chromatic range of each emotion. Rasa conveys the idea of an aesthetic
beauty knowable only through the feeling. This aesthetic experience is a transforma-
tion of not merely feeling, but equally of cognition, a comprehensive understanding
in the mode of ecstasy of the intellect, itself inscrutable and illuminating. In the
Vedas the experience of rasa is described as a flash of inner consciousness, which
appears to whom the knowledge of ideal beauty is innate and intuitive.

Rasa is not the unique property of the art itself. It unites the art with the cre-
ator and the observer in the same state of consciousness, and requires the power of
imagination and representation and therefore a kind of intellectual sensibility. In-
dian musicological treaties since Bharata hold that even notes bear the potential of
producing emotional effects. Tembe listed eight of them (Table 1). However no ra-
tional or scientific scrutiny was provided. It seems that the list was drawn from the
proposals presented in Natyashastra.

However, he agrees that only four rasas, namely Karuna, Shanta, Shringara
and Vira may actually be experienced from a single note. He further proposes that
when Shuddha madhyama dominates a melody, it creates a serene and sublime

Table 1 Emotional attributes of notes according to G.S. Tembe [26]

Notes Emotional attribute
Shadja like a yogi beyond any attachment
Rishabha (komala) rather sluggish
Rishabha (shuddha) reminding of indolence of a person waking up from sleep
Gandhara (komala) bewildered, helpless and pitiable
Gandhara (shuddha) fresh and pleasant
Madhyama (shuddha) grave, noble and powerful
Madhyama (tivra) sensitive, luxurious
Panchama brilliant, self composing
Dhaivata (komala) grief, pathos
Dhaivata (shuddha) robust, lustful
Nishada (komala) gentle, happy, affectionate
Nishada (shuddha) piercing appeal
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atmosphere, while a dominant Panchama creates an invigorating and erotic feel-
ing. Pandit V.N. Bhatkhande [2] in his work suggested the inadequacy of vadi svara
(i.e. the main melodic tone of the raga) in determining the rasa of ragas. However,
he mentions that Ragas employing Shuddha (Rishabha, Dhaivata, and Gandhara)
emote Shringara rasa, and those employing Komala (Dhaivata and Nishad) emote
Vira rasa. This view is contradicted by Ratanjankar [26]. According to him, indi-
vidual notes cannot produce emotion, and they may do so only in a specific context.
This implies that expression is born by the melodic content. Konishi et.al [13] re-
ported that listeners can correctly decode emotions like anger, fear, happiness, and
sadness from single notes from vibrato effect in Western music.

Having noted all these, it appears that the notion of a single note conveying emo-
tion in general may be somewhat contrived particularly in Indian music. In Indian
music, a note does not have a specific frequency. It is related to the scale where the
base note Sa can be assigned any arbitrary frequency.

Karnani [12] noticed inconsistency between the rasa of a raga traditionally pre-
scribed and experienced. He holds that since a raga represents a complex set of
feelings, a simple relationship between a raga and rasa is unlikely.

Some empirical studies on the relationship of raga and rasa in Hindustani music
are available. Deva and Virmani [6] reported consistent judgment of Indian listeners
on the mood, color, season, and time of day for excerpts from Hindustani ragas.

Gregory and Varney [10] used both Western and Indian listeners to assess the
emotional content of Hindustani ragas, Western classical music, and Western new-
age music. He used a list of mood terms taken from Hevner for the assessment of
the emotional contents. Both the Western and Indian listeners were reported to be
sensitive to intended emotions in Western music, but not in the Hindustani ragas.
Also the textbook descriptions of ragas did not always reflect the mood intended in
a given performance. On the other hand, Balkwill and Thompson [1] reported high
ratings in respected categories of correct emotion detection by Western listeners for
joy, sadness and anger in Hindustani ragas. They believe that listeners can appreciate
affective qualities of unfamiliar music by attending to acoustic cues. Consciously or
intuitively, composers and performers draw upon acoustic cues too. When cultural-
specific cues are absent, listeners may still attend to acoustic cues such as tempo and
loudness. These cues provide listeners with a general understanding of the intended
emotion.

In Hindustani music, ragas are said to be associated with different rasas (emo-
tions). However, one particular raga is not necessarily associated with one
emotion. Moreover, opinion varies; a comprehensive summary is available in Semio-
sis in Hindusthani Music [15]. For the present study we have selected 11 ragas
(Table 2) to represent different rasas/emotions residing therein. Of the eight emo-
tions listed in the opinion score sheets, only six represent rasas. These are Heroic
(Vira), Anger (Raudra), Serenity (Santa), Devotion (Bhakti), Sorrow (Karuna), Ro-
mantic (Sringara). Other two emotions namely Joy and Anxiety have been consid-
ered additionally.
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Table 2 Selected ragas and corresponding rasas

Name of the Raga Rasas
Adana Vira
Bhairav Raudra, Santa, Bhakti, Karuna
Chayanat Sringara
Darbari Kannada Santa
Hindol Vira, Raudra
Jayjayvanti Sringara
Jogiya Karuna, Sringara, Bhakti
Kedar Santa
Mian-ki-Malhar Karuna
Mian-ki-Todi Bhakti, Srigara, Karuna
Shree Santa

The objective of the present study was to find whether:

1. An oral music segment of short length extracted randomly from a raga elicit any
emotion,

2. The elicited emotion from an oral music segment can be specified into prescribed
categories,

3. The elicited emotion from different segments from the same raga has some speci-
ficity,

4. To what extent the emotional responses from the segments of a raga correspond
to those given in Table 2,

5. Whether the elicited response have any cross-cultural similarity,
6. To what extent the melodic sequence (sequence of musical notes) relate with

emotional response.

For the purpose of this research, we selected the ragas from ITC Sangeet Re-
search Academy archive, and after signal processing we continued our work in
order to find the sequences for listening experiments. These sequences would es-
sentially be the fragments of ragas. In order to find which sequences evoke particu-
lar emotions, many possible sequences of various lengths can be taken into account
(considering the grammar of the raga). We decided to extract about 30-seconds long
sequences from the sound signal, which might evoke emotions, and use them for
perceptual tests. The tests were performed by both western and Indian listeners, in
order to observe and compare emotions evoked by each sequence. Since each raga
has a specific set of notes and sequences used, we could assign short sequences of
notes to particular emotions evoked in both Indian and western listeners.

2 Experimental Details

There are different styles for executing a raga in vocal music. The most common is
khayal. The performance of khayal has two distinctive parts. The first one is known
as alap wherein one tries to establish the image and emotional distinctiveness in
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slow tempo. The second part is known as bistar where the tempo is faster and faster
and the performer tries to expose his skills through use of various embellishments
(alankaras) while keeping the mood and emotion of the raga intact.

The present study concentrates on the alap part of professional khayal perfor-
mances as this really establishes the characteristics of raga. The investigated ex-
cerpts represent vocal music (with some accompaniment). Songs by eminent singers
in the ragas mentioned in Table 2 were selected from the archives of ITC Sangeet
Research Academy. Only the alap portions of the songs were used for the present
study. The alap portions had a varying length between 10 to 12 minutes. From the
alap part of each song, four segments of about 30 seconds were taken out at dif-
ferent places for the audition test. The selection of the places was random in the
sense that no special cognitive procedure was used. The only constraint used was
to see that the end notes were not truncated in the middle. The selected segments
were not therefore of exactly equal length. The length of the segments varied from
29 seconds to 32 seconds. The collection of these segments was then randomized.
The listeners’ opinions were collected in the score sheet, presented in Table 3. There
were two groups of informants: western listeners (24), and native Indians (12), as
we wanted to investigate whether the perceived emotions and the required minimal
length of audio segments to listen to were coincident, and also conforming to the
theory presented in treatises on ragas.

For western listeners, this music was very different than what they were used to
listen, as Indian and western music and melodies are based on different scales. Each
raga has specific set of notes used, sequences, prolonged notes, etc. Some western
listeners reported difficulties in perceiving emotions when listening to this music.

Initially, the test set consisted of 124 segments, but this test was too long and
difficult for all listeners, even educated in music. Therefore, we decided to limit
the test to 44 excerpts. These excerpts were chosen through random selection of
four (out of around eleven) segments for each raga. The listeners were asked to
assign each excerpt to only one emotional category if possible. Two choices were
also allowed, but the listener had to order them and mark the first and the second
choice. As the score sheets revealed that the respondents did not mark the second
choice in a large number of cases, statistical elaboration of results in this research
was performed taking into account only the first choices.

Table 3 Opinion Score Sheet

Name of the informant: Age Sex: M/F Knowledge of Music: y/n
No. Anger Joy Sorrow Heroic Romantic Serenity Devotion Anxiety Any other, mention Nil Emotion
1
2
3
...
...
...
42
43
44
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The correlation matrix was obtained using a Pearson product-moment correlation
coefficient between different types or category of emotion. The Pearson product-
moment correlation coefficient is a common measure of the correlation (linear de-
pendence) between two variables. In our experiment, each category of emotion was
compared to every other category, yielding a value in a range [1, -1] and the ob-
tained correlation between the two was plotted in a matrix. The statistics is defined
as the sum of the products of the standard scores of the two measures divided by the
number of degrees of freedom. If the data comes from a sample, then the Pearson
product-moment correlation coefficient r between two series of data Xi, Yi is given
by

r =
1

n−1

n

∑
i=1

(
Xi −X

sX

)(
Yi −Y

sY

)
where

Xi −X
sX

, X , and sX

are the standard score, sample mean, and sample standard deviation for the series Xi

and similarly for the series Yi (where n is the number of data in each series).
A summary data sheet is formed from all the opinion score sheets to represent

the number of responses in each category of emotion for each sound sequence. Thus
we get a series of 44 data (for 44 sequences) for each emotion.

The matrix (Table 4 in Section 3) was derived by calculating r for each category
of emotion with every other category used in our experiments, e.g. Joy with all
the other categories, i.e. Romantic, Serenity, Devotion, Sorrow, Anxiety, Anger, and
Heroic.

Product moment correlation has also been calculated between each pair of emo-
tions as perceived by people of Indian origin against those of non-Indian origin by
pooling data of these two groups separately (to form two summary sheets).

The t-test used here is to assess the degree of confidence with which the null
hypothesis that a stimulus in the form of audio signal could evoke a designated
emotion is false. Here t value is given by

t =
x− μ0

s/
√

n

where s is the standard deviation of the sample and n is the sample size (the number
of respondents in this case). The number of degrees of freedom used in this test is
n−1. The observed count (x) is obtained here from the score sheet (for a particular
stimulus, the number of respondents reporting a particular emotion is the observed
count for that emotion for that respondent). μ0 is the expected value for each cate-
gory of emotion as per the hypothesis (3.6 for all respondents pooled together). The
t-test is sometimes referred to as a sigma test. This test was run on two different
values of confidence level, namely 0.05 and 0.01.
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Table 4 Pair-wise Pearson’s Correlation Coefficients

  Anger Heroic Romantic Joy Devotion Serenity Anxiety Sorrow 

Anger 1 0.211529 -0.17939 -0.20863 0.06554 -0.22597 0.221503 -0.02729 
Heroic 0.211529 1 -0.13986 -0.17421 -0.11075 -0.0915 -0.07588 -0.25846 

Romantic -0.17939 -0.13986 1 0.141939 -0.18612 0.066252 -0.21185 -0.39698 
Joy -0.20863 -0.17421 0.141939 1 -0.41156 -0.28621 -0.50181 -0.02176 

Devotion 0.06554 -0.11075 -0.18612 -0.41156 1 0.072079 -0.02176 -0.01121 
Serenity -0.22597 -0.0915 0.066252 -0.28621 0.072079 1 -0.10248 -0.15363 

Anxiety 0.221503 -0.07588 -0.21185 -0.50181 -0.02176 -0.10248 1 0.363925 
Sorrow -0.02729 -0.25846 -0.39698 -0.02176 -0.01121 -0.15363 0.363925 1 
 

Generation of sequence of notes [5] In order to generate a sequence of notes for
each segment, the following procedures were adopted:

1. Pre-processing of the acoustic signal,
2. Pitch detection,
3. Detection of pitch of the tonic for each song,
4. Labeling of each pitch-profile into notes using 12-note western scale intervals

using standard grammar for the raga.

The musical notes in Indian system are not frequency-specific; instead, they are
interval-specific [4]. Additionally, singers often sing with glissando effect.

Our goal was to extract melodies for each segment, but we decided to keep in-
formation about pitch only, and temporal structure of the extracted sequences (i.e.
rhythm) was not taken into account in further processing.

There are seven pure notes, namely: Sa (Do), Re (Re), Ga (Mi), ma (Fa), Pa
(So/Sol), Dha (La), and Ni (Ti/Si). The five altered notes are 4 flat notes and 1 sharp
note: re (Re flat), ga (Ga flat), Ma (ma sharp), dha (Dha flat), and ni (Ni flat). In
Section 3, notes in sequences are denoted by the first letter of each of the aforesaid
notes, i.e.: S, r, R, g, G, m, M, P, d, D, n, and N.

3 Results

Figure 2 contains eleven plates. Each plate shows the proportion of responses for
each of the four segments of a raga. Horizontal axis represents the category of emo-
tion, namely: anger (1), joy (2), sorrow (3), heroic (4), romantic (5), serenity (6),
devotion (7), anxiety (8), and nil (9). One can see that most of the ragas exhibit se-
lective emotions. In the following pages we will use different statistical tests to deal
with queries posed in the introduction.

Table 4 presents the pair-wise correlation coefficients of eight emotions organized
in such a manner that the best correlated pairs come contiguously. A shaded cell
represents the highest negatively correlated emotion for the emotion represented by
the row. Using this table we tried to organize the emotions in the emotion circle
presented in Figure 3.
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The valence axis represents the usual arousal dimension. The color axis repre-
sents dark (negative) to bright (positive) emotions. It can be seen that each quadrant
contains emotions which are positively correlated in Table 4. Moreover, generally
each emotion in the circle is positively correlated with the neighboring emotion. The
exceptions occur only when two neighboring emotions are in different semicircles
in the color axis. Again, in general, the emotions which are oppositely placed in
the emotion circle are also negatively correlated. In fact, most of them show highest
negative correlations.

Table 5 has been obtained by calculating a t-test between the counts of markings
by all the listeners for each category of emotion, for all the samples in the score
sheets, pooled together, for listeners of Indian origin and those of non-Indian origin.
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Fig. 2 Proportion of categorical responses for different segments arranged raga-wise
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Fig. 2 (continued): Proportion of categorical responses for different segments arranged
raga-wise
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Fig. 2 (continued): Proportion of categorical responses for different segments arranged raga-
wise
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Fig. 3 Circle representing emotions corresponding to rasas reflected in Indian Ragas

Table 5 Results of T-test showing cross-cultural similarity

Category
of Emotion

T-test of Indian and Non-
Indian origin perception

Level of Signifi-
cance 0.05

Level of Signifi-
cance 0.01

Remarks about
the significance

1. Anger 0.05284118

2.31 3.36 Not Significant

2. Joy 0.09924301
3.Sorrow 0.1685246
4.Heroic 0.86375077
5.Romantic 0.983095
6 Serenity 0.4438216
7.Devotion 0.0629127
8.Anxiety 0.00103316
9.Any
other

0.1253069

10.Nil 0.94685096

The results obtained reveal that none of the category of emotion shows signifi-
cant difference in perception between the listeners of Indian origin and Non-Indian
origin. Therefore, these results indicate that culture does not play any significant
differentiating role in the perception of emotion in music. E.g. segments, which
were perceived by Indians to evoke ’devotion’, also evoked the same emotion (de-
votion) in listeners of non-Indian origin. This result is further confirmed by its high
Product-Moment correlation value of 0.9954 (for devotion).
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Table 6 Results of T-test showing emotional preference of each segment

Raga 
Seq. 
No Anger Heroic Romantic Joy Devotion Serenity Anxiety Sorrow 

1       15.6608  
44  6.988 3.404441  10.57169  1.61263  
30     14.11648   3.01363 

Adana 39  6.131 7.702846      

21  4.207     6.421611 10.85031 
14       9.274855 10.84686 
13  1.577 1.576749    13.84036 1.576749 Mia-ki-

Malhar 37  13.64      5.37472 
31   1.576749  12.08841  3.328693 5.080637 
18     14.51458 3.098617   
12     14.44331  2.517641  Mia-ki-

Todi 42  12.76   6.300541  1.453971  
33         
29     2.044736    
43     2.053277    

Chayanot 36         
20  4.334     13.30181 2.839713 

3  5.663     13.75244  
5  4.442     13.63331  

Bhairav 7     4.729469  12.88373 3.098617 
40     1.390392    

8 13.3      1.345127  
26         

Hindol 9      1.478265   
35   9.720197   1.785342 3.769056 7.736483 
32   14.46216   2.309084   
23   15.29446      

Jaijayanti 15  14.84    2.185332   
19  2.935     12.20455 6.025033 
28  13.3    1.345127 5.828885  

2  12.81 3.528429    3.528429 1.671361 
Jogia 27  1.926    4.066746 8.347531 8.347531 

10  5.947 12.04588   2.897111   
17      8.975132   

4   3.223991   13.40502 1.527154  
Kedar 38      14.7674   

25       15.34946  
34  15.12       
22       15.21361 2.079558 

Darbari 16  7.283 5.415706  3.548221  7.283191  
6  8.957 6.65997    4.363429 4.363429 

41  5.709   2.704365  8.714066 5.709216 
24  4.845    2.295176   

Shree 11  6.485   13.13662    
 

Table 6 presents the results of T-test, showing significant preference of emotions
for all respondents for each music segment. The segments are grouped with respect
to the ragas. Blank cells represent non-significant values. The most significant ex-
pressed emotion is given in bold values. While a segment may exhibit more than one
significant emotion, a close examination of the results reveals that in most cases val-
ues for the most significant emotion are ways higher than the others. This signifies
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Table 7 Comparison between source-directed emotion and observed emotion

Raga Anger Heroic Romantic Joy Devotion Serenity Anxiety Sorrow

Adana S O O O
Mia-ki-Malhar O O S, O
Mia-ki-Todi O S S, O S
Chayanot S O
Bhairav S S, O S O S
Hindol S, O S O O
Jaijayanti O S, O
Jogia O S S O S, O
Kedar O S, O
Darbari O S O
Shree O O S O

that, in general, a particular segment can be thought of as provoking one emotion
only. Highest significant emotion revealed is anxiety, next comes devotion. It may
be noted that the emotion of anxiety does not find a place in Indian rasas.

Table 7 shows the comparison between the emotions expected to be expressed by
each raga (S) and the observed emotion (O). The two agree only in seven cases as
against non-agreement in 31 cases.

In the present study, sequences consisting of three to seven notes have been con-
sidered. The total number of such distinct sequences in all 44 segments is 5943. Of
these, a large number of the sequences did not occur more than once in a segment.
These were excluded from consideration. The remaining 556 sequences were exam-
ined with respect to their abundance in all four segments of a particular raga. As a
result of this examination, it was found that usually the most abundant sequences
consisted of repetitions of only two notes. These were considered as not significant
for the present purpose. After all this sieving out, there were 57 sequences in which
at least three are different notes. Of these, only those sequences which elicit re-
sponses at least for 6 music segments are presented in Table 8. The numbers shown
in bold or italic fonts represent cases where the four segments of one raga elicit at
least a total of 6 responses. The italic ones represent the highest number of responses
for a sequence in a raga.

Table 9 shows the results yielded from matching Table 8 and Table 6, presenting
whether a particular sequence may be associated with some particular emotion or
emotions. As we can see, short sequences of 3-4 notes, specific for ragas, can evoke
particular emotions.

4 Conclusions

In our experiments, we extracted meaningful emotional sequences of sounds from
ragas, and tested what emotions were evoked by these sequences. The listening
tests were performed on two groups of listeners: on Hindustani listeners, and on
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Table 9 Relationship between note sequences and emotions

Note Sequence Major emotional Response

mSN Anger, Devotion, Anxiety
RgM Heroic, Anxiety
SgR Heroic, Romantic
GMmP Romantic, Serenity, Anxiety
Pmd Heroic, Anxiety, Sorrow
SND Anger, Devotion
DPmP Romantic, Serenity
rGrS Heroic, Devotion, Anxiety
GMR Devotion
MGR Devotion
NDP Heroic, Anxiety, Sorrow
NDm Anger
mPmG Heroic, Devotion, Anxiety
mGr Heroic, Devotion, Anxiety
dPMG Heroic, Anxiety, Sorrow
grS Heroic, Devotion
PmG Heroic, Devotion, Anxiety
RGM Devotion
gRS Romantic, Serenity
GMP Anxiety
DPm Romantic, Serenity
MdP Heroic, Anxiety, Sorrow
MPdP Heroic, Anxiety, Sorrow
GrS Heroic, Devotion, Anxiety
PMGM Anxiety
MPd Heroic, Anxiety, Sorrow
NSR Devotion
PMG Devotion
dPM Anxiety

Western listeners not familiar with Hindustani music. For both groups, we investi-
gated what emotions were evoked, for the audio segments used in listening test, and
for sequences of notes of minimal length, specific for each raga.

The results of the experiments described in this paper can be summarized as
follows.

1. An oral music segment of length 3 seconds (a few notes) elicit specific emotion,
2. The elicited emotion can be assigned into prescribed categories,
3. The elicited emotion from different segments from the same raga has some speci-

ficity, i.e. the segments of a raga have shown a specific emotion; it might be that
four segments from the same raga show different emotions,

4. The emotional response from the segments of a raga does not generally corre-
spond to those prescribed in Indian treaties,
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5. The cross-cultural similarity of the elicited response is significant,
6. The melodic sequence (sequence of musical notes) vaguely relate with emotional

response.

Since the number of listening experiments we performed is not really large, these
outcomes can be considered as a coarse estimate. Still, cross-cultural understanding
of emotions in music seems to be quite clearly visible, because the same excerpts
evoked similar emotions in both western and Indian listeners. Also, evoked emotions
may differ from those described in treatises. However, one piece of music usually
consists of many phrases and motives, evoking sometimes a variety of emotions.
We find it interesting to observe that short excerpts (a few seconds, a few notes) are
sufficient to evoke emotions which can be shared by people of different culture and
place of living.
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Audio Cover Song Identification and Similarity:
Background, Approaches, Evaluation, and
Beyond

Joan Serrà, Emilia Gómez, and Perfecto Herrera

1 Introduction

A cover version1 is an alternative rendition of a previously recorded song. Given
that a cover may differ from the original song in timbre, tempo, structure, key, ar-
rangement, or language of the vocals, automatically identifying cover songs in a
given music collection is a rather difficult task. The music information retrieval
(MIR) community has paid much attention to this task in recent years and many ap-
proaches have been proposed. This chapter comprehensively summarizes the work
done in cover song identification while encompassing the background related to this
area of research. The most promising strategies are reviewed and qualitatively com-
pared under a common framework, and their evaluation methodologies are critically
assessed. A discussion on the remaining open issues and future lines of research
closes the chapter.

1.1 Motivation

Cover song identification has been a very active area of study within the last few
years in the MIR community, and its relevance can be seen from multiple points
of view. From the perspective of audio content processing, cover song identifica-
tion yields important information on how musical similarity can be measured and
modeled. Music similarity is an ambiguous term and, apart from musical facets
themselves, may also depend on different cultural (or contextual) and personal (or
subjective) aspects [24]. The purpose of many studies is to define and evaluate the
concept of music similarity, but there are many factors involved in this problem, and

Joan Serrà · Emilia Gómez · Perfecto Herrera
Music Technology Group, Department of Information and Communication Technologies,
Universitat Pompeu Fabra. Tànger 122-140, office 55.318, 08018 Barcelona Spain
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1 We use the term cover or version interchangeably.
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some of them (maybe the most relevant ones) are difficult to measure [6]. Still, the
relationship between cover songs is context-independent and can be qualitatively
defined and objectively measured, as a “canonical” version exists and any other ren-
dition of it can be compared to that.

The problem of identifying covers is also challenging from the point of view of
music cognition, but apparently it has not attracted much attention by itself. When
humans are detecting a cover, they have to derive some invariant representation of
the whole song or maybe of some of its critical sections. We do not know precisely
what is the essential information that has to be encoded in order for the problem to
be solved by human listeners. Nevertheless, it seems relevant the knowledge gained
about the sensitivity or insensitivity to certain melodic transformations, for example
[17, 87]. In addition, when the cover is highly similar in terms of timbre, it seems
that this cue can do the job to help us to identify the song even using very short snip-
pets of it [71]. An additional issue that is called for by cover identification is that of
the memory representation of the songs in humans. It could be either the case that
the canonical song acts as a prototype for any possible version, and that the simi-
larity of the covers is computed in their encoding step, or either that all the songs
are stored in memory (as exemplary-based models would hypothesize) and their
similarity is computed at the retrieval phase. For example, Levitin [46] presents evi-
dence in favor of absolute and detailed coding of song specific information (at least
for the original songs). On the other hand, Deliege [14] has discussed the possibility
of encoding processes that abstract and group by similarity certain musical cues.

From a commercial perspective, it is clear that detecting cover songs has a direct
implication to musical rights’ management and licenses. Furthermore, quantifying
music similarity is key to searching, retrieving, and organizing music collections.
Nowadays, online digital music collections are in the order of ten [59] to a few
hundred million tracks2 and they are continuously increasing. Therefore, one can
hypothesize that the ability to manage this huge amount of digital information in
an efficient and reliable way will make the difference in tomorrow’s music-related
industry [10, 85]. Personal music collections, which by now can easily exceed the
practical limits on the time to listen to them, might benefit as well from efficient and
reliable search and retrieval engines.

From a user’s perspective, finding all versions of a particular song can be valuable
and fun. One can state an increasing interest for cover songs just by looking at
the emergence of related websites, databases, and podcasts in the internet such as
Second Hand Songs3, Coverinfo4, Coverville5, Midomi6, Fancovers7, or YouTube8.

2 See for example http://www.easymp3downloader.com/,
http://blog.wired.com/music/2007/04/lastfm_subscrip.html, or
http://www.qsrmagazine.com/articles/news/story.phtml?id=5852.

3 http://www.secondhandsongs.com
4 http://www.coverinfo.de
5 http://www.coverville.com
6 http://www.midomi.com
7 http://www.fancovers.com
8 http://www.youtube.com

http://www.easymp3downloader.com/
http://blog.wired.com/music/2007/04/lastfm_subscrip.html
http://www.qsrmagazine.com/articles/news/story.phtml?id=5852
http://www.secondhandsongs.com
http://www.coverinfo.de
http://www.coverville.com
http://www.midomi.com
http://www.fancovers.com
http://www.youtube.com
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Frequently, these sites also allow users to share/present their own (sometimes home-
made) cover songs, exchange opinions, discover new music, make friends, learn
about music by comparing versions, etc. Thus, cover songs are becoming part of a
worldwide social phenomena.

1.2 Types of Covers

Cover songs were originally part of a strategy to make profit from ‘hits’ that had
achieved significant commercial success by releasing them in other commercial or
geographical areas without remunerating the original artist or label. Little promotion
and highly localized record distribution in the middle of the 20th century favored
that. Nowadays, the term has nearly lost these purely economical connotations. Mu-
sicians can play covers as a homage or a tribute to the original performer, composer
or band. Sometimes, new versions are rendered for translating songs to other lan-
guages, for adapting them to a particular country/region tastes, for contemporizing
old songs, for introducing new artists, or just for the simple pleasure of playing
a familiar song. In addition, cover songs represent the opportunity (for beginners
and consolidated artists) to perform a radically different interpretation of a musical
piece. Therefore, today, and perhaps not being the proper way to name it, a cover
song can mean any new version, performance, rendition, or recording of a previ-
ously recorded track [42].

Many distinctions between covers can be made (see [27, 79, 89] for some MIR-
based attempts). These usually aim at identifying different situations where a song
was performed in the context of mainstream popular music. Considering the huge
amount of tags and labels related to covers (some of them being just buzzwords
for commercial purposes), and according to our current understanding of the term
cover version, we advocate for a distinction based on musical features instead of
using commercial, subjective, or situational tags. But, just in order to provide an
overview, some exemplary labels associated with versions are listed below [42].

• Remaster: Creating a new master for an album or song generally implies some
sort of sound enhancement (compression, equalization, different endings, fade-
outs, etc.) to a previous, existing product.

• Instrumental: Sometimes, versions without any sung lyrics are released. These
might include karaoke versions to sing or play with, cover songs for different
record-buying public segments (e.g. classical versions of pop songs, children
versions, etc.), or rare instrumental takes of a song in CD-box editions specially
made for collectors.

• Live performance: A recorded track from live performances. This can correspond
to a live recording of the original artist who previously released the song in a
studio album, or to other performers.

• Acoustic: The piece is recorded with a different set of acoustical instruments in
a more intimate situation.

• Demo: It is a way for musicians to approximate their ideas on tape or disc, and
to provide an example of those ideas to record labels, producers, or other artists.
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Musicians often use demos as quick sketches to share with band mates or ar-
rangers. In other cases, a songwriter might make a demo in order to be send to
artists in hopes of having the song professionally recorded, or a music publisher
may need a simplified recording for publishing or copyright purposes.

• Duet: A successful piece can be often re-recorded or performed by extending the
number of lead performers outside the original members of the band.

• Medley: Mostly in live recordings, and in the hope of catching listeners’ atten-
tion, a band covers a set of songs without stopping between them and linking
several themes.

• Remix: This word may be very ambiguous. From a ‘traditionalist’ perspective,
a remix implies an alternate master of a song, adding or subtracting elements,
or simply changing the equalization, dynamics, pitch, tempo, playing time, or
almost any other aspect of the various musical components. But some remixes
involve substantial changes to the arrangement of a recorded work and barely
resemble the original one. Finally, a remix may also refer to a re-interpretation of
a given work such as a hybridizing process simultaneously combining fragments
of two or more works.

• Quotation: The incorporation of a relatively brief segment of existing music in
another work, in a manner akin to quotation in speech or literature. Quotation
usually means melodic quotation, although the whole musical texture may be
incorporated. The borrowed material is presented exactly or nearly so, but is not
part of the main substance of the work.

1.3 Involved Musical Facets

With nowadays’ concept of cover song, one might consider the musical dimensions
in which such a piece may vary from the original one. In classical music, differ-
ent performances of the same piece may show subtle variations and differences,
including different dynamics, tempo, timbre, articulation, etc. On the other hand, in
popular music, the main purpose of recording a different version can be to explore
a radically different interpretation of the original one. Therefore, important changes
and different musical facets might be involved. It is in this scenario where cover
song identification becomes a very challenging task. Some of the main characteris-
tics that might change in a cover song are listed below:

• Timbre: Many variations changing the general color or texture of sounds might
be included into this category. Two predominant groups are:

– Production techniques: Different sound recording and processing techniques
(e.g. equalization, microphones, dynamic compression, etc.) introduce texture
variations in the final audio rendition.

– Instrumentation: The fact that the new performers can be using different in-
struments, configurations, or recording procedures, can confer different tim-
bres to the cover version.
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• Tempo: Even in a live performance of a given song from its original artist, tempo
might change, as it is not so common to control tempo in a concert. In fact, this
might become detrimental for expressiveness and contextual feedback. Even in
classical music, small tempo fluctuations are introduced for different renditions
of the same piece. In general, tempo changes abound (sometimes on purpose)
with different performers.

• Timing: In addition to tempo, the rhythmical structure of the piece might change
depending on the performer’s intention or feeling. Not only by means of changes
in the drum section, but also including more subtle expressive deviations by
means of swing, syncopation, pauses, etc.

• Structure: It is quite common to change the structure of the song. This modifica-
tion can be as simple as skipping a short ‘intro’, repeating the chorus, introducing
an instrumental section, or shortening one. But it can also imply a radical change
in the musical section ordering.

• Key: The piece can be transposed to a different key or tonality. This is usually
done to adapt the pitch range to a different singer or instrument, for ‘aesthetic’
reasons, or to induce some mood changes on the listener.

• Harmonization: While maintaining the key, the chord progression might change
(adding or deleting chords, substituting them by relatives, modifying the chord
types, adding tensions, etc.). This is very common in introduction and bridge
passages. Also, in instrument solo parts, the lead instrument voice is practically
always different from the original one.

• Lyrics and language: One purpose of performing a cover song is for translating
it to other languages. This is commonly done by high-selling artists to be better
known in large speaker communities.

• Noise: In this category we consider other audio manifestations that might be
present in a song recording. Examples include audience manifestations such as
claps, shouts, or whistles, audio compression and encoding artifacts, speech, etc.

Notice that, in some cases, the characteristics of the song might change, except,
perhaps, a lick or a phrase that is on the background, and that it is the only thing that
reminds of the original song (e.g. remixes or quotations). In these cases, it becomes
a challenge to recognize the original song, even if the song is familiar to the listener.
Music characteristics that may change within different types of covers are shown in
table 1.

1.4 Scientific Background

In the literature, one can find plenty of approaches addressing song similarity and
retrieval, both in the symbolic and the audio domains9. Within these, research

9 As symbolic domain we refer to the approach to music content processing that uses, as
starting raw data, symbolic representations of musical content (e.g. MIDI or **kern files,
data extracted from printed scores). Contrastingly, the audio domain processes the raw au-
dio signal (e.g. WAV or MP3 files, real-time recorded data).
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Table 1 Musical changes that can be observed in different cover song categories. Stars indi-
cate that the change is possible, but not necessary.

Timbre Tempo Timing Structure Key Harm. Lyrics Noise

Remaster �
Instrumental � � �
Live � � � �
Acoustic � � � � � �
Demo � � � � � � � �
Medley � � � � � �
Remix � � � � � � � �
Quotation � � �

done in areas such as query-by-humming systems, content-based music retrieval,
genre classification, or audio fingerprinting, is relevant for addressing cover song
similarity.

Many ideas for cover song identification systems come from the symbolic do-
main [45, 56, 67, 81], and query-by-humming systems [12] are paradigmatic ex-
amples. In query-by-humming systems, the user sings or hums a melody and the
system searches for matches in a musical database. This query-by-example situa-
tion is parallel to retrieving cover songs from a database. In fact, many of the note
encoding or alignment techniques employed in query-by-humming systems could
be useful in future approaches for cover song identification. However, the kind of
musical information that query-by-humming systems manage is symbolic (usually
MIDI files), and the query, as well as the music material, must be transcribed into
the symbolic domain. Unfortunately, transcription systems of this kind do not yet
achieve a significantly high accuracy on real-world audio music signals. Current
state-of-the-art algorithms yield overall accuracies around 75%10, even for melody
estimation11, indicating that there is still much room for improvement in these ar-
eas. Consequently, we argue that research in the symbolic domain cannot be directly
applied to audio domain cover song similarity systems without incurring several es-
timation errors in the first processing stages of these. These errors, in turn, may have
dramatic consequences in final system’s accuracy.

Content-based music retrieval is organized around use cases which define a type
of query, the sense of match, and the form of the output [10, 18]. The sense of
match implies different degrees of specificity: it can be exact, retrieving music
with specific content, or approximate, retrieving near neighbors in a musical space
where proximity encodes different senses of musical similarity [10]. One prototyp-
ical use case is genre classification [70]. In this case, one generally tries to group
songs according to a commercially or culturally established label, the genre, where

10 http://www.music-ir.org/mirex/2008/index.php/
Multiple_Fundamental_Frequency_Estimation_&_Tracking_Results

11 http://www.music-ir.org/mirex/2008/index.php/
Audio_Melody_Extraction_Results

http://www.music-ir.org/mirex/2008/index.php/
Multiple_Fundamental_Frequency_Estimation_&_Tracking_Results
http://www.music-ir.org/mirex/2008/index.php/
Audio_Melody_Extraction_Results
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certain characteristics might be more or less the same but many others might radi-
cally change (category-based song grouping). Therefore, genre classification is con-
sidered to have a low match specificity [10]. On the other hand, audio fingerprinting
[7] is an example of a task with a highly specific match. This essentially consists in
identifying a particular performance of a concrete song (exact duplicate detection).
In contrast to many prototypical use cases, cover song identification is representa-
tive of an intermediate specificity region [10]. It goes beyond audio fingerprinting
in the sense that it tries to approximate duplicate detection while allowing many
musical facets to change. In addition, it is more specific than genre classification
in the sense that it goes beyond timbral similarity to include the important idea
that musical works retain their identity notwithstanding variations in many musical
dimensions [19].

It must be noted that many studies approach the aforementioned intermediate
match specificity. This is the case, for instance, of many audio fingerprinting al-
gorithms using tonality-based descriptors instead of the more routinely employed
timbral ones (e.g. [8, 51, 66, 84]). These approaches can also be named with terms
such as audio identification, audio matching, or simply, polyphonic audio retrieval.
The adoption of tonal features adds some degrees of invariance (timbre, noise) to
audio fingerprinting algorithms which are, by nature, invariant with respect to song
structure changes. In spite of that, many of them might still have a low recall for
cover versions. This could be due to an excessively coarse feature quantization [66],
and to the lack of other desirable degrees of invariance to known musical changes
like tempo variations or key transpositions [76].

Like recent audio identification algorithms, many other systems derived from
the genre classification task or from traditional music similarity approaches may
also fall into the aforementioned intermediate specificity region. These, in general,
differ from traditional systems of their kind in the sense that they also incorporate
tonal information (e.g. [48, 61, 82, 90]). However, these systems might also fail in
achieving invariance to key or tempo modifications. In general, they do not consider
full sequences of musical events, but just statistical summarizations of them, which
might blur/distort valuable information for assessing the similarity between cover
songs.

Because of the large volume of existing work it is impossible to cover every top
in this area. We focus on algorithms designed for cover song identification, that,
in addition, include several modules explicitly designed to achieve invariance to
characteristic musical changes among versions12.

2 Approaches

The standard approach to measuring similarity between cover songs is essentially
to exploit music facets shared between them. Since several important characteristics

12 Even considering this criteria, it is difficult to present the complete list of methods and
alternatives. We apologize for possible omissions/errors and, in any case, we assert that
these have not been intentional.
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are subject to variation (timbre, key, harmonization, tempo, timing, structure, and so
forth, Section 1.3), cover song identification systems must be robust against these
variations.

Extracted descriptors are often in charge of overcoming the majority of musical
changes among covers, but special emphasis is put on achieving tempo, key, or struc-
ture invariance, as these are very frequent changes that are not usually managed by
extracted descriptors themselves. Therefore, one can group the elements of existing
cover song identification systems into four basic functional blocks: feature extrac-
tion, key invariance, tempo invariance, and structure invariance. An extra block can
be considered at the end of the chain for the final similarity measure used (figure 1
illustrates these blocks). A summary table for several state-of-the-art approaches,
and the different strategies they follow in each functional block, is provided at the
end of the present section (table 2).

2.1 Feature Extraction

In general, we can assume that different versions of the same piece mostly preserve
the main melodic line and/or the harmonic progression, regardless of its main key.
For this reason, tonal or harmonic content is a mid-level characteristic that should
be considered to robustly identify covers.

The term tonality is commonly used to denote a system of relationships between
a series of pitches, which can form melodies and harmonies, having a tonic (or
central pitch class) as its most important (or stable) element [42]. In its broadest
possible sense, this term refers to the arrangements of pitch phenomena. Tonality
is ubiquitous in Western music, and most listeners, either musically trained or not,
can identify the most stable pitch while listening to tonal music [11]. Furthermore,
this process is continuous and remains active throughout the sequential listening
experience [72].

A tonal sequence can be understood, in a broad sense, as a sequentially-played
series of different note combinations. These notes can be unique for each time slot
(a melody) or can be played jointly with others (chord or harmonic progressions).
From a MIR point of view, clear evidence about the importance of tonal sequences
for music similarity and retrieval exists [9, 22, 34]. In fact, almost all cover song
identification algorithms exploit tonal sequence representations extracted from the
raw audio signals: they either estimate the main melody, the chord sequence, or the
harmonic progression. Only early systems, which, e.g., work with the audio signal’s
energy or with spectral-based timbral features, are an exception [25, 89].

Melody is a salient musical descriptor of a piece of music [73] and, therefore, sev-
eral cover song identification systems use melody representations as a main descrip-
tor [49, 50, 68, 78, 79]. As a first processing step, these systems need to extract the
predominant melody from the raw audio signal [62]. Melody extraction is strongly
related to pitch tracking, which itself has a long and continuing history [13]. How-
ever, in the context of complex mixtures, the pitch tracking problem becomes further
complicated because, although multiple pitches may be present at the same time, at
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Fig. 1 Generic block diagram for cover song identification systems

most just one of them will be the melody. This and many other facets [62] make
melody extraction from real-world audio signals a difficult task (see Section 1.4).
To refine the obtained representation, cover detection systems usually need to com-
bine a melody extractor with a voice/non-voice detector and other post-processing
modules in order to achieve a more reliable representation [68, 78, 79]. Another
possibility is to generate a so-called “mid-level” representation for these melodies
[49, 50], where the emphasis is not only put on melody extraction, but also on the
feasibility to describe audio in a way that facilitates retrieval.
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Alternatively, cover song similarity can be assessed by harmonic, rather than
melodic, sequences using so-called chroma features or pitch class profiles (PCP)
[26, 27, 63, 82]. These mid-level features might provide a more complete, reli-
able, and straightforward representation than, e.g., melody estimation, as they do
not need to tackle the pitch selection and tracking issues outlined above. PCP fea-
tures are derived from the energy found within a given frequency range (usually
from 50 to 5000 Hz) in short-time spectral representations (typically 100 msec) of
audio signals extracted on a frame-by-frame basis. This energy is usually collapsed
into a 12-bin octave-independent histogram representing the relative intensity of
each of the 12 semitones of an equal-tempered chromatic scale. Reliable PCP fea-
tures should, ideally, (a) represent the pitch class distribution of both monophonic
and polyphonic signals, (b) consider the presence of harmonic frequencies, (c) be
robust to noise and non-tonal sounds, (d) be independent of timbre and played in-
strument, (e) be independent of loudness and dynamics, and (f) be independent of
tuning, so that the reference frequency can be different from the standard A 440
Hz [27]. This degree of invariance with respect to several musical characteristics
make PCP features very attractive for cover song identification systems. Hence,
the majority of systems use a PCP-based feature as primary source of information
[20, 21, 23, 28, 29, 36, 37, 38, 39, 40, 41, 55, 53, 76, 74].

An interesting variation of using PCP features for characterizing cover song sim-
ilarity is proposed in [9]. In this work, PCP sequences are collapsed into string
sequences using vector quantization, i.e. summarizing several features vectors by a
close representative, done via the K-means algorithm [88] (8, 16, 32, or 64 sym-
bols). In [55], vector quantization is performed by computing binary PCP feature
vector components in such a way that, with 12 dimensional feature vectors, a code-
book of 212 = 4096 symbols is generated (so-called polyphonic binary feature vec-
tors). Sometimes, the lack of interpretability of the produced sequences and symbols
makes the addition of some musical knowledge to these systems rather difficult. This
issue is further studied in [41] where, instead of quantizing in a totally unsupervised
way, a codebook of PCP features based on musical knowledge (with a size of 793
symbols) is generated. In general, vector quantization, indexing, and hashing tech-
niques, result in highly efficient algorithms for music retrieval [8, 41, 55, 66], even
though their accuracy has never been formally assessed for the specific cover song
identification task. It would be very interesting to see how these systems perform
on a benchmark cover song training set (e.g. MIREX [18]) in comparison to specif-
ically designed approaches. More concretely, it is still an issue if PCP quantization
strongly degrades cover song retrieval. Some preliminary results suggest that this is
the case [66].

Instead of quantizing PCP features, one can use chord or key template sequences
for computing cover song similarity [2, 4, 35, 43]. Estimating chord sequences from
audio data has been a very active research area in recent years [5, 44, 60, 77].
The common process for chord estimation consists of two steps: pre-processing
the audio into a feature vector representation (usually a PCP feature), and ap-
proximating the most likely chord sequence from these vectors (usually done via
template-matching or expectation-maximization trained Hidden Markov Models
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[64]). Usually, 24 chords are used (12 major and 12 minor), although some studies
incorporate more complex chord types, such as 7th, 9th, augmented, and diminished
chords [26, 32]. This way, the obtained strings have a straightforward musical inter-
pretation. However, chord-based tonal sequence representations might be too coarse
for the task at hand if one considers previously mentioned PCP codebook sizes, and
might be also error-prone.

2.2 Key Invariance

As mentioned in section 1.3, cover songs may be transposed to different keys. Trans-
posed versions are equivalent to most listeners, as pitches are perceived relative to
each other rather than in absolute categories [16]. In spite of being a common change
between versions, some systems do not explicitly consider transpositions. This is the
case for systems that do not specifically focus on cover songs, or that do not use a
tonal representation [25, 35, 53, 89].

Transposition is reflected as a ring-shift with respect to the “pitch axis” of the fea-
ture representation. Several strategies can be followed to tackle transposition, and
their suitability may depend on the chosen feature representation. In general, trans-
position invariance can be achieved by relative feature encoding, by key estimation,
by shift-invariant transformations, or by applying different transpositions.

The most straightforward way to achieve key invariance is to test all possible
feature transpositions [21, 23, 36, 38, 39, 41, 50, 55]. In the case of an octave-
independent representation, this implies the computation of a similarity measure for
all possible circular (or ring) shifts in the pitch axis for each song. This strategy
usually guarantees a maximal retrieval accuracy [75] but, on the other hand, either
the time or the size (or both) of the database to search in increases.

Recently, some speeding-up approaches for this process have been presented [75,
76]. Given a tonal representation for two songs, these algorithms basically compute
the most probable relative transpositions given an overall representation of the tonal
content of each song (the so-called optimal transposition index) [20, 74, 76]. This
process is very fast since this overall representation can be, e.g., a simple averaging
of the PCP features over the whole sequence, and can be calculated off-line. Finally,
only the K most probable shifts are chosen. Further evaluation suggests that, for
12 bin PCP-based representations, a near-optimal accuracy can be reached with just
two shifts [75], thus reducing six times the computational load. Some systems do not
follow these strategy and predefine a certain number of transpositions to compute.
These can be chosen arbitrarily [78, 79], or based on some musical and empirical
knowledge [4]. Decisions of this kind are very specific for each system.

An alternative approach is to off-line estimate the main key of the song and then
apply transposition accordingly [28, 29, 49]. In this case, errors propagate faster and
can dramatically worsen retrieval accuracy [75, 76] (e.g. if the key for the original
song is not correctly estimated, no covers will be retrieved as they might have been
estimated in the correct one). However, it must be noted that a similar procedure to
choosing the K most probable transpositions could be employed.
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If a symbolic representation such as chords is used, one can further modify it in
order to just describe relative chord changes. This way, a key-independent feature
sequence is obtained [2, 43, 68]. This idea, which is grounded in existing research on
symbolic music processing [12, 45, 56, 67, 81], has been recently extended to PCP
sequences [40, 38] by using the concept of optimal (or minimizing) transposition
indices [52, 76].

A very interesting approach to achieve transposition invariance is to use a 2D
power spectrum [50] or a 2D autocorrelation function [37]. Autocorrelation is a
well-known operator for converting signals into a delay or shift-invariant represen-
tation [58]. Therefore, the power spectrum (or power spectral density), which is for-
mally defined as the Fourier transform of the autocorrelation, is also shift-invariant.
Other 2D transforms (e.g. from image processing) could be also used, specially
shift-invariant operators derived from higher-order spectra [33].

2.3 Tempo Invariance

Different renditions of the same piece may vary in the speed they have been played,
and any descriptor sequence extracted in a frame-by-frame basis from these per-
formances will reflect this variation. For instance, in case of doubling the tempo,
frames i, i+ 1, i+ 2, i+ 3 might correspond to frames j, j, j + 1, j + 1, respectively.
Consequently, extracted sequences cannot be directly compared. Some cover song
identification systems fail to include a specific module to tackle tempo fluctuations
[2, 38, 39, 90, 91]. The majority of these systems generally focus on retrieval ef-
ficiency and treat descriptor sequences as statistical random variables. Thus, they
throw away much of the sequential information that a given representation can pro-
vide (e.g. a representation consisting of a 4 symbol pattern like ABABCD, would
yield the same values as AABBCD, ABCABD, etc., which is indeed a misleading
oversimplification of the original data).

In case of having a symbolic descriptor sequence (e.g. the melody), one can en-
code it by considering the ratio of durations between two consecutive notes [68].
This strategy is employed in query-by-humming systems [12] and, combined with
relative pitch encoding (section 2.3), leads to a representation that is key and tempo
independent. However, for the reasons outlined in section 2.1, extracting a symbolic
descriptor sequence is not straightforward and may lead to important estimation
errors. Therefore, one needs to look at alternative tempo-invariance strategies.

One way of achieving tempo invariance is to estimate the tempo and then ag-
gregate the information contained within comparable units of time. In this manner,
the usual strategy is to estimate the beat [30] and then aggregate the descriptor in-
formation corresponding to the same beat. This can be done independently of the
descriptor used. Some cover song identification systems based on a PCP [23, 55]
or a melodic [49, 50] representation use this strategy, and extensions with chords
or other types of information could be easily devised. If the beat does not pro-
vide enough temporal resolution, a finer representation (e.g. half-beat, quarter-beat,
etc.) might be employed [21]. However, some studies suggest that systems using
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beat-averaging strategies can be outperformed by others, specially the ones employ-
ing dynamic programming [4, 76].

An alternative to beat induction is doing temporal compression/expansion [41,
53]. This straightforward strategy consists in re-sampling the signal into several
musically plausible compressed/expanded versions and then comparing all of them
in order to empirically discover the correct re-sampling.

Another interesting way to achieve tempo independence is again the 2D power
spectrum or the 2D autocorrelation function [36, 37, 50]. These functions are usually
designed for achieving both tempo as well as key independence, but 1D versions can
also be designed (section 2.2).

If one wants to perform direct frame to frame comparison, a sequence align-
ment/similarity algorithm must be used to determine frame to frame correspon-
dence between two song’s representations. Several alignment algorithms for MIR
have been proposed (e.g. [1, 15, 52]) which, sometimes, derive from general string
and sequence alignment/similarity algorithms [31, 65, 69]. In cover song identi-
fication, dynamic programming [31] is a routinely employed technique for align-
ing two representations and automatically discovering their local correspondences
[4, 20, 25, 28, 29, 35, 43, 49, 55, 74, 76, 78, 79, 89]. Overall, one iteratively con-
structs a cumulative distance matrix by considering the optimal alignment paths that
can be derived by following some neighboring constraints (or patterns) [54, 65].
These neighboring constraints determine the allowed local temporal deviations and
they have been evidenced to be an important parameter in the final system’s accu-
racy [54, 76]. One might hypothesize that this importance relies on the ability to
track local timing variations between small parts of the performance (section 1.3).
For cover song identification, dynamic programming algorithms have been found
to outperform beat induction strategies [4, 76]. The most typical algorithms for
dynamic programming alignment/similarity are dynamic time warping algorithms
[65, 69] and edit distance variants [31]. Their main drawback is that they are com-
putationally expensive (i.e., quadratic in the length of the song representations), but
several fast implementations may be derived [31, 56, 83].

2.4 Structure Invariance

The difficulties that a different song structure may pose in the computation of a cover
song similarity measure are very often neglected. However, this has been demon-
strated to be a key factor [76] and actually, recent cover song identification systems
thoughtfully consider this aspect, especially many of the best-performing ones13.

A classic approach to structure invariance consists in summarizing a song into
its most repeated or representative parts [29, 49]. In this case, song structure anal-
ysis [57] is performed in order to segment sections from the song’s representation
used. Usually, the most repetitive patterns are chosen and the remaining patterns are
disregarded. This strategy might be prone to errors since structure segmentation al-
gorithms still have much room for improvement [57]. Furthermore, sometimes the

13 For accuracies please see section 3 and references therein.
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most identifiable or salient segment for a song is not the most repeated one, but the
introduction, the bridge, and so forth.

Some dynamic programming algorithms deal with song structure changes. These
are basically the so-called local alignment algorithms [31], and have been success-
fully applied to the task of cover song identification [20, 74, 76, 89]. These systems
solely consider the best subsequence alignment found between two song’s represen-
tation for similarity assessment, what has been evidenced to yield very satisfactory
results [76].

However, the most common strategy for achieving structure invariance consists
in windowing the descriptors representation (sequence windowing) [41, 50, 53, 55].
This windowing can be performed with a small hop size in order to faithfully rep-
resent any possible offset in the representations. This hop size has not been found
to be a critical parameter for accuracy, as near-optimal values are found for a con-
siderable hop size range [50]. Sequence windowing is also used by many audio fin-
gerprinting algorithms using tonality-based descriptors [8, 51, 66], and it is usually
computationally less expensive than dynamic programming techniques for achiev-
ing structural invariance.

2.5 Similarity Computation

The final objective of a cover song identification system is, given a query, to retrieve
a list of cover songs from a music collection. This list is usually ranked accord-
ing to some similarity measure so that first songs are the most similar to the query.
Therefore, cover song identification systems output a similarity (or dissimilarity14)
measure between pairs of songs. This similarity measure operates on the obtained
representation after feature extraction, key invariance, tempo invariance, and struc-
ture invariance modules.

Common dynamic programming techniques used for achieving tempo invariance
(section 2.3) already provide a similarity measure as an output [31, 65, 69]. Accord-
ingly, the majority of the cover song identification systems following a dynamic
programming approach use the similarity measure these approaches provide. This
is the case for systems using edit distances [4, 68] or dynamic time warping algo-
rithms [25, 28, 29, 35, 43, 78, 79]. These similarity measures usually contain an im-
plicit normalization depending on the representation’s lengths, which can generate
some conflicts with versions of very different durations. In the case of local align-
ment dynamic programming techniques (section 2.4), the similarity measure usually
corresponds to the length of the found subsequence match [20, 55, 74, 76, 89].

Conventional similarity measures like cross-correlation [21, 23, 49], the Frobe-
nius norm [36], the Euclidean distance [37, 50], or the dot product [38, 39, 41, 53]
are also used. They are sometimes normalized depending on compared represen-
tation’s lengths. In the case of adopting a sequence windowing strategy for dealing

14 For the sake of generality, we use the term similarity to refer to both the similarity and the
dissimilarity. In general, a distance measure can also be considered a dissimilarity measure,
which, in turn, can be converted to a similarity measure.
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óm
ez

&
H

er
re

ra
[2

8]
PC

P
K

ey
es

ti
m

at
io

n
D

P
D

T
W

G
óm
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with structure changes (section 2.4), these similarity measures are usually combined
with multiple post-processing steps such as threshold definition [41, 53, 50], TF-
IDF15 weights [50], or mismatch ratios [41]. Less conventional similarity measures
include the normalized compression distance [2], and the Hidden Markov Model-
based most likely sequence of states [40]. In table 2 we show a summary of all
the outlined approaches and their strategies for overcoming musical changes among
cover versions and for similarity computation.

3 Evaluation

The evaluation of cover song identification and similarity systems is a complex
task, and it is difficult to find in the literature a common methodology for that.
The only existing attempt to compare version identification systems is found in
the Music Information Retrieval Evaluation eXchange (MIREX16) initiative [18,
19]. Nevertheless, the MIREX framework only provides an overall accuracy of
each system. A valuable improvement would be to implement independent eval-
uations for the different processes involved (feature extraction, similarity com-
putation, etc.), in order to analyze their contributions to the global system
behavior.

The evaluation of cover song identification systems is usually set up as a typi-
cal information retrieval “query and answer” task [3], where one submits a query
song and the system returns a ranked set (or list) of answers retrieved from a given
collection [19]. Then, the main purpose of the evaluation process is to assess how
precise the retrieved set is. We discuss two important issues regarding the evalua-
tion of cover song retrieval systems: the evaluation measures and the music material
used.

3.1 Evaluation Measures

A referential evaluation measure might be the mean of average precision (MAP).
This measure is routinely employed in various information retrieval disciplines [3,
47, 86] and some works on cover song identification have recently started reporting
results based on it [2, 20, 74]. In addition, it has been also used to evaluate the cover
song identification task in the MIREX [19].

Although MIREX defines some evaluation measures, in the literature there is no
agreement on which one to use. Therefore, in addition to MAP, several other mea-
sures have been proposed. These include the R-Precision (R-Prec, [4, 35]), variants
of Precision or Recall at different rank levels (P@X, R@X, [21, 23, 25, 36, 37, 38,
39, 41, 78, 79, 89]), the average of Precision and Recall (Avg PR, [55]), and the
F-measure (Fmeas, [28, 29, 76]).

15 The TF-IDF weight (term frequency-inverse document frequency) is a weight often used
in information retrieval and text mining. For more details we refer to [3].

16 http://www.music-ir.org/mirexwiki/index.php/Main_Page

http://www.music-ir.org/mirexwiki/index.php/Main_Page
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3.2 Music Material: Genre, Variability, and Size Issues

One relevant issue when dealing with evaluation is the considered music material.
Both the complexity of the problem and the selected approach largely depend on
the studied music collection and the types of versions we want to identify, which
might range from remastered tracks, to radically different songs (section 1.2). In
this sense, it is very difficult to compare two systems evaluated in different condi-
tions and designed to solve different problems. Some works solely analyze clas-
sical music [35, 38, 39, 41, 53], and it is the case that all of them obtain very
high accuracies. However, classical music versions might not present strong tim-
bral, structural, or tempo variations. Therefore, one might hypothesize that, when
only classical music is considered, the complexity of the cover song identification
task decreases. Other works use a more variated style distribution in their music col-
lections [2, 4, 21, 23, 36, 37, 49, 50] but many times it is still unclear which types
of versions are used. These are usually mixed and may include remastered tracks
(which might be easier to detect), medleys (where invariance towards song structure
changes may be a central aspect), demos (with substantial variations with respect to
the finally released song), remixes, or quotations (which might constitute the most
challenging scenario due to their potentially low duration and distorted harmonic-
ity). The MIREX music collection is meant to include a wide variety of genres (e.g.
classical, jazz, gospel, rock, folk-rock, etc.), and a sufficient variety of styles and
orchestrations [19]. However, the types of covers that are present in the MIREX
collection are unknown17. In our view, a big variety in genres and types of covers is
the only way to ensure the general applicability of the method being developed.

Apart from the qualitative aspects of the considered music material, one should
also care with the quantitative aspects of it. The total amount of songs and the distri-
bution of these can strongly influence final accuracy values. To study this influence,
one can decompose a music collection into cover sets (i.e. each original song is as-
signed to a separate cover set). Then, their cardinality (number of covers per set,
i.e., the number of covers for each original song) becomes an important parameter.
A simple test was performed with the system described in [74] in order to assess the
influence of these two parameters (number of cover sets, and their cardinality) on
the final system’s accuracy. Based on a collection of 2135 cover songs, 30 random
selections of songs were carried out according to the aforementioned parameters.
Then, average MAP for all runs was computed and plotted (figure 2). We can see
that considering less than 50 cover sets or even just a cardinality of 2 yields un-
realistically high results, while higher values for these two parameters at the same
time all fall in a stable accuracy region18. This effect can also be seen if we plot the
standard deviations of the evaluation measure across all runs (figure 3). Finally, it
can be observed that using less than 50 cover sets introduces a high variability in the

17 As the underlying datasets are not disclosed, information of this kind is unavailable.
18 It is not the aim of the experiment to provide explicit accuracy values. Instead, we aim at

illustrating the effects that different configurations of the music collection might have for
final system’s accuracy.
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Fig. 2 Accuracy of a cover song identification system depending on the number of cover sets,
and the number of covers per set

evaluated accuracy, which might then depend on the chosen subset. This variability
becomes lower as the number of cover sets and their cardinality increase.

With the small experiment above, we can see that an insufficient size of the
music collection could potentially lead to abnormally high accuracies, as well
as to parameter over fitting (in the case of requiring a training procedure for
some of them). Unfortunately, many reported studies use less than 50 cover sets
[25, 28, 29, 35, 55, 78, 79]. Therefore, one cannot be confident about the reported
accuracies. This could even happen with the so-called covers80 cover song dataset19

(a freely available dataset that many researchers use to test system’s accuracy and to
tune their parameters [2, 21, 23, 36, 37]), which is composed of 80 cover sets with
a cardinality of 2.

In case when the evaluation dataset is not large enough, one may try to compen-
sate the artifacts this might produce by adding so-called ‘noise’ or ‘control’ songs
[4, 20, 49, 50]. The inclusion of these songs in the retrieval collection might provide
an extra dose of difficulty to the task, as the probability of getting relevant items
within the first ranked elements becomes then very low [19]. This approach is also
followed within the MIREX framework. Therefore, test data is composed of thirty
cover sets, each one consisting of eleven different versions. Accordingly, the total
cover song collection contains 330 songs. In order to make the detection task more
difficult, 670 individual songs, i.e., cover sets of cardinality 1, are added [19].

19 http://labrosa.ee.columbia.edu/projects/coversongs/covers80

http://labrosa.ee.columbia.edu/projects/coversongs/covers80
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rà

et
al

.[
74

,7
6]

52
5

4.
1˜

21
35

B
,C

,C
O

,E
,J

,M
,P

,R
,

W
A

,D
E

,D
U

,I
,L

,M
,R

X
,

Q
M

A
P

0.
66

0.
66

T
sa

ie
ta

l.
[7

8,
79

]
47

2
79

4
P

@
1

0.
77

Y
an

g
[8

9]
12

0
C

,P
,R

P
@

2
0.

99
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Fig. 3 Standard deviation of a cover song identification system’s accuracy depending on the
number of cover sets, and the number of covers per set

As a corollary, we could hypothesize that the bigger and more varied the mu-
sic collection is, the more similar the out-of-sample results (and therefore better
scalability) we shall obtain. In addition, one should stress that the usage of an ho-
mogeneous and small music collection, apart from leading to abnormal accuracies,
could also lead to incorrect parameter estimates. In table 3 we show a summary of
the evaluation strategies and accuracies reported by the cover song identification
systems outlined in section 2.

4 Concluding Remarks

We have summarized here the work done for addressing the problem of automatic
cover song identification. Even though different approaches have been tried, it seems
quite clear that a well-crafted system has to be able to exploit tonal, temporal, and
structural invariant representations of music. We have also learnt that there are
methodological issues to be considered when building music collections used as
ground-truth for developing and evaluating cover identification systems.

Once we have concluded this exhaustive overview, some conceptual open issues
can be remarked. Even though the main invariances to be computed correspond to
tonal and rhythm information, we still ignore the role (if any) of timbre, vocal fea-
tures, or melodic similarity. Timbre similarity, including vocal similarity for sung
music, could have some impact for identifying those covers intended to be close
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matches to a given query. In other situations this type of similarity would be mis-
leading, though. Finding an automated way for deciding on that is still an open
research issue.

In order to determine a similarity measure between cover songs, the usual
approach pays attention solely to the musical facets that are shared among them
(section 2). This makes sense if we suppose that these changes do not affect the
similarity between covers. For instance, if two songs are covers and have the same
timbre characteristics, and a third song is also a cover but does not exhibit the same
timbre, they will score the same similarity. This commonality-based sense of simi-
larity contrasts with the feature contrast similarity model [80], wherein similarity is
determined by both common and distinctive features of the objects being compared.
Future works approaching cover song similarity in a stricter sense might benefit
from considering also differences between them, so that, in the previous example,
the third cover is less similar than the two first ones.

Determining cover song similarity in a stricter sense would have some practical
consequences and would be a useful feature for music retrieval systems. There-
fore, depending on the goals of the listeners, different degrees of similarity could
be required. Here we have a new scenario where the ill-defined but typical music
similarity problem needs to be addressed. Research reported in this chapter could
provide reasonable similarity metrics for this, but preservation of timbral and struc-
tural features would be required in addition, in order to score high in similarity with
respect to the query song.

Another avenue for research is that of detecting musical quotations. In classi-
cal music, there is a long tradition of composers citing phrases or motives from
other composers (e.g. Alban Berg quoting Bach’s chorale Es ist genug in his Violin
Concerto, or Richard Strauss quoting Beethoven’s Eroica symphony in his ’Meta-
morphosen for 23 solo strings’). In popular music there are also plenty of quotations
(e.g. The Beatles’ ending section of All you need is love quotes the French anthem
La Marseillaise and Glen Miller’s In the mood, or Madonna’s Hung up quoting
Abba’s Gimme, Gimme, Gimme), and even modern electronic genres massively bor-
row loops and excerpts from any existing recording. As the quoted sections are
usually of short duration, special adaptations of the reviewed algorithms would be
required to detect them. In addition to facilitating law enforcement procedures, link-
ing this way diverse musical works opens new interesting ways for navigating across
huge music collections.

Beyond many conceptual open issues, there are still some technical aspects that
deserve effort to improve the efficiency of a system. First, perfecting a music pro-
cessing system requires careful examination and analysis of errors. When errors are
patterned they can reveal specific deficiencies or shortcomings in the algorithm. We
are still lacking of that kind of in-depth analysis. Second, rigorously evaluating a
cover song similarity metric would require the ground truth songs to be categorized
according to the musical facets involved (section 1.3) and, maybe, according to the
cover song category they belong to (section 1.2). Third, achieving a robust, scal-
able, and efficient method is still an issue. It is outstanding that systems achieving
the highest accuracies are quite computationally expensive, and that fast retrieval
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systems fail in recognizing many of the cover songs a music collection might con-
tain (section 2.1). We hypothesize that there exists a trade-off between system’s
accuracy and efficiency. However, we believe that these and many other technical as
well as conceptual issues might be overcome in next years.
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Multimodal Aspects of Music Retrieval:
Audio, Song Lyrics – and Beyond?

Rudolf Mayer and Andreas Rauber

Abstract. Music retrieval is predominantly seen as a problem to be tackled in the
acoustic domain. With the exception of symbolic music retrieval and score-based
systems, which form rather separate sub-disciplines on their own, most approaches
to retrieve recordings of music by content rely on different features extracted from
the audio signal. Music is subsequently retrieved by similarity matching, or classi-
fied into genre, instrumentation, artist or other categories. Yet, music is an inherently
multimodal type of data. Apart from purely instrumental pieces, the lyrics associated
with the music are as essential to the reception and the message of a song as is the
audio. Album covers are carefully designed by artists to convey a message that is con-
sistent with the message sent by the music on the album as well as by the image of a
band in general. Music videos, fan sites and other sources of information add to that
in a usually coherent manner. This paper takes a look at recent developments in multi-
modal analysis of music. It discusses different types of information sources available,
stressing the multimodal character of music. It then reviews some features that may
be extracted from those sources, focussing particularly on audio and lyrics as sources
of information. Experimental results on different collections and categorisation tasks
will round off the chapter. It shows the merits and open issues to be addressed to fully
benefit from the rich and complex information space that music creates.

1 Introduction

Multimedia data by definition incorporates multiple types of content. However, of-
ten a strong focus is put on one view only, disregarding many other opportunities
and exploitable modalities. In the same way as video, for instance, incorporates
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visual, auditory, and text info (in the case of subtitles or extra information about the
current programme via TV text and other channels), music data itself is not limited
solely to its sound. Yet, a strong focus is put on audio based feature sets throughout
the music information retrieval community, as music perception itself is based on
sonic characteristics to a large extent. For many people, acoustic content is the main
property of a song and makes it possible to differentiate between acoustic styles.
For many examples or even genres this is true, for instance ‘Hip-Hop’ or ‘Techno’
music being dominated by a strong bass. Specific instruments very often define dif-
ferent types of music – once a track contains trumpet sounds it will most likely be
assigned to genres like ‘Jazz’, traditional Austrian/German ‘Blasmusik’, ‘Classical’,
or ‘Christmas’.

However, a great deal of information is to be found in extra information in the
form of text documents, be it about artists, albums, or song lyrics. Many musical
genres are rather defined by the topics they deal with than a typical sound. ‘Christ-
mas’ songs, for instance, are spread over a whole range of musical genres. Many
traditional ‘Christmas’ songs were interpreted by modern artists and are heavily in-
fluenced by their style; ‘Punk Rock’ variations are recorded as well as ‘Hip-Hop’
or ‘Rap’ versions. What all of these share, though, is a common set of topics to be
sung about. Another example is ‘Christian Rock’, which has a sound indistinguish-
able from other Rock music, but has highly religious topics (the same holds true for
‘Christian Hip-Hop’). These simple examples show that there is a whole level of se-
mantics inherent in song lyrics, that can not be detected by audio based techniques
alone.

We assume that a song’s text content can help in better understanding its meaning.
In addition to the mere textual content, song lyrics exhibit a certain structure, as they
are organised in blocks of choruses and verses. Many songs are organised in rhymes,
patterns which are reflected in a song’s lyrics and easier to detect from text than
audio. Whether or not rhyming structures occur at all, and the level of complexity of
the patterns used, may be highly characteristic for certain genres. In some cases, for
example when thinking about very ‘ear-catching’ songs, maybe even the simplicity
of rhyme structures are the common denominator.

For similar reasons, musical similarity can also be defined on textual analysis
of certain parts-of-speech (POS) characteristics. Quiet or slow songs could, for in-
stance, be discovered by rather descriptive language which is dominated by nouns
and adjectives, whereas we assume a high number of verbs to express the nature
of lively songs. In this paper, we further show the influence of so called text statis-
tic features on song similarity. We employ a range of simple statistics such as the
average word or line lengths as descriptors. Analogously to the common beats-
per-minute (BPM) descriptor in audio analysis, we introduce the words-per-minute
(WPM) measure to identify similar songs. The rationale behind WPM is that it can
capture the ‘density’ of a song and its rhythmic sound in terms of similarity in audio
and lyrics characteristics.
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We therefore stress the importance of taking into account several of the afore-
mentioned properties of music by means of a combinational approach. We want to
point out that there is much to be gained from such a combinational approach as
single genres may be best described in different feature sets. Musical genre clas-
sification therefore is heavily influenced by these modalities and can yield better
overall results. We show the applicability of our approach with a detailed analysis
of both the distribution of text and audio features, and genre classification on two test
collections. One of our test collections consists of manually selected and cleansed
songs subsampled from a real-world collection. We further use a larger collection
which again is subsampled, but not manually cleansed, to show the stability of our
approach.

This remainder of this paper is structured as follows. We start by giving an
overview on related work in Section 2. We then give a detailed description of our
approach and the feature sets we use for analysing song lyrics and audio tracks alike
in Section 3. In Section 4 we apply our techniques to several audio corpora. We
provide a summary of previous as well as novel results for the musical genre clas-
sification task, and a wide range of experimental settings. Finally, we analyse our
results, conclude, and give a short outlook on future research in Section 5.

2 Related Work

Music information retrieval is a discipline of information retrieval, concerned with
adequately accessing (digital) audio. Its major research topics include, but are not
limited to, musical genre classification (and classification into other types of cat-
egories, such as mood or situations), similarity retrieval, or music analysis and
knowledge representation. Comprehensive overviews of music information retrieval
research are given in [8, 27].

The still dominant method of processing audio files in music information retrieval
is by analysis of the audio signal, which is computed from plain wave files or via a
preceding decoding step from other wide-spread audio formats such as MP3 or the
(lossless) FLAC format. A wealth of different descriptive features for the abstract
representation of audio content have been presented. Early overviews on content-
based music information retrieval and experiments are given in [10] and [36, 38],
focussing mainly on automatic genre classification of music.

Mel-Frequency Cepstral Coefficients (MFCC) [31] are a perceptually motivated
set of features developed in context of speech recognition. The Mel scale, which
is a perceptual scale found empirically through human listening tests, and models
perceived pitch distances, is applied to the logarithmic spectrum before applying a
discrete cosine transform (or an inverse Fourier transform) to obtain the MFCCs.
An investigation about their adoption in the MIR domain was presented in [19].
Content-based audio retrieval based on K-Means clustering of MFCC features is
performed in [21]. A comparison of MFCC and MPEG-7 features on sports audio
classification is presented in [39].
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Daubechies Wavelet Coefficient Histograms as a feature set suitable for music
genre classification are proposed in [16]. The feature set characterises amplitude
variations in the audio signal.

Chroma features [11] extract the harmonic content (e.g, keys, chords) of music
by computing the spectral energy present at frequencies that correspond to each of
the 12 notes in a standard chromatic scale.

The MARSYAS system [36], besides new graphical user interfaces for browsing
and interacting with audio signals, introduces a number of new algorithms for audio
description: a general multifeature audio texture segmentation methodology, feature
extraction from MP3 compressed data, beat detection based on the discrete Wavelet
transform and musical genre classification combining timbral, rhythmic and har-
monic features.

The Moving Picture Experts Group (MPEG) released the MPEG-7 standard,
which defines the Multimedia Content Description Interface, and is a standard for
description and search of audio and visual content. Part 4 of said standard describes
17 low-level audio temporal and spectral descriptors, divided into seven classes,
including silence. Some of the features are based on basic wave-form or spectral
information, while others use harmonic or timbral information. In [1] these features
are used for audio fingerprinting, i.e. using signatures based on various properties of
audio signal for the robust identification of audio material. A classification approach
with MPEG-7 features is done in [6].

Rhythm Patterns [33, 29] are a set of audio features which model modulation
amplitudes on critical frequency bands. To this end, they consider and employ a
set of psycho-acoustic models. Two other feature sets have been derived from and
are based on different parts of the computation of the Rhythm patterns, namely the
Rhythm Histograms and Statistical Spectrum Descriptors [17] feature sets.

In this paper, the MFCC, Marsyas, Chroma, Rhythm Patterns, Rhythm His-
tograms and Statistics Spectrum Descriptors are combined with and compared to
our set of lyrics features. Therefore, these audio feature sets will be described in
more detail in Section 3.1.

Several research teams have further begun working on adding textual information
to the retrieval process, predominantly in the form of song lyrics and an abstract vec-
tor representation of the term information contained in text documents. A semantic
and structural analysis of song lyrics is conducted in [22]. It focuses on aspects such
as structure detection, e.g. verses and chorus, classification into thematic categories
such as ‘love’, ‘violent’, ‘christian’, and similarity search. The correlation between
artist similarity and song lyrics is studied in [20]. It is pointed out that acoustic sim-
ilarity is superior to textual similarity, yet a combination of both approaches might
lead to better results. A promising approach targeted at large-scale recommendation
engines is presented in [14]. Lyrics are gathered from multiple sources on the Web,
and are subsequently aligned to each other for matching sequences, to filter out er-
rors like typing errors, or retrieved parts not actually belonging to the lyrics of the
song, such as commercials.
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Also, the analysis of karaoke music is an interesting new research area. A multi-
modal lyrics extraction technique for tracking and extracting karaoke text from
video frames is presented in [41]. Some effort has also been spent on the automatic
synchronisation of lyrics and audio tracks at a syllabic level [12]. A multi-modal
approach to query music, text, and images with a special focus on album covers is
presented in [4]. Other cultural data is included in the retrieval process e.g. in the
form of textual artist or album reviews [3]. Cultural data is also used to provide a
hierarchical organisation of music collections on the artist level in [28]. The system
describes artists by terms gathered from web search engine results.

Another area were lyrics have also been employed is the field of emotion de-
tection and classification, for example [40], which aims at disambiguating music
emotion with lyrics and social context features. More recent work combined both
audio and lyrics-based feature for mood classification [15].

In [13], additional information like web data and album covers are used for la-
belling, showing the feasibility of exploiting a range of modalities in music informa-
tion retrieval. A three-dimensional musical landscape via a Self-Organising Maps
(SOMs) is created and applied to small private music collections. Users can then
navigate through the map by using a video game pad. An application of visual-
isation techniques for lyrics and audio content based on employing two separate
SOMs is given in [26]. It demonstrates the potential of lyrics analysis for clustering
collections of digital audio. The similarity of songs is visualised according to both
modalities, and a quality measures with respect to the differences in distributions
across the two maps is computed, in order to identify interesting genres and artists.

Experiments on the concatenation of audio and bag-of-words features were re-
ported in [25]. The results showed potential for dimensionality reduction when using
different types of features.

First results for genre classification using the rhyme and style features used later
in this paper are reported in [24]; these results particularly showed that simple lyrics
features may well be worthwile. This approach has further been extended on two
bigger test collections, and to combining and comparing the lyrics features with
audio features in [23].

3 Employed Feature Sets

Figure 1 shows an overview of the processing architecture. We start from plain audio
files. The preprocessing/enrichment step involves decoding of audio files to plain
wave format as well as lyrics fetching. We then apply the audio and lyrics-based
feature extraction described in the following subsections. Finally, the results of both
feature extraction processes are used for musical genre classification.
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Fig. 1 Processing architecture for combined audio and lyrics analysis stretching from a set
of plain audio files to combined genre classification

3.1 Audio Features

In our study, we employ several different sets of features extracted from the au-
dio content of the songs, to compare them to and combine them with our newly
designed set of features based on the song lyrics. To give comprehensive evidence
that our feature set can improve classification results of audio-only feature sets, we
extended the experiments presented in [23], which made use of the Rhythm Pat-
terns, Statistical Spectrum Descriptors, and Rhythm Histograms audio feature sets.
To those, we add analysis of the combination of the lyrics-based features with other
popular and widely used feature sets, namely the Mel Frequency Cepstral Coeffi-
cients (MFCCs), MARSYAS and Chroma features. All these feature sets will be
described below.

3.1.1 MFCC Features

Mel Frequency Cepstral Coefficients (MFCCs) originated in research for speech
processing [31], and soon gained popularity in the field of music information re-
trieval [19]. A cepstrum is defined as the Discrete Cosine Transform (DCT) or in-
verse Fourier transform of the logarithm of the spectrum. If the Mel scale is applied
to the logarithmic spectrum before applying the DCT (or inverse Fourier trans-
form), the result is called Mel Frequency Cepstral Coefficients. The Mel scale is
a perceptual scale that models perceived pitch distances, and was found empirically
through human listening tests. With increasing frequency, the intervals in Hz pro-
ducing equal increments in perceived pitch are getting larger and larger. Thus, the
Mel scale is approximately a logarithmic scale; it corresponds more closely to the
human auditory system than the linearly spaced frequency bands of a spectrum.
A related scale is e.g. the Bark Scale, used in the Rhythm Patterns features (c.f.
Section 3.1.4). From the MFCCs, commonly only the first few (for instance 5 to
20) Coefficients are used as features. In this work, we use the MFCC features ex-
tracted by the MARSYAS system, which provides four statistical values (means and
variances over a texture window of one second) for the first 13 coefficients, thus
resulting in 52 dimensions.
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3.1.2 MARSYAS Features

The MARSYAS system [36] is a software framework for audio analysis and pro-
vides a number of feature extractors, all of which compute statistics over a texture
window of approximately one second.

The Short-Time Fourier Transform (STFT) Spectrum based Features provide
standard temporal and spectral low-level features, such as Spectral Centroid, Spec-
tral Rolloff, Spectral Flux, Root Mean Square (RMS) energy and Zero Crossings.

A set of MPEG Compression based features is extracted directly from MPEG
compressed audio data (e.g. from mp3 files) [37]. This approach utilises the fact that
MPEG compression already performs a lot of analysis in the encoding stage, includ-
ing a time-frequency analysis. The spectrum is divided into 32 sub-bands of equal
size, via an analysis filterbank, wherefrom features such as the centroid, rolloff,
spectral flux and RMS are directly computed from. Note that these features are not
equal to the MPEG-7 standard features.

The Wavelet Transform is an alternative to the Fourier Transform, overcoming
the trade-off between time and frequency resolution. It provides low frequency res-
olution and high time resolution for high frequency ranges, while in low frequency
ranges, it provides high frequency and lower time resolution. This is a closer repre-
sentation of the human perception of a sound. A set of features is extracted by com-
puting the mean absolute values and standard deviation of the coefficients in each
frequency band, and ratios of the mean absolute values between adjacent bands.
The features represent ‘sound texture’ and provide information about the frequency
distribution of the signal and its evolution over time.

For the Beat Histogram computation, a Discrete Wavelet Transform, which de-
composes the signal into octave frequency bands, is applied before a time-domain
amplitude envelope extraction and periodicity detection. The time domain ampli-
tude envelope are extracted separately for each band. The sum of the normalised
envelopes is then processed through an autocorrelation function to detect the domi-
nant periodicities of the signal. The amplitude values of the dominant peaks are then
accumulated over the whole song into the Beat Histogram, which not only captures
the dominant beat in a sound, but more detailed information about the rhythmic con-
tent of a piece of music. The relative amplitude (of the sum of amplitudes) of the
first and second peak, the ratio of the amplitude of the second to the first peak, the
period of the first and second beat (in beats per minute), and the overall sum of the
histogram, as indication of beat strength, are computed as features.

The Pitch Histogram feature computation decomposes the signal into two fre-
quency bands (below and above 1000 Hz). For each band, amplitude envelopes are
extracted, which are then summed up and an autocorrelation function is used to de-
tect the main pitches. The three dominant peaks are accumulated into a histogram,
where each bin corresponds to a musical note. The histogram thus contains infor-
mation about the pitch range of a piece of music. A folded version of the histogram,
obtained by mapping the notes of all octaves onto a single octave, contains informa-
tion about the pitch classes or the harmonic content. The amplitude of the maximum
peak of the folded histogram (i.e. magnitude of the most dominant pitch class), the
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period of the maximum peak of the unfolded (i.e. octave range of the dominant
pitch) and folded histogram (i.e. main pitch class), the pitch interval between the
two most prominent peaks of the folded histogram (i.e. main tonal interval relation)
and the overall sum of the histogram are computed as features.

3.1.3 Chroma Features

Chroma features aim at representing the harmonic content (e.g, keys, chords) of a
short-time window of audio. The Chroma vector is a perceptually motivated fea-
ture vector[11]. It uses the concept of chroma in the cyclic helix representation
of musical pitch perception [35]. Chroma therein refers to the position of a pitch
within an octave. The chroma vector thus represents magnitudes in twelve pitch
classes in a standard chromatic scale (e.g., black and white keys within one octave
on a piano). The feature vector is extracted from the magnitude spectrum by using
a short-time Fourier transform (STFT). We specifically employ the feature extrac-
tor implemented in the MARSYAS system, which computes four statistical values
(means and variances over a texture window of one second), for each of the 12
chromatic notes, thus finally resulting in a 48-dimensional feature vector.

3.1.4 Rhythm Patterns

Rhythm Patterns (RP), also called Fluctuation patterns, are a feature set for handling
audio data based on analysis of the spectral audio data and psycho-acoustic trans-
formations [32, 17]. The feature set has been employed e.g. in the SOM-enhanced
jukebox (SOMeJB) [29] digital music library system. Rhythm patterns are basi-
cally a matrix representation of fluctuations on several critical bands. An overview
of the computational steps is given in Figure 2, which also depicts the process for
obtaining the Statistical Spectrum Descriptions and Rhythm Histograms, which are
derived from the Rhythm Patterns features, and skip or modify some of the pro-
cessing steps; further, they exhibit a different feature dimensionality, and represent
different aspects of the audio signal.

If needed, a set of preprocessing steps is applied before the actual feature com-
putation: multiple channels are averaged to one, and the audio is segmented into
parts of six seconds. Often, it can be of advantage to leave out possible lead-in and
fade-out segments, which might greatly differ from the rest of the song. Depending
on the processing capability available, also further segments maybe be skipped, e.g.
only processing every third segment.

The feature extraction process for a Rhythm Pattern is then composed of two
stages, indicated as steps S1–S6 and R1–R3 in Figure 2. First, the spectrogram of the
audio is computed for each segment, utilising the short time Fast Fourier Transform
(STFT), and applying a Hanning window (cf. S1). Next we employ the Bark scale,
a perceptual scale that groups frequencies to critical bands according to percep-
tive pitch regions. Applying the scale to the spectrograms results in an aggregation
to 24 frequency bands (S2). A Spectral Masking spreading function is applied to
the signal, which models the occlusion of one sound by another sound (S3). Then,
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the Bark scale spectrogram is transformed into the decibel scale (S4), and further
psycho-acoustic transformations are applied: computation of the Phon scale (S5)
incorporates equal loudness curves, which account for the different perception of
loudness at different frequencies. Subsequently, the values are transformed into the
unit Sone (S6), which relates to the Phon scale in the way that a doubling on the
Sone scale sounds to the human ear like a doubling of the loudness. This results in a
psycho-acoustically modified Sonogram representation that reflects human loudness
sensation.

In the second stage, the varying energy on a critical band in the Bark-scale Sono-
gram is regarded as a modulation of the amplitude over time. A discrete Fourier
transform is applied to this Sonogram, resulting in a time-invariant spectrum of
loudness amplitude modulation per modulation frequency for each individual criti-
cal band (R1). After additional weighting (R2) and smoothing steps using a gradient
filter and Gaussian smoothing (R3), a Rhythm Pattern finally exhibits the magnitude
of modulation for 60 frequencies on 24 bands, and has thus 1440 dimensions.

In order to summarise the characteristics of an entire piece of music, the median
of the Rhythm Patterns of the six-second segments is computed.

3.1.5 Statistical Spectrum Descriptors

Statistical Spectrum Descriptors (SSD) features are derived based on the first stage
of the Rhythm Patterns computation, i.e. on the Bark-scale representation of the
frequency spectrum (cf. steps S1–S6 in Figure 2). In order to describe fluctuations
within the critical bands, from this representation of perceived loudness, seven sta-
tistical measures are subsequently computed for each segment per critical band: the
mean, median, variance, skewness, kurtosis, min- and max-values, resulting in a
Statistical Spectrum Descriptor for a segment. The SSD feature vector for a piece
of audio is then again calculated as the median of the descriptors of its segments.

In contrast to the Rhythm Patterns feature set, the dimensionality of the feature
space is much lower: SSDs have 24×7=168 instead of 1440 dimensions, and this
at matching performance regarding genre classification accuracies [17], on specific
data sets even outperforming the Rhythm Patterns [18].

3.1.6 Rhythm Histogram Features

The Rhythm Histogram (RH) features are capturing rhythmical characteristics in a
piece of music. Contrary to the Rhythm Patterns and the Statistical Spectrum De-
scriptor, information is not stored per critical band. Instead, early in the second stage
of the RP calculation process (after step R1 in Figure 2), the magnitudes of each
modulation frequency of all 24 critical bands are summed up, forming a histogram
of 60 bins of ‘rhythmic energy’ per modulation frequency between 0.168 and 10
Hz. For a given piece of music, the Rhythm Histogram feature set is again calcu-
lated by taking the median of the histograms of every single segment processed.
Rhythm Histogram features represent similar information as the Beat Histogram of
MARSYAS, but have a different extraction approach.
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Fig. 2 Steps of the feature extraction process for Rhythm Patterns (RP), Statistical Spectrum
Descriptors (SSD), and Rhythm Histograms (RH)

We further utilise the beats per minute (BPM) feature, computed from the mod-
ulation frequency of the peak of a Rhythm Histogram, to give a comparison to the
lyrics-based words per minute (WPM) feature (cf. Section 3.2.2).

3.2 Lyrics Features

In this section we describe the four types of lyrics features we use in the experiments
throughout the remainder of the paper: a) bag-of-words features computed from
tokens (terms) occurring in documents, b) rhyme features taking into account the
rhyming structure of lyrics, c) features considering the distribution of certain parts-
of-speech, and d) text statistics features covering average numbers of words and
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particular characters. The latter three feature sets are referred to as rhyme and style
features.

3.2.1 Bag-of-Words

Classical bag-of-words indexing at first tokenises all text documents in a collection,
most commonly resulting in a set of words representing each document. Let the
number of documents in a collection be denoted by N, each single document by d,
and a term or token by t. Accordingly, the term frequency t f (t,d) is the number of
occurrences of term t in document d and the document frequency d f (t) the number
of documents term t appears in. From this, an inverse document frequency id f can
be computed.

The process of assigning weights to terms according to their importance or sig-
nificance for the classification is called ‘term-weighing’. The basic assumptions are
that terms which occur very often in a document are more important for classifica-
tion, whereas terms that occur in a high fraction of all documents are less important.
The weighing we rely on is the most common model of term frequency times inverse
document frequency [34], computed as:

t f × id f (t,d) = t f (t,d) · ln(N/d f (t)) (1)

This results in vectors of weight values for each document d in the collection, i.e.
each song lyrics document. This representation also introduces a concept of similar-
ity, as lyrics that contain a similar vocabulary are likely to be semantically related.
We do not perform term stemming in this setup, as earlier experiments showed only
negligible differences for stemmed and non-stemmed features [24]; the rationale be-
hind using non-stemmed terms is the occurrence of slang language in some genres,
which we aim to preserve.

Selecting all terms present in a document collection will in most cases yield a vo-
cabulary too large to be adequately processed by machine learning algorithms. Fur-
ther, some terms might rather add noise than helping to distinguish documents from
different genres. Thus, feature (or term) selection is an important pre-processing
step. In this work, we employ a frequency thresholding technique: we omit terms
that occur too frequent, and thus are likely stop-words, and terms that occur in too
few documents, and therefore likely have less discriminative power.

3.2.2 Text Statistic Features

Text documents can also be described by simple statistical measures based on term
(word) or character frequencies. Measures such as the average length of words
or the ratio of unique words in the vocabulary capture aspects of the complexity
of the texts, and are expected to vary over different genres. Further, the usage of
punctuation marks such as exclamation or question marks may be specific for some
genres. We further expect some genres to make increased use of apostrophes when
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Table 1 Overview of text statistic features

Feature Name Description
exclamation mark, colon, quote,
comma, question mark, dot, hyphen,
semicolon

simple counts of occurrences

d0 - d9 occurrences of digits
WordsPerLine words / number of lines
UniqueWordsPerLine unique words / number of lines
UniqueWordsRatio unique words / words
CharsPerWord number of chars / number of words
WordsPerMinute the number of words / length of the song

omitting the correct spelling of word endings. The list of extracted features is given
in Table 1.

All features that simply count character occurrences are normalised by the num-
ber of words of the song text to accommodate for different lyrics lengths. ‘WordsPer-
Line’ and ‘UniqueWordsPerLine’ describe the words per line and the unique
number of words per line. The ‘UniqueWordsRatio’ is the ratio of the number of
unique words and the total number of words. ‘CharsPerWord’ denotes the simple av-
erage number of characters per word. The last feature, ‘WordsPerMinute’ (WPM),
is computed analogously to the well-known beats-per-minute (BPM) value1. Even
though the computation is similar, the two features may still take very different val-
ues in various genres – as such, both ‘Hip-Hop’ and e.g. ‘Techno’ music may have
similar BPM, but the latter generally way less song text, and thus much lower WPM
values.

3.2.3 Part-of-Speech Features

Part-of-speech tagging is a lexical categorisation or grammatical tagging of words
according to their definition and the textual context they appear in. Different part-of-
speech categories are for example nouns, verbs, articles or adjectives. We presume
that different genres will differ also in the category of words they are using, and
therefore we additionally extract several part of speech descriptors from the lyrics.
To this end, we employ the ‘LingPipe’ suite of libraries 2. We in particular count the
numbers of: nouns, verbs, pronouns, relational pronouns (such as ‘that’ or ‘which’),
prepositions, adverbs, articles, modals, and adjectives. To account for different doc-
ument lengths, all of these values are normalised by the number of words of the
respective lyrics document.

1 Actually we use the ratio of the number of words and the song length in seconds to keep
feature values in the same range. Hence, the correct name would be ‘WordsPerSecond’, or
WPS.

2 http://alias-i.com/lingpipe/
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Table 2 Rhyme features for lyrics analysis

Feature Name Description
Rhymes-AA A sequence of two (or more) rhyming lines (‘Couplet’)
Rhymes-AABB A block of two rhyming sequences of two lines (‘Clerihew’)
Rhymes-ABAB A block of alternating rhymes
Rhymes-ABBA A sequence of rhymes with a nested sequence (‘Enclosing

rhyme’)
RhymePercent The percentage of blocks that rhyme
UniqueRhymeWords The fraction of unique terms used to build the rhymes

3.2.4 Rhyme Features

Rhyme denotes the the consonance or similar sound of two or more syllables or whole
words. This linguistic style is most commonly used in poetry and songs. The rationale
behind the development of rhyme features is that different genres of music should
exhibit different styles of lyrics. We assume the rhyming characteristics of a song
to be given by the degree and form of the rhymes used. ‘Hip-Hop’ or ‘Rap’ music,
for instance, makes heavy use of rhymes, which (along with a dominant bass) leads
to their characteristic sound. To automatically identify such patterns we introduce
several descriptors from the song lyrics to represent different types of rhymes.

For the analysis of rhyme structures we do not rely on lexical word endings, but
rather apply a more correct approach based on phonemes – the sounds, or groups
thereof, in a language. Hence, we first need to transcribe the lyrics to a phonetic rep-
resentation. The words ‘sky’ and ‘lie’, for instance, both end with the same phoneme
/ai/. Phonetic transcription is language dependent, thus the language of song lyrics
first needs to be identified, using e.g. the text categoriser ‘TextCat’ [5] to determine
the correct transcriptor to apply. However, for our test collections presented in this
paper we considered only songs in English language, and we therefore exclusively
use English phonemes. For the transcription step, we utilise the ‘Analysing Sound
Patterns’ software package 3. This package includes a phoneme transcriptor, which
is derived from early work on text-to-speech translation [9], which introduced a
set of 329 letter-to-sound rules that translate from English text to the international
phonetic alphabet (IPA).

After transcribing the lyrics into this phoneme representation, we distinguish two
basic patterns of subsequent lines in a song text: AA and AB. The former represents
two rhyming lines, while the latter denotes non-rhyming. Based on these basic pat-
terns, we extract the features described in Table 2.

As the simplest structure, a ‘Couplet’ AA describes the rhyming of two or more
subsequent pairs of lines. It usually occurs in the form of a ‘Clerihew’, i.e. several
blocks of Couplets such as AABBCC. Another common pattern is the alternating
rhyme, in the form of ABAB. An enclosing rhyme, defined as ABBA, denotes the
rhyming of the first and fourth, as well as the second and third out of four lines.
Based on these structure, we further measure ‘RhymePercent’, the percentage of

3 http://www2.eng.cam.ac.uk/ tpl/asp/
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lines with rhyming patterns versus the total number of lines in a song. Besides, we
define the unique rhyme words as the fraction of unique terms used to build rhymes
‘UniqueRhymeWords’, which describes whether rhymes are frequently formed us-
ing the same word pairs, or a wide variety of words is used for the rhymes.

For our initial studies, we do not take into account rhyming schemes based on
assonance, semirhymes, or alliterations. We also do not yet incorporate more elab-
orate rhyme patterns, especially not the less obvious ones, such as the ‘Ottava
Rhyme’ of the form ABABABCC, and others. Also, we assign to all the rhyme
forms the same weights, i.e. we for example do not give more importance to com-
plex rhyme schemes. Experimental results lead to the conclusion that some of these
patterns may well be worth studying. An experimental study on the frequency of
occurrences might be a good starting point first, as modern popular music does not
seem to contain many of these patterns.

4 Experiments

In this section we first introduce the test collections we use, followed by an illus-
tration of some selected characteristics of our new features on these collections. We
further present the results of our experiments, where we compare the performance
of audio features and text features using various classifiers.

4.1 Test Collections

Music information retrieval research in general suffers from a lack of standardised
benchmark collections, which is mainly attributable to copyright issues. Nonethe-
less, some collections have been used frequently in the literature, such as the col-
lections provided for the ISMIR 2004 ‘rhythm’ and ‘genre’ contest tasks, or the
collection presented in [36]. However, for the first two collections, hardly any lyrics
are available, as they are either instrumental songs, or their lyrics were not published
electronically. For the latter, no meta-data is available revealing the song titles, mak-
ing the automatic fetching of lyrics impossible. The collection used in [14] turned
out to be infeasible for our experiments. It consists of only about 260 pieces, and
was not initially used for genre classification: it was compiled from only about 20
different artists, and it was not well distributed over several genres (we specifically
wanted to circumvent unintentionally classifying artists rather than genres).

To elude these limitations, we opted to compile our own test collections; more
specifically, we first constructed two test collections different in size, first presented
in [23]. For the first of these databases, we selected a total number of 600 songs
(collection 600) as a random sample from a private collection. We aimed at having
a high number of different artists, represented by songs from different albums, in
order to prevent biased results by too many songs from the same artist and album.
This collection thus comprises songs from 159 different artists, stemming from 241
different albums. The ten genres listed in the left-hand side of Table 3 are repre-
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Table 3 Composition of the two small (collection 600 and collection 660) and two large
(collection 3000 and collection 3120) test collections

collection 600 collection 3000
Genre Artists Albums Songs Artists Albums Songs
Country 6 13 60 9 23 227
Folk 5 7 60 11 16 179
Grunge 8 14 60 9 17 181
Hip-Hop 15 18 60 21 34 380
Metal 22 37 60 25 46 371
Pop 24 37 60 26 53 371
Punk Rock 32 38 60 30 68 374
R&B 14 19 60 18 31 373
Reggae 12 24 60 16 36 181
Slow Rock 21 35 60 23 47 372
Total 159 241 600 188 370 3009

collection 660 collection 3120
Children’s music 7 5 60 7 5 109
Total 166 246 660 195 375 3118

sented by 60 songs each. Note that the number of different artists and albums is not
equally spread, which is closer to a real-world scenario, though.

We then automatically fetched lyrics for this collection from the Internet using
the lyrics scripts provided for the Amarok Music Player4. These scripts are sim-
ple wrappers for popular lyrics portals on the Web. To obtain all lyrics we used
one script after another until all lyrics were available, regardless of the quality of
the texts with respect to content or structure. Thus, the collection is named collec-
tion 600 uncleansed.

In order to evaluate the impact of proper lyrics preprocessing, we then manu-
ally cleansed the automatically collected lyrics. This is a tedious task, which first
involves checking whether the fetched lyrics were matching the song at all. Then,
we corrected the lyrics both in terms of structure and content, i.e. all lyrics were
manually corrected in order to remove additional markup like ‘[2x]’, ’[intro]’ or
‘[chorus]’, and to include the unabridged lyrics for all songs. We payed special at-
tention to completeness in terms of the resultant text documents being as adequate
and proper transcriptions of the songs’ lyrics as possible. This collection, which dif-
fers from collection 600 uncleansed only in the song lyrics quality, is thus called
collection 600 cleansed. Effects of manually cleansing lyrics as opposed to auto-
matic crawling from the Web on the performance of the lyrics features, as well as
the impact of stemming, were studied in [23] and [24]. As their impact has been
found to be rather small, and not consistently improving or degrading the classifica-
tion results, detailed studies on this issue are thus omitted here, and in the following
experiments we only employ the cleansed version of the collection.

4 http://amarok.kde.org
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To evaluate our findings from the smaller test collection on a larger one, we con-
structed a more diversified database. This collection includes all the songs of the
smaller collection, and consists of 3.010 songs, which can be seen as prototypical
for a private collection. The numbers of songs per genre range from 179 in ‘Folk’ to
381 in ‘Hip-Hop’. Detailed figures about the composition of this collection can be
taken from the right-hand side in Table 3. To be able to better relate and match the
results obtained for the smaller collection, we only selected songs belonging to the
same ten genres as in the collection 600.

In a novel set of experiments, we added one more genre to these existing collec-
tions, namely children’s music, consisting of nursery rhymes and similar songs. The
pieces of music in this genre in general have very distinctive acoustical properties,
with a strong focus on vocals, and little instrumentation, which is often limited to the
same instruments, such as guitars. Therefore, they already achieve high classifica-
tion accuracies with audio-only features, and are thus an interesting challenge to test
whether the lyrics features are able to improve performance also on genres that have
distinctive acoustical properties. We therefore extended our smaller test database by
60 more songs, thus creating the new database collection 660, and added a total of
109 songs to the larger collection, thus resulting in collection 3120, both of which
are illustrated also in Table 3.

4.2 Analysis of Selected Features

To demonstrate the ability of the newly proposed lyrics-based features to discrimi-
nate between different genres, we illustrate the distribution of the numerical values
for these new features across the different genres. We focus on the most interesting
features from each bag-of-words, rhyme, part-of-speech, and text statistic features,
for the collection 600 cleansed.

First, plots for selected features from the bag-of-words set, all of which were
among the highest ranked by the Information Gain feature selection method5, are
presented in Figure 3. Of those high ranked terms, we selected some that have in-
teresting characteristics regarding different classes. It can be generally said that no-
tably ‘Hip-Hop’ seems to have a lot of commonly used terms, especially from swear
and cursing language (subsequently obscured), or slang terms. This can be seen in
Figure 3(a) and 3(b), showing the terms ‘n*gga’ and ‘f*ck’. While ‘n*gga’ is used
almost solely in ‘Hip-Hop’ (in many types – singular and plural forms, with ending
‘s’ and ‘z’), ‘f*ck’ is also used in ‘Metal’ and to some lesser extent in ‘Punk-Rock’.
On the contrary, ‘R&B’ and ‘Pop’ do not use the term at all, and other genres just
very rarely employ it. Regarding the dominant topics, ‘Hip-Hop’ also frequently
has violence and crime as content of their songs, which is exemplified in the terms
‘gun’ and ‘police’ in Figures 3(c) and 3(d), respectively. Both terms are also used in
‘Grunge’ and ‘Reggae’.

5 Information Gain is a popular feature selection criterion, measuring the information ob-
tained by a single term for category classification [30].
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(a) n*gga (b) f*ck (c) gun

(d) police (e) baby (f) girlfriend

(g) love (h) yo (i) nuh

(j) fi (k) jah

Fig. 3 Average t f × id f values of selected terms from the lyrics. Obscene words are
obscured.

By contrast, ‘R&B’ has several songs concerning relationships, which is illus-
trated in Figures 3(e) and 3(f). Several genres deal with love, but to a very varying
extent. In ‘Country’, ‘R&B’, and ‘Reggae’, this is a dominant topic, while it hardly
occurs in ‘Grunge’, ‘Hip-Hop’, ‘Metal’ and ‘Punk-Rock’.

Another interesting aspect is the use of slang and colloquial terms, or more gen-
erally using a transcription of the phonetic sound of some words. This is especially
used in the genres ‘Hip-Hop’ and ‘Reggae’, but also in ‘R&B’. Figure 3(h), for in-
stance, shows that both ‘Hip-Hop’ and ‘R&B’ make use of the word ‘yo’, while
‘Reggae’ often uses a kind of phonetic transcription, as e.g. the word ‘nuh’ for ‘not’
or ‘no’, or many other examples, such as ‘mi’ (me), ‘dem’ (them), etc. ‘Reggae’
further employs a lot of particular terms, such es ‘jah’, which stands for ’god’ in
the Rastafari movement, or the Jamaican dialect word ‘fi’, which is used instead of
‘for’.
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(a) Rhyme percentage (b) Unique Rhyme Words per Line

(c) Rhymes pattern AABB (d) Rhymes pattern ABBA

Fig. 4 Average values for selected rhyme features

(a) Adverbs (b) Articles

(c) Modals (d) Rel. pronouns

Fig. 5 Average values for selected part-of-speech features

Summarising, a seemingly high amount of terms that are specific for ‘Hip-Hop’
and ‘Reggae’ can be observed, which should render those two genres well distin-
guishable from the others regarding bag-of-words features.
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Figure 4 depicts selected rhyme features. ‘Reggae’ has the highest value of per-
centage of rhyming lines, while the other genres have rather equal usage of rhymes.
‘Folk’ may seem as using the most creative language for building those rhymes,
which is manifested in the clearly higher number of unique words forming the
rhymes, rather than repeatidly using the same words. ‘Grunge’ and ‘R&B’ seem
to have distinctively lower values than the other genres. The distribution across the
actual rhyme patterns used is also quite different over the genres, where ‘Reggae’
lyrics use a lot of AABB patterns, and ‘Punk Rock’ employs mostly ABBA patterns,
while ‘Grunge’ makes particular little use of the latter.

Figure 5 presents plots of the most relevant part-of-speech features. Adverbs
seem to help discriminating ‘Hip-Hop’ with low and ‘Pop’ and ‘R&B’ with higher
values over the other classes. ‘R&B’ further can be well discriminated due to the
infrequent usage of articles in the lyrics. Modals, on the other hand, are rarely used
in ‘Hip-Hop’.

Finally, the most interesting features from the text statistics type are illustrated
in Figure 6. ‘Reggae’, ‘Punk Rock’, ‘Metal’, and, to some extent, also ‘Hip-Hop’
seem to use very expressive language, which manifests in the higher percentage of
exclamation marks appearing in the lyrics. ‘Hip-Hop’ and ‘Folk’ in general seem
to have more creative lyrics, indicated by the higher percentage of unique words
used as compared to other genres, which may have more repetitive lyrics. ‘Words
per Minute’ appears to be a very good feature to distinguish ‘Hip-Hop’ as the genre
with the fastest sung (or spoken) lyrics from music styles such as ‘Grunge’, ‘Metal’
and ‘Slow Rock’. The latter frequently have longer instrumental phases, especially
longer lead-ins and fade-outs, and the pace of singing is adapted towards the general
slower tempo of the (guitar) music. Comparing this feature with the well-known
‘Beats per Minute’ descriptor, it can be noted that the high tempo of ‘Hip-Hop’
lyrics coincides with the high number of beats per minute. ‘Reggae’ on the other
hand has an even higher number of beats, and even though there are several pieces
with fast lyrics, it is also characterised by longer instrumental passages, as well as
words accentuated longer.

4.3 Experimental Results

After describing our experimental setup, we then discuss in detail the performance
of the different audio and lyrics-only feature sets, and their combinations. We eval-
uate the impact of manually cleansing the lyrics, and specifically the performance
of the newly added genre of children’s music.

4.3.1 Setup

For each of the databases, we extract the audio and lyrics feature sets described in
Section 3. We then build several combinations of these different feature sets, both
separately within the audio and lyrics modalities, as well as combinations of audio
and lyrics feature sets. This results in several dozens of different feature set combi-
nations, out of which the most interesting ones are presented here. Most combina-
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(a) Exclamation marks (b) Unique words per line

(c) Words per minute (d) Beats per minute

Fig. 6 Average values for selected text statistic features and beats-per-minute

tions with audio features are done with the SSD, as those are the best performing
audio feature set.

For all our experiments, we employed the WEKA machine learning toolkit6, and
unless otherwise noted used the default settings for the classifiers and tests. We
utilised mainly k-Nearest-Neighbour, Naı̈ve Bayes and Support Vector Machines.
We performed the experiments based on a ten-fold cross-validation, which is fur-
ther averaged over five repeated runs. All results given in this sections are micro-
averaged classification accuracies. i.e. they are calculated giving equal weight to
each document. Statistical significance testing is performed per column, using a
paired t-test with an α value of 0.05. In the following tables, plus signs (+) denote
a significant improvement, whereas minus signs (−) denote significant degradation.
The best results for each group of features are indicated by bold print.

4.3.2 Small Database – Collection 600

Table 4 shows the results for genre classification experiments performed on the
small collection using only audio-based feature sets. The columns show the results
for three different types of machine learning algorithms, with different parameter
settings: k-NN with k = 4 and k = 5 and employing Euclidean distance, Support
Vector Machine with linear (SVM/lin), polynomial (quadratic, SVM/pol), and ra-
dial basis function (SVM/rbf) kernels, and a Naı̈ve Bayes (NB) classifier. All six
algorithm variations were applied to the six single feature sets, as well as nine dif-

6 http://www.cs.waikato.ac.nz/ml/weka/



Multimodal Aspects of Music Retrieval: Audio, Song Lyrics – and Beyond? 353

Table 4 Classification accuracies and results of significance testing for various combinations
of audio features for the 600 song collection (collection 600 cleansed). Statistically signif-
icant improvement or degradation over datasets (column-wise) is indicated by (+) or (−),
respectively

Feature set Dim. 4-NN 5-NN NB SVM/pol SVM/lin SVM/rbf
Chroma 48 18.33 - 18.50 - 18.77 - 19.60 - 22.53 - 14.63 -
MFCC 52 26.43 - 27.43 - 23.37 - 29.63 - 29.80 - 18.70 -
Marsyas 68 28.63 - 30.33 - 25.70 - 31.63 - 30.53 - 21.43 -
RP 1440 32.27 - 31.77 - 37.60 - 46.30 - 48.47 - 44.20
RH 60 29.73 - 29.03 - 31.13 - 36.03 - 36.47 - 28.97 -
SSD (base-line) 168 48.97 49.57 44.57 56.63 59.37 44.20

SSD / Chroma 216 50.70 51.90 42.37 59.30 59.17 43.13
SSD / Mars. 236 48.70 49.17 44.20 58.27 59.83 46.13
SSD / Mars. / Chroma 284 47.53 49.10 43.30 58.30 59.33 45.57
SSD / Mars. / Chroma / RH 344 47.73 48.60 42.67 59.67 60.90 46.97
SSD / Mars. / RH 296 49.50 49.63 43.90 59.93 61.10 47.67
SSD / MFCC 220 51.23 51.07 44.73 58.93 59.77 45.83
SSD / RH 228 49.37 49.80 43.17 58.57 60.37 46.83
SSD / RP 1608 41.77 - 39.87 - 41.77 57.73 60.23 52.87 +
SSD / RP / RH 1668 41.63 - 40.27 - 41.40 57.50 60.43 53.30 +

ferent combinations thereof. Significance testing is performed per column, using the
SSD features as the base line.

Generally, the highest classification results, sometimes by far better, are achieved
with the SVM, which is thus the most interesting classifier for a more in-depth anal-
ysis. For the single audio feature sets, the Statistical Spectrum Descriptors (SSD)
achieves the highest accuracy (59.37%) of all, followed by Rhythm Patterns (RP)
with an accuracy of 48.47%, both with the SVM with linear kernel. SSD clearly out-
performs all the other feature sets with statistical significance, except for the SVM
classifier with the RBF kernel, which achieves the exact same result on both SSD
and RP. Apart from the Rhythm Patterns on the different SVM kernel variations,
SSD features outperform the other sets by factors of 1.6 to 3.0.

Regarding the combinations of different audio feature sets, it was possible to in-
crease the SSD baseline with some of the combinations with other feature sets, on
one classifier with the Chroma features, on two in combination with MFCCs and by
adding Marsyas and Rhythm Histograms (RH), and once by combing the SSD with
the RH and RP. For most of those combinations, however, no change in performance
that would be of statistical significance could be obtained; the only notable excep-
tion are the combination of SSD with RP only and both the RP and RH, yielding a
significant degradation on the k-NN classifiers and a significant improvement util-
ising the SVM with RBF kernels. For the former, this most likely can be attributed
to the generally poor performance of k-NN on high-dimensional feature sets, while
for the latter, the baseline on the SSD-only features with the RBF kernel is very low
compared to the other classifiers, even lower than k-NN.
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Table 5 Classification accuracies and results of significance testing for various combinations
of lyrics features for the 600 song collection (collection 600 cleansed). Statistically signif-
icant improvement or degradation over datasets (column-wise) is indicated by (+) or (−),
respectively

Feature set Dim. 3-NN 4-NN 5-NN NB SVM/lin
Rhyme 6 13.93 13.20 13.37 15.00 13.77
POS 9 16.13 18.23 17.57 19.63 20.03
Text-stat (base line) 23 21.00 21.20 22.00 21.70 29.73

Text-stat / POS 32 25.87 + 25.17 24.77 22.80 31.27
Text-stat / Rhyme 29 23.73 23.13 23.60 22.87 31.03
Text-stat / POS / Rhyme 38 22.90 24.47 26.07 24.20 + 30.63

Chroma (base-line) 48 17.87 18.33 18.50 18.77 22.53
Chroma / Text-stat 71 23.07 + 23.93 + 23.87 + 22.33 + 32.87 +
Chroma / Text-stat / POS 80 21.43 21.00 21.57 22.53 + 34.87 +
Chroma / Text-stat / POS / Rhyme 86 21.47 20.83 21.53 23.27 + 35.07 +
Chroma / Text-stat / Rhyme 77 21.80 22.47 22.83 23.53 + 33.43 +

MFCC (base-line) 52 24.50 26.43 27.43 23.37 29.80
MFCC / Text-stat 75 27.83 31.50 + 31.47 29.57 + 38.43 +
MFCC / Text-stat / POS 84 29.07 + 31.17 + 32.07 30.13 + 38.27 +
MFCC / Text-stat / POS / Rhyme 90 28.77 30.90 32.50 + 31.33 + 39.63 +
MFCC / Text-stat / Rhyme 81 29.53 + 30.87 31.40 29.90 + 38.50 +
MFCC / POS / Rhyme 67 23.37 26.20 28.10 26.53 + 34.53 +

Marsyas (base-line) 68 26.00 28.63 30.33 25.70 30.53
Mars. / Text-stat 91 29.23 30.60 32.90 30.50 + 37.83 +
Mars. / Text-stat / POS 100 29.57 33.27 + 32.47 31.03 + 37.50 +
Mars. / Text-stat / POS / Rhyme 106 30.30 32.53 34.10 31.83 + 39.37 +
Mars. / Text-stat / Rhyme 97 28.97 32.37 33.73 30.90 + 39.00 +

SSD (base-line) 168 48.60 48.97 49.57 44.57 59.37
SSD / Text-stat 191 51.20 53.07 + 53.30 + 46.80 64.53 +
SSD / Text-stat / POS 200 51.97 + 51.00 51.70 46.73 64.07 +
SSD / Text-stat / POS / Rhyme 206 50.63 51.90 53.00 47.37 + 62.90 +
SSD / Text-stat / Rhyme 197 50.17 52.30 + 52.93 47.57 + 63.93 +

Regarding the individual performance of the different classifiers, for k-NN it can
be noted that there is no clear pattern on a better performance of a single classifier,
even though the 5-NN seems to perform slightly better on most feature sets. For
the SVMs, except for two out of the 15 feature sets, the linear kernel always got
the highest results; especially the RBF kernel-based SVMs performed significantly
worse. Thus, for the following experiments, we employ only the linear kernel.

After these initial experiments, we chose the highest result achievable with audio-
only features, the SSD features, as the baseline we want to improve on. The SSDs
show in general very good performance on our databases, with the achieved al-
most 60% clearly outperforming the minimal baseline of 10% on a database of ten
equally-sized classes. Thus, they are as such a challenging baseline.
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In Table 5, we detail the results of the different lyrics features, and their com-
bination with the audio-only feature sets on the small, cleansed database (collec-
tion 600 cleansed), that is with automatic lyric fetching and manual checking of
the retrieved lyrics. The experiments were again performed with six different clas-
sifiers, in contrary to those in Table 4 we employ also a 3-NN instead of the RBF
kernel SVM, to give more details on the behaviour of the different k values. Indeed,
3-NN is the best performing of the k-NN family on a number of low-dimensional
feature sets.

For the lyrics-only features, the rhyme features yield the lowest accuracies, while
the Text-Statistics feature achieve a 29.73% accuracy, using a linear SVM. This re-
sult is remarkable, as it significantly outperforms the Chroma features, and is nearly
achieving the results of MFCCs (0.07% short) and Marsyas (0.8% difference), com-
ing at a very low dimensionality of only 23 features, while they are fast in compu-
tation. All combinations of the Text-Statistics features with the Part-of-Speech and
/ or Rhyme features achieve better results than Text-Statistics features alone.

When combining the different audio-features with the lyrics-based feature sets,
it can be noted that in any combination, we achieve higher results than with the
lyrics features alone. Especially for SVM, those improvements are always statisti-
cally significant when we include the Text-statistics features, which is also the case
for all but two combinations when applying Naı̈ve Bayes classification. For the k-
NN, there is almost always one combination of features that leads to significant
improvement. The combination of MFCCs is the only one where we can achieve
significant improvement with adding just the Rhyme and POS features on SVM and
NB, not using the Text-statistics features.

Compared to the baseline results achieved with SSDs, all four combinations of
SSDs with the text statistic features yield higher performance, and at least one (and
even all four in the case of SVMs) are statistically significant. The highest accu-
racy values are obtained for an SSD and text-statistic feature combination (64.53%),
which is 5.15%-points higher than the SSD-only value. It is interesting to note that
adding part-of-speech and rhyme features does not help to improve on this result on
SVMs, while it does on Naı̈ve Bayes and 3-NN.

4.3.3 Small Database with Children’s Music – Collection 660

Table 6 illustrates the results of adding the additional genre of ‘Children’s music’ to
the small collection, thus forming a database of 660 songs. First, it can be noted that,
when compared to the results on the smaller collection, with SVM classification and
linear kernel, the audio-only feature sets had mostly improved classification results
(except Chroma and RH). The improvements range from 0.5% for RP to 2% for
the SSD, which thus now achieves 61.36%. They are remarkable, as the classifica-
tion task per-se has become a bit harder, with a minimal baseline of now 9.09%.
The improvements thus already indicate that the new genre can be well captured
by audio-only features. Again, combinations with the rhyme and style features can
improve the results significantly in many combinations.
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On this database, we also present results from the bag-of-words features. In fact,
we show a number of bag-of-words feature sets of different feature dimensions,
which were obtained using different parameters for the document frequency thresh-
olding based feature selection. Using this feature set alone, with a still moderate
dimensionality of 653 topic terms, the best results are at around 33% for both SVM
and Naı̈ve Bayes. Notably, k-NN has rather poor performance, and further degrades
with higher dimensionality. Also for the other classifiers it has to be noted that with a
rising dimensionality, the accuracy starts to degrade again. Interestingly, both SVM
and Naı̈ve Bayes on BOW with 653 features can outperform the audio-only features
Marsyas, MFCC and Chroma, most of it statistically significant, except for SVMs on
the Marsays feature set. Rhythm histograms are outperformed on the Naı̈ve Bayes
classifier, while Rhythm Patterns and SSD are significantly outperforming any of
the bag-of-words features.

Also, it can be observed that adding the bag-of-words features can signifi-
cantly improve the results obtained with the Marsyas features, even over the best
combination of Marsyas with the rhyme and style features. Finally, adding bag-
of-words to this aforementioned combination leads to a further improvement of
more than 5%-points with SVM, thus totally more than 15%-points difference
to the Marsyas-only features. Similar effects can be achieved for the other audio-
only feature sets.

Regarding SSD features, the combination with the rhyme and style features again
yields significant improvement on all classifiers. Combinging them with the bag-of-
words features can still yield better results than the SSD-only features, however, it
leads to an improvement over the best combination with the rhyme and style features
only on the Naı̈ve Bayes classifier.

Finally, we want to examine the classification performance for each individual
genre; for this, we train SVMs with a linear kernel on the SSD and the combination
of SSD and Text-statistics feature set, which achieved the highest results. Table 7
gives the confusion matrix and the precision and recall values per class (in percent)
for both feature sets, SSD on the left side, and SSD combined with Text-statistics
on the right hand side.

With the audio features, high precision values can be achieved for the Children’s
music, R&B, Reggae, Punk Rock and Folk music, while Country, Slow Rock and
especially Grunge perform poor.

When adding the Text-statistics features to the SSD features, eight out of eleven
classes achieve a higher precision (of up to 25%), while the other three classes de-
grade in performance only by one percent; two out of those, namely Folk and R&B,
however, gain 7% and 8%, resp, in recall. Overall, the average precision, as well as
the recall and the F-measure7, thus rise from values around 61% to approximately
67%. The biggest increase in precision is achieved for Hip-Hop, which improves
from 63% to 88%; much of this increase is likely to be attributed to the ’words-
per-minute’ feature. Other genres that improve greatly in precision are Reggae and

7 The F-Measure or F-score is a commonly used measure including both precision and re-
call. In our case, we specifically employ the F1-measure, calculated as 2×precision×recall

precision+recall .
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Table 6 Classification accuracies and results of significance testing for various combina-
tions of lyrics features for the 660 song collection (collection 660). Statistically significant
improvement or degradation over the resp. audio-features-only baseline (column-wise) is in-
dicated by (+) or (−), respectively

Feature set Dim. 3-NN 4-NN 5-NN NB SVM/lin
Chroma 48 15.94 18.21 19.03 17.94 22.06
MFCC 52 25.39 26.55 27.67 24.27 30.06
Mars. 68 28.33 29.94 30.21 27.33 31.88
RH 60 27.82 29.27 28.76 30.55 36.42
RP 1440 28.12 30.67 30.55 37.06 48.70
SSD 168 49.18 50.15 51.97 44.21 61.36

BOW59 59 15.24 15.85 15.06 20.64 26.18
BOW150 150 10.97 10.24 9.42 24.97 29.52
BOW194 194 9.64 9.55 9.18 28.58 32.73
BOW653 653 11.21 10.03 10.03 32.58 33.52
BOW1797 1797 10.47 11.20 10.87 30.90 31.23

Mars. / Text-stat / POS 100 32.55 + 34.27 + 35.27 + 33.03 + 39.94 +
Mars. / Text-stat / Rhyme 97 30.73 32.67 34.39 + 33.06 + 41.33 +
Mars. / BOW248 316 26.06 25.73 26.42 28.91 41.67 +
Mars. / BOW653 721 17.00 - 19.18 - 21.64 - 33.27 + 42.61 +
Mars. / BOW194 / Text-stat 285 31.33 33.30 35.48 + 32.36 + 44.52 +
Mars. / BOW653 / Text-stat 744 24.06 - 26.09 - 27.45 34.45 + 46.61 +

SSD / Text-stat 191 53.42 + 54.06 + 55.06 + 47.15 + 66.27 +
SSD / Text-stat / Rhyme 197 53.42 + 54.12 + 54.91 + 48.39 + 65.55 +
SSD / BOW14 182 48.03 50.85 50.76 47.06 + 58.88
SSD / BOW573 741 45.30 47.30 46.70 - 38.45 - 63.21
SSD / BOW385 / Text-stat 576 50.67 53.76 54.88 38.00 - 65.30 +
SSD / BOW10 / Text-stat / POS 210 49.33 51.36 53.97 48.24 + 62.09
SSD / BOW248 / Text-stat / POS / Rhyme 454 50.85 53.88 53.06 37.39 - 65.70 +

Pop, even though the latter still has a low absolute precision. Of special interest is
also the genre of Children’s music. We noted before that children’s music has some
specific characteristics. This manifests e.g. in a focus on vocals, and a very limited
set of instruments used, mainly guitars and pianos. Therefore, this genre can be well
identified with audio-based feature sets, and indeed has a high recall of 52 out of 60,
or 87%, and a high precision of 78% already with the SSD features. However, even
in such cases, combining the audio features with lyrics-based features can improve
the performance, in this specific case by raising the recall to 92%, and the preci-
sion to 86%, when combined with the Text-statistics features. The number of songs
wrongly assigned into this genre greatly reduces, from 15 to only 8 songs.

4.3.4 Large Database

To confirm our findings from the small database, we further performed experiments
on the large collections (collection 3000, collection 3120). We again compare the
results of the single audio and lyrics feature sets, and the combinations thereof.
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Table 7 Confusion matrix on the collection 660: SSD (left) vs. SSD combined with Text-
statistics (right). Precision and recall are measured per class.

classified as classified as
a b c d e f g h i j k genre a b c d e f g h i j k

34 3 0 0 2 8 0 0 2 10 1 a = Country 38 5 0 0 2 6 0 0 1 8 0
9 39 0 1 1 4 0 0 0 5 1 b = Folk 6 43 1 0 0 1 2 0 0 7 0
0 2 47 0 1 4 1 0 1 4 0 c = Grunge 1 2 49 1 1 2 1 0 0 3 0
0 2 0 39 0 3 1 6 8 0 1 d = Hip-Hop 0 0 0 50 0 0 1 6 2 0 1
2 3 3 0 34 4 10 0 0 4 0 e = Metal 0 6 2 0 36 4 8 0 0 4 0

10 3 9 4 4 11 3 2 1 11 2 f = Pop 9 3 8 0 4 16 3 4 0 12 1
5 2 5 0 10 2 36 0 0 0 0 g = Punk Rock 4 2 6 0 9 1 37 0 0 1 0
2 0 0 10 0 3 0 40 2 1 2 h = R&B 3 0 0 3 0 3 0 45 5 1 0
0 1 0 7 0 1 0 2 45 0 4 i = Reggae 2 0 0 2 0 1 0 3 47 0 5
8 1 8 1 3 5 1 1 1 27 4 j = Slow Rock 7 1 5 1 5 9 0 2 2 26 2
1 0 0 0 0 1 0 1 3 2 52 k = Children’s 0 1 0 0 0 0 0 0 3 1 55

47 69 65 63 62 23 69 76 71 42 77 Precision 54 68 69 88 63 37 71 75 78 41 86
57 65 78 65 57 18 6 67 75 45 87 Recall 63 72 82 83 6 27 62 75 78 43 92

As there is not much difference in the variations of the k-NN algorithms, we now
only present the results of the best-performing of the tested versions, 5-NN. For the
SVMs, we again used a linear kernel.

The three centre columns in Table 8 give an overview of the accuracies of the
different feature sets. For the audio-only features, we can observe an increased ac-
curacy for most of the features set and classifier combinations, as compared to the
smaller collection. In the case of the best-performing SSDs on SVMs, the increase
is of 7%-points to 66.35%. Similar patterns can be observed for the lyrics-based fea-
tures, even though the flagship Text-statistics feature set achieves a 1% lower result
on the SVM.

Also for the combination of the audio feature sets with the lyrics based features, a
generally higher accuracy than on the smaller database can be noted, with total gains
of 12.18% (Chroma), 8.71% (MFCCs), and 7.43% (Marsyas). The improvement
over the SSD when combining them with the lyrics features is not as high as on the
smaller collection – the accuracy raised to 68.91%, constituting an improvement of
2.55%-points, which is statistically significant. In general, it seems that the influence
of part-of-speech and rhyme features is higher in this database, as they are more
often part of the highest-performing feature set combination than in the smaller
collection.

The right columns in Table 8 finally show a summary of the results on the large
database, extended by adding about 110 songs from the children’s music genre.
The audio-only features generally perform a bit worse, between 0.1 and 0.8% when
using SVMs, a bit more on some of the other classifiers. The same holds true for
the rhyme and style features, though in their combinations among themselves, for
some classifiers, the results are slightly, at most about 0.4%, higher than without
the children’s music genre. Similarly, most of the combinations of audio and lyrics
features perform slightly better on this database.
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Table 8 Classification accuracies and results of significance testing for the large collections.
Statistically significant improvement or degradation over datasets (column-wise) is indicated
by (+) or (−), respectively

Collection 3000 Collection 3120
Feature set Dim. NB SVM 5-NN NB SVM 5-NN
Chroma 48 18.96 24.01 21.24 16.57 23.18 20.35
MFCC 52 27.64 33.57 31.27 26.55 32.66 31.21
Mars. 68 30.20 37.65 34.14 29.23 36.97 33.93
RP 1440 34.44 55.65 41.10 34.27 55.73 39.90
RH 60 29.26 35.05 34.44 29.03 34.17 33.86
SSD 168 42.04 66.35 61.85 39.29 65.84 60.79
Rhyme 6 16.68 16.11 16.97 16.57 16.09 17.70
POS 9 23.67 23.94 21.14 23.60 23.22 20.46
Text-stat 23 17.27 28.70 24.78 17.09 28.16 24.79

POS / Rhyme 15 23.20+ 24.43- 21.66- 23.27+ 24.55- 21.41-
Text-stat / POS 32 18.84+ 31.23+ 25.91 19.18+ 31.41+ 25.72
Text-stat / POS / Rhyme 38 20.15+ 31.24+ 25.10 20.88+ 31.64+ 25.47

Chroma / Text-stat 71 21.00+ 32.61+ 26.00+ 20.64+ 32.34+ 25.97+
Chroma / Text-stat / POS 80 21.97+ 35.95+ 27.19+ 22.10+ 35.94+ 26.44+
Chroma / Text-stat / POS / Rhyme 86 22.31+ 36.19+ 27.35+ 22.97+ 36.54+ 27.20+
Chroma / Text-stat / Rhyme 77 21.53+ 33.45+ 26.06+ 21.89+ 33.45+ 25.83+
Chroma / POS / Rhyme 63 21.48+ 30.12+ 25.19+ 21.57+ 30.01+ 24.47+

MFCC / Text-stat 75 24.86- 40.48+ 33.98+ 24.35 40.40+ 33.69+
MFCC / Text-stat / POS 84 26.03 41.71+ 35.50+ 26.21 41.76+ 34.94+
MFCC / Text-stat / POS / Rhyme 90 26.83 42.28+ 34.07+ 27.55 42.35+ 33.67+
MFCC / POS 61 30.22+ 36.84+ 32.52 29.42+ 36.07+ 31.80
MFCC / POS / Rhyme 67 30.13+ 37.15+ 32.10 30.40+ 37.29+ 31.44

Mars. / Text-stat 91 27.08- 43.44+ 35.77+ 27.13 43.44+ 35.92+
Mars. / Text-stat / POS 100 28.33 44.98+ 37.17+ 28.50 44.91+ 36.32+
Mars. / Text-stat / POS / Rhyme 106 29.70 45.08+ 35.71 30.22 45.38+ 36.11+
Mars. / POS / Rhyme 83 32.67+ 41.54+ 34.14 32.91+ 41.82+ 33.68

SSD / Text-stat 191 43.70+ 68.57+ 62.41 42.14+ 68.38+ 61.80
SSD / Text-stat / POS 200 44.29+ 68.91+ 62.77 42.86+ 68.94+ 61.44
SSD / Text-stat / POS / Rhyme 206 44.51+ 68.35+ 62.36 43.44+ 68.36+ 61.35
SSD / Text-stat / Rhyme 197 44.10+ 68.00+ 62.02 42.75+ 68.01+ 61.81

5 Beyond Audio and Lyrics

Much of today’s research in Music Information Retrieval is driven by audio-only
genres, and classification of pieces of music therein. However, user studies have
revealed that this narrow focus poses certain problems. For example, semantic gen-
res such as Christmas songs or love-songs, cannot be adequately captured by audio
features, as they might comprise musical genres – Christmas songs can actually be
classical music, pop songs, or punk rock. Christian Rock is a genre that can virtually
only be detected via the song texts. Similarly, pop music is a genre that is generally
difficult to grasp with only acoustical features, as the common property of pop mu-
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sic is maybe more in the orientation towards being commercial music, rather than
in musical characteristics. Thus, it is important to incorporate additional modalities
as sources for features describing music. Such sources can e.g. be the song lyrics,
album covers, social web data, etc.

In this paper, we thus presented a set of rhyme and style features for automatic
lyrics processing, namely features to capture characteristics such as rhyme, parts-
of-speech, and text statistics of song lyrics. We further combined these new feature
sets with the standard bag-of-words features and well-known feature sets for acous-
tic analysis of digital audio tracks. To show the positive effects of feature com-
bination on classification accuracies in musical genre classification, we performed
experiments on two test collections. A smaller collection, consisting of 600 songs
was manually edited and contains high quality unabridged lyrics. We then extended
this database by adding songs from the children’s music genre, which are already
well distinguishable on the audio features, and thus posed an interesting challenge
on whether there could be further performance gains with this new dataset. We fur-
ther compiled a larger test collection, comprising more than 3000 songs, which was
again analysed in two flavours, with and without the children’s music. Using only
automatically fetched lyrics, we achieved similar results in genre classification.

The most notable results reported in this paper are statistically significant im-
provements in musical genre classification. We outperformed both audio features
alone as well as their combination with simple bag-of-words features. We conclude
that combination of feature sets is beneficial in two ways: a) possible reduction in
dimensionality, and b) statistically significant improvements in classification accu-
racies. Future work hence is motivated by the promising results presented in this
paper. Noteworthy future research areas in terms of machine learning are on more
sophisticated ways of feature combination via ensemble classifiers, which pay spe-
cial attention to the unique properties of single modalities and the different char-
acteristics of certain genres in specific parts of the feature space. Additionally, a
more comprehensive investigation of feature selection techniques and the impact of
individual/global feature selection might further improve results.

Another topic for future research is the continued expansion of modalities and
types of feature representations to be used for music analysis. A ‘glass-ceiling’ of
achievable performance in regards to music information retrieval based on naı̈ve
timbral audio features only is discussed in [2]. It is further suggested that more
high-level musical features are needed to overcome this limitation. While improved
audio feature sets have been designed to address this issue, it is certainly of interest
to look beyond the audio-only domain.

Steps in this direction have been discussed in this paper. Yet, we need to expand
way beyond this scope. Album covers, for example, are carefully designed for spe-
cific target groups. Searching for music in a record shop is facilitated by browsing
through album covers. There, album covers can, and have to, reveal very quickly the
musical content of the album, and are thus used as strong visual clues [7]. Due to
well-developed image recognition abilities of humans, this task can be performed
very efficiently, much faster than listening to excerpts of the songs. Also, [4] sug-
gests that ‘an essential part of human psychology is the ability to identify music,



Multimodal Aspects of Music Retrieval: Audio, Song Lyrics – and Beyond? 361

text, images or other information based on associations provided by contextual in-
formation of different media’. It further suggests that a well-chosen cover of a book
can reveal it’s contents, or that lyrics of a familiar song can remind one of the song’s
melody.

However, capturing the semantic meaning of album covers is a challenging task,
requiring advanced pattern recognition and image retrieval methods. Concepts in the
covers are more difficult to grasp than by simple colour histograms (even though for
some genres, such as Gothic with a focus on dark/black colours, this feature might
be a suitable candidate). More than that, it seems necessary to employ algorithms
to detect the fonts used, face recognition to detect whether or not the singer or band
feature on the cover, what scenery is depicted to e.g. indicate folk music, or which
objects, instruments, etc. are present, down to understanding the sentiment and emo-
tions of cover images.

This breath of information extends way beyond a cover, the song itself, or its
recording. It encompasses cultural aspects and community feelings as expressed by
subculture language, clothes and other aspects of social groupings.

Music may seem to be mono-modal, audio-only at first glance. Yet, it is inher-
ently multimodal, living from, playing with and serving information on a multitude
of layers. It needs to be appreciated and covered in all its multimodal complexities
if we want to fully explore its richness and do justice to its versatility.
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Melodic Grouping in Music Information
Retrieval: New Methods and Applications

Marcus T. Pearce, Daniel Müllensiefen, and Geraint A. Wiggins

Abstract. We introduce the MIR task of segmenting melodies into phrases, sum-
marise the musicological and psychological background to the task and review ex-
isting computational methods before presenting a new model, IDyOM, for melodic
segmentation based on statistical learning and information-dynamic analysis. The
performance of the model is compared to several existing algorithms in predicting
the annotated phrase boundaries in a large corpus of folk music. The results indi-
cate that four algorithms produce acceptable results: one of these is the IDyOM
model which performs much better than naive statistical models and approaches the
performance of the best-performing rule-based models. Further slight performance
improvement can be obtained by combining the output of the four algorithms in a
hybrid model, although the performance of this model is moderate at best, leaving a
great deal of room for improvement on this task.

1 Introduction

The segmentation of music into meaningful units is a fundamental (pre-)processing
step for many MIR applications including melodic feature computation, melody
indexing, and retrieval of melodic excerpts. Here, we focus on the grouping of mu-
sical elements into contiguous segments that occur sequentially in time or, to put
it another way, the identification of boundaries between the final element of one
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segment and the first element of the subsequent one. This way of structuring a mu-
sical surface is usually referred to as grouping (Lerdahl & Jackendoff, 1983) or
segmentation (Cambouropoulos, 2006) and is distinguished from the grouping of
musical elements that occur simultaneously in time, a process usually referred to
as streaming (Bregman, 1990). In musical terms, the kinds of groups we shall con-
sider might correspond with motifs, phrases, sections and other aspects of musical
form, so the scope is rather general. Just as speech is perceptually segmented into
phonemes, and then words which subsequently provide the building blocks for the
perception of phrases and complete utterances (Brent, 1999b; Jusczyk, 1997), motifs
or phrases in music are identified by listeners, stored in memory and made available
for inclusion in higher-level structural groups (Lerdahl & Jackendoff, 1983; Peretz,
1989; Tan et al., 1981). The low-level organisation of the musical surface into groups
allows the use of these primitive perceptual units in more complex structural pro-
cessing and may alleviate demands on memory.

We restrict ourselves primarily to research on symbolic representations of musi-
cal structure that take discrete events (individual musical notes in this work) as their
musical surface (Jackendoff, 1987). Working at this level of abstraction, the task is
to gather events (represented in metrical time as they might be in a musical score)
into sequential groups. Research on segmentation from sub-symbolic or acoustic
representations of music is not discussed as it generally operates either at the level
of larger sections of music differing in instrumentation (e.g., Abdallah et al., 2006)
or at the lower level of separating a continuous audio stream into individual note
events (e.g., Gjerdingen, 1999; Todd, 1994). Furthermore, the present work empha-
sises melody (although not exclusively) reflecting the predominant trends in theo-
retical and computational treatments of perceived grouping structure in music.

Grouping structure is generally agreed to be logically independent of metrical
structure (Lerdahl & Jackendoff, 1983) and some evidence for a separation be-
tween the psychological processing of the two kinds of structure has been found
in cognitive neuropsychological (Liegeoise-Chauvel et al., 1998; Peretz, 1990) and
neuroimaging research (Brochard et al., 2000). In practice, however, metrical and
grouping structure are often intimately related and both are likely to serve as inputs
to the processing of more complex musical structures (Lerdahl & Jackendoff, 1983).
Nonetheless, most theoretical, empirical and computational research has considered
the perception of grouping structure independently of metrical structure (Stoffer,
1985, and Temperley, 2001, being notable exceptions).

Melodic segmentation is a key task in the storage and retrieval of musical infor-
mation. The melodic phrase is often considered one of the most important basic units
of musical content (Lerdahl & Jackendoff, 1983) and many large electronic corpora
of music are structured or organised by phrases, for example, the Dictionary of
Musical Themes by Barlow & Morgenstern (1949), the Essen Folksong Collection
(EFSC, Schaffrath, 1995) or the RISM collection (RISM-ZENTRALREDAKTION,
RISM-ZENTRALREDAKTION). At the same time, melodic grouping is thought
to be an important part of the perceptual processing of music (Deliège, 1987; Fran-
kland & Cohen, 2004; Peretz, 1989). It is also fundamental to the phrasing of a
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melody when sung or played: melodic segmentation is a task that musicians and
musical listeners perform regularly in their everyday musical practice.

Several algorithms have been proposed for the automated segmentation of
melodies. These algorithms differ in their modelling approach (supervised learning,
unsupervised learning, music-theoretic rules), and in the type of information they
use (global or local). In this chapter, we review these approaches before introducing
a new statistical model of melodic segmentation and comparing its performance to
several existing algorithms on a melody segmentation task. The motivation for this
model comparison is two-fold: first, we are interested in the performance differences
between different types of model; and second, we aim to build a hybrid model that
achieves superior performance by combining boundary predictions from different
models.

2 Background

The segmentation of melodies is a cognitive process performed by the minds and
brains of listeners based on their musical and auditory dispositions and experience.
Therefore, an MIR system must segment melodies in a musically and psychologi-
cally informed way if it is to be successful. Before reviewing computational models
of melodic segmentation and their use in MIR, we consider it appropriate to survey
the musicological and psychological literature that has informed the development of
these models.

2.1 Music-Theoretic Approaches

2.1.1 A Generative Theory of Tonal Music

Melodic grouping has traditionally been modelled through the identification of lo-
cal discontinuities or changes between events in terms of temporal proximity, pitch,
duration and dynamics (Cambouropoulos, 2001; Lerdahl & Jackendoff, 1983; Tem-
perley, 2001). Perhaps the best known examples are the Grouping Preference Rules
(GPRs) of the Generative Theory of Tonal Music (GTTM, Lerdahl & Jackendoff,
1983). The most widely studied of these GPRs predict that phrase boundaries will
be perceived between two melodic events whose temporal proximity is less than
that of the immediately neighbouring events due to a slur, a rest (GPR 2a) or a rela-
tively long inter-onset interval or IOI (GPR 2b) or when the transition between two
events involves a greater change in register (GPR 3a), dynamics (GPR 3b), articula-
tion (GPR 3c) or duration (GPR 3d) than the immediately neighbouring transitions.
Another rule, GPR 6, predicts that grouping boundaries are perceived in accordance
with musical parallelism (e.g., at parallel points in a metrical hierarchy or after a
repeated motif). The GPRs were directly inspired by the principles of proximity
(GPR 2) and similarity (GPR 3) developed to account for figural grouping in visual
perception by the Gestalt school of psychology (e.g., Koffka, 1935).



368 M.T. Pearce, D. Müllensiefen, and G.A. Wiggins

2.1.2 The Implication-Realisation Theory

Narmour (1990, 1992) presents the Implication-Realisation (IR) theory of music
cognition which, like GTTM, is intended to be general (although the initial pre-
sentation was restricted to melody). However, while GTTM operates statically on
an entire piece of music, the IR theory emphasises the dynamic processes involved
in perceiving music as it occurs in time. The theory posits two distinct perceptual
systems: the bottom-up system is held to be hard-wired, innate and universal while
the top-down system is held to be learnt through musical experience. The two sys-
tems may conflict and, in any given situation, one may over-ride the implications
generated by the other.

In the bottom-up system, sequences of melodic intervals vary in the degree of
closure that they convey. An interval which is unclosed (i.e., one that generates
expectations for a subsequent interval) is said to be an implicative interval and gen-
erates expectations for the following interval, termed the realised interval. The ex-
pectations generated by implicative intervals for realised intervals are described by
Narmour (1990) in terms of several principles of continuation which are, again, in-
fluenced by the Gestalt principles of proximity, similarity, and good continuation.
Strong closure, however, signifies the termination of ongoing melodic structure (i.e.,
a boundary) and the melodic groups formed either side of the boundary thus cre-
ated can share different amounts of structure depending on the degree of closure
conveyed. Furthermore, structural notes marked by strong closure at one level can
transform to a higher level, itself amenable to analysis as a musical surface in its
own right, thus allowing for the emergence of hierarchical levels of structural de-
scription of a melody.

2.2 Psychological Studies

Early studies of musical segmentation (Gregory, 1978; Sloboda & Gregory, 1980;
Stoffer, 1985) provided basic evidence that listeners perceptually organise melodies
into structural groups using a click localisation paradigm adapted from research on
perceived phrase structure in spoken language (Fodor & Bever, 1965; Ladefoged &
Broadbent, 1960). More recently, two kinds of experimental task have been used to
study perceptual grouping in music.

The first is a short-term memory recognition paradigm introduced by Dowling
(1973), based on studies of phrase perception in language (Bower, 1970; Waugh &
Norman, 1965). In a typical experiment listeners are first presented with a musical
stimulus containing one or more hypothesised boundaries before being presented
with a short excerpt (the probe) and asked to indicate whether it appeared in the
stimulus. The critical probes either border on or straddle a hypothesised boundary
and it is expected that due to perceptual grouping, the former will be recalled more
accurately or efficiently than the latter. Dowling’s original experiment demonstrated
that silence contributes to the perception of melodic segment boundaries. Using the
same paradigm, Tan et al. (1981) demonstrated the influence of harmonic closure
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Table 1 The quantification by Frankland & Cohen (2004) of GTTM’s grouping preference
rules which identify boundaries between notes based on their properties (n) including local
proximity to other notes (GPR 2) or the extent to which they reflect local changes in pitch or
duration (GPR 3). ⊥ indicates that the result is undefined.

GPR Description n Boundary Strength
2a Rest absolute length of rest (semibreve = 1.0)

2b Attack-point length

{
1.0− n1+n3

2×n2
if n2 > n3 ∧n2 > n1

⊥ otherwise

3a Register change pitch height

⎧⎪⎪⎨
⎪⎪⎩

1.0− |n1−n2 |+|n3−n4|
2×|n2−n3|

if n2 �= n3 ∧
|n2 −n3| > |n1 −n2|∧
|n2 −n3| > |n3 −n4|

⊥ otherwise

3d Length change length 1.0−
{

n1/n3 if n3 ≥ n1

n3/n1 if n3 < n1

(e.g., a cadence to the tonic chord) with an effect of musical training such that mu-
sicians were more sensitive to this parameter than non-musicians.

In the second paradigm, subjects provide explicit judgements of boundary loca-
tions while listening to the musical stimulus. The indicated boundaries are subse-
quently analysed to discover what principles guide perceptual segmentation. Using
this approach with short musical excerpts, Deliège (1987) found that musicians and
(to a lesser extent) non-musicians identify segment boundaries in accordance with
the GPRs of GTTM (Lerdahl & Jackendoff, 1983) especially those relating to rests
or long notes and changes in timbre or dynamics. These factors have also been found
to be important in large-scale segmentation by musically-trained listeners of piano
works composed by Stockhausen and Mozart (Clarke & Krumhansl, 1990). Fran-
kland & Cohen (2004) collected explicit boundary judgements from participants
listening to six melodies (nursery rhymes and classical themes) and compared these
to the boundaries predicted by quantitative implementations of GPRs 2a, 2b, 3a and
3d (see Table 1). The results indicated that GPR 2b (Attack-point) produced consis-
tently strong correlations with the empirical boundary profiles, while GPR 2a (Rest)
also received support in the one case where it applied. No empirical support was
found for GPRs 3a (Register Change) and 3d (Length change).

Given the differences between these two experimental paradigms, it is not cer-
tain that they probe the same cognitive systems. Peretz (1989) addressed this ques-
tion by comparing both methods on one set of stimuli (French folk melodies). The
judgement paradigm (online, explicit) showed that musicians and non-musicians
responded significantly more often in accordance with GPR 3d (Length change)
than they did with GPR 3a (Register Change). However, the recognition-memory
paradigm (offline, implicit) showed no effect of boundary type for either group of
participants. To test the possibility that this discrepancy is due to a loss of infor-
mation in the offline probe-recognition task, Peretz carried out a third experiment
in which participants listened to a probe followed by the melody and were asked
to indicate as quickly and accurately as possible whether the probe occurred in the
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melody. As predicted, the results demonstrated an influence of GPR 3d, but not 3a,
on boundary perception. In contrast to these results, however, Frankland & Cohen
(2004) found no major difference between the results of their explicit judgement
task and a retrospective recognition-memory task using the same materials.

Many questions remain open and further empirical study is necessary to fully
understand perceptual grouping. Nonetheless, psychological research has guided
the development of computational models of melodic segmentation, which can be
applied to practical tasks in MIR.

2.3 Computational Models

Tenney & Polansky (1980) were perhaps the first to propose formal models of
melodic segmentation based on Gestalt-like rules, which became the dominant
paradigm in the years to come. In this section, we review three models developed
within this tradition: quantified versions of the GPRs from GTTM (Frankland &
Cohen, 2004); the Local Boundary Detection Model (Cambouropoulos, 2001); and
Grouper (Temperley, 2001). We also summarise previous studies that have evalu-
ated the comparative performance of some of these models of melodic segmenta-
tion. Recently, there has been increasing interest in using machine learning to build
models that learn about grouping structure, in either a supervised or unsupervised
manner, through exposure to large bodies of data (Bod, 2001; Brent, 1999a; Ferrand
et al., 2003; Saffran et al., 1999). The model we present follows this tradition and
we include some related work in our review. In another direction, some researchers
have combined Gestalt-like rules with higher-level principles based on parallelism
and music structure (Ahlbäck, 2004; Cambouropoulos, 2006) in models which are
mentioned for the sake of completeness but not reviewed in detail.

2.3.1 Grouping Preference Rules

Inspired by the GTTM, Frankland & Cohen (2004) quantified GPRs 2a, 2b, 3a and
3d as shown in Table 1. Since a slur is a property of the IOI while a rest is an absence
of sound following a note, they argued that these two components of GPR 2a should
be separated and, in fact, only quantified the rest aspect. Since GPRs 2a (Rest),
2b (Attack-point) and 3d (Length change) concern perceived duration, they were
based on linearly scaled time in accordance with psychoacoustic research (Allan,
1979). Finally, a natural result of the individual quantifications is that they can be
combined using multiple regression (a multivariate extension to linear correlation,
Howell, 2002) to quantify the implication contained in GPR 4 (Intensification) that
co-occurrences of two or more aspects of GPRs 2 and 3 lead to stronger boundaries.

2.3.2 The Local Boundary Detection Model

Cambouropoulos (2001) proposes a model related to the quantified GPRs in which
boundaries are associated with any local change in interval magnitudes. The
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Local Boundary Detection Model (LBDM) consists of a change rule, which as-
signs boundary strengths in proportion to the degree of change between consecu-
tive intervals, and a proximity rule, which scales the boundary strength according
to the size of the intervals involved. The LBDM operates over several indepen-
dent parametric melodic profiles Pk = [x1,x2, . . . ,xn] where k ∈ {pitch, ioi, rest},
xi > 0, i ∈ {1,2, . . . ,n} and the boundary strength at interval xi (a pitch interval in
semitones, inter-onset interval, or offset-to-onset interval) is given by:

si = xi × (ri−1,i + ri,i+1) (1)

where the degree of change between two successive intervals:

ri,i+1 =

{ |xi−xi+1|
xi+xi+1

if xi + xi+1 �= 0∧ xi,xi+1 ≥ 0

0 if xi = xi+1 = 0.
(2)

For each parameter k, the boundary strength profile Sk = [s1,s2, . . . ,sn] is calculated
and normalised in the range [0,1]. A weighted sum of the boundary strength profiles
is computed using weights derived by trial and error (.25 for pitch and rest, and .5
for ioi), and boundaries are predicted where the combined profile exceeds a thresh-
old which may be set to any reasonable value (Cambouropoulos used a value such
that 25% of notes fell on boundaries).

Cambouropoulos (2001) found that the LBDM obtained a recall of 63-74% of
the boundaries marked on a score by a musician (depending on the threshold and
weights used) although precision was lower at 55%. In further experiments, it was
demonstrated that notes falling before predicted boundaries were more often length-
ened than shortened in pianists’ performances of Mozart piano sonatas and a Chopin
étude. This was also true of the penultimate notes in the predicted groups.

More recently, Cambouropoulos (2006) proposed a complementary model which
identifies instances of melodic repetition (or parallelism) and computes a pattern
segmentation profile. While repetitions of melodic patterns are likely to contribute to
the perception of grouping (see GPR 6 above), this model is not yet a fully developed
model of melodic segmentation as it operates at a “local level (i.e. within a time
window rather than [on] a whole piece)” (Emilios Cambouropoulos, personal email
communication, 09/2007).

2.3.3 Grouper

Temperley (2001) introduces a model called Grouper which accepts as input a
melody, in which each note is represented by its onset time, off time, chromatic pitch
and level in a metrical hierarchy (which may be computed using a beat-tracking al-
gorithm or computed from the time signature and bar lines if these are available),
and returns a single, exhaustive partitioning of the melody into non-overlapping
groups. The model operates through the application of three Phrase Structure Pref-
erence Rules (PSPRs):
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PSPR 1 (Gap Rule): prefer to locate phrase boundaries at (a) large IOIs and (b)
large offset-to-onset intervals (OOI); PSPR 1 is calculated as the sum of the IOI
and OOI divided by the mean IOI of all previous notes;

PSPR 2 (Phrase Length Rule): prefer phrases with about 10 notes, achieved by
penalising predicted phrases by |(log2 N)− log2 10| where N is the number of
notes in the predicted phrase – the preferred phrase length is chosen ad hoc (see
Temperley, 2001, p. 74), to suit the corpus of music being studied (in this case
Temperley’s sample of the EFSC) and therefore may not be general;

PSPR 3 (Metrical Parallelism Rule): prefer to begin successive groups at parallel
points in the metrical hierarchy (e.g., both on the first beat of the bar).

The first rule is another example of the Gestalt principle of temporal proximity
(cf. GPR 2 above) while the third is related to GPR 6; the second was determined
through an empirical investigation of the typical phrase lengths in a collection of
folk songs. The best analysis of a given piece is computed offline using a dy-
namic programming approach where candidate phrases are evaluated according to
a weighted combination of the three rules. The weights were determined through
trial and error. Unlike the other models, this procedure results in binary segmenta-
tion judgements rather than continuous boundary strengths. By way of evaluation,
Temperley used Grouper to predict the phrase boundaries marked in 65 melodies
from the EFSC, a collection of several thousand folk songs with phrase boundaries
annotated by expert musicologists, achieving a recall of .76 and a precision of .74.

2.3.4 Data Oriented Parsing

Bod (2001) argues for a supervised learning approach to modelling melodic group-
ing structure as an alternative to the rule-based approach. He examined three gram-
mar induction algorithms originally developed for automated language parsing in
computational linguistics: first, the treebank grammar learning technique which
reads all possible context free rewrite rules from the training set and assigns each
a probability proportional to its relative frequency in the training set (Manning &
Schütze, 1999); second, the Markov grammar technique which assigns probabilities
to context free rules by decomposing the rule and its probability by a Markov pro-
cess, allowing the model to estimate the probability of rules that have not occurred
in the training set (Collins, 1999); and third, a Markov grammar augmented with a
Data Oriented Parsing (DOP, Bod, 1998) method for conditioning the probability
of a rule over the rule occurring higher in the parse tree. A best-first parsing algo-
rithm based on Viterbi optimisation (Rabiner, 1989) was used to generate the most
probable parse for each melody in the test set given each of the three models. Bod
(2001) evaluated the performance of these three algorithms in predicting the phrase
boundaries in the EFSC using F1 scores (Witten & Frank, 1999). The results demon-
strated that the treebank technique yielded moderately high precision but very low
recall (F1 = .07), the Markov grammar yielded slightly lower precision but much
higher recall (F1 = .71) while the Markov-DOP technique yielded the highest preci-
sion and recall (F1 = .81). A qualitative examination of the folk song data revealed
several cases (15% of the phrase boundaries in the test set) where the annotated
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phrase boundary cannot be accounted for by Gestalt principles but is predicted by
the Markov-DOP parser.

2.3.5 Transition Probabilities and Pointwise Mutual Information

In research on language acquisition, it has been shown that infants and adults reli-
ably identify grouping boundaries in sequences of synthetic syllables on the basis of
statistical cues (Saffran et al., 1996). In these experiments participants are exposed
to long, isochronous sequences of syllables where the only reliable cue to bound-
aries between groups of syllables consist of higher transition probabilities within
than between groups. A transition (or digram) probability (TP) is the conditional
probability of an element ei at index i ∈ {2, . . . , j} in a sequence e j

1 of length j given
the preceding element ei−1:

p(ei|ei−1) =
count(ei

i−1)
count(ei−1)

. (3)

where en
m is the subsequence of e between indices m and n, em is the element at index

m of the sequence e and count(x) is the number of times that x appears in a training
corpus. Further research using the same experimental paradigm has demonstrated
that infants and adults use the implicitly learnt statistical properties of pitch (Saffran
et al., 1999), pitch interval (Saffran & Griepentrog, 2001) and scale degree (Saf-
fran, 2003) sequences to identify segment boundaries on the basis of higher digram
probabilities within than between groups.

In a comparison of computational methods for word identification in unseg-
mented speech, Brent (1999a) quantified these ideas in a model that puts a word
boundary between phonemes whenever the transition probability at ei is lower than
at both ei−1 and ei+1. Brent also introduced a related model that replaces digram
probabilities with pointwise mutual information (PMI), I(ei,ei−1), which measures
how much the occurrence of one event reduces the model’s uncertainty about the
co-occurrence of another event (Manning & Schütze, 1999) and is defined as:

I(ei,ei−1) = log2
p(ei

i−1)
p(ei)p(ei−1)

. (4)

While digram probabilities are asymmetrical with respect to the order of the two
events, pointwise mutual information is symmetrical in this respect.1 Brent (1999a)
found that the pointwise mutual information model outperformed the transition
probability model in predicting word boundaries in phonemic transcripts of

1 Manning & Schütze (1999) note that pointwise mutual information is biased in favour of
low-frequency events inasmuch as, all other things being equal, I will be higher for digrams
composed of low-frequency events than for those composed of high-frequency events. In
statistical language modelling, pointwise mutual information is sometimes redefined as
count(xy)I(x,y) to compensate for this bias.
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phonemically-encoded infant-directed speech from the CHILDES collection
(MacWhinney & Snow, 1985).

Brent (1999a) implemented these models such that a boundary was placed when-
ever the statistic (TP or PMI) was higher at one phonetic location than in the imme-
diately neighbouring locations. By contrast, here we construct a boundary strength
profile P at each note position i for each statistic S = {TP, PMI} such that:

Pi =

{
2Si

Si−1+Si+1
if Si > Si−1 ∧Si > Si+1

0 otherwise.
(5)

2.3.6 Model Comparisons

The models reviewed above differ along several different dimensions. For example,
the GPRs, LBDM and Grouper use rules derived from expert musical knowledge
while DOP and TP/PMI rely on learning from musical examples. Looking in more
detail, DOP uses supervised training while TP/PMI uses unsupervised induction
of statistical regularities. Along another dimension, the GPRs, LBDM and TP/PMI
predict phrase boundaries locally while Grouper and DOP attempt to find the best
segmentation of an entire melody.

Most of these models were evaluated to some extent by their authors and, in some
cases, compared quantitatively to other models. Bod (2001), for example, compared
the performance of his data-oriented parsing with other closely related methods
(Markov and treebank grammars). In addition, however, a handful of studies has
empirically compared the performance of different melodic segmentation models.
These studies differ in the models compared, the type of ground truth data used
and the evaluation metrics applied. Melucci & Orio (2002), for example, collected
the boundary indications of 17 expert musicians and experienced music scholars on
melodic excerpts from 20 works by Bach, Mozart, Beethoven and Chopin. Having
combined the boundary indications into a ground truth, they evaluated the perfor-
mance of the LBDM against three models that inserted boundaries after a fixed (8
and 15) or random (in the range of 10 and 20) numbers of notes. Melucci & Orio
report false positives, false negatives and a measure of disagreement which show
that the LBDM outperforms the other models.

Melucci & Orio noticed a certain amount of disagreement between the segmen-
tation markings of their participants. However, as they did not observe clear distinc-
tions between participants when their responses were scaled by MDS and subjected
to a cluster analysis, they aggregated all participants’ boundary markings to binary
judgements using a probabilistic procedure.

Bruderer (2008) evaluated a broader range of models in a study of the grouping
structure of melodic excerpts from six Western pop songs. The ground truth seg-
mentation was obtained from 21 adults with different degrees of musical training;
the boundary indications were summed within consecutive time windows to yield a
quasi-continuous boundary strength profile for each melody. Bruderer examined the
performance of three models: Grouper, LBDM and the summed GPRs (GPR 2a, 2b,
3a and 3d) quantified by Frankland & Cohen (2004). The output of each model was
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convolved with a 2.4s Gaussian window to produce a boundary strength profile that
was then correlated with the ground truth. Bruderer reports that the LBDM achieved
the best and the GPRs the worst performance.

In another study, Thom et al. (2002) compared the predictions of the LBDM and
Grouper with segmentations at the phrase and subphrase level provided (using a pen
on a minimal score while listening to a MIDI file) by 19 musical experts for 10
melodies in a range of styles. In a first experiment, Thom et al. examined the aver-
age F1 scores between experts for each melody, obtaining values ranging between
.14 and .82 for phrase judgements and .35 and .8 for subphrase judgements. The
higher consistencies tended to be associated with melodies whose phrase structure
was emphasised by rests. In a second experiment, the performance of each model on
each melody was estimated by averaging the F1 scores over the 19 experts. Model
parameters were optimised for each individual melody. The results indicated that
Grouper tended to outperform the LBDM. Large IOIs were an important factor in
the success of both models. In a third experiment, the predictions of each model
were compared with the transcribed boundaries in several datasets from the EFSC.
The model parameters were optimised over each dataset and the results again in-
dicated that Grouper (with mean F1 between .6 and .7) outperformed the LBDM
(mean F1 between .49 and .56). Finally, in order to examine the stability of the two
models, each was used to predict the expert boundary profiles using parameters op-
timised over the EFSC. The performance of both algorithms was impaired, most
notably for the subphrase judgements of the experts.

To summarise, the few existing comparative studies suggest that more complex
models such as Grouper and LBDM outperform the individual GPR rules even when
the latter are combined in an additive manner (Bruderer, 2008). Whether Grouper
or LBDM exhibits a superior performance seems to depend on the data set and
experimental task. Finally, most of these comparative studies used ground truth seg-
mentations derived from manual annotations by human judges. However, only a
limited number of melodies can be tested in this way (ranging from 6 in the case of
Bruderer, 2008 to 20 by Melucci & Orio, 2002). Apart from Thom et al. (2002, Ex-
periment D), there has been no thorough comparative evaluation over a large corpus
of melodies annotated with phrase boundaries. However, that study did not include
the GPRs and to date, no published study has directly compared these rule-based
models with learning-based models (as we do here).

2.4 A New Segmentation Model

2.4.1 The IDyOM Model

As we have seen, most existing models of melodic grouping consist of collections of
symbolic rules that describe the musical features corresponding to perceived groups.
Such models have to be adjusted by hand using detailed a priori knowledge of a
musical style. Therefore, these models are not only domain-specific, pertaining only
to music, but also potentially style specific, pertaining only to Western tonal music
or even a certain genre.
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We present a new model of melodic grouping (the Information Dynamics Of
Music, or IDyOM, model) which, unlike the GPRs, the LBDM and Grouper, uses
unsupervised learning from experience rather than expert-coded symbolic rules. The
model differs from DOP in that it uses unsupervised, rather than supervised, learning
which makes it more useful for identifying grouping boundaries in corpora where
phrase boundaries are not explicitly marked. The IDyOM model takes the same
overall approach and inspiration from experimental psychology (Saffran, 2003; Saf-
fran & Griepentrog, 2001; Saffran et al., 1999) as the TP/PMI models (see §2.3.5). In
contrast to these models, however, IDyOM uses a range of strategies to improve the
accuracy of its conditional probability estimates. Before describing these aspects of
the model, we first review related research in musicology, cognitive linguistics and
machine learning that further motivates a statistical approach to segmentation.

From a musicological perspective, it has been proposed that perceptual groups are
associated with points of closure where the ongoing cognitive process of expectation
is disrupted either because the context fails to stimulate strong expectations for any
particular continuation or because the actual continuation is unexpected (Meyer,
1957; Narmour, 1990, see §2.1.2). These proposals may be given precise defini-
tions in an information-theoretic framework (MacKay, 2003; Manning & Schütze,
1999) which we define by reference to a model of sequences, ei, composed of sym-
bols drawn from an alphabet E . The model estimates the conditional probability
of an element at index i in the sequence given the preceding elements in the se-
quence: p(ei|ei−1

1 ). Given such a model, the degree to which an event appearing in
a given context in a melody is unexpected can be defined as the information content
(MacKay, 2003), h(ei|ei−1

1 ), of the event given the context:

h(ei|ei−1
1 ) = log2

1

p(ei|ei−1
1 )

. (6)

The information content can be interpreted as the contextual unexpectedness or sur-
prisal associated with an event. The contextual uncertainty of the model’s expecta-
tions in a given melodic context can be defined as the entropy (or average informa-
tion content) of the predictive context itself:

H(ei−1
1 ) = ∑

e∈E

p(ei|ei−1
1 )h(ei|ei−1

1 ). (7)

We hypothesise that boundaries are perceived before events for which the unexpect-
edness of the outcome (h) and the uncertainty of the prediction (H) are high. These
correspond to two ways in which the prior context can fail to inform the model’s
sequential predictions leading to the perception of a discontinuity in the sequence.
Segmenting at these points leads to cognitive representations of the sequence (in this
case a melody) that maximise likelihood and simplicity (cf. Chater, 1996, 1999). In
the current work, we focus on the information content (h), leaving the role of entropy
(H) for future work.

There is evidence that related information-theoretic quantities are important in
cognitive processing of language. For example, it has recently been demonstrated
that the difficulty of processing words is related both to their information content
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(Levy, 2008) and the induced changes in entropy over possible grammatical contin-
uations (Hale, 2006). Furthermore, in machine learning and computational linguis-
tics, algorithms based on the idea of segmenting before unexpected events can iden-
tify word boundaries in infant-directed speech with some success (Brent, 1999a).
Similar strategies for identifying word boundaries have been implemented using re-
current neural networks (Elman, 1990). Recently, Cohen et al. (2007) proposed a
general method for segmenting sequences based on two principles: first, so as to
maximise the probability of events to the left and right of the boundary; and second,
so as to maximise the entropy of the conditional distribution across the boundary.
This algorithm was able to successfully identify word boundaries in text from four
languages as well as episode boundaries in the activities of a mobile robot.

The digram models used by TP and PMI are specific examples of a larger class
of models called n-gram models (Manning & Schütze, 1999). An n-gram is a se-
quence of n symbols consisting of a context of n− 1 symbols followed by a single
symbol prediction. A digram, for example, is a sequence of two symbols (n = 2)
with a single symbol context and a single symbol prediction. An n-gram model is
simply a collection of n-grams each of which is associated with a frequency count.
The quantity n− 1 is known as the order of the model and represents the number
of symbols making up the sequential context within which the prediction occurs.
During the training of the statistical model, these counts are acquired through an
analysis of some corpus of sequences (the training set) in the target domain. When
the trained model is exposed to an unseen sequence drawn from the target domain,
it uses the frequency counts associated with n-grams to estimate a probability dis-
tribution governing the identity of the next symbol in the sequence given the n− 1
preceding symbols. Therefore, an assumption made in n-gram modelling is that the
probability of the next event depends only on the previous n−1 events:

p(ei|ei−1
1 ) ≈ p(ei|ei−1

(i−n)+1)

However, n-gram models suffer from several problems, both in general and specifi-
cally when applied to music. The TP and PMI models are conceptually simple but,
as models of musical structure, they have at least two major shortcomings. The first
is general: probabilities are estimated purely on the basis of digram (first order)
statistics collected from some existing corpus. The second problem is representa-
tional and specific to music: in estimating the probability of a note, only its pitch
(and that of its predecessor) are taken into consideration - the timing of the note is
ignored. In the IDyOM model, we address these shortcomings as described below.

Regarding the first problem, that of probability estimation, IDyOM uses several
methods drawn from the literature on text compression (Bell et al., 1990; Bunton,
1997) and statistical language modelling (Manning & Schütze, 1999) to improve
the prediction performance of the model. The following is a brief description of
the principal methods used; technical details can be found elsewhere (Conklin &
Witten, 1995; Pearce et al., 2005; Pearce & Wiggins, 2004).

Since the model is based on n-grams, one obvious improvement would be to in-
crease the model order (i.e., n). However, while low-order models fail to provide an
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adequate account of the structural influence of the context, increasing the order can
prevent the model from capturing much of the statistical regularity present in the
training set (an extreme case occurring when the model encounters an n-gram that
does not appear in the training set and returns an estimated probability of zero). To
address this problem (and maximise the benefits of both low- and high-order mod-
els) the IDyOM model maintains frequency counts during training for n-grams of all
possible values of n in any given context. This results in a large number of n-grams;
the time and space complexity of both storage and retrieval are rendered tractable
through the use of suffix trees augmented with frequency counts (Bunton, 1997;
Larsson, 1996; Ukkonen, 1995). During prediction, distributions are estimated us-
ing a weighted sum of all models below an order bound that varies depending on
the context (Cleary & Teahan, 1997; Pearce & Wiggins, 2004). This bound is de-
termined in each predictive context using simple heuristics designed to minimise
uncertainty (Cleary & Teahan, 1997). The combination is designed such that higher-
order predictions, which are more specific to the context, receive greater weighting
than lower-order predictions, which are more general (Witten & Bell, 1991).

Another problem with many n-gram models is that a static (pre-trained) model
will fail to make use of local statistical structure in the music it is currently
analysing. To address this problem, IDyOM includes two kinds of model: first, a
static long-term model that learns from the entire training set before being exposed
to the test data; and second, a short-term model that is constructed dynamically and
incrementally throughout each individual melody to which it is exposed (Conklin &
Witten, 1995; Pearce & Wiggins, 2004). The distributions returned by these models
are combined using an entropy-weighted multiplicative combination scheme cor-
responding to a weighted geometric mean (Pearce et al., 2005) in which greater
weights are assigned to models whose predictions are associated with lower entropy
(or uncertainty) at that point in the melody.

A final issue regards the fact that music is an inherently multi-dimensional phe-
nomenon. Musical events have many perceived attributes including pitch, onset time
(the start point of the event), duration, timbre and so on. In addition, sequences of
these attributes may have multiple relevant emergent dimensions. For example, pitch
interval, pitch class, scale degree, pitch contour (rising, falling or unison) and many
other derived features are important in the perception and analysis of pitch structure.
To accommodate these properties of music into the model, we use a multiple view-
point approach to music representation (Conklin & Witten, 1995). The modelling
process begins by choosing a set of basic properties of musical events (e.g., pitch,
onset, duration, loudness etc) that we are interested in predicting. As these basic fea-
tures are treated as independentattributes, their probabilities are computed separately
and the probability of a note is simply the product of the probabilities of its attributes.
Each basic feature (e.g., pitch) may then be predicted by any number of models for
different derived features (e.g., pitch interval, scale degree) whose distributions are
combined using the same entropy-weighted scheme (Pearce et al., 2005).

The use of long- and short-term models, incorporating models of derived fea-
tures, the entropy-based weighting method and the use of a multiplicative (as
opposed to a weighted linear or additive) combination scheme all improve the
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performance of IDyOM in predicting the pitches of unseen melodies; technical de-
tails of the model and its evaluation can be found elsewhere (Conklin & Witten,
1995; Pearce et al., 2005; Pearce & Wiggins, 2004). The goal in the current work,
however, is to test its performance in retrieving segmentation boundaries in large
corpora of melodies. Here, we use the model to predict the pitch, IOI and OOI asso-
ciated with melodic events, multiplying the probabilities of these attributes together
to yield the overall probability of the event. For simplicity, we use no derived fea-
tures. We then focus on the unexpectedness of events (information content, h) using
this as a boundary strength profile from which we compute boundary locations, as
described in §2.4.2.

2.4.2 Peak Picking

To convert the boundary strength profile produced by IDyOM into a concrete seg-
mentation, we devised a simple method that achieves this using three principles.
First, given a vector S of boundary strengths for each note in a melody, the note fol-
lowing a boundary should have a greater or equal boundary strength than the note
following it: Sn ≥ Sn+1. Second, the note following a boundary should have a greater
boundary strength than the note preceding it: Sn > Sn−1. Third, the note following a
boundary should have a high boundary strength relative to the local context. We im-
plement this principle by requiring the boundary strength to be k standard deviations
greater than the mean boundary strength computed in a linearly weighted window
from the beginning of the piece to the preceding event:

Sn > k

√
∑n−1

i=1 (wiSi −Sw,1...n−1)2

∑n−1
1 wi

+
∑n−1

i=1 wiSi

∑n−1
1 wi

. (8)

where wi are the weights associated with the linear decay (triangular window) and
the parameter k is allowed to vary depending on the nature of the boundary strength
profile.

3 Method

3.1 The Ground Truth Data

The IDyOM model was tested against existing segmentation models on a subset
of the EFSC, database Erk, containing 1705 Germanic folk melodies encoded in
symbolic form with annotated phrase boundaries which were inserted during the
encoding process by folk song experts. The dataset contains 78,995 note events at
an average of about 46 events per melody and overall about 12% of notes fall before
boundaries (a boundary occurs between two notes). There is only one hierarchical
level of phrasing and the phrase structure exhaustively subsumes all the events in a
melody.
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3.2 The Models

The models included in the comparison are as follows:

Grouper: as implemented by Temperley (2001);2

LBDM: as specified by Cambouropoulos (2001) with k = 0.5;
IDyOM: as specified in §2.4.1 with k = 2;
GPR2a: as quantified by Frankland & Cohen (2004) with k = 0.5;
GPR2b: as quantified by Frankland & Cohen (2004) with k = 0.5;
GPR3a: as quantified by Frankland & Cohen (2004) with k = 0.5;
GPR3d: as quantified by Frankland & Cohen (2004) with k = 2.5;
TP: as defined in §2.3.5 with k = 0.5;
PMI: as defined in §2.3.5 with k = 0.5;
Always: every note falls on a boundary;
Never: no note falls on a boundary.

The Always model predicts a boundary for every note while the Never model never
predicts a boundary for any note. Grouper outputs binary boundary predictions.
These models, therefore, do not use the peak-picking and are not associated with
a value of k. The output of every other model was processed by Simple Picker using
a value of k chosen from the set {0.5,1,1.5,2,2.5,3,3.5,4} so as to maximise F1
(and secondarily Recall in the case of ties).

The DOP method (Bod, 2001) is not included due to the complexity of its imple-
mentation and lack of any third party software that is straightforwardly applicable
to musical data.

The IDyOM, TP and PMI models were trained and evaluated on melodies taken
from the Erk dataset. In order to demonstrate generalisation, we adopted a cross-
validation strategy in which the dataset is divided into k disjoint subsets of approx-
imately equal size. The model is trained k times, each time leaving out a different
subset to be used for testing. A value of k = 10 was used which has been found to
produce a good balance between the bias associated with small values of k and the
high variance associated with large values of k (Kohavi, 1995).

3.3 Making Model Outputs Comparable

The outputs of the algorithms tested vary considerably. While Grouper marks each
note with a binary indicator (1 = boundary, 0 = no boundary), the other models
output a positive real number for each note which can be interpreted as a bound-
ary strength. In contrast to Bruderer (2008) we chose to make all segmentation al-
gorithms comparable by picking binary boundary indications from the boundary
strength profiles.

To do so, we applied the peak-picking procedure described in S2.4.2 to the
boundary profiles of all models (except Grouper which produces binary boundary
judgements) and chose a value of k to optimise the performance of each model

2 Adapted for use with Melconv 2 by Klaus Frieler.
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Incorrect 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1
Correct 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1


incorrect

correct

                     

Fig. 1 An example showing the binary vectors representing the segmentation of a melody

individually. In practice, the optimal value of k varies between algorithms depend-
ing on the nature of the boundary strength profiles they produce.

In addition, we modified the output of all models to predict an implicit phrase
boundary on the last note of a melody.

3.4 Evaluation Measures

It is common to represent a segmentation of a melody using a binary vector with
one element for each event in the melody indicating, for each event, whether or not
that event falls on a grouping boundary. An example is shown in Figure 1.

Given this formulation, we can state the problem of comparing the segmentation
of a model with the ground truth segmentation in terms of computing the simi-
larity or distance between two binary vectors. Many methods exist for comparing
binary vectors. For example, version 14 of the commercial statistical software pack-
age SPSS provides 27 different measures for determining the similarity or distance
between binary variables. Additional measures have been proposed in the areas of
data mining and psychological measurement. The appropriate measure to use de-
pends on the desired comparison and the nature of the data (Sokolova & Lapalme,
2007). Here we introduce and compare five methods that are widely used in psy-
chology, computer science and biology.

These methods enable us to compute the similarity between phenomenal data
encoded as a binary vector, the ground truth, and the output of a model of the process
generating that data, the prediction, encoded in the same way.

All methods start with the 2 x 2 table shown in Table 2 which summarises the
co-occurrences of binary events between the ground truth and the prediction. The
ground truth positives (P) and negatives (N), respectively, are the numbers of posi-
tions where the ground truth vector contains 1 and 0. The predicted positives (p) and
negatives (n) indicate numbers of positions where the prediction vector contains 1
and 0 respectively. The true positives (TP) is the number of positions where both
ground truth and prediction vectors indicate 1 while the true negatives (TN) is the
number of positions where both vectors contain 0. False positives (FP) and false
negatives (FN) are the numbers of locations where the ground truth and prediction
vectors differ. In the former case, the prediction contains 1 where the ground truth
contains 0, and vice versa for the latter.
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Table 2 A summary of the outcomes of comparing prediction and ground truth binary data

Ground Truth
P N

Prediction
p TP FP
n FN TN

One of the most intuitive measures for comparing binary vectors is accuracy,
defined as the number of times the prediction vector and ground truth vector agree
as a proportion of the total number of entries in the vector:

accuracy =
T P+ TN

P+ N
(9)

However, this measure of accuracy can be misleading when the ground truth data
is skewed. For example, if the proportion of negative cases in the ground truth is
.8, a model that always gives a negative answer will achieve an accuracy of 80%.
The following measures take into account the proportion of positive and negative
instances in the ground truth data which means that the values are comparable across
the distributions occurring in different datasets.

Psychologists are often interested in the agreement between human raters or
judges when they assess the same items and Kappa (κ) has become one of the most
frequently used measures for assessing inter-rater agreement. It is conceptually re-
lated to the accuracy measure but takes the distribution of the two binary classes into
account and thus resembles the well-known χ2 distribution. The variant known as
Fleiss’ κ (Fleiss, 1971) is formulated for multiple-class ratings and multiple raters.
Reducing κ to binary markings from only two sources (raters) and using the no-
tation introduced above, κ is defined as the difference between the proportions of
actual agreement (Pr = accuracy) and expected agreement (Pre):

κ =
Pr−Pre

1−Pre
(10)

where:

Pr =
T P+ TN

P+ N
, Pre = Pr2

1 + Pr2
0, (11)

Pr1 =
P+ p

2 · (P+ N)
, Pr0 =

N + n
2 · (P+ N)

. (12)

(13)

Another measure, d′ (Green & Swets, 1966), was developed in psychophysics and
is often used to measure human ability to detect a particular cue in a signal or distin-
guish two stimuli differing along some dimension. It has been also widely used to
analyse experimental data in other areas of cognitive psychology such as memory.
It is defined as:
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d′ = z(
T P

T P+ FN
)− z(

FP
FP+ TN

) (14)

where z() is the cumulative distribution function of the normal probability
distribution.

In modern data mining, the following three measures are standard methods for
evaluating query-based systems for document retrieval (Witten & Frank, 1999). Pre-
cision reflects the true positives as a proportion of the positive output of the predic-
tion while Recall reflects the true positives as a proportion of the positive data in the
ground truth. F1 is the harmonic mean of the two.

Precision =
TP

TP + FP
,

Recall =
T P

TP + FN
,

F1 =
2 · precision · recall
precision + recall

.

4 Results

Before comparing the performance of the models, it is instructive to consider the
problem of how to evaluate quantitatively the degree of correspondence between
two segmentations of a melody. To do so, we compute the Pearson correlation co-
efficients between the different evaluation measures described in §3.4 for each pair-
wise comparison between each models output for each melody in the dataset. The
results are shown in Table 3.

Table 3 Correlations between evaluation measures over models and melodies

Accuracy Precision Recall F1 d′ κ
Accuracy 1
Precision 0.56 1
Recall -0.31 0.08 1
F1 0.45 0.69 0.63 1
d′ 0.52 0.48 0.64 0.91 1
κ 0.86 0.70 0.17 0.83 0.84 1

Precision and Recall each only take into consideration one kind of error (i.e., FP
or FN) and show low or moderate correlations with the other measures (and very
low correlations with each other as expected). Here, however, we want a measure
that takes into account both kinds of error. κ , F1 and d′ all correlate very highly
with each other because they all reflect T P in relation to FP and FN. Although κ is
also influenced by T N, the proportion of true negatives is constrained given a fixed
number of data points (i.e. if we know TP, FP, and FN and the total number of notes
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Table 4 The model comparison results in order of mean F1 scores. See text for details of the
Hybrid model.

Model Precision Recall F1

Hybrid 0.87 0.56 0.66

Grouper 0.71 0.62 0.66
LBDM 0.70 0.60 0.63
IDyOM 0.76 0.50 0.58
GPR2a 0.99 0.45 0.58

GPR2b 0.47 0.42 0.39
GPR3a 0.29 0.46 0.35
GPR3d 0.66 0.22 0.31
PMI 0.16 0.32 0.21
TP 0.17 0.19 0.17

Always 0.13 1.00 0.22
Never 0.00 0.00 0.00

then TN is fixed; we have 3 degrees of freedom and not 4 for pairs of vectors of the
same length). Accuracy exhibits only small correlations with these three measures
(except κ to which it is closely related) and is not appropriate here due to the unequal
proportions of positive and negative values in the data (see §3.4). The results of the
correlational analysis suggest that we could have used any one of d′, F1 or κ for
evaluating our models against the ground truth. Following common practice in data
mining and information retrieval, we use F1 to compare model performance.

The results of the model comparison are shown in Table 4. The four models
achieving mean F1 values of over 0.5 (Grouper, LBDM, GPR2a, IDyOM) were
chosen for further analysis. Sign tests between the F1 scores on each melody in-
dicate that all differences between these models are significant at an alpha level of
0.01, with the exception of that between GPR2a and LBDM. In order to see whether
further performance improvement could be achieved by a combined model, we con-
structed a logistic regression model including Grouper, LBDM, IDyOM and GPR2a
as predictors. Backwards stepwise elimination using the Bayes Information Crite-
rion (BIC) failed to remove any of the predictors from the overall model (Venables
& Ripley, 2002). The performance of the resulting model is shown in the top row
of Table 4. Sign tests demonstrated that the Hybrid model achieved better F1 scores
on significantly more melodies than each of the other models (including Grouper,
in spite of the fact that the average performance, shown in Table 4, was the same).
Compared to Grouper and LBDM, the hybrid model has slightly worse recall but
much better precision; compared to IDYOM, the hybrid model has better precision
and recall; while compared to GPR2a, the lower precision achieved by the hybrid
model is balanced by it’s better recall.
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5 Discussion

We would like to highlight four results of this evaluation study. First, we were sur-
prised by the strong performance of one of the GTTM preference rules, GPR2a.
This points to the conclusion that rests, perhaps above all other melodic parameters,
have a large influence on boundaries for this set of melodies. Consequently, all of the
high-performing rule-based models (Grouper, LBDM, GPR2a) make use of a rest or
temporal gap rule while IDyOM includes rests in its probability estimation. Future
research should undertake a more detailed qualitative comparison of the kinds of
musical context in which each model succeeds or fails to predict boundaries. This
suggests that future research should focus on boundaries not indicated explicitly by
rests.

Second, it is interesting to compare the results to those reported in other studies.
In general, the performance of Grouper and LBDM are comparable to their per-
formance on a different subset of the EFSC reported by Thom et al. (2002). The
performance of Grouper is somewhat lower than that reported by Temperley (2001)
on 65 melodies from the EFSC. The performance of all models is lower than that of
the supervised learning model reported by Bod (2001).

Third, the hybrid model which combines Grouper, LBDM, GPR2a and IDyOM
generated better performance values than any of its components. The fact that the
F1 value seems to be only slightly better than Grouper is due to the fact that logistic
regression optimises the log-likelihood function for whether or not a note is a bound-
ary given the boundary indications of the predictor variables (models). It therefore
uses information about positive boundary indications (P) and negative boundary in-
dications (N) to an equal degree, in contrast to F1. This suggests options, in future
research, for assigning different weights to P and N instances or including the raw
boundary profiles of LBDM and IDyOM (i.e., without peak-picking) in the logis-
tic regression procedure. Another possibility is to use boosting (combining multiple
weak learners to create a single strong learner, Schapire, 2003) to combine the dif-
ferent models which may lead to better performance enhancements than logistic
regression.

Finally, it is interesting to note that an unsupervised learning model (IDyOM) that
makes no use of music-theoretic rules about melodic phrases performed as well as
it does. It not only performs much better than simple statistical segmenters (the TP
and PMI models) but also approaches the performance of sophisticated rule-based
models. In fact, IDyOM’s precision is better than LBDM and Grouper although it’s
Recall is worse (this is a common tradeoff in MIR). In comparison to supervised
learning methods such as DOP, IDyOM does not require pre-segmented data as a
training corpus. This may not be an issue for folk-song data where we have large
corpora with annotated phrase boundaries but is a significant factor for other musi-
cal styles such as pop. IDyOM learns regularities in the melodic data it is trained
on and outputs probabilities of note events which are ultimately used to derive an
information content (unexpectedness) for each note event in a melody. In turn, this
information-theoretic quantity (in comparison to that of previous notes) is used to
decide whether or not the note falls on a boundary.
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These findings have been corroborated by a recent study comparing computa-
tional models of melodic segmentation to perceived segmentations indicated by hu-
man listeners for 10 popular melodies (de Nooijer et al., 2008). The results showed
that IDyOM’s segmentations did not differ significantly from those of the listeners
and, furthermore, that the segmentations of IDyOM, LBDM and Grouper did not
differ.

We argue that the present results provide preliminary evidence that the notion
of expectedness is strongly related to boundary detection in melodies. In future re-
search, we hope to achieve better performance by tailoring IDyOM specifically for
segmentation including a metrically-based (i.e., we represent whatever is happening
in each metrical time slice) rather than an event-based representation of time, op-
timising the derived features that it uses to make event predictions and using other
information-theoretic measures such as entropy or predictive information (Abdallah
& Plumbley, 2009).
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Automatic Musical Genre Classification and
Artificial Immune Recognition System

Shyamala Doraisamy and Shahram Golzari

Abstract. Artificial Immune Recognition System (AIRS) has been shown to be an
effective classifier for several machine learning problems. In this study, AIRS is in-
vestigated as a classifier for musical genres from differing cultures. Musical data of
two cultures were used – Traditional Malay Music (TMM) and Latin Music (LM).
The performance of AIRS for the classification of these genres was compared with
performances using several commonly used classifiers. The best classification ac-
curacy for TMM was obtained using AIRS and was comparable, almost similar, to
the performance obtained with the popular classifiers. However, the performance of
AIRS for LM genre classification was shown to be not promising.

1 Introduction

Interest on music information retrieval systems for the storage, retrieval and clas-
sification of large collections of digital musical files has grown in recent years.
Metadata such as filename, author, file size, date and genres are commonly used
to classify and retrieve these documents. Such manual classification is highly labor-
intensive and costly both in terms of time and money [1]. An automatic classification
system that is able to analyze and extract implicit knowledge of the musical files is
therefore highly sought. One approach to automated musical classification that is
currently being widely studied is classification based on musical genres.

Musical genres are labels created and used by humans for categorizing and de-
scribing music [2]. Examples of musical genres include Pop, Rock, Hip-hop and
Classical. Several systems for automated genre classification and retrieval of musi-
cal files have been researched and developed [2, 3]. However, most of these studies
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were conducted using only genres such as those given earlier in this paragraph.
These genres in general have originated from North America and Europe. In this
study we focus on two sets of musical genres from differing cultures Traditional
Malaysian Music (TMM) and Latin Music (LM). Music from different cultures has
different influences and instrumentalisation.

Studies by Norowi et. al. [4] and Silla et. al. [5] have investigated automated mu-
sical genre classification of TMM and LM respectively. The study by Norowi et. al.
[4] showed the significance of beat features for TMM genre classification in com-
parison to classifying the genre set of – Blues, Classical, Jazz, Pop and Rock. This
genre set of music was referred to as Western music in the scope of their study. We
will continue to refer to Western music as music from North America and Europe.

As for feature selection with LM genre classification, the study by Silla et. al. [5]
showed that the use of multiple features from the three main groups of features, i.e.
Timbral Texture, Beat Related and Pitch Related, was useful for Latin music genre
classification. The study also showed that using the middle segment of a musical
piece enables better classification. With TMM however, using the first 30 seconds
was shown to be better for classification. One of the motivations in the work by
Silla et. al. [5] work was to analyze Latin music audio signals, which present a
great variation in time. This characteristic also opposes the main characteristic of
TMM which is very repetitive and its main beats clearly audible with gong hits.
These differences were used as a basis for selecting these two datasets in this study
investigating the performance of Artificial Immune Recognition System (AIRS) as
a classifier for automated musical genre classification.

Artificial Immune System (AIS) is a computational method inspired by the bi-
ological immune system. It is progressing slowly and steadily as a new branch of
computational intelligence and soft computing [6, 7]. One AIS-based algorithm is
AIRS. AIRS is a supervised immune-inspired classification system capable of as-
signing data items unseen during training to one of any number of classes based
on previous training experience. AIRS is probably the first and best known AIS for
classification, first introduced in the study by Watkins [8].

In this study, the automated genre classification approach consists of three phases.
i.e., feature extraction, feature selection preprocessing and then classification with
AIRS (in comparison to using just the first two phases with most automated genre
classification systems). Feature extraction was not performed in this study. We
continue to use the appropriate features that had been identified as efficient for the
classification of the respective genres from these previous studies. This is due to dif-
ferences in data pre-processing strategies needed for efficient classification. Based
on the strategies used for the two genre sets as shown in the studies by Norowi
et. al. [4] and Silla et.al. [5] respectively, we continue to use the appropriately pre-
processed data-sets obtained from these studies. More discussion on these data sets
is presented in later sections. Feature selection has been shown to be useful with
TMM genre classification in an earlier study [9]. In this study, we included this fea-
ture selection phase for further pre-processing of the obtained LM dataset from the
study by Silla et.al. [5]. The aim and focus of this study is to investigate the feasi-
bility of using AIRS for automated musical genre classification. The performance
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of AIRS is tested with regard to classification accuracy. This performance is also
compared with the obtained accuracies by popularly used classifiers.

The remainder of this paper is organized as follows: Section 2 and 3 give the
briefly description about TMM and LM respectively. Section 4 describes about fea-
ture selection method. AIRS is explained in Section 5. In Section 6, we explain the
experiments and discuss the results and lastly in Section 7, we conclude the paper.

2 Traditional Malaysian Music

TMM encompasses traditional music of both the Malay (largely from West Malaysia)
and native communities of Sabah and Sarawak (East Malaysian states on the Island
of Borneo). We use this definition based on the scope defined by Nasaruddin [10],
which categorises TMM into six broad categories: shadow puppet music, dance the-
atre, music with Indonesian influence, percussion music known as nobat, syncreatic
Malaysian music and music from Sabah and Sarawak. The work by Nasaruddin [10]
also attempts to notate the microtonal instruments using standard Western notation.
However, it is just an approximation and does not reflect actual pitches.

TMM is mainly derivative, influenced by the initial overall Indian and Middle
Eastern music during the trade era and later from colonial powers of countries and
nations such as Thailand, Indonesia, Portugal and Britain who introduced their own
culture including dance and music. A thorough overview on the origin and history
of TMM can be found in [11]. The taxonomy of TMM depends on the nature of the
theatre forms they serve and their instrumentations. Categorization of TMM genres
has also been studied extensively by Ang [12]. These genres are usually dissemi-
nated non-commercially, usually performed by persons who are not highly trained
musical specialists, undergoes change arising from creative impulses and exists in
many forms. The musical ensembles usually include drums known as gendangs that
are used to provide constant rhythmic beat of the songs and gongs to mark the end
of a temporal cycle at specific part of the song [13].

One common attribute that is shared by most TMM genres is that they are gen-
erally repetitive in nature and exist in gongan-like cycle. Gongan is defined as a
temporal cycle marked internally at specific points by specific gongs and at the end
by the lowest-pitched gong of an ensemble [11]. It is an important structural func-
tion as it divides the musical pieces into temporal sections. Once every measure has
been played, musicians continue playing in a looping motion by repeating the cycle
from the beginning again until one of the lead percussionists signals the end of the
song by varying their rhythms noticeably. In general, TMM does not have a chorus
that plays differently than other parts of the songs, which is the usual occurrence in
western music. Its repetitiveness and constant rhythms are two aspects that are taken
into account to facilitate classification by genre.

Norowi et. al. [4] studied the effects of various factors and audio feature set com-
binations towards the classification of TMM genres. Results from experiments con-
ducted in several phases in [4] show that factors such as dataset size, track length and
location together with various combinations of audio feature sets comprising Short
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Time Fourier Transform (STFT), Mel-Frequency Cepstral Coefficients (MFCCs)
and Beat Features affect classification. A detailed discussion of the data collection
and treatment of TMM files obtained in both digital analogue forms is available in
Noris et. al. [4]. The track-length of 30 seconds from the beginning of the recording
was concluded to be efficient for the classification. This could be due to the repet-
itive nature of the music with little variation through the composition. As for the
classification, only the J48 classifier was used in the study which achieved 66.3%
classification accuracy for TMM genres [4]. The features were extracted from the
music files through MARSYAS-0.2.2; a free framework that enables the evaluation
of computer audition applications. MARSYAS is a semi-automatic music classi-
fication system that is developed as an alternative solution for the existing audio
tools that are incapable of handling the increasing amount of computer data [2]. It
enables the three feature sets for representing the timbral texture, rhythmic content
and pitch content of the music signals and uses trained statistical pattern recognition
classifiers for evaluation.

Table 1 Overall number of musical instances for each TMM genre

NO Genre Class Label Number of Instances

1 Dikir Barat A 31
2 Etnik Sabah B 12
3 Gamelan C 23
4 Ghazal D 19
5 Inang E 10
6 Joget F 15
7 Keroncong G 43
8 Tumbuk Kalang H 13
9 Wayang Kulit I 17
10 Zapin J 10

Ten TMM genres were involved in the study. The breakdown for each genre and
its number of musical files are listed in Table 1. We continue to use these extracted
features in this study as it was shown in the previous study to be efficient in the
recognition of TMM genres.

3 Latin Music

The rhythmic structure of Latin musical genres in general is syncopated with high
temporal variations, i.e change of speed, in comparison to TMM. A pre-processed
collection of 3000 samples of Latin music was used in this study. As discussed in
Section 1 , this collection was used in a prior study by Silla et. al. [5] evaluating
their automated musical genre classification system for LM. We continue to use this
pre-processed dataset with ten different genres of Latin music comprising Tango,
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Table 2 Overall number of musical instances for each Latin genre

NO Genre Class Label Number of Instances

1 Tango A 300
2 Salsa B 300
3 Forro C 300
4 Axe D 300
5 Bachata E 300
6 Bolero F 300
7 Merengue G 300
8 Gaucha H 300
9 Sertaneja I 300
10 Pagode J 300

Salsa, Forro, Axe, Bachata, Bolero, Merengue, Gaucha, Sertaneja and Pagode. The
number of instances and class labels assigned is shown in Table 2. Rhythms of
genres such as Rock and Classic from Western music, and TMM in this case, in
general are more constant than Latin rhythms. In the dataset description of Silla et.
al. [5], most of the music samples used were said to start slow (sometimes as slow
as a Bolero) in the introduction and after a while they “explode” (at the time when
all instruments come into play). This variation in speed differs to the strict tempo of
TMM marked by cyclic gongs.

Multiple features were extracted using MARSYAS, the similar framework used
by Norowi et. al. [4] for TMM. The breakdown of the combination of this multiple
feature set of timbral, beat-related and pitch-related features extracted for the LM
data set comprises are as follows: - timbral texture: nine FFT and ten MFCC; beat:
six; pitch: five. As discussed in Section 1 , the data was further pre-processed with
a feature selection phase. This is discussed in the following section.

4 Feature Selection

Feature selection is the process of removing features from the data set that are ir-
relevant with respect to the task that is to be performed. Feature selection can be
extremely useful in reducing the high dimensionality of features to be processed by
the classifier, reducing execution time and improving predictive accuracy (inclusion
of irrelevant features can introduce noise into the data, thus obscuring relevant fea-
tures important for accurate classification). It is worth noting that even though some
machine learning algorithms perform some degree of feature selection themselves
(such as classification trees), feature space reduction can be useful even for these al-
gorithms. Reducing the dimensionality of the data reduces the size of the hypothesis
space and thus results in faster execution time.

Feature selection techniques can be split into two categories filter methods and
wrapper methods. Filter methods determine whether features are predictive using
heuristics based on characteristics of the data. Wrapper methods make use of the
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classification algorithm that will ultimately be applied to the data in order to evaluate
the predictive power of features. Wrapper methods generally result in better perfor-
mance than filter methods because the feature selection process is optimized for the
classification algorithm to be used. However, they are generally far too expensive to
be used if the number of features is large because each feature set considered must
be evaluated with the trained classifier. For this reason, wrapper methods will not be
considered in this study. Filter methods are much faster than wrapper methods and
therefore are better suited to high dimensional data sets.

Preliminary experiments were conducted for these datasets to compare the per-
formance of feature subset selection methods such as: Correlation based methods,
Principal Component Analysis (PCA), Information gain, Gain ratio and Chi square.
Based on preliminary experiments, gain ratio measure achieved the best results for
both data sets. This is due to the data characteristics.

Gain ratio is an extension of information gain. Information gain is an entropy
based measure for feature selection. Entropy is a commonly used measure in infor-
mation technology. For set D of data, entropy is defined as equation (1).

Entropy(D) =
c

∑
i=1

−pi log2 pi (1)

pi is the proportion of D belonging to class i, and c is the number of classes. Entropy
is a measure of impurity of training data and information gain is a measure of the
effectiveness of a feature in classifying of the training data.

The information gain of feature F in D, is defined as equation (2).

Gain(D,F) = Entropy(D)− ∑
v∈Values(F)

| Dv |
| D | Entropy(Dv) (2)

Values of F is the set of all possible values for feature F . Dv is the subset of D
for which feature F has value v. In information gain feature selection, features have
effectiveness based on their gain in descending order i.e. the feature F with the
highest gain is chosen as the first feature.

The information gain measure is biased towards tests with many values. That is, it
prefers to select features having a large number of values. For example, if instances
contains a feature such as id (identification number), information gain selects the
id number feature as the first choice. However, id number is not very effective or
useful towards classification.

Gain ratio measure is an extension of information gain to solve this drawback. It
applies a kind of normalization to information gain using a “split information” value
defined as equation (3).

SplitIn f o(D,F) = ∑
v∈Values(F)

−| Dv |
| D | log2

| Dv |
| D | (3)

For each given value, it considers the number of instances having that value in re-
lation to the total number of instances in D. The gain ratio is defined as equation
(4).
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GainRatio(D,F) =
Gain(D,F)

SplitIn f o(D,F)
(4)

The feature with the maximum gain ratio is selected as the appropriate feature. More
detailed explanation about feature selection and Gain ratio can be found in [14, 15].

5 AIRS

Artificial Immune Recognition System (AIRS) was investigated by Watkins [8].
AIRS can be applied to classification problems, which is a very common real world
data mining task. Most other artificial immune system (AIS) research concerns un-
supervised learning and clustering. The only other attempt to use immune systems
for supervised learning is the work of Carter [16]. The AIRS design refers to many
immune system metaphors including resource competition, clonal selection, affin-
ity maturation, memory cell retention. It also includes the resource limited artificial
immune system concept investigated by [17]. In this algorithm, the feature vec-
tors presented for training and test are named as antigens while the system units
are called B cells. Similar B cells are represented with Artificial Recognition Balls
(ARBs) and these ARBs compete with each other for a fixed resource number. This
provides ARBs with higher affinities to the training antigen to improve the training
process. The memory cells formed after the presentation of all training antigens,
would be used to classify test antigens.

AIRS has four stages. The first is performed once at the beginning of the pro-
cess (normalization and initialization), and other stages constitute a loop and are
performed for each antigen in the training set: ARB generation, Competition for re-
sources and nomination of candidate memory cell, promotion of candidate memory
cell into memory pool. The mechanism to develop a candidate memory cell is as
follows [8, 18]:

1. A training antigen is presented to all the memory cells belonging to the same
class as the antigen. The memory cell most stimulated by the antigen is cloned.
The memory cell and all the just generated clones are put into the ARB pool.
The number of clones generated depends on the affinity between the memory
cell and antigen, and affinity in turn is determined by Euclidean distance between
the feature vectors of the memory cell and the training antigen. The smaller the
Euclidean distance, the higher the affinity, the more is the number of clones al-
lowed.

2. Next, the training antigen is presented to all the ARBs in the ARB pool. All the
ARBs are appropriately rewarded based on affinity between the ARB and the
antigen as follows: An ARB of the same class as the antigen is rewarded highly
for high affinity with the antigen. On the other hand, an out of class ARB is re-
warded highly for a low value of affinity measure. The rewards are in the form
of number of resources. After all the ARBs have been rewarded, the sum of all
the resources in the system typically exceeds the maximum number allowed for
the system. The excess number of resources held by ARBs are removed in order
starting from the ARB of lowest affinity and moving higher until the number of
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resources held does not exceed the number of resources allowed for the system.
Those ARBs, which are not left with any resources, are removed from the ARB
pool. The remaining ARBs are tested for their affinities towards the training anti-
gen. If for any class of ARB the total affinity over all instances of that class does
not meet a user defined stimulation threshold, then the ARBs of that class are
mutated and their clones are placed back in the ARB pool. Step 2 is repeated
until the affinity for all classes meet the stimulation threshold.

3. After ARBs of all classes have met the stimulation threshold, the best ARB of
the same class as the antigen is chosen as a candidate memory cell. If its affinity
for the training antigen is greater than that of the original memory cell selected
for cloning at step 1, then the candidate memory cell is placed in the memory cell
pool. If in addition to this the difference in affinity of these two memory cells is
smaller than a user defined threshold, the original memory cell is removed from
the pool.

These steps are repeated for each training antigen. After completion of training the
test data are presented only to the memory cell pool, which is responsible for actual
classification. The class of a test antigen is determined by majority voting among
the k most stimulated memory cells, where k is a user defined parameter.

Several studies have been done to evaluate the performance of AIRS [18, 19, 20,
21, 22]. The results show that AIRS is comparable (almost similar) with famous and
powerful classifiers.

6 Experiments and Results

As discussed in Sections 3 and 4, feature selection was performed on the dataset ob-
tained from Silla et. al. [5]. The Gain Ratio feature subset evaluation with best first
search strategy was used to reduce the dimensional of features. In the best first strat-
egy, the best features are inserted into the feature subset to achieve highest accuracy.
The features are evaluated based on effectiveness measures such as information gain
and gain ratio. With TMM, the dataset from the study by Norowi et. al. [4] discussed
in Section 2 with 63 features and 193 instances was used.

Some experiments were carried out in order to determine how AIRS performed
TMM and LM genre classification in comparison to some other famous classifiers.
One advantage of AIRS is that it is not necessary to know the appropriate settings
and parameters for the classifier. The most important element of the classifier is its
ability of self-determination [22] the AIRS is able to determine the suitable final
structure of the system on its own. In general, the various parameters of the algo-
rithm has minimal effect on the performance of system. However, based on some ex-
perimentation, appropriate AIRS algorithm parameters were determined and shown
in Table 3 .

These parameters have been discussed in the algorithm description presented in
Section 5. In addition, the Affinity Threshold Scalar (ATS) parameter value shown
in Table 3, is a value between 0 and 1 that provides a cut-off value for memory cell
replacement in the AIRS training routine.
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Table 3 Algorithm Parameters

NO Used Parameter Value

1 Clonal rate 10
2 Mutation rate 0.1
3 ATS 0.2
4 Stimulation threshold 0.99
5 Resources 150
6 Hyper mutation rate 2.00
7 K value in KNN classifier 4

To evaluate the performance of AIRS for musical genre classification, the fol-
lowing classifiers listed below were selected. This list includes a wide range of
paradigms. The available programmes in the WEKA [15] data mining workbench
and the default parameters were used for each algorithm.

• Bagging
• Bayesian Network
• Cart
• Conjunctive rule learner (Conj-Rules)
• Decision Stump
• Decision Table
• IB1
• J48 (an implementation of C4.5)
• Kstar
• Logistic
• LogitBoost
• Multi-layer neural network with back propagation (MLP)
• Naı̈ve Bayesian
• Nbtree
• PART (a decision list [23])
• RBF Network
• SMO (a support vector machine implementation [24])

A 10-fold cross validation approach was used to estimate the predictive accuracy
of the algorithms. In this approach, data instances are randomly assigned to one of
10 approximately equal size subsets. At each iteration, all but one of these sets are
merged to form the training set while the classification accuracy of the algorithm is
measured on the remaining subset. This process is repeated 10 times, choosing a dif-
ferent subset as the test set each time until all data instances have been used 9 times
for training and once for testing. The final predictive accuracy is computed by divid-
ing the number of correctly classified instances to the number of tested instances.
This approach was used in all experiments to control the validity of experiments.
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6.1 TMM Results

The accuracies achieved by classifiers for TMM are shown in Table 4. AIRS, together
Logistic and SMO obtained highest classification accuracy of 86%. Table 5 shows the
confusion matrix obtained by using AIRS for TMM genre classification. Results show
the class B has the worst behavior among classes and only 50% of this class instances
are classified correctly. More exploration on the data collection and feature extraction
for this class would need to be done as future work to achieve more accuracy.

Table 4 TMM Genre Classification Accuracies

NO Method Accuracy (%)

1 Conj-Rules 31.60
2 Decision Stump 33.68
3 Decision Table 52.85
4 CART 61.67
5 PART 68.39
6 J48 73.06
7 Nbtree 75.13
8 Bagging 76.68
9 Naı̈ve Bayesian 77.72
10 RBF 80.31
11 Bayesian Network 80.83
12 Kstar 80.83
13 LogitBoost 81.35
14 MLP 84.47
15 IB1 84.97
16 Logistic 86.01
17 SMO 86.01
18 AIRS 86.01

Table 5 Confusion Matrix for TMM Genre classification

A B C D E F G H I J

A 28 0 0 0 0 2 0 0 0 1
B 1 6 1 0 1 0 0 0 3 0
C 0 1 22 0 0 0 0 0 0 0
D 0 0 2 17 0 0 0 0 0 0
E 0 0 0 0 8 0 0 0 0 2
F 0 0 0 0 1 12 0 0 0 2
G 0 1 1 1 0 0 40 0 0 0
H 0 0 0 0 1 0 0 11 0 1
I 0 0 0 0 1 0 2 0 14 0
J 0 0 0 0 2 0 0 0 0 8
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6.2 LM Results

Table 6 shows the results for LM genre classification. The accuracy achieved by
AIRS is not as good as TMM. However, the performance is better than the rule-
based, tree-based and Bayesian classifiers. The confusion matrix for LM classifi-
cation using AIRS and the additional feature selection face is shown in Table 7.
Results show that class I achieves less than 50% accuracy.

Table 6 Latin Genre Classification Accuracies

NO Method Accuracy (%)

1 Conj-Rules 18.77
2 Decision Stump 18.83
3 Decision Table 47.80
4 CART 60.00
5 PART 62.23
6 J48 58.50
7 Nbtree 56.27
8 Bagging 69.10
9 Naı̈ve Bayesian 58.53
10 RBF 63.73
11 Bayesian Network 61.63
12 Kstar 69.37
13 LogitBoost 63.67
14 MLP 71.70
15 IB1 74.80
16 Logistic 79.37
17 SMO 75.17
18 AIRS 67.47

Table 7 Confusion Matrix for LM Genre classification

A B C D E F G H I J

A 293 1 0 0 0 5 0 1 0 0
B 0 209 17 17 4 12 5 17 14 5
C 0 13 172 23 7 16 1 22 20 26
D 0 14 18 186 2 2 4 27 35 12
E 0 16 8 3 264 3 3 1 0 2
F 16 13 18 4 2 186 0 12 31 18
G 0 18 9 19 11 0 234 8 0 1
H 2 15 45 44 2 9 0 164 13 6
I 0 13 37 42 0 40 0 20 128 20
J 0 21 30 17 1 13 1 10 9 180
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As for the performances of the classifiers between both the musical genre sets, the
Logistic classifier performed best for both cases. The Logistic Classifier in WEKA
uses logistic regression with a ridge estimator to classify instances. Further reading
on ridge estimators can be found in Houwelingen et. al. [25]. More tests would be
needed in comparing musical genres from various cultures to confirm the usefulness
of the Logistic classifier as a musical genre classifier in addition to investigating
methods to improve the performance of AIRS as a musical genre classifier. A more
in-depth analysis of the misclassification of certain genres, such as Etnik Sabah of
TMM and Sertaneja of LM in particular, from each of the musical genre sets would
also be needed.

7 Conclusions

AIRS is the most important classifier among the AIS based classifiers. In this study
AIRS was used to classify TMM and LM genres. Experiments were conducted to
test the feasibility of AIRS as a musical genre classifier. According to experimental
results tested on two sets of musical genres from differing cultures, AIRS showed a
considerably high performance with regard to the classification accuracy for TMM
genres. The performance was close to other popular classifiers such as Logistic and
SMO. However, this performance was not achieved by AIRS for the Latin musical
genres. AIRS does not show promising performance for LM genres in comparison
to some popular classifiers. More in-depth study and comparison with musical genre
sets from a larger number of cultures would need to be investigated as future work.
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Müllensiefen, Daniel 365

Nishimoto, Takuya 213

Ogihara, Mitsunori 165
Ono, Nobutaka 213
Orio, Nicola 187

Pearce, Marcus T. 365

Radicioni, Daniele P. 143
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Glossary 
 
 
 
 
 
 
 
 
Audio Engineering – acoustic and electrical technology applied to audible sound 
signal 
 
Augmented Fifth – see: interval  
 
Beat – pulse, the regular rhythmic pattern (template) in a piece of music 
 
Chord – a combination of three or more notes sounding simultaneously  
 
Chromatic Scale – musical scale with twelve pitches, each a semitone apart.  
  
Consonance – a chord or a set of sounds sounding in concordance  
 
Diatonic Scale – seven note musical scale, e.g. major scale, minor scale 
 
Digital Audio – sound signal represented in digital form 
 
Dissonance – a chord or a set of sounds sounding in discord 
 
Envelope – a curve connecting the peaks of a graph of sound wave; can be also 
calculated for amplitude spectrum 
  
Fifth – see: interval  
 
Formant – a region of concentration of energy in amplitude spectrum, consisting 
of a number of harmonic partials 
 
Fourth – see: interval  
 
Frequency – number of cycles of a repeating event per unit of time 
  
Fundamental Frequency (of a periodic signal) – the inverse of the period length 
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Fundamental – the lowest frequency in a harmonic series 
 
Harmonic (of a wave) – component frequency of the signal that is an integer 
multiple of the fundamental frequency 
 
Harmony – describes simultaneous sounding of two or more notes (chords) and 
their arrangement in a succession 
 
Hertz (Hz) – 1 herz (Hz) is a frequency equal to one cycle per second 
 
Interval – relationship between two pitches 

• Unison (perfect unison) – both pitches are the same; an example of 
consonance 

• Minor second – the pitches are semitone apart  
• Major second – the pitches are two semitones apart 
• Minor third - a musical interval of three semitones 
• Major third – an interval of fourth semitones 
• Fourth (perfect fourth) - the notes are five semitones apart; can be 

augmented (by a semitone) or diminished (also by a semitone) 
• Tritone, or augmented fourth, or diminished fifth – the interval of six 

semitones; an example of dissonance 
• Fifth (perfect fifth) - musical interval between a note and the note seven 

semitones above it; can be augmented (by a semitone) or diminished (also 
by a semitone) 

• Minor sixth – an interval between pitches which are eight semitones apart  
• Major sixth - an interval between pitches which are nine semitones apart 
• Minor seventh – between pitches which are ten semitones apart 
• Major seventh – between pitches which are eleven semitones apart 
• Octave (perfect octave) - between one musical pitch and another with half 

or double its frequency, i.e. twelve semitones apart 
 
Key – a family of diatonic tones; the tone to which a scale is referred. There are 
24 major or minor diatonic scales 
Key – the part of an instrument (e.g. piano) which is used to play it  
 
Major Scale – diatonic scale made up of seven distinct notes (plus an eighth 
which duplicates the first an octave higher). The key note is called tonic. The 
notes in the scale are in the following steps: tonic, major second above the tonic, 
major third above the tonic, fourth above the tonic, fifth above the tonic, major 
sixth above the tonic, major seventh above the tonic, and octave 
 
Melody – a succesion of notes 
 
Metadata – data about the data 
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Meter - the rhythmic element measured by division into parts of equal time value; 
describes beat 
 
MIDI – Musical Instrument Digital Interface, protocol for controlling digital 
audio devices. MIDI data represent such events as key number (representing 
pitch), note on, note off (pressing and releasing the key of a keyboard), voice 
number (timbre selected), and so on 
 
Minor Scale - diatonic scale, with a third scale degree at an interval of a minor 
third above the tonic, and various versions of higher steps (sixth and seventh); see 
Major Scale for comparison 
 
Music Genre - category that identifies music and distinguishes from other types 
of music, e.g. popular music, blues, country, jazz, rock, and so on 
 
Musical Scale – a group of musical notes arranged in ascending and descending 
order. Examples: major scale, minor scale, chromatic scale 
 
Octave  - see: interval  
 
Offset - the ending of a musical note or other sound, in which the amplitude 
decreases 
 
Onset - the beginning of a musical note or other sound, in which the amplitude 
rises 
 
Pitch - represents the perceived fundamental frequency of a sound 
 
Pitch Tracking - estimation of pitch of note events in a melody or a piece of 
music  
 
Polyphonic Music - music arranged in parts for several voices or instruments 
 
Rhythm - basic temporal element of music, arrangement of notes into regular 
patterns according to their relative duration and relative accentuation  
 
Second – see: interval 
 
Semitone – the smallest interval used in Western music. Example: the distance 
between two neighboring keys of the keyboard is a semitone. 
 
Signal - physical (e.g. electrical) varying quantity that carries information. 
Example: audio signal, conveying information on changes of amplitude of sound 
wave in time 
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Sound – vibrations of frequency withing the range of approximately 16 Hz – 20 
kHz, transmitted through the air or other medium, and producing the sensation of 
hearing 
 
Spectrum – the result of analysis that can be performed for sound data using e.g. 
Fourier transform, transforming time domain into frequency domain (for complex-
valued functions), and showing magnitudes (amplitude spectrum) and phases 
(phase spectrum) of sound components, represented here in sinusoidal form 
 
Temperament - system of tuning in music. Example: equal temperament – the 
ratio of frequency of any adjacent notes in this system is constant and equal to 
21/12, since an octave in divided into 12 parts (semitones) with equal step in 
logarithmic scale. 
 
Tempo - speed of a given piece of music 

 
Third – see: interval  
 
Timbre - the quality of a musical sound that distinguishes sounds, even if they are 
of the same pitch or loudness  
 
Transient - a short-duration part of signal that represents transitory phase of a 
musical sound. Example: onset (the beginning of the sound), offset (the end of the 
sound) 
 
Triad – a group of three notes in a chord, consisting of a given tone, a third 
(minor or major), and a fifth (perfect, augmented, or diminished) 
 
Unison – see: interval 
 
Voicing – ordering of notes in a chord 
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