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Foreword

This book appears at a time of rapid change in the field of global atmospheric mod-
eling. The field is being transformed, and the authors of this volume are driving
many of those rapid changes.

As always, the models and the computing systems that run them are co-evolving.
Processor speeds have (almost) stopped increasing, but parallelism is exploding, and
systems with tens of millions of processors are expected in the next few years. These
technology trends are driving atmospheric models towards much higher spatial
resolution and more local discretization schemes.

The trend to higher model resolution is forcing a healthy re-examination of famil-
iar methods that have been accepted, for decades, as standards of global modeling
practice. Perhaps the most obvious point is that the quasi-static approximation is
not applicable with high resolution. Depending on the approach, non-hydrostatic
models must use short time steps, or else methods that avoid the need for short time
steps. This is motivating the design of new time-differencing schemes. With fine
horizontal grids, realistically steep topography can influence the choice of vertical
coordinate. A variety of new horizontal grids is being very actively explored. At
the same time, the horizontal and vertical staggering of the variables is also being
revisited. Conservation principles are now widely recognized as key to successful
long-term integrations. Vorticity dynamics is gaining a higher profile. Energy and
enstrophy spectra present new challenges at high resolution, and this is motivat-
ing increased attention to dissipation parameterizations. Parameterized processes,
especially those associated with clouds, are highly scale dependent, so that the
parameterizations of high-resolution global models must behave very differently
from their counterparts in low-resolution models.

In short, the field is in turmoil. This is good. Our rate of progress has accelerated,
and new capabilities are being realized at a rapid pace. The book you are holding in
your hands is an exciting report on progress from the front lines of research.

Fort Collins, USA Prof. David A. Randall
June 2010
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Preface

Approximating the solution to the partial differential equations for atmospheric
flows using numerical algorithms implemented on a computer has been intensively
researched since the pioneering work of Prof. John von Neuman in the late 1940s
and 1950s. Since von Neuman’s numerical experimentation on the first general pur-
pose computer, the processing power of computers has increased at a breath-taking
pace. While global models used for climate modeling a decade ago used horizontal
grid spacings of order hundreds of kilometers, computing power now permits hori-
zontal resolutions near the kilometer scale. Hence, the range of the scales of motion
that next-generation global models will resolve spans from thousands of kilome-
ters (planetary and synoptic scale) to the kilometer scale (meso-scale). Hence, the
distinction between global climate models and global weather forecast models is
starting to disappear due to the closing of the resolution gap that has historically
existed between the two. For anyone interested in the dynamics of the weather and
climate problem, this is a significant milestone since two branches of modeling,
previously considered two separate disciplines, have started to merge.

Making effective use of massively parallel supercomputers, that are necessary
for running global models at high resolution, has forced model developers back to
the drawing board. Many current numerical methods are not scalable and therefore
not amenable for massively parallel processing. This has forced the community to
consider novel spherical grids (in the context of atmospheric global climate/weather
modeling) where the grid-cell size is globally quasi-uniform in contrast to the highly
nonuniform geographical longitude–latitude grid that has been the preferred choice
for decades. The higher resolutions also affect which equation set is appropriate as
a basis for the numerical discretizations. Model users now also expect the numerical
method to preserve key integral invariants in discretized space, demand the accurate
maintenance of balances in the flow, and request a truthful representation of waves
on many scales as well as realistic scale interactions. Needless to say, the breadth of
the choices of the computational grids and numerical schemes that should fulfill all
these requirements is daunting, to say the least, and requires insight into the multi-
scale nature of the problem and the properties of the chosen numerical methods.

vii



viii Preface

The NCAR1 ASP Colloquium 2008

To start tackling the significant challenges that lie ahead in global modeling, the Edi-
tors organized a colloquium on the latest developments in numerical methods for the
dynamical cores of atmospheric General Circulation Models (GCMs). Dynamical
cores are the central component of every climate and weather model. Loosely speak-
ing, they solve the equations of motion on the resolved scales and determine not only
the choice of the computational grid but also the predicted variables. Research in
dynamical cores faces many scientific and computational challenges as was briefly
outlined above.

On 1–13 June 2008, the colloquium entitled Numerical Techniques for Global
Atmospheric Models was held at the National Center for Atmospheric Research
(NCAR) in Boulder, Colorado. The colloquium was hosted by NCAR’s Advanced
Study Program (ASP) that hosts colloquia on an annual basis. The colloquium had
two main objectives.

First, it introduced a multidisciplinary group of graduate students to the science
of dynamical cores for global weather and climate models through lectures and
hands-on tutorials. The chapters of this book are based on the lectures given at the
colloquium by leaders in the field of numerical techniques for global atmospheric
models. Second, the colloquium brought together the global modeling community
by having the GCM modeling groups port their models to NCAR supercomputers,
configure the models for idealized test cases defined by the colloquium organizers
and to have the students exercise their models on these test cases during the collo-
quium. Nine international modeling groups accepted our invitation to participate in
the colloquium, and each group had at least one modeling mentor present during the
entire duration of the colloquium.

The modeling groups were as follows:

� Colorado State University (CSU) with the CSU-GCM
� Max Planck Institute for Meteorology (MPI-M) with the ICON (ICOsahedral

Non-hydrostatic) model
� Goddard Institute for Space Studies (GISS) and Goddard Space Flight Center

(GSFC) both part of National Aeronautics and Space Administration (NASA)
with ModelE

� NCAR with the CAM (Community Atmosphere Model)
� NCAR and Sandia National Laboratories with the HOMME (High-Order

Method Modeling Environment) model
� Massachusetts Institute of Technology (MIT) with the MIT-GCM
� Duke University, Earth System Science Interdisciplinary Center (ESSIC, Univer-

sity of Maryland) with the OLAM (Ocean-Land-Atmosphere Model)
� German Weather Service (DWD) with GME2 (Global Model for Europe)

1 The National Center for Atmospheric Research is sponsored by the National Science Foundation.
2 Before the GME became operational, GME was an acronym for Global Model ‘Ersatz’ (which
means ‘replacement’ in German) as the GME was a replacement for the spectral transform Global
Model (GM).
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� NASA GSFC joint with Geophysical Fluid Dynamics Laboratory (GFDL) run
by National Oceanic and Atmospheric Administration (NOAA) with the GEOS5
(Goddard Earth Observing System model version 5)

� Joint Center for Earth Systems Technology (University of Maryland) with the
GEF (Global Eta Framework) model

Some groups participated with several model versions.
A total of six test cases with several variants were used. Two of the test cases

are described in Jablonowski and Williamson (2006, Quarterly Journal of the Royal
Meteorological Society) and Lauritzen et al. (2010, Journal of Advances in Mod-
eling Earth Systems), and the remaining four in Jablonowski et al. (submitted,
Geoscientific Model Development). These papers also show results from the model
simulations.

Fig. 1 NCAR ASP 2008 summer colloquium group picture behind NCAR’s Mesa Laboratory.
From left to right (in order of increasing x-coordinate if photo was overlaid by a Cartesian
coordinate system): Svetlana Dubinkina, Oksana Guba, Mark A. Taylor, Peter Hjort Lauritzen,
Ramachandran D. Nair, Paul Ullrich, Dale Durran, Christiane Jablonowski, Jin-Young Kim,
Richard Rood, Jasper Kok, Jung-Eun Kim, Todd Ringler, Lucas Harris, Matthew Long, Detlev
Majewski, Hajoon Song, Dustin Williams, Sean Crowell, Junsu Kim, Jairo Gomes, Jochen Först-
ner, Aneesh Subramanian, Atul Kapur, David Devlin, Willian Sawyer, Verica Savic-Jovcic, Alberto
Casado, Angela Marie Zalucha, Robert Walko, Marcia DeLonge, Matthew Norman, Guan Song,
Qiang Deng, Colm Clancy, Almut Gassmann, Lin Su, Priscilla Mooney, Lee Murray, Jared
Pierce Whitehead, Joakim R. Nielsen, Benjamin Kravitz, Ole-Kristian Kvissel, Lantao Sun, Brian
Sørensen, Ayoe Buus Hansen, Cheng Zhou, Prabhakar Shrestha, Allan Christensen. Photo courtesy
of Kathleen Barney (ASP)
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About This Book

The chapters in this book collectively address almost every step in the development
of dynamical cores for global atmospheric models. The 16 chapters have been
divided into three parts: (1) equations of motion and basic ideas on discretizations,
(2) conservation laws and traditional finite-volume as well as emerging numeri-
cal methods, and (3) practical considerations for dynamical cores in weather and
climate models.

In the first chapter, Prof. J. Thuburn gives an introduction to the equations of
motion for the atmosphere and commonly applied assumptions that are used to ren-
der the equations numerically more tractable and/or understand the types of waves
supported by the equations of motion. Also the multiscale nature of atmospheric
dynamics is introduced. Dr. J. Tribbia continues the theoretical discussion on the
three-dimensional equations of motion through a mode decomposition analysis.
In Chaps. 3 and 4, we leave the continuous equations behind and start exploring
the properties of some basic horizontal and vertical numerical discretizations, and
discuss the consequences of colocating and staggering prognostic variables. There-
after some basic ideas on time-discretizations are introduced in Chap. 5 followed
by a discussion on how to control fast waves through appropriate time-differencing
(Chap. 6). The latter two chapters were written by Prof. D. R. Durran and conclude
part I of this book.

In part II, Dr. T. D. Ringler discusses in detail the finite-volume advection of
momentum and its relationship with other kinematic relationships such as conserva-
tion of vorticity (Chap. 7). Momentum advection is a key to the overall accuracy of
any dynamical core as it determines the transport of mass and tracers. Chapter 8
focuses on transport, in particular finite-volume transport schemes, and reviews
them from a semi-Lagrangian perspective. It presents an in-depth discussion on
desirable properties for transport operators intended for global atmospheric mod-
els (Dr. P. H. Lauritzen). While most global models today use the spectral transform
method or the finite-volume method, emerging new algorithms that are local but
posses spectral convergence properties are at the time of writing being tested and
integrated into atmospheric models. Such methods are being reviewed in Chap. 9
by Dr. R. D. Nair. To conclude part II, Prof. L. Ju gives an introduction to Voronoi
diagrams that may be used to construct global spherical meshes with very flexible
options for variable resolution.

After the discussion of the continuous equations of motion and basic discretiza-
tion techniques in part I and the discussion of some classes of numerical schemes
and spherical meshes in part II, we turn our attention to the properties of the dynam-
ical core that are considered important in global atmospheric models (part III).
Prof. J. Thuburn discusses conservation issues in Chap. 11 followed by a discus-
sion on how to enforce key integral invariants numerically on unstructured grids
(Dr. M. A. Taylor’s Chap. 12). Almost all models need some level of filtering
or damping to render the computed solutions physically realizable and smooth.
Although these are rarely documented in the literature, they are paramount in model
applications. Prof. C. Jablonowski reviews the pros and cons of these diffusion
mechanisms, filters, and fixers in Chap. 13 and provides many illustrating examples
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from GCM runs. Continuing the filtering discussion, Dr. W. C. Skamarock focuses
on the kinetic energy spectra in atmospheric models and how the tail of such spectra
is influenced by discretization techniques and filtering. In Chap. 15 Prof. R. B. Rood
gives a perspective on the dynamical core and its place in full model systems
that include parameterizations of sub-grid-scale processes, data-assimilation, sur-
face models, and others. Finally, Dr. J. M. Dennis discusses the many challenges
in designing and implementing models for massively parallel supercomputers with
concrete examples from NCAR’s Coupled Climate System Model (CCSM).

The complex topic of dynamical cores, which includes choices between hundreds
of numerical methods and half a dozen spherical grids as well as variable staggering
options, offers an endless set of combinations and choices. Exploring all options
is simply not feasible, and it is therefore necessary to make intelligent selections
among the many choices. In the research community, there is, however, no consen-
sus regarding a particular numerical method or spherical grid being superior for all
applications (or even for a single application). The careful reader will find such dif-
ferences among some chapters in this book, as different authors advocate particular
approaches. It is deliberate that such diversity, which was discussed intensively dur-
ing the 2008 ASP colloquium, is represented in this book as it depicts state-of-the-art
knowledge in the field of dynamical cores. Despite this lack of collective agree-
ment on numerical methods and grids, there seems to be broad consensus regarding
dynamical core properties such as conservation, consistency, scalability, accuracy,
energy spectra, and capabilities. In other words, the goal seems clear, but the opti-
mal avenue to get there remains an open research question. We hope this book can
contribute to this quest and enlighten the interested reader in the many deliberations
that are an integral part of dynamical core development.

Acknowledgments

We thank the authors and coauthors of the chapters who generously agreed not only
to participate in the colloquium but also to write-up their lectures for this book.
All chapters have undergone a peer-review process and the comments by the many
anonymous reviewers are gratefully acknowledged. This book would not have been
written without the encouragement of Dr. Martin Peters at Springer-Verlag, and the
generous funding and support provided by NCAR’s Advanced Study Program lead
by Dr. Maura Hagan and her team (Ms Paula Fisher, Mr Scott Briggs, Ms Kathleen
Barney). Computing time and support was generously provided by NCAR’s Com-
putational and Information Systems Laboratory. Partial funding for the colloquium
was also provided by NASA, the U.S. Department of Energy and the University of
Michigan, Ann Arbor.

Boulder Peter H. Lauritzen
December, 2010 Christiane Jablonowski

Mark A. Taylor
Ramachandran D. Nair



•



Contents

Part I Equations of Motion and Basic Ideas on Discretizations

1 Some Basic Dynamics Relevant to the Design
of Atmospheric Model Dynamical Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
John Thuburn

2 Waves, Hyperbolicity and Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Joseph Tribbia and Roger Temam

3 Horizontal Discretizations: Some Basic Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
John Thuburn

4 Vertical Discretizations: Some Basic Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
John Thuburn

5 Time Discretization: Some Basic Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Dale R. Durran

6 Stabilizing Fast Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
Dale R. Durran

Part II Conservation Laws, Finite-Volume Methods, Remapping
Techniques and Spherical Grids

7 Momentum, Vorticity and Transport: Considerations
in the Design of a Finite-Volume Dynamical Core . . . . . . . . . . . . . . . . . . . . . . . .143
Todd D. Ringler

8 Atmospheric Transport Schemes: Desirable Properties
and a Semi-Lagrangian View on Finite-Volume
Discretizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185
Peter H. Lauritzen, Paul A. Ullrich, and Ramachandran
D. Nair

xiii



xiv Contents

9 Emerging Numerical Methods for Atmospheric Modeling . . . . . . . . . . . . . .251
Ramachandran D. Nair, Michael N. Levy,
and Peter H. Lauritzen

10 Voronoi Tessellations and Their Application to Climate
and Global Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313
Lili Ju, Todd Ringler, and Max Gunzburger

Part III Practical Considerations for Dynamical Cores
in Weather and Climate Models

11 Conservation in Dynamical Cores: What, How and Why? . . . . . . . . . . . . . .345
John Thuburn

12 Conservation of Mass and Energy for the Moist
Atmospheric Primitive Equations on Unstructured Grids . . . . . . . . . . . . . . .357
Mark A. Taylor

13 The Pros and Cons of Diffusion, Filters and Fixers
in Atmospheric General Circulation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .381
Christiane Jablonowski and David L. Williamson

14 Kinetic Energy Spectra and Model Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .495
William C. Skamarock

15 A Perspective on the Role of the Dynamical Core
in the Development of Weather and Climate Models . . . . . . . . . . . . . . . . . . . . .513
Richard B. Rood

16 Refactoring Scientific Applications for Massive
Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .539
John M. Dennis and Richard D. Loft



Contributors

John Thuburn School of Engineering, Computing and Mathematics, University
of Exeter, North Park Road, Exeter, EX4 4QF, UK, j.thuburn@ex.ac.uk

Joseph Tribbia National Center for Atmospheric Research, 1850 Table Mesa
Drive, Boulder, CO 80305, USA, tribbia@ucar.edu

Roger Temam Institute for Scientific Computing and Applied Mathematics,
Indiana University, Rawles Hall, Bloomington, IN 47405-5701, USA,
temam@indiana.edu

Dale R. Durran Department of Atmospheric Sciences, Box 351640, University of
Washington, Seattle, WA, 98195, USA, durrand@atmos.washington.edu

Todd Ringler T-3 Fluid Dynamics Group, Theoretical Division, Los Alamos
National Laboratory, Los Alamos, NM 87545, USA, ringler@lanl.gov

Peter H. Lauritzen National Center for Atmospheric Research, 1850 Table Mesa
Drive, Boulder, CO 80305, USA, pel@ucar.edu

Paul A. Ullrich University of Michigan, 2455 Hayward St., Ann Arbor, MI
48109, USA, paullric@umich.edu

Ramachandran D. Nair National Center for Atmospheric Research, 1850 Table
Mesa Drive, Boulder, CO 80305, USA, rnair@ucar.edu

Mike N. Levy Sandia National Laboratory, Albuquerque, NM 87185, USA,
mnlevy@sandia.gov

Lili Ju Department of Mathematics, University of South Carolina, Columbia, SC
29208, USA, ju@math.sc.edu

Max Gunzburger Department of Scientic Computing, Florida State University,
Tallahassee, FL 32306, USA, gunzburger@fsu.edu

Mark A. Taylor Sandia National Laboratories, Albuquerque, NM 87185, USA,
mataylo@sandia.gov

Christiane Jablonowski University of Michigan, 2455 Hayward St., Ann Arbor,
MI 48109, USA, cjablono@umich.edu

xv

j.thuburn@ex.ac.uk
tribbia@ucar.edu
temam@indiana.edu
durrand@atmos.washington.edu
ringler@lanl.gov
pel@ucar.edu
paullric@umich.edu
rnair@ucar.edu
mnlevy@sandia.gov
ju@math.sc.edu
gunzburger@fsu.edu
mataylo@sandia.gov
cjablono@umich.edu


xvi Contributors

David L. Williamson National Center for Atmospheric Research, 1850 Table
Mesa Drive, Boulder, CO 80305, USA, wmson@ucar.edu

William C. Skamarock National Center for Atmospheric Research, 3450
Mitchell Lane, Boulder, CO 80307, USA, skamaroc@ucar.edu

Richard B. Rood University of Michigan, 2455 Hayward St., Ann Arbor, MI
48109, USA, rbrood@umich.edu

John M. Dennis Computational & Information Systems Laboratory, National
Center for Atmospheric Research, 1850 Table Mesa Drive, Boulder, CO 80305,
USA, dennis@ucar.edu

Richard D. Loft Computational & Information Systems Laboratory, National
Center for Atmospheric Research, 1850 Table Mesa Drive, Boulder, CO 80305,
USA, loft@ucar.edu

wmson@ucar.edu
skamaroc@ucar.edu
rbrood@umich.edu
dennis@ucar.edu
loft@ucar.edu


Part I
Equations of Motion and Basic Ideas
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Chapter 1
Some Basic Dynamics Relevant to the Design
of Atmospheric Model Dynamical Cores

John Thuburn

Abstract The dynamics of the global atmosphere is highly complex and multiscale.
In this chapter a few aspects are discussed that are considered especially important
for the design of numerical models of the atmosphere. Commonly used approxima-
tions to the governing equations are discussed. The dynamics of fast acoustic and
inertio-gravity waves is briefly explained along with their role in maintaining the
atmosphere close to hydrostatic and geostrophic balance. The balanced dynamics
is exemplified through quasigeostrophic theory, which embodies the key ideas of
advection and invertibility of potential vorticity. Finally, some important effects of
nonlinearity are discussed, in particular the interaction between different scales and
the transfer of energy and potential enstrophy across scales.

1.1 Introduction

Geophysical Fluid Dynamics is a huge and complex subject, and we can barely
scratch the surface of it in this pair of introductory lectures. Therefore, I have tried
to pick out a set of topics that are most relevant to the design of atmospheric model
dynamical cores. There are several excellent introductory and graduate level text-
books that cover these topics and many more in greater depth (e.g., Gill 1982;
Pedlosky 1987; Salmon 1998; Holton 2004; Vallis 2006).

On large scales, the dynamics of the atmosphere is approximately balanced, and
it is important for numerical solutions to be approximately balanced in the same
sense. In this lecture we will discuss the nature of this balance, and the linear
dynamics of the fast acoustic and inertio-gravity waves responsible for the adjust-
ment towards balance. We will also discuss the quasigeostrophic equations, which
approximately describe the slow, balanced dynamics, and the Rossby waves that

J. Thuburn
School of Engineering, Computing and Mathematics, University of Exeter, North Park Road,
Exeter, EX4 4QF, UK
e-mail: j.thuburn@ex.ac.uk

P.H. Lauritzen et al. (eds.), Numerical Techniques for Global Atmospheric Models,
Lecture Notes in Computational Science and Engineering 80,
DOI 10.1007/978-3-642-11640-7_1, c� Springer-Verlag Berlin Heidelberg 2011
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j.thuburn@ex.ac.uk


4 J. Thuburn

these equations support. Some aspects of atmospheric dynamics are strongly nonlin-
ear, and numerical models must handle various nonlinear processes in a satisfactory
way. In this context we will mention Eulerian and Lagrangian timescales for atmo-
spheric dynamics, conservation properties, and turbulent cascades. Conservation
properties and turbulent cascades will be discussed again in Chap. 11. We begin
here by emphasizing the complex and multiscale nature of atmospheric dynamics.

1.2 The Multiscale Nature of Atmospheric Dynamics

Figure 1.1 indicates schematically the time scales and horizontal spatial scales of a
range of atmospheric phenomena. On the largest spatial scales (comparable to the
Earth’s radius) and seasonal timescales are large scale circulations such as that asso-
ciated with the Asian summer monsoon. Undulations in the jet stream and pressure
patterns associated with the largest scale Rossby waves (called planetary waves)
also have length scales of order 104 km. Cyclones and anticyclones have length
scales of a few thousand kilometers and timescales of order 10 days. The transi-
tion zones between relatively warm and cool air masses can collapse in scale to
form fronts with widths a few tens of kilometers. Convection can be organized on a
huge range of different scales, from the tropical intraseasonal oscillation on scales
of thousands of kilometers and a timescale of months, through supercell complexes
and squall lines of order 10 km across with lifetimes of several hours, down to indi-
vidual small cumulus clouds on scales of a few hundred meters and a few minutes.
These small cumulus clouds are formed when the turbulent eddies in the boundary
layer lift and cool air far enough for condensation to occur. The boundary layer is
the lowest few hundred meters of the atmosphere, where the dynamics is dominated
by turbulent transports. The turbulent eddies range in scale from a few hundred
meters (the boundary layer depth) down to the millimeter scale at which molecular
diffusion becomes significant.

Fig. 1.1 Schematic showing
the range of time and
horizontal scales of different
atmospheric phenomena
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The atmospheric spectrum of horizontal kinetic energy is observed to have a
slope very close to k�3 on large scales and k�5=3 on small scales, where k is the
horizontal wavenumber, with a gradual transition between the two at scales of a few
hundred kilometers (Nastrom and Gage 1985). The dashed line in Fig. 1.1 is con-
sistent with this observed spectrum, re-expressed in terms of length and time scales.
The dynamically important phenomena mentioned above are those that dominate
the atmospheric energy spectrum, and all lie close to this dashed line. Molecular
diffusion, in contrast, is only significant to the left of the continuous line; thus it
is completely negligible for atmospheric dynamics until we reach scales of order
1mm (see Chap. 2).

All of the phenomena along the dashed line in Fig. 1.1 are important for weather
and climate, and so need to be represented in numerical models. Important phe-
nomena occur at all scales – there is no significant spectral gap. Moreover, there are
strong interactions between the phenomena at different scales, and these interactions
need to be represented. However, computer resources are finite and so numerical
models must have a finite resolution. The shaded region in the figure shows the
resolved space and time scales in a typical current day climate model. The important
unresolved processes cannot be neglected and so must be represented by sub-grid
models or parameterizations. The lack of any spectral gap makes this task more
challenging. The emphasis in this series of lectures is on how we model the resolved
dynamics; however, it should be borne in mind that equally important is how we
represent the unresolved processes, and how we represent the interactions between
resolved and unresolved processes. There are significant research challenges in all
three areas.

Also shown in Fig. 1.1 are two dotted curves. These correspond to the disper-
sion relations for internal inertio-gravity waves and internal acoustic waves (see
Sect. 1.4). The fact that the dotted lines lie significantly below the energetically
dominant processes on the dashed line indicate that inertio-gravity waves and
acoustic waves are relatively fast processes. One consequence of this is that inertio-
gravity waves and acoustic waves are energetically weak compared to the dominant
processes along the dashed curve. The fact that these waves are fast puts strong con-
straints on the size of timestep that can be used in numerical models with explicit
time schemes. At the same time, the fact that they are energetically weak means
that we do relatively little damage if we distort their propagation by using a semi-
implicit time scheme in order to avoid the timestep restriction. See Chaps. 5 and 6
for a detailed discussion.

1.3 Governing Equations

The governing equations for a compressible fluid in a frame of reference rotating
with angular velocity ˝ may be written in the form

@�

@t
Cr � .�u/ D 0; (1.1)
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D�

Dt
D Q; (1.2)

Du
Dt
C 2˝ � u D �1

�
rp � r˚ C F: (1.3)

Here, � is the fluid density, u is the fluid velocity vector, � is the potential tem-
perature, p is pressure, and ˚ is the geopotential. D=Dt represents the derivative
following a fluid parcel.Q is the diabatic source term for potential temperature and
F represents any forces not already accounted for, for example molecular viscosity.

Equation (1.1) describes conservation of mass of the fluid. For simplicity, here we
restrict attention to a single phase fluid of fixed composition. The real atmosphere
contains varying amounts of water vapor and condensed water, and this complicates
the governing equations.

Equation (1.2) is one form of the thermodynamic equation; � is related to the
other thermodynamic variables through

� D T
�
p0

p

��
; (1.4)

(T is temperature, p0 is a constant reference pressure, often taken to be 105 Pa,
� D R=Cp where R is the gas constant for dry air and Cp is the specify heat
capacity at constant pressure), along with the equation of state for an ideal gas

p D RT�: (1.5)

In adiabatic flow the source term Q vanishes, so that the � of an air parcel is con-
served. If an air parcel of potential temperature � were moved adiabatically from
its current pressure p to the reference pressure p0 its final temperature would be
T D � . The potential temperature is closely related to the specific entropy �:

� D Cp ln � C const: (1.6)

Equation (1.3) is the momentum equation; it expresses Newton’s second law of
motion for a fluid. Because we are in a rotating frame, two new terms with the
appearance of ‘virtual’ forces enter the equation of motion. One is the Coriolis term
2˝�u. The other is the centrifugal term ˝�.˝�u/. However, the centrifugal term
may be written as the gradient of a certain potential; this potential is then combined
with the gravitational potential to obtain the geopotential ˚ . The centrifugal term,
therefore, does not appear explicitly.

For the flow regime of the Earth’s atmosphere, rotation is extremely important.
On synoptic scales, the Coriolis term is one of the dominant terms in the horizontal
components of the momentum equation. Along with stratification effects, rotation
gives atmospheric flow a distinctive character that is qualitatively quite different
from other flows.
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1.3.1 Approximate Equation Sets

Almost no approximations were made in writing (1.1)–(1.5). However, it is often
desirable to work with approximate versions of the governing equations. These may
be conceptually simpler, for example by filtering out certain kinds of motion; they
may be analytically more tractable; or they may be easier to solve numerically, for
example by removing certain terms or types of motion that are difficult to handle
numerically.

Some of the most common approximations are the following (e.g., Durran 1999;
Gill 1982; White 2002; White et al. 2005, 2008 and references therein).

� Spherical geoid. It is common to approximate the geopotential ˚ as a function
only of r , the distance from the centre of the Earth. As a result the effective
gravity r˚ acts only in the vertical component of the momentum equation in the
usual spherical coordinate system. This is a good approximation for the Earth’s
atmosphere, where the true gravitational acceleration is much stronger than the
centrifugal acceleration. But it would not be a good approximation for Jupiter,
for example.

� Quasi-hydrostatic approximation. This involves neglecting the acceleration term
Dw=Dt in the vertical component of the momentum equation. This is a good
approximation on horizontal scales greater than about 10 km.

� Anelastic approximation. There are several flavours of anelastic or pseudo-
incompressible approximation. They involve neglecting the elasticity of the fluid
by approximating the mass continuity equation as something like

r � .�0u/ D 0; (1.7)

where �0 is a reference density profile that depends only on height ´. The anelas-
tic approximation is a good approximation on horizontal scales smaller than
about 10 km.

� Shallow atmosphere approximation. This is a collection of several approxima-
tions, but they must all be made together so that the resulting approximate
equations retain conservation laws for energy and angular momentum. The Cori-
olis terms involving the horizontal components of ˝ are neglected; factors of
1=r in the spherical coordinate component form of the equations are replaced
by 1=a where a is a constant equal to the Earth’s mean radius; and certain other
‘metric’ terms are neglected.

It is often considered desirable for numerical models to use equation sets that
do not support acoustic modes. The high frequency of acoustic modes would make
it expensive or complicated to retain them in the numerical solution; on the other
hand, because they are energetically very weak we lose little by leaving them out.
The anelastic equations do not support acoustic modes. The hydrostatic equations do
not support internal acoustic modes, only horizontally propagating external acoustic
modes which, because of the anisotropic grids used in global atmospheric models,
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impose less of a restriction on the time step. Many past and present climate mod-
els make the hydrostatic and shallow atmosphere approximations (leading to the
so-called hydrostatic primitive equations). Many models of small-scale dynamics
use some form of anelastic equations. Unfortunately neither the hydrostatic nor
the anelastic approximation is valid on all horizontal scales. Consequently, sev-
eral recently developed atmospheric models, designed to work from global scales
down to kilometer scales, use the fully compressible equations. (Very recently,
some progress has been made towards acoustically filtered equation sets valid on
all horizontal scales: Durran 2008; Arakawa and Konor 2009).

The different approximate equation sets can be arranged systematically into a
hierarchy. Figure 1.2 shows part of that hierarchy. Some of these approximate
equation sets have been discussed already above. The quasigeostrophic, plane-
tary geostrophic, and semi-geostrophic equation sets filter inertio-gravity waves as
well as acoustic waves. The quasigeostrophic equations will be introduced briefly

Quasigeostrophic
equations Planetary

geostrophic

Spherical
geoid

Compressible
Euler
equations

Quasi−
hydrostatic

Shallow
atmosphere

Hydrostatic
shallow
atmosphere

Anelastic

Boussinesq

Quasigeostrophic
shallow water
equations

Barotropic
vorticity
equation

Semi−
geostrophic

Shallow
water
equations

Fig. 1.2 Part of the hierarchy of frequently used approximate equation sets for atmospheric
dynamics
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in Sect. 1.6. The shallow water equations, their quasigeostropic version, and the
barotropic vorticity equation all describe a single-layer two-dimensional fluid. They
are too inaccurate for weather forecasting or climate modeling, but they are still used
for idealized studies and are useful for testing numerical algorithms before apply-
ing them to more complete equation sets (Williamson et al. 1992). White (2002)
presents a thorough and readable survey of various approximate equation sets used
for atmospheric modeling.

1.4 Fast Waves

We noted in Sect. 1.1 that the fast acoustic and inertio-gravity waves are observed to
be energetically weak. It might be tempting to think that it is therefore not necessary
to treat these fast waves accurately in atmospheric model dynamical cores. However,
the weakness of these fast waves corresponds to certain kinds of approximate bal-
ance between other terms in the governing equations, discussed more in Sect. 1.5
below. This balance is a leading order feature of atmospheric dynamics and it is
essential to capture it accurately in numerical models. The atmosphere is continually
being perturbed away from balance by a variety of mechanisms, including flow over
orography, convective instability, and the nonlinear nature of the balanced dynam-
ics. The mechanism by which the atmosphere adjusts back towards balance involves
the radiation and ultimate dissipation of the fast acoustic and inertio-gravity waves.
Thus, an accurate representation of balance in numerical models requires a causally
correct representation of the adjustment mechanism involving the fast waves. In
practice this means that some artificial slowing of the fast waves, for example by
a semi-implicit time scheme, is usually considered acceptable provided the group
velocity – see below – retains the correct sign. With this motivation in mind, we
will now look at the dynamics of acoustic waves and inertio-gravity waves. For this
purpose we will use the simplest equation sets that contain the essential dynamical
ingredients.

1.4.1 Acoustic Waves

Consider a compressible fluid, but neglect rotation effects, gravity, and non-
conservative processes. The mass and momentum equations may be written as

D�

Dt
D
�
@�

@p

�
�

Dp

Dt
C
�
@�

@�

�
�

D�

Dt
D ��r � u D 0; (1.8)

Du
Dt
D �1

�
rp: (1.9)
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Now linearize these equations about a reference state at rest with constant density
�0 and temperature T0, noting that D�=Dt D 0, to obtain

1

c2
@p

@t
D ��0r � u; (1.10)

@u
@t
D � 1

�0
rp; (1.11)

where c2 D @p=@�j� D RT0=.1 � �/ and � and p are now perturbations from the
reference state. Hence u may be eliminated to leave a wave equation for p:

@2p

@t2
� c2r2p D 0: (1.12)

Equation (1.12) has solutions

p / expfi.k � x � !t/g; (1.13)

where x is the position vector and where the frequency! is related to the wavenum-
ber k by the dispersion relation

!2 D c2jkj2: (1.14)

Thus acoustic waves all propagate at speed c, independent of the wave vector; they
are said to be non-dispersive. Typical values of c are around 315–350 ms�1.

Acoustic waves are longitudinal, that is, velocity perturbations are parallel to
the wave vector k. The physical mechanism for acoustic waves involves the inter-
action of compressibility and flow divergence: convergence of fluid locally leads
to an increase in density and hence pressure; the resulting pressure gradient then
drives fluid acceleration leading to new convergence displaced from the original
convergence.

1.4.2 Inertio-Gravity Waves

To simplify the governing equations we will make the Boussinesq approxima-
tion: assume the fluid to be incompressible and neglect variations in density from
its reference value �0 except where they appear in a buoyancy term, i.e., multi-
plied by the gravitational acceleration g. We will also neglect the Coriolis terms
involving the horizontal component of ˝ (one element of the shallow atmo-
sphere approximation), and work in Cartesian coordinates. The governing equations
become

Du

Dt
� fv D � 1

�0

@p

@x
; (1.15)
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Dv

Dt
C fu D � 1

�0

@p

@y
; (1.16)

Dw

Dt
D � 1

�0

@p

@´
C b; (1.17)

@u

@x
C @v

@y
C @w

@´
D 0; (1.18)

Db

Dt
C wN 2 D 0; (1.19)

where

b D �g� � �
�0

(1.20)

and

N 2 D � g
�0

d�

d´
: (1.21)

Here f D 2j˝j sin� at latitude �; f is called the Coriolis parameter. We are
interested in motions on scales much smaller than the Earth’s radius so we can take
f to be a constant. There are two reference densities: �0 is a constant while � is a
function only of ´.N 2 is called the buoyancy frequency or Brunt-Väisälä frequency.

Now linearize these equations about a hydrostatically balanced state of rest.
(Hydrostatic balance means that the reference buoyancy and vertical pressure gra-
dient terms exactly cancel implying no vertical acceleration; see Sect. 1.5 below.)

@u

@t
� fv D � 1

�0

@p

@x
; (1.22)

@v

@t
C fu D � 1

�0

@p

@y
; (1.23)

@w

@t
D � 1

�0

@p

@´
C b; (1.24)

@u

@x
C @v

@y
C @w

@´
D 0; (1.25)

@b

@t
C wN 2 D 0: (1.26)

Because these equations are linear and have constant coefficients they will have
solutions in which all variables are proportional to expfi.kx C ly Cm´ � !t/g D
expfi.k � x � !t/g. Substituting a solution of this form allows us to replace all
derivatives by algebraic factors. Then, systematically eliminating the velocity and
thermodynamic variables leads to the inertio-gravity wave dispersion relation

!2 D .k2 C l2/N 2 Cm2f 2
k2 C l2 Cm2 : (1.27)
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Inertio-gravity waves are transverse waves: the velocity is perpendicular to the
wave vector (which can be seen by considering (1.25)). Two interesting limiting
cases are that of very deep waves m2=.k2C l2/� 1, for which !2 � N 2, and that
of very shallow waves .k2C l2/=m2 � 1, for which !2 � f 2. More generally, !2

lies between f 2 and N 2.
There are two basic physical mechanisms underlying inertio-gravity waves. At

the inertial end of the spectrum, i.e., shallow waves, an air parcel displaced from its
equilibrium position experiences a restoring force provided by the Coriolis effect. At
the gravity wave end of the spectrum, i.e., deep waves, an air parcel displaced from
its equilibrium position has a density different from that of the reference profile at
that height and so experiences a restoring force due to buoyancy, i.e., the imbalance
between the gravitational force on the parcel and the vertical pressure gradient force.
In intermediate parts of the spectrum both mechanisms operate to some degree.

1.4.3 Phase Velocity and Group Velocity

Two quantities are often used to describe the propagation of a wave or of a wave
packet: the phase velocity and the group velocity. The phase velocity cp is the veloc-
ity at which wave crests and troughs propagate. Suppose a wave has a structure
proportional to ei�.x;t/, where

� D k � x� !.k/t I (1.28)

� is called the phase. The phase velocity is therefore the velocity at which surfaces
of constant � move. So let

� D k � x � !t D k � .x � cpt/: (1.29)

This relation is not enough to uniquely determine cp, but if we also demand that cp
be parallel to k (the most natural choice), then

cp D !k
jkj2 : (1.30)

(However, the reader should be warned that cp does not behave like a standard
velocity vector, for example under transformation to a moving frame of reference.)

The group velocity is the velocity at which a packet or group of waves of approx-
imately the same frequency propagates. It is, therefore, the velocity at which waves
of that frequency transport energy. One of the simplest derivations of the mathemati-
cal expression for group velocity is the following. Consider a one-dimensional wave
field ˚ that is a superposition of waves at two nearby frequencies and wavenumbers
(both of which satisfy the dispersion relation):
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Fig. 1.3 Schematic showing the formation of wave packets from the superposition of two waves
of similar wavenumber, given by the real part of (1.31)

˚ D 1

2

�
eiŒ.kCık/x�.!Cı!/t� C eiŒ.k�ık/x�.!�ı!/t�

�

D cos.ıkx � ı!t/ei.kx�!t/I (1.31)

see Fig. 1.3. The field ˚ consists of a series of wave packets. The individual wave
crests and troughs, described by the ei.kx�!t/ factor, propagate at the phase speed
!=k. The wave packets, whose envelope is defined by the cos.ık x � ı! t/ factor,
propagate at group velocity cg D ı!=ık. Taking the limit as ık and ı! tend to
zero, we have

cg D d!

dk
: (1.32)

The generalization to three dimensions is

cg D rk! D
�
@!

@k
;
@!

@l
;
@!

@m

�
; (1.33)

where .k; l;m/ are the components of the wave vector k.
Both the phase velocity and the group velocity can be computed from the

dispersion relation. For acoustic waves, from (1.14) we find

cp D cg D ˙c k
jkj : (1.34)

Acoustic waves are unusual in that they are non-dispersive (their phase speed
is independent of the magnitude of the wave vector) and their phase and group
velocities are equal.

For inertio-gravity waves, (1.27) implies

cp D !

jkj2 .k; l;m/ (1.35)

and

cg D N 2 � f 2
!jkj4

�
km2; lm2;�m.k2 C l2/� : (1.36)

Among other things, these results show that the vertical components of the phase
and group velocities have opposite sign (provided N 2 > f 2, which is usually the
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Fig. 1.4 Vertical slice
showing the displacement of
material lines in the presence
of a packet of inertio-gravity
waves. The wave crests and
troughs are oriented top-left
to bottom-right. The
individual crests and troughs
move towards the bottom left
at the phase velocity, while
the packet as a whole moves
towards the top left at the
group velocity
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case), and that cp:cg D 0, i.e., group velocity is perpendicular to phase velocity.
See Fig. 1.4.

An important measure of the accuracy of any numerical method is how well
it captures the phase velocity and group velocity of different kinds of waves. We
will look at dispersion relations and phase and group velocity for some example
numerical schemes in Chaps. 3 and 4.

1.5 Balance

Atmospheric dynamics is characterized by being close to certain kinds of balance, at
least on large enough horizontal scales, namely hydrostatic balance in the vertical,
and geostrophic balance in the horizontal.

1.5.1 Hydrostatic Balance

Table 1.1 (closely following Holton 2004) shows typical scalings and typical values
for the terms in the vertical momentum equation written in spherical polar coordi-
nates for mid-latitude synoptic scale motions. Here L and H are typical horizontal
and vertical length scales, U and W are typical horizontal and vertical velocity
scales, a is the Earth’s radius, f0 is a typical value of the Coriolis parameter, and
P0 is a typical pressure value. It is clear that the dominant terms in the vertical
momentum equation are

g C 1

�

@p

@r
� 0; (1.37)

i.e., hydrostatic balance.
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Table 1.1 Typical scales of terms in the vertical momentum equation for synoptic scale midlati-
tude flow

w-equation Dw
Dt

� u2Cv2

r
�2˝u cos � g 1

�

@p

@r

Scales UW=L U 2=a f0U g P0=�H

Values ms�2 10�7 10�5 10�3 10 10

Table 1.2 Typical scales of terms in the eastward and northward component momentum equations
for synoptic scale midlatitude flow

u-equation Du
Dt

� uv tan�
r

uw
r

�2˝v sin � 2˝w cos � 1
�r cos�

@p

@�

v-equation Dv
Dt

� u2 tan�
r

vw
r

2˝u sin � 1
�r

@p

@�

Scales U2=L U 2=a UW=a f0U f0W ıP=�L

Values ms�2 10�4 10�5 10�8 10�3 10�6 10�3

1.5.2 Geostrophic Balance

Table 1.2 (also closely following Holton 2004) shows typical scalings and typical
values for the terms in the horizontal momentum equation written in spherical polar
coordinates for mid-latitude synoptic scale motions. The same typical scales are
used as in Table 1.1, except that ıP is a typical horizontal variation in pressure, and
ıP � P0. Clearly the dominant terms are

u � � 1

f0�r

@p

@�
� ug ; v � 1

f0�r cos�

@p

@�
� vg ; (1.38)

i.e., geostrophic balance.
A useful dimensionless number that measures the relative importance of the

inertial term Du=Dt and the Coriolis term 2˝ � u is the Rossby number

Ro D U=.f0L/: (1.39)

Geostropic balance will be a good approximation providedRo� 1.

1.5.3 Conditions for Hydrostatic Balance to be a Good
Approximation

Hydrostatic balance is a good approximation on synoptic scales, but not necessarily
on smaller horizontal scales. We can employ scale analysis to determine the condi-
tions under which it will be a good approximation, i.e., under which we can neglect
Dw=Dt compared to the other terms in the vertical momentum equation.

First note that we can define a global horizontal mean density �m.r/ and a pres-
sure field pm.r/ in hydrostatic balance with it; these mean fields are dynamically
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uninteresting and we can subtract g�m C dpm=dr D 0 from the vertical momen-
tum equation. Thus, the vertical acceleration will be negligible compared with the
pressure gradient term provided

UW

L
� ıP

�H
: (1.40)

From the horizontal momentum equation

ıP

�
	 U 2 or f0LU; (1.41)

depending on whether the inertial term dominates (large Ro) or the Coriolis term
dominates (small Ro). So we require

WH

UL
� 1 or

WH

UL
Ro� 1: (1.42)

From the mass continuity equation we obtain a relationship between the velocity
scales and the length scales

W

U
	 H

L
or

W

U
	 H

L
Ro:

The first case arises when @w=@r is comparable to horizontal velocity gradients. The
second case arises when there is a strong cancellation between the two horizontal
components of the divergence. This happens when the Rossby number is small; the
horizontal flow is then approximately non-divergent, and the divergence and hence
@w=@r are smaller by a factor Ro than suggested by the most obvious scaling. See
Sect. 1.6.

Hence, hydrostatic balance will be a good approximation when

H 2

L2
� 1 or

H 2

L2
Ro2 � 1: (1.43)

In practice this means L greater than about 10 km (a typical H ); for smaller L the
Rossby number is typically not small, so the second criterion in (1.43) is no more
likely to be satisfied than the first.

1.5.4 Balance and Nonlocality

When the atmosphere is perturbed away from hydrostatic balance, it adjusts back
towards hydrostatic balance through the radiation and ultimately dissipation of
internal acoustic waves and inertio-gravity waves. Making the quasi-hydrostatic
approximation in the governing equations (i.e., crossing out the Dw=Dt term)
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corresponds to filtering internal acoustic waves from the governing equations (and
modifying the dynamics of inertio-gravity waves). More precisely, it corresponds to
taking the limit in which the propagation speed of internal acoustic waves becomes
infinite, so that the adjustment to hydrostatic balance is instantaneous. In the unap-
proximated equations all information propagates at finite speed; these are hyperbolic
equations. The hydrostatic approximation introduces a certain nonlocality. Mathe-
matically, this is reflected in the appearance of a one-dimensional boundary value
problem. For example, in height coordinates we must solve a one-dimensional
boundary value problem known as Richardson’s equation for the vertical velocity
(e.g., White 2002). If instead we use pressure as the vertical coordinate we must still
solve two vertical integrals in order to compute the time tendencies of the prognostic
fields.

Similar ideas apply in the case of geostrophic balance. The atmosphere adjusts
towards geostrophic balance (or a nonlinear generalization of geostrophic balance
such as gradient wind balance, e.g., Holton 2004) through the radiation and dissi-
pation of inertio-gravity waves. The quasi-geostrophic approximation (see the next
section) filters inertio-gravity waves from the governing equations, or, rather, cor-
responds to the limit in which inertio-gravity waves propagate infinitely fast so that
the geostrophic adjustment process is instantaneous. This nonlocality is reflected
mathematically in the appearance of a three-dimensional elliptic equation that must
be solved in order to compute the time tendency of the prognostic field, in this case
the potential vorticity.

Hydrostatic and geostrophic balance are physically relevant asymptotic limits of
the governing equations. Even if we are solving the unapproximated (i.e., hyper-
bolic) governing equations, balance and the implied nonlocality are important.
However, the solution of elliptic equations requires quite different numerical tech-
niques from the solution of hyperbolic equations, particularly on massively parallel
computers. Model developers therefore face an important choice between inher-
ently local explicit time stepping techniques and inherently nonlocal implicit time
stepping techniques.

1.6 Sketch of Quasigeostrophic Theory

A very brief sketch of quasigeostrophic theory is given here to lead up to a discus-
sion of the dynamics of Rossby waves. See any of Gill (1982), Pedlosky (1987),
Holton (2004), or Vallis (2006) for a fuller and more rigorous discussion.

We will work in Cartesian ˇ-plane geometry, where f D f0 C ˇy, f0 is a con-
stant mid-latitude value of the Coriolis parameter and ˇ D @f=@y , and use a
log-pressure vertical coordinate Q́ D �H� ln.p=p00/, where H� D RTref=g is a
constant density scale height related to a constant reference temperature Tref, and
p00 is a constant reference pressure. Now make four key assumptions:

� The flow is in hydrostatic balance. In terms of the geopotential ˚ , @˚=@ Q́ D
RT=H�.
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� Ro� 1 so that the flow is close to geostrophic balance.
� Thermodynamic quantities are close to reference profiles that are functions

only of Q́ . Reference profiles are indicated by subscript 0 and departures from
reference profiles by a0.

� ˇL=f0 � 1, i.e., fractional changes in the Coriolis parameter are small over the
horizontal scales of interest.

With these assumptions, the leading order terms in the horizontal momentum
equations simply state that the flow is close to geostrophic balance

u � ug � � 1
f0

@˚

@y
I v � vg � 1

f0

@˚

@x
: (1.44)

It is convenient to introduce the geostrophic stream function  D ˚ 0=f0, so that

ug D �@ 
@y
I vg D @ 

@x
I � 0

�ref
D f0

g

@ 

@ Q́ ; (1.45)

where �ref D Tref.p00=p/
� .

In order to say anything about the time evolution of the flow we need to go to
next order. So define the ageostrophic velocity ua, va by

u D ug C uaI v D vg C va: (1.46)

Then the next order terms in the momentum equations bring in the time derivatives
of ug and vg . The two component equations may be combined to give a vorticity
equation

Dg�g

Dt
D f0

�0

@

@ Q́ .�0 Qw/ : (1.47)

Here �g D f C @vg=@x � @ug=@y is the geostrophic approximation to the ver-
tical component of absolute vorticity, Qw D D Q́=Dt is the vertical velocity in the
log-pressure coordinate system, and �0 is a reference density profile. Dg=Dt �
@=@t C ug@=@x C vg@=@y is the derivative following the geostrophic flow. The
thermodynamic equation at the same order becomes

Dg�
0

Dt
C Qw@�0

@ Q́ D 0; (1.48)

and this may be combined with the vorticity equation to obtain the potential vorticity
equation

Dgq

Dt
D 0; (1.49)

where

q D f0 C ˇy Cr2Q́ C
1

�0

@

@ Q́
�
�0
f 20

N 2
ref

@ 

@ Q́
�
; (1.50)

with N 2
ref D .g=�ref/@�0=@ Q́ .
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The two equations (1.49) and (1.50), together with the diagnostic relations (1.45)
and suitable boundary conditions, represent a closed set of equations for the evolu-
tion of the flow. Equation (1.49) embodies the advection or material conservation
of potential vorticity. Equation (1.50) embodies the invertibility of potential vor-
ticity, the idea that if we are given the three dimensional distribution of potential
vorticity, along with suitable boundary conditions and the condition that the flow
be in hydrostatic and geostrophic balance, then we can infer everything else about
the wind and thermodynamic fields (e.g. Hoskins et al. 1985). Many phenomena
in geophysical fluid dynamics can be understood in terms of the twin properties of
advection and invertibility of potential vorticity. The potential benefits of respect-
ing material conservation of potential vorticity in numerical models are discussed
further in Chap. 11.

1.6.1 Rossby Waves

We can use quasigeostrophic theory, and the ideas of advection and invertibility of
potential vorticity, to understand the dynamics of Rossby waves. Linearize (1.49)
and (1.50) about a state of rest:

@q

@t
C ˇvg D 0I (1.51)

q D r2Q́ C
1

�0

@

@ Q́
�
�0
f 20

N 2
ref

@ 

@ Q́
�
: (1.52)

(q is now the potential vorticity perturbation.) Seek solutions

 D Re
n O . Q́/ exp Œi.kx C ly Cm Q́ � !t/	

o
(1.53)

that are wavelike in the horizontal and in time but may have a more complicated
vertical structure expressed through O . Q́/. By expressing (1.51) in terms of O and
eliminating O we obtain the dispersion relation

! D � ˇk

k2 C l2 C .m2 C 1=.4H 2
� //f

2
0 =N

2
ref

: (1.54)

Figure 1.5 shows schematically the horizontal propagation of a Rossby wave
packet. The background potential vorticity increases towards the North. The dis-
placement of the potential vorticity contours (which are material contours) indicates
how the potential vorticity has been advected by the wind field. The potential
vorticity anomalies in turn determine the wind field through invertibility: posi-
tive potential vorticity anomalies have cyclonic circulation while negative poten-
tial vorticity anomalies have anticyclonic circulation. The wind field then further
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Fig. 1.5 Schematic showing the propagation of a packet of Rossby waves in the longitude-latitude
plane. The contours indicate potential vorticity values; the arrows indicate the wind field

advects the potential vorticity. In this case it is clear that the wind field acts to dis-
place the pattern of potential vorticity crests and troughs towards the west, consistent
with the negative values of ! given by (1.54).

1.7 Eulerian and Lagrangian Timescales

The Eulerian view of fluid mechanics looks at the evolution of the fluid fields at
fixed locations in space as the fluid moves past. When a feature of length scale L or
wavenumber k is advected past at a velocity of scale U , the timescale for its rate of
change is


Eul 	 L

U
	 1

kU
: (1.55)

The Lagrangian view of fluid mechanics looks at the evolution of the fluid fields
following fluid parcels. Some quantities (�, say) are approximately materially con-
served (D�=Dt � 0), so they have long Lagrangian timescales. Other quantities,
like the pressure or vorticity, evolve on a timescale determined by the velocity
gradients or strain field S experienced by the fluid parcel


Lag 	 1

S
: (1.56)
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For the large-scale, balanced, atmospheric flow, the energy spectrum is relatively
steep, close to k�3, which implies that the strain field is dominated by the largest
scales (or smallest wavenumbers, say k0) of the flow


Lag 	 1

S
	 1

k0U
: (1.57)

Thus, the Lagrangian timescale for atmospheric flow is typically significantly
longer than the Eulerian timescale. This fact may be exploited through the use of
semi-Lagrangian time discretizations in atmospheric models; the slow Lagrangian
evolution can be captured more accurately (for a given time step) than the faster
Eulerian evolution. However, this disparity in timescales is less clear cut for smaller
scales of motion or when departures from balance (i.e., fast waves) become impor-
tant. Another important exception is flow over orography; in this case 
Eul becomes
very long, because the flow is quasi-steady from the Eulerian point of view, while


Lag 	 L

U
	 1

kU
; (1.58)

where L and k are now the length scale and wavenumber of the orography and the
flow perturbations it induces. In this case, semi-Lagrangian schemes, using the long
time steps permitted by a semi-implicit treatment of the fast waves, can suffer from
spurious orographic resonance (e.g., Rivest et al. 1994).

1.8 Turbulence and Cascades

The nonlinearity of the governing equations implies that there is an interaction
between different scales of motion. A numerical model must be able to handle
appropriately these nonlinear scale-interactions. In particular, even for an initially
smooth and well resolved initial condition, the dynamics will attempt to generate
variability near the grid scale, which may be poorly represented, and below the grid
scale, which cannot be resolved at all. In this section we will look at some ideal-
ized models of turbulence and the nonlinear scale interactions that they describe.
Space permits only the very briefest of introductions here; see, for example, Salmon
(1998) for an excellent fuller discussion.

1.8.1 Three Dimensional Turbulence

Consider three-dimensional, statistically steady, homogeneous and isotropic turbu-
lence in an incompressible constant density fluid. Assume that the fluid is stirred,
and energy is input, on some large scale, and that energy is dissipated by viscosity
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Fig. 1.6 Schematic
indicating the downscale
energy cascade in
three-dimensional turbulence
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at some small scale; there must therefore be a systematic transfer of energy from
the forcing scale to the dissipation scale. When this transfer occurs through a suc-
cession of gradually smaller eddies it is referred to as a cascade. Assume, also, that
there is some range of scales in between the forcing and dissipation scales – the
inertial range – that is statistically independent of the details of the forcing and
dissipation. The rate of energy production " must equal the rate of energy dissipa-
tion. Moreover, the rate of transfer of energy from wavenumbers smaller than k to
wavenumbers greater than k, for any k in the inertial range, must also equal ". See
Fig. 1.6.

The following dimensional argument (Kolmogorov 1941) then implies a partic-
ular form for the energy spectrum. The dimensions of the spectral energy density
OE.k/, i.e., the energy per unit wavenumber of the spectrum, are

h OE.k/i D L3T�2; (1.59)

where L stands for length and T stands for time. In the inertial range at wavenumber
k, the only dimensional quantities are k itself and ".

Œk	 D L�1 and Œ"	 D L2T�3; (1.60)

so the only way to construct a quantity with the same dimensions as OE.k/ is

OE.k/ D C1"2=3k�5=3 (1.61)

for some universal C1 of order 1.

1.8.2 Two-dimensional Turbulence

Now consider two-dimensional, statistically steady, homogeneous and isotropic tur-
bulence in an incompressible constant density fluid. In two dimensions we have
another conservable quantity, the enstrophy, and therefore a cascade of enstrophy at
a rate �.
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Fig. 1.7 Schematic
indicating the upscale energy
cascade and downscale
enstrophy cascade in
two-dimensional turbulence
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Typically energy now cascades upscale while enstrophy cascades downscale
(Fig. 1.7). The argument for the k�5=3 spectrum given above did not depend on
the number of space dimensions, nor on the direction of the energy cascade. We
therefore expect to see a k�5=3 spectrum on scales larger than the forcing scale,
provided there is a mechanism to provide a sink of energy at very large scales.

In the inertial range on the small-scale side of the forcing, again the dimensions
of OE.k/ are given by (1.59), but now the only dimensional quantities are

Œk	 D L�1 and Œ�	 D T�3: (1.62)

Hence, the only way to construct a quantity with the same dimensions as OE.k/ is

OE.k/ D C2�2=3k�3 (1.63)

for some universal C2 of order 1.

1.8.3 Energy Upscale, Enstrophy Downscale

The above arguments, based on statistically steady flow, suggest that, in two dimen-
sions, energy will cascade predominantly upscale while enstrophy will cascade
predominantly downscale. Another argument, leading to the same conclusion, is
given by considering an initial value problem.

Let E and Z be the total energy and enstrophy per unit area:

E D
Z
OE.k/ dk and Z D

Z
OZ.k/ dk: (1.64)

The enstrophy spectrum is related to the energy spectrum by OZ.k/ D k2 OE.k/. Sup-
pose energy is initially concentrated near wavenumber k1 and subsequently spreads
out, so that

d

dt

Z
.k � k1/2 OE.k/ dk > 0: (1.65)
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Expanding the integral and substituting from (1.64), and using the fact that E and
Z are conserved (neglecting viscosity) leads to

d

dt

 R
k OE.k/ dkR OE.k/ dk

!
< 0: (1.66)

However, the quantity under the time derivative here is a representative wavenumber
for energy, implying that, in some mean sense, energy moves to larger scales.

Similarly, if we assume that

d

dt

Z
.k2 � k21/2 OE.k/ dk > 0; (1.67)

then, again expanding the integral and substituting from (1.64), conservation of E
and Z implies

d

dt

 R
k2 OZ.k/ dkR OZ.k/ dk

!
> 0: (1.68)

Thus, a representative wavenumber for the enstrophy increases in time, implying
that enstrophy, in some mean sense, moves to small scales.

Figures 1.8 and 1.9 show an example numerical solution of the barotropic
vorticity equation

D�

Dt
D 0; (1.69)

where the velocity field used to calculate the material derivative is given by

u D �@ 
@y
I v D @ 

@x
I r2 D �: (1.70)

The barotropic vorticity equation is one form of the equations describing two-
dimensional incompressible flow. It bears some resemblance to quasigeostrophic
theory as it embodies the advection and invertibility of vorticity. In this example the
domain is square and doubly periodic. The initial condition is a not-quite-regular
array of vortices of alternating sign. The numerical solution is calculated using a
Spectral method (e.g., Williamson and Laprise 2000) based on Fourier transforms.
The maximum resolved wavenumber in the x- and y-directions is 85. A suitably
tuned �r4� is added to the right hand side of (1.69) to dissipate enstrophy that cas-
cades towards the resolution limit; here � is the dissipation coefficient. See Chap. 11
for a discussion of what happens when this term is not included.

The right hand panel of Fig. 1.9 shows the solution after a few vortex turnover
times. Several mergers between vortices of the same sign have taken place, and
some are clearly in the process of taking place at this instant. This tendency for like-
signed vortices to merge is one of the physical space manifestations of the upscale
energy cascade discussed above.

At the same time, fluid has been stripped from the edges of most vortices and
drawn out into long thin filaments that fill the space between the vortices. This
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Fig. 1.8 Initial condition for a numerical solution of the barotropic vorticity equation. The left
hand panel shows the initial vorticity field; red is positive vorticity, blue is negative vorticity. The
right hand panels show the initial energy and enstrophy spectra
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Fig. 1.9 As in Fig. 1.8 but after a few vortex turnover times. The right hand panels show both the
initial spectra (black) and the spectra at the current time (blue)

process is the physical space manifestation of the downscale enstrophy cascade
discussed above.

1.8.4 Application to the Real Atmosphere

There are a number of caveats associated with these arguments, besides their
extreme idealization, including the fact that they neglect intermittency, and the
fact that a spectrum as steep as k�3 is just barely consistent with the idea of an
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inertial range because the large scales will begin to dominate the strain rate and
interactions will cease to be local in spectral space. Furthermore, the atmosphere is
not a two-dimensional incompressible fluid. However, much of the atmosphere is
stably stratified and moves approximately layerwise two-dimensionally. Moreover,
the atmosphere has an approximate material invariant, the potential vorticity, some-
what analogous to the vorticity in two-dimensional incompressible flow, and hence
has a quadratic invariant, the potential enstrophy (see Chap. 11), somewhat analo-
gous to the enstrophy in two-dimensional incompressible flow. It is therefore argued
that the turbulent behaviour of the atmosphere on large scales will be qualitatively
similar to that of two-dimensional incompressible flow.

On horizontal scales larger than a few hundred kilometers, the atmospheric
kinetic energy spectrum is observed to be close to k�3, as in an inertial range (poten-
tial) enstrophy cascade. However, analysis of global datasets implies that there are
significant sources and sinks of energy across a wide range of scales, which is incon-
sistent with the idea of an inertial range. Furthermore, the observed kinetic energy
spectrum makes a transition to something close to k�5=3 on scales smaller than a
few hundred kilometers; this transition is quite different from the prediction of two-
dimensional turbulence theory and there is currently no widely accepted explanation
for it. However, careful analysis of energy and enstrophy budgets from observations
and global datasets implies that the general conclusion of energy cascading predom-
inantly upscale and (potential) enstrophy cascading predominantly downscale does
indeed hold.

1.9 Conclusion

Atmospheric dynamics is complex and involves a wide range of space and time
scales. The energetically dominant dynamics is slow and close to balance, and it
may be wavelike, vortical, or strongly nonlinear. Fast acoustic and inertio-gravity
waves represent departures from balance, but are also the mechanism by which
the atmosphere continuously adjusts towards balance. Nonlinearity implies interac-
tions between the different space and time scales. Particularly important are energy
and potential enstrophy transfers across scales; for any practical global atmospheric
model there will inevitably be important dynamics occurring near the resolution
limit. The need to capture all of these processes with sufficient accuracy make
numerical modeling of the atmosphere one of the most challenging branches of
computational fluid dynamics.
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Chapter 2
Waves, Hyperbolicity and Characteristics

Joseph Tribbia and Roger Temam

Abstract This lecture describes the basics of hyperbolic systems as needed to solve
the initial boundary value problem for hydrostatic atmospheric modeling. We exam-
ine the nature of waves in the hydrostatic primitive equations and how the modal
decomposition can be used to effect a complete solution in the interior of an open
domain. The relevance of the open boundary problem for the numerical problem of
static and adaptive mesh refinement is discussed.

2.1 Introduction

The most comprehensive dynamical model of the atmosphere is the Navier Stokes
equation for a compressible gas. Because of the viscous stress term this system of
equations is parabolic, i.e., formally similar to the diffusion equation. However, on
the length scales which we currently numerically model the atmosphere for weather
prediction and climate simulation the dissipation time scale is quite large. For exam-
ple, using the molecular viscosity of dry air, � D 1:5 � 10�6 m2=s, and a length
scale, L D 1 km, the e-folding time for viscous decay is 2,000 years. Note that if L
corresponds to the grid length in a numerical model this scale is currently beyond
our computational capability for a global weather or climate model. But even for
much smaller length scales, L D 1m, the e-folding time is greater than a half day
which, as will be shown later, is still much longer than the relevant propagation time
scale of many atmospheric waves which are represented in the compressible Navier–
Stokes equations. Thus, for the purpose of understanding the behavior of numerical
weather and climate models, the atmosphere can be considered a hyperbolic system
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of equations and the (molecular) dissipation terms may be neglected to a very good
first approximation.

A classical mathematical treatment of hyperbolic systems uses the method of
characteristics to simplify and formally solve the governing partial differential equa-
tions. In the solution of the PDEs in this manner, the question of boundary conditions
for open spatial domains is elucidated. And while the main focus of this volume of
lecture notes is global modeling, the challenges associated with static and adap-
tive grid refinement can be shown to be related to the issues surrounding the open
boundary value problem. Thus the remainder of this contribution will be presented
as follows; Sect. 2.2 will give a very general introduction to the method of charac-
teristics and give the simplest example of its use; Sect. 2.3 will develop the normal
mode structure of the hydrostatic primitive equations in Cartesian geometry dis-
cussing the role of the hydrostatic balance and the resultant modified oscillations
in the reduced (hydrostatic) system. We will then use the methods of Sect. 2.2 to
solve the open boundary problem for the hydrostatic system in this simplest con-
text. Section 2.4 will examine the equivalent problem in spherical geometry and
Sect. 2.5 will conclude with a discussion of the utility of these results within the
context of global non-hydrostatic weather and climate models.

2.2 The Method of Characteristics

In this section the basics of the method of characteristics is presented in the simplest
context for the solution of a first order partial differential equation in two variables
.x; t/ with the dependent variable to be solved for given as u.x; t/. The governing
equation is then:

a.x; t; u/ut C b.x; t; u/ux D c.x; t; u/; (2.1)

and treating t as the time variable, the initial value problem for (2.1) can be posed by
specifyingu.x; 0/ D F.x/. The solution via the characteristic method is then forged
by solving the auxiliary set of ordinary differential equations in the variable s taken
to be the distance along a characteristic curve in .x; t/ W s D s.x; t/:

dt

ds
D a.x; t; u/; dx

ds
D b.x; t; u/; du

ds
D c.x; t; u/: (2.2)

That this results in a solution to (2.1) is easily seen by rewriting u as a function of
s, i.e., u.s/ D u.x.s/; t.s// and using the chain rule.

As an example of the method, let a.x; t; u/ D 1, b.x; t; u/ D U0 with U0 a
constant, and c.x; t; u/ D 0. The solution of (2.2) is then t D s, x.s/ D x.0/C b0s
and u D const along each characteristic curve x D x.0/ C U0t . Using the initial
value of u.x; 0/ gives the result that u.x; t/ D F.x�U0t/. If, rather than specifying
c.x; t; u/ D 0, c.x; t; u/ D �ru with r D const is given, then the solution above
would be modified to u.x; t/ D exp.�rt/F.x � U0t/. Note that above the general
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partial differential equation (2.1) can, in fact, be nonlinear since the coefficients of
ut , ux and u can depend on u. The method of characteristics is useful for this special
type of nonlinearity which restricts the dependence of these coefficients to be only
on u with no dependence on partial derivatives of u. Such equations are termed
quasi-linear equations due to this restriction.

The solution of the initial value problem above is determined for all t > 0 and the
entire x axis. If we wish to limit the domain of the solution to the strip in .x; t/ such
that t > 0 and 0 < x < L, then the solution given informs us as to how this must
be done. Assuming U0 > 0, the characteristic curves carry the solution from left
to right in x. For the solution to the limited domain problem it is clear that u.0; t/
must be given in order to update u.x; t/ in the interior. However, u.L; t/ should not
be specified as the solution is carried by the characteristics from the interior to this
boundary. The method of characteristics is then the appropriate analysis technique
for determining the boundary conditions that lead to well-posed initial boundary
value problems (IBVPs).

The extension of the method to two space and one time variable is straightfor-
ward. The general form of the governing equation is then:

a.x; y; t; u/ut C b.x; y; t; u/ux C c.x; y; t; u/uy D d.x; y; u; t/; (2.3)

and the characteristic curves in .x; y; t/ are now determined by the solution to:

dt

ds
D a.x; y; t; u/; dx

ds
D b.x; y; t; u/; dy

ds
D c.x; y; t; u/;

du

ds
D d.x; y; t; u/: (2.4)

The spatially two-dimensional generalization of the constant coefficient case, i.e.,
letting a.x; y; t; u/ D 1, b.x; y; t; u/ D U0, c.x; y; t; u/ D V0 and d.x; y; t; u/ D
�ru, with U0, V0, and r all constants and initial condition u.x; y; 0/ D F.x; y/,
has as the solution: u.x; y; t/ D exp.�rt/F.x �U0t; y � V0t/. The analysis of the
limited area IBVP proceeds in the same way as in the case of one space dimension,
leading to the specification of u on boundaries for which the characteristic curves
point inward as time increases and allowing the solution to evolve at boundaries
where the characteristic curves are directed outward. This leads to a well-posed
IBVP. It should be noted that in any number of space dimensions a singular case
exists for the IBVP, where the boundary corresponds precisely to a characteristic
curve. In this case the characteristic curves are neither inward nor outward and so
no specification leads to a well-posed problem and no solution is possible. In this
singular case the IBVP is ill-posed.

The method can be used to solve the IBVP for a system of quasi-linear PDEs of
the general form:

A.U; x; t/Ut C B.U; x; t/ � rUC C.U; x; t/U D D.U; x; t/; (2.5)
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where U is an N-dimensional vector dependent variable, A;B;C are N by N matrices
and D is an N-dimensional vector function of .U; x; t/. This form is general enough
that the Euler equations for a perfect gas can be seen to be one of the system of PDEs
for which the method of characteristics can be used. In the vector case, with multiple
space dimensions, the needed mathematical trick is to diagonalize the system so that
(2.5) is equivalent to multiple scalar equations and reduce the problem to one similar
to solving (2.1) or (2.3). For the primitive equations a preliminary step is needed to
reach the above form This step and the diagonalization of the atmospheric equations
is the topic of the next section.

2.3 The Normal Modes of the Hydrostatic Equations

In this section, the diagonalization of the hydrostatic equations is taken up. As noted
in the previous section, the fully compressible Euler equations are of the form of
(2.5) above and so are amenable to solution using the method of characteristics. In
addition, as noted in the lecture on basic atmospheric dynamics (Chap. 1), global
modeling efforts are increasingly giving up the use of model formulations which
impose balance conditions within their formulation. Why, one might ask, are the
hydrostatic equations the topic of this section? There are two primary reasons for
this: First, only one of the global models represented at the colloquium is based on
the non-hydrostatic, fully compressible equations. The remaining ten models stud-
ied are formulated using the hydrostatic balance assumption. Second, even in the
global and regional non-hydrostatic models that currently exist or are planned for
the future, the issues that arise in the actual application of the method of charac-
teristics to such models are very much related to the difficulties that exist in the
solution of the hydrostatic primitive equations. This latter point will be elaborated
upon below.

The diagonalization of the hydrostatic system will be discussed in two parts.
First, the simpler problem of diagonalization in Cartesian geometry will be devel-
oped because of its easy connection with the presentation given in Chap. 1 and
because of its relation to the local problems to be discussed in the next section on
well-posedness. In addition to hydrostatic balance the equations used also make the
further approximation of incompressibility and are thus more applicable to ocean
than the atmosphere. However, a change in vertical coordinate for the atmosphere
can bring about a strong similarity to these equations. After the development in
Cartesian geometry a brief detour will be made to demonstrate the similarities
and differences caused by more realistic spherical geometry and the restoration of
compressibility.

In the presence of viscosity, well-posedness of the full primitive equations has
been established by Lions et al. (1992a,b), for both the atmosphere and the ocean.
Because of the very long time scale associated with viscous dissipation noted above,
in this article we are interested in the zero viscosity case. We restrict ourselves in this
Cartesian geometry analysis to the primitive equations linearized around a constant
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flow velocity U0 in the x direction with no dependence in y. Note that the essence
of the of the difficulties discussed are not changed by the restriction to the linear
form assumed here since linearization can be used as a guide to the solution of the
full nonlinear equations. The equations are then

ut � f v C �x C U0ux D 0; (2.6)

vt C f uC U0vx D 0; (2.7)

�t C U0�x CN 2 �0

g
w D 0; (2.8)

ux C w´ D 0; (2.9)

�´ D g�

�0
: (2.10)

Where g is the gravity constant, �0 a reference potential temperature, f is the (con-
stant) Coriolis parameter and N D N.´/ is the Brunt–Väisälä frequency for the
unperturbed flow and lower case variables .u; v; �;w; �/ are perturbations from the
reference values. Equations (2.8) and (2.10) can be combined to eliminate � and
yield an equation for �:

�´t C U0�´x CN 2w D 0: (2.11)

Attempting separation of variables, we look for a solution of (2.6)–(2.10) in the
form1 0

@ u

v

�

1
A D U .´/

0
@ OuOv
O�

1
A ; w D W .´/ Ow; (2.12)

where Ou; Ov; Ow; and O� depend only on x and t: By substitution in (2.7) and (2.9) we
find

U 0

N 2W
D � Ow

O�tCU0
O�x

.D c1/; U
W 0 D � OwOux .D c2/: (2.13)

The quantities above are constant .D c1; c2/; since the left-hand sides of the equa-
tions depend on ´ alone and the right-hand sides depend only on x and t:

Combining these equations we obtain:

�
U´

N 2

�
´

C �2U D 0; and W´´ C �2N 2W D 0; (2.14)

1 Note that if a solution of the form u D U Ou; v D V Ov; � D ' O�; is assumed then (2.6) and (2.7)
imply that U ;V ; ' are proportional to each other, and therefore without loss of generality may be
taken to be equal.
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with �2 D �c1=c2; and we now solve each (2.14) as an eigenvalue problem taking
the boundary conditions into consideration. Since w D 0 on top and bottom, we
have

W .0/ D W .H/ D U 0.0/ D U 0.H/ D 0: (2.15)

Equation (2.14) with boundary conditions (2.15) for U .N > 0 bounded from
above and from below) is solved and we denote by �2n the corresponding eigenvalues
and write

�2n D
1

gHn
; then, as known from Sturm–Liouville theory, H1 
 H2 
 � � � ; and

Hn ! 0 as n!1:

A particular simple example of this is that of N 2 equal to a positive constant. For
this case:

�n D n


NH
and the corresponding eigenfunctions are sin

�n
´
NH

�
or cos

�n
´
NH

�

as shown by Thuburn et al. (2002).
Denoting by Un;Wn the corresponding vertical normal modes and by Oun; Ovn;O�n; Own the corresponding .x; t/ dependent variables, we eliminate Own and obtain a

system identical to the linearized shallow water equations.

Out � f Ov C O�x C U0 Oux D 0;
Ovt C f OuC U0 Ovx D 0;
O�t C U0 O�x C gHn Oux D 0:

(2.16)

(Note that in the system above the subscript n has been dropped on the variables
Ou; Ov; O� leaving the dependence on n to be indicated through the coefficientHn.) The
characteristic/eigen values are given as U0 ˙pgHn and U0: Now, if gHn < U 20 ;

three characteristics enter the x� domain .0; L/ and three boundary conditions are
needed at x D 0: If gHn > U 20 ; only two characteristics enter the domain .0; L/ and
only two boundary conditions are needed at x D 0 (and one at x D L). Analogous
comments are valid at x D L:

For solving (2.6)–(2.10) in the general case, since from Sturm–Liouville theory
the vertical eigenfunctions form a complete set, we can expand all functions in the
basis of vertical normal modes that we have just determined:

0
@ u

v

�

1
A .x; ´; t/ DX

n

Un.´/

0
@ OunOvn
O�n

1
A .x; t/; (2.17)

w.x; ´; t/ D
X
n

Wn.´/ Own.x; t/; (2.18)



2 Waves, Hyperbolicity and Characteristics 35

and the analysis above holds for each n: Because for gHn < U 20 we need three
boundary conditions for each mode at x D 0 and for gHn > U 20 ; we need two
boundary conditions for each mode at x D 0; the number of boundary conditions to
be applied depends on n, and thus the vertical transform of the prognostic variables.
The index n is determined from a vertical integration of the variables and the vertical
normal modes and is thus a non-local property of the each dependent variable. Using
an argument similar to this, Oliger and Sundström (1978) concluded that there is no
set of local (i.e., pointwise) boundary conditions at x D 0 which makes the system
(2.6)–(2.10) well-posed.

To remedy this problem, as shown in Temam and Tribbia (2003), we can modify
the primitive equations by the addition of a Newtonian damping term on the vertical
velocity and add this to the hydrostatic balance equation so that (2.10) becomes:

ı Qw C �´ D g�

�0
: (2.19)

With the addition of this term it can then be shown through the conservation of
energy constraint that the solutions to this system are unique and have continuous
dependence on the data for local boundary conditions. In this way the addition of
dissipation (even of a rather mild type) can regularize the ill-posed nature of the
hydrostatic primitive equations for the Initial Boundary Value Problem (IVBP).

The efficacy of this dissipation term can be seen in Figs. 2.1–2.5 which depict the
numerical solution of the IBVP for both the standard and the ı modified hydrostatic
systems above with the initial conditions shown in Fig. 2.1. The lateral boundary
conditions correspond to upwinding for both versions of hydrostatic system. One
can easily see the effects of ill-posedness in Fig. 2.2 where the wind is subcritical
for the first internal mode (i.e., gH1 > U 20 ) and the solution is thus over-specified
through the use of upstream boundary conditions at the inflow boundary. On the
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other hand the solution in Fig. 2.4 is much smoother in space and time despite the
identical subcritical zonal flow U0.

2.4 The Modes of the Primitive Equations on the Sphere

The Cartesian geometry analysis above gives a clear example of the well-posedness
issues that exist locally in open boundary models based on the hydrostatic equations.
The purpose of this section is to demonstrate that the vertical modal analysis above
survives nearly intact for the global, spherical hydrostatic system and thus well-
posedness across limited area boundaries is generally feasible for a less simplified
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set of equations but only if one is willing to deal with non-locality or add artificial
dissipation.

For many reasons it is advantageous when using the hydrostatic equation to
define a vertical coordinate which differs from the geometric height coordinate ´:
Some commonly used vertical coordinates in meteorology are pressure, p; and the
terrain following counterpart, sigma, where � � p=ps; with ps being the surface
pressure, or a hybrid combination of these two. We use here the equations written
with pressure as vertical coordinate because of the relative dynamical simplicity of
the equations in this form and since orographic forcing is not the main concern,
here. The governing equations become:

Ut � f V C 1

a cos'
˚

0

� D NLTU (2.20)

Vt C f U C 1

a
˚

0

' D NLTV (2.21)

˚
0

p D �
RT

0

p
(2.22)

rh � Vh C !p D 0 (2.23)

˚
0

pt C S.p/! D NLT� (2.24)

In the above equations, ˚ � g´; where z is the height of the surface of
constant pressure, NLT stands for the nonlinear advection terms and curvature
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terms in spherical geometry, ! � dp

dt
; the ‘vertical’ component of the veloc-

ity and U and V are the horizontal components of the velocity (i.e., Vh) in
the easterly and northerly directions respectively. Lastly, ˚

0

and T
0

are devia-
tions from a resting, stratified basic state so that ˚ D ˚.p/ C ˚ 0

.�; '; p; t/ and
T D T .p/ C T 0

.�; '; p; t/: When these are substituted into the first law of ther-

modynamics S.p/ � �

p

 
RT

p
� Cp dT

dp

!
, which is positive for a stably stratified

fluid in which the entropy increases with height. (A full derivation of the transfor-
mation to arbitrary vertical coordinate in a hydrostatic atmosphere may be found
in Kasahara (1974) and in Staniforth and Wood (2003) for the deep nonhydrostatic
case. Because the effects of a mean zonal velocity lead to complications in the case
of spherical geometry, for simplicity we set the mean wind to zero along withNLT .
We then (as previously) try a separation of variables in the vertical :

2
4 U.�; '; p; t/

V .�; '; p; t/

˚
0

.�; '; p; t/

3
5 D G.p/

2
4
eU .�; '; t/eV .�; '; t/e̊.�; '; t/

3
5 (2.25)

As in the example in Cartesian geometry, the last two equations in (2.20) above
are the keys to the separation of variables. Combining them results in:

@

@p
.
1

S

@

@p
˚

0

t /�D D 0; with D � rh � �!V h D G.p/rh �e�!V h: (2.26)

Straightforward manipulations then show that separability will demand:

d

dp
.
1

S

dG

dp
/ D ��2G; (2.27)

where �2 is a constant. The fact that our (model) atmosphere has impenetrability as
a lower boundary condition and no loss of mass at the top boundary demands that
G satisfy the following conditions:

w D 0 at the bottom demands
dG

dp
D � G at p D ps; (2.28)

while

! D 0 at p D pT requires
dG

dp
D 0 at p D pT: (2.29)

Note that in the above, � � S.ps/=
d˚

dp

ˇ̌
ˇ
pDps

. The equation for G above with

the homogeneous boundary conditions is a standard Sturm–Liouville eigenfunc-
tion equation and �2 is the eigenvalue. As in the vertical expansion which arose in
the simpler Cartesian case examined in Sect. 2.3, Sturm–Liouville theory for G.p/
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shows that if S.p/ > 0 for all p; then, as noted previously, solutions for G.p/ exist
for an infinite discrete set of �2’s which are ordered �20 < �

2
1 < : : : < �

2
n < : : : and

associated with each �2n is an Hn, or equivalent depth. These are ordered inversely
to the �2’s, i.e., H0 > H1 : : : > Hn > : : :. The significance of the term ‘equivalent
depth’ becomes obvious when the vertical structure equation is separated from the
full equations leaving the following set of horizontal equations:

eU t � f eV C 1

a cos'
e̊
� D 0

eV t C f eU C 1

a
e̊
' D 0

e̊
t C gHn.eD/ D e̊

t C gHn

a cos'
.eU � C .eV cos'/'/ D 0

(2.30)

These are now the (rotating) linear shallow water equations in spherical coordinates
for a fluid with mean depth Hn. Each eigenvalue of the vertical structure equation
leads to a set of linear shallow water equations with a different mean depth Hn,
which is the equivalent shallow water depth for each eigenfunction. Now, gHn is
also the square of the gravity wave speed in a non-rotating fluid and so gH0 cor-
responds to the fastest gravity wave speed in the linear stratified system we are
considering. For realistic vertical stratification, S.p/, the vertical structure equa-
tion results in a largest equivalent depth, H0 Š 10 km and a corresponding gravity
wave speed of 300 m/s. Solutions to the vertical structure equation for each equiva-
lent depth are shown in the figure from Kasahara and Puri (1981). The key aspects
of the above for our purposes are that (1) the general form of the modal decom-
position remains the same and thus an exchange of vertical mode information is
necessary to effect lateral boundary conditions and (2) that the shallow water sys-
tem arises from this decomposition. The second point, in part, explains the utility
and widespread use of the shallow water equations in testing numerical methods,
since the essence of the horizontal numerical difficulties remain the same when the
hydrostatic approximation is used.

The results of this and the previous section have demonstrated that the study of
well posedness for the hydrostatic equations commonly used in meteorology and
oceanography can be (approximately) reduced to the examination of proper bound-
ary conditions for the shallow water equations in two space dimensions and the
analysis of their characteristics. Because the solution to the general, hyperbolic sys-
tem in two space dimensions is a technically challenging (though straightforward)
problem, we only briefly sketch the highlights here. All the gory details of the solu-
tion for the linear problem in plane Cartesian geometry are developed in (Weiyan
1992, Chap. 2). The primary complication that arises is that shallow water grav-
ity waves, in the absence of mean advection by the flow, propagate isotropically
in the radial direction. Thus the characteristics associated with gravity waves have
circular wavefronts and the solution is carried within cones in space-time. Thus,
actually forming a solution to the two dimensional IBVP using characteristics is
analogous to utilizing Huygen’s principle to solve a diffraction problem in optics,



2 Waves, Hyperbolicity and Characteristics 41

straightforward but computationally inefficient. A final note should be made that the
method of characteristics differs from the related traditional normal mode approach
in its treatment of the Coriolis terms in rotating flow. In the normal mode approach
the Coriolis terms are naturally part of the diagonalization and eigenvalue problem
associated with the linear operator. In the shallow water case this leads to a math-
ematical decomposition in terms of inertia-gravity waves and geostrophic potential
vorticity modes. In the method of characteristics the Coriolis terms appear as (linear)
source terms in the equations for the characteristics much like the damping terms in
the single equation examples in Sect. 2.2. The rotational effects of the Coriolis terms
are thus integrated along the characteristic directions as opposed to being accounted
for in the dispersive nature of the normal modes.

2.5 Discussion and Conclusions

The focus of this contribution has been problems associated with the implementa-
tion of lateral boundary conditions in limited domain, open boundary models of the
atmosphere which use the hydrostatic primitive equations. As demonstrated above,
a fundamental difficulty arises because of the replacement of prognostic equation
for the vertical velocity with the diagnostic equation expressing hydrostatic bal-
ance. The resulting loss of a wave type (vertically propagating acoustic waves) in the
underlying fully hyperbolic system requires that vertical communication be effected
through non-locality in the lateral boundary conditions. We have also shown that
artificial dissipation can also ameliorate the problems of non-locality at the expense
of accuracy of the solution.

The above concerns will clearly arise when the numerical model being integrated
is a limited-area hydrostatic model of the atmosphere or ocean. However, the non-
locality ill-posedness issue will also affect the quality of solutions in a global model
when mesh refinement is used. These problems are similar in a sense, because there
are fewer incoming characteristics going from a coarse mesh region to a fine mesh
region and more outgoing characteristics leaving a fine mesh region toward a coarse
mesh region, due to the change in resolution. Thus a sharp boundary separating a
refined mesh region from a coarser mesh region will be susceptible to computational
noise similar to that depicted in Fig. 2.2, since the refined region will in essence be
a local limited area model.

It would seem to follow that a more consistent resolution to all of these issues
requires one abandon the hydrostatic approximation and embrace the fully com-
pressible system. Indeed there are significant advantages in doing so but there is
also a steep price to be paid in terms of time step limitations required by the CFL
condition. This is particularly true in the vertical dimension where grid spacings
are the smallest, �´ < 1 km, and vertically propagating acoustic waves, which are
filtered using the hydrostatic system, must be resolved. Currently, this problem is
avoided through the use of an implicit method in the vertical for any time integra-
tion method which is split explicit in the horizontal. While the acoustic and gravity
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wave characteristics can be accurately accounted for in this method, the wave phase
velocities are distorted because of implicit component in the vertical which will
again raise the possibility of communication being mis-handled leading to enhanced
numerical noise at the boundaries between coarse and fine resolution domains. Thus,
the price to tackle the problems discussed above in a physically and mathematically
sound fashion remains high and awaits computational platforms a decade or so in
the future.
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Chapter 3
Horizontal Discretizations: Some Basic Ideas

John Thuburn

Abstract This chapter will introduce some key ideas in the construction of hor-
izontal discretizations for atmospheric models. One important topic is the ability
of different schemes to capture wave propagation accurately. The von Neumann
method for analysing numerical wave propagation is presented and applied to some
simple schemes to demonstrate the advantages of staggered grids in finite difference
models. Another important topic is whether the discretization respects the conser-
vation properties of the differential equations being solved. An introduction to the
topic is given, using energy conservation as an illustrative example.

3.1 Introduction

This lecture will introduce some key, basic ideas related to horizontal discretiza-
tions in atmospheric model dynamical cores. We will focus on two topics: wave
propagation and the effect of using staggered grids (Sect. 3.2), and energy conser-
vation (Sect. 3.3). We will restrict attention to grid point methods (though in many
cases finite volume methods can be looked at in the same way). We will not discuss
Galerkin methods (although some of the ideas do carry across to Galerkin methods
too), nor spectral methods (e.g., Williamson and Laprise 2000). Also, we will not
discuss the treatment of advection. Advection is a large and complicated topic; some
discussion is given in Chaps. 7, 8, and 9.

3.2 Wave Propagation and Staggered Grids

Chapter 1 in this volume discussed the role of fast waves (acoustic and inertio-
gravity waves) in adjustment towards and maintenance of balance. An accurate
representation of balance in atmospheric models therefore requires a sufficiently
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accurate representation of the propagation of the fast waves. In the next two subsec-
tions we will look at a technique that can be used to analyse the wave propagation
characteristics of numerical schemes. We will see some examples of poor numer-
ical wave propagation that would be damaging to a model’s ability to represent
near-balanced flow, and show that in some circumstances improved numerical wave
propagation can be obtained through the use of a staggered grid.

Slow, balanced motions, Rossby waves and nonlinear vortex dynamics, are ener-
getically dominant on large scales (e.g., Holton 2004). In Sect. 3.2.3 we will point
out that Rossby wave propagation can be sensitive to details of the numerical
schemes, particularly the treatment of the Coriolis terms.

3.2.1 Gravity Waves in One-Dimension

The simplest relevant model to illustrate our first point is the linearized, one-
dimensional, non-rotating shallow water equations:

@˚

@t
C ˚0 @u

@x
D 0

@u

@t
C @˚

@x
D 0: (3.1)

Here u is the velocity perturbation and ˚ is the geopotential perturbation. The
equations have been linearized about a state of rest with geopotential˚0.

Assume the domain is either periodic or infinite, and look for wavelike solutions:

˚ D Re
n O̊ expŒi.kx � !t/	

o
u D Re f Ou expŒi.kx � !t/	g : (3.2)

Here, k is the wavenumber and ! is the frequency. (The wavelength L is equal to
2
=k.) Substituting the wavelike solutions in (3.1) and eliminating Ou and O̊ leads
to the dispersion relation

!2 D k2˚0: (3.3)

There are two solutions: a wave propagating to the right with ! D k˚
1=2
0 and

˚ D ˚
1=2
0 u, and a wave propagating to the left with ! D �k˚1=20 and ˚ D

�˚1=20 u. If we restrict attention to waves propagating in one direction we find that
the phase velocity and group velocity (see lecture 1) are both independent of k
and equal to ˚1=20 ; these waves are non-dispersive. Consider an arbitrary initial

condition satisfying ˚ D ˚
1=2
0 u. This can be Fourier decomposed into waves of

different k. Each Fourier component will propagate at the same velocity ˚1=20 . The
solution at some later time t will be a superposition of waves that have all propagated
the same distance ˚1=20 t ; it will therefore look identical to the initial state except for
a translation.



3 Horizontal Discretizations: Some Basic Ideas 45

Now consider a numerical solution of (3.1). We will leave time continuous and
concentrate on the spatial discretization. Suppose, first, that ˚ and u are stored at
the same locations on a uniform grid with spacing �x (Fig. 3.1), and approximate
the x-derivatives by second order centered differences:

@uj

@t
C ˚jC1 � ˚j�1

2�x
D 0I

@˚j

@t
C ujC1 � uj�1

2�x
D 0: (3.4)

How well do the solutions of the discrete equations replicate the solutions of the
continuous equations? We can address this question using a technique known as
von Neumann analysis. Again, look for wavelike solutions, but now on the grid:

˚j D Re
n O̊ expŒi.kxj � !t/	

o

uj D Re
˚ Ou expŒi.kxj � !t/	

�
: (3.5)

The analysis follows exactly the same steps as in the continuous case, except that
the x-derivative is approximated by the difference of two exponentials which, using
well known identities, can be expressed as a sine. For example,

˚jC1 � ˚j�1
2�x

D ˚i
�
eik�x � e�ik�x

�
2�x

D ˚j
2i sin.k�x/

2�x

D i Qk˚j : (3.6)

Thus k is replaced everywhere by

Qk D sin.k�x/=�x (3.7)

and the dispersion relation becomes

!2 D Qk2˚0: (3.8)

The right panel of Fig. 3.1 shows the resulting dispersion relation for the numer-
ical solutions. A large part of the spectrum has significant artificial reduction of its
frequency. In particular, the shortest resolvable wave, which has k�x D 
 , has zero
frequency and does not propagate at all. A disturbance pattern like this that spuri-
ously fails to propagate is sometimes called a computational mode. Furthermore, the
short wavelength half of the spectrum has d!=dk < 0, i.e., it has group velocity
of the wrong sign. Waves that have spurious propagation characteristics like this are
sometimes called parasitic modes. Such poor wave propagation characteristics are



46 J. Thuburn

u u u
Φ Φ Φ

j−1 j j+1

0 π / 2 π

k Δ x

8 2

L / Δx

F
re

qu
en

cy

4

Fig. 3.1 Left: Schematic showing the arrangement of variables on a one-dimensional unstaggered
grid. Right: Dispersion relations for gravity wave solutions of the one-dimensional linearized shal-
low water equations: the straight line is for the continuous equations (3.3); the curved line is for
the discrete equations (3.8)
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Fig. 3.2 Left: Schematic showing the arrangement of variables on a one-dimensional staggered
grid. Right: Dispersion relations for gravity wave solutions of the one-dimensional linearized shal-
low water equations: the straight line is for the continuous equations (3.3); the curved line is for
the discrete equations (3.11)

likely to lead to a poor representation of geostrophic adjustment and balance in a
numerical model.

Now consider an alternative discretization in which ˚ and u are stored stag-
gered relative to each other (Fig. 3.2). Again, the x-derivatives are approximated by
centred differences, but with a more compact stencil:

@ujC1=2
@t

C ˚jC1 �˚j
�x

D 0I

@˚j

@t
C ujC1=2 � uj�1=2

�x
D 0: (3.9)
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The analysis follows the same steps as before, except that the x-derivatives are
approximated by a more compact difference of exponentials. We find k in the
continuous case is replaced everywhere by

Qk0 D sin.k�x=2/=.�x=2/: (3.10)

and the dispersion relation becomes

!2 D Qk02˚0: (3.11)

The right panel of Fig. 3.2 shows the dispersion relation for the staggered grid.
There is still significant slowing for large wavenumbers, but much less than for the
unstaggered grid. In particular the group velocity always has the correct sign (except
for the two-grid length wave k�x D 
 which has zero group velocity).

Figure 3.3 shows an example numerical solution of the linearized one-
dimensional shallow water equations using both an unstaggered and a staggered
grid. In both cases dispersion errors lead to the main peak lagging behind the true
solution, though the lag is worse on the unstaggered grid. And in both cases disper-
sion errors have led to short wavelength oscillations behind the main peak, though
again these are worse on the unstaggered grid.

Another way of viewing the poor behaviour of the unstaggered grid is as follows.
A low frequency forcing should lead to the generation of long wavelength waves.
However, as can be seen from the right hand panel of Fig. 3.1, on an unstaggered grid
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Fig. 3.3 Numerical solution of the linearized shallow water equations on a periodic domain of 40
grid points. Top: using an unstaggered grid. Bottom: using a staggered grid. At the time shown, the
solution should have propagated exactly once around the domain (left to right) and returned to its
initial position. The initial condition for ˚ , shown by the dashed curves, comprises a pulse about
8 grid lengths wide
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Fig. 3.4 Numerical solution of the linearized shallow water equations where ˚ in the center of
the domain has been forced to oscillate like sin.!t/. The domain shown is 60 grid points across.
The initial condition is u D 0, ˚ D 0 and the solution is shown after less than one forcing period.
Top: using an unstaggered grid. Bottom: using a staggered grid

any resolvable frequency ! corresponds to two different k; there is the possibility
that low frequency forcing can generate short wavelength as well as long wavelength
waves. Figure 3.4 shows the result of exactly this process. The initial condition was
set to u D 0, ˚ D 0, and the ˚ value in the centre of the domain was forced
to oscillate like sin.!t/. On the staggered grid long wavelength waves have been
radiated to the left and to the right, close to the correct solution. However, on the
unstaggered grid a superposition of short and long wavelength waves have been
radiated, giving a very noisy solution.

3.2.2 Inertio-Gravity Waves in Two-Dimensions

Let us extend the above discussion to the two-dimensional linearized shallow water
equations and include the effects of rotation through a constant Coriolis parameter
f D f0. The governing equations are

@˚

@t
C ˚0

�
@u

@x
C @v

@y

�
D 0;

@u

@t
� fvC @˚

@x
D 0;

@v

@t
C fuC @˚

@y
D 0: (3.12)
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Seeking wavelike solutions proportional to expfi.kx C ly � !t/g leads to the
dispersion relation

!
�
!2 � f 20 � .k2 C l2/˚0

� D 0: (3.13)

The root ! D 0 corresponds to Rossby waves. (In this example Rossby waves
do not propagate because we have approximated f as a constant. The effect of
spatial variations in f , called the ˇ-effect because f is sometimes approximated as
f D f0Cˇy, causes the Rossby wave frequency to become non-zero; see Chap. 1).
The other two roots correspond to left and right propagating inertio-gravity waves.

An important parameter here (and in various other contexts) is the Rossby radius

� D ˚1=20 =f0 (3.14)

(e.g., Holton 2004). It defines a natural horizontal scale for geostrophically balanced
motion, and it can also be interpreted as the distance a gravity wave would propagate
(at speed˚1=20 ) on the inertial timescale 1=f0. On length scales significantly shorter
than � the non-zero roots of (3.13) approximately satisfy !2 � .k2 C l2/˚0D 0.
Pressure gradient forces dominate the dynamics. These are gravity waves. On length
scales significantly longer than � the non-zero roots of (3.13) approximately satisfy
!2 � f 20 D 0. Coriolis terms dominate the dynamics. These are inertial waves.
Which regime we are in has implications for the relative accuracy of different
numerical methods, as we shall see.

In two dimensions there are more possibilities for staggering than in one-
dimension. Arakawa and colleagues (Winninghoff 1968; Arakawa and Lamb 1977;
Randall 1994) systematically studied the shallow water wave dispersion properties
of a number of staggered quadrilateral grids, and introduced the naming convention
that is now universally used (see Fig. 3.5). We will look at three of these grids in
some detail.

The A-grid. By analogy with the one-dimensional case, when we look for wave-
like solutions of the finite difference equations we find that the k that comes from
an x-derivative is replaced by

Qk D sin.k�x/=�x (3.15)

while the l that comes from a y-derivative is replaced by

Ql D sin.l�y/=�y: (3.16)

Figure 3.6 shows the ratio of the numerical frequency to the exact frequency as
a function of k and l (where �x D �y) for two regimes: well-resolved Rossby
radius �x=� D 0:2 and poorly resolved Rossby radius �x=� D 5. The A-grid
scheme does well (as do all the others) for well-resolved waves, i.e., when k�x and
l�y are small. What distinguishes the various schemes is how they perform for less
well resolved waves. The A-grid scheme performs well when the Rossby radius is
poorly resolved because near-grid-scale waves are dominated by the Coriolis term,
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Fig. 3.5 Schematic showing the arrangement of variables on six possible staggered grids for the
two-dimensional shallow water equations. On the Z-grid the predicted variables are the (vertical
component of) relative vorticity � and the horizontal divergence ı
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bottom left corners

which is accurately represented on the A-grid. However, when the Rossby radius
is well-resolved near-grid-scale waves are dominated by the pressure gradient and
divergence terms, which are inaccurately represented just as in Sect. 3.2.1.

The B-grid. On the B-grid some of the finite differences are more compact than
on the A-grid, but also some averaging is required to obtain values of the variables
at the locations where they are needed. For example, u must be averaged in the
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Left: �x=� D 0:2. Right: �x=� D 5. The contour interval is 0:1 and the values approach 1 in the
bottom left corners

y-direction and differenced in the x-direction in order to approximate @u=@x in the
˚ equation. A similar thing happens for @v=@y in the ˚ equation and for @˚=@x
and @˚=@y in the u and v equations. We find that k is replaced by

Qk D cos.l�y=2/ sin.k�x=2/=.�x=2/ (3.17)

while l is replaced by

Ql D cos.k�x=2/ sin.l�y=2/=.�y=2/: (3.18)

The resulting errors in the dispersion relation are shown in Fig. 3.7. Like the A-grid,
it performs well when the Rossby radius is poorly resolved but performs poorly
(though slightly better than the A-grid) when the Rossby radius is well resolved.

The C-grid. On the C-grid the variables are ideally placed for calculating the
spatial derivatives that arise. However, u and v are no longer located at the same
points; u must be averaged in both the x and y-directions to approximate the f0u
term in the v equation, and similarly for the f0v term in the u equation. We find that
k is replaced by

Qk D sin.k�x=2/=.�x=2/ (3.19)

and l is replaced by
Ql D sin.l�y=2/=.�y=2/ (3.20)

while f0 is replaced by

Qf0 D f0 cos.k�x=2/ cos.l�y=2/: (3.21)
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Consequently, the C-grid performs well when the Rossby radius is well-resolved
and pressure gradient and divergence terms dominate near-grid-scale waves, but per-
forms poorly when the Rossby radius is poorly resolved and Coriolis terms dominate
near-grid-scale waves (Fig. 3.8).

The Rossby radius in the atmosphere (for the deepest modes–in three dimensions
the Rossby radius depends on the vertical scale and is greater when the vertical
scale is greater) is of the order of 1;000 km, which is well-resolved in any practical
atmospheric dynamical core. For this reason, the C-grid has often been the grid of
choice for grid point atmospheric models. In the ocean the Rossby radius is typically
of order 10 km; historically this has not been well resolved, so the B-grid has often
been used for ocean models. As computer power increases and it begins to become
practical to resolve the Rossby radius, some ocean modelers are beginning to turn
to the C-grid.

The discussion here has concentrated on grid staggering options for quadrilat-
eral grids. However, analogues exist for other grid cell shapes such as triangles and
hexagons. See Chap. 10.

3.2.3 Rossby Wave Propagation on the C-grid

The Coriolis terms play a crucial role in the Rossby wave propagation mechanism.
Given the need for some averaging in evaluating the Coriolis terms on a C-grid, we
might expect the propagation of near-grid-scale Rossby waves to be poorly captured.
However, when f is a function of position there are a variety of options for exactly
how the averaging is done, e.g., should we multiply by f before averaging or after
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averaging? The Rossby wave propagation turns out to be sensitive to these details.
The following f -at-˚-points scheme turns out to work quite well:

@tu� f vyx C ıx˚ D 0; (3.22)

@tv C f uxy C ıy˚ D 0: (3.23)

(Here an overline indicates an average, with the superscript indicating the direction
of the average, and ıx and ıy indicate centred finite difference approximations to x
and y partial derivatives.) This scheme captures the Rossby wave frequency quite
accurately even for short north–south wavelengths, though not for short east–west
wavelengths. See Thuburn (2007) for details.

In spherical geometry it is important to include appropriate geometrical factors
in the averaging of the Coriolis terms, for consistency with the mass continuity
equation:

@u

@t
� f

cos�
v cos�

�
�

C 1

a cos�
ı�˚ D 0 (3.24)

@v

@t
C f u�� C 1

a
ı�˚ D 0: (3.25)

Here a is the Earth’s radius, � is longitude and � is latitude. When this is done, nor-
mal mode calculations show that the dispersion relations for both Rossby modes
and inertio-gravity modes are captured quite accurately (Fig. 3.9). Otherwise, a
significant part of the Rossby mode spectrum is lost and replaced by spurious grid-
scale modes with positive (eastward) frequency (Thuburn and Staniforth 2004); see
Fig. 3.10.

3.3 Conservation Properties

It is often considered desirable for a dynamical core to possess analogues of some
of the conservation properties of the continuous adiabatic and frictionless govern-
ing equations. Energy is a particularly interesting quantity in this respect, because
it is a nonlinear quantity, it can be decomposed into available and unavailable con-
tributions, and it is subject to both upscale and downscale nonlinear transfers (see
Chap. 11). Even if we choose to formulate the nonlinear advection terms in a way
that does not conserve energy (either to allow for transfers to unresolved scales,
or purely for numerical efficiency as in semi-Lagrangian schemes) a strong argu-
ment can be made for formulating the linear terms in the equations, the Coriolis and
pressure gradient terms, in an energy conserving way. The following two subsec-
tions illustrate some of the kinds of techniques that have been used to obtain such
conservation properties.
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Fig. 3.9 Numerical dispersion relation (crosses) for a latitudinal discretization given by (3.24),
(3.25) and the corresponding discrete linearized mass equation on the sphere; (the fields are
assumed to be proportional to exp.im�/ with zonal wavenumber m D 2, and east–west derivatives
are handled analytically). Frequency is plotted against increasing latitudinal mode index–smaller
index corresponds to greater north–south wavelength. Analytical approximations to the exact
frequencies are given by the diamonds. The eastward modes and the higher frequency branch
of westward modes are inertio-gravity modes. The lower frequency branch of westward modes
are Rossby modes. The Rossby modes are handled quite accurately, despite the averaging of
the Coriolis terms. (A small number of modes are handled poorly; this is a result of the polar
singularity)

3.3.1 Energy Conservation: Coriolis Terms

The Coriolis terms should cancel when we take u times

Du

Dt
� f v D : : : (3.26)

plus v times
Dv

Dt
C f u D : : : : (3.27)

This is achieved very straightforwardly on an A-grid or B-grid for which the u and
v points coincide. On a C-grid, however, the cancellation is non-trivial.

Arakawa and Lamb (1981) presented a systematic way of achieving the desired
cancellation on a spherical C-grid. They work with mass flux variables
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Fig. 3.10 As in Fig. 3.9 except that the cos � factors do not appear in the Coriolis term in (3.24).
The Rossby wave spectrum is now badly distorted

u� D u˚a��; (3.28)

v� D v˚a cos���; (3.29)

(�� and �� are the longitudinal and latitudinal grid spacing) and express the
Coriolis terms using four sets of coefficients ˛, ˇ, � and ı:

@
@t
.ua cos���/i;jC1=2
�˛i;jC1=2 v�iC1=2;jC1 � ˇi;jC1=2 v�i�1=2;jC1
��i;jC1=2 v�i�1=2;j � ıi;jC1=2 v�iC1=2;j D : : :

(3.30)

@
@t
.va��/iC1=2;j
C˛i;j�1=2 u�i;j�1=2 C ˇiC1;j�1=2 u�iC1;j�1=2
C�iC1;jC1=2 u�iC1;jC1=2 C ıi;jC1=2 u�i;jC1=2 D : : :

(3.31)

Here the grid indexing convention is that ˚ is stored at points labelled with sub-
scripts i C 1=2; j C 1=2, etc., u points are labelled i; j C 1=2, etc., and v points
are labelled i C 1=2; j , etc. It may be verified that all terms involving ˛, ˇ, � and
ı do indeed cancel when we take ui;jC1=2 times (3.30) plus viC1=2;j times (3.31)
and sum globally. There is still considerable freedom available in choosing the exact



56 J. Thuburn

values of ˛, ˇ, � and ı. For example, the scheme (3.24), (3.25) is of this form and
achieves second order accuracy and good Rossby wave propagation.

3.3.2 Energy Conservation: Pressure Gradient Terms

In order for the pressure gradient terms to conserve energy we require a discrete
analogue of

v˚:r˚ C ˚r:.v˚/ D r:.v˚2/ (3.32)

or, at least, Z
v˚:r˚ dAC

Z
˚r:.v˚/ dA D 0: (3.33)

On an A-grid this is relatively straightforward to achieve. On a C-grid the
required cancellation can again be achieved by working with mass flux variables
u� and v� (Arakawa and Lamb 1981). Then the discrete analogue of (3.33) is

˙ij u
�
i;jC1=2

�
˚iC1=2;jC1=2 � ˚i�1=2;jC1=2

�C
˙ij v

�
iC1=2;j

�
˚iC1=2;jC1=2 � ˚iC1=2;j�1=2

�C
˙ij ˚iC1=2;jC1=2

�
u�
iC1;jC1=2 � u�i;jC1=2

�
C

˙ij ˚iC1=2;jC1=2
�
v�
iC1=2;jC1 � v�iC1=2;j

�
D 0;

(3.34)

which does indeed hold.

3.4 Conclusions

A sufficiently accurate representation of the propagation of fast waves is required for
a numerical model of the atmosphere to capture the near-balanced large-scale flow.
The von Neumann method for analysing the numerical dispersion relation of a dis-
cretization has been presented and used to illustrate the behaviour of some simple,
well-known schemes. The method shows that staggered grids can be advantageous
in some circumstances. Incidentally, the method can be applied to more complex
schemes such as higher-order schemes (e.g., Leslie and Purser 1991) or schemes
that avoid averaging (e.g., McGregor 2005), and even to more exotic grids such as
hexagons (e.g., Ničković et al. 2002; Thuburn 2008), though the analysis becomes
more laborious.

The numerical solution could become inaccurate if the discretization introduces
spurious sources or sinks of energy. One approach to avoiding this problem is to
design the discretization to mimic certain cancellation properties of the continuous
equations. This approach has been illustrated for discretizations of the Coriolis and
pressure gradient terms.
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Chapter 4
Vertical Discretizations: Some Basic Ideas

John Thuburn

Abstract This chapter introduces some key ideas in the design of vertical dis-
cretizations for atmospheric models. Various choices of vertical coordinate are
possible, and the most widely used ones are introduced. The requirement to retain
certain conservation properties can constrain or determine aspects of the discretiza-
tion: this is illustrated using the Simmons and Burridge angular momentum and
energy conserving scheme for hydrostatic models. Another important set of issues
surrounds the ability to capture hydrostatic balance and wave dispersion accurately
and to avoid computational modes: some implications for the vertical discretization
are discussed.

4.1 Introduction

This lecture will introduce some key, basic ideas related to vertical discretizations
in atmospheric model dynamical cores. We will first discuss the choice of verti-
cal coordinate and its relation to the bottom and top boundary conditions. We will
then look at how the details of the vertical discretization can influence conservation
properties and wave propagation.

4.2 Alternative Vertical Coordinates

Systematic derivation of the governing equations usually involves writing their com-
ponents in some orthogonal coordinate system, such as spherical polars .�; �; r/.
However, for numerical solution of the equations there may be advantages to

J. Thuburn
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writing the equations in terms of some alternative vertical coordinate. The following
transformation rules (e.g., Kasahara 1974; Staniforth and Wood 2003) allow us to
re-express the horizontal and vertical derivatives and hence transform the equations
to an arbitrary vertical coordinate �.�; �; r; t/:

@ 

@r
D @�

@r

@ 

@�
; (4.1)

�
@ 

@s

�
r

D
�
@ 

@s

�
	

C
�
@ 

@�

��
@�

@s

�
r

; (4.2)

D 

Dt
D @ 

@t
C v:rH C P�@ 

@�
: (4.3)

Here s may be �, � or t , and rH is the horizontal gradient at constant �.
In transforming to a different vertical coordinate it is usual to continue to express

vectors in terms of their components in the original orthogonal coordinate system,
rather than transform to covariant or contravariant components in the new coordinate
system. In particular, it is usual to retain the velocity components u D P�r cos�,
v D P�r , w D Pr (though P� may be needed too).

4.2.1 Examples

� Height � D r or � D ´. This is the most obvious choice, requiring no
transformation of the governing equations.

� Pressure � D p. A pressure-based coordinate is particularly attractive in hydro-
static models because the mass continuity equation becomes purely diagnostic,
and because the pressure difference across a layer is proportional to the mass per
unit area in that layer (under the shallow atmosphere approximation), making it
easier to formulate schemes with desired conservation properties.

� Mass � D R1
´
� d´0 for Cartesian geometry with height ´ or � D R1

r
�r 02 dr 0

with distance r from Earth’s centre. This is the natural generalization of the
pressure coordinate to non-hydrostatic models.

� Terrain-following variants. It is possible to modify the three coordinate systems
mentioned above so that the ground becomes a coordinate surface (e.g., Phillips
1957; Gal-Chen and Somerville 1975, Fig. 4.1); this greatly simplifies the appli-
cation of the bottom boundary condition (see Sect. 4.3). Some examples are
� D ´ � ´s where ´s is the height of the ground, or � D p=ps where ps is
the surface pressure. This latter is sometimes called a � coordinate.

� Hybrid terrain-following variants. To avoid numerical artefacts at high altitudes
resulting from a terrain following coordinate, it is possible to use a hybrid coor-
dinate that is terrain-following near the ground but returns to a height or pressure
coordinate at high altitude (Fig. 4.1). One well known example is the hybrid �-p
coordinate introduced by Simmons and Burridge (1981). A value of a and a value
of b are defined on each model level. Then the pressure on each model level is
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Fig. 4.1 Schematics showing a terrain following coordinate (left) and a hybrid terrain following
coordinate (right)

given by p D ap0 C bps where p0 is a constant reference pressure and ps is
again the surface pressure. Near the ground a is chosen to be zero or small so
that the coordinate looks like a � coordinate; at high altitude b is chosen to be
zero or small so that the coordinate looks like a pressure coordinate. The coeffi-
cients are chosen to give a smooth transition in between. (A value of � is given
by � D a C b, though in fact the scheme can be formulated without explicit
reference to the value of �.)

� Isentropic coordinate � D f .�/. There are a number of potential advantages
of using an isentropic vertical coordinate that make it attractive for atmospheric
modeling (e.g., Hsu and Arakawa 1990). Diabatic heating is generally weak,
so an isentropic coordinate is approximately Lagrangian, leading to improved
Lagrangian conservation properties and conservation of entropy-related quanti-
ties and perhaps potential vorticity. The handling of moist processes may also be
improved. And in some dynamical situations the coordinate automatically adapts
to give extra resolution where it is needed. On the other hand, the bottom bound-
ary is difficult to handle, the coordinate cannot handle situations where N 2 < 0,
and experience suggests it is more difficult to obtain a robust numerical formula-
tion. (A hybrid vertical coordinate can help with all of these issues, e.g., Konor
and Arakawa 1997). Also, in regions such as the tropical upper troposphere,
where N 2 is close to zero, vertical resolution becomes relatively poor.

� Lagrangian coordinate. A Lagrangian vertical coordinate (apparently first sug-
gested by Starr 1945) is defined by P� D 0. Like the isentropic coordinate, it is
expected to give improved Lagrangian conservation properties. However, over
time Lagrangian coordinate surfaces will bend and fold, making them inaccu-
rate or unusable as a vertical coordinate. To circumvent this, the Lagrangian
coordinate must be periodically re-initialized and the solution remapped to the
re-initialized coordinate system (e.g., Lin 2004).

4.3 Bottom and Top Boundary Conditions

The normal component of velocity at the bottom boundary must vanish. If � is a
terrain following coordinate then the boundary condition may be expressed particu-
larly simply as P� D 0. In terms of velocity components we must havew D v:rH´s,
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where v D .u; v/ is the horizontal velocity. If the ground is flat then we havew D 0,
but not in general. Typically w will be stored at the bottom boundary, but u and v
will be staggered in the vertical relative to w (see Sect. 4.5). Thus, some means of
evaluating v at the gound will be needed. If the model includes a boundary layer
scheme then it is appropriate to apply a no-slip boundary condition v D 0, and
it again follows that w D 0. However, for a frictionless dynamical core a free-
slip boundary condition, which imposes no constraint on v, is more appropriate;
then v must be extrapolated to the ground in a way consistent with the free-slip
condition.

A disadvantage of terrain-following coordinates, particularly at high horizon-
tal resolution, is that the coordinate system becomes far from orthogonal near
steep orography. Numerical methods can then lose accuracy. To avoid this prob-
lem, an alternative is not to use a terrain-following coordinate but to retain a height
coordinate and allow the coordinate surfaces to intersect the terrain.

In the simplest version of this idea the orography appears step-like, with the top
of each step coincident with a model coordinate surface (Fig. 4.2). This has been
found to be too inaccurate. However, the idea can be extended (e.g., Adcroft et al.
1997) by allowing the bottom face of grid cells adjacent to the gound to be at any
height, not necessarily coincident with a model coordinate surface (fractional cells),
or even allowing them to slope (cut cells or shaved cells). A disadvantage remains
that vertical resolution in the boundary layer becomes reduced at mountain tops as
model grids are typically vertically stretched at higher altitudes.

The real atmosphere has no top boundary, but in a practical numerical model of
the atmosphere we must impose a boundary somewhere. Practical choices include
the following (e.g., Staniforth and Wood 2003).

� Rigid lid: w D 0 is imposed at some constant height ´ D ´T . This is most
easily done if the vertical coordinate is height (or a hybrid coordinate reducing to
height near the top boundary). Conservation of energy and angular momentum
are maintained in the governing equations.

� Elastic lid: Dp=Dt D 0 is imposed on some surface of constant pressure
p D pT . (pT may equal 0.) This is most easily done if the vertical coordinate
is pressure (or a hybrid coordinate reducing to pressure near the top boundary).
The governing equations then conserve angular momentum and enthalpy.

Fig. 4.2 Schematic showing the simplest form of terrain intersecting vertical coordinate
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Both a rigid lid and an elastic lid are artificial and may cause spurious reflection
of upward propagating waves. To reduce the problem it is common to include a
scale-independent damping on model fields near the model top, but note that the
strength and depth of the damping layer must be chosen carefully. Moreover, it is
recommended that such damping only be applied to departures from the zonal mean
to avoid an unrealistic sink of angular momentum and spurious feedbacks (Shaw
and Shepherd 2007). An alternative is to apply a wave radiation condition at the
model top (e.g., Durran 1999). However, this approach is more complex and some
approximation is usually required.

4.4 The Simmons and Burridge Energy and Angular
Momentum Conserving Scheme

In this section we use the well-known Simmons and Burridge (1981) vertical dis-
cretization to illustrate the kinds of considerations that come into play to obtain
properties such as conservation of energy and angular momentum. It is assumed
that the hydrostatic primitive equations are being solved, and a hybrid � � p coor-
dinate is used. Figure 4.3 shows the vertical arrangement of variables: the pressure,
and the vertical coordinate � if needed, are defined on ‘half-levels’, while the prog-
nostic variables u, v and T are defined at the ‘full-levels’. We suppose there are N
full-levels, numbered from the top (where � D 0) to the bottom (where � D 1).
Surface pressure (or log of surface pressure) is predicted at the ground, which is the
half-level with index N C 1=2.

4.4.1 Hydrostatic Equation

We first look at the discretization of the hydrostatic equation

@˚

@�
D �RT

p

@p

@�
: (4.4)

Fig. 4.3 Schematic showing
the vertical arrangement of
variables for the Simmons
and Burridge scheme. k is the
level index k+1

k+1 / 2

k

k−1 / 2 η, p

u, v, T

η, p

u, v, T
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Here ˚ is the geopotential and R is the gas constant for dry air. This is naturally
discretized as

˚kC1=2 � ˚k�1=2 D �RTk ln
pkC1=2
pk�1=2

: (4.5)

Since ˚ at the ground is given, if we know the half-level pressures and the full-level
temperatures then we can easily integrate (4.5) to obtain ˚ at any half-level.

However, ˚ is required in the momentum equations at full-levels. Therefore a
further contribution proportional to Tk is added to obtain full-level values of ˚ :

˚k D ˚kC1=2 C ˛kRTk: (4.6)

We have some freedom in exactly how the ˛’s are specified; see Simmons and
Burridge (1981) for a specific example. Here we will not specify ˛ but keep the
discussion as general as possible. Note that ˛k may depend on pk�1=2 and pkC1=2
and hence on ps.

Note that this scheme supports a computational mode: for any given hydro-
statically balanced profile of Tk , ps, and ˚k , we can find a pattern of T and ps
perturbations that, when added to the original profile, has no effect on the˚k . Such a
perturbation profile is therefore invisible to the dynamics. See Sect. 4.5.2 for further
discussion.

4.4.2 Angular Momentum Conservation

The vertical coordinate defines the pressure at the half-levels. However, for the
momentum equation we require the horizontal pressure gradient at the full-levels.
Demanding angular momentum conservation tells us how we should define the
full-level pressure gradient.

In spherical coordinates, the equation for the eastward velocity component is

Du

Dt
� uv tan �

a
� f v C 1

a cos�

@˚

@�
C RT

p

1

a cos�

@p

@�
D 0; (4.7)

where a is the Earth’s radius. Multiplying by a cos� and using aD�=Dt D v gives
an equation for the angular momentum density m D ua cos� C a2˝ cos2 �:

Dm

Dt
C @˚

@�
C RT

p

@p

@�
D 0: (4.8)

The net source of angular momentum, integrated over a latitudinal slice, is
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where ˚s is the surface geopotential, and we have used the hydrostatic relation and
the boundary conditions to simplify the integral. Repeating this derivation for the
finite difference scheme, we find that a finite difference analogue of this formula
will hold provided

NX
kD1

˚k
@

@�
�pk D ˚s @ps

@�
C

NX
kD1

R

�
T

p

@p

@�

�
k

�pk ; (4.10)

which, in turn, will hold provided we define the full-level pressure gradient via

�
RT

p
rp

�
k

D RTk

�pk

	�
ln
pkC1=2
pk�1=2

�
rpk�1=2 C ˛kr.�pk/



; (4.11)

where ˛k is the same as used in (4.6) to define the full-level ˚ .

4.4.3 Energy Conservation

Taking v times the momentum equation gives

D

Dt

�
v2

2

�
D �v:r˚ � RT

p
v:rp; (4.12)

while the thermodynamic equation may be written

D

Dt
cpT D RT!

p
; (4.13)

where

! � Dp

Dt
D �

Z 	

0

r:
�

v
@p

@�

�
d�C v:rp: (4.14)

The terms on the right hand sides of (4.12) and (4.13) represent conversions between
kinetic and potential or internal energy. The global integral of the sum of the
conversion terms vanishes, implying energy conservation.

For the discretization we need to define ! at full-levels using a finite-difference
analogue of (4.14). It may be verified that if we evaluate RT=p times the vertical
integral term as
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RTk

�pk

"�
ln
pkC1=2
pk�1=2

� k�1X
rD1
r:.vr�pr/C ˛kr:.vk�pk/

#
(4.15)

and evaluate .RT=p/rp using (4.11) as in the momentum equation then all contri-
butions to the global integral of the conversion terms do indeed cancel and so the
scheme preserves energy conservation.

The expressions (4.11) and (4.15) are not the most obvious finite difference dis-
cretizations of the corresponding continuous expressions; it is typically non-trivial
to obtain such conservation properties.

4.5 Wave Dispersion and Balance

In Chap. 3 we saw how different choices of horizontal grid staggering (and prog-
nostic variables) can affect the accuracy with which we capture the propagation of
different classes of waves, particularly short wavelength waves that are marginally
resolved. Accurate representation of the propagation of fast waves is important for
capturing adjustment towards balance, and hence for capturing balanced motions
themselves. Similar issues arise when considering vertical discretizations.

4.5.1 The Lorenz and Charney–Phillips Grids

For models solving the hydrostatic equations we have three-dimensional fields of
three prognostic variables: usually the two horizontal wind components (or some
equivalent information in terms of vorticy and divergence) and a thermodynamic
variable. (In some formulations we also have a surface pressure field.) Two classes
of vertical grid are widely used for hydrostatic models: those in which the thermo-
dynamic variable is stored at the same levels as the wind variables, and those in
which the thermodynamic variable is staggered in the vertical relative to the wind
variables. These are commonly referred to as the Lorenz grids and Charney–Phillips
grids, respectively, (Fig. 4.4) after Lorenz (1960) and Charney and Phillips (1953).

Fig. 4.4 Schematic showing
the vertical arrangement of
variables for the Lorenz (left)
and Charney–Phillips (right)
grids u, v, θ

u, v, θ

u, v

θ

u, v

θ
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4.5.2 Lorenz Grid Computational Mode

One well-known drawback of the Lorenz grids is that they support a computational
mode. Consider, for example, the Simmons and Burridge scheme discussed above.
Suppose we have vertical profiles of T , ps and ˚ satisfying hydrostatic balance
(4.5). Now consider making some perturbations T 0

k
to the temperature values and

p0s to the surface pressure; through the linearized version of (4.5), these will imply
corresponding perturbations ˚ 0

k
in the geopotential. The geopotential perturbation

at the lowest full-level is

˚ 0N D ˛NRT 0N CRTN
d˛N

dps
p0s; (4.16)

while the difference between successive full-level geopotential perturbations is

˚ 0k �˚ 0k�1 D R
�
˛k C ln

�
pkC1=2
pk�1=2

��
T 0k

� R˛k�1T 0k�1
C
�
RTk

�
d˛k

dps
C bkC1=2
pkC1=2

� bk�1=2
pk�1=2

�
� RTk�1 d˛k�1

dps

�
p0s ;

(4.17)

where bkC1=2 D dpkC1=2=dps.
For an arbitrary p0s, we can ensure that ˚ 0N vanishes by a suitable choice of

T 0N . But then we can ensure that ˚ 0N�1 vanishes by a suitable choice of T 0N�1,
and so on. In this way we can find a profile of T 0

k
such that all ˚ 0

k
vanish. Such a

p0s and T 0
k

profile will therefore have no effect on the momentum equation; it will
be invisible to the dynamics and will not propagate (Tokioka 1978; Arakawa and
Moorthi 1988). The key point here is that there is one more degree of freedom in
fTk; k D 1; :::; N Ipsg than there is in f˚k; k D 1; :::; N g; basic linear algebra then
implies that there exists a family of nonzero solutions for fT 0

k
; k D 1; :::; N Ip0sg

that make f˚ 0
k
; k D 1; :::; N g vanish.

Related to the existence of the computational mode is the possibility of a spuri-
ous resonant response to a steady thermal forcing. If the forcing projects onto the
computational mode then the response will grow linearly with time (until nonlinear
effects come into play) rather than reaching a steady response (Schneider 1987).

4.5.3 Compressible Euler Equations

The compressible Euler equations do not make the hydrostatic approximation
or any kind of incompressibility approximation; they therefore support acoustic
waves as well as inertio-gravity and Rossby waves. For the compressible Euler
equations we have five prognostic variables, usually three velocity variables and
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two thermodynamic variables. There are therefore many different possibilities for
choosing staggered grids. There are also different possible choices for which ther-
modynamic variables are predicted, e.g., any two from �, p, T , � , etc. In this
subsection we will restrict attention to the use of height ´ as the vertical coordi-
nate with a uniform grid spacing �´, but similar reasoning applies to other vertical
coordinates (Thuburn and Woollings 2005; Thuburn 2006).

Numerical exploration of a large number of possible configurations (Thuburn and
Woollings 2005) shows that:

� Accurate representation of acoustic waves is necessary (but not sufficient) for an
accurate representation of inertio-gravity waves

� Which in turn is necessary (but not sufficient) for an accurate representation of
Rossby waves

Here, by considering the dispersion relations for different kinds of waves, we
attempt to give heuristic explanations for the kinds of configuration that give the best
representation of wave propagation. Just as we found when considering horizontal
discretizations, we want to avoid or minimize taking averages, and we want to avoid
or minimize taking differences over 2�´, since these approximations introduce
large errors in the propagation of short waves.

In what follows we will consider wavelike solutions of the governing equa-
tions with wavevector .k; l;m/ and frequency !. Also define the total horizontal
wavenumber squared K2 D k2 C l2, the gravitational acceleration g, the Coriolis
parameter f , and the buoyancy frequencyN .

4.5.3.1 Acoustic Waves

The acoustic wave dispersion relation is

!2 � .m2 CK2/c2; (4.18)

where c is the speed of sound. Here, one factor of m comes from the vertical
derivative of p appearing in the w equation, and the other comes from the vertical
derivative of w appearing in the p equation. Thus, we will capture the dispersion
relation as accurately as possible if we capture these two vertical derivatives as
accurately as possible in the limit of short vertical wavelength. We therefore require:

� ı´p at the same level as w
� ı´w at the same level as p

where ı´ represents a finite difference approximation to @=@´. This implies that p
should be staggered with respect to w to obtain the most compact finite difference
approximations.

If p is not predicted but � is, then, for vertical-grid-scale waves, p perturba-
tions (expressed in terms of the two predicted thermodynamic variables) will be
dominated by � perturbations provided �´ � g=N 2, which will always hold in
practice; this then implies that � should be staggered with respect to w.
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4.5.3.2 Inertio-Gravity Waves

The inertio-gravity wave dispersion relation is

!2 � m2f 2 CK2N 2

m2 CK2
: (4.19)

The denominator arises in the same way as them2CK2 factor in the acoustic wave
dispersion relation and so again will be captured as accurately as possible provided
p (or �) is staggered with respect to w. The m2 term in the numerator also arises in
the same way, yet again requiring p (or �) staggered with respect to w. Depending
on the horizontal wavelength and on the relative sizes of f and N , it is possible
that the K2N 2 term in the numerator could dominate even for the shortest resolved
vertical wavelengths. To capture the K2N 2 term accurately requires that u and v
be stored at the same levels as p in order to capture the pressure gradient term in
the horizontal momentum equations without averaging, and also requires that the
buoyancy variable (e.g., the potential temperature �) be stored at the same levels as
w in order to capture the buoyancy source due to vertical advection and the effect
of buoyancy in the w equation without averaging.

If we do not predict � but predict, say, T and p or T and � then there are com-
parable contributions to the � perturbation from the two predicted thermodynamic
variables. Optimal wave propagation would then require both p or � staggered with
respect to w (to capture the m2f 2 term) and p or � collocated with w (to capture
the K2N 2 term), which is obviously not possible. In other words, optimal wave
propagation requires that we predict � or some function of � .

4.5.3.3 Rossby Waves

The Rossby wave dispersion relation is

! � � kˇN 2

m2f 2 CK2N 2
: (4.20)

The denominator arises in the same way as the m2f 2 C K2N 2 factor in the
inertio-gravity wave dispersion relation. It will be captured as accurately as pos-
sible provided p is staggered with respect to w and, ifK2N 2 can be large, provided
u and v are stored at the same levels as p and � is stored at the same levels asw. The
numerator will be captured accurately provided � is stored at the same levels as w.

4.5.3.4 Numerical Dispersion Relations for Some Example Configurations

Figure 4.5 shows two plausible grid configurations that are natural extensions to the
compressible Euler equations of the Lorenz and Charney–Phillips grids. According
to our heuristic reasoning above, the Charney–Phillips grid should be as accurate
as possible for all types of waves. This does indeed turn out to be the case; Fig. 4.6
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Fig. 4.5 Schematic showing the vertical arrangement of variables for compressible Euler versions
of the Lorenz (left) and Charney–Phillips (right) grids
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Fig. 4.6 Numerical dispersion relation for the optimal vertical configuration shown in the right
panel of Fig. 4.5 (crosses) and exact dispersion relation (diamonds). The domain depth is 104 m
with a rigid lid, horizontal wavelength is 1;000 km, and the geometry is that for a ˇ-plane at 45oN.
The reference state is resting and in hydrostatic balance with a uniform temperature of 250K.
The numerical dispersion relation was calculated for a uniform grid with 20 full-levels. The upper
curve corresponds to internal acoustic modes, the middle curve corresponds to the external acoustic
mode (mode number zero) and internal inertio-gravity modes, and the lower curve corresponds to
Rossby modes. Only westward propagating modes are shown. There are also eastward propagating
acoustic and inertio-gravity mode branches almost identical to the westward branches shown
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Fig. 4.7 As in Fig. 4.6 but for the vertical configuration shown in the left panel of Fig. 4.5

shows an example numerical dispersion relation, computed numerically, for this
configuration.

The Lorenz grid should be accurate for acoustic and inertio-gravity waves pro-
vided K2N 2 does not dominate m2f 2. Figure 4.7 shows the numerical dispersion
relation for this configuration when this condition holds. The acoustic and inertio-
gravity wave dispersion relations are indeed captured accurately, but the Rossby
modes are retarded (compare Fig. 4.6). Also, as in the hydrostatic case, the Lorenz
grid supports a zero-frequency computational mode, which is not visible in Fig. 4.7.

There are some subtleties in exactly how the pressure gradient term should be
evaluated, particularly if we wish to predict � rather than p to facilitate mass conser-
vation (Thuburn 2006). Figure 4.8 shows the numerical dispersion relation when we
predict � instead of p on the Charney–Phillips grid, assuming that the pressure gra-
dient term is written as .1=�/rp, discretized in the obvious way, with p diagnosed
from � and a vertically averaged � . In this calculation the buoyancy effect of � is,
in effect, vertically averaged, with the result that short-vertical-wavelength Rossby
waves are retarded. Figure 4.9 shows the numerical dispersion relation for the same
configuration if we use the alternative form cp�r˘ for the pressure gradient term,
where cp is the specific heat capacity at constant pressure and ˘ D .p=p0/

� .
This calculation feels the full buoyancy effect of � , and all waves are handled as
accurately as possible.
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Fig. 4.8 As in Fig. 4.6 but for the vertical configuration predicting � instead of p and using the
.1=�/rp form of the pressure gradient
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Fig. 4.9 As in Fig. 4.6 but for the vertical configuration predicting � instead of p and using the
cp�r˘ form of the pressure gradient
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4.6 Conclusion

The main choices of vertical coordinate have been introduced. They each have
advantages and disadvantages, and indeed there is ongoing research and develop-
ment pursuing several of the options.

Two of the main issues in the design of vertical discretizations are conservation
properties and wave dispersion properties, and we have touched on both topics. Bet-
ter wave dispersion properties can be obtained with the Charney–Phillips family of
grids, particularly if careful attention is paid to the formulation of the pressure gradi-
ent term. On the other hand, conservation properties are more easily obtained using
the Lorenz family of grids. There is ongoing debate over the relative importance of
these two factors, and new models are being developed with both Charney–Phillips
and Lorenz grids.

Incidentally, further issues and complexity arise when considering the cou-
pling of the dynamical core to the physical parameterizations. For example, with
a Charney–Phillips grid, should one store moisture at density levels, facilitating
conservation of moisture, or at �-levels, facilitating the calculation of important
thermodynamic quantities like relative humidity? There is clearly great scope for
further research.
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Chapter 5
Time Discretization: Some Basic Approaches

Dale R. Durran

Abstract The basic concepts of stability, consistency and convergence are intro-
duced. Additional measures of stability, such as A- and L-stability are discussed,
along with desirable stability properties for the time integration of partial differential
equations. The family of Runge–Kutta methods is reviewed, including both classi-
cal schemes and more recently developed strong-stability preserving and diagonally
implicit methods. The chapter concludes with a brief discussion of linear multistep
methods.

5.1 Introduction

Although the fundamental equations governing the evolution of geophysical fluids
are partial differential equations, ordinary differential equations arise in several con-
texts. The trajectories of individual fluid parcels in an inviscid flow are governed by
simple ordinary differential equations, and systems of ordinary differential equa-
tions may describe chemical reactions or highly idealized dynamical systems. Since
basic methods for the numerical integration of ordinary differential equations are
simpler than those for partial differential equations, and since the time-differencing
formulae used in the numerical solution of partial differential equations are closely
related to those used for ordinary differential equations, this chapter is devoted to the
analysis of methods for the approximate solution of ordinary differential equations.
Nevertheless some approaches to the solution of partial differential equations, such
finite-volume methods, arise from fully discretized approximations in both space
and time that cannot be correctly analyzed by considering the spatial and temporal
differencing in isolation (Chap. 8).
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Most of this chapter will focus on methods potentially suitable for use in the
numerical integration of time dependent partial differential equations. In compari-
son with typical ordinary differential equation solvers, the methods used to integrate
partial differential equations are relatively low order. Low-order schemes are used
for two basic reasons. First, the approximation of the time derivative is not the only
source of error in the solution of partial differential equations; other errors arise
through the approximation of the spatial derivatives. In many circumstances the
largest errors in the solution are introduced through the numerical evaluation of the
spatial derivatives, so it is pointless to devote additional computational resources
to higher-order time differencing. The second reason for using low-order meth-
ods is that practical limitations on computational resources often leave no other
choice.

Consider the initial value problem

d 

dt
D F. ; t/;  .0/ D  0I (5.1)

which will have a unique solution provided the function F is sufficiently smooth (in
particular, F must satisfy a Lipschitz condition.)1 Numerical approximations �n to
the true solution at some set of discrete time levels tn D n�t , n D 0; 1; 2; : : : may
be obtained by setting �0 D  0 and repeatedly stepping the solution forward by
solving algebraic equations in which �n depends only on the approximate solution
at previous time levels.

It is often helpful to consider the algebraic equations used to create these approx-
imate solutions as arising from one of two approaches. In the first approach, the time
derivative in (5.1) is replaced with a finite difference. In the second approach (5.1)
is integrated over a time interval�t

 .tnC1/ D  .tn/C
Z tnC1

tn

F
�
 .t/; t

�
dt; (5.2)

and the algebraic equations that constitute the numerical method provide an approx-
imate formula for evaluating the integral of F .

In the following, we will focus on the how the various stability conditions sat-
isfied by simple ordinary differential equation solvers influence their suitability for
the solution of partial differential equations. We then take a close look at Runge–
Kutta methods, which include a wide selection of schemes with various desirable
properties, many of which are not familiar to the atmospheric-science community.
The chapter concludes with a brief discussion of another popular family of schemes,
the linear multistep methods.

1 The Lipschitz condition is that jF.x; t/ � F.y; t/j � Ljx � yj for all x and y, and all t � 0;
where L > 0 is a real constant. One way to satisfy this condition is if j@F=@xj is bounded.
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5.2 Stability, Consistency and Convergence

The basic goal when computing a numerical approximation to the solution of a
differential equation is to obtain a result that indeed approximates the true solution.
In this section we will examine the relationship between three fundamental concepts
characterizing the quality of the numerical solution in the limit where the separation
between adjacent nodes on a numerical mesh approaches zero: consistency, stability
and convergence.

5.2.1 Truncation Error

The derivative of a function  .t/ at time tn could be defined either as

d 

dt
.tn/ D lim

�t!0
 .tn C�t/ �  .tn/

�t
; (5.3)

or as
d 

dt
.tn/ D lim

�t!0
 .tn C�t/ �  .tn ��t/

2�t
: (5.4)

If the derivative of  .t/ is continuous at tn, both expressions produce the same
unique answer. In practical applications, however, it is impossible to evaluate these
expressions with infinitesimally small �t . The approximations to the true deriva-
tive obtained by evaluating the algebraic expressions on the right side of (5.3) and
(5.4) using finite �t are known as finite differences. When �t is finite, the preced-
ing finite-difference approximations are not equivalent; they differ in their accuracy,
and when they are substituted for derivatives in differential equations they gener-
ate different algebraic equations. The differences in the structure of these algebraic
equations can have a great influence on the stability of the numerical solution.

Which of the preceding finite-difference formula is likely to be more accurate
when �t is small but finite? If  .t/ is a sufficiently smooth function of t , this
question can be answered by expanding the terms  .tn˙�t/ in Taylor series about
tn and substituting these expansions into the finite-difference formula. For example,
substituting

 .tn C�t/ D  .tn/C�t d 
dt
.tn/C .�t/2

2

d 2 

dt2
.tn/C .�t/3

6

d 3 

dt3
.tn/C : : :

into (5.3), one finds that

 .tn C�t/ �  .tn/
�t

� d 
dt
.tn/ D �t

2

d 2 

dt2
.tn/C .�t/2

6

d 3 

dt3
.tn/C : : : : (5.5)
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The right side of the preceding is the truncation error of the finite difference. The
lowest power of �t in the truncation error determines the order of accuracy of the
finite difference. Inspection of (5.5) shows that the one-sided difference is first-order
accurate. In contrast, the truncation error associated with the centered difference
(5.4) is

.�t/2

6

d 3 

dt3
.tn/C .�t/4

120

d 5 

dt5
.tn/C : : : ;

and the centered difference is therefore second-order accurate. If the higher-order
derivatives of  are bounded in some interval about tn, (i.e., if  is “smooth")
and �t is repeatedly reduced, the error in the second-order difference (5.4) will
approach zero more rapidly than the error in the first-order difference (5.3). The fact
that the truncation error of the centered difference is higher order does not, however,
guarantee that it will always generate a more accurate estimate of the derivative. If
the function is sufficiently rough and�t sufficiently coarse, neither formula is likely
to produce a good approximation, and the superiority of one over the other will be
largely a matter of chance.

Euler’s method (sometimes called forward-Euler) approximates the derivative in
(5.1) with the forward difference (5.3) to give the formula

�nC1 � �n
�t

D F.�n; tn/: (5.6)

Clearly this formula can be used to obtain �1 from the initial condition �0 D  0,
and then be applied recursively to obtain �nC1 from �n. How well does this simple
method perform?

One way to characterize the accuracy of this method is through its truncation
error, defined as the residual by which smooth solutions to the continuous problem
fail to satisfy the discrete approximation (5.6). Let 
n denote the truncation error at
time tn, then from (5.5),

 .tnC1/�  .tn/
�t

� F � .tn/; tn� D d 

dt
.tn/C 
n � F

�
 .tn/; tn

� D 
n; (5.7)

where the second equality holds because  is a solution to the continuous problem
and


n D �t

2

d 2 

dt2
.tn/CO



.�t/2

�
:

It is not necessary to explicitly consider the higher-order terms in the truncation
error to bound j
nj; if  has continuous second derivatives, the mean-value theorem
may be used to show

j
nj � �t

2
max

tn�s�tnC1

ˇ̌
ˇ̌d 2 
dt2

.s/

ˇ̌
ˇ̌ : (5.8)
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Euler’s method is consistent of order one because the lowest power of�t appearing
in tn is unity. If the centered difference (5.4) were used to approximate the time
derivative in (5.6), the resulting method would be consistent of order two.

5.2.2 Convergence

A consistent method is one for which the truncation error approaches zero as
�t ! 0. The order of the consistency determines the rate at which the solution
of a stable finite-difference method converges to the true solution as �t ! 0. To
examine the relation between consistency and convergence, define the global error
at time tn as En D �n �  .tn/. From (5.7),

 .tnC1/ D  .tn/C�tF
�
 .tn/; tn

�C�t 
n; (5.9)

which implies that if we start with the true solution at tn, the local or one-step
error generated by Euler’s method in approximating the solution at tnC1 is �t 
n,
which is one power of �t higher that the truncation error itself. One might suppose
that the global error in the solution at time T is bounded by the maximum local
error times the number of times steps .maxn j�t 
nj/.T=�t/ which, like 
n itself, is
O.�t/. This would be a welcome result because it would imply the error becomes
arbitrarily small as the time step approaches zero, but such reasoning is incorrect
because it does not account for the difference between �n and  .tn/ arising from
the accumulation of local errors over the preceding time steps. The increase in the
global error generated over a single step satisfies

EnC1 D En C�t


F.�n; tn/� F

�
 .tn/; tn

�� ��t 
n; (5.10)

which may be obtained by solving (5.6) for �nC1 and subtracting (5.9). As appar-
ent from (5.10), the numerical solution will converge to the true solution provided
F.�n; tn/ � F

�
 .tn/; tn

�
remains finite in the limit �t ! 0.

It is easy to show that Euler’s method converges for the special case where

F. ; t/ D � C g.t/; (5.11)

where � is a constant.2 We will examine this special case because it reveals the rel-
atively weak stability condition required to assure convergence to the true solution
in the limit �t ! 0. Substituting (5.11) into (5.10) gives

EnC1 D .1C ��t/En ��t 
n: (5.12)

2 More general conditions sufficient to guarantee the convergence of Euler’s are that F is an ana-
lytic function (Iserles 1996, p. 7) or that the first two derivatives of  are continuous (Hundsdorfer
and Verwer 2003).
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Note that g.t/, the part of F. ; t/ that is independent  , drops out and has no
impact on the growth of the global error. Suppose that N D T=�t is the number
of time steps required to integrate from the initial condition at t D 0 to some fixed
time T .

From (5.12)

EN D .1C ��t/EN�1 ��t 
N�1
D .1C ��t/ Œ1C ��t/EN�2 ��t 
N�2	 ��t 
N�1

and by induction,

EN D .1C ��t/NE0 ��t
NX
mD1

.1C ��t/N�m
m�1:

Let


max D �t

2
max

0�s�tN

ˇ̌̌
ˇd

2 

dt2
.s/

ˇ̌̌
ˇ ;

which from (5.8) is an upper bound on j
nj for all n independent of the choice
of time step used to divide up the interval Œ0; T 	. Assuming the initial error E0 is
zero (although an O.�t/ error would not prevent convergence), and noting that for
�t > 0, 1C j�j�t � ej�j�t , one obtains

jEN j � N�t .1C j�j�t/N 
max D Tej�jT 
max: (5.13)

Since Tej�jT has some finite value independent of the numerical discretization and

max is O.�t/, the global error at time T must approach zero in proportion to the
first power of �t .

5.2.3 Stability

The foundation for the theory of numerical methods for differential equations is
built on the theorem that consistency of order p and stability imply convergence
of order p (Dalhquist 1956; Lax and Richtmyer 1956) . Evidently Euler’s method
satisfies some type of stability condition since it is consistent and is convergent of
order unity. The relation (5.12), which states that previous global errors amplify by
a factor of .1C ��t/ over each individual time step, provides the key for bounding
the growth of the global error over a finite time interval. Define the amplification
factor A as the ratio of the approximate solution at two adjacent time steps,

A D �nC1=�n: (5.14)
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A two-time-level method is stable in the sense that, if it is also consistent, it will
converge in the limit �t ! 0 provided that for some constant � (independent of the
properties of the numerical discretization)

jAj � 1C ��t: (5.15)

In the previous simple example, � D � is just the coefficient of  in the forcing
F. ; t/. When Euler’s method is applied to more general problems, � is a con-
stant associated with the Lipschitz condition on F. ; t/. Essentially all consistent
two-time-level ordinary differential equation solvers satisfy this stability condi-
tion, but as discussed in Sect. 5.3.4, bounds similar to (5.15) are not satisfied by
many potentially reasonable approximations to time-dependent partial differential
equations.

5.3 Additional Measures of Stability and Accuracy

Although Euler’s method is sufficiently stable to converge in the limit �t ! 0, it
may nevertheless generate a sequence �0; �1; : : : that blows up in a completely
nonphysical manner when the computations are performed with finite values of
�t . Again suppose F. ; t/ D � , if � < 0, the true solution  0e�t is bounded
by  0 for all time and approaches zero as t ! 1: Yet if ��t < �2, then
A D 1C ��t < �1, and the numerical solution changes sign and amplifies geo-
metrically every time step, diverging wildly from the true solution.

5.3.1 A-Stability

How can we characterize the stability of a consistent numerical method to give an
indication whether a solution computed using finite �t is likely to blow up in such
an “unstable” manner? Clearly there are many physical problems where the true
solution does amplify rapidly with time, and of course any convergent numerical
method must be able to capture such amplification. On the other hand, there are also
many problems in which the norm of the solution is bounded or decays with time.
It is not practical to consider every possible case individually, but it is very useful to
evaluate the behavior of schemes on the simple test problem

d 

dt
D � ;  .0/ D  0; (5.16)

where in contrast to our previous examples,  and � are complex-valued. Breaking
� into its real and imaginary parts, such that � D � C i! with � and ! real, the
solution to (5.16) is

 .t/ D  0e�tei!t ;



82 D.R. Durran

showing that <f�g determines rate of change of the magnitude (or modulus) of  ,
while =f�g governs the rate of change of its phase (or argument).

Despite its simplicity, (5.16) is prototypical of the time variations found in many
important fluid-dynamical problems. For example the concentration � of a passive
tracer in a flow moving at speed c and diffusing with a diffusivity M along one
spatial dimension is given by the partial differential equation

@�

@t
C c @�

@x
DM @2�

@x2
: (5.17)

Suppose the spatial domain is jxj � 1 and periodic, then the solution may be deter-
mined as the superposition of Fourier modes, each of which may be expressed in
the form bk.t/e

ikx , where bk is a complex number determining the amplitude and
phase of each mode and k D n
; n D 0;˙1;˙2; : : : is the wavenumber. The
wavenumber is inversely proportional to the wavelength, L D 2
=k, which is the
distance over which a wave’s shape repeats. Substituting an arbitrary Fourier mode
into (5.17) yields the following ordinary differential equation of the form (5.16):

dbk

dt
D � �Mk2 C ick� bk: (5.18)

Note that in the context of the advection-diffusion problem, <f�g determines the
changes in amplitude produced by diffusion and =f�g governs changes in phase
produced by advection.

Numerical solutions to (5.16) computed with some specific value of�t are abso-
lutely stable if j�nj � j�0j for all n, or equivalently, if jAj � 1. The amplification
factor for Euler’s-method solutions to (5.16) is 1C��t , so the values of .��t; !�t/
for which jAj � 1 satisfy the inequality

.1C ��t/2 C .!�t/2 � 1:

This region of absolute stability, which is the interior of a unit circle centered at
(-1,0) in the ��t-!�t plane, is plotted in Fig. 5.1a.

The true solution to (5.16) is non-amplifying for all � � 0: This behavior is cap-
tured by numerical methods that are A-stable. A numerical method that is absolutely
stable for all ��t � 0 is A-stable. Forward differencing is not A-stable, but as will
be discussed in Sect. 5.3.3, the other methods whose absolute stability regions are
shown in Fig. 5.1 are A-stable. A less restrictive variant of A-stability, known as
A.˛/ stability, is discussed in Iserles (1996), Hundsdorfer and Verwer (2003) and
LeVeque (2007).

5.3.2 Phase-Speed Errors

When M D 0, the prototype (5.18) reduces to the oscillation equation

d 

dt
D i! ; (5.19)
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Fig. 5.1 Absolute stability regions (shaded) for (a) forward Euler, (b) trapezoidal differencing,
and (c) backward Euler

which serves as important model for many non-dissipative dynamical systems. The
oscillation equation may also be derived from a two-component real-valued system
of ordinary differential equations such as those representing Coriolis accelerations,

du

dt
� f v D 0

dv

dt
C f u D 0;

by setting  D uC iv and ! D �f .
Integrating the oscillation equation over a time �t yields,

 .t0 C�t/ D ei!�t .t0/ � Ae .t0/: (5.20)

Here the last relation defines an “exact amplification factor"Ae , which in the case of
the oscillation equation, is a complex number of modulus one. According to (5.20),
over the time interval �t ,  moves !�t radians around a circle in the complex
plane of radius j .t0/j centered at the origin.

Hundreds of papers have been written investigating techniques for solving (5.17)
with M D 0 (see for example the extensive review in Rood (1987)). The vast-
ness of this body of literature is a testament to the subtle tradeoffs involved in the
selection of the “best” numerical method for even very simple equations. It might
be supposed that the relative accuracy of different methods for the M D 0 prob-
lem could be easily determined by comparing their respective truncation error. The
analysis of truncation error is, however, most effective at predicting the behav-
ior of well resolved features which oscillate over periods at least an order of
magnitude larger than a single time step. The most serious errors are, however,
often found in the poorly resolved features oscillating over periods between 2�t
and 4�t . These errors typically appear in both the phase and amplitude of the
solution.
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Phase errors for numerical solutions to the oscillation equation can be evalu-
ated from the amplification factor. ExpressingA in modulus-argument form jAjei� ,
where

jAj D .<fAg2 C=fAg2/1=2; and � D arctan .=fAg=<fAg/ :

phase errors may be characterized by the relative phase change,R D �=!�t , which
is the ratio of the phase advance produced by one time step of the numerical scheme,
divided by the change in phase experienced by the true solution over the same time
interval. If R > 1, the method is accelerating; if R < 1, the scheme is decelerating.
Phase errors accumulate over the period of integration and can become quite large
over long time periods.

In a non-dissipative system, amplitude errors represent spurious sinks or sources
of energy. Amplitude errors arise from the difference between the magnitude of the
approximate amplification factor jAj and the correct value of unity. When jAj D 1,
the scheme is neutral. If jAj < 1, the scheme is damping; and if jAj > 1, it is ampli-
fying. The range of values of �t for which a given approximation to the oscillation
equation is not amplifying are given by the intersection of the absolute stability
region for the scheme and the imaginary (!�t) axis, which in the case of Euler’s
method (Fig. 5.1a) is just the origin.

5.3.3 Single-Stage, Single-Step Schemes

The simplest techniques for the solution of the ordinary differential equation (5.1)
are members of the general family of single-stage single-step schemes, which may
be written in the form

�nC1 � �n
�t

D .1 � ˛/F.�n; tn/C ˛F.�nC1; tnC1/: (5.21)

Euler’s method is obtained by setting ˛ D 0; the backward-Euler method corre-
sponds to the case ˛ D 1, and the trapezoidal method is obtained when ˛ D 1=2.
Substituting the true solution  into (5.21), expanding all terms in Taylor series
about tn, and using

F. .tnC1/; tnC1/ D d 

dt
.tnC1/ D d 

dt
.tn/C�t d

2 

dt2
.tn/C .�t/

2

2

d 3 

dt3
.tn/C : : : ;

one may show the truncation error for all members of this family of schemes is
O.�t/, except for the trapezoidal method which is O



.�t/2

�
.

Application of (5.21) to the test equation for absolute stability (5.16) yields

A D �nC1
�n
D 1C .1 � ˛/��t

1 � ˛��t : (5.22)
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For backward Euler, A D .1 � ��t/�1 D .1 � ��t � i!�t/�1. Multiplying A by
its complex conjugate gives

jAj2 D 1

.1 � ��t/2 C .!�t/2 ;

implying that backward-Euler differencing will produce absolutely stable solutions
for all .��t; !�t/ outside the circle

.1 � ��t/2 C .!�t/2 � 1: (5.23)

This region is shown in Fig. 5.1c, and since it includes the region ��t � 0,
backward-Euler differencing is A-stable. Although it generates physically appro-
priate solutions for � < 0, the backward-Euler method can produce large errors
if � > 0. If � > 0 and .��t; !�t/ is not inside the circle (5.23), the numerical
solution will decay but the true solution should grow exponentially with time.

The amplification factor for the trapezoidal method is

A D 1C ��t=2
1� ��t=2 ; (5.24)

from which

jAj2 D .1C ��t=2/2 C .!�t/2
.1� ��t=2/2 C .!�t/2 :

Thus, the absolute stability region for the trapezoidal method (shown in Fig. 5.1b)
is the half-plane ��t � 0 and it is A-stable.

Now consider the behavior of these schemes in the purely oscillatory case; then
� D i!, and from (5.22)

jAj2 D 1C .1 � ˛/2.!�t/2
1C ˛2.!�t/2 D 1C .1 � 2˛/ .!�t/2

1C ˛2.!�t/2 : (5.25)

Inspection of the preceding shows that the scheme is amplifying when ˛ < 1=2,
neutral when ˛ D 1=2; damping when ˛ > 1=2. These results are consistent with
the locations of the boundaries of the absolute stability regions in Fig. 5.1.

The amplitude and phase errors in the approximate solution are functions of
the numerical resolution. The solution to the governing differential equation (5.19)
oscillates with a period T D 2
=!. An appropriate measure of numerical resolution
is the number of time steps per oscillation period, T=�t . The numerical resolution
is improved by decreasing the step size. In the limit of very good numerical resolu-
tion, T=�t ! 1 and !�t ! 0. Assuming good numerical resolution, the Taylor
series expansion

.1C x/1=2 D 1C x

2
� x

2

8
C : : : ; for jxj < 1;
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may be used to reduce (5.25) to

jAj � 1C 1
2
.1 � 2˛/.!�t/2:

It follows that

jAjforward � 1C 1
2
.!�t/2 and jAjbackward � 1 � 1

2
.!�t/2; (5.26)

indicating that the spurious amplitude changes introduced by both the forward and
backward-Euler methods are OŒ.!�t/2	.

The relative phase change in the family of single-stage two-level schemes is

R D 1

!�t
arctan

�
!�t

1 � ˛.1 � ˛/.!�t/2
�
:

Thus,

Rforward D Rbackward D arctan!�t

!�t
; (5.27)

which ranges between 0 and 1, implying that both the forward and backward-Euler
schemes are decelerating. Assuming, once again, that the numerical solution is well
resolved, the preceding expression for the phase-speed error may be approximated
using the Taylor series expansion

arctanx D x � x
3

3
C x5

5
� : : : for jxj < 1;

to obtain

Rforward D Rbackward � 1 � .!�t/
2

3
:

The phase-speed error, like the amplitude error, is OŒ.�t/2	. The relative phase
change for the trapezoidal scheme is

Rtrapezoidal D 1

!�t
arctan

 
!�t

1 � !2�t2=4

!
:;

which for small values of !�t is approximately,

Rtrapezoidal � 1

!�t
arctan

 
!�t

 
1C !2�t2

4

!!
� 1 � !

2�t2

12
:

As with the forward and backward Euler methods, the trapezoidal scheme retards
the phase change of well resolved oscillations. However, the deceleration is only 1

4

as great as that produced by the other schemes.
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Although the trapezoidal scheme is second-order accurate and A-stable, it has
the disadvantage in that it requires the evaluation of F.�nC1/ during the computa-
tion of �nC1. A scheme such as the trapezoidal method, in which the calculation
of �nC1 depends on F.�nC1/, is an implicit method. If the calculation of �nC1
does not depend on F.�nC1/, the scheme is explicit. In the case of the test problem
(5.16), implicitness is a trivial complication. However, if F is a nonlinear func-
tion, any implicit finite-difference scheme will convert the differential equation into
a nonlinear algebraic equation for �nC1. In the general case, the solution to this
nonlinear equation must be obtained by some iterative technique. Thus, implicit
finite-difference schemes generally require much more computation per individual
time step than do similar explicit methods. Nevertheless, in problems where accu-
racy considerations do not demand a short time step, the extra computation per
implicit time step can be more than compensated by using a much larger time step
than that required to maintain the stability of comparable explicit schemes.

5.3.4 Application to PDEs

Consider once again the advection-diffusion equation (5.17) that motivated the
selection of (5.16) as a prototype ODE. According to (5.18), each individual Fourier
coefficient bk oscillates at the frequency ck. The highest frequency resolved by any
completely discrete approximation to (5.17) will be that of the highest-wavenumber,
or equivalently, the shortest-horizontal-wavelength disturbance captured by the dis-
cretization. As a concrete example, suppose the spatial derivatives are replaced by
finite differences, then the maximum resolved k scales like .�x/�1. Let us tem-
porarily suppose that the physical viscosity M is zero, and that the finite difference
approximation to @ =@x does not introduce “numerical diffusion.”3 Then if Euler’s
method is used to approximate the time derivative, the frequency of the most rapidly
varying Fourier component !max will be O.c=�x/, and over each time step its
Fourier coefficient bkmax will change by a factor Akmax D 1C iO.c�t=�x/.

When attempting to obtain converged solutions to partial differential equations,
the spatial and temporal resolution are typically reduced simultaneously, keeping
�t=�x constant. But if �t and �x are both repeatedly halved and Euler’s method
is used to integrate the numerical solution over a fixed physical time T D N�t , the
inequality,

jAkmax j � 1C j!max�t j D 1CO.jc�t=�xj/;
cannot be used to bound jAkmax jN . Thus, the approach used to prove the con-
vergence of Euler’s method for ODEs in Sect. 5.2.2 fails, and as may be shown
rigorously (Durran 1999, p. 90), forward-in-time, centered-in-space approximations
to the pure advection problem are unstable. Those time stepping schemes suitable

3 Such diffusion can be avoided by using centered spatial differences (Durran 1999, p. 80).
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for use with centered-in-space approximations to the advection equation are ones
for which the point .0; !max�t/ lies in the scheme’s region of absolute stability
whenever jc�t=�xj is less than some constant.4

Now consider the case of pure diffusion, for which (5.18) reduces to

dbk

dt
D �Mk2bk: (5.28)

If the time-derivative is approximated by Euler’s method, the amplification factor
for the Fourier coefficient of the shortest wavelength, most rapidly decaying com-
ponent of the solution becomes 1 � OŒM�t=.�x/2	, which approaches negative
infinity if �t and �x are both repeatedly halved in an effort to obtain a convergent
approximation. In most practical applications involving diffusion dominated prob-
lems, �t=.�x/2 becomes unbounded as the numerical resolution is refined, and it
is therefore advantageous to approximate their temporal evolution using A-stable
schemes, all of which are implicit.

Explicit time differences may, nevertheless, yield good results in the special case
where M represents an “eddy diffusivity” Me rather than a true physical diffusiv-
ity. Eddy diffusivities are designed to parameterize the effects of mixing by fluid
motions whose scale is too small to be captured on the numerical mesh, and Me

is typically proportional to the spatial grid interval. Thus Me�t=.�x/
2 remains

constant as �t; �x ! 0 with �t=�x fixed, and it becomes practical to satisfy
conditions such as 0 �Me�t=.�x/

2 � 1, which would allow Euler’s to be used to
stably integrate those terms representing parameterized diffusion.

5.3.5 L-Stability

A-stability is not always sufficient to guarantee good behavior in practical applica-
tions involving systems of equations in which the individual components decay at
very different rates. When A-stable trapezoidal time differencing is used in conjunc-
tion with finite-difference approximations to the spatial derivative in the diffusion
equation, the amplification factor for the Fourier coefficient of the shortest wave-
length mode may be obtained by replacing �=2 in (5.24) with ��M=.�x/2, to
give

Akmax D
1 � �M�t=.�x/2
1C �M�t=.�x/2 ;

where � is a positive constant determined by the exact finite difference formulation.

4 When choosing a time step for the numerical solution of time-dependent PDEs, one must also
satisfy the Courant–Friedrichs–Levy condition that the numerical domain of dependence include
the domain of dependence of the true solution (see, e.g., Durran 1999).
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In some applications it is not necessary to follow the precise behavior of the
most rapidly decaying, shortest wavelength modes, and a time step appropri-
ate for the accurate and efficient simulation other aspects of the problem (for
example the slower diminution of the longer wavelength components) can make
M�t=.�x/2 � 1. Yet in the limit M�t=.�x/2!1, Akmax ! �1, in which case
the short-wavelength components of the trapezoidal integration will flip sign every
time step without significant loss of amplitude. Although large time steps will not
produce an unstable amplification of the shortest wavelength modes, sufficiently
large steps do prevent those modes from properly decaying.

The correct behavior in the limit M�t=.�x/2 ! 1 is recovered if backward-
Euler differencing is used to approximate the time derivative. Then the amplification
factor for the Fourier coefficient of the shortest-wavelength mode becomes

Akmax D
1

1C 2�M�t=.�x/2 ;

and the amplification factor approaches zero as�t=.�x/2 becomes arbitrarily large.
Backward-Euler differencing is an example of an L-stable method. L-stable methods
are defined in the context of the prototype ODE (5.16) as those schemes that are
A-stable and satisfy the additional property that A ! 0 as <f�g�t ! �1. L-
stable methods are of great use in simulation of systems in which chemical reactions
occur over a broad range of time scales (Hundsdorfer and Verwer 2003; LeVeque
2007).

5.4 Runge–Kutta (Multi-Stage) Methods

Definite integrals are often evaluated numerically through quadrature formulae

Z b

a

f .t/ dt �
sX

jD1
bjf .cj /; (5.29)

where the weights bj and the nodes cj are independent of the function f (Iserles
1996, p. 33). A similar strategy may be used to step the solution of an ordinary
differential equation forward over a time interval �t by approximating the integral
in (5.2) such that

 .tnC1/ �  .tn/C�t
sX

jD1
bjF. .tn C cj�t/; tn C cj�t/: (5.30)

In contrast to the situation with the simple quadrature formula (5.29), however, the
values of  .tn C cj�t/ required for the evaluation of (5.30) are not known at time
tn, and must therefore be estimated numerically through a series of preliminary
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calculations, or stages. An explicit s-stage Runge–Kutta scheme iteratively builds
an approximation to (5.30) as follows

�1 D �n (5.31)

�2 D �n C�t a2;1F.�1; tn/ (5.32)

�3 D �n C�t Œa3;1F.�1; tn/C a3;2F.�2; tn C c2�t/	 (5.33)
:::

�s D �n C�t
s�1X
jD1

as;jF.�j ; tn C cj�t/ (5.34)

�nC1 D �n C�t
sX

jD1
bjF.�j ; tn C cj�t/ (5.35)

By convention, we ensure that �j is at least a first order approximation to  .tn C
cj�t/ by setting c1 D 0 and

cj D
j�1X
kD1

aj;k j D 2; 3; : : : ; s: (5.36)

In explicit Runge–Kutta schemes aj;k D 0 for k 
 j . Implicit s-stage Runge–Kutta
schemes are obtained by replacing (5.31)–(5.34) with

�j D �n C�t
sX

kD1
aj;kF.�k; tn C ck�t/; (5.37)

where in general all the aj;k may be non-zero. The order conditions given above
(and in the next two sections) apply both to implicit and explicit Runge–Kutta
methods.

5.4.1 Explicit Two-Stage Schemes

Taylor series expansions may be used to arrive at the additional conditions Runge–
Kutta methods must satisfy to achieve a given level of accuracy. First-order accuracy
requires

sX
jD1

bj D 1: (5.38)

For a single-stage method, the unique solution to (5.38) is b1 D 1 and (5.31)–(5.35)
reduce to the forward Euler method. Second order accuracy requires (5.36), (5.38)
and
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sX
jD1

bj cj D 1

2
: (5.39)

For an explicit two-stage scheme, these accuracy requirements reduce to

c2 D a2;1; b1 C b2 D 1; b2c2 D 1=2;

which is a system of three equations in four unknowns whose solution is not unique,
but may be expressed in terms of the free parameter a2;1. One well-known second-
order two-stage scheme is the Heun method, for which a2;1 D 1 (and therefore
b1 D b2 D 1=2, c2 D 1). The Heun method creates a trapezoidal-like approxi-
mation to the integral of F , but differs from the true trapezoidal method because
F.�nC1; tnC1/ is replaced by the estimate F.�2; tnC1/. Another second-order two-
stage scheme is the midpoint method, in which a2;1 D 1=2. Also of note is the
first-order two-stage forward-backward scheme (Matsuno 1966) in which a2;1 D
b2 D c2 D 1 and b1 D 0.

One important difference among the basic explicit Runge–Kutta schemes is
whether they generate non-amplifying solutions in purely oscillatory problems. If
the oscillation equation, is approximated using a two-stage scheme of at least first
order, the result may be written as

�nC1 D �n C b2i!�t .�n C a2;1i!�t �n/C .1 � b2/i!�t �n: (5.40)

The amplification factor is

A D 1C i!�t � a2;1b2.!�t/2;

and
jAj2 D 1C .1 � 2a2;1b2/.!�t/2 C .a2;1b2/2.!�t/4; (5.41)

which shows that the set of second-order schemes, (i.e., those schemes for which
a2;1b2 D 1=2) haveOŒ.�t/4	 amplitude error, whereas the amplitude error in first-
order two-stage schemes isOŒ.�t/2	. Unfortunately, all the second-order two-stage
explicit Runge–Kutta schemes are amplifying, since in the limit of good numerical
resolution,

jAjRKe2 � 1C 1
8
.!�t/4:

Although these schemes are amplifying, the growth is OŒ.�t/4	. At a given step
size, the erroneous amplification produced by a second-order two-stage scheme will
be much weaker than the OŒ.�t/2	 growth produced by forward time-differencing
(or equivalently the first-order one-stage Runge–Kutta method, see (5.26)).

Many physical systems contain several different modes, each oscillating at a dif-
ferent frequency. When simulating these systems, the highest frequency components
of the numerical solution are likely to be most seriously in error because of their poor
numerical resolution. It is precisely these poorly resolved features that are amplified
most rapidly by the second-order two-stage methods. In contrast, non-amplifying
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solutions in which the high frequency components are strongly damped can be
obtained using Matsuno’s forward-backward scheme, for which

jAj2Matsuno D 1 � .!�t/2 C .!�t/4: (5.42)

The Matsuno scheme damps the solution whenever 0 < !�t < 1. Differentiation
of (5.42), with respect to !�t , shows that the maximum damping occurs when
!�t D 1=

p
2. Thus, if the time step is chosen such that 0 � !�t � 1=p2 for all

frequencies ! in the physical system, Matsuno time differencing will preferentially
damp the highest frequency waves. The damping properties of the Matsuno scheme
have been exploited to eliminate high-frequency gravity waves generated during the
initialization of weather prediction models. The standard Matsuno scheme produces
too much damping, however, for most nonspecialized applications. The fourth-order
Runge–Kutta scheme (see Sect. 5.4.2) may also be used to preferentially damp high
frequency modes, and in most instances it would be a better choice than the Matsuno
scheme because it is more efficient and far more accurate.

The amplitude errors generated by the preceding Runge–Kutta schemes are com-
pared those produced by backward Euler and trapezoidal differencing in Fig. 5.2.
The strong damping associated with the backward Euler and Matsuno schemes is
evident, along with the rapid amplification produced by forward Euler differenc-
ing. These relatively large errors may be contrasted with the significantly weaker
amplification produced by the second-order Runge–Kutta methods, and the neutral
amplification of the trapezoidal method.

The relative phase change associated with the general two-stage explicit Runge–
Kutta method (5.40) is

R D 1

!�t
arctan

�
!�t

1 � a2;1b2.!�t/2
�
:
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Fig. 5.2 The modulus of the amplification factor (a) and the relative phase change (b) as a func-
tion of temporal resolution !�t for the true solution and five two-level schemes: exact solution
(E) and trapezoidal method (T), forward Euler (F), backward Euler (B), second-order Runge–Kutta
(R), and Matsuno (M)
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In the limit of good numerical resolution, the relative phase changes produced by
second-order schemes and the Matsuno method scheme are

RRKe2 � 1C 1
6
.!�t/2: RMatsuno � 1C 2

3
.!�t/2:

The relative phase change for these schemes is plotted as a function of tempo-
ral resolution in Fig. 5.2, along with that for forward Euler, backward Euler, and
trapezoidal differencing. The Matsuno and second-order Runge–Kutta schemes are
accelerating, whereas the forward Euler, backward Euler, and trapezoidal schemes
are decelerating.

5.4.2 Explicit Three- and Four-Stage Schemes

Runge–Kutta schemes satisfying

sX
jD1

bj c
2
j D

1

3
and

sX
jD1

sX
kD1

bjaj;kck D 1

6
; (5.43)

as well as (5.36), (5.38) and (5.39) are third-order accurate. For explicit three-stage
Runge–Kutta schemes, (5.43) reduces to

b2c2 C b3c3 D 1

3
and b3a3;2c2 D 1

6
:

As with the second-order methods there is no unique choice for the coefficients of a
three-stage third-order scheme. On example is Heun’s third-order method,

�1 D �n; �2 D �n C �t

3
F.�1; tn/; �3 D �n C 2�t

3
F.�2; tn C �t

3
/;

�nC1 D �n C �t

4

h
F.�1; tn/C 3F.�3; tn C 2�t

3
/
i

Another possibility is the low storage variant recommended by Williamson
(1980) which may be written as

q1 D �tF.�n; tn/ �.1/ D �n C q1=3
q2 D �tF.�.1/; tn C �t

3
/� 5q1=9 �.2/ D �.1/ C 15q2=16

q3 D �tF.�.2/; tn C 5�t
12
/� 153q2=128 �nC1 D �.2/ C 8q3=15:

In practical applications involving time-dependent partial differential equations,
�n may be an extremely long vector of unknown variables (e.g., the velocity, tem-
perature, pressure and mixing ratio of chemical species at every node on a large
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three-dimensional mesh). It may, therefore, be difficult to store several copies of
� and F.�/ in the in-core memory of a digital computer. If m is the number
of unknowns in �, the Williamson–Runge–Kutta scheme economizes on stor-
age by allowing the integration to proceed using only 2 m storage locations,
divided between the arrays q and �, which are overwritten three times during each
integration step.

In addition to (5.36)–(5.39) and (5.43), fourth-order Runge–Kutta methods
must satisfy four additional equations (Hundsdorfer and Verwer 2003, p. 141).
Once again, the solutions for the coefficients of a four-stage explicit method are
not unique. The most well-known four-stage fourth-order method is the classical
Runge–Kutta formulation,

�1 D �n; �2 D �n C �t

2
F.�1; tn/;

�3 D �n C �t

2
F.�2; tn C �t

2
/; �4 D �n C�t F.�3; tn C �t

2
/;

(5.44)

�nC1 D �nC �t
6

h
F.�1; tn/C 2F.�2; tnC �t

2
/C 2F.�3; tnC �t

2
/CF.�4; tnC1/

i
:

Low-storage variants also exist for fourth-order schemes (Blum 1962), but in con-
trast to the third-order methods, they require 3 m storage locations to advance an
m-dimensional vector of unknowns forward in time.

Fifth- or higher-order explicit Runge–Kutta schemes are relatively unattractive
because the number of stages required to achieve order s exceeds s for all s > 4.
Nevertheless, the simple s-stage scheme

�0 D �nI �j D �n C �t

s � j C 1F.�j�1/; 1 � j � sI �nC1 D �s ;
(5.45)

is accurate to order s when F. / is linear in  (as would be the case in many
applications involving time-dependent partial differential equations). When F is
nonlinear, (5.45) is only second-order accurate.

Figure 5.3 shows the amplification factor for third- and fourth-order Runge–
Kutta solutions to the oscillation equation (5.19) plotted as a function of temporal
resolution. As shown in Fig. 5.3, once the time step exceeds the maximum sta-
ble time step for the third-order scheme, the fourth-order method becomes highly
damping. In some circumstances it may be desirable to selectively damp the highest
frequency modes, and in such cases the fourth-order Runge–Kutta method would
be clearly preferable to the first-order Matsuno method. On the other hand, if one
wishes to avoid excessive damping of the high-frequency components, it will not be
possible to use the full stable time step of the fourth-order Runge–Kutta scheme.

As was the case for the two-stage first-order Matsuno method, the stability of
explicit Runge–Kutta solutions to the oscillation equation may be enhanced by
adding extra stages if one is willing to settle for first- or second-order accuracy.
In particular, the stability condition max j!�t j D s � 1 may be obtained for an
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Fig. 5.3 Modulus of the amplification factor plotted as a function of temporal resolution !�t for
third-order three-stage (dashed) and fourth-order four-stage (solid) explicit Runge–Kutta solutions
to the oscillation equation
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Fig. 5.4 Absolute stability regions for explicit Runge–Kutta schemes: (a) of equal orders and
stages, 1 through 4; (b) two-stage methods: Matsunno (solid) and second-order (dashed); (c) four-
stage methods: Spiteri and Ruuth’s third-order SSPRK scheme (solid) and fourth-order (dashed).
In each case, the region of absolute stability lies inside the curve. When ! D 0, the absolute
stability region for the Spiteri–Ruuth scheme extends to roughly ��t D �5:15

s-stage scheme that will be second-order accurate if s is odd, and first-order accu-
rate when s is even (Hundsdorfer and Verwer 2003, p. 150). Note that despite their
high-order accuracy, explicit fourth-order four-stage Runge–Kutta methods are sta-
ble for max j!�t j < 2:82which is very close to the optimal limit of max j!�t j D 3
obtainable using a first-order four-stage explicit method.

Absolute stability regions for explicit Runge–Kutta schemes of orders one
through four are plotted in Fig. 5.4a. Consistent with the behaviors of the ampli-
fication factors for the oscillation equation shown in Figs. 5.2 and 5.3, the third-
and fourth-order methods are the only ones for which the absolute stability regions
includes a finite segment of the imaginary axis. None of these methods, and indeed
no explicit Runge–Kutta scheme is A-stable.

Figure 5.4b compares the absolute stability region for a pair of explicit two-
stage methods, the first-order Matsuno method and any second-order scheme. The
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increase in absolute stability along the real axis in the Matsuno scheme is achieved
not only by sacrificing accuracy, but also by considerably reducing the overall region
of absolute stability relative to the second-order schemes.

5.4.3 Strong-Stability Preserving Methods

Many methods for the numerical integration of conservation laws avoid the gen-
eration of spurious maxima and minima through the use of some type of flux
limiter. The time differencing associated with such methods is often forward Euler.
Strong-stability perserving Runge–Kutta (SSPRK) schemes can be used to obtain
higher-order accuracy in time while preserving the beneficial results of the flux lim-
iter. To be more precise, suppose thatU is a vector of unknowns at every point on the
spatial mesh, and that kU k represents a measure such as the maximum of jU j or
the total variation of U over all spatial grid points. Let B.�/ be an approxima-
tion to the flux divergences in a conservation law such that

UnC1 D .I C�tB/Un; (5.46)

and suppose that the fluxes are limited so that kUnC1k � kUnk provided
jc�t=�xj � 1, where c is the phase speed at which signals are propagated by
the conservation law. SSPRK methods allow the forward-in-time approximation in
(5.46) to be replaced by a higher-order scheme while preserving the strong-stability
condition that kUnC1k � kUnk.

SSPRK schemes are constructed by forming linear combinations of forward-
Euler operators in which the coefficient multiplying each operator is positive. The
positivity of the coefficients ensures that a conservation law integrated with the new
scheme retains the strong-stability properties of the original forward-Euler approxi-
mation (5.46). The precise value of the positive coefficients is chosen to obtain some
combination of high-order accuracy and a favorable maximum stable time step. A
two-stage second order SSPRK method is

�.1/ D �n C�tB.�n/;
�.2/ D �.1/ C�tB.�.1//;
�nC1 D 1

2

�
�n C �.2/

�
; (5.47)

and a three-stage third-order scheme is

�.1/ D �n C�tB.�n/;
�.2/ D 3

4
�n C 1

4



�.1/ C�tB.�.1//

�
;

�nC1 D 1
3
�n C 2

3



�.2/ C�tB.�.2//

�
: (5.48)
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Both of these schemes, which were proposed by Shu and Osher (1988), are strong-
stability preserving for jc�t=�xj � 1.

The schemes (5.47) and (5.48) are optimal in the sense that no second-order two-
stage or third-order three-stage SSPRK scheme exists that allows a larger maximum
time step. (Gottlieb and Shu 1998). Nevertheless, in some applications the four-
stage, third-order SSPRK scheme proposed by Spiteri and Ruuth (2002)

�.1/ D �n C 1
2
�tB.�n/;

�.2/ D �.1/ C 1
2
�tB.�.1//;

�.3/ D 2
3
�n C 1

3



�.2/ C 1

2
�tB.�.2//

�
;

�nC1 D �.3/ C 1
2
�tB.�.3//; (5.49)

may be more efficient because it is strong-stability preserving for jc�t=�xj � 2,
allowing one to double the time step while increasing the computational burden
associated with the evaluation of B by only 33% relative to that required by (5.48).

It should be emphasized that these methods are only strong-stability preserv-
ing when flux-limiting ensures that the forward step (5.46) yields a strongly-stable
result. Amplifying solutions are produced if (5.47) is applied directly to the oscil-
lation equation (5.19). Since (5.47) is an explicit two-stage second-order method
and since (5.48) is an explicit three-stage third-order scheme, their absolute stability
regions are exactly those shown for the second- and third-order methods in Fig. 5.4a.
On the other hand, as shown in Fig. 5.4c, the four-stage third-order scheme (5.49)
has a different, and generally larger, region of absolute stability than the family of
four-stage, fourth-order Runge–Kutta methods. More information about SSP time-
differencing schemes may be found in the reviews by Gottleib et al. (2001) and
Gottleib (2005).

5.4.4 Diagonally Implicit Runge–Kutta Methods

Diagonally implicit Runge Kutta schemes are obtained when the implicit coupling in
(5.37) is limited by requiring aj;k D 0 whenever k > j . In comparison to methods
with more extensive implicit coupling, the relative efficiency of diagonally implicit
schemes make them more attractive for applications involving PDEs or large sys-
tems of ODEs. Backward Euler differencing is a first-order accurate single-stage
diagonally implicit Runge–Kutta scheme. The implicit midpoint method,

�1 D �n C 1
2
�t F.�1; t C 1

2
�t/

�nC1 D �n C�t F.�1; 12�t/; (5.50)

is a second-order accurate single-stage scheme. The implicit midpoint method is A-
stable; its amplification factor is identical to that for the trapezoidal method (5.24).
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A family of two-stage diagonally implicit Runge–Kutta schemes of at least
second-order accuracy may be written in terms of a single free parameter ˛ as

�1 D �n C ˛�tF.�1; tn C ˛�t/;
�2 D �n C .1 � 2˛/�tF.�1; tn C ˛�t/C ˛�tF.�2; tn C .1 � ˛/�t/

�nC1 D �n C 1
2
�t ŒF.�1; tn C ˛�t/C F.�2; tn C .1 � ˛/�t/	 : (5.51)

Third order accuracy is obtained if ˛ D 1=2˙p3=6.
If one of the schemes defined by (5.51) is applied to the test problem (5.16), the

resulting amplification factor is

A D 1C .1 � 2˛/��t C .1
2
� 2˛C ˛2/.��t/2

.1 � ˛��t/2 : (5.52)

These schemes are A-stable if and only if ˛ 
 1=4, as may be easily appreciated
in the particular case for which ��t ! .�1; 0/; then the leading order behavior
of jAj is .1

2
� 2˛ C ˛2/=˛2 which is bounded by unity for ˛ 
 1=4. The .��t/2

term in the numerator of (5.51) is zero, and the scheme is L-stable if ˛ D 1 ˙
1
2

p
2. One attractive way for handling the implicitness in (5.51) is through Runge–

Kutta Rosenbrock methods. These are discussed in the context of photochemical air
pollution models in (Verwer et al. 1999).

5.5 Multistep Methods

Multistep methods are an alternative to multi-stage methods in which information
from several earlier time levels is incorporated into the integration formula. For
example, the general form for an explicit two-step method is

�nC1 D ˛1�n C ˛2�n�1 C ˇ1�tF.�n; tn/C ˇ2�tF.�n�1; tn�1/: (5.53)

In contrast to multistage methods, the forcing F. ; t/ is only evaluated at integer
time steps and all the required values except F.�n; tn/ have been already calcu-
lated at previous time steps. Since the evaluation of F. ; t/ is often computationally
intensive, storing and reusing these values has the potential to increase efficiency,
although obviously it may also require more storage. Multistep methods also require
special start-up procedures, because an n-step method requires data from the pre-
vious n time levels, but initial conditions for well posed physical problems give
information about the solution at only one time. Multistage or lower-order multistep
methods must therefore be used for the first n � 1 steps of the integration.

5.5.1 Explicit Two-Step Schemes

A complete discussion of linear multi-step methods is beyond the scope of this chap-
ter. In many geophysical applications, the memory required to store data from each
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time level is enormous, so we will focus on the family of two-step schemes (5.53).
When formulating a two-step scheme, one seeks to improve upon the single-step
methods, so it is reasonable to require that the global truncation error be at least
second order. The scheme (5.53), will be at least second order if

˛1 D 1 � ˛2; ˇ1 D 1
2
.˛2 C 3/; ˇ2 D 1

2
.˛2 � 1/; (5.54)

where the coefficient ˛2 remains a free parameter. Choosing ˛2 D 5 gives a third-
order scheme, but this method is useless because it is highly unstable (Durran 1999).
Since it is not practical to choose the coefficients in (5.54) to minimize the truncation
error, the most important explicit two-step schemes are obtained by choosing ˛2 to
minimize the amount of data that must be stored and carried over from the n � 1
time level, i.e., by setting ˛2 D 1, in which case ˇ2 D 0, or by setting ˛2 D 0. If
˛2 is set to one, (5.53) becomes the leapfrog scheme. The choice ˛2 D 0 gives the
two-step Adams–Bashforth method. The remainder of this section will be devoted
to an examination of the performance of these two schemes in problems with purely
oscillatory solutions.

The leapfrog and two-step Adams–Bashforth methods must be initialized using
a single-step scheme to compute �1 from �0. In most instances, a simple forward
step is adequate. Although forward differencing is amplifying, the amplification
produced by a single step will generally not be large. Moreover, even though the
truncation error of a forward-difference is O.�t/, the execution of a single forward
time step does not reduce the O



.�t/2

�
global accuracy of leapfrog and Adams–

Bashforth integrations. The basic reason thatO


.�t/2

�
accuracy is preserved is that

forward differencing is only used over a�t-long portion of the total integration. The
contribution to the total error produced by the accumulation of O



.�t/2

�
errors in

a stable scheme over a finite time interval is the same order as the error arising from
the accumulation of O.�t/ errors over a time �t .

5.5.2 The Leapfrog Scheme

If the leapfrog scheme,

�nC1 D �n�1 C 2�tF.�n; tn/; (5.55)

is used to integrate the oscillation equation (5.19), its amplification factor satisfies

A2 � 2i!�tA� 1 D 0;

whose two roots are

A˙ D i!�t ˙
�
1 � !2�t2�1=2 : (5.56)
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Evidently, the numerical solution is capable of behaving in two very different ways
or modes. The mode associated with AC is known as the physical mode because it
approximates the solution to the original differential equation. The mode associated
with A� is referred to as the computational mode since it arises solely as an artifact
of the numerical computation. If j!�t j � 1, the second term in (5.56) is real and
jACj D jA�j D 1, i.e., both the physical and the computational modes are stable
and neutral. In the case !�t > 1,

jACj D
ˇ̌
ˇi!�t C i �!2�t2 � 1�1=2

ˇ̌
ˇ > ji!�t j > 1;

and the scheme is unstable. When !�t < �1, a similar argument shows that
jA�j > 1.

The complete leapfrog solution can typically be written as a linear combination
of the physical and computational modes. An exception occurs if !�t D ˙1, in
which case AC D A� D i!�t , and the physical and computational modes are
not linearly independent. In such circumstances, the general solution to the leapfrog
approximation to the oscillation equation has the form

�n D C1.i!�t/n C C2n.i!�t/n:

Since the magnitude of the preceding solution grows as a function of time step, the
leapfrog scheme is not stable when j!�t j D 1. Nevertheless, the O.n/ growth of
the solution that occurs when !�t D ˙1 is far slower than theO.An/ amplification
that is produced when j!�t j > 1.

The source of the computational mode is particularly easy to analyze in the trivial
case of ! D 0; then the analytic solution to the oscillation equation (5.19) is  .t/ D
C , where C is a constant determined by the initial condition at t D t0. Under these
circumstances, the leapfrog scheme reduces to

�nC1 D �n�1; (5.57)

and the amplification factor has the roots AC D 1; A� D �1. The initial condition
requires �0 D C , which, according to the difference scheme (5.57), also guarantees
that �2 D �4 D �6 D : : : D C . The odd time levels are determined by a sec-
ond, computational initial condition imposed on �1. In practice �1 is often obtained
from �0 by taking a single time step with a single-step method, and the resulting
approximation to  .t0 C �t/ will contain some error E . It is obvious that in our
present example, the correct choice for �1 is C , but in order to mimic the situation
in a more general problem, suppose that �1 D C CE . Then the numerical solution
at any subsequent time will be the sum of two modes

�n D .AC/n�C C .A�/n�� D .C C E=2/� .�1/n.E=2/:
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Here, the first term represents the physical mode and the second term represents the
computational mode. The computational mode oscillates with a period of 2�t , and
does not decay with time.

In the previous example, the amplitude of the computational mode is completely
determined by the error in the specification of the computational initial condition
�1. Since there is no coupling between the physical and computational modes in
solutions to linear problems, the errors in the initial conditions also govern the
amplitude of the computational mode in leapfrog solutions to most linear equations.
If the governing equations are nonlinear, however, the nonlinear terms introduce a
coupling between �C and �� that often amplifies the computational mode until
it eventually dominates the solution. This spurious growth of the computational
mode can be avoided by periodically discarding the solution at �n�1 and taking a
single time step with a two-level scheme, or by filtering the high-frequency compo-
nents of the numerical solution (Asselin 1972; Williams 2009). Various techniques
for controlling the leapfrog scheme’s computational mode are discussed in Durran
(1999).

5.5.3 The Two-Step Adams–Bashforth Scheme

Another limitation of the leapfrog scheme is that is region of absolute stability is
just a line segment on the imaginary axis. That is, solutions to (5.16) will undergo
spurious amplification unless<f�g D 0. A larger region of absolute stability can be
obtained using the two-step Adams–Bashforth method,

�nC1 D �n C�t
�
3
2
F.�n; tn/ � 1

2
F.�n�1; tn�1/

�
: (5.58)

although as will become apparent shortly, that method is not suitable for the
simulation of purely oscillatory systems.

Applying (5.58) to the oscillation equation, one obtains

�nC1 D �n C i!�t
�
3
2
�n � 1

2
�n�1

�
:

The amplification factor associated with this scheme is given by the quadratic

A2 �
�
1C 3i!�t

2

�
AC i!�t

2
D 0;

in which case

A˙ D 1

2

 
1C 3i!�t

2
˙
�
1 � 9.!�t/

2

4
C i!�t

�1=2!
: (5.59)



102 D.R. Durran

As the numerical resolution increases, AC ! 1 and A� ! 0. Thus, the Adams–
Bashforth method damps the computational mode., which of course is highly
desirable. Unfortunately the physical mode is weakly amplifying, as revealed if
(5.59) is approximated under the assumption that !�t is small; then

AC D
�
1 � .!�t/

2

2
� .!�t/

4

8
� : : :

�
C i

�
!�t C .!�t/3

4
C : : :

�
;

A� D
�
.!�t/2

2
C .!�t/4

8
C : : :

�
C i

�
!�t

2
� .!�t/

3

4
� : : :

�
;

and
jACjA�B2 � 1C 1

4
.!�t/4; jA�jA�B2 � 1

2
!�t:

The modulus of the amplification factor of the physical mode exceeds unity by
an OŒ.!�t/4	 term, as was the case for the two-stage second-order Runge–Kutta
methods. The dependence of jACj and jA�j upon temporal resolution is plotted in
Fig. 5.5.

Although the two-step Adams–Bashforth method generates unstable amplifica-
tion, the three-step variant,

�nC1 D �n C �t

12
Œ23F.�n/� 16F.�n�1/C 5F.�n�2/	 ; (5.60)

gives non-amplifying solutions to the oscillation equation for !�t < 0:724, and
this third-order method is a better choice for the time integration of problems with
oscillatory solutions (Durran 1999).
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Fig. 5.5 Modulus of the amplification factors for the second order Adams–Bashforth scheme as
a function of temporal resolution !�t . The solid and dashed lines represent the physical and the
computational modes, respectively
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5.6 Summary Discussion

In this chapter we have investigated the performance of basic two-time-level, single-
step schemes to illustrate the various stability properties that might be satisfied by
numerical approximations to ordinary differential equations. A scheme that is only
stable enough to ensure convergence in the limit�t ! 0, such as the forward-Euler
method, will prove unsatisfactory when used with non-dissipative approximations
to spatial derivatives in problems like advective scalar transport. Stable results for
non-dissipative approximations to the advection problem may be obtained using
ODE solvers whose region of absolute stability includes a finite segment of the
imaginary axis, but all two-time-level, single-step schemes that meet this criterion
are implicit.

The leapfrog scheme is an explicit three-time-level scheme that can be used to
obtain stable, efficient second-order integrations to linear systems with oscillatory
solutions. The attractiveness of the leapfrog scheme is reduced by the behavior of
its undamped computational mode, which can become unstable through interactions
with the physical mode in nonlinear problems. As a consequence, in most practical
applications the leapfrog algorithm must be modified in some manner that reduces
it to first-order accuracy.

One possible alternative to the leapfrog scheme is the three-step (four-time-level)
Adams–Bashforth method. Other possibilities may be found among the family of
Runge–Kutta methods, which provide a large and flexible framework for creating
suitable solvers for many atmospheric applications. Classical three-step, third-order
and four-step, fourth-order Runge–Kutta schemes provide accurate and efficient
methods that are absolutely stable over a significant segment of the imaginary axis
and therefore suitable for use with non-dissipative approximations to spatial deriva-
tives in transport problems. Strong stability preserving Runge–Kutta schemes offer
a way to increase the accuracy of the time integration of flux-limited approximations
to conservation laws. Unlike classical linear multistep methods, diagonally implicit
Runge–Kutta methods can be A-stable and higher than second-order accurate.

Acknowledgments Thanks to the editors and to an anonymous reviewer for comments that helped
improve this chapter. Support for this research was provided by NSF grant ATM-0836316.
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Chapter 6
Stabilizing Fast Waves

Dale R. Durran

Abstract The atmosphere transmits wavelike signals at a wide range of speeds.
Rapidly moving, physically insignificant waves can impose very strict time-step
limitations on numerical methods in order to ensure the integrations remain stable.
Sound waves, for example, travel very rapidly but are of essentially no meteorolog-
ical significance, and it is not practical to simulate most atmospheric circulations
using the very short time steps required for the accurate and stable integration of
the sound waves. This chapter reviews techniques for circumventing such time step
restrictions, thereby allowing the step size to be chosen to ensure the accuracy and
stability of the physically significant components of the solution.

6.1 Introduction

One reason that explicit time differencing is widely used in the simulation of wave-
like flows is that accuracy considerations and stability constraints often yield similar
criteria for the maximum time step in numerical integrations of systems that support
a single type of wave motion. Many fluid systems, however, support more than one
type of wave motion, and in such circumstances accuracy considerations and stabil-
ity constraints can yield very different criteria for the maximum time step. If explicit
time differencing is used to construct a straightforward numerical approximation to
the equations governing a system that supports several types of waves, the maxi-
mum stable time step will be limited by the Courant number associated with the
most rapidly propagating wave, yet in some cases that rapidly propagating wave
may be of little physical significance.

As an example, consider the earth’s atmosphere which supports sound waves,
gravity waves and Rossby waves. Rossby waves propagate more slowly than gravity

D.R. Durran
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waves which in turn move more slowly than sound waves. The maximum stable
time step with which an explicit numerical method can integrate the full equations
governing atmospheric motions will be limited by the Courant number associated
with sound wave propagation. If finite differences are used in the vertical and the
vertical grid spacing is 300 m, the maximum stable time step will be on the order
of one second. Since sound waves have no direct meteorological significance, they
need not be accurately simulated in order to obtain a good weather forecast. The
quality of the weather forecast depends solely on the ability of the model to accu-
rately simulate atmospheric disturbances that evolve on much slower time scales.
Gravity waves can be accurately simulated with time steps on the order of 10–100 s;
Rossby waves require a time step on the order of 500–5,000 s. To obtain a reason-
ably efficient numerical model for the simulation of atmospheric circulations, it is
necessary to circumvent the stability constraint associated with sound wave propa-
gation and bring the maximum stable time step into closer agreement with the time
step limitations arising from accuracy considerations.

There are two basic approaches for circumventing the time step constraint
imposed by a rapidly moving, physically insignificant wave. The first approach is
to approximate the full governing equations with set of “filtered” equations that do
not support the rapidly moving wave. As an example, the full equations for stratified
compressible flow might be approximated by the Boussinesq equations for incom-
pressible flow. In this approach fundamental approximations are introduced to the
original continuous equations prior to any numerical approximations that may be
subsequently employed to generate finite-difference or spectral solutions to the fil-
tered governing equations. The use of the filtered equation set may be motivated
entirely by numerical considerations, or it may arise naturally from the standard
approximations used in the study of a given physical phenomena. Gravity waves,
for example, are often studied in the context of Boussinesq incompressible flow to
simplify and streamline the mathematical description of the problem.

The second approach for circumventing the time step constraint imposed by a
rapidly moving, physically insignificant wave leaves the continuous governing equa-
tions unmodified and relies on numerical techniques to stabilize the fast moving
wave. These numerical techniques achieve efficiency by sacrificing the accuracy
with which the fast moving wave is represented. Note that although the fast waves
are retained, this approach is not appropriate in applications where the fast moving
wave needs to be accurately simulated.

Approximate equation sets that filter sound waves include the Boussinesq, anelas-
tic (Ogura and Phillips 1962; Lipps and Hemler 1982), and pseudo-incompressible
(Durran 2008) systems. Of these three approaches, the Boussinesq equations are
the most concise mathematically, but the least accurate quantitatively because they
do not account for the decrease in atmospheric density with height. To reveal the
essential properties of the filtered nonhydrostatic equations with a minimum of
mathematically complexity, we will focus on the Boussinesq equations.

This chapter begins by examining techniques for the numerical solution of the
Boussinesq equations via the projection method. Numerical methods for stabiliz-
ing the solution to problems that simultaneously support fast- and slow-moving
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waves are then considered including the semi-implicit method in Sect. 6.3 and frac-
tional step methods in Sect. 6.4. Section 6.5 contains a summary discussion of these
methods.

6.2 The Projection Method

The Boussinesq system for adiabatic inviscid flow can be expressed in a compact
form involving the pressure potential P , the buoyancy b and the Brunt–Väisälä
frequencyN such that

@v
@t
CrP D F.v; b/ � �v � rvC bk; (6.1)

Db

1
DtCN 2w D 0; (6.2)

r � v D 0; (6.3)

where

P D p0

�0
; b D �g �

0

�0
; and N 2 D � g

�0

d�

d´
: (6.4)

Here �0 is a constant reference density, p0 and �0 are the deviations of the pressure
and density from their values in a hydrostatically balanced reference state,1 p.´/
and �.´/,

D

Dt
D @

@t
C v � r;

and v, w and k are the full velocity vector, the vertical velocity component and the
unit vector directed opposite to the gravitational acceleration.

Alternatively, if the fluid in question is an ideal gas, a similar set of approxi-
mations can be invoked in which P , b and N are expressed in terms of the Exner
function pressure
 D .p=p0/R=cp and the potential temperature � D T
�1, where
T is the temperature, cp is the specific heat at constant pressure, R is the gas con-
stant and p0 a constant reference pressure. As noted by Durran and Arakawa (2007),
(6.1)–(6.3) is then recovered with

P D cp�0
 0; b D g �
0

�0
; and N 2 D g

�0

d�

d´
: (6.5)

As before the over-bars denote horizontally uniform reference-state fields in hydro-
static balance2 and primes are the deviations from those reference values; �0 is a
constant reference potential temperature.

1 To satisfy hydrostatic balance dp=d´ D ��g.
2 In the 
–� formulation, hydrostatic balance requires cp�d
=d´ D �g.
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The unknown variables are the three velocity components, the perturbation den-
sity and the perturbation pressure. In contrast to the full compressible system,
there is no prognostic equation available to determine the time tendency of P .
The perturbation pressure field at a given instant can, however, be diagnosed from
the instantaneous velocity and perturbation density fields by solving the Poisson
equation

r2P D r � F; (6.6)

which can be derived by taking the divergence of (6.1) and then using (6.3). The
perturbation pressure satisfying (6.6) is the instantaneous pressure distribution that
will keep the evolving velocity field non-divergent.

6.2.1 Forward-in-Time Implementation

The projection method (Chorin 1968; Témam 1969) is a classical technique that
may be used to obtain numerical solutions to the Boussinesq system. Suppose the
momentum equation is integrated over a time interval�t to yield

Z tnC1 Z tnC1 Z tnC1
tn

@v
@t

dt D �
tn

rP dtC
tn

F.v; b/ dt; (6.7)

where tn D n�t . Define the quantity QP nC1 such that

�t r QP nC1 D
Z tnC1

tn
rP dt:

Note that QP nC1 is not necessarily equal to the actual perturbation pressure at any
particular time. Using the definition of QP nC1, (6.7) may be written as

vnC1 � vn D ��t r QP nC1 C
Z tnC1

tn
F.v; b/ dt: (6.8)

Define Qv such that

Qv D vn C
Z tnC1

tn
F.v; b/ dt: (6.9)

As noted by Orszag et al. (1986), the preceding integral can be conveniently
evaluated using an explicit finite-difference scheme such as the third-order Adams-
Bashforth method ((5.60) in Chap. 5). Equations (6.8) and (6.9) imply that

vnC1 D Qv ��t r QP nC1; (6.10)

which provides a formula for updating Qv to obtain the new velocity field vnC1 once
QP nC1 has been determined.
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A Poisson equation for QP nC1 that is analogous to (6.6) is obtained by taking the
divergence of (6.10) and noting that r � vnC1 D 0, in which case

r2 QP nC1 D r � Qv
�t

: (6.11)

Boundary conditions for this equation are obtained by computing the dot product of
the unit vector normal to the boundary (n) with each term of (6.10) to yield

@ QP nC1
@n

D � 1

�t
n � .vnC1 � Qv/: (6.12)

If there is no flow normal to the boundary, the preceding reduces to

@ QP nC1
@n

D n � Qv
�t

; (6.13)

which eliminates the implicit coupling between QP nC1 and vnC1 that is present in
the general boundary condition (6.12). In this particularly simple case, in which an
inviscid fluid is bounded by rigid walls, the projection method is implemented by
first updating (6.9), which accounts for the time-tendencies produced by advection
and buoyancy forces, and then solving (6.11) subject to the boundary conditions
(6.13). As the final step of the algorithm, vnC1 is obtained by projecting Qv onto the
subspace of non-divergent vectors using (6.10).

The preceding algorithm loses some of its simplicity when the computation of
vnC1 is coupled with that of QP nC1, as would be the case if a wave-permeable bound-
ary condition replaced the rigid wall condition that n � vnC1 D 0. In practice, the
coupling between vnC1 and QP nC1 is eliminated by imposing some approximation to
the full, implicitly coupled boundary condition. Coupling between vnC1 and QP nC1
may also occur when the projection method is applied to viscous flows with a no-
slip condition at the boundary. The no-slip condition that v D 0 at the boundary
reduces (6.12) to

@ QP nC1
@n

D 1

�t
n �
Z tnC1

tn
bkC �r2v dt; (6.14)

where viscous forcing is now included in the momentum equations and � is the
kinematic viscosity. High spatial resolution is often required to resolve the bound-
ary layer in no-slip viscous flow. In order to maintain numerical stability in the
high-resolution boundary layer without imposing an excessively strict limitation on
the time step, the viscous terms are often integrated using implicit differencing3

(Karniadakis et al. 1991). When the time integral of F.v; b/ includes viscous terms

3 Explicit time differencing can still be used for the advection terms because the wind speed normal
to the boundary decreases as the fluid approaches the boundary.
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that are approximated using implicit finite differences, (6.14) is an implicit rela-
tion between QP nC1 and vnC1 whose solution is often computed via a fractional
step method (see discussion of (6.58) and (6.59)). As noted by Orszag et al. (1986),
the accuracy with which this boundary condition is approximated can significantly
influence the accuracy of the overall solution. The design of optimal approximations
to (6.14) has been the subject of considerable research, however, the emphasis in this
chapter is not on viscous flow, and especially not on highly viscous flow in which
the diffusion terms need to be treated implicitly for computational efficiency. The
reader is referred to Boyd (1989) for further discussion of the use of the projection
method in viscous no-slip flow.

6.2.2 Leapfrog Implementation

In atmospheric science the projection method is often implemented using leapfrog
time differences, in which case (6.8) becomes

vnC1 D vn�1 � 2�t rP n C 2�t F .vn; bn/ :

The solution procedure is very similar to the algorithm described in the preceding
section. The velocity field generated by advection and buoyancy forces acting over
the time period 2�t is defined as

Qv D vn�1 C 2�t F .vn; bn/ I

then the Poisson equation for P n is

r2P n D r � Qv
2�t

;

and the velocity field is updated using the relation

vnC1 D Qv � 2�t rP n:

Some technique, such as time filtering (Asselin 1972; Williams 2009), must also
be used to prevent time splitting instability in the leapfrog solution to nonlinear
problems.

One difference between this approach and the standard projection method is
that by virtue of the leapfrog time difference, the pressure field that insures the
non-divergence of vnC1 is the actual pressure at time n�t . The pressure must, nev-
ertheless, be updated at the same point in the integration cycle at which QP nC1 is
obtained in the standard projection method, i.e., part way through the calculation
of vnC1. Thus, the same problems with implicit coupling between the pressure and
vnC1 arise in both the standard and the leapfrog projection methods. If viscosity is
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included in the momentum equations, stability considerations require that the con-
tribution of viscosity to F.v; b/ be evaluated at time level n � 1 so that the viscous
terms are treated using forward differencing over a time interval of 2�t . This is not
a particularly accurate way to represent the viscous terms and is not suitable for
highly viscous flow in which the viscous terms are more efficiently integrated using
implicit time differences.

6.2.3 Solving the Poisson Equation for Pressure

Suppose that the Boussinesq equations are to be solved in a two-dimensional x-´
domain and that the velocity and pressure variables are staggered as indicated in
Fig. 6.1. Approximating the diagnostic pressure equation (6.11) using the standard
five-point finite-difference stencil for the two-dimensional Laplacian, one obtains

ı2x
QP nC1 C ı2´ QP nC1 D

1

�t
.ıx QuC ı´ Qw/ ; (6.15)

where the finite-difference operator ıt is defined such that

ınxf .x/ D f .x C n�x=2/ � f .x � n�x=2/
n�x

: (6.16)

This is an implicit algebraic relation for the QP nC1i;j . If pressure is defined at M grid
points in x and N points in ´, an M �N system of linear algebraic equations must
be solved in order to determine the pressure. Let the unknown grid-point values of
the pressure be ordered such that

Fig. 6.1 Distribution of the
dependent variables on a
staggered mesh (the Arakawa
C-grid) for the
finite-difference
approximation of the
two-dimensional Boussinesq
system

um + 1 ,n
2

wm,n + 1
2
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Pm,n bm,n

um    ,n1
2

wm,n –1
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p D . QP nC11;1 ; QP nC11;2 ; : : : ; QP nC11;N ; QP nC12;1 ; : : : ; QP nC1M;N /;

then the system may be written as the matrix equation

Ap D f; (6.17)

in which f is an identically ordered vector containing the numerically evaluated
divergence of Qv. The matrix A is very sparse with only five non-zero diagonals. In
practical applications the number of unknown pressures can easily exceed one mil-
lion, and to solve (6.17) efficiently it is important to take advantage of the sparseness
of A. Direct methods based on some variant of Gaussian elimination are, therefore,
not appropriate. Direct methods for band matrices are also not suitable because the
bandwidth of A is not 5, but 2N C 1 and direct methods for band matrices do not
preserve sparseness within the band.

Direct solutions to (6.17) can, nevertheless, be efficiently obtained by exploiting
the block structure of A. For simplicity, suppose that (6.15) is to be solved subject
to Dirichlet boundary conditions, then the diagonal of A contains M copies of the
N �N tridiagonal sub-matrix

0
BBBBBBBBB@

�4 1

1 �4 1
: : :

: : :
: : :

: : :
: : :

: : :

1 �4 1

1 �4

1
CCCCCCCCCA
;

and the super- and sub-diagonals are made up of M � 1 copies of the N � N
identity matrix. This system can be efficiently solved using block cyclic reduc-
tion (Golub and van Loan 1996, p. 177). Numerical codes for the solution of
two- and three-dimensional Poisson equations subject to the most common types
of boundary conditions may be accessed through the Internet at several cites
including the National Institute of Standards and Technology’s Guide to Avail-
able Mathematical Software (NIST/GAMS, http://gams.nist.gov), the National Cen-
ter for Atmospheric Research’s Mathematical and Statistical Libraries (NCAR,
http://www.cisl.ucar.edu/softlib/mathlib.html) and the Netlib Repository at the Oak
Ridge National Laboratory (ORNL, http://www.netlib.org).

6.3 The Semi-Implicit Method

As an alternative to filtering the governing equations to eliminate insignificant fast
waves, one can retain the unapproximated governing equations and use numerical
techniques to stabilize the simulation of the fast moving waves. One common way
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to improve numerical stability is through the use of implicit time differences such as
the backward or the trapezoidal methods. Implicit methods can, however, produce
rather inaccurate solutions when the time step is too large. It is therefore useful to
analyze the effect of the time step on the accuracy of fully implicit solutions to wave
propagation problems before discussing the true semi-implicit method.

6.3.1 Large Time Steps and Poor Accuracy

Suppose that a differential-difference approximation to the one-dimensional advec-
tion equation

@ 

@t
C c @ 

@x
D 0 (6.18)

is constructed in which finite differences are used to represent the time derivative
and the spatial derivative is not discretized. If the time derivative is approximated
using leapfrog differencing such that

�nC1 � �n�1
2�t

C c
�
@�

@x

�n
D 0:

wave solutions of the form

�n.x/ D ei.kx�!nt/ (6.19)

must satisfy the semi-discrete dispersion relation

! D 1

�t
arcsin.ck�t/: (6.20)

The phase speed of the leapfrog-differenced solution is

cl D !

k
D arcsin.ck�t/

k�t
: (6.21)

The stability constraint, jck�t j<1; associated with the preceding leapfrog
scheme can be avoided by switching to trapezoidal differencing. Many semi-
implicit formulations use a combination of leapfrog and trapezoidal differencing,
and in those formulations the trapezoidal time difference is computed over an
interval of 2�t . To facilitate the application of this analysis to these semi-implicit
formulations, and to more directly compare the trapezoidal and leapfrog schemes,
(6.18) will be approximated using trapezoidal differencing over a 2�t-wide stencil
such that

�nC1 � �n�1
2�t

C c

2

"�
@�

@x

�nC1
C
�
@�

@x

�n�1#
D 0:
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Wave solutions to this scheme must satisfy the dispersion relation

! D 1

�t
arctan.ck�t/: (6.22)

The phase speed of the trapezoidally differenced solution is

ct D arctan.ck�t/

k�t
:

The phase-speed errors generated by the leapfrog and 2�t trapezoidal methods
are compared in Fig. 6.2. The phase speed at a fixed Courant number is plotted as
a function of both spatial wavenumber (bottom axis) and wavelength (top axis) in
units of�x. These curves give the phase speed that would be obtained if the spatial
dependence of the numerical solution was represented by a Fourier spectral method
with a cutoff wavelength of 2�x. When c�t=�x D 1=
 the errors in wavelengths
greater than 2:5�x generated by the leapfrog and the 2�t-trapezoidal methods are
similar in magnitude and opposite in sign. The leapfrog scheme is unstable for
Courant numbers greater than 1=
 , but solutions can still be obtained using the
trapezoidal scheme. The phase-speed errors in the 2�t-trapezoidal solution com-
puted with c�t=�x D 5=
 are, however, rather large. Even modes with relatively
good spatial resolution, such as a 10�x wave, are in significant error.

The deceleration generated by 2�t-trapezoidal differencing may be alternatively
expressed in terms of the reduced phase speed

Oc D c cos.!�t/:

0 π / 4 Δ π / 2 Δ 3 π / 4 Δ π / Δ
WAVENUMBER
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WAVELENGTH
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Fig. 6.2 Phase speed of leapfrog (dotted) and 2�t -trapezoidal (dashed) approximations to the
advection equation when c�t=�x D 1=
 (LF1 and T1), and for the trapezoidal solution when
c�t=�x D 5=
 (T5)
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Then the 2�t-trapezoidal dispersion relation (6.22) assumes the form

! D 1

�t
arcsin. Ock�t/:

and the phase speed of the 2�t-trapezoidal solution becomes

ct D !

k
D arcsin. Ock�t/

k�t
:

The preceding differ from the corresponding expressions for the leapfrog scheme
(6.20) and (6.21) in that the true propagation speed, c, has been replaced by the
reduced speed Oc. As the time step increases, Oc decreases so that j Ock�t j remains less
than one and the numerical solution remains stable, but the relative error in Oc can
become arbitrarily large. As a consequence, it is not possible to take advantage of
the unconditional stability of the trapezoidal method by using very large time steps
to solve wave-propagation problems unless one is willing to tolerate a considerable
decrease in the accuracy of the solution.

6.3.2 A Prototype Problem

The loss of accuracy associated with poor temporal resolution that can occur using
implicit numerical methods is not a problem if the poorly resolved waves are not
physically significant. If the fastest moving waves are insignificant, the accuracy
constraints imposed on the time step by these waves can be ignored and, provided
the scheme is unconditionally stable, a good solution can be obtained using any
time step that adequately resolves the slower moving features of primary physical
interest. A simple but computationally inefficient way to insure the unconditional
stability of a numerical scheme is to use trapezoidal time differencing throughout
the approximate equations. It is, however, more efficient to implicitly evaluate only
those terms in the governing equations that are crucial to the propagation of the fast
wave and to approximate the remaining terms with some explicit time-integration
scheme. This is the fundamental strategy in the “semi-implicit” approach which
gains efficiency relative to a “fully implicit” method by reducing the complex-
ity of the implicit algebraic equations that must be solved during each integration
step. Semi-implicit differencing is particularly attractive when all the terms that are
evaluated implicitly are linear functions of the unknown variables.

In order to investigate the stability of semi-implicit time-differencing schemes
consider a prototype ordinary differential equation of the form

d 

dt
C i!H C i!L D 0: (6.23)

This is simply a version of the oscillation equation (see (5.19) in Chap. 5) in which
the oscillatory forcing is divided into high-frequency (!H ) and low-frequency
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(!L) components. The division of the forcing into two terms may appear to be
rather artificial, but the dispersion relation associated with wave-like solutions to
more complex systems of governing equations (such as the shallow-water system
discussed in the next section) often has individual roots of the form

! D !H C !L;

and (6.23) serves as the simplest differential equation describing the time-
dependence of such waves.

The simplest semi-implicit approximation to (6.23) is

�nC1 � �n
�t

C i!H�nC1 C i!L�n D 0:

The stability and the accuracy of this scheme have already been analyzed in con-
nection with ((5.21) in Chap. 5); it is first order accurate and is stable whenever
j!Lj < j!H j: Since j!Lj < j!H j by assumption, the method is stable for all �t:
The weakness of this scheme is its low accuracy. A more accurate second-order
method can be obtained using the centered-in-time formula

�nC1 � �n�1
2�t

C i!H
�
�nC1 C �n�1

2

�
C i!L�n D 0: (6.24)

The stability of this method may be investigated by considering the behavior of
oscillatory solutions of the form exp.�i!n�t/, which satisfy (6.24) when

sin Q! D Q!H cos Q! C Q!L; (6.25)

where
Q! D !�t; Q!H D !H�t; and Q!L D !L�t:

To solve for Q!, let tanˇ D Q!H ; then (6.25) becomes

sin Q! D tanˇ cos Q! C Q!L;

or equivalently
sin Q! cosˇ � sinˇ cos Q! D Q!L cosˇ:

By the Pythagorean theorem, cosˇ D .1C Q!2H /�1=2; and the preceding reduces to

sin. Q! � ˇ/ D Q!L.1C Q!2H /�1=2;

or equivalently,

Q! D arctan. Q!H /C arcsin
�
Q!L.1C Q!2H /�1=2

�
:
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The semi-implicit scheme (6.24) will be stable when the Q! satisfying this equation
are real and distinct, which is guaranteed when

Q!2L � 1C Q!2H : (6.26)

Since, by assumption j!Lj � j!H j, (6.24) is stable for all �t . Note that (6.26) will
also be satisfied whenever j!L�t j � 1, implying that semi-implicit differencing
permits an increase in the maximum stable time step relative to that for a fully
explicit approximation even in those cases where j!Lj > j!H j because the terms
approximated with the trapezoidal difference do not restrict the maximum stable
time step.

6.3.3 Semi-Implicit Solution of the Shallow-Water Equations

The shallow-water equations for motion in a rotating reference frame with Coriolis
parameter f may be expressed

Du

Dt
� f v C g @h

@x
D 0; Dv

Dt
C f uC g @h

@y
D 0; (6.27)

Dh

Dt
C h

�
@u

@x
C @v

@y

�
D 0; (6.28)

where u and v are the eastward and northward components of the velocity and h is
the fluid depth. This system supports rapidly moving gravity waves. If there are spa-
tial variations in the potential vorticity of the undisturbed system, f=h, the shallow-
water equations can also support slowly propagating potential-vorticity (or Rossby)
waves. In many large-scale atmospheric and oceanic models the Rossby waves
are of greater physical significance than the faster moving gravity waves and the
Rossby-waves can be efficiently simulated using semi-implicit time-differencing to
accommodate the CFL stability condition associated with gravity-wave propagation.

The simplest example in which to illustrate the influence of semi-implicit dif-
ferencing on the CFL condition can be obtained by examining a one-dimensional
system without the Coriolis force that is linearized about a reference state with a
constant fluid velocity U and fluid depthH ,

@u

@t
C U @u

@x
C g @h

@x
D 0; (6.29)

@h

@t
C U @h

@x
CH @u

@x
D 0: (6.30)

If the mean-flow velocity is less than the phase speed of a shallow-water grav-
ity wave c D pgH , the numerical integration can be stabilized by evaluating
those terms responsible for gravity-wave propagation with trapezoidal differencing;
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leapfrog differencing can be used for the remaining terms (Kwizak and Robert
1971). The terms essential to gravity-wave propagation are the hydrostatic pres-
sure gradient (g@h=@x) in (6.29) and the velocity divergence in (6.30), so the
semi-implicit approximation to the linearized shallow-water system is

ı2tu
n C U @u

n

@x
C g

�
@hn

@x

�2t
D 0; (6.31)

ı2th
n C U @h

n

@x
CH

�
@un

@x

�2t
D 0; (6.32)

where the finite-difference operator ıt is defined by (6.16) and the averaging
operator h it is given by

hf .x/inx D f .x C n�x=2/C f .x � n�x=2/
2

: (6.33)

Solutions to (6.31) and (6.32) exist of the form ei.kx�!j�t/ provided k and !
satisfy the semi-discrete dispersion relation

sin!�t D Uk�t ˙ ck�t cos!�t:

This dispersion relation has the same form as (6.25), so as demonstrated in the
preceding section, the method will be stable provided that jU j � c, or equivalently,
whenever the phase speed of shallow-water gravity waves exceeds the speed of the
mean flow. The Coriolis force has been neglected in the preceding shallow-water
system, and as a consequence, there are no Rossby wave solutions to (6.31) and
(6.32). In a more general two-dimensional system that includes the Coriolis force
semi-implicit time differencing leads to a system that is stable whenever the CFL
condition for the Rossby waves is satisfied.

6.3.4 Semi-implicit Solution of the Compressible Governing
Equations

Now consider how semi-implicit differencing can be used to eliminate the stability
constraint imposed by sound waves in the numerical solution of the Euler equations
for stratified flow. To streamline the discussion we will focus on the compressible
Boussinesq system, which supports both sound and gravity wave propagation while
eliminating small terms reflecting the decrease in mean density produced by the
decrease in pressure with height.4 The compressible Boussinesq system consists of

4 See Sect. 7.2.4 of (Durran 1999) for details about the difference between the Euler equations and
the compressible Boussinesq system.
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the relations
dv
dt
CrP D bk; (6.34)

db

dt
CN 2w D 0; (6.35)

dP

dt
C c2sr � v D 0: (6.36)

Note that (6.34) and (6.35) are identical to the buoyancy and momentum equa-
tions in the standard Boussinesq system (6.1) and (6.2), while the incompressible
continuity equation (6.3) has been replaced by (6.36) and is recovered in the limit
cs !1:

Suppose the flow is confined to the x–´ plane and linearize (6.34)–(6.36) about
a basic state with uniform horizontal velocity U and zero means for the other fields.
Letting .u;w; b; P / now denote the perturbations, the linear system becomes

�
@

@t
C U @

@x

�
uC @P

@x
D 0; (6.37)

�
@

@t
C U @

@x

�
w C @P

@´
D b; (6.38)

�
@

@t
C U @

@x

�
b CN 2w D 0; (6.39)

�
@

@t
C U @

@x

�
P C c2s

�
@u

@x
C @w

@´

�
D 0: (6.40)

As in the standard Boussinesq approximation, the compressible Boussinesq system
neglects the influence of density variations on inertia while retaining the influence
of density variations on buoyancy and assumes that buoyancy is conserved follow-
ing a fluid parcel. In contrast to the standard Boussinesq system, the compressible
Boussinesq system does retain the influence of density fluctuations on pressure and
thereby allows the formation of the prognostic pressure equation (6.40).

Suppose that the simplified compressible system (6.37)–(6.40) is approximated
using leapfrog time differencing and that the spatial derivatives are computed using
a Fourier pseudo-spectral method. Waves of the form

.u;w; b; P / D .u0; w0; b0; P0/ei.kxC`´�!n�t/

are solutions to this system provided that !, k and ` satisfy the dispersion relation

O!4 � c2s
�
k2 C `2 CN 2=c2s

� O!2 CN 2k2c2s D 0;

where

O! D sin!�t

�t
� Uk:
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This dispersion relation is quadratic in O!2 and has solutions

O!2 D c2s
2

0
@k2 C `2 C N 2

c2s
˙
"�
k2 C `2 C N 2

c2s

�2
� 4N

2k2

c2s

#1=21
A: (6.41)

The positive root yields the dispersion relation for sound waves; the negative root
yields the dispersion relation for gravity waves.5 The individual dispersion relations
for sound and gravity waves may be greatly simplified whenever the last term inside
the square root in (6.41) is much smaller than the first term. One condition suffi-
cient condition for this simplification, which is easily satisfied in most atmospheric
applications, is that N 2=c2s � `2: If N 2=c2s � `2, then

4N 2k2

c2s
� 2N 2k2

c2s
C 2k2`2 �

�
k2 C `2 C N 2

c2s

�2
; (6.42)

and therefore the sound-wave dispersion relation is well approximated by

O!2 D c2s
�
k2 C `2 CN 2=c2s

�
: (6.43)

Dividing the terms inside the square root in (6.41) by
�
k2 C `2 CN 2=c2s

�2
and

again using (6.42), the gravity wave-dispersion relation may be well approxi-
mated as

O!2 D N 2k2

k2 C `2 CN 2=c2s
: (6.44)

Consider the time-step limitation imposed by sound wave propagation. Using the
definition of O!, (6.43) may be expressed as

sin!�t D �t
�

Uk˙ cs
�
k2 C `2 CN 2=c2s

�1=2�
:

Stable leapfrog solutions are obtained when the right side of this expression is a real
number whose absolute value is less than unity. A necessary condition for stability
is that �

jU jkmax C cs.k2max C `2max/
1=2
�
�t < 1; (6.45)

where kmax and `max are the largest horizontal and vertical wavenumbers retained in
the truncation. In many applications the vertical resolution is much higher than the
horizontal resolution and the most severe restriction on the time step is associated
with vertically propagating sound waves; (6.45) is also a good approximation to
the sufficient condition for stability since the term involving N 2=c2s is typically
insignificant for the highest frequency waves.

5 In the limit N ! 0, the positive root gives O!2 D c2s
�
k2 C `2�; the negative root gives O!2 D 0.
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The dispersion relation for gravity waves (6.44) may be written as

sin!�t D �t
 

Uk˙ Nk�
k2 C `2 CN 2=c2s

�1=2
!
: (6.46)

Since
N jkj�

k2 C `2 CN 2=c2s
�1=2 � cs jkj;

the necessary condition for sound-wave stability (6.45) is sufficient to insure the
stability of the gravity waves. Although (6.45) guarantees the stability of the gravity
wave modes, it is far too restrictive. Since

N jkj�
k2 C `2 CN 2=c2s

�1=2 � N;

(6.46) implies the gravity waves will be stable provided that

.jU jkmax CN/�t < 1:

This is also a good approximation to the necessary condition for stability because
the term involvingN 2=c2s is usually dominated by k2max.

In most geophysical applications

cs.k
2
max C `2max/

1=2 >> jU jkmax CN

and the maximum stable time step with which the gravity waves can be integrated
is, therefore, far larger than the time step required to maintain stability in the sound
wave modes. In such circumstances, the sound waves can be stabilized using a semi-
implicit approximation in which the pressure gradient and velocity divergence terms
are evaluated using trapezoidal differencing (Tapp and White 1976). The resulting
semi-implicit system is

ı2tu
n C U @u

n

@x
C
�
@P n

@x

�2t
D 0; (6.47)

ı2tw
n C U @w

n

@x
C
�
@P n

@´

�2t
D bn; (6.48)

ı2tb
n C U @b

n

@x
CN 2wn D 0; (6.49)

ı2tP
n C U @P

n

@x
C c2s

 �
@un

@x

�2t
C
�
@wn

@´

�2t!
D 0: (6.50)
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Let Ocs D cs cos.!�t/, then the dispersion relation for the semi-implicit system is
identical to that obtained for leapfrog differencing except that cs is replaced by Ocs
throughout (6.41). The dispersion relation for the sound-wave modes is

O!2 D Oc2s
�
k2 C `2 CN 2= Oc2s

�
;

or
sin!�t D �t

�
Uk˙ Ocs

�
k2 C `2 CN 2= Oc2s

�1=2�
: (6.51)

The most severe stability constraints are imposed by the shortest waves for which
the term N 2= Oc2s can be neglected in comparison with k2 C `2. Neglecting N 2= Oc2s ,
(6.51) becomes

sin!�t D Uk�t ˙ cs�t
�
k2 C `2�1=2 cos!�t;

which has the same form as (6.25) implying that the sound wave modes are stable
whenever

jUkj � cs
�
k2 C `2�1=2 :

A sufficient condition for the stability of the sound waves is simply that the flow be
sub-sonic (jU j � cs), or equivalently, that the Mach number be less than unity.

Provided that the flow is sub-sonic, the only constraint on the time step required
to keep the semi-implicit scheme stable is that associated with gravity wave prop-
agation. The dispersion relation for the gravity waves in the semi-implicit system
is

O!2 D N 2k2

k2 C `2 CN 2= Oc2s
(6.52)

which differs from the result for leapfrog differencing only in the small termN 2= Oc2s .
Stable gravity wave solutions to the semi-implicit system are obtained whenever

.jU jkmax CN/�t < 1;

which is the same condition obtained for the stability of the gravity waves using
leapfrog differencing. Thus, as suggested previously, the semi-implicit scheme
allows the compressible equations governing low Mach-number flow to be inte-
grated with a much larger time step than that allowed by fully explicit schemes.
This increase in efficiency comes at a price; whenever the time step is much larger
than that allowed by the CFL condition for sound waves, the sound waves are arti-
ficially decelerated by a factor of cos.!�t/. This error is directly analogous to that
considered in Sect. 6.3.1 in which spurious decelerations were produced by fully
implicit schemes using very large time steps. Nevertheless, in many practical appli-
cations the errors in the sound waves are of no consequence and the quality of the
solution is entirely determined by the accuracy with which the slower moving waves
are approximated.
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6.3.5 Numerical Implementation

The semi-implicit approximation to the compressible Boussinesq system discussed
in the preceding section generates a system of implicit algebraic equations that must
be solved every time step. First consider the situation where only the sound waves
are stabilized by semi-implicit differencing and suppose that the spatial derivatives
are not discretized. Then (6.34)–(6.36) take the form

vnC1 C�trP nC1 D G; (6.53)

bnC1 D bn�1 � 2�t �vn � rbn CN 2wn
�
; (6.54)

P nC1 C c2s�tr � vnC1 D h: (6.55)

Here
G D vn�1 ��t 
rP n�1 � 2bnkC 2vn � rvn

�
;

and
h D P n�1 ��t 
c2sr � vn�1 C 2vn � rP n� :

A single Helmholtz equation for P nC1 can be obtained by substituting the diver-
gence of (6.53) into (6.55) to yield

r2P nC1 � P nC1

.cs�t/2
D r �G

�t
� h

.cs�t/2
: (6.56)

The numerical solution of this Helmholtz equation is trivial if the Fourier spectral
method is employed in a rectangular domain or if spherical harmonic expansion
functions are used in a global spectral model. If the spatial derivatives are approxi-
mated by finite differences, (6.56) yields a sparse linear algebraic system that can be
solved using the techniques described in Sect. 6.2.3. After solving (6.56) for P nC1,
the momentum equations can be stepped forward and the buoyancy equation (6.54),
which is completely explicit, can be updated to complete the integration cycle.

This implementation of the semi-implicit method is closely related to the projec-
tion method for incompressible Boussinesq flow. Indeed in the limit cs ! 1 the
preceding approach will be identical to the leapfrog projection method (described in
Sect. 6.2.2) if .P nC1CP n�1/=2 is replaced by P n in (6.56). Although the leapfrog
projection method and the semi-implicit method yield algorithms involving very
similar algebraic equations, these methods are derived via very different approxima-
tion strategies. The projection method is an efficient way to solve a set of continuous
equations that is obtained by filtering the exact Euler equations to eliminate sound
waves. In contrast, the semi-implicit scheme is obtained by directly approximating
the full compressible equations and using implicit time differencing to stabilize the
sound waves. Neither approach allows one to correctly simulate sound waves, but
both approaches allow the accurate and efficient simulation of the slower moving
gravity waves.
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6.4 Fractional-Step Methods

The semi-implicit method requires the solution of an elliptic equation for the pres-
sure during each step of the integration. This can be avoided by splitting the
complete problem into fractional steps and using a smaller time step to integrate the
subproblem containing the terms responsible for the propagation of the fast-moving
wave. Consider a general partial differential equation of the form

@ 

@t
CL . / D 0; (6.57)

where L . / contains the spatial derivatives and other forcing terms. Assuming for
simplicity in the following analysis that L is time-independent, the exact solution
to (6.57) may be written in the form  .t/ D exp.tL / .0/, where the exponential
of the operator L is defined by the infinite series

exp.tL / D I C tL C t2

2
L 2 C t3

6
L 3 C � � � ;

and I is the identity operator. The change in  over one time step is therefore

 .tC�t/ D expŒ.�tCt/L 	 .0/ D exp.�tL / exp.tL / .0/ D exp.�tL / .t/:

Suppose that L . / can be split into two parts

L . / D L1. /CL2. /;

such that L1 and L2 contain those terms responsible for the propagation of slow-
and fast-moving waves, respectively. Each of these individual operators can also be
formally integrated over an interval �t to obtain

 .t C�t/ D exp.�tL1/ .t/;  .t C�t/ D exp.�tL2/ .t/:

Let F1.�t/ and F2.�t/ be numerical approximations to the exact operators
exp.�tL1/ and exp.�tL2/.

6.4.1 Complete Operator Splitting

In the standard fractional-step approach, the approximate solution is stepped for-
ward over a time interval�t using

�s D F1.�t/�
n; (6.58)

�nC1 D F2.�t/�
s; (6.59)
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but it is not necessary to use the same time step in each subproblem. If the maximum
stable time step with which the approximate slow-wave operator (6.58) can be inte-
grated is M times that with which the fast-wave operator (6.59) can be integrated,
the numerical solution could be evaluated using the formula

�nC1 D ŒF2.�t=M/	M F1.�t/�
n: (6.60)

This approach can be applied to the linearized one-dimensional shallow water
system by writing (6.29) and (6.30) in the form

@r
@t
CL1.r/CL2.r/ D 0; (6.61)

where

r D
�
u

h

�
; L1 D

�
U@x 0

0 U@x

�
; L2 D

�
0 g@x

H@x 0

�
;

and @x denotes the partial derivative with respect to x. The first fractional step,
which is an approximation to

@r
@t
CL1.r/ D 0;

involves the solution of two decoupled advection equations. Since this is a fractional
step method, it is generally preferable to approximate the preceding with a two-time
level method. In order to avoid using implicit, unstable or Lax–Wendroff methods
the first step can be integrated using the Runge–Kutta scheme

r� D rn C�t=3L1.rn/; (6.62)

r�� D rn C�t=2L1.r�/; (6.63)

rnC1 D rn C�t L1.r��/: (6.64)

This Runge–Kutta method is third-order accurate for linear problems and is sta-
ble and damping for jU jkmax�t < 1:73, where kmax is the maximum retained
wavenumber.

The second fractional step, which approximates

@r
@t
CL2.r/ D 0;

can be efficiently integrated using forward-backward differencing. Defining �
 D
�t=M as the length of a small time step, the forward-backward scheme is

umC1 � um
�


C g@h
m

@x
D 0; (6.65)
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hmC1 � hm
�


CH @umC1

@x
D 0: (6.66)

This scheme is stable for ckmax�
 < 2 and is second order accurate in time. Since
the operators used in each fractional step commute,6 the complete method will be
O


.�t/2

�
accurate and stable whenever each of the individual steps are stable.

Although the preceding fractional step scheme works fine for the linearized one-
dimensional shallow water system, it does not generalize as nicely to problems in
which the operators do not commute. As an example, consider the compressible
two-dimensional Boussinesq equations, which could be split into the form (6.61) by
defining

r D �u w b P
�T
;

L1 D

0
BB@

v � r 0 0 0

0 v � r 0 0

0 0 v � r 0

0 0 0 v � r

1
CCA; L2 D

0
BB@

0 0 0 @x
0 0 �1 @´
0 N 2 0 0

c2s @x c
2
s @´ 0 0

1
CCA;

where v is the two-dimensional velocity vector and r D .@=@x; @=@´/. Suppose
that N and cs are constant and that the full nonlinear system is linearized about a
reference state with a mean horizontal wind U.´/. The operators associated with
this linearized system will not commute unless dU=dz is zero.

As in the one-dimensional shallow-water system, the advection operator L1 can
be approximated using the third-order Runge–Kutta method (6.62)–(6.64). The sec-
ond fractional step may be integrated using trapezoidal differencing for the terms
governing the vertical propagation of sound waves and forward-backward differ-
encing for the terms governing horizontal sound-wave propagation and buoyancy
oscillations. The resulting scheme is

umC1 � um
�


C @Pm

@x
D 0; (6.67)

wmC1 � wm
�


C @

@´

�
PmC1 C Pm

2

�
� bm D 0; (6.68)

bmC1 � bm
�


CN 2wmC1 D 0; (6.69)

PmC1 � Pm
�


C c2s
@umC1

@x
C c2s

@

@´

�
wmC1 C wm

2

�
D 0; (6.70)

6 The operators L1 and L2 commute if L1 .L2.r// D L2 .L1.r//. See Durran (1999, Sect. 3.3)
for a discussion of the impact of operator commutativity on the performance of fractional-step
schemes.
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This approximation to exp.�
L2/ is stable and non-damping if max.cskmax; N /

�
 < 2. Note that if the spatial derivatives are replaced by finite differences, the
trapezoidal approximation of the terms involving vertical derivatives will not signif-
icantly increase the computations required on each small time step because it leads
to a tridiagonal system of algebraic equations for the wmC1 throughout each ver-
tical column within the domain. If the horizontal resolution is very coarse, so that
kmax << N=cs further efficiency can be also obtained by treating the terms involv-
ing buoyancy oscillations with trapezoidal differencing. Since these terms do not
involve derivatives, the resulting implicit algebraic system remains tridiagonal.

As an alternative to the trapezoidal method, the terms involving the vertical
pressure gradient and the divergence of the vertical velocity could be integrated
using forward-backward differencing, in which case the stability criteria for the
small time step would include an additional term proportional to cs`max�
 where
`max is the maximum resolvable vertical wavenumber. It may be appropriate to use
forward-backward differencing instead of the trapezoidal scheme in applications
with identical vertical and horizontal grid spacing, but if the vertical resolution is
much finer than the horizontal resolution the additional stability constraint imposed
by vertical sound-wave propagation will reduce efficiency by requiring an excessive
number of small time steps.

The performance of the preceding scheme is evaluated in simulation of two
dimensional compressible Boussinesq flow past a compact gravity-wave genera-
tor. The wave generator is modeled by including forcing terms in the momentum
equations such that the non-discretized versions of (6.67) and (6.68) take the form

du

dt
C @P

@x
D �@�

@´
; (6.71)

dw

dt
C @P

@´
� b D @�

@x
; (6.72)

where
�.x; ´; t/ D E.x; ´/ sin!t sin k1x cos `1´;

and

E.x; ´/ D
�
˛ .1C cosk2x/ .1C cos `2´/ if jxj � 
=k2 and j´j � 
=`2;
0 otherwise :

This forcing has no influence on the time tendency of the divergence, and as
a consequence it does not excite sound waves. The spatial domain is periodic at
x D ˙50 km and bounded by rigid horizontal walls at ´ D ˙5 km. In the following
tests�x D 250m,�´ D 50m, N D 0:01 s�1, cs D 350ms�1, and the parameters
defining the wave generator are ˛ D 0:2, 2
=k1 D 10 km, 2
=`1 D 2:5 km,
2
=k2 D 11 km, 2
=`2 D 1:5 km, and ! D 0:002 s�1. The forcing is evaluated
every �
 and applied to the solution on the small time step, �x D 250 m, �´ D
50 m, N D 0:01 s�1, and cs D 350 ms�1.
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The spatial derivatives are approximated using centered differencing on a stag-
gered grid identical to that shown in Fig. 6.1 except that b is co-located with
the w points rather than the P points. As a consequence of the mesh stagger-
ing, the horizontal wavenumber obtained from the finite-difference approximations
to the pressure gradient and velocity divergence is .2=�x/.sin k�x=2/, and the
small-step stability criteria is max .2cs=�xCN/�
 < 2. The horizontal wavenum-
ber generated by the finite-difference approximation to the advection operator is
.sin k�x/=�x, so the large time step is stable when jU j�t=�x < 1:73. Strang
splitting,

�nC1 D ŒF2.2�t=M/	.M=2/F1.�t/ ŒF2.2�t=M/	.M=2/ �n;

is used in preference to (6.60) to preserveO


.�t/2

�
accuracy in those cases where

F1 and F2 don’t commute.
In the first simulation �t D 12:5 s, there are twenty small time steps per large

time step, andU D 10ms�1 throughout the domain. In this case .2cs�xCN/�
 D
1:76 so the small time step is being integrated using time steps near the stabil-
ity limit. The horizontal velocity field and the pressure field obtained from this
simulation are plotted in Fig. 6.3. The velocity field is essentially identical to that
obtained using the full compressible equations. Very small errors are detectable in
the pressure field, but the overall accuracy of the solution is excellent.

Now consider a second simulation that is identical to the first in every respect
except that the mean wind U increases linearly from 5 to 15 ms�1 between the
bottom and the top of the domain. The pressure perturbations that develop in this
simulation are shown in Fig. 6.4a, along with streamlines for the forcing function� .
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Fig. 6.3 (a) contours ofUCu at intervals of 0.1 ms�1 and � at intervals of 0.1 s�1 at t D 8000 s.
(b) as in (a) except that P is contoured at intervals of 0.25 m2s�2. No zero contour is shown for
the P and � fields. Minor tick marks indicate the location of the P points on the numerical grid.
Only the central portion of the total computational domain is shown
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Fig. 6.4 Contours of P at intervals of 0.25 m2s�2 (the zero contour is dot-dashed) and � at
intervals of 0.15 s�1 at t D 3000 s for the case with vertical shear in the mean wind and (a)
�t D 12:5 s, M D 20, (b) �t D 6:25 s, M D 20, (c) �t D 6:25 s, M D 10, (d) the solution
is computed using the partial splitting method described in the next section with �t D 12:5 s,
M D 20. Tick marks appear every 20 grid intervals

Spurious pressure perturbations appear throughout the domain. The correct pres-
sure field is shown in Fig. 6.4d, which was computed using a scheme that will be
described in the next subsection. Although the pressure field in Fig. 6.4a is clearly
in error, most of the spurious signal in the pressure field relates to sound waves
whose velocity perturbations are very weak. The velocity fields associated with all
the solutions shown in Fig. 6.4 are essentially identical. The extrema in the pressure
perturbations shown in Fig. 6.4a are approximately twice those in the other panels
and are growing very slowly suggesting that the solution is subject to a weak insta-
bility. Since the operators for each fractional step do not commute, the stability of
each individual operator no longer guarantees the stability of the overall scheme.
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Nevertheless, the fundamental problem with the completely split method seems to
be one of inaccuracy arising from inadequate temporal resolution. Cutting �t by
a factor of 2, while leaving M D 20 so that �
 is also reduced by a factor of
2, gives the pressure distribution shown in Fig. 6.4b, which is clearly a significant
improvement over that obtained using the original time step, but still contains spu-
rious perturbations of the same spatial scale shown in Fig. 6.4a. Similar results are
obtained if both�t andM are cut in half, as shown in Fig. 6.4c, which demonstrates
that it is the decrease in �t , rather than �
 , that is responsible for the improve-
ment. Further discussion of the source of the error in the completely split method is
provided in Sect. 6.5.

6.4.2 Partially-Split Operators

The first task involved in implementing the fractional-step methods discussed in the
previous section is to identify those terms in the governing equations that need to
be updated on a shorter time step. Having made this identification, it is possible
to leave all the terms in the governing equations coupled together and to update
those terms governing the slowly evolving processes less frequently than those terms
responsible for the propagation of high frequency physically insignificant waves.
This technique will be referred to as a partial splitting, since the individual fractional
steps are never completely decoupled in the conventional manner given by (6.58)
and (6.59).

Once again the linearized one-dimensional shallow-water system provides a sim-
ple context in which to illustrate partial splitting. As before, it is assumed that the
gravity-wave phase speed is much larger than the velocity of the mean flow U .
Klemp and Wilhelmson (1978) and (Tatsumi 1983) suggested a partial splitting in
which the terms on the right side of the following

@u

@t
C g @h

@x
D �U @u

@x
; (6.73)

@h

@t
CH @u

@x
D �U @h

@x
; (6.74)

are updated as if the time derivative were being approximated using a leapfrog dif-
ference, but rather than advancing the solution from time level t ��t to t C�t in
a single step of length 2�t , the solution is advanced through a series of 2M “small
time steps.” During each small time step the terms on the right side of (6.73) and
(6.74) are held constant at their value at time level t and the remaining terms are
updated using forward-backward differencing. Let m and n be time indices for the
small and large time steps respectively and define �
 D �t=M as the length of a
small time step. The solution is advanced from time level n�1 to nC1 in 2M small
time steps of the form
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umC1 � um
�


C g@h
m

@x
D �U @u

n

@x
;

hmC1 � hm
�


CH @umC1

@x
D �U @h

n

@x
:

Note that the left sides of the preceding equations are identical to those appearing in
the completely split scheme (6.65) and (6.66).

The complete small-step large-step integration cycle for this problem can be writ-
ten as a four-dimensional linear system as follows. Define Oum D un, Ohm D hn, and
let

r D .u; h; Ou; Oh/T :
Then an individual small time step can be expressed in the form

rmC1 D Arm;

where

A D

0
BB@

1 � Qg@x � QU@x 0

� QH@x 1C Qc2@2xx QU QH@2xx � QU@x
0 0 1 0

0 0 0 1

1
CCA;

and the tilde denotes multiplication of the parameter by �
 (e.g., Qc D c�
). At the
beginning of the first small time step in an complete big-step, small-step integration
cycle

rmD1 D .un�1; hn�1; un; hn/T :
At the end of the 2M -th small step

rmD2M D .unC1; hnC1; un; hn/T :

Thus, if S is a matrix interchanging the first pair and second pair of elements in r,

S D

0
BB@
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1
CCA;

the complete big-step, small-step integration cycle is given by

rnC1 D SA2M rn:

Since the individual operators commute, the completely split approximation to
this problem is stable whenever both of the individual fractional steps are stable. One
might hope that the stability of the partially-spilt method could also be guaranteed
whenever the large- and small-step sub-problems are stable. Unfortunately, there are
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Fig. 6.5 Spectral radius of the amplification matrix for the partially-split method contoured as
a function of Oc and Ou for (a) M D 1 (b) M D 3. Unstable regions are enclosed in the wedged-
shaped areas. Contour intervals are 1.0 (heavy line), 1.2, 1.4, : : :. Line AB indicates the possible
combinations of Oc and Ou that can be realized when U=c D 1=10 and M is specified as 1 or 3

many combinations of �t and �
 for which the partially-split method is unstable
even though the sub-problems obtained by setting either U or c to zero are both
stable (Tatsumi 1983; Skamarock and Klemp 1992). Suppose that the partially-split
scheme is applied to an individual Fourier mode with horizontal wavenumber k,
then the amplification matrix for an individual small time step is given by a matrix
in which the partial derivative operators in A are replaced by ik; let this matrix be
denoted OA.

Consider the caseM D 1 for which the amplification matrix is S OA2. The magni-
tude of the maximum eigenvalue, or spectral radius �m, of S OA2 is plotted in Fig. 6.5a
as a function of Oc D ck�
 and Ou D Uk�t . The domain over which �m is contoured,
0 � Oc � 2 and 0 � Ou � 1, is that for which the individual small- and large-step
problems are stable. When M D 1, �m exceeds unity and the partially-split scheme
is unstable throughout two regions of the Oc- Ou plane whose boundaries intersect at
. Oc; Ou/ D .p2; 0/. If U << c, only a limited subset the Oc- Ou plane shown in Fig. 6.5a
is actually relevant to the solution of the shallow-water problem. Once the number
of small time steps per large time step is fixed, the possible combinations of Ou and
Oc will lie along a straight line of slope

Ou
Oc D

U�t

c�

D M U

c
:

Suppose that U=c D 1=10, then if the partial splitting method is used with M D 1,
the only possible combinations of Ou and Oc are those lying along line AB in Fig. 6.5a.
The maximum stable value of �
 is determined by the intersection of the line AB
and the left boundary of the leftmost region of instability. Thus, for U=c D 1=10

and M D 1, the stability requirement is that Oc be less than approximately 1.25.
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As demonstrated in Fig. 6.5b, which shows contours of the spectral radius of
S QA6, the restriction on the maximum stable time step becomes more severe as M
increases to 3. The regions of instability are narrower and the strength of the insta-
bility in each unstable region is reduced, but additional regions of instability appear
and the distance from the origin to the nearest region of instability decreases. When
M D 3 and U=c D 1=10 the maximum stable value of Oc is roughly 0.48. Further
reductions in the maximum stable value for Oc occur as M is increased, and as a
consequence, the gain in computational efficiency that one might expect to achieve
by increasing the number of small time steps per large time step is eliminated by a
compensating decrease in the maximum stable value for�
 .

The partial splitting method has, nevertheless, been used extensively in many
practical applications. The method has proved useful because in most applications
it is very easy to remove these instabilities by using a filter. As noted by Tatsumi
(1983) and Skamarock and Klemp (1992), the instability is efficiently removed by
time filtering (Asselin 1972), which is often used in conjunction with leapfrog time
differencing to prevent the divergence of the solution on the odd and even time
steps. Other filtering techniques have also been suggested and will be discussed
after considering a partial splitting approximation to the compressible Boussinesq
system.

The equations evaluated each small time step in a partial splitting approximation
to the two-dimensional compressible Boussinesq equations linearized about a basic-
state flow with Brunt-Väisälä frequencyN and horizontal velocity U are

umC1 � um
�


C @Pm

@x
D �U @u

n

@x
� wn @U

@´
; (6.75)

wmC1 � wm
�


C @

@´

�
PmC1 C Pm

2

�
� bm D �U @w

n

@x
; (6.76)

bmC1 � bm
�


CN 2wmC1 D �U @b
n

@x
; (6.77)

PmC1 � Pm
�


C c2s
@umC1

@x
C c2s

@

@´

�
wmC1 C wm

2

�
D �U @P

n

@x
; (6.78)

where as beforem and n are the time indices associated with the small and large time
steps. The left sides of these equations are identical to the small-time step equations
in the completely split method (6.67)–(6.70). The right sides are updated every large
time step.

This method is applied to the problem previously considered in connection with
Fig. 6.3, in which fluid flows past a compact gravity-wave generator. The forcing
from the wave generator appears in the horizontal and vertical momentum equations
as per (6.71) and (6.72) and is updated on the small time step. In this test U is a
constant 10 ms�1, �t D 12:5 s and �
 D 0:625. The horizontal velocity field
and the pressure field from this simulation are plotted in Fig. 6.6. The horizontal
velocity field is very similar, though slightly noisier than that shown in Fig. 6.3a.
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Fig. 6.6 (a) contours ofUCu at intervals of 0.1 ms�1 and � at intervals of 0.1 s�1 at t D 8000 s.
(b) as in (a) except that P is contoured at intervals of 0.5 m2s�2

The pressure field is, however, complete garbage. Indeed, it is surprising that errors
of the magnitude shown in Fig. 6.6b can exist in the pressure field without seriously
degrading the velocity field. These pressure perturbations are growing with time (the
contour interval in Fig. 6.6b is twice that in Fig. 6.3b)); the velocity field eventually
becomes very noisy, and the solution eventually blows up.

This instability can be prevented by applying an Asselin time filter (Asselin 1972)
at the end of each big-step small-step integration cycle. Skamarock and Klemp
(1992) have shown that filtering coefficients on the order of � D 0:1may be required
to stabilize the partially-split solution to the one-dimensional shallow water system.
A value of � D 0:1 is sufficient to completely remove the noise in the pressure
field and to eliminate the instability in the preceding test. Nevertheless, Asselin-
filtering reduces the accuracy of the leapfrog scheme to O.�t/ so it is best not
to rely exclusively on the Asselin filter to stabilize the partially-split approxima-
tion. Other techniques for stabilizing the preceding partially-split approximation
include divergence damping and forward biasing the trapezoidal integral of the ver-
tical derivative terms (6.76) and (6.78). Forward biasing the trapezoidal integration
is accomplished without additional computational effort by replacing those terms of
the form .�mC1 C �m/=2 with

�
1C �
2

�
�mC1 C

�
1 � �
2

�
�m;

where 0 � � � 1. A value of � D 0:2 provides an effective filter that does not
noticeably modify the gravity waves (Durran and Klemp 1983).

Since trapezoidal time differencing is only used to approximate the vertical
derivatives, forward-biasing those derivatives will not damp horizontally prop-
agating sound waves. Skamarock and Klemp (1992) recommended including a
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“divergence damper” in the momentum equations such that the system of equations
that is integrated on the small time step becomes

@u

@t
C @P

@x
� ˛x @ı

@x
D Fu;

@w

@t
C @P

@´
� b � ˛´ @ı

@´
D Fw ;

@b

@t
CN 2w D Fb;

@P

@t
C c22ı D Fp ; (6.79)

where

ı D @u

@x
C @w

@´
;

and Fu, Fw , Fb , and Fp represent the forcing terms that are updated every �t .
Damping coefficients of ˛x D 0:001.�x/2=�
 and ˛´ D 0:001.�´/2=�


removed all trace of noise and instability in the test problem shown in Fig. 6.6
without a supplemental Asselin-filter.

The role played by divergence damping in stabilizing the small-time-step inte-
gration in the partial splitting method can be appreciated by noting that if a single
damping coefficient ˛ is used in all components of the momentum equation, the
divergence satisfies

@ı

@t
Cr2P � ˛r2ı D G: (6.80)

where G D �r � .v � rv/ C @b=@´: Eliminating the pressure between (6.79) and
(6.80), one obtains

@2ı

@t2
� ˛r2 @ı

@t
� c2sr2ı D

@G

@t
� r2Fp :

The forcing on the right side of this equation will tend to produce divergence in an
initially non-divergent flow. Substituting a single Fourier mode into the homoge-
neous part of this equation, one obtains the classic equation for a damped harmonic
oscillator

d 2 Qı
dt2
C ˛�2 d

Qı
dt
C c2s �2 Qı D 0; (6.81)

where Qı.t/ is the amplitude and � D pk2 C `2. The damping increases with
wavenumber and is particularly effective in eliminating the high wavenumber modes
at which the instability in the partial splitting method occurs. Gravity waves, on
the other hand, are not significantly impacted by the divergence damper because
the velocity field in internal gravity waves is almost non-divergent. Skamarock and
Klemp (1992) have shown that divergence damping slightly reduces the amplitude
of the gravity waves.
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At this point it might appear that the partial splitting approach is inferior to the
complete splitting method considered previously since filters are required to stabi-
lize the partially-split approximation in situations where the completely split scheme
performs quite nicely. Recall, however, that the completely split method does not
generate usable solutions to the compressible Boussinesq equations when there is a
vertical shear in the basic-state horizontal velocity impinging on the gravity-wave
generator. The same filtering strategies that stabilize the partially-split method in
the no-shear problem remain effective in the presence of vertical wind shear. This
is demonstrated in Fig. 6.4d which shows the pressure perturbations in the test case
with vertical shear as computed by the partially-split method using a divergence
damper with the values of ˛x and ˛´ given previously. Results similar to those in
Fig. 6.4d may also be obtained using Asselin time filtering with ˛ D 0:1 in lieu of
the divergence damper. The advantages of the partial splitting method are not con-
nected with its performance in the simplest test cases, for which it can indeed be
inferior to a completely split approximation, but in its adaptability to more complex
problems.

One might inquire whether divergence damping can also be used to stabilize the
completely-split approximation to the test case with vertical shear in the horizon-
tal wind. The norm of the amplification matrix for the large-time-step third-order
Runge-Kutta integration (6.62)–(6.64) is strictly less than unity for all sufficiently
small �t . Divergence damping makes the norm of the amplification matrix for the
small time step strictly less than unity for all sufficiently small�
 and thereby stabi-
lizes the completely split scheme by guaranteeing that the norm of the amplification
matrix for the overall scheme will be less than unity. Nevertheless, divergence damp-
ing only modestly improves the solution obtained with the completely split scheme;
the pressure field remains very noisy and completely unacceptable.7 The fundamen-
tal problem with the completely split method appears to be one of inaccuracy, not
instability. This will be discussed further in the next section.

The linearly third-order Runge–Kutta scheme (6.62)–(6.64) can provide a sim-
ple accurate alternative to leapfrog time differencing for use on the large time step
in partially split integrations (Wicker and Skamarock 2002), and it has replaced
the leapfrog scheme in several operational codes. To clarify how (6.62)–(6.64) are
modified for use as the large-time-step integrator in a partially split problem, let the
small time step again be defined such that �
 D �t=M , where M must now be a
multiple of 6. Let 1rm be the vector of unknowns at the start of the mth small time
step during the first Runge–Kutta iteration, which is initialized by setting 1r1 D rn.
The mth small time step of the this iteration has the form

1rmC1 D 1rm C�
 �L1.rn/CL2.1rm; 1rmC1/
�
: (6.82)

7 One way to appreciate the difference in the effectiveness of divergence damping in the
completely- and partially-split schemes is to note the difference in wavelength at which spuri-
ous pressure perturbations appear in each solution. The partially split scheme generates errors at
much shorter wavelengths than those produced by the completely split method (compare Figs. 6.4a
and 6.6b), and the short-wavelength features are removed more rapidly by the divergence damper.
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As before, L1 and L2 contain the terms responsible for the low- and high-frequency
forcing, respectively. After M /3 small time steps, the solution to (6.82) is projected
forward to time tn C�t=3. The low-frequency forcing is then evaluated using this
new estimated solution, and the second Runge–Kutta iteration is stepped forward
from time tn to tn C�t=2 in M=2 steps, beginning with 2r1 D rn. The mth small
time step of this iteration is

2rmC1 D 2rm C�

�
L1.1rM=3C1/CL2.2rm; 2rmC1/

�
:

Following a similar update of the large-time-step forcing with the estimated solution
at tn C �t=2, the mth small time step of the final Runge–Kutta iteration, which
integrates from tn to tnC1 in M steps, becomes

3rmC1 D 3rm C�

�
L1.2rM=2C1/CL2.3rm; 3rmC1/

�
;

where 3r1 D rn, and rnC1 D 3rMC1: Several other alternatives to leapfrog-based
partial splitting have also been recently been proposed (Gassmann 2005; Park and
Lee 2009; Wicker 2009).

6.5 Summary Discussion

One way to compare the preceding methods for increasing efficiency when model-
ing fluids that support physically insignificant sound waves is to compare the way
each approximation treats the velocity divergence. The pressure and the divergence
in the compressible Boussinesq system satisfy

@P

@t
C c2s ı D Fp ; (6.83)

@ı

@t
Cr2P D G; (6.84)

where ı D r � v, Fp D �v � rP and G D �r � .v � rv/ C @b=@´: The semi-
implicit method approximates the left sides of the preceding equations with a stable
trapezoidal time difference. Sound waves are artificially slowed when large time
steps are used in this trapezoidal difference, but the gravity wave modes are accu-
rately approximated. The implicit coupling in the trapezoidal difference leads to a
Helmholtz equation for the pressure that must be solved at every time step.

The prognostic pressure equation (6.83) is discarded in the incompressible
Boussinesq approximation and the local time derivative of the divergence is set to
zero in (6.84). This leads to a Poisson equation for pressure that must be solved at
every time step. The computational effort required to evaluate the pressure is similar
to that required by the semi-implicit method. The Boussinesq system does, however,
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Fig. 6.7 As in Fig. 6.4: contours of P at intervals of 0.25 m2s�2 and � at intervals of 0.15 s�1

at t D 3000 s. Solutions are obtained using (a) the Boussinesq projection method, (b) the semi-
implicit method

have the advantage of allowing a wider choice of methods for the integration of
the remaining oscillatory forcing terms, which are approximated using leapfrog
differencing in the conventional semi-implicit method.

The pressure fields generated by the Boussinesq projection method and the semi-
implicit method for the test problem (6.71)–(6.72) are compared in Fig. 6.7. As in
Fig. 6.4 the basic-state horizontal flow is vertically sheared from U D 5m s�1 at
the bottom to U D 15m s�1 at the top of the domain. In the projection method,
the integral (6.9) is evaluated using the third-order Adams-Bashforth method with
a time step of 10 s. The semi-implicit method is integrated using a 12.5 s time step.
The pressure fields generated by both of these methods look very similar to that
produced by the partially split method (Fig. 6.4d) and show no evidence of the noise
produced using the completely split method (Figs. 6.4a–c).

The elliptic pressure equations that appear when using the semi-implicit or pro-
jection methods are most efficiently solved by sophisticated algorithms such as
block-cyclic reduction, conjugate gradient, or multi-grid methods. One may think
of the small-time-step procedure used in the fractional step methods as a sort of spe-
cialized iterative solver for the Helmholtz equation obtained using the conventional
the semi-implicit method. The difference in the character of the solution obtained
by the complete and the partial splitting methods can be appreciated by considering
the behavior of the divergence during the small-time step integration.

During the small-time-step portion of the completely-split method the divergence
satisfies

@2ı

@t2
� c2sr2ı D

@2b

@t@´
:

The initial conditions for ı are those at the beginning of each small-time-step cycle,
and since divergence is typically generated by the operators evaluated on the large
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time step, the initial ı is non-zero. This divergence is propagated without loss dur-
ing the small-time-step integration (except for minor modification by the buoyancy
forcing) and tends to accumulate over a series of large-step, small-step cycles. The
test in which the completely split scheme performs well is the case where the basic-
state horizontal velocity is uniform throughout the fluid. When U is constant, the
linearized advection operator merely produces a Galilean translation of the fluid that
does not generate any divergence. (Recall that the forcing from the wave generator
was computed on the small time step.) Nonlinear advection can, of course, generate
divergence as can the linearized advection operator when there is vertical shear in
the basic-state wind, and these are the circumstances in which the complete splitting
method produces spurious sound waves.

In contrast, the divergence is almost zero at the start of the first small time step
of the partially split method and only small changes in the divergence are forced
during each individual small step. Moreover, the divergence forcing on each small
time step closely approximates that which would appear in an explicit small-time-
step integration of the full compressible equations provided that the amplitude of
all the sound waves is negligible in comparison to slower modes. The divergence
damper insures that the amplitude of the sound waves remains small and thereby
preserves the stability and accuracy of the solution.

In summary, the projection, semi-implicit and partially split fractional step meth-
ods all provide viable ways to model atmospheric circulations in which sound waves
are of no significance. Assuming that one wishes to capture nonhydrostatic motions,
there does not appear to be a clear-cut best approach and the choice of method may
be dictated by a number of additional considerations such as compatibility with
larger-scale models, the complexity introduced by any proposed coordinate trans-
formations, or the ease with which the method can be adapted to particular computer
architectures. If the focus is on larger scales, in which the all circulations of inter-
est are approximately hydrostatic, the semi-implicit method has generally been the
method of choice. For example, the semi-implicit method, is frequently used to
integrate the primitive equations in applications where the phenomena of primary
interest are slow-moving Rossby waves. In such applications the numerical inte-
gration is stabilized with respect to two different types of physically insignificant,
rapidly moving waves. Sound waves are filtered by the hydrostatic approximation,
and the most rapidly moving gravity waves (and the horizontally propagating Lamb
wave) are stabilized by the semi-implicit time integration. (cross reference primitive
equations and Lamb wave)
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Chapter 7
Momentum, Vorticity and Transport:
Considerations in the Design of a Finite-Volume
Dynamical Core

Todd D. Ringler

Abstract This chapter provides an end-to-end discussion of issues related to the
design and construction of dynamical cores. The governing equations of motion are
derived from basic principles cast in the Lagrangian frame of motion. The Reynolds
Transport Theorem is derived so that these conservation statements can be recast in
their weak, integral form in the Eulerian reference frame. Special attention is given
to the relationship between the momentum equation and vorticity dynamics. The
principles of conservation of circulation and vorticity are derived in the continuous
system. It is demonstrated that the kinematic principles related to circulation and
vorticity can be carried over exactly into the discrete system. The analysis is con-
ducted in an idealized, two-dimensional setting that is meant to serve as a prototype
system for the consideration of the full three-dimensional general circulation of the
atmosphere and ocean.

7.1 Introduction

More than 40 years after the first global models for the simulation of the fluid motion
in the atmosphere and ocean appeared, research into the construction of atmo-
sphere and ocean “dynamical cores” has never been more vibrant. The dynamical
core refers to the fluid-dynamic core of an atmosphere or ocean general circula-
tion model; the part of the model that evolves the distribution of mass, momentum
and tracer constituents forward in time. The diversity of approaches that are being
explored to simulate the evolution of mass, momentum and tracers in the atmosphere
and ocean systems points to both the richness and complexity of the problem.

The motivation for this chapter is to present an“end-to-end” view in the design
of numerical models used for the simulation of fluid motion in the atmosphere
and ocean. The process starts with a rigorous construction and description of the
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underlying continuous system. The process ends with the specification of a numer-
ical model that is suitable for its target application. Both the beginning and end are
essentially applied math activities, with the former manipulating continuous equa-
tions and the latter manipulating discrete equations. In between these ends is the
“art” of constructing dynamical cores. If the process were as simple as discretiz-
ing a set of continuous equations, we would not see the vibrancy in dynamical core
development that we see today. A host of subtle, yet profound, questions such as
“which form of a continuous equations should be the starting point for the discrete
model?” fall squarely in the middle of the end-to-end design process. This chap-
ter explores some of those questions in order to illuminate the intricacies of the
decisions that have to be made in the design process.

The price-to-be-paid for this end-to-end view is scope. Many relevant aspects of
the design process have been omitted in order to contain the discussion to an appro-
priate length. The discussion is focused primarily on one important component of
a dynamical core: the prediction of momentum. This proves to be an important
and rich topic for several reasons. First, since the velocity that is derived from
momentum acts as the transport velocity for the mass and tracers fields, a robust
simulation of velocity is a prerequisite for any viable dynamical core. Furthermore,
as the velocity field responds to changes in the applied forces it must also satisfy
certain kinematic conditions, such as conservation of circulation and absolute vor-
ticity. Satisfying the desire to accurately model F D m a, where F is the vector
force, m symbolizes the mass and a stands for the vector acceleration, while also
accommodating important kinematic constraints is a challenge for any numerical
model. And finally, the majority of the nonlinearity in dynamical core simulations
arises from the simulation of the evolving velocity field. In many ways, getting the
evolution of momentum “right” is the hardest part in the design and construction of
a dynamical core.

The analysis presented below is conducted in a very simple, two-dimensional
framework and is, in some ways, quite removed from the global three-dimensional
motions that compose the atmosphere and ocean general circulations. As such, it
is important to address the relevance of this chapter to the modeling of the more
complicated three-dimensional systems. First and foremost, the analysis conducted
here is a prerequisite for the construction of a robust three-dimensional model. In
that, what follows below could be considered a set of necessary, but not sufficient,
properties of robust three-dimensional models of atmosphere and ocean circula-
tions. Since the general circulation of the atmosphere and ocean occurs primarily
along a vertical stack of two-dimensional sheets, it is folly to suppose that a numer-
ical method that performs poorly in the solution of the two-dimensional system will
perform acceptably in the solution of the three-dimensional system. Second, while
the two-dimensional system might seem trivial in some respects, many numerical
methods used in the modeling of geophysical fluid dynamics fall short when viewed
from the perspective of vorticity dynamics. Vorticity dynamics largely represent the
“slow modes” of these system where relatively small truncation errors can accumu-
late and, eventually, completely corrupt the simulation. The struggle to control the
form of truncation error with respect to vorticity dynamics is as important today as it
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was when Arakawa (1966) wrote the seminal paper on the topic (see also the reprint
Arakawa 1997). And finally, this chapter is meant as an introduction to the concept
of designing numerical methods that respect the continuous system in some rele-
vant aspects. For this goal, the very simple, two-dimensional framework is perfectly
appropriate.

The omissions in the discussion are sometimes glaring. For example, the impor-
tance of accurately simulating transport phenomena in dynamical cores is largely
omitted (see, e.g. the discussion in Chap. 8). The notable exception is the detailed
discussion on the relationship between fluid acceleration and absolute vorticity
transport. The next glaring omission is the lack of discussion of potential vortic-
ity and its relationship to the velocity field; the discussion below is limited to an
analysis of the absolute vorticity field. While absolute vorticity is connected only
to the velocity field, potential vorticity is connected to both the velocity field and
to the mass field. The analysis below can (and has) been extended from absolute
vorticity to potential vorticity (Ringler et al. 2010). The choice was made based
on the belief that a firm grasp of the absolute vorticity dynamics is a prerequisite to
understanding the potential vorticity dynamics. And finally, while the primary target
geometry of a dynamical core is the surface of the sphere, the f-plane approximation
is made throughout. All of the analysis carries over to the sphere, the simplification
to the f-plane is for the sake of conciseness in presentation. And finally, while the
focus is on the relationship between the evolution of velocity and its relationship to
vorticity dynamics, we need to be sure to understand that the velocity equation is
derived from F D m a and that the system cannot be closed without the knowledge
of the density field and an equation, such as the ideal gas law, that relates density to
pressure.

The discussion unfolds in the following manner. First, the relevant evolution
equations are constructed from the Lagrangian perspective. These conservation
statements are then transferred to an Eulerian reference frame through the use of the
Reynolds Transport Theorem (RTT). Since a full discussion of RTT is rarely found
in texts related to geophysical fluid dynamics, RTT is derived from first principles
for completeness. Following the development of the evolution equations appropriate
for an Eulerian reference frame, a qualitative analysis is conducted of the various
“flavors” of the momentum equation that can be used as the basis for a numerical
solution. The discussion then moves into the setting of discrete numerics by asking
the most basic question of “How do we begin the process of discretization?” And
finally, a numerical model is developed that meets the criteria developed throughout
the entire discussion. The numerical model is constructed in such a way that it can
easily be implemented in development environments such as MATLAB.

7.2 Reference Frames and Conceptual Constructs

When we consider the motions of the atmosphere or ocean, we expend considerable
effort on the phenomena of transport, such as the transport of fluid density from
one region to another, or the transport of tracer substance from a source region to
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a sink region, or the transport of momentum from one area to another. In almost
all cases, the most natural setting to consider transport is the Lagrangian reference
frame where we, as the observer, move with the fluid.

To start, let us define a volume of fluid, V , composed of a set of particles, R,
enclosed at all times by a surface, S . Each particle in the set of R is denoted by its
vector position X.t/ D X1e1 C X2e2 C X3e3. As indicated, X is only a function
of time. Also, e1;2;3 is the set of orthogonal unit vectors spanning the R3 space (see
Fig. 7.1). The idea of constructing the volume as a set of particles is entirely a con-
ceptual construct; the particles are simply the most basic “element” that is used to
define all other features; lines, surfaces and volumes can be “built” from sets of par-
ticles. Each particle is accompanied by an arbitrarily long list of labels representing
such things as the particle position (X), density (�) and the vector velocity (u). The
validity of such an approach is that the particles can be made arbitrarily small and,
thus, approach the continuum limit.

The amount of mass,M , or tracer substance,Q, within the boundary surface can
be expressed as

V0

V (t)

X

X

V (t) = J ∗V0

u =
dX
dt

e1

e2

e3

M= ½(x,t)dV= ½ (X,t)JdV0

V0
V (t)

Fig. 7.1 The Lagrangian perspective. At time D 0 a volume of fluid, V0, is identified. The volume
is composed of a set of particles, R, with each particle identified by its vector position X. Even
though the volume is sheared, rotated and dilated as it moves through space, it is always composed
of the same set of particles R. Thus, the boundary surrounding V is impermeable. The Jacobian, J ,
integrates the time-rate-of-change of V and represents the fractional change in the volume between
time D 0 and time D t . The volume of fluid at any time t is equal to its volume at some initial
time, V0, times the fractional change in volume, J . Since the boundary of V is impermeable, the
mass, M , within V is a constant in time
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M D
Z
V.t/

� .x; t/ dV (7.1)

Q D
Z
V.t/

� .x; t/ q .x; t/ dV (7.2)

where the limits of integration span the positions x inside the volume V.t/. The
dependence of V on time is retained to make clear that the limits of integration, in
general, change in time. � is the fluid density with units ofmass per volume and q
has units of concentration, such as kg of Q per kg of fluid.

Assume that no mass or tracer substance is exchanged across the boundary S
such that

dM

dt
D 0 (7.3)

and
dQ

dt
D 0: (7.4)

Equations (7.3) and (7.4) define the material derivative as measured in the
Lagrangian reference frame of motion by stating that the amount of M and Q
is invariant in time when following a volume V.t/ that is always composed of the
same set of particles included in R.

Another reference frame of great utility is the Eulerian reference frame where
the observer remains at a fixed position in space, as opposed to moving in space
along particle trajectories. The material derivative (of, say, Q) is expressed in the
Eulerian reference frame as

dQ

dt

ˇ̌
ˇ̌
f luid particle

� DQ

Dt
D @Q

@t
C u �rQ (7.5)

where, as shown in Fig. 7.1, u is the particle velocity vector defined as

u D dX
dt
: (7.6)

The gradient in (7.5) is defined as

rQ D @Q

@x1
e1 C @Q

@x2
e2 C @Q

@x3
e3: (7.7)

The terms on the right-hand side (RHS) of (7.5) are evaluated at a fixed point
and at a fixed time, respectively. Even when the material derivative is identically
zero, a non-zero time-rate of change, @fg

@t
, can be observed at a fixed location due

to the differential transport, u �rfg, into and out-of a specific region. An Eulerian
observer essentially balances dM

dt
D 0 by measuring the differential transport at
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one location, then setting the local time tendency to the value required to make the
material derivative sum to zero.

The blending of the Lagrangian and Eulerian reference frames through the use
of Arbitrary Lagrangian Eulerian (ALE) (Hirt et al. 1997) methods is increasingly
popular in climate system modeling. While the full discussion of ALE methods is
beyond the scope of this chapter, the analysis of the continuous system given in the
following section can be extended to ALE frameworks.

7.3 Evolution Equations from a Lagrangian Perspective

The elegance and simplicity of the Lagragrian reference frame is clearly apparent in
(7.1)–(7.4). In a model of the global atmosphere or ocean we could envision decom-
posing the domain into a set of Lagrangian volumes where each volume is separated
by an invisible, yet impermeable, barrier. The numerical algorithms would then track
the “blobs” as they move through space being pushed, squeezed and rotated due to
their contact with neighboring blobs. In such a model the phenomena of transport
would be remarkably well simulated; no mass or tracer substance would be erro-
neously exchanged between the Lagrangian volumes. In fact, ideas along these lines
are under development by Haertel et al. (2009).

The primary reason that no robust climate model is constructed entirely in a
Lagrangian reference frame is due to the rapid deformation of the Lagrangian con-
trol volumes. As seen in Fig. 7.1, while the mass within the volume V is constant
in time, the volume itself can evolve in time through rotation, dilation and shearing.
Figure 7.2 demonstrates what happens to control volumes in typical geophysical
flows. Initially compact control volumes are stretched due to shearing. The stretch-
ing creates long filaments that are folded. Tracking these rapidly distorting control
volumes poses a tremendous challenge for numerical models.

So while the Lagrangrian reference frame proves exceptionally useful for the
construction of the evolution equations, numerical models are currently restricted to
reference frames that are essentially Eulerian. As a result, we require a robust means
of transforming conservation laws and evolution equations between the Lagrangian
and Eulerian frames of motion. While several methodologies are available for

Fig. 7.2 In the highly nonlinear flows that characterize fluid motion in the atmosphere and ocean,
Lagrangian control volumes are rapidly distorted due the presence of strong shear, rotation and
dilation. The rapid distortion of Lagrangian control volumes makes the formulation of numerical
models within the Lagrangian reference frame an extremely difficult challenge
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transforming between these reference frames, an approach based on the Reynold’s
Transport Theorem (RTT) is particularly appealing for two reasons. First, the RTT
is formulated in an integral form that leads naturally to equations suitable to finite-
volume models that will be discussed in Sects. 7.5 and 7.6. Second, a generalization
of the RTT allows for the seamless transformation between the Lagrangian refer-
ence frame and any other reference frame that falls between the Lagragian (moving)
and Eulerian (fixed) reference frame. Thus, the emerging type of models based on
ALE methods are fully accommodated in approaches based on the RTT; this chapter
serves as a useful waypoint on the path to developing numerical models in the ALE
reference frame. A full analysis of RTT and its generalizations can be found in F.
White’s Fluid Mechanics textbook (White 2008).

7.3.1 The Reynolds Transport Theorem

Let F be any intensive property of the fluid. Examples of F include � with units of
mass per unit volume, �q with units of tracer mass per unit volume or � u with units
of momentum per unit volume. The conservation statement for F in the Lagrangian
reference frame in the absence of sources and sinks is expressed as

d

dt

2
64
Z
VL

F.x; t/dV

3
75 D 0: (7.8)

Note that (7.3) is included as a specific example of (7.8). In general the RHS of
(7.8) need not be zero. A source term for F can be placed on the RHS of (7.8). The
proper evaluation of this source term is along the volume trajectory.

The subscript L on the volume V in (7.8) has been added to denote that the
volume is being viewed by an observer moving in the Lagrangian reference frame.
The goal is to move the time derivative inside the volume integral and, thereby, allow
for the integration to occur over the same volume V but with respect to an observer
in a different reference frame. This is somewhat problematic since the limits of
integration, VL, are a function of time.

The way around this difficulty is to make use of the fact that the volume VL is
composed of the same set of particles R at every instant in time. Thus, as shown in
Fig. 7.1, the differential volume element dV at some time t is related to its value at
time t D 0 as

dV D JdV0 (7.9)

where J accounts for the fractional change in the volume element between time
0 and time t . Conceptually we can consider each of these differential fluid ele-
ments dV0 as being associated with a single particle. Thus, (7.8) can be trans-
formed to
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d

dt

2
64
Z
VL

F.x; t/dV

3
75 D d

dt

2
64
Z
V0

F.X; t/J dV0

3
75 D 0: (7.10)

Note that both sides of (7.10) integrate over the same group of particles R, but do so
in different ways. The LHS indirectly sums over the particles by integrating over VL,
which is identical to the spatial extent spanned by R at time t . The RHS explicitly
sums over the particle positions X at time t included in VL and weights each particle
by its initial volume, V0, times the fraction change in V0 between time D 0 and
time D t . Now that the limits of integration on the RHS are not a function of time,
the order of integration and differentiation can be exchanged. In particular, we can
write

d

dt

Z
V0

F.X; t/J dV0 D
Z
V0

	
J
D

Dt
F.X; t/C F.X; t/ D

Dt
J



dV0 D 0: (7.11)

Just as J accounts for the time-integrated fractional change in the size of the vol-
ume elements, DJ

Dt
accounts for the instantaneous rate-of-change in the size of the

volume elements, namely
DJ

Dt
D J r � u : (7.12)

Equation (7.12) states that the rate-of-change of a Lagrangian volume (JV0) is equal
to its present volume (J V0) times the divergence of the fluid; since V0 is not a
function of time it cancels in (7.11). Using (7.12) we can simplify (7.11) to

Z
V0

	
D

Dt
F.X; t/C F.X; t/r � u



dV0 D 0: (7.13)

We can expand the first term in (7.13) using the definition of the material derivative
(7.5) and combine terms to obtain

Z
V0

	
DF

Dt
C Fr � u



dV0 D

Z
V0

	
@F

@t
Cr � .F u/



dV0 D 0: (7.14)

The broad utility and analytic power of (7.14) is in the choice of V0. Note that the
only requirements on V0 are the following: V0 is coincident with VL at some instant
in time and V0 is fixed in space. Of particular interest is when VL and V0 span the
same volume of space at the instant time D 0. At this instant in time, we can see
that V0 is the Eulerian representation of VL, in that it spans the same volume but
is not moving with the fluid. The volumes V0 and VL only differ in the reference
frame of the observer, with the former in the Eulerian reference frame and the latter
in the Lagrangian reference frame. Relabeling V0 as VE to emphasis this point we
can now write
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d

dt

2
64
Z
VL

F.x; t/dV

3
75 D

Z
VE

	
@F

@t
Cr � .F u/



dV

D
Z
VE

	
DF

Dt
C Fr � u



dV D 0: (7.15)

Note that the Eulerian volume, VE , is often referred to as a “control volume” when
discussed in the context of finite-volume methods

Equation (7.15) is the Reynolds Transport Theorem (RTT). The term “Reynolds
Transport Theorem” is most commonly used when the volume VL is transported
with the fluid, as is the case for the first term in (7.15). When the volume is not being
observed in the Lagrangian reference frame, a generalization of RTT still holds and
that theorem is commonly referred to as the “Generalized Transport Theorem”. The
only way to satisfy (7.15) for any VE is to guarantee that

@F

@t
Cr � .F u/ D 0: (7.16)

A more useful form of (7.15) is obtained by applying the divergence theorem to the
r � .F u/ term to yield

d

dt

2
64
Z
VL

F.x; t/dV

3
75 D

Z
VE

@F

@t
dV C

Z
SE

F u � n dS D 0 (7.17)

where SE is the surface bounding VE and n is the unit vector normal to SE directed
outward. The RTT states that the time-rate-of-change of any intensive quantity F
inside a volume VL following the fluid motion can be computed at any instant in
time as the sum of the time-rate-of-change of F inside VE and the net flux of F
across the surface bounding VE (see Fig. 7.3). The RTT allows for conservation
statements to be naturally cast in an integral form as shown in (7.17). The integral
form is also referred to as the weak form since, in general, the statements hold only
for a compact region of integration. With the machinery of the RTT in place, we can
easily apply it to any conservation statement to obtain an analytic expression of the
dynamical core expressed in integral form.

7.3.2 Conservation of Mass and Tracer Substance

Applying (7.17) to the conservation of mass and tracer expressions in (7.3) and
(7.4), we obtain
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VE

VL(t)

u

d
dt

VL

=

VE

@F

@ t
dV +

SE

Time-rate-of-change
of F within the Eulerian

control volume.

Rate at which F is
removed from the

Eulerian control volume.

F(x;t)dV F u·n dS= 0

Fig. 7.3 An illustration of the Reynolds Transport Theorem. At some time t D 0, the volume
VL is coincident with the volume VE . The Eulerian volume VE remains fixed in place while the
Lagrangian volume VL deforms to VL.t/ at time t . The conservation statement for F is that the
integral of FdV over VL is constant for all time. The Reynolds Transport Theorem allows for
the computation of the time-rate-of-change for F within VE by computing the transport of F
across the surface of VE over time t

d

dt

2
64
Z
VL

�dV

3
75 D

Z
VE

@�

@t
dV C

Z
SE

� u � n dS D 0 (7.18)

d

dt

2
64
Z
VL

�qdV

3
75 D

Z
VE

@.�q/

@t
dV C

Z
SE

�q u � n dS D 0: (7.19)

Equations (7.18) and (7.19) are inextricably coupled and a discussion of the cou-
pling is worthy of its own chapter. A glimpse at this entanglement can be seen by
simply defining Gm D � u � n and rewriting (7.18) and (7.19) as

d

dt

2
64
Z
VL

�dV

3
75 D

Z
VE

@�

@t
dV C

Z
SE

Gm dS D 0 (7.20)
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d

dt

2
64
Z
VL

�qdV

3
75 D

Z
VE

@.�q/

@t
dV C

Z
SE

q Gm dS D 0: (7.21)

Gm is the mass flux per unit area across SE . Equation (7.21) shows that a prerequi-
site to computing the tracer flux across SE is the knowledge of the mass fluxGm. In
fact, when written in this manner it is clear that tracer transport is meaningless with-
out the underlying mass transport field Gm. Those transport algorithms that fully
recognize the relationship between mass and tracer transport are most appropriate
for use in climate simulations.

Differential forms of mass and tracer transport can be obtained directly from
(7.16) or by letting VE ! 0 in (7.18) and (7.19) to obtain

@�

@t
Cr � .� u/ D 0 (7.22)

and
@.�q/

@t
Cr � .�q u/ D 0: (7.23)

Equations (7.22) and (7.23) can be written in material derivative form as

D�

Dt
C �r � u D 0 (7.24)

and
Dq

Dt
D 0 (7.25)

The last two forms will be used in the discussion below.

7.3.3 A Statement of Newton’s Second Law

In order to complete the Lagrangian perspective illustrated in Fig. 7.1, we need to
describe how the volume evolves in time, i.e. what determines the set of particle
velocities u that will dilate, rotate and shear the volume VL shown in Fig. 7.1? In
this case the intensive quantity is momentum per unit volume

P D � u : (7.26)

In its most basic form, the statement of Newton’s Second Law is

dP
dt
D d

dt

2
64
Z
VL

P.x; t/dV

3
75 D

Z
VL

Fb dV C
Z
SL

Fs dS (7.27)
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where Fb is a body force acting throughout the volume VL and Fs is a surface force
acting on the surface SL. Fb has units of force per unit volume and Fs has units of
force per unit area. Applying RTT as expressed in (7.13)–(7.27) yields

Z
VE

	
D

Dt
.� u/C .� u/r � u



dV D

Z
VE

Fb dV C
Z
SE

Fs dS: (7.28)

Expanding the material derivative and combining terms results in

Z
VE

	
�
Du
Dt
C u

�
D�

Dt
C �r � u

�

dV D

Z
VE

Fb dV C
Z
SE

Fs dS: (7.29)

The term
�
D�
Dt
C �r � u

�
is a statement of conservation shown in (7.24) and is iden-

tically zero. The momentum equation now has a form that is analogous to ma D F
with Z

VE

�
Du
Dt

dV D
Z
VE

Fb dV C
Z
SE

Fs dS (7.30)

where D u
Dt

is exactly equal to the particle acceleration. The specific forces that are
applied to the RHS can range from the Coriolis force1 to the pressure gradient force
to surface drag to shear stress, just to name a few. The focus here will be on the
forces responsible for geostrophic balance: Coriolis and pressure. In addition, the
Coriolis force is representative of a body force with the integration over VE , and
the pressure force is representative of a surface force with the integration over SE .
The Coriolis force can be expressed as

Z
VE

Fb dV D �
Z
VE

fo k� .� u/ dV (7.31)

where fo is the Coriolis parameter that is assumed to be a constant (i.e. an f-plane
approximation has been assumed) and k is the unit vector pointing in the local
vertical direction. The pressure force can be expressed as

Z
SE

Fs dS D �
Z
SE

p n dS D �
Z
VE

rp dV (7.32)

1 The Coriolis force is an apparent force that arises due to casting the equations of motion in
a non-inertial, rotating reference frame. Both the Lagrangian and Eulerian reference frames are
measured relative to the underlying rotating reference frame. If the system of equations were cast
in an inertial reference frame, then the Coriolis force would not be present.
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where n is the outward directed normal vector to SE . The negative sign on the p n
term in (7.32) is because, by definition, pressure p pushes inward on SE resulting
in a force directed in the � n direction. Equation (7.32) also uses the divergence
theorem to transform the pressure force from an integral over SE to an integral over
VE . Letting VE ! 0 allows (7.30) to be expressed in its differential form as

Du
Dt
D �fo k�u�1

�
rp: (7.33)

One numerical method that will be of particular interest below is the “finite-
volume approach.” In this approach, we retain prognostic equations for mean values
over discrete regions. As a result, the weak or integral form of (7.33) is more
amenable to a finite-volume approach. In order to convert the momentum equation
shown in (7.33) into its weak form, we can apply (7.17) to the intensive quantity
P D � u and obtain

Z
VE

@.� u/
@t

dV C
Z
SE

.� u/ u � n dS D
Z
VE

Fb dV C
Z
SE

Fs dS: (7.34)

With examples of Fb and Fs in place, the integral form of the momentum equation
becomes
Z
VE

@.� u/
@t

dV C
Z
SE

.� u/ u � n dS D �
Z
VE

fo k� .� u/ dV �
Z
SE

p n dS: (7.35)

Figure 7.4 illustrates the various terms involved in (7.35). Allowing VE ! 0 in
(7.35) and transforming the second and fourth term using the divergence theorem
gives

@.� u/
@t
Cr � .� u u/ D �fo k� .� u/ � rp (7.36)

where the notation (� u u) symbolizes a tensor.
We have developed several different analytic forms of F D m a in this section.

In particular, a particle-based formulation of momentum is shown in (7.33) and
a control-volume formulation is shown in (7.35). When constructing a numerical
model, each form will have its own advantages and disadvantages. We will return to
this discussion in Sect. 7.4.

7.3.4 Dynamics of Vorticity

By using F D m a to construct the evolution equation for velocity or momentum,
we describe how a particle (7.33) or a region of fluid (7.35) responds to applied
forces. In addition to the balance-of-forces in the momentum equation, there are
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½u

SE

−P n

PVE

@ (½u)
@ t

− pndS = 0

dV

SE

−
VE

(½u)u ·ndS

u·n

fok×(½u)dV

Fig. 7.4 A control volume perspective of conservation of momentum: The time-rate-of-change
of momentum, �u, within VE is due to three mechanisms. The first is the apparent body force,
�fo k � �u, acting over the entire control volume VE . The second is due to the pressure force
acting along the surface of VE . And the last mechanism is the transport of momentum, �u, across
the surface of VE . Other mechanisms such as dissipation and external sources can also be included

kinematic constraints on the structure of the velocity field. A vector velocity field
can always be described as a sum of two vector velocity fields where one vector
field is purely rotational and the other vector field is purely divergent. This is known
as the Helmoltz Decomposition.2 The Helmoltz Decomposition states that we can
always decompose a vector field as

u D uı Cu� (7.37)

with
r � u D r � uı D ı; (7.38)

and
r � u D r � u� D �; (7.39)

where ı is the scalar divergence field associated with u and � is the vector vor-
ticity field associated with u. Equations (7.38) and (7.39) show that the divergent

2 The simplification to singly-connected domains extending to infinity is made here for clarity in
presentation, see (Batchelor 1967) page 85 for a full discussion.
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component of u is contained entirely in uı and the rotational component of u is
contained entirely in u� . Given a divergence and vorticity field, the velocity field
can be determined by first finding the potential fields consistent with ı and � as

r2� D ı; (7.40)

and
r2ˇ D � (7.41)

and then differentiating the scalar potential field � and vector potential field ˇ to
obtain the velocities as

r� D uı ; (7.42)

and

r � ˇ D u� : (7.43)

Solving (7.40) and (7.41) for the potential fields requires the inversion of the r2
operator.3 While the Helmoltz Decomposition holds for three-dimensional flows,
we will limit the velocity to 2-D planar flows in the following section.

Broadly speaking, the rotational component of the velocity field, u� , is associ-
ated with slow modes, such as Rossby waves, and the divergent component of the
velocity field, uı , is associated with fast modes, such as gravity waves. An ade-
quate representation of both the rotational and divergent components of motion is a
prerequisite to robust simulations of geophysical fluid dynamics.

From a climate modeling perspective, avoiding the spurious forcing of the rota-
tional component of the velocity field is of great concern. Since the vorticity field
tends to evolve slowly in time via transport (i.e. it is a slow mode), errors in the
evolution of the rotational component of velocity tend to be advected along with the
fluid flow and, thus, accumulate in time. Discrete numerical models with spurious
forcing of the vorticity field resort, inevitably, to inappropriately large levels of dis-
sipation in order to control the spurious accumulation of vorticity variance at the
model grid-scale.

Throughout the remaining sections of this chapter a tremendous amount of
discussion will focus how to design numerical methods that appropriately solve
F D m a while avoiding any spurious forcing of the vorticity field. We will begin
this discussion by developing conservation statements in the continuous system
regarding how the rotational component of the velocity field should evolve in time.
Later sections will focus on how to build these conservation statements into the
discrete system.

3 In singly-connected domains, like the entire surface of the sphere, no additional boundary con-
ditions are required to solve (7.40) and (7.41). In multi-connected domains, additional boundary
conditions are required to close the system.
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7.3.4.1 Conservation of Circulation

Circulation measures the mean rotation around a material contour (see Fig. 7.5). Cir-
culation is essentially the area-weighted representation of vorticity. In the discussion
of circulation and vorticity, we will limit the velocity field to two spatial directions,
such as the surface of a plane. The reduction in the space spanned by the velocity
field means that volume integrals in RTT reduce to surface integrals and surface
integrals in RTT reduce to contour integrals. The relative circulation is defined as

� rc.t/ D
I
c.t/

u � dr D
Z
S.t/

k � �r � u
�
dS D

Z
S.t/

� dS (7.44)

where � r
c.t/

measures the mean rotation produced by the velocity field u around a
contour c.t/ that moves with the material particles. For the 2D system considered
here, k is the local vertical with � measuring the component of vorticity in the verti-
cal direction. The limits of integration are around the contour c.t/, or over the area
S.t/ associated with the contour. The explicit dependence on time has been retained
in c.t/ and S.t/ to emphasize that the limits of integration are a function of time.
All analysis in this section will take place in the Lagrangian reference frame; the
use of RTT to transform the conservation statements to the more practical Eulerian
reference frame will be done in the following section.

The first task is to determine the appropriate conservation statement for circula-
tion within a Lagrangian control area. Note that since the contour of integration in
(7.44) moves with the fluid, the contour is composed of the same set of particles for
all time. Applying the time derivative to (7.44) yields

d

dt
� rc.t/ D

d

dt

I
c.t/

u � dr D
I
c.t/

"
dr �du

dt

ˇ̌
ˇ̌
ˇ
particle

C u �d .dr/
dt

#
: (7.45)

Since the element dr is transported with velocity u, its time-rate-of-change can be
expressed as

d .dr/
dt

D dr �r u : (7.46)

The RHS of (7.46) measures the deformation and rotation of dr due to spatial
variations in the u field.4 Using (7.46) in (7.45) yields

d

dt
� rc.t/ D

I
c.t/

"
Du
Dt
Cr

 
juj2
2

!#
� dr D

I
c.t/

Du
Dt
� dr (7.47)

4 Equation (7.46) is obtained by noting that d.dr/
dt
D u.xC dr/� u.x/, expanding u.xC dr/ in a

Taylor series and retaining the first two terms. The r u term is the gradient of the vector velocity
field and is a rank-2 tensor. A detailed explanation of r u is given in DeCaria and Sikora (2010).
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where (7.5) is used to recast the time derivative of u as a material derivative. The
relationship between the evolution of circulation and F D m a is becoming appar-
ent with the appearance of the D u

Dt
in (7.47). If we substitute in the form of the

momentum equation defined in (7.33) we obtain

d

dt
� rc.t/ D

I
c.t/

	
�fo k�u�rp

�



� dr: (7.48)

The first source of relative circulation on the RHS of (7.48) is related to the amount
of planetary vorticity captured in c.t/ due to expansion or contraction of the area
associated with c.t/. Referring to Fig. 7.5 and under the condition that the Coriolis
parameter is constant, we can manipulate this source term as

�
I
c.t/

Œfo k�u	 � dr D �
I
c.t/

Œu�dr	 � fo k D �fo D
Dt
S.t/ D � D

Dt
Œfo S.t/	 :

(7.49)
The term u�dr represents the rate at which area is swept by the transport of element
dr by velocity u. When integrated around the entire contour and multiplied by the
planetary vorticity, the result measures the time-rate-of-change in the amount of

u

dr

d

dt
Γa

c(t)=
d

dt
= 0´ dS

S(t)

dr is an infinitesimal
segment of c(t).

Γr
c(t) = u·dr = ∇×u dS= ³ dSk·

S(t) S(t)c(t)

[u×dr]·fok

c(t) is the material loop
moving with the fluid.

the rate at which planetary
vorticity is swept by the
transport of c(t) by u.

Fig. 7.5 A graphical representation of circulation. The symbol � D � C fo denotes the absolute
vorticity
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planetary vorticity contained within c.t/. If we define the planetary circulation as

�
p

c.t/
D fo S.t/ (7.50)

then we can express the absolute circulation as

� ac.t/ D � rc.t/ C � pc.t/ D
Z
S.t/

.� C fo / dS D
Z
S.t/

� dS (7.51)

where � is the absolute vorticity defined as the sum of the relative vorticity and the
planetary vorticity. We can now rewrite (7.48) as

d

dt
� ac.t/ D

I
c.t/

	
�rp
�



� dr (7.52)

where (7.52) is an expression for the rate-of-change of absolute circulation associ-
ated with a contour c.t/ that is observed in the Lagrangian reference frame. The
remaining source term on the RHS of (7.52) is the due to the differential accelera-
tion of particles along c.t/ produced by the pressure gradient force when variations
in the density field are present. The primary interest here is on the situation when
the density field is constant,5 i.e. � D �o. In this situation we find

I
c.t/

	
�rp
�o



� dr D �1

�o

I
c.t/

rp � dr D 0: (7.53)

The term rp � dr measures the gradient of the pressure field in the direction of dr.
So long as the c.t/ loop traced out by the differential dr elements is closed, the
integration of rp � dr around c.t/ is guaranteed to be identically zero. This results
holds for any loop and for any scalar field. With the result provided in (7.53), we
can end the analysis with

d

dt
� ac.t/ D

d

dt

2
64
Z
S.t/

� dS

3
75 D 0 (7.54)

that states that the absolute circulation contained within contour c.t/ as it moves
with the fluid will be a constant in time; absolute circulation within c.t/ is conserved

5 When variations in density are present, as in the real atmosphere and ocean, then the RHS of
(7.52) serves as a source of circulation and vorticity. When considering the numerical simulation
of this process, a critical prerequisite is the guarantee that vorticity is not created when these
variations are not present.
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in time. The relationship also makes it clear that, in general, the absolute vorticity is
not constant within the contour c.t/. Only in the special case of non-divergent flow
resulting in D

Dt
ŒS.t/	 D 0will the mean value of � be a constant within contour c.t/.

7.3.4.2 Conservation of Absolute Vorticity

The entire analysis in the section above is conducted in the Lagrangian reference
frame. The purpose of this section is to use RTT to transfer the conservation state-
ments into an Eulerian reference frame. Comparing (7.54) to (7.8) shows that the
form of conservation of absolute circulation shown in (7.54) is suitable for the
application of RTT. Applying RTT as stated (7.15) to (7.54), we find

d

dt
� ac.t/ D

d

dt

2
64
Z
S.t/

� dS

3
75 D

Z
S

	
@�

@t
Cr � .� u/



dS D 0: (7.55)

The form of (7.55) that is most suitable for finite-volume applications discussed
below is Z

S

@�

@t
dS C

I
c

� u � n dr D 0 (7.56)

that states that the time-tendency of absolute vorticity in region S is equal and oppo-
site to the rate at which absolute vorticity is being transported into or out of region
S . A primary goal in the construction of the numerical model developed below is to
guarantee that the velocity field evolves in such a way as to mimic (7.56) exactly.

For the sake of completeness we note that in the limit of dS ! 0 and allowing �
to be nonuniform, (7.55) becomes

@�

@t
Cr � .� u/ D �k �

 
r �

	rp
�


!
(7.57)

where the RHS source term shown in (7.52) has been retained. And finally, intro-
ducing the material derivative into (7.57) yields

D�

Dt
C �r � u D �k �

 
r �

	rp
�


!
: (7.58)

7.3.5 Summary of Evolution Equations

The analytic analysis of the continuous system is now complete. The approach has
been to identify conservation statements in the Lagrangian reference frame and to
use the Reynolds Transport Theorem to transfer these conservation statements into
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an Eulerian reference frame. The value of the Reynolds Transport Theorem is that
it provides a machine-like approach to the derivation of evolution equations spec-
ified naturally in the integral form conducive to the development of finite-volume
methods.

Before turning to the process of discretization, a survey is conducted of the var-
ious flavors of F D m a that can be used as the basis, or starting point, for the
discretization process. The specific form of F D m a that is chosen as the start-
ing point for the numerical model has a tremendous impact on the attributes of that
numerical model. Particular attention is paid to the ability of each form to satisfy
both F D m a and conservation of absolute vorticity (7.56).

7.4 The Various Flavors of F D m a

In the continuous system, all forms of the momentum equation are equivalent. The
equivalence holds for smooth flows. If singularities develop in the solution, the
equivalence between the various forms is more tenuous. Since each form can be
manipulated into any other form, there is no difference between the various expres-
sions of F D m a. This is not true in the setting of discrete numerics. Discretizing
the continuous system implies an approximation of the continuous fields as a finite
set of values that typically exist on a mesh that spans the spatial extent of the system.
In addition, the continuous operators such as r, r� and r� are replaced with dis-
crete approximations. One result of discretizing the momentum equation is that the
various forms are no longer equivalent; we cannot, in general, manipulate one dis-
crete form of the momentum equation into another discrete form using the discrete
operators. As a result, when we choose the form of the momentum equation used
in a numerical model, we are saying a great deal about what aspects of F D m a
are most important in the target application. Each form has its own advantages and
disadvantages and, thus, each form has its own niche to fill in the modeling of the
global atmosphere and ocean systems. This section provides a brief review of the
commonly used flavors of F D m a with a discussion of their respective advantages
and disadvantages.

7.4.1 The Advective Form

The advective form of the momentum equation (7.33) is restated here for conve-
nience:

Du
Dt
D �fo k�u�1

�
rp: (7.59)

This is essentially an evolution equation for one of the particles in the Lagrangian
system, such as a particle X shown in Fig. 7.1. Assume that the system is discretized
on a regular mesh composed of squares, such as the one shown in Fig. 7.6. If at some
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X(t
b
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½∇·p dt
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X(tb)=X(te)− u dt
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Determine by
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to X(t

b
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Integrate along
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initial condition.
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trajectory.

Fig. 7.6 A graphical representation of forward Lagrangian and backward Lagrangian (i.e. the
semi-Lagrangian) method

time, say t D tb one particle is placed at the center of each square shown in Fig. 7.6,
then the particle position and velocity at some later time, say t D te , are determined
by integrating (7.59) along the particle trajectory as

teZ
tb

Du
Dt

dt D u.te;X.te//� u.tb;X.tb// D
teZ
tb

	
�fo k�u�1

�
rp



dt: (7.60)

Assuming that the particle positions and velocities are known at tb , the system is
solved for X.te/ and u.X.te/; te/ as

X.te/ D X.tb/C
teZ
tb

u dt; (7.61)

u.te ;X.te// D u.tb;X.tb//C
teZ
tb

	
�fo k�u�1

�
rp



dt: (7.62)

It needs to be emphasized that all of the source-term integrals on the RHS of
(7.62) are along the particle path starting at time tb at position X.tb/ and ending
at time te at position X.te/. While there are certainly challenges with the discrete
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evaluation of the RHS of (7.62), a more basic problem with the approach is that
the particle positions at the end of the time step are, in general, no longer on a
regular mesh (see forward-in-time diagram in Fig. 7.6). More forward-in-time steps
will lead to a continuous distortion of particle positions due to the same shearing,
stretching and deformation mechanisms illustrated in Fig. 7.2. In order to prevent
this continuous distortion, (7.60) is generally evaluated backward in time in what is
commonly known as the semi-Lagrangian approach (see Staniforth and Côté 1991
for a complete review).

Instead of assuming that the particles exist on a regular mesh at the beginning
of the time step, the particles are assumed to reside on the regular mesh at the end
of the time step. In this situation, the particle positions X.te/ are required to form
the regular mesh shown in Fig. 7.6. The challenge is then to determine X.tb/ by
integrating particle trajectories backward in time, i.e. to determine the starting point
of the particles such that the particles arrive on a regular mesh at te . In this approach
the system is solved for X.tb/ and u.X.te/; te/ as

X.tb/ D X.te/�
teZ
tb

u dt; (7.63)

u.te ;X.te// D u.tb;X.tb//C
teZ
tb

	
�fo k�u�1

�
rp



dt: (7.64)

In general, u.tb;X.tb// is determined by interpolating the velocity values known on
the fixed mesh at time tb to X.tb/ locations. Equations (7.63) and (7.64) are coupled
and need to be solved jointly or iteratively. The challenges of evaluating the RHS
along the particle trajectory still remain.

The advantage of this approach is that exceptionally long time steps are possi-
ble.6 Since the integration is occurring along the particle characteristic, traditional
advective Courant–Friedrichs–Lewy (CFL) time step constraints do not apply. An
additional advantage is the ease with which tracer constituents can be updated.
Using (7.25) and integrating Dq

Dt
from tb to te , we have

q.te ;X.te// D q.tb;X.tb//: (7.65)

q.tb;X.tb// is determined by interpolating the tracer values from the regular mesh
to the departure points X.tb/. Once this interpolation is complete, the updated tracer
values are known immediately since q is conserved along particle trajectories.

The disadvantages in this approach to solving the momentum equation are
related to the lack of conservation of mass and tracer substance and the spuri-

6 While longer time steps reduce the computational expense of a given simulation, longer time
steps also often lead to less accurate results. Weighing the relative value of “fast” versus “correct”
is important in choosing the time step for a simulation.
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ous generation of vorticity. While these disadvantages pose severe problems in the
context of long-time simulations typical in climate applications, these disadvan-
tages have been successfully mitigated and/or circumvented for numerical weather
prediction applications where the integration time scales are on the order of days
to a week or two. Another alternative is to abandon the particle-centric approach of
pure semi-Lagrange schemes and move to a cell-based approach (see Chap. 8).

The issues regarding conservation can be readily identified by comparing (7.65)–
(7.4). The conservation statement is that the mass-weighted integral of q (i.e. Q) is
conserved in time when no sources or sinks are present. Yet (7.65) only sees the
tracer concentration q for an isolated number of particles and, furthermore, that
concentration is computed at locations X.tb/ via an interpolation procedure where
accuracy is generally much more important than conservation.

The issues regarding spurious vorticity generation are equally problematic in the
context of climate system modeling. In general, getting a handle on the evolution
of vorticity in a particle-based formulation is extremely difficult. Using (7.58) we
could certainly tag each particle with an associated vorticity, but the evolution of
absolute vorticity during the time step involves spatial gradients that are difficult to
compute. In addition, the same issue regarding lack of conservation occurs in the
context of vorticity as occurs in the context of tracer transport. And finally, even if
one could manage to evolve vorticity with the particles in a realistic manner, it is not
clear how that information could be used to control the evolution of the prognostic
velocity field shown in (7.64).

7.4.2 The Flux Form

The flux form of the momentum equation is shown in (7.34), illustrated in Fig. 7.4
and rewritten here for 2D planar flow as

Z
SE

@.� u/
@t

dS C
Z
cE

.� u/ u � n dc D �
Z
SE

fo k� .� u/ dS �
Z
cE

p n dc: (7.66)

where c stands for a line segment along the contour cE . The main advantage of the
flux-form momentum equation is that it is relatively easy to insure that the transport
of momentum (the second term in (7.66)) is conservative, i.e. momentum that exits
one cells across cE enters a neighbor cell. This same conservation property occurs
in the evaluation of the pressure force; along a contour cE the pressure force results
in an equal and opposite source of momentum for the surfaces that share cE . An
additional advantage of the flux-form is that density is incorporated into the prog-
nostic variable. When using the flux-form of momentum, the prognostic variable
is � u, whereas all the other forms have u as the prognostic variable. The merit in
retaining � u as the prognostic variable is that as � ! 0 the prognostic variable
goes to zero so long as u remains bounded. In the emerging class of atmosphere
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and ocean models, � is often related to the vertical layer thickness, so � ! 0 is
equivalent to a layer collapsing to zero thickness when all of the mass in a given
layer at a given position is evacuated (e.g. Konor and Arakawa 1997; Bleck and
Smith 1990). This is a common occurrence in numerical models and the flux-form
momentum equation provides ample opportunities to insure that the discrete system
remains well-behaved even in the presence of massless layers.

The primary disadvantage in the use of the flux-form momentum equation is
that the curl of (7.66) does not lead directly to a vorticity equation; vorticity and
circulation are purely kinematic quantities that are related to ther�u notr�.� u/.
As a result, discrete models based on the flux-form of the momentum equation do
not conserve circulation or absolute vorticity. In a discrete formulation of (7.66)
every term has the potential to generate spurious vorticity. If no guarantees can be
provided in regards to the conservation of circulation or vorticity, in general the only
recourse is to increase the level of dissipation to maintain a regular, well-behaved
solution. If the level of dissipation required to suppress the spurious generation of
vorticity is significantly higher than is physically warranted, one should expect the
numerical simulation to be degraded due to the physically-excessive dissipation.

The spurious generation of vorticity is due to errors in the discretization of the
system. Assuming smooth flows, these errors approach zero as the order-of-accuracy
of the discrete operators is increased and/or as the grid resolution is increased. The
possibility certainly exists that these spurious errors are acceptably small, even for
climate simulations, when employing high-order numerical methods and/or high-
resolution meshes.

7.4.3 The Vector-Invariant Form

The vector-invariant form is derived from the advective form (7.59) where the mate-
rial derivative is expanded into time tendency and transport terms using (7.5) to
obtain

@u
@t
C .u �r/ u D �fo k�u�1

�
rp: (7.67)

If the .u �r/ u term is replaced based on the following vector identity

.u �r/ u D .r � u/ � uCr
	
1

2
juj2



; (7.68)

we obtain
@u
@t
D ��k�u�rK � 1

�
rp (7.69)

where � D k � .r � u/, � D �Cfo and the kinetic energy is defined asK D 1
2
juj2.

Since the vector-invariant form of the evolution of momentum has no notion of a
material derivative, it is a natural expression of the velocity tendency at a fixed point
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in space. The interesting and powerful aspect of (7.69) is that while u is defined at
a point, the integral of u around a closed contour defines an area, a circulation and
the area-mean vorticity. This relationship will be fully developed in Sect. 7.5.

The �k�u term will be referred to as the nonlinear Coriolis force because it con-
tains both the linear tendency term fo k�u and a portion of the nonlinear transport
term in the form of � k�u.

When considering the momentum equation we are primarily interested in the
velocity field that is needed for the evolution of the mass and tracer fields. Beyond
the velocity itself, we are interested in three derived quantities: divergence, vorticity
and kinetic energy. Two of these three derived quantities appear explicitly in (7.69).
The appearance of vorticity and kinetic energy does not necessarily imply that the
necessary controls are available to insure that these quantities remain well-behaved
and bounded, but it is a step in the right direction.

In the context of climate modeling, it is difficult to find shortcomings in choos-
ing the vector-invariant form of the momentum equation as the basis for a discrete
model. This approach was successfully employed on hexagonal grids (Sadourny and
Morel 1969) and on latitude-longitude grids (Arakawa and Lamb 1981) decades
ago. The primary reason to not choose this form of the momentum equation is that
another form of the momentum equation, such as the advective form or flux form,
is a more natural choice for the application of interest.

7.4.4 The Vorticity-Divergence Form

Since a great deal of emphasis has been placed on the importance of vorticity in the
above discussion, it is reasonable to consider exchanging the prediction of the vector
velocity for the prediction of the vorticity and divergence. As discussed above, the
Helmoltz Decomposition guarantees that vorticity and divergence form a complete
description of the vector velocity field, so prognosing � and ı is a theoretically-
sound approach (e.g. Heikes and Randall 1995; Ringler et al. 2000; Thuburn 1997).
In addition, retaining � as a prognostic variable leads to a strong control over its
evolution.

For 2D planar flow, we generate the evolution equations for � and ı by taking k �
r� andr� of the momentum equation, respectively. As long as we are working with
the continuous equations, we can start with any form of the momentum equation
and obtain the same resulting vorticity and divergence equation. Starting with the
vector-invariant form of the momentum equation expressed in (7.69) and applying
the k � r� and r� operators yields

k �
 
r � @u

@t

!
D @�

@t
D k �

 
r �

	
��k � u�rK � 1

�
rp


!
; (7.70)
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and

r � @u
@t
D @ı

@t
D r �

	
��k � u�rK � 1

�
rp



: (7.71)

Focusing on the vorticity equation, we can recover the Eulerian expression derived
in (7.57) written as

@�

@t
Cr � .� u/ D �k �

 
r �

	rp
�


!
: (7.72)

The first important aspect to note in (7.72) is that k � .r � Œ��k � u	/ D �r � .� u/.
The application of the curl operator to the nonlinear Coriolis force results in the
divergence of the absolute vorticity flux. The second important aspect to note in
(7.72) is that r � rK D 0; the curl of the gradient is identically zero.

The divergence equation can be expressed as

@ı

@t
Cr � ��u?

� D �r2K � r �
	
1

�
rp



(7.73)

where u? D k�u.
The primary advantage of using the vorticity-divergence form of the velocity evo-

lution equation is the ability to retain (7.72) as a prognostic equation. In the presence
of uniform density, the time-rate-of-chance of absolute vorticity is the divergence of
the absolute vorticity flux. The absolute vorticity flux can be computed numerically
using advanced transport algorithms that can guarantee that � will remain smooth at
the grid-scale without the introduction of excessive dissipation.

The primary disadvantage of this formulation can be seen in (7.40) and (7.41).
After each time step, two elliptic equations must be inverted in order to compute
the velocity field that will be required to compute the tendency terms in (7.72) and
(7.73) on the next time step. For simple domains, such as the global atmosphere,
inverting (7.40) and (7.41) is straightforward but relatively expensive in regards to
the computational effort. In more complicated domains, inverting (7.40) and (7.41)
is analytically challenging and, at least to date, computationally prohibitive.

7.5 The Process of Discretization

In this section the continuous equations developed above will be discretized in
order to obtain a numerical model for the evolution of momentum. The process
of discretization truncates the infinite degrees of freedom that are present in the
continuous system to a finite number of degrees of freedom in order to pro-
duce a computationally-tractable algebraic problem suitable for existing computer
architectures. When the numerical methods are based on traditional finite-volume
techniques, such as those to be developed below, the spatial extent of the continuous
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system is decomposed into cells and the temporal extent of the continuous system
is decomposed into time steps. The discussion here will be limited to the spatial
discretization of the continuous system.

The possibilities for the specific form the discrete momentum equation can
quickly become unwieldy. For example, the optimal way to decompose the sphere
into cells is still very much a research topic. Even if we limit the scope to decom-
positions that attempt to produce quasi-uniform meshes the choices include, at a
minimum, the cubed-sphere (Chap. 9), Voronoi tessellations (Chap. 10) and Delau-
nay triangulations (Chap. 10). Furthermore, once a mesh is chosen there are at least
five different staggering arrangements of the prognostic variables: A-grid, B-grid,
C-grid, D-grid, and E-grid (Chap. 3). In addition, we can choose one of the four
viable flavors of F D m a to discretize. So three meshes times five grid-staggerings
times four momentum forms leads to 60 permutations. And this is before we even
consider the specification of the numerical operators.

A “down-select” of the 60 permutations is required. Some of this down-select
can be made based on the target application. Some of this down-select can be based
on the wealth of experience that has been gained over the last 40 years. And finally,
some of this down-select can be made based on an intuition of what method(s)
are likely to emerge as the preferred-alternative over the next decade. Furthermore,
the selection method should not be made as an a la carte process; some choices
of grid staggering are clearly inappropriate for certain choices in the form of the
momentum equation. Rather, the process is similar to a table d’hote where choices
are made with the prior knowledge of the other choices and the intention to produce
the best overall product as opposed to the best single course. The courses in this
chapter’s table d’hote are discussed directly below.

7.5.1 Target Application: Joint Climate-Weather Prediction

The traditional gap between the atmospheric component of climate models and
weather prediction models is disappearing. Atmosphere climate models have been
used to conduct global cloud resolving simulations (Tomita et al. 2005). Weather
prediction models have been used to study regional climate change (Leung et al.
2004). While each model is finding application outside what has been its core mis-
sion, these uses are clearly “off-label applications” where, as expected, the quality
of the results vary. The criteria driving the choices in model specification (i.e. the
choice of mesh, grid staggering and form of momentum) have traditionally been
very different in the climate and weather modeling communities. Climate applica-
tions have emphasized concepts related to mass, tracer and vorticity conservation,
as well as long-time stability of numerical simulations. Weather applications have
emphasized concepts related to local accuracy and simulation throughput. The driv-
ing need is for a single atmosphere model to excel at both climate applications and
weather applications. So the target application for this discussion is a joint climate-
weather simulation. As a result, the choices made below may differ from the choices
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made if the target application was solely climate simulation or solely weather pre-
diction. And finally, these same choices will be applicable to a unified ocean model
that is appropriate for both global ocean simulations and regional eddy-resolving
simulations.

7.5.2 Grid Staggering: C-grid Staggering

The choice of the grid staggering is very much constrained by the target application.
Weather prediction models have often used a collocated staggering of variables in
order to apply semi-Lagrangian methods to the advective form of the momentum
equation (Ritchie et al. 1995). This is a computationally efficient method that is
greatly appreciated in operational settings where simulation throughput is often a
driving factor in model specification. Other grid staggerings, such as the B-grid
(Zhang and Rančić 2007) and C-grid staggering (Skamarock et al. 2008), have
been used with success in both weather and climate models. The choice of the
C-grid staggering, when paired with the other choices, will also allow for exact
conservation of absolute vorticity.7 And more importantly, the C-grid staggering
will allow for the precise control of the evolution of vorticity in time through the
use of advanced flux-limiting transport algorithms. In addition, the C-grid stagger-
ing excels in the simulation of divergent modes that dominate the cloud-resolving
scales of motion (Randall 1994). The principle difficulty with the C-grid staggering
is that while the normal component of velocity is retained as a prognostic variable,
the tangential component of velocity is needed to compute the nonlinear Coriolis
force (Chap. 3). The robustness of numerical schemes built with a C-grid staggering
is very much dependent on the method used for the reconstruction of the tangential
velocity component.

7.5.3 Mesh: Locally-Orthogonal Meshes

One of the residual benefits of using the C-grid staggering is that it accommodates
a wide class of meshes. The critical aspect of the C-grid staggering is that the edge
that separates two cells is orthogonal to the line segment connecting the centers
of the two associated cells (see the discussion in Chap. 10). The local orthogo-
nality leads to compact numerical operators that are approximately second-order
accurate in space (Ringler et al. 2010). The local orthogonality, C-grid staggering

7 While the target applications involve full 3D simulations of the atmosphere and ocean, the process
of discretization is best elucidated in 2D. The 3D system is clearly more complicated and is not
a simple extension of the 2D system. Still, the concept of vorticity dynamics and conservation of
(potential) vorticity are equally important in the full 3D system.
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and vector-invariant form of momentum will lead to a strong connection between
acceleration and vorticity transport.

7.5.4 Form of Momentum Equation: The Vector-Invariant Form

The use of the vector-invariant form of the momentum equation has a long and
successful track record in climate modeling dating back to at least Arakawa and
Lamb (1981). Weather applications have tended to use other forms, such as the flux
form in order to conserve momentum and to obtain higher formal accuracy (e.g. the
Weather and Research Forecast (WRF) model described in Skamarock et al. 2008)
or the advective form in order to employ semi-Lagrangian methods (e.g. the Euro-
pean Center for Medium-Range Weather Forecasts (ECMWF) model documented
in Ritchie et al. 1995).

The comparison of the vector-invariant form to the flux form offers an important
insight into conservation. Given all of the choices made above (i.e. climate-weather
applications, C-grid staggering, and locally-orthogonal meshes), either the vector-
invariant form or the flux form is a viable choice. If one chooses the flux form
of the momentum equation, then the prognostic variable, � u, will be conserved in
the numerical model. As derived below, if one chooses the vector-invariant form of
the momentum equation, then absolute vorticity will be conserved in the numerical
model. The choice between the vector-invariant form or the flux form of momentum
comes down to the relative importance of conserving absolute vorticity or conserv-
ing momentum in the target application. The choice here is to value the former more
than the latter.

7.6 Building a Discrete Model

This section will develop the numerical model that uses a C-grid staggering of the
vector-invariant form of the momentum equation discretized on a locally-orthogonal
mesh. The analysis will focus on the relationship between the time-tendency of the
velocity field and the absolute vorticity flux.

7.6.1 Defining the Mesh and Location of Variables

For this discussion we will assume that the domain is decomposed into a set of
squares as shown in Fig. 7.7. The scalar function ˚ is defined at the center of each
cell that are denoted as mass points in Fig. 7.7. The component of velocity in the
direction normal to each edge will be integrated in time with a prognostic equation.
Vorticity points are defined at the corners of the scalar function cells and will be
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mass point

velocity point

vorticity point

Fig. 7.7 The mesh used in the construction of the discrete system

associated with the mesh denoted by the dashed lines. The assumption is that the
mesh continues indefinitely in the horizontal directions.

The choice of squares as the cell shape is based on several reasons. A mesh
composed of squares is clearly locally-orthogonal, so it meets the requirement listed
in Sect. 7.5. A mesh composed of squares is also the most accessible mesh; the
analysis presented here can be easily replicated in development environments such
as MATLAB.

While the derivation will be completed for a mesh composed of squares,
conformally-mapped cubed-sphere meshes, Voronoi tessellations and Delaunay
triangulations (Chap. 10) are all accommodated in the analysis,8 i.e. the results
found for the mesh composed of squares will be applicable to these more practical
meshes. In an effort to point the way toward extensions to meshes that are used to
discretize the surface of the sphere, an indexing nomenclature will be chosen that is
appropriate for any unstructured mesh.

7.6.2 Continuous Prognostic Equation

We discretize the vector-invariant form of the momentum equation as

@u
@t
C �k�u D �r˚ (7.74)

8 Cubed-sphere grids produced by projections that result in a more uniform distribution of
nodes at the expense of orthogonality (e.g. gnomonic-projected cubed-sphere meshes) are not
accommodated in this analysis.
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where �r˚ D �r
�
p
�o
CK

�
represents the gradient terms on the RHS of (7.69).

In the full 3D system, � will vary in space and, as a result, the RHS can not be
written as the gradient of a potential. Here, the analysis assumes that the density is a
constant �o in order to demonstrate that the largest contribution to the RHS of (7.69)
(i.e. the �o contribution) does not project onto the vorticity dynamics of the system.
The system can be closed by the addition of an equation describing the evolution
of fluid pressure, p. For reasons discussed in Sect. 7.1, we will limit the analysis
to the evolution of velocity. In addition, special care is required to determine the
appropriate discrete form of K in order to avoid numerical instabilities associated
with the divergent part of the velocity field (see, for example, Eq. (3.41) of Arakawa
and Lamb 1981 or Eq. (63) Ringler et al. 2010). The analysis below focuses on the
evolution of the rotational part of the flow and is valid for any definition of K .

The k�u operation acts to rotate the vector velocity by 90ı in the counter
clockwise (CCW) direction. If we define u? D k�u as in (7.73) then (7.74) is
expressed as

@u
@t
C �u? D �r˚: (7.75)

7.6.3 Discrete Prognostic Equation

At each cell edge the unit normal vector eN is defined to point toward the right or
toward the top as appropriate. The choice of the direction of the local normal vector
is entirely arbitrary. The choice made here is for the convenience of presentation. In
addition, the tangential unit vector is defined as eT D k � eN . The discrete version
of (7.75) is generated by taking eN � (7.75) at each edge to yield

@Nk

@t
� O�k OTk D � .eN � r˚/k (7.76)

where, as shown in Fig. 7.8, Nk D eN � u represents the component of u in the
normal direction and OTk D �eN �u? represents the component of u in the tangential
direction. All variables with hats, O. � /, require further specification.

The first example of the simplicity afforded by the assumption of a locally-
orthogonal mesh is found on the RHS of (7.76). The RHS of (7.76) requires the
determination of the component of r˚ in the eN direction. Since eN is parallel to
the vector connecting the˚ points on either side of the edge, the specification of the
.eN � r˚/k can be approximated (with second-order accuracy) at velocity point k1
as simply



˚i4 � ˚i1

�
=dck1

(see Fig. 7.8). Using this representation of the gradient
forcing, (7.76) at velocity point k1 is rewritten as

@Nk1

@t
D O�k1

OTk1
� 
˚i4 � ˚i1� =dck1

(7.77)
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Fig. 7.8 The detailed description of the velocity and vorticity mesh

where dck1
is the distance between ˚i4 and ˚i1 . While the various ways to specify

O�k1
are given in Sect. 7.7, at this point O�k1

can be constrained as

O�k1
D f .�j1

; �j2
/: (7.78)

The absolute vorticity used to compute the nonlinear Coriolis force, O� OT , at velocity
points is only a function of the vorticities defined at the end of the edge. Other
approaches to specifying O� are possible and often preferable, e.g. see Sadourny
(1975) and Ringler et al. (2010) for a more in-depth discussion of the possible
alternatives. In order to complete the specification of (7.77) a definition for OTk1

is required. The algorithm for computing OTk1
is also given in Sect. 7.7.

7.6.4 Derived Equation

The importance of derived equations in a discrete representation is frequently over-
looked. Attention is more often focused on the analysis of the discrete prognostic
equations since these are the variables that are explicitly tracked in the numerical
model in time. In practice, an analysis of the derived equations generally provides
important insights into the chosen numerical method. The purpose of this section is
to demonstrate that the discrete system can mimic the continuous system in terms
of the vorticity dynamics. The analysis carried out in Sects. 7.3.4.1 and 7.3.4.2 is
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repeated here, but in the setting of a discrete system. The primary property of the
continuous system that the discrete system needs to mimic is

d

dt
� ac.t/ D

d

dt

2
64
Z
S.t/

� dS

3
75 D

Z
SE

	
@�

@t
Cr � .� u/



dS D 0; (7.79)

where SE will span one or more vorticity cells shown in Fig. 7.8. The absolute cir-
culation following a contour c.t/ is conserved when the fluid density is constant
(as is assumed here) and when no frictional forces are present. The challenge is
to demonstrate that absolute circulation is conserved following a contour c.t/ even
when the discrete system does not directly prognose circulation or vorticity. Stated
another way, the goal is to demonstrate that the evolution of the discrete veloc-
ity field, Nk , is consistent with the kinematic constraints imposed by (7.79). Since
the velocity evolution equation is written in an Eulerian reference frame, the anal-
ysis is most direct when the focus is on the third part of (7.79). The integration
of dS can span a single cell or a collection of cells that are contained in a single
loop.

The analysis begins by taking the discrete curl of the velocity tendency equa-
tion around the j1 vorticity cell shown in Fig. 7.8. The discrete circulation operator
is shown in Fig. 7.9. As seen in Fig. 7.9 the discrete curl has four terms, one for
each edge of a vorticity cell. Using the labels shown in Fig. 7.9, the curl operator at
vorticity point j1 can be expressed as

1

A

I
c

u � dr � 1

Aj1

4X
mD1

Nkm
eN � drkm

(7.80)

where Aj1
is the area of the vorticity cell j1. The dot product eN � drkm

accounts
for whether or not Nkm

eN points in the same or the opposite direction as drkm
. In

addition,
ˇ̌
drkm

ˇ̌ D dckm
to account for the distance of each segment of the loop

around vorticity cell j1.
A discrete equation for the evolution of absolute vorticity is constructed by

applying the curl operator to each term in (7.77). In order to provide a clear rep-
resentation of the curl operations, we will focus on vorticity point j1. Beginning
with the discrete curl of the time tendency of Nk , we find

1

A

I
c

@u
@t
� dr � 1

Aj1

4X
mD1

@Nkm

@t
eN � drkm

D @�j1

@t
D @�j1

@t
(7.81)

where the curl operator has been moved inside the time derivative and we have used
the fact that @fo

@t
D 0. Now moving to the gradient term on the RHS of (7.77)

we find
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Fig. 7.9 A graphical description of the discrete curl operator

� 1

A

I
c

r˚ � dr � 1

Aj1

"
.˚2 �˚1/
dck2

dck2
C .˚3 � ˚2/

dck3

dck3
(7.82)

� .˚3 � ˚4/
dck4

dck4
� .˚4 � ˚1/

dck1

dck1

#

where the distance used in the gradient calculation and the distance used in the curl
operator cancel on each term. After removing these offsetting terms we find

1

A

I
c

r˚ � dr � 1

Aj1

Œ.˚2 � ˚1/C .˚3 � ˚2/C .˚4 � ˚3/C .˚1 � ˚4/	 D 0:

(7.83)
Just as in the continuous system, the curl of the gradient is identically zero. This
property in the discrete system insures that forces in the velocity tendency equation
of the form r˚ , where ˚ is any scalar field defined at mass points, do not generate
spurious vorticity.
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Moving to the final term, the nonlinear Coriolis force, we find

1

A

I
c

�u? � dr � � 1

Aj1

4X
mD1
O�km
OTkm

eNkm
� drkm

: (7.84)

Expanding the summation yields

� 1

Aj1

4X
mD1

�
O� OT eN

�
km

� drkm
D � 1

Aj1

	
C
�
O� OT dc

�
k1

�
�
O� OT dc

�
k2

�
�
O� OT dc

�
k3

C
�
O� OT dc

�
k4



: (7.85)

Combining all of the curl operators to produce a discrete equation for the evolution
of absolute vorticity yields

@�j1

@t
C 1

Aj1

	
C
�
O� OT dc

�
k1

�
�
O� OT dc

�
k2

�
�
O� OT dc

�
k3

C
�
O� OT dc

�
k4



D 0:

(7.86)

Comparing (7.86) to its continuous counterpart in (7.57), we see that the discrete
vorticity evolution equation is an analog to the continuous system when

r�.�u/ � 1

Aj1

	
C
�
O� OT dc

�
k1

�
�
O� OT dc

�
k2

�
�
O� OT dc

�
k3

C
�
O� OT dc

�
k4



: (7.87)

The RHS of (7.87) is an approximation to the weak form of the divergence operator.
The approximation is second-order accurate assuming suitable choices for O� and
OT . It is critical to note that in this discrete system vorticity is transported by the

reconstructed, tangential velocity field. It is useful to recast (7.86) as an expression
for the circulation within cell j1 by moving the area into the time derivative as

Aj1

@�j1

@t
D @� aj1

@t
D �

	
C
�
O� OT dc

�
k1

�
�
O� OT dc

�
k2

�
�
O� OT dc

�
k3

C
�
O� OT dc

�
k4



:

(7.88)

� aj1
represents the absolute circulation around the dual cell j1. This result can be

generalized to an arbitrary contour by progressively adding cells. Equation (7.88)
represents a contour containing the j1 vorticity cell. The discrete equation governing
the evolution of circulation for the j2 vorticity cell can be expressed as

@�j2

@t
D �

	
�
�
O� OT dc

�
k1

C
�
O� OT dc

�
k5

C
�
O� OT dc

�
k6

�
�
O� OT dc

�
k7



: (7.89)
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The edge shared by vorticity cells j1 and j2 is edge k1. The term
�
O� OT dc

�
k1

appears in both (7.88) and (7.89), but with opposite signs. The evolution of absolute
circulation formed by the contour containing vorticity cell j1 and j2 is thus

@
�
�j1
C �j2

�
@t

D �
h
�
�
O� OT dc

�
k2

�
�
O� OT dc

�
k3

(7.90)

C
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�
k4
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�
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�
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C
�
O� OT dc

�
k6

�
�
O� OT dc

�
k7

i

where the shared edge between vorticity cells j1 and j2 cancels. The edges that
remain all lie on the boundary of the contour and account for the transport of cir-
culation across the boundary of the region. The mean absolute vorticity within the
contour can always be determined by dividing the absolute circulation by the area
enclosed in the contour. This analysis is sufficient to conclude that the discrete
system conserves absolute circulation exactly. By extension, the discrete system
conserves the area-mean absolute vorticity exactly. Both of these conservation state-
ments mimic the findings in the continuous system. What is somewhat surprising is
that these conservation statements have been proven without even having to spec-
ify O� or OT . In that, the conservation statements hold for any O� and any OT . The two
essential ingredients required for these conservation statements to hold in the dis-
crete system are the use of the vector-invariant form of the momentum equation and
the discrete analog of the r � r˚ � 0 identity.

The final and most important conclusion of this section is the following: The time

tendency of velocity due to the nonlinear Coriolis force
�
O� OT
�

is the per-unit-length

absolute vorticity transport in the direction normal to eN . This is key to providing
a direct handle on the vorticity dynamics of the discrete system via the discrete
momentum equation.

7.7 Constraining the Evolution of Velocity Through
the Transport of Absolute Vorticity

In the preceding section we were able to accomplish three goals. First, we were able
to exhibit that absolute circulation is conserved for any closed loop in the discrete
system. Second, the conservation statements related to circulation and vorticity hold
exactly in the discrete system, even though neither are retained as prognostic vari-
ables. And finally, these conservation statements hold without having to specify the
form of the reconstructed tangential velocity or the value of absolute vorticity used
to compute the velocity tendency due to the nonlinear Coriolis force. Given this last
statement, it should be clear that conservation alone is insufficient in specifying an
adequate numerical model. The general framework allows us to specify O� and OT to
meet other constraints that we deem important. The following discussion is meant
to demonstrate the flexibility, or lack thereof, in the choice of O� and OT . It turns out
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that there is some flexibility in the choice of the former and essentially no flexibil-
ity in the choice of the latter. As above, constant density is assumed. In addition,
the analysis below assumes non-divergent flow in order to illustrate the relationship
between vorticity transport and acceleration.

7.7.1 Considerations when Specifying O�

The specification of O� should be made with two concerns in mind. The first is that
since the nonlinear Coriolis force �k�u is always orthogonal to u, the nonlinear
Coriolis force neither produces nor destroys kinetic energy, i.e. u � .�k�u/ D 0.
This is essentially a concern related to the energetics of the discrete system. The
second concern is how the specification of O� will influence the structure of the
evolving vorticity field. For example, we would like to make some guarantees on
the long-time smoothness of the discrete vorticity field. This is essentially a concern
related to the vorticity dynamics of the discrete system. The goal, in my view, should
be the rigorous guarantee of both of these concerns. In that, the guarantee that the
choice of O� neither produces or destroys kinetic energy and that this same choice in
O� promotes long-term smoothness in the vorticity field. Given the analysis and the
anecdotal evidence presented in Ringler et al. (2010), this goal might be possible.

For the discussion presented here, the focus will be on choosing O� such that the
evolution of absolute vorticity is monotone in time.9 In the context of transport,
monotonicity implies that the vorticity field at some time t can be determined as a
convex interpolation of the vorticity field at some previous time (Godunov 1959).
Since the interpolation process is convex, vorticity values at some previous time are
given weights between zero and one. Thus monotonicity implies that the solution
of vorticity at any time t is bounded from above and below by the vorticity at any
previous time. While it is true that only in the special case of non-divergent flow
should we expect absolute vorticity to evolve monotonically in time, extensions of
this idea to potential vorticity holds for general 3D flows. If we assume an arbitrary
velocity field that is non-divergent, then the continuous vorticity equation (7.58)
reduces to

@�

@t
Cr � .� u/ D @�

@t
C u �r� D D�

Dt
D 0; (7.91)

which states that the absolute vorticity attributed to a particle (e.g. Fig. 7.1) is
invariant in time. Since we are not in a Lagrangian reference frame where track-
ing particles is an option, the discrete model will have to attempt to mimic (7.91)
in an Eulerian setting. When a property is conserved along particle trajectories it

9 Discussing the evolution of potential vorticity, as opposed to absolute vorticity, would be more
relevant here. But for the reasons discussed in the Introduction, we will limit the scope to the
evolution of absolute vorticity. Only in the special case of non-divergent flow is the evolution of
absolute vorticity monotone. In addition, the topic of transport (monotone or otherwise) warrants
an entire chapter to itself.
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means that the quantity itself (e.g. �) and all moments of that quantity (e.g. �n

where n is any integer) are also conserved along particle trajectories. With only 1ı
of freedom in the discrete system (i.e. O�), we are woefully ill-equipped to mimic the
richness contained in the continuous system and, therefore, must make some tough
choices regarding how to specify O�. The goal here is not to determine an optimal
specification of O� but rather to demonstrate that we can guarantee a monotone evo-
lution of vorticity even when the only prognostic variable is the normal component
of velocity at cell edges.

Assuming that the discrete velocity field is non-divergent, guaranteeing a mono-
tone evolution of the discrete absolute vorticity field is straightforward. Focusing on
edge .k1/, we specify O�k1

as

if OTk1

 0; O�k1

D �j1
(7.92)

if OTk1
< 0; O�k1

D �j2
(7.93)

in that we always choose the value of O� by picking the vorticity value upstream of
OT . While this is essential the low-order, monotone solution used in Zalesak (1979),

it immediately generalizes to higher-order. Without loss of generality, assume that
OTk1

 0 at some instant in time, then the evolution equation of Nk1

is written as

@Nk1

@t
D �j1

OTk1
� 
˚i4 � ˚i1� =dck1

: (7.94)

If O� is chosen based on the approach in (7.92), then the absolute vorticity associated
with the evolving Nk velocity field will be monotone. To be clear, the donor cell
approach results in excessive diffusion and this discussion is in no way meant to
advocate for the use of (7.92); it is employed here for demonstration purposes only.
In practice, we can apply state-of-the-art transport algorithms for the computation
of the absolute vorticity flux, O� OT , and use that flux as the nonlinear Coriolis force in
the velocity tendency equation.

7.7.2 Considerations when Specifying OT

It turns out that there is essentially no flexibility in the choice of OT . The mesh used
here is essentially identical to that used in Arakawa and Lamb (1981). In that work,
the reconstructed velocity is specified as

OTk1
D �1

4

�
Nk7
CNk2

CNk4
CNk5

�
: (7.95)

(see Fig. 7.8). The reasoning behind this choice is not particularly clear in Arakawa
and Lamb (1981). Based on the more recent analysis conducted on general unstruc-
tured meshes with C-grid staggerings in Thuburn et al. (2009) and Ringler et al.
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(2010), it is clear that the critically important aspect of the reconstructed OT field is

that the
h
r �

� OT eT
�i
j

be an interpolation of the neighboring Œr � .N eN /	i values;

the divergence computed at vorticity points based on OTk must be an interpolation of
the divergence computed at mass points based on Nk .

The importance and significance of this requirement can be clearly seen in the
following example. Suppose the continuous system is characterized with an initial
condition of uniform absolute vorticity field being transported by a non-divergent
flow. From (7.58) we see that the solution for all time is simply @	

@t
D 0. Also

suppose that the discrete velocity field Nk is chosen such that it produces a uniform
absolute vorticity field and is also non-divergent. The discrete system from (7.86)
can be expressed as

@�j1

@t
C �o

Aj1

	� OT dc�
k1

C
� OT dc�

k2

�
� OT dc�

k3

�
� OT dc�

k4



D 0 (7.96)

The only way to reproduce the solution of @	
@t
D 0 for all time is to require that

	� OT dc�
k1

C
� OT dc�

k2

�
� OT dc�

k3

�
� OT dc�

k4



D 0: (7.97)

Equation (7.97) requires that the divergence of the reconstructed, tangential velocity
at vorticity points is also zero. If one can build a general algorithm for the recon-

struction of OT that produces
h
r �

� OT eT
�i
j
D 0 when Œr � .N eN /	i D 0, then

we have sufficient proof that the divergence computed at vorticity points will be a
convex interpolation of the divergence computed at mass points. Unfortunately, the
failure of some C-grid staggered model to enforce this essential feature in the recon-
struction of the tangential velocity has lead to (sometime severe) limitations in the
robustness of the numerical model and the quality of the numerical solutions.

7.8 Final Thoughts

This analysis provided an end-to-end discussion of one aspect in the construction of
a dynamical core, namely the derivation and approximation of the equations related
to the evolution of momentum. As much as possible, the analysis is developed with
the aid of the Reynolds Transport Theorem. In addition to providing a rigorous
means to recasting conservation statements made in the Lagrangian reference frame
to statements applicable to the Eulerian reference frame, the Reynolds Transport
Theorem produces evolution equations cast in a weak, integral form that fit naturally
into traditional finite-volume approaches.

The analysis lingered and continually revisited the relationship between the evo-
lution of velocity and vorticity dynamics. The reason for such a strong emphasis
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on this relationship is that while the evolution of momentum has to be faithful to
F D m a, it also has to respect the kinematic constraints implied by conservation
statements related to vorticity and circulation. First, the relationship has to be under-
stood in the continuous setting, then the relationship has to be accommodated in the
development of the discrete system of equations.

The system of equations that one chooses as the starting point for construct-
ing a discrete model is a critical moment in the construction of a dynamical core.
This choice will have a profound impact on the quality of the simulations. Under-
standing the anticipated use of the numerical model is a prerequisite to making
sound, defensible choices for the components of a dynamical core. For this reason,
an entire section related to the “process of discretization” is included. While the
actual choices made in that section are highly biased, the purpose of the section is
to hopefully motivate the extreme importance of choosing numerical methods based
on a target application.
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Chapter 8
Atmospheric Transport Schemes: Desirable
Properties and a Semi-Lagrangian View
on Finite-Volume Discretizations

Peter H. Lauritzen, Paul A. Ullrich, and Ramachandran D. Nair

Abstract This chapter has twofold purpose. After a short introduction to the mass
continuity equations in atmospheric models, desirable properties for mass trans-
port schemes intended for meteorological applications are discussed in some detail.
This includes a discussion on the complications caused by the non-linearity of most
problems of interest that makes it hard to define accuracy and convergence as the
‘truth’ is not known. Thereafter, some finite-volume schemes from the atmospheric
literature are reviewed and discussed. To complement the large existing literature
on finite-volume schemes, a less frequently discussed semi-Lagrangian derivation
of the finite-volume method is given that focuses on ‘remap-type’ schemes where
the space and time discretizations are combined rather than separated. A discus-
sion on the challenges in deriving accurate schemes intended for global models and
non-traditional spherical grids is given as well.

8.1 Introduction

To predict the evolution of air and tracers1 we solve one of the fundamental laws
of physics: namely the equation of mass continuity. This equation is intuitively very
simple to understand; perhaps the simplest statement of the equation is that mass of
air and tracers is conserved without the presence of sources or sinks. Hence mass in a

1A tracer in this context is any quantity that follows the flow of air such as chemical species and
water in the atmosphere.
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volume can only change if there is inflow and/or outflow through surfaces bounding
the closed volume or if there are parameterizised sources and/or sinks (e.g., for water
vapor, sources and sinks can be evaporation and condensation, respectively)

d

dt
.mass/ D inflow� outflowC sources� sinks: (8.1)

The continuity equation is simple, in a strict mathematical sense, and it may appear
as a surprise that we use an entire chapter discussing it. However, despite its simplic-
ity finding an accurate and efficient numerical approximation to its solution remains
an active research subject and no scheme to date is ideal (and perhaps never will be
as long as computing power remains finite). Also, the continuity equation is coupled
to the other equations of motion, so a complete discussion of the challenges in air
and tracer transport must also consider this coupling. The purpose if this chapter is
to convey some of the many deliberations in transport scheme development and to
discuss some examples of transport schemes on the sphere.

In the literature there are numerous review articles and books on transport meth-
ods in general and specifically on the finite-volume method (e.g., Rood 1987;
LeVeque 1996) and this chapter is not an attempt to supersede or replace these
reviews. Instead we shall limit the review to space-time (or remap) finite-volume
transport schemes used in meteorology. By space-time schemes we refer to schemes
where the temporal and spatial discretizations are combined rather than separated.
As will become clear one may also refer to space-time (or remap) schemes as cell-
integrated (or finite-volume) semi-Lagrangian schemes. Conservative grid-to-grid
interpolation (also referred to as remapping), which is usually an integral part of
finite-volume schemes, will also be discussed in some detail. Obviously this chapter
will only scratch the surface of the enormous literature on transport schemes and
we will emphasize the intuitive (and perhaps more physical) derivation of schemes
rather than mathematical rigor.

The chapter is organized as follows. Before diving into the nuts and bolts of
finite-volume schemes we begin by formulating the transport problem relevant to
atmospheric models (Sect. 8.2) and discuss some desirable properties that transport
schemes intended for atmospheric applications ideally should possess (Sect. 8.3).
In Sect. 8.4 the mathematical foundation for space-time finite-volume schemes is
given in Eulerian and Lagrangian forms. The equivalence between the two forms
is rarely discussed but useful in gaining more understanding of Eulerian schemes.
In Sect. 8.5 the spatial and temporal approximations needed for practical schemes
are presented step by step. This includes upstream cell approximation, sub-grid-cell
reconstruction and practical integration over cells in space. Section 8.5 is mostly
limited to two-dimensional schemes on the Cartesian plane, however, a brief dis-
cussion on the extension to spherical geometry is given. In Sect. 8.6 we discuss the
extension to three dimensions. Before the final remarks in Sect. 8.8 some practi-
cal considerations for the coupling of transport schemes to the continuity equation
for air are discussed in Sect. 8.7. This includes the inconsistencies that may arise
in the air mass and tracer mass coupling, techniques for sub-cycling the air mass
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equation with respect to tracers, and coupling a semi-implicit air mass scheme with
an explicit tracer mass scheme (Sect. 8.7). For brevity, Sects. 8.6 and 8.7 are cursory
while more attention will be given to desirable properties and the space-time scheme
derivations on the plane.

8.2 The Continuous Equation

8.2.1 Representation of Mass in Atmospheric Models

Most atmospheric models have at least a handful of continuity equations and, in
most cases, many more. From a dynamics point of view the continuity equation for
air is the most fundamental and important continuity equation since it is strongly
coupled to the momentum equations and the thermodynamic equation. For the rep-
resentation of moist processes most models have prognostic continuity equations for
three water species: Water vapor, cloud liquid water and cloud ice water. Some high
resolution models also have resolved-scale continuity equations for rain and snow
(if there is no resolved-scale continuity equation for rain and snow the assumption
is usually that rain and snow falls to the ground in one time-step). Modern micro-
physical parameterizations include prognostic continuity equations for four to eight
condensed species. For example, the Morrison and Gettelman (2008) micro-physics
package used in NCAR’s Community Atmosphere Model (CAM) version five has
continuity equations for mass and number concentrations for ice and liquid water.
Some microphysics parameterizations also have prognostic continuity equations for
mass and number concentrations for ice and liquid precipitation. Modal (and even
more for bin) aerosol schemes may have 20 or more prognostic continuity equa-
tions for mass and number concentrations of aerosols such as particulate organic
matter, dust, sea salt, secondary organic aerosols, number concentrations for dif-
ferent sizes of aerosols, etc. In addition, any prognostic representation of chemical
species requires the solution to one continuity equation per species e.g., MOZART
(Model of Ozone And Related Tracers, Brasseur et al. 1998). So needless to say,
the continuity equations make up a dominant part in atmospheric models at least in
terms of the total computational cost of the dynamical core.2

First, let us discuss the representation of air mass in atmospheric models as this
has fundamental influence on how all other species are treated. The density of well-
mixed moist air �m can be separated into a dry and wet part

�m D md Cmv
V

D �d C �v D �d C qv�m; (8.2)

2 Roughly speaking the dynamical core is the part of the model that solves the governing fluid and
thermodynamic equations on resolved scales (Thuburn 2008b).
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where md and mv are the masses of the dry air and water vapor, respectively, and
V is a small volume. The density of dry air and water vapor are denoted �d and �v ,
respectively, and qv is the specific humidity,

qv D mv

md Cmv : (8.3)

To a very good approximation the mass of dry air is the mass of the dominant well-
mixed gases: Nitrogen N2 (ca. 78.08%), Oxygen O2 (ca. 20.95%), Argon Ar (ca.
0.93%) and Carbon dioxide CO2 (at present ca. 0.038%). These gases make up
over 99.998% of the volume of dry air and may therefore be considered perma-
nent (although argon and carbon-dioxide are slowly increasing). In addition, small
amounts of trace gases are mixed into the air (with sources and sinks varying in
space and time), however, the variation in these ‘non-permanent’ gases is very small
compared to the total mass of all the trace gases. Trenberth and Smith (2005) esti-
mated that the dry air mass of the atmosphere corresponds to a surface pressure of
approximately 983.05 hPa and it varies less than 0.01 hPa based on changes in atmo-
spheric composition. So the variation in the dry air mass budget is on the order of
0.001%. So to a very good approximation the continuity equation for dry air does
not have any source or sink terms, and thus reads

@�d

@t
Cr � .�d v/ D 0; (8.4)

where v is the velocity field and ‘r�’ is the divergence operator. The mass of dry
air accounts for approximately 99% of the total mass of the atmosphere and the
remaining 1% is approximately the mass of water vapor. The continuity equation
for humidity (water vapor) is given by

@

@t
.�mqv/Cr � .�mqv v/ D Pqv�m

; (8.5)

where Pqv�m
represents sources and sinks (in this case condensation and evapora-

tion processes). Moisture qv varies significantly (relatively speaking) with values
near zero for cold dry air and a few percent in warm moist air. The continuity equa-
tion for moist air can be obtained by adding (8.4) and (8.5), and using (8.2) to
simplify. The result is

@�m

@t
Cr � .�m v/ D P�m

: (8.6)

This equation is similar to the equation for dry air (8.4) except for the humidity
forcing terms.

The prognostic variables used for tracers are usually defined in terms of mix-
ing ratios. If moist density is prognosed, the mixing ratios for tracers are most
conveniently defined in terms of the specific concentration

q.l/m D
m.l/

md Cmv ; (8.7)
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where m.l/ is the mass of constituent .l/. So the density of the constituent is �.l/ D
q
.l/
m �m, where q.l/m is the ‘moist’ mixing ratio. However, one may also solve the con-

tinuity equation for tracers in terms of the ‘dry’ mixing ratio q.l/
d

, defined by

q
.l/

d
D m

.l/

d

md
: (8.8)

As discussed in Collins et al. (2004) the advantage of using (8.7) is that the mass
of species .l/ is obtained by simply multiplying the moist mixing ratio with the
moist air density q.l/m �m. However, this approach has the disadvantage of implicitly
requiring a change in q.l/m whenever the water vapor qv changes. This disadvantage
does not exist if (8.8) is used.

8.2.2 Consistency in the Mass Equations

Herein we will respectively use � and q to denote air density and mixing ratio (which
can be either moist or dry) and we assume no sources or sinks (no forcing terms).
Then the continuity equation for air density � can be written as

@�

@t
Cr � .� v/ D 0; (8.9)

and similarly for a tracer density � q

@.� q/

@t
Cr � .� q v/ D 0; (8.10)

where v is the velocity vector. Note that (8.9) and (8.10) imply

dq

dt
D 0; d

dt
� @

@t
C v � r; (8.11)

which states that q is conserved along trajectories/characteristics of the flow. Note
that the continuity equations (8.9) and (8.10) are linked in the sense that � appears in
both equations. Hence, numerical error introduced in simulating the evolution of air
mass � may be reflected in the prognosed trace gas mixing ratios when converting
from tracer mass � q to mixing ratio q.

To solve any of the continuity equations given above the flow field v must be
given. The continuity equation for air (8.9) is coupled with the momentum equa-
tions and thermodynamic equations. Hence the thermodynamic variables and other
prognostic variables feed back on the velocity field which, in turn, feeds back on
the solution to the continuity equation. It follows that the continuity equation for air
cannot be solved in isolation and one must obey the maximum allowable time-step
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restrictions imposed by the fastest waves in the system3 (see Chaps. 1 and 6). The
passive tracer transport equation (8.10) or (8.11) can be solved in isolation given
prescribed winds and air densities, and is therefore not susceptible to the stricter
time-step restrictions imposed by the fastest waves in the system but ‘only’ to the
less restrictive advective velocities.4 Hence, if for stability relatively short time-steps
must be used for the continuity equation for air, one does not necessarily need to use
short time-steps for the tracers (at least not for stability reasons). That is, one can
solve the tracer transport equations with time-steps longer than what are allowed
for stability in (8.9). This technique is referred to as sub-cycling, that is, multiple
cycles of dynamics (air continuity equation) are performed within one time-step of
the tracers. In doing so care must be taken to retain the consistency between trac-
ers and air. For example, if q D 1 then (8.10) reduces to (8.9) and additional care
must be taken to ensure consistency between these equations in the discretization.
Specific examples and details on sub-cycling are given later (Sect. 8.7.2). First, let
us consider important design objectives for tracer transport schemes intended for
atmospheric applications.

8.3 Desirable Properties

When developing a new transport (or any other) algorithm one is usually striving
for a scheme that ensures simulation veracity. In other words, a numerical method
should be designed so that simulations using it are as truthful as possible. In math-
ematical literature simulation veracity is often synonymous with accuracy which is
associated with the absolute truth. Convergence, truncation error and error norms
are all associated with quantitative measures of conformity to the truth. In most
realistic atmospheric model settings, however, the truth is unknown in an absolute
sense (the exact solution is not known). For instance, in most atmospheric applica-
tions an increase in resolution will often resolve finer scales and new phenomena
appear making it problematic to define convergence in a strict mathematical sense.
Adding to the complexity is the fact that the system is chaotic and therefore not
deterministic beyond 10 days or so (Lorenz 1982), so any attempt to assess absolute
accuracy in simulations beyond the predictability limit must be based on statistical
approaches.

In all, simulation veracity in an atmospheric modeling context is more than
accuracy in a strict mathematical sense. Perhaps because there is little quantitative
knowledge of the true solution a lot of emphasis is placed on physical properties
of the solution method. For example, we do know that the numerical solution
should ideally obey discretized equivalents of properties we can derive from the

3 Assuming that explicit time-stepping is used.
4 Although there is a weak coupling between humidity and the thermodynamic/momentum
equation.
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continuous set of equations such as conservation5 of mass and higher moments,
shape-preservation (including monotonicity, positivity and non-oscillatory prop-
erty), correlation preservation, and so on. Also, sub-grid-scale parameterizations
usually require physical realizable atmospheric states from the resolved scale
dynamics. From a computational point of view properties such as parallel effi-
ciency, geometric flexibility, etc. are also very important properties of the final
numerical algorithm.

What follows is a list of desirable properties for tracer transport schemes that are
all (apart from the properties related to efficiency) essential ingredients of simulation
veracity.

8.3.1 Accuracy (Error Norms)

Accuracy describes the degree of closeness of the simulated (numerically computed)
solution to its true (exact) state specified in terms of error norms (numeric values).
The error measures can either be assessed at a fixed resolution (absolute error) or
as a function of resolution (convergence). For linearized equations and approxi-
mations a proxy for convergence can be sought by computing the formal order
of accuracy of the numerical method through Taylor series expansions. Note that
formal order of accuracy does not necessarily guarantee accurate solutions for dis-
tributions/flows with near discontinuities (shocks and fronts) nor does it guarantee
accuracy at a particular resolution. For many global weather and climate applica-
tions absolute accuracy at a particular range of resolutions is perhaps more important
than high-order convergence rates. Below is a list of some idealized test cases used
to quantitatively assess simulation veracity:

8.3.1.1 Linear Test Cases

Error norms are well defined when the exact solution is known which is usually only
the case for linear problems. Commonly used linear test cases, where the analytical
solution is known at all times t , can be divided into two categories: Translational
and deformational. Here we focus only on global test cases in spherical geometry.

Most test cases are formulated with non-divergent flow fields for which the
advective form of the continuity equation for a tracer (8.11), that uses mixing ratio
q as the prognostic equation, is equivalent to the flux-form version (8.10) based
on tracer mass �q. That is, q or �q is set equal to the same spatial distribution
and the modeler is implicitly assuming that � is one everywhere and since the
flow is non-divergent � will remain one through-out the simulation at least in the

5 For a discussion on conservation in the context of the full equation set for the atmosphere see
Chap. 11.
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a b

Fig. 8.1 Exact solutions for the (a) solid body advection of a cosine bell test case at t D 0 (center
of plot) and t D 44 h (for a ‘flow rotation angle’ of 45ı), and (b) the static vortex test case at day 6

analytical case. Hence the modeler is not forced to distinguish between tracer mass
�q and mixing ratio q. However, for a divergent/convergent flow only q is constant
along parcel trajectories whereas tracer mass �q will increase/decrease in areas of
convergence/divergence. For a fuller discussion see Nair and Lauritzen (2010).

Translational. Probably the most commonly used idealized test case in the mete-
orological literature is the solid body rotation of a cosine bell (Fig. 8.1a) (e.g., test
case one of the widely used two-dimensional test suite of Williamson et al. 1992
for the shallow-water equations). The exact solution is simply the translation of the
initial condition and standard error norms can be computed at every time-step. This
two-dimensional test case has been extended to three dimensions in Jablonowski
et al. (2011). Another three-dimensional test case on the sphere where the analytic
solution is known was proposed by Zubov et al. (1999).

For convergence studies used to assess the formal order of accuracy of a scheme
the translated distribution should be sufficiently smooth. For example, the cosine
bell distribution may appear smooth but it is only C 1 at the base of the bell.
Consequently, schemes that are high-order accurate in terms of a Taylor Series anal-
ysis may not show this high-order formal convergence rate when using the cosine
bell initial condition. To assess ‘ideal’ convergence rates it is advised to use C1
functions such as Gaussian surfaces (Levy et al. 2007).

Deformational. The translational test case described above has a large degree
of symmetry and perhaps is not challenging enough to thoroughly test a numeri-
cal algorithm. Real world flows also have deformational, convergent/divergent and
rotational components that deform, expand and rotate the initial distribution. A pop-
ular purely deformational test case (non-divergent) is the cyclogenesis test case
introduced in meteorology by Doswell (1984) and used as a test case for transport
schemes by numerious authors (e.g., Rančić 1992; Nair and Machenhauer 2002).
The exact solution at day 6 is shown on Fig. 8.1b.6 As can been seen in the fig-
ure the vortex ‘curls up’ and generates long thin filaments in the process. These, in
general, are quite challenging to represent for any numerical scheme.

6 The dimensionalization of the vortex problem used here follows Nair and Jablonowski (2008).
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Fig. 8.2 Exact solutions for the moving vortex test case with a flow orientation of 45ı at zero
(left; day 0), half (middle; day 6) and one (right; day 12) revolution. The continents are shown for
reference purposes only

Another useful application of this test case is to use its velocity field but instead
of transporting an initial condition such as shown on Fig. 8.2 in the cyclogenesis test
case, instead transport a constant mass field � D �0. Since the flow is non-divergent
any numerical scheme should ideally preserve a constant mass field. Also the solid-
body rotation flow field is non-divergent and so for this wind field a constant mass-
field should remain constant throughout the simulation. However, the cyclogenesis
wind field is much more challenging as a preservation of constancy test since it is
deformational (unless the stream function for the velocity field is used to makes sure
that the divergence that the scheme ‘sees’ is zero). Some schemes might preserve a
constant mass field for solid body advection but fail to preserve a constant mass field
for the deformational wind field. Unfortunately results from such tests are rarely
presented in the literature.

Translational and deformational. Although the idealized cyclogenesis test
case described above is challenging it lacks a translational component. Nair and
Jablonowski (2008) combined the cyclogenesis wind field with the solid body
advection wind field on the sphere which makes up the ‘moving vortices’ test case.
Instead of a stationary ‘curl up’ of the vortex, it is transported as a solid body as it
deforms (Fig. 8.2). Obviously such a test case is more challenging and might there-
fore be more useful to discriminate between schemes than simpler test cases. For
example, in the idealized tests of the finite-volume transport scheme in Lauritzen
et al. (2010) it was found that the moving vortices test case was more discriminating
than the pure translational and stationary cyclogenesis test cases (at least when
applied and compared to the Putman and Lin (2007) scheme).

Recently, Nair and Lauritzen (2010) extended LeVeque’s test case (LeVeque
1996) to a class of test cases on the sphere. Unlike all the test cases considered so far
the wind fields in this test case are time varying. In these cases the wind fields are
periodic and reverse so that after one period the initial distribution has returned to
its initial position and shape. Hence the analytic solution is known after one period
but not throughout the simulation. The flow is swirling (deformational) so the ini-
tial condition is highly deformed half way through the simulation. This challenges
the numerical scheme since grid-scale features develop from well-resolved initial
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a b

c d

Fig. 8.3 The recently proposed test case by Nair and Lauritzen (2010). (a) The initial wind field
and (b) initial condition and analytical solution after one period. (c) and (d) show a numerically
computed solution after half and full period, respectively. The grid-scale noise in (c) and (d) are
due to the numerical scheme not being monotone/shape-preserving

conditions (Fig. 8.3). And perhaps more importantly, one of the test cases in Nair and
Lauritzen (2010) is divergent contrary to most idealized test cases for transport on
the sphere which are non-divergent. By introducing divergence the modeler is forced
to distinguish between mixing ratio and air mass which is not strictly necessary for
non-divergent test cases.

8.3.1.2 Non-Linear Test Cases

In linear test cases for smooth flows the accuracy in terms of error norms is usually
improved when the resolution is increased and when the formal order of the numer-
ical method is increased. However, such idealized experiments do not truly quantify
the error in realistic atmospheric applications that are far from linear. In general, for
non-linear problems the quantification of error is problematic except in very sim-
ple cases7 and, as discussed in Prather et al. (2008), we usually design models with
the expectation that a correct solution (truth) exists and that with adequate physi-
cal approximations and numerical methods our solutions will converge to a ‘true’
solution as the resolution is increased.

7 e.g., the one-dimensional Burgers’ equation that has an exact solution although it is non-linear.
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Fig. 8.4 The ETEX
sampling stations distribution
(filled black circles) and
0.1 ngm�3 contour of
measured cloud at T0C12 h
(red) ,C24 h (blue), C36 h
(purple), C48 h (green),
C60 h (black). Figure
courtesy of Stefano Galmarini

In the context of passive tracer transport a non-exhaustive list of non-linear test
cases is given below. The examples are meant to give the reader an idea of the
‘world’ beyond idealized linear test cases that are usually reported on in transport
scheme development. All test cases do not have analytical solutions and involve
the solution to the entire system of dynamical equations (not just prescribed winds
and mass-fields) as well as parameterizations of sub-grid-scale processes making it
harder to distinguish numerical errors of the transport scheme from other sources of
error.

The ETEX forecast experiment. The worst nuclear power plant disaster in his-
tory (the Chernobyl power plant explosion in 1986) generated a radioactive plume
that drifted over extensive parts of western Russia and Europe. This is a rude
reminder of the importance of having models capable of forecasting long-range
transport accurately; at least for emergency management. As a consequence the
European Tracer Experiment (ETEX, see, e.g., Girardi et al. 1998; van Dop et al.
1998 and the more recent study of Galmarini et al. 2004) was established in 1994
to evaluate the validity of long-range transport models and to assemble a database
which would allow the evaluation of long-range atmospheric dispersion models in
general.

ETEX was a controlled experiment where two releases (under different weather
conditions) of perfluorocarbon tracers from Western France were tracked across
Europe. Perfluorocarbon tracers are non-depositing, non-water-soluble and inert,
and therefore a passive tracer for all practical purposes. A large network of sam-
plers deployed eastward on the territory of Central and Eastern Europe collected
tracer samples that were later analyzed to determine the concentration levels. That
set of measurements was then used to quantitatively evaluate the predictions of the
models (Fig. 8.4).

The ETEX experiment and data can be used to evaluate new transport schemes.
Obviously this test case indirectly tests more than the transport scheme itself but also
parameterizations (such as boundary layer parameterizations, parameterized vertical
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diffusion etc.) and, in general, the models ability to produce accurate winds and air
densities for the tracer transport scheme.8

Mixing experiments. There are several experiments in the literature targeting the
mixing properties of the model. Probably the simplest was proposed by Rasch et al.
(2006). The experiment is setup as follows. The mixing ratio for a tracer is set to
one everywhere in a model layer and zero elsewhere. Then the model is run from
some meteorological initial conditions for 30 days. The tracer is placed either near
the surface (near 800 hPa) and around 200 hPa. The low tracer test serves as an indi-
cator of transport in a region dominated by sub-grid scale transport processes such
as convection and turbulence. The high tracer is much more dominated by resolved-
scale dynamics at least at middle and high latitudes. The test case also indicates
the tropospheric-stratospheric mixing in the model (generally, in the polar and mid-
latitude regions stratospheric air is mixed into tropospheric air and in the Equatorial
regions deep convection results in a large scale ascent of tropospheric air). For mod-
els based on an isentropic vertical coordinate, this test when run adiabatically and
with non-zero tracer values in an isentropic layer instead of pressure levels, can be
used to indicate the amount of spurious vertical diffusion in the transport scheme
since ideally the mixing ratio should remain one in the isentrophic layer for all time
(and zero elsewhere).

Another experiment that is probably more widely used is the age-of-air experi-
ment (see, e.g., Waugh and Hall 2002 and references herein). The age of air is the
mean transport time from some reference location. For example, stratospheric age of
air is the mean transport time from the tropical tropopause to a location in the strato-
sphere. Monitoring the age of air for species with long lifetimes provides a proxy
for the diffusivity (often spurious) of the tracer transport in a particular model. In
general, schemes that are too diffusive tend to produce too ‘young’ air while less
diffusive schemes simulate ‘older’ age of air. Eluszkiewicz et al. (2000) found a
large dependency on the choice of advection scheme in age-of-air experiments in
addition to the simulated large scale circulation. Even for short-lived tracers with
sources and sinks Rasch et al. (2006) found a large dependency on the numerical
solution technique. These studies demonstrate that the choice of transport scheme
(and driving model) can easily influence the simulation at a level that can strongly
modulate the physical signal of interest.

Dynamics/tracer consistency. This test was proposed by D. Johnson (University
of Wisconsin) and published in Rasch et al. (2006). It targets the model’s ability to
simulate transport of conserved tracers consistently and the model’s ability to main-
tain non-linear relationships between six different conserved and non-conserved
tracers. It can be shown from the second law of thermodynamics that two points
separated in space and time connected by a trajectory should satisfy a non-linear

8 There have been other controlled tracer transport experiments before ETEX, e.g., ANATEX (The
Across north America Tracer Experiment) and CAPTEX (Cross-Appalachian Tracer Experiment)
and also more recent experiments such as MEGAPOLI (Emissions, urban, regional and Global
Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation;
http://megapoli.info).
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relationship in terms of temperature T , potential temperature � and pressure p (see
Appendix of Rasch et al. 2006):

�1 D
�
�0

T0

�
T1

�
p0

p1

�R=Cp

; (8.12)

where the subscript 0 and 1 refer to the two points, and R and Cp are the gas
constant and specific heat constant at constant pressure, respectively. The test case
consists of predicting � , T and pR=Cp separately and then check how well they
obey (8.12). The level of agreement between these two ways of computing potential
temperature yields a measure of the degree of consistency in the model. See Rasch
et al. (2006) for details. It is probably impossible to construct an Eulerian scheme
that will exactly fulfill this consistency test, however, it is desirable that schemes
strive to be as consistent as possible.

8.3.2 Conservation of Mass

As discussed in Sect. 8.2.1 one of the most fundamental budgets of the global atmo-
sphere is that for the mass of dry air. Since the physical variation in the dry air mass
budget is on the order of 0.001% (and usually not modeled) even minor drifts in
the dry air mass budget due do numerical errors would be larger than the physical
variation in the dry air mass budget (Moorthi et al. 1995).

For the trace gases any spurious non-conservation of mass will effectively corre-
spond to a spurious source or sink for the gas in question. In particular for long-lived
trace species such as stratospheric ozone it is paramount that their mass-budgets are
well maintained in the models. Even for highly reactive tracers such as reactive chlo-
rine compounds, mass-conservation is important since the sum of all the compounds
should be conserved although individual compounds have large sources and sinks
(one compound is converted into another).

There are two ways of obtaining mass-conservation in numerical schemes. Either
an inherently conservative numerical method is used or mass-fixers (see Chap. 13)
can be employed. For the mass of dry air mass-fixers usually operate by increasing
or decreasing the mean of the pressure field (mass) by an amount corresponding
to the spuriously lost or gained mass caused by the lack of conservation of the
numerical method. Note that such a procedure can be done so that it does not alter
gradients in the pressure field and was shown by Williamson and Olson (1994) to
have minimal effect on the simulation. Mass-fixers are applied in numerious non-
conservative models, e.g., the spectral transform versions of NCAR’s Community
Atmosphere Model (CAM, Collins et al. 2004). Although mass-fixers for the pres-
sure field seem to not adversely affect simulations it is far more problematic to
apply mass-fixers for tracers. For example, altering mixing ratios to obtain tracer
mass-conservation can lead to unphysical large or small mixing ratios. If that is
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the case the mass-fixer must do a local adjustment and thereby it might introduce
new extrema in the tracer mass fields and gradients are no longer preserved. This
may also disrupt tracer correlations (tracer correlations are discussed in Sect. 8.3.7
below) and consistency between tracer and air mass (see Sect. 8.3.4 below). There-
fore finite-volume methods that are inherently conservative, have become a popular
numerical method in climate and chemistry modeling since ad-hoc adjustments are,
in theory, not necessary.9

The continuous equations of motion conserve all moments not just mass. How-
ever, Thuburn (2008b) argued (see also Chap. 11) it might not be desirable that the
advection scheme also preserves higher-order moments.

8.3.3 Optimal Diffusion and Dispersion Properties

The linear diffusion and dispersion properties of a linearized scheme can be assessed
by performing a von Neumann stability analysis (also known as a Fourier stability
analysis). It is a standard analytic analysis technique and is described in many text-
books in the context of grid-point methods (see, e.g., Durran 1999; Haltiner and
Williams 1980) and in the context of finite-volume methods in Lauritzen (2007).
The analysis consists of assessing analytically how a single Fourier mode is damped
and accelerated/decelerated by the numerical scheme during one time-step assuming
a constant wind field.

In one dimension the von Neumann analysis is performed by assuming a solution
in the form

 n.x/ D  0 � n exp .O{ � x/ ; (8.13)

where O{ is the imaginary unit,  0 the initial amplitude, and � D 2 
=L is the
wavenumber (L is the wavelength), and n is the time-level index. The damping and
phase properties of a scheme are assessed by substituting the solution (8.13) into
the forecast formula for the finite-volume scheme in question, and subsequently
analyzing the complex amplification factor � . The stability of a numerical method
is governed by the modulus of the complex amplification factor, that is, a particu-
lar wave with wavenumber � is stable if j� j � 1. Following Bates and McDonald
(1982) the dispersion properties of a scheme is assessed by writing the complex
amplification factor as

� D j� j exp
��O{!��t� ; (8.14)

where !� is the numerical frequency. Define the relative frequency as R D !�=!
where ! is the exact frequency given by � u0 and u0 is the constant wind. If R > 1
the numerical scheme is accelerating and if R < 1 the scheme is decelerating
compared to the exact solution.

The von Neumann analysis provides useful information about the stability prop-
erties of a scheme and may provide new insight into schemes. The limitation of the

9 We write ‘in theory’ since if a transport scheme is not strictly monotone local ‘ad hoc’ adjustments
might be necessary even for finite-volume methods.
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von Neumann stability analysis is that it is linear. Hence any non-linear operators
such as limiters and filters cannot be included in the basic analysis as well as
non-linear flows. Usually the spurious numerical diffusion and dispersion decrease
rapidly with the formal order of the scheme. So each scheme probably has an opti-
mal order for which the extra computational cost associated with increasing the
order of the scheme simply does not pay off in terms of linear diffusion and disper-
sion properties. For example, Leonard (1991) argued that the reduction in diffusion
becomes trivial soon after the order is larger than third.

8.3.4 Tracer and Air Mass Consistency

Tracer and air mass consistency is a stricter concept than simple mass conservation
of the individual quantities. It basically states that the discretized tracer transport
scheme should reduce to the discretized continuity equation for air when q D 1

as is the case for the continuous equations: (8.10) reduces to (8.9) when setting
q D 1. Tracer-air mass consistency can, for example, be violated if using a numeri-
cal method for tracer transport that is different from the scheme used for predicting
the evolution of the air density.10 To achieve a high level of consistency it is usually
necessary that the same numerical algorithm is used for the dynamics as well as
for tracer transport. For more discussion see Machenhauer et al. (2009), Lee et al.
(2004), Jöckel et al. (2001), Zhang et al. (2008).

8.3.5 Divergence Preservation

The transport operator should not be a spurious source of divergence. Usually this
property is discussed within the context of non-divergent flow fields. For exam-
ple, a constant initial mass distribution should remain constant at all time in a
non-divergent flow (preservation of mass-constancy). This subject has received con-
siderable attention in the magnetohydrodynamics literature since the magnetic flux
density is non-divergent and the numerical scheme should ideally retain that prop-
erty (e.g., Artebrant and Torrilhon (2008) and references therein). A prerequisite for
controlling spurious generation of divergence is preservation of mass-constancy as
formulated above (see test case suggestion in Sect. 8.3.1.1) for non-divergent flows.

Note that the preservation of constant mixing ratio (and not constant tracer mass
field) is trivial in most cases. If the advective form of the transport equation (8.11)
is used it is trivial to maintain a constant mixing ratio since q is the prognostic

10 This discussion applies to online applications where tracer transport is performed in conjunction
with the governing fluid and thermodynamic equations. A similar inconsistency appears when
driving the tracer transport equation in an offline mode (prescribed winds and mass fields from
reanalysis, observations or a different model) in which case the tracer transport scheme with q D 1

will not equal the prescribed mass-field unless ad-hoc fixers are applied.
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variable and the divergence does not appear explicitly. If the air and tracer equations
are solved in flux-form ((8.9) and (8.10), respectively) using the same numerical
method, it is usually trivial to preserve a constant mixing ratio field since the mixing
ratio q is recovered from (8.10) by dividing the prognosed tracer mass field �q by
� from (8.9). So even if the numerical scheme is unable to preserve a constant mass
field �, it is usually possible to design schemes so that a constant q field is recovered
when dividing � q by the (potentially) non-divergence preserving forecast of �.

8.3.6 Physical Realizability (Monotone, Positive-Definite,
Non-Oscillatory, Shape-Preserving)

In the absence of sources and sinks the mixing ratio of a Lagrangian parcel being
transported by the flow is invariant (8.11). If the numerical solution fulfills this prop-
erty it is monotonicity11 preserving; no new local extrema are generated and the
absolute values of pre-existing local extrema is non-increasing. Strict monotonicity
preservation can be hard to achieve and enforcing it in numerical schemes is often
found to be at the cost of overall accuracy wherefore it is often relaxed somewhat.

The zero-th order shape-preservation property is that the numerical scheme gen-
erates physically realizable solutions. Since mixing ratios cannot physically take
negative values they should remain non-negative. Schemes that cannot generate neg-
ative values are termed positive definite and schemes that do not generate wiggles
(spurious grid-scale waves as the ones on Fig. 8.3c and d) typically associated with
large gradients are referred to as non-oscillatory. Obviously a scheme that is mono-
tone is automatically positive-definite and non-oscillatory but not necessarily vice
versa. It should be stressed that it is q that should remain monotone and not � q.
For convergent flows � q can physically take values outside the range of the initial
condition whereas q should not. See Nair and Lauritzen (2010) for a discussion and
simple illustration of the latter for an idealized flow field.

Note that shape-preservation can be enforced in finite-volume schemes based on
(8.9) and (8.10) if these schemes imply some discretized version of (8.11). Schemes
that retain such a property are termed compatible (Schär and Smolarkiewicz 1996).

8.3.7 Preservation of Pre-Existing Functional Relations
Between Species (Correlations)

As described in Plumb (2007): “Relationships between long-lived stratospheric trac-
ers, manifested in similar spatial structures on scales ranging from a few to several
thousand kilometers, are displayed most strikingly if the mixing ratio of one is

11 Atmospheric modelers tend to be a bit loose with the term ‘monotone’ and normally they do not
refer to the careful definition given by Harten (1983).
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plotted against another, when the data collapse onto remarkably compact curves.” In
other words, different longlived trace constituents (such as nitrous oxide N2O and
‘total odd nitrogen’ NOy) seem to be related through rather simple functional rela-
tionships in, for example, the polar stratospheric vortex. Such relationships can arise
for different reasons (Plumb and Ko 1992), however, it is well-known that transport
can establish such relations (e.g., Thuburn and Mclntyre 1997).

In order to accurately simulate such relationships in numerical models, the trans-
port operator should, at least, be able to preserve linear correlations (Lin and Rood
1996; Thuburn and Mclntyre 1997). That is, the transport operator should maintain
the relationship in (8.15) throughout the simulation

q1 D � .0/ C � .1/ q2; (8.15)

where � .i/, i D 0; 1, are constants, and qi , i D 1; 2, are mixing ratios of two
linearly interrelated species. A transport scheme will preserve linear pre-existing
functional relations if the transport operator T , that updates qi , i D 1; 2, in time, is
‘semi-linear’

T .q1/ D T
�
� .0/ C � .1/ q2

�
D � .0/T .1/C � .1/T .q2/ D � .0/ C � .1/T .q2/;

(8.16)
(Lin and Rood 1996; Thuburn and Mclntyre 1997). As noted by Thuburn and
Mclntyre (1997) the successful preservation of linear correlations by a transport
operator does not necessarily gurantee an accurate solution since shaping two tracer
fields the same way does not necessarily imply shaping them the right way. On the
other hand, if a model significantly violates the preservation of linear correlations
between chemical constituents, the model is most likely not going to provide truthful
simulations of the relation between those constituents.

Since interrelated tracers can also be related non-linearly, it is also of interest to
investigate how a transport operator distorts such non-linear relation. For example,
consider two tracers that are initially correlated by a fourth-order polynomial

q1 D � .0/ C � .1/ .q2/4; (8.17)

(Thuburn and Mclntyre 1997) where the constants � .0/ and � .1/ should be chosen
so that the functional relation is either convex or concave in the range of the ini-
tial condition values of q1 and q2. Except for fully Lagrangian transport operators,
schemes are usually unable to maintain non-linear functional relationships and their
degree of non-preservation of correlations effectively translates into numerical mix-
ing of the constituents. Initializing two tracers that are, for example, related through
(8.17) and letting the tracers be transported by a challenging flow that develops
features that collapse to the near grid-scale, provides physical insight into the numer-
ical mixing that the transport operator introduces (Thuburn and Mclntyre 1997). No
practical Eulerian and semi-Lagrangian scheme can preserve (8.17) and will there-
fore produce scatter points that deviate from the pre-existing functional relationship
(8.17). When scatter points deviate from the pre-existing functional relation curve
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Fig. 8.5 Schematic view of the effect of mixing on a scatter plot where mixing ratio for tracer
1, q1, is plotted against tracer 2, q2. The two tracers are initially non-linearly correlated, that is,
the scatter points .q1; q2/ are on the pre-existing functional relation curve (solid thick line curve).
The initial ranges for the two tracers are Œq.min/1 ; q

.max/
1 	 and Œq.min/2 ; q

.max/
2 	, respectively. Partial

mixing of two air masses (two filled circles – scatter points) will tend to move the two scatter points
towards each other along the straight (red) line (also referred to as a ‘mixing line’). Hence ‘real
mixing’ occurring in the atmosphere will tend to move points on the scatter plot to the concave side
of the pre-existing functional relation curve (also referred to as the ‘convex hull’ – shaded area)

the transport operator is introducing numerical mixing. The numerical mixing can
either be spurious or resemble ‘real’ mixing. If the scatter values are on the concave
side of the pre-existing functional relation, the numerical mixing is similar to ‘real
mixing’ that is observed in the atmosphere (see Fig. 8.5). Mixing in the atmosphere
occurs, for example, when the polar stratospheric vortex breaks up (e.g., Waugh
et al. 1997). If scatter values appear outside the ‘convex hull’ (either by producing
scatter points on the convex side of the pre-existing functional relationship curve
and/or outside the range of the initial condition for qi , i D 1; 2), the model pro-
duces numerical unmixing which is unlike ‘real mixing’. Thuburn and Mclntyre
(1997) proved that in order to guarantee only ‘real’ numerical mixing, the trans-
port operator should be ‘semi-linear’ and monotone according to Harten (1983).
Unfortunately only first-order schemes will meet these requirements. Since first-
order schemes are too diffusive for most atmospheric applications, one must accept
some level of unmixing. For a more complete discussion of this topic the reader is
referred to Thuburn and Mclntyre (1997). Recently, Lauritzen and Thuburn (2011)
proposed mixing diagnostics that quantifies the amount of numerical mixing that
the transport operator introduces for interrelated species.

Another situation relevant to the transport of chemical species is the situation
in which more than two species are related through some complicated relation but
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they add up to a constant (or a smooth spatial field.12) With just two species this
reduces to preserving a linear correlation but with more than two species it is very
challenging to guarantee that the total mixing ratio remains constant, except by
transporting the total or using a fully Lagrangian scheme. The transport operators
ability to maintain the constant sum is another measure for numerical mixing and
has been explored in one dimension by Ovtchinnikov and Easter (2009). Note that
maintaining or only perturbing pre-existing functional relations in a ‘physical way’
is not only important for long-lived stratospheric tracers but also for other parts and
processes in the atmosphere such as cloud-aerosol interactions (Ovtchinnikov and
Easter 2009). In all, single-tracer testing that has traditionally been used to evaluate
transport operators in idealized settings does not provide insight into how well
tracer interrelations are maintained although it is important for many atmospheric
applications.

8.3.8 Robustness

The numerical method should remain stable and retain simulation veracity through-
out the integration. Robustness can be assessed by testing the algorithm for many
different flow fields, temporal and spatial resolutions.

8.3.9 Parallel Computational Efficiency

Performance improvements are largely due to increased parallelism rather than
improved microprocessor clock frequency. Hence the numerical algorithm should
be amenable for execution on massively parallel computing platforms. A way to
achieve this is to use local methods with minimal global dependence (for more
discussion see Chap. 16).

It is worth noting that although computing power has increased dramatically
in the last 20 years or so, these extra computational resources have largely been
used to satisfy demands for higher resolution, more advanced physical parameteri-
zations and coupling the atmospheric component to ocean, land, and ice components
(i.e., coupled models). Hence it is still desirable to develop efficient dynamical core
algorithms, in particular, schemes for efficient tracer transport (see paragraph on
Multi-tracer efficiency below) even though computing power is increasing.

8.3.10 Multi-Tracer Efficiency

In modern atmospheric models the number of tracers required to be advected con-
tinue to increase. For example, the chemistry version of NCAR’s CAM model

12 For example, total reactive chlorine in the stratosphere.
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transports over 100 tracers (Lamarque et al. 2008). Given that the dynamical core
typically has less than ten prognostic variables defining the state of the fluid flow
and thermodynamics, the computational cost of running the dynamical core can
primarily be attributed to the transport of tracers. Needless to say, it is highly
desirable that the numerical algorithm used for tracer transport be efficient and
adaptable for a large number of tracers. A way to achieve multi-tracer efficiency
is to design schemes that can reuse information for each additional tracer (Barth
and Frederickson 1990; Dukowicz and Baumgardner 2000) and/or transport tracers
with longer time-steps than used for the continuity equation for air in the dynam-
ical core (also referred to as ‘super-cycling’ of tracers with respect to air or, more
commonly, ‘sub-cycling’ of air with respect to tracers; see Sect. 8.7.2).

8.3.11 Geometric Flexibility

It is generally useful to develop numerical methods that can be used on a wide
range of spherical grids. Next generation dynamical cores are being developed
on spherical grids based on triangles, quadrilateral, pentagonal and/or hexagonal
control volumes. It is therefore desirable that a scheme can handle any spherical
polygon-based grid. Also models using static or adaptive mesh-refinement benefit
from geometrically flexible methods. An example of a geometrically flexible advec-
tion scheme is MPDATA (Multidimensional Positive Definite Advection Transport
Algorithm); for an overview see Smolarkiewicz (2006).

8.4 Problem Formulation: Discrete Schemes

Finite-volume methods are numerical methods where each prognostic variable is
stored as an average quantity over a certain finitely large control volume (also
referred to as cell-integrated methods). This choice differs from methods that are
based on grid-point values (used in, e.g., finite-difference methods) or weights for
expansion functions (e.g., finite-element or spectral method). In order to derive
finite-volume discretization schemes the equations of motion, in this case the
continuity equation, are integrated over a control volume. This allows for dis-
cretizations that keep track exactly of the local mass-budgets and thus provides
mass-conservation to machine precision. Note that although finite-volume schemes
are designed to conserve mass locally through explicitly tracking mass, conserva-
tion of mass can also be achieved in non finite-volume methods (e.g., compatible
methods, see Chap. 12). Conservative methods that are not finite-volume methods
usually do not conserve mass locally.

Typically finite-volume schemes come in two flavors corresponding to two forms
of deriving the equations of motion from first principles: Eulerian and Lagrangian.13

13 The Eulerian and Lagrangian forms are limits of the more general arbitrary Lagrangian–Eulerian
(ALE) form (Hirt et al. 1974).
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In most textbooks the equations of motion are derived in Eulerian form, that is, as
observed from a fixed volume in the atmosphere (stationary to the Earth’s surface).
Hence there is a flux of mass through the volume boundaries unless the local wind
is zero. One may also derive the equations of motion as viewed by a volume not
just rotating with the Earth’s rotation axis but also moving with the local flow;
a.k.a. Lagrangian form. In Lagrangian form there is no flux of mass through the
‘walls’ of the volume. Both of these forms of the finite-volume discretization of
the continuity equation are presented next after the introduction of some notation.
For simplicity we consider the two-dimensional problem in Cartesian geometry and
defer the discussion of the extension to spherical geometry and three-dimensions to
Sects. 8.5.3.3 and 8.6, respectively.

Let the domain of integration be denoted ˝ (a Cartesian plane with periodic
boundary conditions or no flux through the domain boundaries). The domain ˝ is
partitioned into N non-overlapping grid cells, Ak , k D 1; ::; N , so that

SN
kD1Ak

span ˝ . The area of cell Ak is denoted�Ak . For now we shall assume a quadrilat-
eral mesh in Cartesian geometry, however, the discussion can trivially be extended
to other meshes such as triangular or hexagonal meshes in Cartesian geometry.

As mentioned above the prognostic variable considered is the cell averaged value

 k D
1

�Ak

Z
Ak

 .x; y/ dA;  D � or �q; (8.18)

where  .x; y/ is the exact solution. In time we discretize in terms at equidistant
time-levels, i.e., superscript n refers to the quantity at time t D n�t where �t is
the time-step. So the state of a tracer in cell Ak at time-level n is denoted  

n

k .

8.4.1 (Semi-)Lagrangian Schemes

Consider an arbitrary Lagrangian area A.t/. By definition the area A.t/ moves with
the flow without any flux of mass through its sides and hence it always contains the
same material particles. Since there is no flux of mass through the boundaries of
A.t/, the mass in the area is conserved. In mathematical terms this can be written as

d

dt

Z
A.t/

 dA D 0;  D � or � q: (8.19)

Equation (8.19) is referred to as the Lagrangian finite-volume form of the continuity
equation. A temporal discretization of (8.19) reads

Z
A.tC�t/

 dA D
Z
A.t/

 dA: (8.20)

If the same Lagrangian cell A.t/ is tracked throughout the simulation the resulting
scheme is referred to as fully Lagrangian. The challenge in such schemes is that for
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non-trivial flows the areas quickly deform into thin filaments so that the resolution
is no longer uniform (see Fig. 7.2 in Chap. 7).

Instead one may consider a different set of areas/parcels at every time-step, for
example, enforcing that eitherA.tC�t/ orA.t/ is a regular static grid cell. Such an
approach is referred to as semi-Lagrangian since it only tracks the same Lagrangian
parcels/area for one time-step. The advantage of the semi-Lagrangian approach, as
compared to a fully Lagrangian method, is that it retains a quasi uniform resolution
as the mesh only deforms for one time-step. However, the grid uniformity is intro-
duced at the expense of having to interpolate variables from a regular static grid to
a deformed Lagrangian grid (or vice versa) at every time-step. How this interpola-
tion can be done is discussed in great detail below but for now more mathematical
notation is needed.

Assume that A.t C �t/ is a regular grid cell resulting in a method referred
as upstream semi-Lagrangian.14 If we consider cell k in the discretized domain
then the regular grid cell .A.t C �t// is exactly Ak with area �Ak . The corre-
sponding upstream Lagrangian area .A.t// is referred to as ak with area �ak (see
Fig. 8.6a). We assume that �t is chosen such that all the deformed areas ak are
simply connected.

Note that there exists a one-to-one correspondence between Ak and ak such that
the ak’s span ˝ without gaps or overlaps between them

N[
kD1

ak D ˝; and ak \ a` D ;8 k ¤ `: (8.21)

ba

ak

akl

Ak Ak

Al

Fig. 8.6 A graphical illustration of the upstream semi-Lagrangian nomenclature. (a) The static
Eulerian cellAk (light shading) and the corresponding upstream Lagrangian area ak (dark shading)
that ends up at Ak after one time-step. For illustration the trajectories of the vertices (filled circles)
of Ak are depicted with arrows. The corresponding upstream vertices (departure points) are shown
with open circles. (b) The notation used to define overlap areas between Eulerian cell A` and
upstream Lagrangian area ak is ak` D A` \ ak (dark shaded area)

14 Note that one might equally well consider downstream schemes where one considers Eulerian
(regular) grid cells at time-level n and let them be transported with the flow for one time-step.
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Assume that the evolution of the Lagrangian grid is known analytically so we know
the characteristics or trajectories for each fluid parcel at all times. The computation
of fluid parcel trajectories is well developed in the semi-Lagrangian literature (e.g.,
Staniforth and Côté 1991; Staniforth et al. 2003; Hortal 2002) and in the interest of
brevity it is not discussed further in this chapter, although accurate trajectories are
vital for the accuracy of any Lagrangian method.

With the notation introduced above the forecast (8.20) can be written as

 
nC1
k �Ak D  nk �ak : (8.22)

where  
n

k is the average tracer density over the upstream area ak

 
n

k D
1

�ak

Z
ak

 n.x; y/ dA; (8.23)

and 
nC1
k is the cell averaged value of over the regular areaAk at time-level nC1.

The function n.x; y/ is the continuous distribution of at time-leveln. Obviously,
since the prognostic variables are cell averages  we do not know the variation of
 at the sub-grid scale and  n.x; y/ must be reconstructed from the prognostic cell
averages.15 This procedure is referred to as sub-grid-scale reconstruction. In finite-
volume schemes the reconstruction is usually local rather than global. So each cell
k will have an associated sub-grid-scale reconstruction function  k.x; y/ rather
than one global reconstruction function over all cells such as the spherical harmonic
functions used in spectral transform models.

Hence the global reconstruction function is a collection of local reconstruction
functions

 .x; y/ D
NX
kD1

IAk
 k.x; y/; (8.24)

where IAk
is the indicator function

IAk
D
8<
:
1; .x; y/ 2 Ak ;

0; .x; y/ … Ak:
(8.25)

Commonly used methods for computing  k.x; y/ from  k are discussed in Sect.
8.5.2.

First, we note that  .x; y/ is not necessary continuous or differentiable across
cell boundaries. So if the upstream area ak covers several Eulerian cells (e.g.,
Fig. 8.6), the integral on the right-hand side of (8.23) must be broken up into overlap
areas between Eulerian cells and ak . The discretized semi-Lagrangian finite-volume

15 Unless variables such as gradients are also carried as prognostic variables (e.g., Yabe et al. 2001).
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continuity equation (8.22) then reads

 
nC1
k �Ak D

LkX
`D1

Z
ak`

 n` .x; y/ dA: (8.26)

The number of non-empty overlap areas between the upstream cell (departure cell)
ak and the Eulerian grid cells is denoted Lk . Note that Lk depends on the flow and
time-step size, and for time-varying flows it is not necessarily constant. The area
ak` is the non-empty overlap area between the upstream cell ak and the Eulerian
grid cell A` (see Fig. 8.6b)

ak` D ak \ A`; ak` ¤ ;I ` D 1; : : : ; Lk ; and 1 � Lk � N; (8.27)

where N is the number of cells in the domain.
Two conditions must be fulfilled to get conservation of mass in Lagrangian finite-

volume schemes: Firstly, the upstream cells ak must be simply connected domains
and they must span ˝ without gaps or overlaps (8.21). Secondly, the reconstruc-
tion function in cell k,  k.x; y/, must be conservative in the sense that the integral
of  k.x; y/ over Ak must yield the cell-average value that is used as prognostic
variable,

1

�Ak

Z
Ak

 k.x; y/ dA D  k: (8.28)

Equation (8.26) is the basic finite-volume form of the continuity equation when
using an upstream finite-volume semi-Lagrangian approach. Obviously we do not
know the exact Lagrangian trajectory of every parcel in the domain so some approx-
imation to ak is necessary for the derivation of any practical scheme. This is
discussed in Sect. 8.5.1.

In the discussion above  generically refers to both � and � q. In the reconstruc-
tion of � q one may chose to reconstruct � and q separately and combine them to
provide a reconstruction for the product � q. There are several reasons for choosing
this approach. First, it is q and not � q that is conserved along parcel trajectories (see
8.11) and q should therefore obey monotonicity requirements. Hence one can argue
that monotone reconstruction function filters (discussed in Sect. 8.5.2) should be
applied to q and not � q. Second, the consistent coupling of tracers and air density
equations in cell-integrated semi-Lagrangian schemes as well as ensuring monotone
forecasts of q, is perhaps easier when choosing this approach (Nair and Lauritzen
2010).

The reconstructions for � and q can be combined to provide a reconstruction
for � q by simply multiplying the reconstruction functions for � and q as done in
Dukowicz and Baumgardner (2000). However, in doing so mass-correction terms
may be needed to satisfy (8.28) for higher-order reconstructions. The downside of
this approach is that if, for example, the reconstruction function for � and q are
polynomials of i th and j th order the product will be polynomials of .i C j /th
order which may be computationally intensive to integrate. One may simplify by
removing some terms from the product as done in Nair and Lauritzen (2010). The
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latter also facilitates rendering schemes monotone in q. In Eulerian schemes, dis-
cussed next, tracer mixing ratio and air density are usually reconstructed separately
for sub-cycling (see Sect. 8.7.2)

8.4.2 Eulerian Scheme

Contrary to the Lagrangian derivations in the previous section, the equations of
motion are typically derived in Eulerian form. In the context of the finite-volume
form of the continuity equation the Eulerian approach keeps track of the flux of
mass through the Eulerian cell walls rather than tracking the mass in a cell moving
with the flow. A more formal derivation is given below.

First, integrate (8.9) or (8.10) in space over a grid cell Ak

Z
Ak

@ 

@t
dAC

Z
Ak

r � . v/ dA D 0; where  D �; � q: (8.29)

On integrating the first term on the left-hand side of (8.29) to get the area average
and applying the divergence theorem to the second term we get

d

dt

�
 k�Ak

�C
I
@Ak

. v/ � n dS D 0; (8.30)

where @Ak is the boundary of Ak and n the outward normal vector to @Ak . The
second-term on the left-hand side of (8.29) represents the instantaneous flux of mass
through the boundaries of Ak . Temporal integration of (8.30) over one time-step
yields

 
nC1
k �Ak D  nk�Ak �

Z .nC1/�t

n�t

	I
@Ak

. v/ � n dS



dt; (8.31)

after re-arranging terms. The second term on the right-hand side of (8.31) is the flux
of mass through the walls of Ak during one time-step. A graphical illustration of the
fluxes is given in Fig. 8.7 and discussed in the next paragraph.

Let 
 denote the face number and N f the number of faces of the cells. For sim-
plicity we assume a quadrilateral mesh N f D 4, however, the method can accom-
modate any kind of mesh (for example, for a triangular and hexagonal mesh N f

would be 3 and 6, respectively). A graphical illustration of the fluxes through the
cell walls for Eulerian cell k are shown on Fig. 8.7. As will become clear, the figure
also shows the upstream Lagrangian cell although it is not explicitly needed for
flux computations. The sides of the Eulerian control volume are numbered counter-
clockwise so that sides 
 D 1; 2; 3; 4 correspond to the east, north, west and south
walls, respectively (using standard compass notation). The flux of mass through
the side 
 D 1 corresponds to the mass over the shaded area on Fig. 8.7a that is
‘swept’ through the wall during one time step. The shaded area, referred to as a�D1

k
,
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c d
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τ = 1
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Fig. 8.7 A graphical illustration of the ‘flux-areas’ associated with Eulerian cell Ak (area in the
upper right corner of each plot bounded by thick lines). For each vertex of cell Ak (filled circles)
the upstream trajectories are shown (curved arrows departing from open circles). The shaded areas
show the flux-areas for the (a) east a
D1

k , (b) north a
D2
k , (c) west a
D3

k and (d) south a
D4
k face,

respectively, using standard compass orientation. These areas are swept through each face during
one time-step. See text for details

is bounded by the face 
 D 1, the two upstream trajectories for the end points of
face 
 D 1, and the upstream translation of the side 
 D 1. We will refer to a�D1

k
as

the ‘flux-area’ for face 
 D 1. Similarly, the fluxes through the remaining cell sides
are illustrated in Fig. 8.7b–d.

Using the notation introduced above (8.31) can be written as

 
nC1
k �Ak D  nk �Ak �

NfX
�D1

F �k ; (8.32)

where F �
k

is the flux of mass through face 
 during one time-step

F �k D s�k
Z
a�

k

 n.x; y/ dA: (8.33)

The ‘flow-direction’ function s�
k

is used to indicate inflow and outflow

s�k D sgn.v � n/; (8.34)

where sgn.�/ is the sign-function. Hence s�
k

is 1 for outflow and �1 for inflow.16 In
Fig. 8.7 the flow-direction function s�

k
is 1 for 
 D 1; 2 and �1 for 
 D 3; 4.

16 For simplicity we do not consider the situation where s
k is multi-valued along a particular face.
For more details on such a situation see Harris et al. (2011).
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Note that the flux of mass through one cell wall is identical, but with opposite
sign, to the flux of mass through the neighboring cell that it shares a face with. For
the example on Fig. 8.7d

a�D4k D a�D2k�1 ; (8.35)

where the cell located immediately to the south of the Eulerian cell Ak is Ak�1. So
in a practical implementation of a scheme based on (8.32) only two fluxes per cell
are computed if N f D 4.

Although the scheme outlined above is termed ‘Eulerian’ it is not Eulerian in the
classical sense where the space and time dimensions are separated. In other words,
the scheme outlined above could also be termed flux-form semi-Lagrangian since
flux-areas that move with the flow are tracked (‘remap-type’ scheme). It is Eulerian
in the sense that we consider the flux of mass through the (stationary or Eulerian)
cell walls. When separating the temporal and spatial dimensions, as done in classical
Eulerian schemes, there are no trajectory calculations and fluxes are computed using
local information and partial derivatives along the coordinate directions at specific
times. The temporal discretization is usually based on Runga–Kutta methods (see
Chap. 6). One may argue that the classical Eulerian schemes are an approximation
of the general Eulerian–Lagrangian concept presented in this chapter where true
(along the trajectories) fluxes are approximated with partial fluxes (i.e., the particle
path vector can be decomposed into vector components along the coordinate axes).

8.4.3 Equivalence Between the Lagrangian and Eulerian
Discretizations

It is interesting to note the equivalence between the Lagrangian finite-volume con-
tinuity equation (8.26) and the Eulerian version (8.32): If taking the sum of the
flux-areas a�

k
with weight 1 for outflow and weight �1 for inflow as well as Ak

with weight 1 (all areas involved on the right-hand side of (8.32)), the upstream
Lagrangian area ak results (see example on Fig. 8.7). That is, the right-hand side of
(8.32) written in terms of areas is

�Ak �
NfX
�D1

�
s�k �a

�
k

� D �ak : (8.36)

So the Lagrangian and Eulerian schemes are identical, as expected, since no approx-
imations have been made so far (even if approximations are made and the resulting
schemes are applied to the Euler equations, Eulerian and semi-Lagrangian schemes
may produce very similar results as shown in Leslie and Dietachmayer 1997).
Insights into schemes can be obtained in the light of the equivalence described
above. Any Eulerian flux-form scheme should ideally and effectively have an associ-
ated upstream cell from which information is fetched (a.k.a. domain of dependence)
to produce the forecast. A more detailed discussion is given in Sect. 8.5.1.2.
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A significant difference between the Lagrangian and Eulerian formulation is
the necessary conditions for mass conservation. Given a mass-conservative recon-
struction function (8.28), a necessary condition for the Lagrangian scheme to be
conservative is that the upstream areas ak span the domain ˝ without overlap and
gaps between them (8.21) and that the reconstruction function is mass-conservative
(8.23). For the Eulerian scheme, however, the flux-areas a�

k
need not necessarily to

span the domain˝ and the reconstruction function does not need to satisfy (8.23) to
produce a mass-conservative scheme. In fact any estimation of the flux will provide
an inherently mass-conservative scheme since the flux computed for a particular cell
wall is subtracted in the neighboring cell with which it shares that particular face.
So the Lagrangian scheme has, in the sense described above, a stricter requirement
for mass-conservation than the Eulerian flux-form formulation.

Another significant difference between the Eulerian and Lagrangian formula-
tions is that the Lagrangian formulation requires the upstream areas to be simply-
connected domains. The Eulerian formulation does not require that, in fact, even
for relatively simple flows the flux-areas can be non-simply connected (see, e.g.,
Fig. 8.2 in Harris et al. 2011). The Eulerian formulation is therefore more robust
in the sense that it can handle non-simply connected flux-areas (and conserve mass
simultaneously) whereas the Lagrangian scheme will break down if an upstream
area is not simply connected. This difference could be important for an operational
application of the scheme.

8.5 Discrete Schemes: Approximations

The Lagrangian and Eulerian finite-volume schemes, given in (8.26) and (8.32)
respectively, are exact. Hence we assume the trajectory of every parcel is known
exactly (the exact upstream area and flux-areas are known), the sub-grid-cell recon-
struction is exact and the integration of the sub-grid-cell reconstruction function
over the upstream areas and flux-areas can be done analytically. Now we start to
discuss some of the approximations that can be made in order to derive practi-
cal numerical schemes that only have a finite number of degrees of freedom. The
approximations can be divided into four steps: Computation of parcel trajectories,
area approximation (either upstream Lagrangian areas or Eulerian flux-areas), sub-
grid-cell reconstruction and integration of n.x; y/ over deformed areas. As already
mentioned we will not discuss the computation of trajectories here and therefore
simply assume that they are given.

Firstly, the approximation to areas are discussed. Once the areas have been
defined, the transport problem has been reduced to a remapping problem, that is,
a conservative grid-to-grid interpolation problem. This requires a reconstruction of
the sub-grid-cell distribution and an integration over overlap areas. These three steps
(area approximation, reconstruction, integration over overlap areas) are discussed
separately below.
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8.5.1 Approximation to Areas

With only a finite-number of degrees of freedom and therefore only having the capa-
bility of tracking a finite number of parcels (typically the same number as cells N )
some approximation must be made to the exact upstream Lagrangian area or Eule-
rian flux-area. The inability of the scheme to approximate the exact areas is referred
to as the geometric error (Lauritzen and Nair 2008) and is illustrated graphically
on Fig. 8.8a. Obviously the geometric error may lead to local mass errors. Another
error is due to inexact sub-grid-cell reconstruction. This error, referred to as the
reconstruction error, is illustrated on Fig. 8.8b and discussed further in Sect. 8.5.2.
Strategies for area approximations are the subject of this section.

8.5.1.1 Lagrangian Area Approximations

Fully Two-dimensional Lagrangian Area Approximations

Probably the most rigorous approximation to the exact upstream cell ak , Fig. 8.9a,
is to follow the trajectories of the vertices of Ak upstream and then connect the
upstream vertices with straight lines (Fig. 8.9b); (Rančić 1992; Lauritzen et al.
2010). All other approximations involve approximating ak with line segments par-
allel to the coordinates axis which, in general, simplifies the overlap-area integration
algorithm. Some examples are given on Fig. 8.9. For more details on Lagrangian cell
approximations for orthogonal meshes see the comprehensive review by Lauritzen
et al. (2006) and Machenhauer et al. (2009).

x-axis
y-axis

z-axis

a

Geometric error Reconstruction error

b

Fig. 8.8 A schematic illustration of the (a) geometric error and (b) reconstruction (gradient) error,
respectively, for a cell in two dimensions. (a) The geometric error occurs due to the exact region
of integration (shaded area) being approximated by, for example, straight line segments (dashed
lines). (b) The reconstruction error refers to the numerical methods inability to reconstruct the
exact sub-grid-scale variation (black line surface). The grey lines contour the reconstructed sub-
grid-scale distribution (in this case a linear approximation)
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a

c d

b

ak ak

akak

Fig. 8.9 Graphical illustration of approximations to the upstream Lagrangian cell ak a.k.a. the
departure cell. Assume the departure points corresponding to the vertices of the Eulerian grid cell
are known (open circles). (a) Exact departure cell (shaded area) with sides depicted with thick
lines. (b) Sides of the departure cell approximated with straight lines by connecting the departure
points. (c) Departure cell approximation used in Nair and Machenhauer (2002) where the east and
west sides are straight lines parallel to the Eulerian longitudes (y-axis on the plot) and the north
and south sides are approximated with ‘step functions’. (d) The Lagrangian cell used in the cascade
schemes that are based on intersections (crosses) between the Lagrangian latitudes (dashed/solid
curved lines) and the Eulerian longitudes. The ‘step’ in the step functions used in the cascade
schemes always coincides with the Eulerian longitudes (x-isolines on the figure)

Flow-split Lagrangian Area Approximations

More recently the finite-volume cascade17 approach was suggested by Nair et al.
(2002) and Zerroukat et al. (2002) which uses a combination of Eulerian and

17 The non-conservative cascade interpolation method in Cartesian geometry was introduced by
Purser and Leslie (1991).
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Lagrangian operators, that is, the one-dimensional operators are successively
applied along a coordinate line and a Lagrangian line, respectively. An example is
given in Fig. 8.9d where the first one-dimensional operator is applied along the Eule-
rian longitudinal direction and the second is applied along the deformed Lagrangian
latitude (curved solid/dash lines on Fig. 8.9d). So rather than being a fixed direction
based splitting method it is flow-based (for a review see Machenhauer et al. 2009).
The upstream Lagrangian cell for the cascade scheme is illustrated on Fig. 8.9d.
The main difference between the fully two-dimensional area approximation used
in Nair and Machenhauer (2002), shown on Fig. 8.9c, and the cascade scheme area
approximation, is the location of the ‘jump’ in the north and south sides of the
departure cell. Since the first cascade ‘sweep’ is along Eulerian longitudes the jump
in the north and south sides coincide with an Eulerian longitude. In the Nair and
Machenhauer (2002) the jump is located midway between the east and west cell
sides.

Approximating the Lagrangian cell with line-segments parallel to the coordinate
axis, either with fully two-dimensional or cascade methods, is attractive for orthog-
onal grids such as a Cartesian rectangular mesh (e.g., Zerroukat et al. 2002) and a
regular latitude-longitude grid on the sphere (e.g., Nair and Machenhauer 2002; Nair
et al. 2002; Zerroukat et al. 2004). It is less obvious how to extend such approaches
to non-orthogonal grids such as triangular or hexagonal grids since the cell sides are
no longer orthogonal.

8.5.1.2 Eulerian Flux Area Approximations

The approximation to flux-areas in Eulerian schemes can be divided into two cate-
gories: Fully two-dimensional approximations to the flux-areas and dimensionally
split area approximations. We remind the reader that only methods that have been
extended to global spherical domains are discussed here. We are thereby excluding
many transport schemes published in the meteorological literature.

Fully Two-dimensional Flux-area Approximations

The fully two-dimensional flux-area approximations can be divided into two cate-
gories. Firstly, one in which one face-centered velocity vector per face is used to
trace back the flux-area and, secondly, the approach in which the vertices of the face
are traced upstream to compute the flux-area. The first approach only has one degree
of freedom for the flux-areas whereas the latter approach has two. Consequently the
resulting flux-areas are parallelograms and arbitrary quadrilaterals, respectively, for
the two approaches. An elaboration is given below.

Recently, Miura (2007) suggested to approximate the flux-areas from a face-
centered wind velocity. So the two vertices of the face would have identical upstream
displacements based on the same face-centered velocity vector. The trajectories
are therefore parallel and have the exact same length. Hence the flux-areas a�

k
,
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 D 1; 2; 3; 4, are parallelograms (Fig. 8.10a,b,d,e, respectively). The fact that the
upstream area is a parallelogram may simplify the practical integration of overlap
areas at the expense of some potential loss of accuracy if the flow is highly deforma-
tional. This is illustrated by computing the effective upstream Lagrangian area for
the Miura (2007) scheme using the method outlined in Sect. 8.4.3. That is, by tak-
ing the sum of the flux-areas (with signs) shown on Fig. 8.10a,b,d,e and the Eulerian
area (Fig. 8.10c), the effective upstream area ak results (Fig. 8.10f). The upstream
area mostly coincides with the exact departure cell, however, there are minor contri-
butions tracing the Eulerian cell vertices that are non-local (not overlapping with the
true departure cell). Also, the flux-areas for all cells do not span the domain ˝ . If
the flow is constant (no deformation) the non-local part of the flux-areas disappear
as all the face-centered velocity vectors would be aligned.

If this inability of representing the local flux-areas (geometric error) is a signif-
icant source of error has not been investigated (as far as the authors are aware) and
the error would only show for challenging test cases with strong deformation. For
example, the widely used solid body advection test on the sphere would most likely
not expose this potential deficiency. An illustrative example of a highly deforma-
tional flow is given on Fig. 8.11 that shows the Lagrangian (upstream) grid for each
cubed-sphere panel for one of the test cases in Nair and Lauritzen (2010). Even for
a relative short time-step (resulting in a maximum CFL number in each coordinate
direction of approximately 0.8) the upstream cells are highly deformed and they
might be challenging to approximate accurately using simplified fluxes unless very
short time-steps are used. It should, however, be noted that the geometric discussed
above will only show if it is larger than the reconstruction error. Consequently, the
geometric error is most likely not significant when using low-order reconstruction
functions (constant or linear reconstructions).

The potential non-locality problem described above can be resolved by instead
of using one face-centered vector (for the trajectories) per face, to use trajecto-
ries for the vertices of the cell Ak (Rančić 1992; Lipscomb and Ringler 2005;
Yeh 2007). This extra degree of freedom allows the flux-areas to deform into
arbitrary quadrilaterals. The equivalent upstream area now equals the Lagrangian
area resulting from connecting the upstream points with straight lines. This can
be shown as above by taking the sum of the areas involved in the forecast (8.32),
Fig. 8.10g,h,i,j,k, with appropriate weights (signs). As for the Eulerian–Lagrangian
equivalence in the continuous case, discussed in Sect. 8.4.3, this approximate flux-
form scheme is exactly equivalent to the approximate Lagrangian scheme discussed
above where the departure points are connected with straight lines (Figs. 8.9b and
8.10, respectively).

Improving the effective approximation to the upstream area further would involve
the introduction of more parcels that are tracked (as suggested by Lauritzen et al.
2010) or some approximation to the sides with curved lines. A cursory study
addressing the potential benefits of approximating the upstream areas with higher-
order polygons was performed in Harris et al. (2011) within the context of a
flux-form semi-Lagrangian scheme.
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Fig. 8.10 A schematic illustration of different flux approximations, parallelogram (a,b,d,e) and
quadrilateral (g,h,j,k) flux-areas, and the equivalent upstream Lagrangian areas (f,l). The equiva-
lent upstream areas are computed by taking the sum of all areas involved in the forecast (a,b,c,d,e)
or (g,h,i,j,k) with appropriate signs (see (8.36)). The velocity vectors used for the flux compu-
tations are also shown. The exact upstream Lagrangian cell (open circles connected with curved
lines) is also shown although it is not explicitly used in the flux-form schemes

Dimensionally Split Flux-areas

A popular approach not discussed so far is to use a sequence of one-dimensional
operators to approximate the two-dimensional fluxes thereby eliminating the need
for solving a fully two-dimensional remapping problem. These methods are also
referred to as dimensionally split approaches. A popular scheme based on this
strategy is presented in Lin and Rood (1996) and Leonard et al. (1996).

In the present discussion on effective upstream areas, this operator splitting
approach was analyzed by Lauritzen (2007) and Machenhauer et al. (2009). When
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Fig. 8.11 The static Eulerian grid (thin lines aligned with coordinate lines) and departure grid
(deformed thin lines) at the first time-step shown on the gnomonic projection on each cubed-
sphere panel for test case one of Nair and Lauritzen (2010) illustrated on Fig. 8.3 (time-step was
chosen such that the maximum CFL number is approximately 0.8). The departure grid has been
constructed by computing trajectories for the cell vertices and then the vertices are connected with
straight lines (great-circle arcs on the sphere)

using dimensionally split approaches the effective upstream area is approximated
with a combination of rectangles aligned with the grid lines and with different
weights (see Machenhauer et al. 2009). One-dimensional operators cannot repre-
sent areas skew to the face in question. As an example of an operator splitting
approach the effective departure area for the Lin and Rood (1996) scheme is given
on Fig. 8.12 for a flow that has a translational, deformation and rotational component
(see Machenhauer et al. 2009 for details).

In dimensional split schemes one can obtain preservation of a constant den-
sity field in a non-divergent flow field. This property is harder to obtain with
fully two-dimensional semi-Lagrangian schemes but it is possible with cascade
semi-Lagrangian schemes (Thuburn et al. 2010).

8.5.1.3 Comment on Area Approximations

One might argue that the errors associated with some of the simplified flux- and
upstream- area approximations are not significant at least for orthogonal meshes. For
example, for semi-Lagrangian finite-volume schemes Lauritzen et al. (2010) found
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ak

Fig. 8.12 A graphical illustration of the effective departure area ak for the Lin and Rood (1996)
scheme using an analytic wind field which is deformational, rotational and divergent. The exact
departure cell is shown with thick black lines (and open circles as vertices). Light shading shows
the parts of the departure area where mass is weighted with 1/2 and dark shaded areas are weighted
with one. See Machenhauer et al. (2009) for details

little difference between the rigorous upstream area approximation and simpler area
approximations using line-segments parallel to the coordinate axis.

On non-traditional meshes simplified fluxes might introduce significant inaccu-
racies. For example, considering a solid-body rotation flow field on the sphere on
a non-traditional grid such as the cubed-sphere grid, some of the Lagrangian areas
are highly deformed even though the flow field is non-divergent, non-deformational
and non-rotational. This is illustrated on Fig. 8.13. The Lagrangian cells entering
a cubed-sphere panel from neighboring panels are highly skewed compared to the
Lagrangian areas staying within the panel in question. Therefore the need for fully
two-dimensional area approximations for non-traditional grid applications seems
more evident than for orthogonal quadrilateral grids such as the regular latitude-
longitude grid. All of the above is, of course, assuming that the reconstruction error
is smaller than the geometric error which will most likely not be the case for first-
and second-order methods.

Velocity Staggering and Flux-areas

For the different flux-area approximations described above the velocity components
are needed at the center of cell faces (for parallelogram flux areas), cell vertices
(for the quadrilateral flux areas) or at multiple locations along the cell sides (for
higher-order polygon fluxes). To avoid any interpolation of velocity components
Arakawa B and E grid staggering (see Chap. 3) should be used for quadrilateral
and parallelogram flux areas, respectively, whereas the higher-order polygon flux
inevitably will require interpolation of the velocity components (at least at a subset
of the points along the cell sides). The interpolation of velocity components can
potentially degrade the overall accuracy of the scheme (McGregor 2005) and the
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ba

Fig. 8.13 (a) Cubed-sphere grid shown with light shaded lines and panel edges with black lines.
(b) The upstream/departure grid (dashed lines) shown on a local (gnomonic) projection for one
of the cubed-sphere panels using the solid-body advection flow field (time-step is so that one
revolution is completed in 72 time-steps). The solid lines show the Eulerian static grid. The skewed
departure cells are cells entering from neighboring panels during the time-step. The parts of the
departure cells outside the panel have been ‘chopped off’. For an introduction to the cubed-sphere
grid see, e.g., Chap. 9

choice of variable staggering impacts wave propagation (when solving the air mass
continuity equation with the momentum equations) as discussed in Chap. 3. Hence
the choice of flux-area approximation and variable staggering are ‘intertwined’ and
the choices impact not only the accuracy of the transport operator but also wave
propagation properties in full models as well as other properties such as the need
for filtering etc. (see, e.g., Chaps. 13 and 14). A exhaustive discussion of optimal
variable staggering and flux-area approximation is beyond the scope of this chapter.

8.5.2 Sub-Grid-Scale Reconstruction

In the previous sections the geometrical approximation to the upstream areas and
flux-areas have been discussed. Next comes the actual integration of  .x; y/
over these areas, for which a sub-grid-scale reconstruction of the tracer field is
needed. We start by discussing reconstruction methods in one spatial dimension and
then briefly discuss two dimensional extensions before covering the integration of
 .x; y/ over overlap areas.

8.5.2.1 One-Dimensional Reconstruction Functions

The sub-grid-scale reconstruction is vital for the overall accuracy and efficiency of
a scheme, and a thorough discussion is beyond the scope of this chapter. We will,
however, discuss some of the most widely used methods. In principle any function
could be used for reconstructions, however, the choice of reconstruction function
has consequences for any finite-volume scheme. Here are some desirable properties
for reconstruction functions that should be considered:
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� Locality. Locality is generally desirable to maximize parallel efficiency; that is,
the stencil (or halo) used for the reconstruction in any cell should use only a
limited number of neighboring grid cells. The cells used in the reconstruction of
a given cell are referred to as the stencil of that cell.

� Integrability. The reconstruction function must later be integrated over overlap
areas and it is convenient to use functions that can be integrated exactly. If poly-
nomials are used, polynomials of successively higher degree will lead to more
computationally expensive schemes.

� Conservation. For Lagrangian finite-volume schemes mass-conservation of the
final algorithm requires the reconstruction function to satisfy the so-called cell-
averaged property; namely, integration of the reconstruction over the cell (8.28)
yields the known cell-average (for each prognostic variable). This requirement
is not strictly necessary for Eulerian flux-form schemes but, in general, leads to
more accurate reconstructions (Skamarock 2009; personal communication).

� Filterable. A scheme can be rendered monotone in the reconstruction step by
filtering the reconstruction function so that it is monotone. It may therefore be
desirable to use reconstruction functions that are amiable for such filtering. One
thing to consider, for example, is that higher-degree polynomial reconstructions
are more difficult to filter, since the number of possible extrema increases with
the degree of the polynomial. For flux-form Eulerian schemes one may also
render the solution monotone a posteriori by adequately ‘mixing’ the (usually
low-order) monotone flux with the (usually higher-order) non-monotone flux
(Zalesak 1979). In the literature the a posteriori filtering is often referred to
as limiting. An excellent review on limiting is given in Durran (1999), and we
make no effort to try and reproduce it here. Certain reconstructions can also be
used that are inherently non-oscillatory by design, such as the class of (W)ENO
schemes ((Weighted) Essentially Non-Oscillatory schemes), which generally do
not require filtering or limiting.

� Exactness. A reconstruction algorithm is referred to as p-exact if it exactly repro-
duces a global polynomial of degree p (Barth and Frederickson 1990). Generally
speaking, strict exactness constraints will lead to an increase in accuracy of the
reconstruction function.

Polynomial reconstruction functions, mentioned a couple of times above, are a
popular choice in the literature and all properties discussed above can be conve-
niently dealt with using such a basis. Some work has been done on nonpolynomial-
based reconstruction functions (e.g., Norman and Nair 2008; Xiao et al. 2002),
however, we will focus on the former here. A comparison of various reconstruc-
tion functions in the context of conservative cascade interpolation was tackled by
Norman et al. (2009).

Reconstruction Problem Formulation (one Dimension)

The one-dimensional reconstruction problem for a finite-volume scheme utilizing a
polynomial basis can be stated as follows: Given discrete cell-averaged values  k
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over cellsAk (hereAk refers to a 1D cell), determine coefficients c.i/
k

, i D 1; : : : ; p,
so that

 k.x/ D c.0/k C c.1/k x C c.2/
k
x2 C : : :C c.p/

k
xp ; (8.37)

is an approximation to the underlying field  in cell Ak . As mentioned previously,
it is desirable that the reconstruction satisfies the cell-averaged property,

Z
Ak

 k.x/ dx D  k �xk ; (8.38)

where �xk is the width of cell Ak . In the context of semi-Lagrangian advection
schemes, this property is also referred to as the mass-conservation property.

In the cell-integrated continuity equation (8.18)  refers to either cell-averaged
air density � or tracer density � q, however, in the context of reconstructions it can
be desirable to reconstruction � and q separately (as mentioned in Sect. 8.4.1). In
particular when enforcing shape-preservation it may be convenient to apply the
filters/limiters to q and not � q (e.g., Nair and Lauritzen 2010). Hence, for the
discussion on reconstructions can either refer to �, � q or q.

The Piecewise Constant Method (PCoM)

Perhaps the simplest sub-grid-scale representation is the so-called piecewise con-
stant method (PCoM), which simply uses

 k.x/ D  k : (8.39)

This approach is attributed to Godunov (1959) and trivially satisfies (8.38), does not
need a halo, and is also inherently monotone since it cannot lead to new extrema.
This approach is also formally first-order accurate and highly diffusive when used
with any scheme over smooth flows and distributions. As a consequence, this choice
of reconstruction is considered too diffusive for atmospheric transport problems
(unless the flow is ‘rough’), and so we must turn our attention to higher-order
reconstructions.

Higher-order Reconstructions

Note that by appropriately shifting the polynomial (8.37), we can always map Ak
onto the normalized interval x 2 Œ��xk=2;�xk=2	 with centerpoint x D 0. By
doing so, the math behind the reconstruction is dramatically simplified, and so we
will hereafter assume that we are working over this domain. Further, we will assume
that the grid is uniform so that �xj D �x for all j . Reconstructions based on
non-uniform grids are generally a straightforward extension of the uniform case.

Perhaps the most intuitive method for determining the coefficients of (8.37) is to
use a Taylor series expansion about the center of the cell (x D 0),
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ˇ
xD0

xC1
2

�
@2 k

@x2

�ˇ̌ˇ̌
ˇ
xD0

x2C : : :C 1

pŠ

�
@p k

@xp

�ˇ̌ˇ̌
ˇ
xD0

xp

C O


.�x/pC1

�
: (8.40)

By pairing terms of equal order, we obtain the association

c
.0/

k
D  k.0/; c

.i/

k
D 1

iŠ

�
@i k

@xi

�ˇ̌ˇ̌̌
xD0

: (8.41)

Since we do not know the exact value of  k or its derivatives, we must approx-
imate these values using, for example, interpolated polynomials through known
cell-averaged values.

Note that one must be careful in choosing the correct approximations to these
derivatives to preserve high-order accuracy. Specifically, for (8.40) to be formally
O Œ.�x/p 	 accurate, each of the derivatives @n k=@xn must be approximated to
order O Œ.�x/p�n	, and k.0/must be approximated to order O Œ.�x/p 	. The ratio-
nale behind this claim is as follows: When evaluating the reconstruction (8.40), each
of the derivatives @n k=@xn is multiplied by xp , which must satisfy jxjp � .�x/p .
Hence, if @n k=@xn is approximated to O Œ.�x/n�p 	 then each term in the series
(8.40) is approximated to O Œ.�x/p	. However, since  k.0/ is not multiplied by any
power of x, it must be approximated to full order-of-accuracy.

Finite-difference Approximations

On averaging the Taylor series (8.40) over a cell Ak , we obtain

1

�x

Z �x=2

��x=2
 k.x/dx D  k.0/C 1

24

�
@2 k

@x2

�ˇ̌ˇ̌̌
xD0

.�x/2 C O


.�x/4

�
: (8.42)

The left-hand-side of this expression is simply the cell average  k , which is known
in a finite-volume context. The first term on the right-hand-side is the value of k.x/
evaluated at the cell-centerpoint and it is followed by higher-order terms. Hence, we
can conclude that k is a O



.�x/2

�
approximation to the value of k.x/ evaluated

at the centerpoint. This result implies that if we utilize finite-difference approxima-
tions to approximate derivatives of any order at x D 0, such approximations will
only be valid up to O



.�x/2

�
in a finite-volume context.

The simplest finite-difference approximation is the piecewise-linear method
(PLM), given by

 k.x/ D  k C
�
@ k

@x

�ˇ̌ˇ̌̌
xD0

x; (8.43)
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(van Leer 1977) where @ k=@x is at least a first-order-accurate approximation to
the derivative at x D 0. Some choices include an upwind discretization,

�
@ k

@x

�ˇ̌̌
ˇ̌
xD0
D  k �  k�1

�x
C O.�x/; (8.44)

or a centered discretization
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�ˇ̌̌
ˇ̌
xD0
D  kC1 �  k�1

2�x
C O



.�x/2

�
: (8.45)

Either choice will lead to a scheme which is formally second-order accurate. Larger
stencils can be chosen for the approximations to these derivatives, but they can only
lead to reconstructions that are at most second-order-accurate. Nonetheless, with
larger stencils total accuracy may improve significantly even though the formal
order-of-accuracy will not.

The linear reconstruction drastically improves the error measures of finite-
volume schemes, when compared to PCoM. This result is illustrated in Fig. 8.14
in terms of a von Neumann stability analysis of a finite-volume scheme based
on PCoM and PLM (using the centered approximation (8.45)). In many large-
scale atmospheric models PLM is still considered too diffusive and therefore even
higher-order reconstructions are often considered.
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Fig. 8.14 The stability properties (see Sect. 8.3.3 and/or Lauritzen 2007) of a one-dimensional
finite-volume scheme based on PCoM (grey line) and PLM (black line), respectively. Note that
in one dimension all finite-volume schemes discussed in this chapter are identical when using the
same reconstruction method. (a) Squared modulus of the amplification factor (j� j2) as a function
of Courant number (x-axis) and wavelength L (y-axis). Hence (a) shows how much each wave-
length is damped in one time-step as a function of Courant number. For a fixed Courant number
� the damping decreases monotonically as a function of wavelength L and limL!1 j� j2 D 1.
For Courant number 0 or 1 the scheme is exact and hence j� j2 D 1. (b) Same as (a) but for the
relative phase speed (R), that is, how much each Fourier mode is accelerated or decelerated as a
function of Courant number



8 Finite-Volume Transport Schemes 225

Finite-difference schemes can also be utilized to obtain a third-order recon-
struction, even in a finite-volume context. Rearranging (8.42), we can obtain an
expression for the centerpoint value  k.0/,

 k.0/ D  k �
.�x/2

24

�
@2 k

@x2

�ˇ̌ˇ̌
ˇ
xD0
C O



.�x/4

�
; (8.46)

which is a fourth-order-accurate approximation to the pointwise value of  k.0/,
as long as @2 k=@x2 is approximated to at least O



.�x/2

�
. Combining this

approximation with (8.40), we obtain a third-order (parabolic) reconstruction
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when combined with simple finite-difference approximations of the form (8.45) and
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In fact, it can be quickly verified that (8.47) also satisfies the cell-averaged property
(8.38). This method has the highest formal order of accuracy that can be obtained
by treating finite-volume methods in a finite-difference context. This choice of
reconstruction was used by Laprise and Plante (1995).

Finite-volume Approximations

To obtain approximations higher than third-order in accuracy, we must first take a
step back and understand how finite-volume methods are formulated. First, recall
that finite-volume methods use cell-averaged values, which implies that the under-
lying scalar field is not known point-by-point. Instead, it is cell-averaged values that
are known exactly

 k D
1

�x

Z �x=2

��x=2
 k.x/dx: (8.49)

Hence, in the context of finite-volume methods, high-order sub-grid-scale recon-
structions cannot be interpolated through specific points (as with finite-difference
methods), but must instead satisfy certain cell-averaged properties.

To build a reconstruction that utilizes cell-averages, one generally defines a
cumulative mass functionW.x/ via

W.x/ D
Z x

xk�j �1=2

 k. Qx/d Qx; (8.50)
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where xk�j�1=2 denotes the left-side edge of cell Ak�j . Now, observe

W.xk�j�1=2/ D 0;
W.xk�jC1=2/ D �x

�
 k�j

�
;

W.xk�jC3=2/ D �x
�
 k�j C  k�jC1

�
;

:::

Over such a set of consecutive cells one can then define an interpolating polyno-
mial of degree m that approximates the exact cumulative mass function W.x/. We
denote this approximation by QW .x/. Finally, we observe that in accordance with the
fundamental theorem of Calculus, differentiating (8.50) gives

dW

dx
.x/ D  k.x/: (8.51)

By evaluating the first derivative of QW .x/ at a given point, we actually obtain a
O


.�x/m�1

�
approximation to the underlying field  k.x/ from its cell-averages.

This method can then be used to reconstruct  k.x/ at any point and, by taking
additional derivatives of QW .x/, its corresponding derivatives.

Alternatively, one can obtain an identical reconstruction by enforcing the cell-
averaged constraint on an interpolating polynomial in neighboring cells (Zerroukat
et al. 2002). That is, a polynomialb k.x/ of degree p that exactly satisfies the mass-
conservation constraint not only in cell k but also in p adjacent cells:

Z xj C1=2

xj �1=2

b k.x/ dx D  j�x; j D
�
k � p

2

�
::
�
k C p

2

�
; (8.52)

for p even and

Z xj C1=2

xj �1=2

b k.x/ dx D  j�x; j D
�
k � p C 1

2

�
::

�
k C p � 1

2

�
; (8.53)

for p odd.
Either method will yield an identical reconstruction ( QW .x/ D b k.x/), although

the latter is more adaptable to two dimensions and beyond.
If we utilize the aforementioned procedure over a 3-cell stencil (consisting of

cells k � 1, k and kC 1), we will exactly obtain (8.45), (8.46) and (8.48). However,
beyond three cells, the finite-difference and finite-volume reconstructions will differ
substantially. For instance, over a centered 5-cell stencil, we obtain approximations

 k.0/ D 9 k�2 � 116 k�1C2134 k�116 kC1C9 kC2
1920

C O


.�x/6

�
;



8 Finite-Volume Transport Schemes 227

�
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�ˇ̌ˇ̌
ˇ
xD0
D 5 k�2 � 34 k�1 C 34 kC1 � 5 kC2

48�x
C O



.�x/5

�
;

etc.

High-order reconstructions of this type were adopted for a shallow-water model by
Ullrich et al. (2010).

Symmetric Finite-Volume Schemes

In all the methods so far discussed, we have not touched on the issue of continuity
between cells. In fact, all of the methods we have described so far do not enforce
any sort of continuity between reconstructions in neighboring cells.

As we have seen so far, as the order of the reconstruction polynomial is increased,
more options for how to approximate the coefficients c.i/

k
are available. Continuity

at edges can be enforced (over an arbitrary scalar field) if we adopt a reconstruction
that is at least parabolic, i.e.,

 k.x/ D c.0/k C c.1/k x C c.2/
k
x2: (8.54)

Since we have three degrees of freedom in this polynomial, we can choose to
enforce  k.��x=2/ D  L

k
and  k.�x=2/ D  R

k
, where  L

k
and  R

k
are recon-

structed values at the left- and right- edges, respectively. These are purposely chosen
to be consistent between neighboring cells, which gives us the desired continuity
restriction. With our remaining degree of freedom we enforce the cell-averaged
condition (8.38).

This scheme is the well-known piecewise-parabolic method (PPM) of Colella
and Woodward (1984). To obtain edgepoint values  L

k
and  R

k
, PPM makes use of

the finite-volume formulation discussed earlier, taken over four cells and evaluated
at the cell edgepoint, which gives

 Rk D
7

12
. k C  kC1/�

1

12
. kC2 C  k�1/C O



.�x/4

�
; (8.55)

(also see Zerroukat et al. (2002)) and  L
kC1 D  Rk . In terms of the coefficients c.i/

k
,

this reconstruction can be written as

c
.0/

k
D  k � .�x/2

c
.2/

k

12
;

c
.1/

k
D 1

�x

	
2

3

�
 kC1 �  k�1

� � 1

12

�
 kC2 �  k�2

�

;

c
.2/

k
D 1

2 .�x/2

	
�5 k C 3

�
 kC1 C  k�1

� � 1
2

�
 kC2 C  k�2

�

:
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All of the coefficients c.i/
k

in this case approximate  k.x/ and its derivatives to
O


.�x/4

�
.

The approximation to  L
k

in (8.55) and R
k

are fourth-order accurate for uniform
grids. Obviously, one could also derive second, third, fourth, fifth or sixth-order
accurate estimations by fitting a linear, parabolic, cubic, quartic and quintic poly-
nomial so that (8.50) or (8.52–8.53) is satisfied in 2, 3, 4, 5 and 6 adjacent cells,
respectively. We will refer to PPM based on second, third, fourth, fifth-order edge
value estimates as PPM2, PPM3, PPM4, PPM5, respectively. In this context PPM
and PPM4 refer to the same reconstruction.

In terms of p-exactness the edge estimates must be at least third-order for
the PPM to exactly reconstruct a global parabola. Hence PPM2 is not p-exact
(pD 2) whereas PPM3, PPM4, and PPM5 are. It is noted that PPM4 is significantly
more accurate than PPM3 in terms of a Von Neuman stability analysis (Fig. 8.15)
whereas PPM5 only gives modest increases in accuracy. Obviously PPM5 needs a
larger halo than PPM4. As a consequence, the potential increase in cost associated
with the use of larger stencils has likely been a significant factor in determining
the widespread adoption of PPM4 over these other schemes. More discussion on
edge-value estimates is given in White and Adcroft (2008).

One could naturally ask the question why should one not use the highest-order
polynomial that can be approximated with a given halo (stensil)? For example, the
cubic polynomial used to estimate the edge value in PPM4 could be used as the
reconstruction function,  k.x/ D b k.x/. While this might improve the accuracy
of the scheme, it will make filtering and integration over overlap-areas more cum-
bersome and computationally expensive, as compared to sticking to a parabola with
high-order edge-value estimates (PPM4).

Reconstructions based on polynomials of degree higher than two have been pro-
posed in the literature but have not been widely adopted in transport schemes as of
the time of writing. Zerroukat et al. (2002) introduced a symmetric piecewise-cubic
method (PCM), along with advanced filtering techniques (Zerroukat et al. 2005),
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Fig. 8.15 Same as Fig. 8.14 but for PPM using different estimates for the edge values (solid lines)
as well as PPM-s (dashed line). PPM-s is the sub-grid-cell reconstruction method based on the
method of Laprise and Plante (1995), that is, using (8.52) with p D 2 to determine the sub-grid-cell
reconstruction function
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Fig. 8.16 Same as Fig. 8.15 but for PQM

and White and Adcroft (2008) proposed a symmetric piecewise-quartic method
(PQM) based on polynomials of degree four. As for the PPM the edge-value esti-
mate is paramount for the accuracy of the scheme (see, e.g., Fig. 8.16). However,
even for the most accurate PQM6 the increase in accuracy (in terms of a Von Neu-
mann analysis) is modest compared to PPM4 given the increase in the halo size.
Also to consider is that polynomials of degree three (PCM) and four (PQM) can have
two and three extrema within a grid cell making it harder to filter such polynomials
compared to a (relatively low-order) parabola.

Piecewise Quadratic Splines

An interesting variant on the reconstruction methods discussed so far, and also based
on parabolas, is the piecewise quadratic spline method (Zerroukat et al. 2006) and
higher-order extensions such as those presented in Zerroukat et al. (2010). Instead
of only enforcing C 0 continuity across cell edges also the first derivative of the
reconstruction is constrained to be continuous, i.e., the reconstruction is C 1 across
cell edges. Enforcing continuity in the derivatives of the reconstruction functions at
cell boundaries results in an implicit system of equations for the polynomial coeffi-
cients. When written in matrix form, however, the matrix that needs to be inverted
has a tri-diagonal form.

In idealized test cases using the scheme of Zerroukat et al. (2002) the piecewise
spline reconstruction method is superior to PPM while being 40% more efficient in
terms of number of operations (Zerroukat et al. 2007). The price to pay, in terms of
a parallel computational environment, is that splines are inherently global since the
inversion of a global tri-diagonal matrix is necessary.

Essentially Non-oscillatory (ENO) Reconstructions

Essentially non-oscillatory reconstructions were originally developed by Harten
et al. (1987) for shock hydrodynamics problems. This approach is particularly inter-
esting since it leads to a reconstruction that is (under most circumstances) monotonic
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and positive. The ENO scheme works by applying either a finite-difference or finite-
volume approach (as discussed earlier) on a variety of stencils. The reconstruction
that satisfies some least-oscillatory property, among all possible stencils, is then
chosen to give the ‘true’ reconstruction. The main drawback of this approach is that
it requires a large stencil in order to obtain the same order of accuracy as ‘vanilla’
finite-difference or finite-volume methods.

Least-squares

The least-squares technique is one of the few approaches available for obtaining
approximate reconstructions on unstructured grids. Under this method, we intro-
duce some quantification of the misfit between the reconstruction (8.37) and the
known cell-averages, usually given by the square of the difference between the
cell-averages of the reconstruction and the known cell-averages. The misfit is then
minimized over all possible reconstructions in order to give the “best possible”
reconstruction. An example of a Cartesian finite-volume scheme on an unstructured
grid based on the least-squares technique can be found in Barth and Frederickson
(1990).

One-dimensional Reconstruction Limiters/Filters

As discussed in Sect. 8.3.6, it is desirable that a transport scheme utilizes physically
realizable reconstructions. There are two ways to achieve this goal, either a priori
by filtering the sub-grid-cell reconstruction function so that it only takes physically
realizable values, or a posteriori by limiting prognosed cell averages or by alter-
ing the fluxes individually. In the context of an upstream semi-Lagrangian scheme
flux-limiting is obviously not an option. For Eulerian schemes one may apply a
priori filters or flux-limiters to provide physically realizable solutions. A priori fil-
ters are also referred to as slope-limiters as they act directly on the sub-grid-scale
reconstruction function.

The PLM, usually based on (8.44) or (8.45), may violate monotonicity as illus-
trated in Fig. 8.17a. Monotonicity can be enforced by replacing the reconstructed
derivative with some weighted average of the upwind and downwind approxima-
tions. Many such combinations exist, including MINMOD, Superbee (Roe 1985),
and monotone central (van Leer 1977), to name a few (see, for example, Toro 1999).
It is beyond the scope of this chapter to provide a comprehensive review of these
filters but they all seek to blend the derivative estimates, as hinted above, to obtain
the least diffusive monotone solution.

As illustrated on Fig. 8.17b PPM4 is also non-monotone without the applica-
tion of filters. The seminal paper of Colella and Woodward (1984) constrains the
reconstruction so that the entire sub-grid-scale reconstruction is bounded by the
cell-averages of the neighboring cells (or is reduced to a constant when the recon-
struction is a local extrema). See Fig. 8.17b for an example. This technique for
filtering the reconstruction has the tendency to “cut off” or flatten smooth, physi-
cal maxima and minima. Several approaches have been proposed to retain physical
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Fig. 8.17 Reconstructions for the irregular signal of Smolarkiewicz and Grabowski (1990, blue
line) using the (a) piecewise-linear method (PLM) and (b) the piecewise parabolic method (PPM)
with reconstruction function filter (grey) and without (red). The filter for PLM is the MINMOD
limiter (see text) with thetaD 1 and the PPM limiter is the original filter presented in Colella and
Woodward (1984)

extrema while filtering out spurious grid-scale noise (see, for example, van Albada
et al. (1982); Zerroukat et al. (2005); Liu et al. (2007) and Colella and Sekora
(2008)). If miniscule over- and undershoots can be tolerated, less invasive filters can
be designed using (W)ENO-type methods where the user-specified filter is applied
only when a smoothness metric exceeds a certain threshold (Blossey and Durran
2008). Achieving high-order accuracy and physical realizable prognosed values
(monotonicity) is very challenging and deserves a chapter on its own for a com-
prehensive discussion. We will not discuss reconstruction filtering further, although
it has profound impact on the diffusion and dispersion properties of a scheme at
small scales.
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8.5.2.2 Two-Dimensional Reconstruction Functions

Two-dimensional reconstructions can be obtained using nearly direct generaliza-
tions of the methods presented in Sect. 8.5.2.1. In fact, for second-order accurate
schemes that use a linear reconstruction the linear derivatives can be calculated in
each direction independently (dimension-splitting).

Reconstruction Problem Formulation

The two-dimensional reconstruction problem for a finite-volume scheme utilizing
a polynomial basis is analogous to the one-dimensional case: Given discrete cell-
averaged values  k over cells Ak , determine coefficients c.i;j /, i C j � p (i and j
are 0 or positive integers), so that

 k.x; y/ D
X
iCj�p

c
.i;j /

k
xiyj ; (8.56)

is an approximation to the underlying field  in cell Ak . The cell-averaged property
in two dimensions then reads,

Z
Ak

 k.x; y/ dA D  k �Ak: (8.57)

Again we can choose to shift the reconstruction so that, for simplicity, Ak has a
centroid located at .x; y/ D .0; 0/.

Piecewise Constant Method (two dimensions)

The extension of the PCoM to two dimensions is trivial, given by

 k.x; y/ D  k: (8.58)

This scheme suffers from the same deficiencies as discussed in the one-dimensional
case, and so is not discussed further here.

Piecewise Linear Method (two dimensions)

The two-dimensional piecewise linear reconstruction can be written as

 k.x; y/ D  k C c.1;0/k
x C c.0;1/

k
y: (8.59)
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Any choice of c.1;0/
k

and c.0;1/
k

will yield a mass-conservative reconstruction and, as

with the one-dimensional PLM, c.1;0/
k

and c.0;1/
k

correspond to the components of
the gradient along each coordinate direction at the cell centroid,

c
.1;0/

k
D
�
@ k

@x

�ˇ̌ˇ̌
.x;y/D.0;0/

;

c
.0;1/

k
D
�
@ k

@y

�ˇ̌ˇ̌
.x;y/D.0;0/

:

For this method, the gradient can be limited as in the one-dimensional case (see,
e.g., Dukowicz and Baumgardner 2000).

High-order Reconstructions (two dimensions)

True third-order and higher schemes require some method of incorporating cross-
derivatives in order to be formally third-order accurate. For example, a true
third-order parabolic reconstruction could make use of a reconstruction of the
form

 k.x; y/ D  k C c.1;0/k
x C c.0;1/

k
y (8.60)

Cc.2;0/
k

�
x2 � .�x/

2

12

�
C c.1;1/

k
xy C c.0;2/

k

�
y2 � .�y/

2

12

�
;

where c.1;0/
k

, c.0;1/
k

, c.2;0/
k

, c.0;2/
k

, and c.1;1/
k

are obtained by again approximating
the derivatives of  . Note that c.0:0/ does not equal the cell average  but includes
more terms to ensure the mass-conservation property. Extensions of this form are
described in Nair and Machenhauer (2002) and Ullrich et al. (2010). It has been
shown that the loss of accuracy attributed to neglecting the cross-derivative term
c
.1;1/

k
can be large, but is less significant on grids of low resolution (Lauritzen et al.

2010).

Piecewise Parabolic Method (Two Dimensions)

A rigorous extension of the PPM method introduced by Colella and Woodward
(1984) would require the fully two dimensional biparabolic polynomials to be
continuous across cell-borders at selected points and/or in some average sense.

One such extension was developed by Rančić (1992), who chose

 .x; y/ D �2.y/ x2 C �1.y/ x C �0.y/; (8.61)
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where

�0.y/ D �02y2 C �01y C �00; (8.62)

�1.y/ D �12y2 C �11y C �10; (8.63)

�2.y/ D �22y2 C �21y C �20: (8.64)

This reconstruction has nine degrees of freedom, which are restricted by sat-
isfying (a) the cell-averaged constraint (8.57) in cell k, (b) equal average values
along each of the four edges of the quadrilateral cells, and (c) continuity at the cor-
ner points of each cell. These restrictions lead to 9 constraints, and hence define a
unique reconstruction. Note that the reconstruction is not globally continuous. We
refer to Rančić (1992) for further details on this algorithm.

Extensions to Irregular Grids

All of the methods described above are tied to quadrilateral (orthogonal) meshes
and the extension to triangular, hexagonal and other grids where the cells do not
have exactly four vertices, is not obvious. The authors are not aware of any rigorous
extensions of PPM to such grids where continuity across cell borders is enforced.
In this case enforcement of the cell-average property is more difficult, and requires
special treatment of the parabolic terms. For instance, we must have

c
.0;0/

k
D  k C c.2;0/k

h
x2 �m.2;0/

k

i
C c.0;2/

k

h
y2 �m.0;2/

k

i
C c.1;1/

h
x y �m.1;1/

k

i
;

(8.65)

(Ullrich et al. 2009) where m.i;j /
k

are the area-averaged higher-order moments

m
.i;j /

k
D 1

�Ak

Z
Ak

xiyj dA:

Approximation of the derivative terms may be difficult on irregular grids. For
grids where finite-difference approximations to the derivatives are not obvious to
compute, as is the case for completely unstructured grids, one might use a two-
dimensional extension of the Laprise and Plante (1995) method. That is, enforce the
mass-conservation constraint not only in cell k but in a set of adjacent cells. For grids
in which cell k has a variable number of adjacent neighbors this approach may not
be optimal. In such cases a least-squares approach might be a more natural choice
to avoid biases introduced by excluding some adjacent cells and not others. When
using a least squares method one may chose to optimize the approximation to the
coefficients not just to mass-conservation in adjacent cells but also to p-exactness
for example (see, e.g., Barth and Frederickson 1990).
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Two-dimensional Limiters / Filters

Reconstruction function filtering in two-dimensions is significantly more compli-
cated than in one dimension, simply because a two-dimensional polynomial of
degree two (a parabolic reconstruction) can possess an extrema within a cell, along
a cell boundary, or at a corner-point (all of which must be checked). Hence, filter-
ing comes in two flavors: Dimensionally split filtering and fully two-dimensional
approaches.

The dimensional split approach simply applies the one-dimensional filters pre-
sented in Sect. 8.5.2.1 in each coordinate direction. However, by doing so the entire
reconstruction  k is not guaranteed to be monotonic within Ak . Specifically, there
are no guarantees of monotonicity at cell corner-points where the reconstruction in
each coordinate direction is additive (Lauritzen et al. 2006).

Strict monotonicity at all points within a cell can be guaranteed using the fully
two-dimensional approach of Barth and Jespersen (1989), which can also be applied
to unstructured grids. This filter guarantees strict monotonicity of linear recon-
structions by first determining where a given linear reconstruction has extrema
(this is typically the cell corner-points), and then rescaling the linear derivatives
so that the linear reconstruction is monotonic with respect to its neighbors. This
approach was also extended to parabolic (third-order) reconstructions by Ullrich
et al. (2009), which applies rescaling to both linear and high-order derivatives. If
strict monotonicity is not necessary, a WENO-type criterion can be used to iden-
tify places in which a filter should be applied. An extension of the one-dimensional
WENO-filtering in Blossey and Durran (2008) can be found in Harris et al. (2011).

For flux-limiting the most widely used method is flux-corrected transport (FCT)
introduced by Zalesak (1979). As in one dimension it seeks to find the optimal
“blending” of a monotone flux and a high-order non-monotone flux. FCT is
described in detail in Durran (1999) and hence not repeated here.

8.5.3 Practical Integration Over Areas

For the approximation of the overlap integrals in (8.26) and (8.33) we have only
discussed how to approximate the overlap areas and how to do reconstructions so
far. It remains to be shown how to go about integrating the sub-grid-scale recon-
struction function over that area. If the sides of the overlap areas are aligned with
the coordinate lines, direct integration is usually straightforward since the inte-
grals effectively reduce to one dimension (see, for example, Nair and Machenhauer
(2002)). However, if the overlap area is allowed to be an arbitrary polygon the
integration is more involved. There are basically two approaches that exactly inte-
grate polynomial functions over polygons. Firstly, direct integration over overlap
areas using Gaussian quadrature. Secondly, the area-integrals can be converted into
line-integrals via Gauss-Green’s theorem.
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Both of these approaches are discussed below. We assume that the overlap cell
sides are straight lines with arbitrary orientation and that the overlap area ak` is
simply connected. This is the most general case. Mathematically the problem is
stated as follows: Given a reconstruction function in cell A` which is a polynomial,
say of order 3,

 `.x; y/ D
X
iCj�2

c
.i;j /

`
xiyj ; (8.66)

where c.i;j /
`

are reconstruction coefficients, compute the integral

Z
ak`

 `.x; y/dA: (8.67)

8.5.3.1 Direct Integration Using Gaussian Quadrature

For the direct integration using Gaussian quadrature it is often convenient to break
up ak` into triangles which is the case we will discuss here. So, for simplicity, sup-
pose the overlap area is already an arbitrary triangle18 with vertices located at xk`;h,
yk`;h, h D 1; 2; 3, and numbered counter-clockwise. Exact integration of the poly-
nomial (8.66) can be achieved using Gaussian quadrature which approximates the
integral in terms of a weighted sum of functional evaluations at quadrature points.
The quadrature points are

.x
.a/

k`
; y
.a/

k`
/ D 1

6

�
4xk`;1 C xk`;2 C xk`;3; 4yk`;1 C yk`;2 C yk`;3

�
; (8.68)

.x
.b/

k`
; y
.b/

k`
/ D 1

6

�
xk`;1 C 4xk`;2 C xk`;3; yk`;1 C 4yk`;2 C yk`;3

�
; (8.69)

.x
.c/

k`
; y
.c/

k`
/ D 1

6

�
xk`;1 C xk`;2 C 4xk`;3; yk`;1 C yk`;2 C 4yk`;3

�
: (8.70)

(Dukowicz and Baumgardner 2000) and the integral of  `.x; y/ over the overlap
triangle ak` is given by

Z
ak`

 `.x; y/ dA D �ak`

3

h
 `.x

.a/

k`
; y
.a/

k`
/C  `.x.b/k` ; y.b/k` /C  `.x.c/k` ; y.c/k` /

i
;

(8.71)
where �ak` is the area of ak`

�ak` D 1

2



.xk`;2 � xk`;1/.yk`;3 � yk`;1/ � .yk`;2 � yk`;1/.xk`;3 � xk`;1/

�
:

(8.72)
Note that the quadrature points only have to be computed once for each overlap
area and can then be re-used for each additional tracer (since all tracers follow the

18 Note that any area with straight line sides can be broken up into triangles.
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same trajectories/areas). For flux-form transport schemes efficient algorithms can
be designed that decompose the overlap areas into triangles if the flux-areas are
confined to nearest neighbors (Dukowicz and Baumgardner 2000). For longer time-
steps where the flux-areas may span several Eulerian cells not sharing a face with the
flux-face, the decomposition into triangles is more complicated. In such situations
it may be more convenient to use the line-integral approach described next.

8.5.3.2 Converting Area-integrals into Line-integrals

This approach was originally introduced by Dukowicz (1984) and Dukowicz and
Kodis (1987) in numerical schemes: For the simply connected overlap area ak` (not
necessarily a triangle but any polygon) the following integral equation holds,

ZZ
ak`

 `.x; y/ dA D
I
@ak`

ŒP dxCQ dy	 ; (8.73)

where @ak` is the boundary of ak`. The potentials P D P.x; y/ and Q D Q.x; y/
are chosen such that they satisfy

�@P
@y
C @Q

@x
D  `.x; y/:

The integral of the polynomial reconstruction function  `.x; y/ in (8.66) can be
written as Z

ak`

 `.x; y/ dA D
X
iCj�2

c
.i;j /

`
w
.i;j /

k`
; (8.74)

where c.i;j /
`

are the reconstruction function coefficients andw.i;j /
k`

are weights given
by

w
.0;0/

k`
D 1

2

NhX
hD1

�
xk`;h C xk`;h�1

� �
yk`;h � yk`;h�1

�
; (8.75)

w
.1;0/

k`
D 1

6

NhX
hD1

�
x2k`;h C xk`;h xk`;h�1 C x2k`;h�1

� �
yk`;h � yk`;h�1

�
;(8.76)

w
.0;1/

k`
D �1

6

NhX
hD1

�
y2k`;hCyk`;hyk`;h�1Cy2k`;h�1

� �
xk`;h�xk`;h�1

�
; (8.77)

w
.2;0/

k`
D 1

12

NhX
hD1

�
xk`;hCxk`;h�1

� �
x2k`;hCx2k`;h�1

� �
yk`;h�yk`;h�1

�
;(8.78)
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w
.0;2/

k`
D � 1

12

NhX
hD1

�
yk`;hCyk`;h�1

��
y2k`;hCy2k`;h�1

��
xk`;h�xk`;h�1

�
; (8.79)

w
.1;1/

k`
D 1

24

NhX
hD1

( 	
yk`;h

�
3 x2k`;h C 2 xk`;h xk`;h�1 C x2k`;h�1

�
C

yk`;h�1
�
x2k`;h C 2 xk`;h xk`;h�1 C 3 x2k`;h�1

� 


.yk`;h � yk`;h�1/
)
; (8.80)

and
.xk`;h; yk`;h/; h D 1; : : : ; Nh (8.81)

are the coordinates for the sides of the overlap area ak` numbered counter-
clockwise. So Nh D 3 for triangular overlap areas, Nh D 4 for quadrilateral ak`’s
etc. Note that (xk`;h�1, yk`;h�1) and (xk`;h, yk`;h) are contiguous points (defining
a line segment) and the index h is cyclic so that h D 0 equals h D Nh.

The weights w.i;j /
k`

given in (8.75–8.80) have been derived by using (8.73) with
the following pairs .P .i;j /;Q.i;j //

�
P .0;0/ D 0; Q.0;0/ D x

�
;

�
P .1;0/ D 0; Q.1;0/ D x2

2

�
;

�
P .0;1/ D �y

2

2
; Q.0;1/ D 0

�
;

�
P .2;0/ D 0; Q.2;0/ D x3

3

�
;

�
P .0;2/ D �y

3

3
; Q.0;2/ D 0

�
;

�
P .1;1/ D 0; Q.1;1/ D x2y

2

�
:

The choice of P andQ is not unique and can often be chosen for convenience. Here
we haven chosen P and Q as in Bockman (1989). Note that the integration of the
polynomials is exact.

Using the line-integral approach the final discretized transport scheme in
Lagrangian and Eulerian form can be written as

 
nC1
k �Ak D

LkX
`D1

Z
ak`

 `.x; y/ dA D
LkX
`D1

2
4 X
iCj�2

c
.i;j /

`
w
.i;j /

k`

3
5 ; (8.82)
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and
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k �Ak D  nk �Ak C
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respectively, where the individual overlap fluxes are written as

F �k` D s�k`
Z
a�

k`

 `.x; y/ dA: (8.84)

For each overlap area the sign-function s�
k`

isC1 for inflow and�1 for outflow. The
subscript ` in s�

`
is added to handle situations where there is both inflow and outflow

for a face (see Harris et al. 2011, for details).
It is worth noting the separation of the weights w.i;j /

k`
from the reconstruction

coefficients c.i;j /
`

in (8.82) and (8.83). In practice this separation implies that once
the weights have been computed they can be reused for the integral of each addi-
tional tracer distribution. Hence the transport of additional tracers reduces to the
multiplication of precomputed weights and reconstruction coefficients.

8.5.3.3 Extension to Spherical Geometry

Extending the aforementioned approaches to spherical geometry generally com-
pounds the complexity of the problem, since extra care must be taken when metric
terms are present. So instead of having interpolate a polynomial a more complicated
function must be integrated

Z Z
ak`

g.˛; ˇ/ `.˛; ˇ/d˛ dˇ; (8.85)

where .˛; ˇ/ is the coordinate for the computational space chosen for the
integration19 and g.˛; ˇ/ is the metric term. For example, if one chooses geographic
coordinates .˛; ˇ/ D .�; �/, where � is the longitude and � is latitude, and then the
metric term is g D R2 cos.�/ where R is the radius of the Earth. So instead of hav-
ing to integrate a polynomial a much more complicated function must integrated. In
general, exact integration is no longer possible as was the case in Cartesian geom-
etry. There are, however, some special cases where direct integration is possible
(discussed below).

19 For simplicity we only consider two-dimensional computational spaces although one may also
use three-dimensional Cartesian coordinates for horizontal problems on the sphere.
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The choice of coordinate system in which the integration is performed has impli-
cations on how the sides of ak` are approximated on the sphere and how accurate the
reconstruction is. Here we will focus on the former. In Cartesian geometry the most
general approximation to cell sides seems to be straight lines. The spherical exten-
sion of that is to approximate cell sides with great-circle arcs which seems the most
general and accurate approach (at least in the case where the Eulerian cells are con-
structed from great-circle arcs). Hence, in the following we assume that great-circle
arcs are the most accurate approximations to ak`.

In the widely used Spherical Coordinate Remapping and Interpolation Pack-
age (SCRIP) proposed by Jones (1999) the sides of ak` are approximated with
straight line segments in latitude-longitude coordinates (i.e., line segments of the
form � D a� C b). So for sides that are parallel to longitudes (which are great-
circle arcs) and latitudes (which are small circle arcs) the representation of the cell
sides is exact. However, for any other orientation it is not. While the error in cell
side approximation is small near the Equator the errors may become significant in
the polar regions (see Fig. 8.9 in Lauritzen and Nair (2008)). A way to alleviate
this problem is to rotate the overlap area to the Equator. Using Gauss–Green’s theo-
rem the integration here can be performed exactly whereas direct integration using
Gaussian quadrature will not be exact due to the metric term.

An alternative approach is to use the gnomonic coordinate as the computational
space. The gnomonic projection was designed so that connecting any two points
with a straight line in that computational space will mirror a great-circle arc on
the sphere. Another beneficial property of this computational space is that exact
integration of (8.85) is possible along coordinate lines in the gnomonic coordi-
nate system when applying the Gauss–Green’s theorem (Ullrich et al. 2009). For
lines not parallel to the coordinate lines the potentials that need to be integrated in
the line-integrals can be evaluated/approximated using one-dimensional Gaussian
quadrature (Lauritzen et al. 2010). Again, direct integration will always be inexact
due to the gnomonic metric terms.

8.6 Extension to Three Dimensions

The discussion so far has been limited to two spatial dimensions and we will only
briefly discuss three-dimensional schemes, as a more thorough discussion would
need at least a chapter on its own. There are basically three ways of extending
schemes to three dimensions which we will discuss separately below.

8.6.1 Floating Lagrangian Vertical Coordinate

The floating Lagrangian coordinate was introduced in a theoretical context by Starr
(1945) and first applied in discretized models over half a century later (e.g., Lin
2004; Lauritzen et al. 2008; Nair et al. 2009). Instead of using vertical coordi-
nates based on height or pressure, a vertical coordinate � that is constant along
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Fig. 8.18 A graphical
illustration the floating
Lagrangian coordinate. The
vertical coordinate is
pressure. ps and ptop is the
pressure at the surface and
model top, respectively. The
dashed lines is the reference
Eulerian grid and solid lines
are Lagrangian surfaces
resulting from letting the
Eulerian levels evolve in
time, and require a periodic
remapping

Topography ps

ptop

three-dimensional parcel trajectories is used

d�

dt
D 0; (8.86)

(see Fig. 8.18). The benefit of using such a vertical coordinate is that the ver-
tical advection terms in the equations of motion are eliminated and only two-
dimensional transport/advection operators are necessary. The downside, as with
any other Lagrangian approach, is that the vertical coordinate deform as the flow
evolves. In order to avoid overly deformed vertical coordinates a remapping of the
prognostic variables in the vertical to some reference vertical coordinate is neces-
sary. This may be a source of vertical diffusion in the model. Note that isentropic
vertical coordinates are a subset of floating Lagrangian vertical coordinates as they
are also material surfaces for adiabatic flow.

8.6.2 Operator Splitting

Using a cascade finite-volume scheme (flow based splitting) or Eulerian opera-
tor splitting the extension to three dimensions can be made less costly than when
using fully three dimensional approaches simply because they require only one-
dimensional operators. Eulerian type operator splitting use a combination of oper-
ators applied along coordinate lines (see, e.g., Pietrzak 1998). In such approaches
errors due to the coordinate splitting (also referred to as splitting error) will appear
if care is not taken to alleviate them. Various methods for reducing the splitting error
have been proposed (e.g., Strang 1968; Lin and Rood 1996). The traditional Eule-
rian type operator splitting approach may be referred to as a fixed direction based
splitting method as opposed to the flow-based splitting approach discussed below.

More recently the finite-volume cascade approach was suggested by Nair
et al. (2002) and Zerroukat et al. (2002) which uses a combination of Eulerian
and Lagrangian operators, that is, the operators are successively applied along
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coordinate lines and Lagrangian lines, respectively. So rather than being a fixed
direction based splitting method it is flow-based (for a review see Machenhauer
et al. 2009). Since the splitting is flow-based the splitting error is reduced. Note that
one may use the cascade approach to extend fully two-dimensional methods to three
dimensions by applying a cascade sweep in the vertical based on the horizontally
transported values.

8.6.3 Rigorous Three-dimensional Approach

Fully three-dimensional schemes based on the space-time finite-volume approach
discussed in this chapter are rather complex. Instead of having to deal with overlap
areas (as discussed in this chapter) one has to compute overlap volumes which is
significantly complicating the problem. Examples of fully three-dimensional remap-
ping algorithms are given in, e.g., Garimella et al. (2007) for Cartesian geometry.
The authors are not aware of any fully three-dimensional finite-volume remapping
schemes on the sphere.

8.7 Time-integration and Tracer Transport

If all models would use the same numerical method for tracer transport as used for
the continuity equation for air, and if those would always be solved by using the
same time-step, then this section would be irrelevant. Most models, however, use
one of the following three approaches: Either they use different schemes for air and
tracers, use different time-step size for air and tracers (but explicit time-stepping for
both) or semi-implicit time-stepping is used for air and explicit time-stepping for
tracers (and both use the same time-step). All of these approaches potentially have
consistency problems as discussed separately for each approach below.

8.7.1 Different Schemes Air and Tracers

If different schemes are used for air and tracers consistency cannot be achieved
other than with fixers that enforce consistency in a ‘ad hoc’ and somewhat arbitrary
manner. See Sect. 8.3.4 and references therein.

8.7.2 Different Time-steps for Air and Tracers (Sub-Cycling,
Super-Cycling)

Given the increase in the number of prognostic tracers in atmospheric models, sig-
nificant computational cost savings can be obtained by using a longer time-step for
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tracers than for the solution of the air continuity equation. As discussed in Sect. 8.2.2
the maximum allowable time-step that can be used for the solution of the equation
for air density (when using explicit time-stepping) is determined by the fastest wave
in the system, since the continuity equation for air is directly coupled to the other
equations of motion. The continuity equations for tracers, however, are not directly
coupled (at least in terms of stability) to the momentum and thermodynamic equa-
tions and therefore have less restrictive time-step limitations. So a stable and more
efficient integration scheme can be designed by sub-cycling the solution of the air
density equation with respect to the tracer equations. In doing so it is important to
retain the consistency discussed in Sect. 8.2.2, that is, for a constant mixing ratio
(q D 1) the tracer transport equation should yield the same solution as the con-
tinuity equation for air (a.k.a. ‘free-stream preserving’). A scheme possessing the
‘free-stream preserving’ property can be designed as described below.

A conceptual explanation of sub-cycling is given with the aid of Fig. 8.19. For
simplicity assume one spatial dimension, flow from left to right and that the wind
at the right cell wall is zero (no mass flux through that boundary). The number of
times the integration of the air density equation is sub-cycled with respect to the
tracer equations is referred to as ksplit. In Fig. 8.19 ksplit is 4. At time t D n�t the
mass in the cell is �n, where we have assumed that the cell width is one (grey area
on Fig. 8.19a). We then integrate the full dynamical system of equations (continu-
ity equation for air, momentum equations and thermodynamic equation) forward in
time to t D .nC1=ksplit/�t . The flux of mass into the cell during this forward inte-
gration corresponds to the red area ‘swept’ through the left cell wall, on Fig. 8.19a
(left column) and hence the air mass in the cell increases by the red area in cell
k (Fig. 8.19a right column). This procedure is repeated three, or (ksplit � 1), more
time-steps during which the blue, yellow and green areas are ‘swept’ through the
left cell wall and adding to the total air mass in the cell (Fig. 8.19b,c,d respectively).
The total flow of mass into the cell is the sum of all the areas on Fig. 8.19a,b,c,d
corresponding to an average flux into the cell given by the brown area on Fig. 8.19e.

Since we are updating tracers on the long time-step we use the transport scheme
to estimate the average mixing ratio over the full time-step �t , that is, the average
of qn over the brown area in Fig. 8.19e denoted hqni. Then the final forecast for the
tracer is given by the product between the background flow of mass and an estimate
of the mixing ratio over the long time-step

.� q/nC1 D .� q/n C hqni
"

ksplitX
iD1

��nCi=ksplit

#
; (8.87)

where ı�nCi=ksplit is the flux of air mass into the cell during one sub-cycled time-step
�t=ksplit. If q D 1 then (8.87) reduces to the equation for air mass and consequently
the scheme is free-stream preserving. Note that updating the tracers on the short
time-step will not yield the same result.
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Fig. 8.19 A graphical illustration of sub-cycling the continuity for air mass with respect to tracers.
Details and explanations are given in the text
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8.7.3 Semi-Implicit Time-Stepping for Air and Explicit
for Tracers

If semi-implicit time-stepping is used (see Chap. 6) then the prognostic equation for
air density can be written as

�nC1 D �nC1exp C
�t

2
�ref

�
DnC1 � QDnC1� ; (8.88)

(e.g., Lauritzen et al. 2006) where �nC1exp is the explicit prediction, �ref is a con-

stant reference density, D is the divergence and QD is the divergence extrapolated
to time-level n C 1. The terms on the right-hand side of (8.88) involving D are
referred to as the semi-implicit correction terms and represent the implicit coupling
to the momentum equations. If the tracer transport equation is solved explicitly,
as is usually done, then the scheme is not ‘free-stream preserving’ because of the
semi-implicit correction terms (although they are usually small).

So for consistency, one should also solve the tracer transport equation semi-
implicitly

.�q/nC1 D .�q/nC1exp C
�t

2
.q�/ref

�
DnC1 � QDnC1� ; (8.89)

(e.g., Lauritzen et al. 2008), however, that seems problematic. For example, if q is
zero in some area and the semi-implicit correction terms are non-zero in that area,
then tracer mass will be produced in an area where q should be zero.

Thuburn et al. (2010) present a method where they discretize an alternative
form of the semi-implicit continuity equation. Through a series of iterations the
semi-implicit correction terms cancel and consistency between air mass and tracer
transport is obtained. For more details see Thuburn et al. (2010).

8.8 Final Remarks

In this chapter a detailed discussion of desirable properties for transport schemes
intended for meteorological applications has been presented. The finite-volume
method for tracer transport (in two-dimensional Cartesian geometry) has been intro-
duced and discussed using a remap approach which conceptually introduces the
finite-volume method through following characteristics of the flow. This conceptual
framework has been used to explain and analyze several schemes from the liter-
ature. Practical considerations related to the coupling of air mass equations and
tracer mass equations has been discussed in some detail as well as brief intro-
ductions to extensions to spherical geometry and three dimensions. The authors
hope to have communicated some of the aspects that go into modeling trans-
port accurately in large modeling systems. Although physical parameterizations
that represent sub-grid-scale processes are probably among the largest sources of
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uncertainty in weather and climate models, the accurate representation of transport
is very important. Errors in resolved-scale transport can change scientific results
(e.g., Rasch et al. 2006; Wild and Prather 2006).
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Chapter 9
Emerging Numerical Methods for Atmospheric
Modeling

Ramachandran D. Nair, Michael N. Levy, and Peter H. Lauritzen

Abstract This chapter discusses the development of discontinuous Galerkin (DG)
schemes for the hyperbolic conservation laws relevant to atmospheric modeling.
Two variants of the DG spatial discretization, the modal and nodal form, are consid-
ered for the one- and two-dimensional cases. The time integration relies on a second-
or third-order explicit strong stability-preserving Runge–Kutta method. Several
computational examples are provided, including a solid-body rotation test, a defor-
mational flow problem and solving the barotropic vorticity equation for an idealized
cyclone. A detailed description of various limiters available for the DG method is
given, and a new limiter with positivity-preservation as a constraint is proposed
for two-dimensional transport. The DG method is extended to the cubed-sphere
geometry and the transport and shallow water models are discussed.

9.1 Introduction

Atmospheric numerical modeling has undergone radical changes over the past
decade. One major reason for this trend is the recent paradigm change in scien-
tific computing, triggered by the arrival of petascale computing resources with core
counts in the range of tens to hundreds of thousands. Due to these changes, model-
ers must develop or adapt grid systems and numerical algorithms which facilitate
an unprecedented level of scalability on these modern highly parallel computer
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architectures. The numerical algorithms which can address these challenges should
have local properties such as a high on-processor operation (floating-point operation
or flop) count and a minimal parallel communication footprint.

With the increased amount of computing resources available to modelers, it
is now possible to develop global models with resolution of the order of a few
kilometers. This capability bridges the gap between traditional weather and cli-
mate modeling efforts, which operate on different spatial and temporal scales, and
sets the stage for the development of a unified weather and climate model. How-
ever, this opens up another challenge – switching the governing equations from
the hydrostatic to non-hydrostatic regime. The equation set generally used in tra-
ditional global climate models (hydrostatic equations of motion) is not adequate at
the non-hydrostatic scale. In the very high-resolution regime viable options for the
governing equations of motion are the compressible (or quasi-compressible) Euler
equations or Navier–Stokes equations. Also, it is highly desirable that the underly-
ing model equations follow the physical laws of conservation for integral invariants
such as mass, energy, enstrophy, etc. In order to comply with these constraints and
address new computational challenges, the next generation of atmospheric models
should be based on robust numerical methods which satisfy the following set of
criteria:

� Inherent local and global conservation
� High-order accuracy
� Computational efficiency
� Geometric flexibility (any type of grid system, suitable for adaptive mesh

refinement)
� Non-oscillatory advection (monotonic, positivity preservation)
� High parallel efficiency (local method, petascale capability)

There are several successful numerical methods, particularly in the finite-volume
(FV) literature, which satisfy most of the above-mentioned properties. The FV
schemes are inherently conservative but mostly low-order accurate (third-order or
less). High-order extensions of the FV method are possible at the cost of wider
halo regions. For example, the weighed essentially non-oscillatory (WENO) method
(Shu 1997) is a powerful approach; however, a .k C 1/th-order accurate WENO
scheme in 1D requires 2k C 1 cells (control volumes). Thus, as the order of accu-
racy grows the WENO scheme requires a wider computational stencil (halo region)
which can seriously impede the parallel efficiency. A local method like the spectral
element (SE) method has the local domain decomposition property of the finite-
element (FE) method combined with high-order accuracy and the weak numerical
dispersion and low numerical dissipation of spectral methods. The SE method offers
excellent parallel efficiency and has become the method of choice for many prac-
tical applications. The classical SE method is not necessarily based on hyperbolic
conservation laws and is not inherently conservative. Nevertheless, the conservation
properties can be engineered in the SE discretization (Chap. 12) much as they were
in the conservative finite-difference discretization developed by Arakawa and Lamb
(1977) and Simmons and Burridge (1981).
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The discontinuous Galerkin (DG) method retains all the nice properties of the
SE method, plus it is inherently conservative. The DG method has the potential
to address all of the above-listed properties. DG algorithms for solving partial dif-
ferential equations are becoming very popular in a wide range of applications in
computational science and engineering. The primary focus of this chapter is on the
development of the DG method for atmospheric modeling applications.

The DG method may be viewed as a hybrid approach, combining the ideas of
classical FV and FE methods into a unified framework to exploit the merits of both.
As a FV method, DG discretizations employ discontinuous elements (local control
volumes) and flux integrals along its boundaries, guaranteeing local conservation.
Similar to the FV method, DG schemes can incorporate slope limiters for control-
ling spurious oscillations in the solution. However, in contrast to FV methods, the
DG method avoids the reconstruction process (often requiring wider stencil). The
FE or SE structure (element-wise Galerkin approach) makes the DG method high-
order accurate and provides the ability to handle complex geometries such as the
Earth’s surface or boundary conditions. However, as opposed to the FE/SE meth-
ods, the elements used for the DG methods are discontinuous, which leads to a
localized discretization. This feature offers excellent parallel efficiency as well as
efficient adaptive mesh refinement (AMR) capability, even with non-conforming
elements.

The DG method was first introduced by Reed and Hill (1973) and later ana-
lyzed by Lesaint and Raviart (1974) for linear advection equation. A rigorous
mathematical foundation for the DG method was laid by Cockburn and Shu (1989)
and Cockburn et al. (1990), where high-order accurate explicit Runge–Kutta (RK)
time integration schemes combined with DG spatial discretizations for nonlin-
ear systems of conservation laws were developed. The resulting RKDG method
has become widely popular in different computational science and engineering
disciplines (Cockburn et al. 2000; Remacle et al. 2003).

The remainder of the chapter is organized as follows: in Sect. 9.2 we describe the
basic DG discretization in 1D, and the extension to 2D is given in Sects. 9.3 and 9.4
describes various limiters for the DG method with examples. An extension of the
DG method onto the sphere is given in Sect. 9.5, where the shallow water model for
the cubed-sphere is described. Section 9.6 offers some concluding remarks.

9.2 The DG Method

Although the DG method is applicable to a variety of parabolic and elliptic prob-
lems (Rivière 2008), our primary focus is on the DG method applied to hyper-
bolic conservation laws which are relevant to atmospheric numerical modeling.
Before detailing the DG discretization procedure we briefly review conservation
laws.
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9.2.1 Conservation Laws

Systems of conservation laws are very important mathematical models for a vari-
ety of physical phenomena that appear in fluid mechanics and several other areas
including atmospheric sciences. A large class of atmospheric equations of motion
for compressible and incompressible flows can be written in conservation form.
Conservation laws are systems of nonlinear partial differential equations (PDEs)
most readily expressed in flux form and can be written:

@

@t
U.x; t/C

3X
jD1

@

@xj
Fj .U; x; t/ D S.U /; (9.1)

where x is the 3D space coordinate and time t > 0. U.x; t/ is the state vector
representing conserved quantities (e.g. mass, momentum or energy). Fj .U / are
components of F, a prescribed flux vector which accounts for diffusive and convec-
tive effects, and S.U / is the source term representing exterior forces. The system
of Euler and Navier–Stokes equations, widely used for modeling fluid motion, can
be cast in this form. The mass continuity equation is an example of scalar conser-
vation law and is a special case of (9.1), which is obtained by applying the physical
principle of conservation of mass in a fluid flow:

@�

@t
Cr � .�V/ D 0;

where � is the fluid density, V is the velocity of the fluid, and ‘r�’ denotes the
divergence operator. Note that discretizing the equations in flux-form is important
because application of the divergence theorem is straightforward and the conserva-
tion can be maintained numerically. We consider several hyperbolic conservation
laws based on (9.1) in this chapter and numerically solve them by using the DG
method.

9.2.2 The DG Method for 1D Problems

The basic ideas of the DG discretization may be understood in a simple 1D frame-
work. In order to introduce the DG discretization and notations, we first consider
the one-dimensional scalar conservation law:

@U

@t
C @F.U /

@x
D 0 in ˝ � .0; T 	; (9.2)

where U D U.x; t/ is the conservative variable evolving in time with a known
initial condition U.x; t D 0/ D U0.x/;8x 2 ˝ , and F.U / is the flux function. For
a linear advection problem the flux function is F.U / D cU , where c is the velocity;
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for the inviscid Burgers’ equation, a simple non-linear problem, the flux function is
F.U / D U 2=2.

9.2.3 Galerkin Formulation

The DG discretization consists of partitioning the global domain ˝ into Nelm non-
overlapping elements such that ˝ D [Nelm

jD1 ˝j with ˝j � Œxj�1=2; xjC1=2	, j D
1; : : : ; Nelm. With this setup the width of the j th element is�xj D xjC1=2�xj�1=2
and the midpoint is defined by xj D .xjC1=2 C xj�1=2/=2. Note that the edges
(interface) xj˙1=2 of the element ˝j are shared by the adjacent elements in this
partition, as shown schematically in Fig. 9.1.

The next step is to cast the problem (9.2) into the weak Galerkin formulation.
This is done by multiplying (9.2) by a test (weight) function '.x/ and integrating
over the element˝j :

Z
˝j

	
@U

@t
C @F.U /

@x



'.x/dx D 0: (9.3)

The term weak refers to the fact that the formulation (9.3) admits a larger class of
solutions as opposed to the strong or classical form (9.2). Integrating the second
term of (9.3) by parts (Green’s method) yields

Z
˝j

@U.x; t/

@t
'.x/dx �

Z
˝j

F.U.x; t//
@'.x/

@x
dx

C ŒF .U.x; t// '.x/	x
�
j C1=2

x
C

j �1=2

D 0; (9.4)

where x�
jC1=2 is the left limit at the edge xjC1=2, and xC

j�1=2 is the right limit at the
edge xj�1=2 of the element ˝j , as indicated in Fig. 9.1. While the Galerkin formu-
lation procedure (9.4) is the same for each element ˝j , special attention must be
paid to the evaluation of fluxes at the edges because this flux is the only connection
between the elements.

Each element ˝j has its own approximate local solution, allowing the global
solution on ˝ to be discontinuous at the element interfaces xj˙1=2. This leads to

Ωj Ωj+1Ωj-1

xj-1/2 xj+1/2xj-3/2

+−

Δxj xj+3/2

Fig. 9.1 Partition of the 1D domain ˝ into non-overlapping elements ˝j D ŒxjC1=2; xj�1=2	,
with element width �xj and edges xj˙1=2. The signs .�/ and .C/ indicate the left and right
limits of the edge point (interface) xjC1=2, respectively. The global solution is discontinuous at
these points
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F(u−)

F(u+)

Ωj Ωj+1xj+1/2

Fig. 9.2 Schematic diagram illustrating the discontinuity of the solution U.x; t/ and the flux func-
tion F.U / at the element interface (edge) xjC1=2. Filled circles on the smooth curves are the
element-wise solution points and the open squares at the edges are the flux points. At the inter-
face the flux function has two contributions, one from the left F.U�/, and one from the right
F.UC/. The discontinuity of F.U / at the interfaces is resolved by employing a numerical flux
formula

two different values for the flux functions at each interface xjC1=2: F.U.x�
jC1=2; t//

on the left and F.U.xC
jC1=2; t// on the right. This discontinuity at the element edges

must be addressed by employing a numerical flux (or approximate Riemann solver)
OF .U�; UC/ D OF ŒU.x�

jC1=2; t/; U.x
C
jC1=2; t/	, which provides the crucial coupling

between the elements. Figure 9.2 describes schematically the discontinuity of the
flux function at the element interface xjC1=2.

The upwind based numerical fluxes used for DG applications are in fact identi-
cal to those developed for the finite-volume methods. A variety of numerical flux
formulae are available with varying complexity, however, the Lax–Friedrichs (LF)
numerical flux is cost-effective and widely used for many applications (Qiu et al.
2006). The LF flux formula is defined as follows:

OF .U�; UC/ D 1

2



F.U�/C F.UC/� ˛max.U

C � U�/� (9.5)

where ˛max is the upper bound of jF 0.U /j, the flux Jacobian, over the entire
domain ˝ (for scalar problems). If ˛max is evaluated only at the local element
edges then (9.5) is known as the local Lax–Friedrichs or Russanov flux. For a lin-
ear advection problem ˛max D jcj and for the inviscid Burgers’ equation ˛max D
max.jU�j; jUCj/.

9.2.4 Space Discretization

In order to solve the weak Galerkin formulation (9.4), we assume that the approxi-
mate (numerical) solution Uh � U.x; t/ and the corresponding test function 'h are
polynomial functions belonging to a finite-dimensional space Vh. This space may
be formally defined as Vh D fp W p j˝j

2 PN .˝j /g where PN is the space of
polynomials in ˝j with degree� N .
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For the approximate solution Uh.x; t/, the DG spatial discretization based on the
weak formulation (9.4) combined with (9.5) can now be written as follows:

Z
˝j

@Uh.x; t/

@t
'h.x/dx D

Z
˝j

F.Uh.x; t//
@'h.x/

@x
dx

�
h OF .U�h ; UCh /jC1=2.t/ 'h.x�jC1=2/ � OF .U�h ; UCh /j�1=2.t/ 'h.xCj�1=2/

i
;

(9.6)

where Uh; 'h 2 Vh for all ˝j ; j D 1; : : : ; Nelm. This completes the DG formula-
tion of problem (9.2).

In order to solve (9.6) accurately and efficiently, we need to make some judicious
choices for the integrals and polynomial functions employed in (9.6). The inte-
grals can be accurately computed using the high-order Gaussian quadrature rules.
Moreover, choosing orthogonal polynomials as a basis for Uh and 'h in (9.6) sig-
nificantly enhances computational efficiency. This is because the coefficients of the
time derivative in (9.6) reduce to a diagonal matrix when Uh and 'h are orthogo-
nal polynomials. The orthogonal basis set which spans Vh may be based on either
modal or nodal expansions. We consider these two cases separately in the following
sections.

9.2.4.1 Modal Formulation

The modal basis set consists of orthogonal polynomials of degree k monotoni-
cally increasing from 0 to N , and each basis function represents the moment of
order k (or, equivalently, each order contributes an extra moment in the expan-
sion (Karniadakis and Sherwin 2005)). The Legendre polynomials Pk.�/; k D
0; 1; : : : ; N , � 2 Œ�1; 1	 provide an excellent choice for the orthogonal basis func-
tion in Vh. A major advantage of this choice is that the computations in (9.6) can be
significantly simplified by exploiting the properties of Legendre polynomials. The
first few Legendre polynomials are tabulated in Table 9.1.

Higher degree Pk.�/ can be generated by the following recurrence relation:

Pk.�/ D
	
2k � 1
k



� Pk�1.�/ �

	
k � 1
k



Pk�2.�/; k D 2; 3; 4; � � � : (9.7)

At the edges of the interval Œ�1; 1	, Pk.�1/ D .�1/k andPk.1/ D 1, for any k 
 0.
In Fig. 9.3 the left panel shows the Legendre polynomials of degree up to k D 4.

Table 9.1 Legendre polynomials Pk.�/ of degree up to k D 4

Degree .k/ 0 1 2 3 4

Pk.�/ 1 � .3�2 � 1/=2 �.5�2 � 3/=2 .35�4 � 30�2 C 3/=8
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k = 2

k = 0

k = 4

k = 1
k = 3

k = 4

Fig. 9.3 The left panel shows Legendre polynomials of degree from k D 0 to 4, which can be
used as basis functions for the modal DG method. The right panel shows Lagrange–Legendre
polynomials of fixed degree k D N D 4, whose zeros are at the Gauss–Lobatto–Legendre (GLL)
quadrature points. The nodal version of DG employs GLL quadrature points, which are in the
interval Œ�1; 1	 and marked as filled circles

The orthogonality of Pk.�/ implies that

Z 1

�1
Pk.�/ P`.�/ d� D 2

2k C 1 ık`; � 2 Œ�1; 1	; (9.8)

where ık` is the Kronecker delta function (ık` D 1 if k D `, and ık` D 0 if k ¤ `).
To adopt an orthogonal basis set fPk.�/gNkD0 for the DG discretization (9.6),

we first need to introduce a mapping between x on each element ˝j and the local
variable � 2 Œ�1; 1	. Irrespective of the physical length �xj , each element ˝j can
be mapped onto a unique reference (or standard) elementQ � Œ�1; 1	 such that

� D 2.x � xj /
�xj

: (9.9)

Figure 9.4 illustrates schematically the mapping between each˝j and the reference
elementQ. In terms of the new local variable � D �.x/, we denote the approximate
solution in any element ˝j by Uj D Uj .�; t/ and it can be expressed as

Uj .�; t/ D
NX
kD0

U kj .t/ Pk.�/ for � 2 Œ�1; 1	; (9.10)

where the expansion coefficients, U kj .t/, are the moments or degrees of freedom

(dof) evolving in time. The explicit form of U kj .t/ is derived using (9.8) and given
by

U kj .t/ D
2k C 1
2

Z 1

�1
Uj .�; t/ Pk.�/ d�; where k D 0; 1; : : : ; N: (9.11)



9 Emerging Numerical Methods for Atmospheric Modeling 259

0

Q

Ωj Ωj+1

–1 +1

Ωj–1

Δ xj+1
Δ xj–1 Δ xj

Fig. 9.4 A schematic diagram of the mapping between the unique reference elementQ D Œ�1; 1	
and each element ˝j in the physical domain ˝. The filled squares on Q indicate the Gaussian
quadrature points in the interval Œ�1; 1	 and the filled circles are the corresponding quadrature
points on the elements. All the integral and differential operations required for DG discretization
are computed on Q

Note that (9.11) may be interpreted as a transformation (or a projection operation)
from the physical space to the spectral (Legendre) space with inverse transformation
(9.10). It is clear from (9.11) that the zeroth moment,

U 0j .t/ D U j D
1

2

Z 1

�1
Uj .�; t/ d�; (9.12)

is the average valueU j . Similarly the first, second, and higher moments are respon-
sible for the linear, quadratic, and higher-order variations of U.�/ in the element.
The left panel in Fig. 9.3 shows the Legendre polynomials of degree up to N D 4;
each polynomial corresponds to the kth moment in the modal formulation.

We can simplify (9.6) by substituting Uj .�; t/ for Uh.x; t/ and Pk.�/ for 'h.x/,
however, this requires a change of variable from x to � in (9.6) with the new domain
of integration Œ�1; 1	. By using the summation (9.10) and the following relations
from (9.9)

dx D �xj

2
d�;

@

@x
D 2

�xj

@

@�
;

the weak Galerkin form (9.6) can be written in the semi-discrete form as given
below:

�xj

2

NX
`D0

d

dt
U `j .t/

Z 1

�1
Pk.�/P`.�/d� D

Z 1

�1
F.Uj .�; t// P

0
k.�/ d� �

h OFjC1=2.t/ Pk.1/� OFj�1=2.t/ Pk.�1/
i
;

(9.13)
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where P 0
k
.�/ is the derivative of the Legendre polynomials (9.7). The above equa-

tion can be further simplified by employing the orthogonality relation (9.8) and the
property Pk.˙1/ D .˙1/k as follows:

1

2 k C 1
d

dt
U kj .t/ D

1

�xj

Z 1

�1
F.Uj .�; t// P

0
k.�/ d� �

1

�xj

h OFjC1=2.t/ � OFj�1=2.t/.�1/k
i
; (9.14)

where k D 0; 1; : : : ; N .
The integral appearing in (9.14) is evaluated using a high-order (.N C 1/-node)

Gaussian quadrature rule. Usually a Gauss–Legendre (GL) quadrature, which is
exact for polynomials of degree 2N C 1, or a Gauss–Lobatto–Legendre (GLL)
quadrature, which is exact for polynomials of degree 2N�1, is employed; the choice
of a specific quadrature is somewhat application dependent. For a given number of
quadrature points, the GL quadrature is more accurate than the GLL quadrature
but the former does not place nodes at the end points of the interval Œ�1; 1	 (see
the marked points on the reference element Q in Fig. 9.4). We further discuss the
relative merits of GL and GLL quadrature rules in a 2D context in Sect. 9.3.1.3.

In order to compute OFj˙1=2 in (9.14), the flux F.U.�// at the element edges
� D ˙1 must be known. In the GL case, this means that one must interpolate the
solution U.�/ using (9.10). However, the GLL quadrature includes the edges where
values of U.�/ are readily available, and makes the edge flux computation easy.

Regardless of the choice of quadrature, the DG solution procedure for the conser-
vation law (9.2) on an element˝j reduces to solving a system of decoupled ordinary
differential equations (ODEs) (9.14), which may be written in the following form.

Mj

d

dt
Uj D R.Uj /; (9.15)

where Mj is the coefficient matrix associated with the time derivative in (9.14)
and formally referred to as the mass matrix, Uj is a column vector containing the
moments U k.t/; k D 0; 1; : : : ; N , and R is the residual vector corresponding to
the right-hand side of (9.14). By virtue of the orthogonality of the Legendre poly-
nomials, the mass matrix Mj is strictly a diagonal matrix with non-zero entries
f1=.2k C 1/gN

kD0.
This diagonal structure has great computational advantage because Mj can be

inverted trivially and simplifies the solution process in (9.15). For the DG dis-
cretization considered here each element ˝j relies on the same polynomial bases,
therefore the mass matrix Mj D M is identical for each element in the domain ˝ .
Pre-multiplying (9.15) by M�1 for each element results in the following system of
ODEs corresponding to the problem (9.2),

d

dt
U D L.U/ in .0; T 	; (9.16)
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where U is the global vector of degrees of freedom which evolves in time, L is a
generic operator combining all the spatial discretizations. A DG method employing
N C 1 moments (or with polynomial bases up to degree N ) is often referred to as
a PN method (Cockburn and Shu 2001). We will consider the time discretization
procedure for (9.16) in the following section.

In order to see the close link between DG and FV approaches, we consider the
first few moments k D 0; 1; 2 in (9.14) as follows:

d

dt
U 0j .t/ D

1

�xj

h OFjC1=2.t/ � OFj�1=2.t/
i
; (9.17)

1

3

d

dt
U 1j .t/ D

1

�xj

Z 1

�1
F.Uj .�; t//d� � 1

�xj

h OFjC1=2.t/C OFj�1=2.t/
i
;

(9.18)

1

5

d

dt
U 2j .t/ D

6

�xj

Z 1

�1
F.Uj .�; t//�d� � 1

�xj

h OFjC1=2.t/ � OFj�1=2.t/
i
:

(9.19)

The mass matrix associated with the above system is M D diag Œ1; 1=2; 1=5	, and
the momentsU kj .t/ can be used for constructing the solution at a known time t D tn
via (9.10) such that

Uj .�; tn/ D U 0j .tn/P0.�/C U 1j .tn/P1.�/C U 2j .tn/P2.�/: (9.20)

For the simplest DG formulation, the P 0 case, (9.17) is the only equation to solve
in time. In this case U 0j .t/, the moment (dof) evolving in time, is nothing more

than the cell-average U j given in (9.12), which is an element-wise (or piecewise)
constant. Thus the DG P 0 case reduces to the classical piecewise constant Godunov
FV method (Toro 1999, Chap. 8). In a similar manner one can show the DG P 1 and
P 2 methods are related to the piecewise linear method (PLM, van Leer 1974) and
the piecewise parabolic method (PPM, Colella and Woodward 1984), respectively.

Nevertheless, there are subtle differences between regular FV and DG methods.
In FV methods such as PLM or PPM there is only one dof per control volume evolv-
ing in time, namely U j , irrespective of the spatial order of accuracy of the method
or the dimension of the problem. On the other hand, the DG method carries more
dofs per element (the cell or the control volume in an FV sense) and the number of
dofs grows with both the order of accuracy and the dimension (see Fig. 9.5). In other
words, a DG method packs more information into each cell than the FV method. For
example, in (9.20) three moments are required to construct the solutionUj .�/ with a
P 2 method, and the moments depend only on the element˝j resulting in a compact
computational stencil. The PPM method requires the reconstruction of parabolas of
the form (9.20) by utilizing the averages U j from the neighboring cells, resulting in
a wider stencil. In both methods Uj .�/ essentially represents the sub-grid scale dis-
tribution of the solution – even though the underlying discretizations are different.
However, as compared to PPM, the high accuracy and compactness of the DG P 2
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DG

xJ−3 / 2 xj+3 / 2

FV

Ij Ij−1 Ij Ij+1

xj−1 / 2 xj+1 / 2xj+1 / 2xj−1 / 2

Fig. 9.5 A schematic showing a comparison between the classical 1D finite-volume (FV) and DG
methods. Ij D Œxj�1=2; xjC1=2	may be interpreted as a cell in the FV method or an element in the
DG (P 1) method. For the FV method, the cell-average (shown as filled circles in the left panel) is
the only degree of freedom per cell evolving in time. The DG method has more degrees of freedom
(marked as filled circles in the right panel) per element evolving in time, however both methods
employ the same procedure to address the discontinuities at the cell boundaries xj˙1=2

method comes with additional computational cost. The DG method presented here
may be viewed as a high-order compact FV method. A P 2 transport scheme is also
similar to the multi-moment transport schemes developed by Prather (1986).

9.2.4.2 Nodal Formulation

The nodal expansion is based on Lagrange polynomials with roots at a set of nodal
points, which may include the edge points. The nodal bases are widely popular in
high-order spectral element methods (Karniadakis and Sherwin 2005). An important
aspect of the DG discretization is the choice of an efficient basis set (polynomials)
that span Vh. Because of the inherent computational advantages associated with
nodal bases, they are adopted in DG discretization for many applications (Hesthaven
and Warburton 2008). The nodal DG scheme is potentially more computationally
efficient because it relies on solutions in physical (grid point) space, obviating the
need to transform between spectral and physical space, which is required for the
modal DG scheme (9.14).

The nodal basis set is constructed using the Lagrange polynomials hk.�/, � 2
Œ�1; 1	, with roots at the Gauss quadrature points. The nodal points may be based on
the Gauss–Legendre (GL) or the Gauss–Lobatto–Legendre (GLL) quadrature rule.
However, we consistently employ the GLL quadrature for the nodal formulation
considered herein. The N C 1 GLL points f�lgNlD0 (i.e., the nodal points including
the edge point ˙1), can be generated from the relation .1 � �2/P 0N .�/ D 0, where
PN .�/ is the Legendre polynomial of degree N . The basis functions are defined by

hk.�/ D .� � 1/.� C 1/ P 0N .�/
N.N C 1/ PN .�k/ .� � �k/ ; (9.21)

where PN .�/ is the Legendre polynomial of degree N . In Fig. 9.3 the right panel
shows the fourth degree nodal bases hk.�/, andN C 1 D 5 GLL points are marked
as filled circles. Since hk.�/ is a Lagrange polynomial, the following property holds
at the nodes �l :

hk.�l/ D ıkl D
�
1 if k D l ;
0 if k ¤ l : (9.22)
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The discrete orthogonality of h`.�/ can be established through the GLL quadrature
rule, given by Z 1

�1
f .�/d� �

NX
kD0

f .�k/wk; (9.23)

where f .�/ is an arbitrary function with known values at the nodes (quadrature
points) and wk are the weights associated with the GLL quadrature rule, defined
to be

wk D 2

N.N C 1/ ŒPN .�k/	2 :

As mentioned earlier, the GLL quadrature rule (9.23) is exact for polynomials of
degree up to 2N � 1. The discrete orthogonality of the basis function h`.�/ can be
derived using (9.22) and (9.23) as follows:

Z 1

�1
hk.�/ hl .�/d� �

NX
`D0

hk.�`/ hl.�`/ w` D wk ıkl : (9.24)

Note that the integrand hk.�/ hl .�/ is a polynomial of degree 2N , so the orthogonal-
ity does not strictly hold under exact integration. In other words, the orthogonality
of the nodal expansion given in (9.24) is not as rigorous as the continuous orthogo-
nality employed in the modal case (9.8). Fortunately, the error incurred in discrete
orthogonality is of the same order as the nodal expansion so the discretization is
consistent. Moreover, it is shown in Canuto et al. (2007) that the discrete norm is
uniformly equivalent to the continuous norm.

In the nodal expansion, the approximate solution Uj .�; t/ for an element˝j can
be written in terms of hk.�/ as given below:

Uj .�; t/ D
NX
kD0

Uj;k.t/ hk.�/; � 2 Œ�1; 1	; (9.25)

where Uj;k.t/ D Uj .�k ; t/ are the known values of Uj .�; t/ at the GLL grid
points. Also, from (9.25) it is evident that the approximate solution is expressed as a
Lagrange interpolation polynomial. Analogous to the modal case, the weak Galerkin
formulation (9.6) can be simplified as follows: substitute (9.25) for the approxi-
mate solution and hk.�/ for the test function, employing the properties (9.24) and
hk.˙1/ D 1. This yields the equation

wk

2

d

dt
Uj;k.t/ D 1

�xj

Z 1

�1
F.Uj .�; t// h

0
k.�/ d��

1

�xj

h OFjC1=2.t/ � OFj�1=2.t/
i
;

(9.26)
where k D 0; 1; : : : ; N . The right-hand side involves the derivative of the Lagrange
polynomial h0

k
.�/, which needs to be calculated and stored at each of the quadrature

points in order to evaluate the integral in (9.26). The resulting matrix, known as
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the differentiation matrix, has the following explicit form (Karniadakis and Sherwin
2005; Canuto et al. 2007):

h0k.�l / D

8̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:̂

LN .
k/
LN .
l /

1
.
k�
l /

if k ¤ l ;

� .NC1/N
4

if k D l D 0;
.NC1/N

4
if k D l D N;

0 otherwise.

(9.27)

The mass matrix associated with (9.26) is a diagonal matrix M with non-zero entries
fwk=2gNkD0 and, by virtue of the GLL grids, the numerical fluxes OFj˙1=2 are readily
available at the edges � D ˙1. The system of ODEs (9.26) can be generalized for
the whole domain˝ exactly as in (9.16),

d

dt
U D L.U/ in .0; T 	;

where U is the global vector of grid point values Uj;k , j D 1; 2; : : : ; Nelm and
k D 0; 1; : : : ; N .

A remarkable difference between the nodal version (9.26) and the correspond-
ing modal version (9.14) of the DG discretization is the absence of the spectral
coefficients. In other words, the dofs to evolve in time in (9.26) are just the grid
point values of the approximate solution Uj;k.t/, not the spectral coefficients as
in the modal case. Hence, there is no need to transform between spectral and
physical spaces at every time step, and this feature makes the nodal discretization
computationally more efficient (Levy et al. 2007).

9.2.5 Time Integration

The modal and nodal DG discretization both reduce the one-dimensional scalar con-
servation law to a system of ODEs (9.16) which can be solved using a variety of time
integration techniques (Chap. 5). In fact, the DG discretization reduces conservation
law PDEs to a system of ODEs irrespective of the spatial dimension. Therefore we
consider the following general form of the ODE system:

d

dt
U D L.U/ in .0; T 	:

The most widely used explicit time integration technique for the DG method is
based on the Runge–Kutta (RK) scheme; a combination of these space and time dis-
cretization approaches is often referred to as the RKDG method (Cockburn and Shu
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2001). For the DG discretization considered in this Chapter we employ the strong
stability-preserving (SSP) RK scheme, also known as the total variation diminishing
RK scheme (Cockburn et al. 1997); a detailed account of SSP-RK methods is given
in Gottlieb et al. (2001).

The second-order (two-stage) SSP-RK is

U.1/ D Un C�t L.Un/

UnC1 D 1

2
Un C 1

2
ŒU.1/ C�t L.U.1//	; (9.28)

and the third-order (three-stage) SSP-RK is

U.1/ D Un C�t L.Un/

U.2/ D 3

4
Un C 1

4
ŒU.1/ C�t L.U.1//	 (9.29)

UnC1 D 1

3
Un C 2

3
ŒU.2/ C�t L.U.2//	:

In both (9.28) and (9.29), U.1/ and U.2/ are intermediate stages of the RK method
while the superscripts n and nC1 denote time levels t and tC�t , respectively. The
overall accuracy of the numerical scheme is dictated by the order of accuracy of
both the spatial and temporal discretizations. For example, the DG method using
polynomials of degree N along with an N C 1 stage RK method results in an
.N C 1/th-order accurate method (Cockburn and Shu 2001).

Higher-order RK schemes provide a wider stability region (Butcher 2008), so
a longer time step may be used in the numerical integration. Unfortunately, a
high-order RK time discretization has multiple stages of function (right-hand side)
evaluations and flux communications, resulting in a computationally expensive
scheme (especially in a parallel computing environment). Therefore, many practical
applications use a fourth- or lower-order RK scheme (Nair et al. 2005a, 2009).

The linear stability analysis for the modal DG method discussed in Cockburn
and Shu (2001) may be used as a guideline for choosing the time steps. For an
.N C1/-th -order accurate RKDG method, the CFL (Courant-Friedrichs-Lewy) sta-
bility limit is given by c�t=�x � 1=.2NC1/, where�x is the element width and c
is the velocity. This has been proven to be true whenN D 1, however, no theoretical
proof exists when N > 1. For N � 1 the explicit DG method is very time step res-
trictive, in such cases a semi-implicit or implicit time integration strategy may be
desirable (Chap. 5). We also note that whenN > 1, the grid spacing�x used in cal-
culating the CFL limit should be the minimum distance between the non-uniformly
distributed quadrature points (see the right panel of Fig. 9.3). A detailed discussion
of the CFL stability limit for advection problems for high-order Galerkin methods
can be found in Chap. 6 of Karniadakis and Sherwin (2005).
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9.2.6 DG 1D Computational Examples

Here we illustrate the DG method by solving two examples of the 1D conservation
law (9.2). The first one is a simple linear problem involving the advection of both a
Gaussian profile (smooth case) and a rectangular wave (non-smooth case). The sec-
ond example is the solution of the inviscid Burgers equation, a nonlinear problem.
Numerical solutions are computed using the 1D DG schemes discussed earlier. Both
the modal and nodal versions of the scheme are used for the simulations. However,
the results produced by these schemes are almost identical, and we show only modal
or nodal solution for each test.

For the linear advection problem, the domain is ˝ D Œ�1; 1	 with periodic
boundary conditions. The initial condition for the smooth problem is U0.x/ D
exp.�8 x2/, a Gaussian hill with unit height, and the wind velocity is c D 1. In
this case the flux function in (9.2) is simply F.U / D U . The domain is parti-
tioned into Nelm D 40 elements, each with Nv D 5GLL quadrature points, and
the nodal DG formulation (9.26) is used for the discretization. The resulting time-
dependent ODE is solved with the third-order SSP-RK (9.29). 400 time steps are
required for a complete revolution along the domain. Figure 9.6 shows the Gaus-
sian hill (left panel, dashed line) after ten revolutions; the reference solution is
also plotted with a solid line but it is visually indistinguishable from the numerical
solution.

For the non-smooth advection case the initial condition is a rectangular wave
pattern located at the center of the domain with unit height and width of 0:5 units;
other than this the boundary conditions and discretization are exactly the same as
in the smooth case. The right panel in Fig. 9.6 shows the numerical solution after
ten revolutions, and the reference solution (initial condition) is also displayed (solid

1.2
DG–1d (Ne = 40, deg = 4, T = 4000 dt)
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DG–1d (Ne = 40, deg = 4, T = 4000 dt)
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Fig. 9.6 Numerical solution (after ten revolutions) of the 1D advection problem (9.2) with the
high-order nodal DG scheme. The left panel shows the solution for the smooth case, where a
Gaussian hill is used as the initial condition. The right panel shows the solution for the non-
smooth case, for which a rectangular wave is used as the initial condition. The computational
domain Œ�1; 1	 consists of 40 elements, each with 5 GLL quadrature points
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line). The DG solution suffers from oscillations at the non-smooth edges. The steep
gradients at these point produces the Gibbs phenomena, however, the oscillations are
confined (or local) to a narrow region even after ten revolutions. This is a remark-
able property of the DG method; other high-order approaches, such as the spectral
element method, propagate the noise along the entire domain.

The inviscid Burgers equation,Ut C .U 2=2/x D 0, is a special case of (9.2) with
F.U / D U 2=2. The initial condition for this problem is U0.x/ D 1=2C sin.
x/
over a periodic domain ˝ D Œ0; 2	. The domain is partitioned into 80 elements,
and a modal version DG scheme employing 4 GLL quadrature points is used for
the simulations. Time integration is performed with the third-order SSP-RK (9.29),
for which a small time step of �t D 0:0015=
 is used. The exact solution is
known for this problem and is shown as solid narrow lines in Fig. 9.7, and the
DG solution is marked as diamond points (one value for each element). The left
panel in Fig. 9.7 shows the smooth solution time t D 3=.4
/ (500 time steps).
Clearly, the DG solution is in good agreement with the analytic solution. How-
ever, at time t D 9=.8
/ (750 time steps) the numerical solution develops a
shock at the steep gradient, leading to oscillations, as seen in the right panel of
Fig. 9.7. As time evolves the oscillations become severe and they can pollute the
numerical solution. As in the non-smooth advection case, the generation of unphys-
ical oscillations in the numerical solution at contact discontinuities or shocks are
due to the Gibbs phenomenon. Any linear numerical method higher than first-
order is subject to this problem (Godunov 1959), unless there is some measure to
control or eliminate the spurious oscillations by limiting or filtering the numeri-
cal solution. We discuss the limiting procedure for DG methods in the following
Section.

DG–1d: Burgers Eqn (Nel = 80)
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0.0

0.0
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DG–1d: Burgers Eqn (Nel = 80)

0.5 1.0 1.5 2.00.0
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Fig. 9.7 Numerical solution for the inviscid Burgers equation with the modal DG scheme. The
solid line indicates the exact solution and diamond points show the DG solution. The domain
consists of 80 elements; only one value per element is plotted for clarity. The left panel shows the
solution at time t D 3=.4
/; at this time the solution is still smooth and free from shocks. The
right panel shows the solution at time t D 9=.8
/, at which point shocks have developed
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9.3 DG for 2D Cartesian Problems

Although the DG method can be adapted to any type of domain or mesh, we choose
a rectangular domain D with quadrilateral elements for simplicity. Consider the
two-dimensional (2D) scalar conservation law,

@U

@t
Cr � F.U / D S.U /; in D � .0; T /; (9.30)

where U D U.x; y; t/ is the conservative variable such that .x; y/ 2 D, the 2D
gradient operator r on D is defined as r D .@=@x; @=@y/, F D .F1; F2/ is the flux
function, and S.U / is the source term (if any). The initial condition for the problem
is specified as U.x; y; t D 0/ D U0.x; y/ and we assume that the rectangular do-
main D is periodic in both the x- and y-directions.

Following the steps used in the previous section the 2D extension of the DG
discretization is straightforward. The domainD is partitioned intoNelm D Nx�Ny
rectangular non-overlapping elements˝e such that

˝e D f.x; y/ j x 2 Œxi�1=2; xiC1=2	; y 2 Œyj�1=2; yjC1=2	g; D D [Nelm

eD1 ˝e;
(9.31)

where e D e.i; j / is the element index and i D 1; 2; : : : ; Nx, j D 1; 2; : : : ; Ny .
Figure 9.8 shows a simple partition of D and a general element˝e.

We first introduce some basic formal notations required for the discretization. Let
Vh be a finite-dimensional space of polynomials of degree up to k D N such that

Vh D f' 2 L2.D/ W 'j˝e
2 PN .˝e/;8˝e 2 Dg; (9.32)

xi–1 /2

Δxi

Δyj

xi+1 /2

yj+1 /2

yj–1 /2

We

 Ge

n

Fig. 9.8 A schematic of a 2D domain with rectangular elements. ˝e is a generic element with
boundary �e and its width in the x- and y-directions are �xi D .xiC1=2 � xi�1=2/ and �yj D
.yjC1=2 � yj�1=2/, respectively. The outward-facing unit normal vector is denoted by n and the
flux integrals (line integrals) are performed along the boundary �e as indicated by the arrows
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where
PN D spanfxm yn W 0 � m; n � N g:

The first step for the DG discretization is the weak Galerkin formulation of the prob-
lem (9.30). In general, this is achieved by multiplying (9.30) with a test function and
integrating by parts (Green’s method) over the domain, where both the approximate
solution and test function belong to Vh. Since the discretization procedure is the
same for each element, it is only necessary to consider a generic element ˝e with
boundary �e in D (as in Fig. 9.8). Thus, to find the approximate solution Uh 2 Vh,
(9.30) is multiplied by a test function 'h.x; y/ 2 Vh and then integrated over the ele-
ment˝e. This results in the following integral equation (i.e., the weak formulation),
analogous to (9.4):

Z
˝e

@Uh.x; y; t/

@t
'h.x; y/ d˝ �

Z
˝e

FŒUh.x; y; t/	 � r'.x; y/ d˝

C
Z
�e

FŒUh.x; y; t/	 � n'h.x; y/ d� D
Z
˝e

SŒUh.x; y; t/	 '.x; y/ d˝;

(9.33)

where n is the outward-normal unit vector on the element boundary �e as shown in
Fig. 9.8. A major difference between the weak formulations (9.6) of 1D and (9.33)
of 2D cases is the appearance of the flux integral in the 2D case (the last term
on the left-hand side of (9.33)). The flux integration should be performed along
the element boundary �e. The analytic flux F.Uh/ � n in (9.33) is discontinuous
because the solution itself is discontinuous at the element edges. Therefore, F.Uh/�n
should be replaced by a numerical flux OF.U�

h
; UC

h
/. This is addressed by employing

a suitable flux formula (or approximate Riemann solver) such as the local Lax–
Friedrichs flux (9.5).

The numerical flux resolves the discontinuity at the element edges and again
provides the only mechanism by which adjacent elements interact. The finite-
volume component of the DG method is the boundary flux integral, which in fact
bridges the discontinuous elements together. The flux exchange at the boundaries
is responsible for “communicating” physical information across the domain, and it
preserves the local conservation properties. Thus the flux integration procedure is
extremely important and its accurate evaluation is pivotal to maintaining the over-
all accuracy of the DG scheme. Following is a simplified version of (9.33) with
the numerical flux OF D . OF1; OF2/ (for brevity dependencies on .x; y/ and t are
omitted).

d

dt

Z
˝e

Uh 'h d˝ �
Z
˝e

F.Uh/ � r'h d˝ C
Z
�e

OF � n'h d� D
Z
˝e

S.Uh/ 'hd˝:

(9.34)
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9.3.1 Space Discretization

The space discretization consists of simplifying the integrals in (9.34) by choos-
ing an appropriate set of local orthogonal basis functions. As introduced in the 1D
problem, the basis set can be either a set of Legendre polynomials for the modal case
or a set of Lagrange–Legendre polynomials for the nodal case. In either case, the
2D basis set can be constructed with a tensor product of 1D basis functions. This
approach significantly simplifies the computational procedure. In order to exploit
this option, we introduce the local independent variables .�; �/ such that

� D 2.x � xi /
�xi

; � D 2.y � yj /
�yj

; (9.35)

where xi D .xiC1=2Cxi�1=2/=2 and yj D .yjC1=2Cyj�1=2/=2. The width of any
element˝e is defined by �xi D .xiC1=2 � xi�1=2/ and�yj D .yjC1=2 � yj�1=2/
along the x- and y-directions, respectively (Fig. 9.8). Irrespective of the physical
size of the rectangular element˝e, the transformation (9.35) maps˝e onto a unique
element Q � Œ�1; 1	 ˝ Œ�1; 1	, also known as the reference element. Figure 9.9
shows the mapping between a rectangular element˝e andQ. Now the approximate
solution, test functions and the basis functions all can be defined in terms of local
coordinates on Q. Effectively Q is the computational stencil or molecule for the
2D DG discretization, where all the integral and differential operations required in
(9.34) are performed.

For the rectangular elements ˝e the boundary flux integrals in (9.34) along �e
can be decomposed in terms of unit vectors i and j, parallel to the x- and y-axes

Q

(–1, –1) (+1, –1)

(+1, +1)(–1, +1)

n = i

n = j

x

y

n = –j

n = –i W e

GE

GS

GW

GN

η

x

Fig. 9.9 A schematic of the mapping between a rectangular element ˝e and the reference (stan-
dard) element Q by (9.35). The local coordinates .�; �/ on Q are such that �1 � �; � � 1. The
outward-facing unit normal vector n for each wall of ˝e is marked (left panel), and the flux inte-
grals along the boundary �e can be broken into four integrals (9.36) one for each edge as described
in the text
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respectively: Z
�e

OF � n'h d� D
Z
�e

. OF1iC OF2 j/ � n'h d�;

where the outward-facing unit normal vector n takes the values i, j, �i and �j along
the east (�E ), north (�N ), west (�W ), and the south (�S ) walls, respectively, as
shown in Fig. 9.9. The boundary integrals can then be written as

Z
�e

OF � n'h d� D
Z
�E

OF1'h d� C
Z
�N

OF2'h d� �
Z
�W

OF1'h d� �
Z
�S

OF2'h d�:
(9.36)

9.3.1.1 2D Modal Form

We first discuss the 2D discretization based on the modal basis set. In the .�; �/
coordinate system the test function is chosen to be a tensor-product of Legendre
polynomialsP`.�/ Pm.�/, which belongs to PN in (9.32). The approximate solution
Uh.�; �; t/ can be written in terms of the basis functions,

Uh.�; �; t/ D
NX
`D0

NX
mD0

U `mh .t/ P`.�/ Pm.�/ for � 1 � �; � � 1 (9.37)

where U `m
h
.t/ are the time dependent 2D moments (dofs) and defined to be

U `mh .t/ D .2 `C 1/.2mC 1/
4

Z 1

�1

Z 1

�1
U.�; �; t/ P`.�/ Pm.�/ d� d�: (9.38)

The weak formulation (9.33) can be further simplified by mapping the integrals
ontoQ using the transformation (9.35), and the properties of Legendre polynomials
(basis functions). The mass matrix (9.15) associated with the 2D discretization is
also diagonal and can be easily inverted. The final computational form can be written
as a decoupled system of time-dependent ODEs for every element˝e,

d

dt
U `mh .t/ D .2 `C 1/.2mC 1/

2�xi �yj



IG C IF1

C IF2
C IS

�
; (9.39)

where 0 � `;m � N . Note that the source term S.U / D 0 in (9.30) for the pure
advection problem; for generality we consider a non-zero source term. The integrals
appearing in the right-side of (9.39) can be defined on Q as below,

IG D
Z 1

�1

Z 1

�1


�yj F1.Uh/ P

0
`.�/ Pm.�/C �xi F2.Uh/ P`.�/ P

0
m.�/

�
d� d�

(9.40)
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IF1
D ��yj

Z 1

�1

h OF1.U.1; �; t// � .�1/` OF1.U.�1; �; t/
i
Pm.�/ d� (9.41)

IF2
D ��xi

Z 1

�1

h OF2.U.�; 1; t/ � .�1/m OF2.U.�;�1; t/
i
P`.�/ d� (9.42)

IS D �xi�yj

2

Z 1

�1

Z 1

�1
S.Uh.�; �; t// P`.�/ Pm.�/d� d�; (9.43)

where IG and IS are the surface integrals corresponding to the gradient and the
source terms in (9.33), respectively, and IF1

and IF2
are boundary flux integrals

(9.36) along the � and �-directions, respectively. OF1 and OF2 are the numerical fluxes
at the element interfaces, which can be computed by using (9.5).

The integrals appearing in (9.39) are evaluated using high-order accurate Gaus-
sian quadrature rules and will be discussed in the following section. The modes
U `m
h

are predicted at a new time level by (9.39), then the corresponding approx-
imate solution Uh.�; �/ is computed from (9.37). However, this process involves
transformations from the spectral to the physical space as discussed in 1D case. The
ODE (9.39) can be solved by the SSP-RK procedure given in (9.29).

9.3.1.2 2D Nodal Form

The basic difference between the modal and the nodal form is the choice of basis
set. The mapping between the element ˝e and standard element Q remains the
same as in the modal case. In the 2D nodal case, the test function 'h as well as
the approximate solution Uh are expanded in terms of the tensor-product of 1D
functions from the nodal basis set. In the .�; �/ coordinate system the test function
is chosen to be h`.�/ hm.�/, a tensor-product of Lagrange–Legendre polynomials
(9.21) with roots at GLL quadrature points; h`.�/ hm.�/ belongs to PN in (9.32).
Thus the approximate solution Uh.�; �; t/ can be expanded as

Uh.�; �; t/ D
NX
`D0

NX
mD0

U`m.t/ h`.�/ hm.�/; for � 1 � �; � � 1; (9.44)

where U`m.t/ are the grid-point values (dofs) of the approximate solution at the
2D GLL points. The weak formulation (9.33) is simplified by mapping the elements
onto the reference element Q, and the procedure is quite analogous to the modal
case. The final approximation of (9.30) for an element˝e takes the form

d

dt
U`m.t/ D 4

�xi �yj w`wm



IG C IF1

C IF2
C IS

�
; (9.45)

where w` and wm are the weights associated with the GLL quadrature rule and IG
is the surface integral corresponding to the gradient term. IF1

and IF2
are the line

integrals along the �- and �-directions, respectively, and they are grouped according
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to (9.36). The simplification (9.45) is possible because the mass matrix associated
with discretization is diagonal and easily invertible.

The explicit forms of these integrals are quite similar to those for the modal
case (9.40)–(9.43), however, we take an additional step and discretize them using
the GLL quadrature rule. The surface (2D) integrals are approximated by a tensor-
product of 1D integrals based on the N th-order GLL quadrature rule. Thus on
Q there are .N C 1/2 GLL quadrature points with coordinates .�l ; �n/; l; n 2
f0; 1; : : : ; N g. In this particular case we have the following approximations by using
the discrete orthogonality relation (9.22) and the property (9.23).

IG � �yj

2
wm

NX
lD0

F1;lm.t/ h
0
`.�l /wl C

�xi

2
w`

NX
nD0

F2;`n.t/ h
0
m.�n/wn;

(9.46)

IF1
� ��yj

2
wm

h OF1.U.1; �m; t// ı`N � OF1.U.�1; �m; t// ı`0
i
; (9.47)

IF2
� ��xi

2
w`

h OF2.U.�`; 1; t// ıNm � OF2.U.�`;�1; t// ı0m
i
; and (9.48)

IS � �xi�yj

4
S`m.t/ w`wm; (9.49)

where h0
`

and h0m are the derivatives of the Lagrange polynomial as defined in (9.27)
and ı`m is the Kronecker delta function defined in (9.22).

9.3.1.3 Approximating the Integrals

The integrals appearing in the ODEs (9.39) and (9.45) are surface integrals for the
internal points and line integrals for the boundaries. Approximation of these inte-
grals has a major role in maintaining the accuracy and computational efficiency of
the 2D space discretization. As we saw in the 1D case, Gaussian quadrature rules are
the most accurate and efficient means for evaluating integrals. Quadrature formulas
such as the Gauss–Legendre (GL) or GLL are widely used for this purpose.

The GL quadrature rule employing N C 1 quadrature points is exact for poly-
nomials of degree 2N C 1 while the GLL quadrature rule with the same number
of quadrature points is exact for polynomials of degree 2N � 1. If the integrand
is a polynomial of degree 2N , as in the case of flux integrals, then the integration
resulting from the GLL quadrature is inexact. In the analysis by Cockburn et al.
(1990), it is shown that, for a .N C 1/-th order DG scheme using polynomials
of degree N , the quadrature rule used for the surface (internal) integrals should
be exact for polynomials of degree 2N and the quadrature rule used for boundary
flux integrals should be exact for polynomials of degree 2N C 1. In a strict sense,
this indicates that there is no single set of N C 1 quadrature points that can be
used to evaluate all the integrals to the required accuracy (Atkins and Shu 1996).
In order to meet the requirements for the exact internal integration and consistent
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boundary (flux) integration, these integrals are usually treated with different orders
of quadrature formulas.

Utilizing the same type of high-order quadrature rule for both internal and bound-
ary integrals is certainly an option. This is very convenient for practical applications
and leads to computationally efficient code development. Nevertheless, it is reported
that, for some applications, over-integration resulting from keeping the boundary
and flux integrals of the same order may lead to instabilities (Lomtev et al. 2000).
On the other hand, computational domains with complex geometries that consist
of strong curvature or curved boundaries may require more quadrature points than
simple Cartesian cases; this is necessary to maintain a specific order of accuracy in
the discretization. In other words, the choice of a particular quadrature rule is appli-
cation dependent, and is also based on the practical consideration of computational
efficiency and ease of implementation.

We now review the GL and GLL quadrature rules for the integrals. A tensor-
product of 1D quadratures is usually employed to efficiently evaluate the 2D
integrals (Deville et al. 2002). Figure 9.10a is a GLL grid with 4 � 4 quadra-
ture points. Figures 9.10b and c are the GL grids with 3 � 3 quadrature points
associated with the 2D GLL and GL quadrature rules, respectively; the internal
(solution) points are marked as filled circles. The filled-squares along the boundaries
in Fig. 9.10b and c indicate flux points which are interpolated from the solution.
Technically both of the quadratures are exact for polynomials of degree up to
k D 5, and sufficient for a third-order or P 2 DG method. The GLL grid has more
points (dofs) than the GL case, but the internal integral is still inexact for a P 3

method.
The GLL quadrature must employ more points than the GL quadrature to guar-

antee the same order of accuracy. However, the GLL grid has some inherent
computational advantages. The GLL quadrature points include points along the
boundary lines and corners of the square domain Œ�1; 1	2 – computing the flux

a b c

Fig. 9.10 Different types of 2D grid configurations based on Gauss–Legendre–Lobatto (GLL)
and Gauss–Legendre (GL) quadrature rules on a square domain Œ�1; 1	2. The solution points are
marked by filled circles and flux points along the boundaries are marked by filled squares. (a) GLL
grid with 4� 4 quadrature points where the flux points on the boundary coincide with the solution
points. (b) GL grid with 3� 3 points for internal integrals and three flux points on each boundary.
(c) Same as in case (b) but with four flux points on each boundary
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integrals (IF1
and IF2

in (9.39)) along the boundaries is trivial in this case, because
the solution and flux points coincide at the quadrature points. This avoids the inter-
polations required for the flux evaluation, which is a significant computational
savings. However, a caveat for this GLL grid configuration is that the boundary
flux integral reduces to the same order of accuracy as the internal integral and leads
to inexact integration. This may be an issue when the degree of the polynomial is
low (k � 3) because losing an order of accuracy is not affordable, but for higher
values of k the loss of an order of accuracy is often outweighed by the computa-
tional efficiency and ease of implementation (Nair 2009). In practice, this type of
GLL grid is used for many high-order nodal DG implementations (Hesthaven and
Warburton 2008).

The GL grid as shown in Fig. 9.10b is exact for the DG P 2 scheme but the
boundary flux integrals have the same order of accuracy as the internal integrals.
In Fig. 9.10c, the order of accuracy of the flux integrals exceeds that of the internal
integral as per the theoretical requirement pointed out by Cockburn et al. (1990).
In order to compute the fluxes along the boundaries, interpolations are required to
transfer the solution to the boundary quadrature points – the basis functions may be
used for the accurate interpolation of solution (9.37). This will, of course, increase
the computational expense. As previously noted, the GL quadrature rule does not use
the end points˙1 in Œ�1; 1	, which means that in 2D the corner points are excluded.
For rectangular domains, the problematic corner singularities may be avoided by the
GL grids. So the GL quadrature may be beneficial for domains with isolated singu-
larities such as the latitude-longitude sphere. An interesting discussion about the
choice of quadrature rules can be found in a recent paper by Kopriva and Gassner
(2010). In the following section we consider several examples with both GL and
GLL grids.

9.3.2 Computational Examples: Advection Tests

Two standard tests for advection problems are the solid-body rotation test and
deformational flow test. We examine these non-divergent test cases individually.

9.3.2.1 Solid-Body Rotation Test

To test the DG schemes discussed above we first consider a solid-body rotation
problem with a smooth function on a square domain. The domain D in (9.30) is
chosen to be Œ�
; 
	2 with periodic boundary conditions and the initial condition is
the Gaussian hill U.x; y; t D 0/ D expŒ�5..x � xc/2 C .y � yc/2//	 centered at
.xc ; yc/. The velocity is prescribed as .u; v/ D .�
y; 
x/ and the flux function is
F.U / D .uU; vU /. The Gaussian hill is placed at the center of the domain .xc D 0;
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yc D 0/ for the convergence study so that U is continuous at the (periodic)
boundaries.

The tests are conducted with both modal and nodal versions of the DG discretiza-
tion and for different spatial resolution. We vary both the total number of elements
(Nelm 2 f202; 402; 802; 1602g) and the polynomial degree (k 2 f1; 2; 3; 4g). The
normalized standard l2 error is computed after one complete rotation, and Fig. 9.11a
shows the results with the modal version employing GLL quadrature (the nodal ver-
sion gives visibly indistinguishable results). Two types of errors, h-error andp-error,
are used for the convergence tests of element-based high-order Galerkin methods
such as DG. The h-error measures the error computed by varying number of ele-
ments and keeping the polynomial degree (k) constant, while the p-error measures
the error when the polynomial degree is varied but the number of elements is kept
fixed. For a given Nelm the p-error is reduced as the polynomial degree increases,
in Fig. 9.11a it is shown as black dots aligned in the vertical direction. The measures
of the p-error vary more rapidly (at an exponential rate) than that of the h-error. The
exponential (spectral) convergence is also reported for similar tests in Levy et al.
(2007).

Figure 9.11b shows the strong scaling results on a parallel computer architecture,
a measure of parallel efficiency when the problem size is held constant. Ideally, the
total work would be split evenly among processors so that doubling the number of
processors would halve the runtime. This is measured by ‘speed-up,’ the ratio of the
runtime on one processor to the runtime on a given number of processors. In this
sense Fig. 9.11b shows almost perfect scaling for the nodal DG scheme (run with
Nelm D 802 elements, each with 6 � 6GLL nodes). This simulation consisted of
40; 000 time steps on a 1,024 dual-node BlueGene/L cluster. Spectral convergence
(for smooth problems) and excellent scaling are two remarkable properties of DG
algorithms.
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Fig. 9.11 (a) Convergence results (l2 error) for the solid-body rotation test at different resolutions
and varying polynomial degree (k). (b) The strong scaling results as measured with a resolution of
Nelm D 802 and each element containing 6� 6GLL points
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9.3.2.2 Deformational Flow Test

For the deformational flow test case we consider the test proposed by Smolarkiewicz
(1982). This problem is relevant to meteorology because it simulates the effect of
closed vortices on warm air parcels. The test describes the advection of a scalar field
(i.e., U in (9.30)), which is initially defined to be a cone of height 1 and radius 15
units located at the center of a square domain of side L D 100 units. The non-
divergent flow field is defined by the stream function,

 .x; y/ D 8 sin.4
 x=L/ cos.4
 y=L/; u D �@ 
@y
; v D @ 

@x
;

where u and v are the components of the wind field. Staniforth et al. (1987) provide
an analytical solution for this test in terms of elliptic functions and showed that
there is a breaking time Tb D 2637:6, beyond which the length scale of the exact
solution diminishes as a function of time. We examine the DG solutions at time
t D Tb=50, when the solution exhibits very fine structures of deformation. This
test is very challenging because of the severe deformation of the fields and sharp
gradients which evolve in time.

The numerical results are presented in Fig. 9.12 on a 40 � 40 element domain
employing the GLL and GL quadratures (grids) as shown in Fig. 9.10, plotted on
the native computational grid to avoid interpolation errors. Figure 9.12a shows the
results for the nodal DG scheme with a 4 � 4GLL grid, where the boundary integ-
rals use the same order GLL quadrature. This choice of quadrature exhibits spurious
overshoots and undershoots, and the modal DG scheme with the GLL quadrature
produces a similar result. Changing the spatial order of accuracy (up to 7 � 7
quadrature points) with the GLL nodes does not improve the results, and similar
results are reported by Crowell et al. (2009). Figure 9.12b shows the results with a
modal version of the DG P 2 method employing 3 � 3 GL points. With GL grids,
the solution is significantly smoother. Again, the nodal version produces similar
results.

This indicates that, irrespective of the modal or nodal variant of the DG method,
the GL quadrature has some qualitative advantage over the GLL quadrature; espe-
cially when the flow field is very complex. The DG schemes employing GL
quadrature are more robust than those with the GLL quadrature. On the other
hand, for a fixed order of accuracy, we noticed that the DG/GLL combination
has a more lenient CFL stability restriction than the DG/GL combination. This is
mainly due to the distribution of the internal quadrature points in the reference
element (see Fig. 9.10). In the case of the GL quadrature points, the shortest dis-
tance between the internal points and the boundary is smaller than that of the GLL
points, leading to relatively smaller grid spacing (�x). In other words, the CFL
estimate discussed in Sect. 9.2.5, 1=.2N C 1/ for the DG PN method (Cockburn
and Shu 2001), appears to be an overestimate when the DG/GLL combination is
used.
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Fig. 9.12 Numerical solutions for the deformational flow test at time t D Tb=50 with the DG
advection scheme on a 2D Cartesian domain with 40 � 40 elements. (a) Solution with the nodal
DG scheme employing 4� 4GLL points (as shown in Fig. 9.10a) on each element. The boundary
flux integrals are approximated with the same order 1D GLL quadrature rule. (b) Solution with the
modal DG scheme employing 3 � 3 GL points (as shown in Fig. 9.10b or c) on each element. The
flux integrals are performed with the same order GL quadrature

9.3.2.3 Barotropic Vorticity Equation

We now discuss a general form of (9.30) with a non-zero source term, a simple
non-divergent barotropic model based on the classical barotropic vorticity equation
(BVE). A barotropic atmosphere is a single-layered fluid; under this assumption
there is no vertical component, so the equation to be solved is 2D. The BVE has
special importance in meteorology and a historical perspective of the BVE can be
found in Lynch (2008). The BVE is useful for modeling the (idealized) evolution of
tropical cyclones (DeMaria 1985), and also for the theoretical study of the interac-
tions of vortices in close proximity. Recently, Levy et al. (2009) have developed an
element-based Galerkin method for solving the BVE using the DG discretization;
we review this model in the present context.

The BVE can be cast in the following form (Levy et al. 2009):

@�

@t
C @

@x
.u�/C @

@y
.v�/ D �ˇv; (9.50)

where u and v are the horizontal components of the wind vector v such that
v D .u; v/, � D .r � v/ � Ok is the relative vorticity and Ok is a unit normal
vector in the vertical direction. In (9.50), ˇ D @f=@y is based on the beta-plane
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approximation (Vallis 2006) where f is the Coriolis parameter. The solution pro-
cess involves predicting � at every time step, however, the .u; v/ field also evolves
in time and therefore needs to be computed at every new time step. Since the wind
field is non-divergent it can be prescribed in terms of the stream function  such
that u D � y and v D  x , where the suffixes denote partial differentiation. The
relation � D vx � uy leads to the following Poisson equation for  :

r2 D �: (9.51)

Usually the initial conditions for (9.50) are prescribed in terms of the tangential
velocity, from which the initial values for v and � can be derived. At every time
step � is predicted and the corresponding stream function at the new time-level is
computed by solving the Poisson problem (9.51). This is required because the wind
field .u; v/ must be available for the new prediction cycle; as mentioned, it can be
computed directly from  using the relation .u; v/ D .� y ;  x/.

Thus the solution process for the BVE involves solving the advection equation
(9.50) and the Poisson equation (9.51) as a system. The elliptic type equation (9.51)
may be solved using the DG method as described in Rivière (2008), the high-order
spectral method (Kopriva 2009), or any number of other methods. Since our focus
is primarily on hyperbolic problems, we do not consider the solution procedure for
(9.51) here, except to say that we adopt a spectral-element based Poisson solver
(Levy 2009) for the BVE model.

The initial wind profile for the vortex centered at .xc ; yc/ can be expressed in
terms of tangential velocity V.r/ where r D Œ.x�xc/2C .y�yc/2	1=2 is the radial
distance from the center. The wind field and V.r/ are given by

u D �V.r/.y � yc/=r; v D V.r/.x � xc/=r; V .r/ D 2Vmr expŒ�a.r=rm/b	
rmŒ1C .r=rm/2	 :

(9.52)

The initial relative vorticity can be derived as

�.r/ D
8<
:
V 0.r/C V.r/=r if r ¤ 0;
2V 0.0/ if r D 0: (9.53)

The physical dimension of the domain D is a 4;000 � 4;000 km square, and D is
periodic in both directions. The other parameters used in (9.52) are Vm D 30 m/s,
rm D 80 km, a D 10�6, b D 6, the vortex center .xc ; yc/ positioned at .2000; 2000/
km, and ˇ is computed at the latitude 20ıN.

The formulation for the BVE (9.50) may be considered as a special case of the
flux-form transport equation (9.30) with a non-zero source term S.U /. Therefore
it is clear that the “conservative” variable is U D �, the flux function is F.U / D
.u�; v�/ and the source is S.U / D �ˇv. For the DG discretization of (9.50), we
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employ the nodal scheme as described in Sect. 9.3.1.2. The computational domain
consists of 100 � 100 elements each with 4 � 4GLL points (Fig. 9.10a) so the ave-
rage horizontal resolution is approximately 13.3 km. A third-order Runge–Kutta
scheme (9.29) is used to solve the ODE (9.45) corresponding to (9.50), with a
(sub-optimal) time step of �t D 90 s.

In the nodal formulation the relative vorticity � and stream function  (from
(9.51)) are approximated at the GLL quadrature points .�l ; �n/ using the summation
(9.44). To find the non-divergent wind at any time-level from the stream function
fields at the GLL points the following collocation differentiation can be employed,

u.�; �/ D � 	 � �
NX
`D0

NX
mD0

 `m h`.�/ h
0
m.�/;

v.�; �/ D  
 �
NX
`D0

NX
mD0

 `m h
0
`.�/ hm.�/:

The numerical results are shown in Fig. 9.13. The leftmost panel shows the initial
relative vorticity fields, and simulated results after 24 and 72 h are shown in the
central and right panels, respectively. As expected, the center of cyclonic vortex is
well resolved and the cyclonic motion has drifted in the northwestward direction
(DeMaria 1985). Realistic hurricane simulation needs high-resolution complex 3D
models capable of fast simulations. The DG methods are well-suited to address this
problem because DG algorithms are known for their high parallel efficiency and
adaptive mesh refinement capabilities.
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Fig. 9.13 Contours of the vorticity field (�) in the tropical cyclone simulation, shown after 1 and
3 days. The left panel shows the initial fields; the simulated results after 1 and 3 days are shown in
the central and the right panels. Calculations are done on a square domain consisting of 100� 100
elements each with 4� 4GLL points
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9.4 Limiters for DG Methods

High-order numerical schemes will produce spurious oscillations in the vicinity of
discontinuities or shocks and near under-resolved solution gradients. The unphysi-
cal oscillations not only pollute the solution but may lead to numerical instabilities.
Preservation of physically realizable properties of the solution such as monotonicity
(shape-preservation) or the less restrictive positivity is of great importance in atmo-
spheric transport modeling (Chap. 8). For instance, the mixing ratio (e.g., relative
humidity) or density simulated by an atmospheric model should always preserve its
positive sign (positive-definite). Even oscillations with small amplitudes can cre-
ate negative density which in turn produce physically unacceptable negative mass –
this might arise even if a minute negative density is multiplied by the volume (or
integrated over a region). The process of controlling or completely eliminating
the spurious oscillations in the numerical solution is often referred to as limiting.
A limiter also provides nonlinear stability to the solution.

The Godunov theorem (Godunov 1959) asserts that the “monotone linear
schemes are at most first-order accurate.” For high-order methods this implies that
designing a monotone scheme is a daunting task because the coexistence of mono-
tonicity and the high-order nature of the solution is difficult if not impossible. The
monotonic limiting is a non-linear process that removes the oscillations from
the solution at regions (points) where monotonicity is violated, and when acti-
vated the limiter reduces the oscillatory (high-order) solution to first-order. It is
required that a limiter does not violate the mass conservation property (i.e., preser-
vation of the cell-average) of the underlying conservative numerical scheme and, to
the greatest extent possible, it should retain the high-order accuracy of the solution.
Therefore, a limiter should be applied to the high-order scheme in a surgical man-
ner and it should not be activated in smooth regions of the solution. Thus it is very
important to have a criterion for limiting that guides when and where to limit the
solution.

Another potential venue for controlling numerical noise due to under-resolved
solution gradients is the application of so-called h-p adaptivity. Here h stands for
number of elements in the domain and p is the polynomial order within in the
element (Karniadakis and Sherwin 2005). Since shocks are not really present in
atmospheric model, the requirement is to prevent the generation of under-resolved
gradients on the grid. The problem here is optimize the h-p dofs to the local struc-
ture of the solution. For example, high-order elements where high-gradients are
developing can be divided into two elements of order p=2 to prevent the growth of
oscillations. Ultimately one could end-up with p first order elements that are guaran-
teed to preserve the extrema of the solution. This approach may be more intensive
on software engineering and grid refinement based on error estimators, but could
be an alternative to the brute force approach of slope limiters. The DG methods
are amenable to adaptive mesh refinement (AMR) strategy based on h-p adaptivity.
Development of models based on AMR is an active area of research in geosciences
(St-Cyr and Neckels 2009; Kubatko et al. 2009).
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The second-order finite-volume (FV) schemes can successfully incorporate lim-
iters such as the slope limiters (van Leer 1974) or flux limiters (Boris and Book
1973). This is done either by designing a scheme which inherently prohibits oscilla-
tory solution (Smolarkiewicz 1984) or by applying the limiter in the reconstruction
or the post-processing stage. As the order of the numerical scheme increases the
limiting procedure becomes more complex and computationally expensive. A class
of high-order finite-volume schemes known as essentially non-oscillatory (ENO)
developed by Harten et al. (1987) and its advanced variant weighted essentially
non-oscillatory (WENO) by Liu et al. (1994) can successfully control spurious
oscillations in the solution. As the name suggests the ENO or WENO solutions are
not strictly monotonic. The solution may still have oscillations of small amplitude
but they do not grow with time. These schemes use adaptive stencils in the recon-
struction procedure which are based on local smoothness of the numerical solution,
and automatically achieve high-order accuracy and non-oscillatory properties near
discontinuities.

Since the DG method has a strong FV-like connection, it may be technically
possible to extend the limiters developed for FV methods to at least low-order DG
methods. However, for DG schemes the direct application of a FV-based limiter
such as the flux limiter is not trivial because the dof evolved in time per element
(cell) is higher than that of the FV method. Limiting high-order DG methods on
general meshes is still an open question. Here we consider the basic slope limiter
(Cockburn and Shu 1989) and the WENO-based limiting proposed by Qui and Shu
(2005b) for relatively low-order DG methods.

9.4.1 The 1D Limiters for DG Methods

The basic limiter developed for the DG scheme (Cockburn and Shu 1989) relies
on the MUSCL (Monotonic Upstream Centered Schemes for Conservation Laws)
slope limiting technique (van Leer 1977). The MUSCL approach employs the
piecewise linear reconstruction for the subgrid-cell distributions resulting in a
second-order accurate scheme. The reconstruction process in this case is constrained
to be free from spurious oscillations (monotonic) by applying the minmod limiter.
To understand how the minmod limiter works, we consider the piecewise linear
reconstruction for the 1D grid used in Sect. 9.2.3.

9.4.1.1 The Minmod Limiter

Let Uj .x/ be the density distribution in a cell of width �xj D xjC1=2 � xj�1=2.
The piecewise linear representation of Uj .x/ can be expressed in terms of the slope
Ux;j and the cell-averaged density U j (see Fig. 9.14),
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xj−1 / 2 xj+1 / 2

uj−1 uj+1uj

Fig. 9.14 A schematic illustration of the piecewise linear reconstruction. The cell averages U j are
shown as horizontal lines and the cell boundaries are labeled by xj˙1=2. The smooth dashed-line
indicates the actual solution U.x/ which is approximated by piecewise linear distributions (broken
thick lines) on each cell

Uj .x/ D U j C .x � xj /Ux;j ; U j D 1

�xj

Z xj C1=2

xj �1=2

Uj .x/dx; (9.54)

where xj D .xj�1=2 C xjC1=2/=2. There are an infinite number of possibilities to
choose the value of Ux;j in (9.54) without violating mass conservation (preserving
U j ), nonetheless, we choose the limited slope QUx;j based on the minmod approach.
A minmod function has three arguments. The first argument is the slope of the cell
in question and remaining arguments are the slopes of the neighboring cells. If the
left and the right slopes preserve the same sign, then the minmod function returns
the minimum of the absolute value of the slopes with the same sign; otherwise, if
the signs are opposite, it sets the slope to zero. This can be written as follows:

U.x/j D U j C .x � xj / QUx;j ; QUx;j ( minmod.Ux;j ; Ux;j�1=2; Ux;jC1=2/;
(9.55)

where the arrow indicates the replacement of the slope Ux;j by the limited slope
QUx;j ; the minmod function is formally defined to be

minmod.a; b; c/ D
�
s min.jaj; jbj; jcj/ if s D sign.a/ D sign.b/ D sign.c/;
0 otherwise :

(9.56)
The slopes of the neighboring cells (on a non-uniform grid) are given by

Ux;j�1=2 D U j � U j�1
.�xj C�xj�1/=2; Ux;jC1=2 D U jC1 � U j

.�xjC1 C�xj /=2:

This limiter falls under the class of the total variation diminishing (TVD) limiters
(Toro 1999). The minmod limiter is strictly non-oscillatory, but unfortunately it
clips the legitimate extrema of smooth solutions and degrades high-order accuracy.
However, the excessive limiting of the minmod function at smooth regions can be
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controlled to some extent by modifying (relaxing) the limiting criteria in (9.56).
The resulting modified minmod limiter has the total variation bounded (TVB) prop-
erty, which preserves high-order accuracy at smooth extrema at the cost of allowing
minor oscillations in the solution. Let ‘Minmod’ be the modified minmod function
which is defined to be

Minmod.a; b; c/ D
�
a if jaj �Ml ;

minmod.a; b; c/; otherwise,
(9.57)

where Ml is a problem-dependent positive number. This parameter is more or less
a magic number which works quite well for a few sets of problems (see, Cockburn
and Shu 2001). Smaller values of Ml introduce greater local dissipation, but larger
values produce oscillations in the solution. Although there are efforts to make Ml

problem independent (Ghostine et al. 2009), a generalized approach for various
applications particularly in multi-dimensional systems has yet to be established.

9.4.1.2 Generalized Slope Limiter

The modal expansion (9.10) for the approximate solution Uj .�/ can be rearranged
as follows (with the time dependency omitted for brevity):

Uj .�/ D U 0j C U 1j � C
NX
kD2

U kj Pk.�/; (9.58)

where the expansion coefficients (or moments) U kj are defined in (9.11). If the
solution Uj .�/ is approximated as element-wise linear functions, then Uj .�/ D
U 0j C U 1j �, where the coefficients U 0j D U j is the average value and U 1j D U 0j .�/
is the slope. This is simply the P 1 part of the solution (9.58), which is analogous to
the piecewise linear reconstruction (9.54). Therefore the limited solution for the P 1

case, in terms of �, can be written as

Uj .�/ D U j C � QU 1j ; QU 1j ( minmod .U 1j ;
U j � U j�1

��
;
U jC1 � U j

��
/; (9.59)

where QU 1j is the limited slope by the minmod function and �� D 2. If QU 1j ¤ U 1j
then it indicates that minmod limiter is in action; otherwise, if QU 1j D U 1j then
the indication is that the element is non-oscillatory and does not need limiting. In
other words the minmod function may also be used to detect elements which require
limiting.

Note that the left and right slopes used in the minmod function in (9.59) may be
replaced with the less restrictive slopes 2.U j �U j�1/=�� and 2.U jC1�U j /=��,
respectively, (Cockburn and Shu 2001). This leads to a simplified slope estimate at
the element edges in the �-coordinate as employed in (9.59).
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Uj .�/ D U j C � QU 1j ; QU 1j ( minmod .U 1j ; U j � U j�1; U jC1 � U j /: (9.60)

In the context of the high-order DG method, Cockburn and Shu (1989) further
extended the minmod limiter to the generalized slope limiter. This is achieved by
selectively applying the limiter (9.60) to the high-order solution (9.58) where the
solution is not smooth. The selection procedure (i.e., detecting the elements which
require limiting) involves finding the left and right edge values Uj˙1=2 D Uj .� D
˙1/ from (9.58), and checking for oscillation using the minmod function:

QU�jC1=2 D U j Cminmod .U�jC1=2 � U j ; U j � U j�1; U jC1 � U j /; (9.61)

QUC
j�1=2 D U j �minmod .U j � UCjC1=2; U j � U j�1; U jC1 � U j /; (9.62)

where U�
jC1=2 and UC

j�1=2 denote the left and right limits (see Fig. 9.1) of the edge
values UjC1=2 and Uj�1=2, respectively.

Now the generalized slope limiter algorithm for a high-order solution (9.58) can
be summarized as follows:

� First, compute the limited edge values QU�
jC1=2 and QU�

jC1=2 using (9.61) and
(9.62).

� If QU�
jC1=2 D U�

jC1=2 and QUC
j�1=2 D UC

j�1=2, then it indicates that there is no
spurious oscillation (or no need for limiting) in the element in question, and the
solution (9.58) is acceptable as is.

� If QU�
jC1=2 ¤ U�

jC1=2 and/or QUC
j�1=2 ¤ UC

j�1=2, then it indicates there is
oscillation is in the element and the solution should be limited by using (9.60).

� In the limited case only the limited P 1-part of solution is considered, all the
high-order coefficients in (9.58) U kj D 0 for k 
 2.

As discussed above the minmod limiters are dissipative, and may not be suitable for
some applications. In such cases, if a solution with oscillations of small amplitude
is acceptable, then it is appropriate to use the more relaxed Minmod function (9.57)
instead of the regular minmod function.

9.4.1.3 The Moment Limiter

Biswas et al. (1994) generalized the minmod limiter to a moment limiter suitable
for limiting high-order DG methods. The moment limiter limits the derivative of the
solution starting with the highest order, and it is given by

QU kj D
1

2k � 1minmod ..2k � 1/U kj ; U k�1j � U k�1j�1 ; U k�1jC1 � U k�1j /: (9.63)

When k D 1, clearly the limiter (9.63) reduces to the minmod limiter in (9.60). The
limiter is applied in an adaptive manner starting with the highest-order coefficient
(moment) U kj . If QU kj D U kj then it indicates limiting is not required; if not, limiting

is required and (9.63) is applied to the next lower- level coefficients U k�1j . The
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process stops when no modification of the coefficient occurs by applying (9.63);
otherwise, the next highest order coefficient is limited. The moment limiter performs
better than the generalized slope limiter at least in the 1D case; however, extending
the algorithm to multi-dimension (Krivodonova 2007) is computationally expensive.

9.4.1.4 The WENO-Based Limiter

There is a novel class of limiters for DG methods recently introduced by Qui and
Shu (2005b) based on the WENO method. A major advantage of this approach is its
ability to retain high-order accuracy for the DG scheme while suppressing spurious
oscillations. The WENO based limiting strategy for DG methods consists of two
crucial steps. These are the identification of so-called troubled cells or the cells (ele-
ments) that need limiting, followed by a reconstruction step for the non-oscillatory
solution in the troubled cells using the neighboring cell-averages. To identify the
troubled cells one may use any of the slope limiting techniques described above.
If, for example, the slope in a cell changes when using the minmod limiter, then
that particular cell is declared a troubled cell and limiting is performed by using the
WENO approach. Although the WENO limiter does not adversely affect the order
of accuracy of the solution in a smooth cell, a judicious identification of troubled
cells is required to avoid unnecessary computations in smooth regions.

The details of the WENO limiter implementation is given in Qui and Shu
(2005b), and we do not discuss it herein. A DG PN method is formally .N C 1/th
order accurate if the quadrature rule is exact for polynomials of degree at least
2N C 1. In order to match the same order of accuracy, a WENO reconstruction
should be at least .2N C 1/th order accurate as well. A WENO-based limiter of this
order requires 2N C 1 neighboring elements˝j�N ; : : : ;˝jCN to limit an element
˝j located at the center of the stencil. Unfortunately, this requirement necessitates
a wider computational stencil when N > 2, which impedes the local nature (and,
therefore, the parallel efficiency) of the combined DG-WENO scheme.

9.4.1.5 Computational Examples with Limiters

We repeat the numerical examples used in Sect. 9.2.6 to demonstrate the effective-
ness of the limiters as discussed above. First, the simple linear advection problem
Ut C Ux D 0 is solved with initial conditions representing two extreme cases, a
Gaussian hill (smooth case) and a rectangular wave (non-smooth case). A modal
version of the DG discretization is employed with 50 elements, each with 4 GLL
quadrature points, in the domain Œ�1; 1	, and 400 time steps are used for a complete
revolution. Ideally, the challenge for a limiter is to preserve high-order accuracy in
smooth regions of the solution while eliminating spurious oscillations only from
the non-smooth regions.

Figure 9.15 shows the numerical solutions with the basic minmod limiter (9.55)
and the generalized slope limiter combined with the modified Minmod limiter
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Fig. 9.15 Numerical solution after one revolution with the modal DG scheme combined with
various limiters for the linear advection problem (9.2). The left and right panels show solutions
for the smooth case (Gaussian hill) and non-smooth case (rectangular wave) as initial conditions,
respectively, where the solid line indicates the exact solution. The diamond points (diamond) show
the solution with the basic minmod limiter, and ‘C’ points indicate the solution with the gen-
eralized slope limiter employing the Minmod function with the parameter Ml D 0:02. On the
left panel, square points show the solution with the generalized slope limiter but the parameter
Ml D 0:06

(9.57). Only one point per element is plotted for clarity. The Minmod function
employs a problem-dependent parameter Ml which controls the limiting opera-
tion. The exact solution (initial condition) is shown as solid lines in Fig. 9.15,
and the solution with the basic minmod limiter is very diffused in both cases (‘˘’
points). For the non-smooth case (Fig. 9.15 right panel), relatively better solutions
are obtained with the generalized slope limiter (‘C’ points) for which the parameter
value is Ml D 0:02; however, for Ml > 0:02 the limiter reintroduces oscillations.
For the same value Ml D 0:02, the generalized slope limiter clips the peak smooth
regions of the Gaussian hill as seen in the left panel of Fig. 9.15 (‘C’ points). Never-
theless, when Ml is increased to 0:06 the limiter further relaxes without destroying
the legitimate extrema of the Gaussian hill (square points). Although these limiters
are simple and easy to implement, a major drawback is that they have a strong
dependence on the parameterMl . Moreover, the basic minmod (P 1) limiter is unac-
ceptably diffusive for high-order DG methods for practical applications (Iskandarani
et al. 2005).

Now we consider the same experiment with the moment limiter (9.63) and
a third-order WENO- based limiter. For the computational examples considered
here we employ a DG P 2 case combined with a WENO limiter employing the
GLL quadrature rule with 4 points. Figure 9.16 shows the limited solution with the
WENO limiter (‘˘’ points) and moment limiter (‘C’ points). Both the limiters per-
form very well for the two extreme cases. However, the WENO based limiter is very
robust and performs slightly better than the moment limiter in terms of the symme-
try of the solution (shape preservation). The WENO limiter unfortunately comes
with a higher computational cost because for the third-order (P 2) case a 5-element
wide stencil is required for the reconstructions.
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Fig. 9.16 Same as in Fig. 9.15 but with the third-order WENO limiter (‘diamond’ points) and the
moment limiter (‘C’ points). The computational domain Œ�1; 1	 consists of 50 elements each with
4 GLL quadrature points
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Fig. 9.17 Limited numerical solution for the inviscid Burgers equation at time t D 3=.2
/ with
the modal DG scheme. The solid-line indicates the exact solution and ‘diamond’ points show the
limited DG solution. The left panel shows solution by DG scheme combined with the moment
limiter and right panel shows DG solutions combined with the WENO limiter

The moment limiter (9.63) and the third-order WENO limiter are applied to the
P 2 DG scheme for solving the inviscid Burgers equation Ut C .U 2=2/x D 0, with
the initial condition U0.x/ D 1=2 C sin.
x/. As mentioned in Sect. 9.2.6, this is
a simple non-linear case where a shock wave develops during the integration, but
the analytic solution is known at any time. The computational domain Œ0; 2	 con-
sists of 80 elements, each containing 4 GLL points. The limited numerical solution
at time t D 3=.2
/ (1,000 time steps) is shown in Fig. 9.17, where the left and
right panels show solutions with the moment and WENO limiters, respectively. For
clarity, only one point per element is sampled for displaying the numerical results.
Both limiters successfully eliminate spurious oscillations near the shock (as seen
in Fig. 9.7), and the computed solutions are very similar to the reference solutions.
Note that in Fig. 9.7, for which no limiting is employed, shocks develop during the
integration and oscillations appear at t D 9=.8
/ (750 time steps). Eventually the
growing spurious oscillations contaminate the numerical solution in this case.



9 Emerging Numerical Methods for Atmospheric Modeling 289

9.4.2 2D Limiters for the DG Method

The 1D limiters used for the high-order DG method are quite successful in elimi-
nating spurious oscillations. Unfortunately, extending these limiters to 2D problems
is not trivial. In addition to the slopes (derivatives), the high-order derivatives and
cross-derivative terms are also subject to limiting, making the limiting process algo-
rithmically complex and computationally expensive. The development of limiting
techniques for high-order DG methods is an active area of research, and two promis-
ing approaches in this direction are based on the moment limiter (Biswas et al. 1994)
and the WENO limiter (Qui and Shu 2005b). Recently, the moment limiter has been
rigorously extended to 2D problems with high computational expense (Krivodonova
2007). A major advantage of this limiter is that it only needs information from the
nearest neighbors of the element which is to be limited. The 1D WENO limiter can
be extended to 2D problems in a tensor-product form as demonstrated in Levy et al.
(2007).

However, recently a compact limiter based on the Hermite WENO (or H-WENO)
method has been proposed by Qui and Shu (2005a). This new limiter has been
successfully implemented in applications involving system of conservation laws
(Balsara et al. 2007; Luo et al. 2007). The H-WENO limiter not only exploits
the cell-averages but also the readily available derivative information (high-order
moments) from the nearest neighboring cells. This enables the WENO reconstruc-
tion process to rely on narrow stencils, and as a result the limiter is computationally
attractive. However, for the 2D case we only consider the moment limiter combined
with a positivity-preserving slope limiter.

9.4.2.1 A Limiter for the DG P2 Method

We consider a third-order (P 2) modal DG scheme with the expansion (9.37)
employing the basis set B D f1; �; �; ��; .3�2 � 1/=2; .3�2 � 1/=2g. The approxi-
mate solution Uij .�; �/ corresponding to element˝ij is then given as

Uij .�; �/ D U 0;0ij C U 1;0ij � C U 0;1ij �C U 1;1ij � �

C U 2;0ij .3�2 � 1/=2C U 0;2ij .3�2 � 1/=2; (9.64)

where the coefficientsU `;mij correspond to the moments (9.38), and U 0;0ij is the aver-
age value over˝ij . In the tensor-product expansion (9.37) for the P 2 case, the basis
set employs additional basis functions P2.�/P1.�/, P1.�/P2.�/ and P2.�/P2.�/
in B. However, for the sake of simplicity we exclude additional basis functions in
(9.64).

The moment limiter (9.63) introduced for the 1D case can be extended for the 2D
case (Biswas et al. 1994; Krivodonova 2007). We denote the limited coefficients in
(9.64) as QU `;mij which are modified by a generalized version of the minmod limiter
(9.63):
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QU 2;0ij D minmod
h
U
2;0
ij ; ˛l.U

1;0
ij � U 1;0i�1;j /; ˛l .U 1;0iC1;j � U 1;0ij /

i
;

QU 0;2ij D minmod
h
U
0;2
ij ; ˛l .U

0;1
ij � U 0;1i;j�1/; ˛l.U 0;1i;jC1 � U 0;1ij /

i
;

QU 1;1ij D minmod
h
U
1;1
ij ; ˛l .U

1;0
ij � U 1;0i;j�1/; ˛l.U 1;0i;jC1 � U 1;0ij /;

˛l .U
0;1
ij � U 0;1i�1;j /; ˛l.U 0;1iC1;j � U 0;1ij /

i
; (9.65)

QU 1;0ij D minmod
h
U
1;0
ij ; ˛l .U

0;0
ij � U 0;0i�1;j /; ˛l .U 0;0iC1;j � U 0;0ij /

i
;

QU 0;1ij D minmod
h
U
0;1
ij ; ˛l .U

0;0
ij � U 0;0i;j�1/; ˛l.U 0;0i;jC1 � U 0;0ij /

i
;

where ˛l is a parameter in Œ0; 1	 which controls the effect (dissipation) of limiting.
Smaller ˛l values reduce the effect of limiting. Note that the minmod function used
in (9.65) has five arguments, but it acts as the standard minmod function defined
in (9.56): it returns the minimum of the absolute value of arguments if all of the
arguments have the same sign, otherwise it returns zero. The limiting algorithm for
(9.64) can be summarized in the following steps:

� If QU 2;0ij D U
2;0
ij and QU 0;2ij D U

0;2
ij then there is no need for limiting and the

limiting process can be stopped. If not, replace the coefficients U 2;0ij and U 0;2ij by
the corresponding limited coefficients and move to the next step.

� If QU 1;1ij D U
1;1
ij then stop limiting, otherwise replace the coefficient U 1;1ij by the

limited coefficient QU 1;1ij and move to the last step.

� If QU 1;0ij D U 1;0ij and QU 0;1ij D U 0;1ij then stop limiting. If not, replace the coefficient
by the corresponding limited coefficients (i.e., slopes).

Limiting an element ˝ij using the above algorithm requires information from the
nearest-neighboring four elements (˝i˙1;j , ˝i;j˙1). The most influential factor
controlling the quality of the limited solution is the set of coefficients corresponding
to the slopes (U 0;1ij and U 1;0ij ) used in the last step. As shown in the 1D case, exces-
sive use of the minmod slope limiter (MUSCL) makes the solution very dissipative.
For the moment limiter described above, the limiting hierarchy starts with the high-
est order coefficients and prevents excessive slope limiting at the last step. We also
examine a positivity-preserving limiter (which is less restrictive than the minmod
slope limiter) in the following section as an alternative to the slope limiter at the last
step of the limiting algorithm.

9.4.2.2 A Positivity-Preserving Slope Limiter

A positivity-preserving (PP) scheme guarantees that the cell-averages which evolve
in time will lie in a certain range governed by the initial conditions. Although the
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solution may contain minor oscillations within this range, it is less dissipative than
the rigorous monotonic case. Recently, Zhang and Shu (2010) introduced a uni-
formly high-order accurate PP scheme for the compressible Euler equations. This
scheme avoids creating negative pressure and density in the solution at a reasonable
computational cost.

The PP solution is acceptable for practical applications such as atmospheric
tracer transport modeling, where positivity preservation is a highly desirable prop-
erty. The minmod limiter introduced in the MUSCL scheme is strictly monotonic;
unfortunately, it is very diffusive too. However, the 2D PP limiter introduced by
Suresh (2000) for FV methods is less restrictive than the basic minmod limiter
(9.56), and, unlike the modified Minmod limiter (9.57), does not have a problem-
dependent parameter.

We adapt this PP limiter as a replacement for the minmod slope limiter used in
the above-mentioned limiting process for the coefficients U 0;1ij and U 1;0ij . The 2D
PP limiter requires information from the nearest neighbors as well as the corner
elements (˝i˙1;j˙1), which create a 3 � 3 halo region with ˝ij at the center. The
average value of the solution on ˝ij is denoted U ij . To understand how the PP
scheme works we use the linear part of (9.64), which can be written as

Uij .�; �/ D U ij C U 1;0ij � C U 0;1ij �: (9.66)

In order to advance in time, the MUSCL scheme requires a reconstruction step
(9.66) which involves computing new slopes U 1;0ij and U 0;1ij from the neighboring

cell averagesU i˙1;j and U i;j˙1. The minmod slope limiter is constrained in such a
way that the Uij in (9.66) lie in the range of U ij and four independent cell averages
U i˙1;j and U i;j˙1. The PP limiter essentially extends this range by adding the
corner cell-averages. The slopes are then restricted so that the reconstructed values
at the corner points also lie within the new ranges (Suresh 2000). The modification
of the slopes is done so that they continuously depend on the neighboring data. The
following procedure briefly outlines the process of modifying the slopes.

We first construct a 3 � 3 matrix D.�/ consisting of the differences between the
averages of each element in the halo region and the average value of the element
˝ij that require limiting:

D.�/ D
2
4U i�1;jC1 � U ij U i;jC1 � U ij U iC1;jC1 � U ijU i�1;j � U ij � U iC1;j � U ij
U i�1;j�1 � U ij U i;j�1 � U ij U iC1;j�1 � U ij

3
5 ; (9.67)

where � is a small positive number (O.10�20/) in order to make the algorithm robust.
The extreme values of D.�/ are computed as

Vmin D minŒD.��/	; Vmax D maxŒD.C�/	:
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The corner values of the reconstructed solution (9.66) can be effectively bounded
within in the interval ŒVmin; Vmax	 by restricting the slopes jU 0;1ij j C jU 1;0ij j. In other
words we rescale the slopes using the ratio

Vs D min.jVminj; jVmaxj/
jU 0;1ij j C jU 1;0ij j

:

The final PP limited slopes are given by

QU 0;1ij D min.1; Vs/ U
0;1
ij ; QU 1;0ij D min.1; Vs/ U

1;0
ij (9.68)

The modified slopes in (9.68) may be used as a substitute for the slopes computed
by the minmod in the moment limiter.

9.4.2.3 2D Numerical Experiments

To test the limiter we use the 2D advection problem (9.30) for a solid-body rotation
test. The test consists of quasi-continuous data and provides an excellent test for
the monotonicity of the advecting field (LeVeque 2002; Cheruvu et al. 2007). The
velocity field is given by .u; v/ D .y;�x/ on a square domain D where x; y 2
Œ�1; 1	, and the initial condition is defined in a piecewise fashion: U.x; y; t D 0/ D
U0 D 0 except in a square region where U0 D 1 and a circular region where U0 is
cone-shaped, growing to the maximum value 1 at the center. Formally,

U0.x; y/ D
8<
:
1 if 0:1 < x < 0:6 and �0:25 < y < 0:25;
1 � �c=0:35 if �c D

p
.x C 0:45/2 C y2 < 0:35;

0 otherwise.
(9.69)

The initial conditions are shown in Fig. 9.18. The domain consists of 802 elements
and the time step is�t D 2
=1000 so 1,000 iterations are required for one complete
revolution.

Figure 9.19 shows the solution after one revolution with and without the moment
limiter. The left panel of Fig. 9.19 shows the DG P 2 numerical solution without
any limiting, and the dashed lines indicate oscillations. The right panel shows the
limited solution with the moment limiter where the slopesU 0;1ij and U 1;0ij are limited
with a minmod limiter. The solution is very diffusive, the cone height has been
reduced to about 60% of its initial height, and the square-block has been smoothly
deformed. In Fig. 9.20 the numerical solution with the moment limiter combined
with the PP slope limiter is shown. The PP limiter (9.68) is only used as a substitute
for the minmod limiter in the last step of the limiting algorithm. There is a significant
improvement in the solution as compared to Fig. 9.19: the cone and square-block
both preserve their maximum height, although the numerical solution still suffers
from slight diffusion.
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Fig. 9.18 Initial conditions for the solid-body rotation test. The initial scalar field consists of a
quasi-smooth cone and a non-smooth square block whose height range form 0 to 1. The domain is
Œ�1; 1	2 with 80 elements in each direction. Only one value per element is sampled in the plots for
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Fig. 9.19 Numerical solution with a third-order DG scheme after one revolution. The left panel
shows the solution without limiting where the dashed lines correspond to the zero-contours, indi-
cating spurious undershoots. The right panel shows limited monotonic solution with a moment
limiter, where a MUSCL type minmod limiter is employed for limiting the coefficients U 0;1 and
U1;0 corresponding to the slopes

9.5 The DG Methods on the Sphere

There are several geometrical options for discretizing a sphere for global modeling.
The choice of a particular spherical grid system is based on various factors includ-
ing the numerical method being considered (Williamson 2007). For element-based
Galerkin approaches such as the spectral element or DG method, the cubed-sphere
geometry provides an excellent choice. The cubed-sphere topology introduced by
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Fig. 9.20 Numerical solution with a third-order DG scheme combined with the moment limiter
after one revolution. The coefficients U0;1 and U1;0 (corresponding to the slopes) are limited using
the positivity-preserving limiter

Sadourny (1972) consists of a rectangular (quasi-uniform) tiling of the sphere S ,
representing the planet Earth, which facilitates an efficient implementation of the
DG method on the sphere. As an application of the DG method on the sphere, we
consider the global shallow water model as reviewed below.

9.5.1 The Shallow Water Model on the Sphere

The shallow water (SW) equations are a system of hyperbolic PDEs. They are
widely used for studying horizontal aspects of atmospheric dynamics (Vallis 2006),
and also serve as a testbed to evaluate various discretization techniques (Williamson
et al. 1992). The flux-form (or conservative form) SW equations on a rotating sphere
can be written as

@hv
@t
Cr � .v hv/ D �f Ok � hv � ghr.hC hs/ (9.70)

@h

@t
Cr � .hv/ D 0 (9.71)

Here, h is the depth of the fluid above the solid surface and is related to the free
surface geopotential height (above sea level) ˚ D g .hs C h/, where hs denotes the
height of the underlying topography and g is the gravitational acceleration. v is the
horizontal wind vector, f is the Coriolis parameter, and Ok is the unit vector along
the outward radial direction. The 2D divergence (r�) and gradient (r) operators are
general and not specific to a particular spherical grid system. Note that v hv is a
dyadic (or a second-order tensor) term and can also be written in the tensor-product
notation hv˝v. Although (9.70) is widely used in computational fluid dynamics, for
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meteorological modeling application a simplified version of the momentum equa-
tions, the so-called “vector invariant form” is popular and is given by (Sadourny
1972; Arakawa and Lamb 1977),

@v
@t
Cr.˚ C 1

2
v � v/ D �.� C f / Ok � v; (9.72)

where � D Ok � .r � v/ is the relative vorticity. The vector invariant form (9.72), as
the name suggests, preserves its formal form under coordinate transformations. In
a rigorous sense (9.72) is not in momentum conserving form, and when combined
with (9.71) it leads to a weakly hyperbolic SW system (Toro 2001). Nevertheless,
(9.72) is still in flux-form, although the fluxes being addressed are the energy fluxes
˚ C v � v=2, rather than the momentum fluxes hv as used in (9.70).

9.5.2 The Cubed-Sphere Geometry

Here we consider the cubed-sphere geometry employing the equiangular central
(gnomonic) projection as described in Nair et al. (2005b). The physical domain S
is partitioned into six identical regions (sub-domains), which are obtained by the
central projection of the faces of the inscribed cube onto the surface of S , (see
Fig. 9.21a). Each of the local coordinate systems is free of singularities, employs
identical metric terms, and creates a non-orthogonal curvilinear coordinate system
on S . However, the edges of the six faces are discontinuous.

Because of the non-orthogonal nature of the grid system on S , a tensorial form
is convenient for describing the local vectors and the fluid motion in general. In
order to be consistent with tensor notations, we choose .x1; x2/ as the indepen-
dent variables, which are the central angles of the gnomonic projection (Nair et al.
2005b). Thus the local coordinates for each face are x1 D x1.�; �/, x2 D x2.�; �/
such that x1; x2 2 Œ�
=4; 
=4	, where � and � are the longitude and latitude,
respectively, of a sphere with radius R. The metric tensor, Gij , associated with the
transformation is

Gij D R2

�4 cos2 x1 cos2 x2

	
1C tan2 x1 � tanx1 tanx2

� tan x1 tanx2 1C tan2 x2



; (9.73)

where i; j 2 f1; 2g and �2 D 1C tan2 x1 C tan2 x2. The Jacobian of the transfor-
mation (the metric or curvature term) is

p
G D Œdet.Gij /	1=2, which is identical for

each face of the cubed-sphere. For a unit sphere the curvature term has a maximum
value of 1 at the center of each panel and a minimum of 1=

p
2 at the center of the

edges (see Fig. 9.21b). Although the cells are uniform on the cube, the quadrilateral
cell on the sphere is most deformed at the corners of the cubed-sphere and the ratio
between the maximum and minimum grid width for the gnomonic cubed-sphere has
an upper bound approximately 1:3 at any resolution (Rančić et al. 1996).
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.7 .75 .8 .85 .9 .95 1

Jacobian [Sqrt(G)] of Gnomonic Transform
a b

Fig. 9.21 (a) A cubed-sphere with 5 � 5 elements on each face, so 150 elements span the entire
surface of the sphere. (b) The Jacobian

p
G (also referred to as the metric or curvature term)

associated with the gnomonic transformation from a cube onto a sphere. For a unit sphere
p
G has

a maximum value of 1 at the center of each face, and has a minimum value 1=
p
2 at the center

of the edges. The cubed-sphere gridlines are great-circle arcs and they are orthogonal only at the
center of each panel

9.5.3 The Shallow Water Model on the Cubed-Sphere

On the cubed-sphere the SW equations are treated in tensor form with covariant
.u1; u2/ and contravariant .u1; u2/ wind vectors. These vectors are related through
the matrix equations:

	
u1
u2



D
	
G11 G12
G21 G22


 	
u1

u2



;

	
u1

u2



D
	
G11 G12

G21 G22


 	
u1
u2



; (9.74)

where Gij D G�1ij and can be computed from (9.73).
The orthogonal components of the spherical wind vector v.�; �/ D .u; v/ –

i.e., the physical zonal and meridional components of the horizontal wind – can be
expressed in terms of contravariant vectors .u1; u2/ as follows:

	
u

v



D A

	
u1

u2



; A D

	
R cos � @�=@x1 R cos � @�=@x2

R@�=@x1 R@�=@x2



I ATA D Gij :

(9.75)
The details of the local transformation laws and the transformation matrix A for
each face of the cubed-sphere can be found in Nair et al. (2005b).
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The SW equations of a thin layer of fluid in 2D are the horizontal momentum
equations and the continuity equation for the height h. The momentum equations
are cast in terms of covariant .u1; u2/ vectors, which leads to a flux-form for-
mulation suitable for methods based on hyperbolic conservation laws (Nair et al.
2005a). Note that this particular formulation preserves the vector invariant form of
momentum equations (9.72). Thus the prognostic variables are u1, u2 and h, and
the shallow water equations on S can be written in a compact form following the
inviscid formulation described in Nair (2009):

@

@t
UC @

@x1
F1.U/C @

@x2
F2.U/ D S.U/; (9.76)

where the state vector U and the flux vectors F1;F2 are defined by

U D
h
u1; u2;

p
Gh
iT
; F1 D

h
E; 0;

p
Ghu1

iT
; F2 D

h
0;E;

p
Ghu2

iT
;

and E D ˚ C 1
2
.u1 u

1 C u2 u2/ is the energy term. The divergence ı and relative
vorticity � on S are defined as

ı D 1p
G

"
@
p
Gu1

@x1
C @
p
Gu2

@x2

#
; � D 1p

G

	
@u2

@x1
� @u1
@x2



(9.77)

The source term, S, is a function of the relative vorticity �, the Coriolis parameter
f , and the contravariant wind vector .u1; u2/, and is defined as

S.U/ D
hp
Gu2.f C �/;�pG u1.f C �/; 0

iT
:

9.5.4 The Computational Domain

The spherical SW equations can be discretized either in physical space or in the
computational (transformed) space. Since the SW equations (9.76) are already in
the computational .x1; x2/ space (due to the central projection), it makes sense to
discretize the system in the same space. The computational domain may be con-
sidered as the surface of a logical cube C such that each face of C is defined in
terms of local orthogonal Cartesian coordinates x1; x2 2 Œ�
=4; 
=4	, as shown in
Fig. 9.22. Thus C is essentially a union of six non-overlapping sub-domains (faces)
and any point on C can be uniquely represented by the ordered triple .x1; x2; �/
where � D 1; : : : ; 6, is the cube-face or panel index. The projections and the logi-
cal orientation of the cube panels are described in Nair et al. (2005b) and Lauritzen
et al. (2010).
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Fig. 9.22 A schematic diagram showing the mapping between each spherical tile (element)
˝S
e of the physical domain (cubed-sphere) S onto a planar element ˝e on the computational

domain C (cube). For a DG discretization each element on the cube is further mapped onto a
unique reference element Q, which is defined by the Gauss–Lobatto–Legendre (GLL) quadra-
ture points. The horizontal discretization of the HOMME dynamical cores relies on this grid
system

The equiangular central projection results in a uniform element width .�x1 D
�x2/ on C , which is an advantage for practical implementation. Figure 9.22
provides a schematic diagram of the mapping between the physical domain S
(cubed-sphere) and the computational domain C (cube).

The cubed-sphere has the attractive feature that the domain S is naturally
decomposed into non-overlapping quadrilateral elements (tiles) ˝S

e . This topology
is well-suited for high-order element-based methods such as spectral element or DG
methods, and amenable to efficient parallel implementation. Each face of the cubed-
sphere has Ne �Ne elements, thusNelm D 6N 2

e elements span the entire spherical
domain such that S D [Nelm

eD1 ˝S
e ; in Fig. 9.22 Ne is 4. There exists a one-to-one

correspondence between the spherical element ˝S
e on S and the planar element

˝e on C as depicted in Fig. 9.22. The element-wise continuous mapping allows
us to perform integrations on the sphere in a mapped (local) Cartesian geometry
rather than on the surface of the sphere. The High-Order Method Modeling Envi-
ronment (HOMME) developed at NCAR relies on this grid system (Dennis et al.
2005).

9.5.5 The DG Discretization of the SW Equations

The SW model developed in Nair et al. (2005a) is based on a modal DG dis-
cretization, however, here we consider the nodal inviscid version of the SW model
as implemented in HOMME (Nair 2009). The discretization process for a multi-
dimensional system of equations (9.76) is quite similar to the 2D case considered
in Sect. 9.3. However, as we discuss in Sect. 9.5.5.1, the flux operations (Riemann
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solvers) along the cubed-sphere edges are not trivial to implement. For notational
simplicity, we consider a generic component of the system (9.76) as follows,

@ 

@t
Crc � F. / D S. /; in C � .0; T 	; (9.78)

where F D .F1; F2/ is the flux function and T is the prescribed time of integration.
The Cartesian gradient operator rc on C is defined to be

rc �
�
@

@x1
;
@

@x2

�
) rc � F D @F1

@x1
C @F2

@x2

For example, (9.78) may be considered the continuity equation (or the flux-form
transport equation) for the SW system (9.76); in this case  D pGh, F D
. u1;  u2/ and the source term is S D 0. Similarly, the components of the
momentum equation in (9.76) can be cast in the Cartesian form (9.78).

Analogous to the 2D case considered earlier, the weak Galerkin form corre-
sponding to (9.78) on any element ˝e with boundary �e on C can be written as
follows:

d

dt

Z
˝e

 h 'h d˝ �
Z
˝e

F. h/ � rc'h d˝ C
Z
�e

OF � n'h d�

D
Z
˝e

S. h/ 'h d˝; (9.79)

where h is the approximate solution and 'h is a test function in Vh. OF is the numer-
ical flux, n is the outward-facing unit normal vector on the element boundary�e and
the element of integration is d˝ D dx1dx2. For the numerical flux we employ the
local Lax-Friedrichs flux formula as follows:

OF. h/ D 1

2



.F. �h /C F. C

h
//� ˛imax. 

C
h
�  �h /

�
; (9.80)

where ˛imax is the absolute maximum of the eigenvalues of the flux Jacobian;  �
h

and  C
h

, respectively, are the left and right limits of  h along the boundary �e.
Recall that for each component of the system (9.76) the weak formulation (9.79)

is valid, however, ˛imax must be computed for the entire system. Nair et al. (2005a)
derived the flux Jacobian for the SW system on the cubed-sphere, which is a 3 � 3
matrix, and its maximum eigenvalues along the x1 and x2-directions are,

˛1 D ju1j C
p
G11˚; ˛2 D ju2j C

p
G22˚: (9.81)

These values are nothing but the maximum phase speed of the SW system in the
curvilinear coordinate directions. From (9.81) the local maximum values computed
from both sides along the element wall (�e), are ˛1max D max.˛�1 ; ˛

C
1 / and ˛2max D

max.˛�2 ; ˛
C
2 /, as required in (9.80).
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9.5.5.1 Flux Exchanges at the Cubed-Sphere Edges

For DG methods, the flux exchanges at the element edges are managed by the
numerical flux formulas such as (9.5), and this is the only mechanism by which
the adjacent elements communicate. Because local coordinates are discontinuous at
the cubed-sphere edges, the flux exchange across the edges require special atten-
tion. The local transformation of vectors using (9.75) at the cubed-sphere edges can
be used for exchanging vector quantities including fluxes. For example, consider a
point on the cubed-sphere edge separated by two neighboring faces ‘m’ and ‘n’. The
local vector on the point .u1; u2/m belonging to a face m can be transformed into
the global spherical components .u; v/s using (9.75), and then transformed back to
the local vector .u1; u2/n of the adjacent edges on the face n.

The flux operations on the cubed-sphere edges also follow a similar procedure.
To compute the flux on an edge (or interface) using (9.5), both the left, F�, and the
right, FC, contributions of F D .Fu1 ; Fu2/ are required. For instance, if F� on the
panelm is available then the corresponding FC belongs to the adjacent panel n, and
can be transformed in terms of the local vectors in the panel m by employing the
following dual transformation,

	
Fu1

Fu2


C
m

D A�1m An

	
Fu1

Fu2


C
n

; (9.82)

where the suffixes m, n indicate the adjacent panel indices such that m; n 2
f1; 2; : : : ; 6g. Am; An are transformation matrices defined in (9.75), and for the sake
of computational efficiency the dual transformation matrices A�1m An in (9.82) as
well as the metric terms can be pre-computed.

9.5.5.2 Numerical Integration of the SW Model

The integral and the differential operators required in the DG discretization (9.79)
of the SW system can be approximated on each˝e with boundary �e. The element-
wise discretization is quite similar to the 2D case considered earlier, therefore, we
just outline the procedure in terms of the weak form (9.79) and the SW system
(9.76).

Here we adopt the nodal basis set used for the HOMME dynamical core (Nair
2009). In order to take advantage of efficient quadrature rules, new independent
variables �i D �i .xi /, i 2 f1; 2g are introduced such that �i 2 Œ�1; 1	. This leads to
a mapping of each element ˝e 2 C to a unique reference element Q D Œ�1; 1	˝
Œ�1; 1	, as illustrated schematically in Fig. 9.22. The nodal basis functions are the
Lagrange polynomials h`.�i /, with roots at the GLL quadrature points. The nodal
basis set is chosen to be a tensor-product of polynomials hk.�1/h`.�2/. Now the
approximate solution  h and test function 'h in Vh can be expanded in terms of a
tensor-product of the Lagrange basis functions, and, in the case of  h, such that
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 h.�
1; �2/ D

NX
kD0

NX
`D0

 h.�
1
k ; �

2
` / hk.�

1/h`.�
2/; (9.83)

where f�i
`
gN
`D0 are the GLL quadrature points on the reference element Q. In other

words, there areNv�Nv GLL points onQ (whereNv D N C1), therefore the total
degrees of freedom on C is 6N 2

e N
2
v . The equivalent resolution of the cubed-sphere

with respect to the regular latitude-longitude sphere at the equator is approximately
90ı=.Ne � N/. However, a latitude-longitude spherical grid with the same resolu-
tion at the equator will have approximately 30% more grid points. For the sake of
computational efficiency we use the same order GLL quadrature rule for the internal
integrals in ˝e and the boundary flux integrals along �e, at the cost of nominal loss
of accuracy due to inexact integration (see Sect. 9.3.1.3).

Substitution of the expansion (9.83) for  h and 'h in the weak formulations
and further simplification leads to a system of ODEs in time corresponding to the
continuous problem (9.76),

dU
dt
D L.U/ in .0; T 	; (9.84)

where U are the time dependent nodal gridpoint values for the SW system (9.76). In
the present study we use the third-order accurate explicit strong stability-preserving
(SSP) Runge–Kutta as discussed in Sect. 9.2.5.

9.5.6 Numerical Experiments

Discussion of the solutions to the SW equations on the cubed-sphere based on the
DG method with the Williamson et al. (1992) test suite can be found in Nair et al.
(2005a,b) or, with a viscous SW model, in Nair (2009). In this section we consider a
new deformational test and the barotropic instability test case proposed by Galewsky
et al. (2004).

9.5.6.1 Advection Test

The flux-form advection equation (9.71) on the cubed-sphere can be written as
@

@t

p
G� C @

@x1
.
p
G�u1/C @

@x2
.
p
G�u2/ D 0; (9.85)

where � is the scalar field and the advecting wind is given by the contravariant
vector field .u1; u2/. In fact, this is the continuity equation in the SW system (9.76).
If we introduce D pG� and the fluxesF1 D  u1 and F2 D  u2 then (9.85) can
be written in a form analogous to the 2D Cartesian case.
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9.5.6.2 Deformational Flow Test

We consider a new deformational flow test introduced in Nair and Lauritzen (2010).
For this problem, the initial distributions undergo severe deformation for a pre-
scribed time and then the flow reverses its course, returning the deforming fields
to their initial states (the “boomerang effect”). A special feature of this test is that
the trajectories of the flow are non-trivial (not along a circle or straight line) and
consequently the deformation is severe, making the test very challenging.

This test is prescribed on a unit sphere and quasi-smooth cosine-bell patterns
(a C 1 function) are used as the initial scalar fields. Two symmetrically located
cosine bells are defined by

�.�; �/ D 1

2
Œ1C cos.
ri=r/	 if ri < r; (9.86)

where r D 1=2 is base radius of the bells, ri D ri .�; �/ is the great-circle distance
between .�; �/ and a specified center .�i ; �i / of the cosine bell, which is given by

ri .�; �/ D cos�1Œsin �i sin � C cos �i cos � cos.� � �i /	: (9.87)

The scalar values are initially set to zero (�.�; �/ D 0), and then two cosine bells
(cones) are generated using (9.86) at known points .�1; �1/ D .5
=6; 0/ and
.�2; �2/ D .7
=6; 0/ as the bell centers. The flow field is non-divergent and the time
dependent velocity fields v.�; �; t/ are prescribed in longitude-latitude coordinates,

u.�; �; t/ D � sin2.�/ sin.2�/ cos.
t=T / (9.88)

v.�; �; t/ D � sin.2�/ cos.�/ cos.
t=T /; (9.89)

where the parameter � D 2 and the final time of the simulation is T D 5 non-
dimensional.

The DG transport scheme employs a 4 � 4 GLL grid with Ne D 20. This cor-
responds to an approximate resolution of 1:5ı at the equator. The third-order SSP
RK scheme (9.29) is used with a time step �t D 5=1200 for the simulations (1,200
time steps are required for the total simulation). Figure 9.23 shows the initial con-
ditions and simulated results for the deformational test with the DG scheme. The
cosine bells move away from the initial positions (Fig. 9.23a) and deform into thin
spiral shapes at time t D T=2 (Fig. 9.23b). The trajectories for the non-divergent
flow are complex and the cosine bells pass along the edges and corners, covering
the six faces of the cubed-sphere. The DG scheme successfully simulates the defor-
mations and retains the initial position as well as shape of the distribution at the
end of the simulation (t D T ), as shown in Fig. 9.23c. Since the final solution is
identical to the initial conditions by design, the global standard errors norms l1, l2
and l1 (Williamson et al. 1992) can be computed.
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a

b

c

Fig. 9.23 Deformational flow test with the DG transport scheme on the cubed-sphere. The equiv-
alent resolution at the equator (with Ne D 20) is approximately 1:5ı. (a) The initial positions of
the scalar field (cosine bells) centered at .�i ; �i / D .5
=6; 0/ and .7
=6; 0/. (b) Deformed scalar
fields at half-time .t D T=2/ of the simulation. (c) The scalar fields (numerical solution) return
back to the initial positions at the final time .t D T /
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9.5.6.3 Solid-Body Rotation Test

The cosine-bell problem proposed by Williamson et al. (1992) is widely used to test
advection schemes on the sphere. The same test has been considered in Nair et al.
(2005b) for verifying the accuracy and conservation properties of the DG schemes
as well as the accuracy of various central projections for the cubed-sphere system.
Here we employ this test to demonstrate the effectiveness of the monotonic limiter
designed for the DG P 2 transport scheme in Sect. 9.4.2. The initial scalar field is a
cosine bell defined as follows,

�.�; �/ D
�
.h0=2/ Œ1C cos.
r=r0/	 if r < r0
0 if r 
 r0; (9.90)

where r is the great-circle distance between .�; �/ and the bell center .3
=2; 0/ as
given in (9.87). The cosine-bell radius is r0 D R=3 and the maximum height of
the bell is h0 D 1;000 m, where R D 6:37122 � 106 m is the Earth’s radius. The
velocity components of the advecting wind field are

u D u0 .cos˛0 cos � C sin ˛0 cos� sin �/;

v D �u0 sin ˛0 sin�;

where u0 D 2
R=.12 days/, and ˛0 is the flow orientation parameter which con-
trols the direction of the flow on the sphere along a great-circle trajectory. When
the value of ˛0 is equal to zero or 
=2, the flow direction is along the equator or
in the north-south (meridional) direction, respectively. For the cubed-sphere, flow
along the north-east direction (˛0 D 
=4) is more challenging because the cosine-
bell pattern passes over four vertices and two edges of the cube during a complete
revolution (in a 12-day period). The exact solution for �.�; �/ is known for this test
and is equal to the initial value. Ideally, after a complete revolution the cosine-bell
pattern should return to the initial position without incurring any deformation.

The DG P 2 scheme with Ne D 45 is used for the numerical simulation, this
corresponds to 1ı resolution (approximately) at the equator. The second-order SSP
RK scheme (9.28) is applied for 1,600 time steps to complete one revolution.
Figure 9.24 shows the numerical solution (left panel) and the limited solution (right
panel). As expected the non-limited solution is oscillatory, however, oscillations are
confined to a smaller region around the cosine-bell. The monotonic limiter removes
spurious oscillations but slightly deforms the shape of the bell. The additional com-
putational expense required for the limiter is nominal, for the cosine-bell advection
test it is found to be less than 5%.

9.5.6.4 Barotropic Instability Test

The barotropic instability test proposed by Galewsky et al. (2004) is an interest-
ing test for the SW models developed on the cubed-sphere grids. The test describes
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D

Fig. 9.24 The cosine-bell advection test on the sphere. The left panel shows the DG (P 2) numer-
ical solution after a complete revolution along northeast direction, where spurious oscillations in
the solution can be seen for the zero contour value. The right panel shows the limited solution by
applying a monotonic limiter that completely removes the oscillations

the evolution of a barotropic wave in the northern hemisphere and exhibits continu-
ous nonlinear transfer of energy at the midlatitudes from large to small scales. The
test is particularly challenging on the cubed-sphere because the vigorous barotropic
instability activities are located at the discontinuous edges of the top panel of the
cubed-sphere grid. This test exposes artifacts from wave number four due to the
cube-edge discontinuities at low resolutions for various SW models (St-Cyr et al.
2008; Chen and Xiao 2008; Levy 2009).

The initial conditions are zonally symmetric, and nearly in balance but physically
unstable. This introduces a strong zonal jet along the midlatitudes; details can be
found in Galewsky et al. (2004). The test recommends a simulation time of 6 days
with and without diffusion. Fine features of the vorticity fields can be captured at a
resolution of about 1:25ı or higher (St-Cyr et al. 2008), and the DG results agree
with this observation. Figure 9.25 shows a high-resolution DG simulation of relative
vorticity .�/ at days 4 and 6, respectively. The approximate equatorial resolution is
0:64ı .Ne D 20;Nv D 8/ and a time step�t D 6s is used for these simulations. The
fine features of the vortex are well captured by the DG SW model and comparable to
the reference solution given in Galewsky et al. (2004). Small-scale noise at the sharp
gradients in Fig. 9.25 can be effectively controlled by using a diffusion scheme.

We briefly outline the diffusion process as used for DG methods in the con-
text of the barotropic vorticity evolution. Diffusion and dissipation mechanisms are
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Fig. 9.25 The simulated relative vorticity fields (�) for the barotropic instability test at a high-
resolution. The left panel shows � at day 4 and the right panel, � at day 6

inevitable for practical atmospheric models. For example, momentum diffusion
transfers energy from the resolved scales into the unresolved scales. However, in
a discrete climate model, diffusion tries to mimic the effects of unresolved scales
on the resolved fluid flow (Chap. 13). Moreover, the diffusion process prevents
spurious accumulation of energy and enstrophy at the model grid scale. The DG
method is amenable to efficient implementation of robust diffusion schemes. This
is based on the so-called Local DG or LDG method by Cockburn and Shu (1998),
which is a generalization of the explicit diffusion scheme proposed originally by
Bassi and Rebay (1997). Recently, Nair (2009) developed a second-order LDG
diffusion scheme for the viscous SW model on the cubed-sphere. The vorticity
evolution results shown in Nair (2009) confirm that the LDG based diffusion mech-
anism removes small-scale noise such that the solution converges monotonically to
a diffused state. The convergence is dependent on the coefficient of diffusion.

9.6 Concluding Remarks

The DG method combined with explicit strong stability-preserving Runge-Kutta
time-stepping is particularly attractive for wave propagation problems because of
the ability to use local high-order polynomial approximations for the solution, pro-
viding an efficient way to control phase and dissipation errors. The DG method is
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becoming popular in geophysical fluid dynamics modeling, with several efforts to
develop global SW models based on DG methods (Giraldo et al. 2002; Nair et al.
2005a; Läuter et al. 2008; Nair 2009). Very recently, DG methods have been fur-
ther extended to hydrostatic (Nair et al. 2009) and non-hydrostatic (Giraldo and
Restelli 2008; St-Cyr and Neckels 2009) atmospheric models. Currently there are
new efforts by various research groups to develop sophisticated DG-based atmo-
spheric models, including some with adaptive meshes. Motivations for choosing the
DG method as the primary numerical technique for these model developments are
based on various factors such as the high-order accuracy, conservation, geometric
flexibility and parallel efficiency. Nevertheless, there are some computational issues
associated with the explicit DG discretization.

A major drawback of the DG algorithm is the severe CFL stability restriction
associated with explicit time-stepping. For practical climate models and high reso-
lution non-hydrostatic NWP models, overall computational efficiency is very much
contingent on the model’s ability to take larger time steps. A moderate order DG
scheme employing third- or fourth-order spatial discretization (i.e., a P 2 or P 3 me-
thod) can address the stringent stability requirement to some extent. Implicit time
integration approaches are also popular for DG methods in CFD applications
(Diosady and Darmofal 2009; Bassi et al. 2009). The numerical algorithms for
such methods are far more complex and require considerably more computational
resources than explicit schemes. If such techniques permit at least 3-fold longer time
steps for unsteady problems as compared to the explicit method, then they may be
worth considering for atmospheric modeling applications.

Development of efficient time integration methods for DG methods is an
active area of research. The semi-implicit time integration method for a DG non-
hydrostatic model introduced by Restelli and Giraldo (2009) appears to be promis-
ing. The recent novel time integration approaches such as the ADER (Arbitrary
high order DERivatives) by Käser et al. (2007) and IMEX (implicit explicit) RK
methods by Kanevsky et al. (2007) have been shown to be efficient time integration
options for DG methods. These new time integration techniques could be extended
to DG atmospheric models.

Acknowledgments The authors are thankful to IMAGe (NCAR) colleagues, particularly
Dr. Duane Rosenberg for an internal review of the manuscript. The authors would also like to
thank two anonymous reviewers for several helpful suggestions. This project is partially supported
by the U.S. Department of Energy under the awards DE-FG02-07ER64464 and DE-SC0001658.
The National Center for Atmospheric Research is sponsored by the National Science Foundation.

References

Arakawa A, Lamb VR (1977) Computational design of the basic dynamical process of the UCLA
general circulation model. In: Chang J (ed) Methods in Computational Physics, Academic
Press, pp 173–265

Atkins HL, Shu CW (1996) Quadrature-free implementation of the discontinuous Galerkin method
for hyperbolic equations. In: 2nd AIAA/CEAS Aeroacoustic Conference, Paper 96-1683.



308 R.D. Nair et al.

Balsara DS, Altman C, Munz CD, Dumbser M (2007) Sub-cell based indicator for troubled zones
in RKDG schemes and a novel class of hybrid RKDGCHWENO schemes. J Comput Phys
226(1):586–620

Bassi F, Rebay S (1997) A high-order accurate discontinuous finite element method for the
numerical solution of the compressible Navier-Stokes equations. J Comput Phys 131:267–279

Bassi F, Ghidoni A, Rebay S, Tesini P (2009) High-order accurate p-multigrid discontin-
uous Galerkin solution of the Euler equations. Int J Numer Meth Fluids 60:847–865,
doi:10.1002/fld.1917

Biswas R, Devine K, Flaherty J (1994) Parallel adaptive finite-element methods for conservation
laws. Appl Num Math 14:255–283

Boris JP, Book DL (1973) Flux-Corrected Transport. I. SASHSTA, a fluid transport algorithm that
works. J Comput Phys 11(1):38–69

Butcher JC (2008) Numerical Methods for Ordinary Differential equations, Second edn. Wiley,
ISBN 978-0-470-72335-7 463 pp.

Canuto C, Hussaini MY, Quarteroni A, Zang TA (2007) Spectral Methods: Evolution of Complex
Geometries and Application to Fluid Dynamics. Springer, ISBN 978-3-540-30727-3, 596 pp.

Chen C, Xiao F (2008) Shallow water model on cubed-sphere by multi-moment finite volume
method. J Comput Phys 227(10):5019–5044

Cheruvu V, Nair RD, Tufo HM (2007) A spectral finite volume transport scheme on the cubed-
sphere. Appl Num Math 57:1021–1032

Cockburn B, Shu CW (1989) TVB Runge-Kutta local projection discontinuous Galerkin finite
element method for conservative laws II. Math Comp 52:411–435

Cockburn B, Shu CW (1998) The local discontinuous Galerkin method for time-dependent
convection-diffusion schemes. SIAM J Numer Anal 35:2440–2463

Cockburn B, Shu CW (2001) The Runge-Kutta discontinuous Galerkin method for convection-
dominated problems. J Sci Computing 16:173–261

Cockburn B, Hou S, Shu CW (1990) TVB Runge-Kutta local projection discontinuous Galerkin
finite element method for conservation laws IV. Math Comp 54:545–581

Cockburn B, Johnson C, Shu CW, Tadmor E (1997) Advanced Numerical Approximation of
Nonlinear Hyperbolic Equations. Springer, LNM 1697

Cockburn B, Karniadakis GE, Shu CW (2000) The development of discontinuous Galerkin meth-
ods. In: Cockburn B, Karniadakis GE, Shu CW (eds) Discontinuous Galerkin Methods: Theory,
Computation, and Applications. Lecture Notes in Computational Science and Engineering,
vol 11, Springer, 470 pp.

Colella P, Woodward PR (1984) The Piecewise Parabolic Method (PPM) for gas-dynamical
simulations. J Comput Phys 54:174–201

Crowell S, Williams D, Marviplis C, Wicker L (2009) Comparison of traditional and novel dis-
cretization methods for advection models in numerical weather prediction. In: Lecture Notes in
Computer Science, vol 5545, Springer-Verlag, pp 263–272, ICCS 2009, Part II.

DeMaria M (1985) Tropical cyclone motion in a nondivergent barotropic model. Mon Wea Rev
113:119–1210

Dennis J, Fournier A, Spotz WF, St-Cyr A, Taylor MA, Thomas SJ, Tufo H (2005) High-resolution
mesh convergence properties and parallel efficiency of a spectral element atmospheric dynam-
ical core. Int J High Perf Computing Appl 19(3):225–235

Deville MO, Fisher PF, Mund EM (2002) High-Order Methods for Incompressible Fluid Flow.
Cambridge University Press, ISBN 0-521-45309-7, 499 pp.

Diosady LT, Darmofal DL (2009) Preconditioning methods for discontinuous Galerkin solutions
of the compressible Navier-Stokes equations. J Comput Phys 228:3917–3835

Galewsky J, Polvani LM, Scott RK (2004) An initial-value problem to test numerical models of
the shallow water equations. Tellus 56A:429–440

Ghostine R, Kessewani G, Mosé R, Vazquez J, Ghenaim A (2009) An improvement of classical
slope limiters for high-order discontinuous Galerkin method. Int J Numer Meth Fluids 59:
423–442



9 Emerging Numerical Methods for Atmospheric Modeling 309

Giraldo FX, Restelli M (2008) A study of spectral element and discontinuous Galerkin methods
for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation
sets and test cases. J Comput Phys 227:3849–3877

Giraldo FX, Hesthaven JS, Wartburton T (2002) Nodal high-order discontinous Galerkin methods
for the shallow water equations. J Comput Phys 181:499–525

Godunov SK (1959) A difference method for numerical calculation of discontinuous solutions of
the equations of hydrodynamics. Mat Sb 47:271–306

Gottlieb S, Shu CW, Tadmor E (2001) Strong stability preserving high-order time discretization
methods. SIAM Rev 43:89–112

Harten A, Engquist B, Osher S, Chakravarthy S (1987) Uniformly high order essentially non-
oscillatory schemes, III. J Comput Phys 71:231–303

Hesthaven JS, Warburton T (2008) Nodal Discontinuous Galerkin Methods: Algorithms, Analysis,
and Applications. Springer, ISBN 978-0-387-72065-4, 500 pp.

Iskandarani M, Levin J, Choi BJ, Haidgovel D (2005) Comparison of advection schemes for high-
order h-p finite element and finite volume methods. Ocean Modeling 10:233–252

Kanevsky A, Carpenter MH, Gottlieb D, Hasthevan JS (2007) Application of implicit-explicit
high order Runge-Kutta methods to discontinuous-Galerkin schemes. J Comput Phys 225:
1753–1781

Karniadakis GE, Sherwin S (2005) Spectral/hp Element Methods for Computational Fluid
Dynamics. Oxford University Press, ISBN 0-19-852869-8, 657 pp.

Käser M, Dumbser M, Puente J, Igel H (2007) An arbitrary high-order discontinuous Galerkin
method for elastic waves on unstructured meshes-III. Geophys J Int 168:224–242

Kopriva DA (2009) Implementing Spectral Methods for Partial Differential Equations. Springer,
ISBN 978-90-481-2260-8, 394 pp.

Kopriva DA, Gassner G (2010) On the quadrature and weak form choices in collocation type
discontinuous Galerkin spectral element methods. J Sci Comput 44:136–155

Krivodonova L (2007) Limiters for high-order dicontinuous Galerkin methods. J Comput Phys
226:879–896

Kubatko EJ, Bunya S, Dawson C, Westerink JJ (2009) Dynamic p-adaptive Runge–Kutta discon-
tinuous Galerkin methods for the shallow water equations. Comput Methods Appl Mech Engrg
198:1766–1774

Lauritzen PH, Nair RD, Ullrich PA (2010) A conservative semi-Lagrangian multi-tracer transport
scheme (CSLAM) on the cubed-sphere grid. J Comput Phys 229:1401–1424

Läuter M, Giraldo FX, Handorf D, Dethloff K (2008) A discontinuous Galerkin method for shallow
water equations in spherical traingular coordinates. J Comput Phys 227:10, 226–10, 242

van Leer B (1974) Towards the ultimate conservative difference scheme. II. Monotonicity and
conservation combined in a second-order scheme. J Comput Phys 14:361–370

van Leer B (1977) Towards the ultimate conservative difference scheme. IV. A new approach to
numerical convection. J Comput Phys 23:276–299

Lesaint P, Raviart P (1974) Mathematical Aspects of Finite Elements in Partial Differential Equa-
tions, Academic Press, New York, chap On a finite element method for solving neutron
transport eqaution, pp 89–123

LeVeque RJ (2002) Finite Volume Methods for Hyperbolic Problems. Cambridge University Press,
ISBN 0-19-00924-3, 558 pp.

Levy MN (2009) A high-order element-based Galerkin method for the global shallow water equa-
tions. PhD thesis, University of Colorado at Boulder, Department of Applied Mathematics,
108 pp.

Levy MN, Nair RD, Tufo HM (2007) High-order Galerkin methods for scalable global atmospheric
models. Computers & Geosciences 33(8):1022–1035

Levy MN, Nair RD, Tufo HM (2009) A high-order element-based Galerkin method for the
barotropic vorticity equation. Int J Numer Meth Fluids 59(12):1369–1387

Liu XD, Osher S, Chan T (1994) Weighted essentially non-oscillatory schemes. J Comput Phys
115:200–212



310 R.D. Nair et al.

Lomtev I, Kirby RM, Karniadakis GE (2000) A discontinuous Galerkin method in moving
domains. In: Cockburn B, Karniadakis GE, Shu CW (eds) Discontinuous Galerkin Methods:
Theory, Computation, and Applications. Lecture Notes in Computational Science and Engi-
neering, vol 11, Springer, 470 pp.

Luo H, Baum JD, Löhner R (2007) A Hermite WENO-based limiter for discontinuous Galerkin
method on unstructured grids. J Comput Phys 225(1):686–713

Lynch P (2008) The origins of computer weather prediction and climate modeling. J Comput Phys
227:3431–3444

Nair RD (2009) Diffusion experiments with a global discontinuous Galerkin shallow-water model.
Mon Wea Rev 137:3339–3350

Nair RD, Lauritzen PH (2010) A class of deformational flow test cases for linear transport problems
on the sphere. J Comput Phys 229:8868–8887

Nair RD, Thomas SJ, Loft RD (2005a) A discontinuous Galerkin global shallow water model. Mon
Wea Rev 133:876–888

Nair RD, Thomas SJ, Loft RD (2005b) A discontinuous Galerkin transport scheme on the cubed-
sphere. Mon Wea Rev 133:814–828

Nair RD, Choi HW, Tufo HM (2009) Computational aspects of a scalable high-order discontinuous
Galerkin atmospheric dynamical core. Computers and Fluids 38:309–319

Prather MJ (1986) Numerical advection by conservation of second-order moments. J Geophys Res
91:6671–6681

Qiu J, Khoo BC, Shu CW (2006) A numerical study for the performance of the Runge-
Kutta discontinuous Galerkin method based on different numerical fluxes. J Comput Phys
212(2):540–565

Qui J, Shu CW (2005a) Hermite WENO schemes and their application as limiters for Runge-Kutta
discontinuous Galerkin methods II: Two dimesional case. Computers & Fluids 34:642–663

Qui J, Shu CW (2005b) Runge-Kutta discontinuous Galerkin methods using WENO limiters.
SIAM J Sci Computing 26:907–927
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Chapter 10
Voronoi Tessellations and Their Application
to Climate and Global Modeling

Lili Ju, Todd Ringler, and Max Gunzburger

Abstract We review the use of Voronoi tessellations for grid generation, especially
on the whole sphere or in regions on the sphere. Voronoi tessellations and the cor-
responding Delaunay tessellations in regions and surfaces on Euclidean space are
defined and properties they possess that make them well-suited for grid generation
purposes are discussed, as are algorithms for their construction. This is followed
by a more detailed look at one very special type of Voronoi tessellation, the cen-
troidal Voronoi tessellation (CVT). After defining them, discussing some of their
properties, and presenting algorithms for their construction, we illustrate the use of
CVTs for producing both quasi-uniform and variable resolution meshes in the plane
and on the sphere. Finally, we briefly discuss the computational solution of model
equations based on CVTs on the sphere.

10.1 Introduction

Given two sets A and B and a distance metric d.a; b/ defined for a 2 A and b 2
B , a Voronoi diagram or tessellation is a subdivision of A into subsets, each of
which contains the objects in A that are closer, with respect to the distance metric,
to one object in B than to any other object in B . Although Voronoi tessellations
can be defined for a wide variety of sets and metrics, of interest here is the situation
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for which the set A is a region or surface in Euclidean space, B is a finite set of
points also in Euclidean space, and the metric is the Euclidean distance.

Voronoi tessellation have a long history, probably because Voronoi-like arrange-
ments often appear in nature. Voronoi-like tessellations appeared in 1644 in the
work of Decartes on the distribution of matter in the cosmic region near our sun.
The first systematic treatment of what we now call Voronoi tessellations was given
by Dirichlet (1850) in his study of two- and three-dimensional quadratic forms,
i.e., homogeneous, multivariate polynomials of degree two; hence, Voronoi regions
are often referred to as Dirichlet cells. Voronoi (1907) generalized the work of
Dirichlet to arbitrary dimensions, again using what are now referred to as Voronoi
tessellations or diagrams.

The first documented application of Voronoi tessellations appeared in the clas-
sic treatise of Snow (1855) on the 1854 cholera epidemic in London in which he
demonstrated that proximity to a particular well was strongly correlated to deaths
due to the disease. Voronoi tessellations have continued to be very useful in the
social sciences, e.g., in the study of dialect variations, demographics, territorial sys-
tems, economics, and markets. Starting in the late nineteenth century and continuing
to this day, Voronoi tessellations have also been used in crystallography, especially
in the study of space-filling polyhedra, although, in this setting, various other names
have been used to denote Voronoi regions, e.g., stereohedra, fundamental area,
sphere of influence, domain of action, and plesiohedra.

It is not surprising, due to their ubiquity and usefulness, that throughout the
twentieth century, Voronoi tessellations were rediscovered many times. As a result,
Voronoi regions have been called by many different names. Thiessen polygons refer
to the work of Theissen on developing more accurate estimates for the average rain-
fall in a region. Area of influence polygons was a term coined in connection with the
processing of data about ore distributions obtained from boreholes. Wigner-Seitz
regions, domain of an atom, and Meijering cells were terms that arose from work on
crystal lattices and the Voronoi cell of the reciprocal crystal lattice is referred to as
the Brillouin zone (Kittel 2004; Ziman 1979). In the study of codes by, e.g., Shan-
non, Voronoi cells are called maximum likelihood regions (Weaver and Shannon
1963). The field of ecology gave rise to two more alternate labels: area potentially
available and plant polygons for a Voronoi region associated with a particular tree
or plant. Capillary domains refers to Voronoi regions in a tissue based on the centers
of capillaries.

For a long time, the routine use of Voronoi tessellations in applications was
hindered by the lack of efficient means for their construction. This situation has
now been remedied, at least in two and three dimensions. Voronoi tessellations also
became closely intertwined with computational geometry. For example, Shamos and
Hoey (1975) not only provided an algorithm for constructing Voronoi tessellations,
but also showed how they could be used to answer several fundamental questions in
computational geometry.
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Delaunay tessellations,1 the dual concept to Voronoi tessellations, also have a
long history and have been called by other names. They originated with Voronoi
(1908) who called them the ensemble (L) of simplices. Delaunay (1928, 1934) was
the first to define the tessellations bearing his name2 in terms of empty spheres; he
referred to them in terminology similar to that of Voronoi and, even today, some
refer to Delaunay tessellations as L-partitions. The name Delaunay was first asso-
ciated with Delaunay triangulations by Rogers (1964). Delaunay tessellations have
also proven to be very useful, especially for grid generation.

The first applications of Voronoi tessellations to global atmospheric modeling
were made by Williamson (1968) and Sadourny et al. (1968) wherein the barotropic
vorticity equation was integrated forward in time. Neither Williamson nor Sadourny
referred to their meshes as Voronoi tessellations; Williamson referred to the under-
lying tessellation as a “geodesic grid,” a colloquialism that is used in much of
the literature discussing the use of Voronoi tessellations in global climate model-
ing.3 Both of these efforts produced promising results as compared to other models
available at the time. The reason for their success was really due to not having a
longitudinal polar filter which distorted the earlier solutions on latitude-longitude
grids, or to not using a reduced grid which also distorted the solutions. In addition,
it helped as well that the discrete formation of the Jacobian put forth by Arakawa
(1966) could be readily translated to their respective “geodesic grids.” Williamson
(1970) continued this line of research with the integration of the shallow-water
system in primitive variable form. While Williamson’s tessellation was extremely
uniform, in a global sense, as compared to the latitude-longitude meshes being using
in other model development efforts (Kasahara and Washington 1967), the truncation
error analysis by Williamson clearly reflected the fact that the Voronoi tessellation

1 Delaunay tessellations are often referred to as Delaunay triangulations because, in two dimen-
sions, they consist of a triangulation of the points that generate the Voronoi tessellation. We
choose to refer to them as Delaunay tessellations to emphasize the fact that the concept of a dual
to Voronoi tessellations is quite general and not limited to two dimensions. When dealing with
two-dimensional settings, we will however, call them Delaunay triangulations.
2 Delone was a Russian number theorist who used the spelling Delaunay when writing papers in
French or German. He was also the first to coin both the descriptors “Dirichlet domains” and
“Voronoi regions.”
3 Adjectives such as “geodesic,” “bisection,” and “icosahedral” are often used to describe grids on
the sphere. However, there seems to be a lack of consistency about what these qualifiers mean. In
this paper, we use the following terminology.

Geodesic grids refer to any grid on the sphere such that the edges of the grid cells are geodesic
arcs, i.e., arcs of great circles. According to this definition, all Voronoi grids on the sphere are, by
construction, geodesic grids.

Bisection grids refer to any grid constructed through repeated bisection of a platonic solid
having vertices on the sphere and edges projected onto the sphere. Bisection grids are by construc-
tion geodesic grids. One may also define a bisection grid by repeated bisection of the Delaunay
triangulation corresponding to the platonic solid.

Octahedral-bisection grids refer to bisection grids that are based on the platonic octahedra hav-
ing 12 pentagonal faces. Note that this grid is often referred to as a “geodesic grid” or a “bisection
grid” but here we make a finder distinction between these terminologies.
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was less uniform in a local sense; the discrete operators used in (Williamson 1970)
resulted in first-order truncation errors that could quickly corrupt the solution.
Williamson’s barotropic primitive equation model was discretized using a collocated
grid where thickness and velocity reside at the same location.4 Since a collocated
grid makes little (if any) use of the dual mesh, it is not clear if this geodesic grid was
or was not a Voronoi tessellation.

Following Williamson (1970), the idea of solving the barotropic primitive equa-
tions based on a Voronoi tessellation was essentially abandoned for 15 years. It
appears that this idea did not gain traction for two reasons. First, global spectral
models emerged as a superior choice to their finite-volume or finite-difference coun-
terparts because they are based on the natural polar filter so to speak and have no
pole problem. Their spectral accuracy and the reintroduction of the fast Fourier
transform (Cooley and Tukey 1965) also contributed significantly. Second, while
numerical schemes situated on latitude-longitude meshes were burdened with trun-
cation errors comparable to those found by Williamson (1970), progress toward
methods to mitigate the impact of these errors on the long-term stability of sim-
ulations was much more rapid for quadrilateral meshes; see, e.g., (Arakawa and
Lamb 1977). Unfortunately, the numerical methods developed for the solution of
the barotropic primitive equations on quadrilateral meshes did not readily translate
to Voronoi tessellations. For example, while C-grid staggered quadrilateral meshes
were essentially operational by the mid 1970s, a comparable C-grid scheme for
general Voronoi tessellations was not derived until Thuburn et al. (2009) in 2009.

Because it appeared, at least at the time, that Voronoi tessellations were not well
suited for the integration of the primitive equations, when this idea was revisited
by Masuda and Ohnishi (1986) they chose a different system of equations to dis-
cretize. Masuda and Ohnishi formulated the shallow-water system in vorticity and
divergence variables, instead of primitive variables. In this approach, the thickness,
vorticity, and divergence are collocated at the center of each Voronoi cell. Other sim-
ilar work on solving shallow water equations based on Voronoi mesh was done by
Augenbaum (1984) and Augenbaum and Peskin (1985). Randall (1994) would later
show that the collocation of variables in the vorticity-divergence system, termed
the Z-grid, leads to a simulation of geostrophic adjustment that is better than any
of the other staggerings based on primitive variables. The superior simulation of
geostropic adjustment along with the direct control over the evolution of vorticity
led to robust simulations of the shallow-water system. Heikes and Randall (1995a,b)
continued this line of research with the implementation of a geometric multigrid
solver to mitigate the cost associated with solving the vorticity-divergence system.
In turn, this work led to the creation, by Ringler et al. (2000) in 2000, of the first
global atmosphere dynamical core situated on a Voronoi tessellation.

The demonstration that Voronoi tessellations could be used to successfully model
global atmosphere dynamics created considerable interest. By and large, all global
atmosphere models using finite-volume methods were based on latitude-longitude

4 The collocated grid was later named the “A-Grid” in (Arakawa and Lamb 1977).
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grids. With no satisfactory solutions to overcome the grid singularities present at
the poles of latitude-longitude grids, the quasi-uniform grid offered by Voronoi
tessellations was a compelling alternative. This stimulated research toward finding
numerical schemes based on primitive variables that would essentially translate the
A-, B- and C-grid staggerings from quadrilateral meshes to Voronoi tessellations.
The collocated, A-grid staggering, first proposed by Williamson (1970), was suc-
cessfully implemented by Tomita et al. (2001). That effort resulted in the first ever
global cloud resolving simulation by Tomita et al. (2005). It is important to note
that (Tomita et al. 2001, 2005) do not employ a Voronoi tessellation since the loca-
tion of the cell vertices are placed at the barycenter5 of the Delaunay triangulation,
instead of the circumcenter of the Delaunay triangulation. As a result, the power-
ful results that follows from a Voronoi tessellation are not immediately applicable
to their mesh. The B-grid staggering was successfully developed for Voronoi tes-
sellations by Ringler and Randall (2002). It is only at this point, fully two decades
after the energy and potential enstrophy conserving schemes for quadrilateral grids
were derived (Arakawa and Lamb 1981), that the numerical methods on Voronoi
tessellations are comparable to their quadrilateral counterparts.

With the successful implementation of both the discrete vorticity-divergence sys-
tem and various discrete forms of the primitive equation system on quasi-uniform
Voronoi tessellations, attention is now turning toward the use of variable resolution
Voronoi tessellations. During this process we are essentially revisiting the trunca-
tion error problems that Williamson (1970) identified four decades ago when using
quasi-uniform Voronoi tessellations. When pairing low-order, finite-volume meth-
ods with variable resolution Voronoi tessellations, truncation error will be increased,
at least locally, in the regions of mesh transition. To overcome the challenge pre-
sented by this truncation error behavior, we see three routes forward. First, increase
the accuracy of the underlying finite-volume method to reduce truncation error to
acceptable levels; this approach was successfully employed in (Du et al. 2003b; Du
and Ju 2005; Weller 2009; Weller and Weller 2008). Second, develop numerical
schemes that respect both geostrophic adjustment and the need for nonlinear stabil-
ity, even when the mesh is highly distorted; this approach has been developed by
(Thuburn et al. 2009; Ringler et al. 2010). And finally, we can attempt to optimize
the quality of the variable resolution meshes in order to limit the extent of the prob-
lem. In the end, some combination of these three approaches will likely lead to the
creation of a variable-resolution global climate system model.

This chapter is focused on the mesh generation aspect of Voronoi tessellations
and, more importantly, the inherent properties that these meshes are guaranteed to
possess. We first provide a mathematical description of Voronoi tessellations and
their Delaunay triangulation counterparts. This is followed by a detailed analysis of
one very special type of Voronoi tessellation, the centroidal Voronoi tessellation. We
then explore the properties of centroidal Voronoi tessellations when producing both

5 The barycenter is the center of mass; thus, for a triangle, the barycenter is at the intersection of
the three lines joining the vertices and the centers of the opposite sides whereas the circumcenter
is at the intersection of the perpendicular bisectors of the three sides.



318 L. Ju et al.

quasi-uniform and variable resolution meshes. Finally, we briefly discuss the numer-
ical implementation of models using centroidal Voronoi tessellations. We defer until
Sect. 10.3 a discussion about why centroidal Voronoi tessellations are especially
well suited as a basis for grid generation.

10.2 Voronoi and Delaunay Tessellations

10.2.1 Definitions and Properties

We are given an open bounded domain ˝ 2 Rd and a set of distinct points
fxigniD1 
 ˝ . For each point xi , i D 1; : : : ; n, the corresponding Voronoi region Vi ,
i D 1; : : : ; n, is defined by

Vi D
˚
x 2 ˝ j kx� xik < kx� xjk for j D 1; � � � ; n and j ¤ i�; (10.1)

where k�k denotes the Euclidean distance (theL2 metric) in Rd . Clearly Vi\Vj D ;
for i ¤ j , and6 [niD1V i D ˝ so that fVigniD1 is a tessellation of ˝ . We refer to
fVigniD1 as the Voronoi tessellation or Voronoi diagram of ˝ (Okabe et al. 2000)
associated with the point set fxigniD1. A point xi is called a generator; a subdomain
Vi 
 ˝ is referred to as the Voronoi region or Voronoi cell corresponding to the
generator xi .

It is clear that, except for “sides” that are part of the boundary of ˝ , Voronoi
regions fVigniD1 are polygons in two dimensions and polyhedra in three dimensions.
Figure 10.1 (upper left) presents a Voronoi tessellation of the unit square in two
dimensions corresponding to ten randomly selected generators. It is guaranteed that
the line segment connecting two neighbor generators is orthogonal to the shared
edge/face and is bisected by that edge/face.

The dual of a Voronoi tessellation in the graph-theoretical sense (i.e., by con-
necting all pair of neighbor generators) is called a Delaunay tessellation or, in two
dimensions, a Delaunay triangulation (Okabe et al. 2000) associated with the point
set fxigniD1. Elements of a Delaunay tessellation consist of triangles in two dimen-
sions and tetrahedra in three dimensions. The Delaunay triangulation corresponding
to the above ten generators is shown in Fig. 10.1 (top right). Note that each triangle
of the Delaunay triangulation is associated with a single vertex of its dual Voronoi
tessellation. That Voronoi vertex is located at the center of the circumscribed cir-
cle of the triangle; see an illustration in Fig. 10.1 (bottom). Each cell edge of the
Voronoi tessellations is uniquely associated with one cell edge of the dual Delaunay
triangulation; each pair of edges are orthogonal, but do not necessarily intersect. If
the pair of edges do intersect (or if the lines segments are extended to a point where

6 For the open region ˝, ˝ denotes its closure, i.e., ˝ together with its boundary points.
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Fig. 10.1 The Voronoi tessellation of the unit square corresponding to ten randomly selected
generators. Top-left: the bisection property; top-right: the corresponding Delaunay triangulation;
bottom: the circumcircle property

they intersect), then the intersection point will bisect the line segment connecting
generators.

In two dimensions, the Delaunay triangulation maximizes the minimum angle,
i.e., compared to any other triangulation of the points, the smallest angle in the
Delaunay triangulation is at least as large as the smallest angle in any other. This
property does not hold in higher dimensions. Note also that for a given set of gener-
ators, the Voronoi tessellation is always unique; however, the Delaunay tessellation
may not be unique in certain special situations, e.g., when four generators in two
dimensions form a rectangle that does not contain any other generator.

Voronoi and Delaunay tessellations of a general surface or manifold also have
been widely studied in the field of computer graphics; see, e.g., (Boissonnat and
Oudot 2005). In particular, spherical Voronoi tessellation and Delaunay triangula-
tion and related algorithms are developed in (Renka 1997).

10.2.2 Construction Algorithms

For a given set of distinct points fxigniD1 
 ˝ , the construction of the corresponding
Voronoi tessellation and Delaunay triangulation in Euclidean space has been well
studied in past decades; see (Okabe et al. 2000). Note that some algorithms directly
compute the Delaunay tessellation whereas others compute the Voronoi tessellation.
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Fig. 10.2 The flipping operation. Left: the triangulation does not meet the Delaunay condition,
i.e., the circumcircles contain more than three points; right: flipping the common edge produces a
Delaunay triangulation for the four points

As illustrated in Fig. 10.1, a property of the Delaunay triangulation is that the
circle circumscribing any Delaunay triangle does not contain any other generators
in its interior. This is an important property because it allows the use of a flipping
technique. If a triangle is non-Delaunay, we can flip one of its edges; see Fig. 10.2 for
an illustration. This leads to the simple flip algorithm: construct any triangulation of
the points, and then flip edges until no triangle is non-Delaunay. Unfortunately, this
can take O.n2/ edge flips. It is worth noting that this edge-flipping technique does
not directly extend to three or higher dimensions; on the other hand, the circumcircle
property itself does generalize, e.g., to circumspheres of the Delaunay tetrahedra in
three dimensions, and some topological operations analogous to flipping have been
proposed and discussed in three dimensions (Freitag and Ollivier-Gooch 1997; Du
and Wang 2003; Alliez et al. 2005).

A usually more efficient way to construct the Delaunay triangulation is to repeat-
edly add one vertex at a time and then re-triangulate the affected parts of the graph.
When a point xi is added, the triangle containing xi is split into three triangles and
then the flip algorithm is applied. This procedure is called the incremental algo-
rithm. It takes O.n/ time to search through all the triangles to find the one that
contains xi , after which we potentially flip in every triangle. The overall runtime is
theoreticallyO.n2/ (Guiba et al. 1992), but often in practice this algorithm has bet-
ter than expected performance (Bentley et al. 1980). While the technique extends to
higher dimension, the complexity could grow exponentially in the dimension, even
if the final Delaunay triangulation is small (Edelsbrunner and Shah 1996).

An efficient divide and conquer algorithm (Lee and Schachter 1980; Guibas and
Stolfi 1985) for constructing a Voronoi tessellation of a given set of generators in
the plane is defined as follows. One recursively draws a line to split the generators
into two sets having roughly the same number of points. Voronoi tessellations of
the two subsets are separately constructed. Then, a piecewise linear dividing line
between the two subsets is determined. Each segment of this line is itself a segment
of the perpendicular bisector corresponding to two generators belonging to different
subsets. Then, all edges or part of edges from the Voronoi tessellations of each sub-
set that lie on the opposite side of the dividing line are deleted. Finally, the Voronoi
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Fig. 10.3 Left: the divide-and-conquer algorithm after the given generators are divided into two
subsets (the open and filled circles), the two Voronoi tessellations of the subsets have been con-
structed (the dashed lines and thin solid lines), and the piecewise linear dividing line has been
determined (the thick, red lines). Right: the Voronoi tessellation of all the generators found by
deleting appropriate portions of the Voronoi tessellations of the two subsets

tessellation of the original set of generators is given by the union of the remaining
edge segments of the Voronoi tessellations of the two subsets and the piecewise lin-
ear dividing line. See Fig. 10.3 for illustrative sketches of the divide and conquer
algorithm. Carefully implemented, this divide and conquer method for constructing
a Voronoi tessellation of a given set of generators has complexity O.n logn/. A
divide and conquer paradigm for constructing a triangulation in d -dimensions was
developed in Cignoni et al. (1998).

Another efficient algorithm, Fortune’s sweep line algorithm (Fortune 1986), is
based on the sweep line technique (Sedgewick 1983) and involves not only a sweep
line, but also a beach line that actually consists of parabolic arcs. Without loss of
generality, one can assume that the sweep line is vertical and that it moves from left
to right. Generators to the right of the sweep line have yet to be considered. The
beach line is to the left of the sweep line. It is defined as follows: first, for each gen-
erator to the left of the sweep line whose Voronoi region has yet to be completely
determined, one defines the parabola that separates the points that are closer to the
sweep line from those that are closer the generator; then, the beach line is deter-
mined as the right-most points in the union of the parabolas. Clearly, a vertex of
the beach line is equidistant from the two generators corresponding to the parabolas
meeting at that vertex. Thus, as the sweep line moves from left to right, the vertices
of the beach line move along the edges of the Voronoi tessellation. A parabolic arc
is added to the beach line whenever the sweep line passes a new generator; an arc
is removed from the beach line whenever the Voronoi cell for the corresponding
generator has been completely determined. The latter situation occurs whenever the
sweep line is tangent to a circle passing through three generators whose parabolas
form consecutive arcs of the beach line. See Fig. 10.4 for an illustrative sketch for
Fortune’s algorithm. Carefully implemented, Fortune’s algorithm for constructing a
Voronoi tessellation of a given set of generators has complexityO.n logn/.

Finally, we mention “convex hull” algorithms (Chynoweth and Sewell 1990)
for, e.g., Delaunay tessellation construction in Euclidean regions. For example, in
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Fig. 10.4 Set-up in Fortune’s algorithm. The red, dashed straight line is the sweep line that is
moving from left to right; the blue, piecewise parabolic curve is the beach line. The filled circles
are the generators already visited by the sweep line whereas the open circles are generators yet to
be visited. The thin black lines are edges or edge segments of Voronoi regions already constructed

the two-dimensional case, one can vertically project the generators from their plane
onto a paraboloidal surface whose axis is perpendicular to that plane. The lower
boundary of the convex hull of the points on the paraboloid is generally a triangu-
lated shell whose vertical projection back onto the original plane gives the Delaunay
triangulation. This geometrical characterization also explains the circumcircle prop-
erty mentioned above. The plane of any triangular facet of the assumed convex shell
intersects the paraboloid on a closed curve whose projection is that projected trian-
gle’s circumcircle. Thus, other generators lying strictly inside that circle would have
to correspond to points of the paraboloid that necessarily lie outside the putative con-
vex hull, in violation of the original assumption that a convex hull was constructed.
See (Chynoweth and Sewell 1990; Sewell 2002) for detailed discussions on this
characterization.

10.3 Centroidal Voronoi Tessellations

Centroidal Voronoi tessellations (CVTs) are special Voronoi tessellations having
the property that the generators of the Voronoi tessellation are also the centers of
mass (or centroids or barycenters), with respect to a given density function, of the
corresponding Voronoi regions. CVT methodologies produce high-quality point dis-
tributions in regions and surfaces in Rd or within sets of discrete data. In the latter
context and in its simplest form, CVT reduces to the well-known k-means cluster-
ing algorithm (Gersho and Gray 1992; Hartigan 1975; Kanungo et al. 2002). The
dual tessellation corresponding to a centroidal Voronoi tessellation is referred to as
a centroidal Voronoi Delaunay tessellation (CVDT).

CVTs and CVDTs possess certain properties, which we discuss below, that make
them very well suited for grid generation which is a focus of this paper. In addition,
in (Nguyen et al. 2009), several quality measures were used to effect a quantitative
comparison of uniform triangular mesh generators in convex and non-convex planar
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regions; it was found that CVDTs result in higher quality meshes compared to those
constructed using most other algorithms, with only the method given in (Persson
and Strang 2004) that uses spring dynamics being somewhat competitive.

Although uniform CVT-based grids have been shown to be competitive with
(or even better than) other uniform mesh generators in planar, three-dimensional,
and spherical regions, perhaps they have even greater utility for the construction of
nonuniform meshes. For one thing, through a point density function, CVT grid gen-
eration methodologies allow for a simple means of controlling the local grid size;
moreover, the density function can easily be connected to error estimators, resulting
in effective adaptive refinement strategies (Ju et al. 2002b). For another thing, CVT-
based grids feature smooth transitions from coarse to fine grids; see Sect. 10.4.1.2
for an illustration. Smooth grid transitions can greatly reduce deleterious effects,
e.g., non-physical wave reflections, that can occur if grid sizes change abruptly.

10.3.1 Definitions and Properties

Given a density function �.x/ 
 0 defined on˝ , for any regionV 
 ˝ , the standard
mass center (or centroid) x� of V is given by

x� D

Z
V

x�.x/ dx
Z
V

�.x/ dx
: (10.2)

Note that it is often required that � is integrable with respect to˝ and the volume of
the set fx j �.x/ D 0g is zero in order to make sure (10.2) is well defined in practice.
A special family of Voronoi tessellations are defined as follows.

Definition 1. (Du et al. 1999) Given a density function �.x/ defined on˝ , we refer
to a Voronoi tessellation f.xi ; Vi /gniD1 of ˝ as a centroidal Voronoi tessellation
(CVT) if and only if the points fxigniD1 which serve as the generators of the associ-
ated Voronoi regions fVigniD1 are also the centroids, with respect to �.x/, of those
regions, i.e., if and only if we have that xi D x�i for i D 1; : : : ; n. The corresponding
dual triangulation is called a centroidal Voronoi Delaunay tessellation (CVDT).

A generic Voronoi tessellation does not in general satisfy the CVT property; see
Fig. 10.5 for an illustration as well as for an illustration of CVT. On the other hand,
given a density function � and the number n of generators, the CVT of a domain
always exists, although it may not be unique.

CVTs possess an optimization property that can be used as a basis for various ext-
ensions. Given any set of points eX D fexi gniD1 in ˝ and any tessellation eV D
feV i gniD1 of ˝ , define a clustering energy by7

7 Note that, a priori, V need not be a Voronoi tessellation and xi need not be in Vi .
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Fig. 10.5 (Du et al. 1999) Left: a Voronoi tessellation of the unit square with ten randomly selected
generators (the filled circles); the open circles denote the centroids of the Voronoi polygons with
respect to a uniform density; the centroids do not coincide with the generators. Right: a ten-
generator centroidal Voronoi tessellation of the square for a uniform density; the generators and
centroids coincide

K
�eX;eV/ D

nX
iD1

Z
eV i

�.x/kx�exik2 dx : (10.3)

Then, it can be shown that K is minimized only if f.exi ;eV i /gniD1 forms a CVT8

of ˝ . Note that if f.xi ; Vi /gniD1 forms a CVT, it does not necessarily minimize K ,
e.g., it may define a saddle point (Du et al. 1999) of (10.3). In many applications, the
clustering energy functional K is often naturally associated with quantities such as
quantization error, variance, and cost.

Asymptotically, as the number of generators becomes larger and larger, Gersho’s
conjecture (Gersho 1979) states that, locally, the optimal CVT (in the sense of mini-
mizing the clustering energy) under the Euclidean metric forms a regular tessellation
consisting of the replication of a single polytope whose shape depends only on the
spatial dimension.9 The regular hexagon provides a confirmation of the conjecture
in two dimensions for the constant density case (Newman 1982). For the three-
dimensional case and a constant density function, it has been proved (Barnes and
Sloane 1983; Du and Wang 2005) that among all lattice-based CVTs,10 the CVT
corresponding to the body-centered cubic lattice for which the Voronoi regions are
the space-filling truncated octahedra is the optimal one. For more general, non-
lattice cases and for non-constant densities, the question remains open, although
extensive numerical simulations given in (Du and Wang 2005) demonstrated that

8 In fact, this can be used as an analytical definition of CVTs alternate to the geometric definition
given in Definition 1.
9 In other words, Gersho’s conjecture states that, at least for smooth density functions, if the number
of generators n is large enough and one focuses on a small enough region, then a CVT appears to
be a uniform tessellation involving congruent polytopes.
10 A lattice-based CVT is one whose generators are located on a lattice so that the Voronoi regions
form congruent polytopes.



10 Voronoi Tessellations and Their Application to Climate and Global Modeling 325

the truncated octahedra remains the likely candidate. It is interesting to note that, in
two dimensions, Gersho’s conjecture implies that the dual Delaunay triangulation
asymptotically consists of a replications of a single polygon, namely congruent equi-
lateral triangles. In three dimensions, the dual Delaunay tessellation cannot consist
of congruent equilateral tetrahedra because the latter cannot cover three space.

10.3.1.1 Centroidal Voronoi Tessellations of Surfaces

Extensions of the VT and CVT concept to surfaces (or manifolds) are possible; for
example, tessellations of surfaces under the Euclidean metric are considered in (Du
et al. 2003a). Suppose that ˝ is a compact and continuous hypersurface in RdC1.
Then, for any subregion V 
 ˝ , we call xc a constrained mass center of V if it is
a solution of the problem:

find xc such that
Z
V

�.y/ky � xk2 dy is minimized over x 2 V . (10.4)

Existence of minimizers of the problem (10.4) can be easily demonstrated using the
continuity and compactness of the objective function; however, solutions may not
be unique. It is worth noting that if˝ is a flat surface, then xc coincides with x�, the
standard center of mass center of V . If we replace x�i in Definition 1 by xci , then the
resulting Voronoi tessellation f.xi ; Vi /gniD1 of the surface ˝ is called a constrained
centroidal Voronoi tessellation (CCVT) (Du et al. 2003a), and its dual tessella-
tion is called a constrained centroidal Voronoi Delaunay triangulation (CCVDT).
In particular, when ˝ is the surface of a sphere, we call f.xi ; Vi /gniD1 a spheri-
cal centroidal Voronoi tessellation (SCVT). Figure 10.6 presents an illustration of
non-centroidal and centroidal Voronoi tessellations of the sphere.

The calculation of the constrained centroid xc for any given subregion V of a
smooth surface ˝ can be effected using Newton’s method or a damped Newton’s
method (Ju 2007). However, a more direct and less costly approach may be used

Fig. 10.6 (Du et al. 2003a) Left: A spherical Voronoi tessellation with 64 randomly selected
generators. Right: a 64-generator spherical centroidal Voronoi tessellation for the uniform density
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instead. One can first compute the standard centroid x� of the subregionV as defined
in (10.2). Note that, in general, the standard centroid x� of V does not lie on the
surface˝; for example, for a region on the sphere, x� is inside the sphere. Then, as
is shown in (Du et al. 2003a), the constrained centroid xc of V 2 ˝ can be found by
projecting x� onto˝ along the normal direction at xc . In particular, if V is a subset
of the surface of a sphere of radius r , we have that its constrained center of mass is
given by xc D rx�=kx�k.

10.3.2 Algorithms for Constructing CVTs

CVTs can be constructed either using probabilistic methods typified by MacQueen’s
random algorithm (MacQueen 1967) (which simply alternates between sampling
and averaging points) or deterministic methods typified by Lloyd’s method (Lloyd
1982) (which simply alternates between constructing Voronoi tessellations and mass
centroids). Due to its effectiveness and simplicity, much attention has been focused
on Lloyd’s method.

Algorithm 1. (Lloyd’s Method) Given a domain ˝ , a density function � defined
on ˝ , and a positive integer n (the number of generators).

1. Select an initial set of n points fxigniD1 on ˝ .
2. Construct the Voronoi regions fVigniD1 of ˝ associated with fxigniD1.
3. Determine the centroids (or constrained centroids), with respect to the given den-

sity function, of the Voronoi regions fVigniD1; these centroids form the new set of
points fxigniD1; if ˝ is a hypersurface, then xi must be projected onto˝ .

4. If the new points meet some convergence criterion, return f.xi ; Vi /gniD1 and
terminate; otherwise, go to Step 2.

It has been shown (Du et al. 1999) that the energy K associated with the
Voronoi tessellation decreases monotonically during the Lloyd iteration until a CVT
is reached. Some convergence analyses of the Lloyd’s method are given in (Du et al.
2006; Emelianenko et al. 2008).

In Step 1 of Algorithm 1, the initial set of points can be selected at random. How-
ever, because Lloyd’s method only finds local minima of the clustering energy K ,
the generator positions of the final CVT produced is affected by the initial distribu-
tion of generators.11 Therefore, in some situations, one may want to use less noisy
starting conditions; an example is given in Sect. 10.4.1.1.

For the second step, the methods described in Sect. 10.2.2 can be applied. There
also exist software packages that may be used for Voronoi tessellation construction.
For example, on the sphere, there is the STRIPACK package (Renka 1997).

11 This is true for other CVT construction methods because, invariably, they only find local minima
of the clustering energy.
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The computation of centroids of the Voronoi regions in the third step of Algo-
rithm 1 can be effected by first decomposing each Voronoi region into a set of trian-
gles/tetrahedra and then using a high-order quadrature rule for triangles/tetrahedra
to approximate integrals appearing in (10.2). Note that if the region of interest is a
surface, e.g., part of the sphere or the whole sphere, then this step also includes the
projection of the Euclidean centroid onto the surface; see Sect. 10.3.1.1.

For the fourth step, an example of a stopping criterion is if some measure, e.g.,
the root mean square, of the movement of the generators from one iteration to the
next is smaller than a prescribed tolerance; alternately, one can stop if the change in
the (computable) clustering energy is smaller than a prescribed tolerance.

A probabilistic version of a generalized Lloyd’s method was proposed in (Ju et al.
2002a) together with its parallel implementation.12

Algorithm 2. (Probabilistic Generalized Lloyd’s Method) Given a domain˝ , a
density function � defined on ˝ , and a positive integer n.

1. Choose a positive integer q (the number of sampling points per iteration) and
constants f˛i ; ˇi g2iD1 such that ˛2 > 0, ˇ2 > 0, ˛1C˛2 D 1, and ˇ1Cˇ2 D 1;
choose an initial set of n points fxigniD1; set ji D 1 for i D 1; : : : ; n.

2. Choose q sample points fyrgqrD1 in˝ at random, e.g., by a Monte Carlo method,
with the density function �.x/ acting as the probability density function.

3. For i D 1; : : : ; n, gather together in the set Wi all sampled points yr closest to
xi among fxigniD1, i.e., all sampled points in the Voronoi region of xi ; if the set
Wi is empty, do nothing; otherwise, compute the average ui of the set Wi and set

xi  .˛1ji C ˇ1/xi C .˛2ji C ˇ2/ui
ji C 1 and ji  ji C 1I (10.5)

the new set of fxig, along with the unchanged fxj g corresponding to empty Wj ,
form the new set of points fxigniD1; if ˝ is a hypersurface, then xi must be
projected onto ˝ .

4. If the new points meet some convergence criterion, terminate; otherwise, return
to Step 2.

In Steps 1 and 2 of Algorithm 2 as well as in Step 1 of Algorithm 1, points need
to be sampled according to a given density function �. Such sampling steps may be
accomplished by a rejection method (Du et al. 2003a; Ju et al. 2002a; Ross 1998)
which we now describe. Given a general domain ˝ in the plane or on the sphere,
determine an enclosing rectangle D whose sides are parallel to the coordinate axes
or, on the sphere, are latitude and longitude lines, and which contains all points
in ˝. Set �max D maxx2˝ �.x/. Then, there are two rejection tests applied. First,

12 This algorithm can also be viewed as a generalization of MacQueen’s method (MacQueen 1967);
see (Ju et al. 2002a). In fact, if in (10.5), q D 1, ˛2 D ˇ1 D 0, and ˛1 D ˇ2 D 1, Algorithm 2
reduces to MacQueen’s method.
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a point y in D is sampled according to a uniform distribution;13 this is done by
uniformly sampling each coordinate; all computer systems have a built-in uniform
random sampling method. If the sampled point y is not in ˝, it is rejected and one
samples again. If the sampled point is in ˝ , a scalar � is sampled uniformly in the
interval Œ0; 1	. If � < �.y/=�max , then the sample point is accepted; otherwise, it is
rejected.14

In Step 3 of Algorithm 2, the average ui of the sampled points in Wi is given by

ui D
P

y2Wi
y

#Wi
;

where #Wi denotes the number of elements in Wi . Since the points in Wi are ran-
domly selected points in the Voronoi region corresponding to xi , one may view ui
as a probabilistic approximation to the centroid (or constrained centroid) of Vi ; the
larger is q, the better the centroid approximations.15 Note that ji keeps track of the
number of times that xi has been previously updated. Some over-relaxation updat-
ing methods can be defined by appropriately choosing f˛1; ˛2; ˇ1; ˇ2g; see (Ju et al.
2002a).

Algorithm 2 is much easier to implement and code than Algorithm 1. For Algo-
rithm 1, one has to explicitly construct Voronoi tessellations and determine centers
of mass of Voronoi regions. These steps are doable in two-dimensional settings such
as planar regions and regions on the sphere and in three-dimensional volumes, but
involve considerable coding. On general surfaces in three-dimensions, algorithms
for Voronoi tessellations are not generally available and in regions in four and
higher dimensions, the calculation of centers of mass become impractical. On the
other hand, to find the generators of a CVT, Algorithm 2 does not require the con-
struction of Voronoi tessellations or of centers of mass; both are approximated via
sampling. Thus Algorithm 2 can be applied to regions and hypersurfaces in arbitrary
dimensions.

The accuracy of Algorithm 1 is limited only by machine precision, although,
in practice, one would not want to iterate to that level of accuracy. On the other
hand, for Algorithm 2, accuracy is limited by the sampling errors made in Step 2.
The q sampled points are divided among the generators so that, say, in a uniform
density setting, each generator would only be assigned roughly q=n points, where n
denotes the number of generators. Thus, if, say, Monte Carlo sampling is used, the
errors in the probabilistic approximations of the centroids of the Voronoi regions

13 Instead of random, i.e., Monte Carlo, sampling, one can, in conjunction with the rejection steps,
use quasi-Monte Carlo, Latin hypercube, etc. sampling methods (McKay and Beckman 1979;
Niederreiter 1992; Saltelli et al. 2004) appropriate for hypercubes.
14 Note that both rejection tests can be incorporated into a single test because an alternate means
for rejecting points that are outside of ˝ is to simply set �.x/ D 0 outside of ˝ .
15 If ˛1 D ˇ1 D 0, and ˛2 D ˇ2 D 1, we have in (10.5) that xi  ui , i.e., the new generators
are probabilistic approximations of the centroid of the Voronoi regions; this justifies saying that
Algorithm 2 is a probabilistic generalized Lloyd’s method.
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would be proportional to
p
n=q so that this is the best accuracy one can expect from

Algorithm 2. Note that, for fixed q, the accuracy degrades as we increase the number
of generators n and that, for fixed n, greater accuracy can be achieved by increasing
the number of sample points q. Also, note that it is useless to set a tolerance in
whatever stopping criterion is used in Step 4 of Algorithm 2 to be smaller than
O.
p
n=q/.

Because accuracy control is better served by Algorithm 1, it is usually the algo-
rithm of choice for regions in the plane and on the sphere and for three-dimensional
regions. For other cases, e.g., higher-dimensional regions and general surfaces in
three dimensions, Algorithm 2 becomes more practical.

We close this section on algorithms for CVT construction by noting that several
other schemes for computing CVTs such as Newton-type algorithms and multi-level
methods are studied in (Du and Emelianenko 2006, 2008; Liu et al. 2009).

10.3.3 The Relation Between the Density Function
and the Local Mesh Size

An interesting problem about the asymptotic behavior CVTs is the distribution of
the energy K defined in (10.3). It was shown in (Du et al. 1999), that in the one-
dimensional case, for the CVT of n generators f.xi ; Vi /gniD1 with a smooth density
function �, we have

Ki � 1

12
�.xi /h3i �

K

n
; 8 1 � i � n; (10.6)

where hi denotes the diameter of Vi , Ki D
R
Vi
�.x/kx � xik2 dx, and K DPn

iD1Ki , i.e., under some assumptions on the density function, asymptotically
speaking, the energy is equally distributed in the Voronoi intervals and the diam-
eter of Voronoi intervals are inversely proportional to the one-third power of the
underlying density. Based on (10.6) and the fact

Pn
iD1 hi D length of ˝ , we then

obtain an approximation of total clustering energy of the CVT in one dimension
given by, for n large,

K � 1

12

�R
˝
�1=3 dx

�3
n2

:

Let d denote the space dimension and set d 0 D d � 1 if ˝ is a hypersurface
and d 0 D d otherwise. For higher dimensions, a similar conjecture about CVTs or
CCVTs can be stated as follows:

Ki � c1�.xi /hd 0C2
i � K

n
; 8 1 � i � n; (10.7)
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K � c2

n2=d
0

�Z
˝

�d
0=.d 0C2/ dx

�.d 0C2/=d 0

; (10.8)

where c1; c2 are constants depending only on d 0. This conjecture still remains open
for d 
 2 although its validity has been supported through many numerical studies
and widely used for applications in vector quantizations (Gersho and Gray 1992)
and image processing.

A direct consequence of (10.7) is

hi

hj
�
��.xj /
�.xi /

�1=.d 0C2/
: (10.9)

The relation (10.9) between the density function and the local mesh sizes is also
very useful in CVT-based adaptive mesh generation and optimization (Ju 2007; Ju
et al. 2002b).

10.4 Application to Climate and Global Modeling

10.4.1 Global SCVT Meshes

We define quantitative measures of grid quality that we can use to assess the quality
of meshing schemes on the sphere.

Given a Voronoi mesh f.xi ; Vi /gniD1, set Q D f.i; j / j xi and xj are neighborsg
and let

hmin D min
.i;j /2Q

kxi � xj k and hmax D max
.i;j /2Q

kxi � xjk:

Clearly, the ratio (Du et al. 2003b)

� D hmax

hmin
(10.10)

is a natural measurement of the global uniformity of the Voronoi mesh fxi ; VigniD1.
It is clear that � 
 1 and the smaller is �, the more globally uniform is the Voronoi
mesh.

Letting �i denote the set of neighbor generators of xi , a measure of the local
quality or local uniformity of the Voronoi mesh at xi is given by

�i D minj2�i
kxi � xjk

maxj2�i
kxi � xjk :

Clearly 0 < �i � 1 and the larger is � , the better the local uniformity.
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We apply the commonly used q-measure (Field 2000) to evaluate the quality of
dual Delaunay triangular meshes, where, for any triangle Ti , qi is defined to be
twice the ratio of the radius RTi

of the largest inscribed circle and the radius rTi
of

the smallest circumscribed circle, i.e.,

qi D 2RTi

rTi

D .b C c � a/.c C a � b/.aC b � c/
abc

; (10.11)

where a, b, and c denote the side lengths of Ti . Clearly, 0 < qi � 1 and qi D 1

corresponds to the equilateral triangle.
We then define the mesh quality measures

�min D min
iD1;:::;mD

�i ; �avg D 1

n

mdX
iD1

�i ; qmin D min
iD1;:::;mD

qi ;

qavg D 1

mD

mdX
iD1

qi ;

where mD denotes the number of dual Delaunay triangles. The closer these mea-
sures are to unity, the better the mesh.

10.4.1.1 Uniform SCVT Meshes vs. Icosahedral-Bisection Meshes

Icosahedral-bisection meshes on the sphere have been widely used in the climate
and global modeling communities; icosahedral-bisection meshes from a family of
hierarchical meshes with 10 � 4`�1 C 2 nodes at level `, in which there are 12
pentagons and all others cells are hexagons. The level ` D 1 and ` D 2 meshes
having 12 and 42 nodes, respectively, are SCVT meshes with respect to the uni-
form density, but all other members of the family with levels l > 2 are not SCVTs,
although they are quite uniform. We use the centroids of the Voronoi cells of each
icosahedral-bisection mesh as the initial guess and apply Lloyd’s method with a
uniform density to generate a sequence of SCVT meshes; see Fig. 10.7. The quality
measures of Sect. 10.4 for the icosahedral-bisection and uniform SCVT meshes are
given in Table 10.1. The SCVT meshes do better with respect to the local mesh qual-
ity measures, i.e., with respect to local mesh uniformity, although they get worse
with respect to global mesh uniformity due to the shrinking relative size of the
pentagonal cells as the mesh size decreases.

10.4.1.2 Locally Refined SCVT Meshes

Let a point x on the sphere be represented by its spherical coordinate x D .lat; lon/
with �
=2 � lat � 
=2 and 0 � lon < 2
 . Set xc D .
=6; 3
=2/ and define
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Fig. 10.7 From top to bottom: spherical centroidal Voronoi tessellations (left column) with 42,
162, 642, 2,562 generators for a uniform density and the corresponding spherical Delaunay
triangulations (right column)
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Table 10.1 Comparisons of quality of icosahedral-bisection (I-B) and uniform spherical cen-
troidal Voronoi tessellation (SCVT) meshes

Level ` # of generators Mesh types � �avg �min qavg qmin

2 42 I-B 1.1308 0.9174 0.8843 0.9872 0.9829
SCVT 1.1308 0.9174 0.8843 0.9872 0.9829

3 162 I-B 1.1777 0.9111 0.8586 0.9904 0.9729
SCVT 1.1647 0.9174 0.8843 0.9872 0.9829

4 642 I-B 1.1907 0.8737 0.8482 0.9865 0.9701
SCVT 1.1592 0.9121 0.8525 0.9923 0.9701

5 2,562 I-B 1.1940 0.8803 0.8405 0.9866 0.9694
SCVT 1.2335 0.9141 0.8511 0.9931 0.9694

6 10,242 I-B 1.1948 0.8879 0.8386 0.9866 0.9692
SCVT 1.2710 0.9157 0.8507 0.9934 0.9692

7 40,962 I-B 1.1951 0.8932 0.8380 0.9866 0.9692
SCVT 1.3107 0.9168 0.8504 0.9935 0.9692

8 163,842 I-B 1.1951 0.8966 0.8379 0.9870 0.9692
SCVT 1.3526 0.9173 0.8494 0.9952 0.9687

9 655,362 I-B 1.1952 0.8970 0.8378 0.9952 0.9691
SCVT 1.4080 0.9167 0.8465 0.9987 0.9675

ds.x; xc/ D
p
.lat� 
=6/2 C .lon� 3
=2/2:

Define the subregion of the sphere

Smt D fx D .lat; lon/ j ds.x; xc/ � 
=6g:

In the subregion, we want a high-quality mesh having a local mesh size that is �s
times smaller than that outside the subregion. We also want a smooth transition
between the coarse and fine grid regions.

Using the density-mesh size relation (10.9), the density function is set to

�.x/ D
8<
:
�4s if ds.x; xc/ � 
=6
..1 � sx/�s C sx/

4 if 
=6 < ds.x; xc/ � 
=6C �s
1 otherwise,

(10.12)

where �s denotes the width of the transition layer and sx D ds.x;xc/�
=6
�s

; we set
�s D 3 and �s D 
=12 here. The resulting SCVT with 2;562 generators produced
by Lloyd’s method and the corresponding dual Delaunay triangulation are presented
in Fig. 10.8 (top row). Variations in the Voronoi cell sizes and areas are plotted in
Fig. 10.8 (bottom row). The histogram of the size distribution clearly indicates that
there are two dominant mesh sizes; cells 1–1,250 have one size, cells 1,500–2,500
have another size, and these two cells sizes differ by a factor of three as predicted
by (10.9). For this example, we have � D 5:4018, �avg D 0:8712, �min D 0:4533,
qavg D 0:9854, and qmin D 0:6886.
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Fig. 10.8 Top row: a spherical centroidal Voronoi tessellation (left) and its dual spherical Delaunay
triangulation (right) with 2,562 generators and the density (10.12); bottom row: plot of Voronoi cell
sizes (left) and areas (right)

Figure 10.8 as well as Fig. 10.9 below illustrate an important feature of nonuni-
form CVT and SCVT grids, namely smooth transitions from coarse to fine grids.
This can always be effected within the CVT/SCVT framework through the use of
smooth density functions so that, if a given density function is not smooth, it is often
beneficial to smooth it before using it to generate CVT/SCVT grids; see Sect. 10.4.2.

10.4.1.3 Nested SCVT Meshes

For this example, the region of interest covers most of North America, i.e.,

Sn` D fx D .lat; lon/ j � 5ı � lat � 60ı; 225ı � lat � 310ıg:

Again, we want a high-quality mesh with local mesh size in Sn` being approxi-
mately �s D 3 times smaller that in outside that region. This time we use a different
means to generate a locally refined SCVT mesh because we wish to make use of
global uniform SCVT meshes.
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Fig. 10.9 Top row: a spherical centroidal Voronoi tessellation (left) with 5,781 generators and its
dual spherical Delaunay triangulation (right) produced by the nested method; bottom row: plot of
Voronoi cell sizes (left) and areas (right)

We begin with the global uniform SCVT with 2;562 nodes shown in
Sect. 10.4.1.1. The submesh falling inside Sn` has about 355 nodes. We refine
this submesh to get a new mesh of Sn` with 3;574 nodes (about ten times more
nodes). We then merge the refined submesh with the remaining generators of
the original unform SCVT outside of Sn` and produce a new global nonuniform
Voronoi mesh with 5;781 generators; the result is clearly not a SCVT but we use it
as an initial guess for Lloyd’s method. We choose a Similar to (10.12), we choose
the density function

�.x/ D
8<
:
�4s if x 2 Sn`
..1 � sx/�s C sx/

4 if 0 < d.x; Sn`/ � �s
1 otherwise,

(10.13)

where sx D d.x;Sn`/
�s

and the width of the transition layer �s D 0:24. Then, we apply
Lloyd’s method with this density, adding one more restriction: all generators xi are
fixed during the iterations if d.xi ; Sn`/ > �s .
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The resulting SCVT with 5,781 generators and its dual Delaunay triangulation
are presented in Fig. 10.9 (top row). Variations of Voronoi cell sizes and areas are
plotted in the bottom row. For this example, we have � D 5:7079, �avg D 0:9006,
�min D 0:4012, qavg D 0:9904 and qmin D 0:7114.

10.4.2 CVT-Based Regional Meshes of the North Atlantic Ocean

Figure 10.10 (top left) shows the time-mean kinetic energy from a global 0:1ı sim-
ulation of the North Atlantic Ocean (Smith et al. 2000). We use this data set to
determine both the boundary of the North Atlantic ocean and an appropriate density
function, and then construct the CVT mesh based on this information; see (Ringler
et al. 2008) for details.16

Based on the kinetic energy, KE, we defined the density function

� D max

	
0:1;

KE

KEmax


4
;

where KEmax is the maximum kinetic energy in the domain. The lower bound 0.1
insures that the grid in quiescent regions is not overly coarse. We also raise the value
of the density function as we approach the boundary of the ocean so that the bound-
ary is resolved to a desired resolution; this is accomplished by making the density
in regions near a land boundary also depend in an inverse manner on the distance to
the boundary. The resulting mesh has a grid spacing that varies by a factor of 10.

In order to allow for a smooth transition between regions of high and low reso-
lution, we apply a substantial amount, e.g., approximately 20 passes, of Laplacian
smoothing17 to our density function. Figure 10.10 shows some of the resulting CVT
meshes. Whereas the two examples given above produce a mesh with two dominant
resolutions, in this example a wide spectrum of resolutions are present. Note that this
type of mesh will lead to additional complications related to parameter settings of
sub-grid closures but that is also offers the opportunity to adaptively select multiple
closure models whose efficacy depends on the local grid size. All in all, variational
resolution meshes such as the one illustrated in Fig. 10.10 are significantly more
ambitious than those considered in Sects. 10.4.1.2 and 10.4.1.3.

16 In practice, we would not use such a proxy to determine a variable resolution CVT grid, but
instead would adaptively determine the grid from the simulation model output.
17 In the current context, Laplacian smoothing is a process of smoothing the a function defined on
a grid. One replaces the value of a function at a point by first averaging its value at neighboring
points and then averaging that result with its own value at the point.
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Fig. 10.10 Top-left: time-mean kinetic energy of the North Atlantic Ocean; top-right: a CVT mesh
with 47,305 generators of the North Atlantic; bottom-left: a zoom-in of the CVT mesh; bottom-
right: a zoom-in of the same region of a CVT mesh with 183,907 generators

10.4.3 Numerical Simulations with SCVT Meshes

10.4.3.1 Mesh Decomposition for Parallel Computing

We take a global SCVT mesh with 40,962 generators (about 120 km resolution)
and separate it into 642 blocks; see Fig. 10.11. These blocks are created so as to
balance the work-per-block and to minimize the amount of information that must
be communicated between blocks; the software package “METIS” (Karypis and
Kumar 1998) in which a family of multilevel partitioning algorithms is implemented
is used for this purpose. We can assign an arbitrary number of blocks per processor
so that two types of parallelism within are supported within this framework, i.e.,
distributed memory across nodes and shared memory within a node.
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Fig. 10.11 Decomposition of
a global SCVT mesh of
40,962 generators into 642
blocks. The blocks can be
distributed across
computational nodes for
implementation on
high-performance
architectures

10.4.3.2 Example Numerical Methods

As discussed in Sect. 10.1, all typical finite-volume grid staggerings used for quadri-
lateral meshes, i.e., A-, B-, C- and Z-grid staggerings, have been successfully
applied to Voronoi tessellations. C-grid staggering has shown promising results, par-
ticularly when applied to variable resolution meshes. See Check: Ringler Dyncore
Chapter for a broad discussion of C-grid staggerings and see (Thuburn et al. 2009;
Ringler et al. 2010) for an in-depth discussion of C-grid staggering applied to the
nonlinear shallow-water equations.

We apply the methods developed in (Thuburn et al. 2009; Ringler et al. 2010) to
test case 5 of the standard shallow-water test cases developed in (Williamson et al.
2001). A flow in geostrophic balance is confronted with a large-scale orographic
feature at the start of the simulation, t D 0. The transient forcing at t D 0 leads to
the generation of large-amplitude gravity waves and Rossby waves. The sole forcing
mechanism is the presence of the orographic forcing. While no analytical solution is
known, results from high-resolution global spectral models (Lipscomb and Ringler
2005) are adequate reference solutions for the simulations conducted here.

Figure 10.12 shows the potential vorticity and kinetic energy at day 50 when
using a SCVT with 40,962 cells based on a uniform density function. Shallow-water
test case 5 is shown to breakdown into 2D turbulence after day 25, so Fig. 10.12
shows a snapshot of this turbulent behavior. Even in the presence of fully-developed
2D turbulence, the simulation is stable and robust while conserving total energy to
within time truncation error. Simulations of this same test case, but using the vari-
able resolution meshes shown in Figs. 10.8 and 10.9, produce equally robust results.

10.5 Summary

Voronoi tessellations and, in particular, centroidal Voronoi tessellations, offer a
robust approach to tiling the surface of the sphere. The Delaunay triangulation
is the dual of the Voronoi tessellations, so whether hexagons or triangles are of
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Fig. 10.12 Simulation results at day 50 using a uniform SCVT mesh with the method outlined in
(Ringler et al. 2010). The figure depicts the potential vorticity field (left) and the kinetic energy
field (right). The simulation conserves potential vorticity to machine precision and total energy to
within time-truncation error

interest, this approach will result in high-quality uniform and nonuniform meshes.
Centroidal Voronoi tessellations are particularly well-suited for the generation of
smoothly varying meshes, thus providing a possible alternative to traditional nest-
ing approaches. With the recent discovery of a class of finite-volume methods that
are directly applicable to variable resolution meshes (Thuburn et al. 2009; Ringler
et al. 2010), it appears that the creation of variable resolution, global climate system
models is now possible.
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Chapter 11
Conservation in Dynamical Cores: What, How
and Why?

John Thuburn

Abstract The conservation properties of the continuous, adiabatic and frictionless
equations governing atmospheric flow are summarized. It is often considered desir-
able for atmospheric models to possess analogues of these conservation properties;
some of the techniques for obtaining such analogues are noted. However, there is no
widespread agreement in the literature on which conservation properties are most
important and why. Here we suggest some ways of thinking about these questions,
taking into account the atmospheric flow regimes that global numerical models are
intended to represent.

11.1 Introduction

It is usually considered desirable for an atmospheric model dynamical core to have
analogous conservation properties to those of the adiabatic and frictionless continu-
ous governing equations. Although apparently obvious at first glance, this idea turns
out to involve a number of subtle issues. In this lecture we touch on several of those
issues. A fuller discussion is given by Thuburn (2008).

Section 11.2 summarizes the conservation properties of the continuous gov-
erning equations; in fact there are infinitely many such properties. This, then,
raises the questions of which of these properties can we obtain in our numeri-
cal models (Sect. 11.3), and which of these properties ought we to try and obtain
(Sect. 11.4)?
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11.2 Conservation Properties of the Continuous Adiabatic
Frictionless Governing Equations

First we review the conservation properties of the continuous adiabatic frictionless
governing equations. It is convenient to classify them in four categories: flux-form
conservation laws, Lagrangian conservation laws, conserved integral quantities, and
kinematic identities. The definitions of the conserved quantities given in this section
assume we are working with the unapproximated compressible Euler equations. For
approximated equation sets of practical interest, such as hydrostatic and/or shal-
low atmosphere, all of the listed conservation properties continue to hold, but the
definition of the conserved quantity may need to be modified. For example, under
the hydrostatic approximation the contribution of the vertical velocity to the kinetic
energy must be neglected (e.g. White et al. 2005).

11.2.1 Flux-Form Conservation Laws

A number of quantities satisfy conservation laws of the form

@A

@t
Cr:F D 0; (11.1)

where A is the density of the conserved quantity and F is the flux. Table 11.1 lists
three such quantities and gives expression for A and F.

Equation (11.1) implies that the global integral of A is conserved; however, the
local conservation property described by (11.1) is also considered important.

11.2.2 Lagrangian Conservation Laws

Certain quantities � are materially conserved, that is, they satisfy

D�

Dt
D 0 (11.2)

Table 11.1 Some quantities satisfying flux-form conservation laws

Quantity A F

Mass � �u
Angular momentum �Oz: Œr� .uC˝ � r/	 uAC pOz� r

Energy �
�
1
2
u2 C cvT C˚� u .AC p/

Here r is the position vector relative to the Earth’s centre,
˝ is the Earth’s rotation vector, Oz is the unit vector in the
direction of ˝ , u is the velocity vector, � is density, p is
pressure, T is temperature, cv is the specific heat capacity at
constant volume, and ˚ is geopotential
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Table 11.2 Some quantities satisfying Lagrangian conservation laws

Potential temperature � D �

Potential vorticity � D Q D �:r�=�
Specific tracer � D q

or tracer mixing ratio � D �

Table 11.3 Some conserved integral quantities

Mass per unit � in an isentropic layer F .�/ D R
�= jr� j dA

Mass per unit � in an isentropic layer within M D R
D �= jr� j dA

a material contour
Absolute circulation around an isentropic C D H

� va:dr D R
D �Q= jr� j dA

material contour

where D=Dt is the material derivative, i.e. the time derivative following the flow.
This immediately implies

Df.�/

Dt
D 0 (11.3)

for an arbitrary function f .�/. Table 11.2 lists some examples.
Each Lagrangian conservation law can be combined with the flux form conser-

vation law for � to generate an infinite family of flux form conservation laws

@�f .�/

@t
Cr: .�uf .�// D 0: (11.4)

11.2.3 Conserved Integrals

The Lagrangian conservation laws for potential temperature and potential vorticity,
along with conservation of mass, imply that certain integral quantities are conserved.
Table 11.3 lists some of them. Here, the integral that appears in the definition of F
is over the global extent of an isentropic surface, the domain D that appears in the
definition of M and C is a region of an isentropic surface bounded by a material
contour, and � is that material contour. � may be a potential vorticity contour.
The quantity va is the absolute velocity, i.e. the velocity viewed in an inertial frame
rather than one rotating with the Earth.

11.2.4 Kinematic Identities

The global integrals of horizontal divergence

Z
D

ı dA (11.5)
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and the vertical component of vorticity

Z
D

� dA (11.6)

must vanish on any isosurface of the vertical coordinate that wraps the sphere.
Although these properties are kinematic identities, rather than any consequence of
the governing dynamical equations, they may nevertheless be of practical impor-
tance for models that predict ı and �. For example, if the numerical scheme that
predicts � cannot maintain a global integral of zero then, unless an ad hoc fixer is
applied, it will not be possible to solve r2 D � to obtain the stream function  
and hence the rotational part of the horizontal velocity.

11.3 What Conservation Properties can we Obtain
in Numerical Models?

The simplest technique for obtaining a discrete analogue of a flux-form conservation
law is to use the conserved quantity as one of the predicted variables and discretize
the conservation law itself in a conservative way, for example,

AnC1j �Anj
�t

C 1

Vj

X
k

Fj;kSj;k D 0: (11.7)

Here, Anj is the average over cell j of the density of the conserved quantity at time
step n, Fj;k is the flux per unit area of the conserved quantity across face k of cell j ,
averaged over the time step, Vj is the volume of cell j , and Sj;k is the area of face k
of cell j . By making sure that F is uniquely defined at each face, so that the flux out
of one cell across a particular face is equal to the flux into a neighbouring cell across
the same face, we ensure that the predicted quantity is indeed conserved. Although
local conservation of mass might be regarded as a fundamental requirement, his-
torically it has often been sacrificed, for example to improve efficiency through the
use of a (non-conservative) semi-Lagrangian advection scheme, or to reduce noise
by predicting log of surface pressure rather than surface pressure itself in spectral
models; global (but not local) conservation of mass can then be restored through
an ad hoc fixer (e.g. Williamson and Olson 1994). More detailed and up-to-date
discussion on the discretization of flux-form conservation laws is given in Chaps. 7
and 8.

This approach can only work for up to np conserved quantities, where np is
the number of predicted variables. In particular, for a materially conserved quantity
like � , we can predict and conserve �� , but we would not automatically conserve
higher moments unless we also predict those higher moments; but this would be
an expensive (and very unusual) thing to do. Moreover, it is debatable whether we
should attempt to conserve higher moments – see Sect. 11.4.
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Some conservation properties are derived for the continuous equations through
manipulation and making certain cancellations. Analogous conservation properties
can sometimes be obtained for numerical schemes by designing them so that they
respect analogous cancellations. The energy and angular momentum conservation
properties of the Simmons and Burridge (1981) scheme, discussed in Chap. 4 are
achieved in this way. Other well-known examples include the cancellation of Cori-
olis terms in the energy budget on a C-grid (Chap. 3, Arakawa and Lamb 1977), and
the Arakawa Jacobian (Arakawa 1966). Historically, the development of schemes
that could conserve quadratic quantities such as energy or enstrophy was important
for controlling nonlinear instability, enabling long model integrations to be carried
out (e.g. Arakawa 1966; Sadourny 1975). In some cases there are systematic ways of
deriving such schemes using Poisson bracket and Nambu bracket ideas (e.g. Salmon
2004; Gassmann and Herzog 2008).

Lagrangian conservation properties can most obviously be obtained by using
a Lagrangian solution technique. However, fully Lagrangian solution techniques
are not yet developed to the point where they can be used for operational atmo-
spheric model dynamical cores. On the other hand, the use of a Lagrangian vertical
coordinate, or an entropy-based quasi-Lagrangian vertical coordinate, can improve
Lagrangian conservation properties (Chap. 4, Johnson et al. 2000).

Lagrangian conservation implies, among other things, that extrema are not ampli-
fied. Schemes that prevent the spurious amplification of extrema (‘overshoots’ and
‘undershoots’) therefore respect this aspect of Lagrangian conservation. A variety
of techniques exist for constructing non-oscillatory advection schemes. These may
solve the flux form conservation law (ensuring conservation in that sense) while
carefully constraining the fluxes to eliminate or minimize overshoots and under-
shoots. Semi-Lagrangian advection schemes can also be constructed to prevent
overshoots and undershoots. Non-oscillatory advection schemes have often been
applied to the prediction of tracers such as water vapour and chemical constituents,
as well as potential temperature. Non-oscillatory advection schemes have also been
applied to improve the Lagrangian conservation of potential vorticity, but much less
often because this approach requires some non-trivial calculations to recover wind
information from the predicted potential vorticity.

A particular problem with many atmospheric model dynamical cores is excessive
dissipation of energy. The typical forms of dissipation included in most dynamical
cores, e.g. a r2m term added to the prognostic equations or the inherent dissipa-
tion due to interpolation in semi-Lagrangian schemes, are unable to dissipate the
required amount of potential enstrophy without excessively dissipating energy. This
may be understood heuristically as follows. Suppose the dissipation mechanism
removes energy and enstrophy at wavenumber kdiss (and let us use enstrophy as a
proxy for potential enstrophy here); the rate of dissipation of enstrophy will then be
of the order k2diss times the rate of dissipation of energy. Now kdiss is bounded above
by the maximum resolvable wavenumber kmax, and so, provided the dissipation
rate is positive at all scales, the ratio of energy dissipation to enstrophy dissipa-
tion is bounded below by k�2max. For currently affordable resolutions this bound is
greater than the observed dissipation ratio. See Thuburn (2008) for more detailed
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discussion. This situation has led researchers to propose alternative forms of dissipa-
tion that can dissipate potential enstrophy while conserving energy (the Anticipated
Potential Vorticity Method, Sadourny and Basdevant 1985) or that return some
energy to the larger scales while dissipating it from the smaller resolved scales
(Koshyk and Boer 1995). This latter idea is closely related to the idea of energy
‘backscatter’, which can also be parameterized in a stochastic way (e.g. Shutts
2005). For further discussion of dissipation mechanisms in atmospheric models see
Chaps. 13 and 14.

11.4 Which Conservation Properties are the Most Relevant
or Important?

Given that the continuous governing equations have infinitely many conserved quan-
tities, and it is impossible to have analogues of all of these in a numerical model,
it is natural to ask which of these conservation properties are the most relevant or
important. This section suggests some arguments for helping to decide the answer
to this question.

11.4.1 Finite Resolution Effects

In this subsection it is argued that the finite difference or finite volume analogous of
higher moments of some conservable quantity only include resolved contributions
and neglect unresolved contributions. For simplicity, let the fluid density � � 1, and
let � be the mass mixing ratio of some materially conserved tracer. Define

Vj D
Z

cell j
dV (11.8)

to be the volume of grid cell j ,

mjVj D
Z

cell j
� dV (11.9)

to be the mass of tracer in cell j , and

rjVj D
Z

cell j
�2 dV (11.10)

to be the contribution to the second moment of the tracer from cell j . Then the total
mass of tracer is indeed exactly equal to its discrete analogue:

Z
�dV D

X
j

mjVj : (11.11)
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However, the total second moment of the tracer is underestimated by a discrete
analogue expressed in terms of mj :

Z
�2dV D

X
j

rjVj 

X
j

m2jVj : (11.12)

Consequently, there is not a very strong argument for demanding conservation of
analogues of second and higher order moments. This is particularly so for quanti-
ties such as tracer variance or potential enstrophy that have a systematic downscale
cascade and therefore a systematic transfer from resolved to unresolved scales.

11.4.2 The Adiabatic Frictionless Limit

A dynamical core is usually thought of as a discretization of the adiabatic, fric-
tionless governing equations. However, it may be more natural to think of it
as a discretization of the governing equations in the adiabatic, frictionless limit.
Quantities like tracer variance and potential enstrophy that cascade downscale are
dissipated even in the limit of vanishing viscosity and thermal diffusivity: they
are non-Robust invariants. Any numerical model, when applied to flow of realistic
complexity, must therefore be able to dissipate such quantities.

Figure 11.1 shows an example result from a numerical integration of the
barotropic vorticity equation. The initial condition is the same as that used in
Chap. 1, Fig. 1.8, and the same spectral integration scheme is used, with the excep-
tion that no scale-selective dissipation term is included so that the model conserves
both energy and enstrophy on resolved scales. After just a few vortex turnover times
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Fig. 11.1 Numerical solution of the barotropic vorticity equation using an energy and enstrophy
conserving scheme. The left hand panel shows the vorticity field; red is positive vorticity, blue is
negative vorticity. The right hand panels show both the initial spectra (black) and the spectra at the
current time (blue)
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the solution has become very noisy. Enstrophy has cascaded downscale towards
the resolution limit at wavenumber 85, but is unable to cascade any further (or to
be dissipated), resulting in a build up of small-scale enstrophy. This phenomenon
is sometimes called ‘spectral blocking’. This example clearly shows that it is not
always appropriate to conserve discrete analogues of quantities conserved by the
continuous adiabatic, frictionless equations.

Accepting that it is in fact essential to dissipate non-robust invariants in numerical
models for realistically complex flows, there are then two philosophies the model
designer can adopt. One is to attempt to design the dynamical core to conserve
the non-robust invariants, then supplement the model with a sub-grid model, i.e.
additional terms in the equations intended to represent the effect of the unresolved
scales on the resolved scales. Sub-grid models can vary from a simple r2m scale-
selective dissipation to a range of more sophisticated schemes (e.g. Smagorinsky
1963; Sadourny and Basdevant 1985). (Boundary layer parameterizations and con-
vection parameterizations are also examples of sub-grid models designed to capture
particular processes.)

An alternative philosophy is to use an inherently dissipative discretization of
the resolved flow. This approach often uses high order schemes supplemented by
some form of flux limiter, and is referred to as Implicit Large Eddy Simulation
(ILES). There is some theoretical justification for this approach in terms of modi-
fied equation analysis, and some empirical evidence for its effectiveness in neutrally
stratified three-dimensional turbulent flows. The book by Grinstein et al. (2007)
provides a broad introduction and a route into the literature. However, despite the
success claimed for the approach, for the flow regimes relevant to modelling the
global atmosphere there has been relatively little analysis of how well the idea
works, even though practical models based on semi-Lagrangian or non-oscillatory
advection schemes are, in effect, using the ILES approach.

11.4.3 Energy

Energy is a nonlinear quantity and so, like the tracer variance and potential enstro-
phy discussed in Sect. 11.4.1, will have resolved and unresolved contributions. This
then raises the question of whether, or to what extent, energy too is non-robust and
therefore may require dissipation or be amenable to an ILES treatment.

Energy is particularly interesting because it can be split into unavailable and
available contributions. The unavailable energy is the potential energy of the min-
imum energy state that can be obtained by an adiabatic rearrangement of the fluid
parcels in the atmosphere. The available potential energy is the total potential energy
minus the unavailable energy; it gives an upper bound on the amount of potential
energy that is available for conversion into kinetic energy by adiabatic dynamics.
The available potential energy plus the kinetic energy gives the available energy.
For Earth’s atmosphere the unavailable energy is about 2;000 times as large as the
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kinetic energy and the available potential energy is about four times as large as the
kinetic energy (Peixoto and Oort 1992).

The unavailable energy is a function of the F .�/ defined in Table 11.3, and is
therefore conserved for adiabatic frictionless flow separately from the total energy.
Moreover, the F .�/ are almost robust invariants because the strong restoring force
due to stratification inhibits vertical overturning and mixing. (However some mix-
ing, and hence non-conservation of unavailable energy, is unavoidable because of
vertical propagation and eventual breaking of gravity waves.) This near-robustness
suggests that it may be desirable to conserve a discrete analogue of unavailable
energy, and indeed a family of analogues of the F .�/. Interestingly, an isentropic-
coordinate dynamical core that conserved mass in each isentropic layer would do
just that.

The available energy is much smaller than the unavailable energy. However,
precisely because the available energy is involved in atmospheric motions, its
conservation (or non-conservation) remains important. Idealized two dimensional
turbulence theory suggests that, in an inertial range, energy cascades predominantly
upscale (e.g. Salmon 1998). Although real atmospheric flows are far from satisfy-
ing the assumptions of this theory, several pieces of evidence (see Thuburn 2008 for
a discussion) suggest that about 5–10% of the throughput of available energy cas-
cades downscale, while the rest goes upscale before being dissipated primarily by
the planetary boundary layer. This implies that the available energy is not analogous
to the downscale cascading non-robust invariants such as tracer variance and poten-
tial enstrophy, and therefore that its budget will not be adequately captured by using
a simple scale-selective dissipation or the most straightforward ILES treatment, as
already suggested in Sect. 11.3.

One final point to note is that a scheme that conserves the total energy while
allowing spurious conversions between the unavailable and available components
could lead to poor behaviour in an atmospheric model.

11.4.4 Spurious Sources vs Physical Sources

It may be argued that our numerical solutions should be accurate provided any spu-
rious numerical sources of conservable quantities are much weaker than the true
physical sources of those quantities. The strengths of the physical sources may be
conveniently expressed in terms of time scales.

The physical sources and sinks of mass of dry air are completely negligible for
modelling the atmosphere. For all practical purposes its timescale is infinite.

Next consider momentum. Locally the adjustment towards hydrostatic and geo-
strophic balance is fast, with typical timescale ranging from a few tens of seconds
to a few tens of hours. This suggests that, for accurate modelling of the momen-
tum equation, the most essential factor is an ability to capture balance accurately.
However, in a zonal mean, the terms in the zonal momentum equation are not in
geostropic balance (because the zonal mean of the zonal derivative of pressure must
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be identically zero). Therefore, the above argument about adjustment to balance
does not apply, and conservation of angular momentum becomes more important.
Comparison of a typical global mean angular momentum (˙0:4 � 1026 kg m2s�1)
with a typical surface torque (˙0:5�1020 kg m2s�2) implies an angular momentum
timescale of around 10 days (Peixoto and Oort 1992). Locally the angular momen-
tum timescale can be much longer. For example, in the tropical lower stratosphere
it is of the order of years. Thus, successful simulation of the quasi-biennial oscil-
lation of the zonal winds in the tropical lower stratosphere will require an accurate
treatment of angular momentum conservation.

Potential enstrophy budgets for the atmosphere have not been computed, but
enstrophy budgets (e.g. Koshyk and Boer 1995 suggest that the physical timescale
is of the order of 10 days. Variance budgets for long-lived tracers have also not
been calculated, but estimates of “mixdown time” (e.g. Thuburn and Tan 1997) sug-
gest a timescale of the order of 10–20 days. Thus, these non-robust invariants have
comparable timescales, as might have been anticipated.

As suggested in Sect. 11.4.3, the unavailable and available contributions to the
energy should be considered separately. Comparing a global mean value of the
unavailable energy (3 � 109 Jm�2) with the total energy throughput of the cli-
mate system (240Wm�2) implies a timescale of about 150 days for the unavailable
energy. Comparing a global mean value of the available energy (6� 106 Jm�2) with
a typical available energy throughput (	 2Wm�2) implies a timescale of about
30 days for available energy. According to this argument, there is a stronger case for
attempting to conserve the unavailable energy than the available energy.

Table 11.4 summarizes the timescales for these quantities, along with entropy,
which is closely related to the unavailable energy and the F .�/. The arguments
presented in this section suggest the following:

� Most benefit will be obtained by conserving quantities with long physical
timescales

� Most benefit will be obtained by conserving robust invariants
� Quantities that cascade to small scales need to be dissipated, and may be amen-

able to an ILES treatment

Table 11.4 Summary of physical source timescales and other properties of some conservable
quantities

Quantity Robust Cascade Approx. timescale

Mass Yes Infinite
Momentum Minutes to hours
Angular momentum 10 days (locally longer)
Potential enstrophy Yes 10 days
Tracer variance Yes 10 days
Unavailable energy Almost 150 days
Available energy Yes (5–10%) 20–30 days
Entropy Almost Variable
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11.5 Conclusion

There is considerable discussion in the atmospheric model development literature
of techniques for obtaining one conservation property or another. At the same time
there is no widespread agreement in the literature on which conservation properties
are most important and why. In this chapter we have suggested some ways of think-
ing about these questions, bearing in mind the particular fluid dynamical regimes
that global atmospheric models are intended to capture. These arguments suggest
that model developers should give prime consideration to conservation of quanti-
ties that are robustly conserved, do not systematically cascade downscale, or have
long physical source timescales.
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Chapter 12
Conservation of Mass and Energy
for the Moist Atmospheric Primitive
Equations on Unstructured Grids

Mark A. Taylor

Abstract The primitive variable formulation of the moist hydrostatic equations
conserves mass and moist total energy due to the property that the divergence
and gradient operators are adjoints. Any compatible numerical method, which has
a discrete analog of this property will conserve a discrete mass and total energy.
We demonstrate this using aqua-planet simulations performed with CAM-HOMME
(NCAR’s Community Atmospheric Model with the High-Order Method Modeling
Environment dynamical core). CAM-HOMME uses a compatible numerical method
on arbitrary unstructured quadrilateral grids. The equations described here are the
full set of dynamical equations used by CAM. Aqua-planet simulations use the full
suite of physics parametrizations as well. The only simplification is the use of ideal-
ized surface conditions. We report on the magnitude of the total energy budget in the
dynamical core including estimates for the non-adiabatic processes. The practice of
fixing dry total energy as opposed to the conserved total moist energy is shown to
generate a forcing of �0:56W/m2.

12.1 Introduction

Today’s petascale computers have hundreds of thousands of processors and the next
generation machines could have millions of processors. As we no longer see much
increase in single processor performance, these machines are relying almost entirely
on increasing performance through increased parallelism. Translating this to appli-
cation performance is thus only possible with very scalable applications. Achieving
the required level of scalability in modern climate models remains a challenge due to
several scalability bottlenecks. The largest bottleneck in these models is created by
the numerical methods used in the dynamical core of the atmospheric model com-
ponent. The dynamical core solves the partial differential equations governing the
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Fig. 12.1 A
latitude–longitude grid
showing the clustering of grid
lines and reduced grid
spacing at the poles

fluid dynamical aspects of the atmosphere, but does not include the suite of subgrid
parametrizations used for unresolved physical processes such as convection, precipi-
tation and radiative forcings. Currently, most dynamical cores use latitude–longitude
based grids (Fig. 12.1) for the horizontal directions (surface of the sphere) cou-
pled with finite differences for the vertical (radial) direction. The latitude–longitude
grid is a logically Cartesian orthogonal grid suitable for a wide array of numerical
methods, including finite differences, finite volumes and spherical harmonic based
spectral methods. The grid lines cluster at the pole, creating a severe Courant–
Friedrichs–Lewy (CFL) restriction on the time-step. There are many successful
techniques to handle this pole problem, however most of them substantially degrade
parallel scalability by requiring too much inter-processor communication.

Thus there is a renewed interest in highly scalable dynamical cores based on
more uniform grids for the sphere which avoid the pole problem. There are many
approaches that have been extensively studied and recently surveyed in Williamson
(2007). One can generate a quasi-uniform grid by patching together a few large
regions, where each region uses methods developed for logically Cartesian grids
and the challenge is how to couple the different patches together. Early examples
of this approach include (Phillips 1957; Sadourny 1972; Browning et al. 1989). As
an alternative, one can use numerical methods developed for general meshes that do
not require grid lines to be aligned with a coordinate system and that instead can
make use of unstructured (or less structured) grids constructed by tiling the sphere
with polygons: typically triangles, quadrilaterals, or a combination of pentagons and
hexagons are used. Early examples include Williamson (1968) and Sadourny et al.
(1968).

These quasi-uniform grids present new challenges for the development of numer-
ical methods, such as numerically conserving a suitable subset of the quantities
conserved by the continuum equations being discretized (see Chap. 11). In this chap-
ter, we focus on the issue of developing mass and energy conserving discretizations
for unstructured grids. Energy conservation in particular has not received enough
attention (e.g., Williamson 2007, Sect. 4.4). Operational models at typical resolu-
tions appear to require about 2 W/m2 of horizontal kinetic energy diffusion, which
is conjectured to be unphysically large (Thuburn 2008). To conserve total energy,
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this diffusion must be added back to the internal energy as heating. Energy conserv-
ing methods are needed to access the impacts of various approaches to dissipating
kinetic energy and the associated heating.

The use of finite volume methods is a popular approach to obtaining conserva-
tion in atmospheric models. It treats the equations in flux form with control volumes,
obtaining conservation through careful discretization of the control volume fluxes.
Obtaining conservation with finite difference methods is more complex, requiring
the construction of intricate stencils (Sadourny 1972; Arakawa and Lamb 1977).
Galerkin finite element methods have long been recognized as providing a natural
way to obtain conservation based on the fact that a Galerkin discretization will pre-
serve integral properties of the derivative operator (Cliffe 1981; Yakimiw and Girard
1987; Laprise and Girard 1990). Here we discuss a formalization of this approach,
based on compatible (or mimetic) discretizations (Samarskiı̆ et al. 1981; Margolin
and Tarwater 1987; Nicolaides 1992; Shashkov and Steinberg 1995; Shashkov 1996;
Hyman and Shashkov 1997a,b). Compatible discretizations obtain conservation by
mimicking key integral properties of the divergence, gradient and curl operators.
The compatibility property most connected to conservation is the requirement that
the discrete divergence and gradient operators are adjoints with respect to the dis-
crete integral used to define the conserved quantity. If this property holds locally,
with suitably defined control volumes (where the adjoint relation includes a discrete
boundary integral) then the conservation will also be local, meaning that the flux of
the conserved quantity out of the control volume will be equal to the flux into the
adjacent control volumes.

There is no formal definition of a compatible numerical method. We will only
make use of the divergence/gradient adjoint relation, but other properties often con-
sidered are that the curl operator is self-adjoint,r�r./ D 0 and r �r�./ D 0. The
later two identities mean that the range of the gradient operator (or curl operator) be
contained in the null space of the curl operator (or divergence operator). For some
applications it is also required that the range be equal to the null space.

Compatible discretizations are suitable for finite difference, finite volumes and
finite element methods and are considered in a common framework in Bochev and
Hyman (2006). The finite element method in particular has only recently been
associated with local conservation (Hughes et al. 2000). Here we are interested
in finite elements because of its long history of successfully dealing with unstruc-
tured grids. Examples of compatible finite element methods include (Arnold et al.
2006; Bochev and Ridzal 2008). In the finite element method, instead of developing
discrete approximations to derivative operators, one develops a discrete functional
space, and then finds the function in this space which solves the equations of interest
in a minimum residual sense. As compared to finite volume methods, there is less
choice in how one constructs the discrete derivative operators in this setting, since
functions in the discrete space are represented in terms of known basis functions
whose derivatives are known, often analytically.

In the case of energy conservation, compatible methods are of interest because
they allow conservation of energy without utilizing a total energy equation
(Margolin and Tarwater 1987; Margolin and Shashkov 2008). In one-dimension,



360 M.A. Taylor

this property was used earlier to obtain energy and angular momentum conservation
(Simmons and Burridge 1981). Energy is conserved by the careful mimicking of
the energy balance in the original equation: the conversion between kinetic, internal
and potential energy terms will exactly balance and the advection operator will not
dissipate any kinetic energy. Kinetic energy dissipation, if needed, must be explic-
itly added in a compatible method via the introduction of limiters, hyper-viscosity
or large-eddy-simulation based approaches.

Recent work on compatible methods for global atmospheric models with finite
element methods on the cubed-sphere grid includes (Taylor et al. 2007; Taylor
and Fournier 2010) and with finite volume methods on geodesic grids includes
Gassmann and Herzog (2008) (using a closely related approach based on discretiza-
tions which preserve properties of the Hamiltonian (Salmon 2004, 2005, 2007)). In
this chapter we show that an atmospheric model will conserve the moist total energy
if one uses a combination of:

� A discretization for the surface of the sphere that has a discrete version of the
Gauss divergence theorem. The divergence theorem for any two-dimensional
surface without a boundary (such as the surface of the sphere) can be written

Z
hr � uC

Z
u � rh D 0

for any smooth scalar h and vector u. It expresses the adjoint relationship
between the divergence and gradient operators.

� The Simmons and Burridge (1981) compatible vertical discretization.
� A standard formulation of the moist hydrostatic equations.

The conservation is semi-discrete, meaning exact with exact time-stepping. We will
use CAM-HOMME aqua-planet simulations to demonstrate the conservation and
to measure the energy dissipation introduced by the Robert filtered leapfrog time-
stepping method. CAM-HOMME (Taylor et al. 2008) is an experimental version
of the Community Atmospheric Model (Collins et al. 2004) with the High-Order
Method Modeling Environment (Dennis et al. 2005) cubed-sphere dynamical core
framework running the compatible finite element discretization.

12.2 Quadrilateral Tilings of the Sphere

We first give an example as to how tilings of the sphere force us into a non-uniform
geometry. Consider the case of a grid for the sphere consisting of only quadrilater-
als, such as the cubed-sphere (Fig. 12.2), first used for global circulation modeling
in Sadourny (1972). It is a conforming quadrilateral grid, meaning a tiling of the
sphere where all tiles can be mapped to quadrilaterals and contain exactly four
vertex points.
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Fig. 12.2 Tiling the surface of the sphere with quadrilaterals. An inscribed cube is projected on the
surface of the sphere. The faces of the cubed-sphere are further subdivided to form a quadrilateral
grid of the desired resolution. Coordinate lines from the Gnomonic equal angle projection are
shown

In the cubed-sphere grid, the eight corner points of the cube create eight vertices
belonging to only three edges, while all other vertices belong to four edges. This
non-uniformity is unavoidable. To see this, consider the vertices as defining a convex
polyhedron. From Euler’s formula for polyhedra, we have that

V �E C F D 2

where V is the number of vertices,E is the number of edges and F is the number of
faces (quadrilaterals). For a conforming quadrilateral grid every face contains four
edges, and every edge is shared by two faces, so E D 2F . We define the degree d of
each vertex to be the number of edges that vertex belongs, and we let Vd , d 
 3 be
the number of vertices in our polyhedron that are of degree d , so that V DPd Vd .
In the cubed-sphere grid, every vertex is of degree 3 or 4, but more general grids
may have vertices of higher degree. Since each point of degree d belongs to dVd
edges, and all these edges are shared by exactly two such points, summing dVd will
count every edge twice, and thus we have

P
d dVd D 2E . Combining these results,

we see that X
d

.4 � d/Vd D 8

or
V3 D 8C V5 C 2V6 C 3V7 C � � �

This relation places no restrictions on V4, the only type of vertex which appears
in a Cartesian grid. But it does place a restriction on V3, showing that any pure
quadrilateral grid on the sphere must have at least eight vertices of degree d . The
most uniform pure quadrilateral grid for the sphere, with no nodes of degree d > 4
must thus contain exactly 8 nodes of degree 3. This explains the popularity of the
cubed-sphere grid, with eight vertices of degree 3 and all remaining vertices are of
degree 4. Another such grid is based on stitching together two octagons (Purser and
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Rančić 1997). This grid is topologically distinct from the cubed-sphere grid and its
eight vertices of degree 3 all lie on the equator.

We note an interesting recently developed grid for the sphere for which every ver-
tex is of degree 4 (Calhoun et al. 2008), but the grid contains both quadrilaterals and
triangles. This grid has the property that it can be mapped to a single Cartesian block,
and is thus logically rectangular if the triangles are treated as degenerate quadrilat-
erals. It is made up almost entirely of quadrilaterals, but the constraint derived above
does not apply because of the presence of one or more triangles.

12.3 Continuum Formulation of the Equations

We now give a formulation of the moist primitive equations which will conserve
energy when discretized by a compatible method in the horizontal directions cou-
pled to a conservative discretization in the vertical. For the vertical discretization we
use the hybrid � pressure vertical coordinate system modeled after CAM and based
on (Kasahara 1974; Simmons and Burridge 1981; Simmons and Strüfing 1981) and
also described in Chap. 4. This formulation differs mainly in that we use surface
pressure as opposed to its logarithm as a prognostic variable, and we consider the
moist total energy as opposed to the dry total energy.

In the � coordinate system, the pressure is given by

p.�/ D A.�/p0 CB.�/ps
with � D A.�/ C B.�/ and a constant reference pressure p0 	 1;000 hPa. The
functions A and B are prescribed to control the spacing of the model surfaces.
They are chosen to allow the coordinate system to transition from a pure pressure
coordinate system near the top of the atmosphere (� D �top) to a terrain following
coordinate system near the surface .� D 1/, as shown in Fig. 12.3. At the surface,
we requireA.1/ D 0 andB.1/ D 1. We requireB.�top/ D 0 so that the model top is
at a constant pressure ptop. The value ofA.�top/ is chosen to achieve the desired ptop

(usually 	 1 hPa). In �-coordinates, the hydrostatic approximation @p=@´ D �g�
can be used to replace the mass density � by an �-coordinate pseudo-density @p=@�.
The material derivative in � coordinates can be written (e.g., Satoh 2004, Sect.3.3),

DX

Dt
D @X

@t
C u � rX C P�@X

@�

where the r./ operator (as well as r � ./ and r�./ below) is the two-dimensional
gradient on constant �-surfaces, @=@� is the vertical derivative, P� D D�=Dt is a
vertical flow velocity and u is the horizontal velocity component (tangent to constant
´-surfaces, not �-surfaces).

The �-coordinate atmospheric primitive equations, neglecting dissipation and
forcing terms can then be written as
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@u
@t
C .� C f / Ok�uCr

�
1

2
u2 C ˚

�
C P�@u

@�
C RTv

p
rp D 0 (12.1)

@T

@t
C u � rT C P�@T

@�
� RTv
c�pp

! D 0 (12.2)

@

@t

�
@p

@�

�
Cr �

�
@p

@�
u
�
C @

@�

�
P�@p
@�

�
D 0 (12.3)

@

@t

�
@p

@�
q

�
Cr �

�
@p

@�
qu
�
C @

@�

�
P�@p
@�
q

�
D 0: (12.4)

These are prognostic equations for u, the temperature T , density @p
@	

, and @p
@	
q where

q is the specific humidity (the ratio of water vapor to air). The prognostic variables
are functions of time t , vertical coordinate � and two coordinates describing the
surface of the sphere. The unit vector normal to the surface of the sphere is denoted
by Ok. This formulation has already incorporated the hydrostatic equation and the
ideal gas law, p D �RTv . There is a no-flux ( P� D 0) boundary condition at � D 1

and � D �top. The vorticity is denoted by � D Ok � r�u, f is a Coriolis term
and ! D Dp=Dt is the pressure vertical velocity. The virtual temperature Tv and
variable-of-convenience c�p are defined by

RTv D RT C .Rv �R/ qT c�p D cp C
�
cpv � cp

�
q

where R and Rv the ideal gas constants for dry air and water vapor, respectively
and cp ; cpv the specific heat at constant pressure for dry air and water vapor, respec-
tively. Later we will also make use of cv and cvv , the corresponding specific heats
defined at constant volume.

The diagnostic equations for the geopotential height field ˚ is

˚ D ˚s C
Z 1

	

RTv

p

@p

@�
d� (12.5)

where˚s is the prescribed surface geopotential height (given at � D 1). To complete
the system, we need diagnostic equations for P� and !, which come from integrating
(12.3) with respect to �. In fact, (12.3) can be replaced by a diagnostic equation for
P� @p
@	

and a prognostic equation for surface pressure ps

@

@t
ps C

Z 1

	top

r �
�
@p

@�
u
�
d� D 0 (12.6)

P�@p
@�
D �@p

@t
�
Z 	

	top

r �
�
@p

@�0
u
�
d�0; (12.7)

where (12.6) is (12.7) evaluated at the model bottom (� D 1) after using that
@p=@t D B.�/@ps=@t and P�.1/ D 0; B.1/ D 1. Using (12.7), we can derive a
diagnostic equation for the pressure vertical velocity ! D Dp=Dt ,
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! D @p

@t
C u � rp C P�@p

@�
D u � rp �

Z 	

	top

r �
�
@p

@�
u
�
d�0

The equations have infinitely many conserved quantities (Chap. 11). Here we
will only consider the total mass, tracer mass, potential temperature defined by

MX D
“

@p

@�
X d�dA

with (X D 1; q or .p=p0/��T ) and the total moist energy E defined by

E D
“

@p

@�

�
1

2
u2 C c�pT

�
d�dAC

Z
ps˚s dA (12.8)

where dA is the spherical area measure. To compute these quantities in their tradi-
tional units they should be divided by the constant of gravity g. We have omitted
this scaling since g has also been scaled out from (12.1) to (12.4). We note that in
this formulation of the primitive equations, the pressure p is a moist pressure, repre-
senting the effects of both dry air and water vapor. The unforced equations conserve
both the moist air mass (X D 1 above) and the dry air mass (X D 1�q ). However,
in the presence of a forcing term in (12.4) (representing sources and sinks of water
vapor as would be present in a full model) a corresponding forcing term must be
added to (12.3) to ensure that dry air mass is conserved.

The energy (12.8) is specific to the hydrostatic equations. We have omitted terms
from the physical total energy which are constant under the evolution of the unforced
hydrostatic equations (Staniforth et al. 2003). It can be converted into a more uni-
versal form involving 1

2
u2 C c�vT C ˚ , with c�v defined similarly to c�p, so that

c�v D cv C .cvv � cv/q. We note that cp D R C cv and cpv D Rv C cvv so that
c�pT D c�vT CRTv . Expanding c�pT with this expression, integrating by parts with
respect to � and making use of the fact that the model top is at a constant pressure

Z
@p

@�
RTv d� D �

Z
p
@˚

@�
d� D

Z
@p

@�
˚ d� � .p˚/

ˇ̌̌	D1
	D	top

and thus

E D
“

@p

@�

�
1

2
u2 C c�vT C˚

�
d�dAC

Z
ptop˚.�top/ dA: (12.9)

The model top boundary term in (12.9) vanishes if ptop D 0. Otherwise it must
be included to be consistent with the hydrostatic equations. It is related to the form
drag, which is the transfer of momentum between the atmosphere and the solid earth
due to topography (e.g., Vallis 2006, Sect. 3.5).
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12.4 Discrete Formulation of the Equations

We discretize the equations exactly in the form shown in (12.1), (12.2), (12.4),
(12.6) and (12.7). The equations are written with u and T as the prognostic variables
as opposed to conservative variables so as to minimize the number of worse-than-
quadratic non-linearities. We use rh� and rh to denote the discrete divergence and
gradient operators and ı	 to denote the discrete @=@� operator. We also replace the
�-integrals by sums. The Simmons and Burridge (1981) coordinate system uses a
Lorenz staggering of the variables (Chap. 4) as shown in Fig. 12.3. Let L be the
total number of layers, with variables u; T; q; !;˚ at layer mid points denoted by
i D 1; 2; : : : ; L. We denote layer interfaces by i C 1

2
; i D 0; 1; : : : ; L, so that

�1=2 D �top and �LC1=2 D 1. The ı	 operator uses centered differences to com-
pute derivatives with respect to � at layer mid point from layer interface values,
ı	.X/i D .XiC1=2�Xi�1=2/=.�iC1=2 � �i�1=2/. We will use the over-bar notation
for vertical averaging, qiC1=2 D .qiC1 C qi /=2. We also introduce the symbol 
 to

denote the discrete pseudo-density @p
@	

given by 
i D ı	.p/.
We will use P�ı	 to denote the discrete form of the P�@=@� operator. This operator

acts on quantities defined at layer mid-points and returns a result also at layer mid-
points. It is defined in terms of ı	 and 
 by

P�ı	.X/i D 1

2
i��i



. P�
/iC1=2 .XiC1 �Xi /C . P�
/i�1=2.Xi �Xi�1/

�
(12.10)

i−3 / 2

i+1 / 2

i−1 / 2

5 / 2

3 / 2

1

2

i+1

i

1 / 2

L+1 / 2

Fig. 12.3 The terrain following �-coordinate layers and layer indexing. There are L layer mid
points denoted by i D 1; 2; : : : ; L and LC 1 layer interfaces denoted by i C 1

2
; i D 0; 1; : : : ; L
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where ��i D �iC1=2 � �i�1=2. We use the over-bar notation since the formula can
be seen as a 
-weighted average of a layer interface centered difference approxima-
tion to P�@=@�. This formulation was constructed in Simmons and Burridge (1981)
in order to ensure mass and energy conservation. Here we will use an equivalent
expression that can be written in terms of ı	,

P�ı	.X/i D 1


i

h
ı	
� P�
X�

i
�X ı	 . P�
/i

i
: (12.11)

The discrete equations can now be written as

@u
@t
D � .� C f / Ok�u � rh

�
1

2
u2 C ˚

�
� P�ı	.u/� RTv

p
rh.p/ (12.12)

@T

@t
D �u � rh.T / � P�ı	.T /C RTv

c�pp
! (12.13)

@

@t
.
q/ D �rh � .
qu/� ı	 .. P�
/q/ (12.14)

@ps

@t
D �

LX
jD1
rh � .
u/j ��j (12.15)

. P�
/iC1=2 D �B.�iC1=2/
@ps

@t
�

iX
jD1
rh � .
u/j ��j : (12.16)

We consider . P�
/ a single quantity given at layer interfaces and defined by (12.16).
The no-flux boundary condition is . P�
/1=2 D . P�
/LC1=2 D 0. In (12.16), we used
a midpoint quadrature rule to evaluate the indefinite integral from (12.7). In practice
�� can be eliminated from the discrete equations by scaling 
 , but here we retain
them so as to have a direct correspondence with the continuum form of the equations
written in terms of @p

@	
.

Finally we give the approximations for the diagnostic equations. We first inte-
grate to layer interface i� 1

2
using the same mid-point rule as used to derive (12.16),

and then add an additional term representing the integral from i � 1
2

to i :

!i D .u � rhp/i �
i�1X
jD1
rh � .
u/j ��j Crh � .
u/i

��i

2
(12.17)

D .u � rhp/i �
LX
jD1

Cijrh � .
u/j (12.18)
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where

Cij D

8̂
<̂
ˆ̂:
��j i > j

��j =2 i D j
0 i < j

and similar for ˚ ,

.˚ �˚s/i D
�
RTv

p



�
i

��i

2
C

LX
jDiC1

�
RTv

p



�
j

��j (12.19)

D
LX
jD1

Hij

�
RTv

p



�
j

(12.20)

where

Hij D

8̂̂
<
ˆ̂:
��j i < j

��j =2 i D j
0 i > j

We note for later use that
��i Cij D ��j Hj i (12.21)

12.4.1 Consistency

It is important that the discrete equations be as consistent as possible. In particular,
we need a discrete version of (12.3), the non-vertically averaged continuity equation.
Equation (12.16) implicitly implies such an equation. To see this, apply ı	 to (12.16)
and then we can derive, at layer mid-points,

@

@t

 D �rh � .
u/� ı	 . P�
/ : (12.22)

A second type of consistency that has been identified as important is that (12.17),
the discrete equation for !, be consistent with (12.16), the discrete continuity equa-
tion (Williamson and Olson 1994). The two discrete equations should imply a
reasonable discretization of ! D Dp=Dt . To show this, we take the average of
(12.16) at layers i � 1=2 and i C 1=2 and combine this with (12.17) (at layer
mid-points i ) and assuming that B.�i / D B.�i�1=2/C B.�iC1=2/ we obtain

!i D B.�i /@ps
@t
C .u � rhp/i C 1

2

�
. P� ı	/i�1=2 C . P� ı	/iC1=2

�
;

which, since u � rhp is given at layer mid-points and P�
 at layer interfaces, is the
natural discretization of ! D @p=@t C u � rhp C P�
 .
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12.4.2 Discrete Global Integral

Depending on the characteristics of a compatible method, it is often possible to
define a control volume and show that the change in energy in the control volume is
given by the flux of energy through the control volume boundary. These calculations
are beyond the scope of this chapter and we instead focus on the conservation of the
total energy. We denote the discrete global integral by

hXi D
X
mn

wmn

LX
iD1

��iXi;m;n �
“

X dAd�

where we use our previously defined quadrature formula for the integral with respect
to � and assume the quadrature formula for the integral over the surface of the sphere
with respect to the surface area measure dA is denoted by

P
wmn. The quadrature

weights wmn will be specific to the numerical method.

12.4.3 Compatibility Identities

For an arbitrary scalar h and vector u at layer mid-points, our assumption of a com-
patible method means that we have a discrete version of the divergence/gradient
adjoint relation Z

hr � u dAC
Z

urh dA D 0
which we write as

X
mn

wmn hrh � uC
X
mn

wmn u � rhh D 0 (12.23)

This is the key property of the horizontal discretization that is needed to show con-
servation. In the vertical, Simmons and Burridge (1981) showed that the ı	 and
P�ı	 operators needed to satisfy two integral identities to ensure conservation. Let
P� be any layer interface variable which satisfies P�1=2 D P�LC1=2 D 0 and f; g
arbitrary functions of layer mid points. The first identity is the adjoint property
(compatibility) for ı	 and 
 ,

LX
iD1

��i 
i P�ı	.f /C
LX
iD1

��i fi ı	. P�
/ D 0 (12.24)

which follows directly from the definition of the P�ı	 difference operator given in
(12.11). The second identity we write in terms of ı	,
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LX
iD1

��i fg ı	. P�
/ D
LX
iD1

��i f ı	. P�
g/C
LX
iD1

��i g ı	. P�
f / (12.25)

which is a discrete integrated-by-parts analog of @.fg/ D f @gCg@f: Construction
of methods with both properties on a staggered unequally spaced grid is the reason
behind the complex definition for P�ı	 in (12.11).

12.4.4 Discrete Conservation of Mass and Tracer Mass

Conservation of quantities advected in conservation form, such as mass and tracer
mass in (12.16) and (12.14) are trivially conserved due to the compatibility proper-
ties. Considering (12.14), we see that

@

@t
h
qi D

�
@

@t
.
q/

�
D �h�rh � .
qu/i � ˝ı	 . P�
q/˛ D 0 (12.26)

after applying (12.23) and (12.24) and using the fact differentiating a constant is zero
(rh.1/ D 0 and P�ı	.1/ D 0). We note that this equation will hold for any reasonable
time-stepping method (one that can preserve the constant solution to @q=@t D 0)
and thus in practice these quantities will be conserved to machine precision.

Assuming exact time integration, a compatible method can also conserve tracer
mass if one advects concentration instead. Consider

@q

@t
C u � rhq C P�ı	.q/ D 0: (12.27)

Multiplying this equation by 
 , summing with the product of (12.22) and q, and
then applying (12.23) and (12.24), we have

@

@t
h
qi D

�


@q

@t

�
C
�
q
@


@t

�
D

� h�
u � rhqi �
D

 P�ı	.q/

E
� hqrh � .
u/i � ˝q ı	 . P�
/˛ D 0 (12.28)

With inexact time stepping, to conserve this quantity to machine precision would
require a time-stepping scheme which has a discrete analog of the product rule,
@.q
/=@t D q@
=@t C 
@q=@t . This is not common, but we note that the leapfrog
method satisfies this identity if we letQ D 
q and consider the discrete tracer mass
at half time levels defined by

Q.t C 1
2
�t/ D 1

2
.q.t/
.t C�t/C q.t C�t/
.t//:
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12.4.5 Discrete Conservation of Energy

A compatible method obtains global energy conservation by mimicking the behavior
of the continuum energy dynamics on a term-by-term basis. The discrete form of the
terms in the energy equation which are responsible for the transfer between kinetic,
internal and potential will be in exact balance, while the advection terms will vanish
as in the continuum form of the equations.

We decompose the conserved total energy into kinetic, internal and potential,
< E >D< K > C < I > C < P > where

K D 1

2

u2 I D 
c�pT P D 
˚s :

Starting with (12.12), (12.13), (12.14) and (12.22) and the identities (12.23), (12.24)
and (12.25) we show

@

@t
hKi D hT1i C hT2i C hT3i (12.29)

@

@t
hI i D � hT2i � hT3i (12.30)

@

@t
hP i D � hT1i (12.31)

which implies d=dt < E >D 0. Here hT1i is the transfer of potential energy to
kinetic energy defined by

T1 D ˚srh � .
u/

and hT2i C hT3i is the transfer of internal energy to kinetic energy defined by

T2 D �
u � RTv
p
rh.p/ T3 D .˚ � ˚s/rh � .
u/:

To derive (12.29), we sum the product of (12.12) with 
u and the product of
(12.22) with 1

2
u2 to obtain (assuming exact time integration)

@

@t
K D �
u � rh

�
1

2
u2
�
� 1
2

u2rh � .
u/� 
u � P�ı	.u/� 1
2

u2 ı	. P�
/

� 
u � rh.˚/ � 
u � RTv
p
rhp: (12.32)

When the discrete integral h�i is applied, the first two terms on the RHS will vanish
by (12.23). The next two terms will vanish by (12.24) and (12.25) with f and g
replaced by u. Applying (12.23) to the fifth term we establish (12.29).
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To derive (12.30), we start with

@

@t
I D cp @

@t
.
T /C .cpv � cp/ @

@t
.q
T / : (12.33)

The first term is the dry internal energy. To derive the discrete equation for it we sum
the product of (12.13) with cp
 and the product of (12.22) with cpT . The second
term is the moist contribution, for which we obtain an equation by summing the
product of (12.13) with .cpv � cp/q
 and the product of (12.14) with .cpv � cp/T .
The result (assuming exact time integration) gives

@

@t
I D cp
v �rhT CcpTrh �.
v/C.cpv�cp/q
v �rhT C.cpv�cp/Trh �q
v

C cp
 P�ı	.T /C cpT ı	 .
 P�/C .cpv � cp/q
 P�ı	.T /C .cpv � cp/T ı	 q
 P�
C RTv

p

! (12.34)

After applying h�i, the first four terms on the RHS will vanish due to (12.23). The
next four terms will vanish due to (12.24). Expanding ! with (12.18), we see that

�
RTv

p

!

�
D �hT2i �

*
RTv

p



LX
jD1

Cijrh � .
u/j

+

Using (12.21), we have that

LX
iD1

��i
RTv

p



LX
jD1

Cijrh � .
u/j D
LX
jD1

��jrh � .
u/j

LX
iD1

Hj i

�
RTv

p



�
i

D
LX
jD1

��jrh � .
u/j .˚ �˚s/j D T3 (12.35)

and thus

@

@t
hI i D

�
RTv

p

!

�
D �hT2i � hT3i : (12.36)

Finally, to derive (12.31), we take the discrete integral of the product of (12.22)
and ˚s , then apply (12.23) and note that P�ı	 ˚s D 0.

We have thus shown that a compatible discretization of (12.12)–(12.16) will
also satisfy the energy balance equations, (12.29)–(12.31), to within time-truncation
error.
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12.4.6 Potential Temperature Formulation

If one prefers to advect potential temperature � D T .p=p0/
�� with � D R=cp

instead of temperature, as motivated in Chap. 4, it is still possible to obtain energy
conservation in the dry case (q D 0). We reformulate (12.12), (12.13) and (12.20)
with

@u
@t
D � .� C f / Ok�uCrh

�
1

2
u2 C ˚

�
� P�ı	.u/� cp�rh

�
.p=p0/

k
�

(12.37)

@

@t
.
�/ D �rh � .
�u/� ı	

�
P�
�

�
(12.38)

.˚ � ˚s/i D cp
LX
jD1

Hij � ı	

�
.p=po/

k
�

(12.39)

and solve this system in conjunction with (12.15) and (12.16). The energy balance
equations (12.29), (12.30) and (12.31) are unchanged, but with

T2 D �
u � cp�rh ..p=p0/�/ :

The calculations needed to show (12.29) and (12.31) are identical to those used
in Sect. 12.4.5. To show (12.30), we need to make liberal use of the exact time
integration assumption and consider

@

@t
I D @

@t
..p=p0/

�
�/ D � ı	 ..p=p0/�/ @p
@t
C .p=p0/� @

@t
.
�/ (12.40)

and then apply the same algebra used in Sect. 12.4.5.

12.5 Example Computations

We now present results using the CAM-HOMME global atmospheric model in
an aqua-planet configuration (Neale and Hoskins 2000a,b). In these experiments,
CAM-HOMME is run with the full CAM atmospheric physics parametrizations, but
the surface boundary conditions are greatly simplified by prescribing a planet cov-
ered with water with a fixed zonally symmetric sea surface temperature. A perpetual
March equinox diurnal cycle is used.

HOMME uses a continuous Galerkin hp finite element discretization. It solves
the equations of interest in integral form. The discrete inner product, denoted byP
mnwmn./ in Sect. 12.4.2, is defined by decomposing the integral over the surface

of the sphere into a sum of integrals within each element, and then approximating
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each element integral with the p�p tensor-product Gauss-Lobatto quadrature rule.
The global basis and test functions span the space of C0 functions which are poly-
nomials of order p (up to degree p � 1) within each element. With a nodal basis
defined at the Gauss-Lobatto quadrature nodes, the finite element mass matrix will
be diagonal. This makes the method a very efficient way to obtain a high-order
explicit method on unstructured grids for time dependent equations. For details of
the Gauss-Lobatto quadrature and the nodal basis, see Chap. 9.

For our aqua-planet simulations, we use CAM 3.5.1 physics (Gent et al., 2009).
This version advects three tracers: specific humidity q, cloud ice and cloud water,
each using (12.14). The forcing terms computed by the CAM physics are applied
with a time-split coupling (Williamson 2002), meaning that the forcings due to the
physics are applied as an adjustment to the prognostic variables and then the flow
is evolved by the HOMME dynamical core without a forcing term. The forcing is
applied every 30 and 15 min in the 3.75 and 0.5 degree simulations, respectively. In
these aqua-planet simulations, ˚s D 0, so P D T1 D 0 and there is no potential
energy term in the total energy budget. A typical snapshot showing fully developed
turbulent flow and the realistic nature of the aqua-planet atmosphere is shown in
Fig. 12.4.

In all cases, mass and tracer mass is conserved to machine precision. For energy
conservation, we saw in Sect. 12.4.5 that a compatible method will exactly mimic
all adiabatic processes in the dynamics. However there are several non-adiabatic
terms not considered in Sect. 12.4.5 which will impact total energy conservation of
a model in practice. The largest term in the CAM-HOMME dynamical core is the
horizontal dissipation of kinetic energy via a hyper-viscosity term. For this term a
corresponding heating term is added to the temperature equation so that total energy

90 N

60 N

30 N

30 S

90 S
180 150 W 120 W 90 W 60 W 30 W 30 E 60 E 90 E 120 E 150 E 180

Total (vertically integrated) precipitatable water kg / m2

6460565248444036322824201612840

0

60 S

0

Fig. 12.4 A snapshot of the vertically summed atmospheric water content (liquid, ice and vapor)
over the surface of an Aqua-planet, simulated with CAM-HOMME
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remains conserved. That is, if the hyper-viscosity term on the right-hand-side of
the momentum equation is represented by D, the amount of energy dissipated is
< @p

@	
u �D >. To add this back to the system as internal energy, one can add the term

�.1=cp/u � D to the right-hand-side of the temperature equation (Williamson et al.
2009). For the other non-adiabatic processes in CAM-HOMME we do not write
down corresponding heating terms. These include the leapfrog-Robert filter, mois-
ture variance dissipation and temperature variance dissipation. In this section we
first disable these non-adiabatic terms and demonstrate that CAM-HOMME con-
serves total energy to machine precision. We then measure the level of conservation
with these terms enabled.

12.5.1 Adiabatic Results

We first verify that the CAM-HOMME leapfrog time discretization of (12.12)–
(12.16) will satisfy the energy balance equations, (12.29)–(12.30), to within time-
truncation error. We use CAM’s standard 26 vertical levels and coarse resolution
in the horizontal (3.75ı average grid spacing at the equator). We use coarse spatial
resolution to verify that conservation is obtained in the presence of large truncation
error levels. For the initial condition, we use a fully spun-up state generated by a reg-
ular run of CAM-HOMME with all dissipation terms needed in the full atmospheric
model. Starting with this initial condition, we then run CAM-HOMME without the
Robert filter and with all dissipation terms disabled. When run in this manor, the
flow will soon become unrealistic as enstrophy will accumulate at the small scales
and the leapfrog scheme has a computational mode. But this inviscid configuration
can be run for short simulations. It is of interest because the only errors in total moist
energy conservation is from the second-order accurate leapfrog time-stepping, and
thus this error will decrease to machine precision at a second-order rate, as shown in
Fig. 12.5. We plot the relative error in total moist energy conservation after 30 min,
jE.tC30m/�E.t/j=E.t/, from eight simulations with�t ranging from 300 to 1 s.
The simulation with �t D 1 has a relative error of 5:6 � 10�15 corresponding to a
heating rate of 10�8 W/m2.

Fig. 12.5 Relative error in
total moist energy
conservation from low
resolution CAM-HOMME
aqua-planet simulations. The
error converges to machine
precision at a second-order
rate
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Fig. 12.6 Error in the kinetic and internal energy budget equations from low resolution CAM-
HOMME aqua-planet simulations. The internal energy budget error is at machine precision for
any time-step. The kinetic energy budget error converges to machine precision with decreasing
time-step

One could achieve exact energy conservation by advecting the total energy
instead of temperature or potential temperature. However, such an approach does
not mean that one is accurately solving the energy budget equations, (12.29) and
(12.30). A method which advects total energy can have large errors in these bal-
ance equations which are then effectively lumped into the temperature when it is
recovered from the total energy. To show that the conservation here is in fact due to
the correct representation of these budgets, we plot the error in (12.29) and (12.30)
in Fig. 12.6. From the simulations used in Fig. 12.5, we compute the terms on the
RHS of (12.29) and (12.30) from the flow snapshot at t D 30min. The terms on the
LHS are computed with centered-in-time differencing of K and I at t D 30 from
their values defined at t ˙ �t=2 using the half-time level definition given at the
end of Sect. 12.4.4. With this definition, (12.30) holds to machine precision when
using leapfrog without the Robert filter. The error in (12.29) converges to machine
precision with decreasing time-step.

12.5.2 Non-Adiabatic Results

We now consider the equations including all dissipation terms needed in the full
atmospheric model:

� A hyper-viscosity term added to (12.12) with a corresponding heating term added
to (12.13)

� A hyper-viscosity term added to (12.13) to dissipate temperature variance
� A sign-preserving reconstruction (Taylor et al. 2009) is used with the hori-

zontal advection operator and the vertical advection operator is replaced by a
Lagrange-remap approach (Lin 2004) with monotone reconstruction (Zerroukat
et al. 2005).
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The hyper-viscosity operators mentioned above are modeled after the terms used in
the Eulerian dynamical core in CAM. In this non-adiabatic case, the energy budget
in the dynamical core can be written as

@

@t
hKi D hT2i C hT3i CD1 (12.41)

@

@t
hI i D � hT2i � hT3i �D1 CD2: (12.42)

whereD1 serves to represent the kinetic energy dissipation from the hyper-viscosity
operator and the (much smaller) effects of the Robert filter and time-truncation
errors in the kinetic energy budget. We included it in (12.42) with the opposite
sign to represent the contribution of the compensating heating term used in the
model. In CAM-HOMME, the heating term is not exactly equal to the kinetic energy
dissipation, so this is only an approximation. The remaining term, D2, thus con-
tains the errors in the approximation, time-truncation errors and effects of all other
dissipation mechanisms in the model, and d=dt hEi D D2.

In these simulations, we compute d=dt < K >; d=dt < I >; T2 and T3 as
in the adiabatic case, and then use (12.41) and (12.42) to solve for D1 and D2. In
Table 12.1 we present results from the high resolution aqua planet simulation pic-
tured in Fig. 12.4. The simulation used the standard CAM 26 vertical levels, a high
horizontal resolution (0.5 degree average grid spacing at the equator) and a time-step
of 40 s for both tracers and dynamics. We use high resolution for these runs so that
the data reported will be typical of modern simulations. The data is computed from
the instantaneous values, sampled hourly, over a one month simulation time starting
with a spun-up initial condition. For completeness, we also include the impacts of
the velocity and temperature forcing terms applied by the CAM physics routines
which do not appear in the energy budget for the dynamics. For all quantities except
the forcings, there is little variation. That and the lack of seasons in aqua-planet
suggests these global means will be typical for the whole simulation.

The data shows that the moist total energy dissipation in the full model,
d=dt hEi D D2 D �0:013W/m2, is quite small relative to the other terms. This
value corresponds to a relative change, jE � E0j=E0, of 2 � 10�10 per time-step.
We also followed the methodology used in the adiabatic case above and made short
runs with only selected dissipation mechanisms turned on. These runs verify that
the contribution to D2 from the Robert filter, the hyper-viscosity term acting on T
and the various types of dissipation on q are all individually less than 0.013 W/m2

(not shown). The only significant diffusive term in the model is the horizontal
dissipation of kinetic energy (0.6 W/m2), and thus this is the only term for which
a compensating heating term must be included in order to obtain conservation to a
level of 0.013 W/m2.

Finally, we show that the common practice of running a moist primitive equation
model with a dry energy fixer, as in CAM (Williamson et al. 2009), results in a not
insignificant amount of cooling. The dry total energy is defined asEdry D KCIdryC
P , with Idry D cp
T . It differs from E by only 0.2%. Running CAM-HOMME
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Table 12.1 Averages and standard deviations for some of the terms in the energy bud-
get (12.41)–(12.42), from a high-resolution CAM-HOMME aqua-planet simulation. The CAM
physics forcings of K and I are given as FK and FI

Variable Average Standard deviation

hKi 2:653 � 106 J/m2 9:5 � 104
hI i 2:574 � 109 J/m2 1:8 � 106
hIdryi 2:570 � 109 J/m2 1:8 � 106
hFKi �2:53 W/m2 0.23
hFI i 2.26 W/m2 6.1
hT2 C T3i 3.20 W/m2 0.48
D1 �0:59 W/m2 0.055
D2 �0:013 W/m2 0.0014

with CAM’s dry energy fixer, we measure the forcing introduced by the fixer as
�0:56 ˙ 0:05W/m2. This is not the result of non-adiabatic moist processes, but is
due entirely to adiabatic terms in the energy budget. Neglecting dissipative terms,

@

@t

˝
Edry �E

˛ D
*
cpRTv

c�pp

!

+
�
�
RTv

p

!

�
:

and this term in our simulations is 0:56˙ 0:04W/m2. If d=dt < E >D 0, we have
that d=dt < Edry >D 0:56. Thus if one wishes to maintain a constant total dry
energy in a conservative moist hydrostatic model, one must compensate this level of
heating via some type of fixer.

12.6 Conclusions

Compatible numerical methods are an effective way to obtain conservative meth-
ods on unstructured grids. Here we showed that a compatible method will conserve
mass and moist total energy when used to discretize a standard primitive variable
formulation of the hydrostatic equations. In one dimension, the approach is well
known, an early example includes Simmons and Burridge (1981). For two and three
dimensional unstructured quadrilateral grids a recent example is the finite element
method which has been implemented in CAM-HOMME. Using CAM-HOMME,
we confirmed that without dissipative processes the method conserves moist total
energy to within a second-order time truncation error, which can be reduced to
machine precision by reducing the time step. In the full model, at 0.5 degree res-
olution, the dissipative processes in the dynamics are dominated by the horizontal
diffusion of kinetic energy at �0:6W/m2. When this diffusion is implemented via
hyper-viscosity, a heating term can be added which compensates to better than
0.013 W/m2. The remaining terms (diffusion of temperature variance, monotone
and sign preserving limiters on moisture and the Robert filter) are individually less
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than 0.013 W/m2 in magnitude. The common practice of fixing the dry total energy
introduces an additional forcing of 0.5 W/m2.
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Chapter 13
The Pros and Cons of Diffusion, Filters
and Fixers in Atmospheric General
Circulation Models

Christiane Jablonowski and David L. Williamson

Abstract All atmospheric General Circulation Models (GCMs) need some form of
dissipation, either explicitly specified or inherent in the chosen numerical schemes
for the spatial and temporal discretizations. This dissipation may serve many pur-
poses, including cleaning up numerical noise generated by dispersion errors or
computational modes, and the Gibbs ringing in spectral models. Damping pro-
cesses might also be used to crudely represent subgrid Reynolds stresses, eliminate
undesirable noise due to poor initialization or grid-scale forcing from the physics
parameterizations, cover up weak computational stability, damp tracer variance,
and prevent the accumulation of potential enstrophy or energy at the smallest grid
scales. This chapter critically reviews the wide selection of dissipative processes
in GCMs. They are the explicitly added diffusion and hyper-diffusion mechanisms,
divergence damping, vorticity damping, external mode damping, sponge layers, spa-
tial and temporal filters, inherent diffusion properties of the numerical schemes, and
a posteriori fixers used to restore lost conservation properties. All theoretical consid-
erations are supported by many practical examples from a wide selection of GCMs.
The examples utilize idealized test cases to isolate causes and effects, and thereby
highlight the pros and cons of the diffusion, filters and fixers in GCMs.

13.1 Introduction

There are many design aspects that need to be considered when building the
fluid dynamics component, the so-called dynamical core, for atmospheric Gen-
eral Circulation Models (GCMs). Among them are the choice of the equation set
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and prognostic variables, the computational grid and grid staggering options, the
spatial and temporal numerical discretizations, built-in conservation properties, and
the choice of dissipative processes that (1) might be needed to keep a model sim-
ulation numerically stable and (2) might truthfully mimic the cumulative effects of
unresolved subgrid-scale processes on the resolved fluid flow. The latter aspect is
at least a “hope” in the GCM modeling community. Here, the phrase subgrid-scale
denotes the dry adiabatic unresolved processes in the dynamical core. This is in con-
trast to all other unresolved processes that lead to physical parameterizations such
as radiation, convection, cloud processes and planetary boundary layer phenomena.
These are not considered here, even though they are intimately coupled to the equa-
tions of motion. This chapter sheds light on the pros and cons of the most popular
processes to handle both “physical” or “unphysical” subgrid-scale flow and mixing,
and reviews the use of explicitly added and inherent diffusion, filters and fixers in
GCMs. These are rarely documented in the refereed GCM literature but might be
detailed in technical model descriptions.

It is common practice in GCMs to include a parameterization of the effects
of subgrid-scale motions in the horizontal momentum and thermodynamic equa-
tions that is formulated as a local diffusive mixing. In fact, all numerical models
need some form of dissipation, either explicitly specified or inherent in the cho-
sen numerical schemes for the spatial and temporal discretizations. This dissipation
may serve many purposes, including cleaning up numerical noise generated by dis-
persion errors, computational modes, or the Gibbs ringing, crudely representing
subgrid Reynolds stresses, eliminating undesirable noise due to poor initialization
or grid-scale forcing from the physics parameterizations, covering up weak com-
putational stability, damping tracer variance, and preventing the accumulation of
potential enstrophy or energy at the grid scale (Wood et al. 2007; Thuburn 2008a).
Such an accumulation of energy is due to the physical downscale cascade and can
result in excessive small-scale noise. It is known as spectral blocking and leads to
an upturn (hook) or flattening in the kinetic energy spectrum at the smallest scales.
Furthermore, physical “noise” in GCMs might originate from parameterized grid-
scale forcings or from surface boundary conditions such as orography, the land-sea
or land-use mask.

An accumulation of energy and enstrophy at the smallest scales may also arise
due to a numerical misrepresentation of nonlinear interactions, the so-called alias-
ing effect. Nonlinear interactions and aliasing mostly originate from the quadratic
or higher-order terms in the equations of motion. In essence, products of waves can
create new waves that are shorter than 2�x where �x is the physical grid spac-
ing. These waves cannot be represented on a model grid and are aliased into longer
waves. Aliasing, if left unchecked, can lead to a blow up of the solution. This phe-
nomenon is characterized as nonlinear computational instability as first discussed
by Phillips (1959). Note that almost all GCMs suffer to some degree from alias-
ing. Exceptions are spectral transform models with quadratic transform grids which
eliminate the aliasing of quadratic advection terms, the most problematic form, but
do not completely eliminate aliasing from higher-order terms. Nonlinear computa-
tional instability does not occur in models that conserve quadratic quantities like
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enstrophy and kinetic energy (Arakawa 1966; Arakawa and Lamb 1981). Alias-
ing errors are not necessarily fatal. Whether an amplification of the waves occurs
depends on the phase relation between the misrepresented and original waves in
the model. More information on nonlinear computational instability and aliasing is
provided in textbooks like Durran (1999, 2010), Kalnay (2003) or Lin (2007).

All mixing processes remove energy and enstrophy from the simulation which
would otherwise build up to unrealistic proportions. Frequently, the included dis-
sipation is restricted to be in the horizontal, as there is usually sufficient vertical
mixing or diffusion in the physical boundary layer turbulence and convective param-
eterizations in full GCMs or sufficient inherent numerical diffusion to control noise
in the vertical direction. Sometimes, vertical diffusion is also explicitly included in
the dynamical core and applied throughout the whole troposphere. An example is
the model by Tomita and Satoh (2004) which is discussed later.

A common expectation might be that dissipative formulations based on turbu-
lence theory or observations provide a physical foundation for the subgrid-scale
mixing. However, such physical motivation is not guaranteed and each ad hoc mix-
ing process in a GCM must be critically reviewed. As pointed out by Mellor (1985)
the horizontal diffusivities in use by GCMs are typically many orders of magni-
tude larger than those which would be appropriate for turbulence closures. Thus,
horizontal diffusion used by most models cannot be considered a representation of
turbulence but should be viewed as a substitute mechanism for unresolved horizon-
tal advective processes. Awareness of this might offer some guidance in choosing
an adequate subgrid-scale mixing scheme.

Mixing in GCMs generally serves as a numerical filter and neither reflects the
mathematical representation of the energy or enstrophy transfer to small scales
nor the representation of physical molecular diffusion (Koshyk and Boer 1995).
Subgrid-scale processes, although small, can have a profound impact on the large-
scale circulation. For example, diffusive mechanisms affect the propagation of
waves and thereby the mean flow through wave-mean flow interactions. In addition,
both inherent and explicitly added dissipation processes smear out sharp gradients
in the tracer fields, and may lead to unphysical and overly strong mixing. Such mix-
ing might provide feedbacks to the physical parameterizations. For example, the
precipitation field might be highly influenced by the diffusive characteristics of the
moisture transport algorithm in the dynamical core. The notion of overly diffusive
GCMs was discussed by Shutts (2005). He argued that numerical advection errors,
horizontal diffusion and parameterization schemes like the gravity wave drag or
convection, act as energy sinks and lead to excessive energy dissipation in GCMs.
However, such a conclusion might be highly model dependent.

In summary, some mixing processes are used for purely numerical reasons to
prevent the model from becoming unstable. Others are meant to mimic subgrid-
scale turbulence processes that are unsolved on the chosen model grid. In practice,
many filters and mixing processes are used at once, which makes it more difficult to
evaluate their individual effects. The form of the diffusion processes in atmospheric
dynamical cores varies widely and is somewhat arbitrary. There are explicit dis-
sipation processes and filters, inherent numerical dissipation, and fixers in GCMs.
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Throughout the chapter we associate the phrase explicit diffusion with processes
explicity added to the equations of motion. The phrase implicit diffusion charac-
terizes the inherent dissipation of numerical schemes. These phrases are intended
to make a distinction from explicit and implicit numerical approximations to dif-
fusion operators. Note that the words “diffusion”, “dissipation” and “viscosity” are
often used interchangeably in the literature. Other characterizations of damping are
smoothing, filtering and mixing.

13.1.1 Model Equations and the Representation of Explicit
Diffusion

Mixing processes in GCMs can appear in many forms. A very dominant form is
based on explicit dissipation mechanisms that get appended to the equations of
motion shown in Chap. 15. In the continuous equations this mixing symbolizes
molecular diffusion. However, GCMs are not capable of representing molecular
diffusion at the nm or mm scale since they are typically applied with horizontal
grid spacings between 20 and 300 km. Nonhydrostatic GCMs (Tomita et al. 2005;
Fudeyasu et al. 2008) and mesoscale limited-area models like the Weather Research
and Forecasting Model WRF (Skamarock et al. 2008) are also run with finer grid
spacings of a few kilometers. Other atmospheric models with even finer scales might
utilize the Large Eddy Simulation (LES) approach. LES is a mathematical model for
turbulence that is based upon the Navier–Stokes equations with built-in low-pass fil-
ter. The underlying idea was initially proposed by Smagorinsky (1963) and further
developed by Deardorff (1970). LES has been extensively used to study small-scale
physical processes and mixing in the atmosphere. But in any case, models truncate
the multi-scale spectrum of atmospheric motions well above the molecular diffu-
sion scales. The unresolved part is typically modeled as dissipation and one might
hope that it adequately captures the adiabatic subgrid-scale processes in some poorly
understood way.

Explicit dissipation can be added to the momentum and thermodynamic equa-
tions in the symbolic form

@ 

@t
D Dyn. /C Phys. /C F (13.1)

where Dyn. / denotes the time tendencies of the prognostic variable  according
to the resolved adiabatic dynamics, Phys. / symbolizes the time tendencies from
the subgrid-scale diabatic physical parameterizations, and F is the dissipation. The
actual form of this dissipation is model dependent. For example, models in momen-
tum form, that utilize the zonal and meridional velocities u, v and temperature T ,
might append the diffusive terms Fu; Fv; FT . Models in vorticity-divergence (�; ı)
form add the diffusion F� ; Fı ; FT , or even replace F� with a diffusion of the abso-
lute vorticity F�Cf where f symbolizes the Coriolis parameter. Alternatively, if
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the potential temperature � is selected in the thermodynamic equation a diffusive
term F� might be chosen. Dissipation might also be applied to the tracer transport
equations, and in case of nonhydrostatic models to the vertical velocity. Whether
explicit diffusion is needed for computational stability is model dependent. Some
models prefer to control the smallest scales via inherent numerical dissipation and
select F D 0. However, the form of F is one of the main foci in Sects. 13.3–13.5,
and therefore we introduce the generic form of the forcing here.

13.1.2 Overview of the Chapter

This chapter presents a comprehensive review of dissipative processes and fixers in
general circulation models. Many pointers to references are given, and we illustrate
the practical implications of the diffusion, filters and fixers on the fluid flow in atmo-
spheric dynamical cores. In particular, we review the principles behind the different
dissipative formulations, isolate causes and effects, provide many examples from
today’s GCMs and utilize idealized dynamical core test cases and so-called aqua-
planet simulations to demonstrate the concepts. These test cases are briefly outlined
in Sect. 13.2. Overall, we quote or show examples from over 20 different dynamical
cores to highlight the broad spectrum of the dissipative processes in GCMs. The
models are listed in Sect. 13.2. We characterize fourteen of them in greater detail in
the Appendix since they are used as examples throughout the chapter.

The chapter is organized as follows. Sections 13.3 and 13.4 discuss the most pop-
ular explicit diffusion and damping mechanisms in the dynamical cores of GCMs.
Section 13.3 includes the classical linear and nonlinear horizontal diffusion and
hyper-diffusion, their diffusion coefficients and stability constraints, and physical
consistency arguments. Section 13.4 discusses the 2D and 3D divergence damping,
vorticity damping, Rayleigh friction and diffusive sponges near the model top, and
external mode damping. In general, it is debatable whether filters are considered
explicit dissipation or just a computational technique to keep a model numeri-
cally stable. Here, we choose to present them in their own category in Sect. 13.5
where both temporal and spatial filter are assessed. Section 13.6 captures the basic
ideas behind inherent numerical dissipation which is nonlinear and sometimes is
interpreted as physically motivated diffusion. Section 13.7 sheds light on the con-
servation properties of atmospheric GCMs and introduces a posteriori fixers. They
include the dry air mass fixer, fixers for tracer masses and total energy fixers. Some
final thoughts are presented in Sect. 13.8.

13.2 Selected Dynamical Cores and Test Cases

We illustrate many of the effects of the diffusion, filters and fixers in GCMs with
the help of 2D shallow water or 3D hydrostatic model runs to discuss the practical
implications of the theoretical concepts. Throughout this chapter, we point to the
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specific implementations of the dissipative processes, and quote typical values for
the empirical coefficients from a variety of models to shows their spread in the
GCMs. The intention is to give hands-on guidance and present the design options.

In particular, this chapter features examples from the dynamical cores CAM
Eulerian, CAM semi-Lagrangian, COSMO, ECHAM5, FV, FVcubed, GEOS,
GME, HOMME, ICON, IFS, NICAM, UM and WRF. The Appendix explains
the acronyms and briefly characterizes the numerical schemes. Most models are
global hydrostatic GCMs and use the shallow-atmosphere approximation. The only
exceptions are the nonhydrostatic models COSMO, NICAM, UM and WRF that are
built upon the deep atmosphere equation set (see White et al. 2005 for a review of
the equations). We also briefly refer to other models such as NASA’s ModelE by the
Goddard Institute for Space Studies, the Atmospheric GCM for the Earth Simulator
(AFES) developed by the Center for Climate System Research at the University
of Tokyo and the National Institute for Environmental Studies (Japan), the Global
Environmental Multiscale (GEM) model from the Canadian Meteorological Centre,
the Global Forecast System (GFS) and the Eta model developed by the National
Centers for Environmental Prediction (NCEP). The references for these models are
given later.

The model simulations utilize a variety of idealized test cases. They include
the steady-state and baroclinic wave test cases for dynamical cores suggested by
Jablonowski and Williamson (2006a,b), selected shallow water test cases from the
Williamson et al. (1992) test suite, the Held–Suarez climate forcing (Held and
Suarez 1994), a variant of the Held–Suarez test with modified equilibrium tempera-
tures in the stratosphere (Williamson et al. 1998), and the aqua-planet configuration
as proposed by Neale and Hoskins (2000). The adiabatic dynamical core and shal-
low water test cases generally assess the properties of the numerical schemes in
short deterministic model runs of up to 30 days. The idealized Held-Suarez-type
simulations utilize a prescribed Newtonian temperature relaxation and boundary
layer friction that replace the physical parameterization package. These model runs
are typically integrated for multiple years to assess the climate statistics on a dry
and spherical earth with no mountains. The aqua-planet assessments are the most
complex simulations discussed in this chapter. They represent moist GCM runs that
include the full physical parameterization suite but utilize a simplified lower bound-
ary condition. In essence, the lower boundary is replaced by a water covered earth
with prescribed sea surface temperatures. In addition, the settings of the physical
constants and a symmetric ozone data set are prescribed in aqua-planet simulations.

13.3 Explicit Horizontal Diffusion

This section discusses the ideas behind explicit horizontal diffusion mechanisms in
GCMs. In particular, we assess the linear second-order diffusion, the higher-order
and thereby more scale-selective hyper-diffusion, reveal the selection criteria for
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the diffusion coefficients in both spectral transform and grid point models, dis-
cuss the concept of spectral viscosity, and review the stability constraints for the
diffusion equation. In addition, we introduce the principles behind nonlinear hor-
izontal diffusion and briefly survey the physical consistency of explicit diffusion
schemes.

13.3.1 Generic Form of the Explicit Diffusion Mechanism

The generic form of the explicit linear diffusion is given by

F D .�1/qC1K2qr2q (13.2)

where q 
 1 is a positive integer, 2q denotes the order of the diffusion, K2q
stands for the diffusion coefficient and r is the gradient operator. Both the hor-
izontal 2D gradient operator or an approximated 3D gradient operator have been
used for the horizontal diffusion as further explained below. Setting qD 1 yields a
second-order diffusion that emerges from physical principles such as the heat dif-
fusion, molecular diffusion and Brownian motion. However, molecular diffusion
acts on the nanometer to millimeter scale, and is therefore unresolved on a GCM
model grid.

In practice, second-order diffusion is often applied as an artificial sponge near
the top boundary, and has very little resemblance with its physical counterpart. In
general, more scale-selective hyper-diffusion schemes with q D 2; 3; 4 are selected
in the majority of the model domain. The most popular choice is the fourth-order
hyper-diffusion with q D 2 that is also called bi-harmonic diffusion or superviscos-
ity. The use of hyper-diffusion is often motivated by the need to maximize the ratio
of enstrophy to energy dissipation since 2D turbulence theory predicts a vanish-
ing energy dissipation rate at increasing Reynolds numbers (Sadourny and Maynard
1997). The higher the order of the hyper-diffusion, the higher the ratio of enstrophy
to energy dissipation becomes. Farge and Sadourny (1989) even suggested using a
16th-order hyper-diffusion.

13.3.2 Particular Forms of Explicit Diffusion in GCMs

The exact form of the damping varies widely in GCMs. Typically, for convenience
the horizontal operators are applied along model levels with the possible exception
of the formulation for the scalar temperature diffusion. We now list several examples
to illustrate the variety of the diffusion mechanisms. Our first example is taken from
the weather forecast model GME which has been developed at the German Weather
Service. It applies the fourth-order hyper-diffusion
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Fu D �K4r4u (13.3)

Fv D �K4r4v (13.4)

FT D �K4r4.T � Tref / (13.5)

where r is the horizontal gradient operator and Tref is a reference temperature
that depends only on height (Majewski et al. 2002). At upper levels near the model
top, a second-order diffusion is applied. GME utilizes local basis functions that are
orthogonal and conform perfectly to the spherical surface. They are locally anchored
in each triangle of GME’s icosahedral grid. Within the local neighborhood of a
grid point the coordinate system is therefore nearly Cartesian. Note that Cartesian
coordinates simplify the representation of the r2q operator since the metric terms
are equal to unity.

If the diffusion is expressed in spherical coordinates many metric terms are
present. Here, we first show the operators for three spatial dimensions before sim-
plifying them. The scalar 3D Laplacian r2

.3D/
operator in spherical coordinates for

a prognostic variable  has the form

r2.3D/ D
1

r2 cos2 �
@�� C 1

r2 cos�
@�.cos�@� /C 1

r2
@r .r

2@r / (13.6)

where r denotes the radial distance in the local vertical direction from the center of
the earth, � and � are the longitude and latitude, and the notation @x symbolizes a
partial derivative in the x direction where x is a placeholder for �; � and r . In addi-
tion, the 3D vector Laplacian for the three-dimensional wind vector v3 D .u; v; w/

is given by

r2.3D/v3 D

0
BBBBB@
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@�u

r2.3D/w �
2
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w � 2

r2 cos�
@�u � 2

r2 cos�
@�.cos�v/

1
CCCCCA
: (13.7)

These expressions are e.g., shown in Appendix A in Satoh (2004). The extra terms
besides the scalar r2

.3D/
operator arise due to the spatial variation of the unit vectors

in spherical coordinates. With the exception of the undifferentiated term in each of
the components the extra terms are not necessarily negligible in comparison with
those of the scalar diffusion operator. In fact, some of them are crucial in ensuring
that the diffusion operator conserves angular momentum as outlined by Staniforth
et al. (2006).

Generally, approximated forms of (13.6) and (13.7) are chosen to express the
horizontal diffusion. The distance r is often approximated by the constant radius
of the earth a, the terms containing the vertical derivative @r and vertical velocity
w are dropped, and the vertical component of the vector Laplacian is neglected to
create a 2D diffusion operator. The replacement of the distance r by a is in fact a
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necessity in hydrostatic models based on the primitive equations (White et al. 2005).
The scalar 2D Laplacian then simplifies in the following way

r2 D 1

a2 cos2 �
@�� C 1

a2 cos�
@�.cos�@� /: (13.8)

The 2D vector Laplacian for the two-dimensional wind vector v D .u; v/ is given by

r2v D

0
B@
r2u � 2 sin�

a2 cos2 �
@�v � 1

a2 cos2 �
u

r2v � 1

a2 cos2 �
v C 2 sin�

a2 cos2 �
@�u

1
CA : (13.9)

This form of the vector Laplacian leads to the “conventional form” of the horizontal
momentum diffusion as characterized by Becker (2001). Unfortunately, this form
does not conserve angular momentum as further discussed in Sect. 13.3.7. Some
models also drop the extra terms and only apply the scalar 2D Laplacian operator
to the vector wind .u; v/ in spherical geometry. Such a simplified form is e.g., pro-
vided as an optional sponge layer damping mechanism near the model top in the
finite-volume (FV) dynamical core in the Community Atmosphere Model CAM
(version 5) (Neale et al. 2010). The model CAM FV is used at the National Center
for Atmospheric Research (NCAR).

There is another caveat. Both formulations of the Laplacian in (13.7) or (13.9)
would lead to an undesired damping of a solid body rotation as thoroughly analyzed
by Staniforth et al. (2006) for the Unified Model (UM) developed at the UK Met
Office. Therefore in practice, a more complicated form of the momentum diffusion
is chosen in the model UM that is applied to the velocity components u; v and w
(see Staniforth et al. (2006) for the derivation). The NCAR CAM spectral transform
Eulerian (EUL) and semi-Lagrangian (SLD) dynamical cores (Collins et al. 2004)
also include such a correction for solid body rotation as explained later.

Concerning the scalar diffusion in the model UM, a form similar to (13.8) is
selected for the diffusion of potential temperature. It is applied twice (including a
sign reversal) to resemble a fourth-order hyper-diffusion mechanism. The main dif-
ferences to (13.8) are that (1) the model UM does not utilize a shallow-atmosphere
approximation and retains the radial distance r , (2) a slope correction is utilized
over steep terrain to lessen the spurious mixing along UM’s deformed orography-
following vertical coordinate, and (3) the diffusion coefficient is different in the two
horizontal directions. The coefficient is constant in the meridional direction, but
the strength of the diffusion in longitudinal direction is allowed to vary with lati-
tude. This leads to non-isotropic diffusion and is further explained in Sect. 13.3.5.
Note that the model UM does not need horizontal diffusion for computational sta-
bility reasons due to the inherent numerical dissipation in the interpolations of its
semi-Lagrangian scheme. In practice, the explicit diffusion is therefore optional and
not used by default. For example, it is never utilized in short weather prediction
simulations (Terry Davies, personal communication).
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Scalar diffusion of type (13.8) is also applied in other models such as the spectral
transform Integrated Forecasting System (IFS) at the European Centre for Medium-
Range Weather Forecast (Ritchie et al. 1995; ECMWF 2010). The model utilizes
a second-order (q D 1) diffusion scheme close to the model top and a fourth-
order (q D 2) hyper-diffusion of the prognostic scalar variables relative vorticity
�, horizontal divergence ı and temperature. It yields the explicit diffusion

F� D .�1/qC1K2qr2q� (13.10)

Fı D .�1/qC1K2qr2qı (13.11)

FT D .�1/qC1K2qr2qT: (13.12)

This form of the diffusion is furthermore utilized by the spectral transform model
ECHAM5 developed at the Max–Planck Institute for Meteorology, where even
higher-order diffusion operators are chosen below the sponge layer at the model
top (Roeckner et al. 2003).

The application of the diffusion along sloping general vertical coordinates, like
the hybrid pressure-based �-coordinate (Simmons and Burridge 1981), is straight-
forward to implement, but as mentioned before can cause spurious mixing over
mountains, especially in the neighborhood of steep terrain. This is largely due to
the presence of large vertical temperature variations along the sloping surfaces that
overlay the horizontal gradients. Such spurious mixing triggered by the vertical vari-
ations is undesirable and may grow to significant proportions. Therefore in practice,
the diffusion of the temperature in the model IFS is modified to approximate the
horizontal diffusion on surfaces of constant pressure rather than on the sloping �-
coordinate surfaces. This is further explained in the technical model documentation
of the CAM EUL and SLD dynamical cores (Collins et al. 2004). CAM EUL and
SLD apply the fourth-order temperature diffusion

FT D �K4
	
r4T � ps @T

@p

@p

@ps
r4 lnps



(13.13)

where p is the pressure and ps symbolizes the surface pressure. The second term in
FT consists of the leading term in the transformation of the r4 operator from � sur-
faces to pressure surfaces. CAM also applies a second-order sponge-layer diffusion
at upper levels. But since the upper levels in CAM coincide with pure pressure levels
the correction is not needed there. In general, it is unclear whether diffusion should
be applied along constant model levels, constant pressure levels or even along con-
stant height or isentropic levels. If the diffusion primarily counteracts numerical
artifacts, arguments can be found that it should be applied along model levels. How-
ever, if the primary motivation is to characterize physical mixing, height, pressure or
isentropic levels are advantageous as explained in detail by Staniforth et al. (2006).

Note that NCAR’s EUL and SLD dynamical cores actually apply a variant of
the diffusion shown in (13.10) and (13.11) to the relative vorticity and horizon-
tal divergence fields which generalizes the approach by Bourke et al. (1977). It is
given by



13 Diffusion, Filters and Fixers in Atmospheric General Circulation Models 391

F� D .�1/qC1K2q
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� 2
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�q

(13.14)

Fı D .�1/qC1K2q
	
r2qı C .�1/qC1ı

� 2
a2

�q

(13.15)

which diffuses the absolute vorticity .� C f / instead of � in (13.14). The undif-
ferentiated correction terms are added to the vorticity and divergence diffusion to
prevent the damping of uniform solid-body rotations. For example, a solid body
wind distribution like

u D u0 cos� (13.16)

v D 0 (13.17)

with a constant velocity u0 does not experience any damping by the diffusion shown
in (13.14) and (13.15). The models ECHAM5 and IFS with the diffusion terms
(13.10) and (13.11) do not apply this correction and thereby damp such a solid-body
rotation.

The derivation of (13.14) and (13.15) can be understood when taking a sec-
ond look at the scalar 3D Laplacian operator (13.6) as explained by Satoh (2004)
(his Chap. 17). Substitute v3 with v3 D .u; v; 0/ and assume that the horizon-
tal wind components u and v are proportional to the distance r to help simplify
the Laplacian. This could be envisioned by assuming an idealized profile like
u.�; �; r/ 	 rkuuH .�; �/ with the constant ku and velocity uH that only varies in
the horizontal direction. The scalar 3D Laplacian (13.6) for the velocity  D u then
yields

r2.3D/u D
1

r2 cos2 �
@��uC 1

r2 cos�
@�.cos�@�u/C 2

r2
u: (13.18)

After replacing the distance r by the radius a we obtain

r2.3D/u D
1

a2 cos2 �
@��uC 1

a2 cos�
@�.cos�@�u/C 2

a2
u: (13.19)

A similar expression holds for v. With these approximations, the horizontal diffu-
sion expressed in (13.14) and (13.15) can be derived as shown by Satoh (2004).

The explicit diffusion mechanisms for the horizontal divergence in spectral mod-
els (13.11) or (13.15) readily controls gravity waves as also pointed out by Randall
(1994). This suggests an interesting analogy to another type of explicit damping
called horizontal divergence damping. The latter is sometimes used in GCMs writ-
ten in momentum .u; v/ form and is explained in detail in Sect. 13.4.1. Although
both mechanisms are characterized with different names they accomplish a simi-
lar or even identical physical effect, namely they damp the divergent motions with
either a second-order or higher order diffusion. We return to this analogy later.
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The diffusion discussed so far is linear. It can therefore easily be calculated in
spectral space in the spectral models ECHAM5, IFS, EUL or SLD since the spher-
ical harmonics basis functions are eigenfunctions of the Laplacian operator on the
sphere. These models utilize a constant diffusion coefficient and apply the diffusion
with an implicit temporal discretization to increase the numerical stability of the
diffusion mechanism. This is discussed below in Sects. 13.3.4.1 and 13.3.5.

13.3.3 Practical Considerations: Linear High-Order Diffusion
Operators

Second-order diffusion schemes are not very scale selective and can therefore
impact the well-resolved scales in a negative way. In practice, higher-order hyper-
diffusion formulations are generally preferred to improve the scale selectivity. This
is despite the fact that higher-order diffusion does not posses a physical founda-
tion. High-order diffusion such as a fourth-order hyper-diffusion based on the r4
operator is most often chosen. Even sixth- or eighth-order hyper-diffusion schemes
are applied in GCMs, e.g., in ECHAM5 (Roeckner et al. 2003). The higher order
can either be achieved via multiple applications of the r2 operator with sign rever-
sals as in Staniforth et al. (2006) or via the direct discretization of the higher-order
operators.

As a sneak preview of the practical aspects of the diffusion discussion in
Sects. 13.3, 13.4 and 13.6, we start the assessment by isolating the effects of
the fourth-order hyper-diffusion and second-order sponge-layer diffusion (applied
in the top three levels < 14 hPa) in an idealized dynamical core simulation. In
particular, we choose the CAM (version 4) SLD dynamical core at the triangular
(T) truncation T85 (� 156 km) with 26 levels. A steady-state test case, described
in Jablonowski and Williamson (2006a), is used and run for 30 days with (a) no
explicit diffusion and (b) the default second-order and fourth-order diffusion using
the default coefficients K2 D 2:5 � 105 m2 s�1 and K4 D 1 � 1015 m4 s�1. Note
that thisK2 value is the base value at the third level from the top. It is doubled at the
second level and doubled again at the top level (Neale et al. 2010). This adds a ver-
tical dependency to the formulation of K2 that is purely based on the level number
without taking the actual pressure or height position into account. The second-order
diffusion serves as a sponge near the model top. Figure 13.1 shows the correspond-
ing zonal-mean zonal wind fields at day 30 and the difference plot between the run
with default diffusion and no diffusion. The run without diffusion (Fig. 13.1a) keeps
an almost perfect steady state that is visually indistinguishable from the initial state.
In the default diffusion simulation (Fig. 13.1b) the fourth-order hyper-diffusion acts
throughout the entire atmosphere except in the uppermost three levels above 14 hPa.
Its influence on this very smooth steady state solution is negligible and the absolute
differences in the lower layers are on the order of ˙0:025 m s�1. The difference
plot in Fig. 13.1c is clearly dominated by the effects of the second-order diffusion in
the sponge layer. The sponge layer diffusion changes the shape of the midlatitudinal
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ba c

Fig. 13.1 Zonal-mean zonal wind (m/s) at day 30 of the steady-state test case of Jablonowski and
Williamson (2006a) in the CAM 4 SLD dynamical core at the resolution T85L26 with (a) no dif-
fusion, (b) the default second-order and fourth-order diffusion (see text), (c) zonal wind difference
between the simulation with diffusion and no diffusion. A logarithmic pressure coordinate is used.
No decentering is applied. The time step is �t D 1;800 s

zonal jets considerably which leads to a decrease in the peak wind speeds at the
model top by about 4 m s�1. The diffusion also causes significant increases in the
wind speeds in the formerly calm equatorial and polar regions by up to 8 m s�1.
It thereby smoothes out the sharp gradients in the zonal wind field. Note that the
influence of the second-order diffusive sponge is not just limited to the top three
layers. It clearly modulates the wind profile in the uppermost six levels which lie
above 54 hPa. These sponge layer effects are discussed in greater detail later in
Sect. 13.4.5.

As an aside for completeness, no decentering of the trajectories was used (� D 0),
as will be explained later in Sect. 13.6.3, and the trajectory calculation utilizes only
spherical coordinates to suppress any signal from non-zonal geodesic trajectory cal-
culations in polar regions (typically poleward of 70ı). The local geodesic coordinate
is essentially a rotated spherical coordinate system whose equator goes through
the arrival point of the trajectory (see details in Williamson and Rasch 1989). Of
course, omitting decentering is only reasonable in the absence of mountains, and
the exclusive use of spherical coordinates is only reasonable in the case of zonal
advection as considered in the special case here. These deviations from the default
CAM SLD configuration are selected to truly isolate the damping effects from the
linear horizontal diffusion. In practice, the damping of all explicit and implicit dissi-
pation mechanisms as well as filters and fixers act in concert, and they are generally
difficult to isolate individually.

13.3.4 Choice of the Diffusion Coefficient: Damping Time Scales

The choice of the r2, r4 or even higher-order diffusion coefficient is most often
motivated by empirical arguments and chosen in a somewhat arbitrary manner. It is
sometimes even considered a model tuning parameter. However as seen in Fig. 13.1
and also shown later, the diffusion can have a profound impact on the global circula-
tion, and must be chosen with care. This was also noted by Stephenson (1994) who
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points out that relatively few systematic horizontal diffusion studies have been per-
formed with realistic GCMs. Among the few are the studies by Williamson (1978),
MacVean (1983) and Laursen and Eliasen (1989).

This raises questions about the scaling of the subgrid-scale horizontal mixing
parameterizations with horizontal resolution. For example, Smagorinsky (1963)
suggested a second-order diffusion based on turbulence concepts in which the Eddy
diffusivity depends on the square of the model horizontal grid spacing and the defor-
mation of the flow field (see Sect. 13.3.6). Higher degree hyper-diffusion operators,
such as r4, r6 or r8, are commonly used in spectral transform models. Takahashi
et al. (2006) showed with the help of an Eulerian spectral transform model with a
truncation limit of about wavenumber n0 � 100 that the coefficients for the r4
form may be chosen to yield a straight kinetic energy spectrum with a slope of n�3
for spherical wavenumbers n between Œ15; n0	. For significantly higher truncations,
coefficients can be found which yield a slope of n�5=3 beyond n D 100. Appendix
B of Jakob et al. (1993) provides details about the calculation of such kinetic energy
spectra. As a physical motivation, Skamarock (2004) (see also Chap. 14), Takahashi
et al. (2006) and Hamilton et al. (2008) discussed the desirability of modeling such
slopes based on observational evidence (Nastrom and Gage 1985) and the theoret-
ical reasons why they may or may not be expected. The latter is also addressed in
Chen and Wiin-Nielsen (1978) and Boer and Shepherd (1983). Examples of kinetic
energy spectra in the resolution range from 224 km down to 3.5 km are shown in
Terasaki et al. (2009) for the nonhydrostatic global model NICAM (Satoh et al.
2008).

In practice, coefficients for different resolutions are found experimentally with
the model configured for earth-like simulations so that in the mid- to upper-
troposphere the kinetic energy spectra have the desired straight tails for each
resolution. For example, Boville (1991) empirically determined diffusion coeffi-
cients via trial and error with the NCAR Community Climate Model, Version 1
(CCM1). Boville tested coefficients in short model integrations and adjusted them
until he obtained kinetic energy spectrum at 250 hPa which did not change shape
near the truncation limit. Using the same approach, diffusion coefficients have also
been found for CAM 3.1 which provide kinetic energy spectra similar to those of
Takahashi et al. (2006). The dynamical component of CAM 3.1 is the Eulerian spec-
tral transform scheme as in the model used by Takahashi et al. (2006), although
CAM 3.1 has a different subgrid-scale physics parameterization package and differ-
ent water vapor transport. The model of Takahashi et al. (2006) used the Eulerian
spectral transform method for the water vapor transport and applied the diffusion to
water vapor as well as temperature, vorticity and divergence. In contrast, CAM 3.1
uses shape preserving semi-Lagrangian approximations for water vapor transport.
Diffusion is applied to temperature, vorticity and divergence, but not to water vapor.

The choice of the diffusion coefficient needs to obey physical and numerical
constraints. From a physical viewpoint, the coefficient influences the damping time
scales for all waves and should be as small as possible for the resolved large scales to
avoid overly strong dissipation of the physically relevant signals while still provid-
ing enough damping to prevent the build-up of energy and enstrophy at the smallest
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scale. From a numerical viewpoint, the coefficient needs to be sufficiently large to
guarantee stable computations if the numerical approximation requires such damp-
ing. The stability aspect deserves special attention in explicit time-stepping schemes
that place upper stability limits on the strength of the coefficient or impose restric-
tive time step sizes. An inadequately chosen coefficient can even act as the source of
grid-scale noise and numerical instability. Both aspects are further explained below.

Ideally the rate of the energy dissipation near the truncation limit of a model
should mimic the true energy transfer rates of the atmosphere at these scales. But
unfortunately the knowledge from atmospheric observations of such transfer or dis-
sipation rates is relatively poor as discussed by MacVean (1983). However, it helps
to associate the value of the diffusion coefficient with a damping time scale at the
smallest spatial scale in the model, since time scales can readily be understood from
a physical viewpoint.

13.3.4.1 Diffusion Coefficients in Spectral Transform Models

Recall that 2q is the order of the diffusion where q 
 1 is a positive integer. In
spectral transform models the diffusion coefficientK2q is typically represented by

K2q D 1
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n0.n0 C 1/
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(13.20)

as for example shown by MacVean (1983), Sardeshmukh and Hoskins (1984)
and Roeckner et al. (2003). 
 is the e-folding time scale for the diffusion at the
smallest wavelength, a denotes the Earth’s radius and n0 symbolizes the maxi-
mum wavenumber corresponding to the smallest wavelength. The wavenumber is
e.g., specified by a triangular truncation limit like T85 with n0 D 85. Equation
(13.20) means that the .n;m/-th spectral component of the diffused quantity in the
time-continuous case will be damped by the response function
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where �t symbolizes the length of the time step and dn determines the strength of
the damping (Sardeshmukh and Hoskins 1984; von Storch 2004). Here, n denotes
the total (also called spherical) wavenumber and m stands for the zonal wavenum-
ber as discussed in textbooks like Kalnay (2003) or Durran (1999, 2010). Note
that the damping is independent of m. The response function is equivalent to an
“amplification factor” represented by
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En D � tC�t
n

� t
n

(13.23)

that expresses the ratio of the wave amplitudes �n for each wavenumber n at the
discrete future t C �t and current t time levels. The response function provides a
damping mechanism for all En < 1.

The time-discretized form of the response function (13.21) yields

En � 1 ��t
"
1




�
n.nC 1/
n0.n0 C 1/

�q #
(13.24)

which can be transformed into the approximate form

En �
(
1C�t

"
1




�
n.nC 1/
n0.n0 C 1/

�q #)�1
: (13.25)

An almost identical response function in comparison to (13.25) is also shown in
Collins et al. (2004) for the temperature diffusion in the CAM EUL spectral trans-
form dynamical core. However, this Eulerian dynamical core applies the damping
over a duration of 2�t due to the chosen leapfrog time-stepping scheme. In fact,
CAM EUL uses time splitting and applies the temperature diffusion with an implicit
temporal discretization in spectral space after some other temporal updates

Tmn D QTmn � 2�t K2q
�
n.nC 1
a2

�q
Tmn : (13.26)

Tmn and QTmn symbolize the spectral coefficients for the temperature at the future and
partially updated past time, respectively. Note that (13.26) can also be rewritten as

Tmn D En QTmn (13.27)

En D
�
1C 2�t K2q

�
n.nC 1/
a2

�q ��1
(13.28)

which confirms that the response function En plays the role of a damping mecha-
nism as stated above in (13.23). The only difference between (13.28) and (13.25) is
the duration of the time interval which depends on the time-stepping scheme in the
dynamical core. More details on the application of the diffusion in the model CAM
EUL are provided in Collins et al. (2004) (their Chap. 3.1.14) that also explains
how the correction to pressure levels is computed (13.13). The diffusion mechanism
in (13.27) and (13.28) can also be compared to the concept of “spectral viscosity”
which is discussed below in Sect. 13.3.4.2.

Equations (13.20) and (13.21) reflect the strength of the damping for the diffu-
sion operators shown in (13.10)–(13.12). If the variant of the diffusion is used that
does not diffuse a solid body rotation (13.14)–(13.15) the relationship between the
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diffusion coefficient and the time scale becomes

K2q D 1




 
a2q

Œn0.n0 C 1/	q � 2q
!
: (13.29)

This leads to the time-continuous response function

En D exp

(
��t

"
1




�
Œn.nC 1/	q � 2q
Œn0.n0 C 1/	q � 2q

�#)
(13.30)

for the vorticity and divergence diffusion. Analogous to (13.25) the time-discretized
form of (13.30) can be approximated by

En �
(
1C�t K2q

�
Œn.nC 1/	q � 2q

a2q

�) �1
(13.31)

that reintroduces the corresponding diffusion coefficient K2q (13.29) into the
equation.

The strength of the horizontal diffusion, as explicitly stated in (13.25), (13.28)
and (13.31), is scale-dependent. This is confirmed for (13.28) in Fig. 13.2. The
figure is drawn for a T85 (n0 D 85) triangular truncation with an assumed time
step of 2�t D 1;200 s and a damping time scale of 
 D 8 h. These settings are
close to the default values for the fourth-order hyper-diffusion in CAM EUL (see
Sect. 13.3.4.4) that utilizes the leapfrog time-stepping scheme. The response func-
tion (13.28) for the second-, fourth-, sixth- and eighth-order horizontal diffusion
clearly shows that the higher-order diffusion provides less damping at long spa-
tial scales (low wavenumbers) and rapidly increases in strength towards the high
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Fig. 13.2 Scale selectivity of the response function En shown in (13.28) for a spectral T85 tri-
angular truncation and second-, fourth-, sixth- and eighth-order horizontal diffusion. In addition,
the filter function �n (13.39) of the spectral viscosity is shown. A time step of 2�t D 1;200 s and
damping time scale of 
 = 8 h are assumed
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wavenumbers. The highest spherical wavenumber n D 85 is damped at an identi-
cal rate in this example. The figure also shows the damping characteristics of the
spectral viscosity method (13.39) that is discussed in the next subsection.

As an aside, Leith (1971) suggested an alternative formulation of the response
function. His derivation is based on an analysis of the numerical dissipation func-
tion that arises from the energy transfer between wavenumbers in a two-dimensional
Cartesian turbulence closure model known as the Eddy-damped Markovian approx-
imation. Gelb and Gleeson (2001) showed the corresponding response function
for the Leith (1971) fourth-order hyper-diffusion when utilizing a leapfrog time-
stepping scheme. It yields

En D
�
1C 2�t KL .n � nL/

2.n � nL C 1/2
a4

��1
(13.32)

where the parameter nL D 0:55n0 is the cutoff wavenumber and the diffusion
coefficientKL is defined as

KL D
8<
:
0 n � nc ;
K4

.0:45/4
nc < n � n0 :

(13.33)

K4 is given in (13.20) for q D 2. A second-order version of the Leith (1971)
diffusion has been implemented in the weather prediction model “Global Fore-
cast System” (GFS 2003) which is an operational spectral transform model at the
National Centers for Environmental Prediction (NCEP). A comparison of the fourth-
order traditional diffusion (13.28), the Leith (1971) diffusion (13.32) and spectral
viscosity is provided in Gelb and Gleeson (2001).

13.3.4.2 The Concept of Spectral Viscosity

The horizontal diffusion in spectral transform models can also be replaced with a
spherical “spectral viscosity” operator as proposed by Gelb and Gleeson (2001).
They suggested a spectral viscosity method which is built upon rigorous mathe-
matical principles for nonlinear conservation laws. It yields a viscosity term that
depends on the spatial scale of the waves and is equal to zero for low wavenumbers.
It is thereby highly scale-selective and does not damp well-resolved wave modes.

Note that the traditional fourth-order hyper-diffusion of the formF� D�K4r4�
(13.2) has the analytic spectral representation

fF� gmn D �K4
n2.nC 1/2

a4
�mn : (13.34)

The spectral viscosity (SV) approach then translates (13.34) into the new form

fF SV� gmn D � � Oq2n
n2.nC 1/2

a4
�mn (13.35)
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where � is a tuning parameter that, according to the mathematical theory behind
spectral viscosity, scales like � 	 n�30 . Oqn is given by

Oqn D
8<
:
0 n � nc ;
exp

�
� .n � n0/2
2.n� nc/2

�
nc < n � n0: (13.36)

As before, n0 is the maximum spherical wavenumber, a is the earth’s radius, and nc
is a cutoff wavenumber. The spectral viscosity is zero for all waves with wavelengths
that are larger than the cutoff wavelength. Gelb and Gleeson (2001) recommended
the scaling parameters

� D c a3

n30
and nc D 2 n

3
4

0 (13.37)

with c D 2m s�1 and tested these in an Eulerian spectral transform shallow water
model with a leapfrog time-stepping scheme. The parameter c needs to carry veloc-
ity units to match the physical dimensions, which were originally omitted. Gelb and
Gleeson (2001) noted that these scalings might not be universal since they were
tuned for a single shallow water test case.

The fourth-order spectral viscosity yields

�mn D �n Q�mn (13.38)

�n D
�
1C 2�t Œ� Oq2n	

n2.nC 1/2
a4

��1
(13.39)

where �mn stands for the spectral coefficients of a prognostic variable, such as tem-
perature, at the future time step, and Q�mn represents the spectral coefficients at a
partially updated past time level, as discussed earlier in Sect. 13.3.4.1. The spec-
tral viscosity operation specified in (13.38) is equivalent to applying a spectral filter
of form �n at each time step (Canuto et al. 1987). Equation (13.38) is formally
identical to the equation for the fourth-order (q D 2) hyper-diffusion (13.27). The
most important difference is the definition of the response function �n (13.39) in
comparison to En given in (13.28). The comparison reveals that the wavenumber-
dependent viscosity parameter Œ� Oq2n	 replaces the constant diffusion coefficientK4.
The different damping characteristics of �n and En can clearly be seen in Fig. 13.2.
The dashed red curve depicts the spectral viscosity response function that can read-
ily be compared to the traditional fourth-order hyper-diffusion (solid red curve). It
confirms that the spectral viscosity does not damp the low wavenumbers (e.g., up
to spherical wavenumber n D 56 in this example) and then quickly increases in
strength. However, at this particular resolution and time step the damping effect of
the spectral viscosity with parameter set (13.37) is always weaker than the damping
of the traditional diffusion.

Gelb and Gleeson (2001) showed via 2D shallow water tests that the spectral
viscosity method gives appreciably superior results if the flow field is underresolved.
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In a well-resolved flow field the accuracy of SV and hyper-diffusion simulations was
comparable. However, they observed that the use of spectral viscosity improved the
conservation of invariants by the numerical scheme and led to more accurate energy
spectra. Spectral viscosity has not been used in operational 3D spectral transform
GCMs so far.

13.3.4.3 Diffusion Coefficients in Grid-Point Models

It is less straightforward to represent the relation between the damping time and
the K coefficient in grid point models since the exact relation depends on the type
of spatial discretization and the model grid. We therefore pick an example that
illustrates the relationship and then generalize it.

The example reflects the UK Met Office’s Unified Model on a latitude–longitude
grid that utilizes a finite-difference approach in spherical coordinates. Following the
arguments by Staniforth et al. (2006) in their Chap. 12 the response function for a
centered finite-difference approximation of the second-order diffusion yields

E D 1 ��t
 
K� sin2.k���=2/

a2 cos2 �.��=2/2
C K� sin2.k���=2/

a2.��=2/2

!
(13.40)

where K� and K� are the second-order diffusion coefficients, k� and k� stand for
the longitudinal and latitudinal wavenumbers, and�� and�� are the grid spacings
(in radians) in the longitudinal and meridional direction, respectively. Selecting an
isotropic diffusion with coefficientsK� D K� reveals a stability concern in (13.40),
as further discussed in Sect. 13.3.5. In practice, K� cos2 � D K� D constant � K

is therefore chosen (Staniforth et al. 2006) which leads to the damping for each pair
of wavenumbers

E D 1 ��t K
 

sin2.k���=2/

a2.��=2/2
C sin2.k���=2/

a2.��=2/2

!
: (13.41)

Assuming that the highest wavenumbers k� D 2
=Lx and k� D 2
=Ly are rep-
resented by the smallest resolvable wavelengths Lx D 2�� and Ly D 2�� the
relation between the diffusion coefficient and the time scale 
 for the shortest waves
becomes

1



D K

 
1

a2.��=2/2
C 1

a2.��=2/2

!
(13.42)

or equivalently

K D 1




 
1

.a��=2/2
C 1

.a��=2/2

!�1
: (13.43)

Note that �x D a�� and �y D a�� express the physical grid spacings at the
equator.
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A generalization of this approach for grid point models with approximately
uniform physical grid spacings �x D �y and 2q-th-order hyper-diffusion yields

K2q D 1

2


��x
2

�2q
: (13.44)

Examples of such models are GME on an icosahedral grid (Majewski et al. 2002)
or the dynamical core HOMME on a cubed-sphere mesh (see Taylor et al. (2007)
and Chap. 12). Other models like the nonhydrostatic icosahedral dynamical core
NICAM (Tomita and Satoh 2004) define the horizontal and vertical diffusion
coefficients as

K2qH D �H
�x 2q

�t
(13.45)

K2qV D �V
.��/2q

�t
(13.46)

where �H and �V are non-dimensional empirical factors and �� is the vertical
grid spacing in the generalized terrain-following height coordinate �. Here �x
symbolizes the average grid spacing in their quasi-uniform triangular grid given by

�x D
r
4
a2

N
(13.47)

with a total of N grid points per model level. 4
a2 denotes the total surface area of
the sphere. After an empirical factor � and therebyK2q is chosen, its damping time
scale is


 D �t

22qC1 �
(13.48)

according to (13.44). The symbol � is used as a placeholder for either �H or �V .
Concrete values for � are presented below in Sect. 13.3.4.5. As an aside, explicitly
added vertical diffusion is often considered part of the physical parameterization
suite, and is rarely included in a dynamical core.

The details of the assessments above will differ somewhat based on the numerical
scheme and the degree of non-uniformity of the computational grid. Neverthe-
less, (13.44) gives guidance when selecting the appropriate damping time scales.
Note again, that models with explicit time discretizations enforce stability limits on
the strength of the coefficient (Jakimow et al. 1992; Staniforth et al. 2006) for a
given time step.

13.3.4.4 Examples of Diffusion Coefficients in Spectral Models

As a practical example, we briefly discuss the heterogeneous horizontal diffusion
mechanism in the spectral model ECHAM5. First, the order of the hyper-diffusion
scheme varies depending on the model level with highly scale-selective sixth or
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eighth-order diffusion at low levels and increased fourth- and second-order dif-
fusion in higher regions. This increased diffusion near the model top serves as a
sponge to lessen the spurious reflection of planetary and gravity waves at the upper
boundary. Second, the strength of the diffusion depends on the type of prognostic
variable. Assume that 
vor is the e-folding damping time of the highest resolvable
wavenumber for the horizontal vorticity diffusion. In ECHAM5, 
 is independent of
the vertical position and order of the diffusion but changes with horizontal resolu-
tion (Roeckner et al. 2003; Wan et al. 2008). The e-folding times for the horizontal
divergence and temperature diffusion are then chosen as


div D 0:2 
vor (13.49)


T D 2:5 
vor : (13.50)

For low resolution T42, T63 and T85 ECHAM5 simulations, the vorticity e-folding
times 
vor are typically set to 9, 7 and 5 h, respectively. These resolutions correspond
to equatorial grid spacings of about 313, 208 and 156 km.

In contrast, other models such as the semi-Lagrangian and Eulerian spectral
transform dynamical cores in CAM utilize the same diffusion coefficient for all
prognostic variables. Boville (1991) recommended damping time scales of 14.4
and 7.2 h at the resolutions T42 and T63 for NCAR’s Eulerian model with fourth-
order hyper-diffusion. Similar damping time scales were suggested by Takahashi
et al. (2006) who also investigated the higher-resolution spectral truncations T159,
T319 and T639 with the spectral transform Eulerian model AFES (Enomoto et al.
2008). More concretely, Hamilton et al. (2008) reported AFES damping time scales
around 9.6, 8.4, 4.8, 2.4 h for the spectral truncations T79, T159, T319 and T639.
They yield the K4 diffusion coefficients 1:19 � 1015; 8:41 � 1013; 9:14 � 1012
and 1:14 � 1012 m4 s�1, respectively, according to (13.20). The corresponding grid
spacings are approximately 167, 83, 42 and 21 km.

As mentioned before, the diffusivity parameter is generally empirically adjusted
in each simulation to produce results in which the ends of the kinetic energy spec-
tra follow a power law and do not change with the model resolution. Both Boville
(1991) and Takahashi et al. (2006) found that the diffusivity coefficient needs to
be scaled at about the inverse third power of the spectral truncation. As a conse-
quence, the diffusion time scale of the smallest resolved scale drops with increased
resolution as also suggested by Williamson (2008a) for CAM 3.1. In particular,
Williamson (2008a) proposed damping time scales of 14.0, 8.6, 3.6 and 1.5 h for
the T42, T85, T170 and T340 spectral truncations in the Eulerian dynamical core
which yield the K4 coefficients 1 � 1016; 1 � 1015; 1:5 � 1014 and 2:25 � 1013 m4

s�1, respectively. In addition, a second-order diffusive sponge was employed in the
three uppermost levels. The base diffusion coefficient at the third level from the top
was held constant with K2 D 2:5 � 105 m2 s�1 regardless of resolution which cor-
responds to damping time scales of about 25, 6.2, 1.6 and 0.4 h at the resolutions
T42, T85, T170 and T340. The two highest resolutions T170 and T340 correspond
to equatorial grid spacings of about 78 and 39 km. Note again that theK2 coefficient
was doubled at the second level and doubled again at the first level from the top. The



13 Diffusion, Filters and Fixers in Atmospheric General Circulation Models 403

second-order sponge layer diffusion was introduced to damp the vertically propa-
gating resolved waves and prevent them from being reflected back down. Therefore,
the coefficient is not reduced with resolution. It was chosen by trial and error to
yield reasonable stratospheric polar night jet speeds and reduce the polar cold bias
in the stratosphere. As resolutions increase further in the future, this choice of the
diffusion coefficient K2 might need to be revisited since a sudden onset of a strong
sponge layer with very short time scales can act as a wave reflector by itself. This
would defeat the purpose of the sponge layer.

As a concrete example, we now evaluate the effects of horizontal dissipation on
the development of baroclinic waves. This was also suggested by MacVean (1983)
who conducted a systematic study on the effects of hyper-diffusion and energy trans-
fers in idealized GCM experiments. The effects of different types of hyper-diffusion
are also discussed later in Sect. 13.3.8. Here, we start by isolating the effects of a
varying fourth-order horizontal diffusion coefficient on growing baroclinic waves,
and utilize the idealized dynamical core test case by Jablonowski and Williamson
(2006a).

Figure 13.3 shows the surface pressure, 850 hPa temperature and vertical pressure
velocity fields at day 9 of two simulations with the CAM Eulerian spectral transform
dynamical core at the triangular truncation T85 with 26 levels. Both simulations
applied the fourth-order hyper-diffusion with (left column) the default coefficient
K4 D 1 � 1015 m4 s�1, and (right column) an increased coefficient by the factor

a b

c d

e f

Fig. 13.3 (a,b) Surface pressure (hPa), (c,d) 850 hPa temperature (K) and (e,f) vertical pressure
velocity (Pa/s) at day 9 of the growing baroclinic wave test case of Jablonowski and Williamson
(2006a) in the CAM T85L26 Eulerian spectral dynamical core with r4 diffusion. Left: default
diffusion coefficient K4 D 1 � 1015 m4 s�1, Right: increased diffusion coefficient by a factor of
10. A time step of �t D 600 s is used
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of 10. The corresponding damping time scales are 8.6 and 0.86 h, respectively. A
second-order diffusive sponge near the model top is also applied, but is irrelevant
for the discussion here. The figure shows that the baroclinic wave grows in both sim-
ulations, but that the circulation is relatively damped in the increased diffusion run.
The peak magnitudes of the surface pressure and vertical pressure velocity fields are
clearly reduced (Fig. 13.3b,f) and the otherwise sharp gradients in the temperature
field are smeared out in the highly diffusive run (Fig. 13.3d). However, the increased
diffusion diminished (but not eliminated) the numerical noise, the so-called Gibbs
ringing, which is very dominant in the default configuration. The Gibbs phenomena
are introduced by the need to represent fields with discontinuities or sharp gradients
by smooth global basis functions. The noise does not grow unstable in the default
EUL run, but such noise in the vertical velocity field can have detrimental effects
on other quantities like precipitation in case of full GCMs with physical parameter-
izations. Spurious rainfall with such a noisy signature is sometimes called “spectral
rain”, and is undesirable. Therefore, a delicate balance needs to be found between
sufficient scale-selective damping and too diffusive simulations. As an aside, except
for the spectral ringing the evolution of the baroclinic wave in the default EUL
configuration resembles high-resolution reference solutions of other models quite
closely as shown in Jablonowski and Williamson (2006a,b) and Lauritzen et al.
(2010a).

The impact of explicitly added diffusion on the evolution of baroclinic waves
was also investigated by Polvani et al. (2004). They demonstrated that the choice
of the diffusion mechanism can fundamentally change the characteristics of the
flow field. In particular, their spectral transform simulation with a second-order
diffusion scheme had very little resemblance to their nominally identical simula-
tion that utilized a fourth-order hyper-diffusion mechanism. Polvani et al. (2004)
also evaluated whether the solutions numerically converge with increasing reso-
lution when keeping a constant diffusion coefficient. For example, they tested a
fourth-order hyper-diffusion with the constant coefficient K4 D 2:5 � 1016 m4 s�1
and simulated the evolution of a baroclinic wave at the triangular truncations T21,
T42, T85, T170 and T341. This K4 coefficient corresponds to the damping time
scales around 85.8, 5.6, 0.34 h, 78 and 5 s, respectively. The extremely short time
scales at the higher resolutions are associated with strong diffusion that dominates
the flow and thereby allows the numerical solutions to converge. It means that dif-
fusion can effectively reduce the spatial resolution by suppressing the generation of
finer-scale structures that are normally resolved at higher resolutions. As a note of
caution, smooth-looking solutions could be caused by overly strong diffusion and
are therefore not necessarily accurate. This is also shown later in Sect. 13.6.1 that
compares the impact of inherent numerical dissipation.

13.3.4.5 Examples of Diffusion Coefficients in Grid Point Models

All aforementioned diffusion coefficients for spectral models are quite comparable
and lie within a factor of 2–3 at a given resolution. But note that the amount of
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explicit diffusion needed for a numerical scheme is highly dependent on the inher-
ent diffusive characteristics of the numerical scheme, and all other filters or fixers
in the GCM as further explained in this chapter. For example, a second-order grid
point model might have different diffusion needs than spectral models. The diffu-
sion coefficients for such a finite-difference-type grid point model on an icosahedral
grid are listed in Majewski et al. (2002). They show the grid-size dependencies of
the fourth-order linear diffusion coefficients in the weather forecast model GME
for various horizontal grid spacings between 10 and 160 km. A comparison with
Williamson (2008a) reveals that theK4 diffusion coefficients in the model GME are
higher by factors between 3.5 and 5. A comparison of the damping time scales in
GME with the K4 damping coefficients 5:25 � 1015 and 6:5 � 1014 m4 s�1 at the
approximate�x D �y grid spacings 160 and 80 km yields damping time scales of
about 1.1 and 0.55 h according to (13.44). The result confirms that GME employs
a stronger hyper-diffusion mechanism in comparison to spectral models at similar
resolutions.

Lastly, we comment on the empirically tuned diffusions as shown above
in (13.45) and (13.46). In particular, Tomita and Satoh (2004) chose a (q D 2)
fourth-order diffusion in the horizontal direction and a (q D 3) sixth-order diffu-
sion in the vertical. At the �x � 240 km horizontal resolution with a time step of
�t D 1;800 s the empirical factor �H was most often set to 6:25 � 10�3. In Tomita
and Satoh (2004) this led to the diffusion coefficient K4H D 1:152 � 1016 m4 s�1
which corresponded to the damping time scale of 2.5 h according to (13.48).

13.3.4.6 Caveats

Unfortunately and as a word of caution, the choice of the diffusion coefficients
often remains undocumented in the refereed literature. Even the defaults are dif-
ficult to find, and the resolution-dependencies are only rarely mentioned. Official
model documentation often lacks the specific information.

13.3.5 Choice of the Diffusion Coefficient: Stability

As pointed out by Mesinger and Arakawa (1976) and Wood et al. (2007) explicit
time approximations of diffusion equations, such as those presented in Staniforth
et al. (2006)
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are only conditionally stable. Here, the index j symbolizes a discrete time level.
This is especially problematic on latitude–longitude grids since the time step can
easily violate the condition for stability close to the poles. This is mainly due to the
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convergence of the meridians in polar regions that leads to shrinking longitudinal
spacings and higher Courant–Friedrichs–Lewy (CFL) numbers.

If the horizontal diffusion operator is applied with an explicit time discretization,
which is for example the case in the UK Met Office model UM, the diffusion coeffi-
cient needs to obey strict stability constraints. A comprehensive stability analysis for
a finite-difference representation of the diffusion operator on a latitude–longitude
grid is shown in Staniforth et al. (2006) (their Chap. 12). In two dimensions, the
stability constraint for the second-order diffusion with q D 1 in the model UM is
given by

�t

r2

� K�

cos2 ���2
C K�

��2

�
� 1

4
(13.52)

where the radial distance r from the center of the earth can also be approximated by
the radius a, and K� and K� are the diffusion coefficients in the longitudinal and
latitudinal directions. This restriction guarantees that the corresponding response
function (13.41) lies between Œ0; 1	 and does not change sign on alternate time steps.
From a physical viewpoint, an isotropic choice of the diffusion coefficientK� D K�
is advantageous to damp physical scales at the same rate. However, such a choice
would enforce very stringent stability conditions on the maximum allowable time
step due to the dependence on the cos2 � term. Therefore, K�= cos2 � D K� D
constant is generally selected in the model UM that leads to the less restrictive
condition
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��2
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��2

�
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4
: (13.53)

An undesirable side effect is that the diffusion becomes highly anisotropic, partic-
ularly in polar regions where diffusion is probably most needed, and noise is much
less controlled in the east–west direction than in the north–south direction (Stani-
forth et al. 2006). Note that the second-order response function (13.41) can also be
generalized for higher-order diffusion schemes
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where 2q denotes the order of the hyper-diffusion.
The non-isotropy of the diffusion scheme in the model UM has a caveat. The

damping for a particular physical scale decreases polewards because the physical
scale represented by any given wavenumber decreases by a factor cos�1 � as the
poles are approached and the response function of the operator is the same every-
where. As a result, a feature which moves equatorwards from the poles experiences
increased damping which has the effect of creating a boundary effect for the propa-
gation of that feature (Staniforth et al. 2006). In addition, the shrinking longitudinal
spacing near the poles supports smaller and smaller physical scales. If these small
scales are not damped enough it increases the risk of developing noise near the poles.
In practice, the application of an explicit diffusion scheme on a latitude–longitude
grid is often paired with the application of a polar filter that removes linear and
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nonlinear instabilities if any. The applications of an additional filter also allows vio-
lations of the CFL stability condition at high latitudes as further explained below in
Sect. 13.5.

To avoid the stability limitations of the horizontal diffusion mechanism an
implicit temporal approximation of the diffusion is generally desirable as suggested
by Jakimow et al. (1992) and Li et al. (1994). On the other hand, this can adversely
affect the computational efficiency of the scheme since implicit calculations require
the solution of a Helmholtz equation. As an example, an implicit representation of
the horizontal diffusion shown in (13.51) yields

 jC1 �  j
�t

D 1

a2

"
@

@�

 
K�

cos2 �
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@�

!
C @

@�
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(13.55)

which can also be symbolically written in the (Helmholtz) matrix form

ŒI ��t.D�� CD��/	 jC1�;�
D  j

�;�
: (13.56)

I stands for the identity matrix, and D�� and D�� symbolize discretized diffu-
sion operators in matrix form. However, inverting the three-dimensional matrix ŒI �
�t.D�� CD��/	 at every time step would be computationally expensive, although
approximations of (13.56) can be formulated to make the implicit formulation more
attractive (Staniforth et al. 2006).

As mentioned before and shown in (13.26), (13.27) and (13.28), spectral trans-
form models like ECHAM5, IFS or CAM EUL or SLD always compute the
horizontal diffusion implicitly in spectral space. This can be done in a straight-
forward way since the Laplacian operator has an an analytic spectral representation
as e.g., presented for the operator r4 in (13.34). The implicit calculation does not
need to obey stability constraints and remains stable even with a high isotropic diffu-
sion coefficient in both directions (Collins et al. 2004; ECMWF 2010). A thorough
stability analysis of linear diffusion can also be found in Williamson and Laprise
(2000).

13.3.6 Nonlinear Horizontal Diffusion

The choice of the horizontal diffusion mechanism is sometimes linked to turbulence
concepts (Boer and Shepherd 1983) which e.g., can be based on nonlinear horizon-
tal mixing coefficients. However, as stated earlier the horizontal diffusivities used
in GCMs are typically many orders of magnitude larger than those which would
be appropriate for turbulence closures (Mellor 1985). Thus, this association needs
to be made with care. It even could offer some guidance in choosing a suitable
subgrid-scale mixing scheme. For example, in NCEP’s Eta model (Black 1994)
this awareness led to the use of only second-order horizontal diffusion since the
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choice was not based on the desire to select “scale selective" dissipation. Instead,
the intention was that the diffusion scheme should mimic the impact of grid box
filamentation due to deformation-dependent stretching (Fedor Mesinger, personal
communication, Janjić (1990)).

Nonlinear diffusion typically defines the diffusion coefficient in terms of a
nonlinear function of the horizontal wind. Nonlinear second-order diffusion was
originally proposed by Smagorinsky (1963) who used a Cartesian coordinate sys-
tem to derive deformation-based Eddy viscosity coefficients. The basic design of
this diffusion mechanism is connected to mixing-length concepts. The latter can be
motivated if the ideas of Prandtl are applied to the dissipation of enstrophy in 2D
turbulence (Becker and Burkhardt 2007). As shown below Smagorinsky’s nonlin-
ear parameterization might appear to be “more physical” than any linear diffusion
scheme. However, there is little theoretical basis for such a nonlinear formulation at
large geophysical scales.

Nonlinear harmonic (second-order) diffusion depends on the flow field and
damps only at times and places of strong horizontal shear. The generic form of
this second-order diffusion needs to be written in flux form

F D Cr � .KHr / (13.57)

where r� symbolizes the divergence operator. The Eddy viscosity coefficient KH
can be symbolically associated with a length (L) and time (T) scale

KH D L2

T
(13.58)

and is proportional to the norm of the strain tensor and the quadratic grid spac-
ing. The inverse time scale T �1DjDj is determined by the deformation rate jDj
which is the norm of the strain tensor. Smagorinsky (1963) defines the nonlinear
coefficient as

KH D .k0�/2
q�
@xu � @yv

�2 C �@xv C @yu�2 (13.59)

where @x D .a cos�/�1@� and @y D a�1@� denote the partial derivatives in the
longitudinal and latitudinal directions in spherical coordinates. k0 is a unitless
empirical constant and � is a measure of the physical grid spacing, such as
�Dp�x�y (Skamarock et al. 2008), �D�y (Koshyk and Hamilton 2001) or
�D min .�x;�y/ (Griffies and Hallberg 2000). k0 is typically set to a value
between Œ0:1; 0:3	 as suggested by Smagorinsky (1963, 1993), Andrews et al.
(1983), Koshyk and Hamilton (2001) or Skamarock et al. (2008), but both smaller
and larger k0 values have been tried in GCMs. Regardless of the application, the
formulation of Smagorinsky’s viscosity coefficient utilizes the horizontal tension
DT D .@xu�@yv/ and horizontal shearing strainDS D .@xvC@yu/ and is thereby

linked to the local deformation rate via jDj D
q
D2
T CD2

S .
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Other variants of the nonlinear diffusion coefficient exist as shown by Gordon
and Stern (1982) and Andrews et al. (1983). These are summarized in Becker and
Burkhardt (2007) who also list the later modification by Smagorinsky (1993)

KH D .k0�/2
q�
@xu � @yv � v tan�=a

�2 C �@xv C @yuC u tan �=a
�2
:

(13.60)

This revised version can be applied consistently in spherical geometry. Note that
nonlinear viscosity is not widely used in atmospheric GCMs today. However, it is
commonly used in large-scale ocean models as outlined in Griffies and Hallberg
(2000). Griffies and Hallberg (2000) even extended the definition of KH to incor-
porate biharmonic (fourth-order) diffusion that enhances the scale selectivity of the
Smagorinsky scheme.

A Smagorinsky-type Eddy viscosity is also often chosen as a subgrid-scale (SGS)
model in large-eddy simulations to represent the effects of small-scale turbulence in
the inertial range. LES has been widely used to study atmospheric boundary layer
dynamics and vertical mixing processes. LES explicitly resolves the dynamics of
large-scale eddies. They contain most of the energy and are the primary transport
mechanism, while small-scale eddies in LES are parameterized by the SGS model as
e.g., outlined by Huang et al. (2008). The limited-area mesoscale model WRF also
includes a Smagorinsky-type option for its horizontal and vertical diffusion scheme.
WRF can base the Eddy viscosities either on a 3D Smagorinsky turbulence closure
or on the flow deformation (Skamarock et al. 2008).

13.3.7 Physical Consistency

Explicitly adding linear horizontal diffusion to the equations of motion is popular in
GCMs, but most often the implementations are physically inconsistent (Burkhardt
and Becker 2006). For example, if the horizontal momentum diffusion is applied
in the form of hyper-diffusion the conservation of angular momentum is generally
violated. This is e.g., discussed in Becker (2001) who argued that consistent friction
in GCMs must be formulated as the divergence of a symmetric Reynolds stress
tensor. In contrast, conventional formulations of the horizontal diffusion correspond
to a nonsymmetric stress tensor.

In general, viscous dissipation is the conversion of mechanical energy to thermal
energy by the flow working against viscous stresses. Diffusion therefore removes
kinetic energy from the flow field which could be interpreted as the transfer of
kinetic energy from the resolved scales to subgrid scales and finally to a turbu-
lent microscale, where it needs to be converted into heat. A very important aspect is
that the conversion is irreversible and always needs to appear as a positive frictional
heating on the right-hand side of the thermodynamic equation. However, frictional
heating is commonly ignored in GCMs since it is small in comparison to other con-
tributions to the heat budget such as radiative forcing or latent heating (Fiedler 2000;
Burkhardt and Becker 2006).
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Nevertheless, the kinetic energy loss due to dissipation cannot be neglected over
long time periods since it violates the conservation of total energy. This is especially
important for climate simulations to prevent artificial climate drifts. According to
the estimates by Becker (2003) using a simple GCM the total dissipation averages
to approximately 2 W m�2 with horizontal dissipation making up about a third of the
overall dissipation. Neglecting this heating would cause a spurious thermal forcing
of about 0.6 W m�2 which is on the order of climate change signals. The conver-
sion of the dissipated energy into heat must therefore be explicitly added to the
thermodynamic equation. Similar energy losses around 2 W m�2 due to the explicit
and inherent damping mechanisms in NCAR’s CAM model were also reported by
Williamson (2007).

Frictional heating due to horizontal diffusion is explicitly included in the EUL
and HOMME dynamical cores of NCAR’s CAM 5 model (Neale et al. 2010) and
in a variant of the ECHAM4 model (Burkhardt and Becker 2006). But as noted in
Becker (2001) CAM does not utilize a symmetric stress tensor formulation. The
dissipative heating can therefore only be approximated as outlined in Boville and
Bretherton (2003) and thereby allows (at least theoretically) dissipative “cooling”
which is unphysical. Furthermore, Boville and Bretherton (2003) and Becker (2003)
discussed how to include frictional heating due to vertical diffusion processes in the
physical parameterizations. Alternatively or even in addition, the total energy bud-
get can also be simply “fixed” via an a posteriori energy fixer as explained later in
Sect. 13.7.3. This is common practice in dynamical cores since other types of damp-
ing, such as filters or inherent nonlinear numerical dissipation in semi-Lagrangian
or finite-volume schemes, cannot be analytically quantified. Instead, their effects
collectively appear in form of a residual in the total energy equation.

Two other aspects need to be considered. As pointed out by Wood et al. (2007)
some diffusion schemes do not properly maintain steady-state solutions, but instead
wrongly distort them. These errors in steady-state solutions may lead to systematic
biases and climate drift as discussed for physical parameterization by Dubal et al.
(2004, 2006). In addition, only the second-order diffusion operator guarantees the
preservation of the monotonicity of the diffused field. The more scale-selective and
thereby desirable higher order operators have the potential to introduce spurious new
extrema and violate monotonicity constraints. The amplitude of unphysical over-
and undershoots can even increase with increasing order of the diffusion (Sardesh-
mukh and Hoskins 1984). Over- and undershoots can cause nonlinear interactions
between the physics and dynamics and result in undesired side effects such as spu-
rious rainfall. Higher-order diffusion is especially discouraged for positive definite
moisture and other tracer fields since it can lead to supersaturation or even neg-
ative tracer values. Negative values would then need to be artificially “filled” as
discussed later in Sect. 13.7.2. Note that horizontal diffusion operators do not nec-
essarily preserve the global volume integral of the diffused quantity. Most often,
they are therefore not conservative as outlined in Staniforth et al. (2006).

In order to avoid over- and undershoots that are triggered by linear high-order
diffusion Xue (2000) suggested a monotonic diffusion scheme with simple flux lim-
iters. The basic idea is to interpret the generic form of the diffusion (13.2) as a flux
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divergence such as
F D �r �



.�1/qK2qr2q�1 

�
: (13.61)

The diffusive fluxes inside the outermost bracket can then be limited via flux lim-
iters to prevent numerically triggered over- and undershoots as for example shown
by Knievel et al. (2007) for a sixth-order scheme in the model WRF. The form
(13.61) of the diffusion was also utilized for the model COSMO by Doms and Schät-
tler (2002) who further improved the monotonic characteristics of the Xue (2000)
scheme.

13.3.8 Diffusion Properties in Practice: The Model CAM 3.1

We now illustrate the practical aspects of the linear horizontal hyper-diffusion in
GCM simulations with NCAR’s CAM Eulerian spectral transform model that is
utilized in an aqua-planet mode (Neale and Hoskins 2000) and with the idealized
baroclinic wave test case by Jablonowski and Williamson (2006a,b). In addition,
we compare the EUL simulations to the CAM Finite Volume (FV) model to gain an
appreciation for the subtle differences between explicit hyper-diffusion and inherent
numerical dissipation. Selected aspects of the inherent numerical dissipation are
discussed below in Sect. 13.6.

The left panel of Fig. 13.4 shows 250 hPa kinetic energy spectra from CAM
3.1 simulations with the Eulerian spectral dynamical core for a variety of spectral
truncations. The spectra are calculated from aqua-planet simulations (Williamson
2008a) and except for the highest resolution, are averaged over 100 samples sep-
arated by 30 h. The spectrum for the highest resolution is averaged every 6 h
for the last 3 days of a 10-day run which started from a lower resolution aqua-
planet state. Such sampling is adequate to determine the spectra. As listed above

Fig. 13.4 250 hPa kinetic energy spectra as a function of the spherical wavenumber (n) in aqua-
planet simulations from (left) CAM Eulerian spectral dynamical core with r4 diffusion for
different resolutions, (center) T85L26 Eulerian spectral dynamical with r4, r6 and r8 diffu-
sion, and (right) CAM Finite Volume (FV) dynamical core for different lat � lon resolutions in
degrees and 26 levels
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in Sect. 13.3.4.4, the diffusion coefficients used here are 1:0 � 1016, 1:0 � 1015,
1:5 � 1014, 1:5 � 1013 and 1:0 � 1012 m4 s�1 for T42, T85, T170, T340 and T680
truncations, respectively. The corresponding quadratic unaliased transform grids are
approximately 2.8ı, 1.4ı, 0.7ı, 0.35ı and 0.17ı, respectively. For resolutions below
T340, the spectra all have a slope close to n�3, and lie very close to each other.
There is a small upturn at the truncation limits also found and discussed by Taka-
hashi et al. (2006) and Hamilton et al. (2008). These spectra are also similar to
those presented in Williamson (2008a). The T340 spectrum starts to deviate from
n�3 around nD 100. This is the region where the observed atmospheric spectra tran-
sition from an n�3 slope to an n�5=3 slope (Nastrom and Gage 1985). The model
starts to make a similar transition but is then overwhelmed at the highest wavenum-
bers by the diffusion. Perhaps a smaller coefficient would allow the transition to
form. The T680 simulation makes the transition and exhibits an n�5=3 slope above
nD 100 in agreement with spectra estimates from observations. The r4 diffusion
coefficient for T680 was chosen to yield this n�5=3 slope. As an aside, at the 2008
Community Climate System Model (CCSM) Annual Workshop in Breckenridge,
Colorado, it was reported that the spectral element model HOMME also exhibits
a transition from n�3 to n�5=3 (Taylor 2008). The transition of the slopes is fur-
thermore evident in high-resolution simulations with the model NICAM when grid
spacings below� 10 km are employed (Terasaki et al. 2009).

It could be argued that the modeled spectra should follow n�3 or n�5=3 slope
to the truncation limit, depending on resolution as illustrated above, because that is
what observations indicate they should do. It could also be argued that that is not
a good discrete modeling strategy. For example, the University of Reading spectral
model and the model ECHAM5 (Roeckner et al. 2003) have always used r6 or
r8 forms of diffusion which lead to steeper kinetic energy spectra approaching
the truncation limit. They argue that the scales near the truncation limit are not
calculated accurately and cannot be trusted and that a discrete model should treat
the end of the spectrum smoothly, including the transition to zero energy at the
truncation limit (personal communication, Mike Blackburn). This requires a steeper
spectrum which minimizes ringing or noise arising from a sudden transition. The
ringing is a non-physical artifact arising from sharp truncation in the discrete system.

MacVean (1983) studied the effect of higher degree hyper-diffusions on baro-
clinic development in a spectral model truncated at T42. His simplest, but most
subjective criterion, was a visual assessment of the degree to which synoptic scale
detail was retained and the level of small-scale noise present. He also used other,
more objective measures. He concluded that r4 formulation is not scale-selective
enough with T42 truncation, which, by the way, is still used today in climate mod-
els. The r6 and r8 forms, with appropriate coefficients, appear to be better and
both are equally satisfactory.

The concept of applying stronger damping to the smaller scales than needed
to maintain the observed spectra to the truncations limit is taken one step fur-
ther by Lander and Hoskins (1997) with their introduction of the concept of
“believable scales”. They argue that since the shortest scales are not calculated
accurately they should be filtered out before calculating the parameterizations, i.e.,
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the parameterizations should be calculated on scales calculated accurately by the
dynamics.

Higher degree hyper-diffusions such asr6 orr8 lead to steeper slopes approach-
ing the truncation limit as seen in the center panel of Fig. 13.4 for the CAM EUL.
The T85, r4 line duplicates that in the left panel, the r6 diffusion coefficients are
chosen to damp wavenumber 40 or 30 at the same rate as the r4 case, and the r8
coefficient is chosen to damp wavenumber 40 the same rate as the r4. The effect of
diffusion on spectral ringing or noise in the solution is seen in Fig. 13.5 which shows
the surface pressure from day 9 of calculations of the growing baroclinic wave test
case of Jablonowski and Williamson (2006a,b). The top panel replots Fig. 13.3a,
which was shown earlier for the default T85L26 CAM EUL simulation, but now
we choose rather unconventional contour values which accentuate the noise. The
second and third panels show T85L26 solutions with r6 diffusion with two dif-
ferent diffusion coefficients. The coefficient for the second panel is chosen so that
wavenumber 40 is damped at the same rate as in the r4 calculations. The coefficient
for the third panel is chosen so that wavenumber 30 is damped at the same rate as
in the r4 calculations. The noise is reduced but still present with r6 diffusion. The
larger coefficient (third panel) reduces the noise more than the smaller one (sec-
ond panel). The noise is largely eliminated with r8 diffusion (fourth panel). The
coefficient is chosen so that wave 40 is damped at the same rate as it is in the r4
case. Close examination of the figure shows that minimal noise is still present in the
r8 solution as indicated by the 999.98 hPa contour line in the left half of the plot.
Quite possibly this noise could be reduced further with other choices for the coeffi-
cient values, but the whole process of minimizing the noise via diffusion operators
is rather arbitrary and perhaps case dependent.

In contrast to the Eulerian spectral solutions, Fig. 13.5, bottom panel, shows
that the solution from the CAM FV dynamical core in CAM 3.1 on a 1ı latitude–
longitude grid has no indication of noise in the surface pressure field. The contours
are smoother than any of the other examples. The FV numerical approximations
are shape preserving and thus do not generate small scale noisy structures. This is
achieved via monotonicity constraints which are discussed later in Sect. 13.6.

Figure 13.4, right panel, shows the 250 hPa kinetic energy spectra from the CAM
FV model for 2ı, 1ı and 0.5ı grids. The spectra tail-off faster than in the Eulerian
spectral model with r4 diffusion. They behave more like the Eulerian spectral r6
and r8 diffusion cases, except the departure from an n�3 slope begins at lower
wavenumbers relative to the truncation limit with the Finite Volume. These FV
spectra are dominated by the rotational component of the flow, for which the numer-
ical approximations are shape preserving. The divergent component is not similarly
approximated and can become relatively large near the tail of the spectrum if no
extra damping of the divergence is included. In these experiments the divergent
component is controlled by a divergence damping mechanism (Neale et al. 2010;
Whitehead et al. 2011) so that the divergent kinetic energy remains smaller than the
rotational kinetic energy. A thorough discussion of horizontal divergence damping
is provided in Sect. 13.4.1.
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Fig. 13.5 Surface pressure (hPa) at day 9 of the growing baroclinic wave test case of Jablonowski
and Williamson (2006a) from T85L26 CAM Eulerian spectral dynamical core with r4, r6 and
r8 diffusion, and 1ı � 1:25ı CAM FV model. A time step of �t D 600 s is used

The Eulerian spectral model can obtain smooth fields through the application
of an arbitrary higher degree hyper-diffusion term. The FV model obtains them
through the application of a physical condition, namely shape preservation. Shape
preservation provides a more physically based method to obtain smooth solutions.
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Perhaps the physical realism in the FV discrete system indicates that the spectrum
should fall off faster than n�3 in the discrete system, and that it is a better discrete
modeling strategy.

In Fig. 13.4 the 1ı FV spectrum begins to depart from the n�3 slope around
nD 40, although this evaluation is somewhat subjective. The 2ı departs at a much
lower wavenumber and generally has lower amplitude at the lower wavenumbers.
The T85 spectral model with r6 and r8 diffusions also begins to depart from the
n�3 slope around nD 40. The wavenumber of the departure from n�3 might imply
something about the resolution of the models. For example, Skamarock (2004)
argues that such a departure defines the effective resolution of a model (see also
Chap. 14). This would imply that the CAM 1ı FV and the T85 Eulerian spectral
models with r6 and r8 diffusions have the same effective resolution. On the other
hand, the T85 spectral model with r4 diffusion maintains the n�3 slope to the trun-
cation limit, yet most modelers would not argue that its effective resolution was T85.
Even though the spectral method is accurate to the truncation limit for linear prob-
lems, the nonlinear interactions cannot be accurate there since they would involve
unresolved scales. In addition the arbitrary diffusion is a dominant component in
the equations at the smallest scales. Of more practical interest is the question of
equivalent resolution of different schemes applied to a problem of interest. By exam-
ining a variety of simulated climate statistics in aqua-planet simulations Williamson
(2008b) concluded that the T85 Eulerian spectral model with r4 diffusion and 1ı
FV model reflect equivalent resolutions when applied to the aqua-planet problem.
He also mentioned that experiments with the Eulerian spectral model with r6 and
r8 diffusions produced results similar to those from the spectral Eulerian model
with r4 diffusion.

In summary, it could be argued that the modeled kinetic energy spectra should
follow an n�3 or n�5=3 slope to the truncation limit, depending on resolution, since
that is what is observed in the atmosphere. However, this approach can lead to noise
in the smallest scales of the solutions as seen in the Eulerian spectral model. It
could also be argued that a drop off in the spectra as seen here in the FV model sim-
ulations indicates excessive damping by the numerics. Other modelers, however,
argue that the modeled kinetic energy spectra should be steeper approaching the
truncation limit so that the discrete, truncated spectra transitions to zero energy at
the truncation limit more smoothly. In this interpretation shape preserving approx-
imations such as those used in the FV model are not necessarily overly diffusive.
They provide a physical condition (smoothness) which determines the shape of the
spectra. This is compared to adding arbitrary higher degree hyper-diffusion terms to
the equations which require subjective evaluations to determine the diffusion coef-
ficient. The superiority of these two approaches remains a matter of discussion.
In general, we recommend using kinetic energy spectra in combination with other
quality measures, but not as the sole criterion, to judge the diffusive characteristics
of GCMs.



416 C. Jablonowski and D.L. Williamson

13.4 Divergence and Vorticity Damping, External Mode
Damping and Sponge Layers

Besides the very popular explicitly added horizontal diffusion and hyper-diffusion
techniques discussed above, GCMs might also apply other explicit damping mech-
anisms. They include the 2D and 3D divergence damping, vorticity damping, an
external mode damping approach or sponge layers near the model top. These are
discussed in the next subsections.

13.4.1 2D Divergence Damping

Adding a horizontal divergence damping term to the horizontal momentum equa-
tions is a simple way of reducing high-frequency gravity wave noise. In this
approach the time rates of change of the zonal and meridional velocities u and v
are forced by a damping term. Recall the generic prognostic equation (13.1) for
variable  where  now stands for the horizontal velocity vector vD .u; v/ and
Fv symbolizes the vector of the horizontal divergence damping. The divergence
damping mechanism of order 2q is then given by

Fv D .�1/qC1r
�
�2q r2q�1 � v

�
(13.62)

where q 
 1 is a positive integer value analogous to the discussion of the horizontal
diffusion in Sect. 13.3. �2q stands for the divergence damping coefficient. Apply-
ing the horizontal divergence operator r� to (13.1) and utilizing (13.62) yields an
evolution equation for the divergence

@D

@t
D � � � C .�1/qC1�2qr2q D (13.63)

where D D r � v denotes the horizontal divergence defined by

D D 1

a cos�

�
@u

@�
C @.v cos�/

@�

�
(13.64)

in spherical coordinates. As before, a symbolizes the Earth’s radius and �,� are the
longitude and latitude, respectively. Equation (13.63) assumes that the coefficient is
constant in the horizontal direction. The equation demonstrates that the divergence
damping represents a horizontal diffusion of the divergent part of the flow that is
generally closely associated with inertia-gravity waves. Divergence damping can
easily be explicitly added to models written in .u; v/ form that do not utilize a
prognostic equation for D.

As a concrete example, the second-order divergence damping mechanism (with
q D 1) in component form yields
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This type of divergence damping was e.g., suggested by Shuman and Stackpole
(1969), Sadourny (1975), Dey (1978), Haltiner and Williams (1980), Bates et al.
(1990) and Lin (2004), mainly for numerical stability reasons. Note that Dey (1978)
called it divergence diffusion. It leaves the rotational motion unaffected, selectively
damps inertia-gravity waves, controls numerical noise and prevents the spurious
build-up of energy near the cut-off grid scale. Sadourny and Maynard (1997) argued
that 2D divergence damping can be viewed as a model of nonlinear interactions
between inertia-gravity waves and rotational motion. The use of divergence damp-
ing was also explored by McDonald and Haugen (1992) and Gravel et al. (1993) to
control gravity wave noise in their two-time-level semi-Lagrangian schemes.

The horizontal Laplacian-typer2q hyper-diffusive term shown in (13.63) damps
all scales, but is strongest at higher wavenumbers. Generally, divergence damping
becomes more scale-selective at higher orders. This is e.g., shown by Whitehead
et al. (2011) who also provide a linear von Neumann stability analysis of the
divergence damping technique for explicit time-stepping schemes. In particular, the
fourth-order divergence damping (with q D 2) can be expressed as

@u

@t
D � � � � 1

a cos�

@

@�

�
�4 r2D

�
(13.67)
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�
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where �4 is the fourth-order damping coefficient. This leads to the evolution equa-
tion for the divergence

@D

@t
D � � � � �4 r4D (13.69)

in case of a horizontally constant coefficient. Fourth-order damping is an option in
NCAR’s model CAM 5 (Neale et al. 2010) which utilizes the FV dynamical core
on a latitude–longitude grid. Even high-order divergence damping mechanisms like
a sixth or eighth-order scheme are under investigation in the cubed-sphere version
of the FV model (FVcubed) at the NOAA Geophysical Fluid Dynamics Laboratory
(S.-J. Lin and William Putman, personal communication). FVcubed (Putman and
Lin 2007, 2009) is also part of the most recent internal version of NASA’s GEOS
model which will be officially named GEOS6 upon its public release.

As pointed out earlier in Sect. 13.3 the explicit diffusion mechanisms for the hor-
izontal divergence in spectral models (13.11) and (13.15) resemble the form of the
divergence damping in (13.63) and (13.69). Again, both mechanisms are character-
ized with different names, but they accomplish a similar or even identical physical
effect, namely they damp the divergent motions with either a second-order or higher
order diffusion.
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13.4.1.1 Selection of the 2D Divergence Damping Coefficient

As an example, we present the formulation of the damping coefficients in NCAR’s
CAM 5 model with the FV dynamical core (Lin 2004). The default second-order
diffusion coefficient �2 in CAM is given by

�2 D C2.i/a
2����

�t
(13.70)

where the parameterC2.i/ is a function of pressure to provide a sponge at the model
top. Let ptop be the pressure at the model top and Œpref .i/ D .a.i/C b.i//p0	 the
reference pressure at a given model level with index i . Here, a.i/ and b.i/ are
the hybrid coefficients of the vertical � coordinate (Simmons and Burridge 1981;
Jablonowski and Williamson 2006b) and the surface pressure is assumed to be p0 D
1000 hPa. Then, as implemented in CAM, the parameter C2 is given by

C2.i/ D 1

128
max

�
1; 8

	
1C tanh

�
ln

�
ptop

pref .i/

��
�
(13.71)

which lets the divergence damping coefficient �2 increase by up to a factor of 8 close
to the model top. Generally, the model top in CAM lies aroundptop 	 3 hPa or even
at a lower pressure so that the troposphere and lower stratosphere are unaffected by
this increase in the strength. C2 is then constant with C2 D 1=128 � 0:0078 at
almost all levels except the uppermost two or three.

The formulation of �2 (13.70) is proportional to the area of a grid cell at the
equator, and inversely proportional to the time step. Dimensionally this is an appro-
priate choice of the damping coefficient, but reliance on the area of the grid cell at
the equator, and not the true area of the grid cell (with appropriate latitudinal depen-
dence) places the same damping effect on a given physical wavelength, regardless
of discretization or latitudinal location. Alternatively, a latitude-dependent coef-
ficient could also be selected that takes the variation of the grid cell areas on a
latitude–longitude grid into account

�2 D C2.i/ a
2 cos�����

�t
: (13.72)

Such an area-dependent coefficient is selected for the optional fourth-order
divergence damping mechanism in CAM 5 (Neale et al. 2010). It is given by

�4 D C4 a
4 cos2 � .��/2 .��/2

�t
(13.73)

where the parameter C4 is set to a default value of 0.01. The alternative formulation
without the variation of the grid cell area yields
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�4 D C4 a
4 .��/2 .��/2

�t
: (13.74)

Again, the stability aspects of both coefficients �2 and �4 are discussed in Whitehead
et al. (2011) who determine upper limits for the parameters C2 and C4 in case of
explicit time-stepping schemes.

Alternatively, NASA’s FVcubed model on the almost uniform-resolution cubed-
sphere grid defines the second-order and fourth-order divergence damping coeffi-
cients as

�2 D C2
Amin

�t
(13.75)

�4 D C4
A2min
�t

(13.76)

where Amin 	 �xmin�ymin symbolizes the minimum grid area of the cubed
sphere grid cells at a given resolution. C2 and C4 are often set to 0:005 and 0:0025,
respectively, as documented in Lauritzen et al. (2010a). At coarser resolutions
 1ı
these coefficients are typically lowered (William Putman, personal communication).
Second- and fourth-order divergence damping can be used concurrently in the model
FVcubed.

As the last point of comparison Bates et al. (1990) used the constant second-order
damping coefficient �2 D 9 � 107 m2 s�1 for their semi-implicit semi-Lagrangian
shallow water simulations at the grid resolution �� D �� D 3:75ı with both a
�t D 600 s and �t D 3;600 s time step. According to (13.70) these correspond to
the parameters C2 � 0:31 and C2 � 1:86, respectively, and are thereby consider-
ably higher than the values in CAM FV. Such high values are unstable for explicit
time-stepping schemes on latitude–longitude grids and necessitate an implicit
treatment.

13.4.1.2 Example: The Effects of Divergence Damping

As a concrete example, we now illustrate the effects of the second-order and fourth-
order divergence damping mechanisms in the Finite Volume dynamical core on the
latitude–longitude grid. Both techniques can be selected in NCAR’s model version
CAM 5 at run time, with the second-order divergence damping technique being the
default. In addition, we present FV simulations without divergence damping. We
again utilize the growing baroclinic wave dynamical core test case by Jablonowski
and Williamson (2006a) as depicted before in Sect. 13.3 (Figs. 13.3 and 13.5).

Figure 13.6 shows the surface pressure and 850 hPa meridional velocity field at
day 9 for three CAM 5 FV simulations at the resolution 1ı � 1ı with 26 levels.
The only difference between the simulations is the selected divergence damping
technique with their specific default coefficient. The upper row displays the simula-
tion with the default second-order damping using the coefficient shown in (13.70)
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a b

c d

e f

Fig. 13.6 Surface pressure (hPa) and 850 hPa meridional velocity (m/s) at day 9 of the growing
baroclinic wave test case of Jablonowski and Williamson (2006a) from the CAM FV dynamical
core at the resolution 1ı � 1ı L26. (a,b): default second-order divergence damping, (c,d) fourth-
order divergence damping, (e,f) no divergence damping. The unusual contour interval for the v
wind emphasizes the very weak oscillations in (d). A dynamics time step of �t D 180 s is used

with the default base value C2 D 1=128, the middle row depicts the simulation
with the optional fourth-order damping and the coefficient from (13.73) with the
default C4 D 0:01, and the bottom row reflects the simulation without divergence
damping. Slightly unusual contour values for the meridional velocity are chosen
to highlight the differences between the second-order and fourth-order divergence
damping mechanisms. The figure shows that the simulation without divergence
damping is corrupted by small-scale noise which suppresses the evolution of the
baroclinic wave. This solution has little resemblance with Fig. 13.6a–d or additional
high-resolution reference solutions from other models (Jablonowski and Williamson
2006a).

The differences between the simulation with second-order and fourth-order
divergence damping are more subtle. As argued in Whitehead et al. (2011) fourth-
order divergence damping is more scale-selective and introduces very strong damp-
ing near the grid scale (2-4 �x) whereas longer scales are damped slightly less in
comparison to the second-order damping scheme. The exact break-even point of
the damping and the corresponding wavelength depends on the grid aspect ratio
��=��, the damping coefficients and the latitudinal position �. However, it lies
around 4-5 �x at 60ı in the current simulation. Presumably, this is the reason
why there are still some very minor oscillations in the otherwise smooth 850 hPa
meridional wind field in Fig. 13.6d. These oscillations have an approximate wave-
length of 4-5�x. They are not obvious though in the surface pressure field or if the
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Fig. 13.7 700 hPa kinetic energy spectra at day 30 as a function of the spherical wavenumber n
using the baroclinic wave test case of Jablonowski and Williamson (2006a). The spectra of the
CAM FV model at the resolution 1ı � 1ı L26 without divergence damping, the default second-
order divergence damping and the fourth-order divergence damping are depicted. The dynamics
time step is �t D 180 s. A CAM Eulerian T85L26 run (with �t D 600 s) with fourth-order
hyper-diffusion is shown for comparison. The black line indicates an n�3 slope

contour values are integer multiples of 8 m s�1 (not shown). These oscillations do
not grow over time. The visual comparison of the surface pressure fields suggests
that the fourth-order divergence damping provides indeed less damping since the
low pressure systems have deepened slightly more as indicated by the contour lines.

A more quantitative comparison of the divergence damping is provided in
Fig. 13.7. The figure shows the 700 hPa kinetic energy spectra at day 30 of the
simulations. The slightly rugged tails of the spectra could be smoothed via time-
averaging, but is not of importance here. The kinetic energy spectra present a single
snapshot in time. The figure displays that there is insufficient damping near the
tail of the kinetic energy spectrum in the simulation without divergence damping.
The upturn in the spectrum is a sign of numerical grid-scale noise and small-scale
gravity waves which are connected to unbalanced (divergent) ageostrophic motions
(O’Sullivan and Dunkerton 1995). The presence of too much energy in the divergent
part of the spectrum is confirmed in the right figure of Fig. 14.6 in Chap. 14. The
hook in the spectrum in Fig. 14.6 is solely triggered by the divergent motions (dot-
ted red line) in this CAM FV aqua-planet run without divergence damping. In our
example in Fig. 13.7 the divergent part of the spectrum causes a similar build-up of
energy at the smallest spatial scales which is diffused by the divergence damping in
the two additional FV simulations. The two FV simulations with divergence damp-
ing almost overlay each other, but show small differences in the steepness of the
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kinetic energy spectra at the very end of the tail. It again suggests that fourth-order
divergence damping damps the shortest scales more aggressively than second-order
damping since the tail falls off more quickly. As a point of comparison, the figure
also depicts the kinetic energy spectrum of the CAM Eulerian T85L26 simula-
tion with default fourth-order hyper-diffusion (see Sect. 13.3.4.4). The EUL curve
is very similar to the Finite Volume simulations. Recall that CAM EUL applies
fourth-order hyper-diffusion to both the divergence and vorticity fields.

Similar results were also found by Becker and Burkhardt (2007) who observed
a hook at the end of the kinetic energy spectrum in a simple general circulation
model. The hook was eliminated via hyper-diffusion of the horizontal divergence
in their spectral transform model. Note that the spectra in Fig. 13.7 fall off faster
than the spectra shown earlier in Fig. 13.4. This is mainly due to the nature of the
circulations in the different test cases and the fact that they are plotted at different
pressure levels. The low 700 hPa level is selected here since the idealized baroclinic
wave simulation is most pronounced at lower levels in this deterministic dynamical
core assessment.

Divergence damping provides the major source of the diffusion for the divergent
part of the motion in CAM FV. The rotational motions are damped via inherent
numerical diffusion as shown later (see also Lin (2004)). The divergence damping
stabilizes the FV dynamical core by smoothing the small-scale noise and preventing
the hook in the tail of the kinetic energy spectrum. However, there are other physical
effects that need to be considered. For example, it has been observed that diver-
gence damping impacts the precipitation field in aqua-planet simulations at very
coarse resolutions (Peter H. Lauritzen, personal communication). This is depicted
in Fig. 13.8 that shows the annual average of the frequency distribution for tropi-
cal precipitation between 10ıS and 10ıN. The yellow curve represents a CAM 3.5
FV simulation with standard second-order divergence damping (13.70) at the coarse
2:7ı � 3:3ı L26 resolution, the blue curve denotes an identical FV simulation, but
with a doubled divergence damping coefficient. The red curve depicts a CAM EUL
aqua-planet simulation at the resolution T31L26. The variation of the divergence
damping coefficient has profound impact on the likelihood of heavy precipitation
events in FV. The increase in the diffusion (blue curve) leads to a sharp decrease in
the likelihood of heavy precipitation events and lets the FV simulation resemble the
CAM EUL run. However, there is no “true solution” so the physical realism can-
not be judged from these experiments alone. The figure only demonstrates the high
sensitivity of the precipitation to the choice of the coefficient. The plots can also be
compared to similar figures shown in Williamson (2008a,b).

13.4.1.3 2D Divergence Damping: Avoiding Confusion

As a word of caution, the spectral Eulerian dynamical core in NCAR’s CAM
model is formulated in vorticity-divergence form (Collins et al. 2004) and defines
a Rayleigh friction technique (see Sect. 13.4.5.1 below) with the term divergence
damping. However, the two mechanisms are very different. CAM EUL’s definition is
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Fig. 13.8 Fraction of the time the tropical precipitation is in 1 mm day�1 bins ranging from 0 to
120 mm day�1 , calculated from 6-h averages for all grid points between ˙10ı. This frequency
distribution is an annual average. The aqua-planet simulations are (blue, yellow) CAM FV at the
coarse lat � lon resolution 2:7ı � 3:3ı L26 and (red) CAM EUL at the resolution T31L26 (with
time step �t D 1;800 s). Yellow FV curve: standard second-order divergence damping (13.70).
Blue curve: FV simulation with a doubled coefficient. The figure is courtesy of Peter H. Lauritzen,
NCAR

@D

@t
D �rD (13.77)

where r symbolizes an inverse damping time scale like 1=T . The damping time
scale determines the strength of the friction and is user-defined. In particular, the
damping has an initial e-folding time of T and linearly decreases to zero over a time
period of Td , usually set to 2 days. It yields

r D max
h 1
T

Td � t
Td

; 0
i

(13.78)

where t stands for the elapsed time after the start of the model. In the CAM Eulerian
or semi-Lagrangian dynamical core the damping is computed implicitly in spectral
space via time splitting after the horizontal diffusion. If activated by the user it is
only applied at the beginning of a model climate simulation to damp the gravity
wave propagation arising from poorly balanced initial states. They usually result
from interpolating a model simulated state to a different resolution with no attempt
to maintain geostrophic balance. The initial behavior of a climate simulation is gen-
erally of no interest. This damping should never be used for short-term forecasts
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when the initial behavior is of interest. After day Td this damping mechanism is
no longer active. Dey (1978) uses the phrase divergence dissipation for this type of
damping.

13.4.2 3D Divergence Damping (or Acoustic Mode Filtering)

3D divergence damping is a smoothing mechanism for nonhydrostatic models and
is, from a design perspective, very similar to the 2D divergence damping presented
above in Sect. 13.4.1. However, there is a principal difference concerning its impact
on the circulation. 2D divergence damping mainly affects internal gravity waves,
whereas gravity waves are not noticeably impacted by 3D divergence damping.
This is due to the fact that their velocity fields are almost non-divergent in three
dimensions.

3D divergence damping serves two purposes. First, it is an effective damping
mechanism for acoustic modes in nonhydrostatic models. Second, it eliminates
spurious high-wavenumber modes caused by the instabilities in a partially-split
(split-explicit) time-stepping scheme (Tatsumi 1983; Skamarock and Klemp 1992).
Time-split schemes separate the terms in the equations of motion into slow and
fast processes, and integrate them with large and multiple small timesteps, respec-
tively. This technique is sometimes used to increase the computational efficiency
of mesoscale models since fast, but meteorologically less important, sound waves
can then be treated with a lower order and cheaper numerical scheme. Partially split
numerical schemes are for example used in the models WRF (Skamarock et al.
2008) and COSMO (Doms and Schättler 2002; Gassmann and Herzog 2007; Bal-
dauf 2010) and both models apply a 3D divergence damper to stabilize the schemes.
Skamarock and Klemp (1992) showed that 3D divergence damping only caused very
minor reductions in the amplitudes of gravity waves whereas it effectively damped
both acoustic waves and the spurious noise associated with the time-split discretiza-
tion. They also used the phrase acoustic mode filtering to describe 3D divergence
damping. As an aside, acoustic mode filtering can also be accomplished by forward
biasing an implicit time-stepping scheme of Crank-Nicolson or trapezoidal type (see
textbooks like Durran (1999, 2010) or Kalnay (2003). This is briefly discussed in
Sect. 13.6.3 that characterizes such an off-centering approach as inherent numerical
diffusion.

The second-order 3D divergence damping formulation in vector form is given by

Fv D r2=3
�
� r3 � v

�
(13.79)

where � is the divergence damping coefficient, v D .u; v; w/ is the 3D velocity
vector, r2=3 symbolizes either the two- or three-dimensional gradient operator and
(r3�) denotes the 3D divergence operator along constant coordinate surfaces. The
term Fv can be appended exclusively to the 2D horizontal momentum equations
as in Dudhia (1993), Doms and Schättler (2002) and Skamarock et al. (2008), or
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to the 3D momentum equations as in Skamarock and Klemp (1992), Xue et al.
(2000), Tomita and Satoh (2004) and Gassmann and Herzog (2007). Adding (13.79)
to the momentum equations effectively introduces a second-order diffusion of the
3D divergence. This is highly specific to filtering acoustic modes.

The analysis in Gassmann and Herzog (2007) showed that an isotropic (con-
stant �) application to all three momentum equations should be the preferred choice.
However, if the horizontal grid spacing is much larger than the vertical spacing as
in typical GCMs, it is not possible to use the same value of � in all directions. This
was argued in Tomita and Satoh (2004) who also give guidance on the choice of
the divergence damping coefficient for the model NICAM. In particular, Tomita and
Satoh (2004) selected

�x D ˛0x c2s0 �
 (13.80)

where x serves a placeholder for either the horizontal (H) or vertical (V) direction,
cs0 is the speed of sound at a temperature of T D 273 K, and �
 is the length of
the small time step in their split-explicit time-stepping scheme (	 �t=4). Typically,
horizontal values around ˛0H 2 Œ0:05; 0:2	 were chosen for horizontal grid spacings
between 120 km and 240 km, and ˛0V was set to zero (nonisotropic case) in their
selected dynamical core experiments.

13.4.3 Vorticity Damping

A second-order vorticity damping formulation was suggested by Shuman (1969)
and McPherson and Stackpole (1973) for models written in momentum .u; v/ form.
It is represented by

@u

@t
D � � � � �� 1

a

@�

@�
(13.81)

@v

@t
D � � � C �� 1

a cos�

@�

@�
(13.82)

where �� symbolizes the vorticity damping coefficient. In spherical coordinates the
relative vorticity � is defined as

� D 1

a cos�

�
@v

@�
� @.u cos�/

@�

�
(13.83)

and expresses the vertical component of the 3D vorticity vector. Formulating the
evolution equation for the vorticity based on (13.81) and (13.82) yields

@�

@t
D � � � C �� r2�: (13.84)
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It shows that the vorticity damping selectively diffuses the rotational part of the
motion. Divergent motions remain unaffected.

An interesting analogy can again be drawn between the second-order vorticity
damping presented here and the vorticity diffusion described earlier in the con-
text of spectral transform models (13.10) and (13.14). Despite the different names,
the physical effects of both damping mechanisms are similar. In practice though,
none of today’s GCMs in .u; v/ form use such a vorticity damping. They employ
alternatives such as the hyper-diffusion of u and v in the model GME (Majewski
et al. 2002) that damps both the rotational and divergent motions. Other alternatives
include the use of inherent numerical dissipation. For example, the model FV (Lin
2004) damps rotational motions via monotonicity constraints that are built into in
its finite volume scheme (see also Sect. 13.6.2).

13.4.4 External Mode Damping

Noise in a numerical model can also manifest itself in form of pressure oscillations
that are almost independent of the vertical level. These can be identified as the Lamb
wave that is also called the “external inertia-gravity wave” mode. Lamb waves are
fast moving horizontal acoustic modes with imaginary vertical wavenumbers that
do not propagate in the vertical (and are therefore described as external). As shown
in Kalnay (2003) Lamb waves are equivalent to gravity waves in a shallow water
model.

Lamb waves are associated with fluctuations of the mean divergence in an atmo-
spheric column. Recall that the change of pressure at a point is determined by
the vertical integral of the mass divergence at this location. Therefore, damping
the mass-weighted vertical integral of the divergence controls spurious pressure
oscillations. Washington and Baumhefner (1975) explored this type of damping
mechanism for model initialization purposes. In particular, they Lamb filtered the
initial velocity data by modifying the divergence and successfully suppressed the
external mode and high-speed oscillations. This connection was also pointed out in
Dey (1978).

The so-called external mode damping for models in the native .u; v/ momentum
form is given by

@v
@t
D � � � CKe r

"
1

ps � ptop
Z ps

ptop

D dp

#
(13.85)

where the term in the bracket is the mass-weighted vertical integral of the horizontal
divergence D, and Ke is the damping coefficient. ps stands for the surface pres-
sure, and ptop is the pressure at the model top. Applying the horizontal divergence
operator to (13.85) and integrating this equation again in the vertical then yields
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@D

@t
D � � � CKe r2D (13.86)

with the vertically integrated divergence D. It shows that external mode damp-
ing indeed acts as a second-order diffusion mechanism and affects the vertically
averaged divergence of the column.

All that is left is the definition of the external mode damping coefficient. Analo-
gous to the discussion of the horizontal second-order diffusion it carries the physical
dimensions m2 s�1. Typically, it is defined by

Ke D ˇ A

�t
D ˇ �x�y

�t
(13.87)

where the area A of a grid cell can be expressed by the physical grid spacings �x
and �y in the two horizontal directions. A similar form of the external mode filter
was also shown in Klemp et al. (2007) who discussed its definition in the weather
forecast model WFR (note that there is a minus sign missing in Klemp et al.’s
definition of Dh after their (46)).

In the model WRF the dimensionless and positive coefficient ˇ is typically set to
ˇ D 0:01 (Klemp et al. 2007). In NASA’s FVcubed dynamical core on a cubed
sphere grid (Putman and Lin 2007, 2009) ˇ is often set to 0:02 (William Put-
man, personal communication). In addition, the area measure A for the individual
grid cells is replaced by the minimum cell area Amin within the FVcubed model.
Equation (13.87) therefore defines a constant coefficient for all grid points regard-
less of their actual size. For latitude–longitude grids this choice might need to be
reconsidered. External mode damping is only rarely used in GCMs today.

13.4.5 Sponge Layer Mechanisms at the Model Top

Setting appropriate upper boundary conditions in atmospheric models has been
proven difficult for many years. The choices include radiation boundary conditions
that allow energy to radiate outward at some finite height, the choice of a zero ver-
tical velocity at the model top, or absorbing boundary conditions that absorb most
or all incoming energy (Rasch 1986). Radiation boundary condition are popular in
research models as e.g., suggested by Klemp and Durran (1983) but they cannot eas-
ily be implemented in GCMs. Therefore, operational models generally do not apply
a radiation boundary condition but impose the condition that the vertical velocity is
zero at the top. However, the presence of such a rigid top can lead to spurious wave
reflections and even trigger instabilities at the top. Extra diffusion is then often uti-
lized near the model top to absorb the reflections and slow down the wind speeds.
This is common practice in almost all GCMs.

The type of extra dissipation in these sponge layers varies widely though. For
example, the models CAM EUL, CAM SLD, ECHAM5 and GME switch from a
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linear hyper-diffusion to a second-order diffusion which is applied in a few (around
three) levels near the top. Sometimes the diffusion coefficient also increases upward.
The model FV increases the strength of the divergence damping (see Sect. 13.4.1)
and furthermore, utilizes a lower order numerical scheme to provide inherent dif-
fusion as explained later in Sect. 13.6.1. The ECMWF model IFS (until cycle
Cy35r3, September 2009), the spectral transform model AFES (Enomoto et al.
2008), NASA’s ModelE (Schmidt et al. 2006) developed at the Goddard Institute
for Space Studies and the model COSMO generally apply Rayleigh friction to the
horizontal wind field. Rayleigh friction is also optional in the model WRF (Ska-
marock et al. 2008). These sponge layer mechanisms are outlined in more detail
below.

All sponge layer mechanisms have one feature in common. As pointed out by
Rasch (1986) sponge layers need to be thick enough and have adequate resolution
to capture the waves reasonably well that they are supposed to damp. Sponge layers
should ideally resolve the vertical wavelength with 8–10 vertical levels in order to
damp waves effectively. They also need to guarantee a smooth transition region
since a sudden onset of a strong sponge can cause wave reflections by itself. Sponge
layers are simple to use, but can become computationally expensive in case extra
vertical levels are needed for the sole purpose of providing a damping layer. An
analysis of the properties of some dissipative sponge layer mechanisms can be found
in Klemp and Lilly (1978).

13.4.5.1 Rayleigh Friction

A Rayleigh friction sponge is based on a linear relaxation which can be appended
to the prognostic equations in the generic form

@ 

@t
D � � � � kR . �  r /: (13.88)

Here, kR symbolizes a possibly spatially varying Rayleigh friction coefficient that
expresses the inverse of a friction time scale,  is a placeholder for the veloci-
ties u or v, and  r is a prescribed reference profile that might vary in space and
time. Most often, the reference profile for the wind components ur and vr is set
to zero. If “Rayleigh friction” is applied to the temperature field, it is called a tem-
perature relaxation or Newtonian heating or cooling. Such a temperature relaxation
always utilizes the reference profile since a temperature relaxation towards zero
would be overly strong and unrealistic. This type of Rayleigh forcing was for exam-
ple suggested by Held and Suarez (1994) and Boer and Denis (1997) for idealized
dynamical core assessments.

In practice, Rayleigh friction might be used for two reasons at the upper levels
in GCMs. First, it is considered a very crude approximation for gravity wave break-
ing in models with a very high model top in the upper stratosphere or mesosphere
(Boville 1986; Boville and Randel 1986). Basically, it then replaces missing physics
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mechanisms that would otherwise capture the momentum deposition by breaking
gravity waves that travel upwards from the troposphere. These gravity waves induce
a force on the large-scale flow, but note that Rayleigh friction is too simplistic to
drive the observed reversal of the jets between the upper mesosphere and the lower
thermosphere, or the tropical zonal wind oscillations in the stratosphere. Second,
Rayleigh friction might be applied as a pure numerical sponge to prevent wave
reflections at the model top. However, this requires some care in the formulation of
the Rayleigh damping coefficient since as argued above, a sudden onset of a strong
Rayleigh friction can also act as a reflector. Most vertical profiles of the Rayleigh
damping coefficient therefore provide a smooth transition with increasing strength
towards the model top. Typical damping time scales are 50 days or longer in the
middle stratosphere and 1–2 days at the model top in the mesosphere.

We now present several damping profiles which have been suggested in the
literature. A commonly used profile for the damping coefficient kR is

kR D 1




	
1C tanh

�
´ � ´1
h

�

(13.89)

where the height ´ is given by

´ D H ln
�p0
p

�
: (13.90)

H DRdT g�1 symbolizes a constant scale height of the atmosphere with the gas
constant for dry air Rd , a constant temperature T and the gravity g. p0 is a ref-
erence pressure set to 1,000 hPa, p denotes the pressure at the model level, 
 is
a damping time scale, ´1 presents the approximate height of the model top, and
h is a scaling parameter with height units. Such a profile has for example been
defined in Boville and Randel (1986) and was the default in the ECMWF model
IFS until September 2009 (Orr and Wedi 2009; Orr et al. 2010). Boville and Randel
(1986) suggested the parameters 
 = 3 days, ´1D 63 km and hD 7:5 km for a mid-
dle atmosphere GCM with a model top around 63 km. The model IFS (cycle 18R3,
November 1997) set the parameters to 
 D 3 days, ´1D 61 km and hD 7:7 km for
a 50-level version with a model top at 0.1 hPa (about 61 km). IFS only applied the
Rayleigh friction to the zonal wind field at model levels above 10 hPa. We refer to
these IFS settings as “strong Rayleigh friction” in the examples below. Alternatively,
Boville and Baumhefner (1990) used 
 D 3 days, ´1D 75 km and hD 7:5 km which
we characterize as “weak Rayleigh friction” (note that there is a sign error in their
original definition). These latter two profiles of the Rayleigh damping coefficient
are shown in Fig. 13.9. The figure also depicts the additional profile

kR D
(
0 if p 
 psponge
kmax



.psponge � p/=psponge

�2
if p < psponge

(13.91)
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Fig. 13.9 Vertical profiles of
three Rayleigh friction
coefficients kR in units day�1
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as suggested by Polvani and Kushner (2002) with the parameters kmax D 0:5 day�1
and psponge D 0:5 hPa. The onset of this Rayleigh friction at 0.5 hPa is more sud-
den. Rayleigh friction is sometimes only added to the zonal momentum equation. If
the numerical stability of this damping process is a concern, it can easily be applied
implicitly via a time-splitting approach.

As an aside, some meso-scale models such as WRF (Skamarock et al. 2008) offer
optional ultra-strong Rayleigh friction sponges with profiles like

kR D
(
0 if ´ < .´top � ´d /
kmax sin2





2

�
1 � ´top�´

´d

��
if ´ 
 .´top � ´d / (13.92)

where ´top denotes the height of the model top, ´d stands for the thickness of the
damping layer as measured from the model top, and kmax is set to 0.2 s�1. The
latter corresponds to the damping time scale of 
 D 5 s at the model top which is
very short in comparison to typical GCM settings of 1–2 days at upper levels. This
damping is not used operationally in WRF. However, in idealized mountain wave
test cases it has been found that about a third of the vertical domain must be clas-
sified as a sponge layer to suppress gravity wave reflections. Doms and Schättler
(2002) also suggested using one third of the total domain height or at least one ver-
tical wavelength as a sponge in the regional nonhydrostatic weather forecast model
COSMO. They picked the formulation

kR D
(
0 if ´ < ´damp

kmax

h
1 � cos

�


� ´�´damp

´top�´damp

��i
if ´ 
 ´damp

(13.93)

where ´damp symbolizes the starting position of the damping layer. The default val-
ues in COSMO are ´dampD 11 km and a coefficient of kmax D .20�t/�1 where
�t denotes the model time step. Similar Rayleigh friction profiles for meso-scale
mountain wave simulations are also presented in Durran and Klemp (1983).

We now illustrate the effects of “weak” and “strong” Rayleigh friction in dynam-
ical core simulations with CAM SLD at the triangular truncation T63 (� 210 km)
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a b

Fig. 13.10 Zonal-mean 1110-day-mean zonal wind in the CAM semi-Lagrangian dynamical core
run with the Williamson et al. (1998) forcing at the resolution T63L55 with a model top at
0.015 hPa with (a) weak Rayleigh friction corresponding to the Boville and Baumhefner (1990)
profile, (b) strong Rayleigh friction (ECMWF IFS). The friction is applied above 1 hPa in both
simulations. The contour interval is 10 m/s. Negative contours are dashed. The time step is
�tD 1;800 s

with 55 vertical levels. The model top is placed at 0.015 hPa which lies around
75 km. The sponge-layer Rayleigh friction is only appended to the zonal momen-
tum equation above 1 hPa and applied at every time step with �t = 1,800 s. The
experiments utilize the Held and Suarez (1994) forcing with the modification by
Williamson et al. (1998) that provides strong meridional gradients in the strato-
spheric reference temperature field. This reference field is used for a temperature
relaxation and causes zonal jets in the middle atmosphere according to the thermal
wind relationship.

Figure 13.10 depicts the zonal-mean 1100-day-mean zonal wind fields of the
two SLD simulations with (a) the weak Rayleigh friction according to Boville and
Baumhefner (1990) and (b) the strong Rayleigh friction used in previous versions
of IFS. Both model simulations were spun up with identical initial conditions and
run for 1,440 days. The time average is over days 360–1,440. The figure shows
that the flow field at the upper levels is very different in the two simulations. The
“strong” Rayleigh friction almost damps out all motion above 1 hPa which is quite
drastic. In contrast, the effect in the “weak” Rayleigh friction simulation is less pro-
nounced in the region between 1 and 0.1 hPa. However, it is clearly visible near the
model top where the wind speed has slowed down considerably. These figures can
also be directly compared to a gentler diffusive sponge discussed in the following
subsection (Fig. 13.11).

As a word of caution, Rayleigh drag changes the upper atmospheric angular
momentum which should be balanced by a correction in the troposphere in order
to conserve angular momentum. From a physical viewpoint, such a compensation
mimics in some way the transfer of momentum by the unresolved gravity waves and
is included in the Rayleigh friction implementation in NASA’s ModelE (Schmidt
et al. 2006). However, angular momentum conservation is not generally considered
in GCMs. In case Rayleigh drag violates the angular momentum conservation it
leads to a physically-spurious large-scale meridional circulation extending to the
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Fig. 13.11 Zonal-mean 1110-day-mean zonal wind in the CAM semi-Lagrangian dynamical core
run with the Williamson et al. (1998) forcing at the resolution T63L55 with a model top at
0.015 hPa with (a) second-order diffusive sponge near the model top, (b) no r2 and r4 diffusion.
The contour interval is 10 m/s. Negative contours are dashed. The time step is �tD 1;800 s

surface of the earth as shown in Shepherd et al. (1996) and Shepherd and Shaw
(2004). Therefore, Shepherd and Shaw (2004) recommended using Rayleigh fric-
tion very selectively, if at all, and only applying it to the wind perturbations from the
mean state. A Rayleigh friction sponge is rarely used in operational GCMs today.
Newtonian heating or cooling for tropospheric models is also often frowned upon
because it forces the simulation toward a prescribed state rather than letting the state
evolve freely.

13.4.5.2 Diffusive Sponges

The most popular sponge layer mechanism in GCMs is an increase in the horizontal
diffusion, either via an increase in the diffusion coefficient, as e.g., discussed in
Klemp and Lilly (1978), or a decrease in the order of the diffusion. The latter or
even a combination of the two are most often chosen. Then a second-order diffusion
replaces the usual hyper-diffusion in a few layers near the model top. For example,
the model ECHAM5 decreases the order of the diffusion from a sixth-order to a
fourth-order and finally to a second-order diffusion at the model top while using a
constant time scale for all K6, K4 and K2 diffusion coefficients (Roeckner et al.
2003). The effects of this diffusive sponge in ECHAM5 are clearly visible in the
idealized dynamical core simulations by Wan et al. (2008) who utilized the Held and
Suarez (1994) forcing. The sponge leads to a strong damping of the zonal wind field
at upper levels in the equatorial region which can be compared to the simulations
with the model CAM in Sect. 13.7.1 (Fig. 13.29).

A diffusive sponge is quite effective in reducing reflections and slowing down
the wind speeds near the model top. The latter is illustrated in dynamical core simu-
lations with CAM SLD at the triangular truncation T63 (� 210 km) with 55 vertical
levels. As explained above in Sect. 13.4.5.1 the experiments utilize the Held-Suarez
forcing with the modifications of the equilibrium temperature in the stratosphere
according to Williamson et al. (1998). The model top is set to 0.015 hPa and no
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Rayleigh friction is applied. Instead, we compare a simulation with a linear second-
order sponge in the uppermost three layers (between 0.015 and 0.05 hPa) and very
weak hyper-diffusion in the rest of the domain to a simulation without any (neither
a K2 nor K4) explicit diffusion. In particular, the base diffusion coefficient for the
sponge layer starting at the third level from the top is K2D 2:5� 105 m2 s�1 which
corresponds to a damping time scale of 11.2 h, and the hyper-diffusion parameter
K4 is set to 1 � 1015 m4 s�1 which corresponds to the long damping time scale of
28.1 h according to (13.20).

Figure 13.11 shows the zonal-mean 1100-day-mean zonal wind fields of the two
SLD simulations with (a) the diffusive sponge and (b) neither r2 nor r4 diffusion.
As before, both model simulations were spun up with identical initial conditions and
run for 1440 days. The time average is over days 360–1440. The wind speeds near
the model top are strongly reduced in the simulation with the sponge (Fig. 13.11a)
whereas the winds almost reach their maxima at the model top in the model run
without diffusion (Fig. 13.11b). This emphasizes the very strong influence of the
additional sponge-layer dissipation on the circulation in the upper atmosphere. The
impact of the sponge is not just confined to the top three layers but extends further
down into the domain to about 1 hPa which incorporates 14 vertical levels. A simi-
lar effect was also shown earlier for a 26-level setup in Fig. 13.1. The impact of the
r4 diffusion at lower levels below the sponge is harder to evaluate since the strato-
spheric polar jets show some variability even in these long time averages. However,
the impact of the r4 diffusion seems to be minor in Fig. 13.11a. As a word of cau-
tion, if sponge layers are applied to model simulations the upper layers cannot be
used for scientific evaluations. But unfortunately, it remains unclear whether the
simulation without diffusion is any more reliable at upper levels due to the potential
impact of artificial wave reflections. As seen before in the Rayleigh friction case,
the sponge-layer dissipation dominates the upper level flow field. Recall that is has
no physical foundation.

13.4.5.3 Vertical Velocity Damping

If Rayleigh damping is explicitly applied to the prognostic vertical velocity field in
a nonhydrostatic model it is sometimes called vertical velocity damping. Rayleigh
friction can also be implicitly applied within the implicit solution technique for
vertically propagating acoustic modes. The latter has been found to be a very effec-
tive and robust absorbing sponge layer mechanism in nonhydrostatic models as
suggested by Klemp et al. (2008).

As an example, the model WRF offers both an implicit Rayleigh damping of the
vertical velocity and optional explicit vertical velocity damping to foster the robust-
ness of the numerical scheme (Skamarock et al. 2008). Here, we briefly describe
the explicit vertical velocity damping which is not just a sponge-layer technique.
It generally damps the vertical motion whenever a violation of the CFL condition
in the vertical direction is imminent, and thereby prevents the model from becom-
ing unstable. The damping coefficient is locally determined and utilizes a critical
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Courant number Cr defined by

Cr D
ˇ̌
ˇ P��t
��

ˇ̌
ˇ (13.94)

where P� is the vertical velocity in the generalized vertical coordinate � with grid
spacing ��. If Cr exceeds an activation Courant number Ca a Rayleigh friction is
switched on. Assuming a forecast equation for the vertical velocity w, it yields

@w

@t
D � � � � sign.w/ �w .Cr � Ca/ (13.95)

where �w is a damping coefficient and sign.w/ symbolizes the sign of w. The typi-
cal coefficients in WRF areCaD 1 and � D 0:3m s�2. This process does not possess
a physical foundation and needs to be used with care. The regional nonhydrostatic
weather forecast model COSMO (Doms and Schättler 2002) even includes a sim-
ilar CFL-dependent Rayleigh friction as a Courant number limiter in the forecast
equations for the horizontal wind speeds.

13.4.5.4 Courant Number Limiter

Occasionally in global GCM simulations the polar night jet becomes very strong at
the top of the model and then the CFL stability condition is violated for the shortest
longitudinal waves. Without further action the model would blow up. Rather than
damp the jet speed further, some models simply remove the short waves that are
unstable. This is generally only done at the top few levels of the model and only
while the jet speed remains overly strong. The elimination is particularly simple in
spectral transform models. If the maximum wind speed is sufficiently large, then the
amplitudes of waves with wavenumber n > nc are set to zero, where the cutoff wave
length is nc D a�t=maxjV j. a symbolizes the radius of the earth. This condition
is applied whenever the maximum wind speed maxjV j is large enough that nc is
less than the truncation limit and temporarily reduces the effective resolution of the
model at the affected levels, but it does not affect the remaining scales.

To avoid adding code to sweep through spectral space, the dynamical core CAM
EUL includes this process in the solution of the horizontal diffusion. Recall (13.12)
that expresses the 2q-th order temperature diffusion and for simplicity, let us
focus the discussion on the diffusion that is applied along model levels. The
time-discretized response function (13.28) for CAM EUL then becomes

En D
(
1C 2�t DnK2q

�
n.nC 1/
a2

�q) �1
(13.96)

where the so-called “Courant number limiter” Dn has been added. The response
function (13.96) can also be viewed as a wavenumber-dependent damping function
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that is denoted byK.2/
n andK.4/

n in the technical CAM documentation (Collins et al.
2004).

Generally, the factor Dn is set to 1. However, the diffusion coefficient K2q is
increased by a factor of DnD 1000 for those waves which are to be eliminated.
This is possible because the diffusion is approximated implicitly in spectral space
in the model. Since the diffusion is linear, the solution for each wavenumber is
independent of all other wavenumbers. Note that this should not be thought of as
increased overall diffusion since that is a process in physical space and affects all
scales. The diffusion code is simply a convenient place to eliminate the selected
waves. This Courant number limiter should be thought of as simply removing the
shortest waves that would otherwise be unstable and thereby temporarily reducing
the horizontal resolution. Therefore it is generally only applied near the model top
where the solution is already contaminated by the sponge layer. Here, we only list
the principle design of this limiter and refer to Collins et al. (2004) for the exact
application in spectral space. Note this type of limiter can only be safely used if the
diffusion is approximated implicitly as it is the case in CAM EUL. Otherwise the
diffusion process will likely be unstable. The stability limitations for explicit time
stepping schemes are discussed above in Sect. 13.3.5.

13.5 Explicit Filtering Techniques

Filtering is a fairly common smoothing technique in GCMs. Two types of filters
need to be distinguished as explained below. The first category encompasses the
temporal filters. The second type includes spatial filters such as digital grid point
filters, or spectral filters like the Fast Fourier Transform (FFT) or Boyd-Vandeven fil-
ter. Spatial filters are popular in grid point models, especially on latitude–longitude
grids at high latitudes, where they are often called polar filters. In addition, tempo-
ral digital filters are sometimes used as model initialization schemes to damp out
high-frequency noise in analyzed data as discussed in Lynch and Huang (1992).

Spatial filters damp both linear and nonlinear computational instabilities. Lin-
ear instability arises if the CFL stability condition is violated by e.g., fast mov-
ing inertia-gravity waves which can easily occur on longitude-latitude grids with
converging meridians near the poles. Filtering then allows the use of longer CFL-
violating time steps which would otherwise grow unstable. Nonlinear computational
instability is associated with quadratic terms in the equations of motion (Phillips
1959; Orszag 1971). In particular, products of waves can create new waves with
wavelengths shorter than 2�x as discussed in Durran (1999, 2010). Since these
waves cannot be resolved on a model grid, they are aliased into longer wavelengths.
This tends to accumulate energy at the smallest scales in a nonlinear model which
can be removed by a filter to maintain computational stability. High-frequency noise
might also be introduced by truncation or observational errors in the initial data.
Whether filtering is necessary for stable computations depends on the characteris-
tics of the numerical scheme and the choice of the model grid. In general, no attempt
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is made to associate filters with physical processes. Filtering is an ad-hoc smoothing
process in atmospheric models.

13.5.1 Time Filters

13.5.1.1 Robert-Asselin Filter

Time filters are commonly applied to multi-step time-stepping schemes, such as the
three-time-level Adam-Bashforth scheme or the popular leapfrog method. These
time-stepping schemes are e.g., described in Haltiner and Williams (1980), Durran
(1999, 2010) or Kalnay (2003). In particular, the leapfrog scheme for the variable
 is given by

 jC1 D  j�1 C 2�t F. j / (13.97)

where j C1, j and j �1 represent the future, current and previous time level of the
three-time-level scheme, and F. j / is the forcing by the dynamical and physical
processes. A major problem with the leapfrog scheme is that every wavenumber is
associated with two frequencies (Durran 1999, 2010). One is a physical mode, the
second is an undamped computational mode that is associated with the handling of
the even and odd time steps. It manifests itself as a spurious oscillation between
even and odd time steps that amplifies during nonlinear simulations. It ultimately
grows explosively and causes the model to blow up.

The decoupling of the solutions at odd and even time steps can be avoided when
applying a recursive time filter at each time step as suggested by Robert (1966) and
Asselin (1972). This filter is referred to as the Robert–Asselin, Robert or Asselin
filter. It is defined by

 
j D  j C ˛

�
 
j�1 � 2 j C  jC1

�
(13.98)

where the overbar denotes the time-filtered variable, and the unitless positive coef-
ficient ˛ determines the strength of the filter. It leads to the Asselin-leapfrog
scheme

 jC1 D  j�1 C 2�t F. j /: (13.99)

In general, the Asselin filter can be viewed as a second-order diffusion mechanism
in time. It effectively damps the computational mode of the leapfrog time-stepping
scheme, but unfortunately also affects the physical mode by slightly changing the
phase and amplitude of the resolved waves. This reduces the formal order of accu-
racy of the leapfrog scheme to first order and can degrade the accuracy of model
simulations. For example, physical quantities such as energy that are conserved by
the time-continuous equations are not necessarily conserved by the time-discretized
equations which is even true with or without the Asselin filter. The damping and
non-conservation may be acceptable for short model simulations, but could become
more prevalent and questionable in long GCM runs. The Asselin filter is generally
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applied at each time step to all prognostic variables along model levels. The accu-
racy and stability aspects of the Asselin filter were investigated by Tandon (1987),
Robert and Lépine (1997), Cordero and Staniforth (2004) and Williams (2009).
In particular, Williams (2009) proposed a modification of the Asselin-filter that
greatly reduces its negative impact on the physical mode and increases the numerical
accuracy, but does so at the expense of a very slight instability.

A comprehensive list of atmospheric models with the Asselin filter is docu-
mented in Williams (2009). However, the strength of the damping coefficient ˛ is
highly model-dependent and rarely mentioned in the refereed literature. The typical
values in GCMs vary between 0.02 and 0.2. More specifically, the spectral ele-
ment dynamical core HOMME utilizes a default coefficient of ˛D 0:05 as listed in
Lauritzen et al. (2010a), the spectral element model by Giraldo and Rosmond (2004)
uses ˛D 0:02, the NCAR Eulerian spectral dynamical core in CAM 3.1 applies
˛D 0:06 (Collins et al. 2004), Skamarock and Klemp (1992) and McDonald and
Haugen (1992) set ˛ to 0:1, the model ICON defines ˛D 0:1, and the model GME
specifies ˛D 0:15 (Majewski et al. 2008). Schlesinger et al. (1983) even suggested
using values in the range 0.25–0.3 for certain advection-diffusion problems. A sys-
tematic sensitivity analysis to the Asselin filter coefficient has been conducted by
Rípodas et al. (2009) with the shallow-water version of the ICON model. They found
that ˛ 
 0:05 was required to keep their model stable. As an aside, there are other
methods for controlling the computational mode of the leapfrog scheme, which do
not involve the application of a time filter. These methods are briefly outlined in
Williams (2009).

Figure 13.12 assesses the effect of the Asselin filter on a short dynamical core
simulation with the CAM Eulerian spectral transform model at the triangular trun-
cation T85 and 26 levels (L26). The figure shows the surface pressure and 850 hPa
temperature field at day 9 of the growing baroclinic wave test case of Jablonowski
and Williamson (2006a) with and without strong Asselin time filtering. The quan-
titative comparison suggests that the simulation of the baroclinic wave without
Asselin filtering develops slightly stronger high and low pressure systems by day
9. There might also be a very minor shift in the position of the wave as indicated by
the difference plots (Fig. 13.12e,f). However, the difference fields are mostly dom-
inated by amplitude errors provided the unfiltered simulation is considered more
accurate and closer to the high-resolution reference solutions shown in Jablonowski
and Williamson (2006a,b). The computational mode in the unfiltered simulation is
not obvious at day 9, but grows unstable by day 14. The application of the Asselin
filter is therefore paramount. Recall that the default in CAM EUL is generally set to
˛D 0:06 which provides significantly weaker filtering.

As a word of caution, Déqué and Cariolle (1986) stated that despite the demon-
strated ability of the Asselin filter to stabilize numerical solutions to the equations
of motion for certain combinations of temporal differencing and physical forcings,
even a very weak Asselin filter may have the potential to trigger an instability. Déqué
and Cariolle (1986) suppressed this instability by a severe reduction of the time step
in their model runs. Some unexpected anomalous behavior of the time filter was also
highlighted by Robert and Lépine (1997).
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Fig. 13.12 Surface pressure (hPa) and 850 hPa temperature (K) at day 9 of the growing baroclinic
wave test case of Jablonowski and Williamson (2006a) in the CAM T85L26 Eulerian spectral
dynamical core with and without Asselin time filtering. (a,b) strong Asselin filter with ˛D 0:24,
(c,d): no Asselin filter, (e,f) difference between the unfiltered and filtered simulation. A time step
of �tD 600 s is used

13.5.1.2 Time Filter for Extrapolated Values

Semi-implicit semi-Lagrangian models need information about future parcel tra-
jectories and therefore require information about the wind velocities at the future
half-time level tjC1=2 (Staniforth and Côté 1991). A popular method for estimating
these time-centered wind speeds is time extrapolation. Two different time extrapo-
lators are commonly used that either utilize two or three time levels. For the wind
vector v the two-term extrapolator with times tj and tj�1 yields

vjC1=2 D 3vj � vj�1

2
: (13.100)

which has been widely used in two-time level semi-implicit semi-Lagrangian
schemes by e.g., Temperton and Staniforth (1987), McDonald and Haugen (1992,
1993) or ECMWF (2010). The three-term extrapolator is defined as

vjC1=2 D 15vj � 10vj�1 C 3vj�2

8
(13.101)

which includes the additional time level tj�2.
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However, time extrapolation is a potential source of instability. For example,
McDonald and Haugen (1992) showed that the noise introduced by the extrapo-
lations in a �-level model could be efficiently controlled by an implicit divergence
damper that damps gravity waves. Here, the phrase divergence damper referred
to an inherent numerical dissipation via a decentering scheme as explained later
(Sect. 13.6.3). But the noise, that mainly originates from discretized nonlinear terms,
was no longer controlled by decentering when switching to hybrid vertical coordi-
nates (McDonald and Haugen 1993). Therefore, they introduced the following time
filtered equations for both the extrapolated wind velocities and nonlinear terms

 jC1=2 D 3 j �  j�1
2

(13.102)

 jC1=2 D 15 j � 10 j�1 C 3 j�2
8

: (13.103)

The time-filtered quantity is defined by

 
j D  j C �

�
 
j�1 � 2 j C  jC1

�
(13.104)

where  serves as a placeholder variable. This time filter with the unitless and pos-
itive filter coefficient � is formally the same as the Asselin filter (13.98). However,
it is only selectively applied to nonlinear terms and the centering of the trajectory
departure points in the semi-Lagrangian method. The linear terms are untouched
which causes minimal decreases in accuracy according to McDonald and Haugen
(1993). Their recommended � values, in combination with a decentering scheme,
ranged from Œ0:05; 0:3	.

13.5.2 Spatial Filters

Spatial filtering techniques have long been used for global atmospheric modeling.
As mentioned above, spatial filtering suppresses linear and nonlinear instabilities,
but conservation properties can get lost and might necessitate the use of a-posteriori
restoration mechanisms (Takacs 1988). For example the conservation of mass gets
lost if the mass variable needs to be filtered for numerical stability reasons. Similar
difficulties emerge with respect to the conservation of total energy which is most
often lost even without filtering. These aspects are assessed in Sect. 13.7. Here, we
focus on the discussion of digital and spectral filters.

13.5.2.1 Digital Grid Point Filters

Digital filters are local grid point filters that only take neighboring grid points in the
horizontal direction into account. They can be applied in one or two dimensions.
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There are many digital filtering techniques that have been proposed in the literature.
Examples are the filters by Shuman (1957), Shapiro (1970, 1971, 1975), Nelson and
Weible (1980), Raymond and Garder (1988), Raymond (1988), Purser (1987) and
Staniforth et al. (2006).

The most popular digital filter still used in some models today is the Shapiro fil-
ter which is based on constant-coefficient grid point operators of order n. The order
determines the width of the numerical stencil. In general, the higher the order the
higher the computational cost due to the wider stencil, which leads to more scale-
selective filters. These minimize the damping of long and thereby flow-relevant
waves.

In this section we focus on the one-dimensional Shapiro operator of order n to
illustrate the general characteristics of digital filtering and show examples from
shallow water simulations with a finite-volume model (Jablonowski 2004). The
smoothing operation of the so-called optimal or ideal second-order (nD 2) Shapiro
filter (Shapiro 1975) is defined by

N i D 1

16

� �  i�2 C 4 i�1 C 10 i C 4 iC1 �  iC2� (13.105)

where the overbar symbolizes the smoothed variable  at grid point index i . The
width of the stencil in one dimension is 2n C 1. The coefficients for higher-order
filters are listed in Shapiro (1975). As shown by Purser (1987) the Shapiro fil-
ter can also be generalized to describe a family of symmetric-stencil filters. This
was first discussed in Hamming (1977) but has received very little attention in the
atmospheric sciences.

The nD 2 Shapiro filter completely eliminates the unwanted 2�x waves and sig-
nificantly reduces the amplitudes of other poorly-resolved short waves, especially
the 3; 4�x waves that also tend to accumulate energy during model integrations.
Each application of the Shapiro filter reduces the amplitude of a Fourier wave
component exp.{kx�x/ by the factor

�n.kx/ D 1� sin2n
�kx �x

2

�

D 1� sin2n
�
 �x

L

�
(13.106)

where {Dp�1 is the imaginary unit, kx D 2
=Lx is the wavenumber in the x-
direction and Lx is the wavelength, expressed as multiples of the grid spacing �x.
�n.kx/ is the response or damping function of the Shapiro filter (Shapiro 1971). In
two dimensions the response function becomes

�n.kx; ky/ D
"
1 � sin2n

�kx �x
2

�#"
1 � sin2n

�ky �y
2

�#
(13.107)
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where ky symbolizes the wavenumber in the y-direction with grid spacing�y. This
form expresses the response function for subsequent applications of the 1D filter
operators.

Note that there is an inconsistency in the literature how to denote the order
of the Shapiro filter. Here, we choose to follow the notation n as suggested in
Shapiro (1971). Other modelers like Fox-Rabinovitz et al. (1997) or Ruge et al.
(1995) use the notation 2n which corresponds to the order 4 in (13.105). The
differences in the notations might have been motivated by Shapiro’s observation
that the one-dimensional ideal operator of order n is equivalent to the incor-
poration of a one-dimensional linear diffusion of order 2n with a coefficient
KD .�1/n�1.�x=2/2n=�t . This draws an interesting analogy to the 1D linear
diffusion mechanism. However, this result does not entirely generalize in two
dimensions as discussed in Shapiro (1971). In 2D, the ideal n-th-order Shapiro
operators only resemble the 2n-th-order linear horizontal diffusion with the addi-
tion of a 4n-th-order mixed damping term. This renders the Shapiro filter more
scale selective than linear horizontal diffusion and fully eliminates 2�x waves after
each application.

The response of different 1D Shapiro operators (13.106) with respect to the wave
spectrum is illustrated in Fig. 13.13. The figure shows the filter responses after one
and 1,000 applications, and clearly depicts the cumulative character of the smooth-
ing operation, especially for low-order filters. In practice, this is not a concern for
overresolved waves close to the pole points on latitude–longitude grids, but must
be taken into consideration in case filtering is to be applied at lower latitudes. For
example, if filtering in midlatitudes or even in the tropics becomes necessary due
to stability reasons, a low-order filter like the second-order Shapiro filter should be
avoided and replaced by either a highly scale-selective FFT or higher order dig-
ital filters. A commonly used higher order filter is the eighth- or sixteenth-order
Shapiro filter. An nD 8 Shapiro operator effectively eliminates all components
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Fig. 13.13 Response function of different 1D Shapiro filters after (a) one application and (b) 1,000
applications. n indicates the order of the ideal Shapiro operator
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with wavelengths less than four grid intervals but does not damp the waves with
wavelengths greater than six grid intervals (Shapiro 1975). This filter has been suc-
cessfully utilized by Ruge et al. (1995) who applied the nD 8 Shapiro filter every
twelve time steps to eliminate the nonlinear computational instability in a shallow
water model.

13.5.2.2 Examples: Applications of the Shapiro Filter

In the following shallow water examples, the Shapiro filter is solely applied in the
longitudinal direction poleward of 60ı N/S. The shallow water model is described in
Jablonowski (2004) and applied at the constant resolution 2:5ı�2:5ı. It utilizes the
Lin and Rood (1997) finite-volume approach and is built upon a latitude–longitude
grid with converging meridians near the pole points. The examples are chosen to
briefly outline the advantages and disadvantages of the Shapiro filtering approach.

Filtering techniques must be carefully chosen. As mentioned before, strong low-
order filters, like the second-, third- or fourth-order Shapiro filters, applied at low-
or midlatitudes can significantly diffuse and degenerate the flow pattern and should
therefore only be rarely used. An example that illustrates the detrimental effects of
rather aggressive and unnecessary filtering is presented in Fig. 13.14. The example
depicts a Rossby-Haurwitz wave which corresponds to test case 6 of the standard
shallow water test suite proposed by Williamson et al. (1992). This flow field com-
prises a wavenumber four pattern that moves from west to east with only minor
changes in shape. We assess two model runs that both apply an FFT filter to the
horizontal wind components poleward of 75ıN/S. Additionally, the strong second-
order Shapiro filter is applied to the wind speeds at every time step in (a) the limited
model domain 60ı–75ıN/S and (b) the whole remaining 75ıS–75ıN model area.
Figure 13.14 shows the geopotential height field at model day 14. It can clearly
be seen in Fig. 13.14b that the additional digital filtering in midlatitudes and the
tropics leads to a very diffusive and inaccurate solution in comparison to the (a)
less-filtered simulation which resembles reference solutions. The filter effects accu-
mulate significantly during the course of the 3,360 time step simulation which
confirms the cumulative effect in Fig. 13.13b. The errors are pure amplitude errors
without changes in the phase speed of the wave.

The crucial need for a filtering mechanism in the polar 60ı–75ıN/S range in the
finite-volume shallow water model is further depicted in Fig. 13.15 which displays
a geostrophically balanced flow field in the Northern Hemisphere (test case 3 in
Williamson et al. (1992)). The test results are shown for the geopotential height field
after a 23-h simulation with and without the digital second-order Shapiro filtering
technique. Again, an FFT filter is applied poleward of 75ıN/S. Here, the chosen
time step �t D 600 s purposely violates the CFL condition for gravity waves in the
polar region and as a consequence, a numerical instability equatorwards of 75ıN
develops in Fig. 13.15a. This position clearly marks the edge of the FFT filtering
mechanism. In Fig. 13.15b the instability is removed by an nD 2 Shapiro filter. Of
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Fig. 13.14 Latitude–longitude plot of the geopotential height at day 14 for the Rossby–Haurwitz
wave (test case 6) in the shallow water version of the FV model (Jablonowski 2004). (a) Second-
order Shapiro filter is applied to the wind fields u and v between 60ı–75ıN/S. (b) Same filter is
applied in the whole 75ıS–75ıN domain. Contour interval is 200 m. Resolution is 2:5ı � 2:5ı
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Fig. 13.15 Geopotential height field after 23 model hours (test case 3) in the shallow water version
of the FV model (Jablonowski 2004). A north-polar stereographic projection is shown (outer circle
is the equator). (a) No Shapiro filtering poleward of 60ı, (b) Second order Shapiro filter is applied
between 60ı–75ı. Contour interval is 100 m. Resolution is 2:5ı � 2:5ı with�tD 600 s

course, the Fourier filter could have also been used to eliminate this linear instability
at lower latitudes.

In summary, digital filtering promotes computational stability by eliminating or
severely dampening the CFL unstable waves, especially at high latitudes. The filter-
ing must be selectively applied in order to avoid a detrimental damping effect in the
midlatitudes or tropical regions. In the finite-volume shallow water example, digi-
tal filtering techniques complement the even more effective FFT filtering technique
used near the pole points. However, attempts to entirely replace the FFT filter with
a digital Shapiro (1975) or Purser (1987) algorithm did not prevent numerical insta-
bilities close to the poles. As an aside, an FFT-Shapiro filter mix was also promoted
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by Kalnay-Rivas et al. (1977), Ruge et al. (1995), Fox-Rabinovitz et al. (1997) and
Takacs et al. (1999).

The main motivation behind such a mix is that local digital filtering has com-
putationally advantages on parallel computing architectures. Shapiro filtering only
requires the use of 2n C 1 neighboring points whereas Fourier filtering incor-
porates all grid cells along a latitude circle. The latter becomes problematic on
parallel machines that distribute the entire GCM domain over many processors. It
necessitates parallel communication and triggers computational overhead. A com-
prehensive discussion of such computational aspects in GCMs is also provided in
Chap. 16.

Many choices are still left open. Digital filters can be applied at each time step,
sporadically or only with a fraction of their full strength. The latter was suggested
by Fox-Rabinovitz et al. (1997). In addition, decisions need to be made about the
filtered variables. For example, Fox-Rabinovitz et al. (1997) do not apply their 2D
high-order Shapiro filter to the surface pressure field so that the conservation of
mass is not affected. Instead, the time tendencies of all other forecast variables are
filtered.

13.5.2.3 Spectral Filters: Fourier Filtering

Fast Fourier Transform (FFT) filters are spectral filters that are popular in grid point
models with latitude–longitude grids, especially if explicit time-stepping is used. In
general, a Fourier filter is only applied in the zonal direction to promote compu-
tational stability at mid- and high latitudes, and to allow a violation of the CFL
conditions for gravity waves in the filtered region by eliminating short unstable
waves. Examples of models with FFT filters include Williamson and Browning
(1973), Williamson (1976), Purser (1987, 1988), Fox-Rabinovitz et al. (1997)
and Lin (2004). In particular, Purser (1988) examined different filtering strategies
and highlighted their advantageous and detrimental effects. Takacs and Balgovind
(1983) compared the spectral filtering of tendencies to the spectral filtering of the
prognostic variables and assessed the side effects of polar filtering. This fuels the
discussion of conservation properties in Sect. 13.7. Generally, Fourier filtering is
solely applied along coordinate surfaces without adjustments to constant pressure
or height levels as was discussed in Sect. 13.3.2 for the divergence and vorticity
diffusion.

The polar FFT filtering of a variable  is accomplished by first applying a 1D
Fourier (forward) transformation along an entire latitude circle with constant lon-
gitudinal grid spacing ��D 2
=nx . Here, nx symbolizes the total number of grid
points in the zonal direction. The Fourier coefficients for wavenumbers that exceed a
prescribed threshold are then modified which corresponds to a damping mechanism
in spectral space. The filtered coefficients are finally transformed back to physical
space which completes the filter step. This filter application can be written for all
dimensionless wavenumbers k as
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O .k/filtered D f .k/ O .k/ (13.108)

where O .k/ and O .k/filtered are the Fourier coefficients before and after the filtering
step. The filter coefficients f .k/ are generally defined as a function of k and the
latitudinal position �. Most commonly, they are defined as

f .k/ D min

"
1:;
� cos�

cos�c

�2q 1

sin2.k ��=2/

#
(13.109)

with the cutoff latitude �c . The polar filter is then only active polewards of �c where
j�j > �c . Its strength gradually increases toward the pole by increasing the num-
ber of affected wavenumbers and decreasing the response function f .k/ by which
they are damped. The positive integer coefficient q can be used to adjust the filter
strength. Models like WRF (Skamarock et al. 2008), CAM FV (Collins et al. 2004)
or the stretched-grid finite-difference model by Fox-Rabinovitz et al. (1997) set the
default to qD 1. Older versions of NASA’s GEOS model (version 2, Suarez and
Takacs (1995)) and its stretched-grid variant (Takacs et al. 1999) utilized a weaker
Fourier filter with the coefficients

f .k/ D min

"
1:;
� cos�

cos�c

� 1

sin.k ��=2/

#
: (13.110)

For an even number of grid points nx the mesh supports the dimensionless
wavenumbers kD 1; 2; 3; � � � ; nx=2 that can travel in both the west or east direc-
tion. Note that the last entry kDnx=2 corresponds to a 2�� wave which is the
shortest resolvable wavelength. The 2��mode is stationary and its phase cannot be
resolved. For odd nx , the unitless wavenumber range is kD 1; 2; 3; � � � ; .nx � 1/=2.

The cutoff latitude is model-dependent. In CAM FV and NASA’s GEOS5 model
with the FV dynamical core on a latitude–longitude grid the cutoff �c is deter-
mined by

�c D arccos
h

min
�
0:81;��=��

�i
: (13.111)

For equal grid spacings in both directions this cutoff lies around �c 	 36ı which
is the minimum latitude. For default CAM FV grid spacings with ��=�� � 0:754
though, the cutoff is placed near �c 	 41ı. Fox-Rabinovitz et al. (1997) set their
cutoff latitude to �c D 45ı. In general, the cutoff is most often placed in the mid-
latitudes which leaves the tropical region unfiltered. The midlatitudes are often
empirically chosen since the grid spacing does not change much equatorwards. An
example of the response function f .x/ for the cutoff latitude �cD 40ı is presented
in Fig. 13.16. The figure shows the wavenumber dependency of the filter for both
the strong ((13.109) with qD 1) and weaker (13.110) Fourier filtering at the lati-
tudes �D 45ı; 60ı and 85ı. The strong filter response is depicted by the solid lines.
The figure confirms that the filter is scale-selective and primarily damps the higher
wavenumbers (shorter scales) which depend on the latitudinal position. The filtering
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Fig. 13.16 Response
function f .x/ for the Fourier
filter at the latitudes
�D 45ı; 60ı and 85ı. The
solid line denotes the strong
filter (13.109), the dashed
line shows the weaker filter
(13.110). The cutoff latitude
is �cD 40ı
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gets stronger at higher latitudes. Close to the poles almost all wavenumbers are
heavily damped.

The Fourier filtering can be made mass-conservative as discussed in Skamarock
et al. (2008), but it is neither monotonic nor positive definite. The latter becomes
especially important if tracer variables are filtered since the filter can create negative
tracer mass.

13.5.2.4 Local Spectral Filters

Local spectral filters are popular in GCMs that utilize local spectral methods like the
spectral element method or the discontinous Galerkin (DG) approach. Despite their
high accuracy at high orders the spectral element or DG methods are susceptible to
nonlinear aliasing errors which introduce nonphysical high-frequency oscillations.
A local spectral filter is then often employed as an alternative to hyper-diffusion to
prevent this noise from contaminating the solution.

The most common local spectral filter is the Boyd-Vandeven filter which is a
variant of the Vandeven (1991) filter that was developed by Boyd (1996, 1998). The
Boyd-Vandeven filter of order p is given by

�.x/ D 1

2
erfc

 
2
p
p˝

r
� log.1 � 4˝2/

4˝2

!
with ˝ D jxj � 1

2
(13.112)

where erfc.x/ D 1�erf.x/ symbolizes the complementary error function and erf.x/
is the error function. Taylor et al. (1997) explain how this filter is applied to a
1D function f .x/ in the x-direction that can be written as the sum of the first N
Legendre polynomials Pk.x/ with coefficients fk

f .x/ D
N�1X
kD0

fkPk.x/: (13.113)
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The filtered function f 0.x/ is then given by

f 0.x/ D .1 � �/f .x/C �
N�1X
kD0

wk.x/fkPk.x/ (13.114)

where the weights wk are defined as

wk.x/ D
(
1 if k < s

�.x/
�
k�s
N�s

�
if s � k � N: (13.115)

The parameter � represents the filter viscosity which can range from 0 (no filtering)
to 1 (full filtering). The coefficient s specifies the filter lag, e.g., setting s D 2N=3

determines that the filter is only applied to the last one third of the spectrum of f .
Taylor et al. (1997) showed that this filter is very scale-selective, especially at high
order. It can be applied without sacrificing the spectral accuracy of the spectral
element or DG scheme.

The Boyd-Vandeven filter has for example been used by Taylor et al. (1997),
Giraldo et al. (2002), Giraldo and Rosmond (2004), Thomas and Loft (2005) and
St-Cyr et al. (2008) for idealized dynamical core assessments. These references also
discuss the specifics of the 2D filter implementation in the particular model. A com-
mon choice is to apply a weak twelfth-order (p D 12) filter every few time steps
with the parameters� D 0:2 and s D 2N=3. These parameters are generally chosen
through experimentation. Note that Thomas and Loft (2005) observed that a much
larger � D 0:4 was often required for stable integrations when switching from a
pure vertical �-coordinate to hybrid �-coordinates. They also needed to apply the
filter at every time step.

In practice though, the filter might not be strong enough for full GCMs sim-
ulations with parameterized physics (Mark Taylor, personal communication). For
example, it has been found in the spectral element model HOMME that spectral
filtering alone did not prevent the so-called grid imprinting of a cubed-sphere com-
putational mesh in the numerical solution. The cubed-sphere structure of the mesh
was mirrored e.g., in the precipitation field. Such artificial effects were avoided
when switching to a fourth-order hyper-diffusion in HOMME.

13.6 Inherent Numerical Damping

Inherent numerical dissipation comes in many forms and is a source of nonlin-
ear flow-dependent damping in model simulations. For example, it is embedded
in semi-Lagrangian advection schemes due to the necessary interpolations at every
time step. In addition, dissipation is inherent in finite volume methods that are
upwind-biased or utilize monotonicity constraints to avoid unphyscial over- and
undershoots in the solution. The inherent damping is not necessarily a weakness
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of the numerical scheme. It can be turned into a useful property as e.g., demon-
strated by Váňa et al. (2008) who used the damping abilities of interpolations in a
semi-Lagrangian scheme as targeted diffusive filtering. They named their technique
“semi-Lagrangian horizontal diffusion” which brought beneficial new skills to their
forecast model. Skamarock and Klemp (2008) pointed out that their upwind-biased
advection schemes in the model WRF provides significant filtering of the small
scales. They estimated that the effective hyperviscosity coefficient is proportional
to the Courant number, and thereby most active at higher Courant numbers where
phase errors are most likely to produce noise. Skamarock and Klemp (2008) also
found that the horizontal mixing provided by the fifth-order upwind-biased advec-
tion scheme in WRF is sufficient to control small-scale noise in weather prediction
applications for grid spacings larger than 10 km.

The topic of inherent numerical dissipation is rather broad and cannot be exhaus-
tively covered in this chapter. Therefore, we only present selected aspects to high-
light the principal design considerations and characteristics of this type of nonlinear
dissipation. In particular, we discuss the inherent dissipation that is embedded in
the nominal order of a finite volume scheme, assess the diffusive properties of
monotonicity constraints, briefly review the use of the decentering technique as
e.g., used in semi-implicit semi-Lagrangian schemes, and shed light on the damping
characteristics of semi-Lagrangian methods.

13.6.1 Order of the Numerical Scheme

As a specific example of the inherent dissipation in a finite volume scheme we dis-
cuss the properties of a first-, second- and third-order approximation in the model
FV. The advection method implemented in the FV dynamical core can be viewed
as a multi-dimensional extension of higher-order Godunov-type schemes like the
van Leer scheme (van Leer 1974, 1977) or the Piecewise Parabolic Method (PPM,
Colella and Woodward (1984)). Finite volume schemes are based on the reconstruct-
evolve-average approach as e.g., explained by LeVeque (2002) and in Chap. 8, and
use constant, piecewise linear (van Leer), piecewise parabolic (PPM) or even piece-
wise cubic subgrid distributions for the piecewise continuous reconstruction of the
flow field. The transport problem is then solved exactly and new initial data at the
future time step are obtained by averaging the transported quantity over each control
volume.

The first-order upwind method is based on a constant subgrid distribution and is
thereby very diffusive by design. It is for example explained by Lin and Rood (1996)
who introduced the FV advection scheme. The second-order van Leer advection
scheme (van Leer 1977) is based on the reconstruction of linear subgrid distribu-
tions in each finite volume cell. We now briefly review the design of such subgrid
distributions to motivate the subsequent discussion. The linear subgrid distribution
h.x/ of a model variable h is given by
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h.x; y/ D NhC�ax x C�ay y (13.116)

where Nh D R 1=2
�1=2

R 1=2
�1=2 h.x; y/ dx dy is the volume-averaged value with normal-

ized local coordinates x; y 2 Œ�1
2
; 1
2
	. �ax and �ay denote the slopes in the x and

y direction at a grid point .i; j / which in the model FV are defined via van Leer’s
scheme I

�ax D 1

2

�
hiC1;j � hi�1;j

�
(13.117)

�ay D 1

2

�
hi;jC1 � hi;j�1

�
: (13.118)

This assessment uses centered finite differences. The slopes can be further manip-
ulated if monotonicity constraints are required. Then the monotonized central-
difference (MC) slope limiter (van Leer 1977) can e.g., be used

�ax D min
�j�axj; 2jhiC1;j � hi;j j; 2jhi;j � hi�1;j j� sgn.�ax/

if .hiC1;j � hi;j /.hi;j � hi�1;j / > 0

D 0 otherwise (13.119)

that picks out the smallest magnitude among three slopes which are the centered
difference and the two one-sided differences. However, if the discrete value of hi;j
represents an extreme value, the slope is set to zero. The same principle applies to
the MC slope limiter in the y direction. The sgn.�ax/ function extracts the sign of
the argument.

Alternatively, the third-order PPM scheme can be applied. The corresponding 2D
biparabolic subgrid distribution is then given by

h.x; y/ D NhC ıax x C bx
� 1
12
� x2

�
C ıay y C by

� 1
12
� y2

�
(13.120)

where the coefficients of the parabola ıax , bx , ıay and by are defined by Colella and
Woodward (1984) or Carpenter et al. (1990). The coefficients can again be modified
in order to enforce monotonicity constraints as explained in Lin and Rood (1996)
and Lin (2004). Both the order and the choice of the monotonicity constraint (see
Sect. 13.6.2) determine the inherent diffusion in the FV advection scheme.

Figure 13.17 visualizes the effects of the inherent diffusion in the dynamical core
CAM FV with the grid spacing 1ı� 1ı and 26 vertical levels. CAM FV has runtime
options to run with the aforementioned first-order upwind advection scheme, the
second-order van Leer algorithm or with the nominally third-order PPM method.
Note however, that the 2D implementation of the PPM algorithm in the model FV
does not exhibit a third-order convergence and is in practice closer to a second-order
scheme (Lin and Rood 1996; Jablonowski et al. 2006). Both the van Leer scheme
and PPM apply monotonicity constraints which are the MC limiter in case of van
Leer, and the “relaxed” monotonicity constraint in case of PPM (Lin 2004).
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Fig. 13.17 Surface pressure (hPa) and 850 hPa temperature (K) at day 9 of the growing baroclinic
wave test case of Jablonowski and Williamson (2006a) in the CAM FV dynamical core at the
resolution 1ı � 1ı L26. (a,b) first-order upwind scheme, (c,d) second-order van Leer scheme,
(e,f) default third-order PPM scheme with the relaxed monotonicity constraint (Lin 2004). The
dynamics time step is�t D 180 s

The figure shows the surface pressure and 850 hPa temperature fields at day 9
of the growing baroclinic wave described in Jablonowski and Williamson (2006a).
The impact of the inherent numerical dissipation can clearly be seen in all fields.
The first-order method (Fig. 13.17a,b) hardly captures the evolving baroclinic insta-
bility and only shows hints of a wave. The second-order van Leer scheme shows
a clear evolution of the baroclinic wave and exhibits a slightly early wave break-
ing event in the temperature field (Fig. 13.17d). The peak amplitudes of the surface
pressure field at day 9 are .ps/min D 948:19 hPa and .ps/max D 1018:78hPa with
the second-order van Leer (Fig. 13.17c) algorithm. The evolution of the wave sim-
ulated with the PPM scheme is very similar to the van Leer simulation. However,
the peak surface pressure amplitudes are slightly intensified and the values read
.ps/min D 947:04hPa and .ps/max D 1018:74hPa in Fig. 13.17e. In addition, the
temperature field in the PPM simulation (Fig. 13.17f) shows slightly sharper frontal
zones without wave breaking.

A more quantitative comparison of the baroclinic wave simulation is provided
in Fig. 13.18. The figure depicts the 700 hPa kinetic energy spectra at day 30 of
the baroclinic wave simulation for the first-order upwind method, the second-order
van Leer scheme and two PPM simulations. The only difference between the PPM
simulations is the selection of the monotonicity constraint. Here, we compare the
“relaxed” constraint by Lin (2004) and “positive definite” constraint described
in Lin and Rood (1996). The latter only prevents negative undershoots and has
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Fig. 13.18 700 hPa kinetic
energy spectra at day 30 of
the growing baroclinic wave
test case of Jablonowski and
Williamson (2006a) in the
CAM FV dynamical core at
the resolution 1ı � 1ı L26:
first-order upwind,
second-order van Leer,
third-order PPM scheme with
the relaxed and positive
definite monotonicity
constraints (Lin 2004). The
black line indicates an n�3

slope. The dynamics time
step is �t D 180 s

originally been designed for pure tracer advection. Therefore, its application in the
dynamical core is generally not recommended, but we only use it here to demon-
strate different diffusion properties. The curves confirm that the first-order method
is the most diffusive as indicated by the sharp drop off of the spectrum and the sig-
nificant damping of the longer wavenumbers 4–10. The differences between the van
Leer and PPM simulations are more subtle. The van Leer and relaxed PPM curve
almost overlay each other until about wavenumber 60 or so before the van Leer
curve exhibits a slightly faster drop off than the relaxed PPM run. In contrast, the
positive definite PPM simulation is less diffusive than the relaxed PPM scheme and
almost runs parallel to the n�3 slope. More analysis on the monotonicity constraints
in provided in the next Sect. 13.6.2.

Increased inherent dissipation can also be used as a sponge at the model top.
This is for example accomplished by lowering of the order of the numerical scheme
in the uppermost levels. Such a technique is used in the CAM FV dynamical core
that switches the numerical scheme from the PPM algorithm to the more diffusive
van-Leer scheme in the uppermost nlev=8 layers where nlev is the number of total
levels.

Inherently dissipative schemes can often be run without explicit diffusion which
is for example true for the semi-Lagrangian models CAM SLD and UM. How-
ever, additional explicit diffusion might still be applied in long climate simulations.
Inherent numerical dissipation can also be viewed as an application of a symmetric
low-pass sine filter as suggested by Raymond and Garder (1991). These similarities
between inherent dissipation in finite-difference models and numerical filters were
also pointed out in Purser and Leslie (1994).
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13.6.2 Monotonicity Constraints and Shape Preservation

The advection algorithm in the CAM Finite Volume model is upstream-biased and
monotonic if limiters are applied to the subgrid distributions. As mentioned in the
previous subsection such monotonicity constraints are used in case of the default
PPM scheme which leads to a total variation diminishing (TVD) method. A short
review of limiters for finite volume schemes is given in Chap. 8 or in the text-
book by Durran (2010). Note that Chap. 9 introduces limiters for discontinuous
Galerkin methods which are an active research topic (see also Nair (2009)). In
general, limiters can be grouped into slope/curvature limiters or flux limiters. Here
we only briefly assess the impact of slope/curvature limiters that a-priori limit the
bi-parabolic subgrid distribution used in the PPM scheme.

The limiting of the subgrid distribution clips extreme values and thereby intro-
duces inherent nonlinear dissipation into the finite volume scheme. From a design
perspective the clipping suppresses over- and undershoots in the advection step. It
should be as strict as necessary to prevent unphysical oscillations but as nonintrusive
as possible to minimize the associated dissipation. Figure 13.19 schematically illus-
trates how the clipping by a monotonicity constraint affects a flow field (Jablonowski
2004). In this particular example, an interpolation of a zonal wind field from a
2:5ı � 2:5ı to a 1:25ı � 1:25ı latitude–longitude grid is performed. The ana-
lytically prescribed zonal wind field at the 2:5ı � 2:5ı resolution is depicted in
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Fig. 13.19 Latitude–longitude plot of the zonal wind field in the Rossby–Haurwitz wave test case.
(a) Zonal wind field at a 2:5ı � 2:5ı resolution, (b) absolute error of the zonal wind field after a
PPM-based interpolation with limiters to a 1:25ı � 1:25ı grid, (c) absolute error of the zonal wind
field after a PPM-based interpolation without limiters to a 1:25ı�1:25ı grid. The contour intervals
are (a) 10 m s�1 and (b,c) 0.025 m s�1. Negative contours are dashed
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Fig. 13.19a. The field corresponds to the Rossby–Haurwitz wave with wavenumber
4 that is part of the standard shallow-water test suite by Williamson et al. (1992).
The interpolation uses the bi-parabolic subgrid-scale reconstruction defined by the
PPM algorithm (Colella and Woodward 1984) which are then integrated over the
new 1:25ı � 1:25ı domain.

Figure 13.19b,c assess the absolute errors of these interpolations with and
without monotonicity constraints. In particular, the original PPM monotonicity
constraint without steepening (Colella and Woodward 1984) was selected. The
distribution of the errors in Fig. 13.19b confirms that the monotonicity constraint
mostly affects the areas with extreme values. This can be seen when comparing
the error pattern to the original zonal wind field (Fig. 13.19a). In contrast, the
interpolation errors are clearly diminished without the limiter (Fig. 13.19c). In fact,
small-magnitude over- and undershoots are present in Fig. 13.19c with peak values
around ˙0:05 m s�1. The overshoots appear in the regions of the wind maxima,
the undershoots are concentrated near the wind minima. These are eliminated by
the monotonicity constraint (Fig. 13.19) that, on the downside, increases the overall
errors to ˙0:22 m s�1. Note that these errors are assessed with the help of the
analytic solution at the 1:25ı � 1:25ı resolution.

Limiting can enforce a strictly monotonic advection algorithm in the 1D case
as also discussed by Thuburn (1993, 1997) and Mesinger and Jovic (2002). How-
ever, very minor violations of the monotonicity constraint in two-dimensional flows
are possible and have indeed been observed for the horizontal FV advection algo-
rithm by Lin and Rood (1996). Limiters can also be designed to only avoid negative
undershoots for tracer transport application, and allow an overestimation of the
transported quantity. The limiters in finite volume schemes or shape-preservation
constraints in semi-Lagrangian models are physically motivated and provide a
smoothness constraint. They are a form of nonlinear inherent numerical dissipation
that is guided by the flow field. Shape preservation constraints for semi-Lagrangian
dynamical cores and advection schemes are for example discussed in Williamson
and Rasch (1989), Williamson (1990), Rasch and Williamson (1990b) and Bermejo
and Staniforth (1992).

A detailed documentation of the many limiter options in the model FV is beyond
the scope of this section and we refer to the associated literature for the exact expla-
nations of the algorithms (Colella and Woodward 1984; Carpenter et al. 1990; Lin
and Rood 1996; Huynh 1996; Lin 2004; Putman and Lin 2007). The main focus
here is to qualitatively demonstrate that limiters determine the amount of inherent
dissipation in finite volume scheme and need to be used with care. Figure 13.20
visualizes the influence of different PPM monotonicity constraints on the evolution
of the baroclinic wave in the FV dynamical core. Here, two models are depicted
which both utilize almost identical versions of the FV dynamics described in Lin
(2004). They are the CAM 5 FV implementation with the grid spacing 1ı � 1ı and
the GFDL FV model with the lat � lon grid spacing 1ı� 1:25ı. The figure can also
be directly compared to the surface pressure fields in Fig. 13.17.

The figure demonstrates the effects of the positive-definite (Fig. 13.20a) and
quasi- (or semi-) monotone constraints (Fig. 13.20b) described in Lin and Rood
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Fig. 13.20 Surface pressure (hPa) at day 9 of the growing baroclinic wave test case of Jablonowski
and Williamson (2006a) in the (a,b) CAM FV dynamical core at the resolution 1ı � 1ı L26
and (c,d) GFDL FV model at the resolution M90 1ı � 1:25ı with 26 levels. (a) positive definite
constraint that only eliminates negative undershoots, (b) quasi-monotone constraint (Lin and Rood
1996) that is the default in CAM FV, (c) second constraint discussed in Huynh (1996), (d) non-
monotonic simulation with slope- but no curvature-limiter in the PPM scheme

(1996), the second monotonicity constraint by Huynh (1996) (Fig. 13.20c) and a
non-monotonic simulation (Fig. 13.20d) that only utilized the MC slope limiter but
no curvature constraint. Option (b) is the default in CAM FV. Overall, the strengths
of the pressure systems in all four simulations are comparable and the differences
are subtle. The quasi-monotone simulation appears to be slightly more diffusive than
the other three model runs as indicated by the fewer contour lines in the low pres-
sure system located at about 175ıE. The “positive definite” simulation, that only
prevents negative undershoots, is the least diffusive and has developed the deepest
low pressure systems. This has also been demonstrated by the kinetic energy spec-
tra in Fig. 13.18. However as mentioned before, this monotonicity option has been
specifically designed for positive definite tracer transports and should not be used
as the basis for the dynamical core. Other even less stringent limiters are available
for PPM-type algorithms as e.g., documented by Colella and Sekora (2008) and
McCorquodale and Colella (2010).

The choice of the limiter should be motivated by the design criteria of the model
as argued in Chap. 15. Note that the cumulative damping effect of the limiters cannot
be quantified analytically. Therefore, the model CAM 5 FV applies a total energy
fixer that provides dissipative heating (Neale et al. 2010).

13.6.3 Decentering Mechanisms

Decentering adds inherent dissipation to the numerical scheme and is tightly linked
to semi-implicit time discretizations. Here we briefly review the decentering used in
semi-implit semi-Lagrangian models and in other semi-implicit approaches.
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13.6.3.1 Decentering in Semi-implicit Semi-Lagrangian Models

The decentering mechanism, sometimes also called uncentering or off-centering
technique, is usually applied in semi-implicit semi-Lagrangian (SISL) models. Its
primary purpose is to suppress computational noise and orographic resonance in
regions of steep orography and high Courant numbers, and maintain stability, espe-
cially at high resolutions (Bates et al. 1993; Rivest et al. 1994). A comprehensive
discussion of the orographic resonance problem in semi-Lagrangian models is pro-
vided in Rivest et al. (1994), Côté et al. (1995) and Lindberg and Alexeev (2000),
and is not repeated here. Tanguay et al. (1992) suggested a first-order decentering
of the semi-implicit terms along the trajectory. Rivest et al. (1994) discussed both
first and second-order decentering schemes in a 1D SISL shallow water model. A
thorough stability analysis of the decentering method is presented in Tanguay et al.
(1992) and Gravel et al. (1993).

To illustrate the basic idea behind the first-order decentering technique consider
the prognostic equation

D 

Dt
D S (13.121)

where D=Dt is the total time derivative,  is a scalar variable and S is a source
term which may incorporate  . In a two-time-level semi-Lagrangian scheme a
conventional discretization of the trajectory calculation leads to

 jC1 �  j
d
D
Z tj C�t

tj
S dt D NS �t (13.122)

where  jC1 is the value of the prognostic variable at the arrival point at time tjC1
and  j

d
is the value at the departure point of the trajectory at time tj . NS denotes the

time-averaged source term along the trajectory that can be replaced by
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with the decentering (time-weighting) parameter �. The averaged source term rep-
resents both a temporal and spatial average. A centered two-time-level scheme with
� D 0 is second-order accurate. For a decentered scheme with 0 < � < 1 the trun-
cation error is first-order. A decentered SISL scheme is generally more accurate and
less damping the closer � is to 0, and less accurate and more damping the closer �
is to unity. In practice though, some decentering is desirable or even necessary in
SISL schemes to suppress the spurious orographic resonance.

Decentering is for example used in the operational Global Environmental Mul-
tiscale (GEM) model developed at the Canadian Meteorological Centre (Côté et al.
1998a,b), in the spectral transform model CAM SLD (Collins et al. 2004) and the
grid point model UM (Staniforth et al. 2006). Typical decentering parameters in
GCMs are � D 0:1 in the model GEM, � D 0:2 in CAM SLD and � 2 Œ0:2; 0:4	
in the model UM (Davies et al. 2005). Davies et al. (2005) reported that the smaller
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a b

Fig. 13.21 (a) Zonal-mean zonal wind (m/s) at day 30 of the steady-state test case of Jablonowski
and Williamson (2006a) in the CAM SLD dynamical core at the resolution T85L26. The default
decentering parameter �D 0:2 is used. (b) Difference of the zonal-mean zonal wind at day 30
between the run with decentering and a run without decentering (�D 0). No explicit diffusion is
used, the time step is �tD 1;800 s

value � D 0:2 is sufficient at low resolutions, but it needed to be replaced with
� D 0:4 at high weather forecast resolutions to suppress noise near strong jets. A
discussion of the impact of decentering and its stability properties can also be found
in Chap. 14.

As a practical example, we now isolate the effect of the inherent dissipation from
the decentering mechanism in idealized dynamical core simulations. As before in
Sect. 13.3.3, we choose the CAM 4 semi-Lagrangian dynamical core at the triangu-
lar truncation T85 with 26 levels. A steady-state test case, described in Jablonowski
and Williamson (2006a), is used and run for 30 days with varying decentering
parameter �. Figure 13.21 shows the zonal-mean zonal wind field at day 30 with
the default decentering parameter �D 0:2 and the zonal-mean zonal wind difference
between the run with decentering and no decentering. No explicitly added diffusion
was used. The influence of the decentering can clearly be seen in the difference plot
(Fig. 13.21b) throughout the entire atmosphere but the impact is strongest in the
midlatitudes in this test case, especially near the model top. The decentering damps
the zonal wind speed with magnitudes of up to 0.5 m s�1 during this 30-day simula-
tion. Note that Fig. 13.21 can also be readily compared to Fig. 13.1 that isolates the
effects of the fourth-order hyper-diffusion and second-order sponge layer diffusion
(without decentering) with the help of the same test case.

A quantitative comparison of the damping due to decentering is depicted in
Fig. 13.22 that shows the time evolution of the global root-mean square l2 zonal
wind error during the 30-day steady-state simulation. For this analysis the zonal-
mean zonal wind field u is compared to the analytic solution at time t D 0 (see
Jablonowski and Williamson (2006a) for the definition of the error norm). The
decentering parameter � is set to 0, 0.1, 0.2 and 0.3, respectively. Again, no explicitly
added diffusion was used and, as briefly discussed before for Fig. 13.1, the semi-
Lagrangian trajectory calculation utilized only spherical coordinates to suppress
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Fig. 13.22 Time evolution of the l2.u.t/�u.tD 0// error norms (in m/s) of the zonal-mean zonal
wind field u in the steady-state test case of Jablonowski and Williamson (2006a). The CAM SLD
dynamical core simulations at the resolution T85L26 with decentering parameters between �D 0
and �D 0:3 are shown. No explicit diffusion is used, the time step is �tD 1;800 s

any additional damping from non-zonal geodesic trajectory calculations in polar
regions (Williamson and Rasch 1989). The latter is only reasonable in the case of
zonal advection as considered here. These deviations from the default CAM SLD
configuration are selected to truly isolate the damping effects from the decentering
parameter. Of course, in practice the damping of all explicit and inherent dissipa-
tion mechanisms as well as filters and fixers act in concert, and they are generally
difficult to isolate individually. Figure 13.22 confirms that the inherent dissipation
in these steady-state simulations strongly depends on the decentering parameter.
The l2 zonal wind errors grow steadily over time, and there is an almost linear
relationship between the magnitude of the error at day 30 and the magnitude of
the decentering parameter. Recall that CAM SLD selects �D 0:2 by default which
poses a compromise between accuracy and the suppression of orographic noise in
practice.

13.6.3.2 Forward-Biasing of Trapezoidal Time Integrations

Of similar spirit as the SISL decentering approach is the forward-biasing technique
for the implicit trapezoidal time integration method that provides damping of high-
frequency modes. A short discussion can be found in Durran (1999) (his Chap. 7.3).
The principal difference between the SISL decentering and the forward-biasing is
that the SISL decentering represents a mix of a spatial and temporal average since
both the departure and arrival point information are involved in the estimate of the
decentered trajectory. In contrast, the forward-biasing technique only represents a
temporal average at a single location. However, forward-biasing is sometimes called
off-centering, uncentering or decentering, but despite the same nominal names the
differences should be kept in mind.
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Forward biasing is accomplished by replacing time-centered source terms of the
form .SjC1 C Sj /=2 with the off-centered expression

�1C �
2

�
SjC1 C

�1 � �
2

�
Sj (13.124)

where 0 � � � 1. Choosing �D 0 recovers a second-order in time centered
discretization that e.g., represents the implicit Crank–Nicolson scheme

 jC1 �  j
�t

D 1

2
.SjC1 C Sj /: (13.125)

Any � > 0 formally reduces the order of accuracy of the temporal discretization.
Off-centering the time discretization with � > 0 adds inherent numerical dissipation
and numerically stabilizes the solution. Values in the range of Œ0:2; 0:4	 are quite
common for models with two-time-level semi-implicit schemes. Note that � is also
often called implicitness parameter.

As an example, Durran and Klemp (1983) used forward-biasing of the trape-
zoidal time-differencing scheme for vertical derivatives. They found that a value
of �D 0:2 provided sufficient damping that did not noticeably modify the grav-
ity waves. Bonaventura and Ringler (2005) also used �D 0:2 and argued that such
an inherently dissipative scheme can often be used without adding further explicit
diffusion. As discussed by Skamarock et al. (2008) forward-in-time weighting of
the vertically-implicit acoustic-time-step terms damps instabilities associated with
vertically-propagating sound waves and the partially-split temporal discretization.
The forward weighting also damps instabilities associated with sloping model levels
and horizontally propagating sound waves as shown in Durran and Klemp (1983).
A value of �D 0:1 is used as the default in the nonhydrostatic limited-area model
WRF. The regional model COSMO sets the default parameter to �D 0:4 (Gassmann
and Herzog 2007). Recently, Baldauf (2010) assessed suitable limits for the off-
centering parameter for both buoyancy terms and sound wave terms in the regional
weather forecast model COSMO.

13.6.4 Damping by Semi-Lagrangian Interpolation

Semi-Lagrangian schemes require spatial interpolations at every time step to deter-
mine the transported variables at the departure points. These interpolations provide
a source of uncontrolled damping in model simulations. Conventional wisdom says
that semi-Lagrangian approximations damp more over a given length integration
when run with short time steps than when run with long time steps. The argument
is that more interpolations are performed with the shorter time step, thus the net
damping will be larger. The damping from interpolation generally increases as the
wavelength decreases. Thus spectra of, for example, the kinetic energy or vertical
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Fig. 13.23 Spectra as function of the spherical wavenumber (n) from TL255 CAM 3.1 semi-
Lagrangian integrations with linear transform grid using 5 and 20 min time steps for (left) 250 hPa
kinetic energy and (right) 500 hPa pressure vertical velocity (!) variance

velocity variance, will be steeper approaching the truncation limit in an experiment
using a short time step than in one with a long time step.

Figure 13.23, however, shows that this is not necessarily the case. This figure
plots the 250 hPa kinetic energy and 500 hPa pressure vertical velocity variance
spectra as a function of spherical wavenumber (n) from integrations with the semi-
Lagrangian version of CAM 3.1 at TL255 truncation with 5 and 20 min time steps.
This semi-Lagrangian model uses an optional linear (TL) unaliased grid of approx-
imately 0.7ı (or 78 km at the equator) which is the same as the quadratically
unaliased grid used by the T170 Eulerian spectral model. The linear grid is defined
to be the minimum grid required for transformations of a field from spectral space to
grid point space and back again to spectral without loss of information. With such a
grid, only linear terms are unaliased (Williamson 1997). The numerical algorithms
are detailed in Collins et al. (2004). The simulations presented in this subsection
are for an aqua-planet (Williamson 2008a) but in our experience, except possibly
for the long waves, the shape of spectra in aqua-planet simulations is the same as in
earth-like simulations. For both variables the spectra fall off faster for the long time
step than for the short time step.

So where does conventional wisdom go wrong? It does not take into account that
the short and long time step departure or interpolation points are not at the same rel-
ative location in a grid interval and thus the damping rate for a single interpolation
is not the same. Figure 13.24a shows the response function of selected wavelengths
for cubic Lagrange polynomial interpolation as used in CAM 3.1 SLD as a function
of relative position in the grid interval (ˇ) following Williamson and Laprise (2000).
For all waves, the amplitude damping increases from the edge of the grid interval
(ˇD 0 or 1), where it is zero, to the center of the interval (ˇD 0:5) where the damp-
ing of each wave is greatest, with the 2�x wave annihilated there. As a specific
example of relative damping assume the long time step is four times the short time
step, and that the short time step yields a departure point location with ˇD 0:125.
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Fig. 13.24 (Left) Response function for Lagrange cubic interpolation as function of location
within grid interval for selected wavelengths. (Right) Ratio of response function for short time
step to the power 4 to the response function for long time step as a function of the location in the
grid interval of the short time step. The long time step is four times the short time step

The long time step then has a departure point with ˇD 0:5 and the amplitude of
the 2�x wave is zero after interpolation. The amplitude after one short time step
(ˇD 0:125) is 0.805. However four such interpolations are required to reach the
same forecast time as one long time step, therefore the total damping with the short
time step is 0:8054D 0:42. Clearly, in this extreme example, the damping is less
with the short time step than with the long one.

The general situation is shown in Fig. 13.24b. Here and in the following we con-
sider the situation with the long time step being four times the short one. Later,
specific results from the semi-Lagrangian CAM 3.1 at TL255 truncation will use 5
and 20-min time steps. Figure 13.24b plots the ratio of the short time step damping
to the fourth power to the damping of the long time step as a function of ˇ which
is the location in the grid interval for the short time step. There is a region with
ˇ <	0.15 and a mirror one ˇ >	0.85 in which the net damping from the short
time step is less than that from the long. Elsewhere (	0.15 < ˇ <	0.85) the net
damping from the short time step is greater. The only exception being the 2�x wave
at ˇD 0:375 and 0:625 where the corresponding long time step is ˇD 1:5 and 2:5,
both of which are equivalent to ˇD 0:5 with zero response function. With smaller
time step ratios the zero crossings shift inward toward ˇD 0:5 with a structure sim-
ilar to Fig. 13.24b except the secondary interior 2�x ratio of1 does not occur (not
shown). With a time step ratio of 3, the damping ratio for the 2�x wave crosses 1 at
ˇ around 0.2 and 0.8, and with a time step ratio of 2, the ramping ratio for the 2�x
wave crosses 1 at ˇ around 0.3 and 0.7.

Therefore, the overall damping in a semi-Lagrangian integration will depend on
the population of departure points. Figure 13.25 shows the frequency distribution
of the departure point locations from the 5 and 20 min TL255 integrations. The
frequency distribution is calculated over all grid points at the 250 hPa model level
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Fig. 13.25 Fraction of departure points falling in 0.01 bins ranging from 0.0 to 0.5 of the grid
interval from semi-Lagrangian integrations with �t D 5 and 20min for (left) longitude, (center)
latitude and (right) vertical directions

(corresponding to the spectra in Fig. 13.23) every 6 h for 125 days. Because of nat-
ural symmetries only ˇ in the range 0–0.5 need be considered; other values fold
back into this range. CAM 3.1 SLD uses a tensor product interpolation in which
interpolations are done sequentially in longitude, in latitude and then in the vertical
coordinate. The frequency distributions are shown for each coordinate. The plots
show the fraction of the time the departure point falls in each 0.01 interval from
0.0 to 0.5. We consider the 5 min case first. In the vertical almost all departure points
have ˇ < 0:05. In latitude almost all departure points have ˇ < 0:25, with only a
small subset between 0.15 and 0.25. In longitude, on the other hand, departure points
have values as large as ˇD 0:5, although the fraction is small approaching 0.5. Five
minutes is not a particularly long time step for TL255 resolution. In fact it is the
time step normally used for the Eulerian version of CAM 3.1 at T170 truncation.
The longitudinal frequency distribution for integrations with 20 min is relatively
flat decreasing from 0.022 for the first bin ˇD Œ0:0; 0:01/ to 0.019 for the last bin
ˇD .0:49; 0:05	. (Recall there are 50 bins, 50 � 0:01D 0:5) The 20 min latitudinal
frequency distribution is much less steep than the 5 min one, starting at 0.05 for the
first bin, decreasing to 0.02 at ˇD 0:2 and continuing to around 0.005 for the last
bin. The 20 min vertical frequency distribution starts at 0.55 at the first bin and is
close to zero by ˇD 0:1

The frequency distribution for the ratio of the damping of the short time step
to that of the long time step from the CAM 3.1 SLD integrations is shown in
Fig. 13.26 for the 2�x wave. To calculate the frequency distribution, equivalent
20-min departure points were calculated based on the 5-min ones captured from the
model integration. The ratio of the damping to the fourth power of each 5-min depar-
ture point to the damping from the matching 20-min departure point was calculated.
The frequency distribution for the log of the ratio is plotted in Fig. 13.26 for the
2�x wave. A value of 0 is neutral, positive values imply less damping for the short
time step and negative values imply more damping for the short time step. To avoid
including the neutral 0 values in either the positive or negative bin, they are given a
special bin of their own. This bin contains the fraction of values within rounding of
zero and is indicated by the dot plotted at zero abscissa. Before discussing Fig. 13.26
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Fig. 13.26 Fraction of log of ratio of short time step damping to fourth power to long time step
damping for 2�x wave in 0.1 bins from�2:0 to 2.0 for (left) longitude, (center) latitude and (right)
vertical interpolations
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Fig. 13.27 Fraction of log of ratio of short time step damping to fourth power to long time step
damping for 2:7�x wave in 0.1 bins from �2:0 to 2.0 for (left) longitude, (center) latitude and
(right) vertical interpolations

we note that when we base the calculation on the sampled departure points from
the 20-min CAM 3.1 SLD experiment and calculate the equivalent 5-min departure
points, the plot of the damping ratio is virtually indistinguishable from Fig. 13.26.

The frequency distribution for longitude in Fig. 13.26 is non-zero for both posi-
tive and negative log of ratios, indicating there are points where the short time step
damps less and points where it damps more. The frequency distribution for latitude
however indicates the short time step always damps less, there are no negative val-
ues. The frequency distribution for the vertical trajectory also indicates the short
time step always damps less; however almost all values are in the first positive bin,
and the remainder have the log of the ratio within rounding of zero (the dot in the
figure.)

Figure 13.27 shows the same frequency distribution but now for the 2:7�x wave.
In longitude, at 60% of the points the short time step damps less, but the damping
ratio is between 1 and 1.26 (the first positive bin with log ranging from 0 to 0.1). At
the remainder of the points the long time step damps less, and the ratio of damping
is primarily distributed over bins with ratios 0.2 to 1 (log ranging from �0:7 to 0)
with some ratios from 0.08 to 0.2 (log ranging from �1:1 to �0:7). In latitude, at



13 Diffusion, Filters and Fixers in Atmospheric General Circulation Models 463

over 95% of the points the small time step damps less. As in longitude, the positive
log damping ratio is in the first positive bin, where the damping ratio is between 1
and 1.26. In the vertical, the small time step damps less at 97% of the points. The
ratio at the remaining points is within rounding of 1 (i.e., log is 0).

In summary, semi-Lagrangian integrations with short time steps do not necessar-
ily damp shorter waves more than integrations with long time steps do. The different
time steps yield different departure points and therefore different damping from the
interpolations. The overall damping depends on the population of departure points
which in turn depends on the atmospheric flow and model time step.

13.7 Fixers and Thoughts About Conservation Properties

It is generally desirable for a dynamical core to possess discrete analogues of the
conservation properties of the adiabatic and frictionless continuous equations of
motion as e.g., laid out in Chap. 11. However, the continuous equations possess an
infinite number of invariants, such as mass, tracer mass, total energy, enstrophy and
angular momentum just to name a few, whereas a numerical model can only con-
serve very few quantities. A straightforward way to ensure the conservation of an
invariant is to choose it as a prognostic variable and utilize a flux-form finite vol-
ume discretization. Such a built-in conservation law is then a design feature of a
dynamical core and its numerical scheme. This design decision needs to be care-
fully weighted against other beneficial properties like the computational efficiency
or accurate wave dispersion characteristics.

Conservation can also be obtained through special mathematical properties of the
numerical discretization. For example, spatial discretizations can be formulated so
that they enforce the conservation of global integrals, such as mass, total energy and
potential enstrophy (Arakawa 1966; Arakawa and Lamb 1981; Arakawa and Hsu
1990). This is also discussed in Chap. 12. The basic question is how accurately a
dynamical core needs to capture various conservation properties and whether global
conservation is sufficient or local conservation needs to be enforced. These issues
are addressed in Thuburn (2008b) who gives guidance concerning the desirable
conservation properties of GCMs.

In practice, there are many reasons why numerical models might lose even the
most basic conservation properties of the continuous equations like the conserva-
tion of dry air mass, tracer mass or total energy. A prominent reason is that the
equations are often not formulated in conservation form. But even if a conservation
form is chosen the inevitable dissipation, either explicitly specified or inherent in the
numerical schemes, and use of filters can violate the conservation in the discretized
case (Takacs 1988). For example the conservation of mass principle is violated if the
mass variable needs to be time-filtered or spatially filtered for numerical stability
reasons. In addition, full GCMs contain physical parameterizations that represent
the unresolved often dissipative processes at the subgrid-scale such as boundary
layer turbulence. Kinetic energy is therefore generally lost due to dissipation which
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might translate into a loss of total energy. Conservation must therefore be addressed
not only in the dynamical core and its numerical discretization but also in full GCMs
with physics packages.

If a conservation property is violated in a GCM, the global conservation can
still be artificially recovered. This can be done through the use of so-called fixers.
Fixers are modeling paradigms that allow an ad-hoc and a posteriori restoration of
conserved quantities at each time step. There is no physical basis for such restora-
tions other than that the conservation is a necessary or desirable characteristic of
the GCM. A general expectation might be that the GCM simulations become more
trustworthy if conservation properties are obeyed. This is especially true for the con-
servation of the dry air mass and the total energy which prevents the model climate
from drifting into unrealistic states. However, the use of fixers does not imply that
the physical processes and scale interactions are better represented. In addition, it is
often imperative to fix unphysical negative tracer masses to prevent the model from
“exploding” in the physical parameterizations.

This section discusses three types of a posteriori fixers that are broadly used in
GCMs today. They are the mass fixers for dry air, filling algorithms for tracers and
total energy fixers. Most often, the application of a fixer is an undocumented design
feature of a GCM.

13.7.1 Dry Air Mass Fixer

In nature, dry air mass has no true physical sources and sinks, and is conserved
regardless of diabatic or frictional processes. Conservation of dry air mass is proba-
bly the most fundamental conservation property that should be enforced in GCMs.
In fact, the conservation of mass is paramount for long climate simulations where
any drift in the total mass translates into a drift of the pressure distribution through
the equation of state. This leads to spurious motions and artificial drifts of the sim-
ulated climate. For short weather predictions though, GCMs have put less emphasis
on the conservation of mass. This design decision is probably justified since the
drifts in the mass over short 10-day forecasts are generally negligible for practical
purposes.

In the absence of sources and sinks, the mass of water vapor is conserved just as
the mass of the dry atmosphere is. Since total air is a mixture of water vapor and dry
air the conservation of both mass of water vapor and of dry air are often considered
together. This is especially true if the moist surface pressure is the prognostic fore-
cast variable. If a model prognoses the dry air pressure, a sole dry air mass fixer of
course suffices.

The most popular dry air mass fixers are built upon an ad-hoc correction of the
global surface pressure field regardless of the origin of the pressure drift which is
often unknown. In models that predict lnps like CAM EUL or SLD this is done by
adjusting the surface pressure at all grid points so that the gradient of the logarithm
of the surface pressure field r lnps is unaffected. The fixer thereby preserves the
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gradients of the pressure gradient force. The latter is an important driver in the
momentum equations that should not be arbitrarily changed. Such a mass fixer is for
example documented in Williamson and Olson (1994). For brevity, we only present
the design of the fixer for dry air masses. The extensions for moist air is shown in
Williamson and Olson (1994), Collins et al. (2004) and Rasch et al. (1995).

Conceptually, the global dry air mass in hydrostatic models is represented by the
global integral P of the dry surface pressure as given by

P.t/ D 1
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ps dry.�; �; t/ cos� d�d� (13.126)

in spherical coordinates. The total mass, that needs to be conserved after each time
step, is determined by the global mean surface pressure of the initial state P.t D 0/.
Let tC denote the future time after completion of a time step but before the appli-
cation of the mass fixer. The values of the surface pressure field at tC are therefore
provisional. The surface pressure at the final future time step tjC1 is then fixed in
the following way

ps.�; �; t
jC1/ D Mps.�; �; tC/ (13.127)

with the correction factor

M D P.t D 0/
P.tC/

: (13.128)

Such a fixer is applied by default at each time step in NCAR’s CAM Eulerian and
semi-Lagrangian spectral transform dynamical cores. This formulation is only valid
for hydrostatic dynamical cores.

To highlight the effects of the mass fixer on idealized dry dynamical core simu-
lations we present results from both CAM EUL and CAM SLD (version 4) at the
triangular truncation T85 (� 156 km) with 26 levels (L26). In particular, the mod-
els were run with and without the mass fixer for 1,800 days and utilized the Held
and Suarez (1994) forcing. All simulations start from identical initial conditions
that contain a global mean dry surface pressure of 1,000 hPa. After 1,800 days, the
Eulerian simulation without the mass fixer exhibits a global mean surface pressure
of 999.9992 hPa which is a quite accurate. On the other hand, the SLD simula-
tion without the mass fixer shows a steady, almost linear, increase in the amount
of total mass. After 900 days the global mean surface pressure is 1005.29 hPa and
increases to 1011.11 hPa by day 1,800. This is a substantial increase that would
prevent credible climate simulations unless a mass fixer is employed. The mass
is perfectly conserved in both dynamical core simulations with the mass fixer, as
expected.

It is informative to evaluate the changes in the model climate due to the mass
fixer. Such an assessment can reveal whether there are any systematic differences
in the circulation when modeled with and without the mass fixer. Figures 13.28a-d
and 13.29 show the zonal-mean 1200-day-mean temperature and zonal wind fields
from the simulations with the mass fixer, and the differences between the runs with
and without the mass fixer for both EUL and SLD. No total energy fixer is applied.
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Fig. 13.28 Zonal-mean time-mean temperature field (K) forced with the Held-Suarez forcing:
(a,b) CAM 4 EUL and CAM 4 SLD simulations at the resolution T85L26 with mass fixer, (c,d)
difference between the EUL and SLD simulations with and without mass fixer, and comparisons
to (e) CAM 4 FV at the resolution 1ı � 1ı L26 and (f) GME at the resolution niD 64 L19 (	
120 km). (a–d) are 1200-day means, (e) is a 450-day mean, (f) 900-day mean. The contour intervals
in (a,b,e,f) are 4 K and in (c,d) 0.2 K. Negative contours are dashed. The time step is �tD 600 s
(EUL) and �t D 1;800 s (SLD)

The EUL simulation used the T85 default horizontal diffusion with the coefficients
K4D 1�1015 m4 s�1 andK2D 2:5�105 m2 s�1 whereas no explicit diffusion was
utilized in the SLD run. Note again that the K2 value is the base value at the third
level from the top. It is doubled at the second level and doubled again at the top level.
The 1200-day time averages incorporate day 600–1,800 of the model simulations.
Furthermore, we show Held-Suarez temperature results from two additional models
CAM 4 FV and GME without a mass fixer (Fig. 13.28e,f) to demonstrate that the
EUL and SLD simulations are visually very similar to other models (Jablonowski
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Fig. 13.29 Zonal-mean 1200-day-mean zonal wind (m/s) in CAM 4 EUL and CAM 4 SLD at
the resolution T85L26 forced with the Held-Suarez forcing: (a,b) simulations with mass fixer,
(c,d) difference between a simulation with and without mass fixer. The contour intervals are (a,b)
5 m/s and (c,d) 0.5 m/s. Negative contours are dashed. The time step is �tD 600 s (EUL) and
�tD 1;800 s (SLD)

1998; Wan et al. 2008). FV is mass-conserving by design, and the small mass gain
in GME over its 1440-day simulation period was on the order of 0.5 hPa.

The temperature and zonal wind difference plots for the EUL simulation shown
in Figs. 13.28c and 13.29c suggest that the mass fixer has negligible impact on the
mean EUL circulation. The temperature distributions and positions of the midlati-
tudinal jets in both hemispheres are almost identical in both runs. This is somewhat
expected since the Eulerian simulation hardly lost mass over the 1800-day simu-
lation so the impact of the mass fixer should be minimal. A clearer modulation
of the mean circulation can be seen in the corresponding SLD runs (Figs. 13.28d
and 13.29d). The simulation with the mass fixer appears to be slightly warmer in the
upper atmosphere whereas the lower troposphere and the midlatitudes up to 400 hPa
show systematically colder temperatures. In particular, the SLD mass fixer run is
about 0.4–0.8 K colder in the levels below 800 hPa. The jets in the zonal wind field
are slightly shifted equatorwards in the SLD mass fixer run (Fig. 13.29d). However,
it is unclear whether these shifts are statistically significant without further investi-
gations. As an aside, the differences in the zonal wind fields between the EUL and
SLD runs (Figs. 13.29a,b) close to the model top are caused by the sponge-layer
diffusion in the Eulerian model which is discussed in detail in Sect. 13.4.5.
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Fig. 13.30 Zonal-mean 1000-day-mean temperature field (K) in ECMWF’s IFS model cyle 18R3
at the resolution T63L31 forced with the Held-Suarez forcing: (a) simulations without the mass
fixer, (b) difference between a simulation with and without mass fixer. The contour intervals are
(a) 4 K and (b) 0.2 K. Negative contours are dashed

To put the CAM 4 SLD changes due to the mass fixer into perspective we also
show results from an older version of ECMWF’s model IFS (cycle 18R3, November
1997). The dynamical core of IFS is a two-time-level semi-implicit semi-Lagrangian
spectral transform model and therefore very similar to CAM SLD. The Held-Suarez
test was run for 1,200 days with and without a mass fixer at the triangular trun-
cation T63 (� 210 km) on a reduced Gaussian grid with 31 vertical levels (L31).
The specific design of the reduced grid and semi-Lagrangian model are explained
in Hortal and Simmons (1991) and Hortal (2002), and are not of interest for the
following discussion. Here, we solely concentrate on the effect of the mass fixer
on the model climate. The IFS mass fixer follows the identical design principle as
CAM’s EUL/SLD mass fixer. Similar to CAM SLD, the unfixed IFS shows a sys-
tematic, almost linear, increase in mass over the 1200-day forecast period. The rate
is C0:012% per 10 days. Assuming an initial global surface pressure of 1000 hPa
this amounts to about 1014.4 hPa after 1,200 days. This increase in mass is res-
olution dependent. At the higher triangular truncation T106 (� 125 km) the rate
is reduced to C0:0079% per 10 days which yields a global surface pressure of
1009.5 hPa by day 1200. The changes in IFS’s mass are thereby slightly higher but
comparable to the changes of the mass in CAM 4 SLD.

Figure 13.30 shows the zonal-mean 1000-day-mean temperature distribution of
the IFS run without the mass fixer and the temperature differences between the runs
with and without the mass fixer. The overall temperature distribution in Fig. 13.30a
resembles the CAM EUL and SLD runs with similar peak temperatures. The tem-
perature difference in Fig. 13.30b also exhibits some structural resemblance to the
SLD difference plot (Fig. 13.28d). The IFS mass fixer run is systematically colder
throughout the lower and middle troposphere, and warmer near the poles and near
the tropopause. The cold temperature difference peaks in midlatitudes with a mag-
nitude of 0.8 K. Note, that the use of the mass fixer in SLD and IFS would be
paramount for long climate simulations. Most likely, the warming and cooling
signatures in the runs without the mass fixer are entirely spurious and related to
the unphysical gain in mass. As an aside, the design of IFS’s dynamical core has
only slightly changed in comparison to more current hydrostatic versions of IFS
(ECMWF 2010).
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13.7.2 Filling Algorithms for Tracers

Mass conservation is one of the most important design aspects of tracer transport
algorithms. If a scheme is nonconservative, it can significantly underestimate or
overestimate the concentration of trace gases in long time integrations. This is par-
ticularly true if the transported quantity has a large residence time in the atmosphere
like methane or nitrous oxide.

An additional desirable characteristic of transport schemes is monotonicity and
thereby the prevention of non-physical under- and overshoots in the solution. They
can lead to negative trace constituents or even the supersaturation in the humidity
field. In particular, negative mixing ratios are undesirable since physical parameter-
izations cannot deal with e.g., negative moisture quantities. Ideally, both monotonic
(also called shape-preserving or non-oscillatory) and mass-conserving advection
schemes should therefore be used to assure the physical consistency of the advec-
tion process, and prevent negative tracer constituents from occurring in the first
place. Examples are the flux-corrected advection scheme of Zalesak (1979) or the
mass-conservative and monotonic semi-Lagrangian advection scheme by Lauritzen
et al. (2010b). Alternatively, positive definite advection algorithms can be employed
that, at least, prevent negative undershoots. A comprehensive overview of possible
advection algorithms and their characteristics is given by Rood (1987) and Chap. 8.

In case negative tracer constituents occur during a model integration an a pos-
teriori borrowing and filling algorithm is most often employed to fix the negative
tracer mass. The basic idea is that a grid box with negative tracer values is filled
to a minimum small positive value, and an equivalent amount is subtracted (bor-
rowed) from other grid cells. This ensures that the total constituent mass remains the
same. However, it does not eliminate overshoots or undershoots that are associated
with non-negative parts of the field. Such a fixer is characterized as a conservative
fixer. Fixers might also be used as positivity fixers that only obey a positive-definite
constraint but neglect global conservation.

The mixing induced by both types of fixers can trigger nonlinear interactions. For
example, Rasch and Williamson (1990a) showed that positivity fixers can greatly
influence the water vapor budget in a spectral transport scheme due to the inter-
actions of the fixed specific humidity field with physical parameterizations. This
was especially true in the polar regions which are rather dry. The fixer operated
as a moisture transport algorithm, yielding a local moisture source, and although
it only brought the moisture up to a positive minimum value at negative points, it
increased the overall moisture in the polar regions with strong impact on the clouds
and precipitation.

Examples of tracer filling algorithms for the use in GCMs are presented in
Mahlmann and Sinclair (1977), Royer (1986), Rasch and Williamson (1990a) and
Rasch and Williamson (1991). They can be either local or global, and resemble a
nonlinear diffusive process. Both, monotonicity constraints and filling algorithms
are designed to control numerical dispersion errors, and could also be viewed as
an implicit or explicit numerical filter, respectively. Note that even tracer advection
algorithms that are strictly monotonic in one dimension might lead to violations of
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the monotonicity when applied in multiple dimensions. Therefore, even schemes
with monotonicity constraints such as the finite volume advection algorithm in the
CAM FV dynamical core can trigger small under- and overshoots in multiple dimen-
sions as reported in Lin and Rood (1996). Therefore, CAM FV applies a local filling
algorithms to eliminate negative tracer masses as documented in Neale et al. (2010).

Another highly desirable property of a tracer advection scheme is that it should
be consistent with the mass continuity equation. This is for example outlined in Lin
and Rood (1996), Jöckel et al. (2001), Gross et al. (2002), Satoh et al. (2008) and
Chap. 8, and is not discussed in detail here. As an aside, the expression “borrow and
fill” is somewhat misleading since the amount taken from a neighboring grid cell
is never given back to the cell it is taken from. A more appropriate description is
“take and fill” or even “steal and fill” (Fedor Mesinger, personal communication).
However, we stick with the expression “borrow and fill” in this chapter since it is
widely used throughout the literature.

13.7.2.1 Local Filling Algorithms

Local filling algorithms are “borrow and fill” fixers that try to borrow mass primarily
from the four nearest cells in the east, west, north, and south directions at the same
model layer. However, if there is insufficient mass they might also borrow from a
level below or above. Most often, the filling algorithm starts downward from the
model top as described in Rasch and Williamson (1990a). It is not straightforward
to write down a concise set of equations to describe a local borrower scheme. There-
fore, we only describe the underlying ideas and present two variants documented in
the literature. Note that there are many additional variants in practice, but borrow-
ing schemes are not necessarily documented and should ideally be avoided with the
help of improved tracer advection algorithms.

Variant 1 After identifying a grid cell with negative tracer mass the surrounding
neighbors with positive tracer masses are determined and an equal percentage
is borrowed from each. The negative mass is set to small minimum value. If
there is insufficient mass in the neighboring cells, no action is taken and the next
point is evaluated. The borrowing might be limited to one-third of the total mass
available in the neighboring cells as suggested by Reames and Zapotocny (1999).

Variant 2 Reames and Zapotocny (1999) also tested a borrowing scheme that
weighted the borrowed mass by the amount available in the neighboring boxes
and by the velocity components toward these grid cells. This extends a suggestion
by Mahlmann and Sinclair (1977) who argued that borrowing should first come
from a neighboring grid cell that is downstream. Only if there is not enough mass
in the downstream direction, mass is borrowed from an upstream point or even a
more distant point.

The local filling algorithm can still leave residual negative values in case immediate
neighbours do not have enough mass to fill a point. An additional global borrowing
scheme can then be used to remove this residual as explained next. Of course, a
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global borrowing scheme can also be used by itself without a local filling algorithm.
As pointed out by Rood (1987) a characteristic of local filling algorithms is that
many decisions have to be made. Therefore, a local filling scheme is quite expensive
from a computational viewpoint. It can also violate the monotonicity of the tracer
field.

13.7.2.2 Global Filling Algorithms

Global “borrow and fill” algorithms are less time-consuming but require global
communication on parallel computing architectures. There are two classes of global
borrowing schemes which can be characterized as a subtractive and multiplicative
method as outlined by Rood (1987). First, the total area- or volume-weighted neg-
ative (N) and positive (P) tracer masses are computed and negative tracer values
are set to a small minimum value. In the subtractive method, a fraction of the extra
mass N is then subtracted from all grid points from which mass can be subtracted
without creating new negative values. This subtraction needs to obey the constraint
that the total mass is constant after the correction which could require some further
searching. In the multiplicative method, each positive tracer value qC is replaced by
.1 � N=P/qC which automatically conserves the global integral of the constituent
mass and guarantees that the new tracer distribution is positive definite. The cor-
rection can either be applied level-by-level or globally in case the volume-weights
are computed (Rasch and Williamson 1990b). Such a multiplicative fixer was for
example used by Zubov et al. (1999) and Reames and Zapotocny (1999) .

Rasch and Williamson (1991) found that this variational adjustment of the tracer
mass does neither improve nor degrade the accuracy of an unadjusted tracer trans-
port scheme, but that it merely enforces the conservation and positivity constraints.
However, Jöckel et al. (2001) argued that simple mass fixer algorithms for tracers
have severe disadvantages since they either violate the monotonicity requirement or
introduce non-physical transport. It is therefore best to select a conservative tracer
transport scheme that is also consistent with the mass continuity equation as out-
lined in Chap. 8. It means that the discretized tracer transport scheme should reduce
to the discretized continuity equation for air if the tracer mixing ratio is unity. The
discretization then mimics the characteristics of the continuous equations.

13.7.3 Total Energy Fixers

Global invariants like the total energy provide useful constraints on the design of
numerical schemes which makes a built-in conservation of total energy a desirable
choice for GCMs. As suggested by Thuburn (2008b) the conservation of total energy
and enstrophy in full GCMs might even play a major role in accurately capturing
nonlinear transfers to small scales. However in practice, many aspects of today’s
GCMs and in particular their dynamical cores are not energy-conserving. This



472 C. Jablonowski and D.L. Williamson

includes the horizontal diffusion in case of neglected dissipative heating, the spatial
and time filters, the time differencing, inherent numerical dissipation, or the dis-
cretization technique for the energy conversion term. The latter aspect is emphasized
in Simmons and Burridge (1981) who developed an energy and angular-momentum
conserving vertical finite-difference scheme.

Total energy conservation is paramount for long climate runs to prevent drifts
in the mean circulation (Boville 2000). In early GCMs though, energy conserva-
tion was not a significant design consideration. For example the energy imbalance
in an early version of NCAR’s Community Climate Model CCM0 was 10 W m�2
as reported in Williamson (1988). The loss in energy originated primarily from
inconsistencies in the vertical numerical approximations. In later versions, energy
conservation received more attention, as e.g., version 1 of the Community System
Model (CSM1). It conserved energy to about 0.4 W m�2 as analyzed by Boville and
Gent (1998) but this level of conservation was partly due to a cancellation of errors.
Today, total energy conservation has become a serious concern since even small
imbalances of order 0.4 W m�2 can cause spurious long-term trends in multicentury
coupled ocean-atmosphere simulations.

In general, the variation of energy during a simulation can manifest itself as
either a gain or loss of total energy. Most often though, energy is lost which is
mainly attributable to the kinetic energy dissipation. Kinetic energy dissipation is
due to explicit horizontal diffusion, inherent dissipation in the numerical approxi-
mations and filters. In practice, it averages to an energy loss of about 2 W m�2 in
the three CAM dynamical cores EUL, SLD and FV when applied at typical climate
resolutions (Williamson 2007). This amount is clearly not negligible and only the
contribution from the explicit horizontal diffusion can be analytically quantified.
Some models therefore include a frictional heating term associated with the explicit
horizontal momentum diffusion (Collins et al. 2004) as also outlined in Sect.13.3.7.
A thorough review of the kinetic energy dissipation in NCAR’s CAM model and
the required compensating heating is provided in Boville and Bretherton (2003).
As an aside, Bowler et al. (2009) estimated that the energy dissipation due to the
interpolation error alone in the semi-Lagrangian advection scheme in the UK Met
Office model is about 0.75 W m�2. They suggested using a stochastic kinetic energy
backscatter scheme to reintroduce the missing energy from the explicit horizontal
diffusion and semi-Lagrangian interpolations, partly into the resolved scales of the
flow. An alternative energy backscattering method was also presented by Shutts
(2005).

In order to maintain the energy balance, the globally averaged inherent dissipa-
tive heating can be determined via a residual calculation. The heating is then added
to the temperature field in the thermodynamic equation. This can be done as either
a globally uniform heating or cooling, or another ad hoc function. The choice of
such ad hoc functions is arbitrary but there are adequate and inadequate choices.
As revealed in Williamson et al. (2009) with the help of an idealized dynamical
core test, an inadequate “bad” energy fixer has detrimental effects on the circula-
tion. This was not obvious by a pure inspection of the ad hoc correction algorithm
and not immediately obvious in full GCM runs with physical parameterizations.
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To remedy the effect, Williamson et al. (2009) recommended using only very sim-
ple corrections like uniform adjustments at all grid points in the global domain. We
discuss the “wrong” and “right” choices below, but first start with a brief review of
the total energy equation.

13.7.3.1 Different Forms of the Total Energy Equation

The total energy equation for dry air can be obtained by adding the kinetic and
potential energy equations to the first law of thermodynamics. The derivations of
these equations may be found in Gill (1982). Here, we present the form of the
total energy equation for adiabatic and hydrostatic dynamical cores that utilize the
primitive equations.

As pointed out by Staniforth et al. (2003) total energy is formally only conserved
if the model employs a rigid lid as the upper boundary condition. Such a rigid lid
needs to be fixed in time and space but is allowed to vary with latitude. Models
with elastic isobaric lids, like the popular choice of the upper boundary at constant
pressure, are formally non-energy-conserving. But an energy-like invariant exists
that gives these approaches merit (Kasahara 1974; Laprise and Girard 1990). The
specific form of the total energy equation is tightly linked to the choice of the vertical
coordinate. This is outlined in Arakawa and Suarez (1983) and briefly shown for
pressure- and height-based vertical coordinates below.

In the continuous primitive equations with the hybrid pressure-based verti-
cal coordinate � (Simmons and Burridge 1981) total energy is conserved if the
following relationship holds (Laprise and Girard 1990)
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This equation is valid in the absence of diabatic and frictional effects. ˚s, ps and
˚top, ptop are the geopotential and pressure at the surface and the model top, cp
is the specific heat of dry air at constant pressure and vD .u; v/ stands for the hor-
izontal velocity vector with the zonal and meridional wind components u and v.
Furthermore, T symbolizes the temperature, p is the pressure, and t denotes the
time. The integrals span the 3D and 2D domains where A symbolizes the horizontal
area of the sphere. The vertical integral is bounded by the value �s at the surface
and �top at the model top. Here, �s is identical to unity and �top is equivalent
to ptop=p0 with reference pressure p0D 1000 hPa. Note that �top is non-zero for
constant ptop > 0 hPa. A constant pressure at the model top ensures the global con-
servation of total energy in the continuous equations and simplifies the 2D integral.
Equation (13.129) then becomes
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Here we divided (13.129) by the gravity g to recover energy units (Kasahara 1974).
This expression is equivalent to @.TE/=@t D 0 where TE symbolizes the global inte-
gral of the total energy as shown by the term in the curly bracket in (13.130). In the
semi-discrete system with @p=@� � �p=�� and d� � ��, the domain-integrated
total energy TE is given by
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The summation index k indicates the vertical index of a full model level with the
maximum level number Kmax near the surface. The pressure difference �pk is
defined as

�pk D pkC1=2 � pk�1=2 D p0�Ak C ps �Bk (13.132)

with �Ak D AkC1=2 � Ak�1=2 and �Bk D BkC1=2 � Bk�1=2. As an exam-
ple, the discrete positions of the hybrid coefficients AkC1=2 and BkC1=2 at the
model interface levels for the CAM EUL, SLD and FV dynamical cores (ver-
sions 3.1 and 4) are listed in Jablonowski and Williamson (2006b). ��k is given
by ��k D �kC1=2 � �k�1=2 D �Ak C �Bk . Note that the form of the domain-
integrated total energy equation TE in the optional CAM 5 dynamical core HOMME
(see (12.8) in Chap. 12) differs from (13.130). The main difference is that HOMME
utilizes the parameter Œc�p D cp C .cpv � cp/q	 instead of cp where c�p symbolizes
the specific heat of moist air at constant pressure, cpv denotes the specific heat of
water vapor at constant pressure and q stands for the specific humidity.

If hydrostatic models with pressure-based � coordinates like

� D p � ptop
ps � ptop (13.133)

are considered (Phillips 1957; Kasahara 1974) the global integral of the dry total
energy becomes
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The pressure differences�pk are determined by

�pk D pkC1=2 � pk�1=2 D .�kC1=2 � �k�1=2/ .ps � ptop/: (13.136)

Note that the conservation of energy requires �top D �.p D ptop/ D 0 which is
guaranteed in (13.133). The lower boundary at the surface is �s D �.p D ps/ D 1.
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As noted in Kasahara (1974) the global integral of the total energy for hydrostatic
models with a pure height coordinate ´ in the vertical direction is represented by
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where�´k symbolizes the height thickness of a layer with�´k D ´k�1=2�´kC1=2
and ´top stands for the height of the model top. The quantities � v2=2, � cvT and
�g´ are the kinetic, internal and potential energy per unit volume, respectively. cv
is the specific heat of dry air at constant volume and defined by cv D cp � Rd .
Rd is the gas constant for dry air and � denotes the density which is defined by
the ideal gas law � D p=.Rd T /. ´s is the height of the orography. If height-based
orography-following coordinates like

� D ´top � ´
´top � ´s (13.139)

are used the domain integral of the dry total energy transforms to
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with the lower and upper integration limits �s D �.´ D ´s/ and �top D �.´ D
´top/. ��k D �kC1=2 � �k�1=2 is the thickness of a layer in the transformed �-
coordinate.

As an aside, the full 3D velocity vector v3D D .u; v; w/ needs to be used for the
computation of the kinetic energy in nonhydrostatic dynamical cores. A discussion
of the total energy equation for dry shallow- and deep-atmosphere nonhydrostatic
equation sets is provided in Staniforth et al. (2003). For moist dynamical cores the
assessment of the total energy needs to be adjusted. Then p represents the pressure
of the moist air and � D p=.Rd Tv/ is the moist density which utilizes the virtual
temperature Tv. Other modifications might include the use of moist physical con-
stants such as c�p as indicated above for the model HOMME. Satoh et al. (2008)
discussed a particular form of the moist total energy equation for the nonhydrostatic
dynamical core NICAM (their appendix B). Unfortunately, GCMs use many differ-
ent and often undocumented approaches to calculating the total energy of moist air.
For example, some models include the latent heat contributions Lq in TE where L
symbolizes the latent heat of vaporization. Some models also add the energy contri-
butions from cloud liquid water or even cloud ice. On the other hand, some models
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do not include either of these. In this chapter we avoid this confusion by focusing
on the dry dynamical core. This allows us to assess the impact of the total energy
fixer for dry air in isolation.

13.7.3.2 Ad Hoc Corrections of Total Energy

We now present three ad hoc functions for the total energy correction that we label
FIXER 1–3, and demonstrate that FIXER 1 leads to bad results. This is shown via
dry idealized baroclinic wave simulations (Jablonowski and Williamson 2006a) with
NCAR’s CAM semi-Lagrangian spectral transform dynamical core at the resolution
T170 L26. First, we assess the spirit of the three total energy fixers and review how
they are applied. This is also discussed in Williamson et al. (2009).

Let
� OTC; OvC; OpCs

�
symbolize the temperature, horizontal wind vector and sur-

face pressure at the end of a time step and
�
T �; v�; p�s

�
denote the values at

the beginning of the time step. In total energy-conserving model formulations the
residual

RES D cTEC � TE� (13.142)

would be zero if there are no diabatic sources and sinks. Note that Collins et al.
(2004) describe how to include sources and sinks which is not discussed for the
dynamical cores considered here. However, if GCMs with physical parameteriza-
tions or idealized forcings like the Held and Suarez (1994) forcing are utilized
these sources and sinks need to be added. According to the total energy equation
for hybrid coordinates (13.131) cTEC is given by

cTEC D
Z
A
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#
C˚s OpCs

)
dA:

(13.143)

The equation for TE� is identical to (13.143) except the superscript C is replaced
by superscript �, and the hat .O/ is removed from TE, v, T and ps.

In general, RES is not zero due to the inherent and explicitly imposed diffu-
sion processes in the dynamical cores. Therefore, modifications can be made to the

provisional forecast values
� OTC; OvC; OpCs

�
. This adjustment yields updated values�

TC; vC; pCs
�

which, if substituted for the provisional values in (13.142), yield a
zero residual. This is the underlying concept of the energy fixer.

The form of the energy fixer used with the CAM semi-Lagrangian model only
modifies the temperature. This could be interpreted as diffusive heating in case
of a positive temperature adjustment. However, in case of cooling no such physi-
cal analogy can be drawn. The future wind and surface pressure fields are set to
vC D OvC and pCs D M OpCs where M symbolizes the mass fixer if applied (see also
Sect. 13.7.1).
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We now define FIXER 1. Its temperature modifications are proportional to the
magnitude of the local change in T at that time step and are given by

TC .�; �; �/ D OT C .�; �; �/C ˇ1j OTC .�; �; �/� T � .�; �; �/ j: (13.144)

This temperature adjustment follows the spirit of the water vapor fixer developed
by Rasch and Williamson (1991) and Williamson and Rasch (1994) for predeces-
sors of CAM 3. Its physical motivation follows the argument that if the change
in water vapor is small, then it is most likely not responsible for a lack of con-
servation and therefore the effect of the fixer should be small. The constant ˇ1 is
determined by replacing OT C with TC in (13.143) and settingRES D 0 in (13.142).
Equation (13.144) is then substituted for TC in (13.143). Lastly, (13.143) and the
equation for TE� are plugged into (13.142) which is solved for ˇ1.

Alternatively, two other total energy fixers are suggested. FIXER 2 is given by

TC .�; �; �/ D OTC .�; �; �/C ˇ2 (13.145)

and FIXER 3 is formulated as

TC .�; �; �/ D .1C ˇ3/ OTC .�; �; �/ : (13.146)

The energy fixer FIXER 2 changes the provisional temperature by a constant,
whereas FIXER 3 changes it proportionally. Both constants ˇ2 and ˇ3 are deter-
mined as described above for FIXER 1 and ˇ2 is shown in Williamson et al. (2009).
FIXER 2 is adopted in the EUL and SLD dynamical cores of NCAR’s CAM 3.1
GCM and was used operationally for climate applications. The FV dynamical core
in CAM 4 and CAM 5 applies a slightly different total energy fixer that is described
in Neale et al. (2010).

Despite the pseudo-physical justification for FIXER 1, it has detrimental effects
on the flow fields in the baroclinic wave test case which which had not been obvious
in long Earth-like simulations. Figure 13.31 shows the surface pressure field at day
10 from the SLD baroclinic wave simulation with FIXER 1 and FIXER 2. The two
are clearly different, whereas the FIXER 2 simulation is visually indistinguishable

Fig. 13.31 Surface pressure at day 10 from the CAM semi-Lagrangian spectral dynamical core at
the resolution T170L26 with energy fixer FIXER 1 and FIXER 2. Contour interval is 7.5 hPa with
the 980 hPa and 1,010 hPa contours thicker. The time step is �t D 900 s
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from FIXER 3, from simulations without an energy fixer or from CAM EUL and
FV reference simulations as shown in Williamson et al. (2009) and Jablonowski and
Williamson (2006a,b). Therefore, FIXER 1 should not be used in practice. Here, we
list it for demonstration purposes to raise awareness for potential problems with
energy fixers.

The negative effect of FIXER 1 can be understood when recognizing that most of
the loss of total energy is associated with damping of the wind field and the reduc-
tion of kinetic energy. However, with semi-Lagrangian approximations the damping
is due in large part to the interpolations fundamental to the numerical method. There
is no physical argument to justify making the fixer proportional to the change in tem-
perature as tried in FIXER 1. Although the changes of the energy by the fixers are
very small, the energy change due to FIXER 1 is systematic and obviously accu-
mulates to a significant error. The short dynamical core run was able to isolate this
problem. In full GCMs with physical parameterizations such detrimental effects of
the total energy fixer are masked by many other processes and harder to identify.

Note again that the application of fixers might be unavoidable in long climate
simulations to prevent unphysical signals from systematic mass or energy drifts.
This is a strong argument for mass-conserving designs of dynamical cores to at least
avoid mass-fixing the GCM. The latter is conceptually straightforward and some
examples of mass-conserving dynamical cores include FV, FVcubed, HOMME,
ICON, NICAM and WRF. NICAM also employs a total energy conservation form
(Satoh 2002, 2003). Such a choice of the prognostic equation for total energy writ-
ten in flux form automatically guarantees the conservation of total energy provided
no explicitly added dissipation or filters are utilized. However, built-in total energy
conservation in full GCMs with explicit diffusion or filters, and physical parame-
terizations is harder to accomplish and might not easily be achievable. Today, most
climate models use a total energy fixer which is often undocumented and some-
times called with a different name. For example, the Unified Model (UM) has a total
energy “correction” which is occasionally, e.g. once a day, applied (Terry Davies,
personal communication). It is viewed as a correction that substitutes all missing
physics processes.

13.8 Final Thoughts

The intention of this chapter was to remind the GCM modeling community of the
many, sometimes hidden, diffusion processes in the dynamical cores of atmospheric
general circulation models. There is no universal theory that guides the design of
subgrid-scale diffusion, dissipation, mixing, damping, smoothing, filters or fixers,
or however we name the many ad hoc mechanisms in GCMs. They are needed
to keep the simulation stable or to satisfy important physical properties, and the
hope is that they capture and mimic in some unknown way the true processes at
the unresolved subgrid scale. There is no physical basis though, that dissipation
can accomplish this. Therefore, a lesser goal is that the dissipative processes keep
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a GCM simulation stable and promote its physical realism, while doing no harm
to the resolved fluid flow. The latter is a practical approach, and this chapter high-
lighted the many considerations that contribute to the practical designs of diffusion,
filters and fixers in GCMs. In practice, diffusion processes and filtering in atmo-
spheric models are based on a subjective determination of when the noise and short
waves have been sufficiently damped while minimizing the damping of longer wave
modes. This might be described as the “Art of Filtering”. The selected filters are
tuned for the grid resolutions and flow regimes, and this tuning is based on modeling
experience.

There is no numerical scheme or diffusive process that incorporates an opti-
mal solution to the filtering problem at all scales. An optimal formulation at a
particular resolution or for a specific flow regime might fail if conditions and
scales change. Adequate diffusion and filtering mechanisms are scale-dependent.
For example, 2D divergence damping is considered adequate for large-scale hydro-
static motions where rotational motions are of main interest. However, small-scale
mesoscale regimes are highly influenced by divergent motions, and 2D divergence
damping might become detrimental at those scales in nonhydrostatic models. This
remains to be seen as we enter the nonhydrostatic modeling era with future global
grid resolution near the kilometer scale.

In general, there is no “right” or “wrong” solution to the subgrid-scale filter-
ing problem. All approaches shown in this chapter have been tried in GCMs, but
some have more merit or physical motivations than others. There might also be
approaches that are clearly adequate or inadequate for a particular model design.
In practice, GCMs apply a potpourri of damping mechanisms, either explicitly or
implicitly in the numerical scheme. They act in concert, interact in nonlinear ways,
and the causes and effects are usually hard to isolate individually. This chapter pro-
vided a comprehensive and systematic evaluation of the many dissipative processes
in GCMs and evaluated their impact on the flow with the help of idealized test cases.
It is difficult to judge how generally applicable the results of our study are with
respect to full GCMs with physical parameterizations. We would expect though that
many of the conclusions transfer and that new dissipative processes like bound-
ary layer diffusion make the picture even more complex. This will require another
round of evaluations, but to say the least, the dynamical core assessments might
have given us new guidance and clues for the evaluations of full weather and climate
models.
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Appendix: Overview of Selected Dynamical Cores

This chapter has featured examples from many GCMs. Here, we briefly review the
basic characteristics of their dynamical cores and give pointers to their primary ref-
erences. Note that the grid staggering options mentioned below are shown in Randall
(1994) or Chap. 3.

CAM EUL The Eulerian (EUL) dynamical core is the default in the Commu-
nity Atmosphere Model CAM version 3.1 at the National Center for Atmo-
spheric Research (NCAR). It is optional in the later versions CAM 4 or 5
(Neale et al. 2010). This hydrostatic shallow-atmosphere dynamical core is
formulated in vorticity-divergence form and based on the traditional leapfrog
three-time-level, semi-implicit spectral transform approximations (Machenhauer
1979). A quadratically-unaliased Gaussian transform grid with horizontal trian-
gular truncation is utilized (Collins et al. 2004). In the vertical direction, centered
finite differences are used. All prognostic variables are co-located.

CAM SLD The semi-Lagrangian (SLD) dynamical core is an optional dynami-
cal core in NCAR’s CAM model (versions 3.1, 4 or 5). It utilizes the primitive
equations and is based on two-time-level, semi-implicit semi-Lagrangian spectral
transform approximations with quasi-cubic Lagrangian polynomial interpolants.
A triangular truncation is adopted which can work both on a quadratically-
unaliased transform grid or linear Gaussian grid (Williamson and Olson 1994;
Collins et al. 2004). In our experiments here, a Gaussian quadratic transform
grid was chosen unless noted otherwise. All prognostic variables are co-located.

COSMO The acronym COSMO stands for “Consortium for Small-scale Model-
ing” and denotes the nonhydrostatic regional weather prediction model at the
German Weather Service (former name was LM which is the abbreviation for
“Lokal Modell”). COSMO is a deep-atmosphere, finite-difference model on a
staggered C-grid with a split-explicit temporal discretization (Doms and Schät-
tler 2002; Gassmann and Herzog 2007; Baldauf 2010). Vertically traveling sound
waves are handled implicitly.

ECHAM5 This model has been developed at the Max-Planck Institute for Mete-
orology (MPI) in Hamburg, Germany (Roeckner et al. 2003). It utilizes a semi-
implicit Eulerian spectral transform dynamical core with triangular truncation
and a Gaussian quadratic transform grid. The shallow-atmosphere dynamical
core is hydrostatic and formulated in vorticity-divergence form. A three-time-
level leapfrog time-stepping scheme is employed. All prognostic variables are
co-located.

FV (also CAM FV) The mass-conservative Finite-Volume (FV) dynamical core
employs the vector-invariant form of the primitive equations. It is written in flux
form that is built upon a 2D shallow-water approach in the horizontal plane
(Lin and Rood 1997) on a latitude–longitude grid with D-grid staggering. The
vertical discretization utilizes a ÔLagrangian control-volumeÕ principle with
conservative vertical remapping steps (Lin 2004). An explicit two-time-level
time-stepping scheme is employed. The FV dynamical core is the default in
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NCAR’s model CAM version 4 or 5 (Neale et al. 2010), and is optional in CAM
3.1 (Collins et al. 2004). It is shared with NASA’s GEOS5 model (Rienecker
et al. 2008) and the NOAA Geophysical Fluid Dynamics Laboratory’s (GFDL)
atmospheric model AM2.1. A shallow water version and 3D variant of the FV
model with an adaptive grid was also implemented by Jablonowski (2004) and
Jablonowski et al. (2006, 2009).

FVcubed This variant of the FV model on an almost uniform-resolution cubed
sphere grid with D-grid staggering is employed at the NASA Goddard Space
Flight Center (GSFC) and GFDL (Putman and Lin 2007, 2009). It is part of the
most recent internal version of NASA’s GEOS model (version 6) and GFDL’s
internal release called “Riga”. The cubed-sphere version has slightly different
inherent dissipation characteristics e.g., due to the use of alternative limiters
in the finite-volume algorithm. The FVcubed model also features an optional
nonhydrostatic extension.

GEOS The Goddard Earth Observing System (GEOS) model has been under
development at the NASA Goddard Space Flight Center. A commonly used ver-
sion is GEOS5 which is documented in Rienecker et al. (2008). This version
utilizes the FV dynamical core on a latitude–longitude grid as described above.
Older GEOS versions like GEOS2 were based on the momentum equations in
momentum form and utilized a finite-difference method on a latitude–longitude
grid with a staggered C-grid arrangement. An explicit time three-time-level time-
stepping scheme was used in GEOS2. A comprehensive model description can
be found in Suarez and Takacs (1995). GEOS2 has also been used in a stretched-
grid variant as documented in Fox-Rabinovitz et al. (1997). The forthcoming
GEOS6 version will be based on the FVcubed dynamical core.

GME This primitive equation based dynamical core in vector-invariant form has
been developed at the German Weather Service (DWD). It applies a finite-
difference approximation with local spherical basis functions at each grid point.
The horizontal grid is based on an icosahedral grid. An Arakawa-A grid stagger-
ing is chosen that places the prognostic variables at the vertices of the triangles.
The semi-implicit numerical scheme is second-order accurate and applies a
classical leapfrog three-time-level approach (Majewski et al. 2002, 2008)

HOMME The High Order Method Modeling Environment (HOMME) model is
an optional hydrostatic dynamical core in NCAR’s model CAM version 5 (Neale
et al. 2010). It is a spectral element cubed-sphere dynamical core in momen-
tum form with fourth-order polynomials inside each element (Thomas and Loft
2005; Taylor et al. 2007, 2009). The spectral element method is compatible, mak-
ing the method elementwise mass-conservative (see Chap. 12 and Taylor and
Fournier (2010)). The default time-stepping scheme is explicit and utilizes the
three-time-level leapfrog method. Other time-stepping options are also available.
All prognostic variables are co-located.

ICON The ICOsahedral Nonhydrostatic general circulation model ICON is a
finite-difference model in momentum form and currently under development
at MPI and DWD in Germany. It utilizes a dual icosahedral and hexagonal
grid with C-grid staggering, is mass-conservative and employs a semi-implicit
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three-time-level leapfrog time-stepping scheme. The shallow water and hydro-
static version are documented in Rípodas et al. (2009) and Wan (2009).

IFS This Integrated Forecasting System (IFS) is used for weather predictions at
the European Centre for Medium-Range Weather Forecasts (ECMWF) in Read-
ing, U.K.. It is a primitive equation based two-time-level semi-implicit semi-
Lagrangian spectral transform dynamical core with a linear Gaussian transform
grid and triangular truncation (Hortal 2002; ECMWF 2010). A finite-element
discretization is employed in the vertical direction (Untch and Hortal 2004). All
prognostic variables are co-located.

NICAM The Nonhydrostatic Icosahedral Atmospheric Model (NICAM) is a
deep-atmosphere model which has been developed at the Frontier Research
Center for Global Change (FRCGC), the Japan Agency for Marine-Earth Sci-
ence and Technology (JAMSTEC) and the Center for Climate System Research
(CCSR) at the University of Tokyo, Japan. It is a finite-difference model written
in mass-, momentum- and total energy-conserving form that utilizes a time-
splitting scheme (Satoh 2002, 2003; Tomita and Satoh 2004; Satoh et al. 2008).
All prognostic variables are co-located (Arakawa A-grid). NICAM’s icosahe-
dral grid configuration is optimized for uniformity by using a so-called “spring
dynamics” grid.

UM The Unified Model (UM) is a mass-conserving nonhydrostatic GCM for
weather and climate assessments that has been developed at the UK Met Office
in Exeter, U.K.. It is built upon a finite-difference, deep-atmosphere, two-time-
level, semi-implicit, semi-Lagrangian dynamical core in momentum form on a
latitude–longitude grid (Davies et al. 2005; Staniforth and Wood 2008). This
dynamical core is also called “New Dynamics”. The prognostic variables are
placed on a staggered C-grid. A comprehensive model description can be found
in Staniforth et al. (2006).

WRF The Weather Research and Forecasting (WRF) model developed at NCAR
is mostly used as a limited-area model. It is formulated in mass- and momentum-
conserving form. WRF is a nonhydrostatic, deep-atmosphere, finite-difference
model on a staggered C-grid with a split-explicit temporal discretization
(Skamarock and Klemp 2008; Skamarock et al. 2008). Vertically traveling sound
waves are handled implicitly. WRF can utilize a variety of map transformations
and grids, e.g., the latitude–longitude grid for global applications.
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Chapter 14
Kinetic Energy Spectra and Model Filters

William C. Skamarock

Abstract We wish to maximize efficiency (accuracy/cost) in the design of atmo-
spheric fluid-flow solvers. An important measure of accuracy for weather and
climate applications is a model’s ability to resolve meteorologically important fea-
tures at scales approaching the grid-scale. Simulated kinetic energy spectra provide
a useful diagnostic for quantifying a model’s resolving capability. Using kinetic
energy spectra we illustrate some of the issues affecting the resolution capabilities
of models arising from the choice of spatial grid staggering, integration schemes
and their implicit filters, and explicit filters. In both Eulerian and semi-Lagrangian
formulations, C-grid staggering provides the best resolution of divergent modes that
are an important part the KE spectrum in the mesoscale which the global models
are now beginning to resolve. Other grid staggerings require special filtering that
compromise resolution capabilities. The popular semi-Lagrangian semi-implicit
formulations are shown to significantly damp resolvable high-frequency modes
and adversely affect their resolving capabilities. While less costly at a given grid
density, the SLSI models may well be significantly less efficient than Eulerian
models.

14.1 Introduction

Clouds and precipitation are among the most important and challenging phenom-
ena that must be accurately treated for climate and Numerical Weather Prediction
(NWP) applications. In our existing operational global climate and weather mod-
els, clouds and precipitation processes are parameterized, i.e. they are modeled,
as opposed to being explicitly represented in the discrete atmospheric fluid-flow
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solvers. The need to resolve clouds and cloud systems, and the availability of
more powerful computers, are driving us to apply global atmospheric models at
increasingly higher spatial and temporal resolutions. In the research setting, the
coming introduction of peta-scale computers will permit us to regularly produce
global simulations using horizontal grid spacing of a few kilometers for weather
and short-term climate (seasonal) applications. At this grid spacing we remove the
deep convective parameterizations that are seen as most problematic, but we are
left with the problem of modeling sub-grid entrainment and detrainment in these
poorly-resolved clouds (Tao and Moncrieff 2009; Weisman et al. 1997; Bryan et al.
2003). The denser grids will also permit better resolution of topography, land use,
land-sea boundaries, and other atmospheric forcing mechanisms as well as provide
better resolution of flow dynamics not related to clouds, such as land-sea breezes,
fronts, and mountain waves.

When solving the Navier–Stokes equations for atmospheric fluid flow, we
increase resolution because we wish to better resolve features that are marginally
resolved at current resolutions, and because we wish to explicitly simulate, or
resolve, flow phenomena that were absent or parameterized in the less-well-resolved
solutions. The former reason is related to the classical numerical analysis under-
standing regarding the numerical solution of Partial Differential Equations (PDEs) –
increasing resolution will lower solution error, with infinite resolution producing a
perfect solution. It must be understood, however, that atmospheric flow solutions do
not converge in the strict sense. New phenomena appear, and we ultimately strive
only for statistical convergence. The explicit simulation of new flow phenomena
and forcings is the critical reason to increase resolution in present-day global cli-
mate and NWP models. Global model resolutions are now increasing to a level
where mesoscale features begin to be resolved (e.g., the larger-scale aspects of
convective cloud systems such as hurricanes, etc.), and we are beginning to resolve
phenomena that differ dynamically in a fundamental way from that of planetary-
and synoptic-scale flows.

The change in dynamical regimes associated with the newly-resolved phenom-
ena, and the lack of strict solution convergence, raise a number of questions
concerning global solver design and evaluation. Our primary objective in design-
ing atmospheric flow solvers is to maximize efficiency, that is, we wish to attain a
given level of accuracy for the smallest computational cost, or we wish to achieve
the highest accuracy for a given cost. In this paper we consider how observations and
model simulations of the atmospheric kinetic energy spectra can be used to quan-
tify solution accuracy, thus allowing us to examine solver characteristics involving
spatial and temporal discretizations and model filtering, and ultimately model effi-
ciency. Some aspects of existing global models, such as the time integration and
spatial interpolation schemes used in semi-Lagrangian models, the choice of hor-
izontal grid staggering, and filter choices used in some large-scale global models,
will be shown to adversely affect solver performance for mesoscale and cloudscale
phenomena.
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14.2 Kinetic Energy Spectra and Atmospheric Dynamics

Nastrom and Gage (1985) used aircraft observations of winds from the Global
Atmospheric Sampling Program (GASP) to compute kinetic energy (KE) spectra
for horizontal length scales from a few kilometers to several thousand kilome-
ters. Lindborg (1999) similarly used aircraft observations from the Measurement
of ozone and water vapor by Airbus in-service aircraft (MOZAIC) program to com-
pute structure functions and a kinetic energy spectrum. Results from both studies,
depicted in Fig. 14.1, illustrate the characteristic behavior of the kinetic energy spec-
trum. At larger scales (horizontal wavelengths greater than approximately several
hundred kilometers) the spectrum scales as k�3 where k is the horizontal wavenum-
ber. For shorter wavelengths (higher wavenumbers) the spectrum scales as k�5=3,
and a small transition region exists between the two regimes. While it is widely
accepted that the dynamics of the k�3 regime correspond to a downscale cascade
of enstrophy, there is no consensus concerning the k�5=3 regime (Lilly et al. 1998;
Lindborg 2006). The characterization of the k�5=3 regime represents one of the
major unanswered questions in mesoscale atmospheric dynamics.

The KE spectrum can also be computed from model simulations. This spectrum
from a high-resolution simulation using the Advanced Research Weather Research
and Forecast model (ARW, Skamarock and Klemp 2008; Skamarock et al. 2008)
is shown in Fig. 14.2, and this simulated spectrum reproduces the transition. This
behavior has also been found in simulations from other models (Lilly et al. 1998;
Lindborg and Berthouwer 2007; Hamilton et al. 2008) and, while there are variations
in the spectra as a function of pressure, geographical region and weather regime
(Skamarock 2004), the transition is always apparent.

Fig. 14.1 Nastrom and Gage
(1985) spectrum derived from
the GASP aircraft
observations (symbols) and
the Lindborg (1999)
functional fit to the MOZAIC
aircraft observations. The
figure is from Skamarock
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Fig. 14.2 Decomposed
kinetic energy spectra for a
spring-season forecast over
the continental U.S. The
forecasts were produced
using the ARW with
�x D 4 km. The figure is
from Skamarock and Klemp
(2008)
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The simulated spectrum can be decomposed into a rotational component V , a
divergent component V�, and a deformational component Vdef, where V D V C
V� C Vdef and the velocities are given as

V D k � r 
V� D r�

Vdef D V � V �V�:

 and � are defined as

r2 D �; � D k � r �V

r2� D D; D D r � V;

where k is the unit vector normal to the horizontal coordinate surface. The defor-
mational component arises from the presence of lateral boundaries and would be
absent in a decomposition of the wind fields over the globe. At large scales the
kinetic energy is dominated by rotational energy, and the transition to the k�5=3
regime occurs when the energy in the divergent component becomes comparable
to that in the rotational component (see Fig. 14.2). Lindborg (2007) argues that it
can also be deduced from the aircraft observations. Thus the atmospheric dynamics
are seen to be changing in a fundamental way as one moves from large scale to the
mesoscale, and one important aspect of this change is the importance of divergent
motions to the mesoscale KE spectrum.

Lindborg (1999) also presents results for the kurtosis which is defined as

kurtosis:
< ıu4 >

< ıu2 >2
;
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Fig. 14.3 Kurtosis computed
using observations from
MOZAIC (Lindborg 1999)
and from spring forecasts for
1–3 June 2003 over the
continental U.S. using the
ARW model with�x D 4 km
(Done et al. 2004) r–3 / 2

separation distance r (km) 

ku
rt

os
is

Lindborg (1999) 

ARW 
(1-4 June, 4 km forecasts) 

102

104

100

100101

101

102103104

103

where ıu D u.x C r/ � u.x/ for a distance r along an aircraft track, and u is
the along-track velocity. Figure 14.3 shows a plot of the kurtosis computed from the
MOZAIC observations and from ARW simulations. For large-scale flow, where the
velocity field is observed to possess a Gaussian probability density function (PDF),
the kurtosis should equal 3 (Lindborg 1999; Frisch 1995), as is found in the plot.
In the mesoscale region the kurtosis increases dramatically and scales as approxi-
mately r�3=2, indicating that there is significant intermittency at small scales. Both
observations and model results exhibit this strong intermittency at the mesoscale
and cloudscale where significant energy is in the horizontally divergent component
of the flow.

The changes in atmospheric dynamics indicated in the spectrum and the kurtosis
have several implications for solver design. The mesoscale and cloud-scale motions
that higher-resolution models resolve represent motions that are entirely parame-
terized in large-scale models. Examples of the parameterizations include those for
convection and gravity-wave propagation and breaking (gravity-wave drag). These
parameterizations are problematic and are a major impetus for moving to higher res-
olution where the parameterizations can be removed. Toward this end, the solvers
must be able to accurately simulate horizontally divergent motions, which has not
been a priority in existing large-scale models. In the following sections we exam-
ine some of the issues involved in solver design and ability to accurately simulate
divergent motions.

14.3 Model Dissipation and Spectral Damping

In the k�3 spectral regime there is a downscale cascade of enstrophy, whereas the
k�5=3 there appears to be a net downscale cascade of energy (e.g., Lindborg and
Cho, 2000). In either case, enstrophy or energy must be removed as it cascades to
the highest wavenumbers represented in the model discretization. Failure to provide



500 W.C. Skamarock

log k 

(short wavelengths aliased 
  to longer wavelengths) 

2 Δx wavelength 

lo
g 

en
er

gy
 d

en
si

ty

correct
spectrum

log k 

2 Δx wavelength 

effective resolution 

correct
spectrummodel

spectra

model
spectrum

effective resolution?

Fig. 14.4 Schematic depicting the possible behavior of spectral tails derived from model forecasts.
Using the methodology outlined in the Appendix to compute the spectra, limited area models
(including ARW) usually produce the slightly upturned tail shown in the left panel. Adapted from
Skamarock (2004)

sinks for these cascades results in an unphysical buildup of energy or enstrophy
at the smallest scales. In addition, most numerical methods do not accurately sim-
ulate these high wavenumber modes, and it is beneficial to remove the energy in
these modes so that energy is not erroneously aliased onto the smaller wavenumber
(well-resolved) modes. The energy density should drop considerably in the sim-
ulated spectrum in the highest wavenumbers as a result of this filtering; this is
depicted schematically in Fig. 14.4 and it is apparent in the simulated spectrum in
Fig. 14.2. We define the effective resolution of a solver as the point at which the
slope of the simulated spectrum becomes greater than the slope of the expected (or
observed) spectrum, as is indicated in Fig. 14.4. In designing a solver and dissipa-
tion mechanisms we wish to maximize the effective resolution (i.e. have an effective
resolution at the highest wavenumber possible) while removing energy from the
highest wavenumbers thereby minimizing aliasing. In principle, higher-order meth-
ods allow a higher effective resolution if they are combined with appropriate energy
and enstrophy sinks.

There are many approaches to providing the necessary enstrophy and energy
sinks in the solvers (Chap. 13). Many models use explicitly computed horizontal
mixing terms of the form

@�

@t
D � � � .�1/.nC2/=2 �n @

n�

@xni
(14.1)

where n is an even integer and �n is referred to as an eddy viscosity when n D 2 or
a hyperviscosity when n > 2. Higher values of n produce filters that are more scale
selective (the damping rate as a function of wavenumber drops off more quickly).
There is no physical justification for (14.1) for large-scale and mesoscale flows. For
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atmospheric Large Eddy Simulation (LES) resolutions (�x < 100m), theory exists
for defining the eddy viscosity �2 (Mason 1994; Wyngaard 2004).

A second mechanism for dissipating energy, specifically targeting energy in
the divergent motions, is horizontal divergence damping. This filter is usually
implemented in the form of a damping term in the horizontal momentum equations:

@ui

@t
D � � � C �d @

@xi
.rh � V/ ; (14.2)

where V is the horizontal velocity.
That this damping targets horizontally divergent motions can be seen by taking

the horizontal divergence of the momentum equations (14.2) which results in

@

@t
.rh � V/ D � � � C r2h .rh � V/ :

Horizontal divergence damping has been used in many large-scale models to
filter gravity waves, especially those that resulted from imbalances in real-data
initializations (Dey 1978; Janjic 1990). There are models today still using this
formulation, including the Finite Volume (FV) core in the Community Climate Sys-
tem Model (CCSM) (Collins et al. 2004) and the Nonhydrostatic Mesoscale Model
(NMM) used operationally for limited area NWP at the National Centers for Envi-
ronmental Prediction (NCEP) (Janjic 2003). Horizontal divergence damping can
also be extended to higher order .n > 2/:

@ui

@t
D � � � C .�1/.nC2/=2 �d @

.n�1/

@x
.n�1/
i

.rh � V/ ;

or alternatively as in the FV core (n D 4; Peter Lauritzen, personal communication)

@ui

@t
D � � � C .�1/.nC2/=2 �d @

@xi
rn�2h .rh � V/ :

Horizontal divergence damping can have a significant impact on a model’s abil-
ity to produce the k�5=3 KE spectra as demonstrated in Skamarock (2004). Given
that the KE in the k�5=3 region is composed of both rotational and divergent energy,
horizontal divergence damping cannot be the sole energy sink employed in a model
formulation. Furthermore, convection and convective transport are strongly diver-
gent motions, thus horizontal divergence damping preferentially filters them. Since
these processes are becoming increasingly important as we employ higher reso-
lution grids, preferentially damping these modes is counter to our objectives, and
no mesoscale or cloudscale resolving models use this form of damping aside from
the nonhydrostatic FV core (William Putnam, personal communication) and the
NCEP NMM (Janjic 2003). While there may be some computational aspects of
model formulations for which the use of horizontal divergence damping may appear
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beneficial, these problems can be avoided in the model formulation directly or by
using other less-deleterious filters.

Another class of filters in numerical models are those that are implicit in the
numerical discretization. The filters may damp temporally because the damping
is implicit in the time integration, the damping may be part of the transport algo-
rithm or spatial interpolation scheme that is part of the spatial discretization, or it
may be intertwined in both the spatial and temporal schemes. These schemes can
affect a model’s ability to resolve divergent motions and the mesoscale portion of
the spectra.

14.4 Grid Staggering and Spatial Discretizations

One dynamical description of the mesoscale is that scale in which the kinetic energy
of the horizontally divergent motions approaches the same order as that of the rota-
tional motions, and this occurs where the KE spectrum assumes a k�5=3 behavior.
Given the critical role of horizontally divergent motions in the mesoscale, it is
important to consider how discretizations resolve these motions. One important fac-
tor influencing the numerical discretization is the staggering of the variables in the
model grid (Chap. 3). Figure 14.5 depicts three different horizontal grid staggerings
(commonly referred to as the A, C, and D grids – see Arakawa and Lamb (1977))
used in global and some limited-area mesoscale models.

Consider the simple second-order finite differencing of the height (pressure)
gradient, divergence and Coriolis terms for the vector momentum form of the
shallow-water equations that is commonly used on these grids.

A grid C grid D grid

hx 	 ı2�xh hx 	 ı�xh hx 	 ı2�xhy

ux 	 ı2�xu ux 	 ı�xu ux 	 ı2�xuy

f v 	 f v f v 	 f vxy f v 	 f vxy

where the discrete operators

ı�x� D .�xC�x=2 � �x��x=2/=�x
�
y D .�yC�y=2 C �y��y=2/=2:

Randall (1994) presents a linear analysis of the response of the second-order
centered spatial approximations for the linearized shallow water equations (inertia-
gravity waves) discretized on these grids using the vector-momentum form of the
equations (he also examines the Z-grid discretization that use a vorticity-divergence
formulation of the shallow-water equations).

Consider the response for rotationally dominated waves. The A grid response is
superior to the response of the C and D grids (see Randall 1994, Fig. 2, �=d D 0:1;



14 Kinetic Energy Spectra and Model Filters 503

A grid C grid D grid

Fig. 14.5 Schematic depicting the Arakawa A, C and D grids

the D-grid response, not shown, is essentially that of the C grid). The superiority
of the A grid is especially pronounced in the upper half of the wave spectrum, where
the C and D grid frequencies are zero for the 2�x and 2�y modes. The erroneous
zero frequency is a result of the averaging needed for interpolating the tangential
velocity .vx

y
/ on these two grids, whereas the A grid needs no averaging for the

Coriolis term. The zero frequency for the 2� modes on the C and D grids means
that the modes are stationary and the grid does not see them, and this is referred to
as a null space in the solution. The poorer response for inertial waves is the primary
reason why few large-scale models use the C or D grids.

The frequency response for waves dominated by horizontal divergence (gravity
waves) on these grids is given in Randall’s figure 1. Here the C grid response is
superior to both the A and D grids, and the A and D grids both have erroneous
zero-frequencies for the 2� modes. The averaging needed on both the A and D
grids is responsible for these zero frequencies, and as a result the A and D grids
do not see these 2� modes. Most meso- and cloud-scale models use the C grid
because of its superior gravity-wave response, although some modelers use the A
grid because it can be advantageous to have all variables defined in the cell center
for some discretizations of transport.

To deal with grid-scale modes that have zero frequency, filters must be used to
remove the energy in these modes if energy accumulates there. The inertial waves
have, however, little energy at scales below the Rossby radius, and for horizontal
grid-spacing of O.100 km/ or less, models using the C grid do not appear to have
problems with the zero-frequency 2� inertial mode. For the gravity-wave modes, at
meso- and cloud-scale resolutions there is a downscale cascade of energy that will
result in energy accumulating in the 2� modes. Filters will be needed on all grids
to remove this energy.

To illustrate some of these effects, Fig. 14.6 presents KE spectra computed in the
lower stratosphere from aquaplanet simulations for two different CCSM cores – the
spectral Eulerian core and the Finite Volume (FV) core (Collins et al. 2004). The KE
spectra are decomposed into rotational and divergent components. There is a sugges-
tion of a transition from the large-scale k�3 character to a shallower slope occurring
around spherical wavenumber 100 in the spectral Eulerian core spectrum, and this
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Fig. 14.6 Kinetic energy (solid lines) as a function of spherical wavenumber for the CCSM spec-
tral (Eulerian, left) core and the CCSM FV core (right) derived from aquaplanet simulations. The
total KE is broken into divergent and rotational components (dashed lines) for both cores and the
solid black lines shows the k�3 slope. The figures are courtesy of David Williamson

is where the energy in the divergent modes, that behaves as k�5=3, becomes similar
to the rotational mode energy. This behavior is similar to that exhibited by the ARW
spectrum (Fig. 14.2) and spectra from other global models (Takahashi et al. 2006),
and we would expect that the transition would be better resolved with increasing
horizontal resolution. While the spectrum for the spectral Eulerian core does not
drop off as rapidly as the ARW spectrum (Fig. 14.2) at the highest wavenumbers,
the filters in the model are removing energy as evidenced in the increasing slope
beginning around spherical wavenumber 200 in the T340 spectrum.

Two spectra are plotted for the FV dynamical core (Fig. 14.6, right panel), one
from the standard configuration and a second from a simulation with no hori-
zontal divergence damping. The spectrum from the standard configuration of the
FV core depicts a spectral slope that is increasing beyond k�3 starting around
15–20 �x. This evidence of strong filtering appears in both the rotational energy
and the divergent energy. There are two numerical filters in the FV core – the
monotonicity constraint in the PPM-based advection and interpolation scheme (Lin
and Rood 1997), and the horizontal divergence damping. The filtering provided
by the horizontal divergence damping is illustrated by comparing the standard-
configuration spectrum with that produced with the horizontal divergence damping
turned off. There is only a small difference in the rotational component of the
spectrum but there is a major buildup of energy at the highest wavenumbers in
the divergent component of the spectrum when divergence damping is not used.
As discussed in the previous section, the D-grid formulation of the FV core does
not see the 2�x divergent modes. Special filters (horizontal divergence damping in
this case) must be used to remove energy for this null space on the grid. C-grid
models used in meso- and cloud-scale applications (e.g., ARW Skamarock and
Klemp 2008, Coupled Ocean-Atmosphere Prediction System (COAMPS) (Hodur
1997), Advanced Regional Prediction System (ARPS, Xue et al. 1990) and global
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models using the C-grid discretization (e.g., United Kingdom Meteorological Office
(UKMO) model ( Staniforth and Wood 2008), global ARW (Skamarock et al. 2008)
do not need and do not use these filters, and generally exhibit a much higher effective
resolution (typically between 6 and 10�x) than evidenced by the FV core spectrum
in Fig. 14.6 (15–20�x).

14.5 Semi-Implicit Semi-Lagrangian Formulations

Many operational global NWP and climate modeling centers are using semi-implicit
formulations in conjunction with semi-Lagrangian dynamics (e.g., UKMO/Hadley
Center, Staniforth and Wood 2008; Canadian Meteorological Centre (CMC) Mete-
orological Research Branch (MRB) Global Environmental Multiscale (GEMS)
model, Yeh et al. 2002; European Center for Medium Range Forecasting (ECMWF
2006). These semi-Lagrangian semi-implicit (SLSI) formulations allow for long
timesteps because the semi-implicit portion of the formulation removes the timestep
restriction associated with propagating gravity (and acoustic) waves while the semi-
Lagrangian portion of the scheme largely removes the timestep restriction due to
advection. Typically, SLSI models run with timesteps five to ten times that of their
Eulerian counterparts. The SLSI cost per timestep is significantly greater than Eule-
rian models because of the need to compute trajectories and interpolate variables to
the departure points, and because of the need to perform a global inversion in the
implicit formulation, but this increased cost is offset by using the larger timestep.

The filtering characteristics of SLSI schemes have not been closely examined for
meso- and cloud-scale applications. In Shutts (2005), it is shown that the KE spec-
trum of the ECMWF model does not transition to the k�5=3 mesoscale behavior for
resolutions where a transition should be resolved. Shutts introduces a backscatter
forcing into the system to put energy into these scales, but he does not speculate on
why the system does not predict the transition. Palmer (2005, personal communica-
tion) found that reducing the timestep in the SLSI model to values used in similarly
configured Eulerian models (in this case 1/5 of the SLSI timestep) did not change the
KE spectrum – a transition to k�5=3 was not observed. Generally, Eulerian models
do predict this transition at these resolutions. In this section we examine dissipation
mechanisms in SLSI numerics to see if they may be responsible for preferentially
damping mesoscale motions.

For the SLSI formulation, consider the linearized 1D shallow water equations
with variables U D U C u.x; t/ and H D H C h.x; t/:

du

dt
C g @h

@x
D 0;

dh

dt
CH @u

@x
D 0:
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where g is gravity. The SLSI discretization of these equations can be expressed as
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� ˇ̌̌
ˇ
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2

�tHıxu

� ˇ̌ˇ̌tC�t ;
where d refers to the departure point of the trajectory and � is the off-centering
parameter for the implicit time integration scheme. Gravel et al. (1993) performed
an analysis of this scheme and derived the following amplification factor1:

E

�
D 1 � �3.1� �2/˙ 2i�1=23

1C �3.1C �/2 (14.3)

where E is the amplification factor, � is the response function for the semi-
Lagrangian advection, and �3 D gH.k�t/2=4 where k is the horizontal wavenum-
ber. It is easily shown that for j�j � 1 and 0 � � � 1 the SLSI scheme is absolutely
stable. In most models using the full nonlinear implementation for NWP and cli-
mate applications, 0:1 � � � 0:2 is needed for stability. The ECMWF model is
run with � D 0 and filtering needed for the two-time-level SETTLS scheme (Stable
Extrapolation Two-Time-Level Scheme, Hortal 2002; Durran and Reinecke 2004)
is achieved using other mechanisms.

Gravel et al. did not examine the damping properties of the scheme as revealed in
the amplification factor (14.3). In order to examine the damping and its effect on the
KE spectra, we first need to estimate the spin-up time for motions as a function their
horizontal length scale for comparison with the damping timescale. We can expect
that damping in a numerical model will be significant for a particular scale when the
decay timescale associated with the damping is of the same order or smaller than
the spin-up timescale.

Figure 14.7 show the spin-up time for motions as a function of scale as deter-
mined using the turbulence theory of Kolmogorov (1990) and Lindborg’s functional
fit (Lindborg 1999) for the atmospheric KE spectrum. In essence, the spin-up time
scale is an eddy turnover time, and this timescale is given by 
 D L.k/=U.k/ D
Œk3E.k/	�1=2, where L is the eddy length scale, U is a velocity scale, and E is
the kinetic energy density. For the energy spectrum depicted in Fig. 14.1, the syn-
optic scale behaves as k�3 hence the spin-up time asymptotes to a constant value
(
 D :68 days). This estimate of the spin-up time is consistent with the numer-
ical KE analyses of Skamarock (2004) and Hamilton et al. (2008). The spin-up
time decreases dramatically as the spectrum transitions to the k�5=3 regime where
it behaves as k�2=3.

1 Gravel et al. (1993) analyzed the full primitive equations; here we present its simplified form
applicable to the shallow water equations.
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Fig. 14.7 Spin-up timescale using Kolmogorov’s theory (Kolmogorov 1990) and atmospheric
spectrum result from Lindborg (1999)

In addition to the spin-up timescale, we need estimates of the Courant num-
bers typically used the SLSI model applications in order to estimate damping from
the transport scheme. Figure 14.8 presents a typical distribution of velocities and
Courant numbers for two given values of �t=�x typically used in Eulerian and
semi-Lagrangian models. The Courant number distribution comes from an ARW
forecast on a high-resolution grid (�x D 5 km) for the continental US in the winter.
For Eulerian timesteps 90% of the Courant numbers on the grid are typically less
than 0.2, and only approximately half are less than 0.06. SLSI timesteps are signif-
icantly larger than this, and illustrated in the figure is the distribution for an SLSI
timestep five times larger than the Eulerian value. For this SLSI timestep 90% of the
Courant numbers are less than one, but note that approximately 60% of the Courant
numbers are greater than 0.5.

Figure 14.9 presents damping rates normalized by the turnover timescale com-
puted using the amplification factor (14.3) for both Eulerian and SLSI timesteps.
We have chosen to examine an 8�x wave which is reasonably well resolved in
mesoscale models such as ARW (Skamarock 2004). The damping rates for the SLSI
formulation are computed using the cubic interpolation from Gravel et al. (1993),
and the computation of the damping rates uses the absolute value of E from (14.3).

For the Eulerian timestep (the left panel in Fig. 14.9), the damping of the 8�x
wave increases dramatically with increasing timestep, and even at a Courant num-
ber of 0.05 the decay timescale is only twice the turnover timescale. Most of the
Courant numbers will be greater than 0.05 (see Fig. 14.8), hence the damping will
be significant. Also notice that the value of the off-centering parameter � in (14.3)
has little effect on the damping rate which increases slowly with increasing �. This
behavior indicates that it is the damping from the transport scheme that most affects
the waves for the Eulerian timesteps. Also shown in the figure is the damping rate
for the ARW model using a fifth order advection scheme. Even though the transport
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with an 8�x wavelength with a horizontal grid-length of 10 km and a timestep of 60 s (Eulerian
timestep, left) and 300 s (SLSI timestep, right). The phase speed of the wave (

p
gH in (14.3); in

the absence of a mean wind) is 16:667m/s, hence the Courant number based on this phase speed
is 0.1 and 0.5 for the Eulerian and SLSI timesteps, respectively

scheme in this Eulerian model is upwind biased and dissipative, the overall damping
is much less than that shown for the SLSI scheme.

For a more typical SLSI timestep (the right panel in Fig. 14.9), the normalized
damping appears dramatically different. The damping rates are plotted for three
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values of the off-centering parameter � D 0, 0.1, and 0.2, and the damping is seen
to increase dramatically with increasing �. Also apparent is the damping associated
with the transport scheme. For integer advective Courant numbers U�t=�x the
semi-Lagrangian transport scheme does not damp, and for non-integer advective
Courant numbers the damping is most pronounced half-way between the integer
Courant numbers. Operational SLSI weather and climate models must use the off-
centering parameter 0:1 � � � 0:2 for stability in the full nonlinear integrations;
hence the damping of the short wavelength high-frequency modes is significant and
while there is some damping associated with the semi-Lagrangian interpolation used
for transport it does not produce the bulk of the damping for these large timesteps.

These results provide a plausible explanation for the observed behavior of the
KE spectrum in SLSI models. Paradoxically, while the damping of the shorter-
wavelength high-frequency modes can be attributed to the off-centering of the
semi-implicit part of the SLSI formulation when large timesteps are taken, the
damping from the interpolations (the response function for the semi-Lagrangian
advection, � in (14.3)) dominates when the timestep is reduced to Eulerian val-
ues. Reduction of this significant damping likely requires more accurate trajectory
integrations that will allow smaller off-centering parameters �, but will increase the
cost of the integration. The strong damping of the higher-frequency modes also calls
into question the efficiency of these schemes for meso- and cloud-scale applications,
because, as apparent in the simulated spectra (Shutts 2005) and in this analysis, the
long timestep allowable using SLSI formulation comes at a significant cost in accu-
racy of the small scales. These results are consistent with the theoretical analysis of
Bartello and Thomas (1996), who argue that Eulerian timesteps should be used in
SLSI schemes at mesoscale resolutions. In addition, Pinty et al. (1995) demonstrate
this timestep restriction for accurately simulating vertically propagating gravity
waves.

14.6 Conclusions

The goal in the design of atmospheric fluid-flow solvers is to maximize efficiency,
where efficiency is defined as solution accuracy divided by cost of a given method
that attains that accuracy. Given the lack of convergent solutions for turbulent flow,
and the acknowledgement that it is the need to resolve previously sub-gridscale
structures that drives increasing resolution, an important and relevant measure of
accuracy is the ability of a scheme to resolve scales as close to the limit (the smallest
scales) as allowable by the discretization. We have shown that examination of a
model’s KE spectra provides a way to quantify the resolution limits of a model and
to determine a model’s effective resolution.

Additionally, as global models push into mesoscale and ultimately the cloud-
scale, the horizontally divergent modes become the important modes to resolve at
the resolution margin, as opposed to the rotational modes for which most large-scale
models were designed. The KE spectra reveal these energetics and we have shown
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examples where the spectra are used to examine and quantify these regimes and
resolution capabilities.

Ultimately, it is the damping characteristics of a model that determine its resolv-
ing capabilities. Damping is necessary in atmospheric models because the energy-
and enstrophy-cascade dynamics present in the atmosphere demand that there be
sinks of energy and enstrophy in the absence of resolved viscous effects. The design
of explicit and implicit filters that represent these sinks can impact the effective reso-
lution, but importantly the need for some filters may be dictated by choice of spatial
and temporal discretizations, to the detriment of a scheme’s resolution capabilities.

For Eulerian discretizations, grid staggering has a significant impact on need
for filtering and on the flexibility in filter design and configuration. For example,
most mesoscale models use the C-grid staggering which is most accurate for diver-
gent modes. We have shown an example of poor marginal resolution exhibited by
the CCSM FV core that uses a D-grid staggering. The FV core needs to use hor-
izontal divergence damping to control grid-scale divergent modes and also uses
monotonicity constraints that introduce strong damping into the rotational modes.
The effective resolution is only half that of C-grid mesoscale models as revealed in
spectra computed from aquaplanet simulations.

Other formulations commonly used in some large scale climate and weather
models are also problematic with respect to a scheme’s effective resolution. A stabil-
ity analysis of SLSI schemes that use large timesteps reveals significant damping for
high frequency modes because of the need to off-center the semi-implicit time inte-
gration in the nonlinear models. The use of Eulerian timesteps in the SLSI models
leads to large damping of short wavelengths modes associated with the interpola-
tion scheme in the semi-Lagrangian portion of the algorithm while alleviating the
damping associated with the semi-implicit portion of the algorithm.

The SLSI formulations are often stated to be more efficient than Eulerian for-
mulations because the time to solution is less using the SLSI schemes given their
comparatively much larger timesteps. However, given their decreased resolution
capabilities compared to Eulerian formulations, the SLSI formulations are likely no
more efficient and possibly significantly less efficient than Eulerian formulations.
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Chapter 15
A Perspective on the Role of the Dynamical
Core in the Development of Weather
and Climate Models

Richard B. Rood

Abstract This chapter aims to place the dynamical core of weather and climate
models into the context of the model as a system of components. Building from
basic definitions that describe models and their applications, the chapter details
the component structure of a present-day atmospheric model. This facilitates the
categorization of model components into types and the basic description of the
dynamical core. An important point in this categorization is that the separation
between ‘dynamics’ and ‘physics’ is not always clear; there is overlap. This overlap
becomes more important as the spatial resolution of models increases, with resolved
scales and parameterized processes becoming more conflated. From this categoriza-
tion an oversimple, intuitive list of the parts of a dynamical core is made. Following
this, the equations of motion are analyzed, and the design-based evolution of the
dynamical core described in Lin (2004) is discussed. This leads to a more com-
plete description of the dynamical core, which explicitly includes the specification
of topography and grids on which the equations of motion are solved. Finally, a set
of important problems for future consideration is provided. This set emphasizes the
modeling system as a whole and the need to focus on physical consistency, on the
scientific investigation of coupling, on the representation of physical and numeri-
cal dissipation (sub-scale mixing and filtering), and on the robust representation of
divergent flows. This system-based approach of model building stands in contrast to
a component-based approach and influences the details of component algorithms.

15.1 Introduction

This is a perspective on the design of physical models for use in the scientific inves-
tigation of weather and climate. This perspective follows from a career that involves
both model development and the management of the development of institutional
models. The point of view is anchored around the role of the dynamical core in
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atmospheric models. There are numerous books on atmospheric modeling, their
history, their construction, and their applications (Trenberth 1992; Randall 2000;
Mote and O’Neill 2000; Satoh 2004; Jacobson 2005; Washington and Parkinson
2005). The review paper by Rood (1987) contains many foundational references,
and a basic introduction to the problem of numerical advection. The concepts asso-
ciated with the works of Godunov (1959), Boris and Book (1973), and van Leer
(1979) are particularly influential.

The perspective is outlined as follows:

� Definition and Description of the Model
� Construction of Weather and Climate Models
� Analysis of the Atmospheric Equations of Motion
� Numerical Expression of the Atmospheric Equations of Motion
� Synthesis and Future Directions
� Conclusions

15.2 Definition and Description of the Model

Dictionary definitions of model include:

� A work or construction used in testing or perfecting a final product.
� A schematic description of a system, theory, or phenomenon that accounts for

its known or inferred properties and may be used for further studies of its
characteristics.

In weather and climate modeling a scientist is generally faced with a set of obser-
vations of variables, for instance, velocity, temperature, water, ozone, etc., as well
as either the knowledge or expectation of correlated behavior between the differ-
ent variables. A number of types of models could be developed to describe the
observations. These include:

� Conceptual or heuristic models which outline in the simplest terms the processes
that describe the interrelation between different observed phenomena. These
models are often intuitively or theoretically based. An example would be the
tropical pipe model of Plumb and Ko (1992), which describes the transport of
long-lived tracers in the stratosphere.

� Statistical models which describe the behavior of the observations based on
the observations themselves. That is, the observations are described in terms of
the mean, the variance, and the correlations of an existing set of observations.
Johnson et al. (2000) discuss the use of statistical models in the prediction of
tropical sea surface temperatures.

� Physical models which describe the behavior of the observations based on first
principle tenets of physics (chemistry, biology, etc.). In general, these principles
are expressed as mathematical equations, and these equations are solved using
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discrete numerical methods. Detailed discussions of modeling include Tren-
berth (1992), Randall (2000), Mote and O’Neill (2000), Satoh (2004), Jacobson
(2005), and Washington and Parkinson (2005).

In the study of geophysical phenomena there are numerous sub-types of mod-
els. These include comprehensive and mechanistic models. Comprehensive models
attempt to model all of the relevant couplings or interactions in a system. Mech-
anistic models have prescribed variables, and the system evolves relative to the
prescribed parameters. All of these models have their place in scientific investiga-
tion, and it is often the interplay between the different types and sub-types of models
that leads to scientific advance.

Models are used in two major roles. The first role is diagnostic, in which the
model is used to determine and to test the processes that are thought to describe
the observations. In this case, it is determined whether or not the processes are
well known and adequately described. In general, since models are an investigative
tool, such studies are aimed at determining the nature of unknown or inadequately
described processes. The second role is prognostic; that is, the model is used to
make a prediction.

In all cases the model represents a management of complexity; that is, a scien-
tist is faced with a complex set of observations and their interactions and is trying
to manage those observations in order to develop a quantitative representation. In
the case of physical models, which are the focus here, a comprehensive model
would represent the cumulative knowledge of the physics (chemistry, biology, etc.)
that describe the observations. It is tacit, that an accurate, validated, comprehensive
physical model is the most robust way to forecast; that is, to predict the future.

The physical principles represented in an atmospheric model, for example, are
a series of conservation laws which quantify the conservation of momentum, mass,
and thermodynamic energy. The equation of state describes the relation between
the thermodynamic variables. Because of the key roles that phase changes of water
play in atmospheric energy exchanges, an equation for the conservation of water is
required. Similarly, an equation for salinity is necessary to represent ocean dynam-
ics. Models which include the transport and chemistry of atmosphere trace gases and
aerosols require additional conservation equations for these constituents. The con-
servation equations for mass, trace gases, and aerosols are often called continuity
equations.

In general, the conservation equation relates the time rate of change of a quan-
tity to the sum of the quantity’s production and loss. The production and loss for
momentum follow from the forces described by Newton’s Laws of Motion. Since
the atmosphere is a fluid, either a Lagrangian or an Eulerian description of the flow
can be used (Holton 2004). The Lagrangian description follows a notional fluid par-
cel, and the Eulerian description relies on spatial and temporal field descriptions of
the flow at a particular point in the domain. In this chapter the Eulerian framework
will be the primary focus. Holton (2004) provides a thorough introduction to the
fundamental equations of motions and their scaling and application to atmospheric
dynamics.
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Table 15.1 Construction of an atmospheric model (see text for details)

Boundary/Initial conditions Emissions, topography, sea �

surface temperature
Representative equations DA=Dt D P � LA �

Discrete/Parameterize
�
AtC�t � At

�
=�t D : : : �d ,�p

Theory/Constraints Geostrophy, Thermal wind Scale analysis
Primary Products (i.e. A) T; u; v;H2O;O3; : : : �b ,�v
Derived Products Potential Vorticity, Budgets Consistent
�d D discretization error, �p D parameterization error, �v D variability error, �b D bias error

In order to provide an overarching background, it is useful to break down the pro-
cess of the construction of an atmospheric model as shown in Table 15.1. The table
lists six major elements (left column), a concrete example of the element (middle
column), and a reminder that there are explicit errors, �, at all stages of the construc-
tion (right column). The first element points to the boundary and initial conditions.
For an atmospheric model, boundary conditions include topography, sea surface
temperature, land type, vegetation, etc. Note that boundary conditions are generally
prescribed from external sources of information.

The next three items in the table are intimately related. They are the represen-
tative equations, the discrete and parameterized equations, and constraints drawn
from theory. The representative equations are the continuous forms of the conser-
vation equations. The representative equations used in atmospheric modeling are
approximations derived from scaling arguments (see Holton 2004); therefore, even
the equations the modeler is trying to solve have a priori simplification which can be
characterized as errors. Here a conservation equation for an arbitrary quantity,A, is
written with an exemplary production,P , and loss, L. The continuous equations are
a set of non-linear partial differential equations. The solutions to the representative
equations are a balance amongst competing forces and tendencies.

The discrete and parameterized equations arise because it is not possible to solve
the representative equations in analytical form. The strategy used by scientists is to
develop a numerical representation of the equations. One approach is to define a
grid of points which covers the spatial domain of the model. Then a discrete numer-
ical representation of those variables and processes which can be resolved on the
grid is written. Processes which take place on spatial scales smaller than the grid
are parameterized. These approximate solutions are, at best, discrete estimates to
solutions of the analytic equations. The discretization and parameterization of the
representative equations introduce a large source of error. This introduces another
level of balancing in the model; namely, these errors are generally managed through
a subjective balancing process that keeps the numerical solution from producing
obviously incorrect estimates.

While all of the terms in the analytic equation are potentially important, there
are conditions or times when there is a dominant balance between, for instance,
two terms. An example of this is the geostrophic balance and the related thermal
wind balance in the middle latitudes of the atmosphere (Holton 2004). It is these
balances, generally at the extremes of spatial and temporal scales, which provide
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the constraints drawn from theory. Such constraints are generally involved in the
development of conceptual or heuristic models. If the modeler implements discrete
methods which represent the relationship between the analytic equations and the
constraints drawn from theory, then the modeler maintains a substantive scientific
basis for the interpretation of model results.

The last two items in Table 15.1 represent the products that are drawn from
the model. These are divided into two types: primary products and derived prod-
ucts. The primary products are variables such as temperature T , wind .u; v/, water
(H2O), and ozone (O3) – parameters that are, most often, transported by the fluid
flow. The primary products might also be called the resolved or prognostic vari-
ables. The derived products are of two types. The first type describes those products
which are diagnosed from the model’s state variables, often in the parameterized
physical processes. The second type follows from functional, F.A/, relationships
between the primary products; for instance, potential vorticity (Holton 2004). A
common derived product is the budget – the sum of the different terms of the
discretized conservation equations. The budget is studied, explicitly, on how the bal-
ance is maintained and how this compares with budgets derived from observations
or observations assimilated into predictive models.

In some cases the primary products can be directly evaluated with observations,
and errors of bias and variability are estimated. The bias is, for example, the differ-
ence between time-averaged model predictions and observations. Variability errors
follow from, for example, the representation of the distributions about the temporal
mean. If attention has been paid in the discretization of the analytic equations to
honor the theoretical constraints, then the derived products will behave consistently
with the primary products and theory (see, Table 15.1). In this case consistency is
used to state that budgets are balanced, and that the physically based, correlative
relationship between variables is represented. In a consistent model, there will be
errors of bias and variability, but when a budget is formed from the sum of the
terms in the conservation equations, it will balance. That is, the discrete form of the
conservation equation is solved.

15.3 Construction of Weather and Climate Models

Weather and climate models are an assembly of components that are compos-
ited together to construct integrated functionality. Composites are then composited
together, yielding highly complex systems. For example, a physical climate model
can be constructed from a sea ice model, a land surface model, an ice sheet model, an
ocean model and an atmospheric model. Associated with these composited models
are representations of chemical and biological processes important to the physical
climate, for example, atmospheric ozone and plant respiration (i.e., carbon dioxide).
These models communicate with each other through a coupler.

Big models are made from smaller models, and this concept cascades to increas-
ing granularity. This method of model construction has been described as ‘process
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splitting’ or fractional steps and is described in, for instance, Yanenko (1971),
Strang (1968), and McCrea et al. (1982). Historically, atmospheric models evolved
from efforts focused on specific parts of the atmosphere: thermosphere models
(e.g. Dickinson et al. 1981), middle atmosphere models (e.g. Schoeberl and Stro-
bel 1980; Fomichev et al. 2002), and many models of the troposphere – often
weather forecast models. The focus on specific parts of the atmosphere was driven
by scientific interests, observational and theoretical foundations, and limited com-
putational resources. A primary characteristic of, for example, a model focused
on the middle atmosphere (i.e., the stratosphere and mesosphere) is special atten-
tion to the physical and chemical parameterizations that are important in the focus
region. Connectivity, for example, the influence of the troposphere on the strato-
sphere is achieved in several ways. Mechoso et al. (1985) coupled the stratosphere
to the troposphere with filtered observations at a lower boundary. A natural and
comprehensive approach is to extend the domain of a tropospheric model upward
or a middle atmosphere model downward with inclusion of appropriate physical
algorithms. Only recently, whole atmosphere models have been routinely used for
scientific research (e.g. Beres et al. 2005).

Using a specific model type to expose the component structure, a troposphere-
stratosphere model might be constructed from a set of components that include,
for example, algorithms that represent advection, mixing, the planetary boundary
layer, gravity waves, radiation, cumulus convection and clouds. The component of
the atmospheric model that represents clouds might then have sub-components that
represent the different phases of water, sulfate aerosols (hence, sulfate chemistry),
black carbon, etc. Components at all levels need to communicate with each other,
and thus, in a generalized sense there is a requirement for coupling of components.

Figure 15.1 shows the Earth System Modeling Framework (ESMF, http://www.
esmf.ucar.edu/about_us/) component architecture of the Goddard Earth Observing
System, version 5 (GEOS-5) atmospheric model (Rienecker et al. 2008). From the
top down, the structure shows the coupling of the atmospheric general circulation
model (‘agcm’), with the stored, digital ‘history’ files used in model initialization,
diagnostics and application. Below ‘agcm’ there is a separation of the model com-
ponents into ‘dynamics’ and ‘physics,’ and, again and throughout, the explicit need
for coupling.

Those algorithms that are associated with advection and part of the sub-scale
mixing (defined below) are often identified as ‘the dynamics’ and all of the other
algorithms are identified as ‘the physics’. The dynamical core is identified as
‘fvcore’ in Fig. 15.1. In this model the physical ‘gravity_ wave_ drag’ parameteri-
zation is counted as part of the dynamics. To be explicit, some algorithms identified
with ‘the physics’ represent adiabatic dynamical processes such as ‘turbulence’ in
the boundary layer. These mixing processes, gravity wave drag and turbulence, are
at a resolution smaller than the grid can resolve, but associated with some physi-
cal cause not explicitly resolved by the dynamical core. This counting of dynamical
processes in both ‘dynamics’ and ‘physics’ is a source of ambiguity in the definition
of the dynamics of the model and the dynamical core – an ambiguity that becomes
more important to address as resolution is increased.
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Fig. 15.1 Component architecture of the GEOS-5 atmospheric model

At the ‘surface’ the atmospheric model is coupled to needed information from
other components of the Earth system – or the other components of a climate model.
In this case the effects on the atmosphere of lakes (‘lake’) and ice and snow on the
land (‘land_ice’) are explicitly specified. Data that represent the state of ocean are
included in the standard configuration of the model (‘data_ocean’). This is where
an explicit, interactive ocean model could be coupled. Finally, the interaction of
‘vegetation’ on ‘land’ is included. Land-surface hydrology is represented on a spa-
tial discretization based on water ‘catchments’, rather than the grid used for the
atmospheric model.

There is no standard definition of the term ‘dynamical core’ (in short ‘dycore’).
Williamson (2007) defines the dynamical core ‘to be the resolved fluid flow com-
ponent of the model’. This definition is one that has been widely shared in model
development centers, as is perhaps best represented by the model documentation
(e.g. Collins et al. 2004). Within this chapter the following definition from Thuburn
(2008b) is used: “The formulation of a numerical model of the atmosphere is usu-
ally considered to be made up of a dynamical core, and some parameterizations.
Roughly speaking, the dynamical core solves the governing fluid and thermody-
namic equations on resolved scales, while the parameterizations represent sub-grid
scale processes and other processes not included in the dynamical core such as
radiative transfer. Here, no attempt is made to give a precise definition of ‘dynam-
ical core’ because, as discussed below, there are some open questions concerning
exactly which terms and which processes should be included in a dynamical core”.

In order to expose the building blocks of a dynamical core and to address the
ambiguities and open questions suggested above, (15.1) is used to illustrate the
‘dycore’ part of the model more concretely. A representative conservation equation
for a scalar quantity, A, can be written as
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@A

@t
D �r � uACM C P � LA (15.1)

P represents production andL represents a loss rate. u is the vector velocity and t is
time. M represents dynamical mixing at spatial scales smaller than the grid size. A
is, in this example, assumed to be a scalar parameter such as temperature or ozone.
Formally in the dynamical core, A would include the velocity components, which
yields a nonlinear equation and limits this illustration to only being demonstrative.
In analogy with the atmospheric model described in Fig. 15.1, the P and LA terms
are identified with ‘the physics’. The flux divergence term is the resolved flow and
is identified with the dynamical core. The flux term is where a specific advection
algorithm (Rood 1987; Williamson 2007) is implemented. The dynamical mixing
term, M , is also identified with the dynamical core; however, it may also be related
to the mixing associated with the physics and is, hence, not cleanly separated. Part
of the purpose of this chapter is to expose this ambiguity and refine the description
of the dynamical core.

In their simplest expressions, dynamical cores are generally process split and
include the following:

� The resolved advection in the horizontal plane.
� The resolved vertical advection.
� Unresolved sub-scale transport.
� A portfolio of filters and fixers that accommodate errors related to both the

numerical technique and the characteristics of the underlying grid.

A more complete description of the dynamical core will be developed below,
including discussion of how the dynamical core spans the equations of motion.

As revealed above, models are complex composites of sub-models. These sub-
models are, most often, also complex, and they are approximations of varying
accuracy that represent physical processes. At the finest levels these models are
said to be parameterized, and the algorithms described as parameterizations. The
function of the model as a whole is an amalgamation of all of the composites,
and is therefore, a function of the errors associated with the components and how
those errors are accumulated. For this reason, development of highly accurate sub-
models and parameterizations often does not lead directly to an improved function
of the model as a whole. The model needs to be rebalanced or tuned, a process that
implicitly addresses the balance between both physical processes and error sources.

This description and the representation in Fig. 15.1 explicitly reveal the fact that
there are many couplers in a model. Couplers are, de facto, yet more model compo-
nents, and their construction influences the performance of the system as a whole.
The robustness and the integrity of the model as a whole are often construed as
being based on the construction and the quality of the component algorithms. Ulti-
mately however, it is the function of the system as a whole that is of interest to the
discipline scientist, e.g., the climate forecast user. Hence, the physics of the couplers
also requires scientific scrutiny.
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15.4 Analysis of the Atmospheric Equations of Motion

The equations of motion for the atmosphere in tangential spherical coordinates using
the radial distance for the vertical coordinate .�; �; r/ are given by (see also White
et al. 2005)
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t denotes the time, � is longitude, � is latitude, r is the radial distance to the center
of the spherical Earth, ˝ is the angular velocity of the Earth, g is gravity, � is a
coefficient of viscosity, cv is specific heat at constant volume,Rd is the gas constant
for dry air, � is density, T is temperature, p is pressure, u is the velocity vector u D
.u; v; w/, and J stands for the diabatic heating. The first three equations represent
the conservation of momentum. The fourth equation is the mass continuity equation,
and the fifth equation is the thermodynamic energy equation. The last equation in
(15.2) is the equation of state for dry air.

In addition, equations are needed which describe the conservation of trace
constituents. The generic form of these continuity equations are:

DQi

Dt
CQir � u D PQi

� LQi
(15.4)

Where Qi is the density of a constituent identified by the subscript i . PQi
and

LQi
represent the production and loss from phase changes and photochemistry.

An equation for water in the atmosphere, Qi D QH2O , is required for a com-
prehensive atmospheric model. For water vapor, the production and loss terms are
represented by evaporation and condensation. These are associated with significant
consumption and release of heat, which must be accounted for in the heating J , the
production and loss term of the thermodynamic energy equation. In the atmosphere
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below the stratopause, heating due to the chemical reactions of trace constituents are
assumed not to impact the heat budget of the atmosphere. It is possible for the spa-
tial distribution of trace constituents, for example ozone, to impact the absorption
and emission of radiative energy; hence, there is feedback between the constituent
distributions and diabatic processes in the atmosphere.

Dynamical cores are often developed, first, in the two-dimensional shallow-water
model (for example Lin and Rood 1997). This brings focus to the momentum
equation, with the presumption that if the numerical technique provides a good solu-
tion to the nonlinear momentum equations, then spanning the technique across the
whole set of the equations of motion is relatively straightforward. The review of
Williamson (2007) takes a focus on the ‘horizontal aspects of the schemes’ and
describes the methods used to represent the advective terms in the equations of
motion. The extension from two dimensions to three dimensions and consideration
of real-world aspects of atmospheric modeling require addressing a set of funda-
mental issues. These issues lead to a more complete specification of the dynamical
core, which will be exposed below.

There are a number of important points to be made directly from the atmospheric
equations of motion. In general, the equations are scaled to expose the range of
motions that are important to weather and climate models. Consideration of ‘large-
scale’ dynamics, for example motions of spatial scales 1,000 km or greater, leads to
a separation of the horizontal and vertical motions in the atmosphere. Similarly, it
leads to the conclusion that the flow is dominated by rotational motion, as contrasted
with divergent motion. Such scale analysis explicitly impacts the development of
dynamical cores in numerical models; for example, the development of different
algorithms to treat horizontal and vertical advection. In fact, the consideration of
the large-scale characteristics of the atmospheric flow impacts the development
of dynamical cores in ways that have such profound influence on the numerical
performance that they require algorithmic archeology to expose their impact.

Returning to (15.2), consider the first two terms on the right hand side of the
u and v equations. These are the horizontal pressure gradient terms and the Coriolis
terms. They are often dominating terms and represent the geostrophic balance. From
first principles, the pressure gradient initiates motion. As a large term important to
the motion of the atmosphere, it is critical that the pressure gradient term be well
represented. Alternatively, if the pressure gradient term is poorly represented, then
there will be large negative consequences to the model performance.

Accuracy of the representation of the pressure gradient brings attention to the
lower boundary condition and the specification of topography. A common practice
in atmospheric modeling is to use a terrain following vertical coordinate (see Holton
2004; Satoh 2004). This eases the specification of the lower boundary. However, it
introduces a major challenge in the representation of the horizontal pressure gra-
dient in the presence of steep topography, hence, large pressure gradients, hence,
large discretization errors. Though the pressure gradient and the Coriolis force
are, abstractly, a momentum source term, these forces are a resolved part of the
flow. Therefore, discretization of the pressure gradient term and specification of the
Coriolis force are parts of the dynamical core.
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There are in the continuous equations of motion, explicit dissipative terms. These
include both the viscosity terms as well as the diabatic heating term (J ), which
includes damping of temperature perturbations. In the continuous equations the vis-
cosity terms are usually very small. In the discrete equations viscosity takes on a
far different character. In the estimation of numerical solutions, variability starts to
form at the smallest spatial grid scale. This structure comes from a variety of sources
ranging from physical advective cascade from large to small scales to numerical
dispersion caused by different wavelengths propagating at different speeds. The
grid-scale structure can come to dominate the estimated solution; hence, it requires
dissipation both to account for a discrete representation of physical mixing and for
remediation of unavoidable numerical errors. Therefore, real atmospheric dissipa-
tion becomes conflated with many forms of dissipation that are present in dynamical
cores for both physical and numerical reasons. Further, this dissipation is not inde-
pendent of that modeled in the planetary boundary layer parameterization and the
gravity wave parameterization – both accounted for as part of the model ‘physics’.
There is no prescription from first principles on how to address the specification of
dissipation, and the modeler is often left with the statement in Farge and Sadourny
(1989) that the “validity (of the choice of dissipation) can only be judged on the
grounds of numerical results”. A thorough review of the dissipative processes in the
dynamical cores of general circulation models is provided in Chap. 13.

Finally, consider the constituent continuity equations (15.4). As suggested above,
the intuitive focus of the ‘dynamical core’ is on the algorithm used to solve the
momentum equations, or alternatively, the vorticity and divergence equations. An
atmospheric model, however, requires the solution of the thermodynamic equation
and numerous constituent continuity equations. The mass conservation equation and
the equation of state must be tied into the numerical solution. These equations all
contain the advection of scalar quantities by the resolved flow, by definition, part
of the dynamical core. The thermodynamic and constituent continuity equations
can be addressed with different algorithms for the scalar advection than used in the
momentum equation (see Rasch and Williamson 1991; Rasch et al. 2006). Without
special attention, this explicitly introduces an inconsistency in the formulation of
the model as a whole. This inconsistency can be interpreted as using a different
vertical velocity for the advection of scalars than is estimated from the solution of
the momentum equations (see Lin and Rood 1996; Jöckel et al. 2001; Machenhauer
et al. 2008). This will be discussed more fully below.

Compared with the previous sections, the discussion and analysis presented in
this section both refines and expands the components that make up the dynamical
core. Namely, dynamical cores are generally process split and include algorithms
that represent:

� The resolved advection of momentum in the horizontal plane.
� The resolved vertical advection of momentum.
� Unresolved sub-scale transport of momentum.
� A specification of the pressure gradient force.
� A specification of the Coriolis force.
� A specification of topography.
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� The resolved advection of scalars in the horizontal plane.
� The resolved vertical advection of scalars.
� Unresolved sub-scale transport of scalars.
� A portfolio of filters and fixers that accommodate errors related to both the

numerical technique and the characteristics of the underlying grid.

15.5 Numerical Expression of the Atmospheric Equations
of Motion

There are many ways to approach the numerical estimation of solutions to the equa-
tions of motion for the atmosphere. A straightforward approach is to develop a
discrete representation of variables and derivatives and to estimate, directly, the par-
tial differential equations. It is reasonable to assume that accurate representation of
the terms in the equation would lead to a credible numerical solution.

The equations of motions support many scales and types of motion. Some of
these motions, such as sound waves, are not of direct relevance to weather and
climate models. Unwanted scales are often eliminated either by recasting the con-
tinuous equations in such a way as to eliminate the unwanted scales or through
numerical techniques such as filtering and scale-selective dissipation. When the dis-
crete equations are formed new types of unwanted, computational motions might be
created.

In addition, there are many important relationships that exist in the equations
of motion. For example there are energy constraints, such as conservation of total
energy for adiabatic, inviscid flows. Scaling arguments reveal strong relationships
between, for example, the winds and the thermal structure and the vorticity and
the pressure fields (see Holton 2004). Marching through the equation of motions
making best estimates of the individual terms in the equations does not assure that
these relationships are honored. Such inconsistencies in the discretization can lead
to models composed of highly accurate elements that, collectively, do not provide
credible simulations.

Therefore, experience suggests an alternative approach to the development of
models. In this alternative approach design requirements are specified and numerical
algorithms are developed to meet these requirements. Accuracy is sought in the
context of integrated design.

This section will investigate the design-based approach of the Lin and Rood
(1996) advection scheme and the full dynamical core which has been developed
by Lin (2004). Model development by algorithm design is discussed thoroughly by
Machenhauer et al. (2008).

The Lin and Rood (1996) advection scheme was motivated by attempts to
model the high-quality aircraft observations collected to determine the chemical
mechanisms responsible for the Antarctic ozone hole. Of special importance from
these observations were the correlations between trace constituents (Fahey et al.
1990). These correlations are conserved in the absence of photochemical losses and
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sinks; that is, they are conserved in pure advection. Numerical simulations with
conventional finite difference and spectral methods showed that correlations were
not conserved, and that the lack of conservation was of sufficient magnitude to
make comparisons with observations of little scientific value. The inability of these
schemes to conserve tracer correlations was directly related to the filtering tech-
niques used to counter the generation of negative tracer concentrations which arise
from numerical errors. The strategy for addressing this problem was to adapt piece-
wise continuous schemes of the sort developed by Bram van Leer to atmospheric
problems (see van Leer 1979; Allen et al. 1991). These are finite volume schemes
which partition fluid volumes at each time step based on the velocity field. As posed
in Lin and Rood (1996) the design criteria were:

� Conservation of mass without a posteriori restoration.
� Computation of mass fluxes based on the sub-grid distribution in the upwind

direction.
� Generation of no new maxima or minima (ideally, maintain monotonicity).
� Preservation of tracer correlations.
� Computational efficiency in spherical coordinates.

These design criteria in combination with a mixture of higher and lower order
numerical techniques led to credible results in a wide variety of chemistry-transport
models (Douglass et al. 1997; Bey et al. 2001; Rotman et al. 2001). Implicit in
the development was the reduction of numerical diffusion compared with the pre-
viously used methods (Allen et al. 1991). Also, implicit in this development is that
the advection of well-resolved spatial scales, for example resolved by ten grid cells
or more, is well represented. The number of grid cells required to resolve a feature
accurately is not a strictly defined quantity. The choice of ten emphasizes that there
is an order of magnitude between the number of grid cells and resolved scales; ten
is drawn from the discussion of errors in Zalesak (1981). This criterion also directly
states that there is a range of scales that are ‘resolved,’ but not accurately. The
advection of accurately resolved waves in modern numerical advection schemes is
expected, and therefore, does not serve as a good discriminator between algorithms.

The design features in the Lin and Rood advection scheme can be reframed to
state that if a tracer distribution originally has no tracer gradients, then the tracer
distribution will not change during the computation of advection. It was often true
that chemistry-transport models did not have this feature, which is directly traceable
to the underlying mass conservation equation (15.2) not being satisfied. This can be
articulated as the vertical velocity that satisfies the momentum and mass conser-
vation equations is not the same as the vertical velocity used in the calculation of
the scalar advection. This design criterion is characterized as ‘consistency,’ where
consistency represents the physical relationships that tie together the entire system
of the equations of motion and the tracer continuity equations.

Known inadequacies of the Lin and Rood scheme at the time of development
included splitting errors that generated negative concentrations in some instances
and numerical diffusion related largely to the slope limiters. It was a design decision
to take numerical errors in diffusion rather than in dispersion errors. Alternatively,
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diffusion is used to remedy, not cure, dispersion errors. In practice the scheme con-
served constituent correlations in realistic test problems. However, the presence of
splitting errors and the nonlinear application of the slope limiters means that there
are potentially failures of both monotonicity and the conservation of correlations.

The Lin and Rood (1996) advection scheme was extended to the two-dimensional
shallow water equations in Lin and Rood (1997) and to the three-dimensional prim-
itive equations in Lin (2004). Both implementations utilized a regular, equal-angle,
latitude-longitude grid. A major goal was to develop a numerical system that treated
the momentum equations, the thermodynamic equation, and the tracer continuity
equations ‘consistently,’ as defined above. Also in this development was the spec-
ification of quantities on the grid and use of averaging techniques to assure the
correlative relationship between geopotential (i.e., a pressure-like variable in a coor-
dinate system that uses pressure as a vertical coordinate) and vorticity. This design
decision valued the accurate advection of vorticity. Therefore, the original develop-
ment of the scheme was implicitly tuned towards the characteristics of large-scale
dynamical features in a rotationally dominated flow.

Perhaps more important to model performance than the horizontal advection
scheme was the development of methods to represent the horizontal pressure gra-
dient and the treatment of vertical advection. Lin (1997) describes a piecewise
continuous, finite volume method to represent the horizontal pressure gradient. This
method, which integrates piecewise linear edges of the volume to calculate the bal-
ance of pressure forces on a volume, proved to be two orders of magnitude more
accurate in the presence of steep topography than finite difference schemes used at
the time.

The description of a Lagrangian formulation of the vertical velocity in Lin (2004)
completes the development of the dynamical core. This calculation of vertical veloc-
ity originally relied on the hydrostatic approximation. It is analogous to the use of
isopycnal coordinates in ocean modeling. This approach has a tremendous impact
on the fidelity of the model, especially with regard to the representation of the mean
meridional circulation important to the general circulation and tracer distributions
(Schoeberl et al. 2003).

The design features discussed above suggest another attribute of the Lin (2004)
dynamical core that was a desired feature. The net effect of the design is that the
scheme is highly localized. The information that is used to calculate the atmo-
spheric dynamics and tracer transport comes from nearby and primarily upstream
grid points. This stands in contrast with spectral or pseudospectral methods, which
use global basis functions and are formally more accurate (see Rood 1987). The
local nature of the scheme has potential positive benefits for the representation of
quantities that are derived from the model’s physical parameterizations. That is, the
locality is relevant to the coupling between the dynamical core and the physics; the
physics parameterizations are intrinsically local (see Bala et al. 2008).

The expression of the dynamical core described above in this section addresses
the analysis of the equations of motion in the previous section. What has yet to
be discussed is the portfolio of filters and fixers that are required for the scheme.
The most obvious design feature of the model to address known errors is the slope
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limiter which is diffusion implemented locally when a new maximum or minimum
will be created (see van Leer 1979). The use of slope limiting is a design decision.
Slope limiting (van Leer 1979, and references therein) and flux limiters, pioneered
by, e.g., Boris and Book (1973), were motivated by consideration of plasma shocks
and the prevention of the generation of non-physical ripples at the shock front. This
is an error that cannot be overlooked in reactive flow and combustion calculations.
A physical analysis of the advective process reveals that advection cannot generate
new maxima or minima in the scalar fields. That is, advection is monotonic, and if
monotonicity is violated, then the scheme is ‘non-physical’.

More generally, there are many errors in the calculation of advection that are non-
physical. For example, without special consideration quadratic and higher moments
of advected fields are not conserved in numerical algorithms. This is non-physical,
and potentially important when considering conservation of energy, the propaga-
tion of variance and covariance in data assimilation, or modeling the distribution of
droplets and aerosols. Prather (1986) developed a highly accurate advection scheme
which conserves moments and vastly reduces numerical diffusion.

In Lin and Rood (1997) it was argued that the nature of the slope limiters, essen-
tially a flow-dependent, nonlinear diffusion, was ‘physical’. This argument is not
formally true, but it is a statement that the mixing is localized and flow dependent,
which is intuitively appealing. The diffusion associated with the limiter is large
enough that it was not required to add an additional diffusion to the algorithm to
eliminate grid-scale noise in scalar advection. The addition of diffusion is common
in atmospheric models (for example Collins et al. 2004; Williamson 2007).

There are a variety of other filters and fixers in the scheme. There is a polar filter,
which arises because of the decrease of the grid spacing on the equal-angle grid at
high latitudes. More importantly, the scheme generates grid-scale noise, which man-
ifests itself as localized divergent flows. This is countered by damping the divergent
part of the flow. There is another digital filter which is used to manage grid-scale
noise. All of these filters are ultimately diffusive, essential to the stability and per-
formance of the dynamical core, and have a complex impact on the performance
of the model. They are not an unusual portfolio of filters and are conflated with any
representation of physical mixing, diffusion, and dissipation (see Chaps. 13 and 14).

15.6 Synthesis and Future Directions

The previous sections provide a high-level view of the structure and construction
of weather and climate models. Atmospheric models are used to provide a concrete
example. The point of view is from the role of the dynamical core in the model.
Adcroft et al. (2004), Adcroft and Hallberg (2006), Adcroft et al. (2008) and White
and Adcroft (2008) present a comprehensive representation of a modern oceanic
dynamical core with many parallel attributes to what has been presented here for
the atmosphere.
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15.6.1 Model-Relevant Principles

1. Models are built from components, and the ultimate customers of models are
interested in the results of the model as a whole. The application of the model
strongly influences the priorities that are given weight in the building of a model.
In the example provided in this chapter, correlated behavior of trace constituents
and the conservation of advected variables have high priority. Given that model
performance as a whole is ultimately required, balanced development of model
components is necessary. The benefit of a highly precise algorithm, for say advec-
tion, is easily lost because other errors in the model or errors in the coupling of
components are large.

2. The model as a whole is explicitly or implicitly optimized, i.e., tuned, towards
applications at hand. This tuning includes the balancing of compensating errors.
The introduction of a new, better founded algorithm is highly likely to degrade,
initially, the performance of the model as a whole. This makes a barrier for the
introduction of improved algorithms in models. New tuning is needed.

3. Formally, a validation plan that reflects the expected results of the model as a
whole provides a framework for evaluating the impact of algorithms and their
coupling. It is within the context of this validation plan that decisions on the
potential benefits of improved algorithms should be made.

15.6.2 Lessons Learned about Dynamical Cores

15.6.2.1 Consistency

The enforcement of consistency in the development of dynamical cores has had
significant payoff. In the field of tracer advection, the term consistency originally
referred to what Machenhauer et al. (2008) call the mass-wind consistency; that is,
the potential disconnection that can occur between mass conservation in the fluid
and calculation of the transport of trace species (see also Jöckel et al., 2001). In
this chapter, consistency is extended to include the theoretical constructs such as the
thermal wind, the relation between vorticity and the pressure field obtained from
scaling arguments, preservation of constituent correlations, specification of topog-
raphy, etc. More generally, consistency refers to the correlative behavior that follows
from theory, which is of tremendous value in the interpretation of observations and
models. Correlative physics is crucial to studies of the attribution of climate change
to human’s activities (Santer et al. 2000). Attention to consistency improves the
robustness of models. Development of consistent numerical schemes is a design
decision based on developer’s experience (and preference) defined by an application
suite.
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15.6.2.2 Locality

We have evolved to a state where we need to pay explicit attention to the interac-
tion, that is, the coupling, between the dynamical core and ‘the physics’. (see also
Williamson 2007). This requires, minimally, presenting to the physics parameteriza-
tions physically realizable values of transported quantities with robust relationships
to correlated parameters. Given that the physical parameterizations are local, it is
intuitive that dynamical cores with localized grid stencils have potential advantage.

15.6.2.3 Horizontal Advection

The credible treatment of resolved horizontal advection is an essential performance
criterion that is implicit in all modern dynamical cores. The metrics on which deci-
sions are made are often experiential, and fall within an experiential range. Given
that credible performance is realized by many schemes, horizontal advection of
resolved scales has progressed to a standard and is not a discriminator of algorithms.
All schemes have to balance intrinsic errors of dissipation and dispersion, and tol-
erance of such errors is a design and application-based decision. Conservation of
advected variables without a posteriori restoration is, intuitively, a requirement for
climate models; however, this, too, is a design decision. The importance of conserva-
tion of higher order moments, especially energy, will likely become more important
in the future.

15.6.2.4 Vertical Velocity

The vertical velocity is central to the robust representation of weather and climate.
Treatment of the vertical velocity is difficult because the vertical velocity is most
often much smaller than the horizontal velocity. The vertical velocity is related to
horizontal divergence, which is closely related to grid-scale noise and grid-scale
forcing by the physical parameterizations. Therefore, the vertical velocity is strongly
influenced by the sub-grid mixing, filters, and fixers. It is easy to corrupt the physical
consistency of the vertical velocity. Treatment of the vertical velocity requires more
attention in the development of dynamical cores.

15.6.2.5 Mixing, Filters and Fixers

The mixing algorithms, filters, and fixers have significant impact on model per-
formance as e.g. discussed in Chaps. 13 and 14. The hydrostatic, geostrophic, and
adiabatic balances in the atmosphere are powerful constraints on the flow and offer
great theoretical insight. However, it is the difference from these balances that is
often most important to weather and climate predictions. Fundamental theory, e.g.
Andrews and Mcintyre (1978), shows that difference from balance is due to dis-
sipation, nonlinearity and transience. Mixing algorithms, filters, and fixers are the



530 R.B. Rood

locations where the artifacts of the discretization and numerical errors are addressed.
The specifics of the mixing is important, especially with respect to the dissipa-
tion of waves. That mixing processes might be ‘small’ does not rationalize their
being ignored. Far more attention is needed to the formulation and impact of mixing
algorithms, filters, and fixers.

15.6.3 Future Directions

15.6.3.1 Divergence

The discussion in this paper reveals a number of facts about the treatment of
divergence in atmospheric models. First, in the case of the Lin and Rood (1997)
horizontal advection scheme, the development of the scheme is biased towards
the advection of vorticity. This bias, implicitly, reflects large-scale, middle-latitude
dynamics, and the importance of the conservation of vorticity. This is an acceptable
situation for global climate models at resolutions of several hundred kilometers,
where the flow is quasi-nondivergent. Second, in the Lin and Rood (1997) scheme,
damping is added directly to the divergence in order to manage grid-scale noise and
stability (see Collins et al. 2004).

Divergence damping is often used in atmospheric models and warrants more dis-
cussion. There are two primary paths of motivation. Bates et al. (1993) formally
introduced two-dimensional divergence damping into the equations for the develop-
ment of their semi-Lagrangian scheme. This damping was subsequently used in
development and application (S. Moorthi, personal communication). Divergence
damping is routinely used in the North American Model at the National Centers
for Environmental Predictions to control noise in both the simulation and assim-
ilation (S. Lord, personal communication). Farge and Sadourny (1989) discuss at
length the use of dissipation on both the rotational and divergent parts of the flow
to achieve adequate numerical performance. Their discussion is in the context of an
investigation using a shallow water model with pseudospectral numerical schemes.
They pursue a linear combination of a rotational and divergent form of dissipation
(see also Vallis 1992; Gassmann and Herzog 2007).

The second motivational path for divergence damping follows from mesoscale
modeling and the development of non-hydrostatic models. In this path the original
line of reason was to incorporate three-dimensional divergence damping to remove
meteorologically unimportant, computationally demanding acoustic modes (Ska-
marock and Klemp 1992; Dudhia 1993). Wicker and Skamarock (1998) note that
not only are the acoustic modes eliminated, but that the stability of their numerical
technique is improved. Therefore, in this path as well, the noise management and
stability enhancements of divergence damping have emerged (see also Gassmann
and Herzog 2007).

As global models and regional models resolve smaller and smaller scales, the
divergent part of the flow becomes important. Furthermore there is forcing at the
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grid scale, which is formally not resolved, that is a source of physically based diver-
gence. Therefore, these techniques to control noise impact important dynamical
features and the interaction between large and small scales. Therefore, increased,
direct attention to the physical role and representation of divergent flow is needed.

15.6.3.2 Mixing, Filters, and Fixers (Chap. 13)

The algorithms for mixing, filters, and fixers directly impact both the representa-
tion of divergence and the fundamentals of wave dissipation important for climate
models. When the consequences of high resolution models are considered, the con-
flation of these algorithms with the model physics is realized to be even more
complex. High resolution models will resolve more and more gravity waves, which
are strongly divergent modes and are already ‘accounted for’ by the gravity wave
parameterization. Therefore, the dynamical core and the physics parameterizations
will not be as cleanly separated by scales. Similar realizations can be made for
the relationship of the dynamical core with the planetary boundary layer parame-
terization and the convective parameterization. Far more attention is needed to the
formulation and impact of mixing algorithms, filters, and fixers.

15.6.3.3 Non-Hydrostatic

As horizontal resolution is increased, the scales of the allowed motion are such
that non-hydrostatic motion becomes important. Relaxing the hydrostatic assump-
tion is realized in the vertical momentum equation. This provides a fundamental
change in modeling. The strong relation of vertical velocity to small-scale diver-
gence and the complex relationship between small- and large-scale programs again
brings attention to the importance of the mixing algorithms, filters, and fixers.

15.6.3.4 Grids

Much attention is currently focused on types of grids (Randall 2000; Ringler
et al. 2000; Putman and Lin 2009; Rančić et al. 2008; Walko and Avissar 2008;
Thuburn 2008a). The excellent review of Williamson (2007) has a focus on how
the development of dynamical cores is strongly influenced by the presence of the
polar singularity on regular latitude-longitude grids. The Williamson (2007) review
includes a large list of references to grids. Two grids that have received much atten-
tion are the cubic sphere (Sadourny 1972; Putman and Lin 2009) and the geodesic
grid (Sadourny et al. 1968; Williamson 1968). There are both computational and
physical advantages of these grids, and the grid and numerical methods used on the
grids will reveal new consistency challenges. The grid has become another element
of the dynamical core.
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There is currently much discussion about grid artifacts; that is, the underlying
grid can be ‘seen’ in the solutions. These comments also imply that present equal-
angle, latitude-longitude grids are free of such artifacts. However, existing grids
have a set of filters, especially polar filters, to remedy their artifacts. Indeed, as
Williamson (2007) points out, the challenges of the equal-angle, latitude-longitude
grid have been a great motivator to develop new techniques. Grid artifacts are
currently a fact of modeling, and evaluation of their impact and development of
remediation strategies are required; grid artifacts are not, a priori, an extraordinary
flaw.

15.6.3.5 Coupling

Since climate models are composites of composites of components, there are cou-
plings at many levels. It is easy to lose any advantage of a new numerical method
to poor coupling. The coupling of the dynamical core to the physics is especially
important because of the conflation of small and large scales at the grid scale and
the conflation of numerical and physical mixing at the grid scale. Since model per-
formance relies on the accumulation of the performance of interacting components,
the physics of, the consistency of, and the performance of coupling need far more
consideration (Staniforth et al. 2002; Williamson 2002, 2007).

15.7 Conclusions

The perspective provided here advocates looking at the function of the model as
whole. The model as a whole is a system of interacting components. These com-
ponents each have their error characteristics. Errors are balanced in the process
of optimizing or tuning the model to address specific applications. Therefore, the
development of specific components, without regard to the application and the inter-
action of one component with all components, is likely to have little obvious benefit.
Model-building activities should include a formal step of system integration, which
should be driven by an application-based validation plan.

With regard to dynamical cores – horizontal advection of resolved scales has
evolved to a state of quality that is high compared with other sources of errors in the
model. Therefore, in terms of performance it is essentially standardized. The choice
of horizontal advection scheme does impact the requirements for filtering and fixers,
which are of both theoretical and practical importance. The dynamical core needs to
be considered as an integrated module, and the relation of the horizontal advection
algorithm to algorithms for the vertical velocity and for mixing, filters, and fixers
needs direct attention.

The discussion here brings attention to two items that might be considered values.
These are consistency and locality. High value is given to these attributes because
of experience in applications and, looking forward, focusing more attention on the
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coupling of the dynamical core with the physics. Specifically, there is the need to
pass to the physics parameterizations physically realizable estimates of transported
variables that represent the correlated behavior of the variables.

With these values the following is posed as the suite of elements in the dynamical
core. It is implicit that these form an integrated, consistent module, informed by the
interface with other components:

� A specification of the grid.
� A specification of topography.
� A specification of the pressure gradient force.
� A specification of the Coriolis force.
� The resolved advection of momentum in the horizontal plane.
� The resolved vertical advection of momentum.
� Unresolved sub-scale transport of momentum.
� The resolved advection of scalars in the horizontal plane.
� The resolved vertical advection of scalars.
� Unresolved sub-scale transport of scalars.
� A portfolio of filters and fixers that accommodate errors related to both the

numerical technique and the characteristics of the underlying grid.

The representation of the divergent part of the flow and coupling of model com-
ponents requires more attention. This demands attention to algorithms that represent
mixing, filters, and fixers. High resolution simulations represent divergent circula-
tions explicitly. Such models are poised to better represent the interaction of small
and large scales, and ignoring the detritus of the dynamical core undermines efforts
focused on the representation of processes from first principles.

The development of weather and climate models does not proceed through a
well defined path from first principles. There is a mix of science, engineering, and
intuition based upon experience and desired results. In the past decade both atmo-
spheric and oceanic models, whose development has focused on design that gives
priority to the underlying correlative physics, have had significant impact. Look-
ing forward, the problems and applications being faced in climate modelers will
bring attention to high resolution, the representation of small, divergent scales, and
the interaction of small and large scales. This brings direct attention to the difficult
and understudied problem of sub-scale mixing and the conflation of physical and
numerical processes at the smallest scales. The interaction of the dynamical cores
with the physics scheme, coupling in general, needs more rigorous attention and
treatment; this is true for both parameterized and cloud-resolving models. Given the
intrinsic nature of dissipation and dispersion errors in the numerical representation
of advection, new strategies, such as more attention to the conservation of higher
order moments, may be required to achieve fidelity between large and small scales.
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Rančić M, Zhang H, Savic-Jovcic V (2008) Nonlinear advection schemes on the octagonal grid.
Mon Wea Rev 136:4668–4686

Randall DA (2000) General Circulation Model Development: Past, Present, and Future. Academic
Press, 807 pp.

Rasch PJ, Williamson DL (1991) The sensitivity of a general circulation model climate to the
moisture transport formulation. J Geophy Res 96:13,123–13,137



536 R.B. Rood

Rasch PJ, Coleman DB, Mahowald N, Williamson DL, Lin SJ, Boville BA, Hess P (2006) Charac-
teristics of atmospheric transport using three numerical formulations for atmospheric dynamics
in a single gcm framework. J Climate 19:2243–2266

Rienecker MM, Suarez MJ, Todling R, Bacmeister J, Takacs L, Liu HC, Gu W, Sienkiewicz M,
Koster RD, Gelaro R, Stajner I, Nielsen E (2008) The GEOS-5 data assimilation system – Doc-
umentation of versions 5.0.1 and 5.1.0. Technical Report Series on Global Modeling and Data
Assimilation NASA/TM-2007-104606, Vol. 27, NASA Goddard Space Flight Center, 92 pp.

Ringler TD, Heikes RP, Randall DA (2000) Modeling the atmospheric general circulation using a
spherical geodesic grid: A new class of dynamical cores. Mon Wea Rev 128:2471–2489

Rood RB (1987) Numerical advection algorithms and their role in atmospheric transport and
chemistry models. Rev Geophys 25:71–100

Rotman D, Tannahill JR, Kinnison DE, Connell PS, Bergmann D, Proctor D, Rodriguez JM, Lin SJ,
Rood RB, Prather MJ, Rasch PJ, Considine DB, Ramaroson R, Kawa SR (2001) Global mod-
eling initiative assessment model: Model description, integration, and testing of the transport
shell. J Geophys Res 106(D2)(10.1029/2000JD900463):1669–1692

Sadourny R (1972) Conservative finite-difference approximations of the primitive equations on
quasi-uniform spherical grids. Mon Wea Rev 100:136–144

Sadourny R, Arakawa A, Mintz Y (1968) Integration of the nondivergent barotropic vorticity
equation with an icosahedral-hexagonal grid for the sphere. Mon Wea Rev 96:351–356

Santer BD, Wigley TML, Gaffen DJ, Bengtsson L, Doutriaux C, Boyle JS, Esch M, Hnilo JJ,
Jones PD, Meehl GA, Roeckner E, Taylor KE, Wehner MF (2000) Interpreting differential
temperature trends at the surface and in the lower troposphere. Science 287:1227–1232

Satoh M (2004) Atmospheric circulation dynamics and general circulation models. Springer
(Praxis), 643 pp.

Schoeberl MR, Strobel DF (1980) Numerical-simulation of sudden stratospheric warmings.
J Atmos Sci 37:214–236

Schoeberl MR, Douglass AR, Zhu Z, Pawson S (2003) A comparison of the lower stratospheric
age-spectra derived from a general circulation model and two data assimilation systems.
J Geophys Res 108(D3)(10.1029/2002JD002652):4113

Skamarock WC, Klemp JB (1992) The stability of time-split numerical methods for the hydrostatic
and the nonhydrostatic elastic equations. Mon Wea Rev 120:2109–2127

Staniforth A, Wood N, Cole J (2002) Analysis of the numerics of physics-dynamics coupling.
Quart J R Meteor Soc 128(586):2779–2799

Strang G (1968) On the construction and comparison of difference schemes. SIAM J Numer Anal
5:506–517

Thuburn J (2008a) Numerical wave propagation on the hexagonal C-grid. J Comput Phys 227:
5836–5858

Thuburn J (2008b) Some conservation issues for dynamical cores of NWP and climate models.
J Comput Phys 227(7):3715–3730

Trenberth KE (ed) (1992) Climate System Modeling. Cambridge University Press, 788 pp.
Vallis GK (1992) Mechanism and parameterizations of geostrophic adjustment and a variational

approach to balanced flow. J Atmos Sci 49:1144–1160
Walko RL, Avissar R (2008) The Ocean-Land-Atmosphere Model (OLAM). Part I: Shallow-water

tests. Mon Wea Rev 136:4033–4044
Washington WM, Parkinson CL (l2005) An introduction to three-dimensional climate modeling,

2nd edn. University Science Books, ISBN: 1-891389-35-1, 353 pp.
White AA, B J Hoskins IR, Staniforth A (2005) Consistent approximate models of the global

atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic. Quart J Roy
Meteor Soc 131:2081–2107

White L, Adcroft A (2008) A high-order finite volume remapping scheme for nonuniform grids:
The piecewise quartic method (PQM). J Comput Phys 227:7394–7422

Wicker LJ, Skamarock WC (1998) A time-splitting scheme for the elastic equations incorporating
second-order Runge-Kutta time differencing. Mon Wea Rev 126:1992–1999



15 A Perspective on the Role of the Dynamical Core 537

Williamson DL (1968) Integration of the barotropic vorticity equations on a spherical geodesic
grid. Tellus 20:642–653

Williamson DL (2002) Time-split versus process-split coupling of parameterizations and dynami-
cal core. Mon Wea Rev 130:2779–2799

Williamson DL (2007) The evolution of dynamical cores for global atmospheric models.
J Meteorol Soc Japan 85B:241–269

Yanenko NN (1971) The method of fractional steps. Springer-Verlag, 160 pp
Zalesak ST (1981) Very high order and pseudospectral flux-corrected transport (FCT) algorithms

for conservation laws. In: Vichnevetsky R, Steplman RS (eds) Advances in Computer Methods
for Partial Differential Equations IV, International Association for Mathematics and Computers
in Simulation, Rutgers University, New Brunswick, N.J.



Chapter 16
Refactoring Scientific Applications
for Massive Parallelism

John M. Dennis and Richard D. Loft

Abstract We describe several common problems that we discovered during our
efforts to refactor several large geofluid applications that are components of the
Community Climate System Model (CCSM) developed at the National Center for
Atmospheric Research (NCAR). We stress tested the weak scalability of these appli-
cations by studying the impact of increasing both the resolution and core counts
by factors of 10–100. Several common code design and implementations issues
emerged that prevented the efficient execution of these applications on very large
microprocessor counts. We found that these problems arise as a direct result of
disparity between the initial design assumptions made for low resolution models
running on a few dozen processors, and today’s requirements that applications run
in massively parallel computing environments. The issues discussed include non-
scalable memory usage and execution time in both the applications themselves and
the supporting scientific data tool chains.

16.1 Introduction

For the past 30 years, the amount of computing power that could be applied to sci-
entific problems has grown exponentially. This amazing growth rate was a direct
result of decreases in transistor sizes, which for decades, directly translated into
increases in microprocessor clock frequency and consequently improved single
thread performance. The doubling of clock frequency every 18 months became
strongly associated with Moore’s Law, that actually only describes the underlying
rate of improvement in photolithographic techniques. Regardless, for an applica-
tion developer in the latter part of the twentieth century, Moore’s law meant that
exponential performance improvements came on a steady schedule with little or no
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effort. In this regime there was little incentive to improve application performance
by increasing parallelism.

In middle of the 2000s these circumstances began to change, as several fun-
damental factors began to limit microprocessor frequency. Local (on-chip) inter-
connect delays began to dominate feature size as the determining factor of clock
speed. The heat densities being generated by 	3 GHz microprocessors began hit-
ting thermal design limits. The growing gap between memory and processor speeds
increased memory access times, thereby creating the so-called “memory wall”, in
which faster processor clock speeds no longer guaranteed better performance. In
response to these challenges, microprocessor architects began moving toward chip
multiprocessor (CMP) designs: under this paradigm, chip performance improve-
ments would come from doubling the number of processors or cores on a silicon
die, while clock speed would only increase at a modest rate of 15% per 18 months. It
seems clear now that this development is a long-term technology trend, derived from
fundamental limitations of the underlying semiconductor technology. For applica-
tion programmers this means that improved performance must come from speed-ups
derived from increased parallelism.

A similar situation has developed in disk subsystem architecture as well: disk
spindle parallelism is necessary to match I/O performance with parallel compu-
tational performance. Through parallel filesystem technology, modern petabyte
filesystems aggregate thousands of rotating disk spindles and access channels to
achieve high I/O bandwidth. Thus, as with CPU’s, the path to performance for I/O
intensive problems is through parallelism.

The impact of the return of massive parallelism is reflected in the increasing
number of parallel computing initiatives sponsored by a variety of agencies of the
U.S. government. In the High Performance Computing (HPC) arena, much of this
effort is now focused around what is known as petascale computing: harnessing
O(100,000) or more cores to achieve a petaflop – (1015 floating point operations per
second). These efforts include funds for the acquisition and deployment of petas-
cale systems, as well as research and development money to develop algorithms
and associated applications able to effectively use these systems. For example, the
National Science Foundation (NSF) has initiated an ambitious “Track-2” and even
larger “Track 1” programs to procure, deploy and operate several petascale systems
over the next few years. The first so-called “Track-2” system, Ranger, was installed
in Texas Advanced Computing Center in 2006. Ranger is a 62,976 core system,
based on the quad-core AMD Barcelona microprocessor with an Infiniband R� (IB)
interconnect switch designed by Sun Microsystems. A second “Track-2” system,
Kraken, a Cray XT5 system currently has 99,072 cores, and was awarded to the
National Institute for Computational Sciences (NICS) in 2007. The NSF award for
a super-sized “Track-1” system capable of a peak speed of least ten petaflops, was
awarded to the Illinois-based Blue Waters Consortium. Additional petascale com-
puters in the United States are being deployed by the Departments of Energy and
Defense, and are reportedly planned in Japan, Europe, and China.

Of course, without scalable applications, these large systems can’t provide
the application acceleration that leads to scientific progress for many important
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problems, such as climate modeling. To address this issue, U.S. government
agencies have also funneled research dollars toward developing new algorithms,
frameworks, and applications. Examples of these include the DoE SciDAC and NSF
PetaApps programs. Such programs have allowed developers of scientific applica-
tions (including ourselves) to make important progress in preparing such codes for
operations on increased numbers of cores.

The availability of massively parallel computing systems will place a premium
on the scalability of applications. Even so, not every scientific problem needs petas-
cale computing, nor is it the case that every application has a large code base that
makes it prohibitively expensive for it to be rewritten from scratch. However, we are
interested in the significant class of scientific applications for which improving the
parallel performance by refactoring the existing code is the only reasonable option
available.

Code refactoring is usually defined as the process of modifying the internal
structure of an application without changing the external functional behavior. Such
refactoring can be done for a variety of purposes: for example, for readability, per-
formance, or maintainability. The cost, both in terms of human and computational
resources, of validating the refactored application is an important determiner of the
overall cost of such projects. Refactoring scientific applications for parallel scalabil-
ity is especially challenging, often requiring new, more suitable algorithms. Using
existing parallel programming paradigms, such as Message Passing Interface (MPI)
described in Snir et al. (2000) a distributed memory parallel programming library
or a shared memory parallel programming standard OpenMP (2005), means that
changing the level of parallelism often requires new data structures, and introduces
new design issues, unique to parallel execution, that usually have not been consid-
ered, let alone addressed, by earlier application developers. Examples of these issues
include race conditions, resource contention, and load balancing. The challenge of
these restructuring issues is exacerbated by the extraordinary cost of testing and
validating many complex applications at scale.

Here we discuss our teams experiences in refactoring six large climate model
components for massively parallel execution at significantly increased resolutions.
Climate applications represent an especially rigorous test of existing parallel refac-
toring techniques. First, climate applications, particularly at high resolutions, can be
extraordinarily expensive to run: for example, a single simulated year of a high res-
olution version of the Community Climate System Model requires roughly 80,000
CPU-hours per year on the Kraken XT-5 system at NICS. Second, the climate
system is an interacting system of nonlinear PDEs with a multitude of computa-
tionally intensive forcings and feedbacks: this makes the system sensitive to initial
conditions. Even tiny changes in results at machine-level precision will generate
completely different realizations of the climate system after a sufficient amount
of time has passed. Third, since the scientific predictions of climate applications
are statistical in nature, their results are expressed in monthly and seasonal means
and variances of measurable quantities. Thus they require long (perhaps multi-year)
runtimes to completely validate.
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Previous work by Dennis (2007) and Dennis and Tufo (2008) has revealed
numerous structural issues in these codes that prevent successful or efficient exe-
cution at higher resolutions and on very large core counts. The reasons for these
design issues are complex. Many climate system applications have long histories
and have been refactored several times in the past. For example, NCAR’s Com-
munity Atmosphere Model (CAM) was refactored for multitasking parallelism on
vector systems in the 1980s, refactored again for distributed memory (message pass-
ing) execution in the early 1990s, and finally modified to support hybrid message
passing and OpenMP execution in the late 1990s. For scientific reasons and until
recently, climate application resolutions have remained around one to three degrees
(100–300 km), as the focus of model development centered on improving the repre-
sentation of processes and capturing new climate system feedbacks. For these res-
olutions, a modest level of parallelism 32–128 processors was sufficient to achieve
acceptable scientific throughput rates. Now, with a growing sense that the resolution
of the climate system must be improved to address remaining model biases, there
is a new focus on conducting exploratory research at resolutions increased by one
to two orders of magnitude. Not surprisingly perhaps, the need to run efficiently on
10,000–100,000 or greater cores counts, which was never considered by developers,
is now needed to provide these high-resolution simulation capabilities.

The essence of the problem we faced in refactoring these applications is that
many of their design assumptions, which worked fine on roughly a hundred cores,
became problematic on tens or hundreds of thousands of cores. At a high level, the
impediments we have uncovered may be classified as either non-scalable memory
usage or execution time. Common non-scalable memory usage problems include use
of replicated metadata, excessive number of global arrays and serialized I/O. Com-
mon problems that impact the scalability of execution time include: non-scalable
initialization and communication time. In addition, we describe prevalent scalabil-
ity issues within the toolchain that also impedes scientific progress and discovery.
We present this description of common design issues in the hope that they could be
used as a guideline to design future applications for efficient execution at these and
even higher levels of parallelism.

16.2 Background

We have refactored six applications. The Parallel Ocean Program (POP) described
in Jones (2003) and Jones et al. (2005), developed at Los Alamos National Labo-
ratory is an important multi-agency ocean model used for global ocean modeling.
The Community Ice CodE (CICE) described in Hunke and Lipscomb (2008) also
developed at Los Alamos National Laboratory is also an important multi-agency
code used to model sea ice. The Community Atmosphere Model (CAM) described
in Collins et al. (2006), is a widely used atmospheric model, whose development
is based at the National Center for Atmospheric Research (NCAR), but has a large
international community of contributors and collaborators. The Community Land
Model (CLM) described in Hoffman et al. (2005), which was developed at NCAR
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in collaboration with many national collaborators, models the land surface. The
High Order Methods Modeling Environment (HOMME), an atmospheric dynam-
ical core developed at NCAR and described in Dennis et al. (2005) and Chap. 12,
is used to evaluate new numerical and computational algorithms. The flux coupler
(CPL) combined with POP, CICE, CAM, and CLM form the state of the art climate
model, the Community Climate System Model (CCSM). CCSM is one of the most
extensively used climate models in the world and has participated in the Intergov-
ernmental Panel on Climate Change (IPCC) Assessment reports by Solomon et al.
(2007). POP, CICE, CAM, and HOMME are hydrostatic models that solve the equa-
tions of motion on multiple coupled horizontal computational meshes. Without the
use of the hydrostatic approximation, the equations and algorithms are considerably
more complex. The size of the horizontal computational mesh that is decomposed
across cores is significantly larger than the number of levels in the vertical dimen-
sion. While CLM does not solve any equations of motion, it in addition to CPL,
decomposes the horizontal computational mesh across cores.

Inspired by the work of Shingu et al. (2002), an attempt was made to execute
a predecessor to HOMME at 10 km resolution, which represented a significant
increase relative to what had previously been attempted. Due to its use of repli-
cated metadata, which will be described in Sect. 16.3.2, HOMME was not even
able to complete the initialization of the message passing communication library
before it exhausted memory. While a refactoring of the data structures within the
communication library enabled it to initialize, a large number of additional issues
prevented its successful execution. After concerted effort to improve the scalability
of HOMME by a number of developers, CAM based on the HOMME dynam-
ical core (CAM/HOMME) has demonstrated excellent scalability on a range of
core counts and resolution combinations. The integration rate of CAM/HOMME
on a Aqua-planet simulation courtesy of Taylor et al. (2008) at 0.5ı (56 km), 0.25ı
(28 km), and 0.125ı (14 km) is illustrated in Fig. 16.1. Note that CAM/HOMME
achieves excellent scalability on the Cray XT4, and the IBM Blue Gene/L (BGL)
and Blue Gene/P (BGP) systems.

Our preliminary work with HOMME illustrated that the ultimate scalability of
an application was determine not only by the underlying scalability of its numeri-
cal algorithms but by the efficiency and quality of its implementation. Subsequent
work with other applications revealed that issues that had limited the parallelism
or even prevented successful execution of HOMME were also commonly found in
other applications. We next describe a set of issues that were discovered in multiple
applications that prevented efficient execution on very large core counts.

16.3 Scalability

We base our observations on the work performed preparing these previously men-
tioned applications for execution at high resolution on very large core counts. Within
the group of applications, the one with most limited parallelism has been tested
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Fig. 16.1 Integration rate of CAM/HOMME on Aqua-planet simulation. Note that scalability is
achieved 0.5ı, 0.25ı, and 0.125ı on Cray XT4, IBM Blue Gene/L and Blue Gene/P systems

on a maximum of approximately 3,300 cores, while the most parallelism demon-
strated by an application was 96,000 cores. Scalability testing has been performed
on several very large systems, including: a 40,960 core IBM Blue Gene/L system
described in Adiga and et al. (2002) at Thomas J. Watson Research, a 128,000 core
IBM Blue Gene/L system at Lawrence Livermore National Laboratory (LLNL),
a 38,912 core IBM Blue Gene/L system at Brookhaven National Laboratory, a
2,048 core IBM Blue Gene/L system at NCAR, a 10,000 core Cray Redstorm sys-
tem described in RedStorm (2006) at Sandia National Laboratory, a 13,000 core
Cray XT3/4 at Oak Ridge National Laboratory, a 9,000 core Appro linux cluster at
Lawrence Livermore National Laboratory, and a 99,072 core Cray XT5 at National
Institute for Computational Science (NICS). It is useful to evaluate scalability on
more than just a single compute platform. The use of multiple compute platforms
allows for differentiation between scalability problems in an application and the
compute platforms message-passing network. Each application had between five to
seven issues. Table 16.1 provides a listing of which applications had which issues.

We found it particularly striking that many of the same design issues were found
in applications created by different developers. While the applications were devel-
oped by groups of researchers from interrelated scientific disciplines, there is no
common origin for all the applications. Therefore we believe that many issues that
we have discovered represent inherent stumbling blocks for developers creating
parallel applications.

There are two different types of scalability, strong and weak. To test an appli-
cations strong scalability, a fixed size problem is executed on variety of processor
or core counts. For a code with ideal strong scaling, use of twice the number of
cores will reduce the execution time in half. In contrast to strong scaling, weak
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Table 16.1 Presence of scalability issues within applications

Problems Applications
POP CAM CICE HOMME CPL CLM

Replicated metadata Yes Yes Yes Yes Yes Yes
Excessive global arrays Yes Yes No Yes Yes Yes
Serial I/O Yes Yes Yes No Yes Yes
Non-scalable initialization Yes No Yes Yes Yes Yes
Non-scalable communication Yes No Yes No Yes No
Debugging at scale Yes Yes Yes Yes Yes Yes
Pre/post processing Yes Yes Yes Yes Yes Yes

scaling fixes the size of the part of problem allocated to each core. For a code with
ideal weak scaling, use of twice the number of cores will enable the execution of
an application with twice the number of grid points in the same amount of time.
Because climate modeling if frequently concerned with reducing the time to solu-
tion, and resolution changes very infrequently, only the strong scaling characteristics
of an application is typically reported. However successful use of very large-scale
parallelism will likely involve improvements in both the weak and strong scaling
characteristics of the application.

A critical prerequisite to efficiently utilize very large-scale parallel systems is
that the underlying numerical method is fundamentally scalable. In other words,
scalability is only limited by the quality of implementation of the application or the
scalability of the computing platform. The difference between numerical method
and application scalability is illustrated by considering the parallelization approach
used by POP and an older version of CAM. In the older version of CAM, which
decomposed across latitude, a computational grid with 128 grid points in longitude
and 64 grid points in latitude could only be parallelized across 64 cores. Additional
parallelism within CAM was only possible through either a major change in the
computational infrastructure, or an alternative numerical method. The scalability of
CAM was limited from a structural perspective. A significant change to the com-
putational structure and numerical method of CAM has since occurred, which has
improved its structural scalability. However, CAM still has structural scalability lim-
itations. Alternatively, POP has a much more flexible approach to scalability. The
only limit to parallelism within POP is that imposed on it by the compute platform.
For example it is possible to place as few as several grid points per core, though
with current compute platform characteristics this would not be an efficient con-
figuration. However the flexibility of POP is an important feature and enables it
to adapt to computational platforms with different balances between computational
and communication costs. The flexibility of POP has allowed it to successfully adapt
to both the Cray XT and IBM Blue Gene family of supercomputers. While structural
scalability is necessary, it is not sufficient for efficient execution for very large-scale
parallelism.



546 J.M. Dennis and R.D. Loft

16.3.1 Scalability of Memory Usage

We begin our examination of scalability by discussing the scalability of an applica-
tions memory usage. The single most critical, and common issue in the application
suite is the presence of non-scalable memory constructs. While problems with the
scalability of an applications execution time may just reduce the simulation rate,
problems with memory scalability will prevent an application from running at all.
Recall that the initial attempt to execute a predecessor of HOMME at 10 km failed
because it exhausted memory during initialization. Note that we are referring to
memory that is due to the data-structures of an application, not that is devoted to the
scientific calculations. Frequently, non-scalable data-structures can limit the type of
science questions that can be asked. Even when it is possible to successfully execute
an application, non-scalable memory may limit its execution to systems with larger
memory. Because of the cost of memory is a considerable component of the over-
all system cost, systems with a large amount of memory will tend to be rarer and
in greater demand than systems with comparatively smaller amount of memory per
core. Therefore the ability of an application to run successfully in a small amount of
memory gives it a competitive advantage relative to other applications that require
larger amounts of memory.

16.3.2 Replicated Metadata

One of the most common design issues discovered in the application suite is the
unnecessary use of replicated metadata. We refer to metadata as something that
describes the location of something else, like data structures that describe the loca-
tion of grid cells in the domain decomposition, or the message-passing schedule.
An example of message passing metadata is a data structure that indicates that
core i (pi ) sends n bytes to core j .pj /. In reality, only the cores pi and pj truly
require this piece of metadata. Cores pk , where k ¤ i ,k ¤ j does not need meta-
data for cores pi and pj . The replication of message passing metadata adds an
O.numNeigh � P/ sized data structure where P is the total number of cores and
numNeigh is the number of communication neighbors. If only relevant metadata is
stored, the size of the data structure is reduced to O.numNeigh/. The importance
of eliminating replicated metadata has been demonstrated by Baker et al. (2006). It
should be noted that retaining a single serial algorithm within a parallel application
forces replication of some metadata. For example, if an entire application is parallel
except for serial I/O, then a data structure of size O.P / is necessary to describe the
domain decomposition.

The most extreme example of the growth of metadata storage was located in
CLM. Because of the particular design of CLM’s dynamic domain decomposition
strategy, 4 � P global arrays were present in the initialization subroutines. Global
arrays in this case are arrays that are the size of the computational grid replicated
on each core. For CLM with 1=6ı separation between grid points (2;160 � 1;080
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total horizontal grid points), these four integer arrays would require 29 TBytes of
memory on 10,000 cores. While it was easy to discover large data structures, it is
more challenging to discover issues in smaller ones. Thus, long after addressing the
blatantly obvious metadata issues, a number of additional replicated data structures
continued to emerge.

A good technique for discovering the presence of replicated metadata is to mea-
sure the maximum memory usage and plot it as a function of core count. Maximum
memory usage is the maximum memory used by a single core at any time dur-
ing the simulation. While we found the Blue Gene memory usage tool memmon
developed by Walkup (2007) to be very useful to identify memory usage problems
within CLM, it is also possible to develop similar tools that use the Unix system
call getrusage, or the Linux /proc file system to measure memory usage. The mem-
mon tool provides function calls that print out current memory usage. Calls to the
memmon utility were added to CLM at key points in the code. The resulting analy-
sis of memory usage yielded surprising results. Figure 16.2 is a plot of the memory
usage as a function of core count for CLM at high-resolution. The maximum mem-
ory usage for the original version of CLM (CLM-orig), along with two modified
versions of CLM (CLM-mod1) and (CLM-mod2) are shown. Note that CLM-mod2
uses an updated version of the Model Coupling Toolkit (MCT) described in Jacob
et al. (2005) and Larson et al. (2005), while CLM-mod1 does not. Note that the
memory usage for the CLM-orig was estimated from lower resolution configura-
tion because its memory requirements were too large to successfully execute on
Blue Gene. It is interesting to note that memory usage for both the CLM-orig and
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Fig. 16.2 A plot of the memory usage of several different versions of CLM as function of pro-
cessor count. Elimination of both replicated data structures and global memory reduces memory
usage for CLM at high resolution on 512 processors by a factor of 50
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CLM-mod1 increase as core count increases. This behavior is a clear indicator
of the presence of replicated metadata. The huge difference in memory usage for
small core counts between CAM-orig and CLM-mod1 is an indication of another
form of non-scalable memory, excessive global arrays, which will be discussed in
Sect. 16.3.3.

We discovered O.numNeigh � P/ sized metadata on all six applications that
were examined. The simple replication strategy is understandable because most of
the applications were initially designed on 32–128 cores. The size of the metadata
only become problematic when attempting to scale to much larger core counts.

16.3.3 Excessive Global-Sized Arrays

Most of the applications in this study had an excessive number of arrays that were
the size of the entire grid. We discovered that CLM used a large number of per-
sistent global-sized arrays. We differentiate between persistent global arrays that
are used for the duration of a run, versus temporary global arrays that are allo-
cated within a subroutine and subsequently deallocated. While the elimination of
persistent global arrays will always reduce the necessary memory usage for the
application, the reduction of temporary global arrays may or may not reduce the
maximum memory usage of the application. Elimination of temporary global arrays
will only reduce maximum memory if the subroutine in which they are allocated
is the actual location causing the maximum memory usage of the application to be
reached.

It is possible to identify the presence of global arrays within an application by
looking at memory usage as a function of core count for a fixed resolution. The
memory usage of an application with global arrays will not decrease as core count
is increased. Another approach is to examine the weak scalability of memory usage
by fixing the per core domain size. An increase in memory usage for the larger res-
olution problem is a sign of the presence of global arrays. Figure 16.2 is a plot
of memory usage for a fixed resolution for several different versions of CLM.
The reduction in total memory usage for the CLM-mod1 versus the CLM-orig is
a result of the reduction in the number of persistent global arrays from approxi-
mately 500 to 1. The reduction of excessive global arrays and replicated metadata
reduces the memory usage for CLM at high resolution on 512 cores from 2,000 to
42 Mbytes, a reduction of a factor of 50.

16.3.4 Serial I/O

Five of the six applications performed serial I/O. This design decision was likely
made when the applications were first refactored for modest levels of distributed
memory parallelism. This “triage” was made at the time because (1) parallel I/O to a
single file was not supported in the initial implementations of MPI, (2) it is easier to
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Table 16.2 Memory usage of the CAM-CICE-CPL part of a high-resolution CCSM configuration
running on 480 cores of the Cray XT4

CCSM component MPI Total
CAM CICE CPL buffers

Memory usage (MB) 250 160 29 500 939
Percentage (%) 27 17 3 53 100

implement and (3) it provided acceptable performance when running on small core
counts. Not surprisingly, it becomes problematic when the parallelism of the appli-
cation is significantly increased. In addition to the creation of a serial performance
bottleneck, the serialization of I/O creates several other problems. In particular, it
requires the scattering and gathering of data to and from the distributed data rep-
resentation. The straightforward implementation involves allocating a global-sized
array on a single core, which may by itself exhaust memory on a system with lim-
ited memory like Blue Gene. Further, the gather/scatter of data may cause MPI to
allocate large amounts of buffer memory on the core performing serial I/O. Work
with a high resolution (0.1ı or 10 km resolution) configuration of POP on Blue Gene
revealed that while it was possible to allocate a single global array, the MPI buffer
allocation overhead caused the application to fail.

The impact that MPI buffer memory allocation has on overall memory usage is
illustrated our by measurements of the memory usage of a high-resolution CCSM
configuration on the Cray XT4. This CCSM configuration coupled 0.1ı POP and
CICE components to 0.5ı CAM and CLM. We concentrate on determining memory
usage for a single configuration of CCSM where the CICE, CAM, and CPL com-
ponents executing sequentially on 480 cores, and POP is executing concurrently on
a separate set of cores. We estimate each components memory usage by using the
resident working set size reported by the Linux/proc file system, and by placing
each component on disjoint sets of cores. Note that the MPI buffer space which is a
non-separable component of memory usage is easily determined because it is set by
environment variable. The results of our analysis for this configuration are shown
in Table 16.2, with the memory usage broken down by component model and that
used by MPI buffers. The rather large MPI buffers (53% of the total memory usage
shown) are necessary to support gathering/scattering related to serial I/O.

The impact of a single gather of a global array, inherent in a serialized I/O design
while acceptable on small core counts, has a profound impact on application mem-
ory usage at large core counts, and can even prevent the use of certain types of
compute systems.

16.4 Scalability of Execution Time

We next describe some examples of poor weak scalability discovered within the six
applications. While the previous section concentrated on addressing issues associ-
ated with allowing codes to run at all, this section concentrates on reducing the cost
to run applications.
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16.4.1 Non-scalable Initialization

Several of the applications in this study had non-scalable initialization execution
times. All applications in this study are typically run for as long as the queueing
system will allow, in which case the cost of initialization is amortized across a
6–48 hours long job. However, the impact of large initialization costs becomes par-
ticularly problematic when performing refactoring or development work, and can
serious limit the ability to test an application on very large cores counts. For exam-
ple, an O.P 2/ initialization algorithm, where P is the number of processors, was
discovered in POP when it attempted to run it on more than 10,000 cores. What was
a modest cost of a few minutes on smaller cores counts grew to 45 min at this scale.

An effective technique for identifying non-scalable initialization is to plot the
application’s initialization time as a function of core count. Unexpected increases in
initialization time at large core counts may indicate an algorithmic problem in the
initialization. In POP, the initialization issue turned out to be an O.P 2/ algorithm
to calculate the message passing schedule in a single routine: a problem that was
easily addressed. The original initialization algorithm contained a nested loop over
P tasks that searched for neighbors among a list of P�1 tasks. An alternative O.P /
version that computed and stored each tasks neighbors, which eliminated the O.P 2/
search, was developed and reduced the total initialization time at 10,000 processors
from 45 to 10 min. Note that at low resolution and core counts the improved O.P /
algorithm only reduced the initialization time from several minutes to 40 s versus
the O.P 2/ version, a minor improvement that would not have made sense to pursue
at low resolutions and core counts.

16.4.2 Non-scalable Inter-processor Communication

Scalable and efficient boundary exchange strategies are essential to the successful
parallel implementation of many commonly-used numerical methods for solving
partial differential equations. However, several of the applications we have studied
had scalability issues with their boundary exchange routines. These problems can
be classified as either unnecessary message serialization or excessive latency sensi-
tivity. Message serialization is typically the result of the serial treatment of special
points, edges, or surfaces found in the underlying grids. Latency sensitivity usu-
ally involves sending too many small messages, and becomes critical only at large
processor counts.

Both types of problem were discovered in the POP ocean model. POP uses curvi-
linear displaced-pole grids described by Murray (1996) and Smith et al. (1995) to
address coordinate singularies at the North Pole. A popular grid variation available
in POP is the tripole grid, which provides a quasi-uniform mesh over the Arc-
tic Ocean through the addition of a third pole and a coordinate seam across the
Arctic Ocean. An image of the POP tripole grid from Jones (2003) is provided in
Fig. 16.3. Because of the complexity of the coordinate seam in the tripole grid at this
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Fig. 16.3 The tripole grid used by POP. The coordinate seam in the tripole grid connects a pole in
the Yukon Territory of Canada to one near Arkhangelsk, Russia

interface, the boundary exchanges in the parallel implementation of the tripole grid
were partially serialized. In particular the POP implementation of the tripole grid
duplicate grid points along one logical dimension of the computational grid. POPs
update algorithm collects all the duplicated grid points along the tripole boundary
on a single core, perform the update coordinate transformation calculation, and then
distribute the solution back to all the cores along that edge. Consider the cost to
perform a boundary update using a serialized versus a distributed algorithm. For
the serialized algorithm, approximately

p
P cores need to communicate resulting

in an O.
p
P / algorithm. For a distributed algorithm, the cost to update the bound-

ary should be an O.1/, i.e., communicate with one or a small number of neighbors.
On 32 cores the serialize algorithm is approximately 6 times as expensive, while
on 32,000 it would be 179 times more expensive. While serialization problems in
the communication algorithm will show up in both strong and weak scaling exper-
iments, it will be particularly apparent for weak scaling. The elimination of the
serialized POP tripole algorithm and replacement with a distributed version reduced
the total execution time of POP at 0:1ı on a 2,000-core Linux cluster with an
Infiniband R� interconnect by approximately 15%.

POP also contained a latency-sensitive boundary exchange that underscored
the importance of message aggregation. A communication routine may be consid-
ered latency sensitive if greater than 50% of the cost to send a message is due to
latency cost versus bandwidth cost (message size divided by bandwidth). Because
the climate community is primarily concerned with strong scalability, the impact
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of message latency on application performance is important. Message aggregation
is a standard technique to reduce the impact latency has on application scalabil-
ity, albeit at the cost of increased MPI message buffer sizes. For example, POP’s
finite difference boundary exchange library was designed to work on two dimen-
sional grid objects and did not provide separate subroutines for boundary exchange
of 3-dimensional (3D) or 4-dimensional (4D) variables. Instead, POP implemented
the 3D boundary exchange update as a series of 2-dimensional ones, thus sequen-
tially performing a number of 2D boundary exchange updates equal to the number
of levels. In POP, which typically uses 60 vertical levels, this strategy has the poten-
tial to incur a substantial latency overhead penalty. By writing boundary exchange
subroutines specific for both 3D and 4D variables, this latency overhead is paid once
per variable, rather than once per vertical level, thus reducing latency sensitivity.

Ideally it is possible to diagnose problems in the scalability of boundary
exchanges through both strong and weak scaling experiments on systems with
different latency and bandwidth attributes. For example, POP’s lack of message
aggregation was discovered by comparing the scalability of its boundary exchanges
on the Cray XT and Blue Gene systems. It was observed that the scalability of
boundary exchanges within POP on the Cray XT was worse than on Blue Gene, a
direct result of the Cray XT’s higher message latency versus Blue Gene. Further, an
application may only exhibit scalability problems on compute platforms with less
capable message passing networks that either the Blue Gene or Cray XT systems.
The relative cost of the boundary exchange may vary widely depending on the pre-
cise system and model configuration. In the HOMME dynamical core, the relative
cost of boundary exchanges at low resolution ranges from 1% to 5% to as high as
30%–50% of the total cost at very large core counts.

16.5 Other Impediments

A number of additional impediments were discovered when attempting to signif-
icantly increase both the resolution and core counts for these applications. These
obstacles include debugging and software development, pre-processing of input, and
post-processing of output files. The overarching goal of increased parallelism is to
accelerate scientific discovery and thus must therefore involve not only application
execution but also a whole host of related tasks.

16.5.1 Debugging at Scale

Apart from memory and performance issues, when applications are run at high res-
olutions, bugs emerge. This is to be expected, since we are exercising code in a way
that has never been tested when we explore higher process counts. However, we
were surprised by the large number of bugs in these six applications that emerged
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when we increased both resolution and core count. Decomposition issues on large
core counts were particularly common. Other bugs were discovered in options
that engaged model physics not generally used in lower resolution configurations.
Experience debugging these applications has led us to make several best practice
recommendations. First, the domain decomposition strategies of applications should
be subjected to rigorous testing at a variety of scales. Unfortunately, the majority of
the domain decomposition bugs would not have been caught using a simplified unit
test methodology, but rather involve testing of the entire system by comparing the
results obtained using one decomposition to another. Second, while the number of
possible combinations of physics options, resolutions, and core count available in
scientific applications is daunting, routine testing is critical. Third, routine access to
multiple, very large systems is a critical requirement for the testing of applications
in order to spot problems introduced during development. In our experience, most
large systems, because of their cost, are competitively allocated on scientific merit.
As a result, resource providers and scientific users of large systems tend to neglect
performance and validation testing. Fourth, successful debugging of large, parallel
scientific applications not only requires routine access to large systems, but also
routine interactive access, or at the very least, batch access with rapid turn around
time. For example, addressing several bugs in POP required daily access to 2,048
cores for a total of a week. A concerted debugging effort of a high-resolution CCSM
configuration involved regular access to 1,800 cores, and consumed 600,000 CPU
hours in several months time. The development work associated with highly scal-
able scientific applications frequently require substantial resources. The best way
to minimize these costs is to reduce debugging costs through routine testing at a
variety of processor counts scales and resolutions.

16.5.2 Pre/Post Processing

The ultimate goal of our refactoring applications for performance is to speed up
scientific progress. It does little good to increase the performance of the model,
if the tools around it slow down or cease to function. Thus, one must examine
the entire scientific workflow for bottlenecks. As in the case of applications them-
selves, CCSMs pre/post analysis tools were designed to deal with low-resolution
simulations executed on small processor counts, indeed many are still serial.

An illustrative example is the serial generation of a river runoff input file for
an ultra-high resolution CCSM run. At low resolution, the calculation took 3 h
and 2 GBytes of memory. Since the application only needed to be run once, these
requirements were acceptable. However, when applied to a high-resolution CCSM
configuration, we discovered that the algorithm for generating a river runoff map-
ping from the 0:5ı land model to the ocean would have taken 60 days to execute on
a single core, and would have required 128 Gbytes of memory. The existing river
runoff algorithm was rewritten by replacing the local search algorithm and by lim-
iting its calculation to be near the coastline. The redesign (still serial) reduced the
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required resources to 30 min on a system with 5 Gbytes of memory for the high
resolution case.

The attempts to analyze a 100-year high-resolution coupled simulation has
recently highlighted the lack of scalability within CCSMs post processing workflow
and the impact it has on scientific discovery. While we are now able to simulate
high-resolution climate at approximately 2 simulated years per day, we are certainly
not able to analyze the approximately 3.5 TB of history files per week it generates. A
number of the standard post-analysis scripts had to be rewritten to eliminate exces-
sive memory usage in order to even execute successfully. Our inability to analyze
this data at a rate commensurate to its generation stems from the fact that most of
the analysis processing is serial.

16.6 Conclusions

We have described several common issues gleaned from experience refactoring six
scientific computing applications for efficient execution on very large-scale com-
puting systems. The six applications in total represent over a million lines of code
that have been developed by multiple scientific communities over the last 25 years.
Fortunately, improving their scalability involved addressing a small number of sim-
ilar issues in 	1% of the source code. Unfortunately, there is no simple solution, or
magic bullet. Refactoring, testing and debugging complex scientific applications on
large numbers of processors is inherently difficult. However, there is an approach
that has been remarkable effective on all six applications that we have worked with.
All the problems were discovered by systematically stress testing each application,
that is, testing the applications in ways that they have never before been tested, and
then systematically studying the way in which they behave or fail. This approach
requires routine, and in the case of debugging, rapid turn-around access to very
large scalable, parallel systems, and a commitment of resources for this purpose.
Routine application testing regimens can then ensure that these issues do not recur.

Our approach of stress testing while refactoring revealed that, despite the unique
origin for most of the applications studied, the issues discovered were strikingly
similar. At a high level the impediments involved non-scalable memory usage and
execution time. Non-scalable memory usage issues were discovered that actually
limited the type of science questions that could be asked. However, we also found
that a large number of these problems could be addressed by modifying a small
amount of source code. All of these issues were the results of design choices made
years ago for a single range of resolution and processor counts, and for which they
had little impact. The scalability implications of these choices were either ignored or
deferred. It is a cautionary tale as we contemplate the exascale systems with millions
of processors that loom on the horizon.
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