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Foreword

This book appears at a time of rapid change in the field of global atmospheric mod-
eling. The field is being transformed, and the authors of this volume are driving
many of those rapid changes.

As always, the models and the computing systems that run them are co-evolving.
Processor speeds have (almost) stopped increasing, but parallelism is exploding, and
systems with tens of millions of processors are expected in the next few years. These
technology trends are driving atmospheric models towards much higher spatial
resolution and more local discretization schemes.

The trend to higher model resolution is forcing a healthy re-examination of famil-
iar methods that have been accepted, for decades, as standards of global modeling
practice. Perhaps the most obvious point is that the quasi-static approximation is
not applicable with high resolution. Depending on the approach, non-hydrostatic
models must use short time steps, or else methods that avoid the need for short time
steps. This is motivating the design of new time-differencing schemes. With fine
horizontal grids, realistically steep topography can influence the choice of vertical
coordinate. A variety of new horizontal grids is being very actively explored. At
the same time, the horizontal and vertical staggering of the variables is also being
revisited. Conservation principles are now widely recognized as key to successful
long-term integrations. Vorticity dynamics is gaining a higher profile. Energy and
enstrophy spectra present new challenges at high resolution, and this is motivat-
ing increased attention to dissipation parameterizations. Parameterized processes,
especially those associated with clouds, are highly scale dependent, so that the
parameterizations of high-resolution global models must behave very differently
from their counterparts in low-resolution models.

In short, the field is in turmoil. This is good. Our rate of progress has accelerated,
and new capabilities are being realized at a rapid pace. The book you are holding in
your hands is an exciting report on progress from the front lines of research.

Fort Collins, USA Prof. David A. Randall
June 2010






Preface

Approximating the solution to the partial differential equations for atmospheric
flows using numerical algorithms implemented on a computer has been intensively
researched since the pioneering work of Prof. John von Neuman in the late 1940s
and 1950s. Since von Neuman’s numerical experimentation on the first general pur-
pose computer, the processing power of computers has increased at a breath-taking
pace. While global models used for climate modeling a decade ago used horizontal
grid spacings of order hundreds of kilometers, computing power now permits hori-
zontal resolutions near the kilometer scale. Hence, the range of the scales of motion
that next-generation global models will resolve spans from thousands of kilome-
ters (planetary and synoptic scale) to the kilometer scale (meso-scale). Hence, the
distinction between global climate models and global weather forecast models is
starting to disappear due to the closing of the resolution gap that has historically
existed between the two. For anyone interested in the dynamics of the weather and
climate problem, this is a significant milestone since two branches of modeling,
previously considered two separate disciplines, have started to merge.

Making effective use of massively parallel supercomputers, that are necessary
for running global models at high resolution, has forced model developers back to
the drawing board. Many current numerical methods are not scalable and therefore
not amenable for massively parallel processing. This has forced the community to
consider novel spherical grids (in the context of atmospheric global climate/weather
modeling) where the grid-cell size is globally quasi-uniform in contrast to the highly
nonuniform geographical longitude—latitude grid that has been the preferred choice
for decades. The higher resolutions also affect which equation set is appropriate as
a basis for the numerical discretizations. Model users now also expect the numerical
method to preserve key integral invariants in discretized space, demand the accurate
maintenance of balances in the flow, and request a truthful representation of waves
on many scales as well as realistic scale interactions. Needless to say, the breadth of
the choices of the computational grids and numerical schemes that should fulfill all
these requirements is daunting, to say the least, and requires insight into the multi-
scale nature of the problem and the properties of the chosen numerical methods.

vii
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The NCAR' ASP Colloquium 2008

To start tackling the significant challenges that lie ahead in global modeling, the Edi-
tors organized a colloquium on the latest developments in numerical methods for the
dynamical cores of atmospheric General Circulation Models (GCMs). Dynamical
cores are the central component of every climate and weather model. Loosely speak-
ing, they solve the equations of motion on the resolved scales and determine not only
the choice of the computational grid but also the predicted variables. Research in
dynamical cores faces many scientific and computational challenges as was briefly
outlined above.

On 1-13 June 2008, the colloquium entitled Numerical Techniques for Global
Atmospheric Models was held at the National Center for Atmospheric Research
(NCAR) in Boulder, Colorado. The colloquium was hosted by NCAR’s Advanced
Study Program (ASP) that hosts colloquia on an annual basis. The colloquium had
two main objectives.

First, it introduced a multidisciplinary group of graduate students to the science
of dynamical cores for global weather and climate models through lectures and
hands-on tutorials. The chapters of this book are based on the lectures given at the
colloquium by leaders in the field of numerical techniques for global atmospheric
models. Second, the colloquium brought together the global modeling community
by having the GCM modeling groups port their models to NCAR supercomputers,
configure the models for idealized test cases defined by the colloquium organizers
and to have the students exercise their models on these test cases during the collo-
quium. Nine international modeling groups accepted our invitation to participate in
the colloquium, and each group had at least one modeling mentor present during the
entire duration of the colloquium.

The modeling groups were as follows:

e Colorado State University (CSU) with the CSU-GCM

e Max Planck Institute for Meteorology (MPI-M) with the ICON (ICOsahedral
Non-hydrostatic) model

e Goddard Institute for Space Studies (GISS) and Goddard Space Flight Center
(GSFC) both part of National Aeronautics and Space Administration (NASA)
with ModelE

e NCAR with the CAM (Community Atmosphere Model)

e NCAR and Sandia National Laboratories with the HOMME (High-Order
Method Modeling Environment) model

e Massachusetts Institute of Technology (MIT) with the MIT-GCM

e Duke University, Earth System Science Interdisciplinary Center (ESSIC, Univer-
sity of Maryland) with the OLAM (Ocean-Land-Atmosphere Model)

e German Weather Service (DWD) with GME? (Global Model for Europe)

! The National Center for Atmospheric Research is sponsored by the National Science Foundation.

2 Before the GME became operational, GME was an acronym for Global Model ‘Ersatz’ (which
means ‘replacement’ in German) as the GME was a replacement for the spectral transform Global
Model (GM).
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e NASA GSFC joint with Geophysical Fluid Dynamics Laboratory (GFDL) run
by National Oceanic and Atmospheric Administration (NOAA) with the GEOSS5
(Goddard Earth Observing System model version 5)

e Joint Center for Earth Systems Technology (University of Maryland) with the
GEF (Global Eta Framework) model

Some groups participated with several model versions.

A total of six test cases with several variants were used. Two of the test cases
are described in Jablonowski and Williamson (2006, Quarterly Journal of the Royal
Meteorological Society) and Lauritzen et al. (2010, Journal of Advances in Mod-
eling Earth Systems), and the remaining four in Jablonowski et al. (submitted,
Geoscientific Model Development). These papers also show results from the model
simulations.

ASP Summer Colloquium June 1-13, 2008
Numerical Techniques for Global Atmospheric Models

Fig. 1 NCAR ASP 2008 summer colloquium group picture behind NCAR’s Mesa Laboratory.
From left to right (in order of increasing x-coordinate if photo was overlaid by a Cartesian
coordinate system): Svetlana Dubinkina, Oksana Guba, Mark A. Taylor, Peter Hjort Lauritzen,
Ramachandran D. Nair, Paul Ullrich, Dale Durran, Christiane Jablonowski, Jin-Young Kim,
Richard Rood, Jasper Kok, Jung-Eun Kim, Todd Ringler, Lucas Harris, Matthew Long, Detlev
Majewski, Hajoon Song, Dustin Williams, Sean Crowell, Junsu Kim, Jairo Gomes, Jochen Forst-
ner, Aneesh Subramanian, Atul Kapur, David Devlin, Willian Sawyer, Verica Savic-Jovcic, Alberto
Casado, Angela Marie Zalucha, Robert Walko, Marcia DeLonge, Matthew Norman, Guan Song,
Qiang Deng, Colm Clancy, Almut Gassmann, Lin Su, Priscilla Mooney, Lee Murray, Jared
Pierce Whitehead, Joakim R. Nielsen, Benjamin Kravitz, Ole-Kristian Kvissel, Lantao Sun, Brian
Sgrensen, Ayoe Buus Hansen, Cheng Zhou, Prabhakar Shrestha, Allan Christensen. Photo courtesy
of Kathleen Barney (ASP)
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About This Book

The chapters in this book collectively address almost every step in the development
of dynamical cores for global atmospheric models. The 16 chapters have been
divided into three parts: (1) equations of motion and basic ideas on discretizations,
(2) conservation laws and traditional finite-volume as well as emerging numeri-
cal methods, and (3) practical considerations for dynamical cores in weather and
climate models.

In the first chapter, Prof. J. Thuburn gives an introduction to the equations of
motion for the atmosphere and commonly applied assumptions that are used to ren-
der the equations numerically more tractable and/or understand the types of waves
supported by the equations of motion. Also the multiscale nature of atmospheric
dynamics is introduced. Dr. J. Tribbia continues the theoretical discussion on the
three-dimensional equations of motion through a mode decomposition analysis.
In Chaps.3 and 4, we leave the continuous equations behind and start exploring
the properties of some basic horizontal and vertical numerical discretizations, and
discuss the consequences of colocating and staggering prognostic variables. There-
after some basic ideas on time-discretizations are introduced in Chap.5 followed
by a discussion on how to control fast waves through appropriate time-differencing
(Chap. 6). The latter two chapters were written by Prof. D. R. Durran and conclude
part I of this book.

In part II, Dr. T. D. Ringler discusses in detail the finite-volume advection of
momentum and its relationship with other kinematic relationships such as conserva-
tion of vorticity (Chap. 7). Momentum advection is a key to the overall accuracy of
any dynamical core as it determines the transport of mass and tracers. Chapter 8
focuses on transport, in particular finite-volume transport schemes, and reviews
them from a semi-Lagrangian perspective. It presents an in-depth discussion on
desirable properties for transport operators intended for global atmospheric mod-
els (Dr. P. H. Lauritzen). While most global models today use the spectral transform
method or the finite-volume method, emerging new algorithms that are local but
posses spectral convergence properties are at the time of writing being tested and
integrated into atmospheric models. Such methods are being reviewed in Chap.9
by Dr. R. D. Nair. To conclude part II, Prof. L. Ju gives an introduction to Voronoi
diagrams that may be used to construct global spherical meshes with very flexible
options for variable resolution.

After the discussion of the continuous equations of motion and basic discretiza-
tion techniques in part I and the discussion of some classes of numerical schemes
and spherical meshes in part II, we turn our attention to the properties of the dynam-
ical core that are considered important in global atmospheric models (part III).
Prof. J. Thuburn discusses conservation issues in Chap. 11 followed by a discus-
sion on how to enforce key integral invariants numerically on unstructured grids
(Dr. M. A. Taylor’s Chap. 12). Almost all models need some level of filtering
or damping to render the computed solutions physically realizable and smooth.
Although these are rarely documented in the literature, they are paramount in model
applications. Prof. C. Jablonowski reviews the pros and cons of these diffusion
mechanisms, filters, and fixers in Chap. 13 and provides many illustrating examples
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from GCM runs. Continuing the filtering discussion, Dr. W. C. Skamarock focuses
on the kinetic energy spectra in atmospheric models and how the tail of such spectra
is influenced by discretization techniques and filtering. In Chap. 15 Prof. R. B. Rood
gives a perspective on the dynamical core and its place in full model systems
that include parameterizations of sub-grid-scale processes, data-assimilation, sur-
face models, and others. Finally, Dr. J. M. Dennis discusses the many challenges
in designing and implementing models for massively parallel supercomputers with
concrete examples from NCAR’s Coupled Climate System Model (CCSM).

The complex topic of dynamical cores, which includes choices between hundreds
of numerical methods and half a dozen spherical grids as well as variable staggering
options, offers an endless set of combinations and choices. Exploring all options
is simply not feasible, and it is therefore necessary to make intelligent selections
among the many choices. In the research community, there is, however, no consen-
sus regarding a particular numerical method or spherical grid being superior for all
applications (or even for a single application). The careful reader will find such dif-
ferences among some chapters in this book, as different authors advocate particular
approaches. It is deliberate that such diversity, which was discussed intensively dur-
ing the 2008 ASP colloquium, is represented in this book as it depicts state-of-the-art
knowledge in the field of dynamical cores. Despite this lack of collective agree-
ment on numerical methods and grids, there seems to be broad consensus regarding
dynamical core properties such as conservation, consistency, scalability, accuracy,
energy spectra, and capabilities. In other words, the goal seems clear, but the opti-
mal avenue to get there remains an open research question. We hope this book can
contribute to this quest and enlighten the interested reader in the many deliberations
that are an integral part of dynamical core development.
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Equations of Motion and Basic Ideas
on Discretizations



Chapter 1
Some Basic Dynamics Relevant to the Design
of Atmospheric Model Dynamical Cores

John Thuburn

Abstract The dynamics of the global atmosphere is highly complex and multiscale.
In this chapter a few aspects are discussed that are considered especially important
for the design of numerical models of the atmosphere. Commonly used approxima-
tions to the governing equations are discussed. The dynamics of fast acoustic and
inertio-gravity waves is briefly explained along with their role in maintaining the
atmosphere close to hydrostatic and geostrophic balance. The balanced dynamics
is exemplified through quasigeostrophic theory, which embodies the key ideas of
advection and invertibility of potential vorticity. Finally, some important effects of
nonlinearity are discussed, in particular the interaction between different scales and
the transfer of energy and potential enstrophy across scales.

1.1 Introduction

Geophysical Fluid Dynamics is a huge and complex subject, and we can barely
scratch the surface of it in this pair of introductory lectures. Therefore, I have tried
to pick out a set of topics that are most relevant to the design of atmospheric model
dynamical cores. There are several excellent introductory and graduate level text-
books that cover these topics and many more in greater depth (e.g., Gill 1982;
Pedlosky 1987; Salmon 1998; Holton 2004; Vallis 2006).

On large scales, the dynamics of the atmosphere is approximately balanced, and
it is important for numerical solutions to be approximately balanced in the same
sense. In this lecture we will discuss the nature of this balance, and the linear
dynamics of the fast acoustic and inertio-gravity waves responsible for the adjust-
ment towards balance. We will also discuss the quasigeostrophic equations, which
approximately describe the slow, balanced dynamics, and the Rossby waves that

J. Thuburn

School of Engineering, Computing and Mathematics, University of Exeter, North Park Road,
Exeter, EX4 4QF, UK

e-mail: j.thuburn@ex.ac.uk

P.H. Lauritzen et al. (eds.), Numerical Techniques for Global Atmospheric Models, 3
Lecture Notes in Computational Science and Engineering 80,
DOI 10.1007/978-3-642-11640-7_1, (© Springer-Verlag Berlin Heidelberg 2011
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these equations support. Some aspects of atmospheric dynamics are strongly nonlin-
ear, and numerical models must handle various nonlinear processes in a satisfactory
way. In this context we will mention Eulerian and Lagrangian timescales for atmo-
spheric dynamics, conservation properties, and turbulent cascades. Conservation
properties and turbulent cascades will be discussed again in Chap. 11. We begin
here by emphasizing the complex and multiscale nature of atmospheric dynamics.

1.2 The Multiscale Nature of Atmospheric Dynamics

Figure 1.1 indicates schematically the time scales and horizontal spatial scales of a
range of atmospheric phenomena. On the largest spatial scales (comparable to the
Earth’s radius) and seasonal timescales are large scale circulations such as that asso-
ciated with the Asian summer monsoon. Undulations in the jet stream and pressure
patterns associated with the largest scale Rossby waves (called planetary waves)
also have length scales of order 10* km. Cyclones and anticyclones have length
scales of a few thousand kilometers and timescales of order 10 days. The transi-
tion zones between relatively warm and cool air masses can collapse in scale to
form fronts with widths a few tens of kilometers. Convection can be organized on a
huge range of different scales, from the tropical intraseasonal oscillation on scales
of thousands of kilometers and a timescale of months, through supercell complexes
and squall lines of order 10 km across with lifetimes of several hours, down to indi-
vidual small cumulus clouds on scales of a few hundred meters and a few minutes.
These small cumulus clouds are formed when the turbulent eddies in the boundary
layer lift and cool air far enough for condensation to occur. The boundary layer is
the lowest few hundred meters of the atmosphere, where the dynamics is dominated
by turbulent transports. The turbulent eddies range in scale from a few hundred
meters (the boundary layer depth) down to the millimeter scale at which molecular
diffusion becomes significant.

Meridional circulation -

Molecular Monsoons
106 diffusion Planetary waves —
Cyclones _ - = = =~
o -1
-
% 1o Frortts
3 - Thunderstorms Loueo°90209e° n
2 o .
E Largs eimulus Gravity waves
-, M 1

Smalbcﬁn:ulus

Fig. 1.1 Schematic showing .
the range of time and 100 . L . .
horizontal scales of different 1072 10° 10 10
atmospheric phenomena Horizontal scale (m)
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The atmospheric spectrum of horizontal kinetic energy is observed to have a
slope very close to k3 on large scales and k~5/3 on small scales, where k is the
horizontal wavenumber, with a gradual transition between the two at scales of a few
hundred kilometers (Nastrom and Gage 1985). The dashed line in Fig. 1.1 is con-
sistent with this observed spectrum, re-expressed in terms of length and time scales.
The dynamically important phenomena mentioned above are those that dominate
the atmospheric energy spectrum, and all lie close to this dashed line. Molecular
diffusion, in contrast, is only significant to the left of the continuous line; thus it
is completely negligible for atmospheric dynamics until we reach scales of order
1 mm (see Chap. 2).

All of the phenomena along the dashed line in Fig. 1.1 are important for weather
and climate, and so need to be represented in numerical models. Important phe-
nomena occur at all scales — there is no significant spectral gap. Moreover, there are
strong interactions between the phenomena at different scales, and these interactions
need to be represented. However, computer resources are finite and so numerical
models must have a finite resolution. The shaded region in the figure shows the
resolved space and time scales in a typical current day climate model. The important
unresolved processes cannot be neglected and so must be represented by sub-grid
models or parameterizations. The lack of any spectral gap makes this task more
challenging. The emphasis in this series of lectures is on how we model the resolved
dynamics; however, it should be borne in mind that equally important is how we
represent the unresolved processes, and how we represent the interactions between
resolved and unresolved processes. There are significant research challenges in all
three areas.

Also shown in Fig. 1.1 are two dotted curves. These correspond to the disper-
sion relations for internal inertio-gravity waves and internal acoustic waves (see
Sect. 1.4). The fact that the dotted lines lie significantly below the energetically
dominant processes on the dashed line indicate that inertio-gravity waves and
acoustic waves are relatively fast processes. One consequence of this is that inertio-
gravity waves and acoustic waves are energetically weak compared to the dominant
processes along the dashed curve. The fact that these waves are fast puts strong con-
straints on the size of timestep that can be used in numerical models with explicit
time schemes. At the same time, the fact that they are energetically weak means
that we do relatively little damage if we distort their propagation by using a semi-
implicit time scheme in order to avoid the timestep restriction. See Chaps. 5 and 6
for a detailed discussion.

1.3 Governing Equations

The governing equations for a compressible fluid in a frame of reference rotating
with angular velocity £ may be written in the form

dp
— V . == .
o + V- (pu) =0, (1.1)
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Do

2% o, 12

Di 0 (1.2)
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Here, p is the fluid density, u is the fluid velocity vector, 6 is the potential tem-
perature, p is pressure, and @ is the geopotential. D/ Dt represents the derivative
following a fluid parcel. Q is the diabatic source term for potential temperature and
F represents any forces not already accounted for, for example molecular viscosity.

Equation (1.1) describes conservation of mass of the fluid. For simplicity, here we
restrict attention to a single phase fluid of fixed composition. The real atmosphere
contains varying amounts of water vapor and condensed water, and this complicates
the governing equations.

Equation (1.2) is one form of the thermodynamic equation; 6 is related to the
other thermodynamic variables through

0T (@) , (1.4)
P

(T is temperature, po is a constant reference pressure, often taken to be 10° Pa,
k = R/C, where R is the gas constant for dry air and C,, is the specify heat
capacity at constant pressure), along with the equation of state for an ideal gas

p = RTp. (1.5)

In adiabatic flow the source term Q vanishes, so that the 8 of an air parcel is con-
served. If an air parcel of potential temperature § were moved adiabatically from
its current pressure p to the reference pressure py its final temperature would be
T = 6. The potential temperature is closely related to the specific entropy 7:

n= Cpln6 + const. (1.6)

Equation (1.3) is the momentum equation; it expresses Newton’s second law of
motion for a fluid. Because we are in a rotating frame, two new terms with the
appearance of ‘virtual’ forces enter the equation of motion. One is the Coriolis term
242 xu. The other is the centrifugal term £2 x (£2 xu). However, the centrifugal term
may be written as the gradient of a certain potential; this potential is then combined
with the gravitational potential to obtain the geopotential @. The centrifugal term,
therefore, does not appear explicitly.

For the flow regime of the Earth’s atmosphere, rotation is extremely important.
On synoptic scales, the Coriolis term is one of the dominant terms in the horizontal
components of the momentum equation. Along with stratification effects, rotation
gives atmospheric flow a distinctive character that is qualitatively quite different
from other flows.
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1.3.1 Approximate Equation Sets

Almost no approximations were made in writing (1.1)—(1.5). However, it is often
desirable to work with approximate versions of the governing equations. These may
be conceptually simpler, for example by filtering out certain kinds of motion; they
may be analytically more tractable; or they may be easier to solve numerically, for
example by removing certain terms or types of motion that are difficult to handle
numerically.

Some of the most common approximations are the following (e.g., Durran 1999;
Gill 1982; White 2002; White et al. 2005, 2008 and references therein).

e Spherical geoid. It is common to approximate the geopotential ¢ as a function
only of r, the distance from the centre of the Earth. As a result the effective
gravity V@ acts only in the vertical component of the momentum equation in the
usual spherical coordinate system. This is a good approximation for the Earth’s
atmosphere, where the true gravitational acceleration is much stronger than the
centrifugal acceleration. But it would not be a good approximation for Jupiter,
for example.

e Quasi-hydrostatic approximation. This involves neglecting the acceleration term
Dw/ Dt in the vertical component of the momentum equation. This is a good
approximation on horizontal scales greater than about 10 km.

e Anelastic approximation. There are several flavours of anelastic or pseudo-
incompressible approximation. They involve neglecting the elasticity of the fluid
by approximating the mass continuity equation as something like

V- (pow) =0, (1.7)

where py is a reference density profile that depends only on height z. The anelas-
tic approximation is a good approximation on horizontal scales smaller than
about 10 km.

e Shallow atmosphere approximation. This is a collection of several approxima-
tions, but they must all be made together so that the resulting approximate
equations retain conservation laws for energy and angular momentum. The Cori-
olis terms involving the horizontal components of §2 are neglected; factors of
1/r in the spherical coordinate component form of the equations are replaced
by 1/a where a is a constant equal to the Earth’s mean radius; and certain other
‘metric’ terms are neglected.

It is often considered desirable for numerical models to use equation sets that
do not support acoustic modes. The high frequency of acoustic modes would make
it expensive or complicated to retain them in the numerical solution; on the other
hand, because they are energetically very weak we lose little by leaving them out.
The anelastic equations do not support acoustic modes. The hydrostatic equations do
not support internal acoustic modes, only horizontally propagating external acoustic
modes which, because of the anisotropic grids used in global atmospheric models,
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impose less of a restriction on the time step. Many past and present climate mod-
els make the hydrostatic and shallow atmosphere approximations (leading to the
so-called hydrostatic primitive equations). Many models of small-scale dynamics
use some form of anelastic equations. Unfortunately neither the hydrostatic nor
the anelastic approximation is valid on all horizontal scales. Consequently, sev-
eral recently developed atmospheric models, designed to work from global scales
down to kilometer scales, use the fully compressible equations. (Very recently,
some progress has been made towards acoustically filtered equation sets valid on
all horizontal scales: Durran 2008; Arakawa and Konor 2009).

The different approximate equation sets can be arranged systematically into a
hierarchy. Figure 1.2 shows part of that hierarchy. Some of these approximate
equation sets have been discussed already above. The quasigeostrophic, plane-
tary geostrophic, and semi-geostrophic equation sets filter inertio-gravity waves as
well as acoustic waves. The quasigeostrophic equations will be introduced briefly

Compressible

Euler
equations
Spherical
geoid
] Shallow
Quasi— atmosphere
hydrostatic
Hydrostatic
shallow Anelastic
atmosphere
Boussinesq
Shallow
water Quasigeostrophic
equations equations Planetary )
Semi—

| geostrophic geostrophic

Quasigeostrophic
shallow water
equations

|
Barotropic

vorticity
equation

Fig. 1.2 Part of the hierarchy of frequently used approximate equation sets for atmospheric
dynamics



1 Basic Dynamics Relevant to the Design of Dynamical Cores 9

in Sect. 1.6. The shallow water equations, their quasigeostropic version, and the
barotropic vorticity equation all describe a single-layer two-dimensional fluid. They
are too inaccurate for weather forecasting or climate modeling, but they are still used
for idealized studies and are useful for testing numerical algorithms before apply-
ing them to more complete equation sets (Williamson et al. 1992). White (2002)
presents a thorough and readable survey of various approximate equation sets used
for atmospheric modeling.

1.4 Fast Waves

We noted in Sect. 1.1 that the fast acoustic and inertio-gravity waves are observed to
be energetically weak. It might be tempting to think that it is therefore not necessary
to treat these fast waves accurately in atmospheric model dynamical cores. However,
the weakness of these fast waves corresponds to certain kinds of approximate bal-
ance between other terms in the governing equations, discussed more in Sect. 1.5
below. This balance is a leading order feature of atmospheric dynamics and it is
essential to capture it accurately in numerical models. The atmosphere is continually
being perturbed away from balance by a variety of mechanisms, including flow over
orography, convective instability, and the nonlinear nature of the balanced dynam-
ics. The mechanism by which the atmosphere adjusts back towards balance involves
the radiation and ultimate dissipation of the fast acoustic and inertio-gravity waves.
Thus, an accurate representation of balance in numerical models requires a causally
correct representation of the adjustment mechanism involving the fast waves. In
practice this means that some artificial slowing of the fast waves, for example by
a semi-implicit time scheme, is usually considered acceptable provided the group
velocity — see below — retains the correct sign. With this motivation in mind, we
will now look at the dynamics of acoustic waves and inertio-gravity waves. For this
purpose we will use the simplest equation sets that contain the essential dynamical
ingredients.

1.4.1 Acoustic Waves

Consider a compressible fluid, but neglect rotation effects, gravity, and non-
conservative processes. The mass and momentum equations may be written as

Dp dp\ Dp dp\ DO
_ (% Y 22 5Veu=o, 1.8
D1 (317)9 pr “\ag), e =PV (18
D 1
Y_ vy (1.9)

Dt p
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Now linearize these equations about a reference state at rest with constant density
po and temperature Ty, noting that D6/ Dt = 0, to obtain

1 dp
= = —poV-u, 1.10
29 poV-u (1.10)
ou 1
— =—-—V 1.11
o1 % p, (1.11)

where ¢2 = 9p/0dplg = RTy/(1 — k) and p and p are now perturbations from the
reference state. Hence u may be eliminated to leave a wave equation for p:

p 292
W_C Vep =0. (1.12)
Equation (1.12) has solutions
p o expli(k - x — wt)}, (1.13)

where X is the position vector and where the frequency w is related to the wavenum-
ber k by the dispersion relation

w? =2 k% (1.14)

Thus acoustic waves all propagate at speed ¢, independent of the wave vector; they
are said to be non-dispersive. Typical values of ¢ are around 315-350ms™".

Acoustic waves are longitudinal, that is, velocity perturbations are parallel to
the wave vector k. The physical mechanism for acoustic waves involves the inter-
action of compressibility and flow divergence: convergence of fluid locally leads
to an increase in density and hence pressure; the resulting pressure gradient then
drives fluid acceleration leading to new convergence displaced from the original
convergence.

1.4.2 Inertio-Gravity Waves

To simplify the governing equations we will make the Boussinesq approxima-
tion: assume the fluid to be incompressible and neglect variations in density from
its reference value po except where they appear in a buoyancy term, i.e., multi-
plied by the gravitational acceleration g. We will also neglect the Coriolis terms
involving the horizontal component of £ (one element of the shallow atmo-
sphere approximation), and work in Cartesian coordinates. The governing equations
become

Du 1 dp

= , 1.15
Dt o 0x (1.15)
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Dv 1 dp
oo =L, (1.16)
%lf:_p_log_iJ’b’ (1.17)
ou Jdv  Jw
bt oyt =0 (1.18)
Do N2 =, (1.19)
Dt
where _
h=—gP—P (1.20)
Po
and _
N2—_89P (1.21)
po dz

Here f = 2|82|sin¢ at latitude ¢; f is called the Coriolis parameter. We are
interested in motions on scales much smaller than the Earth’s radius so we can take
f to be a constant. There are two reference densities: py is a constant while p is a
function only of z. N2 is called the buoyancy frequency or Brunt-Viisili frequency.
Now linearize these equations about a hydrostatically balanced state of rest.
(Hydrostatic balance means that the reference buoyancy and vertical pressure gra-
dient terms exactly cancel implying no vertical acceleration; see Sect. 1.5 below.)

du 1 dp
- _fp=——r 1.22
ot F 00 0x° (1.22)
W o= L (1.23)
ar T 00 0y’ '
ow 1 dp
B 1.24
5 20 32 +b, (1.24)
oy (1.25)
ax  dy 9z '
% +wN? =0. (1.26)

Because these equations are linear and have constant coefficients they will have
solutions in which all variables are proportional to exp{i(kx + ly + mz — wt)} =
exp{i(k - x — wt)}. Substituting a solution of this form allows us to replace all
derivatives by algebraic factors. Then, systematically eliminating the velocity and
thermodynamic variables leads to the inertio-gravity wave dispersion relation

wl_ (k2+l2)N2+m2f2

1.27
k% 412 +m? (1.27)
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Inertio-gravity waves are transverse waves: the velocity is perpendicular to the
wave vector (which can be seen by considering (1.25)). Two interesting limiting
cases are that of very deep waves m?/(k? 4 [?) < 1, for which w? ~ N2, and that
of very shallow waves (k% +12)/m? < 1, for which w? ~ f?2. More generally, »?
lies between f2 and N2.

There are two basic physical mechanisms underlying inertio-gravity waves. At
the inertial end of the spectrum, i.e., shallow waves, an air parcel displaced from its
equilibrium position experiences a restoring force provided by the Coriolis effect. At
the gravity wave end of the spectrum, i.e., deep waves, an air parcel displaced from
its equilibrium position has a density different from that of the reference profile at
that height and so experiences a restoring force due to buoyancy, i.e., the imbalance
between the gravitational force on the parcel and the vertical pressure gradient force.
In intermediate parts of the spectrum both mechanisms operate to some degree.

1.4.3 Phase Velocity and Group Velocity

Two quantities are often used to describe the propagation of a wave or of a wave
packet: the phase velocity and the group velocity. The phase velocity ¢, is the veloc-
ity at which wave crests and troughs propagate. Suppose a wave has a structure
proportional to e ?®*) where

¢ =k -x— o) (1.28)

¢ is called the phase. The phase velocity is therefore the velocity at which surfaces
of constant ¢ move. So let

¢ =k-x—owt =Kk-(x—cpt). (1.29)

This relation is not enough to uniquely determine ¢, but if we also demand that ¢,
be parallel to k (the most natural choice), then

wk

cp = T (1.30)
(However, the reader should be warned that ¢, does not behave like a standard
velocity vector, for example under transformation to a moving frame of reference.)

The group velocity is the velocity at which a packet or group of waves of approx-
imately the same frequency propagates. It is, therefore, the velocity at which waves
of that frequency transport energy. One of the simplest derivations of the mathemati-
cal expression for group velocity is the following. Consider a one-dimensional wave
field @ that is a superposition of waves at two nearby frequencies and wavenumbers
(both of which satisfy the dispersion relation):
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Fig. 1.3 Schematic showing the formation of wave packets from the superposition of two waves
of similar wavenumber, given by the real part of (1.31)

b — % (ei[(k+5k)x—(w+5w)t] + ei[(k—Sk)x—(w—(Sw)t])
= cos(8kx — Swi)e' K*—D; (1.31)

see Fig. 1.3. The field @ consists of a series of wave packets. The individual wave
crests and troughs, described by the ¢l®*=®) factor, propagate at the phase speed
w/ k. The wave packets, whose envelope is defined by the cos(6k x — dw t) factor,
propagate at group velocity ¢ = Sw/8k. Taking the limit as 6k and dw tend to
zero, we have

dow
=, 1.32
Ce = % (1.32)
The generalization to three dimensions is
. v dw Jdo Jdw (133)
= w = _——, — .
¢k okl om )’

where (k, [, m) are the components of the wave vector k.
Both the phase velocity and the group velocity can be computed from the
dispersion relation. For acoustic waves, from (1.14) we find

Kk
cp=cg = :l:cm. (1.34)

Acoustic waves are unusual in that they are non-dispersive (their phase speed
is independent of the magnitude of the wave vector) and their phase and group
velocities are equal.

For inertio-gravity waves, (1.27) implies

w
Cp = W(k,l,m) (135)
and 2_ g2
N+ —
Cg = W (kmz, lmz, —m(k2 + 12)) . (136)

Among other things, these results show that the vertical components of the phase
and group velocities have opposite sign (provided N2 > f2, which is usually the
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Fig. 1.4 Vertical slice 1
showing the displacement of ook
material lines in the presence
of a packet of inertio-gravity

0.8F
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case), and that ¢,.c, = 0, i.e., group velocity is perpendicular to phase velocity.
See Fig. 1.4.

An important measure of the accuracy of any numerical method is how well
it captures the phase velocity and group velocity of different kinds of waves. We
will look at dispersion relations and phase and group velocity for some example
numerical schemes in Chaps. 3 and 4.

1.5 Balance

Atmospheric dynamics is characterized by being close to certain kinds of balance, at
least on large enough horizontal scales, namely hydrostatic balance in the vertical,
and geostrophic balance in the horizontal.

1.5.1 Hydrostatic Balance

Table 1.1 (closely following Holton 2004) shows typical scalings and typical values
for the terms in the vertical momentum equation written in spherical polar coordi-
nates for mid-latitude synoptic scale motions. Here L and H are typical horizontal
and vertical length scales, U and W are typical horizontal and vertical velocity
scales, a is the Earth’s radius, fj is a typical value of the Coriolis parameter, and
Py is a typical pressure value. It is clear that the dominant terms in the vertical
momentum equation are

+ la_p ~ 0, (1.37)

p ar

i.e., hydrostatic balance.
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Table 1.1 Typical scales of terms in the vertical momentum equation for synoptic scale midlati-
tude flow

w-equation % — "Z’L"Z —282u cos ¢ g % %
Scales UW/L U?/a foU g Py/pH
Values ms™2 1077 1073 1073 10 10

Table 1.2 Typical scales of terms in the eastward and northward component momentum equations
for synoptic scale midlatitude flow

u-equation Du — m w —2Qusing 22w cos¢ m g—i
v-equation % — uzl%‘t w 2Qu sin ¢ ,Tlr g—f;
Scales U?/L U?/a UW/a foU foW 8P/pL
Values ms™2  10™* 10—3 10-8 1073 10~° 1073

1.5.2 Geostrophic Balance

Table 1.2 (also closely following Holton 2004) shows typical scalings and typical
values for the terms in the horizontal momentum equation written in spherical polar
coordinates for mid-latitude synoptic scale motions. The same typical scales are
used as in Table 1.1, except that §P is a typical horizontal variation in pressure, and
8P K Py. Clearly the dominant terms are

Vo, e
fopr 3¢ — %’ ~ foprcosg A

vg. (1.38)

i.e., geostrophic balance.
A useful dimensionless number that measures the relative importance of the
inertial term Du/ Dt and the Coriolis term 242 x u is the Rossby number

Ro=U/(foL). (1.39)

Geostropic balance will be a good approximation provided Ro < 1.

1.5.3 Conditions for Hydrostatic Balance to be a Good
Approximation

Hydrostatic balance is a good approximation on synoptic scales, but not necessarily
on smaller horizontal scales. We can employ scale analysis to determine the condi-
tions under which it will be a good approximation, i.e., under which we can neglect
Dw/ Dt compared to the other terms in the vertical momentum equation.

First note that we can define a global horizontal mean density p,,(r) and a pres-
sure field p,,(r) in hydrostatic balance with it; these mean fields are dynamically
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uninteresting and we can subtract gp,, + dpm/dr = 0 from the vertical momen-
tum equation. Thus, the vertical acceleration will be negligible compared with the
pressure gradient term provided

uw P

— L —. 1.40
7 o (1.40)
From the horizontal momentum equation
8P
— ~U? or fyLU, (1.41)
o

depending on whether the inertial term dominates (large Ro) or the Coriolis term
dominates (small Ro). So we require

WH WH
— «1 —R 1. 1.42
UL <1 or UL 0K (1.42)

From the mass continuity equation we obtain a relationship between the velocity
scales and the length scales

w H

U L

H
L

or K ~ —Ro.
U
The first case arises when dw/dr is comparable to horizontal velocity gradients. The
second case arises when there is a strong cancellation between the two horizontal
components of the divergence. This happens when the Rossby number is small; the
horizontal flow is then approximately non-divergent, and the divergence and hence
dw/dr are smaller by a factor Ro than suggested by the most obvious scaling. See
Sect. 1.6.
Hence, hydrostatic balance will be a good approximation when

H? H?

Iz <1 or FRO < 1. (1.43)
In practice this means L greater than about 10 km (a typical H); for smaller L the
Rossby number is typically not small, so the second criterion in (1.43) is no more
likely to be satisfied than the first.

1.5.4 Balance and Nonlocality

When the atmosphere is perturbed away from hydrostatic balance, it adjusts back
towards hydrostatic balance through the radiation and ultimately dissipation of
internal acoustic waves and inertio-gravity waves. Making the quasi-hydrostatic
approximation in the governing equations (i.e., crossing out the Dw/Dt term)
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corresponds to filtering internal acoustic waves from the governing equations (and
modifying the dynamics of inertio-gravity waves). More precisely, it corresponds to
taking the limit in which the propagation speed of internal acoustic waves becomes
infinite, so that the adjustment to hydrostatic balance is instantaneous. In the unap-
proximated equations all information propagates at finite speed; these are hyperbolic
equations. The hydrostatic approximation introduces a certain nonlocality. Mathe-
matically, this is reflected in the appearance of a one-dimensional boundary value
problem. For example, in height coordinates we must solve a one-dimensional
boundary value problem known as Richardson’s equation for the vertical velocity
(e.g., White 2002). If instead we use pressure as the vertical coordinate we must still
solve two vertical integrals in order to compute the time tendencies of the prognostic
fields.

Similar ideas apply in the case of geostrophic balance. The atmosphere adjusts
towards geostrophic balance (or a nonlinear generalization of geostrophic balance
such as gradient wind balance, e.g., Holton 2004) through the radiation and dissi-
pation of inertio-gravity waves. The quasi-geostrophic approximation (see the next
section) filters inertio-gravity waves from the governing equations, or, rather, cor-
responds to the limit in which inertio-gravity waves propagate infinitely fast so that
the geostrophic adjustment process is instantaneous. This nonlocality is reflected
mathematically in the appearance of a three-dimensional elliptic equation that must
be solved in order to compute the time tendency of the prognostic field, in this case
the potential vorticity.

Hydrostatic and geostrophic balance are physically relevant asymptotic limits of
the governing equations. Even if we are solving the unapproximated (i.e., hyper-
bolic) governing equations, balance and the implied nonlocality are important.
However, the solution of elliptic equations requires quite different numerical tech-
niques from the solution of hyperbolic equations, particularly on massively parallel
computers. Model developers therefore face an important choice between inher-
ently local explicit time stepping techniques and inherently nonlocal implicit time
stepping techniques.

1.6 Sketch of Quasigeostrophic Theory

A very brief sketch of quasigeostrophic theory is given here to lead up to a discus-
sion of the dynamics of Rossby waves. See any of Gill (1982), Pedlosky (1987),
Holton (2004), or Vallis (2006) for a fuller and more rigorous discussion.

We will work in Cartesian S-plane geometry, where f = fo + By, fo is a con-
stant mid-latitude value of the Coriolis parameter and 8 = df/dy , and use a
log-pressure vertical coordinate Z = —H, In(p/poo), where H, = RT.s/g is a
constant density scale height related to a constant reference temperature 7T, and
Poo 1s a constant reference pressure. Now make four key assumptions:

e The flow is in hydrostatic balance. In terms of the geopotential @, 0® /97 =
RT/H,.
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e Ro < 1 so that the flow is close to geostrophic balance.

e Thermodynamic quantities are close to reference profiles that are functions
only of Z. Reference profiles are indicated by subscript 0 and departures from
reference profiles by a’.

e BL/fo < 1,i.e., fractional changes in the Coriolis parameter are small over the
horizontal scales of interest.

With these assumptions, the leading order terms in the horizontal momentum
equations simply state that the flow is close to geostrophic balance

1 0® 1 09 (1.44)
UR Uy = ———; VR Vg =——0. .
¢ Jo dy ¢ Jo 0x
It is convenient to introduce the geostrophic stream function v = @’/ fp, so that
ad d 0’ ad
g =W, 2 SNV (1.45)

Ty T b g 02

where et = Tret(Poo/ p)~.
In order to say anything about the time evolution of the flow we need to go to
next order. So define the ageostrophic velocity u,, v, by

U=uUg+Ug; V=0vg+ g, (1.46)

Then the next order terms in the momentum equations bring in the time derivatives
of ug and vg. The two component equations may be combined to give a vorticity
equation
Dgle _ fo
Dt po 0%

Here {; = f + 0vg/0x — dug /0y is the geostrophic approximation to the ver-
tical component of absolute vorticity, w = DZ /Dt is the vertical velocity in the
log-pressure coordinate system, and pg is a reference density profile. Dy /Dt =
0/0t + ugd/0x + vgd/0dy is the derivative following the geostrophic flow. The

thermodynamic equation at the same order becomes

(pow) . (1.47)

DO 36,

— =0, 1.48
Dr +w82 (1.48)

and this may be combined with the vorticity equation to obtain the potential vorticity
equation

D
Zed _, (1.49)
Dt
where 3 fz 5
1 v
= vz —_ KA 1.50
q=Jfo+By+Viy+ az(erifaz)’ (1.50)

with N2, = (g/6rer)060/0%.
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The two equations (1.49) and (1.50), together with the diagnostic relations (1.45)
and suitable boundary conditions, represent a closed set of equations for the evolu-
tion of the flow. Equation (1.49) embodies the advection or material conservation
of potential vorticity. Equation (1.50) embodies the invertibility of potential vor-
ticity, the idea that if we are given the three dimensional distribution of potential
vorticity, along with suitable boundary conditions and the condition that the flow
be in hydrostatic and geostrophic balance, then we can infer everything else about
the wind and thermodynamic fields (e.g. Hoskins et al. 1985). Many phenomena
in geophysical fluid dynamics can be understood in terms of the twin properties of
advection and invertibility of potential vorticity. The potential benefits of respect-
ing material conservation of potential vorticity in numerical models are discussed
further in Chap. 11.

1.6.1 Rossby Waves

We can use quasigeostrophic theory, and the ideas of advection and invertibility of
potential vorticity, to understand the dynamics of Rossby waves. Linearize (1.49)
and (1.50) about a state of rest:

)
a—f + Bug = 0; (1.51)
1 a [ f2oy
=V + —— [ p0% = ). 1.52
q z‘“poaz(p N;faz) (152

(g is now the potential vorticity perturbation.) Seek solutions
¥ = Re {&(Z)exp likx + Iy + m3 — a)t)]} (1.53)

that are wavelike in the horizontal and in time but may have a more complicated
vertical structure expressed through v (Z). By expressing (1.51) in terms of i and
eliminating 1 we obtain the dispersion relation

- Bk
CT TR P+ 2+ 1JGHD) fZ/NE (1.54)

Figure 1.5 shows schematically the horizontal propagation of a Rossby wave
packet. The background potential vorticity increases towards the North. The dis-
placement of the potential vorticity contours (which are material contours) indicates
how the potential vorticity has been advected by the wind field. The potential
vorticity anomalies in turn determine the wind field through invertibility: posi-
tive potential vorticity anomalies have cyclonic circulation while negative poten-
tial vorticity anomalies have anticyclonic circulation. The wind field then further



20 J. Thuburn

09 i

Northward distance y

02F . . b

0.1f E

0 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Eastward distance x

Fig. 1.5 Schematic showing the propagation of a packet of Rossby waves in the longitude-latitude
plane. The contours indicate potential vorticity values; the arrows indicate the wind field

advects the potential vorticity. In this case it is clear that the wind field acts to dis-
place the pattern of potential vorticity crests and troughs towards the west, consistent
with the negative values of w given by (1.54).

1.7 Eulerian and Lagrangian Timescales

The Eulerian view of fluid mechanics looks at the evolution of the fluid fields at
fixed locations in space as the fluid moves past. When a feature of length scale L or
wavenumber k is advected past at a velocity of scale U, the timescale for its rate of

change is
L ! (1.55)
TEul U kU . .

The Lagrangian view of fluid mechanics looks at the evolution of the fluid fields
following fluid parcels. Some quantities (y, say) are approximately materially con-
served (Dy/Dt = 0), so they have long Lagrangian timescales. Other quantities,
like the pressure or vorticity, evolve on a timescale determined by the velocity
gradients or strain field S' experienced by the fluid parcel

1
Tag ~ - (1.56)
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For the large-scale, balanced, atmospheric flow, the energy spectrum is relatively
steep, close to k3, which implies that the strain field is dominated by the largest
scales (or smallest wavenumbers, say k¢) of the flow

1 1

TLag ~ g~ kol (1.57)
Thus, the Lagrangian timescale for atmospheric flow is typically significantly
longer than the Eulerian timescale. This fact may be exploited through the use of
semi-Lagrangian time discretizations in atmospheric models; the slow Lagrangian
evolution can be captured more accurately (for a given time step) than the faster
Eulerian evolution. However, this disparity in timescales is less clear cut for smaller
scales of motion or when departures from balance (i.e., fast waves) become impor-
tant. Another important exception is flow over orography; in this case tg, becomes

very long, because the flow is quasi-steady from the Eulerian point of view, while

L 1

~—_~— 1.58
TLag U kU ( )

where L and k are now the length scale and wavenumber of the orography and the
flow perturbations it induces. In this case, semi-Lagrangian schemes, using the long
time steps permitted by a semi-implicit treatment of the fast waves, can suffer from
spurious orographic resonance (e.g., Rivest et al. 1994).

1.8 Turbulence and Cascades

The nonlinearity of the governing equations implies that there is an interaction
between different scales of motion. A numerical model must be able to handle
appropriately these nonlinear scale-interactions. In particular, even for an initially
smooth and well resolved initial condition, the dynamics will attempt to generate
variability near the grid scale, which may be poorly represented, and below the grid
scale, which cannot be resolved at all. In this section we will look at some ideal-
ized models of turbulence and the nonlinear scale interactions that they describe.
Space permits only the very briefest of introductions here; see, for example, Salmon
(1998) for an excellent fuller discussion.

1.8.1 Three Dimensional Turbulence

Consider three-dimensional, statistically steady, homogeneous and isotropic turbu-
lence in an incompressible constant density fluid. Assume that the fluid is stirred,
and energy is input, on some large scale, and that energy is dissipated by viscosity



22 J. Thuburn

Fig. 1.6 Schematic E(K)
indicating the downscale

energy cascade in

three-dimensional turbulence

1/L k_F k_D

at some small scale; there must therefore be a systematic transfer of energy from
the forcing scale to the dissipation scale. When this transfer occurs through a suc-
cession of gradually smaller eddies it is referred to as a cascade. Assume, also, that
there is some range of scales in between the forcing and dissipation scales — the
inertial range — that is statistically independent of the details of the forcing and
dissipation. The rate of energy production &£ must equal the rate of energy dissipa-
tion. Moreover, the rate of transfer of energy from wavenumbers smaller than k to
wavenumbers greater than k, for any k in the inertial range, must also equal &. See
Fig. 1.6.

The following dimensional argument (Kolmogorov 1941) then implies a partic-
ular form for the energy spectrum. The dimensions of the spectral energy density
E (k), i.e., the energy per unit wavenumber of the spectrum, are

[E(k)] — 1372, (1.59)

where L stands for length and T stands for time. In the inertial range at wavenumber
k, the only dimensional quantities are k itself and .

k] =L7! and [¢] = LT3, (1.60)
so the only way to construct a quantity with the same dimensions as E (k) is
E(k) = C1623k5/3 (1.61)

for some universal C; of order 1.

1.8.2 Two-dimensional Turbulence

Now consider two-dimensional, statistically steady, homogeneous and isotropic tur-
bulence in an incompressible constant density fluid. In two dimensions we have
another conservable quantity, the enstrophy, and therefore a cascade of enstrophy at
arate 7.
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Fig. 1.7 Schematic E(k)
indicating the upscale energy

cascade and downscale

enstrophy cascade in

two-dimensional turbulence
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Typically energy now cascades upscale while enstrophy cascades downscale
(Fig. 1.7). The argument for the k~>/3 spectrum given above did not depend on
the number of space dimensions, nor on the direction of the energy cascade. We
therefore expect to see a k~>/3 spectrum on scales larger than the forcing scale,
provided there is a mechanism to provide a sink of energy at very large scales.

In the inertial range on the small-scale side of the forcing, again the dimensions
of £ (k) are given by (1.59), but now the only dimensional quantities are

k] =L7! and [g]=T73. (1.62)
Hence, the only way to construct a quantity with the same dimensions as E (k) is
E(k) = Con?/Pk ™3 (1.63)

for some universal C, of order 1.

1.8.3 Energy Upscale, Enstrophy Downscale

The above arguments, based on statistically steady flow, suggest that, in two dimen-
sions, energy will cascade predominantly upscale while enstrophy will cascade
predominantly downscale. Another argument, leading to the same conclusion, is
given by considering an initial value problem.

Let E and Z be the total energy and enstrophy per unit area:

E = /E(k)dk and Z =/Z(k)dk. (1.64)

The enstrophy spectrum is related to the energy spectrum by Z(k) = k2E (k). Sup-
pose energy is initially concentrated near wavenumber k1 and subsequently spreads
out, so that

d

- /(k —k1)2E(k)dk > 0. (1.65)
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Expanding the integral and substituting from (1.64), and using the fact that £ and
Z are conserved (neglecting viscosity) leads to

d ([kE()dk “0 (166)
dt \ [E(k)dk ' '

However, the quantity under the time derivative here is a representative wavenumber
for energy, implying that, in some mean sense, energy moves to larger scales.
Similarly, if we assume that

% /(k2 —k2)2E(k)dk > 0, (1.67)

then, again expanding the integral and substituting from (1.64), conservation of E

and Z implies

5

i w > 0. (1.68)
dt \ [Z(k)dk

Thus, a representative wavenumber for the enstrophy increases in time, implying
that enstrophy, in some mean sense, moves to small scales.
Figures 1.8 and 1.9 show an example numerical solution of the barotropic
vorticity equation
D¢

=0, 1.69
D1 (1.69)

where the velocity field used to calculate the material derivative is given by

oy oy
w2
dy’ ox’

Vi =¢. (1.70)

The barotropic vorticity equation is one form of the equations describing two-
dimensional incompressible flow. It bears some resemblance to quasigeostrophic
theory as it embodies the advection and invertibility of vorticity. In this example the
domain is square and doubly periodic. The initial condition is a not-quite-regular
array of vortices of alternating sign. The numerical solution is calculated using a
Spectral method (e.g., Williamson and Laprise 2000) based on Fourier transforms.
The maximum resolved wavenumber in the x- and y-directions is 85. A suitably
tuned k V*¢ is added to the right hand side of (1.69) to dissipate enstrophy that cas-
cades towards the resolution limit; here « is the dissipation coefficient. See Chap. 11
for a discussion of what happens when this term is not included.

The right hand panel of Fig. 1.9 shows the solution after a few vortex turnover
times. Several mergers between vortices of the same sign have taken place, and
some are clearly in the process of taking place at this instant. This tendency for like-
signed vortices to merge is one of the physical space manifestations of the upscale
energy cascade discussed above.

At the same time, fluid has been stripped from the edges of most vortices and
drawn out into long thin filaments that fill the space between the vortices. This
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Fig. 1.8 Initial condition for a numerical solution of the barotropic vorticity equation. The left
hand panel shows the initial vorticity field; red is positive vorticity, blue is negative vorticity. The
right hand panels show the initial energy and enstrophy spectra
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Fig. 1.9 As in Fig. 1.8 but after a few vortex turnover times. The right hand panels show both the
initial spectra (black) and the spectra at the current time (blue)

process is the physical space manifestation of the downscale enstrophy cascade
discussed above.

1.8.4 Application to the Real Atmosphere

There are a number of caveats associated with these arguments, besides their
extreme idealization, including the fact that they neglect intermittency, and the
fact that a spectrum as steep as k3 is just barely consistent with the idea of an
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inertial range because the large scales will begin to dominate the strain rate and
interactions will cease to be local in spectral space. Furthermore, the atmosphere is
not a two-dimensional incompressible fluid. However, much of the atmosphere is
stably stratified and moves approximately layerwise two-dimensionally. Moreover,
the atmosphere has an approximate material invariant, the potential vorticity, some-
what analogous to the vorticity in two-dimensional incompressible flow, and hence
has a quadratic invariant, the potential enstrophy (see Chap. 11), somewhat analo-
gous to the enstrophy in two-dimensional incompressible flow. It is therefore argued
that the turbulent behaviour of the atmosphere on large scales will be qualitatively
similar to that of two-dimensional incompressible flow.

On horizontal scales larger than a few hundred kilometers, the atmospheric
kinetic energy spectrum is observed to be close to k3, as in an inertial range (poten-
tial) enstrophy cascade. However, analysis of global datasets implies that there are
significant sources and sinks of energy across a wide range of scales, which is incon-
sistent with the idea of an inertial range. Furthermore, the observed kinetic energy
spectrum makes a transition to something close to k~>/3 on scales smaller than a
few hundred kilometers; this transition is quite different from the prediction of two-
dimensional turbulence theory and there is currently no widely accepted explanation
for it. However, careful analysis of energy and enstrophy budgets from observations
and global datasets implies that the general conclusion of energy cascading predom-
inantly upscale and (potential) enstrophy cascading predominantly downscale does
indeed hold.

1.9 Conclusion

Atmospheric dynamics is complex and involves a wide range of space and time
scales. The energetically dominant dynamics is slow and close to balance, and it
may be wavelike, vortical, or strongly nonlinear. Fast acoustic and inertio-gravity
waves represent departures from balance, but are also the mechanism by which
the atmosphere continuously adjusts towards balance. Nonlinearity implies interac-
tions between the different space and time scales. Particularly important are energy
and potential enstrophy transfers across scales; for any practical global atmospheric
model there will inevitably be important dynamics occurring near the resolution
limit. The need to capture all of these processes with sufficient accuracy make
numerical modeling of the atmosphere one of the most challenging branches of
computational fluid dynamics.
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Chapter 2
Waves, Hyperbolicity and Characteristics

Joseph Tribbia and Roger Temam

Abstract This lecture describes the basics of hyperbolic systems as needed to solve
the initial boundary value problem for hydrostatic atmospheric modeling. We exam-
ine the nature of waves in the hydrostatic primitive equations and how the modal
decomposition can be used to effect a complete solution in the interior of an open
domain. The relevance of the open boundary problem for the numerical problem of
static and adaptive mesh refinement is discussed.

2.1 Introduction

The most comprehensive dynamical model of the atmosphere is the Navier Stokes
equation for a compressible gas. Because of the viscous stress term this system of
equations is parabolic, i.e., formally similar to the diffusion equation. However, on
the length scales which we currently numerically model the atmosphere for weather
prediction and climate simulation the dissipation time scale is quite large. For exam-
ple, using the molecular viscosity of dry air, v = 1.5 x 107®m?/s, and a length
scale, L = 1 km, the e-folding time for viscous decay is 2,000 years. Note that if L
corresponds to the grid length in a numerical model this scale is currently beyond
our computational capability for a global weather or climate model. But even for
much smaller length scales, L = 1 m, the e-folding time is greater than a half day
which, as will be shown later, is still much longer than the relevant propagation time
scale of many atmospheric waves which are represented in the compressible Navier—
Stokes equations. Thus, for the purpose of understanding the behavior of numerical
weather and climate models, the atmosphere can be considered a hyperbolic system
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of equations and the (molecular) dissipation terms may be neglected to a very good
first approximation.

A classical mathematical treatment of hyperbolic systems uses the method of
characteristics to simplify and formally solve the governing partial differential equa-
tions. In the solution of the PDEs in this manner, the question of boundary conditions
for open spatial domains is elucidated. And while the main focus of this volume of
lecture notes is global modeling, the challenges associated with static and adap-
tive grid refinement can be shown to be related to the issues surrounding the open
boundary value problem. Thus the remainder of this contribution will be presented
as follows; Sect. 2.2 will give a very general introduction to the method of charac-
teristics and give the simplest example of its use; Sect. 2.3 will develop the normal
mode structure of the hydrostatic primitive equations in Cartesian geometry dis-
cussing the role of the hydrostatic balance and the resultant modified oscillations
in the reduced (hydrostatic) system. We will then use the methods of Sect.2.2 to
solve the open boundary problem for the hydrostatic system in this simplest con-
text. Section 2.4 will examine the equivalent problem in spherical geometry and
Sect. 2.5 will conclude with a discussion of the utility of these results within the
context of global non-hydrostatic weather and climate models.

2.2 The Method of Characteristics

In this section the basics of the method of characteristics is presented in the simplest
context for the solution of a first order partial differential equation in two variables
(x,1) with the dependent variable to be solved for given as u(x, t). The governing
equation is then:

a(x,t,u)uy + b(x,t,W)uy = c(x,t,u), 2.1

and treating ¢ as the time variable, the initial value problem for (2.1) can be posed by
specifying u(x, 0) = F(x). The solution via the characteristic method is then forged
by solving the auxiliary set of ordinary differential equations in the variable s taken
to be the distance along a characteristic curve in (x,¢) : s = s(x,1):

dt dx du
’r a(x,t,u), E b(x,t,u), ’r c(x,t,u) 2.2)

That this results in a solution to (2.1) is easily seen by rewriting u as a function of
s, 1i.e., u(s) = u(x(s),t(s)) and using the chain rule.

As an example of the method, let a(x,z,u) = 1, b(x,t,u) = Uy with Uy a
constant, and c(x, ¢, u) = 0. The solution of (2.2) is thent = s, x(s) = x(0) + bygs
and u = const along each characteristic curve x = x(0) + Upt. Using the initial
value of u(x, 0) gives the result that u(x, ) = F(x—Upyt). If, rather than specifying
c(x,t,u) =0, c(x,t,u) = —ru with r = const is given, then the solution above
would be modified to u(x,t) = exp(—rt)F(x — Upt). Note that above the general
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partial differential equation (2.1) can, in fact, be nonlinear since the coefficients of
U, Uy and u can depend on u. The method of characteristics is useful for this special
type of nonlinearity which restricts the dependence of these coefficients to be only
on u with no dependence on partial derivatives of u. Such equations are termed
quasi-linear equations due to this restriction.

The solution of the initial value problem above is determined for all # > 0 and the
entire x axis. If we wish to limit the domain of the solution to the strip in (x, ¢) such
that7 > 0 and 0 < x < L, then the solution given informs us as to how this must
be done. Assuming Uy > 0, the characteristic curves carry the solution from left
to right in x. For the solution to the limited domain problem it is clear that u(0, ¢)
must be given in order to update u(x, t) in the interior. However, u (L, t) should not
be specified as the solution is carried by the characteristics from the interior to this
boundary. The method of characteristics is then the appropriate analysis technique
for determining the boundary conditions that lead to well-posed initial boundary
value problems (IBVPs).

The extension of the method to two space and one time variable is straightfor-
ward. The general form of the governing equation is then:

alx,y, t,w)us +b(x, y, t,uwuy +c(x, y, t,u)uy, =d(x,y,u,t), (2.3)

and the characteristic curves in (x, y, t) are now determined by the solution to:

dt dx dy

7 =a(x,y,t,u), Is =b(x,y,t,u), 5 =c(x,y,t,u),

d

_M — d(x7y7[’u). (24)
ds

The spatially two-dimensional generalization of the constant coefficient case, i.e.,
letting a(x, y,t,u) = 1, b(x, y,t,u) = Uy, c(x,y,t,u) = Vopand d(x, y,t,u) =
—ru, with Uy, Vj, and r all constants and initial condition u(x, y,0) = F(x, y),
has as the solution: u(x, y,t) = exp(—rt)F(x — Upt, y — Vpt). The analysis of the
limited area IBVP proceeds in the same way as in the case of one space dimension,
leading to the specification of u on boundaries for which the characteristic curves
point inward as time increases and allowing the solution to evolve at boundaries
where the characteristic curves are directed outward. This leads to a well-posed
IBVP. It should be noted that in any number of space dimensions a singular case
exists for the IBVP, where the boundary corresponds precisely to a characteristic
curve. In this case the characteristic curves are neither inward nor outward and so
no specification leads to a well-posed problem and no solution is possible. In this
singular case the IBVP is ill-posed.

The method can be used to solve the IBVP for a system of quasi-linear PDEs of
the general form:

AU, x,1)U; + B(U,x,1) - VU + C(U, x, 1)U = D(U, x, 1), 2.5)
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where U is an N-dimensional vector dependent variable, A, B, C are N by N matrices
and D is an N-dimensional vector function of (U, x, ). This form is general enough
that the Euler equations for a perfect gas can be seen to be one of the system of PDEs
for which the method of characteristics can be used. In the vector case, with multiple
space dimensions, the needed mathematical trick is to diagonalize the system so that
(2.5) is equivalent to multiple scalar equations and reduce the problem to one similar
to solving (2.1) or (2.3). For the primitive equations a preliminary step is needed to
reach the above form This step and the diagonalization of the atmospheric equations
is the topic of the next section.

2.3 The Normal Modes of the Hydrostatic Equations

In this section, the diagonalization of the hydrostatic equations is taken up. As noted
in the previous section, the fully compressible Euler equations are of the form of
(2.5) above and so are amenable to solution using the method of characteristics. In
addition, as noted in the lecture on basic atmospheric dynamics (Chap. 1), global
modeling efforts are increasingly giving up the use of model formulations which
impose balance conditions within their formulation. Why, one might ask, are the
hydrostatic equations the topic of this section? There are two primary reasons for
this: First, only one of the global models represented at the colloquium is based on
the non-hydrostatic, fully compressible equations. The remaining ten models stud-
ied are formulated using the hydrostatic balance assumption. Second, even in the
global and regional non-hydrostatic models that currently exist or are planned for
the future, the issues that arise in the actual application of the method of charac-
teristics to such models are very much related to the difficulties that exist in the
solution of the hydrostatic primitive equations. This latter point will be elaborated
upon below.

The diagonalization of the hydrostatic system will be discussed in two parts.
First, the simpler problem of diagonalization in Cartesian geometry will be devel-
oped because of its easy connection with the presentation given in Chap. 1 and
because of its relation to the local problems to be discussed in the next section on
well-posedness. In addition to hydrostatic balance the equations used also make the
further approximation of incompressibility and are thus more applicable to ocean
than the atmosphere. However, a change in vertical coordinate for the atmosphere
can bring about a strong similarity to these equations. After the development in
Cartesian geometry a brief detour will be made to demonstrate the similarities
and differences caused by more realistic spherical geometry and the restoration of
compressibility.

In the presence of viscosity, well-posedness of the full primitive equations has
been established by Lions et al. (1992a,b), for both the atmosphere and the ocean.
Because of the very long time scale associated with viscous dissipation noted above,
in this article we are interested in the zero viscosity case. We restrict ourselves in this
Cartesian geometry analysis to the primitive equations linearized around a constant
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flow velocity Uy in the x direction with no dependence in y. Note that the essence
of the of the difficulties discussed are not changed by the restriction to the linear
form assumed here since linearization can be used as a guide to the solution of the
full nonlinear equations. The equations are then

ur — fv+ ¢x + Upux =0, (2.6)
vy + fu+ Upvy =0, 2.7)
9
6, + Upby + N2 22w =0, 2.8)
g
Ux +wz; =0, 2.9)
9
¢z = ‘Z—. (2.10)
0

Where g is the gravity constant, 6y a reference potential temperature, f is the (con-
stant) Coriolis parameter and N = N(z) is the Brunt—Viisili frequency for the
unperturbed flow and lower case variables (u, v, ¢, w, 6) are perturbations from the
reference values. Equations (2.8) and (2.10) can be combined to eliminate 6 and
yield an equation for ¢:

bzt + Uodzx + N2w = 0. (2.11)

Attempting separation of variables, we look for a solution of (2.6)—(2.10) in the
form!

u U
v | =% () 12 ,w =¥ (2)w, (2.12)
¢ é

where 71, 0, %, and ¢ depend only on x and ¢. By substitution in (2.7) and (2.9) we
find

K4 W U w
= — ~ = -7 = — —t . 21

NZw T v )T G, (52 @13
The quantities above are constant (= c1, ¢3), since the left-hand sides of the equa-

tions depend on z alone and the right-hand sides depend only on x and ¢.
Combining these equations we obtain:

(%) +A%% =0, and Wi +A*N*W =0, (2.14)
Z

! Note that if a solution of the form u = %, v = ¥0,¢ = <p¢A$, is assumed then (2.6) and (2.7)
imply that %, 7, ¢ are proportional to each other, and therefore without loss of generality may be
taken to be equal.



34 J. Tribbia and R. Temam

with A2 = —c; /¢, and we now solve each (2.14) as an eigenvalue problem taking
the boundary conditions into consideration. Since w = 0 on top and bottom, we
have

#O)=WH)=%'0)=%(H)=0. (2.15)

Equation (2.14) with boundary conditions (2.15) for % (N > 0 bounded from
above and from below) is solved and we denote by A2 the corresponding eigenvalues
and write

22 =

H, — 0asn — oo.

, then, as known from Sturm-Liouville theory, H; > H, > --- ,and

A particular simple example of this is that of N2 equal to a positive constant. For
this case:

nr L . . (NTZ nwz
An = —— and the corresponding eigenfunctions are sin (—) or cos (—)
NH NH NH
as shown by Thuburn et al. (2002).
Denoting by %,, #, the corresponding vertical normal modes and by #,, 0,,
¢n, Wy, the corresponding (x, ) dependent variables, we eliminate 1, and obtain a
system identical to the linearized shallow water equations.

i — f0+ ¢y + Upliy =0,
b, + fii + Updyx = 0, (2.16)
¢ + Upgpx + anﬁx =0.

(Note that in the system above the subscript n has been dropped on the variables
u,, gﬁ leaving the dependence on 7 to be indicated through the coefficient H,,.) The
characteristic/eigen values are given as Uy & /gH, and Uy. Now, if gH, < U2,
three characteristics enter the x— domain (0, L) and three boundary conditions are
neededatx = 0.If gH, > U, 2 only two characteristics enter the domain (0, L) and
only two boundary conditions are needed at x = 0 (and one at x = L). Analogous
comments are valid at x = L.

For solving (2.6)—(2.10) in the general case, since from Sturm—Liouville theory
the vertical eigenfunctions form a complete set, we can expand all functions in the
basis of vertical normal modes that we have just determined:

u 2:\ln
v | (z) =Y U@ | B | (), (2.17)
¢ " ¢n

w(x.z.0) = Y Wp(2)ha(x. 1), (2.18)
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and the analysis above holds for each n. Because for gH, < Ug we need three
boundary conditions for each mode at x = 0 and for gH, > U02, we need two
boundary conditions for each mode at x = 0, the number of boundary conditions to
be applied depends on 7, and thus the vertical transform of the prognostic variables.
The index 7 is determined from a vertical integration of the variables and the vertical
normal modes and is thus a non-local property of the each dependent variable. Using
an argument similar to this, Oliger and Sundstrom (1978) concluded that there is no
set of local (i.e., pointwise) boundary conditions at x = 0 which makes the system
(2.6)—(2.10) well-posed.

To remedy this problem, as shown in Temam and Tribbia (2003), we can modify
the primitive equations by the addition of a Newtonian damping term on the vertical
velocity and add this to the hydrostatic balance equation so that (2.10) becomes:

810 + s = 52, (2.19)

With the addition of this term it can then be shown through the conservation of
energy constraint that the solutions to this system are unique and have continuous
dependence on the data for local boundary conditions. In this way the addition of
dissipation (even of a rather mild type) can regularize the ill-posed nature of the
hydrostatic primitive equations for the Initial Boundary Value Problem (IVBP).
The efficacy of this dissipation term can be seen in Figs. 2.1-2.5 which depict the
numerical solution of the IBVP for both the standard and the § modified hydrostatic
systems above with the initial conditions shown in Fig.2.1. The lateral boundary
conditions correspond to upwinding for both versions of hydrostatic system. One
can easily see the effects of ill-posedness in Fig. 2.2 where the wind is subcritical
for the first internal mode (i.e., gH; > UOZ) and the solution is thus over-specified
through the use of upstream boundary conditions at the inflow boundary. On the
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Fig. 2.2 Top row: horizontal velocity, U, at t = 28h (left panel) and t = 56 h (right panel) for
the traditional hydrostatic limited area model (6§ = 0) with subcritical Uy. Bottom row: as in the
upper row, but for the Buoyancy, b
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CONTOUR FROM .5 TO 2 BY .1 (x1) CONTOUR FROM .45 TO 2 BY .05 (x1)
X X

Fig. 2.3 Top row: horizontal velocity, U, at t = 28h (left panel) and t = 56 h (right panel) for
the modified hydrostatic limited area model (§ = 0.3) with subcritical Uy. Bottom row: as in the
top row, but for the buoyancy, b
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X

Fig. 2.4 Top panel: horizontal velocity, U, at t = 28 h for the traditional hydrostatic limited area
model (§ = 0) with supercritical Uy. Bottom panel: as in the top panel but for the buoyancy, b

other hand the solution in Fig. 2.4 is much smoother in space and time despite the
identical subcritical zonal flow Uj.

2.4 The Modes of the Primitive Equations on the Sphere

The Cartesian geometry analysis above gives a clear example of the well-posedness
issues that exist locally in open boundary models based on the hydrostatic equations.
The purpose of this section is to demonstrate that the vertical modal analysis above
survives nearly intact for the global, spherical hydrostatic system and thus well-
posedness across limited area boundaries is generally feasible for a less simplified
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Fig. 2.5 Top row: horizontal velocity, U, at t = 28 h (left panel) and t = 56 h (right panel) for
the modified hydrostatic limited area model (§ = 0.3) with supercritical Uy. Bottom row: as in the
top row, but for the buoyancy, b

set of equations but only if one is willing to deal with non-locality or add artificial
dissipation.

For many reasons it is advantageous when using the hydrostatic equation to
define a vertical coordinate which differs from the geometric height coordinate z.
Some commonly used vertical coordinates in meteorology are pressure, p, and the
terrain following counterpart, sigma, where 0 = p/ p;, with pg being the surface
pressure, or a hybrid combination of these two. We use here the equations written
with pressure as vertical coordinate because of the relative dynamical simplicity of
the equations in this form and since orographic forcing is not the main concern,
here. The governing equations become:

—fV+ ®, = NLTy (2.20)
acos @
1
Vi+ fU +—®,=NLTy (2.21)
a
, RT'
P, =——o (2.22)
p
Vi -V +wp, =0 (2.23)
@, + S(p)w = NLT; (2.24)
In the above equations, & = gz, where z is the height of the surface of

constant pressure, NLT stands for the nonlinear advection terms and curvature
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. . d :
terms in spherical geometry, ® = d—f the ‘vertical’ component of the veloc-

ity and U and V are the horizontal components of the velocity (i.e., Vj) in
the easterly and northerly directions respectively. Lastly, @ and T  are devia-
tions from a resting, stratified basic state so that @ = 5( p) + QD/()L, ¢, p,t) and
T =T(p)+ T (X, ¢, p.t). When these are substituted into the first law of ther-
modynamics S(p) = i E - pd—T

dp
fluid in which the entropy increases with height. (A full derivation of the transfor-
mation to arbitrary vertical coordinate in a hydrostatic atmosphere may be found
in Kasahara (1974) and in Staniforth and Wood (2003) for the deep nonhydrostatic
case. Because the effects of a mean zonal velocity lead to complications in the case
of spherical geometry, for simplicity we set the mean wind to zero along with NLT'.
We then (as previously) try a separation of variables in the vertical :

, which is positive for a stably stratified

U g, p.1) U, g.1)
V,9.p.0) | =G(p)| V(X ¢.0) (2.25)
(X9, p.0) ®(A,9.1)

As in the example in Cartesian geometry, the last two equations in (2.20) above
are the keys to the separation of variables. Combining them results in:

9 10 5
3, (53, %) ~ D =0, with D =V V=GPV Va (2.26)

Straightforward manipulations then show that separability will demand:

d 1dG X
A A 2.2
dp(S dp) A%G, (2.27)

where A2 is a constant. The fact that our (model) atmosphere has impenetrability as
a lower boundary condition and no loss of mass at the top boundary demands that
G satisfy the following conditions:

dG

w = 0 at the bottom demands P I'Gatp = p;g, (2.28)
p

while

i dG

w = 0at p = pr requires e Oat p = pr. (2.29)
p

. do , ,

Note that in the above, I' = S(ps)/ o . The equation for G above with

94 P=Ds

the homogeneous boundary conditions is a standard Sturm—Liouville eigenfunc-
tion equation and A? is the eigenvalue. As in the vertical expansion which arose in
the simpler Cartesian case examined in Sect. 2.3, Sturm-Liouville theory for G(p)



40 J. Tribbia and R. Temam

shows that if S(p) > 0 for all p, then, as noted previously, solutions for G(p) exist
for an infinite discrete set of A2°s which are ordered A < A# < ... < A2 <...and
associated with each /Xﬁ is an Hj, or equivalent depth. These are ordered inversely
to the A%’s, i.e., Hy > Hy...> H, > .... The significance of the term ‘equivalent
depth’ becomes obvious when the vertical structure equation is separated from the
full equations leaving the following set of horizontal equations:

T - 7V + 3, =0
cicosw
Vi+ fU+—-®,=0 (2.30)
a
~ ~ ~ H, ~ ~
&, + gHy(D) = B, + (U, + (Vcosp)y) = 0
acosg

These are now the (rotating) linear shallow water equations in spherical coordinates
for a fluid with mean depth H,,. Each eigenvalue of the vertical structure equation
leads to a set of linear shallow water equations with a different mean depth H,,,
which is the equivalent shallow water depth for each eigenfunction. Now, gH, is
also the square of the gravity wave speed in a non-rotating fluid and so gHj cor-
responds to the fastest gravity wave speed in the linear stratified system we are
considering. For realistic vertical stratification, S(p), the vertical structure equa-
tion results in a largest equivalent depth, Hy = 10km and a corresponding gravity
wave speed of 300 m/s. Solutions to the vertical structure equation for each equiva-
lent depth are shown in the figure from Kasahara and Puri (1981). The key aspects
of the above for our purposes are that (1) the general form of the modal decom-
position remains the same and thus an exchange of vertical mode information is
necessary to effect lateral boundary conditions and (2) that the shallow water sys-
tem arises from this decomposition. The second point, in part, explains the utility
and widespread use of the shallow water equations in testing numerical methods,
since the essence of the horizontal numerical difficulties remain the same when the
hydrostatic approximation is used.

The results of this and the previous section have demonstrated that the study of
well posedness for the hydrostatic equations commonly used in meteorology and
oceanography can be (approximately) reduced to the examination of proper bound-
ary conditions for the shallow water equations in two space dimensions and the
analysis of their characteristics. Because the solution to the general, hyperbolic sys-
tem in two space dimensions is a technically challenging (though straightforward)
problem, we only briefly sketch the highlights here. All the gory details of the solu-
tion for the linear problem in plane Cartesian geometry are developed in (Weiyan
1992, Chap.2). The primary complication that arises is that shallow water grav-
ity waves, in the absence of mean advection by the flow, propagate isotropically
in the radial direction. Thus the characteristics associated with gravity waves have
circular wavefronts and the solution is carried within cones in space-time. Thus,
actually forming a solution to the two dimensional IBVP using characteristics is
analogous to utilizing Huygen’s principle to solve a diffraction problem in optics,
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straightforward but computationally inefficient. A final note should be made that the
method of characteristics differs from the related traditional normal mode approach
in its treatment of the Coriolis terms in rotating flow. In the normal mode approach
the Coriolis terms are naturally part of the diagonalization and eigenvalue problem
associated with the linear operator. In the shallow water case this leads to a math-
ematical decomposition in terms of inertia-gravity waves and geostrophic potential
vorticity modes. In the method of characteristics the Coriolis terms appear as (linear)
source terms in the equations for the characteristics much like the damping terms in
the single equation examples in Sect. 2.2. The rotational effects of the Coriolis terms
are thus integrated along the characteristic directions as opposed to being accounted
for in the dispersive nature of the normal modes.

2.5 Discussion and Conclusions

The focus of this contribution has been problems associated with the implementa-
tion of lateral boundary conditions in limited domain, open boundary models of the
atmosphere which use the hydrostatic primitive equations. As demonstrated above,
a fundamental difficulty arises because of the replacement of prognostic equation
for the vertical velocity with the diagnostic equation expressing hydrostatic bal-
ance. The resulting loss of a wave type (vertically propagating acoustic waves) in the
underlying fully hyperbolic system requires that vertical communication be effected
through non-locality in the lateral boundary conditions. We have also shown that
artificial dissipation can also ameliorate the problems of non-locality at the expense
of accuracy of the solution.

The above concerns will clearly arise when the numerical model being integrated
is a limited-area hydrostatic model of the atmosphere or ocean. However, the non-
locality ill-posedness issue will also affect the quality of solutions in a global model
when mesh refinement is used. These problems are similar in a sense, because there
are fewer incoming characteristics going from a coarse mesh region to a fine mesh
region and more outgoing characteristics leaving a fine mesh region toward a coarse
mesh region, due to the change in resolution. Thus a sharp boundary separating a
refined mesh region from a coarser mesh region will be susceptible to computational
noise similar to that depicted in Fig. 2.2, since the refined region will in essence be
a local limited area model.

It would seem to follow that a more consistent resolution to all of these issues
requires one abandon the hydrostatic approximation and embrace the fully com-
pressible system. Indeed there are significant advantages in doing so but there is
also a steep price to be paid in terms of time step limitations required by the CFL
condition. This is particularly true in the vertical dimension where grid spacings
are the smallest, Az < 1km, and vertically propagating acoustic waves, which are
filtered using the hydrostatic system, must be resolved. Currently, this problem is
avoided through the use of an implicit method in the vertical for any time integra-
tion method which is split explicit in the horizontal. While the acoustic and gravity
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wave characteristics can be accurately accounted for in this method, the wave phase
velocities are distorted because of implicit component in the vertical which will
again raise the possibility of communication being mis-handled leading to enhanced
numerical noise at the boundaries between coarse and fine resolution domains. Thus,
the price to tackle the problems discussed above in a physically and mathematically
sound fashion remains high and awaits computational platforms a decade or so in
the future.
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Chapter 3
Horizontal Discretizations: Some Basic Ideas

John Thuburn

Abstract This chapter will introduce some key ideas in the construction of hor-
izontal discretizations for atmospheric models. One important topic is the ability
of different schemes to capture wave propagation accurately. The von Neumann
method for analysing numerical wave propagation is presented and applied to some
simple schemes to demonstrate the advantages of staggered grids in finite difference
models. Another important topic is whether the discretization respects the conser-
vation properties of the differential equations being solved. An introduction to the
topic is given, using energy conservation as an illustrative example.

3.1 Introduction

This lecture will introduce some key, basic ideas related to horizontal discretiza-
tions in atmospheric model dynamical cores. We will focus on two topics: wave
propagation and the effect of using staggered grids (Sect. 3.2), and energy conser-
vation (Sect. 3.3). We will restrict attention to grid point methods (though in many
cases finite volume methods can be looked at in the same way). We will not discuss
Galerkin methods (although some of the ideas do carry across to Galerkin methods
too), nor spectral methods (e.g., Williamson and Laprise 2000). Also, we will not
discuss the treatment of advection. Advection is a large and complicated topic; some
discussion is given in Chaps. 7, 8, and 9.

3.2 Wave Propagation and Staggered Grids

Chapter 1 in this volume discussed the role of fast waves (acoustic and inertio-
gravity waves) in adjustment towards and maintenance of balance. An accurate
representation of balance in atmospheric models therefore requires a sufficiently
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accurate representation of the propagation of the fast waves. In the next two subsec-
tions we will look at a technique that can be used to analyse the wave propagation
characteristics of numerical schemes. We will see some examples of poor numer-
ical wave propagation that would be damaging to a model’s ability to represent
near-balanced flow, and show that in some circumstances improved numerical wave
propagation can be obtained through the use of a staggered grid.

Slow, balanced motions, Rossby waves and nonlinear vortex dynamics, are ener-
getically dominant on large scales (e.g., Holton 2004). In Sect. 3.2.3 we will point
out that Rossby wave propagation can be sensitive to details of the numerical
schemes, particularly the treatment of the Coriolis terms.

3.2.1 Gravity Waves in One-Dimension

The simplest relevant model to illustrate our first point is the linearized, one-
dimensional, non-rotating shallow water equations:

3€D+ ou _0

ot O9x
au+a¢ =0 (3.1
ot ax '

Here u is the velocity perturbation and @ is the geopotential perturbation. The
equations have been linearized about a state of rest with geopotential @.
Assume the domain is either periodic or infinite, and look for wavelike solutions:

® = Re {(js expli(kx — a)t)]}
u = Re {uexplitkx —wt)]}. (3.2)

Here, k is the wavenumber and w is the frequency. (The wavelength L is equal to
277/ k.) Substituting the wavelike solutions in (3.1) and eliminating i and @ leads
to the dispersion relation

w? = k*®,. (3.3)

There are two solutions: a wave propagating to the right with = k@é /2 and
d = <15(}/ %y, and a wave propagating to the left with w = —k(bé/ 2and @ =
—@3/ 2y, If we restrict attention to waves propagating in one direction we find that
the phase velocity and group velocity (see lecture 1) are both independent of k

and equal to <15(} / 2. these waves are non-dispersive. Consider an arbitrary initial

condition satisfying @ = @01 /244, This can be Fourier decomposed into waves of

different k. Each Fourier component will propagate at the same velocity @01 /2 The

solution at some later time ¢ will be a superposition of waves that have all propagated

/

the same distance CD(} 2t; it will therefore look identical to the initial state except for

a translation.
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Now consider a numerical solution of (3.1). We will leave time continuous and
concentrate on the spatial discretization. Suppose, first, that @ and u are stored at
the same locations on a uniform grid with spacing Ax (Fig.3.1), and approximate
the x-derivatives by second order centered differences:

duj | Pjp1—Pj-
e e !
ot 2Ax

8(151' Uj+1 —Uj—1

=0. 4
ot 2Ax 0 34

How well do the solutions of the discrete equations replicate the solutions of the
continuous equations? We can address this question using a technique known as
von Neumann analysis. Again, look for wavelike solutions, but now on the grid:

®; = Re {(13 expli(kx; — wt)]}
u; = Re {fiexplitkx; — wt)]}. (3.5)

The analysis follows exactly the same steps as in the continuous case, except that
the x-derivative is approximated by the difference of two exponentials which, using
well known identities, can be expressed as a sine. For example,

®j+l _ ®j—l ¢i (eikAx _ e—ikAx)
2Ax 2Ax
2isin(kA
s isin(kAx)
2Ax
=ik®;. (3.6)

Thus k is replaced everywhere by
k = sin(kAx)/Ax (3.7)
and the dispersion relation becomes
w? = k2. (3.8)

The right panel of Fig. 3.1 shows the resulting dispersion relation for the numer-
ical solutions. A large part of the spectrum has significant artificial reduction of its
frequency. In particular, the shortest resolvable wave, which has kAx = 7, has zero
frequency and does not propagate at all. A disturbance pattern like this that spuri-
ously fails to propagate is sometimes called a computational mode. Furthermore, the
short wavelength half of the spectrum has dw/dk < 0, i.e., it has group velocity
of the wrong sign. Waves that have spurious propagation characteristics like this are
sometimes called parasitic modes. Such poor wave propagation characteristics are
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Fig. 3.1 Left: Schematic showing the arrangement of variables on a one-dimensional unstaggered
grid. Right: Dispersion relations for gravity wave solutions of the one-dimensional linearized shal-
low water equations: the straight line is for the continuous equations (3.3); the curved line is for

the discrete equations (3.8)
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Fig. 3.2 Left: Schematic showing the arrangement of variables on a one-dimensional staggered
grid. Right: Dispersion relations for gravity wave solutions of the one-dimensional linearized shal-
low water equations: the straight line is for the continuous equations (3.3); the curved line is for

the discrete equations (3.11)

likely to lead to a poor representation of geostrophic adjustment and balance in a

numerical model.
Now consider an alternative discretization in which @ and u are stored stag-

gered relative to each other (Fig. 3.2). Again, the x-derivatives are approximated by
centred differences, but with a more compact stencil:

0uj11/2 Lo,

Jt Ax
OB, Ujirje— Ui
Kl R R L VE Rl bl VE Y} (3.9)

ot Ax
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The analysis follows the same steps as before, except that the x-derivatives are
approximated by a more compact difference of exponentials. We find k in the
continuous case is replaced everywhere by

k' = sin(kAx/2)/(Ax/2). (3.10)
and the dispersion relation becomes
w? = k2 ®,. (3.11)

The right panel of Fig. 3.2 shows the dispersion relation for the staggered grid.
There is still significant slowing for large wavenumbers, but much less than for the
unstaggered grid. In particular the group velocity always has the correct sign (except
for the two-grid length wave k Ax = m which has zero group velocity).

Figure 3.3 shows an example numerical solution of the linearized one-
dimensional shallow water equations using both an unstaggered and a staggered
grid. In both cases dispersion errors lead to the main peak lagging behind the true
solution, though the lag is worse on the unstaggered grid. And in both cases disper-
sion errors have led to short wavelength oscillations behind the main peak, though
again these are worse on the unstaggered grid.

Another way of viewing the poor behaviour of the unstaggered grid is as follows.
A low frequency forcing should lead to the generation of long wavelength waves.
However, as can be seen from the right hand panel of Fig. 3.1, on an unstaggered grid

Unstaggered
1.5 T T T T T

1

~05 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1

X

Fig. 3.3 Numerical solution of the linearized shallow water equations on a periodic domain of 40
grid points. Top: using an unstaggered grid. Bottom: using a staggered grid. At the time shown, the
solution should have propagated exactly once around the domain (left to right) and returned to its
initial position. The initial condition for @, shown by the dashed curves, comprises a pulse about
8 grid lengths wide
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Unstaggered

phi
o

0 01 02 03 04 05 06 07 08 09 1
X

Staggered

0 01 02 03 04 05 06 07 08 09 1
X

Fig. 3.4 Numerical solution of the linearized shallow water equations where @ in the center of
the domain has been forced to oscillate like sin(w?). The domain shown is 60 grid points across.
The initial condition is u = 0, @ = 0 and the solution is shown after less than one forcing period.
Top: using an unstaggered grid. Bottom: using a staggered grid

any resolvable frequency @ corresponds to two different k; there is the possibility
that low frequency forcing can generate short wavelength as well as long wavelength
waves. Figure 3.4 shows the result of exactly this process. The initial condition was
settou = 0, @ = 0, and the @ value in the centre of the domain was forced
to oscillate like sin(wt). On the staggered grid long wavelength waves have been
radiated to the left and to the right, close to the correct solution. However, on the
unstaggered grid a superposition of short and long wavelength waves have been
radiated, giving a very noisy solution.

3.2.2 Inertio-Gravity Waves in Two-Dimensions

Let us extend the above discussion to the two-dimensional linearized shallow water
equations and include the effects of rotation through a constant Coriolis parameter
f = fo. The governing equations are

3€D+(p 3u+8v _0
ot °\ox Tay)

Ju A4 Lo _0

ot ax

ov P

— — =0. 12
5 + fu + oy 0 (3.12)
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Seeking wavelike solutions proportional to exp{i(kx + Iy — wt)} leads to the
dispersion relation
w (0® = f — (k* + 1*)®o) = 0. (3.13)

The root @ = 0 corresponds to Rossby waves. (In this example Rossby waves
do not propagate because we have approximated f as a constant. The effect of
spatial variations in f, called the B-effect because f is sometimes approximated as
f = fo+ By, causes the Rossby wave frequency to become non-zero; see Chap. 1).
The other two roots correspond to left and right propagating inertio-gravity waves.
An important parameter here (and in various other contexts) is the Rossby radius

A =002/ fo (3.14)

(e.g., Holton 2004). It defines a natural horizontal scale for geostrophically balanced
motion, and it can also be interpreted as the distance a gravity wave would propagate
(at speed @5/ %) on the inertial timescale 1 / fo. On length scales significantly shorter
than A the non-zero roots of (3.13) approximately satisfy w? — (k? + [2)®¢ = 0.
Pressure gradient forces dominate the dynamics. These are gravity waves. On length
scales significantly longer than A the non-zero roots of (3.13) approximately satisfy
w? — fo2 = 0. Coriolis terms dominate the dynamics. These are inertial waves.
Which regime we are in has implications for the relative accuracy of different
numerical methods, as we shall see.

In two dimensions there are more possibilities for staggering than in one-
dimension. Arakawa and colleagues (Winninghoff 1968; Arakawa and Lamb 1977;
Randall 1994) systematically studied the shallow water wave dispersion properties
of a number of staggered quadrilateral grids, and introduced the naming convention
that is now universally used (see Fig. 3.5). We will look at three of these grids in
some detail.

The A-grid. By analogy with the one-dimensional case, when we look for wave-
like solutions of the finite difference equations we find that the k that comes from
an x-derivative is replaced by

k = sin(kAx)/Ax (3.15)
while the / that comes from a y-derivative is replaced by
[ =sin(lAy)/Ay. (3.16)

Figure 3.6 shows the ratio of the numerical frequency to the exact frequency as
a function of k and I (where Ax = Ay) for two regimes: well-resolved Rossby
radius Ax/A = 0.2 and poorly resolved Rossby radius Ax/A = 5. The A-grid
scheme does well (as do all the others) for well-resolved waves, i.e., when kAx and
[ Ay are small. What distinguishes the various schemes is how they perform for less
well resolved waves. The A-grid scheme performs well when the Rossby radius is
poorly resolved because near-grid-scale waves are dominated by the Coriolis term,
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Fig. 3.5 Schematic showing the arrangement of variables on six possible staggered grids for the
two-dimensional shallow water equations. On the Z-grid the predicted variables are the (vertical
component of) relative vorticity & and the horizontal divergence &
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Fig. 3.6 Ratio of numerical frequency to exact frequency versus kAx and [Ay for the A-grid.
Left: Ax/A = 0.2. Right: Ax/A = 5. The contour interval is 0.1 and the values approach 1 in the
bottom left corners

which is accurately represented on the A-grid. However, when the Rossby radius
is well-resolved near-grid-scale waves are dominated by the pressure gradient and
divergence terms, which are inaccurately represented just as in Sect. 3.2.1.

The B-grid. On the B-grid some of the finite differences are more compact than
on the A-grid, but also some averaging is required to obtain values of the variables
at the locations where they are needed. For example, ¥ must be averaged in the
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dx/A=0.2 dx/A=5.0

0 0.5 1 1.5 2 25 3
kAx

Fig. 3.7 Ratio of numerical frequency to exact frequency versus kAx and /Ay for the B-grid.
Left: Ax/A = 0.2. Right: Ax/A = 5. The contour interval is 0.1 and the values approach 1 in the
bottom left corners

y-direction and differenced in the x-direction in order to approximate du/dx in the
@ equation. A similar thing happens for dv/dy in the @ equation and for d® /dx
and 09 /0dy in the u and v equations. We find that k is replaced by

k = cos(IAy/2) sin(kAx/2)/(Ax/2) (3.17)
while / is replaced by
I = cos(kAx/2)sin(lAy/2)/(Ay/2). (3.18)

The resulting errors in the dispersion relation are shown in Fig. 3.7. Like the A-grid,
it performs well when the Rossby radius is poorly resolved but performs poorly
(though slightly better than the A-grid) when the Rossby radius is well resolved.
The C-grid. On the C-grid the variables are ideally placed for calculating the
spatial derivatives that arise. However, u and v are no longer located at the same
points; u must be averaged in both the x and y-directions to approximate the fou
term in the v equation, and similarly for the fyv term in the ¥ equation. We find that
k is replaced by ~
k =sin(kAx/2)/(Ax/2) (3.19)

and [ is replaced by _
[ =sin(lAy/2)/(Ay/2) (3.20)

while fy is replaced by

fo = focos(kAx/2)cos(IAy/2). (3.21)
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Fig. 3.8 Ratio of numerical frequency to exact frequency versus kAx and /Ay for the C-grid.
Left: Ax/A = 0.2. Right: Ax/A = 5. The contour interval is 0.1 and the values approach 1 in the
bottom left corners

Consequently, the C-grid performs well when the Rossby radius is well-resolved
and pressure gradient and divergence terms dominate near-grid-scale waves, but per-
forms poorly when the Rossby radius is poorly resolved and Coriolis terms dominate
near-grid-scale waves (Fig. 3.8).

The Rossby radius in the atmosphere (for the deepest modes—in three dimensions
the Rossby radius depends on the vertical scale and is greater when the vertical
scale is greater) is of the order of 1,000 km, which is well-resolved in any practical
atmospheric dynamical core. For this reason, the C-grid has often been the grid of
choice for grid point atmospheric models. In the ocean the Rossby radius is typically
of order 10 km; historically this has not been well resolved, so the B-grid has often
been used for ocean models. As computer power increases and it begins to become
practical to resolve the Rossby radius, some ocean modelers are beginning to turn
to the C-grid.

The discussion here has concentrated on grid staggering options for quadrilat-
eral grids. However, analogues exist for other grid cell shapes such as triangles and
hexagons. See Chap. 10.

3.2.3 Rossby Wave Propagation on the C-grid

The Coriolis terms play a crucial role in the Rossby wave propagation mechanism.
Given the need for some averaging in evaluating the Coriolis terms on a C-grid, we
might expect the propagation of near-grid-scale Rossby waves to be poorly captured.
However, when f is a function of position there are a variety of options for exactly
how the averaging is done, e.g., should we multiply by f before averaging or after
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averaging? The Rossby wave propagation turns out to be sensitive to these details.
The following f-at-@-points scheme turns out to work quite well:

du— f07 +8x® =0, (3.22)

v+ [ +8,® = 0. (3.23)

(Here an overline indicates an average, with the superscript indicating the direction
of the average, and §, and §, indicate centred finite difference approximations to x
and y partial derivatives.) This scheme captures the Rossby wave frequency quite
accurately even for short north—south wavelengths, though not for short east—west
wavelengths. See Thuburn (2007) for details.

In spherical geometry it is important to include appropriate geometrical factors
in the averaging of the Coriolis terms, for consistency with the mass continuity
equation:

—_—A
ou f — 1
— = 5@ =0 3.24
ot Cos¢vcos¢ +acosgb A (3-24)
v —9 1
— u —8® = 0. 3.25
5 + fu* + PR ( )

Here a is the Earth’s radius, A is longitude and ¢ is latitude. When this is done, nor-
mal mode calculations show that the dispersion relations for both Rossby modes
and inertio-gravity modes are captured quite accurately (Fig.3.9). Otherwise, a
significant part of the Rossby mode spectrum is lost and replaced by spurious grid-
scale modes with positive (eastward) frequency (Thuburn and Staniforth 2004); see
Fig.3.10.

3.3 Conservation Properties

It is often considered desirable for a dynamical core to possess analogues of some
of the conservation properties of the continuous adiabatic and frictionless govern-
ing equations. Energy is a particularly interesting quantity in this respect, because
it is a nonlinear quantity, it can be decomposed into available and unavailable con-
tributions, and it is subject to both upscale and downscale nonlinear transfers (see
Chap. 11). Even if we choose to formulate the nonlinear advection terms in a way
that does not conserve energy (either to allow for transfers to unresolved scales,
or purely for numerical efficiency as in semi-Lagrangian schemes) a strong argu-
ment can be made for formulating the linear terms in the equations, the Coriolis and
pressure gradient terms, in an energy conserving way. The following two subsec-
tions illustrate some of the kinds of techniques that have been used to obtain such
conservation properties.
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Fig. 3.9 Numerical dispersion relation (crosses) for a latitudinal discretization given by (3.24),
(3.25) and the corresponding discrete linearized mass equation on the sphere; (the fields are
assumed to be proportional to exp(imA) with zonal wavenumber m = 2, and east—-west derivatives
are handled analytically). Frequency is plotted against increasing latitudinal mode index—smaller
index corresponds to greater north—south wavelength. Analytical approximations to the exact
frequencies are given by the diamonds. The eastward modes and the higher frequency branch
of westward modes are inertio-gravity modes. The lower frequency branch of westward modes
are Rossby modes. The Rossby modes are handled quite accurately, despite the averaging of
the Coriolis terms. (A small number of modes are handled poorly; this is a result of the polar
singularity)

3.3.1 Energy Conservation: Coriolis Terms

The Coriolis terms should cancel when we take u times

D

F’:—fvz... (3.26)
plus v times

Dv

E+fu=.... (3.27)

This is achieved very straightforwardly on an A-grid or B-grid for which the u and
v points coincide. On a C-grid, however, the cancellation is non-trivial.

Arakawa and Lamb (1981) presented a systematic way of achieving the desired
cancellation on a spherical C-grid. They work with mass flux variables



3 Horizontal Discretizations: Some Basic Ideas 55

Eastward modes

O

PPYPPYYYY

Frequency

0 10 20 30 40
Latitudinal mode
Westward modes

100

L+ JUVUUR »
$$$wwVVVVVVvvvvv

Frequency

AL ® i
y FEPe0g00000000000 ]

AAAA
8 8 § 8§
@ o -L n

—10 L L " "
% 10 20 30 40
Latitudinal mode
Fig. 3.10 As in Fig. 3.9 except that the cos ¢ factors do not appear in the Coriolis term in (3.24).
The Rossby wave spectrum is now badly distorted

u* =udalgp, (3.28)

v* = vdacosPAA, (3.29)

(AA and A¢ are the longitudinal and latitudinal grid spacing) and express the
Coriolis terms using four sets of coefficients ¢, 8, y and §:

9
3z (ua cospAN); j+1/2
* *
i +1/2Y 12,41 T Bi,j+1/2 Vio1/2,j+1 (3.30)
. v* _8 v* —
Vij+1/2V 12,7 —9,j+1/2V 412 ;

%(UQA¢)i+1/2,j
+0—1/2 u:j_l/z + :Bi-i-l,j—l/l u;k_H,j_l/z (3.3D
FVitr 12Uy e T 812Uy =

Here the grid indexing convention is that @ is stored at points labelled with sub-
scripts i + 1/2, j + 1/2, etc., u points are labelled i, j + 1/2, etc., and v points
are labelled i 4+ 1/2, j, etc. It may be verified that all terms involving «, 8, y and
8 do indeed cancel when we take u; ;41,2 times (3.30) plus v; 41/, ; times (3.31)
and sum globally. There is still considerable freedom available in choosing the exact
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values of «, 8, y and §. For example, the scheme (3.24), (3.25) is of this form and
achieves second order accuracy and good Rossby wave propagation.

3.3.2 Energy Conservation: Pressure Gradient Terms

In order for the pressure gradient terms to conserve energy we require a discrete
analogue of
VO.VO + OV.(vd) = V.(vd?) (3.32)

or, at least,
/V(D.V(D dA + / OV.(v®@)dA = 0. (3.33)

On an A-grid this is relatively straightforward to achieve. On a C-grid the
required cancellation can again be achieved by working with mass flux variables
u* and v* (Arakawa and Lamb 1981). Then the discrete analogue of (3.33) is

Zijul s (Pitryz,j+172 = Piciyz,j+172) +

*

Xij viia, (Pit1/2.j41/2 — Pit1/2.j-1/2) +

(3.34)
2ij Pit1/2,j+1/2 (”?+1,j+1/2 - ”?,j+1/2) +

2ij Pit1/2,j+1/2 (vi+1/2,j+1 vi+1/2,j> =0,

which does indeed hold.

3.4 Conclusions

A sufficiently accurate representation of the propagation of fast waves is required for
a numerical model of the atmosphere to capture the near-balanced large-scale flow.
The von Neumann method for analysing the numerical dispersion relation of a dis-
cretization has been presented and used to illustrate the behaviour of some simple,
well-known schemes. The method shows that staggered grids can be advantageous
in some circumstances. Incidentally, the method can be applied to more complex
schemes such as higher-order schemes (e.g., Leslie and Purser 1991) or schemes
that avoid averaging (e.g., McGregor 2005), and even to more exotic grids such as
hexagons (e.g., Nickovic¢ et al. 2002; Thuburn 2008), though the analysis becomes
more laborious.

The numerical solution could become inaccurate if the discretization introduces
spurious sources or sinks of energy. One approach to avoiding this problem is to
design the discretization to mimic certain cancellation properties of the continuous
equations. This approach has been illustrated for discretizations of the Coriolis and
pressure gradient terms.
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Chapter 4
Vertical Discretizations: Some Basic Ideas

John Thuburn

Abstract This chapter introduces some key ideas in the design of vertical dis-
cretizations for atmospheric models. Various choices of vertical coordinate are
possible, and the most widely used ones are introduced. The requirement to retain
certain conservation properties can constrain or determine aspects of the discretiza-
tion: this is illustrated using the Simmons and Burridge angular momentum and
energy conserving scheme for hydrostatic models. Another important set of issues
surrounds the ability to capture hydrostatic balance and wave dispersion accurately
and to avoid computational modes: some implications for the vertical discretization
are discussed.

4.1 Introduction

This lecture will introduce some key, basic ideas related to vertical discretizations
in atmospheric model dynamical cores. We will first discuss the choice of verti-
cal coordinate and its relation to the bottom and top boundary conditions. We will
then look at how the details of the vertical discretization can influence conservation
properties and wave propagation.

4.2 Alternative Vertical Coordinates

Systematic derivation of the governing equations usually involves writing their com-
ponents in some orthogonal coordinate system, such as spherical polars (A, ¢, r).
However, for numerical solution of the equations there may be advantages to
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writing the equations in terms of some alternative vertical coordinate. The following
transformation rules (e.g., Kasahara 1974; Staniforth and Wood 2003) allow us to
re-express the horizontal and vertical derivatives and hence transform the equations
to an arbitrary vertical coordinate n(A, ¢, r,t):

Wy _ oy
O or oan’ “.1)
Wy _ (v 9y (n
(5),=(5),+(5)(5), 42
Dy 0y L0y
o= W+v'va+n3_n' (4.3)

Here s may be A, ¢ or ¢, and Vy is the horizontal gradient at constant 7.

In transforming to a different vertical coordinate it is usual to continue to express
vectors in terms of their components in the original orthogonal coordinate system,
rather than transform to covariant or contravariant components in the new coordinate
system. In particular, it is usual to retain the velocity components u = Ar cos ¢,
v = ¢r, w = F (though /) may be needed t0o).

4.2.1 Examples

e Height n = r or n = z. This is the most obvious choice, requiring no
transformation of the governing equations.

e Pressure n = p. A pressure-based coordinate is particularly attractive in hydro-
static models because the mass continuity equation becomes purely diagnostic,
and because the pressure difference across a layer is proportional to the mass per
unit area in that layer (under the shallow atmosphere approximation), making it
easier to formulate schemes with desired conservation properties.

e Massn = fzoo pdz' for Cartesian geometry with height z or n = [ pr’2 dr’
with distance r from Earth’s centre. This is the natural generalization of the
pressure coordinate to non-hydrostatic models.

o Terrain-following variants. It is possible to modify the three coordinate systems
mentioned above so that the ground becomes a coordinate surface (e.g., Phillips
1957; Gal-Chen and Somerville 1975, Fig. 4.1); this greatly simplifies the appli-
cation of the bottom boundary condition (see Sect. 4.3). Some examples are
n = z — zs where zy is the height of the ground, or n = p/ps where ps is
the surface pressure. This latter is sometimes called a o coordinate.

e Hybrid terrain-following variants. To avoid numerical artefacts at high altitudes
resulting from a terrain following coordinate, it is possible to use a hybrid coor-
dinate that is terrain-following near the ground but returns to a height or pressure
coordinate at high altitude (Fig. 4.1). One well known example is the hybrid o-p
coordinate introduced by Simmons and Burridge (1981). A value of a and a value
of b are defined on each model level. Then the pressure on each model level is
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i
[

Fig. 4.1 Schematics showing a terrain following coordinate (left) and a hybrid terrain following
coordinate (right)

given by p = apg + bps where py is a constant reference pressure and pjy is
again the surface pressure. Near the ground a is chosen to be zero or small so
that the coordinate looks like a o coordinate; at high altitude b is chosen to be
zero or small so that the coordinate looks like a pressure coordinate. The coeffi-
cients are chosen to give a smooth transition in between. (A value of 7 is given
by n = a + b, though in fact the scheme can be formulated without explicit
reference to the value of 7.)

e Isentropic coordinate n = f(0). There are a number of potential advantages
of using an isentropic vertical coordinate that make it attractive for atmospheric
modeling (e.g., Hsu and Arakawa 1990). Diabatic heating is generally weak,
so an isentropic coordinate is approximately Lagrangian, leading to improved
Lagrangian conservation properties and conservation of entropy-related quanti-
ties and perhaps potential vorticity. The handling of moist processes may also be
improved. And in some dynamical situations the coordinate automatically adapts
to give extra resolution where it is needed. On the other hand, the bottom bound-
ary is difficult to handle, the coordinate cannot handle situations where N 2 <0,
and experience suggests it is more difficult to obtain a robust numerical formula-
tion. (A hybrid vertical coordinate can help with all of these issues, e.g., Konor
and Arakawa 1997). Also, in regions such as the tropical upper troposphere,
where N2 is close to zero, vertical resolution becomes relatively poor.

e Lagrangian coordinate. A Lagrangian vertical coordinate (apparently first sug-
gested by Starr 1945) is defined by = 0. Like the isentropic coordinate, it is
expected to give improved Lagrangian conservation properties. However, over
time Lagrangian coordinate surfaces will bend and fold, making them inaccu-
rate or unusable as a vertical coordinate. To circumvent this, the Lagrangian
coordinate must be periodically re-initialized and the solution remapped to the
re-initialized coordinate system (e.g., Lin 2004).

4.3 Bottom and Top Boundary Conditions

The normal component of velocity at the bottom boundary must vanish. If 7 is a
terrain following coordinate then the boundary condition may be expressed particu-
larly simply as 77 = 0. In terms of velocity components we must have w = v.Vg zg,
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where v = (u, v) is the horizontal velocity. If the ground is flat then we have w = 0,
but not in general. Typically w will be stored at the bottom boundary, but ¥ and v
will be staggered in the vertical relative to w (see Sect. 4.5). Thus, some means of
evaluating v at the gound will be needed. If the model includes a boundary layer
scheme then it is appropriate to apply a no-slip boundary condition v = 0, and
it again follows that w = 0. However, for a frictionless dynamical core a free-
slip boundary condition, which imposes no constraint on v, is more appropriate;
then v must be extrapolated to the ground in a way consistent with the free-slip
condition.

A disadvantage of terrain-following coordinates, particularly at high horizon-
tal resolution, is that the coordinate system becomes far from orthogonal near
steep orography. Numerical methods can then lose accuracy. To avoid this prob-
lem, an alternative is not to use a terrain-following coordinate but to retain a height
coordinate and allow the coordinate surfaces to intersect the terrain.

In the simplest version of this idea the orography appears step-like, with the top
of each step coincident with a model coordinate surface (Fig.4.2). This has been
found to be too inaccurate. However, the idea can be extended (e.g., Adcroft et al.
1997) by allowing the bottom face of grid cells adjacent to the gound to be at any
height, not necessarily coincident with a model coordinate surface (fractional cells),
or even allowing them to slope (cut cells or shaved cells). A disadvantage remains
that vertical resolution in the boundary layer becomes reduced at mountain tops as
model grids are typically vertically stretched at higher altitudes.

The real atmosphere has no top boundary, but in a practical numerical model of
the atmosphere we must impose a boundary somewhere. Practical choices include
the following (e.g., Staniforth and Wood 2003).

e Rigid lid: w = 0 is imposed at some constant height z = zr. This is most
easily done if the vertical coordinate is height (or a hybrid coordinate reducing to
height near the top boundary). Conservation of energy and angular momentum
are maintained in the governing equations.

e Elastic lid: Dp/Dt = 0 is imposed on some surface of constant pressure
p = pr. (pr may equal 0.) This is most easily done if the vertical coordinate
is pressure (or a hybrid coordinate reducing to pressure near the top boundary).
The governing equations then conserve angular momentum and enthalpy.

Fig. 4.2 Schematic showing the simplest form of terrain intersecting vertical coordinate
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Both a rigid lid and an elastic lid are artificial and may cause spurious reflection
of upward propagating waves. To reduce the problem it is common to include a
scale-independent damping on model fields near the model top, but note that the
strength and depth of the damping layer must be chosen carefully. Moreover, it is
recommended that such damping only be applied to departures from the zonal mean
to avoid an unrealistic sink of angular momentum and spurious feedbacks (Shaw
and Shepherd 2007). An alternative is to apply a wave radiation condition at the
model top (e.g., Durran 1999). However, this approach is more complex and some
approximation is usually required.

4.4 The Simmons and Burridge Energy and Angular
Momentum Conserving Scheme

In this section we use the well-known Simmons and Burridge (1981) vertical dis-
cretization to illustrate the kinds of considerations that come into play to obtain
properties such as conservation of energy and angular momentum. It is assumed
that the hydrostatic primitive equations are being solved, and a hybrid o — p coor-
dinate is used. Figure 4.3 shows the vertical arrangement of variables: the pressure,
and the vertical coordinate 7 if needed, are defined on ‘half-levels’, while the prog-
nostic variables u, v and T are defined at the ‘full-levels’. We suppose there are N
full-levels, numbered from the top (where n = 0) to the bottom (where n = 1).
Surface pressure (or log of surface pressure) is predicted at the ground, which is the
half-level with index N + 1/2.

4.4.1 Hydrostatic Equation

We first look at the discretization of the hydrostatic equation

0P RT dp
— = (4.4)
an p on

k=1/2 =—=--------- np

k _ u,V, T

Fig. 4.3 Schematic showing

the vertical arrangement of k+1/2 ----------- np
variables for the Simmons

and Burridge scheme. & is the

level index k+1 —_— uvT
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Here @ is the geopotential and R is the gas constant for dry air. This is naturally
discretized as
Pk+1 2
D172 — Pr—1/2 = —RTx In ——— /
Plk— 1/2
Since @ at the ground is given, if we know the half-level pressures and the full-level
temperatures then we can easily integrate (4.5) to obtain @ at any half-level.
However, @ is required in the momentum equations at full-levels. Therefore a
further contribution proportional to 7 is added to obtain full-level values of @:

4.5)

Dy = Pry1/2 + g RTy. (4.6)

We have some freedom in exactly how the o’s are specified; see Simmons and
Burridge (1981) for a specific example. Here we will not specify o but keep the
discussion as general as possible. Note that oz may depend on pgx_;/2 and pry1/2
and hence on p;.

Note that this scheme supports a computational mode: for any given hydro-
statically balanced profile of Ty, ps, and Pk, we can find a pattern of 7' and p;g
perturbations that, when added to the original profile, has no effect on the @;. Such a
perturbation profile is therefore invisible to the dynamics. See Sect. 4.5.2 for further
discussion.

4.4.2 Angular Momentum Conservation

The vertical coordinate defines the pressure at the half-levels. However, for the
momentum equation we require the horizontal pressure gradient at the full-levels.
Demanding angular momentum conservation tells us how we should define the
full-level pressure gradient.

In spherical coordinates, the equation for the eastward velocity component is

Du wuvtan¢ 1 0® RT 1 dp
—fv+ —t—
Dt a acos¢ dA p acos¢ oA

=0, .7

where a is the Earth’s radius. Multiplying by a cos ¢ and usingaD¢ /Dt = v gives
an equation for the angular momentum density m = ua cos ¢ + a2 cos? ¢:

Dm 00 RT 8p

om . 4,
ottt a0 “48)

The net source of angular momentum, integrated over a latitudinal slice, is
ol 9 R Tdp\ dp
[ / — dndX
0 0 3/1 p 3/1 3

el 9ddp AP dp
- Fw TN gnda
/0 /0 (a/x FPRET ax) 1
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ol op 0 op
— - — | D— ) dndAr
fo /oan( ax)*%( Bn) L

2w 3
Ps
- Oy——dA 4.
/0 “‘a/\d’ (4.9)

where @ is the surface geopotential, and we have used the hydrostatic relation and
the boundary conditions to simplify the integral. Repeating this derivation for the
finite difference scheme, we find that a finite difference analogue of this formula
will hold provided

N

Noo) ap T dp
D) — App = Pg—— R(=Z) Apg, 4.10
1c2=:1 ko7 APk S +kz::l (p a/x)k Dk (4.10)

which, in turn, will hold provided we define the full-level pressure gradient via

RT RT,
(—Vp) = "[(lnp"“”)Vpk_1/2+akV(Apk)], @.11)
D r  Apk Dk—1/2

where o, is the same as used in (4.6) to define the full-level @.

4.4.3 Energy Conservation

Taking v times the momentum equation gives

D 2 RT
L (%) — vvo-RTo v, (4.12)
)4

while the thermodynamic equation may be written

iyl L 4.13)
Dtcp - op '
where b . 5
J4 l4
=L [ v.(vE) dn+vvp. 4.14
oo == [v.(vi) an+ vy @14

The terms on the right hand sides of (4.12) and (4.13) represent conversions between
kinetic and potential or internal energy. The global integral of the sum of the
conversion terms vanishes, implying energy conservation.

For the discretization we need to define w at full-levels using a finite-difference
analogue of (4.14). It may be verified that if we evaluate RT/p times the vertical
integral term as
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k—1
RT,
k (mp"“/z)Zv.(v,Aerakv.(vapk) (4.15)
Ap Pk-1/2) =

and evaluate (RT/p)V p using (4.11) as in the momentum equation then all contri-
butions to the global integral of the conversion terms do indeed cancel and so the
scheme preserves energy conservation.

The expressions (4.11) and (4.15) are not the most obvious finite difference dis-
cretizations of the corresponding continuous expressions; it is typically non-trivial
to obtain such conservation properties.

4.5 Wave Dispersion and Balance

In Chap. 3 we saw how different choices of horizontal grid staggering (and prog-
nostic variables) can affect the accuracy with which we capture the propagation of
different classes of waves, particularly short wavelength waves that are marginally
resolved. Accurate representation of the propagation of fast waves is important for
capturing adjustment towards balance, and hence for capturing balanced motions
themselves. Similar issues arise when considering vertical discretizations.

4.5.1 The Lorenz and Charney-Phillips Grids

For models solving the hydrostatic equations we have three-dimensional fields of
three prognostic variables: usually the two horizontal wind components (or some
equivalent information in terms of vorticy and divergence) and a thermodynamic
variable. (In some formulations we also have a surface pressure field.) Two classes
of vertical grid are widely used for hydrostatic models: those in which the thermo-
dynamic variable is stored at the same levels as the wind variables, and those in
which the thermodynamic variable is staggered in the vertical relative to the wind
variables. These are commonly referred to as the Lorenz grids and Charney—Phillips
grids, respectively, (Fig. 4.4) after Lorenz (1960) and Charney and Phillips (1953).

u,v,0 — u,v

Fig. 4.4 Schematic showing

the vertical arrangement of - --------- o ________ 0
variables for the Lorenz (/eft)

and Charney—Phillips (right)

grids _— u,v, 0 —_— u,V
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4.5.2 Lorenz Grid Computational Mode

One well-known drawback of the Lorenz grids is that they support a computational
mode. Consider, for example, the Simmons and Burridge scheme discussed above.
Suppose we have vertical profiles of T, ps and @ satisfying hydrostatic balance
(4.5). Now consider making some perturbations 7} to the temperature values and
D, to the surface pressure; through the linearized version of (4.5), these will imply
corresponding perturbations @, in the geopotential. The geopotential perturbation
at the lowest full-level is

dOlN ,

ol =OlNRT/ + RTN—p
N N dps s

(4.16)

while the difference between successive full-level geopotential perturbations is
’ / _ Pk+1/2 /
Pk—1/2
- ROtk_l Tlé—l

da b by doy—
+{RTk(—k+ k+1/2 bk 1/2)—RTk_1 k l}p’
dps Pk+1/2  Pk—1/2

4.17)

where by y1/2 = dpi+1/2/dps.

For an arbitrary p, we can ensure that @}, vanishes by a suitable choice of
Ty . But then we can ensure that @), _, vanishes by a suitable choice of Ty,_,,
and so on. In this way we can find a profile of 7 such that all @, vanish. Such a
ps and T} profile will therefore have no effect on the momentum equation; it will
be invisible to the dynamics and will not propagate (Tokioka 1978; Arakawa and
Moorthi 1988). The key point here is that there is one more degree of freedom in
{Tx,k = 1,..., N; ps} than there is in {@, k = 1, ..., N}; basic linear algebra then
implies that there exists a family of nonzero solutions for {7} .k = 1,...,N; p;}
that make {®; ,k = 1, ..., N} vanish.

Related to the existence of the computational mode is the possibility of a spuri-
ous resonant response to a steady thermal forcing. If the forcing projects onto the
computational mode then the response will grow linearly with time (until nonlinear
effects come into play) rather than reaching a steady response (Schneider 1987).

4.5.3 Compressible Euler Equations

The compressible Euler equations do not make the hydrostatic approximation
or any kind of incompressibility approximation; they therefore support acoustic
waves as well as inertio-gravity and Rossby waves. For the compressible Euler
equations we have five prognostic variables, usually three velocity variables and
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two thermodynamic variables. There are therefore many different possibilities for
choosing staggered grids. There are also different possible choices for which ther-
modynamic variables are predicted, e.g., any two from p, p, T, 0, etc. In this
subsection we will restrict attention to the use of height z as the vertical coordi-
nate with a uniform grid spacing Az, but similar reasoning applies to other vertical
coordinates (Thuburn and Woollings 2005; Thuburn 2006).

Numerical exploration of a large number of possible configurations (Thuburn and
Woollings 2005) shows that:

e Accurate representation of acoustic waves is necessary (but not sufficient) for an
accurate representation of inertio-gravity waves

e Which in turn is necessary (but not sufficient) for an accurate representation of
Rossby waves

Here, by considering the dispersion relations for different kinds of waves, we
attempt to give heuristic explanations for the kinds of configuration that give the best
representation of wave propagation. Just as we found when considering horizontal
discretizations, we want to avoid or minimize taking averages, and we want to avoid
or minimize taking differences over 2Az, since these approximations introduce
large errors in the propagation of short waves.

In what follows we will consider wavelike solutions of the governing equa-
tions with wavevector (k, [, m) and frequency w. Also define the total horizontal
wavenumber squared K 2 = k2412, the gravitational acceleration g, the Coriolis
parameter f, and the buoyancy frequency N.

4.5.3.1 Acoustic Waves
The acoustic wave dispersion relation is
w? ~ (m? + K?)c?, (4.18)

where ¢ is the speed of sound. Here, one factor of m comes from the vertical
derivative of p appearing in the w equation, and the other comes from the vertical
derivative of w appearing in the p equation. Thus, we will capture the dispersion
relation as accurately as possible if we capture these two vertical derivatives as
accurately as possible in the limit of short vertical wavelength. We therefore require:

e §.p at the same level as w
e §;w at the same level as p

where §, represents a finite difference approximation to d/dz. This implies that p
should be staggered with respect to w to obtain the most compact finite difference
approximations.

If p is not predicted but p is, then, for vertical-grid-scale waves, p perturba-
tions (expressed in terms of the two predicted thermodynamic variables) will be
dominated by p perturbations provided Az <« g/N?2, which will always hold in
practice; this then implies that p should be staggered with respect to w.
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4.5.3.2 Inertio-Gravity Waves

The inertio-gravity wave dispersion relation is

) m2f2+K2N2
wr

4.19
m? + K? (*-19)

The denominator arises in the same way as the m? 4+ K? factor in the acoustic wave
dispersion relation and so again will be captured as accurately as possible provided
p (or p) is staggered with respect to w. The m? term in the numerator also arises in
the same way, yet again requiring p (or p) staggered with respect to w. Depending
on the horizontal wavelength and on the relative sizes of f and N, it is possible
that the K2N?2 term in the numerator could dominate even for the shortest resolved
vertical wavelengths. To capture the K2 N2 term accurately requires that ¥ and v
be stored at the same levels as p in order to capture the pressure gradient term in
the horizontal momentum equations without averaging, and also requires that the
buoyancy variable (e.g., the potential temperature 6) be stored at the same levels as
w in order to capture the buoyancy source due to vertical advection and the effect
of buoyancy in the w equation without averaging.

If we do not predict 6 but predict, say, T and p or T and p then there are com-
parable contributions to the 6 perturbation from the two predicted thermodynamic
variables. Optimal wave propagation would then require both p or p staggered with
respect to w (to capture the m? f2 term) and p or p collocated with w (to capture
the K?2N? term), which is obviously not possible. In other words, optimal wave
propagation requires that we predict 6 or some function of 6.

4.5.3.3 Rossby Waves

The Rossby wave dispersion relation is

A KpN* 4.20
W~ m?f2 + K2N?' (4.20)
The denominator arises in the same way as the m? f2 + K2N? factor in the
inertio-gravity wave dispersion relation. It will be captured as accurately as pos-
sible provided p is staggered with respect to w and, if K?N? can be large, provided
u and v are stored at the same levels as p and 6 is stored at the same levels as w. The
numerator will be captured accurately provided 6 is stored at the same levels as w.

4.5.3.4 Numerical Dispersion Relations for Some Example Configurations

Figure 4.5 shows two plausible grid configurations that are natural extensions to the
compressible Euler equations of the Lorenz and Charney—Phillips grids. According
to our heuristic reasoning above, the Charney—Phillips grid should be as accurate
as possible for all types of waves. This does indeed turn out to be the case; Fig. 4.6
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___________ w —----------W,0
u,v,p,0 - u\Vv,p

___________ w ----------- W0
u,v,p, 0 _— u,Vv,p

Fig. 4.5 Schematic showing the vertical arrangement of variables for compressible Euler versions
of the Lorenz (left) and Charney—Phillips (right) grids

Numerical dispersion relation
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Fig. 4.6 Numerical dispersion relation for the optimal vertical configuration shown in the right
panel of Fig.4.5 (crosses) and exact dispersion relation (diamonds). The domain depth is 10* m
with a rigid lid, horizontal wavelength is 1,000 km, and the geometry is that for a 8-plane at 45°N.
The reference state is resting and in hydrostatic balance with a uniform temperature of 250 K.
The numerical dispersion relation was calculated for a uniform grid with 20 full-levels. The upper
curve corresponds to internal acoustic modes, the middle curve corresponds to the external acoustic
mode (mode number zero) and internal inertio-gravity modes, and the lower curve corresponds to
Rossby modes. Only westward propagating modes are shown. There are also eastward propagating
acoustic and inertio-gravity mode branches almost identical to the westward branches shown
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Numerical dispersion relation
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Fig. 4.7 As in Fig. 4.6 but for the vertical configuration shown in the left panel of Fig. 4.5

shows an example numerical dispersion relation, computed numerically, for this
configuration.

The Lorenz grid should be accurate for acoustic and inertio-gravity waves pro-
vided K2N? does not dominate m? f2. Figure 4.7 shows the numerical dispersion
relation for this configuration when this condition holds. The acoustic and inertio-
gravity wave dispersion relations are indeed captured accurately, but the Rossby
modes are retarded (compare Fig. 4.6). Also, as in the hydrostatic case, the Lorenz
grid supports a zero-frequency computational mode, which is not visible in Fig. 4.7.

There are some subtleties in exactly how the pressure gradient term should be
evaluated, particularly if we wish to predict p rather than p to facilitate mass conser-
vation (Thuburn 2006). Figure 4.8 shows the numerical dispersion relation when we
predict p instead of p on the Charney—Phillips grid, assuming that the pressure gra-
dient term is written as (1/p)V p, discretized in the obvious way, with p diagnosed
from p and a vertically averaged 6. In this calculation the buoyancy effect of 6 is,
in effect, vertically averaged, with the result that short-vertical-wavelength Rossby
waves are retarded. Figure 4.9 shows the numerical dispersion relation for the same
configuration if we use the alternative form c,8VII for the pressure gradient term,
where ¢, is the specific heat capacity at constant pressure and IT = (p/po)~.
This calculation feels the full buoyancy effect of 8, and all waves are handled as
accurately as possible.
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Numerical dispersion relation
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Fig. 4.8 As in Fig. 4.6 but for the vertical configuration predicting p instead of p and using the
(1/p)V p form of the pressure gradient

Numerical dispersion relation
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Fig. 4.9 As in Fig. 4.6 but for the vertical configuration predicting p instead of p and using the
¢, 0 VII form of the pressure gradient
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4.6 Conclusion

The main choices of vertical coordinate have been introduced. They each have
advantages and disadvantages, and indeed there is ongoing research and develop-
ment pursuing several of the options.

Two of the main issues in the design of vertical discretizations are conservation
properties and wave dispersion properties, and we have touched on both topics. Bet-
ter wave dispersion properties can be obtained with the Charney—Phillips family of
grids, particularly if careful attention is paid to the formulation of the pressure gradi-
ent term. On the other hand, conservation properties are more easily obtained using
the Lorenz family of grids. There is ongoing debate over the relative importance of
these two factors, and new models are being developed with both Charney—Phillips
and Lorenz grids.

Incidentally, further issues and complexity arise when considering the cou-
pling of the dynamical core to the physical parameterizations. For example, with
a Charney—Phillips grid, should one store moisture at density levels, facilitating
conservation of moisture, or at 6-levels, facilitating the calculation of important
thermodynamic quantities like relative humidity? There is clearly great scope for
further research.
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Chapter 5
Time Discretization: Some Basic Approaches

Dale R. Durran

Abstract The basic concepts of stability, consistency and convergence are intro-
duced. Additional measures of stability, such as A- and L-stability are discussed,
along with desirable stability properties for the time integration of partial differential
equations. The family of Runge—Kutta methods is reviewed, including both classi-
cal schemes and more recently developed strong-stability preserving and diagonally
implicit methods. The chapter concludes with a brief discussion of linear multistep
methods.

5.1 Introduction

Although the fundamental equations governing the evolution of geophysical fluids
are partial differential equations, ordinary differential equations arise in several con-
texts. The trajectories of individual fluid parcels in an inviscid flow are governed by
simple ordinary differential equations, and systems of ordinary differential equa-
tions may describe chemical reactions or highly idealized dynamical systems. Since
basic methods for the numerical integration of ordinary differential equations are
simpler than those for partial differential equations, and since the time-differencing
formulae used in the numerical solution of partial differential equations are closely
related to those used for ordinary differential equations, this chapter is devoted to the
analysis of methods for the approximate solution of ordinary differential equations.
Nevertheless some approaches to the solution of partial differential equations, such
finite-volume methods, arise from fully discretized approximations in both space
and time that cannot be correctly analyzed by considering the spatial and temporal
differencing in isolation (Chap. 8).
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Most of this chapter will focus on methods potentially suitable for use in the
numerical integration of time dependent partial differential equations. In compari-
son with typical ordinary differential equation solvers, the methods used to integrate
partial differential equations are relatively low order. Low-order schemes are used
for two basic reasons. First, the approximation of the time derivative is not the only
source of error in the solution of partial differential equations; other errors arise
through the approximation of the spatial derivatives. In many circumstances the
largest errors in the solution are introduced through the numerical evaluation of the
spatial derivatives, so it is pointless to devote additional computational resources
to higher-order time differencing. The second reason for using low-order meth-
ods is that practical limitations on computational resources often leave no other
choice.

Consider the initial value problem

d
V. 0 = o 5.1)

which will have a unique solution provided the function F is sufficiently smooth (in
particular, F must satisfy a Lipschitz condition.)! Numerical approximations ¢, to
the true solution at some set of discrete time levels t, = nAt,n = 0,1,2,... may
be obtained by setting ¢9 = Vo and repeatedly stepping the solution forward by
solving algebraic equations in which ¢, depends only on the approximate solution
at previous time levels.

It is often helpful to consider the algebraic equations used to create these approx-
imate solutions as arising from one of two approaches. In the first approach, the time
derivative in (5.1) is replaced with a finite difference. In the second approach (5.1)
is integrated over a time interval At

th41
Vltns) = Y(tn) + / F(y(0).1) d. (5.2)

and the algebraic equations that constitute the numerical method provide an approx-
imate formula for evaluating the integral of F'.

In the following, we will focus on the how the various stability conditions sat-
isfied by simple ordinary differential equation solvers influence their suitability for
the solution of partial differential equations. We then take a close look at Runge—
Kutta methods, which include a wide selection of schemes with various desirable
properties, many of which are not familiar to the atmospheric-science community.
The chapter concludes with a brief discussion of another popular family of schemes,
the linear multistep methods.

"' The Lipschitz condition is that | F(x,t) — F(y,t)] < L|x — y| for all x and y, and all t > 0;
where L > 0 is a real constant. One way to satisfy this condition is if |0F/dx| is bounded.
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5.2 Stability, Consistency and Convergence

The basic goal when computing a numerical approximation to the solution of a
differential equation is to obtain a result that indeed approximates the true solution.
In this section we will examine the relationship between three fundamental concepts
characterizing the quality of the numerical solution in the limit where the separation
between adjacent nodes on a numerical mesh approaches zero: consistency, stability
and convergence.

5.2.1 Truncation Error

The derivative of a function ¥ (¢) at time ¢, could be defined either as

dy 5 VUt + At) — ¥ (ty)
—(tn) = AHO Y , (5.3)

or as

dw V(ty + At) — Y (t, — At)

A —>0 2At

(ln)

If the derivative of 1/f(t) is continuous at #,, both expressions produce the same
unique answer. In practical applications, however, it is impossible to evaluate these
expressions with infinitesimally small A¢z. The approximations to the true deriva-
tive obtained by evaluating the algebraic expressions on the right side of (5.3) and
(5.4) using finite At are known as finite differences. When At is finite, the preced-
ing finite-difference approximations are not equivalent; they differ in their accuracy,
and when they are substituted for derivatives in differential equations they gener-
ate different algebraic equations. The differences in the structure of these algebraic
equations can have a great influence on the stability of the numerical solution.

Which of the preceding finite-difference formula is likely to be more accurate
when At is small but finite? If 1 (¢) is a sufficiently smooth function of ¢, this
question can be answered by expanding the terms (¢, = At) in Taylor series about
t, and substituting these expansions into the finite-difference formula. For example,
substituting

(5.4)

(Ar)* d?y
2 dr?

(A &y

dy
Yty + At) = Y(ty) + At (t,,) + o

(tn) + (ta) + ...

into (5.3), one finds that

Yty + At) =y (tn) dy At d*y (At)? d3y
At __(") 2 dtz(")+ 6 di3

Lt +.... (55)
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The right side of the preceding is the truncation error of the finite difference. The
lowest power of At in the truncation error determines the order of accuracy of the
finite difference. Inspection of (5.5) shows that the one-sided difference is first-order
accurate. In contrast, the truncation error associated with the centered difference
(5.4)is S ‘s
(An)* d Y (tn) + (An)* d>y
6 di3 120 dr>
and the centered difference is therefore second-order accurate. If the higher-order
derivatives of Y are bounded in some interval about ¢,, (i.e., if ¥ is “smooth")
and At is repeatedly reduced, the error in the second-order difference (5.4) will
approach zero more rapidly than the error in the first-order difference (5.3). The fact
that the truncation error of the centered difference is higher order does not, however,
guarantee that it will always generate a more accurate estimate of the derivative. If
the function is sufficiently rough and At sufficiently coarse, neither formula is likely
to produce a good approximation, and the superiority of one over the other will be
largely a matter of chance.
Euler’s method (sometimes called forward-Euler) approximates the derivative in
(5.1) with the forward difference (5.3) to give the formula

Pnt1 —Pn
A - F(¢n, tn). (5.6)

)+ ...,

Clearly this formula can be used to obtain ¢; from the initial condition ¢9 = Vo,
and then be applied recursively to obtain ¢, 41 from ¢,. How well does this simple
method perform?

One way to characterize the accuracy of this method is through its truncation
error, defined as the residual by which smooth solutions to the continuous problem
fail to satisfy the discrete approximation (5.6). Let 1, denote the truncation error at
time ?,, then from (5.5),

Ir//(tn+1) - 1,[f(l(n) _F

d
) (W) 10) = S 0) + 10— F0 ) 10) = 70, (57)

where the second equality holds because ¥ is a solution to the continuous problem
and
At d*y
"= ar
It is not necessary to explicitly consider the higher-order terms in the truncation
error to bound |, |; if ¥ has continuous second derivatives, the mean-value theorem
may be used to show

(ta) + O [(40)7].

2

t
|Tn|§_

max —_—
2 th<s<tyy1| dt?

I”(s)‘ . (5.8)
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Euler’s method is consistent of order one because the lowest power of At appearing
in #, is unity. If the centered difference (5.4) were used to approximate the time
derivative in (5.6), the resulting method would be consistent of order two.

5.2.2 Convergence

A consistent method is one for which the truncation error approaches zero as
At — 0. The order of the consistency determines the rate at which the solution
of a stable finite-difference method converges to the true solution as At — 0. To
examine the relation between consistency and convergence, define the global error
at time t, as E, = ¢, — ¥ (t,). From (5.7),

V(tnt1) = Y (tn) + ALtF (Y (tn), tn) + Al Ty, (5.9)

which implies that if we start with the true solution at ¢#,, the local or one-step
error generated by Euler’s method in approximating the solution at t,41 is Af tp,
which is one power of At higher that the truncation error itself. One might suppose
that the global error in the solution at time 7" is bounded by the maximum local
error times the number of times steps (max, |Af t,|)(T/At) which, like 1, itself, is
O(At). This would be a welcome result because it would imply the error becomes
arbitrarily small as the time step approaches zero, but such reasoning is incorrect
because it does not account for the difference between ¢, and v (¢,) arising from
the accumulation of local errors over the preceding time steps. The increase in the
global error generated over a single step satisfies

Eny1 = En+ At [F(¢n.ta) — F(¥(tn). 1a)] — At T, (5.10)

which may be obtained by solving (5.6) for ¢,+1 and subtracting (5.9). As appar-
ent from (5.10), the numerical solution will converge to the true solution provided
F(on, tn) — F(W(tn), tn) remains finite in the limit A — 0.

It is easy to show that Euler’s method converges for the special case where

F(y,1) = Ay + g(), (5.11)
where A is a constant.” We will examine this special case because it reveals the rel-
atively weak stability condition required to assure convergence to the true solution

in the limit A¢ — 0. Substituting (5.11) into (5.10) gives

En+1 = (1 + AAD)E, — At 7. (5.12)

2 More general conditions sufficient to guarantee the convergence of Euler’s are that F is an ana-
Iytic function (Iserles 1996, p. 7) or that the first two derivatives of ¥ are continuous (Hundsdorfer
and Verwer 2003).



80 D.R. Durran

Note that g(t), the part of F(i,¢) that is independent ¥, drops out and has no
impact on the growth of the global error. Suppose that N = T/ At is the number
of time steps required to integrate from the initial condition at # = 0 to some fixed
time 7.

From (5.12)

Ey =0+ AA)EN_1 — At TN
=1+ 1A [1 4+ AA)EN_ — At TN 2] — At Ty

and by induction,

N
En =1+ 240N Eg— At Y (14 240N "5 4.

m=1
Let
At dzw( )
Tmax = — max |———(s)],
T oss<ty | dt?

which from (5.8) is an upper bound on |z,| for all n independent of the choice
of time step used to divide up the interval [0, T']. Assuming the initial error Ey is
zero (although an O(At) error would not prevent convergence), and noting that for
At > 0,1+ |A|At < eM4? one obtains

|En| < NAL(1+ AN tnax = Te™ T g, (5.13)
Since Te*T has some finite value independent of the numerical discretization and
Tmax 18 O(At), the global error at time T must approach zero in proportion to the
first power of Az.

5.2.3 Stability

The foundation for the theory of numerical methods for differential equations is
built on the theorem that consistency of order p and stability imply convergence
of order p (Dalhquist 1956; Lax and Richtmyer 1956) . Evidently Euler’s method
satisfies some type of stability condition since it is consistent and is convergent of
order unity. The relation (5.12), which states that previous global errors amplify by
a factor of (1 + A At) over each individual time step, provides the key for bounding
the growth of the global error over a finite time interval. Define the amplification
factor A as the ratio of the approximate solution at two adjacent time steps,

A= ur1/$n. (5.14)
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A two-time-level method is stable in the sense that, if it is also consistent, it will
converge in the limit A7 — 0 provided that for some constant 7 (independent of the
properties of the numerical discretization)

|A| <14 nAt. (5.15)

In the previous simple example, n = A is just the coefficient of i in the forcing
F(y,t). When Euler’s method is applied to more general problems, 7 is a con-
stant associated with the Lipschitz condition on F(i, t). Essentially all consistent
two-time-level ordinary differential equation solvers satisfy this stability condi-
tion, but as discussed in Sect. 5.3.4, bounds similar to (5.15) are not satisfied by
many potentially reasonable approximations to time-dependent partial differential
equations.

5.3 Additional Measures of Stability and Accuracy

Although Euler’s method is sufficiently stable to converge in the limit Az — 0, it
may nevertheless generate a sequence ¢o, @1, ... that blows up in a completely
nonphysical manner when the computations are performed with finite values of
At. Again suppose F(y,1) = Ay, if A < 0, the true solution ¥ge*! is bounded
by ¥ for all time and approaches zero as t — oo. Yet if AAt < —2, then
A =1+ AAt < —1, and the numerical solution changes sign and amplifies geo-
metrically every time step, diverging wildly from the true solution.

5.3.1 A-Stability

How can we characterize the stability of a consistent numerical method to give an
indication whether a solution computed using finite Az is likely to blow up in such
an “unstable” manner? Clearly there are many physical problems where the true
solution does amplify rapidly with time, and of course any convergent numerical
method must be able to capture such amplification. On the other hand, there are also
many problems in which the norm of the solution is bounded or decays with time.
It is not practical to consider every possible case individually, but it is very useful to
evaluate the behavior of schemes on the simple test problem

d
A R ) (5.16)

where in contrast to our previous examples, ¥ and y are complex-valued. Breaking
y into its real and imaginary parts, such that y = A + iw with A and w real, the
solution to (5.16) is

1//(1) — I//Oe/ltel'wt’
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showing that i{y} determines rate of change of the magnitude (or modulus) of ¥/,
while J{y} governs the rate of change of its phase (or argument).

Despite its simplicity, (5.16) is prototypical of the time variations found in many
important fluid-dynamical problems. For example the concentration y of a passive
tracer in a flow moving at speed ¢ and diffusing with a diffusivity M along one
spatial dimension is given by the partial differential equation

2

8—)( + 68_)( =M 8_)(

ot ox dx2
Suppose the spatial domain is |x| < 1 and periodic, then the solution may be deter-
mined as the superposition of Fourier modes, each of which may be expressed in
the form by (t)e'**, where by, is a complex number determining the amplitude and
phase of each mode and k = nm, n = 0,£1,12,... is the wavenumber. The
wavenumber is inversely proportional to the wavelength, L = 2 /k, which is the
distance over which a wave’s shape repeats. Substituting an arbitrary Fourier mode
into (5.17) yields the following ordinary differential equation of the form (5.16):

by
dt

(5.17)

= — (Mk* + ick) by. (5.18)

Note that in the context of the advection-diffusion problem, %i{y} determines the
changes in amplitude produced by diffusion and J{y} governs changes in phase
produced by advection.

Numerical solutions to (5.16) computed with some specific value of At are abso-
lutely stable if |¢,| < |¢o| for all n, or equivalently, if |[A| < 1. The amplification
factor for Euler’s-method solutions to (5.16) is 1 + yAt, so the values of (AAf, w At)
for which |A| < 1 satisfy the inequality

(1 +2A0)% + (wAD)* < 1,

This region of absolute stability, which is the interior of a unit circle centered at
(-1,0) in the A Az-w At plane, is plotted in Fig. 5.1a.

The true solution to (5.16) is non-amplifying for all A < 0. This behavior is cap-
tured by numerical methods that are A-stable. A numerical method that is absolutely
stable for all AAt < 0 is A-stable. Forward differencing is not A-stable, but as will
be discussed in Sect. 5.3.3, the other methods whose absolute stability regions are
shown in Fig.5.1 are A-stable. A less restrictive variant of A-stability, known as
A(w) stability, is discussed in Iserles (1996), Hundsdorfer and Verwer (2003) and
LeVeque (2007).

5.3.2 Phase-Speed Errors

When M = 0, the prototype (5.18) reduces to the oscillation equation

dy
— =iy, (5.19)
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Fig. 5.1 Absolute stability regions (shaded) for (a) forward Euler, (b) trapezoidal differencing,
and (c¢) backward Euler

which serves as important model for many non-dissipative dynamical systems. The
oscillation equation may also be derived from a two-component real-valued system
of ordinary differential equations such as those representing Coriolis accelerations,

du

“F_ =0
ar Y

dv

i =0,
77 + fu

by setting ¥ = u +ivandw = — f.
Integrating the oscillation equation over a time At yields,

Y(to + At) = "2y (to) = Ae¥ (to). (5.20)

Here the last relation defines an “exact amplification factor" A., which in the case of
the oscillation equation, is a complex number of modulus one. According to (5.20),
over the time interval A¢, ¥ moves wAt radians around a circle in the complex
plane of radius |y (¢9)| centered at the origin.

Hundreds of papers have been written investigating techniques for solving (5.17)
with M = 0 (see for example the extensive review in Rood (1987)). The vast-
ness of this body of literature is a testament to the subtle tradeoffs involved in the
selection of the “best” numerical method for even very simple equations. It might
be supposed that the relative accuracy of different methods for the M = 0 prob-
lem could be easily determined by comparing their respective truncation error. The
analysis of truncation error is, however, most effective at predicting the behav-
ior of well resolved features which oscillate over periods at least an order of
magnitude larger than a single time step. The most serious errors are, however,
often found in the poorly resolved features oscillating over periods between 2At
and 4At. These errors typically appear in both the phase and amplitude of the
solution.



84 D.R. Durran

Phase errors for numerical solutions to the oscillation equation can be evalu-
ated from the amplification factor. Expressing A in modulus-argument form | A]e’?,
where

|A] = (WA} + I{AP)Y2, and 6 = arctan (I{A}/R{A}).

phase errors may be characterized by the relative phase change, R = 6/w At, which
is the ratio of the phase advance produced by one time step of the numerical scheme,
divided by the change in phase experienced by the true solution over the same time
interval. If R > 1, the method is accelerating; if R < 1, the scheme is decelerating.
Phase errors accumulate over the period of integration and can become quite large
over long time periods.

In a non-dissipative system, amplitude errors represent spurious sinks or sources
of energy. Amplitude errors arise from the difference between the magnitude of the
approximate amplification factor |A| and the correct value of unity. When |A| = 1,
the scheme is neutral. If |A| < 1, the scheme is damping; and if |A| > 1, itis ampli-
fying. The range of values of At for which a given approximation to the oscillation
equation is not amplifying are given by the intersection of the absolute stability
region for the scheme and the imaginary (w At) axis, which in the case of Euler’s
method (Fig. 5.1a) is just the origin.

5.3.3 Single-Stage, Single-Step Schemes

The simplest techniques for the solution of the ordinary differential equation (5.1)
are members of the general family of single-stage single-step schemes, which may
be written in the form

¢n+lAt_ e = (=) F(¢n,tn) + aF ($n+1,n+1)- (5.21)

Euler’s method is obtained by setting « = 0; the backward-Euler method corre-
sponds to the case « = 1, and the trapezoidal method is obtained when o = 1/2.
Substituting the true solution v into (5.21), expanding all terms in Taylor series
about t,, and using

d d d? AD? d3
FO i) = Do) = Lo+ an S+ 4

one may show the truncation error for all members of this family of schemes is
O(At), except for the trapezoidal method which is O [(At)z].
Application of (5.21) to the test equation for absolute stability (5.16) yields

on 1—ayAr '

A
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For backward Euler, A = (1 — yAt)™! = (1 — AAt —iwAt)~'. Multiplying A by
its complex conjugate gives

1
(1 =240)% + (A

Els

implying that backward-Euler differencing will produce absolutely stable solutions
for all (AAt, w At) outside the circle

(1 —AAN? + (wA1?* < 1. (5.23)

This region is shown in Fig.5.1c, and since it includes the region AAr < 0,
backward-Euler differencing is A-stable. Although it generates physically appro-
priate solutions for A < 0, the backward-Euler method can produce large errors
if A > 0.If A > 0 and (AAt, wAt) is not inside the circle (5.23), the numerical
solution will decay but the true solution should grow exponentially with time.

The amplification factor for the trapezoidal method is

1 +yAr)2

—_rae 5.24
1—yAt)2 (5:24)

from which

AP = (1 4+ 1At/2)? + (wAt)?
(1= AA1/2)2 + (wA1)?”
Thus, the absolute stability region for the trapezoidal method (shown in Fig.5.1b)
is the half-plane A A7 < 0 and it is A-stable.

Now consider the behavior of these schemes in the purely oscillatory case; then
y = iw, and from (5.22)

14+ (1 —a)?>(wAr)? (wAL)?
AP? = =1 1—-20)——————.
4] 1+ a2 (@A)? 2 wan?

(5.25)

Inspection of the preceding shows that the scheme is amplifying when o < 1/2,
neutral when @ = 1/2; damping when « > 1/2. These results are consistent with
the locations of the boundaries of the absolute stability regions in Fig. 5.1.

The amplitude and phase errors in the approximate solution are functions of
the numerical resolution. The solution to the governing differential equation (5.19)
oscillates with a period T = 27 /w. An appropriate measure of numerical resolution
is the number of time steps per oscillation period, 7/ Az. The numerical resolution
is improved by decreasing the step size. In the limit of very good numerical resolu-
tion, T/ At — oo and w At — 0. Assuming good numerical resolution, the Taylor
series expansion

2
X x
——§+..., for |x| <1,

(1+x)‘/2=1+2
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may be used to reduce (5.25) to
Al ~ 1+ (1 —2a)(0A1)%
It follows that
| Al & 1+ (@A) and  [Alpaoas & 1 — 2(@AD)?, (5.26)
indicating that the spurious amplitude changes introduced by both the forward and

backward-Euler methods are O[(wAt)?].
The relative phase change in the family of single-stage two-level schemes is

R 1 ‘ w At
= —— arctan .
wAt 1 —a(l —a)(wAr)?

Thus,

arctan w At
Rforward = Rbackward = T (527)
wAt

which ranges between 0 and 1, implying that both the forward and backward-Euler
schemes are decelerating. Assuming, once again, that the numerical solution is well
resolved, the preceding expression for the phase-speed error may be approximated
using the Taylor series expansion

x3  x®
arctanx = x — — 4+ — —... for |x| <1,
3 5
to obtain
(wAt)?
Rforward = Rbackward ~ 1 - 3 .

The phase-speed error, like the amplitude error, is O[(At)?]. The relative phase
change for the trapezoidal scheme is

1 w At
R[rzlpezoidzll = —— arctan —2 .
wAt 1 —w2Ar”/4

which for small values of w At is approximately,

R L et A1+ WAl 1 w?Ar?
trapezoidal ~ ——— arctan | w ~ 11— .
peroidl wAt 4 12

As with the forward and backward Euler methods, the trapezoidal scheme retards
the phase change of well resolved oscillations. However, the deceleration is only %
as great as that produced by the other schemes.
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Although the trapezoidal scheme is second-order accurate and A-stable, it has
the disadvantage in that it requires the evaluation of F(¢,+1) during the computa-
tion of ¢,+1. A scheme such as the trapezoidal method, in which the calculation
of ¢,+1 depends on F(¢,+1), is an implicit method. If the calculation of ¢y,
does not depend on F(¢,+1), the scheme is explicit. In the case of the test problem
(5.16), implicitness is a trivial complication. However, if F is a nonlinear func-
tion, any implicit finite-difference scheme will convert the differential equation into
a nonlinear algebraic equation for ¢,+1. In the general case, the solution to this
nonlinear equation must be obtained by some iterative technique. Thus, implicit
finite-difference schemes generally require much more computation per individual
time step than do similar explicit methods. Nevertheless, in problems where accu-
racy considerations do not demand a short time step, the extra computation per
implicit time step can be more than compensated by using a much larger time step
than that required to maintain the stability of comparable explicit schemes.

5.3.4 Application to PDEs

Consider once again the advection-diffusion equation (5.17) that motivated the
selection of (5.16) as a prototype ODE. According to (5.18), each individual Fourier
coefficient by oscillates at the frequency ck. The highest frequency resolved by any
completely discrete approximation to (5.17) will be that of the highest-wavenumber,
or equivalently, the shortest-horizontal-wavelength disturbance captured by the dis-
cretization. As a concrete example, suppose the spatial derivatives are replaced by
finite differences, then the maximum resolved k scales like (Ax)~!. Let us tem-
porarily suppose that the physical viscosity M is zero, and that the finite difference
approximation to 3v/dx does not introduce “numerical diffusion.”® Then if Euler’s
method is used to approximate the time derivative, the frequency of the most rapidly
varying Fourier component wy,.x will be O(c/Ax), and over each time step its
Fourier coefficient by will change by a factor Ay, = 14 i0(cAt/Ax).

When attempting to obtain converged solutions to partial differential equations,
the spatial and temporal resolution are typically reduced simultaneously, keeping
At/ Ax constant. But if Ar and Ax are both repeatedly halved and Euler’s method
is used to integrate the numerical solution over a fixed physical time 7" = N At, the
inequality,

max

[Ar. | <14 |omaxAt| = 1+ O(|cAt/ Ax|),

max

cannot be used to bound |Akmx|N . Thus, the approach used to prove the con-
vergence of Euler’s method for ODEs in Sect. 5.2.2 fails, and as may be shown
rigorously (Durran 1999, p. 90), forward-in-time, centered-in-space approximations
to the pure advection problem are unstable. Those time stepping schemes suitable

3 Such diffusion can be avoided by using centered spatial differences (Durran 1999, p. 80).
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for use with centered-in-space approximations to the advection equation are ones
for which the point (0, wm.,xAt) lies in the scheme’s region of absolute stability
whenever |c At/ Ax| is less than some constant.*

Now consider the case of pure diffusion, for which (5.18) reduces to

d by 5
T Mk*bg. (5.28)
If the time-derivative is approximated by Euler’s method, the amplification factor
for the Fourier coefficient of the shortest wavelength, most rapidly decaying com-
ponent of the solution becomes 1 — O[M At /(Ax)?], which approaches negative
infinity if Az and Ax are both repeatedly halved in an effort to obtain a convergent
approximation. In most practical applications involving diffusion dominated prob-
lems, At/(Ax)? becomes unbounded as the numerical resolution is refined, and it
is therefore advantageous to approximate their temporal evolution using A-stable
schemes, all of which are implicit.

Explicit time differences may, nevertheless, yield good results in the special case
where M represents an “eddy diffusivity” M, rather than a true physical diffusiv-
ity. Eddy diffusivities are designed to parameterize the effects of mixing by fluid
motions whose scale is too small to be captured on the numerical mesh, and M.
is typically proportional to the spatial grid interval. Thus M.At/(Ax)? remains
constant as A7, Ax — 0 with Az/Ax fixed, and it becomes practical to satisfy
conditions such as 0 < M At/ (Ax)? < 1, which would allow Euler’s to be used to
stably integrate those terms representing parameterized diffusion.

5.3.5 L-Stability

A-stability is not always sufficient to guarantee good behavior in practical applica-
tions involving systems of equations in which the individual components decay at
very different rates. When A-stable trapezoidal time differencing is used in conjunc-
tion with finite-difference approximations to the spatial derivative in the diffusion
equation, the amplification factor for the Fourier coefficient of the shortest wave-
length mode may be obtained by replacing /2 in (5.24) with —oM/(Ax)?, to
give
1 —oMAt](Ax)?
™ ] 4+ oMAt)(Ax)?

where o is a positive constant determined by the exact finite difference formulation.

Ay,

4 When choosing a time step for the numerical solution of time-dependent PDEs, one must also
satisfy the Courant—Friedrichs—Levy condition that the numerical domain of dependence include
the domain of dependence of the true solution (see, e.g., Durran 1999).
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In some applications it is not necessary to follow the precise behavior of the
most rapidly decaying, shortest wavelength modes, and a time step appropri-
ate for the accurate and efficient simulation other aspects of the problem (for
example the slower diminution of the longer wavelength components) can make
MAt/(Ax)? > 1. Yetin the limit M At /(Ax)? — oo, A, — —1, in which case
the short-wavelength components of the trapezoidal integration will flip sign every
time step without significant loss of amplitude. Although large time steps will not
produce an unstable amplification of the shortest wavelength modes, sufficiently
large steps do prevent those modes from properly decaying.

The correct behavior in the limit MA¢/(Ax)? — oo is recovered if backward-
Euler differencing is used to approximate the time derivative. Then the amplification
factor for the Fourier coefficient of the shortest-wavelength mode becomes

1
Ap = ,
koo = T 26 M AL (Ax)?

and the amplification factor approaches zero as At /(Ax)? becomes arbitrarily large.
Backward-Euler differencing is an example of an L-stable method. L-stable methods
are defined in the context of the prototype ODE (5.16) as those schemes that are
A-stable and satisty the additional property that A — 0 as R{y}Atr — —oo. L-
stable methods are of great use in simulation of systems in which chemical reactions
occur over a broad range of time scales (Hundsdorfer and Verwer 2003; LeVeque
2007).

5.4 Runge-Kutta (Multi-Stage) Methods

Definite integrals are often evaluated numerically through quadrature formulae
b s
/ f@)ydt~ Y " bj f(c)). (5.29)
a j=1

where the weights b; and the nodes c; are independent of the function f (Iserles
1996, p. 33). A similar strategy may be used to step the solution of an ordinary
differential equation forward over a time interval Az by approximating the integral
in (5.2) such that

Y(tat1) ~ Y (1) + ALY b F(Y(tn + ¢ AL). 1y + ¢; Al). (5.30)
i=1

In contrast to the situation with the simple quadrature formula (5.29), however, the
values of ¥ (t, + c; At) required for the evaluation of (5.30) are not known at time
t,, and must therefore be estimated numerically through a series of preliminary



90 D.R. Durran

calculations, or stages. An explicit s-stage Runge—Kutta scheme iteratively builds
an approximation to (5.30) as follows

&1 = ¢n (5.31)

£ = ¢ + Ataz 1 F (&1, tn) (5.32)

53 = ¢n + At [613,1F(§1,l‘n) 4+ a3,2F(§2,t,, =+ CzAI)] (5.33)
s—1

§s = Gn+ ALY a5 F(§j tn+c;Al) (5.34)
j=1

Gni1 = ¢n+ AL Y biF(Ej 1y + ¢ A1) (5.35)
j=1

By convention, we ensure that £; is at least a first order approximation to ¥ (¢, +
c¢j At) by setting ¢y = 0 and

Jj—1
CJZZ“M j=2,3,...,5. (5.36)
k=1

In explicit Runge—Kutta schemes a j x = 0 for k > j. Implicit s-stage Runge—Kutta
schemes are obtained by replacing (5.31)—(5.34) with

N
£ =n+ AtY ajiF(E.tn + ck Al), (5.37)
k=1

where in general all the a;; may be non-zero. The order conditions given above
(and in the next two sections) apply both to implicit and explicit Runge—Kutta
methods.

5.4.1 Explicit Two-Stage Schemes

Taylor series expansions may be used to arrive at the additional conditions Runge—
Kutta methods must satisfy to achieve a given level of accuracy. First-order accuracy
requires

S
> bp=1. (5.38)
ji=1

For a single-stage method, the unique solution to (5.38) is b; = 1 and (5.31)—(5.35)
reduce to the forward Euler method. Second order accuracy requires (5.36), (5.38)
and
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> 1
> bjej = > (5.39)
j=1

For an explicit two-stage scheme, these accuracy requirements reduce to
c2=az1, bi+by=1 byy=1/2,

which is a system of three equations in four unknowns whose solution is not unique,
but may be expressed in terms of the free parameter a, ;. One well-known second-
order two-stage scheme is the Heun method, for which a2,; = 1 (and therefore
b1 = by = 1/2, ¢c; = 1). The Heun method creates a trapezoidal-like approxi-
mation to the integral of F, but differs from the true trapezoidal method because
F(¢n+1,ta41) is replaced by the estimate F (&2, t,41). Another second-order two-
stage scheme is the midpoint method, in which a1 = 1/2. Also of note is the
first-order two-stage forward-backward scheme (Matsuno 1966) in which a1 =
b2 = (Cy = 1andb1 =0.

One important difference among the basic explicit Runge—Kutta schemes is
whether they generate non-amplifying solutions in purely oscillatory problems. If
the oscillation equation, is approximated using a two-stage scheme of at least first
order, the result may be written as

Pn+1 = ¢n + briw At (¢n + a2,1ia)At ¢n) + (1 = ba)iwAt On- (5.40)
The amplification factor is
A=14iwAt —ar 1by(wAt)?,

and
JA> = 14 (1 = 2a2,1b2) (@ At)? + (a2,1b2)* (0 At)*, (5.41)

which shows that the set of second-order schemes, (i.e., those schemes for which
az1ba = 1/2) have O[(At)*] amplitude error, whereas the amplitude error in first-
order two-stage schemes is O[(At)?]. Unfortunately, all the second-order two-stage
explicit Runge—Kutta schemes are amplifying, since in the limit of good numerical
resolution,

|Alrker ~ 1 + %(CUAI)“-

Although these schemes are amplifying, the growth is O[(Af)*]. At a given step
size, the erroneous amplification produced by a second-order two-stage scheme will
be much weaker than the O[(Af)?] growth produced by forward time-differencing
(or equivalently the first-order one-stage Runge—Kutta method, see (5.26)).

Many physical systems contain several different modes, each oscillating at a dif-
ferent frequency. When simulating these systems, the highest frequency components
of the numerical solution are likely to be most seriously in error because of their poor
numerical resolution. It is precisely these poorly resolved features that are amplified
most rapidly by the second-order two-stage methods. In contrast, non-amplifying
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solutions in which the high frequency components are strongly damped can be
obtained using Matsuno’s forward-backward scheme, for which

| AR e = 1 — (@A1)? + (@A1)*, (5.42)

The Matsuno scheme damps the solution whenever 0 < wAt < 1. Differentiation
of (5.42), with respect to wA¢, shows that the maximum damping occurs when
wAt = 1/+/2. Thus, if the time step is chosen such that 0 < wAt < 1/+/2 for all
frequencies w in the physical system, Matsuno time differencing will preferentially
damp the highest frequency waves. The damping properties of the Matsuno scheme
have been exploited to eliminate high-frequency gravity waves generated during the
initialization of weather prediction models. The standard Matsuno scheme produces
too much damping, however, for most nonspecialized applications. The fourth-order
Runge—Kutta scheme (see Sect. 5.4.2) may also be used to preferentially damp high
frequency modes, and in most instances it would be a better choice than the Matsuno
scheme because it is more efficient and far more accurate.

The amplitude errors generated by the preceding Runge—Kutta schemes are com-
pared those produced by backward Euler and trapezoidal differencing in Fig.5.2.
The strong damping associated with the backward Euler and Matsuno schemes is
evident, along with the rapid amplification produced by forward Euler differenc-
ing. These relatively large errors may be contrasted with the significantly weaker
amplification produced by the second-order Runge—Kutta methods, and the neutral
amplification of the trapezoidal method.

The relative phase change associated with the general two-stage explicit Runge—
Kutta method (5.40) is

R 1 ‘ w At
= ——— arctan .
wAt 1 —Clz’]bz(a)Al)z

a
20F
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Fig. 5.2 The modulus of the amplification factor (a) and the relative phase change (b) as a func-
tion of temporal resolution w At for the true solution and five two-level schemes: exact solution
(E) and trapezoidal method (T), forward Euler (F), backward Euler (B), second-order Runge—Kutta
(R), and Matsuno (M)
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In the limit of good numerical resolution, the relative phase changes produced by
second-order schemes and the Matsuno method scheme are

RRKcZ ~ 1 + %(a)At)z RMatsuno ~ 1 + %(Q)At)2

The relative phase change for these schemes is plotted as a function of tempo-
ral resolution in Fig. 5.2, along with that for forward Euler, backward Euler, and
trapezoidal differencing. The Matsuno and second-order Runge—Kutta schemes are
accelerating, whereas the forward Euler, backward Euler, and trapezoidal schemes
are decelerating.

5.4.2 Explicit Three- and Four-Stage Schemes

Runge—Kutta schemes satisfying

s N s
1 1
E bjcjz- =3 and E E biajrcx = 8 (5.43)
Jj=1

j=lk=1

as well as (5.36), (5.38) and (5.39) are third-order accurate. For explicit three-stage
Runge—Kutta schemes, (5.43) reduces to

1
baca + bycs = 3 and bzazpcr = 6

As with the second-order methods there is no unique choice for the coefficients of a
three-stage third-order scheme. On example is Heun’s third-order method,

gl :¢n7 §2=¢n+%F(§1,l},), €3 :¢H+ZTAIF(52’I"+%)’

A

Another possibility is the low storage variant recommended by Williamson
(1980) which may be written as

q1 = AtF(¢n,tn) éa) = ¢n +q1/3
g2 = AtF (¢, tn + %) —5q1/9 b)) = ¢y + 15¢2/16
g3 = AtF(¢). tn + 255) — 153¢2/128  $pt1 = ¢(2) + 8¢3/15.
In practical applications involving time-dependent partial differential equations,

¢n may be an extremely long vector of unknown variables (e.g., the velocity, tem-
perature, pressure and mixing ratio of chemical species at every node on a large



94 D.R. Durran

three-dimensional mesh). It may, therefore, be difficult to store several copies of
¢ and F(¢) in the in-core memory of a digital computer. If m is the number
of unknowns in ¢, the Williamson—-Runge—Kutta scheme economizes on stor-
age by allowing the integration to proceed using only 2 m storage locations,
divided between the arrays ¢ and ¢, which are overwritten three times during each
integration step.

In addition to (5.36)—(5.39) and (5.43), fourth-order Runge—Kutta methods
must satisfy four additional equations (Hundsdorfer and Verwer 2003, p. 141).
Once again, the solutions for the coefficients of a four-stage explicit method are
not unique. The most well-known four-stage fourth-order method is the classical
Runge—Kutta formulation,

A
é1 = dn. b2 = gn + 5 FlEntn)

At (5.44)
Es=n+ 5 Flootn+5), &=dn+t M F@Etn+ 5,

¢H4=m+%ﬁﬂ&aﬂan&u+%H&H&w+%ﬂ+nagﬂﬂ

Low-storage variants also exist for fourth-order schemes (Blum 1962), but in con-
trast to the third-order methods, they require 3 m storage locations to advance an
m-dimensional vector of unknowns forward in time.

Fifth- or higher-order explicit Runge—Kutta schemes are relatively unattractive
because the number of stages required to achieve order s exceeds s for all s > 4.
Nevertheless, the simple s-stage scheme

= b =dt——FE). 1Sj<s g =
s—j+1
(5.45)
is accurate to order s when F () is linear in ¥ (as would be the case in many
applications involving time-dependent partial differential equations). When F is
nonlinear, (5.45) is only second-order accurate.

Figure 5.3 shows the amplification factor for third- and fourth-order Runge—
Kutta solutions to the oscillation equation (5.19) plotted as a function of temporal
resolution. As shown in Fig.5.3, once the time step exceeds the maximum sta-
ble time step for the third-order scheme, the fourth-order method becomes highly
damping. In some circumstances it may be desirable to selectively damp the highest
frequency modes, and in such cases the fourth-order Runge—Kutta method would
be clearly preferable to the first-order Matsuno method. On the other hand, if one
wishes to avoid excessive damping of the high-frequency components, it will not be
possible to use the full stable time step of the fourth-order Runge—Kutta scheme.

As was the case for the two-stage first-order Matsuno method, the stability of
explicit Runge—Kutta solutions to the oscillation equation may be enhanced by
adding extra stages if one is willing to settle for first- or second-order accuracy.
In particular, the stability condition max [wA¢| = s — 1 may be obtained for an
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Fig. 5.3 Modulus of the amplification factor plotted as a function of temporal resolution w At for
third-order three-stage (dashed) and fourth-order four-stage (solid) explicit Runge—Kutta solutions
to the oscillation equation
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Fig. 5.4 Absolute stability regions for explicit Runge—Kutta schemes: (a) of equal orders and
stages, 1 through 4; (b) two-stage methods: Matsunno (solid) and second-order (dashed); (c) four-
stage methods: Spiteri and Ruuth’s third-order SSPRK scheme (solid) and fourth-order (dashed).
In each case, the region of absolute stability lies inside the curve. When @ = 0, the absolute
stability region for the Spiteri-Ruuth scheme extends to roughly A At = —5.15

s-stage scheme that will be second-order accurate if s is odd, and first-order accu-
rate when s is even (Hundsdorfer and Verwer 2003, p. 150). Note that despite their
high-order accuracy, explicit fourth-order four-stage Runge—Kutta methods are sta-
ble for max |wAt| < 2.82 which is very close to the optimal limit of max |[wAt| = 3
obtainable using a first-order four-stage explicit method.

Absolute stability regions for explicit Runge—Kutta schemes of orders one
through four are plotted in Fig. 5.4a. Consistent with the behaviors of the ampli-
fication factors for the oscillation equation shown in Figs.5.2 and 5.3, the third-
and fourth-order methods are the only ones for which the absolute stability regions
includes a finite segment of the imaginary axis. None of these methods, and indeed
no explicit Runge—Kutta scheme is A-stable.

Figure 5.4b compares the absolute stability region for a pair of explicit two-
stage methods, the first-order Matsuno method and any second-order scheme. The
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increase in absolute stability along the real axis in the Matsuno scheme is achieved
not only by sacrificing accuracy, but also by considerably reducing the overall region
of absolute stability relative to the second-order schemes.

5.4.3 Strong-Stability Preserving Methods

Many methods for the numerical integration of conservation laws avoid the gen-
eration of spurious maxima and minima through the use of some type of flux
limiter. The time differencing associated with such methods is often forward Euler.
Strong-stability perserving Runge—Kutta (SSPRK) schemes can be used to obtain
higher-order accuracy in time while preserving the beneficial results of the flux lim-
iter. To be more precise, suppose that U is a vector of unknowns at every point on the
spatial mesh, and that ||U || represents a measure such as the maximum of |U]| or
the total variation of U over all spatial grid points. Let B(¢) be an approxima-
tion to the flux divergences in a conservation law such that

Unt1 = + AtB) Uy, (5.46)

and suppose that the fluxes are limited so that ||U,+1| < ||Uy|| provided
|cAt/Ax| < 1, where c is the phase speed at which signals are propagated by
the conservation law. SSPRK methods allow the forward-in-time approximation in
(5.46) to be replaced by a higher-order scheme while preserving the strong-stability
condition that | Uy 41| < ||Uy |-

SSPRK schemes are constructed by forming linear combinations of forward-
Euler operators in which the coefficient multiplying each operator is positive. The
positivity of the coefficients ensures that a conservation law integrated with the new
scheme retains the strong-stability properties of the original forward-Euler approxi-
mation (5.46). The precise value of the positive coefficients is chosen to obtain some
combination of high-order accuracy and a favorable maximum stable time step. A
two-stage second order SSPRK method is

éa) = ¢n + AtB($n),
b@) = ¢y + AtB(d)).
Pnt1 =3 (dn + d2)) . (5.47)

and a three-stage third-order scheme is

¢(1) = ¢n + AtB(¢n)7
b@) = 2¢n + 5 [¢) + AtB())].
Gnt1 = 20 + 2 [2) + AtB(d2)] - (5.48)
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Both of these schemes, which were proposed by Shu and Osher (1988), are strong-
stability preserving for |[c At/ Ax| < 1.

The schemes (5.47) and (5.48) are optimal in the sense that no second-order two-
stage or third-order three-stage SSPRK scheme exists that allows a larger maximum
time step. (Gottlieb and Shu 1998). Nevertheless, in some applications the four-
stage, third-order SSPRK scheme proposed by Spiteri and Ruuth (2002)

$(1) = P + 3 ALB(n).
¢ = ¢ + 3 AtB(b)),
$e) = 30 + 3 [¢0) + 7A1B()].
Pnt1 = $@3) + 3A1B($3), (5.49)

may be more efficient because it is strong-stability preserving for |[cAt/Ax| < 2,
allowing one to double the time step while increasing the computational burden
associated with the evaluation of B by only 33% relative to that required by (5.48).

It should be emphasized that these methods are only strong-stability preserv-
ing when flux-limiting ensures that the forward step (5.46) yields a strongly-stable
result. Amplifying solutions are produced if (5.47) is applied directly to the oscil-
lation equation (5.19). Since (5.47) is an explicit two-stage second-order method
and since (5.48) is an explicit three-stage third-order scheme, their absolute stability
regions are exactly those shown for the second- and third-order methods in Fig. 5.4a.
On the other hand, as shown in Fig. 5.4c, the four-stage third-order scheme (5.49)
has a different, and generally larger, region of absolute stability than the family of
four-stage, fourth-order Runge—Kutta methods. More information about SSP time-
differencing schemes may be found in the reviews by Gottleib et al. (2001) and
Gottleib (2005).

5.4.4 Diagonally Implicit Runge—Kutta Methods

Diagonally implicit Runge Kutta schemes are obtained when the implicit coupling in
(5.37) is limited by requiring a ; x = 0 whenever k > j. In comparison to methods
with more extensive implicit coupling, the relative efficiency of diagonally implicit
schemes make them more attractive for applications involving PDEs or large sys-
tems of ODEs. Backward Euler differencing is a first-order accurate single-stage
diagonally implicit Runge—Kutta scheme. The implicit midpoint method,

E1 = ¢n + 2A1 F(§1.1 + L A1)
Gn+1 = dn + At F(E1, L Ar), (5.50)

is a second-order accurate single-stage scheme. The implicit midpoint method is A-
stable; its amplification factor is identical to that for the trapezoidal method (5.24).
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A family of two-stage diagonally implicit Runge—Kutta schemes of at least
second-order accuracy may be written in terms of a single free parameter o as

€1 = ¢n + @ AtF(§1. 1, + aAt),
£ = ¢ + (1 —20)AtF(E1, 1y + aAt) + aAtF (§2,t, + (1 — ) At)
Gnt1 = n + SAL[F(Er ty + A1) + F(&2 1w + (1 — ) A1)]. (5.51)

Third order accuracy is obtained if @ = 1/2 + /3/6.
If one of the schemes defined by (5.51) is applied to the test problem (5.16), the
resulting amplification factor is

1+ (1 =20)yAr + (5 — 2 + a?)(yAr)?

A
(1 —ayAr)?

(5.52)

These schemes are A-stable if and only if « > 1/4, as may be easily appreciated
in the particular case for which yAt — (—o0, 0); then the leading order behavior
of |A] is (3 — 2o + a?)/a® which is bounded by unity for & > 1/4. The (yAt)?
term in the numerator of (5.51) is zero, and the scheme is L-stable if « = 1 &+
%ﬁ One attractive way for handling the implicitness in (5.51) is through Runge—
Kutta Rosenbrock methods. These are discussed in the context of photochemical air
pollution models in (Verwer et al. 1999).

5.5 Multistep Methods

Multistep methods are an alternative to multi-stage methods in which information
from several earlier time levels is incorporated into the integration formula. For
example, the general form for an explicit two-step method is

Gn+1 = 1Oy + A2pn—1 + B1ALF (P, tn) + B2 ALF (Pn—1,tn—1). (5.53)

In contrast to multistage methods, the forcing F (i, ¢) is only evaluated at integer
time steps and all the required values except F (¢, t,) have been already calcu-
lated at previous time steps. Since the evaluation of F (v, ) is often computationally
intensive, storing and reusing these values has the potential to increase efficiency,
although obviously it may also require more storage. Multistep methods also require
special start-up procedures, because an n-step method requires data from the pre-
vious n time levels, but initial conditions for well posed physical problems give
information about the solution at only one time. Multistage or lower-order multistep
methods must therefore be used for the first n — 1 steps of the integration.

5.5.1 Explicit Two-Step Schemes

A complete discussion of linear multi-step methods is beyond the scope of this chap-
ter. In many geophysical applications, the memory required to store data from each
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time level is enormous, so we will focus on the family of two-step schemes (5.53).
When formulating a two-step scheme, one seeks to improve upon the single-step
methods, so it is reasonable to require that the global truncation error be at least
second order. The scheme (5.53), will be at least second order if

ar=1l—-0  Pr=3@+3). fa=3(-D), (5.54)

where the coefficient o, remains a free parameter. Choosing op = 5 gives a third-
order scheme, but this method is useless because it is highly unstable (Durran 1999).
Since it is not practical to choose the coefficients in (5.54) to minimize the truncation
error, the most important explicit two-step schemes are obtained by choosing a; to
minimize the amount of data that must be stored and carried over from the n — 1
time level, i.e., by setting ap = 1, in which case 8, = 0, or by setting o, = 0. If
oy is set to one, (5.53) becomes the leapfrog scheme. The choice o, = 0 gives the
two-step Adams—Bashforth method. The remainder of this section will be devoted
to an examination of the performance of these two schemes in problems with purely
oscillatory solutions.

The leapfrog and two-step Adams—Bashforth methods must be initialized using
a single-step scheme to compute ¢; from ¢g. In most instances, a simple forward
step is adequate. Although forward differencing is amplifying, the amplification
produced by a single step will generally not be large. Moreover, even though the
truncation error of a forward-difference is O(At), the execution of a single forward
time step does not reduce the O [(At)z] global accuracy of leapfrog and Adams—
Bashforth integrations. The basic reason that O [(At)z] accuracy is preserved is that
forward differencing is only used over a Az-long portion of the total integration. The
contribution to the total error produced by the accumulation of O [(At)z] errors in
a stable scheme over a finite time interval is the same order as the error arising from
the accumulation of O(At) errors over a time At.

5.5.2 The Leapfrog Scheme

If the leapfrog scheme,

nt1 = Pn—1 + 2AtF ($n. 1), (5.55)
is used to integrate the oscillation equation (5.19), its amplification factor satisfies
A* —2iwAtA—1=0,
whose two roots are

1/2

Ax =iwAt + (1 — w?Ar?) (5.56)
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Evidently, the numerical solution is capable of behaving in two very different ways
or modes. The mode associated with A is known as the physical mode because it
approximates the solution to the original differential equation. The mode associated
with A_ is referred to as the computational mode since it arises solely as an artifact
of the numerical computation. If [wA¢| < 1, the second term in (5.56) is real and
|A+| = |A=| = 1, i.e., both the physical and the computational modes are stable
and neutral. In the case w At > 1,

|Ay| = ’ia)At +i (0*Ar* - 1)1/2’ > liwAt] > 1,

and the scheme is unstable. When wAt < —1, a similar argument shows that
|[A-| > 1.

The complete leapfrog solution can typically be written as a linear combination
of the physical and computational modes. An exception occurs if wAt = %1, in
which case Ay = A_ = iwAt, and the physical and computational modes are
not linearly independent. In such circumstances, the general solution to the leapfrog
approximation to the oscillation equation has the form

¢n = C1(iwAD)" + Con(iwAr)".

Since the magnitude of the preceding solution grows as a function of time step, the
leapfrog scheme is not stable when |wAt| = 1. Nevertheless, the O(n) growth of
the solution that occurs when w At = %1 is far slower than the O(A") amplification
that is produced when |w At| > 1.

The source of the computational mode is particularly easy to analyze in the trivial
case of w = 0; then the analytic solution to the oscillation equation (5.19)is ¥ (t) =
C, where C is a constant determined by the initial condition at ¢ = ¢. Under these
circumstances, the leapfrog scheme reduces to

Gn+1 = Pn—1, (5.57)

and the amplification factor has the roots A1 = 1; A_ = —1. The initial condition
requires ¢9 = C, which, according to the difference scheme (5.57), also guarantees
that ¢» = ¢4 = ¢p¢ = ... = C. The odd time levels are determined by a sec-
ond, computational initial condition imposed on ¢;. In practice ¢; is often obtained
from ¢ by taking a single time step with a single-step method, and the resulting
approximation to ¥ (¢9 + At) will contain some error E. It is obvious that in our
present example, the correct choice for ¢; is C, but in order to mimic the situation
in a more general problem, suppose that ¢; = C + E. Then the numerical solution
at any subsequent time will be the sum of two modes

$n = (Ap)" ¢t + (4)"¢- = (C + E/2) — (-1)"(E/2).
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Here, the first term represents the physical mode and the second term represents the
computational mode. The computational mode oscillates with a period of 2A¢, and
does not decay with time.

In the previous example, the amplitude of the computational mode is completely
determined by the error in the specification of the computational initial condition
¢1. Since there is no coupling between the physical and computational modes in
solutions to linear problems, the errors in the initial conditions also govern the
amplitude of the computational mode in leapfrog solutions to most linear equations.
If the governing equations are nonlinear, however, the nonlinear terms introduce a
coupling between ¢+ and ¢_ that often amplifies the computational mode until
it eventually dominates the solution. This spurious growth of the computational
mode can be avoided by periodically discarding the solution at ¢,—; and taking a
single time step with a two-level scheme, or by filtering the high-frequency compo-
nents of the numerical solution (Asselin 1972; Williams 2009). Various techniques
for controlling the leapfrog scheme’s computational mode are discussed in Durran
(1999).

5.5.3 The Two-Step Adams—Bashforth Scheme

Another limitation of the leapfrog scheme is that is region of absolute stability is
just a line segment on the imaginary axis. That is, solutions to (5.16) will undergo
spurious amplification unless :{y} = 0. A larger region of absolute stability can be
obtained using the two-step Adams—Bashforth method,

Gnt1 = bn + At (3F(@n.tn) — 3 F (@n1.taz1)) - (5.58)

although as will become apparent shortly, that method is not suitable for the
simulation of purely oscillatory systems.
Applying (5.58) to the oscillation equation, one obtains

¢n+1 = ¢n +iwAt (%(bn - %(bn—l) .

The amplification factor associated with this scheme is given by the quadratic

3iwAt | w At
A2—(1+ ”; )A+lw2 =0,

in which case

1 3iwAt 9(wAt)? 12
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As the numerical resolution increases, Ay — 1 and A_— — 0. Thus, the Adams—
Bashforth method damps the computational mode., which of course is highly
desirable. Unfortunately the physical mode is weakly amplifying, as revealed if
(5.59) is approximated under the assumption that w Af is small; then

2 4 3
A+=(1—(w§t) —(wét) —...)+i(a)At+(wﬁt) +)

. (wAH)?  (wAD* [ wAt  (wA)3
A_—( 2 =+ 3 +)+I(T— 4 —...),

and
|At|ac ~ 1+ (@A), |A—|sep2 = 2w AL

The modulus of the amplification factor of the physical mode exceeds unity by
an O[(wAt)*] term, as was the case for the two-stage second-order Runge—Kutta
methods. The dependence of |44 | and |A—| upon temporal resolution is plotted in
Fig.5.5.

Although the two-step Adams—Bashforth method generates unstable amplifica-
tion, the three-step variant,

A
buvr = bu + 15 IF @)~ 16F @) + 5F@02)].  (5.60

gives non-amplifying solutions to the oscillation equation for w At < 0.724, and
this third-order method is a better choice for the time integration of problems with
oscillatory solutions (Durran 1999).
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Fig. 5.5 Modulus of the amplification factors for the second order Adams—Bashforth scheme as
a function of temporal resolution w A¢. The solid and dashed lines represent the physical and the
computational modes, respectively
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5.6 Summary Discussion

In this chapter we have investigated the performance of basic two-time-level, single-
step schemes to illustrate the various stability properties that might be satisfied by
numerical approximations to ordinary differential equations. A scheme that is only
stable enough to ensure convergence in the limit Az — 0, such as the forward-Euler
method, will prove unsatisfactory when used with non-dissipative approximations
to spatial derivatives in problems like advective scalar transport. Stable results for
non-dissipative approximations to the advection problem may be obtained using
ODE solvers whose region of absolute stability includes a finite segment of the
imaginary axis, but all two-time-level, single-step schemes that meet this criterion
are implicit.

The leapfrog scheme is an explicit three-time-level scheme that can be used to
obtain stable, efficient second-order integrations to linear systems with oscillatory
solutions. The attractiveness of the leapfrog scheme is reduced by the behavior of
its undamped computational mode, which can become unstable through interactions
with the physical mode in nonlinear problems. As a consequence, in most practical
applications the leapfrog algorithm must be modified in some manner that reduces
it to first-order accuracy.

One possible alternative to the leapfrog scheme is the three-step (four-time-level)
Adams—Bashforth method. Other possibilities may be found among the family of
Runge—Kutta methods, which provide a large and flexible framework for creating
suitable solvers for many atmospheric applications. Classical three-step, third-order
and four-step, fourth-order Runge—Kutta schemes provide accurate and efficient
methods that are absolutely stable over a significant segment of the imaginary axis
and therefore suitable for use with non-dissipative approximations to spatial deriva-
tives in transport problems. Strong stability preserving Runge—Kutta schemes offer
a way to increase the accuracy of the time integration of flux-limited approximations
to conservation laws. Unlike classical linear multistep methods, diagonally implicit
Runge—Kutta methods can be A-stable and higher than second-order accurate.
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Chapter 6
Stabilizing Fast Waves

Dale R. Durran

Abstract The atmosphere transmits wavelike signals at a wide range of speeds.
Rapidly moving, physically insignificant waves can impose very strict time-step
limitations on numerical methods in order to ensure the integrations remain stable.
Sound waves, for example, travel very rapidly but are of essentially no meteorolog-
ical significance, and it is not practical to simulate most atmospheric circulations
using the very short time steps required for the accurate and stable integration of
the sound waves. This chapter reviews techniques for circumventing such time step
restrictions, thereby allowing the step size to be chosen to ensure the accuracy and
stability of the physically significant components of the solution.

6.1 Introduction

One reason that explicit time differencing is widely used in the simulation of wave-
like flows is that accuracy considerations and stability constraints often yield similar
criteria for the maximum time step in numerical integrations of systems that support
a single type of wave motion. Many fluid systems, however, support more than one
type of wave motion, and in such circumstances accuracy considerations and stabil-
ity constraints can yield very different criteria for the maximum time step. If explicit
time differencing is used to construct a straightforward numerical approximation to
the equations governing a system that supports several types of waves, the maxi-
mum stable time step will be limited by the Courant number associated with the
most rapidly propagating wave, yet in some cases that rapidly propagating wave
may be of little physical significance.

As an example, consider the earth’s atmosphere which supports sound waves,
gravity waves and Rossby waves. Rossby waves propagate more slowly than gravity
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waves which in turn move more slowly than sound waves. The maximum stable
time step with which an explicit numerical method can integrate the full equations
governing atmospheric motions will be limited by the Courant number associated
with sound wave propagation. If finite differences are used in the vertical and the
vertical grid spacing is 300 m, the maximum stable time step will be on the order
of one second. Since sound waves have no direct meteorological significance, they
need not be accurately simulated in order to obtain a good weather forecast. The
quality of the weather forecast depends solely on the ability of the model to accu-
rately simulate atmospheric disturbances that evolve on much slower time scales.
Gravity waves can be accurately simulated with time steps on the order of 10-100s;
Rossby waves require a time step on the order of 500-5,000s. To obtain a reason-
ably efficient numerical model for the simulation of atmospheric circulations, it is
necessary to circumvent the stability constraint associated with sound wave propa-
gation and bring the maximum stable time step into closer agreement with the time
step limitations arising from accuracy considerations.

There are two basic approaches for circumventing the time step constraint
imposed by a rapidly moving, physically insignificant wave. The first approach is
to approximate the full governing equations with set of “filtered” equations that do
not support the rapidly moving wave. As an example, the full equations for stratified
compressible flow might be approximated by the Boussinesq equations for incom-
pressible flow. In this approach fundamental approximations are introduced to the
original continuous equations prior to any numerical approximations that may be
subsequently employed to generate finite-difference or spectral solutions to the fil-
tered governing equations. The use of the filtered equation set may be motivated
entirely by numerical considerations, or it may arise naturally from the standard
approximations used in the study of a given physical phenomena. Gravity waves,
for example, are often studied in the context of Boussinesq incompressible flow to
simplify and streamline the mathematical description of the problem.

The second approach for circumventing the time step constraint imposed by a
rapidly moving, physically insignificant wave leaves the continuous governing equa-
tions unmodified and relies on numerical techniques to stabilize the fast moving
wave. These numerical techniques achieve efficiency by sacrificing the accuracy
with which the fast moving wave is represented. Note that although the fast waves
are retained, this approach is not appropriate in applications where the fast moving
wave needs to be accurately simulated.

Approximate equation sets that filter sound waves include the Boussinesq, anelas-
tic (Ogura and Phillips 1962; Lipps and Hemler 1982), and pseudo-incompressible
(Durran 2008) systems. Of these three approaches, the Boussinesq equations are
the most concise mathematically, but the least accurate quantitatively because they
do not account for the decrease in atmospheric density with height. To reveal the
essential properties of the filtered nonhydrostatic equations with a minimum of
mathematically complexity, we will focus on the Boussinesq equations.

This chapter begins by examining techniques for the numerical solution of the
Boussinesq equations via the projection method. Numerical methods for stabiliz-
ing the solution to problems that simultaneously support fast- and slow-moving
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waves are then considered including the semi-implicit method in Sect. 6.3 and frac-
tional step methods in Sect. 6.4. Section 6.5 contains a summary discussion of these
methods.

6.2 The Projection Method

The Boussinesq system for adiabatic inviscid flow can be expressed in a compact
form involving the pressure potential P, the buoyancy b and the Brunt—Viisilad
frequency N such that

9
8—:+VP — F(v,b) = —v- Vv + bk, 6.1)
Db
TDt + N?w =0, (6.2)
V.-v=0, (6.3)
where , , .
P — 37 b — —gp_’ and N2 — _ﬁ_p (64)
Po Po po dz

Here py is a constant reference density, p’ and p are the deviations of the pressure
and density from their values in a hydrostatically balanced reference state,! 7(z)

and p(z), b ]
Z - .V
Dt 0t Ty

and v, w and k are the full velocity vector, the vertical velocity component and the
unit vector directed opposite to the gravitational acceleration.

Alternatively, if the fluid in question is an ideal gas, a similar set of approxi-
mations can be invoked in which P, b and N are expressed in terms of the Exner
function pressure 7 = (p/ po)R/¢» and the potential temperature # = Tz, where
T is the temperature, ¢, is the specific heat at constant pressure, R is the gas con-
stant and pg a constant reference pressure. As noted by Durran and Arakawa (2007),
(6.1)—(6.3) is then recovered with

0 do
P = cpbon’, b=g— and N2=2597

, = . 6.5
9() 9() dZ ( )

As before the over-bars denote horizontally uniform reference-state fields in hydro-
static balance? and primes are the deviations from those reference values; 6y is a
constant reference potential temperature.

! To satisfy hydrostatic balance dp/dz = —pg.
2 In the 7—f formulation, hydrostatic balance requires ¢ pgdﬁ/ dz = —g.
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The unknown variables are the three velocity components, the perturbation den-
sity and the perturbation pressure. In contrast to the full compressible system,
there is no prognostic equation available to determine the time tendency of P.
The perturbation pressure field at a given instant can, however, be diagnosed from
the instantaneous velocity and perturbation density fields by solving the Poisson
equation

V2P =V.F, (6.6)

which can be derived by taking the divergence of (6.1) and then using (6.3). The
perturbation pressure satisfying (6.6) is the instantaneous pressure distribution that
will keep the evolving velocity field non-divergent.

6.2.1 Forward-in-Time Implementation

The projection method (Chorin 1968; Témam 1969) is a classical technique that
may be used to obtain numerical solutions to the Boussinesq system. Suppose the
momentum equation is integrated over a time interval At to yield

n+1 n+1 n+1
t 8V t t

[ —dt = —[ VPdt+ [ F(v,b) dt, (6.7)
n ot m m

where 1" = nAt. Define the quantity P+ such that

t”+1
At VPl =/ VP dr.

tn

Note that P”*1 is not necessarily equal to the actual perturbation pressure at any
particular time. Using the definition of P"*1, (6.7) may be written as

t”+1
vty = —Ar VPl +/ F(v.b)dt. (6.8)
t}’l
Define v such that
tn+l
v=v"+ [ F(v,b)dt. (6.9)
t}‘l

As noted by Orszag et al. (1986), the preceding integral can be conveniently
evaluated using an explicit finite-difference scheme such as the third-order Adams-
Bashforth method ((5.60) in Chap. 5). Equations (6.8) and (6.9) imply that

vitl =y — Ar v Pl (6.10)

which provides a formula for updating v to obtain the new velocity field v**!

P"*1 has been determined.

once
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A Poisson equation for P+ that is analogous to (6.6) is obtained by taking the
divergence of (6.10) and noting that V - v*T1 = 0, in which case

- V.v
veprtl — — 6.11
Y (6.11)

Boundary conditions for this equation are obtained by computing the dot product of
the unit vector normal to the boundary (n) with each term of (6.10) to yield

3ﬁn+1 1
=——n-(V

ntl_g). 12
on At v) 6.12)

If there is no flow normal to the boundary, the preceding reduces to

apPntl  n.y
o A 6.13)

which eliminates the implicit coupling between P"*! and v”*! that is present in
the general boundary condition (6.12). In this particularly simple case, in which an
inviscid fluid is bounded by rigid walls, the projection method is implemented by
first updating (6.9), which accounts for the time-tendencies produced by advection
and buoyancy forces, and then solving (6.11) subject to the boundary conditions
(6.13). As the final step of the algorithm, v* ! is obtained by projecting v onto the
subspace of non-divergent vectors using (6.10).

The preceding algorithm loses some of its simplicity when the computation of
v"*1is coupled with that of P"*!, as would be the case if a wave-permeable bound-
ary condition replaced the rigid wall condition that n - v**1 = 0. In practice, the
coupling between v”*+1 and P+ is eliminated by imposing some approximation to
the full, implicitly coupled boundary condition. Coupling between v”*! and P"+!
may also occur when the projection method is applied to viscous flows with a no-
slip condition at the boundary. The no-slip condition that v = 0 at the boundary
reduces (6.12) to

t”+1

aﬁn+1 1
= / bk + vV2v dt, (6.14)
n n

where viscous forcing is now included in the momentum equations and v is the
kinematic viscosity. High spatial resolution is often required to resolve the bound-
ary layer in no-slip viscous flow. In order to maintain numerical stability in the
high-resolution boundary layer without imposing an excessively strict limitation on
the time step, the viscous terms are often integrated using implicit differencing?
(Karniadakis et al. 1991). When the time integral of F(v, b) includes viscous terms

3 Explicit time differencing can still be used for the advection terms because the wind speed normal
to the boundary decreases as the fluid approaches the boundary.
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that are approximated using implicit finite differences, (6.14) is an implicit rela-
tion between P"*! and v"t! whose solution is often computed via a fractional
step method (see discussion of (6.58) and (6.59)). As noted by Orszag et al. (1986),
the accuracy with which this boundary condition is approximated can significantly
influence the accuracy of the overall solution. The design of optimal approximations
to (6.14) has been the subject of considerable research, however, the emphasis in this
chapter is not on viscous flow, and especially not on highly viscous flow in which
the diffusion terms need to be treated implicitly for computational efficiency. The
reader is referred to Boyd (1989) for further discussion of the use of the projection
method in viscous no-slip flow.

6.2.2 Leapfrog Implementation

In atmospheric science the projection method is often implemented using leapfrog
time differences, in which case (6.8) becomes

VT =yl _2At VP" 4 2AtF (V",b").

The solution procedure is very similar to the algorithm described in the preceding
section. The velocity field generated by advection and buoyancy forces acting over
the time period 2 At is defined as

V=v"14+2AtF(V",b");
then the Poisson equation for P” is

V.v

V2P = ——,

2At

and the velocity field is updated using the relation
VTl =§ 241 VP".

Some technique, such as time filtering (Asselin 1972; Williams 2009), must also
be used to prevent time splitting instability in the leapfrog solution to nonlinear
problems.

One difference between this approach and the standard projection method is
that by virtue of the leapfrog time difference, the pressure field that insures the
non-divergence of v* ! is the actual pressure at time n A¢. The pressure must, nev-
ertheless, be updated at the same point in the integration cycle at which Pntl s
obtained in the standard projection method, i.e., part way through the calculation
of v *1. Thus, the same problems with implicit coupling between the pressure and
v**T1 arise in both the standard and the leapfrog projection methods. If viscosity is



6 Stabilizing Fast Waves 111

included in the momentum equations, stability considerations require that the con-
tribution of viscosity to F(v, b) be evaluated at time level n — 1 so that the viscous
terms are treated using forward differencing over a time interval of 2A¢. This is not
a particularly accurate way to represent the viscous terms and is not suitable for
highly viscous flow in which the viscous terms are more efficiently integrated using
implicit time differences.

6.2.3 Solving the Poisson Equation for Pressure

Suppose that the Boussinesq equations are to be solved in a two-dimensional x-z
domain and that the velocity and pressure variables are staggered as indicated in
Fig.6.1. Approximating the diagnostic pressure equation (6.11) using the standard
five-point finite-difference stencil for the two-dimensional Laplacian, one obtains

N - 1
§2prtl 4 §2prtt = Y (811 + 8,W), (6.15)

where the finite-difference operator §; is defined such that

f(x +nAx/2)— f(x —nAx/2)

Snx f(x) = nAx

(6.16)

This is an implicit algebraic relation for the P"J+1 If pressure is defined at M grid
points in x and N points in z, an M x N system of linear algebraic equations must
be solved in order to determine the pressure. Let the unknown grid-point values of
the pressure be ordered such that

® ® ®
m] 0 Wi+ L m]
Unlon Uy +%,n
® L 4 ® Az
Pm.n bm,n
Fig. 6.1 Distribution of the
dependent variables on a 0 0 Winnl 0
staggered mesh (the Arakawa
C-grid) for the
finite-difference

approximation of the [ 4 ® L ]

two-dimensional Boussinesq
system |<— Ax —>|
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_ (pn+l pn+1 pn+l1 pn+1 pn+1
p= (PPl PPyt PR PR P,

then the system may be written as the matrix equation
Ap =f, (6.17)

in which f is an identically ordered vector containing the numerically evaluated
divergence of v. The matrix A is very sparse with only five non-zero diagonals. In
practical applications the number of unknown pressures can easily exceed one mil-
lion, and to solve (6.17) efficiently it is important to take advantage of the sparseness
of A. Direct methods based on some variant of Gaussian elimination are, therefore,
not appropriate. Direct methods for band matrices are also not suitable because the
bandwidth of A is not 5, but 2N + 1 and direct methods for band matrices do not
preserve sparseness within the band.

Direct solutions to (6.17) can, nevertheless, be efficiently obtained by exploiting
the block structure of A. For simplicity, suppose that (6.15) is to be solved subject
to Dirichlet boundary conditions, then the diagonal of A contains M copies of the
N x N tridiagonal sub-matrix

-4 1
1 —4 1

1 —4 1
1 —4

and the super- and sub-diagonals are made up of M — 1 copies of the N x N
identity matrix. This system can be efficiently solved using block cyclic reduc-
tion (Golub and van Loan 1996, p.177). Numerical codes for the solution of
two- and three-dimensional Poisson equations subject to the most common types
of boundary conditions may be accessed through the Internet at several cites
including the National Institute of Standards and Technology’s Guide to Avail-
able Mathematical Software (NIST/GAMS, http://gams.nist.gov), the National Cen-
ter for Atmospheric Research’s Mathematical and Statistical Libraries (NCAR,
http://www.cisl.ucar.edu/softlib/mathlib.html) and the Netlib Repository at the Oak
Ridge National Laboratory (ORNL, http://www.netlib.org).

6.3 The Semi-Implicit Method

As an alternative to filtering the governing equations to eliminate insignificant fast
waves, one can retain the unapproximated governing equations and use numerical
techniques to stabilize the simulation of the fast moving waves. One common way
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to improve numerical stability is through the use of implicit time differences such as
the backward or the trapezoidal methods. Implicit methods can, however, produce
rather inaccurate solutions when the time step is too large. It is therefore useful to
analyze the effect of the time step on the accuracy of fully implicit solutions to wave
propagation problems before discussing the true semi-implicit method.

6.3.1 Large Time Steps and Poor Accuracy

Suppose that a differential-difference approximation to the one-dimensional advec-
tion equation
Iy oy

W 1
or Teax =0 6.18)

is constructed in which finite differences are used to represent the time derivative
and the spatial derivative is not discretized. If the time derivative is approximated
using leapfrog differencing such that

¢n+l _¢n—l 8¢ n _
2At te ox) 0

wave solutions of the form
(]5"()6) — ei(kx—wnt) (6.19)

must satisfy the semi-discrete dispersion relation
1 .
w = A7 arcsin(ck At). (6.20)

The phase speed of the leapfrog-differenced solution is

o  arcsin(ckAt)
= =_"-_ "7 21
TT% kAt (621

The stability constraint, |ckAt?| <1, associated with the preceding leapfrog
scheme can be avoided by switching to trapezoidal differencing. Many semi-
implicit formulations use a combination of leapfrog and trapezoidal differencing,
and in those formulations the trapezoidal time difference is computed over an
interval of 2A¢. To facilitate the application of this analysis to these semi-implicit
formulations, and to more directly compare the trapezoidal and leapfrog schemes,
(6.18) will be approximated using trapezoidal differencing over a 2 Az-wide stencil

such that " .
n+1 _ pn—1 0 n 9 h—
w + E _¢ + _¢ = 0.
2At 2 dax ox



114 D.R. Durran
Wave solutions to this scheme must satisfy the dispersion relation
1
w = A7 arctan(ck At). (6.22)

The phase speed of the trapezoidally differenced solution is

arctan(ck At)
kAt )

Cr =

The phase-speed errors generated by the leapfrog and 2A¢ trapezoidal methods
are compared in Fig. 6.2. The phase speed at a fixed Courant number is plotted as
a function of both spatial wavenumber (bottom axis) and wavelength (top axis) in
units of Ax. These curves give the phase speed that would be obtained if the spatial
dependence of the numerical solution was represented by a Fourier spectral method
with a cutoff wavelength of 2Ax. When ¢ At/ Ax = 1/ the errors in wavelengths
greater than 2.5 Ax generated by the leapfrog and the 2 A¢-trapezoidal methods are
similar in magnitude and opposite in sign. The leapfrog scheme is unstable for
Courant numbers greater than 1/, but solutions can still be obtained using the
trapezoidal scheme. The phase-speed errors in the 2 Az-trapezoidal solution com-
puted with cAt/Ax = 5/m are, however, rather large. Even modes with relatively
good spatial resolution, such as a 10Ax wave, are in significant error.

The deceleration generated by 2A¢-trapezoidal differencing may be alternatively
expressed in terms of the reduced phase speed

¢ = ccos(wAt).

WAVELENGTH
50A 10A 6A in N )
| . LF1 1
e
o ct = aemsnranssazmsmeneann it T -
o e — |
L \\\ :
[} .
< | _ -
I \\\
x| Y |
O L1 I | | )
0 n/4A m/2A 3n/4A —
WAVENUMBER

Fig. 6.2 Phase speed of leapfrog (dotted) and 2At-trapezoidal (dashed) approximations to the
advection equation when ¢At/Ax = 1/7 (LF1 and T1), and for the trapezoidal solution when
cAt/Ax = 5/m (TS)
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Then the 2At-trapezoidal dispersion relation (6.22) assumes the form
! in(Ck At)
® = — arcsin(¢ .
At

and the phase speed of the 2A¢-trapezoidal solution becomes

o  arcsin(CkAt)

“CTk T kA

The preceding differ from the corresponding expressions for the leapfrog scheme
(6.20) and (6.21) in that the true propagation speed, ¢, has been replaced by the
reduced speed ¢. As the time step increases, ¢ decreases so that |¢k At | remains less
than one and the numerical solution remains stable, but the relative error in ¢ can
become arbitrarily large. As a consequence, it is not possible to take advantage of
the unconditional stability of the trapezoidal method by using very large time steps
to solve wave-propagation problems unless one is willing to tolerate a considerable
decrease in the accuracy of the solution.

6.3.2 A Prototype Problem

The loss of accuracy associated with poor temporal resolution that can occur using
implicit numerical methods is not a problem if the poorly resolved waves are not
physically significant. If the fastest moving waves are insignificant, the accuracy
constraints imposed on the time step by these waves can be ignored and, provided
the scheme is unconditionally stable, a good solution can be obtained using any
time step that adequately resolves the slower moving features of primary physical
interest. A simple but computationally inefficient way to insure the unconditional
stability of a numerical scheme is to use trapezoidal time differencing throughout
the approximate equations. It is, however, more efficient to implicitly evaluate only
those terms in the governing equations that are crucial to the propagation of the fast
wave and to approximate the remaining terms with some explicit time-integration
scheme. This is the fundamental strategy in the “semi-implicit” approach which
gains efficiency relative to a “fully implicit” method by reducing the complex-
ity of the implicit algebraic equations that must be solved during each integration
step. Semi-implicit differencing is particularly attractive when all the terms that are
evaluated implicitly are linear functions of the unknown variables.

In order to investigate the stability of semi-implicit time-differencing schemes
consider a prototype ordinary differential equation of the form

ay . :

E‘FHUHW‘*‘“ULW:O- (6.23)
This is simply a version of the oscillation equation (see (5.19) in Chap. 5) in which
the oscillatory forcing is divided into high-frequency (wg) and low-frequency
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(wr) components. The division of the forcing into two terms may appear to be
rather artificial, but the dispersion relation associated with wave-like solutions to
more complex systems of governing equations (such as the shallow-water system
discussed in the next section) often has individual roots of the form

w =wH + oL,

and (6.23) serves as the simplest differential equation describing the time-
dependence of such waves.
The simplest semi-implicit approximation to (6.23) is

¢n+l _ ¢n

. n+1 . n
=0.
TR iog¢"" +iwpg

The stability and the accuracy of this scheme have already been analyzed in con-
nection with ((5.21) in Chap.5); it is first order accurate and is stable whenever
|lwr| < |wg]|. Since |wr| < |wg| by assumption, the method is stable for all Az.
The weakness of this scheme is its low accuracy. A more accurate second-order
method can be obtained using the centered-in-time formula

¢n+1 _¢n—l N la)H (¢n+l + ¢n—l

iwr¢" = 0. 24
A7 3 )+zwL¢ 0 (6.24)

The stability of this method may be investigated by considering the behavior of
oscillatory solutions of the form exp(—iwn At), which satisfy (6.24) when

sin@ = @y cosw + &, (6.25)

where
o =wAt, oy =wgAt, and & = wpAt.

To solve for @, let tan 8 = @p, then (6.25) becomes
sin® = tan B cos® + @&,

or equivalently
sin@ cos B — sin B cos® = @y, cos B.

By the Pythagorean theorem, cos 8 = (1 + d)%{)_l/ 2, and the preceding reduces to
sin(@ — ) = a1 + ag) "'/,
or equivalently,

@ = arctan(wpg ) + arcsin (d)L(l + @%1)—1/2> .
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The semi-implicit scheme (6.24) will be stable when the @ satisfying this equation
are real and distinct, which is guaranteed when

@? <1+ a@%. (6.26)

Since, by assumption |wz | < |wg]|, (6.24) is stable for all At. Note that (6.26) will
also be satisfied whenever |y, At| < 1, implying that semi-implicit differencing
permits an increase in the maximum stable time step relative to that for a fully
explicit approximation even in those cases where |wr| > |wg| because the terms
approximated with the trapezoidal difference do not restrict the maximum stable
time step.

6.3.3 Semi-Implicit Solution of the Shallow-Water Equations

The shallow-water equations for motion in a rotating reference frame with Coriolis
parameter f may be expressed

Du oh Dv oh
Dh ou  dv
4+ hl—+—=1]=0 6.28
L (ax+8y) , (6.28)

where v and v are the eastward and northward components of the velocity and /4 is
the fluid depth. This system supports rapidly moving gravity waves. If there are spa-
tial variations in the potential vorticity of the undisturbed system, f/ &, the shallow-
water equations can also support slowly propagating potential-vorticity (or Rossby)
waves. In many large-scale atmospheric and oceanic models the Rossby waves
are of greater physical significance than the faster moving gravity waves and the
Rossby-waves can be efficiently simulated using semi-implicit time-differencing to
accommodate the CFL stability condition associated with gravity-wave propagation.

The simplest example in which to illustrate the influence of semi-implicit dif-
ferencing on the CFL condition can be obtained by examining a one-dimensional
system without the Coriolis force that is linearized about a reference state with a
constant fluid velocity U and fluid depth H,

My g2y, (6.29)
X

— 4+ U—+H— =0. (6.30)

If the mean-flow velocity is less than the phase speed of a shallow-water grav-
ity wave ¢ = +/gH, the numerical integration can be stabilized by evaluating
those terms responsible for gravity-wave propagation with trapezoidal differencing;
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leapfrog differencing can be used for the remaining terms (Kwizak and Robert
1971). The terms essential to gravity-wave propagation are the hydrostatic pres-
sure gradient (goh/dx) in (6.29) and the velocity divergence in (6.30), so the
semi-implicit approximation to the linearized shallow-water system is

du” anm\*

o™ + U a”; +g< o > —o0, 6.31)
" um\*

ol + U S + H< a”; > —o0, (6.32)

where the finite-difference operator §; is defined by (6.16) and the averaging
operator ( )’ is given by

f(x +nAx/2)+ f(x —nAx/2)

(G = .

(6.33)

Solutions to (6.31) and (6.32) exist of the form e!kx—®/A?) provided k and w
satisfy the semi-discrete dispersion relation

sinwAt = UkAt &+ ck At cos w At.

This dispersion relation has the same form as (6.25), so as demonstrated in the
preceding section, the method will be stable provided that |[U| < ¢, or equivalently,
whenever the phase speed of shallow-water gravity waves exceeds the speed of the
mean flow. The Coriolis force has been neglected in the preceding shallow-water
system, and as a consequence, there are no Rossby wave solutions to (6.31) and
(6.32). In a more general two-dimensional system that includes the Coriolis force
semi-implicit time differencing leads to a system that is stable whenever the CFL
condition for the Rossby waves is satisfied.

6.3.4 Semi-implicit Solution of the Compressible Governing
Equations

Now consider how semi-implicit differencing can be used to eliminate the stability
constraint imposed by sound waves in the numerical solution of the Euler equations
for stratified flow. To streamline the discussion we will focus on the compressible
Boussinesq system, which supports both sound and gravity wave propagation while
eliminating small terms reflecting the decrease in mean density produced by the
decrease in pressure with height.* The compressible Boussinesq system consists of

4 See Sect. 7.2.4 of (Durran 1999) for details about the difference between the Euler equations and
the compressible Boussinesq system.
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the relations

d
d—: + VP = bk, (6.34)
db
n + N?w =0, (6.35)
dp
-t c2V-v=0. (6.36)

Note that (6.34) and (6.35) are identical to the buoyancy and momentum equa-
tions in the standard Boussinesq system (6.1) and (6.2), while the incompressible
continuity equation (6.3) has been replaced by (6.36) and is recovered in the limit
Cs —> 00.

Suppose the flow is confined to the x—z plane and linearize (6.34)—(6.36) about
a basic state with uniform horizontal velocity U and zero means for the other fields.
Letting (1, w, b, P) now denote the perturbations, the linear system becomes

ad ad oP
(5 + Ug) Ut o= 0, (6.37)
(%—%—U%)w%—i—z:b, (6.38)
d d >
(§+U$)b+N w =0, (6.39)
ad a 5 (O0u  Ow
(8_t+Ua)P+cs (a—ka—z)zo. (6.40)

As in the standard Boussinesq approximation, the compressible Boussinesq system
neglects the influence of density variations on inertia while retaining the influence
of density variations on buoyancy and assumes that buoyancy is conserved follow-
ing a fluid parcel. In contrast to the standard Boussinesq system, the compressible
Boussinesq system does retain the influence of density fluctuations on pressure and
thereby allows the formation of the prognostic pressure equation (6.40).

Suppose that the simplified compressible system (6.37)—(6.40) is approximated
using leapfrog time differencing and that the spatial derivatives are computed using
a Fourier pseudo-spectral method. Waves of the form

(u,w,b, P) = (ug, wo, by, Py)ei (kx+tz—wnan
are solutions to this system provided that w, k and £ satisfy the dispersion relation
O — 2 (K2 + €2 + N?/c2) & + N2k>c2 =0,
where

sin w At

— Uk.
At

w =
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This dispersion relation is quadratic in ®2 and has solutions

1/2
2 N2 N2\*  4NZ?
2= k2+€2+—zi[(k2+€2+—2) - . (6.41)
C C

[\

2
s s Cs

The positive root yields the dispersion relation for sound waves; the negative root
yields the dispersion relation for gravity waves.’ The individual dispersion relations
for sound and gravity waves may be greatly simplified whenever the last term inside
the square root in (6.41) is much smaller than the first term. One condition suffi-

cient condition for this simplification, which is easily satisfied in most atmospheric
applications, is that N2/c2 <« £2.1f N?/c? < €2, then

4N2k2  2N2? N2\2
— K ——5— + 2 < (k2 + 02+ —2) , (6.42)
CS CS CS

and therefore the sound-wave dispersion relation is well approximated by
&> =c} (K + 0+ N?/c}). (6.43)

Dividing the terms inside the square root in (6.41) by (k2 + €2 + N? /csz)2 and
again using (6.42), the gravity wave-dispersion relation may be well approxi-
mated as .
o N-<k
k24024 N2Jc2'
Consider the time-step limitation imposed by sound wave propagation. Using the
definition of @, (6.43) may be expressed as

(6.44)

sinwAt = At (Uk + ¢ (K% + 02 + Nz/csz)l/z) :

Stable leapfrog solutions are obtained when the right side of this expression is a real
number whose absolute value is less than unity. A necessary condition for stability
is that

(|U|kmax + sk, + eﬁm)l/z) At <1, (6.45)

max

where Kk, and £, are the largest horizontal and vertical wavenumbers retained in
the truncation. In many applications the vertical resolution is much higher than the
horizontal resolution and the most severe restriction on the time step is associated
with vertically propagating sound waves; (6.45) is also a good approximation to
the sufficient condition for stability since the term involving N2/c? is typically
insignificant for the highest frequency waves.

3 In the limit N — 0, the positive root gives > = ¢2 (k2 + £2); the negative root gives &> = 0.
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The dispersion relation for gravity waves (6.44) may be written as

Nk
sinwAr = At (Uk + 1/2). (6.46)
(k2 + €2+ N2/c2)

Since

N1k]| k
5 5 5 5 1/2 SCS| |7
(k2 +£2 + N2/c2)

the necessary condition for sound-wave stability (6.45) is sufficient to insure the
stability of the gravity waves. Although (6.45) guarantees the stability of the gravity
wave modes, it is far too restrictive. Since

N|k|
2 p2 2 21/2§N’
(k2 +£2 + N2/c2)

(6.46) implies the gravity waves will be stable provided that
(IU lkmax + N) At < 1.

This is also a good approximation to the necessary condition for stability because
the term involving N2 /c? is usually dominated by k2. .
In most geophysical applications
es(k2, 4+ €2 )Y >> |Ulkmax + N

and the maximum stable time step with which the gravity waves can be integrated
is, therefore, far larger than the time step required to maintain stability in the sound
wave modes. In such circumstances, the sound waves can be stabilized using a semi-
implicit approximation in which the pressure gradient and velocity divergence terms
are evaluated using trapezoidal differencing (Tapp and White 1976). The resulting
semi-implicit system is

u"  [opn\*

ot + U aL; +< - > — 0, (6.47)
qw” apn\*

Sy + U 8”; +<¥> — b, (6.48)
n abn 2..n

ap" wm\*  Jowm\*
b2 P + U +c§<<al;> +<8u;> ):0. (6.50)
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Let ¢s = c¢5cos(wAt), then the dispersion relation for the semi-implicit system is
identical to that obtained for leapfrog differencing except that c; is replaced by ¢
throughout (6.41). The dispersion relation for the sound-wave modes is

& = ¢ (k* + 2 + N?/é2),

or
sinwAt = At (Uk 6 (K2 + €2 + N2/2)'1%). (6.51)

The most severe stability constraints are imposed by the shortest waves for which
the term N?2/¢2 can be neglected in comparison with k2 + ¢2. Neglecting N2/¢2,
(6.51) becomes

sinwAt = UkAt £ c; At (k* + 52)1/2 cos wAf,

which has the same form as (6.25) implying that the sound wave modes are stable
whenever
UK| < cs (K2 + £2)"7 .
A sufficient condition for the stability of the sound waves is simply that the flow be
sub-sonic (|U| < c;), or equivalently, that the Mach number be less than unity.
Provided that the flow is sub-sonic, the only constraint on the time step required
to keep the semi-implicit scheme stable is that associated with gravity wave prop-
agation. The dispersion relation for the gravity waves in the semi-implicit system
is
2 N 2 k2
k2462 + N2Jé2

(6.52)

which differs from the result for leapfrog differencing only in the small term N2/¢2.
Stable gravity wave solutions to the semi-implicit system are obtained whenever

(JU lkmax + N)At < 1,

which is the same condition obtained for the stability of the gravity waves using
leapfrog differencing. Thus, as suggested previously, the semi-implicit scheme
allows the compressible equations governing low Mach-number flow to be inte-
grated with a much larger time step than that allowed by fully explicit schemes.
This increase in efficiency comes at a price; whenever the time step is much larger
than that allowed by the CFL condition for sound waves, the sound waves are arti-
ficially decelerated by a factor of cos(w At). This error is directly analogous to that
considered in Sect. 6.3.1 in which spurious decelerations were produced by fully
implicit schemes using very large time steps. Nevertheless, in many practical appli-
cations the errors in the sound waves are of no consequence and the quality of the
solution is entirely determined by the accuracy with which the slower moving waves
are approximated.
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6.3.5 Numerical Implementation

The semi-implicit approximation to the compressible Boussinesq system discussed
in the preceding section generates a system of implicit algebraic equations that must
be solved every time step. First consider the situation where only the sound waves
are stabilized by semi-implicit differencing and suppose that the spatial derivatives
are not discretized. Then (6.34)—(6.36) take the form

vitl 4 Arvpntl = G, (6.53)
Pl — pn—l o Ay (V" - Vb" + Nzw"), (6.54)
PL L 2 AV vt = (6.55)
Here
G=v""— At [VP"! —2b"Kk + 2v" . VV'],
and

h=P" ' — At [¢ZV-v'"h 4 2v" - VP,

A single Helmholtz equation for P"*! can be obtained by substituting the diver-
gence of (6.53) into (6.55) to yield

V2Pn+1 _ Pn+1 _ V-G _ h . (656)
(csAt)? At (cs At)?

The numerical solution of this Helmholtz equation is trivial if the Fourier spectral
method is employed in a rectangular domain or if spherical harmonic expansion
functions are used in a global spectral model. If the spatial derivatives are approxi-
mated by finite differences, (6.56) yields a sparse linear algebraic system that can be
solved using the techniques described in Sect. 6.2.3. After solving (6.56) for P"*1,
the momentum equations can be stepped forward and the buoyancy equation (6.54),
which is completely explicit, can be updated to complete the integration cycle.

This implementation of the semi-implicit method is closely related to the projec-
tion method for incompressible Boussinesq flow. Indeed in the limit ¢; — oo the
preceding approach will be identical to the leapfrog projection method (described in
Sect. 6.2.2) if (P"+1 4 P"=1)/2is replaced by P" in (6.56). Although the leapfrog
projection method and the semi-implicit method yield algorithms involving very
similar algebraic equations, these methods are derived via very different approxima-
tion strategies. The projection method is an efficient way to solve a set of continuous
equations that is obtained by filtering the exact Euler equations to eliminate sound
waves. In contrast, the semi-implicit scheme is obtained by directly approximating
the full compressible equations and using implicit time differencing to stabilize the
sound waves. Neither approach allows one to correctly simulate sound waves, but
both approaches allow the accurate and efficient simulation of the slower moving
gravity waves.
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6.4 Fractional-Step Methods

The semi-implicit method requires the solution of an elliptic equation for the pres-
sure during each step of the integration. This can be avoided by splitting the
complete problem into fractional steps and using a smaller time step to integrate the
subproblem containing the terms responsible for the propagation of the fast-moving
wave. Consider a general partial differential equation of the form

aa—lf + L) =0, (6.57)

where .Z (/) contains the spatial derivatives and other forcing terms. Assuming for
simplicity in the following analysis that .# is time-independent, the exact solution
to (6.57) may be written in the form v (¢) = exp(¢.£)¥ (0), where the exponential
of the operator .Z is defined by the infinite series

1? 3
exptl)=1+1¥ + 5,,2”2 + EXB +oeen,
and [/ is the identity operator. The change in 1 over one time step is therefore
Y (t+Ar) = exp[(A1+1).L1y (0) = exp(At.L) exp(t. L)Y (0) = exp(ALL)Y (1).

Suppose that £ (1) can be split into two parts

ZW) =LW) + L),

such that %) and %5 contain those terms responsible for the propagation of slow-
and fast-moving waves, respectively. Each of these individual operators can also be
formally integrated over an interval At to obtain

Yt + Ar) = exp(ArL) Y (1), Yt + Ar) = exp(AtL) Y (1)

Let #1(At) and %,(At) be numerical approximations to the exact operators
exp(AtZ)) and exp(At.%).

6.4.1 Complete Operator Splitting

In the standard fractional-step approach, the approximate solution is stepped for-
ward over a time interval Af using

¢S

F1(At)p", (6.58)
¢n+1 T,

= 7
= Zr(A1)¢*, (6.59)
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but it is not necessary to use the same time step in each subproblem. If the maximum
stable time step with which the approximate slow-wave operator (6.58) can be inte-
grated is M times that with which the fast-wave operator (6.59) can be integrated,
the numerical solution could be evaluated using the formula

¢n+1 _ [,ﬁzz(At/M)]M F1(At)g". (6.60)

This approach can be applied to the linearized one-dimensional shallow water
system by writing (6.29) and (6.30) in the form

or

ot

_(u _(Ud 0 _( 0 gox
r_(h)’ ‘Z‘_( 0 Uax)’ "%_(Hax 0)’

and d, denotes the partial derivative with respect to x. The first fractional step,
which is an approximation to

+ L) + B(r) =0, (6.61)

where

or
— + % =0
o + Zi(r) )

involves the solution of two decoupled advection equations. Since this is a fractional
step method, it is generally preferable to approximate the preceding with a two-time

level method. In order to avoid using implicit, unstable or Lax—Wendroff methods
the first step can be integrated using the Runge—Kutta scheme

r* =1" + Ar /3.4 0"), (6.62)
' =r" + At/2 4 @%), (6.63)
"t =" 4+ A A @*). (6.64)

This Runge—Kutta method is third-order accurate for linear problems and is sta-
ble and damping for |U |knax At < 1.73, where kpmyx is the maximum retained
wavenumber.

The second fractional step, which approximates

or

8t + 9%2(1') = 07

can be efficiently integrated using forward-backward differencing. Defining At =
At /M as the length of a small time step, the forward-backward scheme is

um-i—l —um By
1 LT o, 6.65
e te5 (6.65)



126 D.R. Durran

hm+1 —hm aum—i-l

H = 0. 6.66
At + ox ( )

This scheme is stable for cknc AT < 2 and is second order accurate in time. Since
the operators used in each fractional step commute,® the complete method will be
o [(At)z] accurate and stable whenever each of the individual steps are stable.

Although the preceding fractional step scheme works fine for the linearized one-
dimensional shallow water system, it does not generalize as nicely to problems in
which the operators do not commute. As an example, consider the compressible
two-dimensional Boussinesq equations, which could be split into the form (6.61) by
defining

r=(uwbP)T,

v-V. 0 0 0 0 0 0 9

0 v.V 0 0 0 0 —19
L = @ — z
! 0o o0 v.v o || 0 N2 0 0|

0 0 0 v-V 20y c29; 0 0

where v is the two-dimensional velocity vector and V. = (d/dx, d/9z). Suppose
that N and ¢ are constant and that the full nonlinear system is linearized about a
reference state with a mean horizontal wind U(z). The operators associated with
this linearized system will not commute unless dU/dz is zero.

As in the one-dimensional shallow-water system, the advection operator .#; can
be approximated using the third-order Runge—Kutta method (6.62)—(6.64). The sec-
ond fractional step may be integrated using trapezoidal differencing for the terms
governing the vertical propagation of sound waves and forward-backward differ-
encing for the terms governing horizontal sound-wave propagation and buoyancy
oscillations. The resulting scheme is

um+1 —ym opPm™

L) (6.67)
wmz—;wm N % (P'"HZ—JFP’") _pm =0, (6.68)
bm+;f— b™ + N2t =, (6.69)

Pm+;T_ pm . Csz 3Mar1+1 . 652% (wm+12+ w’”) —o, (6.70)

% The operators %, and .% commute if .%} (% (r)) = % (L (r)). See Durran (1999, Sect. 3.3)
for a discussion of the impact of operator commutativity on the performance of fractional-step
schemes.
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This approximation to exp(At.%) is stable and non-damping if max(cskmax, V)
At < 2. Note that if the spatial derivatives are replaced by finite differences, the
trapezoidal approximation of the terms involving vertical derivatives will not signif-
icantly increase the computations required on each small time step because it leads
to a tridiagonal system of algebraic equations for the w™*! throughout each ver-
tical column within the domain. If the horizontal resolution is very coarse, so that
kmax << N/cs further efficiency can be also obtained by treating the terms involv-
ing buoyancy oscillations with trapezoidal differencing. Since these terms do not
involve derivatives, the resulting implicit algebraic system remains tridiagonal.

As an alternative to the trapezoidal method, the terms involving the vertical
pressure gradient and the divergence of the vertical velocity could be integrated
using forward-backward differencing, in which case the stability criteria for the
small time step would include an additional term proportional to ¢s€y.x AT Where
£imax 18 the maximum resolvable vertical wavenumber. It may be appropriate to use
forward-backward differencing instead of the trapezoidal scheme in applications
with identical vertical and horizontal grid spacing, but if the vertical resolution is
much finer than the horizontal resolution the additional stability constraint imposed
by vertical sound-wave propagation will reduce efficiency by requiring an excessive
number of small time steps.

The performance of the preceding scheme is evaluated in simulation of two
dimensional compressible Boussinesq flow past a compact gravity-wave genera-
tor. The wave generator is modeled by including forcing terms in the momentum
equations such that the non-discretized versions of (6.67) and (6.68) take the form

du 8P W

— = 6.71
T T T ©71)

dw 0P ov
4+ — —bh=—, 6.72
ar s ox 6.72)

where

¥(x,z,t) = E(x,z)sinwt sinkyx cos;z,
and
E(x.z) = a (1 4 coskax) (1 + coslyz) if |x| < m/kyand |z| < 7/la,

0 otherwise .

This forcing has no influence on the time tendency of the divergence, and as
a consequence it does not excite sound waves. The spatial domain is periodic at
x = £50 km and bounded by rigid horizontal walls at z = =£5 km. In the following
tests Ax = 250m, Az = 50m, N = 0.01 s7L, ¢, = 350 ms™!, and the parameters
defining the wave generator are « = 0.2, 27/k; = 10 km, 27 /¢; = 2.5 km,
27/ky = 11 km, 2/€> = 1.5km, and @ = 0.002 s~!. The forcing is evaluated
every At and applied to the solution on the small time step, Ax = 250 m, Az =
50m, N = 0.0l s7!, and ¢, = 350 ms™!.
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The spatial derivatives are approximated using centered differencing on a stag-
gered grid identical to that shown in Fig.6.1 except that b is co-located with
the w points rather than the P points. As a consequence of the mesh stagger-
ing, the horizontal wavenumber obtained from the finite-difference approximations
to the pressure gradient and velocity divergence is (2/Ax)(sinkAx/2), and the
small-step stability criteria is max (2¢s/Ax+ N)At < 2. The horizontal wavenum-
ber generated by the finite-difference approximation to the advection operator is
(sinkAx)/Ax, so the large time step is stable when |U|At/Ax < 1.73. Strang
splitting,

¢"t! = [F224t/ M) M 2y (A1) [ 72241 ) MM n,

is used in preference to (6.60) to preserve O [(At)z] accuracy in those cases where
1 and %, don’t commute.

In the first simulation At = 12.5s, there are twenty small time steps per large
time step, and U = 10 ms™! throughout the domain. In this case (2c; Ax+N)At =
1.76 so the small time step is being integrated using time steps near the stabil-
ity limit. The horizontal velocity field and the pressure field obtained from this
simulation are plotted in Fig. 6.3. The velocity field is essentially identical to that
obtained using the full compressible equations. Very small errors are detectable in
the pressure field, but the overall accuracy of the solution is excellent.

Now consider a second simulation that is identical to the first in every respect
except that the mean wind U increases linearly from 5 to 15ms™! between the
bottom and the top of the domain. The pressure perturbations that develop in this
simulation are shown in Fig. 6.4a, along with streamlines for the forcing function ¥'.

Z (km)

2.5
-10

X (km) X (km)

Fig. 6.3 (a) contours of U +u at intervals of 0.1 ms™! and ¥ at intervals of 0.1 s™! at# = 8000 s.
(b) as in (a) except that P is contoured at intervals of 0.25 m?s~2. No zero contour is shown for
the P and V¥ fields. Minor tick marks indicate the location of the P points on the numerical grid.
Only the central portion of the total computational domain is shown
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Fig. 6.4 Contours of P at intervals of 0.25m?s™2 (the zero contour is dot-dashed) and ¥ at
intervals of 0.15s~! at + = 3000 s for the case with vertical shear in the mean wind and (a)
At = 12.5s, M = 20, (b) At = 6.255s, M = 20, (¢) At = 6.25s, M = 10, (d) the solution
is computed using the partial splitting method described in the next section with Az = 12.5 s,
M = 20. Tick marks appear every 20 grid intervals

Spurious pressure perturbations appear throughout the domain. The correct pres-
sure field is shown in Fig. 6.4d, which was computed using a scheme that will be
described in the next subsection. Although the pressure field in Fig. 6.4a is clearly
in error, most of the spurious signal in the pressure field relates to sound waves
whose velocity perturbations are very weak. The velocity fields associated with all
the solutions shown in Fig. 6.4 are essentially identical. The extrema in the pressure
perturbations shown in Fig. 6.4a are approximately twice those in the other panels
and are growing very slowly suggesting that the solution is subject to a weak insta-
bility. Since the operators for each fractional step do not commute, the stability of
each individual operator no longer guarantees the stability of the overall scheme.
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Nevertheless, the fundamental problem with the completely split method seems to
be one of inaccuracy arising from inadequate temporal resolution. Cutting At by
a factor of 2, while leaving M = 20 so that At is also reduced by a factor of
2, gives the pressure distribution shown in Fig. 6.4b, which is clearly a significant
improvement over that obtained using the original time step, but still contains spu-
rious perturbations of the same spatial scale shown in Fig. 6.4a. Similar results are
obtained if both At and M are cut in half, as shown in Fig. 6.4c, which demonstrates
that it is the decrease in At, rather than A, that is responsible for the improve-
ment. Further discussion of the source of the error in the completely split method is
provided in Sect. 6.5.

6.4.2 Partially-Split Operators

The first task involved in implementing the fractional-step methods discussed in the
previous section is to identify those terms in the governing equations that need to
be updated on a shorter time step. Having made this identification, it is possible
to leave all the terms in the governing equations coupled together and to update
those terms governing the slowly evolving processes less frequently than those terms
responsible for the propagation of high frequency physically insignificant waves.
This technique will be referred to as a partial splitting, since the individual fractional
steps are never completely decoupled in the conventional manner given by (6.58)
and (6.59).

Once again the linearized one-dimensional shallow-water system provides a sim-
ple context in which to illustrate partial splitting. As before, it is assumed that the
gravity-wave phase speed is much larger than the velocity of the mean flow U.
Klemp and Wilhelmson (1978) and (Tatsumi 1983) suggested a partial splitting in
which the terms on the right side of the following

du oh . ou

T +eg = —Us, (6.73)
dh u dh
st Ho = U, (6.74)

are updated as if the time derivative were being approximated using a leapfrog dif-
ference, but rather than advancing the solution from time level t — Af to t + At in
a single step of length 2A¢, the solution is advanced through a series of 2M “small
time steps.” During each small time step the terms on the right side of (6.73) and
(6.74) are held constant at their value at time level ¢ and the remaining terms are
updated using forward-backward differencing. Let m and n be time indices for the
small and large time steps respectively and define At = A¢/M as the length of a
small time step. The solution is advanced from time level n — 1 ton 41 in 2M small
time steps of the form
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Mm+l —uym N o™ _ Uaun
At Eox ~ ox

hm-i—l —hm aum+1 oh™
— + H =-U .
At + 0x ax

Note that the left sides of the preceding equations are identical to those appearing in
the completely split scheme (6.65) and (6.66).

The complete small-step large-step integration cycle for this problem can be writ-
ten as a four-dimensional linear system as follows. Define u™” = u”, hm = h", and
let )

r=(uhuhT.

Then an individual small time step can be expressed in the form

rm+1 — Al‘m,

where -
1 —g0x —U 0y 0
A= —Ho, 1+c~28§x UHB?CX —U 0y
0 0 1 0 ’
0 0 0 1

and the tilde denotes multiplication of the parameter by Azt (e.g., ¢ = cAt). At the
beginning of the first small time step in an complete big-step, small-step integration
cycle

l,m=1 — (un—l hn—l u” hn)T
At the end of the 2 M -th small step

l.m=2M — (un-l-l , ]’ln+1 , u” , hn)T
Thus, if S is a matrix interchanging the first pair and second pair of elements in r,

0010
S — 0001 ’
1000

0100
the complete big-step, small-step integration cycle is given by
l,n+1 =S AZM r
Since the individual operators commute, the completely split approximation to
this problem is stable whenever both of the individual fractional steps are stable. One

might hope that the stability of the partially-spilt method could also be guaranteed
whenever the large- and small-step sub-problems are stable. Unfortunately, there are
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Fig. 6.5 Spectral radius of the amplification matrix for the partially-split method contoured as
a function of ¢ and % for (a) M = 1 (b) M = 3. Unstable regions are enclosed in the wedged-
shaped areas. Contour intervals are 1.0 (heavy line), 1.2, 1.4, .. .. Line AB indicates the possible
combinations of ¢ and # that can be realized when U/c = 1/10 and M is specified as 1 or 3

many combinations of A¢ and At for which the partially-split method is unstable
even though the sub-problems obtained by setting either U or ¢ to zero are both
stable (Tatsumi 1983; Skamarock and Klemp 1992). Suppose that the partially-split
scheme is applied to an individual Fourier mode with horizontal wavenumber £,
then the amplification matrix for an individual small time step is given by a matrix
in which the partial derivative operators in A are replaced by ik; let this matrix be
denoted A.

Consider the case M = 1 for which the amplification matrix is SA2. The magni-
tude of the maximum eigenvalue, or spectral radius py,, of SAZ s plotted in Fig. 6.5a
as a function of ¢ = ckAt and 1 = UkAt. The domain over which p,, is contoured,
0 <¢ <2and0 <4 < 1, is that for which the individual small- and large-step
problems are stable. When M = 1, p,, exceeds unity and the partially-split scheme
is unstable throughout two regions of the ¢-i plane whose boundaries intersect at
(é,1) = (+/2,0). If U << ¢, only a limited subset the ¢-ii plane shown in Fig. 6.5a
is actually relevant to the solution of the shallow-water problem. Once the number
of small time steps per large time step is fixed, the possible combinations of 7 and
¢ will lie along a straight line of slope

UAt
cAT c

| 2>

Suppose that U/c = 1/10, then if the partial splitting method is used with M = 1,
the only possible combinations of @ and ¢ are those lying along line AB in Fig. 6.5a.
The maximum stable value of At is determined by the intersection of the line AB
and the left boundary of the leftmost region of instability. Thus, for U/c = 1/10
and M = 1, the stability requirement is that ¢ be less than approximately 1.25.
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As demonstrated in Fig. 6.5b, which shows contours of the spectral radius of
SAS, the restriction on the maximum stable time step becomes more severe as M
increases to 3. The regions of instability are narrower and the strength of the insta-
bility in each unstable region is reduced, but additional regions of instability appear
and the distance from the origin to the nearest region of instability decreases. When
M = 3 and U/c = 1/10 the maximum stable value of ¢ is roughly 0.48. Further
reductions in the maximum stable value for ¢ occur as M is increased, and as a
consequence, the gain in computational efficiency that one might expect to achieve
by increasing the number of small time steps per large time step is eliminated by a
compensating decrease in the maximum stable value for Az.

The partial splitting method has, nevertheless, been used extensively in many
practical applications. The method has proved useful because in most applications
it is very easy to remove these instabilities by using a filter. As noted by Tatsumi
(1983) and Skamarock and Klemp (1992), the instability is efficiently removed by
time filtering (Asselin 1972), which is often used in conjunction with leapfrog time
differencing to prevent the divergence of the solution on the odd and even time
steps. Other filtering techniques have also been suggested and will be discussed
after considering a partial splitting approximation to the compressible Boussinesq
system.

The equations evaluated each small time step in a partial splitting approximation
to the two-dimensional compressible Boussinesq equations linearized about a basic-
state flow with Brunt-Viisild frequency N and horizontal velocity U are

untl—ym o gpm ou" oU
=-U —w"—, 6.75
AT + 0x dax v 9z ( )
wm+1 —w™ 9 Pm+1 + pm Jw™

" - pm=_U 6.76
At + 0z ( 2 ) ox (6.76)

bm+l _pm ab"
Y + Nl = U —, 6.77
At +ATw 0x ( )

Pm+1 —pm ) aum+1 ) 9 wm+1 + w™ oP"

—|— ) =-U , 6.78
At te dx te 9z ( 2 ) X (6.78)

where as before m and n are the time indices associated with the small and large time
steps. The left sides of these equations are identical to the small-time step equations
in the completely split method (6.67)—(6.70). The right sides are updated every large
time step.

This method is applied to the problem previously considered in connection with
Fig. 6.3, in which fluid flows past a compact gravity-wave generator. The forcing
from the wave generator appears in the horizontal and vertical momentum equations
as per (6.71) and (6.72) and is updated on the small time step. In this test U is a
constant 10ms™!, At = 12.5 s and At = 0.625. The horizontal velocity field
and the pressure field from this simulation are plotted in Fig. 6.6. The horizontal
velocity field is very similar, though slightly noisier than that shown in Fig. 6.3a.
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Fig. 6.6 (a) contours of U +u at intervals of 0.1 ms—! and ¥ at intervals of 0.1 s~! att = 8000 s.
(b) as in (a) except that P is contoured at intervals of 0.5 m?s ™2

The pressure field is, however, complete garbage. Indeed, it is surprising that errors
of the magnitude shown in Fig. 6.6b can exist in the pressure field without seriously
degrading the velocity field. These pressure perturbations are growing with time (the
contour interval in Fig. 6.6b is twice that in Fig. 6.3b)); the velocity field eventually
becomes very noisy, and the solution eventually blows up.

This instability can be prevented by applying an Asselin time filter (Asselin 1972)
at the end of each big-step small-step integration cycle. Skamarock and Klemp
(1992) have shown that filtering coefficients on the order of y = 0.1 may be required
to stabilize the partially-split solution to the one-dimensional shallow water system.
A value of y = 0.1 is sufficient to completely remove the noise in the pressure
field and to eliminate the instability in the preceding test. Nevertheless, Asselin-
filtering reduces the accuracy of the leapfrog scheme to O(At) so it is best not
to rely exclusively on the Asselin filter to stabilize the partially-split approxima-
tion. Other techniques for stabilizing the preceding partially-split approximation
include divergence damping and forward biasing the trapezoidal integral of the ver-
tical derivative terms (6.76) and (6.78). Forward biasing the trapezoidal integration
is accomplished without additional computational effort by replacing those terms of
the form (¢™ 1 + ¢™)/2 with

LteY m+t 1—€)\ m
( 5 )¢ +(T)¢,

where 0 < € < 1. A value of ¢ = 0.2 provides an effective filter that does not
noticeably modify the gravity waves (Durran and Klemp 1983).

Since trapezoidal time differencing is only used to approximate the vertical
derivatives, forward-biasing those derivatives will not damp horizontally prop-
agating sound waves. Skamarock and Klemp (1992) recommended including a
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“divergence damper” in the momentum equations such that the system of equations
that is integrated on the small time step becomes

ou oP 08

o v x_:FLh
or T %ox
ow oP 05
T p_al_F
or T oz %y, = fw
ob ’
g—FN w:Fb,
opP
M + c§8 = Fp, (6.79)
where
5 — ou L ow
T ax o 9z

and Fy,, Fy, Fp, and F, represent the forcing terms that are updated every Atf.
Damping coefficients of oy = 0.001(Ax)?/Atr and a; = 0.001(Az)?/At
removed all trace of noise and instability in the test problem shown in Fig. 6.6
without a supplemental Asselin-filter.

The role played by divergence damping in stabilizing the small-time-step inte-
gration in the partial splitting method can be appreciated by noting that if a single
damping coefficient « is used in all components of the momentum equation, the
divergence satisfies

28
PPl V2P —aV?§ =G. (6.80)
where G = —V - (v- Vv) + 0b/0dz. Eliminating the pressure between (6.79) and

(6.80), one obtains

9268 ) G

— —aV?— =2V = — —V?F,.

2 a ° ot ’
The forcing on the right side of this equation will tend to produce divergence in an
initially non-divergent flow. Substituting a single Fourier mode into the homoge-
neous part of this equation, one obtains the classic equation for a damped harmonic
oscillator

S -
T Tt k25 =0, (6.81)

where 8(¢) is the amplitude and k = +/k2 + 2. The damping increases with
wavenumber and is particularly effective in eliminating the high wavenumber modes
at which the instability in the partial splitting method occurs. Gravity waves, on
the other hand, are not significantly impacted by the divergence damper because
the velocity field in internal gravity waves is almost non-divergent. Skamarock and
Klemp (1992) have shown that divergence damping slightly reduces the amplitude
of the gravity waves.
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At this point it might appear that the partial splitting approach is inferior to the
complete splitting method considered previously since filters are required to stabi-
lize the partially-split approximation in situations where the completely split scheme
performs quite nicely. Recall, however, that the completely split method does not
generate usable solutions to the compressible Boussinesq equations when there is a
vertical shear in the basic-state horizontal velocity impinging on the gravity-wave
generator. The same filtering strategies that stabilize the partially-split method in
the no-shear problem remain effective in the presence of vertical wind shear. This
is demonstrated in Fig. 6.4d which shows the pressure perturbations in the test case
with vertical shear as computed by the partially-split method using a divergence
damper with the values of oy and o, given previously. Results similar to those in
Fig. 6.4d may also be obtained using Asselin time filtering with @ = 0.1 in lieu of
the divergence damper. The advantages of the partial splitting method are not con-
nected with its performance in the simplest test cases, for which it can indeed be
inferior to a completely split approximation, but in its adaptability to more complex
problems.

One might inquire whether divergence damping can also be used to stabilize the
completely-split approximation to the test case with vertical shear in the horizon-
tal wind. The norm of the amplification matrix for the large-time-step third-order
Runge-Kutta integration (6.62)—(6.64) is strictly less than unity for all sufficiently
small At¢. Divergence damping makes the norm of the amplification matrix for the
small time step strictly less than unity for all sufficiently small At and thereby stabi-
lizes the completely split scheme by guaranteeing that the norm of the amplification
matrix for the overall scheme will be less than unity. Nevertheless, divergence damp-
ing only modestly improves the solution obtained with the completely split scheme;
the pressure field remains very noisy and completely unacceptable.’” The fundamen-
tal problem with the completely split method appears to be one of inaccuracy, not
instability. This will be discussed further in the next section.

The linearly third-order Runge—Kutta scheme (6.62)—(6.64) can provide a sim-
ple accurate alternative to leapfrog time differencing for use on the large time step
in partially split integrations (Wicker and Skamarock 2002), and it has replaced
the leapfrog scheme in several operational codes. To clarify how (6.62)—(6.64) are
modified for use as the large-time-step integrator in a partially split problem, let the
small time step again be defined such that At = At/M, where M must now be a
multiple of 6. Let 1r™ be the vector of unknowns at the start of the mth small time
step during the first Runge—Kutta iteration, which is initialized by setting ;r! = r”.
The mth small time step of the this iteration has the form

= A (L) + LG ). (6.82)

7One way to appreciate the difference in the effectiveness of divergence damping in the
completely- and partially-split schemes is to note the difference in wavelength at which spuri-
ous pressure perturbations appear in each solution. The partially split scheme generates errors at
much shorter wavelengths than those produced by the completely split method (compare Figs. 6.4a
and 6.6b), and the short-wavelength features are removed more rapidly by the divergence damper.
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As before, # and %, contain the terms responsible for the low- and high-frequency
forcing, respectively. After M /3 small time steps, the solution to (6.82) is projected
forward to time t” + At /3. The low-frequency forcing is then evaluated using this
new estimated solution, and the second Runge—Kautta iteration is stepped forward
from time " to t* + At /2 in M/2 steps, beginning with ,r' = r”*. The mth small
time step of this iteration is

" =" + At (31(11‘M/3+1) + L2 (r™, 2l‘m+1)) :

Following a similar update of the large-time-step forcing with the estimated solution
at " + At /2, the mth small time step of the final Runge—Kutta iteration, which
integrates from " to t"*1! in M steps, becomes

" =" + At (31(21‘M/2+1) + 5", 31’m+1)) ,

1 ntl Mt

where 3r' = r”, and r . Several other alternatives to leapfrog-based
partial splitting have also been recently been proposed (Gassmann 2005; Park and
Lee 2009; Wicker 2009).

6.5 Summary Discussion

One way to compare the preceding methods for increasing efficiency when model-
ing fluids that support physically insignificant sound waves is to compare the way
each approximation treats the velocity divergence. The pressure and the divergence
in the compressible Boussinesq system satisfy

dP
8
ot V2P =G, (6.84)

where § = V-v, F, = —v- VP and G = —V - (v- Vv) 4 0b/0z. The semi-
implicit method approximates the left sides of the preceding equations with a stable
trapezoidal time difference. Sound waves are artificially slowed when large time
steps are used in this trapezoidal difference, but the gravity wave modes are accu-
rately approximated. The implicit coupling in the trapezoidal difference leads to a
Helmbholtz equation for the pressure that must be solved at every time step.

The prognostic pressure equation (6.83) is discarded in the incompressible
Boussinesq approximation and the local time derivative of the divergence is set to
zero in (6.84). This leads to a Poisson equation for pressure that must be solved at
every time step. The computational effort required to evaluate the pressure is similar
to that required by the semi-implicit method. The Boussinesq system does, however,
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Fig. 6.7 As in Fig. 6.4: contours of P at intervals of 0.25m?s™2 and ¥ at intervals of 0.15 s
at + = 3000 s. Solutions are obtained using (a) the Boussinesq projection method, (b) the semi-
implicit method

have the advantage of allowing a wider choice of methods for the integration of
the remaining oscillatory forcing terms, which are approximated using leapfrog
differencing in the conventional semi-implicit method.

The pressure fields generated by the Boussinesq projection method and the semi-
implicit method for the test problem (6.71)—(6.72) are compared in Fig. 6.7. As in
Fig. 6.4 the basic-state horizontal flow is vertically sheared from U = 5m s~ ! at
the bottom to U = 15m s™! at the top of the domain. In the projection method,
the integral (6.9) is evaluated using the third-order Adams-Bashforth method with
a time step of 10s. The semi-implicit method is integrated using a 12.5 s time step.
The pressure fields generated by both of these methods look very similar to that
produced by the partially split method (Fig. 6.4d) and show no evidence of the noise
produced using the completely split method (Figs. 6.4a—c).

The elliptic pressure equations that appear when using the semi-implicit or pro-
jection methods are most efficiently solved by sophisticated algorithms such as
block-cyclic reduction, conjugate gradient, or multi-grid methods. One may think
of the small-time-step procedure used in the fractional step methods as a sort of spe-
cialized iterative solver for the Helmholtz equation obtained using the conventional
the semi-implicit method. The difference in the character of the solution obtained
by the complete and the partial splitting methods can be appreciated by considering
the behavior of the divergence during the small-time step integration.

During the small-time-step portion of the completely-split method the divergence
satisfies

P )

— —c = .

a2 ° 010z
The initial conditions for § are those at the beginning of each small-time-step cycle,
and since divergence is typically generated by the operators evaluated on the large
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time step, the initial § is non-zero. This divergence is propagated without loss dur-
ing the small-time-step integration (except for minor modification by the buoyancy
forcing) and tends to accumulate over a series of large-step, small-step cycles. The
test in which the completely split scheme performs well is the case where the basic-
state horizontal velocity is uniform throughout the fluid. When U is constant, the
linearized advection operator merely produces a Galilean translation of the fluid that
does not generate any divergence. (Recall that the forcing from the wave generator
was computed on the small time step.) Nonlinear advection can, of course, generate
divergence as can the linearized advection operator when there is vertical shear in
the basic-state wind, and these are the circumstances in which the complete splitting
method produces spurious sound waves.

In contrast, the divergence is almost zero at the start of the first small time step
of the partially split method and only small changes in the divergence are forced
during each individual small step. Moreover, the divergence forcing on each small
time step closely approximates that which would appear in an explicit small-time-
step integration of the full compressible equations provided that the amplitude of
all the sound waves is negligible in comparison to slower modes. The divergence
damper insures that the amplitude of the sound waves remains small and thereby
preserves the stability and accuracy of the solution.

In summary, the projection, semi-implicit and partially split fractional step meth-
ods all provide viable ways to model atmospheric circulations in which sound waves
are of no significance. Assuming that one wishes to capture nonhydrostatic motions,
there does not appear to be a clear-cut best approach and the choice of method may
be dictated by a number of additional considerations such as compatibility with
larger-scale models, the complexity introduced by any proposed coordinate trans-
formations, or the ease with which the method can be adapted to particular computer
architectures. If the focus is on larger scales, in which the all circulations of inter-
est are approximately hydrostatic, the semi-implicit method has generally been the
method of choice. For example, the semi-implicit method, is frequently used to
integrate the primitive equations in applications where the phenomena of primary
interest are slow-moving Rossby waves. In such applications the numerical inte-
gration is stabilized with respect to two different types of physically insignificant,
rapidly moving waves. Sound waves are filtered by the hydrostatic approximation,
and the most rapidly moving gravity waves (and the horizontally propagating Lamb
wave) are stabilized by the semi-implicit time integration. (cross reference primitive
equations and Lamb wave)
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Chapter 7

Momentum, Vorticity and Transport:
Considerations in the Design of a Finite-Volume
Dynamical Core

Todd D. Ringler

Abstract This chapter provides an end-to-end discussion of issues related to the
design and construction of dynamical cores. The governing equations of motion are
derived from basic principles cast in the Lagrangian frame of motion. The Reynolds
Transport Theorem is derived so that these conservation statements can be recast in
their weak, integral form in the Eulerian reference frame. Special attention is given
to the relationship between the momentum equation and vorticity dynamics. The
principles of conservation of circulation and vorticity are derived in the continuous
system. It is demonstrated that the kinematic principles related to circulation and
vorticity can be carried over exactly into the discrete system. The analysis is con-
ducted in an idealized, two-dimensional setting that is meant to serve as a prototype
system for the consideration of the full three-dimensional general circulation of the
atmosphere and ocean.

7.1 Introduction

More than 40 years after the first global models for the simulation of the fluid motion
in the atmosphere and ocean appeared, research into the construction of atmo-
sphere and ocean “dynamical cores” has never been more vibrant. The dynamical
core refers to the fluid-dynamic core of an atmosphere or ocean general circula-
tion model; the part of the model that evolves the distribution of mass, momentum
and tracer constituents forward in time. The diversity of approaches that are being
explored to simulate the evolution of mass, momentum and tracers in the atmosphere
and ocean systems points to both the richness and complexity of the problem.

The motivation for this chapter is to present an*“end-to-end” view in the design
of numerical models used for the simulation of fluid motion in the atmosphere
and ocean. The process starts with a rigorous construction and description of the
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underlying continuous system. The process ends with the specification of a numer-
ical model that is suitable for its target application. Both the beginning and end are
essentially applied math activities, with the former manipulating continuous equa-
tions and the latter manipulating discrete equations. In between these ends is the
“art” of constructing dynamical cores. If the process were as simple as discretiz-
ing a set of continuous equations, we would not see the vibrancy in dynamical core
development that we see today. A host of subtle, yet profound, questions such as
“which form of a continuous equations should be the starting point for the discrete
model?” fall squarely in the middle of the end-to-end design process. This chap-
ter explores some of those questions in order to illuminate the intricacies of the
decisions that have to be made in the design process.

The price-to-be-paid for this end-to-end view is scope. Many relevant aspects of
the design process have been omitted in order to contain the discussion to an appro-
priate length. The discussion is focused primarily on one important component of
a dynamical core: the prediction of momentum. This proves to be an important
and rich topic for several reasons. First, since the velocity that is derived from
momentum acts as the transport velocity for the mass and tracers fields, a robust
simulation of velocity is a prerequisite for any viable dynamical core. Furthermore,
as the velocity field responds to changes in the applied forces it must also satisfy
certain kinematic conditions, such as conservation of circulation and absolute vor-
ticity. Satisfying the desire to accurately model F = m a, where F is the vector
force, m symbolizes the mass and a stands for the vector acceleration, while also
accommodating important kinematic constraints is a challenge for any numerical
model. And finally, the majority of the nonlinearity in dynamical core simulations
arises from the simulation of the evolving velocity field. In many ways, getting the
evolution of momentum “right” is the hardest part in the design and construction of
a dynamical core.

The analysis presented below is conducted in a very simple, two-dimensional
framework and is, in some ways, quite removed from the global three-dimensional
motions that compose the atmosphere and ocean general circulations. As such, it
is important to address the relevance of this chapter to the modeling of the more
complicated three-dimensional systems. First and foremost, the analysis conducted
here is a prerequisite for the construction of a robust three-dimensional model. In
that, what follows below could be considered a set of necessary, but not sufficient,
properties of robust three-dimensional models of atmosphere and ocean circula-
tions. Since the general circulation of the atmosphere and ocean occurs primarily
along a vertical stack of two-dimensional sheets, it is folly to suppose that a numer-
ical method that performs poorly in the solution of the two-dimensional system will
perform acceptably in the solution of the three-dimensional system. Second, while
the two-dimensional system might seem trivial in some respects, many numerical
methods used in the modeling of geophysical fluid dynamics fall short when viewed
from the perspective of vorticity dynamics. Vorticity dynamics largely represent the
“slow modes” of these system where relatively small truncation errors can accumu-
late and, eventually, completely corrupt the simulation. The struggle to control the
form of truncation error with respect to vorticity dynamics is as important today as it
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was when Arakawa (1966) wrote the seminal paper on the topic (see also the reprint
Arakawa 1997). And finally, this chapter is meant as an introduction to the concept
of designing numerical methods that respect the continuous system in some rele-
vant aspects. For this goal, the very simple, two-dimensional framework is perfectly
appropriate.

The omissions in the discussion are sometimes glaring. For example, the impor-
tance of accurately simulating transport phenomena in dynamical cores is largely
omitted (see, e.g. the discussion in Chap. 8). The notable exception is the detailed
discussion on the relationship between fluid acceleration and absolute vorticity
transport. The next glaring omission is the lack of discussion of potential vortic-
ity and its relationship to the velocity field; the discussion below is limited to an
analysis of the absolute vorticity field. While absolute vorticity is connected only
to the velocity field, potential vorticity is connected to both the velocity field and
to the mass field. The analysis below can (and has) been extended from absolute
vorticity to potential vorticity (Ringler et al. 2010). The choice was made based
on the belief that a firm grasp of the absolute vorticity dynamics is a prerequisite to
understanding the potential vorticity dynamics. And finally, while the primary target
geometry of a dynamical core is the surface of the sphere, the f-plane approximation
is made throughout. All of the analysis carries over to the sphere, the simplification
to the f-plane is for the sake of conciseness in presentation. And finally, while the
focus is on the relationship between the evolution of velocity and its relationship to
vorticity dynamics, we need to be sure to understand that the velocity equation is
derived from F = m a and that the system cannot be closed without the knowledge
of the density field and an equation, such as the ideal gas law, that relates density to
pressure.

The discussion unfolds in the following manner. First, the relevant evolution
equations are constructed from the Lagrangian perspective. These conservation
statements are then transferred to an Eulerian reference frame through the use of the
Reynolds Transport Theorem (RTT). Since a full discussion of RTT is rarely found
in texts related to geophysical fluid dynamics, RTT is derived from first principles
for completeness. Following the development of the evolution equations appropriate
for an Eulerian reference frame, a qualitative analysis is conducted of the various
“flavors” of the momentum equation that can be used as the basis for a numerical
solution. The discussion then moves into the setting of discrete numerics by asking
the most basic question of “How do we begin the process of discretization?” And
finally, a numerical model is developed that meets the criteria developed throughout
the entire discussion. The numerical model is constructed in such a way that it can
easily be implemented in development environments such as MATLAB.

7.2 Reference Frames and Conceptual Constructs

When we consider the motions of the atmosphere or ocean, we expend considerable
effort on the phenomena of transport, such as the transport of fluid density from
one region to another, or the transport of tracer substance from a source region to
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a sink region, or the transport of momentum from one area to another. In almost
all cases, the most natural setting to consider transport is the Lagrangian reference
frame where we, as the observer, move with the fluid.

To start, let us define a volume of fluid, V', composed of a set of particles, R,
enclosed at all times by a surface, S. Each particle in the set of R is denoted by its
vector position X(¢) = X;e; + X,e, + X3zes. As indicated, X is only a function
of time. Also, e; 2 3 is the set of orthogonal unit vectors spanning the R space (see
Fig.7.1). The idea of constructing the volume as a set of particles is entirely a con-
ceptual construct; the particles are simply the most basic “element” that is used to
define all other features; lines, surfaces and volumes can be “built” from sets of par-
ticles. Each particle is accompanied by an arbitrarily long list of labels representing
such things as the particle position (X), density (p) and the vector velocity (u). The
validity of such an approach is that the particles can be made arbitrarily small and,
thus, approach the continuum limit.

The amount of mass, M, or tracer substance, Q, within the boundary surface can
be expressed as

V(t)=JxV,

M:/p(x,t)dV: p(X,1)JdV,

V() v,

€

Fig. 7.1 The Lagrangian perspective. At time = 0 a volume of fluid, V}, is identified. The volume
is composed of a set of particles, R, with each particle identified by its vector position X. Even
though the volume is sheared, rotated and dilated as it moves through space, it is always composed
of the same set of particles R. Thus, the boundary surrounding V' is impermeable. The Jacobian, J,
integrates the time-rate-of-change of V' and represents the fractional change in the volume between
time = 0 and time = t. The volume of fluid at any time 7 is equal to its volume at some initial
time, Vjp, times the fractional change in volume, J. Since the boundary of V is impermeable, the
mass, M, within V' is a constant in time
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M = /,o(x,t)dV (7.1)

V()

0= [ p(x.1)q (x.1)dV (72)

V()

where the limits of integration span the positions x inside the volume V(¢). The
dependence of V' on time is retained to make clear that the limits of integration, in
general, change in time. p is the fluid density with units of mass per volume and ¢
has units of concentration, such as kg of Q per kg of fluid.

Assume that no mass or tracer substance is exchanged across the boundary S
such that

amM

T 0 (7.3)
and 40

= =0. 7.4

i (7.4)

Equations (7.3) and (7.4) define the material derivative as measured in the
Lagrangian reference frame of motion by stating that the amount of M and Q
is invariant in time when following a volume V(¢) that is always composed of the
same set of particles included in R.

Another reference frame of great utility is the Eulerian reference frame where
the observer remains at a fixed position in space, as opposed to moving in space
along particle trajectories. The material derivative (of, say, Q) is expressed in the
Eulerian reference frame as

a _bo _9d0

= = A/ )
dt Dt ot +tu-vo (7-5)

fluid particle

where, as shown in Fig. 7.1, u is the particle velocity vector defined as

dX
= —. 7.6
P (7.6)
The gradient in (7.5) is defined as
a0 d a0
VO = —Qe1 + —Qez + —Qes. (1.7)
dx1 9x 0x3

The terms on the right-hand side (RHS) of (7.5) are evaluated at a fixed point

and at a fixed time, respectively. Even when the material derivative is identically

zero, a non-zero time-rate of change, %, can be observed at a fixed location due
to the differential transport, u-V{}, into and out-of a specific region. An Eulerian

observer essentially balances dd—Atl = 0 by measuring the differential transport at
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one location, then setting the local time tendency to the value required to make the
material derivative sum to zero.

The blending of the Lagrangian and Eulerian reference frames through the use
of Arbitrary Lagrangian Eulerian (ALE) (Hirt et al. 1997) methods is increasingly
popular in climate system modeling. While the full discussion of ALE methods is
beyond the scope of this chapter, the analysis of the continuous system given in the
following section can be extended to ALE frameworks.

7.3 Evolution Equations from a Lagrangian Perspective

The elegance and simplicity of the Lagragrian reference frame is clearly apparent in
(7.1)=(7.4). In a model of the global atmosphere or ocean we could envision decom-
posing the domain into a set of Lagrangian volumes where each volume is separated
by an invisible, yet impermeable, barrier. The numerical algorithms would then track
the “blobs” as they move through space being pushed, squeezed and rotated due to
their contact with neighboring blobs. In such a model the phenomena of transport
would be remarkably well simulated; no mass or tracer substance would be erro-
neously exchanged between the Lagrangian volumes. In fact, ideas along these lines
are under development by Haertel et al. (2009).

The primary reason that no robust climate model is constructed entirely in a
Lagrangian reference frame is due to the rapid deformation of the Lagrangian con-
trol volumes. As seen in Fig. 7.1, while the mass within the volume V' is constant
in time, the volume itself can evolve in time through rotation, dilation and shearing.
Figure 7.2 demonstrates what happens to control volumes in typical geophysical
flows. Initially compact control volumes are stretched due to shearing. The stretch-
ing creates long filaments that are folded. Tracking these rapidly distorting control
volumes poses a tremendous challenge for numerical models.

So while the Lagrangrian reference frame proves exceptionally useful for the
construction of the evolution equations, numerical models are currently restricted to
reference frames that are essentially Eulerian. As a result, we require a robust means
of transforming conservation laws and evolution equations between the Lagrangian
and Eulerian frames of motion. While several methodologies are available for

‘\\Q

Fig. 7.2 In the highly nonlinear flows that characterize fluid motion in the atmosphere and ocean,
Lagrangian control volumes are rapidly distorted due the presence of strong shear, rotation and
dilation. The rapid distortion of Lagrangian control volumes makes the formulation of numerical
models within the Lagrangian reference frame an extremely difficult challenge
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transforming between these reference frames, an approach based on the Reynold’s
Transport Theorem (RTT) is particularly appealing for two reasons. First, the RTT
is formulated in an integral form that leads naturally to equations suitable to finite-
volume models that will be discussed in Sects. 7.5 and 7.6. Second, a generalization
of the RTT allows for the seamless transformation between the Lagrangian refer-
ence frame and any other reference frame that falls between the Lagragian (moving)
and Eulerian (fixed) reference frame. Thus, the emerging type of models based on
ALE methods are fully accommodated in approaches based on the RTT; this chapter
serves as a useful waypoint on the path to developing numerical models in the ALE
reference frame. A full analysis of RTT and its generalizations can be found in F.
White’s Fluid Mechanics textbook (White 2008).

7.3.1 The Reynolds Transport Theorem

Let F be any intensive property of the fluid. Examples of F include p with units of
mass per unit volume, pg with units of tracer mass per unit volume or p u with units
of momentum per unit volume. The conservation statement for F in the Lagrangian
reference frame in the absence of sources and sinks is expressed as

d

- /F(x,t)dV =0. (7.8)

VL

Note that (7.3) is included as a specific example of (7.8). In general the RHS of
(7.8) need not be zero. A source term for F' can be placed on the RHS of (7.8). The
proper evaluation of this source term is along the volume trajectory.

The subscript L on the volume V in (7.8) has been added to denote that the
volume is being viewed by an observer moving in the Lagrangian reference frame.
The goal is to move the time derivative inside the volume integral and, thereby, allow
for the integration to occur over the same volume V' but with respect to an observer
in a different reference frame. This is somewhat problematic since the limits of
integration, V7, are a function of time.

The way around this difficulty is to make use of the fact that the volume V7, is
composed of the same set of particles R at every instant in time. Thus, as shown in
Fig.7.1, the differential volume element d V' at some time ¢ is related to its value at
time ¢ = 0 as

dVv =JdVy (7.9)

where J accounts for the fractional change in the volume element between time
0 and time 7. Conceptually we can consider each of these differential fluid ele-
ments dVy as being associated with a single particle. Thus, (7.8) can be trans-
formed to
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d d
- /F(x,t)dV = /F(X,t)JdVO =0. (7.10)

|43 Vo

Note that both sides of (7.10) integrate over the same group of particles R, but do so
in different ways. The LHS indirectly sums over the particles by integrating over V7,
which is identical to the spatial extent spanned by R at time 7. The RHS explicitly
sums over the particle positions X at time ¢ included in V7, and weights each particle
by its initial volume, Vj, times the fraction change in Vy between time = 0 and
time = t. Now that the limits of integration on the RHS are not a function of time,
the order of integration and differentiation can be exchanged. In particular, we can
write

d D D

— | FX,0)JdVy = J—F(Xt FX,t)—J |dVp=0. (7.11

& rxnrave= [ s procn + Fongs [ave =0 aan
Vo Vo

Just as J accounts for the time-integrated fractional change in the size of the vol-
ume elements, %{ accounts for the instantaneous rate-of-change in the size of the

volume elements, namely

DJ
—~ —JV-u. (7.12)
Dt

Equation (7.12) states that the rate-of-change of a Lagrangian volume (JVj) is equal
to its present volume (J Vj) times the divergence of the fluid; since Vj is not a
function of time it cancels in (7.11). Using (7.12) we can simplify (7.11) to

/[%F(X,t)—l—F(X,t)V-u}dVo =0. (7.13)

Vo

We can expand the first term in (7.13) using the definition of the material derivative
(7.5) and combine terms to obtain

DF oF

Vo Vo

The broad utility and analytic power of (7.14) is in the choice of V4. Note that the
only requirements on V are the following: V} is coincident with V7, at some instant
in time and Vj is fixed in space. Of particular interest is when V, and Vy span the
same volume of space at the instant time = 0. At this instant in time, we can see
that Vj is the Eulerian representation of V7, in that it spans the same volume but
is not moving with the fluid. The volumes Vy and V}, only differ in the reference
frame of the observer, with the former in the Eulerian reference frame and the latter
in the Lagrangian reference frame. Relabeling V as Vg to emphasis this point we
can now write
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d [ oF
= /F(x,t)dV —/_E+V-(Fu)]dV
Vi VE
—/_DF+FV dV =0 (7.15)
= _D[ u = V. .
VE

Note that the Eulerian volume, Vg, is often referred to as a “control volume” when
discussed in the context of finite-volume methods

Equation (7.15) is the Reynolds Transport Theorem (RTT). The term “Reynolds
Transport Theorem” is most commonly used when the volume V7, is transported
with the fluid, as is the case for the first term in (7.15). When the volume is not being
observed in the Lagrangian reference frame, a generalization of RTT still holds and
that theorem is commonly referred to as the “Generalized Transport Theorem”. The
only way to satisfy (7.15) for any Vg is to guarantee that

L iv.Fu =0 (7.16)

A more useful form of (7.15) is obtained by applying the divergence theorem to the
V - (F u) term to yield

d oF

o /F(x,t)dV :/WdeL/Fu-ndS:O (7.17)

143 Ve Sg

where Sg is the surface bounding Vg and n is the unit vector normal to Sg directed
outward. The RTT states that the time-rate-of-change of any intensive quantity F
inside a volume V7, following the fluid motion can be computed at any instant in
time as the sum of the time-rate-of-change of F inside Vg and the net flux of F
across the surface bounding Vg (see Fig.7.3). The RTT allows for conservation
statements to be naturally cast in an integral form as shown in (7.17). The integral
form is also referred to as the weak form since, in general, the statements hold only
for a compact region of integration. With the machinery of the RTT in place, we can
easily apply it to any conservation statement to obtain an analytic expression of the
dynamical core expressed in integral form.

7.3.2 Conservation of Mass and Tracer Substance

Applying (7.17) to the conservation of mass and tracer expressions in (7.3) and
(7.4), we obtain
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4| ] = [ 2 ar s [runsso
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Time-rate-of-change Rate at which F is
of F within the Eulerian  removed from the
control volume. Eulerian control volume.

Fig. 7.3 An illustration of the Reynolds Transport Theorem. At some time ¢ = 0, the volume
V1 is coincident with the volume V. The Eulerian volume Vg remains fixed in place while the
Lagrangian volume V;, deforms to V. (¢) at time ¢. The conservation statement for F is that the
integral of FdV over V is constant for all time. The Reynolds Transport Theorem allows for
the computation of the time-rate-of-change for F' within Vr by computing the transport of F
across the surface of Vg over time ¢

% /pdV — g’odV—l—/pu-ndSzo (7.18)
|43 i VE Sk

% /pqu _/a(g’q)dv+/pqu-nd5=0. (7.19)
VL _ VE SE

Equations (7.18) and (7.19) are inextricably coupled and a discussion of the cou-
pling is worthy of its own chapter. A glimpse at this entanglement can be seen by
simply defining G,, = p u - n and rewriting (7.18) and (7.19) as

% /pdV /—dV+/GmdS =0 (7.20)
|43 S
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d(pq)

d
= /,quV _/TdV+/qudS_O. (7.21)
Vi VE SE

Gy, is the mass flux per unit area across Sg. Equation (7.21) shows that a prerequi-
site to computing the tracer flux across Sg is the knowledge of the mass flux G,. In
fact, when written in this manner it is clear that tracer transport is meaningless with-
out the underlying mass transport field G,,. Those transport algorithms that fully
recognize the relationship between mass and tracer transport are most appropriate
for use in climate simulations.

Differential forms of mass and tracer transport can be obtained directly from
(7.16) or by letting VE — 01in (7.18) and (7.19) to obtain

9
a—f +V-(pu) =0 (7.22)
and 3(oq)
—éotq + V- (pgu) = 0. (7.23)
Equations (7.22) and (7.23) can be written in material derivative form as
Dp
— V.u=0 7.24
Di +poV-u (7.24)
and
Dq
T _9 (7.25)
Dt

The last two forms will be used in the discussion below.

7.3.3 A Statement of Newton’s Second Law

In order to complete the Lagrangian perspective illustrated in Fig. 7.1, we need to
describe how the volume evolves in time, i.e. what determines the set of particle
velocities u that will dilate, rotate and shear the volume V7, shown in Fig.7.17 In
this case the intensive quantity is momentum per unit volume

P=pu. (7.26)

In its most basic form, the statement of Newton’s Second Law is

P _ d /p(x,;)dv - /deV+/Fst (7.27)

dr ~ dt
|43 Vi St
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where Fy, is a body force acting throughout the volume V7, and Fy is a surface force
acting on the surface Sr. Fj has units of force per unit volume and Fy has units of
force per unit area. Applying RTT as expressed in (7.13)—(7.27) yields

[[DEI(PU)+(PU)V.ui|dV=/deV+[Fst. (7.28)

VE VE SE

Expanding the material derivative and combining terms results in

[[pg_‘thru(%jupv u)}dV:/deV+[Fst. (7.29)

Ve Ve SE

The term (g—’t’ + pV - u) is a statement of conservation shown in (7.24) and is iden-
tically zero. The momentum equation now has a form that is analogous to ma = F
with

/p—dV /deV+[Fst (7.30)

VE SE

where 2 Dr 1s exactly equal to the particle acceleration. The specific forces that are
applied to the RHS can range from the Coriolis force' to the pressure gradient force
to surface drag to shear stress, just to name a few. The focus here will be on the
forces responsible for geostrophic balance: Coriolis and pressure. In addition, the
Coriolis force is representative of a body force with the integration over Vg, and
the pressure force is representative of a surface force with the integration over Sg.
The Coriolis force can be expressed as

/devz—/ fokx (pu) dV (7.31)

Ve Ve

where f, is the Coriolis parameter that is assumed to be a constant (i.e. an f-plane
approximation has been assumed) and k is the unit vector pointing in the local
vertical direction. The pressure force can be expressed as

[Fstz—[pn dS:—/VpdV (7.32)

SE SE VE

' The Coriolis force is an apparent force that arises due to casting the equations of motion in
a non-inertial, rotating reference frame. Both the Lagrangian and Eulerian reference frames are
measured relative to the underlying rotating reference frame. If the system of equations were cast
in an inertial reference frame, then the Coriolis force would not be present.
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where n is the outward directed normal vector to Sg. The negative sign on the pn
term in (7.32) is because, by definition, pressure p pushes inward on Sg resulting
in a force directed in the —n direction. Equation (7.32) also uses the divergence
theorem to transform the pressure force from an integral over Sg to an integral over
VE. Letting VE — 0 allows (7.30) to be expressed in its differential form as

g—l; = —_fokxu—%Vp. (7.33)

One numerical method that will be of particular interest below is the “finite-
volume approach.” In this approach, we retain prognostic equations for mean values
over discrete regions. As a result, the weak or integral form of (7.33) is more
amenable to a finite-volume approach. In order to convert the momentum equation
shown in (7.33) into its weak form, we can apply (7.17) to the intensive quantity
P = pu and obtain

SE

at
Ve Ve SE

With examples of F and F; in place, the integral form of the momentum equation
becomes

/a(gtu)dVJr/(pu)u-ndS:—/ fokx (pu) dV—/pn ds. (1.35)
Ve SE Vi

SE

Figure 7.4 illustrates the various terms involved in (7.35). Allowing Vg — 0 in
(7.35) and transforming the second and fourth term using the divergence theorem

gives
@—G—V-(puu):—fokx(pu)—vln (7.36)

where the notation (pu u) symbolizes a tensor.

We have developed several different analytic forms of F = m a in this section.
In particular, a particle-based formulation of momentum is shown in (7.33) and
a control-volume formulation is shown in (7.35). When constructing a numerical
model, each form will have its own advantages and disadvantages. We will return to
this discussion in Sect. 7.4.

7.3.4 Dynamics of Vorticity

By using F = m a to construct the evolution equation for velocity or momentum,
we describe how a particle (7.33) or a region of fluid (7.35) responds to applied
forces. In addition to the balance-of-forces in the momentum equation, there are
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Fig. 7.4 A control volume perspective of conservation of momentum: The time-rate-of-change
of momentum, pu, within Vg is due to three mechanisms. The first is the apparent body force,
— f» K X pu, acting over the entire control volume Vg. The second is due to the pressure force
acting along the surface of V. And the last mechanism is the transport of momentum, pu, across
the surface of V. Other mechanisms such as dissipation and external sources can also be included

kinematic constraints on the structure of the velocity field. A vector velocity field
can always be described as a sum of two vector velocity fields where one vector
field is purely rotational and the other vector field is purely divergent. This is known
as the Helmoltz Decomposition.” The Helmoltz Decomposition states that we can
always decompose a vector field as

u =us +ug (7.37)

with
V-u=V-u; =4, (7.38)

and
Vxu=Vxu =¢, (7.39)

where § is the scalar divergence field associated with u and ¢ is the vector vor-
ticity field associated with u. Equations (7.38) and (7.39) show that the divergent

2 The simplification to singly-connected domains extending to infinity is made here for clarity in
presentation, see (Batchelor 1967) page 85 for a full discussion.
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component of u is contained entirely in ug and the rotational component of u is
contained entirely in u;. Given a divergence and vorticity field, the velocity field
can be determined by first finding the potential fields consistent with § and ¢ as

V3¢ =8, (7.40)

and
Vg =¢ (7.41)

and then differentiating the scalar potential field ¢ and vector potential field 8 to
obtain the velocities as

and
VxpB=u. (7.43)

Solving (7.40) and (7.41) for the potential fields requires the inversion of the V2
operator.” While the Helmoltz Decomposition holds for three-dimensional flows,
we will limit the velocity to 2-D planar flows in the following section.

Broadly speaking, the rotational component of the velocity field, ug, is associ-
ated with slow modes, such as Rossby waves, and the divergent component of the
velocity field, ug, is associated with fast modes, such as gravity waves. An ade-
quate representation of both the rotational and divergent components of motion is a
prerequisite to robust simulations of geophysical fluid dynamics.

From a climate modeling perspective, avoiding the spurious forcing of the rota-
tional component of the velocity field is of great concern. Since the vorticity field
tends to evolve slowly in time via transport (i.e. it is a slow mode), errors in the
evolution of the rotational component of velocity tend to be advected along with the
fluid flow and, thus, accumulate in time. Discrete numerical models with spurious
forcing of the vorticity field resort, inevitably, to inappropriately large levels of dis-
sipation in order to control the spurious accumulation of vorticity variance at the
model grid-scale.

Throughout the remaining sections of this chapter a tremendous amount of
discussion will focus how to design numerical methods that appropriately solve
F = m a while avoiding any spurious forcing of the vorticity field. We will begin
this discussion by developing conservation statements in the continuous system
regarding how the rotational component of the velocity field should evolve in time.
Later sections will focus on how to build these conservation statements into the
discrete system.

3 In singly-connected domains, like the entire surface of the sphere, no additional boundary con-
ditions are required to solve (7.40) and (7.41). In multi-connected domains, additional boundary
conditions are required to close the system.
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7.3.4.1 Conservation of Circulation

Circulation measures the mean rotation around a material contour (see Fig. 7.5). Cir-
culation is essentially the area-weighted representation of vorticity. In the discussion
of circulation and vorticity, we will limit the velocity field to two spatial directions,
such as the surface of a plane. The reduction in the space spanned by the velocity
field means that volume integrals in RTT reduce to surface integrals and surface
integrals in RTT reduce to contour integrals. The relative circulation is defined as

Fcr(t)=¢u-dr= /k-(qu) ds = /EdS (7.44)
c(t) S(t) S(@)

where FC’(I) measures the mean rotation produced by the velocity field u around a
contour ¢(¢) that moves with the material particles. For the 2D system considered
here, k is the local vertical with ¢ measuring the component of vorticity in the verti-
cal direction. The limits of integration are around the contour c(¢), or over the area
S (¢) associated with the contour. The explicit dependence on time has been retained
in c(¢) and S(¢) to emphasize that the limits of integration are a function of time.
All analysis in this section will take place in the Lagrangian reference frame; the
use of RTT to transform the conservation statements to the more practical Eulerian
reference frame will be done in the following section.

The first task is to determine the appropriate conservation statement for circula-
tion within a Lagrangian control area. Note that since the contour of integration in
(7.44) moves with the fluid, the contour is composed of the same set of particles for
all time. Applying the time derivative to (7.44) yields

d . d du
Efc(z)za¢u-dr=¢ |:dl’E

c(t) c(t)

d (dr)

particle

Since the element dr is transported with velocity u, its time-rate-of-change can be

expressed as
d (dr)

dt

The RHS of (7.46) measures the deformation and rotation of dr due to spatial
variations in the u field.* Using (7.46) in (7.45) yields

d _, Du lul? Du

c(t) c(®)

=dr-Vu. (7.46)

4 Equation (7.46) is obtained by noting that % = u(x + dr) — u(x), expanding u(x +dr) ina

Taylor series and retaining the first two terms. The V u term is the gradient of the vector velocity
field and is a rank-2 tensor. A detailed explanation of V u is given in DeCaria and Sikora (2010).
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where (7.5) is used to recast the time derivative of u as a material derivative. The
relationship between the evolution of circulation and F = m a is becoming appar-
Du

ent with the appearance of the 7 in (7.47). If we substitute in the form of the

momentum equation defined in (7.33) we obtain

d v
=Tl = 56 [—fokxu—Tp] .dr. (7.48)
c(t)

The first source of relative circulation on the RHS of (7.48) is related to the amount
of planetary vorticity captured in c(¢) due to expansion or contraction of the area
associated with c¢(t). Referring to Fig. 7.5 and under the condition that the Coriolis
parameter is constant, we can manipulate this source term as

D D
B Uotoxul-ar = -  fuxar)- fyk = —fy -5 =~ o S(0).
c(t) c(t)
(7.49)
The term u x dr represents the rate at which area is swept by the transport of element
dr by velocity u. When integrated around the entire contour and multiplied by the
planetary vorticity, the result measures the time-rate-of-change in the amount of

[uxdr]-f, k

the rate at which planetary
vorticity is swept by the

transport of ¢(¢) by u.

dr

c(t) is the material loop
moving with the fluid.

c(t) S(t) S(t)

dr is an infinitesimal
segment of ¢(t).

d d /
—_T% = ndS|=0
dt <O dt

S(t)

Fig. 7.5 A graphical representation of circulation. The symbol n = ¢ 4 f, denotes the absolute
vorticity
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planetary vorticity contained within c(¢). If we define the planetary circulation as
FC‘EZ) = foS@) (7.50)

then we can express the absolute circulation as

G0 =Tl + Thy= [ €+ fyds = [nas sy
S() S()

where 7 is the absolute vorticity defined as the sum of the relative vorticity and the
planetary vorticity. We can now rewrite (7.48) as

d \
=Tl = 55 [—7”} dr (7.52)

c(t)

where (7.52) is an expression for the rate-of-change of absolute circulation associ-
ated with a contour c¢(¢) that is observed in the Lagrangian reference frame. The
remaining source term on the RHS of (7.52) is the due to the differential accelera-
tion of particles along c(¢) produced by the pressure gradient force when variations
in the density field are present. The primary interest here is on the situation when
the density field is constant,’ i.e. p = p,. In this situation we find

Vp -1
Vel ar= L fvpar=o (7.53)
Po Po

c(t) c(t)

The term V p - dr measures the gradient of the pressure field in the direction of dr.
So long as the c¢(t) loop traced out by the differential dr elements is closed, the
integration of V p - dr around c(¢) is guaranteed to be identically zero. This results
holds for any loop and for any scalar field. With the result provided in (7.53), we
can end the analysis with

d d
S(t)

that states that the absolute circulation contained within contour c(#) as it moves
with the fluid will be a constant in time; absolute circulation within ¢ (¢) is conserved

> When variations in density are present, as in the real atmosphere and ocean, then the RHS of
(7.52) serves as a source of circulation and vorticity. When considering the numerical simulation
of this process, a critical prerequisite is the guarantee that vorticity is not created when these
variations are not present.
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in time. The relationship also makes it clear that, in general, the absolute vorticity is
not constant within the contour c¢(¢). Only in the special case of non-divergent flow
resulting in % [S(#)] = 0 will the mean value of 7 be a constant within contour ¢ (%).

7.3.4.2 Conservation of Absolute Vorticity

The entire analysis in the section above is conducted in the Lagrangian reference
frame. The purpose of this section is to use RTT to transfer the conservation state-
ments into an Eulerian reference frame. Comparing (7.54) to (7.8) shows that the
form of conservation of absolute circulation shown in (7.54) is suitable for the
application of RTT. Applying RTT as stated (7.15) to (7.54), we find

d d ad
Ergm = [ ndS | = / [3—? +V-(y u)] ds =0. (7.55)
S(@) S

The form of (7.55) that is most suitable for finite-volume applications discussed
below is

)
[a—?d5+¢nu-ndr=0 (7.56)
S c

that states that the time-tendency of absolute vorticity in region .S is equal and oppo-
site to the rate at which absolute vorticity is being transported into or out of region
S. A primary goal in the construction of the numerical model developed below is to
guarantee that the velocity field evolves in such a way as to mimic (7.56) exactly.

For the sake of completeness we note that in the limit of dS — 0 and allowing p
to be nonuniform, (7.55) becomes

%+V-(nu)=—k-<Vx[E]> (1.57)
at P

where the RHS source term shown in (7.52) has been retained. And finally, intro-
ducing the material derivative into (7.57) yields

Dy R vp
E+nv-u_ k (Vx[p]). (7.58)

7.3.5 Summary of Evolution Equations

The analytic analysis of the continuous system is now complete. The approach has
been to identify conservation statements in the Lagrangian reference frame and to
use the Reynolds Transport Theorem to transfer these conservation statements into
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an Eulerian reference frame. The value of the Reynolds Transport Theorem is that
it provides a machine-like approach to the derivation of evolution equations spec-
ified naturally in the integral form conducive to the development of finite-volume
methods.

Before turning to the process of discretization, a survey is conducted of the var-
ious flavors of F = m a that can be used as the basis, or starting point, for the
discretization process. The specific form of F = m a that is chosen as the start-
ing point for the numerical model has a tremendous impact on the attributes of that
numerical model. Particular attention is paid to the ability of each form to satisfy
both F = m a and conservation of absolute vorticity (7.56).

7.4 The Various Flavorsof F = m a

In the continuous system, all forms of the momentum equation are equivalent. The
equivalence holds for smooth flows. If singularities develop in the solution, the
equivalence between the various forms is more tenuous. Since each form can be
manipulated into any other form, there is no difference between the various expres-
sions of F = m a. This is not true in the setting of discrete numerics. Discretizing
the continuous system implies an approximation of the continuous fields as a finite
set of values that typically exist on a mesh that spans the spatial extent of the system.
In addition, the continuous operators such as V, V- and Vx are replaced with dis-
crete approximations. One result of discretizing the momentum equation is that the
various forms are no longer equivalent; we cannot, in general, manipulate one dis-
crete form of the momentum equation into another discrete form using the discrete
operators. As a result, when we choose the form of the momentum equation used
in a numerical model, we are saying a great deal about what aspects of F = m a
are most important in the target application. Each form has its own advantages and
disadvantages and, thus, each form has its own niche to fill in the modeling of the
global atmosphere and ocean systems. This section provides a brief review of the
commonly used flavors of F = m a with a discussion of their respective advantages
and disadvantages.

7.4.1 The Advective Form

The advective form of the momentum equation (7.33) is restated here for conve-

nience:
Du

Dt
This is essentially an evolution equation for one of the particles in the Lagrangian

system, such as a particle X shown in Fig. 7.1. Assume that the system is discretized
on a regular mesh composed of squares, such as the one shown in Fig. 7.6. If at some

1
= —fokxu—;Vp. (7.59)
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Lagragrian trajectory: Backward-in-Time Lagragrian trajectory: Forward-in-Time

integrate forward in time.

dX
integrate backward in time. U= —
dt
X(t.)
particles arrive on a regular mesh n
N X(t,) .
X (1) =X (t,)~[wt X(t,) = X(t)+ fuds
t, t, ty t,
1 _ _ _lyg.
wlt, X1 =ty Xt + | [FRow 3R]t X0 =ity X)) +/ R
I ot | ! I J
f T i 1
Determine by Integrate along Known as an Integrate along
interpolating velocity trajectory. initial condition. trajectory.

on regular mesh
to X(t,) positions.

Fig. 7.6 A graphical representation of forward Lagrangian and backward Lagrangian (i.e. the
semi-Lagrangian) method

time, say ¢ = f; one particle is placed at the center of each square shown in Fig. 7.6,
then the particle position and velocity at some later time, say ¢ = ¢, are determined
by integrating (7.59) along the particle trajectory as

te te
/ %d! = u(te, X(te)) — u(ty, X(1)) = / [—fokxu—%VP] dt. (7.60)
tp b

Assuming that the particle positions and velocities are known at 7, the system is
solved for X(¢,) and u(X(z,), t.) as

le

X(t.) = X(tp) + /u dt, (7.61)
tp
te
u(te, X(te)) = u(ty, X(1p)) + f |:—f0 Kk x u—%Vp] dt. (7.62)
tp

It needs to be emphasized that all of the source-term integrals on the RHS of
(7.62) are along the particle path starting at time #; at position X(#) and ending
at time #, at position X(z,). While there are certainly challenges with the discrete
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evaluation of the RHS of (7.62), a more basic problem with the approach is that
the particle positions at the end of the time step are, in general, no longer on a
regular mesh (see forward-in-time diagram in Fig. 7.6). More forward-in-time steps
will lead to a continuous distortion of particle positions due to the same shearing,
stretching and deformation mechanisms illustrated in Fig.7.2. In order to prevent
this continuous distortion, (7.60) is generally evaluated backward in time in what is
commonly known as the semi-Lagrangian approach (see Staniforth and Co6té 1991
for a complete review).

Instead of assuming that the particles exist on a regular mesh at the beginning
of the time step, the particles are assumed to reside on the regular mesh at the end
of the time step. In this situation, the particle positions X(z,) are required to form
the regular mesh shown in Fig.7.6. The challenge is then to determine X(#3) by
integrating particle trajectories backward in time, i.e. to determine the starting point
of the particles such that the particles arrive on a regular mesh at #,. In this approach
the system is solved for X(zp) and u(X(z,), t.) as

te
X(1p) = X(te) —[u dt, (7.63)
tp

te

u(te, X(te)) = u(ty, X(1p)) + / [—fo k xu—%Vp] dt. (7.64)

tp

In general, u(#p, X(#3)) is determined by interpolating the velocity values known on
the fixed mesh at time 5 to X(#5) locations. Equations (7.63) and (7.64) are coupled
and need to be solved jointly or iteratively. The challenges of evaluating the RHS
along the particle trajectory still remain.

The advantage of this approach is that exceptionally long time steps are possi-
ble.® Since the integration is occurring along the particle characteristic, traditional
advective Courant—Friedrichs—Lewy (CFL) time step constraints do not apply. An
additional advantage is the ease with which tracer constituents can be updated.
Using (7.25) and integrating [D)_(zl from ¢ to t,, we have

q(te, X (te)) = q (1, X(1p)). (7.65)

q(tp, X(tp)) is determined by interpolating the tracer values from the regular mesh
to the departure points X(#p). Once this interpolation is complete, the updated tracer
values are known immediately since ¢ is conserved along particle trajectories.

The disadvantages in this approach to solving the momentum equation are
related to the lack of conservation of mass and tracer substance and the spuri-

6 While longer time steps reduce the computational expense of a given simulation, longer time
steps also often lead to less accurate results. Weighing the relative value of “fast” versus “correct”
is important in choosing the time step for a simulation.
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ous generation of vorticity. While these disadvantages pose severe problems in the
context of long-time simulations typical in climate applications, these disadvan-
tages have been successfully mitigated and/or circumvented for numerical weather
prediction applications where the integration time scales are on the order of days
to a week or two. Another alternative is to abandon the particle-centric approach of
pure semi-Lagrange schemes and move to a cell-based approach (see Chap. 8).

The issues regarding conservation can be readily identified by comparing (7.65)—
(7.4). The conservation statement is that the mass-weighted integral of g (i.e. Q) is
conserved in time when no sources or sinks are present. Yet (7.65) only sees the
tracer concentration ¢ for an isolated number of particles and, furthermore, that
concentration is computed at locations X(#3) via an interpolation procedure where
accuracy is generally much more important than conservation.

The issues regarding spurious vorticity generation are equally problematic in the
context of climate system modeling. In general, getting a handle on the evolution
of vorticity in a particle-based formulation is extremely difficult. Using (7.58) we
could certainly tag each particle with an associated vorticity, but the evolution of
absolute vorticity during the time step involves spatial gradients that are difficult to
compute. In addition, the same issue regarding lack of conservation occurs in the
context of vorticity as occurs in the context of tracer transport. And finally, even if
one could manage to evolve vorticity with the particles in a realistic manner, it is not
clear how that information could be used to control the evolution of the prognostic
velocity field shown in (7.64).

7.4.2 The Flux Form

The flux form of the momentum equation is shown in (7.34), illustrated in Fig. 7.4
and rewritten here for 2D planar flow as

d(pu) R ~ .
/ as +c[ (puw) u-ndc S{f kx (pu) dS /pn dc. (7.66)

at
SE CE

where ¢ stands for a line segment along the contour cg. The main advantage of the
flux-form momentum equation is that it is relatively easy to insure that the transport
of momentum (the second term in (7.66)) is conservative, i.e. momentum that exits
one cells across cg enters a neighbor cell. This same conservation property occurs
in the evaluation of the pressure force; along a contour cg the pressure force results
in an equal and opposite source of momentum for the surfaces that share cg. An
additional advantage of the flux-form is that density is incorporated into the prog-
nostic variable. When using the flux-form of momentum, the prognostic variable
is pu, whereas all the other forms have u as the prognostic variable. The merit in
retaining pu as the prognostic variable is that as p — 0 the prognostic variable
goes to zero so long as u remains bounded. In the emerging class of atmosphere
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and ocean models, p is often related to the vertical layer thickness, so p — 0 is
equivalent to a layer collapsing to zero thickness when all of the mass in a given
layer at a given position is evacuated (e.g. Konor and Arakawa 1997; Bleck and
Smith 1990). This is a common occurrence in numerical models and the flux-form
momentum equation provides ample opportunities to insure that the discrete system
remains well-behaved even in the presence of massless layers.

The primary disadvantage in the use of the flux-form momentum equation is
that the curl of (7.66) does not lead directly to a vorticity equation; vorticity and
circulation are purely kinematic quantities that are related to the V xunot V x (pu).
As a result, discrete models based on the flux-form of the momentum equation do
not conserve circulation or absolute vorticity. In a discrete formulation of (7.66)
every term has the potential to generate spurious vorticity. If no guarantees can be
provided in regards to the conservation of circulation or vorticity, in general the only
recourse is to increase the level of dissipation to maintain a regular, well-behaved
solution. If the level of dissipation required to suppress the spurious generation of
vorticity is significantly higher than is physically warranted, one should expect the
numerical simulation to be degraded due to the physically-excessive dissipation.

The spurious generation of vorticity is due to errors in the discretization of the
system. Assuming smooth flows, these errors approach zero as the order-of-accuracy
of the discrete operators is increased and/or as the grid resolution is increased. The
possibility certainly exists that these spurious errors are acceptably small, even for
climate simulations, when employing high-order numerical methods and/or high-
resolution meshes.

7.4.3 The Vector-Invariant Form

The vector-invariant form is derived from the advective form (7.59) where the mate-
rial derivative is expanded into time tendency and transport terms using (7.5) to
obtain
Ju
ot

If the (u-V) u term is replaced based on the following vector identity

1
+ @-Vyu=—-f,kxu——Vp. (7.67)
P

1
(u-Vyu=(Vxu)xu+V [5 |u|2], (7.68)

we obtain ; X
M kxu-VK—-Vp (7.69)

at 0

where ¢ = k- (V xu), n = ¢ + f, and the kinetic energy is defined as K = % luf?.
Since the vector-invariant form of the evolution of momentum has no notion of a
material derivative, it is a natural expression of the velocity tendency at a fixed point
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in space. The interesting and powerful aspect of (7.69) is that while u is defined at
a point, the integral of u around a closed contour defines an area, a circulation and
the area-mean vorticity. This relationship will be fully developed in Sect. 7.5.

The 1k x u term will be referred to as the nonlinear Coriolis force because it con-
tains both the linear tendency term f, k x u and a portion of the nonlinear transport
term in the form of { k x u.

When considering the momentum equation we are primarily interested in the
velocity field that is needed for the evolution of the mass and tracer fields. Beyond
the velocity itself, we are interested in three derived quantities: divergence, vorticity
and kinetic energy. Two of these three derived quantities appear explicitly in (7.69).
The appearance of vorticity and kinetic energy does not necessarily imply that the
necessary controls are available to insure that these quantities remain well-behaved
and bounded, but it is a step in the right direction.

In the context of climate modeling, it is difficult to find shortcomings in choos-
ing the vector-invariant form of the momentum equation as the basis for a discrete
model. This approach was successfully employed on hexagonal grids (Sadourny and
Morel 1969) and on latitude-longitude grids (Arakawa and Lamb 1981) decades
ago. The primary reason to not choose this form of the momentum equation is that
another form of the momentum equation, such as the advective form or flux form,
is a more natural choice for the application of interest.

7.4.4 The Vorticity-Divergence Form

Since a great deal of emphasis has been placed on the importance of vorticity in the
above discussion, it is reasonable to consider exchanging the prediction of the vector
velocity for the prediction of the vorticity and divergence. As discussed above, the
Helmoltz Decomposition guarantees that vorticity and divergence form a complete
description of the vector velocity field, so prognosing ¢ and § is a theoretically-
sound approach (e.g. Heikes and Randall 1995; Ringler et al. 2000; Thuburn 1997).
In addition, retaining ¢ as a prognostic variable leads to a strong control over its
evolution.

For 2D planar flow, we generate the evolution equations for ¢ and § by taking k -
Vx and V- of the momentum equation, respectively. As long as we are working with
the continuous equations, we can start with any form of the momentum equation
and obtain the same resulting vorticity and divergence equation. Starting with the
vector-invariant form of the momentum equation expressed in (7.69) and applying
the k - Vx and V- operators yields

k- an_u :ﬁzk- V x —nkxu—VK—le , (7.70)
at at 0
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and
Ju a6 B

Cor o
Focusing on the vorticity equation, we can recover the Eulerian expression derived
in (7.57) written as

1
V. [—nkxu—VK——vp] (7.71)
o

a—n+V-(nu):—k-(Vx[Ei|). (7.72)
ot o

The first important aspect to note in (7.72) is that k- (V x [-nk x u]) = =V - (n u).
The application of the curl operator to the nonlinear Coriolis force results in the
divergence of the absolute vorticity flux. The second important aspect to note in
(7.72) is that V x VK = 0; the curl of the gradient is identically zero.

The divergence equation can be expressed as

B V() = -k -V [lei| 1.73)
0

where ut = k xu.

The primary advantage of using the vorticity-divergence form of the velocity evo-
lution equation is the ability to retain (7.72) as a prognostic equation. In the presence
of uniform density, the time-rate-of-chance of absolute vorticity is the divergence of
the absolute vorticity flux. The absolute vorticity flux can be computed numerically
using advanced transport algorithms that can guarantee that n will remain smooth at
the grid-scale without the introduction of excessive dissipation.

The primary disadvantage of this formulation can be seen in (7.40) and (7.41).
After each time step, two elliptic equations must be inverted in order to compute
the velocity field that will be required to compute the tendency terms in (7.72) and
(7.73) on the next time step. For simple domains, such as the global atmosphere,
inverting (7.40) and (7.41) is straightforward but relatively expensive in regards to
the computational effort. In more complicated domains, inverting (7.40) and (7.41)
is analytically challenging and, at least to date, computationally prohibitive.

7.5 The Process of Discretization

In this section the continuous equations developed above will be discretized in
order to obtain a numerical model for the evolution of momentum. The process
of discretization truncates the infinite degrees of freedom that are present in the
continuous system to a finite number of degrees of freedom in order to pro-
duce a computationally-tractable algebraic problem suitable for existing computer
architectures. When the numerical methods are based on traditional finite-volume
techniques, such as those to be developed below, the spatial extent of the continuous
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system is decomposed into cells and the temporal extent of the continuous system
is decomposed into time steps. The discussion here will be limited to the spatial
discretization of the continuous system.

The possibilities for the specific form the discrete momentum equation can
quickly become unwieldy. For example, the optimal way to decompose the sphere
into cells is still very much a research topic. Even if we limit the scope to decom-
positions that attempt to produce quasi-uniform meshes the choices include, at a
minimum, the cubed-sphere (Chap. 9), Voronoi tessellations (Chap. 10) and Delau-
nay triangulations (Chap. 10). Furthermore, once a mesh is chosen there are at least
five different staggering arrangements of the prognostic variables: A-grid, B-grid,
C-grid, D-grid, and E-grid (Chap. 3). In addition, we can choose one of the four
viable flavors of F = m a to discretize. So three meshes times five grid-staggerings
times four momentum forms leads to 60 permutations. And this is before we even
consider the specification of the numerical operators.

A “down-select” of the 60 permutations is required. Some of this down-select
can be made based on the target application. Some of this down-select can be based
on the wealth of experience that has been gained over the last 40 years. And finally,
some of this down-select can be made based on an intuition of what method(s)
are likely to emerge as the preferred-alternative over the next decade. Furthermore,
the selection method should not be made as an a la carte process; some choices
of grid staggering are clearly inappropriate for certain choices in the form of the
momentum equation. Rather, the process is similar to a table d’hote where choices
are made with the prior knowledge of the other choices and the intention to produce
the best overall product as opposed to the best single course. The courses in this
chapter’s table d’hote are discussed directly below.

7.5.1 Target Application: Joint Climate-Weather Prediction

The traditional gap between the atmospheric component of climate models and
weather prediction models is disappearing. Atmosphere climate models have been
used to conduct global cloud resolving simulations (Tomita et al. 2005). Weather
prediction models have been used to study regional climate change (Leung et al.
2004). While each model is finding application outside what has been its core mis-
sion, these uses are clearly “off-label applications” where, as expected, the quality
of the results vary. The criteria driving the choices in model specification (i.e. the
choice of mesh, grid staggering and form of momentum) have traditionally been
very different in the climate and weather modeling communities. Climate applica-
tions have emphasized concepts related to mass, tracer and vorticity conservation,
as well as long-time stability of numerical simulations. Weather applications have
emphasized concepts related to local accuracy and simulation throughput. The driv-
ing need is for a single atmosphere model to excel at both climate applications and
weather applications. So the target application for this discussion is a joint climate-
weather simulation. As a result, the choices made below may differ from the choices
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made if the target application was solely climate simulation or solely weather pre-
diction. And finally, these same choices will be applicable to a unified ocean model
that is appropriate for both global ocean simulations and regional eddy-resolving
simulations.

7.5.2 Grid Staggering: C-grid Staggering

The choice of the grid staggering is very much constrained by the target application.
Weather prediction models have often used a collocated staggering of variables in
order to apply semi-Lagrangian methods to the advective form of the momentum
equation (Ritchie et al. 1995). This is a computationally efficient method that is
greatly appreciated in operational settings where simulation throughput is often a
driving factor in model specification. Other grid staggerings, such as the B-grid
(Zhang and Ranci¢ 2007) and C-grid staggering (Skamarock et al. 2008), have
been used with success in both weather and climate models. The choice of the
C-grid staggering, when paired with the other choices, will also allow for exact
conservation of absolute vorticity.” And more importantly, the C-grid staggering
will allow for the precise control of the evolution of vorticity in time through the
use of advanced flux-limiting transport algorithms. In addition, the C-grid stagger-
ing excels in the simulation of divergent modes that dominate the cloud-resolving
scales of motion (Randall 1994). The principle difficulty with the C-grid staggering
is that while the normal component of velocity is retained as a prognostic variable,
the tangential component of velocity is needed to compute the nonlinear Coriolis
force (Chap. 3). The robustness of numerical schemes built with a C-grid staggering
is very much dependent on the method used for the reconstruction of the tangential
velocity component.

7.5.3 Mesh: Locally-Orthogonal Meshes

One of the residual benefits of using the C-grid staggering is that it accommodates
a wide class of meshes. The critical aspect of the C-grid staggering is that the edge
that separates two cells is orthogonal to the line segment connecting the centers
of the two associated cells (see the discussion in Chap. 10). The local orthogo-
nality leads to compact numerical operators that are approximately second-order
accurate in space (Ringler et al. 2010). The local orthogonality, C-grid staggering

7 While the target applications involve full 3D simulations of the atmosphere and ocean, the process
of discretization is best elucidated in 2D. The 3D system is clearly more complicated and is not
a simple extension of the 2D system. Still, the concept of vorticity dynamics and conservation of
(potential) vorticity are equally important in the full 3D system.
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and vector-invariant form of momentum will lead to a strong connection between
acceleration and vorticity transport.

7.5.4 Form of Momentum Equation: The Vector-Invariant Form

The use of the vector-invariant form of the momentum equation has a long and
successful track record in climate modeling dating back to at least Arakawa and
Lamb (1981). Weather applications have tended to use other forms, such as the flux
form in order to conserve momentum and to obtain higher formal accuracy (e.g. the
Weather and Research Forecast (WRF) model described in Skamarock et al. 2008)
or the advective form in order to employ semi-Lagrangian methods (e.g. the Euro-
pean Center for Medium-Range Weather Forecasts (ECMWF) model documented
in Ritchie et al. 1995).

The comparison of the vector-invariant form to the flux form offers an important
insight into conservation. Given all of the choices made above (i.e. climate-weather
applications, C-grid staggering, and locally-orthogonal meshes), either the vector-
invariant form or the flux form is a viable choice. If one chooses the flux form
of the momentum equation, then the prognostic variable, pu, will be conserved in
the numerical model. As derived below, if one chooses the vector-invariant form of
the momentum equation, then absolute vorticity will be conserved in the numerical
model. The choice between the vector-invariant form or the flux form of momentum
comes down to the relative importance of conserving absolute vorticity or conserv-
ing momentum in the target application. The choice here is to value the former more
than the latter.

7.6 Building a Discrete Model

This section will develop the numerical model that uses a C-grid staggering of the
vector-invariant form of the momentum equation discretized on a locally-orthogonal
mesh. The analysis will focus on the relationship between the time-tendency of the
velocity field and the absolute vorticity flux.

7.6.1 Defining the Mesh and Location of Variables

For this discussion we will assume that the domain is decomposed into a set of
squares as shown in Fig.7.7. The scalar function @ is defined at the center of each
cell that are denoted as mass points in Fig. 7.7. The component of velocity in the
direction normal to each edge will be integrated in time with a prognostic equation.
Vorticity points are defined at the corners of the scalar function cells and will be
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Fig. 7.7 The mesh used in the construction of the discrete system

associated with the mesh denoted by the dashed lines. The assumption is that the
mesh continues indefinitely in the horizontal directions.

The choice of squares as the cell shape is based on several reasons. A mesh
composed of squares is clearly locally-orthogonal, so it meets the requirement listed
in Sect. 7.5. A mesh composed of squares is also the most accessible mesh; the
analysis presented here can be easily replicated in development environments such
as MATLAB.

While the derivation will be completed for a mesh composed of squares,
conformally-mapped cubed-sphere meshes, Voronoi tessellations and Delaunay
triangulations (Chap. 10) are all accommodated in the analysis,® i.e. the results
found for the mesh composed of squares will be applicable to these more practical
meshes. In an effort to point the way toward extensions to meshes that are used to
discretize the surface of the sphere, an indexing nomenclature will be chosen that is
appropriate for any unstructured mesh.

7.6.2 Continuous Prognostic Equation

We discretize the vector-invariant form of the momentum equation as

Ju
m +nkxu=-Vo (7.74)

8 Cubed-sphere grids produced by projections that result in a more uniform distribution of
nodes at the expense of orthogonality (e.g. gnomonic-projected cubed-sphere meshes) are not
accommodated in this analysis.
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where —V@ = -V (p% + K ) represents the gradient terms on the RHS of (7.69).

In the full 3D system, p will vary in space and, as a result, the RHS can not be
written as the gradient of a potential. Here, the analysis assumes that the density is a
constant p, in order to demonstrate that the largest contribution to the RHS of (7.69)
(i.e. the p, contribution) does not project onto the vorticity dynamics of the system.
The system can be closed by the addition of an equation describing the evolution
of fluid pressure, p. For reasons discussed in Sect. 7.1, we will limit the analysis
to the evolution of velocity. In addition, special care is required to determine the
appropriate discrete form of K in order to avoid numerical instabilities associated
with the divergent part of the velocity field (see, for example, Eq. (3.41) of Arakawa
and Lamb 1981 or Eq. (63) Ringler et al. 2010). The analysis below focuses on the
evolution of the rotational part of the flow and is valid for any definition of K.

The k x u operation acts to rotate the vector velocity by 90° in the counter
clockwise (CCW) direction. If we define ul = kxu as in (7.73) then (7.74) is
expressed as

du
— —Vo. 7.75
o +nut (7.75)

7.6.3 Discrete Prognostic Equation

At each cell edge the unit normal vector ey is defined to point toward the right or
toward the top as appropriate. The choice of the direction of the local normal vector
is entirely arbitrary. The choice made here is for the convenience of presentation. In
addition, the tangential unit vector is defined as e = k x ey . The discrete version
of (7.75) is generated by taking ey (7.75) at each edge to yield

oN,
8_tk — Tk = —(en - VO); (7.76)

where, as shown in Fig.7.8, Ny = ey - u represents the component of u in the
normal direction and Ty = —ey -ut represents the component of u in the tangential
direction. All variables with hats, ( ), require further specification.

The first example of the simplicity afforded by the assumption of a locally-
orthogonal mesh is found on the RHS of (7.76). The RHS of (7.76) requires the
determination of the component of V@ in the ey direction. Since ey is parallel to
the vector connecting the @ points on either side of the edge, the specification of the
(en - V@), can be approximated (with second-order accuracy) at velocity point k1
as simply [QDI- .~ CD,-I] /dcy, (see Fig.7.8). Using this representation of the gradient
forcing, (7.76) at velocity point k; is rewritten as

N,

=t = e T = [ @1, — 1] /da, 177
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Fig. 7.8 The detailed description of the velocity and vorticity mesh

where dcy, is the distance between @;, and @;,. While the various ways to specify
fix, are given in Sect. 7.7, at this point 7, can be constrained as

ﬁkl = f(njl , 77/'2)- (7.78)

The absolute vorticity used to compute the nonlinear Coriolis force, ﬁf”, at velocity
points is only a function of the vorticities defined at the end of the edge. Other
approaches to specifying 7 are possible and often preferable, e.g. see Sadourny
(1975) and Ringler et al. (2010) for a more in-depth discussion of the possible
alternatives. In order to complete the specification of (7.77) a definition for Tkl

is required. The algorithm for computing Tkl is also given in Sect. 7.7.

7.6.4 Derived Equation

The importance of derived equations in a discrete representation is frequently over-
looked. Attention is more often focused on the analysis of the discrete prognostic
equations since these are the variables that are explicitly tracked in the numerical
model in time. In practice, an analysis of the derived equations generally provides
important insights into the chosen numerical method. The purpose of this section is
to demonstrate that the discrete system can mimic the continuous system in terms
of the vorticity dynamics. The analysis carried out in Sects. 7.3.4.1 and 7.3.4.2 is
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repeated here, but in the setting of a discrete system. The primary property of the
continuous system that the discrete system needs to mimic is

d d n
—re, = — ds | = — 4+ V. ds =0 7.7
S() SE

where Sg will span one or more vorticity cells shown in Fig. 7.8. The absolute cir-
culation following a contour c¢(¢) is conserved when the fluid density is constant
(as is assumed here) and when no frictional forces are present. The challenge is
to demonstrate that absolute circulation is conserved following a contour ¢(¢) even
when the discrete system does not directly prognose circulation or vorticity. Stated
another way, the goal is to demonstrate that the evolution of the discrete veloc-
ity field, Ng, is consistent with the kinematic constraints imposed by (7.79). Since
the velocity evolution equation is written in an Eulerian reference frame, the anal-
ysis is most direct when the focus is on the third part of (7.79). The integration
of dS can span a single cell or a collection of cells that are contained in a single
loop.

The analysis begins by taking the discrete curl of the velocity tendency equa-
tion around the j; vorticity cell shown in Fig. 7.8. The discrete circulation operator
is shown in Fig.7.9. As seen in Fig. 7.9 the discrete curl has four terms, one for
each edge of a vorticity cell. Using the labels shown in Fig. 7.9, the curl operator at
vorticity point j; can be expressed as

4

1 1

Zfﬁu-dr ~ > N, en -dry, (7.80)
c

) R—

where A, is the area of the vorticity cell j;. The dot product ey - drg,, accounts
for whether or not Ng,, ey points in the same or the opposite direction as drg,,. In
addition, |drg,, | = dcy,, to account for the distance of each segment of the loop
around vorticity cell j;.

A discrete equation for the evolution of absolute vorticity is constructed by
applying the curl operator to each term in (7.77). In order to provide a clear rep-
resentation of the curl operations, we will focus on vorticity point j;. Beginning
with the discrete curl of the time tendency of Ny, we find

L fou 1 N,

AJ ot

c

9, _ On,
~— cdr,, = 2L = 4 7.81
TR A T Ve T e T (7:81)

where the curl operator has been moved inside the time derivative and we have used
the fact that % = 0. Now moving to the gradient term on the RHS of (7.77)
we find
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Fig. 7.9 A graphical description of the discrete curl operator
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where the distance used in the gradient calculation and the distance used in the curl
operator cancel on each term. After removing these offsetting terms we find

J1

%¢V¢'dr~AL_[(‘Pz—@l)+(‘P3—¢2)+(¢4—¢3)+(¢1—954)]=0~

(7.83)
Just as in the continuous system, the curl of the gradient is identically zero. This
property in the discrete system insures that forces in the velocity tendency equation
of the form V@, where @ is any scalar field defined at mass points, do not generate
spurious vorticity.
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Moving to the final term, the nonlinear Coriolis force, we find
1 -
— ¢ nutedr ~ —— Y i, Tk, eny,, - dr,,. (7.84)
A J Aj =

Expanding the summation yields
- 1
LS (i), e, = [ (i), (i)
Aj-lmzzl(77 N ko Aj 7 ky 7 ko

- (ﬁfdc)k3 n (ﬁfdc)kj . (7.85)

Combining all of the curl operators to produce a discrete equation for the evolution
of absolute vorticity yields

o), o, (0,0,

Comparing (7.86) to its continuous counterpart in (7.57), we see that the discrete
vorticity evolution equation is an analog to the continuous system when

1 o A o A
Vo) & [+ (nTalc)k1 (anc)k2 (anc)k3 + (anc>k4] . (7.87)
The RHS of (7.87) is an approximation to the weak form of the divergence operator.
The approximation is second-order accurate assuming suitable choices for 7 and
T. It is critical to note that in this discrete system vorticity is transported by the
reconstructed, tangential velocity field. It is useful to recast (7.86) as an expression
for the circulation within cell j; by moving the area into the time derivative as

anjy 3Fﬁ s P S S
Aj ETEREr TR |:+ (77Tdc>k1 - (anc>k2 - (anc>k3 + (anc>k4] .

(7.88)

r jfz represents the absolute circulation around the dual cell j;. This result can be
generalized to an arbitrary contour by progressively adding cells. Equation (7.88)
represents a contour containing the j; vorticity cell. The discrete equation governing

the evolution of circulation for the j, vorticity cell can be expressed as

agt,-z __ [_ (ﬁfdc)k1 + (ﬁfdc)ks + (ﬁfdc)l% - (ﬁfdc)k7] (789
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The edge shared by vorticity cells j; and j, is edge k1. The term (anc)

appears in both (7.88) and (7.89), but with opposite signs. The evolution of absolute
circulation formed by the contour containing vorticity cell j; and j, is thus

>

8(F11+Fj2) =_[ (

- Tde )kz - (ﬁfdc)k3 (7.90)

+ (ﬁfdc>k4 + (ﬁfdc)ks + (ﬁfdc>k6 B (ﬁfdc>k7]

where the shared edge between vorticity cells j; and j, cancels. The edges that
remain all lie on the boundary of the contour and account for the transport of cir-
culation across the boundary of the region. The mean absolute vorticity within the
contour can always be determined by dividing the absolute circulation by the area
enclosed in the contour. This analysis is sufficient to conclude that the discrete
system conserves absolute circulation exactly. By extension, the discrete system
conserves the area-mean absolute vorticity exactly. Both of these conservation state-
ments mimic the findings in the continuous system. What is somewhat surprising is
that these conservation statements have been proven without even having to spec-
ify 1j or 7. In that, the conservation statements hold for any 7 and any T. The two
essential ingredients required for these conservation statements to hold in the dis-
crete system are the use of the vector-invariant form of the momentum equation and
the discrete analog of the V x V@ = 0 identity.

The final and most important conclusion of this section is the following: The time

tendency of velocity due to the nonlinear Coriolis force (ﬁf) is the per-unit-length

absolute vorticity transport in the direction normal to ey . This is key to providing
a direct handle on the vorticity dynamics of the discrete system via the discrete
momentum equation.

7.7 Constraining the Evolution of Velocity Through
the Transport of Absolute Vorticity

In the preceding section we were able to accomplish three goals. First, we were able
to exhibit that absolute circulation is conserved for any closed loop in the discrete
system. Second, the conservation statements related to circulation and vorticity hold
exactly in the discrete system, even though neither are retained as prognostic vari-
ables. And finally, these conservation statements hold without having to specify the
form of the reconstructed tangential velocity or the value of absolute vorticity used
to compute the velocity tendency due to the nonlinear Coriolis force. Given this last
statement, it should be clear that conservation alone is insufficient in specifying an
adequate numerical model. The general framework allows us to specify # and T to
meet other constraints that we deem important. The following discussion is meant
to demonstrate the flexibility, or lack thereof, in the choice of 7 and T. 1t turns out
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that there is some flexibility in the choice of the former and essentially no flexibil-
ity in the choice of the latter. As above, constant density is assumed. In addition,
the analysis below assumes non-divergent flow in order to illustrate the relationship
between vorticity transport and acceleration.

7.7.1 Considerations when Specifying 3

The specification of 7 should be made with two concerns in mind. The first is that
since the nonlinear Coriolis force nk x u is always orthogonal to u, the nonlinear
Coriolis force neither produces nor destroys kinetic energy, i.e. u- (nkxu) = 0.
This is essentially a concern related to the energetics of the discrete system. The
second concern is how the specification of 7 will influence the structure of the
evolving vorticity field. For example, we would like to make some guarantees on
the long-time smoothness of the discrete vorticity field. This is essentially a concern
related to the vorticity dynamics of the discrete system. The goal, in my view, should
be the rigorous guarantee of both of these concerns. In that, the guarantee that the
choice of 7 neither produces or destroys kinetic energy and that this same choice in
1] promotes long-term smoothness in the vorticity field. Given the analysis and the
anecdotal evidence presented in Ringler et al. (2010), this goal might be possible.
For the discussion presented here, the focus will be on choosing # such that the
evolution of absolute vorticity is monotone in time.’ In the context of transport,
monotonicity implies that the vorticity field at some time # can be determined as a
convex interpolation of the vorticity field at some previous time (Godunov 1959).
Since the interpolation process is convex, vorticity values at some previous time are
given weights between zero and one. Thus monotonicity implies that the solution
of vorticity at any time 7 is bounded from above and below by the vorticity at any
previous time. While it is true that only in the special case of non-divergent flow
should we expect absolute vorticity to evolve monotonically in time, extensions of
this idea to potential vorticity holds for general 3D flows. If we assume an arbitrary
velocity field that is non-divergent, then the continuous vorticity equation (7.58)

reduces to 5 5 D
U] U] n
avy. = Vn=—=0, 7.91
5 (nw 5 TuVn=—o (7.91)

which states that the absolute vorticity attributed to a particle (e.g. Fig.7.1) is
invariant in time. Since we are not in a Lagrangian reference frame where track-
ing particles is an option, the discrete model will have to attempt to mimic (7.91)
in an Eulerian setting. When a property is conserved along particle trajectories it

° Discussing the evolution of potential vorticity, as opposed to absolute vorticity, would be more
relevant here. But for the reasons discussed in the Introduction, we will limit the scope to the
evolution of absolute vorticity. Only in the special case of non-divergent flow is the evolution of
absolute vorticity monotone. In addition, the topic of transport (monotone or otherwise) warrants
an entire chapter to itself.
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means that the quantity itself (e.g. ) and all moments of that quantity (e.g. n"
where 7 is any integer) are also conserved along particle trajectories. With only 1°
of freedom in the discrete system (i.e. 7), we are woefully ill-equipped to mimic the
richness contained in the continuous system and, therefore, must make some tough
choices regarding how to specify 7). The goal here is not to determine an optimal
specification of 7) but rather to demonstrate that we can guarantee a monotone evo-
lution of vorticity even when the only prognostic variable is the normal component
of velocity at cell edges.

Assuming that the discrete velocity field is non-divergent, guaranteeing a mono-
tone evolution of the discrete absolute vorticity field is straightforward. Focusing on
edge (k1), we specify fjx, as

if Te, =0, g, = nj (7.92)
lkal < O’ ﬁkl =N (793)

in that we always choose the value of 7 by picking the vorticity value upstream of
T'. While this is essential the low-order, monotone solution used in Zalesak (1979),
it immediately generalizes to higher-order. Without loss of generality, assume that

Ty, = 0 at some instant in time, then the evolution equation of Ny, is written as
ONy -
= = i Tk = (@i = @i, /e, (7.94)

If 7 is chosen based on the approach in (7.92), then the absolute vorticity associated
with the evolving Ny velocity field will be monotone. To be clear, the donor cell
approach results in excessive diffusion and this discussion is in no way meant to
advocate for the use of (7.92); it is employed here for demonstration purposes only.
In practice, we can apply state-of-the-art transport algorithms for the computation
of the absolute vorticity flux, ﬁf”, and use that flux as the nonlinear Coriolis force in
the velocity tendency equation.

7.7.2 Considerations when Specifying T

It turns out that there is essentially no flexibility in the choice of T. The mesh used
here is essentially identical to that used in Arakawa and Lamb (1981). In that work,
the reconstructed velocity is specified as

A 1
Ty, = _Z( ky + Ny, + N, + Nks) . (7.95)
(see Fig.7.8). The reasoning behind this choice is not particularly clear in Arakawa
and Lamb (1981). Based on the more recent analysis conducted on general unstruc-
tured meshes with C-grid staggerings in Thuburn et al. (2009) and Ringler et al.
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(2010), it is clear that the critically important aspect of the reconstructed T field is
that the [V . (TA‘ eT)] ~be an interpolation of the neighboring [V - (N ey)]; values;
J

the divergence computed at vorticity points based on Ty must be an interpolation of
the divergence computed at mass points based on Ng.

The importance and significance of this requirement can be clearly seen in the
following example. Suppose the continuous system is characterized with an initial
condition of uniform absolute vorticity field being transported by a non-divergent
flow. From (7.58) we see that the solution for all time is simply g—'t’ = 0. Also
suppose that the discrete velocity field N is chosen such that it produces a uniform
absolute vorticity field and is also non-divergent. The discrete system from (7.86)
can be expressed as

ag—;l + Z; [(Talc)k1 +(Tde), —(Tde), ~ (fdc)kj —0  (7.96)

The only way to reproduce the solution of 88_;; = 0 for all time is to require that

((Fac), +(Fdc), - (Fac), - (Fac), |=0.  aom

Equation (7.97) requires that the divergence of the reconstructed, tangential velocity
at vorticity points is also zero. If one can build a general algorithm for the recon-

struction of 7' that produces [V . (f” er)] = 0 when [V-(Ney)]; =0, then
J

we have sufficient proof that the divergence computed at vorticity points will be a
convex interpolation of the divergence computed at mass points. Unfortunately, the
failure of some C-grid staggered model to enforce this essential feature in the recon-
struction of the tangential velocity has lead to (sometime severe) limitations in the
robustness of the numerical model and the quality of the numerical solutions.

7.8 Final Thoughts

This analysis provided an end-to-end discussion of one aspect in the construction of
a dynamical core, namely the derivation and approximation of the equations related
to the evolution of momentum. As much as possible, the analysis is developed with
the aid of the Reynolds Transport Theorem. In addition to providing a rigorous
means to recasting conservation statements made in the Lagrangian reference frame
to statements applicable to the Eulerian reference frame, the Reynolds Transport
Theorem produces evolution equations cast in a weak, integral form that fit naturally
into traditional finite-volume approaches.

The analysis lingered and continually revisited the relationship between the evo-
Iution of velocity and vorticity dynamics. The reason for such a strong emphasis
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on this relationship is that while the evolution of momentum has to be faithful to
F = ma, it also has to respect the kinematic constraints implied by conservation
statements related to vorticity and circulation. First, the relationship has to be under-
stood in the continuous setting, then the relationship has to be accommodated in the
development of the discrete system of equations.

The system of equations that one chooses as the starting point for construct-
ing a discrete model is a critical moment in the construction of a dynamical core.
This choice will have a profound impact on the quality of the simulations. Under-
standing the anticipated use of the numerical model is a prerequisite to making
sound, defensible choices for the components of a dynamical core. For this reason,
an entire section related to the “process of discretization” is included. While the
actual choices made in that section are highly biased, the purpose of the section is
to hopefully motivate the extreme importance of choosing numerical methods based
on a target application.
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Chapter 8

Atmospheric Transport Schemes: Desirable
Properties and a Semi-Lagrangian View

on Finite-Volume Discretizations

Peter H. Lauritzen, Paul A. Ullrich, and Ramachandran D. Nair

Abstract This chapter has twofold purpose. After a short introduction to the mass
continuity equations in atmospheric models, desirable properties for mass trans-
port schemes intended for meteorological applications are discussed in some detail.
This includes a discussion on the complications caused by the non-linearity of most
problems of interest that makes it hard to define accuracy and convergence as the
‘truth’ is not known. Thereafter, some finite-volume schemes from the atmospheric
literature are reviewed and discussed. To complement the large existing literature
on finite-volume schemes, a less frequently discussed semi-Lagrangian derivation
of the finite-volume method is given that focuses on ‘remap-type’ schemes where
the space and time discretizations are combined rather than separated. A discus-
sion on the challenges in deriving accurate schemes intended for global models and
non-traditional spherical grids is given as well.

8.1 Introduction

To predict the evolution of air and tracers' we solve one of the fundamental laws
of physics: namely the equation of mass continuity. This equation is intuitively very
simple to understand; perhaps the simplest statement of the equation is that mass of
air and tracers is conserved without the presence of sources or sinks. Hence mass in a

'A tracer in this context is any quantity that follows the flow of air such as chemical species and
water in the atmosphere.
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volume can only change if there is inflow and/or outflow through surfaces bounding
the closed volume or if there are parameterizised sources and/or sinks (e.g., for water
vapor, sources and sinks can be evaporation and condensation, respectively)

d
= (mass) = inflow — outflow + sources — sinks. 8.1

The continuity equation is simple, in a strict mathematical sense, and it may appear
as a surprise that we use an entire chapter discussing it. However, despite its simplic-
ity finding an accurate and efficient numerical approximation to its solution remains
an active research subject and no scheme to date is ideal (and perhaps never will be
as long as computing power remains finite). Also, the continuity equation is coupled
to the other equations of motion, so a complete discussion of the challenges in air
and tracer transport must also consider this coupling. The purpose if this chapter is
to convey some of the many deliberations in transport scheme development and to
discuss some examples of transport schemes on the sphere.

In the literature there are numerous review articles and books on transport meth-
ods in general and specifically on the finite-volume method (e.g., Rood 1987;
LeVeque 1996) and this chapter is not an attempt to supersede or replace these
reviews. Instead we shall limit the review to space-time (or remap) finite-volume
transport schemes used in meteorology. By space-time schemes we refer to schemes
where the temporal and spatial discretizations are combined rather than separated.
As will become clear one may also refer to space-time (or remap) schemes as cell-
integrated (or finite-volume) semi-Lagrangian schemes. Conservative grid-to-grid
interpolation (also referred to as remapping), which is usually an integral part of
finite-volume schemes, will also be discussed in some detail. Obviously this chapter
will only scratch the surface of the enormous literature on transport schemes and
we will emphasize the intuitive (and perhaps more physical) derivation of schemes
rather than mathematical rigor.

The chapter is organized as follows. Before diving into the nuts and bolts of
finite-volume schemes we begin by formulating the transport problem relevant to
atmospheric models (Sect. 8.2) and discuss some desirable properties that transport
schemes intended for atmospheric applications ideally should possess (Sect. 8.3).
In Sect. 8.4 the mathematical foundation for space-time finite-volume schemes is
given in Eulerian and Lagrangian forms. The equivalence between the two forms
is rarely discussed but useful in gaining more understanding of Eulerian schemes.
In Sect. 8.5 the spatial and temporal approximations needed for practical schemes
are presented step by step. This includes upstream cell approximation, sub-grid-cell
reconstruction and practical integration over cells in space. Section 8.5 is mostly
limited to two-dimensional schemes on the Cartesian plane, however, a brief dis-
cussion on the extension to spherical geometry is given. In Sect. 8.6 we discuss the
extension to three dimensions. Before the final remarks in Sect. 8.8 some practi-
cal considerations for the coupling of transport schemes to the continuity equation
for air are discussed in Sect. 8.7. This includes the inconsistencies that may arise
in the air mass and tracer mass coupling, techniques for sub-cycling the air mass
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equation with respect to tracers, and coupling a semi-implicit air mass scheme with
an explicit tracer mass scheme (Sect. 8.7). For brevity, Sects. 8.6 and 8.7 are cursory
while more attention will be given to desirable properties and the space-time scheme
derivations on the plane.

8.2 The Continuous Equation

8.2.1 Representation of Mass in Atmospheric Models

Most atmospheric models have at least a handful of continuity equations and, in
most cases, many more. From a dynamics point of view the continuity equation for
air is the most fundamental and important continuity equation since it is strongly
coupled to the momentum equations and the thermodynamic equation. For the rep-
resentation of moist processes most models have prognostic continuity equations for
three water species: Water vapor, cloud liquid water and cloud ice water. Some high
resolution models also have resolved-scale continuity equations for rain and snow
(if there is no resolved-scale continuity equation for rain and snow the assumption
is usually that rain and snow falls to the ground in one time-step). Modern micro-
physical parameterizations include prognostic continuity equations for four to eight
condensed species. For example, the Morrison and Gettelman (2008) micro-physics
package used in NCAR’s Community Atmosphere Model (CAM) version five has
continuity equations for mass and number concentrations for ice and liquid water.
Some microphysics parameterizations also have prognostic continuity equations for
mass and number concentrations for ice and liquid precipitation. Modal (and even
more for bin) aerosol schemes may have 20 or more prognostic continuity equa-
tions for mass and number concentrations of aerosols such as particulate organic
matter, dust, sea salt, secondary organic aerosols, number concentrations for dif-
ferent sizes of aerosols, etc. In addition, any prognostic representation of chemical
species requires the solution to one continuity equation per species e.g., MOZART
(Model of Ozone And Related Tracers, Brasseur et al. 1998). So needless to say,
the continuity equations make up a dominant part in atmospheric models at least in
terms of the total computational cost of the dynamical core.’

First, let us discuss the representation of air mass in atmospheric models as this
has fundamental influence on how all other species are treated. The density of well-
mixed moist air p,, can be separated into a dry and wet part

mg + my

pm =~ =Pd + Pv = Pd + quPm. (8.2)

2 Roughly speaking the dynamical core is the part of the model that solves the governing fluid and
thermodynamic equations on resolved scales (Thuburn 2008b).
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where m4 and m,, are the masses of the dry air and water vapor, respectively, and
V is a small volume. The density of dry air and water vapor are denoted pg and p,,
respectively, and ¢, is the specific humidity,

ny

qv = (8.3)

mq +my’
To a very good approximation the mass of dry air is the mass of the dominant well-
mixed gases: Nitrogen N (ca. 78.08%), Oxygen O3 (ca. 20.95%), Argon Ar (ca.
0.93%) and Carbon dioxide CO, (at present ca. 0.038%). These gases make up
over 99.998% of the volume of dry air and may therefore be considered perma-
nent (although argon and carbon-dioxide are slowly increasing). In addition, small
amounts of trace gases are mixed into the air (with sources and sinks varying in
space and time), however, the variation in these ‘non-permanent’ gases is very small
compared to the total mass of all the trace gases. Trenberth and Smith (2005) esti-
mated that the dry air mass of the atmosphere corresponds to a surface pressure of
approximately 983.05 hPa and it varies less than 0.01 hPa based on changes in atmo-
spheric composition. So the variation in the dry air mass budget is on the order of
0.001%. So to a very good approximation the continuity equation for dry air does
not have any source or sink terms, and thus reads

0
T4V (pav) =0, (8.4)

where v is the velocity field and ‘V-’ is the divergence operator. The mass of dry
air accounts for approximately 99% of the total mass of the atmosphere and the
remaining 1% is approximately the mass of water vapor. The continuity equation
for humidity (water vapor) is given by

0
at (Pmqv) + V- (Pmqv V) = Pgyppm» (8.5)

where P, ,,, represents sources and sinks (in this case condensation and evapora-
tion processes). Moisture g, varies significantly (relatively speaking) with values
near zero for cold dry air and a few percent in warm moist air. The continuity equa-
tion for moist air can be obtained by adding (8.4) and (8.5), and using (8.2) to
simplify. The result is

9Pm

This equation is similar to the equation for dry air (8.4) except for the humidity
forcing terms.

The prognostic variables used for tracers are usually defined in terms of mix-
ing ratios. If moist density is prognosed, the mixing ratios for tracers are most
conveniently defined in terms of the specific concentration

8.7)
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where m?) is the mass of constituent (/). So the density of the constituent is p) =
q,(,i)pm, where q,(,f) is the ‘moist’ mixing ratio. However, one may also solve the con-
tinuity equation for tracers in terms of the ‘dry’ mixing ratio qg), defined by

o mfj)
q; = —*. (8.8)
my

As discussed in Collins et al. (2004) the advantage of using (8.7) is that the mass
of species (/) is obtained by simply multiplying the moist mixing ratio with the

)

moist air density g, pm. However, this approach has the disadvantage of implicitly

requiring a change in q,,f) whenever the water vapor g, changes. This disadvantage
does not exist if (8.8) is used.

8.2.2 Consistency in the Mass Equations

Herein we will respectively use p and g to denote air density and mixing ratio (which
can be either moist or dry) and we assume no sources or sinks (no forcing terms).
Then the continuity equation for air density p can be written as

0
8_f +V-(pv) =0, (8.9)

and similarly for a tracer density p ¢

(pq)
ot

+V.-(pgv) =0, (8.10)

where v is the velocity vector. Note that (8.9) and (8.10) imply

dq d 0

o =0, = 8t—+—V-V, (8.11)
which states that g is conserved along trajectories/characteristics of the flow. Note
that the continuity equations (8.9) and (8.10) are linked in the sense that p appears in
both equations. Hence, numerical error introduced in simulating the evolution of air
mass p may be reflected in the prognosed trace gas mixing ratios when converting
from tracer mass p ¢ to mixing ratio g.

To solve any of the continuity equations given above the flow field v must be
given. The continuity equation for air (8.9) is coupled with the momentum equa-
tions and thermodynamic equations. Hence the thermodynamic variables and other
prognostic variables feed back on the velocity field which, in turn, feeds back on
the solution to the continuity equation. It follows that the continuity equation for air
cannot be solved in isolation and one must obey the maximum allowable time-step
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restrictions imposed by the fastest waves in the system® (see Chaps. 1 and 6). The
passive tracer transport equation (8.10) or (8.11) can be solved in isolation given
prescribed winds and air densities, and is therefore not susceptible to the stricter
time-step restrictions imposed by the fastest waves in the system but ‘only’ to the
less restrictive advective velocities.* Hence, if for stability relatively short time-steps
must be used for the continuity equation for air, one does not necessarily need to use
short time-steps for the tracers (at least not for stability reasons). That is, one can
solve the tracer transport equations with time-steps longer than what are allowed
for stability in (8.9). This technique is referred to as sub-cycling, that is, multiple
cycles of dynamics (air continuity equation) are performed within one time-step of
the tracers. In doing so care must be taken to retain the consistency between trac-
ers and air. For example, if ¢ = 1 then (8.10) reduces to (8.9) and additional care
must be taken to ensure consistency between these equations in the discretization.
Specific examples and details on sub-cycling are given later (Sect. 8.7.2). First, let
us consider important design objectives for tracer transport schemes intended for
atmospheric applications.

8.3 Desirable Properties

When developing a new transport (or any other) algorithm one is usually striving
for a scheme that ensures simulation veracity. In other words, a numerical method
should be designed so that simulations using it are as truthful as possible. In math-
ematical literature simulation veracity is often synonymous with accuracy which is
associated with the absolute truth. Convergence, truncation error and error norms
are all associated with quantitative measures of conformity to the truth. In most
realistic atmospheric model settings, however, the truth is unknown in an absolute
sense (the exact solution is not known). For instance, in most atmospheric applica-
tions an increase in resolution will often resolve finer scales and new phenomena
appear making it problematic to define convergence in a strict mathematical sense.
Adding to the complexity is the fact that the system is chaotic and therefore not
deterministic beyond 10 days or so (Lorenz 1982), so any attempt to assess absolute
accuracy in simulations beyond the predictability limit must be based on statistical
approaches.

In all, simulation veracity in an atmospheric modeling context is more than
accuracy in a strict mathematical sense. Perhaps because there is little quantitative
knowledge of the true solution a lot of emphasis is placed on physical properties
of the solution method. For example, we do know that the numerical solution
should ideally obey discretized equivalents of properties we can derive from the

3 Assuming that explicit time-stepping is used.

4 Although there is a weak coupling between humidity and the thermodynamic/momentum
equation.
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continuous set of equations such as conservation® of mass and higher moments,
shape-preservation (including monotonicity, positivity and non-oscillatory prop-
erty), correlation preservation, and so on. Also, sub-grid-scale parameterizations
usually require physical realizable atmospheric states from the resolved scale
dynamics. From a computational point of view properties such as parallel effi-
ciency, geometric flexibility, etc. are also very important properties of the final
numerical algorithm.

What follows is a list of desirable properties for tracer transport schemes that are
all (apart from the properties related to efficiency) essential ingredients of simulation
veracity.

8.3.1 Accuracy (Error Norms)

Accuracy describes the degree of closeness of the simulated (numerically computed)
solution to its true (exact) state specified in terms of error norms (numeric values).
The error measures can either be assessed at a fixed resolution (absolute error) or
as a function of resolution (convergence). For linearized equations and approxi-
mations a proxy for convergence can be sought by computing the formal order
of accuracy of the numerical method through Taylor series expansions. Note that
formal order of accuracy does not necessarily guarantee accurate solutions for dis-
tributions/flows with near discontinuities (shocks and fronts) nor does it guarantee
accuracy at a particular resolution. For many global weather and climate applica-
tions absolute accuracy at a particular range of resolutions is perhaps more important
than high-order convergence rates. Below is a list of some idealized test cases used
to quantitatively assess simulation veracity:

8.3.1.1 Linear Test Cases

Error norms are well defined when the exact solution is known which is usually only
the case for linear problems. Commonly used linear test cases, where the analytical
solution is known at all times ¢, can be divided into two categories: Translational
and deformational. Here we focus only on global test cases in spherical geometry.
Most test cases are formulated with non-divergent flow fields for which the
advective form of the continuity equation for a tracer (8.11), that uses mixing ratio
q as the prognostic equation, is equivalent to the flux-form version (8.10) based
on tracer mass pq. That is, g or pg is set equal to the same spatial distribution
and the modeler is implicitly assuming that p is one everywhere and since the
flow is non-divergent p will remain one through-out the simulation at least in the

5 For a discussion on conservation in the context of the full equation set for the atmosphere see
Chap. 11.
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Fig. 8.1 Exact solutions for the (a) solid body advection of a cosine bell test case at # = 0 (center
of plot) and ¢t = 44 h (for a ‘flow rotation angle’ of 45°), and (b) the static vortex test case at day 6

analytical case. Hence the modeler is not forced to distinguish between tracer mass
pq and mixing ratio g. However, for a divergent/convergent flow only ¢ is constant
along parcel trajectories whereas tracer mass pq will increase/decrease in areas of
convergence/divergence. For a fuller discussion see Nair and Lauritzen (2010).

Translational. Probably the most commonly used idealized test case in the mete-
orological literature is the solid body rotation of a cosine bell (Fig. 8.1a) (e.g., test
case one of the widely used two-dimensional test suite of Williamson et al. 1992
for the shallow-water equations). The exact solution is simply the translation of the
initial condition and standard error norms can be computed at every time-step. This
two-dimensional test case has been extended to three dimensions in Jablonowski
et al. (2011). Another three-dimensional test case on the sphere where the analytic
solution is known was proposed by Zubov et al. (1999).

For convergence studies used to assess the formal order of accuracy of a scheme
the translated distribution should be sufficiently smooth. For example, the cosine
bell distribution may appear smooth but it is only C! at the base of the bell.
Consequently, schemes that are high-order accurate in terms of a Taylor Series anal-
ysis may not show this high-order formal convergence rate when using the cosine
bell initial condition. To assess ‘ideal’ convergence rates it is advised to use C*°
functions such as Gaussian surfaces (Levy et al. 2007).

Deformational. The translational test case described above has a large degree
of symmetry and perhaps is not challenging enough to thoroughly test a numeri-
cal algorithm. Real world flows also have deformational, convergent/divergent and
rotational components that deform, expand and rotate the initial distribution. A pop-
ular purely deformational test case (non-divergent) is the cyclogenesis test case
introduced in meteorology by Doswell (1984) and used as a test case for transport
schemes by numerious authors (e.g., Ranci¢ 1992; Nair and Machenhauer 2002).
The exact solution at day 6 is shown on Fig.8.1b.° As can been seen in the fig-
ure the vortex ‘curls up’ and generates long thin filaments in the process. These, in
general, are quite challenging to represent for any numerical scheme.

6 The dimensionalization of the vortex problem used here follows Nair and Jablonowski (2008).
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Fig. 8.2 Exact solutions for the moving vortex test case with a flow orientation of 45° at zero
(left; day 0), half (middle; day 6) and one (right; day 12) revolution. The continents are shown for
reference purposes only

Another useful application of this test case is to use its velocity field but instead
of transporting an initial condition such as shown on Fig. 8.2 in the cyclogenesis test
case, instead transport a constant mass field p = pg. Since the flow is non-divergent
any numerical scheme should ideally preserve a constant mass field. Also the solid-
body rotation flow field is non-divergent and so for this wind field a constant mass-
field should remain constant throughout the simulation. However, the cyclogenesis
wind field is much more challenging as a preservation of constancy test since it is
deformational (unless the stream function for the velocity field is used to makes sure
that the divergence that the scheme ‘sees’ is zero). Some schemes might preserve a
constant mass field for solid body advection but fail to preserve a constant mass field
for the deformational wind field. Unfortunately results from such tests are rarely
presented in the literature.

Translational and deformational. Although the idealized cyclogenesis test
case described above is challenging it lacks a translational component. Nair and
Jablonowski (2008) combined the cyclogenesis wind field with the solid body
advection wind field on the sphere which makes up the ‘moving vortices’ test case.
Instead of a stationary ‘curl up’ of the vortex, it is transported as a solid body as it
deforms (Fig. 8.2). Obviously such a test case is more challenging and might there-
fore be more useful to discriminate between schemes than simpler test cases. For
example, in the idealized tests of the finite-volume transport scheme in Lauritzen
etal. (2010) it was found that the moving vortices test case was more discriminating
than the pure translational and stationary cyclogenesis test cases (at least when
applied and compared to the Putman and Lin (2007) scheme).

Recently, Nair and Lauritzen (2010) extended LeVeque’s test case (LeVeque
1996) to a class of test cases on the sphere. Unlike all the test cases considered so far
the wind fields in this test case are time varying. In these cases the wind fields are
periodic and reverse so that after one period the initial distribution has returned to
its initial position and shape. Hence the analytic solution is known after one period
but not throughout the simulation. The flow is swirling (deformational) so the ini-
tial condition is highly deformed half way through the simulation. This challenges
the numerical scheme since grid-scale features develop from well-resolved initial
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Fig. 8.3 The recently proposed test case by Nair and Lauritzen (2010). (a) The initial wind field
and (b) initial condition and analytical solution after one period. (¢) and (d) show a numerically
computed solution after half and full period, respectively. The grid-scale noise in (¢) and (d) are
due to the numerical scheme not being monotone/shape-preserving

conditions (Fig. 8.3). And perhaps more importantly, one of the test cases in Nair and
Lauritzen (2010) is divergent contrary to most idealized test cases for transport on
the sphere which are non-divergent. By introducing divergence the modeler is forced
to distinguish between mixing ratio and air mass which is not strictly necessary for
non-divergent test cases.

8.3.1.2 Non-Linear Test Cases

In linear test cases for smooth flows the accuracy in terms of error norms is usually
improved when the resolution is increased and when the formal order of the numer-
ical method is increased. However, such idealized experiments do not truly quantify
the error in realistic atmospheric applications that are far from linear. In general, for
non-linear problems the quantification of error is problematic except in very sim-
ple cases’ and, as discussed in Prather et al. (2008), we usually design models with
the expectation that a correct solution (truth) exists and that with adequate physi-
cal approximations and numerical methods our solutions will converge to a ‘true’
solution as the resolution is increased.

7 e.g., the one-dimensional Burgers’ equation that has an exact solution although it is non-linear.
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Fig. 8.4 The ETEX
sampling stations distribution
(filled black circles) and

0.1 ngm ™3 contour of
measured cloud at 7p+12h
(red) ,+24h (blue), +36h
(purple), +48 h (green), .
+60h (black). Figure 1o
courtesy of Stefano Galmarini -

In the context of passive tracer transport a non-exhaustive list of non-linear test
cases is given below. The examples are meant to give the reader an idea of the
‘world’ beyond idealized linear test cases that are usually reported on in transport
scheme development. All test cases do not have analytical solutions and involve
the solution to the entire system of dynamical equations (not just prescribed winds
and mass-fields) as well as parameterizations of sub-grid-scale processes making it
harder to distinguish numerical errors of the transport scheme from other sources of
error.

The ETEX forecast experiment. The worst nuclear power plant disaster in his-
tory (the Chernobyl power plant explosion in 1986) generated a radioactive plume
that drifted over extensive parts of western Russia and Europe. This is a rude
reminder of the importance of having models capable of forecasting long-range
transport accurately; at least for emergency management. As a consequence the
European Tracer Experiment (ETEX, see, e.g., Girardi et al. 1998; van Dop et al.
1998 and the more recent study of Galmarini et al. 2004) was established in 1994
to evaluate the validity of long-range transport models and to assemble a database
which would allow the evaluation of long-range atmospheric dispersion models in
general.

ETEX was a controlled experiment where two releases (under different weather
conditions) of perfluorocarbon tracers from Western France were tracked across
Europe. Perfluorocarbon tracers are non-depositing, non-water-soluble and inert,
and therefore a passive tracer for all practical purposes. A large network of sam-
plers deployed eastward on the territory of Central and Eastern Europe collected
tracer samples that were later analyzed to determine the concentration levels. That
set of measurements was then used to quantitatively evaluate the predictions of the
models (Fig. 8.4).

The ETEX experiment and data can be used to evaluate new transport schemes.
Obviously this test case indirectly tests more than the transport scheme itself but also
parameterizations (such as boundary layer parameterizations, parameterized vertical
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diffusion etc.) and, in general, the models ability to produce accurate winds and air
densities for the tracer transport scheme.®

Mixing experiments. There are several experiments in the literature targeting the
mixing properties of the model. Probably the simplest was proposed by Rasch et al.
(2006). The experiment is setup as follows. The mixing ratio for a tracer is set to
one everywhere in a model layer and zero elsewhere. Then the model is run from
some meteorological initial conditions for 30 days. The tracer is placed either near
the surface (near 800 hPa) and around 200 hPa. The low tracer test serves as an indi-
cator of transport in a region dominated by sub-grid scale transport processes such
as convection and turbulence. The high tracer is much more dominated by resolved-
scale dynamics at least at middle and high latitudes. The test case also indicates
the tropospheric-stratospheric mixing in the model (generally, in the polar and mid-
latitude regions stratospheric air is mixed into tropospheric air and in the Equatorial
regions deep convection results in a large scale ascent of tropospheric air). For mod-
els based on an isentropic vertical coordinate, this test when run adiabatically and
with non-zero tracer values in an isentropic layer instead of pressure levels, can be
used to indicate the amount of spurious vertical diffusion in the transport scheme
since ideally the mixing ratio should remain one in the isentrophic layer for all time
(and zero elsewhere).

Another experiment that is probably more widely used is the age-of-air experi-
ment (see, e.g., Waugh and Hall 2002 and references herein). The age of air is the
mean transport time from some reference location. For example, stratospheric age of
air is the mean transport time from the tropical tropopause to a location in the strato-
sphere. Monitoring the age of air for species with long lifetimes provides a proxy
for the diffusivity (often spurious) of the tracer transport in a particular model. In
general, schemes that are too diffusive tend to produce too ‘young’ air while less
diffusive schemes simulate ‘older’ age of air. Eluszkiewicz et al. (2000) found a
large dependency on the choice of advection scheme in age-of-air experiments in
addition to the simulated large scale circulation. Even for short-lived tracers with
sources and sinks Rasch et al. (2006) found a large dependency on the numerical
solution technique. These studies demonstrate that the choice of transport scheme
(and driving model) can easily influence the simulation at a level that can strongly
modulate the physical signal of interest.

Dynamics/tracer consistency. This test was proposed by D. Johnson (University
of Wisconsin) and published in Rasch et al. (2006). It targets the model’s ability to
simulate transport of conserved tracers consistently and the model’s ability to main-
tain non-linear relationships between six different conserved and non-conserved
tracers. It can be shown from the second law of thermodynamics that two points
separated in space and time connected by a trajectory should satisfy a non-linear

8 There have been other controlled tracer transport experiments before ETEX, e.g., ANATEX (The
Across north America Tracer Experiment) and CAPTEX (Cross-Appalachian Tracer Experiment)
and also more recent experiments such as MEGAPOLI (Emissions, urban, regional and Global
Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation;
http://megapoli.info).
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relationship in terms of temperature 7', potential temperature 6 and pressure p (see
Appendix of Rasch et al. 2006):

R/C)
6, = (@) T, (@) , (8.12)
To )41

where the subscript 0 and 1 refer to the two points, and R and C, are the gas
constant and specific heat constant at constant pressure, respectively. The test case
consists of predicting 6, T and pR/Cr separately and then check how well they
obey (8.12). The level of agreement between these two ways of computing potential
temperature yields a measure of the degree of consistency in the model. See Rasch
et al. (20006) for details. It is probably impossible to construct an Eulerian scheme
that will exactly fulfill this consistency test, however, it is desirable that schemes
strive to be as consistent as possible.

8.3.2 Conservation of Mass

As discussed in Sect. 8.2.1 one of the most fundamental budgets of the global atmo-
sphere is that for the mass of dry air. Since the physical variation in the dry air mass
budget is on the order of 0.001% (and usually not modeled) even minor drifts in
the dry air mass budget due do numerical errors would be larger than the physical
variation in the dry air mass budget (Moorthi et al. 1995).

For the trace gases any spurious non-conservation of mass will effectively corre-
spond to a spurious source or sink for the gas in question. In particular for long-lived
trace species such as stratospheric ozone it is paramount that their mass-budgets are
well maintained in the models. Even for highly reactive tracers such as reactive chlo-
rine compounds, mass-conservation is important since the sum of all the compounds
should be conserved although individual compounds have large sources and sinks
(one compound is converted into another).

There are two ways of obtaining mass-conservation in numerical schemes. Either
an inherently conservative numerical method is used or mass-fixers (see Chap. 13)
can be employed. For the mass of dry air mass-fixers usually operate by increasing
or decreasing the mean of the pressure field (mass) by an amount corresponding
to the spuriously lost or gained mass caused by the lack of conservation of the
numerical method. Note that such a procedure can be done so that it does not alter
gradients in the pressure field and was shown by Williamson and Olson (1994) to
have minimal effect on the simulation. Mass-fixers are applied in numerious non-
conservative models, e.g., the spectral transform versions of NCAR’s Community
Atmosphere Model (CAM, Collins et al. 2004). Although mass-fixers for the pres-
sure field seem to not adversely affect simulations it is far more problematic to
apply mass-fixers for tracers. For example, altering mixing ratios to obtain tracer
mass-conservation can lead to unphysical large or small mixing ratios. If that is
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the case the mass-fixer must do a local adjustment and thereby it might introduce
new extrema in the tracer mass fields and gradients are no longer preserved. This
may also disrupt tracer correlations (tracer correlations are discussed in Sect. 8.3.7
below) and consistency between tracer and air mass (see Sect. 8.3.4 below). There-
fore finite-volume methods that are inherently conservative, have become a popular
numerical method in climate and chemistry modeling since ad-hoc adjustments are,
in theory, not necessary.’

The continuous equations of motion conserve all moments not just mass. How-
ever, Thuburn (2008b) argued (see also Chap. 11) it might not be desirable that the
advection scheme also preserves higher-order moments.

8.3.3 Optimal Diffusion and Dispersion Properties

The linear diffusion and dispersion properties of a linearized scheme can be assessed
by performing a von Neumann stability analysis (also known as a Fourier stability
analysis). It is a standard analytic analysis technique and is described in many text-
books in the context of grid-point methods (see, e.g., Durran 1999; Haltiner and
Williams 1980) and in the context of finite-volume methods in Lauritzen (2007).
The analysis consists of assessing analytically how a single Fourier mode is damped
and accelerated/decelerated by the numerical scheme during one time-step assuming
a constant wind field.
In one dimension the von Neumann analysis is performed by assuming a solution
in the form
Yr(x) =0T exp(Tix), (8.13)

where 7 is the imaginary unit, ¥° the initial amplitude, and ¥k = 27m/L is the
wavenumber (L is the wavelength), and # is the time-level index. The damping and
phase properties of a scheme are assessed by substituting the solution (8.13) into
the forecast formula for the finite-volume scheme in question, and subsequently
analyzing the complex amplification factor I". The stability of a numerical method
is governed by the modulus of the complex amplification factor, that is, a particu-
lar wave with wavenumber « is stable if |I"| < 1. Following Bates and McDonald
(1982) the dispersion properties of a scheme is assessed by writing the complex
amplification factor as

I' = |I'| exp (—iw* At), (8.14)

where w* is the numerical frequency. Define the relative frequency as R = o™ /w
where w is the exact frequency given by « 1o and ug is the constant wind. If R > 1
the numerical scheme is accelerating and if R < 1 the scheme is decelerating
compared to the exact solution.

The von Neumann analysis provides useful information about the stability prop-
erties of a scheme and may provide new insight into schemes. The limitation of the

9 We write ‘in theory’ since if a transport scheme is not strictly monotone local ‘ad hoc’ adjustments
might be necessary even for finite-volume methods.
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von Neumann stability analysis is that it is linear. Hence any non-linear operators
such as limiters and filters cannot be included in the basic analysis as well as
non-linear flows. Usually the spurious numerical diffusion and dispersion decrease
rapidly with the formal order of the scheme. So each scheme probably has an opti-
mal order for which the extra computational cost associated with increasing the
order of the scheme simply does not pay off in terms of linear diffusion and disper-
sion properties. For example, Leonard (1991) argued that the reduction in diffusion
becomes trivial soon after the order is larger than third.

8.3.4 Tracer and Air Mass Consistency

Tracer and air mass consistency is a stricter concept than simple mass conservation
of the individual quantities. It basically states that the discretized tracer transport
scheme should reduce to the discretized continuity equation for air when ¢ = 1
as is the case for the continuous equations: (8.10) reduces to (8.9) when setting
q = 1. Tracer-air mass consistency can, for example, be violated if using a numeri-
cal method for tracer transport that is different from the scheme used for predicting
the evolution of the air density.'” To achieve a high level of consistency it is usually
necessary that the same numerical algorithm is used for the dynamics as well as
for tracer transport. For more discussion see Machenhauer et al. (2009), Lee et al.
(2004), Jockel et al. (2001), Zhang et al. (2008).

8.3.5 Divergence Preservation

The transport operator should not be a spurious source of divergence. Usually this
property is discussed within the context of non-divergent flow fields. For exam-
ple, a constant initial mass distribution should remain constant at all time in a
non-divergent flow (preservation of mass-constancy). This subject has received con-
siderable attention in the magnetohydrodynamics literature since the magnetic flux
density is non-divergent and the numerical scheme should ideally retain that prop-
erty (e.g., Artebrant and Torrilhon (2008) and references therein). A prerequisite for
controlling spurious generation of divergence is preservation of mass-constancy as
formulated above (see test case suggestion in Sect. 8.3.1.1) for non-divergent flows.

Note that the preservation of constant mixing ratio (and not constant tracer mass
field) is trivial in most cases. If the advective form of the transport equation (8.11)
is used it is trivial to maintain a constant mixing ratio since ¢ is the prognostic

10 This discussion applies to online applications where tracer transport is performed in conjunction
with the governing fluid and thermodynamic equations. A similar inconsistency appears when
driving the tracer transport equation in an offline mode (prescribed winds and mass fields from
reanalysis, observations or a different model) in which case the tracer transport scheme withg = 1
will not equal the prescribed mass-field unless ad-hoc fixers are applied.
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variable and the divergence does not appear explicitly. If the air and tracer equations
are solved in flux-form ((8.9) and (8.10), respectively) using the same numerical
method, it is usually trivial to preserve a constant mixing ratio field since the mixing
ratio ¢q is recovered from (8.10) by dividing the prognosed tracer mass field pg by
p from (8.9). So even if the numerical scheme is unable to preserve a constant mass
field p, it is usually possible to design schemes so that a constant g field is recovered
when dividing p g by the (potentially) non-divergence preserving forecast of p.

8.3.6 Physical Realizability (Monotone, Positive-Definite,
Non-Oscillatory, Shape-Preserving)

In the absence of sources and sinks the mixing ratio of a Lagrangian parcel being
transported by the flow is invariant (8.11). If the numerical solution fulfills this prop-
erty it is monotonicity'" preserving; no new local extrema are generated and the
absolute values of pre-existing local extrema is non-increasing. Strict monotonicity
preservation can be hard to achieve and enforcing it in numerical schemes is often
found to be at the cost of overall accuracy wherefore it is often relaxed somewhat.

The zero-th order shape-preservation property is that the numerical scheme gen-
erates physically realizable solutions. Since mixing ratios cannot physically take
negative values they should remain non-negative. Schemes that cannot generate neg-
ative values are termed positive definite and schemes that do not generate wiggles
(spurious grid-scale waves as the ones on Fig. 8.3c and d) typically associated with
large gradients are referred to as non-oscillatory. Obviously a scheme that is mono-
tone is automatically positive-definite and non-oscillatory but not necessarily vice
versa. It should be stressed that it is g that should remain monotone and not p g.
For convergent flows p g can physically take values outside the range of the initial
condition whereas g should not. See Nair and Lauritzen (2010) for a discussion and
simple illustration of the latter for an idealized flow field.

Note that shape-preservation can be enforced in finite-volume schemes based on
(8.9) and (8.10) if these schemes imply some discretized version of (8.11). Schemes
that retain such a property are termed compatible (Schir and Smolarkiewicz 1996).

8.3.7 Preservation of Pre-Existing Functional Relations
Between Species (Correlations)

As described in Plumb (2007): “Relationships between long-lived stratospheric trac-
ers, manifested in similar spatial structures on scales ranging from a few to several
thousand kilometers, are displayed most strikingly if the mixing ratio of one is

! Atmospheric modelers tend to be a bit loose with the term ‘monotone’ and normally they do not
refer to the careful definition given by Harten (1983).
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plotted against another, when the data collapse onto remarkably compact curves.” In
other words, different longlived trace constituents (such as nitrous oxide N, O and
‘total odd nitrogen’ N O,) seem to be related through rather simple functional rela-
tionships in, for example, the polar stratospheric vortex. Such relationships can arise
for different reasons (Plumb and Ko 1992), however, it is well-known that transport
can establish such relations (e.g., Thuburn and Mclntyre 1997).

In order to accurately simulate such relationships in numerical models, the trans-
port operator should, at least, be able to preserve linear correlations (Lin and Rood
1996; Thuburn and Mclntyre 1997). That is, the transport operator should maintain
the relationship in (8.15) throughout the simulation

71 =79 +yW g, (8.15)
where y(i), i = 0,1, are constants, and ¢;, i = 1,2, are mixing ratios of two
linearly interrelated species. A transport scheme will preserve linear pre-existing
functional relations if the transport operator .7, that updates ¢;, i = 1,2, in time, is
‘semi-linear’

7@ =7 (YO +rP ) =070 +yV T @) =y + vV 7 (@),
(8.16)
(Lin and Rood 1996; Thuburn and Mclntyre 1997). As noted by Thuburn and
Mclntyre (1997) the successful preservation of linear correlations by a transport
operator does not necessarily gurantee an accurate solution since shaping two tracer
fields the same way does not necessarily imply shaping them the right way. On the
other hand, if a model significantly violates the preservation of linear correlations
between chemical constituents, the model is most likely not going to provide truthful
simulations of the relation between those constituents.
Since interrelated tracers can also be related non-linearly, it is also of interest to
investigate how a transport operator distorts such non-linear relation. For example,
consider two tracers that are initially correlated by a fourth-order polynomial

g1 =7 +yW (q2)*, (8.17)

(Thuburn and Mclntyre 1997) where the constants y@ and (") should be chosen
so that the functional relation is either convex or concave in the range of the ini-
tial condition values of ¢; and ¢,. Except for fully Lagrangian transport operators,
schemes are usually unable to maintain non-linear functional relationships and their
degree of non-preservation of correlations effectively translates into numerical mix-
ing of the constituents. Initializing two tracers that are, for example, related through
(8.17) and letting the tracers be transported by a challenging flow that develops
features that collapse to the near grid-scale, provides physical insight into the numer-
ical mixing that the transport operator introduces (Thuburn and Mclntyre 1997). No
practical Eulerian and semi-Lagrangian scheme can preserve (8.17) and will there-
fore produce scatter points that deviate from the pre-existing functional relationship
(8.17). When scatter points deviate from the pre-existing functional relation curve
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Fig. 8.5 Schematic view of the effect of mixing on a scatter plot where mixing ratio for tracer
1, q1, is plotted against tracer 2, g,. The two tracers are initially non-linearly correlated, that is,

the scatter points (g1, ¢») are on the pre-existing functional relation curve (solid thick line curve).

The initial ranges for the two tracers are [qgmi") , q{m"x) ] and [qé"”"), qémgx) ], respectively. Partial

mixing of two air masses (two filled circles — scatter points) will tend to move the two scatter points
towards each other along the straight (red) line (also referred to as a ‘mixing line’). Hence ‘real
mixing’ occurring in the atmosphere will tend to move points on the scatter plot to the concave side
of the pre-existing functional relation curve (also referred to as the ‘convex hull’ — shaded area)

the transport operator is introducing numerical mixing. The numerical mixing can
either be spurious or resemble ‘real’ mixing. If the scatter values are on the concave
side of the pre-existing functional relation, the numerical mixing is similar to ‘real
mixing’ that is observed in the atmosphere (see Fig. 8.5). Mixing in the atmosphere
occurs, for example, when the polar stratospheric vortex breaks up (e.g., Waugh
et al. 1997). If scatter values appear outside the ‘convex hull’ (either by producing
scatter points on the convex side of the pre-existing functional relationship curve
and/or outside the range of the initial condition for g;, i = 1,2), the model pro-
duces numerical unmixing which is unlike ‘real mixing’. Thuburn and Mclntyre
(1997) proved that in order to guarantee only ‘real’ numerical mixing, the trans-
port operator should be ‘semi-linear’ and monotone according to Harten (1983).
Unfortunately only first-order schemes will meet these requirements. Since first-
order schemes are too diffusive for most atmospheric applications, one must accept
some level of unmixing. For a more complete discussion of this topic the reader is
referred to Thuburn and Mclntyre (1997). Recently, Lauritzen and Thuburn (2011)
proposed mixing diagnostics that quantifies the amount of numerical mixing that
the transport operator introduces for interrelated species.

Another situation relevant to the transport of chemical species is the situation
in which more than two species are related through some complicated relation but
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they add up to a constant (or a smooth spatial field.'?) With just two species this
reduces to preserving a linear correlation but with more than two species it is very
challenging to guarantee that the total mixing ratio remains constant, except by
transporting the total or using a fully Lagrangian scheme. The transport operators
ability to maintain the constant sum is another measure for numerical mixing and
has been explored in one dimension by Ovtchinnikov and Easter (2009). Note that
maintaining or only perturbing pre-existing functional relations in a ‘physical way’
is not only important for long-lived stratospheric tracers but also for other parts and
processes in the atmosphere such as cloud-aerosol interactions (Ovtchinnikov and
Easter 2009). In all, single-tracer testing that has traditionally been used to evaluate
transport operators in idealized settings does not provide insight into how well
tracer interrelations are maintained although it is important for many atmospheric
applications.

8.3.8 Robustness

The numerical method should remain stable and retain simulation veracity through-
out the integration. Robustness can be assessed by testing the algorithm for many
different flow fields, temporal and spatial resolutions.

8.3.9 Parallel Computational Efficiency

Performance improvements are largely due to increased parallelism rather than
improved microprocessor clock frequency. Hence the numerical algorithm should
be amenable for execution on massively parallel computing platforms. A way to
achieve this is to use local methods with minimal global dependence (for more
discussion see Chap. 16).

It is worth noting that although computing power has increased dramatically
in the last 20 years or so, these extra computational resources have largely been
used to satisfy demands for higher resolution, more advanced physical parameteri-
zations and coupling the atmospheric component to ocean, land, and ice components
(i.e., coupled models). Hence it is still desirable to develop efficient dynamical core
algorithms, in particular, schemes for efficient tracer transport (see paragraph on
Multi-tracer efficiency below) even though computing power is increasing.

8.3.10 Multi-Tracer Efficiency

In modern atmospheric models the number of tracers required to be advected con-
tinue to increase. For example, the chemistry version of NCAR’s CAM model

12 For example, total reactive chlorine in the stratosphere.
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transports over 100 tracers (Lamarque et al. 2008). Given that the dynamical core
typically has less than ten prognostic variables defining the state of the fluid flow
and thermodynamics, the computational cost of running the dynamical core can
primarily be attributed to the transport of tracers. Needless to say, it is highly
desirable that the numerical algorithm used for tracer transport be efficient and
adaptable for a large number of tracers. A way to achieve multi-tracer efficiency
is to design schemes that can reuse information for each additional tracer (Barth
and Frederickson 1990; Dukowicz and Baumgardner 2000) and/or transport tracers
with longer time-steps than used for the continuity equation for air in the dynam-
ical core (also referred to as ‘super-cycling’ of tracers with respect to air or, more
commonly, ‘sub-cycling’ of air with respect to tracers; see Sect. 8.7.2).

8.3.11 Geometric Flexibility

It is generally useful to develop numerical methods that can be used on a wide
range of spherical grids. Next generation dynamical cores are being developed
on spherical grids based on triangles, quadrilateral, pentagonal and/or hexagonal
control volumes. It is therefore desirable that a scheme can handle any spherical
polygon-based grid. Also models using static or adaptive mesh-refinement benefit
from geometrically flexible methods. An example of a geometrically flexible advec-
tion scheme is MPDATA (Multidimensional Positive Definite Advection Transport
Algorithm); for an overview see Smolarkiewicz (2006).

8.4 Problem Formulation: Discrete Schemes

Finite-volume methods are numerical methods where each prognostic variable is
stored as an average quantity over a certain finitely large control volume (also
referred to as cell-integrated methods). This choice differs from methods that are
based on grid-point values (used in, e.g., finite-difference methods) or weights for
expansion functions (e.g., finite-element or spectral method). In order to derive
finite-volume discretization schemes the equations of motion, in this case the
continuity equation, are integrated over a control volume. This allows for dis-
cretizations that keep track exactly of the local mass-budgets and thus provides
mass-conservation to machine precision. Note that although finite-volume schemes
are designed to conserve mass locally through explicitly tracking mass, conserva-
tion of mass can also be achieved in non finite-volume methods (e.g., compatible
methods, see Chap. 12). Conservative methods that are not finite-volume methods
usually do not conserve mass locally.

Typically finite-volume schemes come in two flavors corresponding to two forms
of deriving the equations of motion from first principles: Eulerian and Lagrangian.'3

13 The Eulerian and Lagrangian forms are limits of the more general arbitrary Lagrangian—Eulerian
(ALE) form (Hirt et al. 1974).
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In most textbooks the equations of motion are derived in Eulerian form, that is, as
observed from a fixed volume in the atmosphere (stationary to the Earth’s surface).
Hence there is a flux of mass through the volume boundaries unless the local wind
is zero. One may also derive the equations of motion as viewed by a volume not
just rotating with the Earth’s rotation axis but also moving with the local flow;
a.k.a. Lagrangian form. In Lagrangian form there is no flux of mass through the
‘walls’ of the volume. Both of these forms of the finite-volume discretization of
the continuity equation are presented next after the introduction of some notation.
For simplicity we consider the two-dimensional problem in Cartesian geometry and
defer the discussion of the extension to spherical geometry and three-dimensions to
Sects. 8.5.3.3 and 8.6, respectively.

Let the domain of integration be denoted §2 (a Cartesian plane with periodic
boundary conditions or no flux through the domain boundaries). The domain £2 is
partitioned into N non-overlapping grid cells, Az, k = 1,.., N, so that U,ICVZI Ap
span £2. The area of cell Ay is denoted A Ag. For now we shall assume a quadrilat-
eral mesh in Cartesian geometry, however, the discussion can trivially be extended
to other meshes such as triangular or hexagonal meshes in Cartesian geometry.

As mentioned above the prognostic variable considered is the cell averaged value

1
Ve = A_Ak/Ak Y(x,y)dA, ¢ = porpg, (8.18)

where ¥ (x, y) is the exact solution. In time we discretize in terms at equidistant
time-levels, i.e., superscript n refers to the quantity at time ¢ = n At where At is
the time-step. So the state of a tracer in cell Ax at time-level 7 is denoted ¥, .

8.4.1 (Semi-)Lagrangian Schemes

Consider an arbitrary Lagrangian area A(¢). By definition the area A(¢) moves with
the flow without any flux of mass through its sides and hence it always contains the
same material particles. Since there is no flux of mass through the boundaries of
A(t), the mass in the area is conserved. In mathematical terms this can be written as

d
— YdA =0, Y =porpgq. (8.19)
dt A()

Equation (8.19) is referred to as the Lagrangian finite-volume form of the continuity
equation. A temporal discretization of (8.19) reads

/ Y dA = ¥ dA. (8.20)
A(t+Ar) A(t)

If the same Lagrangian cell A(¢) is tracked throughout the simulation the resulting
scheme is referred to as fully Lagrangian. The challenge in such schemes is that for
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non-trivial flows the areas quickly deform into thin filaments so that the resolution
is no longer uniform (see Fig. 7.2 in Chap. 7).

Instead one may consider a different set of areas/parcels at every time-step, for
example, enforcing that either A(¢ + At) or A(¢) is a regular static grid cell. Such an
approach is referred to as semi-Lagrangian since it only tracks the same Lagrangian
parcels/area for one time-step. The advantage of the semi-Lagrangian approach, as
compared to a fully Lagrangian method, is that it retains a quasi uniform resolution
as the mesh only deforms for one time-step. However, the grid uniformity is intro-
duced at the expense of having to interpolate variables from a regular static grid to
a deformed Lagrangian grid (or vice versa) at every time-step. How this interpola-
tion can be done is discussed in great detail below but for now more mathematical
notation is needed.

Assume that A(r + At) is a regular grid cell resulting in a method referred
as upstream semi-Lagrangian.'* If we consider cell k in the discretized domain
then the regular grid cell (A(t + At)) is exactly Ay with area AAy. The corre-
sponding upstream Lagrangian area (A(t)) is referred to as a; with area Aay (see
Fig. 8.6a). We assume that At is chosen such that all the deformed areas aj are
simply connected.

Note that there exists a one-to-one correspondence between Ay and ag such that
the ag’s span §2 without gaps or overlaps between them

N
| Jax =%2. andag Nag =0V k # L. (8.21)
k=1

Fig. 8.6 A graphical illustration of the upstream semi-Lagrangian nomenclature. (a) The static
Eulerian cell Ay (light shading) and the corresponding upstream Lagrangian area ay, (dark shading)
that ends up at A after one time-step. For illustration the trajectories of the vertices (filled circles)
of Ay are depicted with arrows. The corresponding upstream vertices (departure points) are shown
with open circles. (b) The notation used to define overlap areas between Eulerian cell A, and
upstream Lagrangian area ay is ax¢ = Ay N ay (dark shaded area)

!4 Note that one might equally well consider downstream schemes where one considers Eulerian
(regular) grid cells at time-level n and let them be transported with the flow for one time-step.
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Assume that the evolution of the Lagrangian grid is known analytically so we know
the characteristics or trajectories for each fluid parcel at all times. The computation
of fluid parcel trajectories is well developed in the semi-Lagrangian literature (e.g.,
Staniforth and Co6té 1991; Staniforth et al. 2003; Hortal 2002) and in the interest of
brevity it is not discussed further in this chapter, although accurate trajectories are
vital for the accuracy of any Lagrangian method.

With the notation introduced above the forecast (8.20) can be written as

Vi AA =V Aay. (8.22)

—_n . .
where v/ is the average tracer density over the upstream area ay

n 1 .
Vi = Aar /ak V" (x,y)dA, (8.23)

and WZ—H is the cell averaged value of i over the regular area A at time-level n+1.
The function ¥" (x, y) is the continuous distribution of ¥ at time-level n. Obviously,
since the prognostic variables are cell averages ¥ we do not know the variation of
Y at the sub-grid scale and ¥" (x, y) must be reconstructed from the prognostic cell
averages.'> This procedure is referred to as sub-grid-scale reconstruction. In finite-
volume schemes the reconstruction is usually local rather than global. So each cell
k will have an associated sub-grid-scale reconstruction function Y (x, y) rather
than one global reconstruction function over all cells such as the spherical harmonic
functions used in spectral transform models.

Hence the global reconstruction function is a collection of local reconstruction
functions

N
YY) =Y La i (x, y), (8.24)

k=1

where 1 4, is the indicator function

L, (x,y) € Ak,
T4 = (8.25)

0, (x.y) ¢ Ak.

Commonly used methods for computing v (x, y) from v, are discussed in Sect.
8.5.2.

First, we note that 1 (x, y) is not necessary continuous or differentiable across
cell boundaries. So if the upstream area a; covers several Eulerian cells (e.g.,
Fig. 8.6), the integral on the right-hand side of (8.23) must be broken up into overlap
areas between Eulerian cells and ag . The discretized semi-Lagrangian finite-volume

15 Unless variables such as gradients are also carried as prognostic variables (e.g., Yabe et al. 2001).
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continuity equation (8.22) then reads

Ly
Vi Adg = S| vl y)da. (8.26)

¢=1" 9kt

The number of non-empty overlap areas between the upstream cell (departure cell)
ay and the Eulerian grid cells is denoted L. Note that L; depends on the flow and
time-step size, and for time-varying flows it is not necessarily constant. The area
agy 1s the non-empty overlap area between the upstream cell ax and the Eulerian
grid cell Ay (see Fig. 8.6b)

age =ap N Ay, ape #0; £=1,...,Lg, and 1 < Ly <N, (8.27)

where N is the number of cells in the domain.

Two conditions must be fulfilled to get conservation of mass in Lagrangian finite-

volume schemes: Firstly, the upstream cells a; must be simply connected domains
and they must span §2 without gaps or overlaps (8.21). Secondly, the reconstruc-
tion function in cell k, ¥ (x, y), must be conservative in the sense that the integral
of ¥ (x,y) over A must yield the cell-average value that is used as prognostic
variable,
Aay ], ) dA =T (8.28)
Equation (8.26) is the basic finite-volume form of the continuity equation when
using an upstream finite-volume semi-Lagrangian approach. Obviously we do not
know the exact Lagrangian trajectory of every parcel in the domain so some approx-
imation to aj is necessary for the derivation of any practical scheme. This is
discussed in Sect. 8.5.1.

In the discussion above Y generically refers to both p and p g. In the reconstruc-
tion of p¢g one may chose to reconstruct p and ¢g separately and combine them to
provide a reconstruction for the product p g. There are several reasons for choosing
this approach. First, it is ¢ and not p ¢ that is conserved along parcel trajectories (see
8.11) and g should therefore obey monotonicity requirements. Hence one can argue
that monotone reconstruction function filters (discussed in Sect. 8.5.2) should be
applied to g and not p g. Second, the consistent coupling of tracers and air density
equations in cell-integrated semi-Lagrangian schemes as well as ensuring monotone
forecasts of ¢, is perhaps easier when choosing this approach (Nair and Lauritzen
2010).

The reconstructions for p and g can be combined to provide a reconstruction
for p g by simply multiplying the reconstruction functions for p and g as done in
Dukowicz and Baumgardner (2000). However, in doing so mass-correction terms
may be needed to satisfy (8.28) for higher-order reconstructions. The downside of
this approach is that if, for example, the reconstruction function for p and ¢ are
polynomials of ith and jth order the product will be polynomials of (i + j)th
order which may be computationally intensive to integrate. One may simplify by
removing some terms from the product as done in Nair and Lauritzen (2010). The
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latter also facilitates rendering schemes monotone in ¢. In Eulerian schemes, dis-
cussed next, tracer mixing ratio and air density are usually reconstructed separately
for sub-cycling (see Sect. 8.7.2)

8.4.2 Eulerian Scheme

Contrary to the Lagrangian derivations in the previous section, the equations of
motion are typically derived in Eulerian form. In the context of the finite-volume
form of the continuity equation the Eulerian approach keeps track of the flux of
mass through the Eulerian cell walls rather than tracking the mass in a cell moving
with the flow. A more formal derivation is given below.

First, integrate (8.9) or (8.10) in space over a grid cell Ax

a—wdA + / V.-(¥v)dA =0, where y = p, pgq. (8.29)
4, Ot Ay

On integrating the first term on the left-hand side of (8.29) to get the area average
and applying the divergence theorem to the second term we get

% (Vi AAk) + 515 (¥ v)-ndS =0, (8.30)
Ay

where 0Ay is the boundary of Ay and n the outward normal vector to dA. The
second-term on the left-hand side of (8.29) represents the instantaneous flux of mass
through the boundaries of Ax. Temporal integration of (8.30) over one time-step
yields

b1 . (n+1) At
Ui AAg =Yy Adg —/ M (W v) -ndS} dt, (8.31)
IAx

nAt

after re-arranging terms. The second term on the right-hand side of (8.31) is the flux
of mass through the walls of A during one time-step. A graphical illustration of the
fluxes is given in Fig. 8.7 and discussed in the next paragraph.

Let 7 denote the face number and N/ the number of faces of the cells. For sim-
plicity we assume a quadrilateral mesh N/ = 4, however, the method can accom-
modate any kind of mesh (for example, for a triangular and hexagonal mesh N/
would be 3 and 6, respectively). A graphical illustration of the fluxes through the
cell walls for Eulerian cell k are shown on Fig. 8.7. As will become clear, the figure
also shows the upstream Lagrangian cell although it is not explicitly needed for
flux computations. The sides of the Eulerian control volume are numbered counter-
clockwise so that sides 7 = 1, 2, 3, 4 correspond to the east, north, west and south
walls, respectively (using standard compass notation). The flux of mass through
the side 7 = 1 corresponds to the mass over the shaded area on Fig. 8.7a that is

‘swept’ through the wall during one time step. The shaded area, referred to as a,§=1,



210 P.H. Lauritzen et al.

a | b
Ay =2

=1
A

ANAY

Ay

YA

=3
Fig. 8.7 A graphical illustration of the ‘flux-areas’ associated with Eulerian cell Ay (area in the
upper right corner of each plot bounded by thick lines). For each vertex of cell Ay (filled circles)
the upstream trajectories are shown (curved arrows departing from open circles). The shaded areas
show the flux-areas for the (a) east a,ﬁzl, (b) north a,ﬁzz, (c) west a;:3 and (d) south a;:A' face,

respectively, using standard compass orientation. These areas are swept through each face during
one time-step. See text for details

is bounded by the face t = 1, the two upstream trajectories for the end points of
face t = 1, and the upstream translation of the side t = 1. We will refer to a,’czl as
the ‘flux-area’ for face ¢ = 1. Similarly, the fluxes through the remaining cell sides
are illustrated in Fig. 8.7b—d.

Using the notation introduced above (8.31) can be written as

N/

—n+1 —

Vi Adp =V Adi— ) Ff (8.32)
=1

where F is the flux of mass through face t during one time-step
F} = s / Y (x, y) dA. (8.33)
aj
The ‘flow-direction’ function sz is used to indicate inflow and outflow

sg = sgn(v-n), (8.34)

where sgn(-) is the sign-function. Hence s is 1 for outflow and —1 for inflow.'® In
Fig. 8.7 the flow-direction function s,ﬁ islfort =1,2and —1 fort = 3, 4.

16 For simplicity we do not consider the situation where s{ is multi-valued along a particular face.
For more details on such a situation see Harris et al. (2011).
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Note that the flux of mass through one cell wall is identical, but with opposite
sign, to the flux of mass through the neighboring cell that it shares a face with. For
the example on Fig. 8.7d

ai=* = a7}, (8.35)

where the cell located immediately to the south of the Eulerian cell Ay is Ax—1. So
in a practical implementation of a scheme based on (8.32) only two fluxes per cell
are computed if N/ = 4.

Although the scheme outlined above is termed ‘Eulerian’ it is not Eulerian in the
classical sense where the space and time dimensions are separated. In other words,
the scheme outlined above could also be termed flux-form semi-Lagrangian since
flux-areas that move with the flow are tracked (‘remap-type’ scheme). It is Eulerian
in the sense that we consider the flux of mass through the (stationary or Eulerian)
cell walls. When separating the temporal and spatial dimensions, as done in classical
Eulerian schemes, there are no trajectory calculations and fluxes are computed using
local information and partial derivatives along the coordinate directions at specific
times. The temporal discretization is usually based on Runga—Kutta methods (see
Chap. 6). One may argue that the classical Eulerian schemes are an approximation
of the general Eulerian-Lagrangian concept presented in this chapter where true
(along the trajectories) fluxes are approximated with partial fluxes (i.e., the particle
path vector can be decomposed into vector components along the coordinate axes).

8.4.3 Equivalence Between the Lagrangian and Eulerian
Discretizations

It is interesting to note the equivalence between the Lagrangian finite-volume con-
tinuity equation (8.26) and the Eulerian version (8.32): If taking the sum of the
flux-areas a; with weight 1 for outflow and weight —1 for inflow as well as Ag
with weight 1 (all areas involved on the right-hand side of (8.32)), the upstream
Lagrangian area ay results (see example on Fig. 8.7). That is, the right-hand side of
(8.32) written in terms of areas is

N/
AAr = (s Aaf) = Aay. (8.36)

=1

So the Lagrangian and Eulerian schemes are identical, as expected, since no approx-
imations have been made so far (even if approximations are made and the resulting
schemes are applied to the Euler equations, Eulerian and semi-Lagrangian schemes
may produce very similar results as shown in Leslie and Dietachmayer 1997).
Insights into schemes can be obtained in the light of the equivalence described
above. Any Eulerian flux-form scheme should ideally and effectively have an associ-
ated upstream cell from which information is fetched (a.k.a. domain of dependence)
to produce the forecast. A more detailed discussion is given in Sect. 8.5.1.2.
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A significant difference between the Lagrangian and Eulerian formulation is
the necessary conditions for mass conservation. Given a mass-conservative recon-
struction function (8.28), a necessary condition for the Lagrangian scheme to be
conservative is that the upstream areas a; span the domain §2 without overlap and
gaps between them (8.21) and that the reconstruction function is mass-conservative
(8.23). For the Eulerian scheme, however, the flux-areas a; need not necessarily to
span the domain £2 and the reconstruction function does not need to satisfy (8.23) to
produce a mass-conservative scheme. In fact any estimation of the flux will provide
an inherently mass-conservative scheme since the flux computed for a particular cell
wall is subtracted in the neighboring cell with which it shares that particular face.
So the Lagrangian scheme has, in the sense described above, a stricter requirement
for mass-conservation than the Eulerian flux-form formulation.

Another significant difference between the Eulerian and Lagrangian formula-
tions is that the Lagrangian formulation requires the upstream areas to be simply-
connected domains. The Eulerian formulation does not require that, in fact, even
for relatively simple flows the flux-areas can be non-simply connected (see, e.g.,
Fig. 8.2 in Harris et al. 2011). The Eulerian formulation is therefore more robust
in the sense that it can handle non-simply connected flux-areas (and conserve mass
simultaneously) whereas the Lagrangian scheme will break down if an upstream
area is not simply connected. This difference could be important for an operational
application of the scheme.

8.5 Discrete Schemes: Approximations

The Lagrangian and Eulerian finite-volume schemes, given in (8.26) and (8.32)
respectively, are exact. Hence we assume the trajectory of every parcel is known
exactly (the exact upstream area and flux-areas are known), the sub-grid-cell recon-
struction is exact and the integration of the sub-grid-cell reconstruction function
over the upstream areas and flux-areas can be done analytically. Now we start to
discuss some of the approximations that can be made in order to derive practi-
cal numerical schemes that only have a finite number of degrees of freedom. The
approximations can be divided into four steps: Computation of parcel trajectories,
area approximation (either upstream Lagrangian areas or Eulerian flux-areas), sub-
grid-cell reconstruction and integration of ¥/" (x, y) over deformed areas. As already
mentioned we will not discuss the computation of trajectories here and therefore
simply assume that they are given.

Firstly, the approximation to areas are discussed. Once the areas have been
defined, the transport problem has been reduced to a remapping problem, that is,
a conservative grid-to-grid interpolation problem. This requires a reconstruction of
the sub-grid-cell distribution and an integration over overlap areas. These three steps
(area approximation, reconstruction, integration over overlap areas) are discussed
separately below.
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8.5.1 Approximation to Areas

With only a finite-number of degrees of freedom and therefore only having the capa-
bility of tracking a finite number of parcels (typically the same number as cells N)
some approximation must be made to the exact upstream Lagrangian area or Eule-
rian flux-area. The inability of the scheme to approximate the exact areas is referred
to as the geometric error (Lauritzen and Nair 2008) and is illustrated graphically
on Fig. 8.8a. Obviously the geometric error may lead to local mass errors. Another
error is due to inexact sub-grid-cell reconstruction. This error, referred to as the
reconstruction error, is illustrated on Fig. 8.8b and discussed further in Sect. 8.5.2.
Strategies for area approximations are the subject of this section.

8.5.1.1 Lagrangian Area Approximations
Fully Two-dimensional Lagrangian Area Approximations

Probably the most rigorous approximation to the exact upstream cell a, Fig. 8.9a,
is to follow the trajectories of the vertices of Ax upstream and then connect the
upstream vertices with straight lines (Fig.8.9b); (Ranc¢i¢ 1992; Lauritzen et al.
2010). All other approximations involve approximating a; with line segments par-
allel to the coordinates axis which, in general, simplifies the overlap-area integration
algorithm. Some examples are given on Fig. 8.9. For more details on Lagrangian cell
approximations for orthogonal meshes see the comprehensive review by Lauritzen
et al. (2006) and Machenhauer et al. (2009).

Geometric error Reconstruction error

Fig. 8.8 A schematic illustration of the (a) geometric error and (b) reconstruction (gradient) error,
respectively, for a cell in two dimensions. (a) The geometric error occurs due to the exact region
of integration (shaded area) being approximated by, for example, straight line segments (dashed
lines). (b) The reconstruction error refers to the numerical methods inability to reconstruct the
exact sub-grid-scale variation (black line surface). The grey lines contour the reconstructed sub-
grid-scale distribution (in this case a linear approximation)
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K- -

Fig. 8.9 Graphical illustration of approximations to the upstream Lagrangian cell a; a.k.a. the
departure cell. Assume the departure points corresponding to the vertices of the Eulerian grid cell
are known (open circles). (a) Exact departure cell (shaded area) with sides depicted with thick
lines. (b) Sides of the departure cell approximated with straight lines by connecting the departure
points. (¢) Departure cell approximation used in Nair and Machenhauer (2002) where the east and
west sides are straight lines parallel to the Eulerian longitudes (y-axis on the plot) and the north
and south sides are approximated with ‘step functions’. (d) The Lagrangian cell used in the cascade
schemes that are based on intersections (crosses) between the Lagrangian latitudes (dashed/solid
curved lines) and the Eulerian longitudes. The ‘step’ in the step functions used in the cascade
schemes always coincides with the Eulerian longitudes (x-isolines on the figure)

Flow-split Lagrangian Area Approximations

More recently the finite-volume cascade'” approach was suggested by Nair et al.
(2002) and Zerroukat et al. (2002) which uses a combination of Eulerian and

7 The non-conservative cascade interpolation method in Cartesian geometry was introduced by
Purser and Leslie (1991).
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Lagrangian operators, that is, the one-dimensional operators are successively
applied along a coordinate line and a Lagrangian line, respectively. An example is
given in Fig. 8.9d where the first one-dimensional operator is applied along the Eule-
rian longitudinal direction and the second is applied along the deformed Lagrangian
latitude (curved solid/dash lines on Fig. 8.9d). So rather than being a fixed direction
based splitting method it is flow-based (for a review see Machenhauer et al. 2009).
The upstream Lagrangian cell for the cascade scheme is illustrated on Fig. 8.9d.
The main difference between the fully two-dimensional area approximation used
in Nair and Machenhauer (2002), shown on Fig. 8.9¢c, and the cascade scheme area
approximation, is the location of the ‘jump’ in the north and south sides of the
departure cell. Since the first cascade ‘sweep’ is along Eulerian longitudes the jump
in the north and south sides coincide with an Eulerian longitude. In the Nair and
Machenhauer (2002) the jump is located midway between the east and west cell
sides.

Approximating the Lagrangian cell with line-segments parallel to the coordinate
axis, either with fully two-dimensional or cascade methods, is attractive for orthog-
onal grids such as a Cartesian rectangular mesh (e.g., Zerroukat et al. 2002) and a
regular latitude-longitude grid on the sphere (e.g., Nair and Machenhauer 2002; Nair
et al. 2002; Zerroukat et al. 2004). It is less obvious how to extend such approaches
to non-orthogonal grids such as triangular or hexagonal grids since the cell sides are
no longer orthogonal.

8.5.1.2 Eulerian Flux Area Approximations

The approximation to flux-areas in Eulerian schemes can be divided into two cate-
gories: Fully two-dimensional approximations to the flux-areas and dimensionally
split area approximations. We remind the reader that only methods that have been
extended to global spherical domains are discussed here. We are thereby excluding
many transport schemes published in the meteorological literature.

Fully Two-dimensional Flux-area Approximations

The fully two-dimensional flux-area approximations can be divided into two cate-
gories. Firstly, one in which one face-centered velocity vector per face is used to
trace back the flux-area and, secondly, the approach in which the vertices of the face
are traced upstream to compute the flux-area. The first approach only has one degree
of freedom for the flux-areas whereas the latter approach has two. Consequently the
resulting flux-areas are parallelograms and arbitrary quadrilaterals, respectively, for
the two approaches. An elaboration is given below.

Recently, Miura (2007) suggested to approximate the flux-areas from a face-
centered wind velocity. So the two vertices of the face would have identical upstream
displacements based on the same face-centered velocity vector. The trajectories
are therefore parallel and have the exact same length. Hence the flux-areas ag,
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T = 1,2, 3,4, are parallelograms (Fig. 8.10a,b,d,e, respectively). The fact that the
upstream area is a parallelogram may simplify the practical integration of overlap
areas at the expense of some potential loss of accuracy if the flow is highly deforma-
tional. This is illustrated by computing the effective upstream Lagrangian area for
the Miura (2007) scheme using the method outlined in Sect. 8.4.3. That is, by tak-
ing the sum of the flux-areas (with signs) shown on Fig. 8.10a,b,d,e and the Eulerian
area (Fig. 8.10c), the effective upstream area ay results (Fig. 8.10f). The upstream
area mostly coincides with the exact departure cell, however, there are minor contri-
butions tracing the Eulerian cell vertices that are non-local (not overlapping with the
true departure cell). Also, the flux-areas for all cells do not span the domain £2. If
the flow is constant (no deformation) the non-local part of the flux-areas disappear
as all the face-centered velocity vectors would be aligned.

If this inability of representing the local flux-areas (geometric error) is a signif-
icant source of error has not been investigated (as far as the authors are aware) and
the error would only show for challenging test cases with strong deformation. For
example, the widely used solid body advection test on the sphere would most likely
not expose this potential deficiency. An illustrative example of a highly deforma-
tional flow is given on Fig. 8.11 that shows the Lagrangian (upstream) grid for each
cubed-sphere panel for one of the test cases in Nair and Lauritzen (2010). Even for
a relative short time-step (resulting in a maximum CFL number in each coordinate
direction of approximately 0.8) the upstream cells are highly deformed and they
might be challenging to approximate accurately using simplified fluxes unless very
short time-steps are used. It should, however, be noted that the geometric discussed
above will only show if it is larger than the reconstruction error. Consequently, the
geometric error is most likely not significant when using low-order reconstruction
functions (constant or linear reconstructions).

The potential non-locality problem described above can be resolved by instead
of using one face-centered vector (for the trajectories) per face, to use trajecto-
ries for the vertices of the cell A; (Ranci¢ 1992; Lipscomb and Ringler 2005;
Yeh 2007). This extra degree of freedom allows the flux-areas to deform into
arbitrary quadrilaterals. The equivalent upstream area now equals the Lagrangian
area resulting from connecting the upstream points with straight lines. This can
be shown as above by taking the sum of the areas involved in the forecast (8.32),
Fig. 8.10g,h,i,j,k, with appropriate weights (signs). As for the Eulerian—-Lagrangian
equivalence in the continuous case, discussed in Sect. 8.4.3, this approximate flux-
form scheme is exactly equivalent to the approximate Lagrangian scheme discussed
above where the departure points are connected with straight lines (Figs. 8.9b and
8.10, respectively).

Improving the effective approximation to the upstream area further would involve
the introduction of more parcels that are tracked (as suggested by Lauritzen et al.
2010) or some approximation to the sides with curved lines. A cursory study
addressing the potential benefits of approximating the upstream areas with higher-
order polygons was performed in Harris et al. (2011) within the context of a
flux-form semi-Lagrangian scheme.



8 Finite-Volume Transport Schemes 217

Parallelogram flux areas
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Fig. 8.10 A schematic illustration of different flux approximations, parallelogram (a,b,d,e) and
quadrilateral (g,h,j,k) flux-areas, and the equivalent upstream Lagrangian areas (f,1). The equiva-
lent upstream areas are computed by taking the sum of all areas involved in the forecast (a,b,c,d,e)
or (g,h,i,j,k) with appropriate signs (see (8.36)). The velocity vectors used for the flux compu-
tations are also shown. The exact upstream Lagrangian cell (open circles connected with curved
lines) is also shown although it is not explicitly used in the flux-form schemes
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Dimensionally Split Flux-areas

A popular approach not discussed so far is to use a sequence of one-dimensional
operators to approximate the two-dimensional fluxes thereby eliminating the need
for solving a fully two-dimensional remapping problem. These methods are also
referred to as dimensionally split approaches. A popular scheme based on this
strategy is presented in Lin and Rood (1996) and Leonard et al. (1996).

In the present discussion on effective upstream areas, this operator splitting
approach was analyzed by Lauritzen (2007) and Machenhauer et al. (2009). When
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Fig. 8.11 The static Eulerian grid (thin lines aligned with coordinate lines) and departure grid
(deformed thin lines) at the first time-step shown on the gnomonic projection on each cubed-
sphere panel for test case one of Nair and Lauritzen (2010) illustrated on Fig. 8.3 (time-step was
chosen such that the maximum CFL number is approximately 0.8). The departure grid has been
constructed by computing trajectories for the cell vertices and then the vertices are connected with
straight lines (great-circle arcs on the sphere)

using dimensionally split approaches the effective upstream area is approximated
with a combination of rectangles aligned with the grid lines and with different
weights (see Machenhauer et al. 2009). One-dimensional operators cannot repre-
sent areas skew to the face in question. As an example of an operator splitting
approach the effective departure area for the Lin and Rood (1996) scheme is given
on Fig. 8.12 for a flow that has a translational, deformation and rotational component
(see Machenhauer et al. 2009 for details).

In dimensional split schemes one can obtain preservation of a constant den-
sity field in a non-divergent flow field. This property is harder to obtain with
fully two-dimensional semi-Lagrangian schemes but it is possible with cascade
semi-Lagrangian schemes (Thuburn et al. 2010).

8.5.1.3 Comment on Area Approximations
One might argue that the errors associated with some of the simplified flux- and

upstream- area approximations are not significant at least for orthogonal meshes. For
example, for semi-Lagrangian finite-volume schemes Lauritzen et al. (2010) found
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Fig. 8.12 A graphical illustration of the effective departure area a; for the Lin and Rood (1996)
scheme using an analytic wind field which is deformational, rotational and divergent. The exact
departure cell is shown with thick black lines (and open circles as vertices). Light shading shows
the parts of the departure area where mass is weighted with 1/2 and dark shaded areas are weighted
with one. See Machenhauer et al. (2009) for details

little difference between the rigorous upstream area approximation and simpler area
approximations using line-segments parallel to the coordinate axis.

On non-traditional meshes simplified fluxes might introduce significant inaccu-
racies. For example, considering a solid-body rotation flow field on the sphere on
a non-traditional grid such as the cubed-sphere grid, some of the Lagrangian areas
are highly deformed even though the flow field is non-divergent, non-deformational
and non-rotational. This is illustrated on Fig. 8.13. The Lagrangian cells entering
a cubed-sphere panel from neighboring panels are highly skewed compared to the
Lagrangian areas staying within the panel in question. Therefore the need for fully
two-dimensional area approximations for non-traditional grid applications seems
more evident than for orthogonal quadrilateral grids such as the regular latitude-
longitude grid. All of the above is, of course, assuming that the reconstruction error
is smaller than the geometric error which will most likely not be the case for first-
and second-order methods.

Velocity Staggering and Flux-areas

For the different flux-area approximations described above the velocity components
are needed at the center of cell faces (for parallelogram flux areas), cell vertices
(for the quadrilateral flux areas) or at multiple locations along the cell sides (for
higher-order polygon fluxes). To avoid any interpolation of velocity components
Arakawa B and E grid staggering (see Chap. 3) should be used for quadrilateral
and parallelogram flux areas, respectively, whereas the higher-order polygon flux
inevitably will require interpolation of the velocity components (at least at a subset
of the points along the cell sides). The interpolation of velocity components can
potentially degrade the overall accuracy of the scheme (McGregor 2005) and the
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Fig. 8.13 (a) Cubed-sphere grid shown with light shaded lines and panel edges with black lines.
(b) The upstream/departure grid (dashed lines) shown on a local (gnomonic) projection for one
of the cubed-sphere panels using the solid-body advection flow field (time-step is so that one
revolution is completed in 72 time-steps). The solid lines show the Eulerian static grid. The skewed
departure cells are cells entering from neighboring panels during the time-step. The parts of the
departure cells outside the panel have been ‘chopped off’. For an introduction to the cubed-sphere
grid see, e.g., Chap. 9

choice of variable staggering impacts wave propagation (when solving the air mass
continuity equation with the momentum equations) as discussed in Chap. 3. Hence
the choice of flux-area approximation and variable staggering are ‘intertwined’ and
the choices impact not only the accuracy of the transport operator but also wave
propagation properties in full models as well as other properties such as the need
for filtering etc. (see, e.g., Chaps. 13 and 14). A exhaustive discussion of optimal
variable staggering and flux-area approximation is beyond the scope of this chapter.

8.5.2 Sub-Grid-Scale Reconstruction

In the previous sections the geometrical approximation to the upstream areas and
flux-areas have been discussed. Next comes the actual integration of ¥ (x, y)
over these areas, for which a sub-grid-scale reconstruction of the tracer field is
needed. We start by discussing reconstruction methods in one spatial dimension and
then briefly discuss two dimensional extensions before covering the integration of
¥(x, y) over overlap areas.

8.5.2.1 One-Dimensional Reconstruction Functions

The sub-grid-scale reconstruction is vital for the overall accuracy and efficiency of
a scheme, and a thorough discussion is beyond the scope of this chapter. We will,
however, discuss some of the most widely used methods. In principle any function
could be used for reconstructions, however, the choice of reconstruction function
has consequences for any finite-volume scheme. Here are some desirable properties
for reconstruction functions that should be considered:
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e Locality. Locality is generally desirable to maximize parallel efficiency; that is,
the stencil (or halo) used for the reconstruction in any cell should use only a
limited number of neighboring grid cells. The cells used in the reconstruction of
a given cell are referred to as the stencil of that cell.

e [Integrability. The reconstruction function must later be integrated over overlap
areas and it is convenient to use functions that can be integrated exactly. If poly-
nomials are used, polynomials of successively higher degree will lead to more
computationally expensive schemes.

e Conservation. For Lagrangian finite-volume schemes mass-conservation of the
final algorithm requires the reconstruction function to satisfy the so-called cell-
averaged property; namely, integration of the reconstruction over the cell (8.28)
yields the known cell-average (for each prognostic variable). This requirement
is not strictly necessary for Eulerian flux-form schemes but, in general, leads to
more accurate reconstructions (Skamarock 2009; personal communication).

e Filterable. A scheme can be rendered monotone in the reconstruction step by
filtering the reconstruction function so that it is monotone. It may therefore be
desirable to use reconstruction functions that are amiable for such filtering. One
thing to consider, for example, is that higher-degree polynomial reconstructions
are more difficult to filter, since the number of possible extrema increases with
the degree of the polynomial. For flux-form Eulerian schemes one may also
render the solution monotone a posteriori by adequately ‘mixing’ the (usually
low-order) monotone flux with the (usually higher-order) non-monotone flux
(Zalesak 1979). In the literature the a posteriori filtering is often referred to
as limiting. An excellent review on limiting is given in Durran (1999), and we
make no effort to try and reproduce it here. Certain reconstructions can also be
used that are inherently non-oscillatory by design, such as the class of (W)ENO
schemes ((Weighted) Essentially Non-Oscillatory schemes), which generally do
not require filtering or limiting.

e FExactness. A reconstruction algorithm is referred to as p-exact if it exactly repro-
duces a global polynomial of degree p (Barth and Frederickson 1990). Generally
speaking, strict exactness constraints will lead to an increase in accuracy of the
reconstruction function.

Polynomial reconstruction functions, mentioned a couple of times above, are a
popular choice in the literature and all properties discussed above can be conve-
niently dealt with using such a basis. Some work has been done on nonpolynomial-
based reconstruction functions (e.g., Norman and Nair 2008; Xiao et al. 2002),
however, we will focus on the former here. A comparison of various reconstruc-
tion functions in the context of conservative cascade interpolation was tackled by
Norman et al. (2009).

Reconstruction Problem Formulation (one Dimension)

The one-dimensional reconstruction problem for a finite-volume scheme utilizing a
polynomial basis can be stated as follows: Given discrete cell-averaged values v,
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over cells Ay (here Ay refers to a 1D cell), determine coefficients c,(ci), i=1,...,p,
so that
Yr) =+ eV x+ P 4 4P xr, (8.37)

is an approximation to the underlying field v in cell A;. As mentioned previously,
it is desirable that the reconstruction satisfies the cell-averaged property,

) Vi (x) dx = ¥y Axg, (8.38)
k

where Axy is the width of cell Ax. In the context of semi-Lagrangian advection
schemes, this property is also referred to as the mass-conservation property.

In the cell-integrated continuity equation (8.18) ¥ refers to either cell-averaged
air density p or tracer density p g, however, in the context of reconstructions it can
be desirable to reconstruction p and ¢ separately (as mentioned in Sect. 8.4.1). In
particular when enforcing shape-preservation it may be convenient to apply the
filters/limiters to ¢ and not pgq (e.g., Nair and Lauritzen 2010). Hence, for the
discussion on reconstructions ¥ can either refer to p, pq or q.

The Piecewise Constant Method (PCoM)

Perhaps the simplest sub-grid-scale representation is the so-called piecewise con-
stant method (PCoM), which simply uses

Vi (x) = Yy (8.39)

This approach is attributed to Godunov (1959) and trivially satisfies (8.38), does not
need a halo, and is also inherently monotone since it cannot lead to new extrema.
This approach is also formally first-order accurate and highly diffusive when used
with any scheme over smooth flows and distributions. As a consequence, this choice
of reconstruction is considered too diffusive for atmospheric transport problems
(unless the flow is ‘rough’), and so we must turn our attention to higher-order
reconstructions.

Higher-order Reconstructions

Note that by appropriately shifting the polynomial (8.37), we can always map A
onto the normalized interval x € [—Axg /2, Axi/2] with centerpoint x = 0. By
doing so, the math behind the reconstruction is dramatically simplified, and so we
will hereafter assume that we are working over this domain. Further, we will assume
that the grid is uniform so that Ax; = Ax for all j. Reconstructions based on
non-uniform grids are generally a straightforward extension of the uniform case.

Perhaps the most intuitive method for determining the coefficients of (8.37) is to
use a Taylor series expansion about the center of the cell (x = 0),
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aWk 1 aZwk 1 aplhk
Wk(x)zwk|x=o+(_)‘x=0x+§( 92 )‘x=0x2+...+ﬁ( axP ) o

ox
+ O [(Ax)PT!]. (8.40)

By pairing terms of equal order, we obtain the association

P L
c;(co) = ¥ (0), c/(c) == (ﬂ)‘ : (841

i\ oxt
x=0

Since we do not know the exact value of v or its derivatives, we must approx-
imate these values using, for example, interpolated polynomials through known
cell-averaged values.

Note that one must be careful in choosing the correct approximations to these
derivatives to preserve high-order accuracy. Specifically, for (8.40) to be formally
O [(Ax)P] accurate, each of the derivatives 0"y /0x™ must be approximated to
order O [(Ax)P~"], and ¥ (0) must be approximated to order & [(Ax)?]. The ratio-
nale behind this claim is as follows: When evaluating the reconstruction (8.40), each
of the derivatives 0" ¥ /0x™ is multiplied by x#, which must satisfy |x|? < (Ax)?.
Hence, if 9"y /0x™ is approximated to & [(Ax)"~P] then each term in the series
(8.40) is approximated to & [(Ax)?]. However, since 1 (0) is not multiplied by any
power of x, it must be approximated to full order-of-accuracy.

Finite-difference Approximations

On averaging the Taylor series (8.40) over a cell Ax, we obtain

1 Ax/2 821/fk

0x2

s = 0 + o

- ) ‘ (Ax)> + O [(Ax)*]. (8.42)
Ax —Ax/2 =0
The left-hand-side of this expression is simply the cell average v/, which is known
in a finite-volume context. The first term on the right-hand-side is the value of v (x)
evaluated at the cell-centerpoint and it is followed by higher-order terms. Hence, we
can conclude that ¥, is a & [(Ax)z] approximation to the value of v (x) evaluated
at the centerpoint. This result implies that if we utilize finite-difference approxima-
tions to approximate derivatives of any order at x = 0, such approximations will
only be valid up to & [(Ax)z] in a finite-volume context.

The simplest finite-difference approximation is the piecewise-linear method

(PLM), given by
Yk (x) = ¥ + (%)

, 8.43
o X (8.43)

x=0
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(van Leer 1977) where 0 /0x is at least a first-order-accurate approximation to
the derivative at x = 0. Some choices include an upwind discretization,

(%) = Ve Vi A, (8.44)
ax o Ax

or a centered discretization

Vi Vit1 = Vi 2
( o ) = > Ax + ﬁ’[(Ax) ] (8.45)
Either choice will lead to a scheme which is formally second-order accurate. Larger
stencils can be chosen for the approximations to these derivatives, but they can only
lead to reconstructions that are at most second-order-accurate. Nonetheless, with
larger stencils total accuracy may improve significantly even though the formal
order-of-accuracy will not.

The linear reconstruction drastically improves the error measures of finite-
volume schemes, when compared to PCoM. This result is illustrated in Fig. 8.14
in terms of a von Neumann stability analysis of a finite-volume scheme based
on PCoM and PLM (using the centered approximation (8.45)). In many large-
scale atmospheric models PLM is still considered too diffusive and therefore even
higher-order reconstructions are often considered.
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Fig. 8.14 The stability properties (see Sect. 8.3.3 and/or Lauritzen 2007) of a one-dimensional
finite-volume scheme based on PCoM (grey line) and PLM (black line), respectively. Note that
in one dimension all finite-volume schemes discussed in this chapter are identical when using the
same reconstruction method. (a) Squared modulus of the amplification factor (|I"|?) as a function
of Courant number (x-axis) and wavelength L (y-axis). Hence (a) shows how much each wave-
length is damped in one time-step as a function of Courant number. For a fixed Courant number
u the damping decreases monotonically as a function of wavelength L and lim; oo |I'|> = 1.
For Courant number O or 1 the scheme is exact and hence |I"|> = 1. (b) Same as (a) but for the
relative phase speed (R), that is, how much each Fourier mode is accelerated or decelerated as a
function of Courant number
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Finite-difference schemes can also be utilized to obtain a third-order recon-
struction, even in a finite-volume context. Rearranging (8.42), we can obtain an
expression for the centerpoint value ¥ (0),

Vi (0) = ¥y —

(Ax)? (Y
24 (3x2

)‘ + 0 [(Ax)*]. (8.46)
x=0

which is a fourth-order-accurate approximation to the pointwise value of 1 (0),
as long as 9%y /dx? is approximated to at least & [(Ax)?]. Combining this
approximation with (8.40), we obtain a third-order (parabolic) reconstruction

2 2
wk<x>=%+(aﬂ)‘ x+5(a w")’ (xz—(Ax) )+ﬁ[<Ax>3],
x=0 x=0

ox 2\ 0x2 12

(8.47)
when combined with simple finite-difference approximations of the form (8.45) and

5 — S —

dx2 (Ax)?

In fact, it can be quickly verified that (8.47) also satisfies the cell-averaged property
(8.38). This method has the highest formal order of accuracy that can be obtained
by treating finite-volume methods in a finite-difference context. This choice of
reconstruction was used by Laprise and Plante (1995).

Finite-volume Approximations

To obtain approximations higher than third-order in accuracy, we must first take a
step back and understand how finite-volume methods are formulated. First, recall
that finite-volume methods use cell-averaged values, which implies that the under-
lying scalar field is not known point-by-point. Instead, it is cell-averaged values that

are known exactly
Ax/2

Y = i Y (x)dx. (8.49)
X J-Ax/2
Hence, in the context of finite-volume methods, high-order sub-grid-scale recon-
structions cannot be interpolated through specific points (as with finite-difference
methods), but must instead satisfy certain cell-averaged properties.
To build a reconstruction that utilizes cell-averages, one generally defines a
cumulative mass function W(x) via

W(x) = / Ve (F)d %, (8.50)

k—j—1/2
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where xx_ ;1> denotes the left-side edge of cell A¢_;. Now, observe

W(xg—j—172) =0,
W(xk—js1/2) = Ax (Vr_;) ©
W(xk—js3/2) = Ax (Vi + Vi js1) -

Over such a set of consecutive cells one can then define an interpolating polyno-
mial of degree m that approximates the exact cumulative mass function W(x). We
denote this approximation by W(x). Finally, we observe that in accordance with the
fundamental theorem of Calculus, differentiating (8.50) gives

d
] 8.51)
X

By evaluating the first derivative of W (x) at a given point, we actually obtain a
% [(Ax)m_l] approximation to the underlying field v (x) from its cell-averages.
This method can then be used to reconstruct Y (x) at any point and, by taking
additional derivatives of W(x), its corresponding derivatives.

Alternatively, one can obtain an identical reconstruction by enforcing the cell-
averaged constraint on an interpolating polynomial in neighboring cells (Zerroukat
et al. 2002). That is, a polynomial @k (x) of degree p that exactly satisfies the mass-
conservation constraint not only in cell k but also in p adjacent cells:

[ hwa=vian g=(=5) (+5). e

for p even and

/ J+1/2 7 () dx :Jij’ = (k iy ~2|— 1) ) (k + %1)7 (8.53)

j—1/2

for p odd.

Either method will yield an identical reconstruction (W(x) = @k (x)), although
the latter is more adaptable to two dimensions and beyond.

If we utilize the aforementioned procedure over a 3-cell stencil (consisting of
cells k — 1, k and k + 1), we will exactly obtain (8.45), (8.46) and (8.48). However,
beyond three cells, the finite-difference and finite-volume reconstructions will differ
substantially. For instance, over a centered 5-cell stencil, we obtain approximations

Wrp—p — 116V, +2134Y, — 116V, | 1 +9V )1 »

1920 + o[,

Y (0) =
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High-order reconstructions of this type were adopted for a shallow-water model by
Ullrich et al. (2010).

_ SUk_p— 34Uy + 34V — 5Vs4a

48 Ax + oA,

x=0
etc.

Symmetric Finite-Volume Schemes

In all the methods so far discussed, we have not touched on the issue of continuity
between cells. In fact, all of the methods we have described so far do not enforce
any sort of continuity between reconstructions in neighboring cells.

As we have seen so far, as the order of the reconstruction polynomial is increased,
more options for how to approximate the coefficients c](cl) are available. Continuity
at edges can be enforced (over an arbitrary scalar field) if we adopt a reconstruction
that is at least parabolic, i.e.,

V() =¢” +cPx + ¢ Px?. (8.54)

Since we have three degrees of freedom in this polynomial, we can choose to
enforce Y (—Ax/2) = W}f and ¥ (Ax/2) = wlf, where ka and w,f are recon-
structed values at the left- and right- edges, respectively. These are purposely chosen
to be consistent between neighboring cells, which gives us the desired continuity
restriction. With our remaining degree of freedom we enforce the cell-averaged
condition (8.38).

This scheme is the well-known piecewise-parabolic method (PPM) of Colella
and Woodward (1984). To obtain edgepoint values ka and wlf, PPM makes use of
the finite-volume formulation discussed earlier, taken over four cells and evaluated
at the cell edgepoint, which gives

T — — 1 — —
Yl = E(l/fk + Y1) — E(I//k+2 + Vi) + O [(A0)*], (8.55)

(also see Zerroukat et al. (2002)) and ka = w,f. In terms of the coefficients c](j),

this reconstruction can be written as
0 _ = 2 Cz(f)
= —(Ax)? .
Cr Vi — (Ax) 12
) 1 [2 — — 1 _
% = Ax [5 (Vis1 — V1) — D (Vign— Wk—z)i| )

1 — — 1 =z
c? = G [—51/fk +3 (Vksr + Vi) — 5 (Visa + ‘/’k—Z)] :
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All of the coefficients c,(cl) in this case approximate 1 (x) and its derivatives to
7 [(Ax)“].

The approximation to ka in (8.55) and w,f are fourth-order accurate for uniform
grids. Obviously, one could also derive second, third, fourth, fifth or sixth-order
accurate estimations by fitting a linear, parabolic, cubic, quartic and quintic poly-
nomial so that (8.50) or (8.52-8.53) is satisfied in 2, 3, 4, 5 and 6 adjacent cells,
respectively. We will refer to PPM based on second, third, fourth, fifth-order edge
value estimates as PPM2, PPM3, PPM4, PPM5, respectively. In this context PPM
and PPM4 refer to the same reconstruction.

In terms of p-exactness the edge estimates must be at least third-order for
the PPM to exactly reconstruct a global parabola. Hence PPM2 is not p-exact
(p = 2) whereas PPM3, PPM4, and PPMS are. It is noted that PPM4 is significantly
more accurate than PPM3 in terms of a Von Neuman stability analysis (Fig. 8.15)
whereas PPM5 only gives modest increases in accuracy. Obviously PPM5 needs a
larger halo than PPM4. As a consequence, the potential increase in cost associated
with the use of larger stencils has likely been a significant factor in determining
the widespread adoption of PPM4 over these other schemes. More discussion on
edge-value estimates is given in White and Adcroft (2008).

One could naturally ask the question why should one not use the highest-order
polynomial that can be approximated with a given halo (stensil)? For example, the
cubic polynomial used to estimate the edge value in PPM4 could be used as the
reconstruction function, Y (x) = ¥ (x). While this might improve the accuracy
of the scheme, it will make filtering and integration over overlap-areas more cum-
bersome and computationally expensive, as compared to sticking to a parabola with
high-order edge-value estimates (PPM4).

Reconstructions based on polynomials of degree higher than two have been pro-
posed in the literature but have not been widely adopted in transport schemes as of
the time of writing. Zerroukat et al. (2002) introduced a symmetric piecewise-cubic
method (PCM), along with advanced filtering techniques (Zerroukat et al. 2005),
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Fig. 8.15 Same as Fig. 8.14 but for PPM using different estimates for the edge values (solid lines)
as well as PPM-s (dashed line). PPM-s is the sub-grid-cell reconstruction method based on the
method of Laprise and Plante (1995), that is, using (8.52) with p = 2 to determine the sub-grid-cell
reconstruction function
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Fig. 8.16 Same as Fig. 8.15 but for PQM

and White and Adcroft (2008) proposed a symmetric piecewise-quartic method
(PQM) based on polynomials of degree four. As for the PPM the edge-value esti-
mate is paramount for the accuracy of the scheme (see, e.g., Fig. 8.16). However,
even for the most accurate PQM6 the increase in accuracy (in terms of a Von Neu-
mann analysis) is modest compared to PPM4 given the increase in the halo size.
Also to consider is that polynomials of degree three (PCM) and four (PQM) can have
two and three extrema within a grid cell making it harder to filter such polynomials
compared to a (relatively low-order) parabola.

Piecewise Quadratic Splines

An interesting variant on the reconstruction methods discussed so far, and also based
on parabolas, is the piecewise quadratic spline method (Zerroukat et al. 2006) and
higher-order extensions such as those presented in Zerroukat et al. (2010). Instead
of only enforcing C° continuity across cell edges also the first derivative of the
reconstruction is constrained to be continuous, i.e., the reconstruction is C ! across
cell edges. Enforcing continuity in the derivatives of the reconstruction functions at
cell boundaries results in an implicit system of equations for the polynomial coeffi-
cients. When written in matrix form, however, the matrix that needs to be inverted
has a tri-diagonal form.

In idealized test cases using the scheme of Zerroukat et al. (2002) the piecewise
spline reconstruction method is superior to PPM while being 40% more efficient in
terms of number of operations (Zerroukat et al. 2007). The price to pay, in terms of
a parallel computational environment, is that splines are inherently global since the
inversion of a global tri-diagonal matrix is necessary.

Essentially Non-oscillatory (ENO) Reconstructions

Essentially non-oscillatory reconstructions were originally developed by Harten
et al. (1987) for shock hydrodynamics problems. This approach is particularly inter-
esting since it leads to a reconstruction that is (under most circumstances) monotonic
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and positive. The ENO scheme works by applying either a finite-difference or finite-
volume approach (as discussed earlier) on a variety of stencils. The reconstruction
that satisfies some least-oscillatory property, among all possible stencils, is then
chosen to give the ‘true’ reconstruction. The main drawback of this approach is that
it requires a large stencil in order to obtain the same order of accuracy as ‘vanilla’
finite-difference or finite-volume methods.

Least-squares

The least-squares technique is one of the few approaches available for obtaining
approximate reconstructions on unstructured grids. Under this method, we intro-
duce some quantification of the misfit between the reconstruction (8.37) and the
known cell-averages, usually given by the square of the difference between the
cell-averages of the reconstruction and the known cell-averages. The misfit is then
minimized over all possible reconstructions in order to give the “best possible”
reconstruction. An example of a Cartesian finite-volume scheme on an unstructured
grid based on the least-squares technique can be found in Barth and Frederickson
(1990).

One-dimensional Reconstruction Limiters/Filters

As discussed in Sect. 8.3.6, it is desirable that a transport scheme utilizes physically
realizable reconstructions. There are two ways to achieve this goal, either a priori
by filtering the sub-grid-cell reconstruction function so that it only takes physically
realizable values, or a posteriori by limiting prognosed cell averages or by alter-
ing the fluxes individually. In the context of an upstream semi-Lagrangian scheme
flux-limiting is obviously not an option. For Eulerian schemes one may apply a
priori filters or flux-limiters to provide physically realizable solutions. A priori fil-
ters are also referred to as slope-limiters as they act directly on the sub-grid-scale
reconstruction function.

The PLM, usually based on (8.44) or (8.45), may violate monotonicity as illus-
trated in Fig. 8.17a. Monotonicity can be enforced by replacing the reconstructed
derivative with some weighted average of the upwind and downwind approxima-
tions. Many such combinations exist, including MINMOD, Superbee (Roe 1985),
and monotone central (van Leer 1977), to name a few (see, for example, Toro 1999).
It is beyond the scope of this chapter to provide a comprehensive review of these
filters but they all seek to blend the derivative estimates, as hinted above, to obtain
the least diffusive monotone solution.

As illustrated on Fig. 8.17b PPM4 is also non-monotone without the applica-
tion of filters. The seminal paper of Colella and Woodward (1984) constrains the
reconstruction so that the entire sub-grid-scale reconstruction is bounded by the
cell-averages of the neighboring cells (or is reduced to a constant when the recon-
struction is a local extrema). See Fig.8.17b for an example. This technique for
filtering the reconstruction has the tendency to “cut off” or flatten smooth, physi-
cal maxima and minima. Several approaches have been proposed to retain physical
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Fig. 8.17 Reconstructions for the irregular signal of Smolarkiewicz and Grabowski (1990, blue
line) using the (a) piecewise-linear method (PLM) and (b) the piecewise parabolic method (PPM)
with reconstruction function filter (grey) and without (red). The filter for PLM is the MINMOD
limiter (see text) with theta =1 and the PPM limiter is the original filter presented in Colella and
Woodward (1984)

extrema while filtering out spurious grid-scale noise (see, for example, van Albada
et al. (1982); Zerroukat et al. (2005); Liu et al. (2007) and Colella and Sekora
(2008)). If miniscule over- and undershoots can be tolerated, less invasive filters can
be designed using (W)ENO-type methods where the user-specified filter is applied
only when a smoothness metric exceeds a certain threshold (Blossey and Durran
2008). Achieving high-order accuracy and physical realizable prognosed values
(monotonicity) is very challenging and deserves a chapter on its own for a com-
prehensive discussion. We will not discuss reconstruction filtering further, although
it has profound impact on the diffusion and dispersion properties of a scheme at
small scales.



232 P.H. Lauritzen et al.

8.5.2.2 Two-Dimensional Reconstruction Functions

Two-dimensional reconstructions can be obtained using nearly direct generaliza-
tions of the methods presented in Sect. 8.5.2.1. In fact, for second-order accurate
schemes that use a linear reconstruction the linear derivatives can be calculated in
each direction independently (dimension-splitting).

Reconstruction Problem Formulation

The two-dimensional reconstruction problem for a finite-volume scheme utilizing
a polynomial basis is analogous to the one-dimensional case: Given discrete cell-
averaged values v/, over cells Ay, determine coefficients c-/), i + j < p (i and j
are 0 or positive integers), so that

Ve y) = Y e xlyl, (8.56)
i+j<p

is an approximation to the underlying field v in cell Ag. The cell-averaged property
in two dimensions then reads,

’ Vi (x,y)dA = Y AAg. (8.57)
k

Again we can choose to shift the reconstruction so that, for simplicity, A; has a
centroid located at (x, y) = (0, 0).

Piecewise Constant Method (two dimensions)
The extension of the PCoM to two dimensions is trivial, given by

Vi (x,y) = Yy (8.58)

This scheme suffers from the same deficiencies as discussed in the one-dimensional
case, and so is not discussed further here.

Piecewise Linear Method (two dimensions)

The two-dimensional piecewise linear reconstruction can be written as

Vie(x.y) = Vg + e Ox + ¢y, (8.59)
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(1,0) 0,1)
k k

Any choice of ¢ and ¢ will yield a mass-conservative reconstruction and, as

with the one-dimensional PLM, c,(cl’o) and c,(co’l) correspond to the components of

the gradient along each coordinate direction at the cell centroid,

w0 _ [ 9Vx
= o

o _ (9
=G

For this method, the gradient can be limited as in the one-dimensional case (see,
e.g., Dukowicz and Baumgardner 2000).

(x,5)=(0,0)

(x,5)=(0,0)

High-order Reconstructions (two dimensions)

True third-order and higher schemes require some method of incorporating cross-
derivatives in order to be formally third-order accurate. For example, a true
third-order parabolic reconstruction could make use of a reconstruction of the
form

Vi y) = Ui+ x4+ oy (8.60)
@0 (2 (Ax)? a,1 02 (.2 (Ay)?
+cy X T +o Xy + ¢ yo = D ,
where c](cl’o), c](co’l), C}({z,o)’ Clio,z)’ and c](cl’l) are obtained by again approximating

the derivatives of 1. Note that ¢(>?) does not equal the cell average ¥ but includes
more terms to ensure the mass-conservation property. Extensions of this form are
described in Nair and Machenhauer (2002) and Ullrich et al. (2010). It has been
shown that the loss of accuracy attributed to neglecting the cross-derivative term
c,(cl’l) can be large, but is less significant on grids of low resolution (Lauritzen et al.
2010).

Piecewise Parabolic Method (Two Dimensions)

A rigorous extension of the PPM method introduced by Colella and Woodward

(1984) would require the fully two dimensional biparabolic polynomials to be

continuous across cell-borders at selected points and/or in some average sense.
One such extension was developed by Ranci¢ (1992), who chose

Y(x,y) = d2(y) x> + ¢1(y) X + do(y), (8.61)
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where
$o(y) = do2y” + do1y + doo. (8.62)
P1(») = 129> + 11y + P10, (8.63)
$2(y) = $22> + $21 + ¢20. (8.64)

This reconstruction has nine degrees of freedom, which are restricted by sat-
isfying (a) the cell-averaged constraint (8.57) in cell k, (b) equal average values
along each of the four edges of the quadrilateral cells, and (c) continuity at the cor-
ner points of each cell. These restrictions lead to 9 constraints, and hence define a
unique reconstruction. Note that the reconstruction is not globally continuous. We
refer to Ranci¢ (1992) for further details on this algorithm.

Extensions to Irregular Grids

All of the methods described above are tied to quadrilateral (orthogonal) meshes
and the extension to triangular, hexagonal and other grids where the cells do not
have exactly four vertices, is not obvious. The authors are not aware of any rigorous
extensions of PPM to such grids where continuity across cell borders is enforced.
In this case enforcement of the cell-average property is more difficult, and requires
special treatment of the parabolic terms. For instance, we must have

(2,0) [x m® 0)] + c](co 2) [y ' 2)] FIPACRY [xy m(l 1)] 7
(8.65)

(OO) =Yy + ¢

(Ullrich et al. 2009) where m](clj ) are the area-averaged higher-order moments

- 1 o
m,(;’]) = —[ x'y’/ dA.
Adg Ja,

Approximation of the derivative terms may be difficult on irregular grids. For
grids where finite-difference approximations to the derivatives are not obvious to
compute, as is the case for completely unstructured grids, one might use a two-
dimensional extension of the Laprise and Plante (1995) method. That is, enforce the
mass-conservation constraint not only in cell k£ but in a set of adjacent cells. For grids
in which cell k has a variable number of adjacent neighbors this approach may not
be optimal. In such cases a least-squares approach might be a more natural choice
to avoid biases introduced by excluding some adjacent cells and not others. When
using a least squares method one may chose to optimize the approximation to the
coefficients not just to mass-conservation in adjacent cells but also to p-exactness
for example (see, e.g., Barth and Frederickson 1990).
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Two-dimensional Limiters / Filters

Reconstruction function filtering in two-dimensions is significantly more compli-
cated than in one dimension, simply because a two-dimensional polynomial of
degree two (a parabolic reconstruction) can possess an extrema within a cell, along
a cell boundary, or at a corner-point (all of which must be checked). Hence, filter-
ing comes in two flavors: Dimensionally split filtering and fully two-dimensional
approaches.

The dimensional split approach simply applies the one-dimensional filters pre-
sented in Sect. 8.5.2.1 in each coordinate direction. However, by doing so the entire
reconstruction ¥ is not guaranteed to be monotonic within Ag. Specifically, there
are no guarantees of monotonicity at cell corner-points where the reconstruction in
each coordinate direction is additive (Lauritzen et al. 2006).

Strict monotonicity at all points within a cell can be guaranteed using the fully
two-dimensional approach of Barth and Jespersen (1989), which can also be applied
to unstructured grids. This filter guarantees strict monotonicity of linear recon-
structions by first determining where a given linear reconstruction has extrema
(this is typically the cell corner-points), and then rescaling the linear derivatives
so that the linear reconstruction is monotonic with respect to its neighbors. This
approach was also extended to parabolic (third-order) reconstructions by Ullrich
et al. (2009), which applies rescaling to both linear and high-order derivatives. If
strict monotonicity is not necessary, a WENO-type criterion can be used to iden-
tify places in which a filter should be applied. An extension of the one-dimensional
WENO-filtering in Blossey and Durran (2008) can be found in Harris et al. (2011).

For flux-limiting the most widely used method is flux-corrected transport (FCT)
introduced by Zalesak (1979). As in one dimension it seeks to find the optimal
“blending” of a monotone flux and a high-order non-monotone flux. FCT is
described in detail in Durran (1999) and hence not repeated here.

8.5.3 Practical Integration Over Areas

For the approximation of the overlap integrals in (8.26) and (8.33) we have only
discussed how to approximate the overlap areas and how to do reconstructions so
far. It remains to be shown how to go about integrating the sub-grid-scale recon-
struction function over that area. If the sides of the overlap areas are aligned with
the coordinate lines, direct integration is usually straightforward since the inte-
grals effectively reduce to one dimension (see, for example, Nair and Machenhauer
(2002)). However, if the overlap area is allowed to be an arbitrary polygon the
integration is more involved. There are basically two approaches that exactly inte-
grate polynomial functions over polygons. Firstly, direct integration over overlap
areas using Gaussian quadrature. Secondly, the area-integrals can be converted into
line-integrals via Gauss-Green’s theorem.
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Both of these approaches are discussed below. We assume that the overlap cell
sides are straight lines with arbitrary orientation and that the overlap area ayg is
simply connected. This is the most general case. Mathematically the problem is
stated as follows: Given a reconstruction function in cell A¢ which is a polynomial,
say of order 3,

Yol y) = Y e Dxtyl, (8.66)
i+j<2
where céi’j ) are reconstruction coefficients, compute the integral

/ Ye(x, y)dA. (8.67)
arye

8.5.3.1 Direct Integration Using Gaussian Quadrature

For the direct integration using Gaussian quadrature it is often convenient to break
up axy into triangles which is the case we will discuss here. So, for simplicity, sup-
pose the overlap area is already an arbitrary triangle'® with vertices located at Xk, h>
Ykens h = 1,2,3, and numbered counter-clockwise. Exact integration of the poly-
nomial (8.66) can be achieved using Gaussian quadrature which approximates the
integral in terms of a weighted sum of functional evaluations at quadrature points.
The quadrature points are

(X;(jg) ykg)) = ¢ (4xke1 + Xkeo + Xke3.4Vken + Voo + Yres) . (8.68)

b (O
(x ;(ce), ](Cg)) = ¢ (xke,1 + 44Xk + Xke3. ke + Ve + Yres) . (8.69)

(x;(fg) ykg)) = 1 (Xke,1 + Xke2 + 4Xk0,3. Vie1 + Ve + 4Vkes) . (8.70)

(Dukowicz and Baumgardner 2000) and the integral of ¥, (x, y) over the overlap
triangle ag is given by

A a c
[ Vi(x,y)dA = % [WZ( ](cg) ykg)) + WZ(XI(CZ? yk[)) + WZ(xl(cg) ykg )]

(8.71)
where Aayy is the area of ayy

Aayy = % [(xke2 — xie,1) Vs — Yeen) — Dre2 — Yiee,1) (ke ,3 — Xke,1) ] -
(8.72)
Note that the quadrature points only have to be computed once for each overlap
area and can then be re-used for each additional tracer (since all tracers follow the

18 Note that any area with straight line sides can be broken up into triangles.
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same trajectories/areas). For flux-form transport schemes efficient algorithms can
be designed that decompose the overlap areas into triangles if the flux-areas are
confined to nearest neighbors (Dukowicz and Baumgardner 2000). For longer time-
steps where the flux-areas may span several Eulerian cells not sharing a face with the
flux-face, the decomposition into triangles is more complicated. In such situations
it may be more convenient to use the line-integral approach described next.

8.5.3.2 Converting Area-integrals into Line-integrals

This approach was originally introduced by Dukowicz (1984) and Dukowicz and
Kodis (1987) in numerical schemes: For the simply connected overlap area ag¢ (not
necessarily a triangle but any polygon) the following integral equation holds,

[/ Ye(x,y)dA = ¢ [Pdx+ Qdy], (8.73)
aie daye

where day is the boundary of agy. The potentials P = P(x,y) and Q = Q(x, y)
are chosen such that they satisfy

P 90

oy + Fie Yelx, ).

The integral of the polynomial reconstruction function ¥, (x, y) in (8.66) can be
written as

[ Vexoyyda= Y el Puwl? (8.74)
i+j<2
where céi’J ) are the reconstruction function coefficients and wy ’J ) are weights given
by
1 &
wl((%’o) =5 Z (xken + Xken—1) (Vkeh — Vit.h-1) - (8.75)
h=1
| &
w,(i; 0 = =z (Xig,h + Xkoh Xken—1 t+ X;fe,h_l) (Yke.n — Yit,n—1) .(8.76)
h=1
| M
w;((% = 5 Z (yig,h +yke,hyke,h—1+y;35,h_1) (Xke.n—Xken-1). (8.77)
h=1
N

=

1
w,(f[ 0= —2 Z (Xkeh+Xke,h—1) (x]%(,h +X;%g,h_1) (Yke.h—Yke,n—1) .(8.78)
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Np
1
w,ﬁ%’” = 70 (Yke,h+yke,h—1)(y;fg,ﬁy;fg,h_l)(sz,h—Xke,h—l) ,(8.79)
h=1
L
wz(clg’l) = Z { |:yk£,h (3 Xeon + 2 Xkt.h Xie 1 + x,%“,_1> +
h=1
Vit,h—1 (x;%g,h + 2 Xke,h Xko,h—1 + 3 xl%e,h—l) ]
(Vke.n — yk[,h—l)} ., (8.80)
and
(Xke,ns Yien)s h=1,....Ny (8.81)

are the coordinates for the sides of the overlap area ay; numbered counter-
clockwise. So Nj, = 3 for triangular overlap areas, N = 4 for quadrilateral agy’s
etc. Note that (Xg¢ p—1, Yke,h—1) and (Xge n, Yke,n) are contiguous points (defining
a line segment) and the index % is cyclic so that # = 0 equals i = Nj,.

The weights w,(;éj ) given in (8.75-8.80) have been derived by using (8.73) with
the following pairs (P ¢/, Q¢:1))

( POO _ g 000 _ x),

(P(”’) =0, 00 = );—2)
2

(p(O,l) — _y_7 00D = O),
2

(P(z"’) =0, 00 = %3)
3

(p(0,2) — _y_7 002 = O),
3

(P(1=1> =0,000 = szy)

The choice of P and Q is not unique and can often be chosen for convenience. Here
we haven chosen P and Q as in Bockman (1989). Note that the integration of the
polynomials is exact.

Using the line-integral approach the final discretized transport scheme in
Lagrangian and Eulerian form can be written as

Ly L
Vi A=) » Yoo, y)dA =Y | Y w0 882
=1 {=1|i+j=<2
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and
+1 g
—n —n
Vi Ade =Yg A+ Y| D F,
=1 | {=1

Li

4
=P A+ Y 3 S w0 | p. (8.83)

=1 |=1]i+j=<2

respectively, where the individual overlap fluxes are written as
Fie = sk / Ve(x, y)dA. (8.84)
afe

For each overlap area the sign-function sz, is +1 for inflow and —1 for outflow. The
subscript £ in s; is added to handle situations where there is both inflow and outflow
for a face (see Harris et al. 2011, for details).

It is worth noting the separation of the weights w](cléj ) from the reconstruction
coefficients c/’f ) in (8.82) and (8.83). In practice this separation implies that once
the weights have been computed they can be reused for the integral of each addi-
tional tracer distribution. Hence the transport of additional tracers reduces to the

multiplication of precomputed weights and reconstruction coefficients.

8.5.3.3 Extension to Spherical Geometry

Extending the aforementioned approaches to spherical geometry generally com-
pounds the complexity of the problem, since extra care must be taken when metric
terms are present. So instead of having interpolate a polynomial a more complicated
function must be integrated

[ [ ¢(@. ) V(e fda d. (8.85)

where (o, ) is the coordinate for the computational space chosen for the
integration'® and g(«, B) is the metric term. For example, if one chooses geographic
coordinates («, §) = (A, 8), where A is the longitude and 6 is latitude, and then the
metric term is g = R? cos(#) where R is the radius of the Earth. So instead of hav-
ing to integrate a polynomial a much more complicated function must integrated. In
general, exact integration is no longer possible as was the case in Cartesian geom-
etry. There are, however, some special cases where direct integration is possible
(discussed below).

19 For simplicity we only consider two-dimensional computational spaces although one may also
use three-dimensional Cartesian coordinates for horizontal problems on the sphere.
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The choice of coordinate system in which the integration is performed has impli-
cations on how the sides of ax¢ are approximated on the sphere and how accurate the
reconstruction is. Here we will focus on the former. In Cartesian geometry the most
general approximation to cell sides seems to be straight lines. The spherical exten-
sion of that is to approximate cell sides with great-circle arcs which seems the most
general and accurate approach (at least in the case where the Eulerian cells are con-
structed from great-circle arcs). Hence, in the following we assume that great-circle
arcs are the most accurate approximations to dyy.

In the widely used Spherical Coordinate Remapping and Interpolation Pack-
age (SCRIP) proposed by Jones (1999) the sides of ay¢ are approximated with
straight line segments in latitude-longitude coordinates (i.e., line segments of the
form 8 = aA + b). So for sides that are parallel to longitudes (which are great-
circle arcs) and latitudes (which are small circle arcs) the representation of the cell
sides is exact. However, for any other orientation it is not. While the error in cell
side approximation is small near the Equator the errors may become significant in
the polar regions (see Fig. 8.9 in Lauritzen and Nair (2008)). A way to alleviate
this problem is to rotate the overlap area to the Equator. Using Gauss—Green’s theo-
rem the integration here can be performed exactly whereas direct integration using
Gaussian quadrature will not be exact due to the metric term.

An alternative approach is to use the gnomonic coordinate as the computational
space. The gnomonic projection was designed so that connecting any two points
with a straight line in that computational space will mirror a great-circle arc on
the sphere. Another beneficial property of this computational space is that exact
integration of (8.85) is possible along coordinate lines in the gnomonic coordi-
nate system when applying the Gauss—Green’s theorem (Ullrich et al. 2009). For
lines not parallel to the coordinate lines the potentials that need to be integrated in
the line-integrals can be evaluated/approximated using one-dimensional Gaussian
quadrature (Lauritzen et al. 2010). Again, direct integration will always be inexact
due to the gnomonic metric terms.

8.6 Extension to Three Dimensions

The discussion so far has been limited to two spatial dimensions and we will only
briefly discuss three-dimensional schemes, as a more thorough discussion would
need at least a chapter on its own. There are basically three ways of extending
schemes to three dimensions which we will discuss separately below.

8.6.1 Floating Lagrangian Vertical Coordinate

The floating Lagrangian coordinate was introduced in a theoretical context by Starr
(1945) and first applied in discretized models over half a century later (e.g., Lin
2004; Lauritzen et al. 2008; Nair et al. 2009). Instead of using vertical coordi-
nates based on height or pressure, a vertical coordinate ¢ that is constant along
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Fig. 8.18 A graphical
illustration the floating
Lagrangian coordinate. The
vertical coordinate is
pressure. ps and py,, is the
pressure at the surface and
model top, respectively. The
dashed lines is the reference
Eulerian grid and solid lines
are Lagrangian surfaces
resulting from letting the
Eulerian levels evolve in
time, and require a periodic

Prop

remapping
Topography Ps
three-dimensional parcel trajectories is used
d
_E =0, (8.86)
dt

(see Fig.8.18). The benefit of using such a vertical coordinate is that the ver-
tical advection terms in the equations of motion are eliminated and only two-
dimensional transport/advection operators are necessary. The downside, as with
any other Lagrangian approach, is that the vertical coordinate deform as the flow
evolves. In order to avoid overly deformed vertical coordinates a remapping of the
prognostic variables in the vertical to some reference vertical coordinate is neces-
sary. This may be a source of vertical diffusion in the model. Note that isentropic
vertical coordinates are a subset of floating Lagrangian vertical coordinates as they
are also material surfaces for adiabatic flow.

8.6.2 Operator Splitting

Using a cascade finite-volume scheme (flow based splitting) or Eulerian opera-
tor splitting the extension to three dimensions can be made less costly than when
using fully three dimensional approaches simply because they require only one-
dimensional operators. Eulerian type operator splitting use a combination of oper-
ators applied along coordinate lines (see, e.g., Pietrzak 1998). In such approaches
errors due to the coordinate splitting (also referred to as splitting error) will appear
if care is not taken to alleviate them. Various methods for reducing the splitting error
have been proposed (e.g., Strang 1968; Lin and Rood 1996). The traditional Eule-
rian type operator splitting approach may be referred to as a fixed direction based
splitting method as opposed to the flow-based splitting approach discussed below.
More recently the finite-volume cascade approach was suggested by Nair
et al. (2002) and Zerroukat et al. (2002) which uses a combination of Eulerian
and Lagrangian operators, that is, the operators are successively applied along
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coordinate lines and Lagrangian lines, respectively. So rather than being a fixed
direction based splitting method it is flow-based (for a review see Machenhauer
et al. 2009). Since the splitting is flow-based the splitting error is reduced. Note that
one may use the cascade approach to extend fully two-dimensional methods to three
dimensions by applying a cascade sweep in the vertical based on the horizontally
transported values.

8.6.3 Rigorous Three-dimensional Approach

Fully three-dimensional schemes based on the space-time finite-volume approach
discussed in this chapter are rather complex. Instead of having to deal with overlap
areas (as discussed in this chapter) one has to compute overlap volumes which is
significantly complicating the problem. Examples of fully three-dimensional remap-
ping algorithms are given in, e.g., Garimella et al. (2007) for Cartesian geometry.
The authors are not aware of any fully three-dimensional finite-volume remapping
schemes on the sphere.

8.7 Time-integration and Tracer Transport

If all models would use the same numerical method for tracer transport as used for
the continuity equation for air, and if those would always be solved by using the
same time-step, then this section would be irrelevant. Most models, however, use
one of the following three approaches: Either they use different schemes for air and
tracers, use different time-step size for air and tracers (but explicit time-stepping for
both) or semi-implicit time-stepping is used for air and explicit time-stepping for
tracers (and both use the same time-step). All of these approaches potentially have
consistency problems as discussed separately for each approach below.

8.7.1 Different Schemes Air and Tracers

If different schemes are used for air and tracers consistency cannot be achieved
other than with fixers that enforce consistency in a ‘ad hoc’” and somewhat arbitrary
manner. See Sect. 8.3.4 and references therein.

8.7.2 Different Time-steps for Air and Tracers (Sub-Cycling,
Super-Cycling)

Given the increase in the number of prognostic tracers in atmospheric models, sig-
nificant computational cost savings can be obtained by using a longer time-step for
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tracers than for the solution of the air continuity equation. As discussed in Sect. 8.2.2
the maximum allowable time-step that can be used for the solution of the equation
for air density (when using explicit time-stepping) is determined by the fastest wave
in the system, since the continuity equation for air is directly coupled to the other
equations of motion. The continuity equations for tracers, however, are not directly
coupled (at least in terms of stability) to the momentum and thermodynamic equa-
tions and therefore have less restrictive time-step limitations. So a stable and more
efficient integration scheme can be designed by sub-cycling the solution of the air
density equation with respect to the tracer equations. In doing so it is important to
retain the consistency discussed in Sect. 8.2.2, that is, for a constant mixing ratio
(g = 1) the tracer transport equation should yield the same solution as the con-
tinuity equation for air (a.k.a. ‘free-stream preserving’). A scheme possessing the
‘free-stream preserving’ property can be designed as described below.

A conceptual explanation of sub-cycling is given with the aid of Fig. 8.19. For
simplicity assume one spatial dimension, flow from left to right and that the wind
at the right cell wall is zero (no mass flux through that boundary). The number of
times the integration of the air density equation is sub-cycled with respect to the
tracer equations is referred to as ksplit. In Fig. 8.19 ksplit is 4. At time t = n At the
mass in the cell is p”, where we have assumed that the cell width is one (grey area
on Fig. 8.19a). We then integrate the full dynamical system of equations (continu-
ity equation for air, momentum equations and thermodynamic equation) forward in
time tot = (n+ 1/ksplit) At. The flux of mass into the cell during this forward inte-
gration corresponds to the red area ‘swept’ through the left cell wall, on Fig. 8.19a
(left column) and hence the air mass in the cell increases by the red area in cell
k (Fig. 8.19a right column). This procedure is repeated three, or (ksplit — 1), more
time-steps during which the blue, yellow and green areas are ‘swept’ through the
left cell wall and adding to the total air mass in the cell (Fig. 8.19b,c,d respectively).
The total flow of mass into the cell is the sum of all the areas on Fig. 8.19a,b,c,d
corresponding to an average flux into the cell given by the brown area on Fig. 8.19%e.

Since we are updating tracers on the long time-step we use the transport scheme
to estimate the average mixing ratio over the full time-step At, that is, the average
of ¢" over the brown area in Fig. 8.19¢ denoted (¢"). Then the final forecast for the
tracer is given by the product between the background flow of mass and an estimate
of the mixing ratio over the long time-step

ksplit
(pq)n—l—l — (pq)n + (qn) |:Z Apn+i/ksplit:| i (8.87)
i=1
where §p" /%l i the flux of air mass into the cell during one sub-cycled time-step

At [ksplit. If ¢ = 1 then (8.87) reduces to the equation for air mass and consequently
the scheme is free-stream preserving. Note that updating the tracers on the short
time-step will not yield the same result.
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Fig. 8.19 A graphical illustration of sub-cycling the continuity for air mass with respect to tracers.
Details and explanations are given in the text
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8.7.3 Semi-Implicit Time-Stepping for Air and Explicit

Jor Tracers

If semi-implicit time-stepping is used (see Chap. 6) then the prognostic equation for
air density can be written as

At ~
P = Bl S (D7 DY), @.88)
n+1

(e.g., Lauritzen et al. 2006) where p is the explicit prediction, p'¢ is a con-

exp
stant reference density, D is the divergence and D is the divergence extrapolated
to time-level n 4 1. The terms on the right-hand side of (8.88) involving D are
referred to as the semi-implicit correction terms and represent the implicit coupling
to the momentum equations. If the tracer transport equation is solved explicitly,
as is usually done, then the scheme is not ‘free-stream preserving’ because of the
semi-implicit correction terms (although they are usually small).

So for consistency, one should also solve the tracer transport equation semi-
implicitly

At -
(p)"*" = ()5, + - (ap)™ (D"*' = D"*1), (8.89)

(e.g., Lauritzen et al. 2008), however, that seems problematic. For example, if ¢ is
zero in some area and the semi-implicit correction terms are non-zero in that area,
then tracer mass will be produced in an area where g should be zero.

Thuburn et al. (2010) present a method where they discretize an alternative
form of the semi-implicit continuity equation. Through a series of iterations the
semi-implicit correction terms cancel and consistency between air mass and tracer
transport is obtained. For more details see Thuburn et al. (2010).

8.8 Final Remarks

In this chapter a detailed discussion of desirable properties for transport schemes
intended for meteorological applications has been presented. The finite-volume
method for tracer transport (in two-dimensional Cartesian geometry) has been intro-
duced and discussed using a remap approach which conceptually introduces the
finite-volume method through following characteristics of the flow. This conceptual
framework has been used to explain and analyze several schemes from the liter-
ature. Practical considerations related to the coupling of air mass equations and
tracer mass equations has been discussed in some detail as well as brief intro-
ductions to extensions to spherical geometry and three dimensions. The authors
hope to have communicated some of the aspects that go into modeling trans-
port accurately in large modeling systems. Although physical parameterizations
that represent sub-grid-scale processes are probably among the largest sources of
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uncertainty in weather and climate models, the accurate representation of transport
is very important. Errors in resolved-scale transport can change scientific results
(e.g., Rasch et al. 2006; Wild and Prather 2006).
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Chapter 9

Emerging Numerical Methods for Atmospheric
Modeling

Ramachandran D. Nair, Michael N. Levy, and Peter H. Lauritzen

Abstract This chapter discusses the development of discontinuous Galerkin (DG)
schemes for the hyperbolic conservation laws relevant to atmospheric modeling.
Two variants of the DG spatial discretization, the modal and nodal form, are consid-
ered for the one- and two-dimensional cases. The time integration relies on a second-
or third-order explicit strong stability-preserving Runge—Kutta method. Several
computational examples are provided, including a solid-body rotation test, a defor-
mational flow problem and solving the barotropic vorticity equation for an idealized
cyclone. A detailed description of various limiters available for the DG method is
given, and a new limiter with positivity-preservation as a constraint is proposed
for two-dimensional transport. The DG method is extended to the cubed-sphere
geometry and the transport and shallow water models are discussed.

9.1 Introduction

Atmospheric numerical modeling has undergone radical changes over the past
decade. One major reason for this trend is the recent paradigm change in scien-
tific computing, triggered by the arrival of petascale computing resources with core
counts in the range of tens to hundreds of thousands. Due to these changes, model-
ers must develop or adapt grid systems and numerical algorithms which facilitate
an unprecedented level of scalability on these modern highly parallel computer
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architectures. The numerical algorithms which can address these challenges should
have local properties such as a high on-processor operation (floating-point operation
or flop) count and a minimal parallel communication footprint.

With the increased amount of computing resources available to modelers, it
is now possible to develop global models with resolution of the order of a few
kilometers. This capability bridges the gap between traditional weather and cli-
mate modeling efforts, which operate on different spatial and temporal scales, and
sets the stage for the development of a unified weather and climate model. How-
ever, this opens up another challenge — switching the governing equations from
the hydrostatic to non-hydrostatic regime. The equation set generally used in tra-
ditional global climate models (hydrostatic equations of motion) is not adequate at
the non-hydrostatic scale. In the very high-resolution regime viable options for the
governing equations of motion are the compressible (or quasi-compressible) Euler
equations or Navier—Stokes equations. Also, it is highly desirable that the underly-
ing model equations follow the physical laws of conservation for integral invariants
such as mass, energy, enstrophy, etc. In order to comply with these constraints and
address new computational challenges, the next generation of atmospheric models
should be based on robust numerical methods which satisfy the following set of
criteria:

Inherent local and global conservation

High-order accuracy

Computational efficiency

Geometric flexibility (any type of grid system, suitable for adaptive mesh
refinement)

Non-oscillatory advection (monotonic, positivity preservation)

e High parallel efficiency (local method, petascale capability)

There are several successful numerical methods, particularly in the finite-volume
(FV) literature, which satisfy most of the above-mentioned properties. The FV
schemes are inherently conservative but mostly low-order accurate (third-order or
less). High-order extensions of the FV method are possible at the cost of wider
halo regions. For example, the weighed essentially non-oscillatory (WENO) method
(Shu 1997) is a powerful approach; however, a (k 4+ 1)th-order accurate WENO
scheme in 1D requires 2k + 1 cells (control volumes). Thus, as the order of accu-
racy grows the WENO scheme requires a wider computational stencil (halo region)
which can seriously impede the parallel efficiency. A local method like the spectral
element (SE) method has the local domain decomposition property of the finite-
element (FE) method combined with high-order accuracy and the weak numerical
dispersion and low numerical dissipation of spectral methods. The SE method offers
excellent parallel efficiency and has become the method of choice for many prac-
tical applications. The classical SE method is not necessarily based on hyperbolic
conservation laws and is not inherently conservative. Nevertheless, the conservation
properties can be engineered in the SE discretization (Chap. 12) much as they were
in the conservative finite-difference discretization developed by Arakawa and Lamb
(1977) and Simmons and Burridge (1981).
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The discontinuous Galerkin (DG) method retains all the nice properties of the
SE method, plus it is inherently conservative. The DG method has the potential
to address all of the above-listed properties. DG algorithms for solving partial dif-
ferential equations are becoming very popular in a wide range of applications in
computational science and engineering. The primary focus of this chapter is on the
development of the DG method for atmospheric modeling applications.

The DG method may be viewed as a hybrid approach, combining the ideas of
classical FV and FE methods into a unified framework to exploit the merits of both.
As a FV method, DG discretizations employ discontinuous elements (local control
volumes) and flux integrals along its boundaries, guaranteeing local conservation.
Similar to the FV method, DG schemes can incorporate slope limiters for control-
ling spurious oscillations in the solution. However, in contrast to FV methods, the
DG method avoids the reconstruction process (often requiring wider stencil). The
FE or SE structure (element-wise Galerkin approach) makes the DG method high-
order accurate and provides the ability to handle complex geometries such as the
Earth’s surface or boundary conditions. However, as opposed to the FE/SE meth-
ods, the elements used for the DG methods are discontinuous, which leads to a
localized discretization. This feature offers excellent parallel efficiency as well as
efficient adaptive mesh refinement (AMR) capability, even with non-conforming
elements.

The DG method was first introduced by Reed and Hill (1973) and later ana-
lyzed by Lesaint and Raviart (1974) for linear advection equation. A rigorous
mathematical foundation for the DG method was laid by Cockburn and Shu (1989)
and Cockburn et al. (1990), where high-order accurate explicit Runge—Kutta (RK)
time integration schemes combined with DG spatial discretizations for nonlin-
ear systems of conservation laws were developed. The resulting RKDG method
has become widely popular in different computational science and engineering
disciplines (Cockburn et al. 2000; Remacle et al. 2003).

The remainder of the chapter is organized as follows: in Sect. 9.2 we describe the
basic DG discretization in 1D, and the extension to 2D is given in Sects. 9.3 and 9.4
describes various limiters for the DG method with examples. An extension of the
DG method onto the sphere is given in Sect. 9.5, where the shallow water model for
the cubed-sphere is described. Section 9.6 offers some concluding remarks.

9.2 The DG Method

Although the DG method is applicable to a variety of parabolic and elliptic prob-
lems (Riviere 2008), our primary focus is on the DG method applied to hyper-
bolic conservation laws which are relevant to atmospheric numerical modeling.
Before detailing the DG discretization procedure we briefly review conservation
laws.
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9.2.1 Conservation Laws

Systems of conservation laws are very important mathematical models for a vari-
ety of physical phenomena that appear in fluid mechanics and several other areas
including atmospheric sciences. A large class of atmospheric equations of motion
for compressible and incompressible flows can be written in conservation form.
Conservation laws are systems of nonlinear partial differential equations (PDEs)
most readily expressed in flux form and can be written:

3 > 9
S UKD+ ; WjF,- (U,x,t) = S(U), ©.1)

where x is the 3D space coordinate and time ¢ > 0. U(x,?) is the state vector
representing conserved quantities (e.g. mass, momentum or energy). F;(U) are
components of F, a prescribed flux vector which accounts for diffusive and convec-
tive effects, and S(U) is the source term representing exterior forces. The system
of Euler and Navier—Stokes equations, widely used for modeling fluid motion, can
be cast in this form. The mass continuity equation is an example of scalar conser-
vation law and is a special case of (9.1), which is obtained by applying the physical
principle of conservation of mass in a fluid flow:

dp

V- (pV) = 0,
o T (pV)

where p is the fluid density, V is the velocity of the fluid, and ‘V-’ denotes the
divergence operator. Note that discretizing the equations in flux-form is important
because application of the divergence theorem is straightforward and the conserva-
tion can be maintained numerically. We consider several hyperbolic conservation
laws based on (9.1) in this chapter and numerically solve them by using the DG
method.

9.2.2 The DG Method for 1D Problems

The basic ideas of the DG discretization may be understood in a simple 1D frame-
work. In order to introduce the DG discretization and notations, we first consider
the one-dimensional scalar conservation law:

U oF(U
— + ( )=0 in £2x(0,7], (9.2)
ot ox

where U = U(x,t) is the conservative variable evolving in time with a known

initial condition U(x,t = 0) = Up(x), Vx € £2, and F(U) is the flux function. For
a linear advection problem the flux functionis F(U) = cU, where c is the velocity;
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for the inviscid Burgers’ equation, a simple non-linear problem, the flux function is
F(U)=U?)2.

9.2.3 Galerkin Formulation

The DG discretization consists of partitioning the global domain £2 into N,;,, non-
overlapping elements such that 2 = Ui.v;’ll’” 2; with Q; = [xj_1/2,Xj41/2), ] =
1,..., Neim. With this setup the width of the jth elementis Ax; = x;41/2—X;_1/2
and the midpoint is defined by x; = (x;41/2 + X;—1/2)/2. Note that the edges
(interface) x 41/, of the element £2; are shared by the adjacent elements in this
partition, as shown schematically in Fig.9.1.

The next step is to cast the problem (9.2) into the weak Galerkin formulation.
This is done by multiplying (9.2) by a test (weight) function ¢(x) and integrating
over the element £2;:

U JoF(U

L[ 52
2; ot dax

The term weak refers to the fact that the formulation (9.3) admits a larger class of

solutions as opposed to the strong or classical form (9.2). Integrating the second

term of (9.3) by parts (Green’s method) yields

AU (x,1) go()
| e [ Fwen %2

J 2;
+[FUG.0) ()] % e, (9.4)
/ 1/2

where X712 is the left limit at the edge x; 41,2, and xj 1/2 is the right limit at the
edge x;_/, of the element £2;, as indicated in Fig.9.1. While the Galerkin formu-
lation procedure (9.4) is the same for each element §2;, special attention must be
paid to the evaluation of fluxes at the edges because this flux is the only connection
between the elements.

Each element §2; has its own approximate local solution, allowing the global

solution on £2 to be discontinuous at the element interfaces x;41,,. This leads to

4
<] I I
U U U U
Xj3/2 Xj1/2 Ax; Xjt1/2 Xji3/2
Fig. 9.1 Partition of the 1D domain §2 into non-overlapping elements £2; = [x;y1/2, X;—1/2],

with element width Ax; and edges x;+,/,. The signs (=) and (+) 1nd1cate the left and right
limits of the edge point (interface) x; /2, respectively. The global solution is discontinuous at
these points
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Q; Xj+1/2 Q.

Fig. 9.2 Schematic diagram illustrating the discontinuity of the solution U(x, ¢) and the flux func-
tion F(U) at the element interface (edge) x;41/2. Filled circles on the smooth curves are the
element-wise solution points and the open squares at the edges are the flux points. At the inter-
face the flux function has two contributions, one from the left F(U ™), and one from the right
F(UT). The discontinuity of F(U) at the interfaces is resolved by employing a numerical flux
formula

two different values for the flux functions at each interface x ; 1.1/2: F(U (x; 120 1))
on the left and F(U(x 7 t)) on the right. This discontinuity at the element edges

j+1/2°
must be addressed by employing a numerical flux (or approximate Riemann solver)
FU-, UM = F[U(xJTH/z, 1), U(x;.LH/z, t)], which provides the crucial coupling

between the elements. Figure 9.2 describes schematically the discontinuity of the
flux function at the element interface x; /5.

The upwind based numerical fluxes used for DG applications are in fact identi-
cal to those developed for the finite-volume methods. A variety of numerical flux
formulae are available with varying complexity, however, the Lax—Friedrichs (LF)
numerical flux is cost-effective and widely used for many applications (Qiu et al.
2006). The LF flux formula is defined as follows:

FU—U") = % [FUT) + FUT) = amax (U™ = UT)] 9.5

where o« i8S the upper bound of |F’(U)|, the flux Jacobian, over the entire
domain £2 (for scalar problems). If . is evaluated only at the local element
edges then (9.5) is known as the local Lax—Friedrichs or Russanov flux. For a lin-
ear advection problem a,x = |c| and for the inviscid Burgers’ equation oy =
max(|U~[,|UT)).

9.2.4 Space Discretization

In order to solve the weak Galerkin formulation (9.4), we assume that the approxi-
mate (numerical) solution U, & U(x, t) and the corresponding test function ¢y, are
polynomial functions belonging to a finite-dimensional space V},. This space may
be formally defined as V, = {p : p |e; € Pn(£2;)} where Py is the space of
polynomials in §2; with degree < N.
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For the approximate solution Uy (x, t), the DG spatial discretization based on the
weak formulation (9.4) combined with (9.5) can now be written as follows:

AUy (x, 9
/ﬂ %%(x)dx: / F(Ua(x.1)) <p5,)§x) dx

J 2;

[P U U 4120 01612 —F U U 120 ey )]
(9.6)

where Uy, ¢, € Vy forall 2;; j = 1,..., Nepy. This completes the DG formula-
tion of problem (9.2).

In order to solve (9.6) accurately and efficiently, we need to make some judicious
choices for the integrals and polynomial functions employed in (9.6). The inte-
grals can be accurately computed using the high-order Gaussian quadrature rules.
Moreover, choosing orthogonal polynomials as a basis for Uy and ¢y, in (9.6) sig-
nificantly enhances computational efficiency. This is because the coefficients of the
time derivative in (9.6) reduce to a diagonal matrix when U}, and ¢, are orthogo-
nal polynomials. The orthogonal basis set which spans 1, may be based on either
modal or nodal expansions. We consider these two cases separately in the following
sections.

9.2.4.1 Modal Formulation

The modal basis set consists of orthogonal polynomials of degree k monotoni-
cally increasing from 0 to N, and each basis function represents the moment of
order k (or, equivalently, each order contributes an extra moment in the expan-
sion (Karniadakis and Sherwin 2005)). The Legendre polynomials P (£),k =
0,1,...,N, & € [-1,1] provide an excellent choice for the orthogonal basis func-
tion in V},. A major advantage of this choice is that the computations in (9.6) can be
significantly simplified by exploiting the properties of Legendre polynomials. The
first few Legendre polynomials are tabulated in Table 9.1.
Higher degree Py (§) can be generated by the following recurrence relation:

2k —1
k

Pk@):[ ]SPk_l(s)—[k—_l] Peoa(®). k=234 (©O7)

k

At the edges of the interval [—1, 1], Px(—1) = (—=1)¥ and P¢(1) = 1, forany k > 0.
In Fig. 9.3 the left panel shows the Legendre polynomials of degree up to k = 4.

Table 9.1 Legendre polynomials Py (&) of degree up to k = 4
Degree (k) 0 1 2 3 4

P (§) 1 & @&-D/2 §68-3/2 (356 —308* +3)/8
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Legendre Polynomials (Degree <=4) 4th Degree Lagrange Basis Functions
! k=0
ksA
0.5 B k-—- 3 ,,f
- : T X kb 7
g 0 . £
_05 -::‘: ’/’,/ P R k:4 _05 k:4
-1f , , , -1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
X X

Fig. 9.3 The left panel shows Legendre polynomials of degree from k = 0 to 4, which can be
used as basis functions for the modal DG method. The right panel shows Lagrange-Legendre
polynomials of fixed degree k = N = 4, whose zeros are at the Gauss—Lobatto-Legendre (GLL)
quadrature points. The nodal version of DG employs GLL quadrature points, which are in the
interval [—1, 1] and marked as filled circles

The orthogonality of Py (§) implies that

1
f_ Pel@) Pu(6) de = See. Eel-11], 9.8)

2k + 1
where 8¢ is the Kronecker delta function (§x¢ = 1ifk = €, and §xy = 0if k # £).

To adopt an orthogonal basis set { Py (é)}fc":o for the DG discretization (9.6),
we first need to introduce a mapping between x on each element §2; and the local

variable £ € [—1, 1]. Irrespective of the physical length Ax;, each element §2; can
be mapped onto a unique reference (or standard) element Q = [—1, 1] such that

_ 2(x — xj)

§ Ax; 9.9)

Figure 9.4 illustrates schematically the mapping between each §2; and the reference
element Q. In terms of the new local variable £ = £(x), we denote the approximate
solution in any element £2; by U; = U; (£, t) and it can be expressed as

N
Ujg.t) = Y US @) Pe(§) for €e[-1.1], (9.10)

k=0

where the expansion coefficients, U Jk (z), are the moments or degrees of freedom

(dof) evolving in time. The explicit form of U Jk () is derived using (9.8) and given
by

1
UJ’F(;):Zk;_l/ Uj(E.1) P(§)dE, where k=0,1,....N. (9.11)
-1
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-1 700 N +1
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z 7 \ N
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7/ \ ~
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e \ N
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Q s \ Q; N Qi
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Fig. 9.4 A schematic diagram of the mapping between the unique reference element Q = [—1, 1]

and each element £2; in the physical domain £2. The filled squares on Q indicate the Gaussian
quadrature points in the interval [—1, 1] and the filled circles are the corresponding quadrature
points on the elements. All the integral and differential operations required for DG discretization
are computed on Q

Note that (9.11) may be interpreted as a transformation (or a projection operation)
from the physical space to the spectral (Legendre) space with inverse transformation
(9.10). It is clear from (9.11) that the zeroth moment,

_ 1 !
Uy =U; = 5/_1 U;(E 1) dE, 9.12)

is the average value U ;. Similarly the first, second, and higher moments are respon-
sible for the linear, quadratic, and higher-order variations of U(§) in the element.
The left panel in Fig. 9.3 shows the Legendre polynomials of degree up to N = 4;
each polynomial corresponds to the kth moment in the modal formulation.

We can simplify (9.6) by substituting U, (§, ¢) for Uy (x, ¢) and Pg(§) for @5 (x),
however, this requires a change of variable from x to £ in (9.6) with the new domain
of integration [—1, 1]. By using the summation (9.10) and the following relations
from (9.9)

AN O 20

2 7T 0x Axj o8]

the weak Galerkin form (9.6) can be written in the semi-discrete form as given
below:

AXJ' d d ¢ ! _
Sy o [ Por@as= [

dx

1
IF(UJ(E,I))PJQ(S)dS—

[ﬁf“/Z(I) Pe(1) = Fjo1y2(1) Pk(—l)],

(9.13)
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where P} (£) is the derivative of the Legendre polynomials (9.7). The above equa-
tion can be further simplified by employing the orthogonality relation (9.8) and the
property Py (1) = (£1)¥ as follows:

1
2k +1

A [ :
GURO = o [ o) P ds -

1 A .
Ax: [Ffﬂ/z(t) - Fj—l/z(t)(—l)k], (9.14)
J

wherek =0,1,...,N.

The integral appearing in (9.14) is evaluated using a high-order ((N + 1)-node)
Gaussian quadrature rule. Usually a Gauss—Legendre (GL) quadrature, which is
exact for polynomials of degree 2N + 1, or a Gauss—Lobatto-Legendre (GLL)
quadrature, which is exact for polynomials of degree 2N —1, is employed; the choice
of a specific quadrature is somewhat application dependent. For a given number of
quadrature points, the GL quadrature is more accurate than the GLL quadrature
but the former does not place nodes at the end points of the interval [—1, 1] (see
the marked points on the reference element Q in Fig.9.4). We further discuss the
relative merits of GL and GLL quadrature rules in a 2D context in Sect. 9.3.1.3.

In order to compute ﬁjil/z in (9.14), the flux F(U(§)) at the element edges
& = +£1 must be known. In the GL case, this means that one must interpolate the
solution U(§) using (9.10). However, the GLL quadrature includes the edges where
values of U(§) are readily available, and makes the edge flux computation easy.

Regardless of the choice of quadrature, the DG solution procedure for the conser-
vation law (9.2) on an element £§2; reduces to solving a system of decoupled ordinary
differential equations (ODEs) (9.14), which may be written in the following form.

d
szj = R(U;), (9.15)

M
where M is the coefficient matrix associated with the time derivative in (9.14)
and formally referred to as the mass matrix, U; is a column vector containing the
moments UK(t),k = 0,1,..., N, and R is the residual vector corresponding to
the right-hand side of (9.14). By virtue of the orthogonality of the Legendre poly-
nomials, the mass matrix M; is strictly a diagonal matrix with non-zero entries
{1/(2k + 1)},

This diagonal structure has great computational advantage because M; can be
inverted trivially and simplifies the solution process in (9.15). For the DG dis-
cretization considered here each element £2; relies on the same polynomial bases,
therefore the mass matrix M; = M is identical for each element in the domain £2.
Pre-multiplying (9.15) by M~ for each element results in the following system of
ODEs corresponding to the problem (9.2),

% U=L®U) in (0,T], (9.16)
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where U is the global vector of degrees of freedom which evolves in time, L is a
generic operator combining all the spatial discretizations. A DG method employing
N + 1 moments (or with polynomial bases up to degree N) is often referred to as
a PY method (Cockburn and Shu 2001). We will consider the time discretization
procedure for (9.16) in the following section.

In order to see the close link between DG and FV approaches, we consider the
first few moments k = 0, 1,2 in (9.14) as follows:

d 1 1A A
G000 = [ Frae® = Frapo)]. ©.17)
1d_,

1! 1 ra R
35U = 3 [ U0 = 5 [Faap© + ),
J J= J
(9.18)

6 [! 1 ra .
030 = 3o | PG = o [0 - Fapo)).
(9.19)

The mass matrix associated with the above system is M = diag|[1,1/2,1/5], and
the moments U jk (1) can be used for constructing the solution at a known time ¢t = ¢,
via (9.10) such that

Uj(E tn) = UJ (tn) Po(§) + U} (ta) P1(§) + U} (1) P2(£). (9.20)

For the simplest DG formulation, the P° case, (9.17) is the only equation to solve
in time. In this case UJ(-’ (t), the moment (dof) evolving in time, is nothing more

than the cell-average U j given in (9.12), which is an element-wise (or piecewise)
constant. Thus the DG P? case reduces to the classical piecewise constant Godunov
FV method (Toro 1999, Chap. 8). In a similar manner one can show the DG P! and
P? methods are related to the piecewise linear method (PLM, van Leer 1974) and
the piecewise parabolic method (PPM, Colella and Woodward 1984), respectively.
Nevertheless, there are subtle differences between regular FV and DG methods.
In FV methods such as PLM or PPM there is only one dof per control volume evolv-
ing in time, namely U j» irrespective of the spatial order of accuracy of the method
or the dimension of the problem. On the other hand, the DG method carries more
dofs per element (the cell or the control volume in an FV sense) and the number of
dofs grows with both the order of accuracy and the dimension (see Fig. 9.5). In other
words, a DG method packs more information into each cell than the FV method. For
example, in (9.20) three moments are required to construct the solution U (§) with a
P2 method, and the moments depend only on the element £2; resulting in a compact
computational stencil. The PPM method requires the reconstruction of parabolas of
the form (9.20) by utilizing the averages U ; from the neighboring cells, resulting in
a wider stencil. In both methods U (§) essentially represents the sub-grid scale dis-
tribution of the solution — even though the underlying discretizations are different.
However, as compared to PPM, the high accuracy and compactness of the DG P?2
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FV DG
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Xj-3/2 Xi-1/2 Xjt+1/2 Xj+3/2 Xj-1/2 Xj+1/2
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Fig. 9.5 A schematic showing a comparison between the classical 1D finite-volume (FV) and DG
methods. 7; = [x;_1/2, X;+1/2] may be interpreted as a cell in the FV method or an element in the
DG (P') method. For the FV method, the cell-average (shown as filled circles in the left panel) is
the only degree of freedom per cell evolving in time. The DG method has more degrees of freedom
(marked as filled circles in the right panel) per element evolving in time, however both methods
employ the same procedure to address the discontinuities at the cell boundaries x4/,

method comes with additional computational cost. The DG method presented here
may be viewed as a high-order compact FV method. A P2 transport scheme is also
similar to the multi-moment transport schemes developed by Prather (1986).

9.2.4.2 Nodal Formulation

The nodal expansion is based on Lagrange polynomials with roots at a set of nodal
points, which may include the edge points. The nodal bases are widely popular in
high-order spectral element methods (Karniadakis and Sherwin 2005). An important
aspect of the DG discretization is the choice of an efficient basis set (polynomials)
that span V},. Because of the inherent computational advantages associated with
nodal bases, they are adopted in DG discretization for many applications (Hesthaven
and Warburton 2008). The nodal DG scheme is potentially more computationally
efficient because it relies on solutions in physical (grid point) space, obviating the
need to transform between spectral and physical space, which is required for the
modal DG scheme (9.14).

The nodal basis set is constructed using the Lagrange polynomials /g (§), & €
[—1, 1], with roots at the Gauss quadrature points. The nodal points may be based on
the Gauss—Legendre (GL) or the Gauss—Lobatto—Legendre (GLL) quadrature rule.
However, we consistently employ the GLL quadrature for the nodal formulation
considered herein. The N + 1 GLL points {é;}fvz o (i-e., the nodal points including
the edge point %1), can be generated from the relation (1 — £2) Py (§) = 0, where
Py (§) is the Legendre polynomial of degree N. The basis functions are defined by

E-DE+1 Py(©)

M) = NN T Preo) € — )

(9.21)

where Py (§) is the Legendre polynomial of degree N. In Fig. 9.3 the right panel
shows the fourth degree nodal bases s (£), and N + 1 = 5 GLL points are marked
as filled circles. Since iy (§) is a Lagrange polynomial, the following property holds
at the nodes &;:

lifk =1,

hi(§1) = 8k = 0ifk £1.

(9.22)
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The discrete orthogonality of /¢(£) can be established through the GLL quadrature
rule, given by

1 N
| @ae~ Y feom 9.23)
- k=0

where f(£) is an arbitrary function with known values at the nodes (quadrature
points) and wy are the weights associated with the GLL quadrature rule, defined

to be
2

- NN+ D[Py EDP
As mentioned earlier, the GLL quadrature rule (9.23) is exact for polynomials of

degree up to 2N — 1. The discrete orthogonality of the basis function A, (&) can be
derived using (9.22) and (9.23) as follows:

Wk

1 N
[ I ® mi)ds ~ D i (Ee) b (Ee) we = wi g (9.24)
- {=0

Note that the integrand A (§) h; (§) is a polynomial of degree 2N, so the orthogonal-
ity does not strictly hold under exact integration. In other words, the orthogonality
of the nodal expansion given in (9.24) is not as rigorous as the continuous orthogo-
nality employed in the modal case (9.8). Fortunately, the error incurred in discrete
orthogonality is of the same order as the nodal expansion so the discretization is
consistent. Moreover, it is shown in Canuto et al. (2007) that the discrete norm is
uniformly equivalent to the continuous norm.

In the nodal expansion, the approximate solution U; (£, ) for an element §2; can
be written in terms of /g (§) as given below:

N
Uj.0) =Y Uje@ hie()). & e[-1.1], (9.25)

k=0

where U;x(t) = Uj(§,t) are the known values of U;(§,¢) at the GLL grid
points. Also, from (9.25) it is evident that the approximate solution is expressed as a
Lagrange interpolation polynomial. Analogous to the modal case, the weak Galerkin
formulation (9.6) can be simplified as follows: substitute (9.25) for the approxi-
mate solution and /g (§) for the test function, employing the properties (9.24) and
hi(£1) = 1. This yields the equation

1! 1 14 .
S U0 = 5 [ PO E0B© de= g [P = o))

(9.26)
where k = 0, 1,..., N. The right-hand side involves the derivative of the Lagrange
polynomial 72} (§), which needs to be calculated and stored at each of the quadrature
points in order to evaluate the integral in (9.26). The resulting matrix, known as
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the differentiation matrix, has the following explicit form (Karniadakis and Sherwin
2005; Canuto et al. 2007):

Ly () 1 :
InG) Ggp Lk # 1,

~WAEDN itk =1 =0,
) = 9.27)
WADN ifk=1=N,

0 otherwise.

The mass matrix associated with (9.26) is a diagonal matrix M with non-zero entries
{wg/ 2}~]1€V:0 and, by virtue of the GLL grids, the numerical fluxes F i+1/2 are readily
available at the edges £ = +£1. The system of ODEs (9.26) can be generalized for
the whole domain £2 exactly as in (9.16),

d .

7 U=L®0U) in (0,71,
where U is the global vector of grid point values Ujx, j = 1,2,..., Nej, and
k=0,1,...,N.

A remarkable difference between the nodal version (9.26) and the correspond-
ing modal version (9.14) of the DG discretization is the absence of the spectral
coefficients. In other words, the dofs to evolve in time in (9.26) are just the grid
point values of the approximate solution U, (), not the spectral coefficients as
in the modal case. Hence, there is no need to transform between spectral and
physical spaces at every time step, and this feature makes the nodal discretization
computationally more efficient (Levy et al. 2007).

9.2.5 Time Integration

The modal and nodal DG discretization both reduce the one-dimensional scalar con-
servation law to a system of ODEs (9.16) which can be solved using a variety of time
integration techniques (Chap. 5). In fact, the DG discretization reduces conservation
law PDEs to a system of ODEs irrespective of the spatial dimension. Therefore we
consider the following general form of the ODE system:

d
—U=LU) in (0,7].
ZU=LU) in (0.7]
The most widely used explicit time integration technique for the DG method is
based on the Runge—Kutta (RK) scheme; a combination of these space and time dis-
cretization approaches is often referred to as the RKDG method (Cockburn and Shu
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2001). For the DG discretization considered in this Chapter we employ the strong
stability-preserving (SSP) RK scheme, also known as the total variation diminishing
RK scheme (Cockburn et al. 1997); a detailed account of SSP-RK methods is given
in Gottlieb et al. (2001).

The second-order (two-stage) SSP-RK is

U = U" + ArL(U")

1 1
Ut = U+ oUW+ ArLu®)), (9-28)

and the third-order (three-stage) SSP-RK is
UM = U" + At L(UY)

3

U® = 20"+ U0 + arLu®)) (9:29)

1
4

1 2
Ut = U+ g[U@) + At L(UP)).

In both (9.28) and (9.29), UM and U® are intermediate stages of the RK method
while the superscripts n and n + 1 denote time levels ¢ and ¢ 4+ At, respectively. The
overall accuracy of the numerical scheme is dictated by the order of accuracy of
both the spatial and temporal discretizations. For example, the DG method using
polynomials of degree N along with an N + 1 stage RK method results in an
(N + 1)th-order accurate method (Cockburn and Shu 2001).

Higher-order RK schemes provide a wider stability region (Butcher 2008), so
a longer time step may be used in the numerical integration. Unfortunately, a
high-order RK time discretization has multiple stages of function (right-hand side)
evaluations and flux communications, resulting in a computationally expensive
scheme (especially in a parallel computing environment). Therefore, many practical
applications use a fourth- or lower-order RK scheme (Nair et al. 2005a, 2009).

The linear stability analysis for the modal DG method discussed in Cockburn
and Shu (2001) may be used as a guideline for choosing the time steps. For an
(N + 1)-th -order accurate RKDG method, the CFL (Courant-Friedrichs-Lewy) sta-
bility limit is given by cAz/Ax < 1/(2N +1), where Ax is the element width and ¢
is the velocity. This has been proven to be true when N = 1, however, no theoretical
proof exists when N > 1. For N > 1 the explicit DG method is very time step res-
trictive, in such cases a semi-implicit or implicit time integration strategy may be
desirable (Chap. 5). We also note that when N > 1, the grid spacing Ax used in cal-
culating the CFL limit should be the minimum distance between the non-uniformly
distributed quadrature points (see the right panel of Fig. 9.3). A detailed discussion
of the CFL stability limit for advection problems for high-order Galerkin methods
can be found in Chap. 6 of Karniadakis and Sherwin (2005).
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9.2.6 DG 1D Computational Examples

Here we illustrate the DG method by solving two examples of the 1D conservation
law (9.2). The first one is a simple linear problem involving the advection of both a
Gaussian profile (smooth case) and a rectangular wave (non-smooth case). The sec-
ond example is the solution of the inviscid Burgers equation, a nonlinear problem.
Numerical solutions are computed using the 1D DG schemes discussed earlier. Both
the modal and nodal versions of the scheme are used for the simulations. However,
the results produced by these schemes are almost identical, and we show only modal
or nodal solution for each test.

For the linear advection problem, the domain is 2 = [—1, 1] with periodic
boundary conditions. The initial condition for the smooth problem is Up(x) =
exp(—8 x2), a Gaussian hill with unit height, and the wind velocity is ¢ = 1. In
this case the flux function in (9.2) is simply F(U) = U. The domain is parti-
tioned into Ng;,, = 40 elements, each with N, = 5 GLL quadrature points, and
the nodal DG formulation (9.26) is used for the discretization. The resulting time-
dependent ODE is solved with the third-order SSP-RK (9.29). 400 time steps are
required for a complete revolution along the domain. Figure 9.6 shows the Gaus-
sian hill (left panel, dashed line) after ten revolutions; the reference solution is
also plotted with a solid line but it is visually indistinguishable from the numerical
solution.

For the non-smooth advection case the initial condition is a rectangular wave
pattern located at the center of the domain with unit height and width of 0.5 units;
other than this the boundary conditions and discretization are exactly the same as
in the smooth case. The right panel in Fig. 9.6 shows the numerical solution after
ten revolutions, and the reference solution (initial condition) is also displayed (solid

DG-1d (Ne = 40, deg = 4, T = 4000dt) 1o DG-1d (Ne = 40, deg = 4, T = 4000 dt)
1.0 1 1.0} A ]
| !
0.8 1 08f 1 b
0.6 1 06 ]
0.4 1 o4} ]
0.2 4 02} [ ! ]
I !
0.0 0.0 = =
-0.2 L 1 1 —-0.2 . \ .
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Fig. 9.6 Numerical solution (after ten revolutions) of the 1D advection problem (9.2) with the
high-order nodal DG scheme. The left panel shows the solution for the smooth case, where a
Gaussian hill is used as the initial condition. The right panel shows the solution for the non-
smooth case, for which a rectangular wave is used as the initial condition. The computational
domain [—1, 1] consists of 40 elements, each with 5 GLL quadrature points
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line). The DG solution suffers from oscillations at the non-smooth edges. The steep
gradients at these point produces the Gibbs phenomena, however, the oscillations are
confined (or local) to a narrow region even after ten revolutions. This is a remark-
able property of the DG method; other high-order approaches, such as the spectral
element method, propagate the noise along the entire domain.

The inviscid Burgers equation, U; + (U?/2)x = 0, is a special case of (9.2) with
F(U) = U?/2. The initial condition for this problem is Up(x) = 1/2 + sin(x)
over a periodic domain £2 = [0,2]. The domain is partitioned into 80 elements,
and a modal version DG scheme employing 4 GLL quadrature points is used for
the simulations. Time integration is performed with the third-order SSP-RK (9.29),
for which a small time step of At = 0.0015/x is used. The exact solution is
known for this problem and is shown as solid narrow lines in Fig.9.7, and the
DG solution is marked as diamond points (one value for each element). The left
panel in Fig.9.7 shows the smooth solution time ¢t = 3/(47) (500 time steps).
Clearly, the DG solution is in good agreement with the analytic solution. How-
ever, at time t = 9/(8m) (750 time steps) the numerical solution develops a
shock at the steep gradient, leading to oscillations, as seen in the right panel of
Fig.9.7. As time evolves the oscillations become severe and they can pollute the
numerical solution. As in the non-smooth advection case, the generation of unphys-
ical oscillations in the numerical solution at contact discontinuities or shocks are
due to the Gibbs phenomenon. Any linear numerical method higher than first-
order is subject to this problem (Godunov 1959), unless there is some measure to
control or eliminate the spurious oscillations by limiting or filtering the numeri-
cal solution. We discuss the limiting procedure for DG methods in the following
Section.

DG—1d: Burgers Eqgn (Nel = 80) DG-1d: Burgers Eqn (Nel = 80)
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0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Fig. 9.7 Numerical solution for the inviscid Burgers equation with the modal DG scheme. The
solid line indicates the exact solution and diamond points show the DG solution. The domain
consists of 80 elements; only one value per element is plotted for clarity. The left panel shows the
solution at time ¢t = 3/(47); at this time the solution is still smooth and free from shocks. The
right panel shows the solution at time ¢ = 9/(8x), at which point shocks have developed
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9.3 DG for 2D Cartesian Problems

Although the DG method can be adapted to any type of domain or mesh, we choose
a rectangular domain D with quadrilateral elements for simplicity. Consider the
two-dimensional (2D) scalar conservation law,

aa—(t]—i-V-F(U)zS(U), in Dx(0,7), (9.30)
where U = U(x, y,t) is the conservative variable such that (x,y) € D, the 2D
gradient operator V on D is defined as V = (d/dx, d/dy), F = (Fy, F>) is the flux
function, and S (U) is the source term (if any). The initial condition for the problem
is specified as U(x, y,t = 0) = Uy(x, y) and we assume that the rectangular do-
main D is periodic in both the x- and y-directions.

Following the steps used in the previous section the 2D extension of the DG
discretization is straightforward. The domain D is partitioned into Ngj,, = Ny X N,
rectangular non-overlapping elements §2, such that

Nem
Q¢ ={(x,y)|x € [xi—1j2, Xix1/2)s ¥ € Vj—1/2, Vj412]}, D = U, 2" 82,
9.31)

where e = e(i, j) is the element index and i = 1,2,..., Ny, j = 1,2,..., N,.
Figure 9.8 shows a simple partition of D and a general element £2,.

We first introduce some basic formal notations required for the discretization. Let
¥, be a finite-dimensional space of polynomials of degree up to k = N such that

Yh ={p € L*(D) : ¢la, € Py(82).V 2. € D}, (9.32)
Yi+1/2 e
. A
Ayj v Qe | _on
Yi-1/2 >
Axi
Xi-1/2 Xit1/2

Fig. 9.8 A schematic of a 2D domain with rectangular elements. §2, is a generic element with
boundary I, and its width in the x- and y-directions are Ax; = (X412 — Xj—1/2) and Ay; =
(Vj+1/2 — ¥j—1/2), respectively. The outward-facing unit normal vector is denoted by n and the
flux integrals (line integrals) are performed along the boundary I, as indicated by the arrows
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where
Py = span{x™ y" :0 <m,n < N}.

The first step for the DG discretization is the weak Galerkin formulation of the prob-
lem (9.30). In general, this is achieved by multiplying (9.30) with a test function and
integrating by parts (Green’s method) over the domain, where both the approximate
solution and test function belong to ¥}. Since the discretization procedure is the
same for each element, it is only necessary to consider a generic element §2, with
boundary I, in D (as in Fig.9.8). Thus, to find the approximate solution Uy, € ¥},
(9.30) is multiplied by a test function ¢ (x, y) € ¥}, and then integrated over the ele-
ment £2,. This results in the following integral equation (i.e., the weak formulation),
analogous to (9.4):

oUR(x, y,t
/ h(a Y ) (ph(X, y) ds2 — F[Uh(x’ y’t)] . V(p(X, y) a2
2e t 2

+ / F[Us(x. y.0)] - ngp(x.y)dI" = / S[Un(x.y.D)] @(x. y) 2,
Te 2e

(9.33)

where n is the outward-normal unit vector on the element boundary I, as shown in
Fig.9.8. A major difference between the weak formulations (9.6) of 1D and (9.33)
of 2D cases is the appearance of the flux integral in the 2D case (the last term
on the left-hand side of (9.33)). The flux integration should be performed along
the element boundary I,. The analytic flux F(Uy) - n in (9.33) is discontinuous
because the solution itself is discontinuous at the element edges. Therefore, F(Uy)-n
should be replaced by a numerical flux F(U,", U, ,;" ). This is addressed by employing
a suitable flux formula (or approximate Riemann solver) such as the local Lax—
Friedrichs flux (9.5).

The numerical flux resolves the discontinuity at the element edges and again
provides the only mechanism by which adjacent elements interact. The finite-
volume component of the DG method is the boundary flux integral, which in fact
bridges the discontinuous elements together. The flux exchange at the boundaries
is responsible for “communicating” physical information across the domain, and it
preserves the local conservation properties. Thus the flux integration procedure is
extremely important and its accurate evaluation is pivotal to maintaining the over-
all accuracy of the DG scheme. Following is a simplified version of (9.33) with
the numerical flux F = (ﬁl, 152) (for brevity dependencies on (x, y) and ¢ are
omitted).

d A
—/ Up ppd$2 —/ F(Uy) - Vo, d2 +/ F - -ng,dlr =/ S(Up) ppdS2.
dt Ja, 2 I 2e

e e

(9.34)
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9.3.1 Space Discretization

The space discretization consists of simplifying the integrals in (9.34) by choos-
ing an appropriate set of local orthogonal basis functions. As introduced in the 1D
problem, the basis set can be either a set of Legendre polynomials for the modal case
or a set of Lagrange—Legendre polynomials for the nodal case. In either case, the
2D basis set can be constructed with a tensor product of 1D basis functions. This
approach significantly simplifies the computational procedure. In order to exploit
this option, we introduce the local independent variables (£, 7) such that

_2-x) 20—y

) , 9.35
== ey (9.35)

where x; = (X;j41/2+Xj—1/2)/2and y; = (yj4+1/2+ Yj—1/2)/2. The width of any
element £2, is defined by Ax; = (x; 412 —Xi—172) and Ay; = (V412 —Vj—1/2)
along the x- and y-directions, respectively (Fig.9.8). Irrespective of the physical
size of the rectangular element 2., the transformation (9.35) maps 2, onto a unique
element Q = [—1,1] ® [—1, 1], also known as the reference element. Figure 9.9
shows the mapping between a rectangular element §2, and Q. Now the approximate
solution, test functions and the basis functions all can be defined in terms of local
coordinates on Q. Effectively Q is the computational stencil or molecule for the
2D DG discretization, where all the integral and differential operations required in
(9.34) are performed.

For the rectangular elements §2, the boundary flux integrals in (9.34) along I,
can be decomposed in terms of unit vectors i and j, parallel to the x- and y-axes

Ty A
- ! (-1, +1) (+1, +1)
Ar,
n=—i<d Q, —-en=i 4} 0
n

Iy y
Y | > (-1,-1) & —>  (+1,-1)
T—),‘c Z . FS

n=—j
Fig. 9.9 A schematic of the mapping between a rectangular element 2, and the reference (stan-
dard) element Q by (9.35). The local coordinates (¢,7) on Q are such that —1 < &, < 1. The
outward-facing unit normal vector n for each wall of §2, is marked (left panel), and the flux inte-
grals along the boundary I, can be broken into four integrals (9.36) one for each edge as described
in the text
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respectively:
/ F-ng,dl = / (Fii+ Fyj)-ng,dr,
T, T

where the outward-facing unit normal vector n takes the values i, j, —i and —j along
the east (I'g), north (I'y), west (I'w), and the south (I's) walls, respectively, as
shown in Fig. 9.9. The boundary integrals can then be written as

/ f‘-ngoh dr :/ ﬁlgoh dF+/ ﬁzgoh dF—/ ﬁlgoh dF—/ ﬁzgoh dr.
I, I'eg I'y I'y I's
(9.36)

9.3.1.1 2D Modal Form

We first discuss the 2D discretization based on the modal basis set. In the (&, 1)
coordinate system the test function is chosen to be a tensor-product of Legendre
polynomials Py (&) Py, (1), which belongs to Py in (9.32). The approximate solution
Uy (&, 1, t) can be written in terms of the basis functions,

N N
UpE.mt) = Y Uf™(@) Pe(§) Pm(n) for —1<En<1 (937
{=0m=0

where U ,fm () are the time dependent 2D moments (dofs) and defined to be

1 pt

vimy = EEDZED [ [ v P Pa dedn. 939
The weak formulation (9.33) can be further simplified by mapping the integrals

onto Q using the transformation (9.35), and the properties of Legendre polynomials

(basis functions). The mass matrix (9.15) associated with the 2D discretization is

also diagonal and can be easily inverted. The final computational form can be written

as a decoupled system of time-dependent ODEs for every element £2,

d

¢
< yone) = QL+ 1)2m+ 1)

ZAX,' ij

[l + IF, + IF, + Is]. (9.39)

where 0 < £,m < N. Note that the source term S(U) = 0 in (9.30) for the pure
advection problem; for generality we consider a non-zero source term. The integrals
appearing in the right-side of (9.39) can be defined on Q as below,

1 p1
Ig = /_1 /_1 [Ay; Fi(Uy) P{(E) Pu(D)+ Ax; F2(Uy) Py(&) P (n)] d& dn

(9.40)
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Ir, =4y, [ [A@Q00) - COBUELLD] Patydn ©41)
-1

1
I, =-ax [ [AUE1L) -0 BUG-L| PG ©4)

1
_AxAy;

I
s 2

1 1
/—1 /_1 S(Un(§.1,1)) Pe(§) Pm(n)d§ dn, (9.43)

where /g and [g are the surface integrals corresponding to the gradient and the
source terms in (9.33), respectively, and Ir, and If, are boundary flux integrals
(9.36) along the n and &-directions, respectively. F} and F, are the numerical fluxes
at the element interfaces, which can be computed by using (9.5).

The integrals appearing in (9.39) are evaluated using high-order accurate Gaus-
sian quadrature rules and will be discussed in the following section. The modes
U ,fm are predicted at a new time level by (9.39), then the corresponding approx-
imate solution Uj (€, n) is computed from (9.37). However, this process involves
transformations from the spectral to the physical space as discussed in 1D case. The
ODE (9.39) can be solved by the SSP-RK procedure given in (9.29).

9.3.1.2 2D Nodal Form

The basic difference between the modal and the nodal form is the choice of basis
set. The mapping between the element §2, and standard element Q remains the
same as in the modal case. In the 2D nodal case, the test function ¢ as well as
the approximate solution Uj are expanded in terms of the tensor-product of 1D
functions from the nodal basis set. In the (&, ) coordinate system the test function
is chosen to be /() hm(n), a tensor-product of Lagrange-Legendre polynomials
(9.21) with roots at GLL quadrature points; /¢(€) iy, (n) belongs to Py in (9.32).
Thus the approximate solution Uy (£, 1, ¢) can be expanded as

N N
UnEnt) =Y ) Um@) he(®) (), for —1<En<1,  (9.44)

L=0m=0

where Uy, (t) are the grid-point values (dofs) of the approximate solution at the
2D GLL points. The weak formulation (9.33) is simplified by mapping the elements
onto the reference element Q, and the procedure is quite analogous to the modal
case. The final approximation of (9.30) for an element £2, takes the form

dU (1) = 4 [l + IF, + IF, + Is] (9.45)
dr o T Axi Ay wpwn ¢TI RSt '

where w, and w,, are the weights associated with the GLL quadrature rule and /g
is the surface integral corresponding to the gradient term. /F, and I, are the line
integrals along the n- and &-directions, respectively, and they are grouped according
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to (9.36). The simplification (9.45) is possible because the mass matrix associated
with discretization is diagonal and easily invertible.

The explicit forms of these integrals are quite similar to those for the modal
case (9.40)—(9.43), however, we take an additional step and discretize them using
the GLL quadrature rule. The surface (2D) integrals are approximated by a tensor-
product of 1D integrals based on the Nth-order GLL quadrature rule. Thus on
O there are (N + 1)?> GLL quadrature points with coordinates (§;,7,); [,n €
{0,1,..., N}.In this particular case we have the following approximations by using
the discrete orthogonality relation (9.22) and the property (9.23).

N N
Ay; , Ax; ,
I6 ~ =L wn Y Fuam(®) HyEwn + = we Y Fo.on(t) I En)wn.
=0 n=0
(9.46)
Ay X A
17y ~ ==L wn [F U 0) Sy = UL ) 8] 947)

Ax,- S A
Ipy ~ == twe [ Fa(UGE1.0) Sym = Fa(UEe.—~1.0) Som | and - (9.48)

Axi Ay
Is ~ % Sem (1) Wi W, (9.49)

where /), and &, are the derivatives of the Lagrange polynomial as defined in (9.27)
and 8y, is the Kronecker delta function defined in (9.22).

9.3.1.3 Approximating the Integrals

The integrals appearing in the ODEs (9.39) and (9.45) are surface integrals for the
internal points and line integrals for the boundaries. Approximation of these inte-
grals has a major role in maintaining the accuracy and computational efficiency of
the 2D space discretization. As we saw in the 1D case, Gaussian quadrature rules are
the most accurate and efficient means for evaluating integrals. Quadrature formulas
such as the Gauss—Legendre (GL) or GLL are widely used for this purpose.

The GL quadrature rule employing N + 1 quadrature points is exact for poly-
nomials of degree 2N 4 1 while the GLL quadrature rule with the same number
of quadrature points is exact for polynomials of degree 2N — 1. If the integrand
is a polynomial of degree 2N, as in the case of flux integrals, then the integration
resulting from the GLL quadrature is inexact. In the analysis by Cockburn et al.
(1990), it is shown that, for a (N + 1)-th order DG scheme using polynomials
of degree N, the quadrature rule used for the surface (internal) integrals should
be exact for polynomials of degree 2N and the quadrature rule used for boundary
flux integrals should be exact for polynomials of degree 2N + 1. In a strict sense,
this indicates that there is no single set of N + 1 quadrature points that can be
used to evaluate all the integrals to the required accuracy (Atkins and Shu 1996).
In order to meet the requirements for the exact internal integration and consistent
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boundary (flux) integration, these integrals are usually treated with different orders
of quadrature formulas.

Utilizing the same type of high-order quadrature rule for both internal and bound-
ary integrals is certainly an option. This is very convenient for practical applications
and leads to computationally efficient code development. Nevertheless, it is reported
that, for some applications, over-integration resulting from keeping the boundary
and flux integrals of the same order may lead to instabilities (Lomtev et al. 2000).
On the other hand, computational domains with complex geometries that consist
of strong curvature or curved boundaries may require more quadrature points than
simple Cartesian cases; this is necessary to maintain a specific order of accuracy in
the discretization. In other words, the choice of a particular quadrature rule is appli-
cation dependent, and is also based on the practical consideration of computational
efficiency and ease of implementation.

We now review the GL and GLL quadrature rules for the integrals. A tensor-
product of 1D quadratures is usually employed to efficiently evaluate the 2D
integrals (Deville et al. 2002). Figure9.10a is a GLL grid with 4 x 4 quadra-
ture points. Figures9.10b and c are the GL grids with 3 x 3 quadrature points
associated with the 2D GLL and GL quadrature rules, respectively; the internal
(solution) points are marked as filled circles. The filled-squares along the boundaries
in Fig.9.10b and c indicate flux points which are interpolated from the solution.
Technically both of the quadratures are exact for polynomials of degree up to
k = 5, and sufficient for a third-order or P2 DG method. The GLL grid has more
points (dofs) than the GL case, but the internal integral is still inexact for a P3
method.

The GLL quadrature must employ more points than the GL quadrature to guar-
antee the same order of accuracy. However, the GLL grid has some inherent
computational advantages. The GLL quadrature points include points along the
boundary lines and corners of the square domain [—1, 1]?> — computing the flux

b c
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@ (©)
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Fig. 9.10 Different types of 2D grid configurations based on Gauss—Legendre—Lobatto (GLL)
and Gauss—Legendre (GL) quadrature rules on a square domain [—1, 1]2. The solution points are
marked by filled circles and flux points along the boundaries are marked by filled squares. (a) GLL
grid with 4 X 4 quadrature points where the flux points on the boundary coincide with the solution

points. (b) GL grid with 3 x 3 points for internal integrals and three flux points on each boundary.
(¢) Same as in case (b) but with four flux points on each boundary
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integrals (/ f; and I, in (9.39)) along the boundaries is trivial in this case, because
the solution and flux points coincide at the quadrature points. This avoids the inter-
polations required for the flux evaluation, which is a significant computational
savings. However, a caveat for this GLL grid configuration is that the boundary
flux integral reduces to the same order of accuracy as the internal integral and leads
to inexact integration. This may be an issue when the degree of the polynomial is
low (k < 3) because losing an order of accuracy is not affordable, but for higher
values of k the loss of an order of accuracy is often outweighed by the computa-
tional efficiency and ease of implementation (Nair 2009). In practice, this type of
GLL grid is used for many high-order nodal DG implementations (Hesthaven and
Warburton 2008).

The GL grid as shown in Fig.9.10b is exact for the DG P? scheme but the
boundary flux integrals have the same order of accuracy as the internal integrals.
In Fig. 9.10c, the order of accuracy of the flux integrals exceeds that of the internal
integral as per the theoretical requirement pointed out by Cockburn et al. (1990).
In order to compute the fluxes along the boundaries, interpolations are required to
transfer the solution to the boundary quadrature points — the basis functions may be
used for the accurate interpolation of solution (9.37). This will, of course, increase
the computational expense. As previously noted, the GL quadrature rule does not use
the end points £1 in [—1, 1], which means that in 2D the corner points are excluded.
For rectangular domains, the problematic corner singularities may be avoided by the
GL grids. So the GL quadrature may be beneficial for domains with isolated singu-
larities such as the latitude-longitude sphere. An interesting discussion about the
choice of quadrature rules can be found in a recent paper by Kopriva and Gassner
(2010). In the following section we consider several examples with both GL and
GLL grids.

9.3.2 Computational Examples: Advection Tests

Two standard tests for advection problems are the solid-body rotation test and
deformational flow test. We examine these non-divergent test cases individually.

9.3.2.1 Solid-Body Rotation Test

To test the DG schemes discussed above we first consider a solid-body rotation
problem with a smooth function on a square domain. The domain D in (9.30) is
chosen to be [—, r]? with periodic boundary conditions and the initial condition is
the Gaussian hill U(x, y,t = 0) = exp[-5((x — x¢)? + (y — y¢)?))] centered at
(x¢, yc)- The velocity is prescribed as (u,v) = (—my, wx) and the flux function is
F(U) = (uU, vU). The Gaussian hill is placed at the center of the domain (x, = 0,



276 R.D. Nair et al.

ye = 0) for the convergence study so that U is continuous at the (periodic)
boundaries.

The tests are conducted with both modal and nodal versions of the DG discretiza-
tion and for different spatial resolution. We vary both the total number of elements
(Neim € {202,402,80%,160%}) and the polynomial degree (k € {1,2,3,4}). The
normalized standard /, error is computed after one complete rotation, and Fig. 9.11a
shows the results with the modal version employing GLL quadrature (the nodal ver-
sion gives visibly indistinguishable results). Two types of errors, h-error and p-error,
are used for the convergence tests of element-based high-order Galerkin methods
such as DG. The h-error measures the error computed by varying number of ele-
ments and keeping the polynomial degree (k) constant, while the p-error measures
the error when the polynomial degree is varied but the number of elements is kept
fixed. For a given N,;,, the p-error is reduced as the polynomial degree increases,
in Fig.9.11a it is shown as black dots aligned in the vertical direction. The measures
of the p-error vary more rapidly (at an exponential rate) than that of the s-error. The
exponential (spectral) convergence is also reported for similar tests in Levy et al.
(2007).

Figure 9.11b shows the strong scaling results on a parallel computer architecture,
a measure of parallel efficiency when the problem size is held constant. Ideally, the
total work would be split evenly among processors so that doubling the number of
processors would halve the runtime. This is measured by ‘speed-up,’ the ratio of the
runtime on one processor to the runtime on a given number of processors. In this
sense Fig.9.11b shows almost perfect scaling for the nodal DG scheme (run with
N.im = 807 elements, each with 6 x 6 GLL nodes). This simulation consisted of
40,000 time steps on a 1,024 dual-node BlueGene/L cluster. Spectral convergence
(for smooth problems) and excellent scaling are two remarkable properties of DG
algorithms.

a .
1o° 2D Advection b 2D Advection
3 Linear speed-up
1072 - -X- Ne = 6400, Ng = 6
o) § 16
2 q0-¢ > 8
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= Q 4
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Fig. 9.11 (a) Convergence results (/, error) for the solid-body rotation test at different resolutions
and varying polynomial degree (k). (b) The strong scaling results as measured with a resolution of
N, = 80% and each element containing 6 X 6 GLL points



9 Emerging Numerical Methods for Atmospheric Modeling 277

9.3.2.2 Deformational Flow Test

For the deformational flow test case we consider the test proposed by Smolarkiewicz
(1982). This problem is relevant to meteorology because it simulates the effect of
closed vortices on warm air parcels. The test describes the advection of a scalar field
(i.e., U in (9.30)), which is initially defined to be a cone of height 1 and radius 15
units located at the center of a square domain of side L = 100 units. The non-
divergent flow field is defined by the stream function,

Y(x,y) =8 sin(dwr x/L)cos(4w y/L), u= —a—w, v = 8_1#

dy 0x
where u and v are the components of the wind field. Staniforth et al. (1987) provide
an analytical solution for this test in terms of elliptic functions and showed that
there is a breaking time 7 = 2637.6, beyond which the length scale of the exact
solution diminishes as a function of time. We examine the DG solutions at time
t = Tp/50, when the solution exhibits very fine structures of deformation. This
test is very challenging because of the severe deformation of the fields and sharp
gradients which evolve in time.

The numerical results are presented in Fig.9.12 on a 40 x 40 element domain
employing the GLL and GL quadratures (grids) as shown in Fig.9.10, plotted on
the native computational grid to avoid interpolation errors. Figure 9.12a shows the
results for the nodal DG scheme with a 4 x 4 GLL grid, where the boundary integ-
rals use the same order GLL quadrature. This choice of quadrature exhibits spurious
overshoots and undershoots, and the modal DG scheme with the GLL quadrature
produces a similar result. Changing the spatial order of accuracy (up to 7 x 7
quadrature points) with the GLL nodes does not improve the results, and similar
results are reported by Crowell et al. (2009). Figure 9.12b shows the results with a
modal version of the DG P2 method employing 3 x 3 GL points. With GL grids,
the solution is significantly smoother. Again, the nodal version produces similar
results.

This indicates that, irrespective of the modal or nodal variant of the DG method,
the GL quadrature has some qualitative advantage over the GLL quadrature; espe-
cially when the flow field is very complex. The DG schemes employing GL
quadrature are more robust than those with the GLL quadrature. On the other
hand, for a fixed order of accuracy, we noticed that the DG/GLL combination
has a more lenient CFL stability restriction than the DG/GL combination. This is
mainly due to the distribution of the internal quadrature points in the reference
element (see Fig.9.10). In the case of the GL quadrature points, the shortest dis-
tance between the internal points and the boundary is smaller than that of the GLL
points, leading to relatively smaller grid spacing (Ax). In other words, the CFL
estimate discussed in Sect.9.2.5, 1/(2N + 1) for the DG P¥ method (Cockburn
and Shu 2001), appears to be an overestimate when the DG/GLL combination is
used.
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Fig. 9.12 Numerical solutions for the deformational flow test at time t = T},/50 with the DG
advection scheme on a 2D Cartesian domain with 40 X 40 elements. (a) Solution with the nodal
DG scheme employing 4 X 4 GLL points (as shown in Fig. 9.10a) on each element. The boundary
flux integrals are approximated with the same order 1D GLL quadrature rule. (b) Solution with the
modal DG scheme employing 3 X 3 GL points (as shown in Fig. 9.10b or c¢) on each element. The
flux integrals are performed with the same order GL quadrature

9.3.2.3 Barotropic Vorticity Equation

We now discuss a general form of (9.30) with a non-zero source term, a simple
non-divergent barotropic model based on the classical barotropic vorticity equation
(BVE). A barotropic atmosphere is a single-layered fluid; under this assumption
there is no vertical component, so the equation to be solved is 2D. The BVE has
special importance in meteorology and a historical perspective of the BVE can be
found in Lynch (2008). The BVE is useful for modeling the (idealized) evolution of
tropical cyclones (DeMaria 1985), and also for the theoretical study of the interac-
tions of vortices in close proximity. Recently, Levy et al. (2009) have developed an
element-based Galerkin method for solving the BVE using the DG discretization;
we review this model in the present context.
The BVE can be cast in the following form (Levy et al. 2009):

ad
2w+ —(vc) ~pv. (9.50)

where u and v are the horizontal components of the wind vector v such that
= (u,v), { = (Vxv)- k is the relative vorticity and k is a unit normal
vector in the vertical direction. In (9.50), § = 9df/dy is based on the beta-plane
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approximation (Vallis 2006) where f is the Coriolis parameter. The solution pro-
cess involves predicting ¢ at every time step, however, the (u, v) field also evolves
in time and therefore needs to be computed at every new time step. Since the wind
field is non-divergent it can be prescribed in terms of the stream function ¥ such
that v = —y, and v = Y, where the suffixes denote partial differentiation. The
relation { = vy — u,, leads to the following Poisson equation for :

vy = 9.51)

Usually the initial conditions for (9.50) are prescribed in terms of the tangential
velocity, from which the initial values for v and ¢ can be derived. At every time
step ¢ is predicted and the corresponding stream function at the new time-level is
computed by solving the Poisson problem (9.51). This is required because the wind
field (1, v) must be available for the new prediction cycle; as mentioned, it can be
computed directly from v using the relation (4, v) = (=¥, ¥x).

Thus the solution process for the BVE involves solving the advection equation
(9.50) and the Poisson equation (9.51) as a system. The elliptic type equation (9.51)
may be solved using the DG method as described in Riviere (2008), the high-order
spectral method (Kopriva 2009), or any number of other methods. Since our focus
is primarily on hyperbolic problems, we do not consider the solution procedure for
(9.51) here, except to say that we adopt a spectral-element based Poisson solver
(Levy 2009) for the BVE model.

The initial wind profile for the vortex centered at (x., y.) can be expressed in
terms of tangential velocity V(r) where r = [(x — x¢)2 + (¥ — y¢)?]/2 is the radial
distance from the center. The wind field and V() are given by

2Viur exp[—a(r/rm)b]
Fmll 4+ (r/rm)?]

u=-=Vr)y—y)/r. v=Vr)x—-x)/r. V()=

(9.52)

The initial relative vorticity can be derived as

V'(r)+ V(r)/r ifr #0,

) =1 2p(0) ifr=0.

(9.53)

The physical dimension of the domain D is a 4,000 x 4,000 km square, and D is
periodic in both directions. The other parameters used in (9.52) are V,,, = 30 m/s,
rm = 80km,a = 107%, b = 6, the vortex center (x., y.) positioned at (2000, 2000)
km, and B is computed at the latitude 20°N.

The formulation for the BVE (9.50) may be considered as a special case of the
flux-form transport equation (9.30) with a non-zero source term S(U). Therefore
it is clear that the “conservative” variable is U = ¢, the flux function is F(U) =
(uZ, v¢) and the source is S(U) = —pv. For the DG discretization of (9.50), we
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employ the nodal scheme as described in Sect. 9.3.1.2. The computational domain
consists of 100 x 100 elements each with 4 x 4 GLL points (Fig. 9.10a) so the ave-
rage horizontal resolution is approximately 13.3km. A third-order Runge—Kutta
scheme (9.29) is used to solve the ODE (9.45) corresponding to (9.50), with a
(sub-optimal) time step of Az = 90s.

In the nodal formulation the relative vorticity ¢ and stream function v (from
(9.51)) are approximated at the GLL quadrature points (&7, 17,,) using the summation
(9.44). To find the non-divergent wind at any time-level from the stream function
fields at the GLL points the following collocation differentiation can be employed,

N N

uEm) =Yy ~ =Y > Vem he(§) Iy, (1),

L=0m=0

N N
vED = Ve Y Y Vom hy(E) hm ().

{=0m=0

The numerical results are shown in Fig. 9.13. The leftmost panel shows the initial
relative vorticity fields, and simulated results after 24 and 72h are shown in the
central and right panels, respectively. As expected, the center of cyclonic vortex is
well resolved and the cyclonic motion has drifted in the northwestward direction
(DeMaria 1985). Realistic hurricane simulation needs high-resolution complex 3D
models capable of fast simulations. The DG methods are well-suited to address this
problem because DG algorithms are known for their high parallel efficiency and
adaptive mesh refinement capabilities.

Initial
30 1 1 1

Day 3

y (100 km)

10 T T T T T T T T
10 15 20 25 30 10 15 20 25 30 10 15 20 25 30
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Fig. 9.13 Contours of the vorticity field (¢) in the tropical cyclone simulation, shown after 1 and
3 days. The left panel shows the initial fields; the simulated results after 1 and 3 days are shown in
the central and the right panels. Calculations are done on a square domain consisting of 100 x 100
elements each with 4 X 4 GLL points
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9.4 Limiters for DG Methods

High-order numerical schemes will produce spurious oscillations in the vicinity of
discontinuities or shocks and near under-resolved solution gradients. The unphysi-
cal oscillations not only pollute the solution but may lead to numerical instabilities.
Preservation of physically realizable properties of the solution such as monotonicity
(shape-preservation) or the less restrictive positivity is of great importance in atmo-
spheric transport modeling (Chap. 8). For instance, the mixing ratio (e.g., relative
humidity) or density simulated by an atmospheric model should always preserve its
positive sign (positive-definite). Even oscillations with small amplitudes can cre-
ate negative density which in turn produce physically unacceptable negative mass —
this might arise even if a minute negative density is multiplied by the volume (or
integrated over a region). The process of controlling or completely eliminating
the spurious oscillations in the numerical solution is often referred to as limiting.
A limiter also provides nonlinear stability to the solution.

The Godunov theorem (Godunov 1959) asserts that the “monotone linear
schemes are at most first-order accurate.” For high-order methods this implies that
designing a monotone scheme is a daunting task because the coexistence of mono-
tonicity and the high-order nature of the solution is difficult if not impossible. The
monotonic limiting is a non-linear process that removes the oscillations from
the solution at regions (points) where monotonicity is violated, and when acti-
vated the limiter reduces the oscillatory (high-order) solution to first-order. It is
required that a limiter does not violate the mass conservation property (i.e., preser-
vation of the cell-average) of the underlying conservative numerical scheme and, to
the greatest extent possible, it should retain the high-order accuracy of the solution.
Therefore, a limiter should be applied to the high-order scheme in a surgical man-
ner and it should not be activated in smooth regions of the solution. Thus it is very
important to have a criterion for limiting that guides when and where to limit the
solution.

Another potential venue for controlling numerical noise due to under-resolved
solution gradients is the application of so-called A-p adaptivity. Here % stands for
number of elements in the domain and p is the polynomial order within in the
element (Karniadakis and Sherwin 2005). Since shocks are not really present in
atmospheric model, the requirement is to prevent the generation of under-resolved
gradients on the grid. The problem here is optimize the i-p dofs to the local struc-
ture of the solution. For example, high-order elements where high-gradients are
developing can be divided into two elements of order p/2 to prevent the growth of
oscillations. Ultimately one could end-up with p first order elements that are guaran-
teed to preserve the extrema of the solution. This approach may be more intensive
on software engineering and grid refinement based on error estimators, but could
be an alternative to the brute force approach of slope limiters. The DG methods
are amenable to adaptive mesh refinement (AMR) strategy based on h-p adaptivity.
Development of models based on AMR is an active area of research in geosciences
(St-Cyr and Neckels 2009; Kubatko et al. 2009).
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The second-order finite-volume (FV) schemes can successfully incorporate lim-
iters such as the slope limiters (van Leer 1974) or flux limiters (Boris and Book
1973). This is done either by designing a scheme which inherently prohibits oscilla-
tory solution (Smolarkiewicz 1984) or by applying the limiter in the reconstruction
or the post-processing stage. As the order of the numerical scheme increases the
limiting procedure becomes more complex and computationally expensive. A class
of high-order finite-volume schemes known as essentially non-oscillatory (ENO)
developed by Harten et al. (1987) and its advanced variant weighted essentially
non-oscillatory (WENO) by Liu et al. (1994) can successfully control spurious
oscillations in the solution. As the name suggests the ENO or WENO solutions are
not strictly monotonic. The solution may still have oscillations of small amplitude
but they do not grow with time. These schemes use adaptive stencils in the recon-
struction procedure which are based on local smoothness of the numerical solution,
and automatically achieve high-order accuracy and non-oscillatory properties near
discontinuities.

Since the DG method has a strong FV-like connection, it may be technically
possible to extend the limiters developed for FV methods to at least low-order DG
methods. However, for DG schemes the direct application of a FV-based limiter
such as the flux limiter is not trivial because the dof evolved in time per element
(cell) is higher than that of the FV method. Limiting high-order DG methods on
general meshes is still an open question. Here we consider the basic slope limiter
(Cockburn and Shu 1989) and the WENO-based limiting proposed by Qui and Shu
(2005b) for relatively low-order DG methods.

9.4.1 The 1D Limiters for DG Methods

The basic limiter developed for the DG scheme (Cockburn and Shu 1989) relies
on the MUSCL (Monotonic Upstream Centered Schemes for Conservation Laws)
slope limiting technique (van Leer 1977). The MUSCL approach employs the
piecewise linear reconstruction for the subgrid-cell distributions resulting in a
second-order accurate scheme. The reconstruction process in this case is constrained
to be free from spurious oscillations (monotonic) by applying the minmod limiter.
To understand how the minmod limiter works, we consider the piecewise linear
reconstruction for the 1D grid used in Sect.9.2.3.

94.1.1 The Minmod Limiter

Let U;(x) be the density distribution in a cell of width Ax; = x;41/2 — x;—1/2.
The piecewise linear representation of U (x) can be expressed in terms of the slope
U, ; and the cell-averaged density U ; (see Fig.9.14),
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Fig. 9.14 A schematic illustration of the piecewise linear reconstruction. The cell averages U‘,- are
shown as horizontal lines and the cell boundaries are labeled by x; 4, /,. The smooth dashed-line
indicates the actual solution U(x) which is approximated by piecewise linear distributions (broken
thick lines) on each cell

— _ 1 [Xi+12
Uix)=U; +(x—x;)Ux,;, U; :A_X' U;(x)dx, (9.54)
JIxj—1/2

where x; = (x;_1/2 + X;+1/2)/2. There are an infinite number of possibilities to
choose the value of Uy, ; in (9.54) without violating mass conservation (preserving
U ), nonetheless, we choose the limited slope l~/x, j based on the minmod approach.
A minmod function has three arguments. The first argument is the slope of the cell
in question and remaining arguments are the slopes of the neighboring cells. If the
left and the right slopes preserve the same sign, then the minmod function returns
the minimum of the absolute value of the slopes with the same sign; otherwise, if
the signs are opposite, it sets the slope to zero. This can be written as follows:

U(X)j = Uj + (x —Xj)ljx,j, 0x,j = minmod(Ux,j, Ux,j—1/27 Ux,j+1/2)’
(9.55)

where the arrow indicates the replacement of the slope Uy ; by the limited slope
U x,;; the minmod function is formally defined to be
minmod(a. b, ¢) = s min(|a|, |b], |c]) if s = §ign(a) = sign(b) = sign(c),
0 otherwise .
(9.56)
The slopes of the neighboring cells (on a non-uniform grid) are given by

’ ,' 1 - N
(Ax; + Ax;_)/2" 2T (Ax 1 + Ax)))2

Ux,j—l/z =

This limiter falls under the class of the total variation diminishing (TVD) limiters
(Toro 1999). The minmod limiter is strictly non-oscillatory, but unfortunately it
clips the legitimate extrema of smooth solutions and degrades high-order accuracy.
However, the excessive limiting of the minmod function at smooth regions can be
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controlled to some extent by modifying (relaxing) the limiting criteria in (9.56).
The resulting modified minmod limiter has the total variation bounded (TVB) prop-
erty, which preserves high-order accuracy at smooth extrema at the cost of allowing
minor oscillations in the solution. Let ‘Minmod’ be the modified minmod function
which is defined to be

a if la| < M,

Minmod(a, b, c¢) = . .
( ) minmod(a, b, ¢), otherwise,

(9.57)

where M is a problem-dependent positive number. This parameter is more or less
a magic number which works quite well for a few sets of problems (see, Cockburn
and Shu 2001). Smaller values of M; introduce greater local dissipation, but larger
values produce oscillations in the solution. Although there are efforts to make M;
problem independent (Ghostine et al. 2009), a generalized approach for various
applications particularly in multi-dimensional systems has yet to be established.

9.4.1.2 Generalized Slope Limiter

The modal expansion (9.10) for the approximate solution U;(§) can be rearranged
as follows (with the time dependency omitted for brevity):

N
Uj€) =UY + U £+ ) UF Pr(®). (9.58)
k=2

where the expansion coefficients (or moments) U Jk are defined in (9.11). If the
solution U;(§) is approximated as element-wise linear functions, then U;(§) =
U + U&, where the coefficients U = U ; is the average value and U} = U} (%)
is the slope. This is simply the P! part of the solution (9.58), which is analogous to
the piecewise linear reconstruction (9.54). Therefore the limited solution for the p!
case, in terms of £, can be written as

T, T Tjsr -

U,
aF AF ). (9.59)

Uj(§) =U; +£U}, U] < minmod (U],

where U jl is the limited slope by the minmod function and A§ = 2. If U 1 #U]

then it indicates that minmod limiter is in action; otherwise, if Ul = U! then
the indication is that the element is non-oscillatory and does not need limiting. In
other words the minmod function may also be used to detect elements which require
limiting.

Note that the left and right slopes used in the minmod function in (9.59) may be
replaced with the less restrictive slopes 2(U ; —U j—1)/A£ and 2(U j+1 —U ;)/ A,
respectively, (Cockburn and Shu 2001). This leads to a simplified slope estimate at
the element edges in the £-coordinate as employed in (9.59).
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Ui€)=U,; +£U0}, U} €minmod(U}.U; —U;-1.U;41—U,). (9.60)

In the context of the high-order DG method, Cockburn and Shu (1989) further
extended the minmod limiter to the generalized slope limiter. This is achieved by
selectively applying the limiter (9.60) to the high-order solution (9.58) where the
solution is not smooth. The selection procedure (i.e., detecting the elements which
require limiting) involves finding the left and right edge values U410 = U;(§ =
+1) from (9.58), and checking for oscillation using the minmod function:

12 = U; + minmod (U, /» ~U;j,U;=U;j1.Ujs1=U; ), (9.61)

=U;—minmod (U; —U/,,,,U; =U;-1,Uj11 =U;), (9.62)

J’_
j—1/2

where Uj_-i-l /2 and U j+_1 /2 denote the left and right limits (see Fig.9.1) of the edge
values U; 11/, and U;_1», respectively.

Now the generalized slope limiter algorithm for a high-order solution (9.58) can
be summarized as follows:

e First, compute the limited edge values Uj_+1 /2 and Uj_+1 /2 using (9.61) and
(9.62). 5
o If Uj_+1/2 = Uj_+1/2 and U;r_l/2 = Uj+_1/2, then it indicates that there is no

spurious oscillation (or no need for limiting) in the element in question, and the
solution (9.58) is acceptable as is.

o If (.Jj_+.1/2 76 Uj_+1/2 and/or Uj+—1/2 76 U;'_l/z, tl%en. it indica'tes there is
oscillation is in the element and the solution should be limited by using (9.60).

e In the limited case only the limited P!-part of solution is considered, all the

high-order coefficients in (9.58) U jk =0fork > 2.

As discussed above the minmod limiters are dissipative, and may not be suitable for
some applications. In such cases, if a solution with oscillations of small amplitude
is acceptable, then it is appropriate to use the more relaxed Minmod function (9.57)
instead of the regular minmod function.

94.1.3 The Moment Limiter

Biswas et al. (1994) generalized the minmod limiter to a moment limiter suitable
for limiting high-order DG methods. The moment limiter limits the derivative of the
solution starting with the highest order, and it is given by

~ 1 — —
k _ : k k—1 k—1 k—1 Uk_l
Uj = 2% 1m1nm0d((2k 1)U s Uj Uj—l s Uj+1 j ) (963)

When k = 1, clearly the limiter (9.63) reduces to the minmod limiter in (9.60). The
limiter is applied in an adaptive manner starting with the highest-order coefficient
(moment) U jk U jk =U jk then it indicates limiting is not required; if not, limiting
is required and (9.63) is applied to the next lower- level coefficients U j’-‘_l. The
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process stops when no modification of the coefficient occurs by applying (9.63);
otherwise, the next highest order coefficient is limited. The moment limiter performs
better than the generalized slope limiter at least in the 1D case; however, extending
the algorithm to multi-dimension (Krivodonova 2007) is computationally expensive.

9.4.14 The WENO-Based Limiter

There is a novel class of limiters for DG methods recently introduced by Qui and
Shu (2005b) based on the WENO method. A major advantage of this approach is its
ability to retain high-order accuracy for the DG scheme while suppressing spurious
oscillations. The WENO based limiting strategy for DG methods consists of two
crucial steps. These are the identification of so-called troubled cells or the cells (ele-
ments) that need limiting, followed by a reconstruction step for the non-oscillatory
solution in the troubled cells using the neighboring cell-averages. To identify the
troubled cells one may use any of the slope limiting techniques described above.
If, for example, the slope in a cell changes when using the minmod limiter, then
that particular cell is declared a troubled cell and limiting is performed by using the
WENO approach. Although the WENO limiter does not adversely affect the order
of accuracy of the solution in a smooth cell, a judicious identification of troubled
cells is required to avoid unnecessary computations in smooth regions.

The details of the WENO limiter implementation is given in Qui and Shu
(2005b), and we do not discuss it herein. A DG P method is formally (N + 1)th
order accurate if the quadrature rule is exact for polynomials of degree at least
2N + 1. In order to match the same order of accuracy, a WENO reconstruction
should be at least (2N + 1)th order accurate as well. A WENO-based limiter of this
order requires 2N + 1 neighboring elements £2;_n, ..., 21 to limit an element
£2; located at the center of the stencil. Unfortunately, this requirement necessitates
a wider computational stencil when N > 2, which impedes the local nature (and,
therefore, the parallel efficiency) of the combined DG-WENO scheme.

9.4.1.5 Computational Examples with Limiters

We repeat the numerical examples used in Sect. 9.2.6 to demonstrate the effective-
ness of the limiters as discussed above. First, the simple linear advection problem
U; + Ux = 0 is solved with initial conditions representing two extreme cases, a
Gaussian hill (smooth case) and a rectangular wave (non-smooth case). A modal
version of the DG discretization is employed with 50 elements, each with 4 GLL
quadrature points, in the domain [—1, 1], and 400 time steps are used for a complete
revolution. Ideally, the challenge for a limiter is to preserve high-order accuracy in
smooth regions of the solution while eliminating spurious oscillations only from
the non-smooth regions.

Figure 9.15 shows the numerical solutions with the basic minmod limiter (9.55)
and the generalized slope limiter combined with the modified Minmod limiter
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DG-1d: Gaussian (Ne = 50, deg = 3) DG-1d: SquareWave (Ne = 50, deg = 3)
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Fig. 9.15 Numerical solution after one revolution with the modal DG scheme combined with
various limiters for the linear advection problem (9.2). The left and right panels show solutions
for the smooth case (Gaussian hill) and non-smooth case (rectangular wave) as initial conditions,
respectively, where the solid line indicates the exact solution. The diamond points (diamond) show
the solution with the basic minmod limiter, and ‘+’ points indicate the solution with the gen-
eralized slope limiter employing the Minmod function with the parameter M; = 0.02. On the
left panel, square points show the solution with the generalized slope limiter but the parameter
M; = 0.06

(9.57). Only one point per element is plotted for clarity. The Minmod function
employs a problem-dependent parameter M; which controls the limiting opera-
tion. The exact solution (initial condition) is shown as solid lines in Fig.9.15,
and the solution with the basic minmod limiter is very diffused in both cases (‘¢’
points). For the non-smooth case (Fig.9.15 right panel), relatively better solutions
are obtained with the generalized slope limiter (‘4 points) for which the parameter
value is M; = 0.02; however, for M; > 0.02 the limiter reintroduces oscillations.
For the same value M; = 0.02, the generalized slope limiter clips the peak smooth
regions of the Gaussian hill as seen in the left panel of Fig. 9.15 (‘4 points). Never-
theless, when M; is increased to 0.06 the limiter further relaxes without destroying
the legitimate extrema of the Gaussian hill (square points). Although these limiters
are simple and easy to implement, a major drawback is that they have a strong
dependence on the parameter M;. Moreover, the basic minmod (P ') limiter is unac-
ceptably diffusive for high-order DG methods for practical applications (Iskandarani
et al. 2005).

Now we consider the same experiment with the moment limiter (9.63) and
a third-order WENO- based limiter. For the computational examples considered
here we employ a DG P2 case combined with a WENO limiter employing the
GLL quadrature rule with 4 points. Figure 9.16 shows the limited solution with the
WENO limiter (‘¢’ points) and moment limiter (‘4 points). Both the limiters per-
form very well for the two extreme cases. However, the WENO based limiter is very
robust and performs slightly better than the moment limiter in terms of the symme-
try of the solution (shape preservation). The WENO limiter unfortunately comes
with a higher computational cost because for the third-order (P?) case a 5-element
wide stencil is required for the reconstructions.
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DG—-1d: Gaussian (Ne = 50, deg = 3) DG-1d: SquareWave (Ne = 50, deg = 3)
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Fig. 9.16 Same as in Fig. 9.15 but with the third-order WENO limiter (‘diamond’ points) and the
moment limiter (‘4 points). The computational domain [—1, 1] consists of 50 elements each with
4 GLL quadrature points

DG(momt): Burgers Eqn (Nel = 80) DG(weno): Burgers Eqgn (Nel = 80)
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Fig. 9.17 Limited numerical solution for the inviscid Burgers equation at time ¢ = 3/(27) with
the modal DG scheme. The solid-line indicates the exact solution and ‘diamond’ points show the
limited DG solution. The left panel shows solution by DG scheme combined with the moment
limiter and right panel shows DG solutions combined with the WENO limiter

The moment limiter (9.63) and the third-order WENO limiter are applied to the
P2 DG scheme for solving the inviscid Burgers equation U; + (U?/2), = 0, with
the initial condition Up(x) = 1/2 + sin(;rx). As mentioned in Sect.9.2.6, this is
a simple non-linear case where a shock wave develops during the integration, but
the analytic solution is known at any time. The computational domain [0, 2] con-
sists of 80 elements, each containing 4 GLL points. The limited numerical solution
at time ¢t = 3/(27) (1,000 time steps) is shown in Fig.9.17, where the left and
right panels show solutions with the moment and WENO limiters, respectively. For
clarity, only one point per element is sampled for displaying the numerical results.
Both limiters successfully eliminate spurious oscillations near the shock (as seen
in Fig.9.7), and the computed solutions are very similar to the reference solutions.
Note that in Fig. 9.7, for which no limiting is employed, shocks develop during the
integration and oscillations appear at ¢ = 9/(8x) (750 time steps). Eventually the
growing spurious oscillations contaminate the numerical solution in this case.
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9.4.2 2D Limiters for the DG Method

The 1D limiters used for the high-order DG method are quite successful in elimi-
nating spurious oscillations. Unfortunately, extending these limiters to 2D problems
is not trivial. In addition to the slopes (derivatives), the high-order derivatives and
cross-derivative terms are also subject to limiting, making the limiting process algo-
rithmically complex and computationally expensive. The development of limiting
techniques for high-order DG methods is an active area of research, and two promis-
ing approaches in this direction are based on the moment limiter (Biswas et al. 1994)
and the WENO limiter (Qui and Shu 2005b). Recently, the moment limiter has been
rigorously extended to 2D problems with high computational expense (Krivodonova
2007). A major advantage of this limiter is that it only needs information from the
nearest neighbors of the element which is to be limited. The 1D WENO limiter can
be extended to 2D problems in a tensor-product form as demonstrated in Levy et al.
(2007).

However, recently a compact limiter based on the Hermite WENO (or H-WENO)
method has been proposed by Qui and Shu (2005a). This new limiter has been
successfully implemented in applications involving system of conservation laws
(Balsara et al. 2007; Luo et al. 2007). The H-WENO limiter not only exploits
the cell-averages but also the readily available derivative information (high-order
moments) from the nearest neighboring cells. This enables the WENO reconstruc-
tion process to rely on narrow stencils, and as a result the limiter is computationally
attractive. However, for the 2D case we only consider the moment limiter combined
with a positivity-preserving slope limiter.

9.4.2.1 A Limiter for the DG P? Method

We consider a third-order (P?) modal DG scheme with the expansion (9.37)
employing the basis set Z = {1,£,n.£n, (362 —1)/2, (3n*> — 1)/2}. The approxi-
mate solution Uj; (£, n) corresponding to element £2;; is then given as

Uyj(&.n) = Ug® + U £+ U n+ Uy &
+ UG GE = 1/2+ U Gn* = 1/2, (064)

where the coefficients Uif-’m correspond to the moments (9.38), and Ul-(}’o is the aver-
age value over £2;;. In the tensor-product expansion (9.37) for the P2 case, the basis
set employs additional basis functions P»(§) P1(n), P1(§)P2(n) and P(§) P2(n)
in . However, for the sake of simplicity we exclude additional basis functions in
(9.64).

The moment limiter (9.63) introduced for the 1D case can be extended for the 2D
case (Biswas et al. 1994; Krivodonova 2007). We denote the limited coefficients in
(9.64)as U l-i-’m which are modified by a generalized version of the minmod limiter
(9.63):
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20 . 2,0 1,0 1,0 1,0 1,0
Ul-j = minmod Ul-j , Oll(Uij — Ui—l,j)’ O‘I(Ui+1,j — Ul-j ] ,

0,2 _ . 70,2 0,1 0,1 0,1 0,1
Ul.j = minmod Ul-j ,a;(Uij _Ui,j—l)’al(Ui,j+l_Uij )],

1,1 . [:1,1 1,0 1,0 1,0 1,0
Ul.j = minmod Ul-j ,a;(Uij _Ui,j—l)’al(Ui,j+l_Uij ),

Uy —U2 ) @, - U] ©.69)

51,0 . 1,0 0,0 0,0 0,0 0,0
U;;” = minmod [Ul-j car(Uym = U2 ) (Uil — Uy )] ,

03-’1 = minmod [Ul-(j)-’l, o (Ui(])-’0 — Ui(’)}-o_l), al(Ui?}0+1 — Ul-(j)-’0 ] ,
where «; is a parameter in [0, 1] which controls the effect (dissipation) of limiting.
Smaller o values reduce the effect of limiting. Note that the minmod function used
in (9.65) has five arguments, but it acts as the standard minmod function defined
in (9.56): it returns the minimum of the absolute value of arguments if all of the
arguments have the same sign, otherwise it returns zero. The limiting algorithm for
(9.64) can be summarized in the following steps:

o If Ué’o = Ué’o and (71.(}’2 = Ul-(j)-’2 then there is no need for limiting and the
limiting process can be stopped. If not, replace the coefficients U 5’0 and U 3’2 by

the corresponding limited coefficients and move to the next step.
o If Ui}-’l = Ui}-’l then stop limiting, otherwise replace the coefficient Ui}’l by the

limited coefficient lNJi}-’l and move to the last step.

o If Ui}’o = Ul-}’o and 01'0"1 = UI-O-’1 then stop limiting. If not, replace the coefficient

by the corresponding limited coefficients (i.e., slopes).

Limiting an element §2;; using the above algorithm requires information from the
nearest-neighboring four elements (£2;+1,;, £2;,7+1). The most influential factor
controlling the quality of the limited solution is the set of coefficients corresponding
to the slopes (Ul-(}’1 and Ui}’o) used in the last step. As shown in the 1D case, exces-
sive use of the minmod slope limiter (MUSCL) makes the solution very dissipative.
For the moment limiter described above, the limiting hierarchy starts with the high-
est order coefficients and prevents excessive slope limiting at the last step. We also
examine a positivity-preserving limiter (which is less restrictive than the minmod
slope limiter) in the following section as an alternative to the slope limiter at the last
step of the limiting algorithm.

9.4.2.2 A Positivity-Preserving Slope Limiter

A positivity-preserving (PP) scheme guarantees that the cell-averages which evolve
in time will lie in a certain range governed by the initial conditions. Although the
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solution may contain minor oscillations within this range, it is less dissipative than
the rigorous monotonic case. Recently, Zhang and Shu (2010) introduced a uni-
formly high-order accurate PP scheme for the compressible Euler equations. This
scheme avoids creating negative pressure and density in the solution at a reasonable
computational cost.

The PP solution is acceptable for practical applications such as atmospheric
tracer transport modeling, where positivity preservation is a highly desirable prop-
erty. The minmod limiter introduced in the MUSCL scheme is strictly monotonic;
unfortunately, it is very diffusive too. However, the 2D PP limiter introduced by
Suresh (2000) for FV methods is less restrictive than the basic minmod limiter
(9.56), and, unlike the modified Minmod limiter (9.57), does not have a problem-
dependent parameter.

We adapt this PP limiter as a replacement for the minmod slope limiter used in
the above-mentioned limiting process for the coefficients UI-(j)-’1 and Ui}’o. The 2D
PP limiter requires information from the nearest neighbors as well as the corner
elements (£2;+1,;+1), which create a 3 x 3 halo region with £§2;; at the center. The
average value of the solution on £2;; is denoted U; ;. To understand how the PP
scheme works we use the linear part of (9.64), which can be written as

UjEn) =U; + U,-}-’OE + U,-(j)-’1 n. (9.66)

In order to advance in time, the MUSCL scheme requires a reconstruction step
(9.66) which involves computing new slopes Ul-}’o and Ul-(}’l from the neighboring

cell averages U,-il, j and U,-, j+1. The minmod slope limiter is constrained in such a
way that the U;; in (9.66) lie in the range of U,; 7 and four independent cell averages
U,-il, j and U,-, j+1. The PP limiter essentially extends this range by adding the
corner cell-averages. The slopes are then restricted so that the reconstructed values
at the corner points also lie within the new ranges (Suresh 2000). The modification
of the slopes is done so that they continuously depend on the neighboring data. The
following procedure briefly outlines the process of modifying the slopes.

We first construct a 3 x 3 matrix D consisting of the differences between the
averages of each element in the halo region and the average value of the element
£2;; that require limiting:

gi—l,j+1:Uij U,',j.H —Uij gi+1,j+1:Uij
D© — Uiy —Uy e Ui —U; |, (9.67)
Ui—1,j-1=Uij Ui j-1=U;j Uig1,j-1—Uj;

where € is a small positive number (O(1072%)) in order to make the algorithm robust.
The extreme values of D) are computed as

Vinin = min[D(_e)], Vipax = max[D(“Le)].
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The corner values of the reconstructed solution (9.66) can be effectively bounded
within in the interval [Vign, Vinax] by restricting the slopes |Ul-(}’l| + IUI-}’O|. In other
words we rescale the slopes using the ratio

_ mil’l(|Vmin|,|Vmax|)
s = 0,1 1,0
|Ul'j | + |Uij |

The final PP limited slopes are given by

U5t =min(1, V) U, 0% = min(1, V) U}° (9.68)
The modified slopes in (9.68) may be used as a substitute for the slopes computed
by the minmod in the moment limiter.

9.4.2.3 2D Numerical Experiments

To test the limiter we use the 2D advection problem (9.30) for a solid-body rotation
test. The test consists of quasi-continuous data and provides an excellent test for
the monotonicity of the advecting field (LeVeque 2002; Cheruvu et al. 2007). The
velocity field is given by (u,v) = (y,—x) on a square domain D where x,y €
[—1, 1], and the initial condition is defined in a piecewise fashion: U(x, y,t = 0) =
Up = 0 except in a square region where Uy = 1 and a circular region where Uy is
cone-shaped, growing to the maximum value 1 at the center. Formally,

1 if 0.1 <x <0.6 and —0.25 <y < 0.25,
Uo(x,y) =1 1—p:/0.35 if p. = /(x +0.45)2 + y2 < 0.35, (9.69)
0 otherwise.

The initial conditions are shown in Fig. 9.18. The domain consists of 80% elements
and the time step is Ar = 27/1000 so 1,000 iterations are required for one complete
revolution.

Figure 9.19 shows the solution after one revolution with and without the moment
limiter. The left panel of Fig.9.19 shows the DG P2 numerical solution without
any limiting, and the dashed lines indicate oscillations. The right panel shows the
limited solution with the moment limiter where the slopes U l-(}’l and Ui}’o are limited
with a minmod limiter. The solution is very diffusive, the cone height has been
reduced to about 60% of its initial height, and the square-block has been smoothly
deformed. In Fig.9.20 the numerical solution with the moment limiter combined
with the PP slope limiter is shown. The PP limiter (9.68) is only used as a substitute
for the minmod limiter in the last step of the limiting algorithm. There is a significant
improvement in the solution as compared to Fig.9.19: the cone and square-block
both preserve their maximum height, although the numerical solution still suffers
from slight diffusion.
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Fig. 9.18 Initial conditions for the solid-body rotation test. The initial scalar field consists of a
quasi-smooth cone and a non-smooth square block whose height range form O to 1. The domain is

[—1, 1]? with 80 elements in each direction. Only one value per element is sampled in the plots for
clarity
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Fig. 9.19 Numerical solution with a third-order DG scheme after one revolution. The left panel
shows the solution without limiting where the dashed lines correspond to the zero-contours, indi-
cating spurious undershoots. The right panel shows limited monotonic solution with a moment
limiter, where a MUSCL type minmod limiter is employed for limiting the coefficients U%! and
U corresponding to the slopes

9.5 The DG Methods on the Sphere

There are several geometrical options for discretizing a sphere for global modeling.
The choice of a particular spherical grid system is based on various factors includ-
ing the numerical method being considered (Williamson 2007). For element-based
Galerkin approaches such as the spectral element or DG method, the cubed-sphere
geometry provides an excellent choice. The cubed-sphere topology introduced by
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Fig. 9.20 Numerical solution with a third-order DG scheme combined with the moment limiter
after one revolution. The coefficients U%! and U'* (corresponding to the slopes) are limited using
the positivity-preserving limiter

Sadourny (1972) consists of a rectangular (quasi-uniform) tiling of the sphere .,
representing the planet Earth, which facilitates an efficient implementation of the
DG method on the sphere. As an application of the DG method on the sphere, we
consider the global shallow water model as reviewed below.

9.5.1 The Shallow Water Model on the Sphere

The shallow water (SW) equations are a system of hyperbolic PDEs. They are
widely used for studying horizontal aspects of atmospheric dynamics (Vallis 2006),
and also serve as a testbed to evaluate various discretization techniques (Williamson
etal. 1992). The flux-form (or conservative form) SW equations on a rotating sphere
can be written as

oh )
8_tv £V (vhY) = — fR x hv — ghV(h + hy) (9.70)
VM =0 9.71)

Here, h is the depth of the fluid above the solid surface and is related to the free
surface geopotential height (above sea level) @ = g (hs + h), where hs denotes the
height of the underlying topography and g is the gravitational acceleration. v is the
horizontal wind vector, f is the Coriolis parameter, and k is the unit vector along
the outward radial direction. The 2D divergence (V-) and gradient (V) operators are
general and not specific to a particular spherical grid system. Note that v Av is a
dyadic (or a second-order tensor) term and can also be written in the tensor-product
notation Av®v. Although (9.70) is widely used in computational fluid dynamics, for
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meteorological modeling application a simplified version of the momentum equa-
tions, the so-called “vector invariant form” is popular and is given by (Sadourny
1972; Arakawa and Lamb 1977),

g—:+V(¢+%V-V)=—(C+f)lA(XV, (9.72)
where { = k- (V x v) is the relative vorticity. The vector invariant form (9.72), as
the name suggests, preserves its formal form under coordinate transformations. In
a rigorous sense (9.72) is not in momentum conserving form, and when combined
with (9.71) it leads to a weakly hyperbolic SW system (Toro 2001). Nevertheless,
(9.72) is still in flux-form, although the fluxes being addressed are the energy fluxes
@ + v -v/2, rather than the momentum fluxes /v as used in (9.70).

9.5.2 The Cubed-Sphere Geometry

Here we consider the cubed-sphere geometry employing the equiangular central
(gnomonic) projection as described in Nair et al. (2005b). The physical domain .
is partitioned into six identical regions (sub-domains), which are obtained by the
central projection of the faces of the inscribed cube onto the surface of .7, (see
Fig.9.21a). Each of the local coordinate systems is free of singularities, employs
identical metric terms, and creates a non-orthogonal curvilinear coordinate system
on .. However, the edges of the six faces are discontinuous.

Because of the non-orthogonal nature of the grid system on .%, a tensorial form
is convenient for describing the local vectors and the fluid motion in general. In
order to be consistent with tensor notations, we choose (x!,x?) as the indepen-
dent variables, which are the central angles of the gnomonic projection (Nair et al.
2005b). Thus the local coordinates for each face are x! = x!(4, 8), x2 = x2(1, )
such that x!, x2 € [—m/4, /4], where A and 6 are the longitude and latitude,
respectively, of a sphere with radius R. The metric tensor, G;;, associated with the
transformation is

R2 2.1 1 2
|: 1 + tan? x tanx! tanx i| 9.73)

p% cos2x! cos2x2 | —tanx! tanx? 1 + tan? x?

where i, j € {1,2} and p? = 1 + tan? x! + tan? x2. The Jacobian of the transfor-
mation (the metric or curvature term) is vG = [det(G; j)]l/ 2, which is identical for
each face of the cubed-sphere. For a unit sphere the curvature term has a maximum
value of 1 at the center of each panel and a minimum of 1/+/2 at the center of the
edges (see Fig. 9.21b). Although the cells are uniform on the cube, the quadrilateral
cell on the sphere is most deformed at the corners of the cubed-sphere and the ratio
between the maximum and minimum grid width for the gnomonic cubed-sphere has
an upper bound approximately 1.3 at any resolution (Ranci¢ et al. 1996).
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Jacobian [Sqrt(G)] of Ghomonic Transform

7 75 8 8 9 95 1

Fig. 9.21 (a) A cubed-sphere with 5 X 5 elements on each face, so 150 elements span the entire
surface of the sphere. (b) The Jacobian «/6 (also referred to as the metric or curvature term)
associated with the gnomonic transformation from a cube onto a sphere. For a unit sphere /G has
a maximum value of 1 at the center of each face, and has a minimum value 1/ «/5 at the center
of the edges. The cubed-sphere gridlines are great-circle arcs and they are orthogonal only at the
center of each panel

9.5.3 The Shallow Water Model on the Cubed-Sphere

On the cubed-sphere the SW equations are treated in tensor form with covariant
(u1,u3) and contravariant (1!, u?) wind vectors. These vectors are related through
the matrix equations:

5} G11 G12 ul ul G11 G12 ui
= , = , 9.74
|:u2] [Gz] G22i| |:M2i| |:u2 G21 G22 Un ( )
where G/ = G;;' and can be computed from (9.73).
The orthogonal components of the spherical wind vector v(4,0) = (u,v) —

i.e., the physical zonal and meridional components of the horizontal wind — can be
expressed in terms of contravariant vectors (1!, u?) as follows:

ul ul _ [Rcos@0r/ox" RcosO0A/0x>T| . 1, _
R e R ol R
(9.75)

The details of the local transformation laws and the transformation matrix A for
each face of the cubed-sphere can be found in Nair et al. (2005b).
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The SW equations of a thin layer of fluid in 2D are the horizontal momentum
equations and the continuity equation for the height . The momentum equations
are cast in terms of covariant (u,us) vectors, which leads to a flux-form for-
mulation suitable for methods based on hyperbolic conservation laws (Nair et al.
2005a). Note that this particular formulation preserves the vector invariant form of
momentum equations (9.72). Thus the prognostic variables are u;, u, and ki, and
the shallow water equations on .% can be written in a compact form following the
inviscid formulation described in Nair (2009):

ad ad ad
EU + ax_lFl(U) + ax—ze(U) =S(U), (9.76)

where the state vector U and the flux vectors F;, F, are defined by
T T T
U= [ul,uz,«/ah] . F = [E,O, «/Ehul] . By = [O,E, «/Ehuz] ,

and E = @ + % (u1 u' + us u?) is the energy term. The divergence § and relative
vorticity ¢ on . are defined as

1 2
8_L|:8«/Eu v Gu :| ¢ = 1 |:8u2 3u1i| ©9.77)

VG dx! dx? T /G Loxt ax?
The source term, S, is a function of the relative vorticity ¢, the Coriolis parameter
f, and the contravariant wind vector (u', u?), and is defined as

S(U) = [d@uZ(f + &), —VGul'(f +;),0]T.

9.5.4 The Computational Domain

The spherical SW equations can be discretized either in physical space or in the
computational (transformed) space. Since the SW equations (9.76) are already in
the computational (x!, x2) space (due to the central projection), it makes sense to
discretize the system in the same space. The computational domain may be con-
sidered as the surface of a logical cube % such that each face of % is defined in
terms of local orthogonal Cartesian coordinates x!, x2 € [—7/4, /4], as shown in
Fig.9.22. Thus ¥ is essentially a union of six non-overlapping sub-domains (faces)
and any point on €’ can be uniquely represented by the ordered triple (x!, x2,v)
where v = 1,..., 6, is the cube-face or panel index. The projections and the logi-
cal orientation of the cube panels are described in Nair et al. (2005b) and Lauritzen
et al. (2010).
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Fig. 9.22 A schematic diagram showing the mapping between each spherical tile (element)

225 of the physical domain (cubed-sphere) . onto a planar element §2, on the computational

domain ¥ (cube). For a DG discretization each element on the cube is further mapped onto a
unique reference element Q, which is defined by the Gauss—Lobatto—Legendre (GLL) quadra-
ture points. The horizontal discretization of the HOMME dynamical cores relies on this grid
system

The equiangular central projection results in a uniform element width (Ax! =
Ax?) on ¥, which is an advantage for practical implementation. Figure 9.22
provides a schematic diagram of the mapping between the physical domain .¥
(cubed-sphere) and the computational domain € (cube).

The cubed-sphere has the attractive feature that the domain . is naturally
decomposed into non-overlapping quadrilateral elements (tiles) .QeS . This topology
is well-suited for high-order element-based methods such as spectral element or DG
methods, and amenable to efficient parallel implementation. Each face of the cubed-
sphere has N, x N, elements, thus N, = 6 N2 elements span the entire spherical
domain such that . = Uévil{" 25 in Fig.9.22 N, is 4. There exists a one-to-one
correspondence between the spherical element .Qes on . and the planar element
£2, on ¢ as depicted in Fig.9.22. The element-wise continuous mapping allows
us to perform integrations on the sphere in a mapped (local) Cartesian geometry
rather than on the surface of the sphere. The High-Order Method Modeling Envi-
ronment (HOMME) developed at NCAR relies on this grid system (Dennis et al.
2005).

9.5.5 The DG Discretization of the SW Equations

The SW model developed in Nair et al. (2005a) is based on a modal DG dis-
cretization, however, here we consider the nodal inviscid version of the SW model
as implemented in HOMME (Nair 2009). The discretization process for a multi-
dimensional system of equations (9.76) is quite similar to the 2D case considered
in Sect. 9.3. However, as we discuss in Sect.9.5.5.1, the flux operations (Riemann
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solvers) along the cubed-sphere edges are not trivial to implement. For notational
simplicity, we consider a generic component of the system (9.76) as follows,

W Ve B =S@). i x0.T] ©9.78)

where F = (Fy, F») is the flux function and T is the prescribed time of integration.
The Cartesian gradient operator V. on € is defined to be

a 0 oF,  0F,
ve= (-2, 2 V. F= o1 22
¢ (Bxl’axz) - Ve dx1 + dx2

For example, (9.78) may be considered the continuity equation (or the flux-form
transport equation) for the SW system (9.76); in this case ¥ = ~/Gh, F =
(Yu',yu?) and the source term is S = 0. Similarly, the components of the
momentum equation in (9.76) can be cast in the Cartesian form (9.78).

Analogous to the 2D case considered earlier, the weak Galerkin form corre-
sponding to (9.78) on any element §2, with boundary I, on 4 can be written as
follows:

d .
d—/ whwhdﬂ—/ F<wh>-vc¢hdrz+/ P ongydrl
tJe, Qe ,

e

=/9 SWn)endS$2, 9.79)

where 1, is the approximate solution and ¢y, is a test function in 73, F is the numer-
ical flux, n is the outward-facing unit normal vector on the element boundary I', and
the element of integration is d 2 = dx'dx?. For the numerical flux we employ the
local Lax-Friedrichs flux formula as follows:

I 1 .
F(yn) = 5 [(F@) + FE0) — e Wy = V3] (9:80)

where a!
and 1,/f;r , respectively, are the left and right limits of ¥, along the boundary I%.
Recall that for each component of the system (9.76) the weak formulation (9.79)
is valid, however, o/ | must be computed for the entire system. Nair et al. (2005a)
derived the flux Jacobian for the SW system on the cubed-sphere, which is a 3 x 3

matrix, and its maximum eigenvalues along the x! and x2-directions are,

o = [ul| + VGID, ay = [u?| + VG2, (9.81)

is the absolute maximum of the eigenvalues of the flux Jacobian; v/,

These values are nothing but the maximum phase speed of the SW system in the
curvilinear coordinate directions. From (9.81) the local maximum values computed
from both sides along the element wall (I%), are o} 2

max — max(al_,ozf) and Omax =
max(a; , a;’ ), as required in (9.80).
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9.5.5.1 Flux Exchanges at the Cubed-Sphere Edges

For DG methods, the flux exchanges at the element edges are managed by the
numerical flux formulas such as (9.5), and this is the only mechanism by which
the adjacent elements communicate. Because local coordinates are discontinuous at
the cubed-sphere edges, the flux exchange across the edges require special atten-
tion. The local transformation of vectors using (9.75) at the cubed-sphere edges can
be used for exchanging vector quantities including fluxes. For example, consider a
point on the cubed-sphere edge separated by two neighboring faces ‘m’ and ‘n’. The
local vector on the point (1!, u?),, belonging to a face m can be transformed into
the global spherical components (i, v)s using (9.75), and then transformed back to
the local vector (1!, u?), of the adjacent edges on the face n.

The flux operations on the cubed-sphere edges also follow a similar procedure.
To compute the flux on an edge (or interface) using (9.5), both the left, F~, and the
right, FT, contributions of F = (F,1, F,2) are required. For instance, if F~ on the
panel m is available then the corresponding FT belongs to the adjacent panel n, and
can be transformed in terms of the local vectors in the panel m by employing the
following dual transformation,

+ +
Ful —1 Fl
=A'A u , 9.82
|:Fu2]m " n|:F"2i|n ( :

where the suffixes m, n indicate the adjacent panel indices such that m,n €
{1,2,...,6}. A, A, are transformation matrices defined in (9.75), and for the sake
of computational efficiency the dual transformation matrices A,,'A, in (9.82) as
well as the metric terms can be pre-computed.

9.5.5.2 Numerical Integration of the SW Model

The integral and the differential operators required in the DG discretization (9.79)
of the SW system can be approximated on each §2, with boundary I,. The element-
wise discretization is quite similar to the 2D case considered earlier, therefore, we
just outline the procedure in terms of the weak form (9.79) and the SW system
(9.76).

Here we adopt the nodal basis set used for the HOMME dynamical core (Nair
2009). In order to take advantage of efficient quadrature rules, new independent
variables £ = & (x?),i € {I,2} are introduced such that £ € [—1, 1]. This leads to
a mapping of each element £2, € % to a unique reference element 0 = [—1,1] ®
[—1, 1], as illustrated schematically in Fig.9.22. The nodal basis functions are the
Lagrange polynomials /g (£), with roots at the GLL quadrature points. The nodal
basis set is chosen to be a tensor-product of polynomials Ay (£!)he(£2). Now the
approximate solution 1 and test function ¢z in ¥ can be expanded in terms of a
tensor-product of the Lagrange basis functions, and, in the case of v, such that
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N N
YR E2) =D ) Un(EL.ED) hi(E)he(E?). (9.83)

k=04£=0

where {& ; }évzo are the GLL quadrature points on the reference element Q. In other
words, there are N, x N, GLL points on Q (where N, = N + 1), therefore the total
degrees of freedom on % is 6 N2 N2. The equivalent resolution of the cubed-sphere
with respect to the regular latitude-longitude sphere at the equator is approximately
90°/(N, x N). However, a latitude-longitude spherical grid with the same resolu-
tion at the equator will have approximately 30% more grid points. For the sake of
computational efficiency we use the same order GLL quadrature rule for the internal
integrals in §2, and the boundary flux integrals along I, at the cost of nominal loss
of accuracy due to inexact integration (see Sect. 9.3.1.3).

Substitution of the expansion (9.83) for v, and ¢p in the weak formulations
and further simplification leads to a system of ODEs in time corresponding to the
continuous problem (9.76),

dU

So =L in©.T) (9.84)
where U are the time dependent nodal gridpoint values for the SW system (9.76). In
the present study we use the third-order accurate explicit strong stability-preserving
(SSP) Runge—Kutta as discussed in Sect. 9.2.5.

9.5.6 Numerical Experiments

Discussion of the solutions to the SW equations on the cubed-sphere based on the
DG method with the Williamson et al. (1992) test suite can be found in Nair et al.
(2005a,b) or, with a viscous SW model, in Nair (2009). In this section we consider a
new deformational test and the barotropic instability test case proposed by Galewsky
et al. (2004).

9.5.6.1 Advection Test

The flux-form advection equation (9.71) on the cubed-sphere can be written as

3J6¢ + i(d@¢ul) + i(ﬁ@ﬂ) =0, (9.85)
ot ox1 0x2

where ¢ is the scalar field and the advecting wind is given by the contravariant
vector field (u!, u?). In fact, this is the continuity equation in the SW system (9.76).
If we introduce ¥ = +/G¢ and the fluxes F; = yu' and F» = yu? then (9.85) can
be written in a form analogous to the 2D Cartesian case.
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9.5.6.2 Deformational Flow Test

We consider a new deformational flow test introduced in Nair and Lauritzen (2010).
For this problem, the initial distributions undergo severe deformation for a pre-
scribed time and then the flow reverses its course, returning the deforming fields
to their initial states (the “boomerang effect”). A special feature of this test is that
the trajectories of the flow are non-trivial (not along a circle or straight line) and
consequently the deformation is severe, making the test very challenging.

This test is prescribed on a unit sphere and quasi-smooth cosine-bell patterns
(a C! function) are used as the initial scalar fields. Two symmetrically located
cosine bells are defined by

¢(A,0) = %[1 +cos(zri/r)] if r<r, (9.86)

where r = 1/2 is base radius of the bells, r; = r;(A, 8) is the great-circle distance
between (A, 8) and a specified center (4;, 6;) of the cosine bell, which is given by

ri(A,0) = cos™! [sin O; sin 6 + cos 0; cos O cos(A — A;)]. (9.87)

The scalar values are initially set to zero (¢ (4, 6) = 0), and then two cosine bells
(cones) are generated using (9.86) at known points (A1,6;) = (57/6,0) and
(A2, 62) = (771/6,0) as the bell centers. The flow field is non-divergent and the time
dependent velocity fields v(A, 0, ¢) are prescribed in longitude-latitude coordinates,

u(A, 6,1) = «sin®(1) sin(20) cos(wt/T) (9.88)
v(4,0,t) = «ksin(21) cos(f) cos(wt/T), (9.89)

where the parameter k = 2 and the final time of the simulation is 7 = 5 non-
dimensional.

The DG transport scheme employs a 4 x 4 GLL grid with N, = 20. This cor-
responds to an approximate resolution of 1.5° at the equator. The third-order SSP
RK scheme (9.29) is used with a time step At = 5/1200 for the simulations (1,200
time steps are required for the total simulation). Figure 9.23 shows the initial con-
ditions and simulated results for the deformational test with the DG scheme. The
cosine bells move away from the initial positions (Fig.9.23a) and deform into thin
spiral shapes at time ¢t = T/2 (Fig.9.23b). The trajectories for the non-divergent
flow are complex and the cosine bells pass along the edges and corners, covering
the six faces of the cubed-sphere. The DG scheme successfully simulates the defor-
mations and retains the initial position as well as shape of the distribution at the
end of the simulation (+ = T'), as shown in Fig.9.23c. Since the final solution is
identical to the initial conditions by design, the global standard errors norms /1, />
and [ (Williamson et al. 1992) can be computed.
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a Deformational Flow Test
Initial Fields (t=0)
11./2 ........ | IR N S N S | I S S S R R | I S S N S
—n/24 i
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Fig. 9.23 Deformational flow test with the DG transport scheme on the cubed-sphere. The equiv-
alent resolution at the equator (with N, = 20) is approximately 1.5°. (a) The initial positions of
the scalar field (cosine bells) centered at (4;, 6;) = (57/6,0) and (77/6,0). (b) Deformed scalar
fields at half-time (r = T'/2) of the simulation. (¢) The scalar fields (numerical solution) return
back to the initial positions at the final time (t = T')
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9.5.6.3 Solid-Body Rotation Test

The cosine-bell problem proposed by Williamson et al. (1992) is widely used to test
advection schemes on the sphere. The same test has been considered in Nair et al.
(2005Db) for verifying the accuracy and conservation properties of the DG schemes
as well as the accuracy of various central projections for the cubed-sphere system.
Here we employ this test to demonstrate the effectiveness of the monotonic limiter
designed for the DG P? transport scheme in Sect. 9.4.2. The initial scalar field is a
cosine bell defined as follows,

(ho/2)[1 4+ cos(mr/rg)] if r<rp
0 if 1>,

P(1,0) = (9.90)

where r is the great-circle distance between (A, 6) and the bell center (377/2,0) as
given in (9.87). The cosine-bell radius is 7o = R/3 and the maximum height of
the bell is 7y = 1,000 m, where R = 6.37122 x 10° m is the Earth’s radius. The
velocity components of the advecting wind field are

u = ug (cosag cosf + sinag cos A sin 6),

v = —ug sinag sin A,

where uy = 2R /(12 days), and g is the flow orientation parameter which con-
trols the direction of the flow on the sphere along a great-circle trajectory. When
the value of &g is equal to zero or 7/2, the flow direction is along the equator or
in the north-south (meridional) direction, respectively. For the cubed-sphere, flow
along the north-east direction (o9 = 7/4) is more challenging because the cosine-
bell pattern passes over four vertices and two edges of the cube during a complete
revolution (in a 12-day period). The exact solution for ¢»(A, 8) is known for this test
and is equal to the initial value. Ideally, after a complete revolution the cosine-bell
pattern should return to the initial position without incurring any deformation.

The DG P2 scheme with N, = 45 is used for the numerical simulation, this
corresponds to 1° resolution (approximately) at the equator. The second-order SSP
RK scheme (9.28) is applied for 1,600 time steps to complete one revolution.
Figure 9.24 shows the numerical solution (left panel) and the limited solution (right
panel). As expected the non-limited solution is oscillatory, however, oscillations are
confined to a smaller region around the cosine-bell. The monotonic limiter removes
spurious oscillations but slightly deforms the shape of the bell. The additional com-
putational expense required for the limiter is nominal, for the cosine-bell advection
test it is found to be less than 5%.

9.5.6.4 Barotropic Instability Test

The barotropic instability test proposed by Galewsky et al. (2004) is an interest-
ing test for the SW models developed on the cubed-sphere grids. The test describes
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DG Advection of a Cosine-Bell (Res:1°, Day 12)
DGp2: Advection (no limiter) DGp2: Advection (with limiter)

..........................................

0 200 400 600 800 1000

Fig. 9.24 The cosine-bell advection test on the sphere. The left panel shows the DG (P?) numer-
ical solution after a complete revolution along northeast direction, where spurious oscillations in
the solution can be seen for the zero contour value. The right panel shows the limited solution by
applying a monotonic limiter that completely removes the oscillations

the evolution of a barotropic wave in the northern hemisphere and exhibits continu-
ous nonlinear transfer of energy at the midlatitudes from large to small scales. The
test is particularly challenging on the cubed-sphere because the vigorous barotropic
instability activities are located at the discontinuous edges of the top panel of the
cubed-sphere grid. This test exposes artifacts from wave number four due to the
cube-edge discontinuities at low resolutions for various SW models (St-Cyr et al.
2008; Chen and Xiao 2008; Levy 2009).

The initial conditions are zonally symmetric, and nearly in balance but physically
unstable. This introduces a strong zonal jet along the midlatitudes; details can be
found in Galewsky et al. (2004). The test recommends a simulation time of 6 days
with and without diffusion. Fine features of the vorticity fields can be captured at a
resolution of about 1.25° or higher (St-Cyr et al. 2008), and the DG results agree
with this observation. Figure 9.25 shows a high-resolution DG simulation of relative
vorticity (¢) at days 4 and 6, respectively. The approximate equatorial resolution is
0.64° (N, = 20, N, = 8) and a time step At = 6s is used for these simulations. The
fine features of the vortex are well captured by the DG SW model and comparable to
the reference solution given in Galewsky et al. (2004). Small-scale noise at the sharp
gradients in Fig. 9.25 can be effectively controlled by using a diffusion scheme.

We briefly outline the diffusion process as used for DG methods in the con-
text of the barotropic vorticity evolution. Diffusion and dissipation mechanisms are
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Barotropic Instability Test: Relative Vorticity Fields (10°s™)
DG (Ne =20, Nv = 8): Day 4 DG (Ne =20, Nv = 8): Day 6

Fig. 9.25 The simulated relative vorticity fields (¢) for the barotropic instability test at a high-
resolution. The left panel shows ¢ at day 4 and the right panel, ¢ at day 6

inevitable for practical atmospheric models. For example, momentum diffusion
transfers energy from the resolved scales into the unresolved scales. However, in
a discrete climate model, diffusion tries to mimic the effects of unresolved scales
on the resolved fluid flow (Chap. 13). Moreover, the diffusion process prevents
spurious accumulation of energy and enstrophy at the model grid scale. The DG
method is amenable to efficient implementation of robust diffusion schemes. This
is based on the so-called Local DG or LDG method by Cockburn and Shu (1998),
which is a generalization of the explicit diffusion scheme proposed originally by
Bassi and Rebay (1997). Recently, Nair (2009) developed a second-order LDG
diffusion scheme for the viscous SW model on the cubed-sphere. The vorticity
evolution results shown in Nair (2009) confirm that the LDG based diffusion mech-
anism removes small-scale noise such that the solution converges monotonically to
a diffused state. The convergence is dependent on the coefficient of diffusion.

9.6 Concluding Remarks

The DG method combined with explicit strong stability-preserving Runge-Kutta
time-stepping is particularly attractive for wave propagation problems because of
the ability to use local high-order polynomial approximations for the solution, pro-
viding an efficient way to control phase and dissipation errors. The DG method is
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becoming popular in geophysical fluid dynamics modeling, with several efforts to
develop global SW models based on DG methods (Giraldo et al. 2002; Nair et al.
2005a; Lauter et al. 2008; Nair 2009). Very recently, DG methods have been fur-
ther extended to hydrostatic (Nair et al. 2009) and non-hydrostatic (Giraldo and
Restelli 2008; St-Cyr and Neckels 2009) atmospheric models. Currently there are
new efforts by various research groups to develop sophisticated DG-based atmo-
spheric models, including some with adaptive meshes. Motivations for choosing the
DG method as the primary numerical technique for these model developments are
based on various factors such as the high-order accuracy, conservation, geometric
flexibility and parallel efficiency. Nevertheless, there are some computational issues
associated with the explicit DG discretization.

A major drawback of the DG algorithm is the severe CFL stability restriction
associated with explicit time-stepping. For practical climate models and high reso-
lution non-hydrostatic NWP models, overall computational efficiency is very much
contingent on the model’s ability to take larger time steps. A moderate order DG
scheme employing third- or fourth-order spatial discretization (i.e.,a P2 or P3 me-
thod) can address the stringent stability requirement to some extent. Implicit time
integration approaches are also popular for DG methods in CFD applications
(Diosady and Darmofal 2009; Bassi et al. 2009). The numerical algorithms for
such methods are far more complex and require considerably more computational
resources than explicit schemes. If such techniques permit at least 3-fold longer time
steps for unsteady problems as compared to the explicit method, then they may be
worth considering for atmospheric modeling applications.

Development of efficient time integration methods for DG methods is an
active area of research. The semi-implicit time integration method for a DG non-
hydrostatic model introduced by Restelli and Giraldo (2009) appears to be promis-
ing. The recent novel time integration approaches such as the ADER (Arbitrary
high order DERivatives) by Kiser et al. (2007) and IMEX (implicit explicit) RK
methods by Kanevsky et al. (2007) have been shown to be efficient time integration
options for DG methods. These new time integration techniques could be extended
to DG atmospheric models.
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Chapter 10
Voronoi Tessellations and Their Application
to Climate and Global Modeling

Lili Ju, Todd Ringler, and Max Gunzburger

Abstract We review the use of Voronoi tessellations for grid generation, especially
on the whole sphere or in regions on the sphere. Voronoi tessellations and the cor-
responding Delaunay tessellations in regions and surfaces on Euclidean space are
defined and properties they possess that make them well-suited for grid generation
purposes are discussed, as are algorithms for their construction. This is followed
by a more detailed look at one very special type of Voronoi tessellation, the cen-
troidal Voronoi tessellation (CVT). After defining them, discussing some of their
properties, and presenting algorithms for their construction, we illustrate the use of
CVTs for producing both quasi-uniform and variable resolution meshes in the plane
and on the sphere. Finally, we briefly discuss the computational solution of model
equations based on CVTs on the sphere.

10.1 Introduction

Given two sets A and B and a distance metric d(a, b) defined fora € A and b €
B, a Voronoi diagram or tessellation is a subdivision of A into subsets, each of
which contains the objects in A that are closer, with respect to the distance metric,
to one object in B than to any other object in B. Although Voronoi tessellations
can be defined for a wide variety of sets and metrics, of interest here is the situation
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for which the set A is a region or surface in Euclidean space, B is a finite set of
points also in Euclidean space, and the metric is the Euclidean distance.

Voronoi tessellation have a long history, probably because Voronoi-like arrange-
ments often appear in nature. Voronoi-like tessellations appeared in 1644 in the
work of Decartes on the distribution of matter in the cosmic region near our sun.
The first systematic treatment of what we now call Voronoi tessellations was given
by Dirichlet (1850) in his study of two- and three-dimensional quadratic forms,
i.e., homogeneous, multivariate polynomials of degree two; hence, Voronoi regions
are often referred to as Dirichlet cells. Voronoi (1907) generalized the work of
Dirichlet to arbitrary dimensions, again using what are now referred to as Voronoi
tessellations or diagrams.

The first documented application of Voronoi tessellations appeared in the clas-
sic treatise of Snow (1855) on the 1854 cholera epidemic in London in which he
demonstrated that proximity to a particular well was strongly correlated to deaths
due to the disease. Voronoi tessellations have continued to be very useful in the
social sciences, e.g., in the study of dialect variations, demographics, territorial sys-
tems, economics, and markets. Starting in the late nineteenth century and continuing
to this day, Voronoi tessellations have also been used in crystallography, especially
in the study of space-filling polyhedra, although, in this setting, various other names
have been used to denote Voronoi regions, e.g., stereohedra, fundamental area,
sphere of influence, domain of action, and plesiohedra.

It is not surprising, due to their ubiquity and usefulness, that throughout the
twentieth century, Voronoi tessellations were rediscovered many times. As a result,
Voronoi regions have been called by many different names. Thiessen polygons refer
to the work of Theissen on developing more accurate estimates for the average rain-
fall in a region. Area of influence polygons was a term coined in connection with the
processing of data about ore distributions obtained from boreholes. Wigner-Seitz
regions, domain of an atom, and Meijering cells were terms that arose from work on
crystal lattices and the Voronoi cell of the reciprocal crystal lattice is referred to as
the Brillouin zone (Kittel 2004; Ziman 1979). In the study of codes by, e.g., Shan-
non, Voronoi cells are called maximum likelihood regions (Weaver and Shannon
1963). The field of ecology gave rise to two more alternate labels: area potentially
available and plant polygons for a Voronoi region associated with a particular tree
or plant. Capillary domains refers to Voronoi regions in a tissue based on the centers
of capillaries.

For a long time, the routine use of Voronoi tessellations in applications was
hindered by the lack of efficient means for their construction. This situation has
now been remedied, at least in two and three dimensions. Voronoi tessellations also
became closely intertwined with computational geometry. For example, Shamos and
Hoey (1975) not only provided an algorithm for constructing Voronoi tessellations,
but also showed how they could be used to answer several fundamental questions in
computational geometry.
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Delaunay tessellations,' the dual concept to Voronoi tessellations, also have a
long history and have been called by other names. They originated with Voronoi
(1908) who called them the ensemble (L) of simplices. Delaunay (1928, 1934) was
the first to define the tessellations bearing his name? in terms of empty spheres; he
referred to them in terminology similar to that of Voronoi and, even today, some
refer to Delaunay tessellations as L-partitions. The name Delaunay was first asso-
ciated with Delaunay triangulations by Rogers (1964). Delaunay tessellations have
also proven to be very useful, especially for grid generation.

The first applications of Voronoi tessellations to global atmospheric modeling
were made by Williamson (1968) and Sadourny et al. (1968) wherein the barotropic
vorticity equation was integrated forward in time. Neither Williamson nor Sadourny
referred to their meshes as Voronoi tessellations; Williamson referred to the under-
lying tessellation as a “geodesic grid,” a colloquialism that is used in much of
the literature discussing the use of Voronoi tessellations in global climate model-
ing.? Both of these efforts produced promising results as compared to other models
available at the time. The reason for their success was really due to not having a
longitudinal polar filter which distorted the earlier solutions on latitude-longitude
grids, or to not using a reduced grid which also distorted the solutions. In addition,
it helped as well that the discrete formation of the Jacobian put forth by Arakawa
(1966) could be readily translated to their respective “geodesic grids.” Williamson
(1970) continued this line of research with the integration of the shallow-water
system in primitive variable form. While Williamson’s tessellation was extremely
uniform, in a global sense, as compared to the latitude-longitude meshes being using
in other model development efforts (Kasahara and Washington 1967), the truncation
error analysis by Williamson clearly reflected the fact that the Voronoi tessellation

! Delaunay tessellations are often referred to as Delaunay triangulations because, in two dimen-
sions, they consist of a triangulation of the points that generate the Voronoi tessellation. We
choose to refer to them as Delaunay tessellations to emphasize the fact that the concept of a dual
to Voronoi tessellations is quite general and not limited to two dimensions. When dealing with
two-dimensional settings, we will however, call them Delaunay triangulations.

2 Delone was a Russian number theorist who used the spelling Delaunay when writing papers in
French or German. He was also the first to coin both the descriptors “Dirichlet domains” and
“Voronoi regions.”

3 Adjectives such as “geodesic,” “bisection,” and “icosahedral” are often used to describe grids on
the sphere. However, there seems to be a lack of consistency about what these qualifiers mean. In
this paper, we use the following terminology.

Geodesic grids refer to any grid on the sphere such that the edges of the grid cells are geodesic
arcs, i.e., arcs of great circles. According to this definition, all Voronoi grids on the sphere are, by
construction, geodesic grids.

Bisection grids refer to any grid constructed through repeated bisection of a platonic solid
having vertices on the sphere and edges projected onto the sphere. Bisection grids are by construc-
tion geodesic grids. One may also define a bisection grid by repeated bisection of the Delaunay
triangulation corresponding to the platonic solid.

Octahedral-bisection grids refer to bisection grids that are based on the platonic octahedra hav-
ing 12 pentagonal faces. Note that this grid is often referred to as a “geodesic grid” or a “bisection
grid” but here we make a finder distinction between these terminologies.
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was less uniform in a local sense; the discrete operators used in (Williamson 1970)
resulted in first-order truncation errors that could quickly corrupt the solution.
Williamson’s barotropic primitive equation model was discretized using a collocated
grid where thickness and velocity reside at the same location.* Since a collocated
grid makes little (if any) use of the dual mesh, it is not clear if this geodesic grid was
or was not a Voronoi tessellation.

Following Williamson (1970), the idea of solving the barotropic primitive equa-
tions based on a Voronoi tessellation was essentially abandoned for 15 years. It
appears that this idea did not gain traction for two reasons. First, global spectral
models emerged as a superior choice to their finite-volume or finite-difference coun-
terparts because they are based on the natural polar filter so to speak and have no
pole problem. Their spectral accuracy and the reintroduction of the fast Fourier
transform (Cooley and Tukey 1965) also contributed significantly. Second, while
numerical schemes situated on latitude-longitude meshes were burdened with trun-
cation errors comparable to those found by Williamson (1970), progress toward
methods to mitigate the impact of these errors on the long-term stability of sim-
ulations was much more rapid for quadrilateral meshes; see, e.g., (Arakawa and
Lamb 1977). Unfortunately, the numerical methods developed for the solution of
the barotropic primitive equations on quadrilateral meshes did not readily translate
to Voronoi tessellations. For example, while C-grid staggered quadrilateral meshes
were essentially operational by the mid 1970s, a comparable C-grid scheme for
general Voronoi tessellations was not derived until Thuburn et al. (2009) in 2009.

Because it appeared, at least at the time, that Voronoi tessellations were not well
suited for the integration of the primitive equations, when this idea was revisited
by Masuda and Ohnishi (1986) they chose a different system of equations to dis-
cretize. Masuda and Ohnishi formulated the shallow-water system in vorticity and
divergence variables, instead of primitive variables. In this approach, the thickness,
vorticity, and divergence are collocated at the center of each Voronoi cell. Other sim-
ilar work on solving shallow water equations based on Voronoi mesh was done by
Augenbaum (1984) and Augenbaum and Peskin (1985). Randall (1994) would later
show that the collocation of variables in the vorticity-divergence system, termed
the Z-grid, leads to a simulation of geostrophic adjustment that is better than any
of the other staggerings based on primitive variables. The superior simulation of
geostropic adjustment along with the direct control over the evolution of vorticity
led to robust simulations of the shallow-water system. Heikes and Randall (1995a,b)
continued this line of research with the implementation of a geometric multigrid
solver to mitigate the cost associated with solving the vorticity-divergence system.
In turn, this work led to the creation, by Ringler et al. (2000) in 2000, of the first
global atmosphere dynamical core situated on a Voronoi tessellation.

The demonstration that Voronoi tessellations could be used to successfully model
global atmosphere dynamics created considerable interest. By and large, all global
atmosphere models using finite-volume methods were based on latitude-longitude

4 The collocated grid was later named the “A-Grid” in (Arakawa and Lamb 1977).
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grids. With no satisfactory solutions to overcome the grid singularities present at
the poles of latitude-longitude grids, the quasi-uniform grid offered by Voronoi
tessellations was a compelling alternative. This stimulated research toward finding
numerical schemes based on primitive variables that would essentially translate the
A-, B- and C-grid staggerings from quadrilateral meshes to Voronoi tessellations.
The collocated, A-grid staggering, first proposed by Williamson (1970), was suc-
cessfully implemented by Tomita et al. (2001). That effort resulted in the first ever
global cloud resolving simulation by Tomita et al. (2005). It is important to note
that (Tomita et al. 2001, 2005) do not employ a Voronoi tessellation since the loca-
tion of the cell vertices are placed at the barycenter’ of the Delaunay triangulation,
instead of the circumcenter of the Delaunay triangulation. As a result, the power-
ful results that follows from a Voronoi tessellation are not immediately applicable
to their mesh. The B-grid staggering was successfully developed for Voronoi tes-
sellations by Ringler and Randall (2002). It is only at this point, fully two decades
after the energy and potential enstrophy conserving schemes for quadrilateral grids
were derived (Arakawa and Lamb 1981), that the numerical methods on Voronoi
tessellations are comparable to their quadrilateral counterparts.

With the successful implementation of both the discrete vorticity-divergence sys-
tem and various discrete forms of the primitive equation system on quasi-uniform
Voronoi tessellations, attention is now turning toward the use of variable resolution
Voronoi tessellations. During this process we are essentially revisiting the trunca-
tion error problems that Williamson (1970) identified four decades ago when using
quasi-uniform Voronoi tessellations. When pairing low-order, finite-volume meth-
ods with variable resolution Voronoi tessellations, truncation error will be increased,
at least locally, in the regions of mesh transition. To overcome the challenge pre-
sented by this truncation error behavior, we see three routes forward. First, increase
the accuracy of the underlying finite-volume method to reduce truncation error to
acceptable levels; this approach was successfully employed in (Du et al. 2003b; Du
and Ju 2005; Weller 2009; Weller and Weller 2008). Second, develop numerical
schemes that respect both geostrophic adjustment and the need for nonlinear stabil-
ity, even when the mesh is highly distorted; this approach has been developed by
(Thuburn et al. 2009; Ringler et al. 2010). And finally, we can attempt to optimize
the quality of the variable resolution meshes in order to limit the extent of the prob-
lem. In the end, some combination of these three approaches will likely lead to the
creation of a variable-resolution global climate system model.

This chapter is focused on the mesh generation aspect of Voronoi tessellations
and, more importantly, the inherent properties that these meshes are guaranteed to
possess. We first provide a mathematical description of Voronoi tessellations and
their Delaunay triangulation counterparts. This is followed by a detailed analysis of
one very special type of Voronoi tessellation, the centroidal Voronoi tessellation. We
then explore the properties of centroidal Voronoi tessellations when producing both

5 The barycenter is the center of mass; thus, for a triangle, the barycenter is at the intersection of
the three lines joining the vertices and the centers of the opposite sides whereas the circumcenter
is at the intersection of the perpendicular bisectors of the three sides.
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quasi-uniform and variable resolution meshes. Finally, we briefly discuss the numer-
ical implementation of models using centroidal Voronoi tessellations. We defer until
Sect. 10.3 a discussion about why centroidal Voronoi tessellations are especially
well suited as a basis for grid generation.

10.2 Voronoi and Delaunay Tessellations

10.2.1 Definitions and Properties

We are given an open bounded domain £2 € R? and a set of distinct points
{x;}!_, C £2.Foreachpointx;,i = 1,...,n, the corresponding Voronoi region V;,
i =1,...,n,is defined by

Vi={xe2 | |x—xi| <|x—x;|| for j=1,---,n and j i}, (10.1)

where ||-|| denotes the Euclidean distance (the L2 metric) in R?. Clearly V;NV; = @
fori # j,and® U'_ V; = £ so that {V;}"_, is a tessellation of §2. We refer to
{Vi?=, as the Voronoi tessellation or Voronoi diagram of §2 (Okabe et al. 2000)
associated with the point set {x;}7_,. A point x; is called a generator; a subdomain
Vi C £2 is referred to as the Voronoi region or Voronoi cell corresponding to the
generator X; .

It is clear that, except for “sides” that are part of the boundary of £2, Voronoi
regions {V;}"_, are polygons in two dimensions and polyhedra in three dimensions.
Figure 10.1 (upper left) presents a Voronoi tessellation of the unit square in two
dimensions corresponding to ten randomly selected generators. It is guaranteed that
the line segment connecting two neighbor generators is orthogonal to the shared
edge/face and is bisected by that edge/face.

The dual of a Voronoi tessellation in the graph-theoretical sense (i.e., by con-
necting all pair of neighbor generators) is called a Delaunay tessellation or, in two
dimensions, a Delaunay triangulation (Okabe et al. 2000) associated with the point
set {x;}”_,. Elements of a Delaunay tessellation consist of triangles in two dimen-
sions and tetrahedra in three dimensions. The Delaunay triangulation corresponding
to the above ten generators is shown in Fig. 10.1 (top right). Note that each triangle
of the Delaunay triangulation is associated with a single vertex of its dual Voronoi
tessellation. That Voronoi vertex is located at the center of the circumscribed cir-
cle of the triangle; see an illustration in Fig. 10.1 (bottom). Each cell edge of the
Voronoi tessellations is uniquely associated with one cell edge of the dual Delaunay
triangulation; each pair of edges are orthogonal, but do not necessarily intersect. If
the pair of edges do intersect (or if the lines segments are extended to a point where

© For the open region £2, §2 denotes its closure, i.e., £2 together with its boundary points.
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Fig. 10.1 The Voronoi tessellation of the unit square corresponding to ten randomly selected
generators. Top-left: the bisection property; top-right: the corresponding Delaunay triangulation;
bottom: the circumcircle property

they intersect), then the intersection point will bisect the line segment connecting
generators.

In two dimensions, the Delaunay triangulation maximizes the minimum angle,
i.e., compared to any other triangulation of the points, the smallest angle in the
Delaunay triangulation is at least as large as the smallest angle in any other. This
property does not hold in higher dimensions. Note also that for a given set of gener-
ators, the Voronoi tessellation is always unique; however, the Delaunay tessellation
may not be unique in certain special situations, e.g., when four generators in two
dimensions form a rectangle that does not contain any other generator.

Voronoi and Delaunay tessellations of a general surface or manifold also have
been widely studied in the field of computer graphics; see, e.g., (Boissonnat and
Oudot 2005). In particular, spherical Voronoi tessellation and Delaunay triangula-
tion and related algorithms are developed in (Renka 1997).

10.2.2 Construction Algorithms

For a given set of distinct points {x; }_, C £2, the construction of the corresponding
Voronoi tessellation and Delaunay triangulation in Euclidean space has been well
studied in past decades; see (Okabe et al. 2000). Note that some algorithms directly
compute the Delaunay tessellation whereas others compute the Voronoi tessellation.
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Fig. 10.2 The flipping operation. Left: the triangulation does not meet the Delaunay condition,
i.e., the circumcircles contain more than three points; right: flipping the common edge produces a
Delaunay triangulation for the four points

As illustrated in Fig. 10.1, a property of the Delaunay triangulation is that the
circle circumscribing any Delaunay triangle does not contain any other generators
in its interior. This is an important property because it allows the use of a flipping
technique. If a triangle is non-Delaunay, we can flip one of its edges; see Fig. 10.2 for
an illustration. This leads to the simple flip algorithm: construct any triangulation of
the points, and then flip edges until no triangle is non-Delaunay. Unfortunately, this
can take O(n?) edge flips. It is worth noting that this edge-flipping technique does
not directly extend to three or higher dimensions; on the other hand, the circumcircle
property itself does generalize, e.g., to circumspheres of the Delaunay tetrahedra in
three dimensions, and some topological operations analogous to flipping have been
proposed and discussed in three dimensions (Freitag and Ollivier-Gooch 1997; Du
and Wang 2003; Alliez et al. 2005).

A usually more efficient way to construct the Delaunay triangulation is to repeat-
edly add one vertex at a time and then re-triangulate the affected parts of the graph.
When a point x; is added, the triangle containing x; is split into three triangles and
then the flip algorithm is applied. This procedure is called the incremental algo-
rithm. Tt takes O(n) time to search through all the triangles to find the one that
contains X;, after which we potentially flip in every triangle. The overall runtime is
theoretically O(n?) (Guiba et al. 1992), but often in practice this algorithm has bet-
ter than expected performance (Bentley et al. 1980). While the technique extends to
higher dimension, the complexity could grow exponentially in the dimension, even
if the final Delaunay triangulation is small (Edelsbrunner and Shah 1996).

An efficient divide and conquer algorithm (Lee and Schachter 1980; Guibas and
Stolfi 1985) for constructing a Voronoi tessellation of a given set of generators in
the plane is defined as follows. One recursively draws a line to split the generators
into two sets having roughly the same number of points. Voronoi tessellations of
the two subsets are separately constructed. Then, a piecewise linear dividing line
between the two subsets is determined. Each segment of this line is itself a segment
of the perpendicular bisector corresponding to two generators belonging to different
subsets. Then, all edges or part of edges from the Voronoi tessellations of each sub-
set that lie on the opposite side of the dividing line are deleted. Finally, the Voronoi
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Fig. 10.3 Left: the divide-and-conquer algorithm after the given generators are divided into two
subsets (the open and filled circles), the two Voronoi tessellations of the subsets have been con-
structed (the dashed lines and thin solid lines), and the piecewise linear dividing line has been
determined (the thick, red lines). Right: the Voronoi tessellation of all the generators found by
deleting appropriate portions of the Voronoi tessellations of the two subsets

tessellation of the original set of generators is given by the union of the remaining
edge segments of the Voronoi tessellations of the two subsets and the piecewise lin-
ear dividing line. See Fig. 10.3 for illustrative sketches of the divide and conquer
algorithm. Carefully implemented, this divide and conquer method for constructing
a Voronoi tessellation of a given set of generators has complexity O(nlogn). A
divide and conquer paradigm for constructing a triangulation in d-dimensions was
developed in Cignoni et al. (1998).

Another efficient algorithm, Fortune’s sweep line algorithm (Fortune 1986), is
based on the sweep line technique (Sedgewick 1983) and involves not only a sweep
line, but also a beach line that actually consists of parabolic arcs. Without loss of
generality, one can assume that the sweep line is vertical and that it moves from left
to right. Generators to the right of the sweep line have yet to be considered. The
beach line is to the left of the sweep line. It is defined as follows: first, for each gen-
erator to the left of the sweep line whose Voronoi region has yet to be completely
determined, one defines the parabola that separates the points that are closer to the
sweep line from those that are closer the generator; then, the beach line is deter-
mined as the right-most points in the union of the parabolas. Clearly, a vertex of
the beach line is equidistant from the two generators corresponding to the parabolas
meeting at that vertex. Thus, as the sweep line moves from left to right, the vertices
of the beach line move along the edges of the Voronoi tessellation. A parabolic arc
is added to the beach line whenever the sweep line passes a new generator; an arc
is removed from the beach line whenever the Voronoi cell for the corresponding
generator has been completely determined. The latter situation occurs whenever the
sweep line is tangent to a circle passing through three generators whose parabolas
form consecutive arcs of the beach line. See Fig. 10.4 for an illustrative sketch for
Fortune’s algorithm. Carefully implemented, Fortune’s algorithm for constructing a
Voronoi tessellation of a given set of generators has complexity O(n logn).

Finally, we mention “convex hull” algorithms (Chynoweth and Sewell 1990)
for, e.g., Delaunay tessellation construction in Euclidean regions. For example, in
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Fig. 10.4 Set-up in Fortune’s algorithm. The red, dashed straight line is the sweep line that is
moving from left to right; the blue, piecewise parabolic curve is the beach line. The filled circles
are the generators already visited by the sweep line whereas the open circles are generators yet to
be visited. The thin black lines are edges or edge segments of Voronoi regions already constructed

the two-dimensional case, one can vertically project the generators from their plane
onto a paraboloidal surface whose axis is perpendicular to that plane. The lower
boundary of the convex hull of the points on the paraboloid is generally a triangu-
lated shell whose vertical projection back onto the original plane gives the Delaunay
triangulation. This geometrical characterization also explains the circumcircle prop-
erty mentioned above. The plane of any triangular facet of the assumed convex shell
intersects the paraboloid on a closed curve whose projection is that projected trian-
gle’s circumcircle. Thus, other generators lying strictly inside that circle would have
to correspond to points of the paraboloid that necessarily lie outside the putative con-
vex hull, in violation of the original assumption that a convex hull was constructed.
See (Chynoweth and Sewell 1990; Sewell 2002) for detailed discussions on this
characterization.

10.3 Centroidal Voronoi Tessellations

Centroidal Voronoi tessellations (CVTs) are special Voronoi tessellations having
the property that the generators of the Voronoi tessellation are also the centers of
mass (or centroids or barycenters), with respect to a given density function, of the
corresponding Voronoi regions. CVT methodologies produce high-quality point dis-
tributions in regions and surfaces in R or within sets of discrete data. In the latter
context and in its simplest form, CVT reduces to the well-known k-means cluster-
ing algorithm (Gersho and Gray 1992; Hartigan 1975; Kanungo et al. 2002). The
dual tessellation corresponding to a centroidal Voronoi tessellation is referred to as
a centroidal Voronoi Delaunay tessellation (CVDT).

CVTs and CVDTs possess certain properties, which we discuss below, that make
them very well suited for grid generation which is a focus of this paper. In addition,
in (Nguyen et al. 2009), several quality measures were used to effect a quantitative
comparison of uniform triangular mesh generators in convex and non-convex planar
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regions; it was found that CVDTs result in higher quality meshes compared to those
constructed using most other algorithms, with only the method given in (Persson
and Strang 2004) that uses spring dynamics being somewhat competitive.
Although uniform CVT-based grids have been shown to be competitive with
(or even better than) other uniform mesh generators in planar, three-dimensional,
and spherical regions, perhaps they have even greater utility for the construction of
nonuniform meshes. For one thing, through a point density function, CVT grid gen-
eration methodologies allow for a simple means of controlling the local grid size;
moreover, the density function can easily be connected to error estimators, resulting
in effective adaptive refinement strategies (Ju et al. 2002b). For another thing, CVT-
based grids feature smooth transitions from coarse to fine grids; see Sect. 10.4.1.2
for an illustration. Smooth grid transitions can greatly reduce deleterious effects,
e.g., non-physical wave reflections, that can occur if grid sizes change abruptly.

10.3.1 Definitions and Properties

Given a density function p(x) > 0 defined on £2, for any region V' C §2, the standard
mass center (or centroid) x* of V is given by

/ xp(x) dx
A A— (10.2)

[V,o(x) dx .

Note that it is often required that p is integrable with respect to £2 and the volume of
the set {x | p(x) = 0} is zero in order to make sure (10.2) is well defined in practice.
A special family of Voronoi tessellations are defined as follows.

Definition 1. (Du et al. 1999) Given a density function p(X) defined on 2, we refer
to a Voronoi tessellation {(x;,V;)}!_, of §2 as a centroidal Voronoi tessellation
(CVT) if and only if the points {X; }?_, which serve as the generators of the associ-
ated Voronoi regions {V;}?_, are also the centroids, with respect to p(x), of those
regions, i.e., if and only if we have thatx; = X} fori = 1,...,n. The corresponding
dual triangulation is called a centroidal Voronoi Delaunay tessellation (CVDT).

A generic Voronoi tessellation does not in general satisfy the CVT property; see
Fig. 10.5 for an illustration as well as for an illustration of CVT. On the other hand,
given a density function p and the number #n of generators, the CVT of a domain
always exists, although it may not be unique.

CVTs possess an optimization property that can be used as a basis for various ext-
ensions. Given any set of points X = {X;}7_, in £2 and any tessellation V =
{V;}'_, of £2, define a clustering energy by’

7 Note that, a priori, V need not be a Voronoi tessellation and x; need not be in V;.
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Fig. 10.5 (Du et al. 1999) Left: a Voronoi tessellation of the unit square with ten randomly selected
generators (the filled circles); the open circles denote the centroids of the Voronoi polygons with
respect to a uniform density; the centroids do not coincide with the generators. Right: a ten-
generator centroidal Voronoi tessellation of the square for a uniform density; the generators and
centroids coincide

H (X, V) = Z/V_ p(x)|x =% ||? dx. (10.3)

i=1

Then, it can be shown that ¢ is minimized only if {(X;, ’171-)}1’-’:1 forms a CVT®
of 2. Note that if {(x;, V;)}7_, forms a CVT, it does not necessarily minimize %",
e.g., it may define a saddle point (Du et al. 1999) of (10.3). In many applications, the
clustering energy functional % is often naturally associated with quantities such as
quantization error, variance, and cost.

Asymptotically, as the number of generators becomes larger and larger, Gersho’s
conjecture (Gersho 1979) states that, locally, the optimal CVT (in the sense of mini-
mizing the clustering energy) under the Euclidean metric forms a regular tessellation
consisting of the replication of a single polytope whose shape depends only on the
spatial dimension.” The regular hexagon provides a confirmation of the conjecture
in two dimensions for the constant density case (Newman 1982). For the three-
dimensional case and a constant density function, it has been proved (Barnes and
Sloane 1983; Du and Wang 2005) that among all lattice-based CVTs,'9 the CVT
corresponding to the body-centered cubic lattice for which the Voronoi regions are
the space-filling truncated octahedra is the optimal one. For more general, non-
lattice cases and for non-constant densities, the question remains open, although
extensive numerical simulations given in (Du and Wang 2005) demonstrated that

8 In fact, this can be used as an analytical definition of CVTs alternate to the geometric definition
given in Definition 1.

% In other words, Gersho’s conjecture states that, at least for smooth density functions, if the number
of generators 7 is large enough and one focuses on a small enough region, then a CVT appears to
be a uniform tessellation involving congruent polytopes.

10 A lattice-based CVT is one whose generators are located on a lattice so that the Voronoi regions
form congruent polytopes.
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the truncated octahedra remains the likely candidate. It is interesting to note that, in
two dimensions, Gersho’s conjecture implies that the dual Delaunay triangulation
asymptotically consists of a replications of a single polygon, namely congruent equi-
lateral triangles. In three dimensions, the dual Delaunay tessellation cannot consist
of congruent equilateral tetrahedra because the latter cannot cover three space.

10.3.1.1 Centroidal Voronoi Tessellations of Surfaces

Extensions of the VT and CVT concept to surfaces (or manifolds) are possible; for
example, tessellations of surfaces under the Euclidean metric are considered in (Du
et al. 2003a). Suppose that §2 is a compact and continuous hypersurface in R4 +1,
Then, for any subregion V' C 2, we call xX¢ a constrained mass center of V if it is
a solution of the problem:

find x¢ such that / o(y)|ly —x[|>dy is minimized overx € V. (10.4)
14

Existence of minimizers of the problem (10.4) can be easily demonstrated using the
continuity and compactness of the objective function; however, solutions may not
be unique. It is worth noting that if §2 is a flat surface, then x¢ coincides with x*, the
standard center of mass center of V. If we replace x;" in Definition 1 by x¢, then the
resulting Voronoi tessellation {(x;, V;)}7_, of the surface £2 is called a constrained
centroidal Voronoi tessellation (CCVT) (Du et al. 2003a), and its dual tessella-
tion is called a constrained centroidal Voronoi Delaunay triangulation (CCVDT).
In particular, when 2 is the surface of a sphere, we call {(x;, V;)}"_, a spheri-
cal centroidal Voronoi tessellation (SCVT). Figure 10.6 presents an illustration of
non-centroidal and centroidal Voronoi tessellations of the sphere.

The calculation of the constrained centroid x¢ for any given subregion V of a
smooth surface §2 can be effected using Newton’s method or a damped Newton’s
method (Ju 2007). However, a more direct and less costly approach may be used

Fig. 10.6 (Du et al. 2003a) Left: A spherical Voronoi tessellation with 64 randomly selected
generators. Right: a 64-generator spherical centroidal Voronoi tessellation for the uniform density
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instead. One can first compute the standard centroid x* of the subregion V' as defined
in (10.2). Note that, in general, the standard centroid x* of V' does not lie on the
surface §2; for example, for a region on the sphere, x* is inside the sphere. Then, as
is shown in (Du et al. 2003a), the constrained centroid x¢ of V' € £2 can be found by
projecting x* onto §2 along the normal direction at x°. In particular, if V' is a subset
of the surface of a sphere of radius r, we have that its constrained center of mass is
given by x¢ = rx*/||x*|.

10.3.2 Algorithms for Constructing CVTs

CVTs can be constructed either using probabilistic methods typified by MacQueen’s
random algorithm (MacQueen 1967) (which simply alternates between sampling
and averaging points) or deterministic methods typified by Lloyd’s method (Lloyd
1982) (which simply alternates between constructing Voronoi tessellations and mass
centroids). Due to its effectiveness and simplicity, much attention has been focused
on Lloyd’s method.

Algorithm 1. (Lloyd’s Method) Given a domain 2, a density function p defined
on §2, and a positive integer n (the number of generators).

1. Select an initial set of n points {x;}7_, on £2.

2. Construct the Voronoi regions {V;}7_, of §2 associated with {x;}}_,.

3. Determine the centroids (or constrained centroids), with respect to the given den-
sity function, of the Voronoi regions {V;}7_,; these centroids form the new set of
points {x; }7_,; if £ is a hypersurface, then x; must be projected onto 2.

4. If the new points meet some convergence criterion, return {(X;,V;)}’_, and
terminate, otherwise, go to Step 2.

It has been shown (Du et al. 1999) that the energy .# associated with the
Voronoi tessellation decreases monotonically during the Lloyd iteration untila CVT
is reached. Some convergence analyses of the Lloyd’s method are given in (Du et al.
2006; Emelianenko et al. 2008).

In Step 1 of Algorithm 1, the initial set of points can be selected at random. How-
ever, because Lloyd’s method only finds local minima of the clustering energy %,
the generator positions of the final CVT produced is affected by the initial distribu-
tion of generators.!! Therefore, in some situations, one may want to use less noisy
starting conditions; an example is given in Sect. 10.4.1.1.

For the second step, the methods described in Sect. 10.2.2 can be applied. There
also exist software packages that may be used for Voronoi tessellation construction.
For example, on the sphere, there is the STRIPACK package (Renka 1997).

" This is true for other CVT construction methods because, invariably, they only find local minima
of the clustering energy.
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The computation of centroids of the Voronoi regions in the third step of Algo-
rithm 1 can be effected by first decomposing each Voronoi region into a set of trian-
gles/tetrahedra and then using a high-order quadrature rule for triangles/tetrahedra
to approximate integrals appearing in (10.2). Note that if the region of interest is a
surface, e.g., part of the sphere or the whole sphere, then this step also includes the
projection of the Euclidean centroid onto the surface; see Sect. 10.3.1.1.

For the fourth step, an example of a stopping criterion is if some measure, e.g.,
the root mean square, of the movement of the generators from one iteration to the
next is smaller than a prescribed tolerance; alternately, one can stop if the change in
the (computable) clustering energy is smaller than a prescribed tolerance.

A probabilistic version of a generalized Lloyd’s method was proposed in (Ju et al.
2002a) together with its parallel implementation.'?

Algorithm 2. (Probabilistic Generalized Lloyd’s Method) Given a domain §2, a
density function p defined on §2, and a positive integer n.

1. Choose a positive integer q (the number of sampling points per iteration) and
constants {a; ,31'},-2=1 suchthatoy > 0, B > 0,01+ = l,and B1 + B> = 1;
choose an initial set of n points {X; }7_,; set j; = 1fori =1,...,n.

2. Choose q sample points {yr}‘r]:1 in §2 at random, e.g., by a Monte Carlo method,
with the density function p(X) acting as the probability density function.

3. Fori = 1,...,n, gather together in the set W; all sampled points y, closest to
x; among {X;}7_,, i.e., all sampled points in the Voronoi region of x;; if the set
W; is empty, do nothing; otherwise, compute the average W; of the set W; and set

X < (a1ji + ﬂl)Xz.' + (2 ji + B2)u; and i ji+ 1 (105)
Ji+1
the new set of {X;}, along with the unchanged {X ; } corresponding to empty W,
form the new set of points {x;}?_,; if §2 is a hypersurface, then X; must be
projected onto 2.
4. If the new points meet some convergence criterion, terminate; otherwise, return
to Step 2.

In Steps 1 and 2 of Algorithm 2 as well as in Step 1 of Algorithm 1, points need
to be sampled according to a given density function p. Such sampling steps may be
accomplished by a rejection method (Du et al. 2003a; Ju et al. 2002a; Ross 1998)
which we now describe. Given a general domain £2 in the plane or on the sphere,
determine an enclosing rectangle D whose sides are parallel to the coordinate axes
or, on the sphere, are latitude and longitude lines, and which contains all points
in 2. Set pmax = maxygeq p(x). Then, there are two rejection tests applied. First,

12 This algorithm can also be viewed as a generalization of MacQueen’s method (MacQueen 1967);
see (Ju et al. 2002a). In fact, if in (10.5), ¢ = 1, ¢, = B; = 0, and o; = B, = 1, Algorithm 2
reduces to MacQueen’s method.
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a point y in D is sampled according to a uniform distribution;'? this is done by
uniformly sampling each coordinate; all computer systems have a built-in uniform
random sampling method. If the sampled point y is not in £2, it is rejected and one
samples again. If the sampled point is in §2, a scalar ¢ is sampled uniformly in the
interval [0, 1]. If ¢ < p(Y)/Pmax, then the sample point is accepted; otherwise, it is
rejected.'*

In Step 3 of Algorithm 2, the average u; of the sampled points in W; is given by

o ZyEW',- y

i = #VVI s
where #W; denotes the number of elements in W;. Since the points in W; are ran-
domly selected points in the Voronoi region corresponding to X;, one may view u;
as a probabilistic approximation to the centroid (or constrained centroid) of V;; the
larger is ¢, the better the centroid approximations.'> Note that j; keeps track of the
number of times that x; has been previously updated. Some over-relaxation updat-
ing methods can be defined by appropriately choosing {1, a2, B1, B2}; see (Ju et al.
2002a).

Algorithm 2 is much easier to implement and code than Algorithm 1. For Algo-
rithm 1, one has to explicitly construct Voronoi tessellations and determine centers
of mass of Voronoi regions. These steps are doable in two-dimensional settings such
as planar regions and regions on the sphere and in three-dimensional volumes, but
involve considerable coding. On general surfaces in three-dimensions, algorithms
for Voronoi tessellations are not generally available and in regions in four and
higher dimensions, the calculation of centers of mass become impractical. On the
other hand, to find the generators of a CVT, Algorithm 2 does not require the con-
struction of Voronoi tessellations or of centers of mass; both are approximated via
sampling. Thus Algorithm 2 can be applied to regions and hypersurfaces in arbitrary
dimensions.

The accuracy of Algorithm 1 is limited only by machine precision, although,
in practice, one would not want to iterate to that level of accuracy. On the other
hand, for Algorithm 2, accuracy is limited by the sampling errors made in Step 2.
The g sampled points are divided among the generators so that, say, in a uniform
density setting, each generator would only be assigned roughly g /n points, where n
denotes the number of generators. Thus, if, say, Monte Carlo sampling is used, the
errors in the probabilistic approximations of the centroids of the Voronoi regions

13 Tnstead of random, i.e., Monte Carlo, sampling, one can, in conjunction with the rejection steps,
use quasi-Monte Carlo, Latin hypercube, etc. sampling methods (McKay and Beckman 1979;
Niederreiter 1992; Saltelli et al. 2004) appropriate for hypercubes.

14 Note that both rejection tests can be incorporated into a single test because an alternate means
for rejecting points that are outside of £2 is to simply set p(x) = 0 outside of 2.

BIfay = B; = 0,and @y = B, = 1, we have in (10.5) that x; < wu;, i.e., the new generators
are probabilistic approximations of the centroid of the Voronoi regions; this justifies saying that
Algorithm 2 is a probabilistic generalized Lloyd’s method.
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would be proportional to /n/qg so that this is the best accuracy one can expect from
Algorithm 2. Note that, for fixed ¢, the accuracy degrades as we increase the number
of generators n and that, for fixed n, greater accuracy can be achieved by increasing
the number of sample points g. Also, note that it is useless to set a tolerance in
whatever stopping criterion is used in Step 4 of Algorithm 2 to be smaller than
O(yn/q).

Because accuracy control is better served by Algorithm 1, it is usually the algo-
rithm of choice for regions in the plane and on the sphere and for three-dimensional
regions. For other cases, e.g., higher-dimensional regions and general surfaces in
three dimensions, Algorithm 2 becomes more practical.

We close this section on algorithms for CVT construction by noting that several
other schemes for computing CVTs such as Newton-type algorithms and multi-level
methods are studied in (Du and Emelianenko 2006, 2008; Liu et al. 2009).

10.3.3 The Relation Between the Density Function
and the Local Mesh Size

An interesting problem about the asymptotic behavior CVTs is the distribution of
the energy % defined in (10.3). It was shown in (Du et al. 1999), that in the one-
dimensional case, for the CVT of n generators {(x;, V;)}7_, with a smooth density
function p, we have

. Y1<i<n, (10.6)

1 H
PN ,h3%—
Hi 12;0(X), .

where h; denotes the diameter of V;, ¢ = sz p(X)|x — x;||? dx, and ¥ =

3", i, ie., under some assumptions on the density function, asymptotically
speaking, the energy is equally distributed in the Voronoi intervals and the diam-
eter of Voronoi intervals are inversely proportional to the one-third power of the
underlying density. Based on (10.6) and the fact Zl'-'zl h; = length of £2, we then
obtain an approximation of total clustering energy of the CVT in one dimension
given by, for n large,

L (Jpr* )’
H N
12 n2
Let d denote the space dimension and set d’ = d — 1 if £2 is a hypersurface

and d’ = d otherwise. For higher dimensions, a similar conjecture about CVTs or
CCVTs can be stated as follows:

X

i~ cr1p(xi)h? T2 ~ —, Vlsisn (10.7)
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s Lo d’+2)/d’
H ~ ([ p? /@' +2) dx) , (10.8)
2

4
24

where c1, ¢ are constants depending only on d’. This conjecture still remains open
for d > 2 although its validity has been supported through many numerical studies
and widely used for applications in vector quantizations (Gersho and Gray 1992)
and image processing.

A direct consequence of (10.7) is

hi (P(Xj))l/(d'+2). (10.9)

hi \p(xi)

The relation (10.9) between the density function and the local mesh sizes is also
very useful in CVT-based adaptive mesh generation and optimization (Ju 2007; Ju
et al. 2002b).

10.4 Application to Climate and Global Modeling

10.4.1 Global SCVT Meshes

We define quantitative measures of grid quality that we can use to assess the quality
of meshing schemes on the sphere.

Given a Voronoi mesh {(x;, V;)}7_,,set O = {(i, j) | x; and x; are neighbors}
and let

hmin = min_||X; — X/ || and hmar = max_|x; — X
@i,j)eQ @i,/)eQ

Clearly, the ratio (Du et al. 2003b)

h max

hmin

= (10.10)

is a natural measurement of the global uniformity of the Voronoi mesh {x;, V;}7_,.
It is clear that & > 1 and the smaller is u, the more globally uniform is the Voronoi
mesh.

Letting y; denote the set of neighbor generators of x;, a measure of the local
quality or local uniformity of the Voronoi mesh at x; is given by

o minjexi ||Xi —Xj||
P =

max;ey; ||X,' — Xj|| '

Clearly 0 < 0; < 1 and the larger is o, the better the local uniformity.
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We apply the commonly used g-measure (Field 2000) to evaluate the quality of
dual Delaunay triangular meshes, where, for any triangle 7;, ¢; is defined to be
twice the ratio of the radius Rr; of the largest inscribed circle and the radius rz; of
the smallest circumscribed circle, i.e.,

_z(b—i—c—a)(c—i—a—b)(a—}—b—c)’ (10.11)
rT; abc
where a, b, and ¢ denote the side lengths of 7;. Clearly, 0 < ¢; < 1 and ¢; = 1
corresponds to the equilateral triangle.

We then define the mesh quality measures

1 &
Opin = _ NN i, Oavg = — E oj, qmin = _ MIN qi,
i=1,..., mp n “ 1 i=1,..., mp
i=
mq
1
Gavg = —— qi,
mp ¢

where m p denotes the number of dual Delaunay triangles. The closer these mea-
sures are to unity, the better the mesh.

10.4.1.1 Uniform SCVT Meshes vs. Icosahedral-Bisection Meshes

Icosahedral-bisection meshes on the sphere have been widely used in the climate
and global modeling communities; icosahedral-bisection meshes from a family of
hierarchical meshes with 10 x 41 + 2 nodes at level £, in which there are 12
pentagons and all others cells are hexagons. The level £ = 1 and £ = 2 meshes
having 12 and 42 nodes, respectively, are SCVT meshes with respect to the uni-
form density, but all other members of the family with levels / > 2 are not SCVTs,
although they are quite uniform. We use the centroids of the Voronoi cells of each
icosahedral-bisection mesh as the initial guess and apply Lloyd’s method with a
uniform density to generate a sequence of SCVT meshes; see Fig. 10.7. The quality
measures of Sect. 10.4 for the icosahedral-bisection and uniform SCVT meshes are
given in Table 10.1. The SCVT meshes do better with respect to the local mesh qual-
ity measures, i.e., with respect to local mesh uniformity, although they get worse
with respect to global mesh uniformity due to the shrinking relative size of the
pentagonal cells as the mesh size decreases.

10.4.1.2 Locally Refined SCVT Meshes

Let a point x on the sphere be represented by its spherical coordinate x = (lat, lon)
with —/2 <lat < w/2 and 0 < lon < 2x. Set X, = (7/6,37/2) and define
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Fig. 10.7 From top to bottom: spherical centroidal Voronoi tessellations (left column) with 42,
162, 642, 2,562 generators for a uniform density and the corresponding spherical Delaunay
triangulations (right column)
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Table 10.1 Comparisons of quality of icosahedral-bisection (I-B) and uniform spherical cen-
troidal Voronoi tessellation (SCVT) meshes

Level £ # of generators Mesh types n Oave Omin Gave Gmin
2 42 I-B 1.1308 0.9174 0.8843 0.9872 0.9829
SCVT 1.1308 0.9174 0.8843 0.9872 0.9829
3 162 I-B 1.1777 09111 0.8586 0.9904 0.9729
SCVT 1.1647 0.9174 0.8843 0.9872 0.9829
4 642 I-B 1.1907 0.8737 0.8482 0.9865 0.9701
SCVT 1.1592 0.9121 0.8525 0.9923 0.9701
5 2,562 I-B 1.1940 0.8803 0.8405 0.9866 0.9694
SCVT 1.2335 0.9141 0.8511 0.9931 0.9694
6 10,242 I-B 1.1948 0.8879 0.8386 0.9866 0.9692
SCVT 1.2710 0.9157 0.8507 0.9934 0.9692
7 40,962 I-B 1.1951 0.8932 0.8380 0.9866 0.9692
SCVT 1.3107 0.9168 0.8504 0.9935 0.9692
8 163,842 I-B 1.1951 0.8966 0.8379 0.9870 0.9692
SCVT 1.3526  0.9173 0.8494 0.9952 0.9687
9 655,362 I-B 1.1952 0.8970 0.8378 0.9952 0.9691

SCVT 1.4080 0.9167 0.8465 0.9987 0.9675

ds(x,Xc) = +/(lat — 71/6)2 + (lon — 37/2)2.
Define the subregion of the sphere
Sme = {x = (lat,lon) | ds(x,x.) < 7/6}.
In the subregion, we want a high-quality mesh having a local mesh size that is y;
times smaller than that outside the subregion. We also want a smooth transition

between the coarse and fine grid regions.
Using the density-mesh size relation (10.9), the density function is set to

y;‘ if ds(x,x;) <m/6
p(x) = 3 (1 —sx)ys + s if /6 <dg(x,X;) < /6 + € (10.12)
1 otherwise,

where ¢, denotes the width of the transition layer and sy = M we set

ys = 3 and €; = 7/12 here. The resulting SCVT with 2,562 generators produced
by Lloyd’s method and the corresponding dual Delaunay triangulation are presented
in Fig. 10.8 (top row). Variations in the Voronoi cell sizes and areas are plotted in
Fig. 10.8 (bottom row). The histogram of the size distribution clearly indicates that
there are two dominant mesh sizes; cells 1-1,250 have one size, cells 1,500-2,500
have another size, and these two cells sizes differ by a factor of three as predicted
by (10.9). For this example, we have i = 5.4018, 04yg = 0.8712, oynin = 0.4533,
Gavg = 0.9854, and g;nin = 0.6886.
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Fig. 10.8 Top row: a spherical centroidal Voronoi tessellation (/eft) and its dual spherical Delaunay
triangulation (right) with 2,562 generators and the density (10.12); bottom row: plot of Voronoi cell
sizes (left) and areas (right)

Figure 10.8 as well as Fig. 10.9 below illustrate an important feature of nonuni-
form CVT and SCVT grids, namely smooth transitions from coarse to fine grids.
This can always be effected within the CVT/SCVT framework through the use of
smooth density functions so that, if a given density function is not smooth, it is often
beneficial to smooth it before using it to generate CVT/SCVT grids; see Sect. 10.4.2.

10.4.1.3 Nested SCVT Meshes
For this example, the region of interest covers most of North America, i.e.,
Spe = {x = (lat,lon) | —5° <lar < 60°, 225° <lat <310°}.
Again, we want a high-quality mesh with local mesh size in S,; being approxi-
mately ys = 3 times smaller that in outside that region. This time we use a different

means to generate a locally refined SCVT mesh because we wish to make use of
global uniform SCVT meshes.
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Fig. 10.9 Top row: a spherical centroidal Voronoi tessellation (left) with 5,781 generators and its
dual spherical Delaunay triangulation (right) produced by the nested method; bottom row: plot of
Voronoi cell sizes (left) and areas (right)

We begin with the global uniform SCVT with 2,562 nodes shown in
Sect. 10.4.1.1. The submesh falling inside S,¢ has about 355 nodes. We refine
this submesh to get a new mesh of S,; with 3,574 nodes (about ten times more
nodes). We then merge the refined submesh with the remaining generators of
the original unform SCVT outside of S,¢ and produce a new global nonuniform
Voronoi mesh with 5,781 generators; the result is clearly not a SCVT but we use it
as an initial guess for Lloyd’s method. We choose a Similar to (10.12), we choose
the density function

ys“ if xe S,y
p(x) =4 ((1- Sx)Vs + Sx)4 if 0 <d(x,Spe) <es (10.13)
1 otherwise,

where sx = d("%‘j’” and the width of the transition layer ¢, = 0.24. Then, we apply
Lloyd’s method with this density, adding one more restriction: all generators x; are
fixed during the iterations if d(X;, Sp¢) > €;.
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The resulting SCVT with 5,781 generators and its dual Delaunay triangulation
are presented in Fig. 10.9 (fop row). Variations of Voronoi cell sizes and areas are
plotted in the bottom row. For this example, we have . = 5.7079, 04pg = 0.9006,
Omin = 0.4012, ggvg = 0.9904 and gy, = 0.7114.

10.4.2 CVT-Based Regional Meshes of the North Atlantic Ocean

Figure 10.10 (fop left) shows the time-mean kinetic energy from a global 0.1° sim-
ulation of the North Atlantic Ocean (Smith et al. 2000). We use this data set to
determine both the boundary of the North Atlantic ocean and an appropriate density
function, and then construct the CVT mesh based on this information; see (Ringler
et al. 2008) for details. '

Based on the kinetic energy, KE, we defined the density function

o1 ]
p =max | 0.1, ,
KEmax

where K Ep,5 is the maximum kinetic energy in the domain. The lower bound 0.1
insures that the grid in quiescent regions is not overly coarse. We also raise the value
of the density function as we approach the boundary of the ocean so that the bound-
ary is resolved to a desired resolution; this is accomplished by making the density
in regions near a land boundary also depend in an inverse manner on the distance to
the boundary. The resulting mesh has a grid spacing that varies by a factor of 10.

In order to allow for a smooth transition between regions of high and low reso-
lution, we apply a substantial amount, e.g., approximately 20 passes, of Laplacian
smoothing'” to our density function. Figure 10.10 shows some of the resulting CVT
meshes. Whereas the two examples given above produce a mesh with two dominant
resolutions, in this example a wide spectrum of resolutions are present. Note that this
type of mesh will lead to additional complications related to parameter settings of
sub-grid closures but that is also offers the opportunity to adaptively select multiple
closure models whose efficacy depends on the local grid size. All in all, variational
resolution meshes such as the one illustrated in Fig. 10.10 are significantly more
ambitious than those considered in Sects. 10.4.1.2 and 10.4.1.3.

16Tn practice, we would not use such a proxy to determine a variable resolution CVT grid, but
instead would adaptively determine the grid from the simulation model output.

17 In the current context, Laplacian smoothing is a process of smoothing the a function defined on
a grid. One replaces the value of a function at a point by first averaging its value at neighboring
points and then averaging that result with its own value at the point.
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Fig. 10.10 Top-left: time-mean kinetic energy of the North Atlantic Ocean; top-right: a CVT mesh
with 47,305 generators of the North Atlantic; bottom-left: a zoom-in of the CVT mesh; bottom-
right: a zoom-in of the same region of a CVT mesh with 183,907 generators

10.4.3 Numerical Simulations with SCVT Meshes

10.4.3.1 Mesh Decomposition for Parallel Computing

We take a global SCVT mesh with 40,962 generators (about 120km resolution)
and separate it into 642 blocks; see Fig. 10.11. These blocks are created so as to
balance the work-per-block and to minimize the amount of information that must
be communicated between blocks; the software package “METIS” (Karypis and
Kumar 1998) in which a family of multilevel partitioning algorithms is implemented
is used for this purpose. We can assign an arbitrary number of blocks per processor
so that two types of parallelism within are supported within this framework, i.e.,
distributed memory across nodes and shared memory within a node.
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Fig. 10.11 Decomposition of
a global SCVT mesh of
40,962 generators into 642
blocks. The blocks can be
distributed across
computational nodes for
implementation on
high-performance
architectures

10.4.3.2 Example Numerical Methods

As discussed in Sect. 10.1, all typical finite-volume grid staggerings used for quadri-
lateral meshes, i.e., A-, B-, C- and Z-grid staggerings, have been successfully
applied to Voronoi tessellations. C-grid staggering has shown promising results, par-
ticularly when applied to variable resolution meshes. See Check: Ringler Dyncore
Chapter for a broad discussion of C-grid staggerings and see (Thuburn et al. 2009;
Ringler et al. 2010) for an in-depth discussion of C-grid staggering applied to the
nonlinear shallow-water equations.

We apply the methods developed in (Thuburn et al. 2009; Ringler et al. 2010) to
test case 5 of the standard shallow-water test cases developed in (Williamson et al.
2001). A flow in geostrophic balance is confronted with a large-scale orographic
feature at the start of the simulation, + = 0. The transient forcing at t = 0 leads to
the generation of large-amplitude gravity waves and Rossby waves. The sole forcing
mechanism is the presence of the orographic forcing. While no analytical solution is
known, results from high-resolution global spectral models (Lipscomb and Ringler
2005) are adequate reference solutions for the simulations conducted here.

Figure 10.12 shows the potential vorticity and kinetic energy at day 50 when
using a SCVT with 40,962 cells based on a uniform density function. Shallow-water
test case 5 is shown to breakdown into 2D turbulence after day 25, so Fig. 10.12
shows a snapshot of this turbulent behavior. Even in the presence of fully-developed
2D turbulence, the simulation is stable and robust while conserving total energy to
within time truncation error. Simulations of this same test case, but using the vari-
able resolution meshes shown in Figs. 10.8 and 10.9, produce equally robust results.

10.5 Summary

Voronoi tessellations and, in particular, centroidal Voronoi tessellations, offer a
robust approach to tiling the surface of the sphere. The Delaunay triangulation
is the dual of the Voronoi tessellations, so whether hexagons or triangles are of
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Fig. 10.12 Simulation results at day 50 using a uniform SCVT mesh with the method outlined in
(Ringler et al. 2010). The figure depicts the potential vorticity field (left) and the kinetic energy
field (right). The simulation conserves potential vorticity to machine precision and total energy to
within time-truncation error

interest, this approach will result in high-quality uniform and nonuniform meshes.
Centroidal Voronoi tessellations are particularly well-suited for the generation of
smoothly varying meshes, thus providing a possible alternative to traditional nest-
ing approaches. With the recent discovery of a class of finite-volume methods that
are directly applicable to variable resolution meshes (Thuburn et al. 2009; Ringler
et al. 2010), it appears that the creation of variable resolution, global climate system
models is now possible.
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Chapter 11
Conservation in Dynamical Cores: What, How
and Why?

John Thuburn

Abstract The conservation properties of the continuous, adiabatic and frictionless
equations governing atmospheric flow are summarized. It is often considered desir-
able for atmospheric models to possess analogues of these conservation properties;
some of the techniques for obtaining such analogues are noted. However, there is no
widespread agreement in the literature on which conservation properties are most
important and why. Here we suggest some ways of thinking about these questions,
taking into account the atmospheric flow regimes that global numerical models are
intended to represent.

11.1 Introduction

It is usually considered desirable for an atmospheric model dynamical core to have
analogous conservation properties to those of the adiabatic and frictionless continu-
ous governing equations. Although apparently obvious at first glance, this idea turns
out to involve a number of subtle issues. In this lecture we touch on several of those
issues. A fuller discussion is given by Thuburn (2008).

Section 11.2 summarizes the conservation properties of the continuous gov-
erning equations; in fact there are infinitely many such properties. This, then,
raises the questions of which of these properties can we obtain in our numeri-
cal models (Sect. 11.3), and which of these properties ought we to try and obtain
(Sect. 11.4)?
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11.2 Conservation Properties of the Continuous Adiabatic
Frictionless Governing Equations

First we review the conservation properties of the continuous adiabatic frictionless
governing equations. It is convenient to classify them in four categories: flux-form
conservation laws, Lagrangian conservation laws, conserved integral quantities, and
kinematic identities. The definitions of the conserved quantities given in this section
assume we are working with the unapproximated compressible Euler equations. For
approximated equation sets of practical interest, such as hydrostatic and/or shal-
low atmosphere, all of the listed conservation properties continue to hold, but the
definition of the conserved quantity may need to be modified. For example, under
the hydrostatic approximation the contribution of the vertical velocity to the kinetic
energy must be neglected (e.g. White et al. 2005).

11.2.1 Flux-Form Conservation Laws

A number of quantities satisfy conservation laws of the form

04
— 4+ VF=0, 11.1
5 (11.1)
where A is the density of the conserved quantity and F is the flux. Table 11.1 lists
three such quantities and gives expression for A and F.
Equation (11.1) implies that the global integral of A is conserved; however, the
local conservation property described by (11.1) is also considered important.

11.2.2 Lagrangian Conservation Laws

Certain quantities y are materially conserved, that is, they satisfy

D
ZX_p

- (11.2)

Table 11.1 Some quantities satisfying flux-form conservation laws

Quantity A F
Mass P pu
Angular momentum pz.[r X (u+ 2 Xr)] ud+ pzxr
Energy p(3®+c,T+) u(d+p

Here r is the position vector relative to the Earth’s centre,
£2 is the Earth’s rotation vector, Z is the unit vector in the
direction of £2, u is the velocity vector, p is density, p is
pressure, 7" is temperature, ¢, is the specific heat capacity at
constant volume, and @ is geopotential
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Table 11.2 Some quantities satisfying Lagrangian conservation laws

Potential temperature x=20
Potential vorticity x=0=¢Vo/p
Specific tracer X=q
or tracer mixing ratio X=n

Table 11.3 Some conserved integral quantities
Mass per unit 6 in an isentropic layer F0) = [p/|VO|dA
Mass per unit § in an isentropic layer within . = [, p/ |V0|dA
a material contour
Absolute circulation around an isentropic € = ¢ vo.dr = [, pQ/|VO|dA
material contour

where D/Dt is the material derivative, i.e. the time derivative following the flow.
This immediately implies
Df (0 _

Dt

for an arbitrary function f(). Table 11.2 lists some examples.
Each Lagrangian conservation law can be combined with the flux form conser-
vation law for p to generate an infinite family of flux form conservation laws

apf (x)
ot

0 (11.3)

+ V. (puf(y)) = 0. (11.4)

11.2.3 Conserved Integrals

The Lagrangian conservation laws for potential temperature and potential vorticity,
along with conservation of mass, imply that certain integral quantities are conserved.
Table 11.3 lists some of them. Here, the integral that appears in the definition of .%#
is over the global extent of an isentropic surface, the domain D that appears in the
definition of .# and ¥ is a region of an isentropic surface bounded by a material
contour, and I” is that material contour. I" may be a potential vorticity contour.
The quantity v, is the absolute velocity, i.e. the velocity viewed in an inertial frame
rather than one rotating with the Earth.

11.2.4 Kinematic Identities

The global integrals of horizontal divergence

/ ddA (11.5)
D
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and the vertical component of vorticity

[ tdA (11.6)
D

must vanish on any isosurface of the vertical coordinate that wraps the sphere.
Although these properties are kinematic identities, rather than any consequence of
the governing dynamical equations, they may nevertheless be of practical impor-
tance for models that predict § and ¢{. For example, if the numerical scheme that
predicts { cannot maintain a global integral of zero then, unless an ad hoc fixer is
applied, it will not be possible to solve V21 = ¢ to obtain the stream function v
and hence the rotational part of the horizontal velocity.

11.3 What Conservation Properties can we Obtain
in Numerical Models?

The simplest technique for obtaining a discrete analogue of a flux-form conservation
law is to use the conserved quantity as one of the predicted variables and discretize
the conservation law itself in a conservative way, for example,

A;H—l — A"

i 1
J
=3 FiSjk =0. 11.7
T +Vj . kS (IL.7)

Here, A;! is the average over cell j of the density of the conserved quantity at time
step nn, F;  is the flux per unit area of the conserved quantity across face k of cell j,
averaged over the time step, V; is the volume of cell j, and S ¢ is the area of face k
of cell j. By making sure that F' is uniquely defined at each face, so that the flux out
of one cell across a particular face is equal to the flux into a neighbouring cell across
the same face, we ensure that the predicted quantity is indeed conserved. Although
local conservation of mass might be regarded as a fundamental requirement, his-
torically it has often been sacrificed, for example to improve efficiency through the
use of a (non-conservative) semi-Lagrangian advection scheme, or to reduce noise
by predicting log of surface pressure rather than surface pressure itself in spectral
models; global (but not local) conservation of mass can then be restored through
an ad hoc fixer (e.g. Williamson and Olson 1994). More detailed and up-to-date
discussion on the discretization of flux-form conservation laws is given in Chaps. 7
and 8.

This approach can only work for up to n, conserved quantities, where n, is
the number of predicted variables. In particular, for a materially conserved quantity
like 6, we can predict and conserve p6, but we would not automatically conserve
higher moments unless we also predict those higher moments; but this would be
an expensive (and very unusual) thing to do. Moreover, it is debatable whether we
should attempt to conserve higher moments — see Sect. 11.4.
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Some conservation properties are derived for the continuous equations through
manipulation and making certain cancellations. Analogous conservation properties
can sometimes be obtained for numerical schemes by designing them so that they
respect analogous cancellations. The energy and angular momentum conservation
properties of the Simmons and Burridge (1981) scheme, discussed in Chap. 4 are
achieved in this way. Other well-known examples include the cancellation of Cori-
olis terms in the energy budget on a C-grid (Chap. 3, Arakawa and Lamb 1977), and
the Arakawa Jacobian (Arakawa 1966). Historically, the development of schemes
that could conserve quadratic quantities such as energy or enstrophy was important
for controlling nonlinear instability, enabling long model integrations to be carried
out (e.g. Arakawa 1966; Sadourny 1975). In some cases there are systematic ways of
deriving such schemes using Poisson bracket and Nambu bracket ideas (e.g. Salmon
2004; Gassmann and Herzog 2008).

Lagrangian conservation properties can most obviously be obtained by using
a Lagrangian solution technique. However, fully Lagrangian solution techniques
are not yet developed to the point where they can be used for operational atmo-
spheric model dynamical cores. On the other hand, the use of a Lagrangian vertical
coordinate, or an entropy-based quasi-Lagrangian vertical coordinate, can improve
Lagrangian conservation properties (Chap. 4, Johnson et al. 2000).

Lagrangian conservation implies, among other things, that extrema are not ampli-
fied. Schemes that prevent the spurious amplification of extrema (‘overshoots’ and
‘undershoots’) therefore respect this aspect of Lagrangian conservation. A variety
of techniques exist for constructing non-oscillatory advection schemes. These may
solve the flux form conservation law (ensuring conservation in that sense) while
carefully constraining the fluxes to eliminate or minimize overshoots and under-
shoots. Semi-Lagrangian advection schemes can also be constructed to prevent
overshoots and undershoots. Non-oscillatory advection schemes have often been
applied to the prediction of tracers such as water vapour and chemical constituents,
as well as potential temperature. Non-oscillatory advection schemes have also been
applied to improve the Lagrangian conservation of potential vorticity, but much less
often because this approach requires some non-trivial calculations to recover wind
information from the predicted potential vorticity.

A particular problem with many atmospheric model dynamical cores is excessive
dissipation of energy. The typical forms of dissipation included in most dynamical
cores, e.g. a V2™ term added to the prognostic equations or the inherent dissipa-
tion due to interpolation in semi-Lagrangian schemes, are unable to dissipate the
required amount of potential enstrophy without excessively dissipating energy. This
may be understood heuristically as follows. Suppose the dissipation mechanism
removes energy and enstrophy at wavenumber kgiss (and let us use enstrophy as a
proxy for potential enstrophy here); the rate of dissipation of enstrophy will then be
of the order kgiss times the rate of dissipation of energy. Now kg;ss is bounded above
by the maximum resolvable wavenumber k., and so, provided the dissipation
rate is positive at all scales, the ratio of energy dissipation to enstrophy dissipa-
tion is bounded below by k2 . For currently affordable resolutions this bound is

max*
greater than the observed dissipation ratio. See Thuburn (2008) for more detailed
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discussion. This situation has led researchers to propose alternative forms of dissipa-
tion that can dissipate potential enstrophy while conserving energy (the Anticipated
Potential Vorticity Method, Sadourny and Basdevant 1985) or that return some
energy to the larger scales while dissipating it from the smaller resolved scales
(Koshyk and Boer 1995). This latter idea is closely related to the idea of energy
‘backscatter’, which can also be parameterized in a stochastic way (e.g. Shutts
2005). For further discussion of dissipation mechanisms in atmospheric models see
Chaps. 13 and 14.

11.4 Which Conservation Properties are the Most Relevant
or Important?

Given that the continuous governing equations have infinitely many conserved quan-
tities, and it is impossible to have analogues of all of these in a numerical model,
it is natural to ask which of these conservation properties are the most relevant or
important. This section suggests some arguments for helping to decide the answer
to this question.

11.4.1 Finite Resolution Effects

In this subsection it is argued that the finite difference or finite volume analogous of
higher moments of some conservable quantity only include resolved contributions
and neglect unresolved contributions. For simplicity, let the fluid density p = 1, and
let x be the mass mixing ratio of some materially conserved tracer. Define

Vi = / av (11.8)
cell j
to be the volume of grid cell j,
m;V; :[ xdv (11.9)
cell j
to be the mass of tracer in cell j, and
iV =[ x>av (11.10)
cell j

to be the contribution to the second moment of the tracer from cell j. Then the total
mass of tracer is indeed exactly equal to its discrete analogue:

[dezzmjvj. (11.11)
j
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However, the total second moment of the tracer is underestimated by a discrete
analogue expressed in terms of m ;:

/)(de=erVj >y miv;. (11.12)
j j

Consequently, there is not a very strong argument for demanding conservation of
analogues of second and higher order moments. This is particularly so for quanti-
ties such as tracer variance or potential enstrophy that have a systematic downscale
cascade and therefore a systematic transfer from resolved to unresolved scales.

11.4.2 The Adiabatic Frictionless Limit

A dynamical core is usually thought of as a discretization of the adiabatic, fric-
tionless governing equations. However, it may be more natural to think of it
as a discretization of the governing equations in the adiabatic, frictionless limit.
Quantities like tracer variance and potential enstrophy that cascade downscale are
dissipated even in the limit of vanishing viscosity and thermal diffusivity: they
are non-Robust invariants. Any numerical model, when applied to flow of realistic
complexity, must therefore be able to dissipate such quantities.

Figure 11.1 shows an example result from a numerical integration of the
barotropic vorticity equation. The initial condition is the same as that used in
Chap. 1, Fig. 1.8, and the same spectral integration scheme is used, with the excep-
tion that no scale-selective dissipation term is included so that the model conserves
both energy and enstrophy on resolved scales. After just a few vortex turnover times

Vorticity: step 1000 Energy spectrum 0.99986
250 8 ' & %
D.-.. @
i Yo m e| 194
200
L |
b \ a
150 - | & F 3 > 10_10 | is
% ’ / j 0 20 40 60 80 100
1 £ Enstrophy spectrum 0.99853
e 8y : - : :
100 W :
& J6
8 %, A 1078
50 | * P Ih
& - F | H
© = El M 1010 LLIL
50 100 150 200 250 0 20 40 60 80 100

Fig. 11.1 Numerical solution of the barotropic vorticity equation using an energy and enstrophy
conserving scheme. The left hand panel shows the vorticity field; red is positive vorticity, blue is
negative vorticity. The right hand panels show both the initial spectra (black) and the spectra at the
current time (blue)
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the solution has become very noisy. Enstrophy has cascaded downscale towards
the resolution limit at wavenumber 85, but is unable to cascade any further (or to
be dissipated), resulting in a build up of small-scale enstrophy. This phenomenon
is sometimes called ‘spectral blocking’. This example clearly shows that it is not
always appropriate to conserve discrete analogues of quantities conserved by the
continuous adiabatic, frictionless equations.

Accepting that it is in fact essential to dissipate non-robust invariants in numerical
models for realistically complex flows, there are then two philosophies the model
designer can adopt. One is to attempt to design the dynamical core to conserve
the non-robust invariants, then supplement the model with a sub-grid model, i.e.
additional terms in the equations intended to represent the effect of the unresolved
scales on the resolved scales. Sub-grid models can vary from a simple V2™ scale-
selective dissipation to a range of more sophisticated schemes (e.g. Smagorinsky
1963; Sadourny and Basdevant 1985). (Boundary layer parameterizations and con-
vection parameterizations are also examples of sub-grid models designed to capture
particular processes.)

An alternative philosophy is to use an inherently dissipative discretization of
the resolved flow. This approach often uses high order schemes supplemented by
some form of flux limiter, and is referred to as Implicit Large Eddy Simulation
(ILES). There is some theoretical justification for this approach in terms of modi-
fied equation analysis, and some empirical evidence for its effectiveness in neutrally
stratified three-dimensional turbulent flows. The book by Grinstein et al. (2007)
provides a broad introduction and a route into the literature. However, despite the
success claimed for the approach, for the flow regimes relevant to modelling the
global atmosphere there has been relatively little analysis of how well the idea
works, even though practical models based on semi-Lagrangian or non-oscillatory
advection schemes are, in effect, using the ILES approach.

11.4.3 Energy

Energy is a nonlinear quantity and so, like the tracer variance and potential enstro-
phy discussed in Sect. 11.4.1, will have resolved and unresolved contributions. This
then raises the question of whether, or to what extent, energy too is non-robust and
therefore may require dissipation or be amenable to an ILES treatment.

Energy is particularly interesting because it can be split into unavailable and
available contributions. The unavailable energy is the potential energy of the min-
imum energy state that can be obtained by an adiabatic rearrangement of the fluid
parcels in the atmosphere. The available potential energy is the total potential energy
minus the unavailable energy; it gives an upper bound on the amount of potential
energy that is available for conversion into kinetic energy by adiabatic dynamics.
The available potential energy plus the kinetic energy gives the available energy.
For Earth’s atmosphere the unavailable energy is about 2,000 times as large as the



11 Conservation in Dynamical Cores: What, How and Why? 353

kinetic energy and the available potential energy is about four times as large as the
kinetic energy (Peixoto and Oort 1992).

The unavailable energy is a function of the .7 (0) defined in Table 11.3, and is
therefore conserved for adiabatic frictionless flow separately from the total energy.
Moreover, the % (0) are almost robust invariants because the strong restoring force
due to stratification inhibits vertical overturning and mixing. (However some mix-
ing, and hence non-conservation of unavailable energy, is unavoidable because of
vertical propagation and eventual breaking of gravity waves.) This near-robustness
suggests that it may be desirable to conserve a discrete analogue of unavailable
energy, and indeed a family of analogues of the .% (). Interestingly, an isentropic-
coordinate dynamical core that conserved mass in each isentropic layer would do
just that.

The available energy is much smaller than the unavailable energy. However,
precisely because the available energy is involved in atmospheric motions, its
conservation (or non-conservation) remains important. Idealized two dimensional
turbulence theory suggests that, in an inertial range, energy cascades predominantly
upscale (e.g. Salmon 1998). Although real atmospheric flows are far from satisfy-
ing the assumptions of this theory, several pieces of evidence (see Thuburn 2008 for
a discussion) suggest that about 5-10% of the throughput of available energy cas-
cades downscale, while the rest goes upscale before being dissipated primarily by
the planetary boundary layer. This implies that the available energy is not analogous
to the downscale cascading non-robust invariants such as tracer variance and poten-
tial enstrophy, and therefore that its budget will not be adequately captured by using
a simple scale-selective dissipation or the most straightforward ILES treatment, as
already suggested in Sect. 11.3.

One final point to note is that a scheme that conserves the total energy while
allowing spurious conversions between the unavailable and available components
could lead to poor behaviour in an atmospheric model.

11.4.4 Spurious Sources vs Physical Sources

It may be argued that our numerical solutions should be accurate provided any spu-
rious numerical sources of conservable quantities are much weaker than the true
physical sources of those quantities. The strengths of the physical sources may be
conveniently expressed in terms of time scales.

The physical sources and sinks of mass of dry air are completely negligible for
modelling the atmosphere. For all practical purposes its timescale is infinite.

Next consider momentum. Locally the adjustment towards hydrostatic and geo-
strophic balance is fast, with typical timescale ranging from a few tens of seconds
to a few tens of hours. This suggests that, for accurate modelling of the momen-
tum equation, the most essential factor is an ability to capture balance accurately.
However, in a zonal mean, the terms in the zonal momentum equation are not in
geostropic balance (because the zonal mean of the zonal derivative of pressure must
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be identically zero). Therefore, the above argument about adjustment to balance
does not apply, and conservation of angular momentum becomes more important.
Comparison of a typical global mean angular momentum (£0.4 x 1026 kg m?s™!)
with a typical surface torque (0.5 x 102° kg m?s~2) implies an angular momentum
timescale of around 10 days (Peixoto and Oort 1992). Locally the angular momen-
tum timescale can be much longer. For example, in the tropical lower stratosphere
it is of the order of years. Thus, successful simulation of the quasi-biennial oscil-
lation of the zonal winds in the tropical lower stratosphere will require an accurate
treatment of angular momentum conservation.

Potential enstrophy budgets for the atmosphere have not been computed, but
enstrophy budgets (e.g. Koshyk and Boer 1995 suggest that the physical timescale
is of the order of 10 days. Variance budgets for long-lived tracers have also not
been calculated, but estimates of “mixdown time” (e.g. Thuburn and Tan 1997) sug-
gest a timescale of the order of 10-20 days. Thus, these non-robust invariants have
comparable timescales, as might have been anticipated.

As suggested in Sect. 11.4.3, the unavailable and available contributions to the
energy should be considered separately. Comparing a global mean value of the
unavailable energy (3 x 10° Jm™2) with the total energy throughput of the cli-
mate system (240 Wm™2) implies a timescale of about 150 days for the unavailable
energy. Comparing a global mean value of the available energy (6 x 10 Jm™2) with
a typical available energy throughput (~ 2 Wm™2) implies a timescale of about
30 days for available energy. According to this argument, there is a stronger case for
attempting to conserve the unavailable energy than the available energy.

Table 11.4 summarizes the timescales for these quantities, along with entropy,
which is closely related to the unavailable energy and the .%(0). The arguments
presented in this section suggest the following:

e Most benefit will be obtained by conserving quantities with long physical
timescales
Most benefit will be obtained by conserving robust invariants
Quantities that cascade to small scales need to be dissipated, and may be amen-
able to an ILES treatment

Table 11.4 Summary of physical source timescales and other properties of some conservable
quantities

Quantity Robust Cascade Approx. timescale
Mass Yes Infinite

Momentum Minutes to hours
Angular momentum 10 days (locally longer)
Potential enstrophy Yes 10 days

Tracer variance Yes 10 days

Unavailable energy ~ Almost 150 days

Available energy Yes (5-10%) 20-30days

Entropy Almost Variable
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11.5 Conclusion

There is considerable discussion in the atmospheric model development literature
of techniques for obtaining one conservation property or another. At the same time
there is no widespread agreement in the literature on which conservation properties
are most important and why. In this chapter we have suggested some ways of think-
ing about these questions, bearing in mind the particular fluid dynamical regimes
that global atmospheric models are intended to capture. These arguments suggest
that model developers should give prime consideration to conservation of quanti-
ties that are robustly conserved, do not systematically cascade downscale, or have
long physical source timescales.
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Chapter 12

Conservation of Mass and Energy
for the Moist Atmospheric Primitive
Equations on Unstructured Grids

Mark A. Taylor

Abstract The primitive variable formulation of the moist hydrostatic equations
conserves mass and moist total energy due to the property that the divergence
and gradient operators are adjoints. Any compatible numerical method, which has
a discrete analog of this property will conserve a discrete mass and total energy.
We demonstrate this using aqua-planet simulations performed with CAM-HOMME
(NCAR’s Community Atmospheric Model with the High-Order Method Modeling
Environment dynamical core). CAM-HOMME uses a compatible numerical method
on arbitrary unstructured quadrilateral grids. The equations described here are the
full set of dynamical equations used by CAM. Aqua-planet simulations use the full
suite of physics parametrizations as well. The only simplification is the use of ideal-
ized surface conditions. We report on the magnitude of the total energy budget in the
dynamical core including estimates for the non-adiabatic processes. The practice of
fixing dry total energy as opposed to the conserved total moist energy is shown to
generate a forcing of —0.56 W/m?2.

12.1 Introduction

Today’s petascale computers have hundreds of thousands of processors and the next
generation machines could have millions of processors. As we no longer see much
increase in single processor performance, these machines are relying almost entirely
on increasing performance through increased parallelism. Translating this to appli-
cation performance is thus only possible with very scalable applications. Achieving
the required level of scalability in modern climate models remains a challenge due to
several scalability bottlenecks. The largest bottleneck in these models is created by
the numerical methods used in the dynamical core of the atmospheric model com-
ponent. The dynamical core solves the partial differential equations governing the
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Fig. 12.1 A
latitude—longitude grid
showing the clustering of grid
lines and reduced grid
spacing at the poles

fluid dynamical aspects of the atmosphere, but does not include the suite of subgrid
parametrizations used for unresolved physical processes such as convection, precipi-
tation and radiative forcings. Currently, most dynamical cores use latitude—longitude
based grids (Fig. 12.1) for the horizontal directions (surface of the sphere) cou-
pled with finite differences for the vertical (radial) direction. The latitude—longitude
grid is a logically Cartesian orthogonal grid suitable for a wide array of numerical
methods, including finite differences, finite volumes and spherical harmonic based
spectral methods. The grid lines cluster at the pole, creating a severe Courant—
Friedrichs-Lewy (CFL) restriction on the time-step. There are many successful
techniques to handle this pole problem, however most of them substantially degrade
parallel scalability by requiring too much inter-processor communication.

Thus there is a renewed interest in highly scalable dynamical cores based on
more uniform grids for the sphere which avoid the pole problem. There are many
approaches that have been extensively studied and recently surveyed in Williamson
(2007). One can generate a quasi-uniform grid by patching together a few large
regions, where each region uses methods developed for logically Cartesian grids
and the challenge is how to couple the different patches together. Early examples
of this approach include (Phillips 1957; Sadourny 1972; Browning et al. 1989). As
an alternative, one can use numerical methods developed for general meshes that do
not require grid lines to be aligned with a coordinate system and that instead can
make use of unstructured (or less structured) grids constructed by tiling the sphere
with polygons: typically triangles, quadrilaterals, or a combination of pentagons and
hexagons are used. Early examples include Williamson (1968) and Sadourny et al.
(1968).

These quasi-uniform grids present new challenges for the development of numer-
ical methods, such as numerically conserving a suitable subset of the quantities
conserved by the continuum equations being discretized (see Chap. 11). In this chap-
ter, we focus on the issue of developing mass and energy conserving discretizations
for unstructured grids. Energy conservation in particular has not received enough
attention (e.g., Williamson 2007, Sect. 4.4). Operational models at typical resolu-
tions appear to require about 2 W/m? of horizontal kinetic energy diffusion, which
is conjectured to be unphysically large (Thuburn 2008). To conserve total energy,
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this diffusion must be added back to the internal energy as heating. Energy conserv-
ing methods are needed to access the impacts of various approaches to dissipating
kinetic energy and the associated heating.

The use of finite volume methods is a popular approach to obtaining conserva-
tion in atmospheric models. It treats the equations in flux form with control volumes,
obtaining conservation through careful discretization of the control volume fluxes.
Obtaining conservation with finite difference methods is more complex, requiring
the construction of intricate stencils (Sadourny 1972; Arakawa and Lamb 1977).
Galerkin finite element methods have long been recognized as providing a natural
way to obtain conservation based on the fact that a Galerkin discretization will pre-
serve integral properties of the derivative operator (Cliffe 1981; Yakimiw and Girard
1987; Laprise and Girard 1990). Here we discuss a formalization of this approach,
based on compatible (or mimetic) discretizations (Samarskii et al. 1981; Margolin
and Tarwater 1987; Nicolaides 1992; Shashkov and Steinberg 1995; Shashkov 1996;
Hyman and Shashkov 1997a,b). Compatible discretizations obtain conservation by
mimicking key integral properties of the divergence, gradient and curl operators.
The compatibility property most connected to conservation is the requirement that
the discrete divergence and gradient operators are adjoints with respect to the dis-
crete integral used to define the conserved quantity. If this property holds locally,
with suitably defined control volumes (where the adjoint relation includes a discrete
boundary integral) then the conservation will also be local, meaning that the flux of
the conserved quantity out of the control volume will be equal to the flux into the
adjacent control volumes.

There is no formal definition of a compatible numerical method. We will only
make use of the divergence/gradient adjoint relation, but other properties often con-
sidered are that the curl operator is self-adjoint, VxV() = 0and V- Vx() = 0. The
later two identities mean that the range of the gradient operator (or curl operator) be
contained in the null space of the curl operator (or divergence operator). For some
applications it is also required that the range be equal to the null space.

Compatible discretizations are suitable for finite difference, finite volumes and
finite element methods and are considered in a common framework in Bochev and
Hyman (2006). The finite element method in particular has only recently been
associated with local conservation (Hughes et al. 2000). Here we are interested
in finite elements because of its long history of successfully dealing with unstruc-
tured grids. Examples of compatible finite element methods include (Arnold et al.
2006; Bochev and Ridzal 2008). In the finite element method, instead of developing
discrete approximations to derivative operators, one develops a discrete functional
space, and then finds the function in this space which solves the equations of interest
in a minimum residual sense. As compared to finite volume methods, there is less
choice in how one constructs the discrete derivative operators in this setting, since
functions in the discrete space are represented in terms of known basis functions
whose derivatives are known, often analytically.

In the case of energy conservation, compatible methods are of interest because
they allow conservation of energy without utilizing a total energy equation
(Margolin and Tarwater 1987; Margolin and Shashkov 2008). In one-dimension,
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this property was used earlier to obtain energy and angular momentum conservation
(Simmons and Burridge 1981). Energy is conserved by the careful mimicking of
the energy balance in the original equation: the conversion between kinetic, internal
and potential energy terms will exactly balance and the advection operator will not
dissipate any kinetic energy. Kinetic energy dissipation, if needed, must be explic-
itly added in a compatible method via the introduction of limiters, hyper-viscosity
or large-eddy-simulation based approaches.

Recent work on compatible methods for global atmospheric models with finite
element methods on the cubed-sphere grid includes (Taylor et al. 2007; Taylor
and Fournier 2010) and with finite volume methods on geodesic grids includes
Gassmann and Herzog (2008) (using a closely related approach based on discretiza-
tions which preserve properties of the Hamiltonian (Salmon 2004, 2005, 2007)). In
this chapter we show that an atmospheric model will conserve the moist total energy
if one uses a combination of:

e A discretization for the surface of the sphere that has a discrete version of the
Gauss divergence theorem. The divergence theorem for any two-dimensional
surface without a boundary (such as the surface of the sphere) can be written

[hV-u+[u~Vh=O

for any smooth scalar & and vector u. It expresses the adjoint relationship
between the divergence and gradient operators.

e The Simmons and Burridge (1981) compatible vertical discretization.

e A standard formulation of the moist hydrostatic equations.

The conservation is semi-discrete, meaning exact with exact time-stepping. We will
use CAM-HOMME aqua-planet simulations to demonstrate the conservation and
to measure the energy dissipation introduced by the Robert filtered leapfrog time-
stepping method. CAM-HOMME (Taylor et al. 2008) is an experimental version
of the Community Atmospheric Model (Collins et al. 2004) with the High-Order
Method Modeling Environment (Dennis et al. 2005) cubed-sphere dynamical core
framework running the compatible finite element discretization.

12.2 Quadrilateral Tilings of the Sphere

We first give an example as to how tilings of the sphere force us into a non-uniform
geometry. Consider the case of a grid for the sphere consisting of only quadrilater-
als, such as the cubed-sphere (Fig. 12.2), first used for global circulation modeling
in Sadourny (1972). It is a conforming quadrilateral grid, meaning a tiling of the
sphere where all tiles can be mapped to quadrilaterals and contain exactly four
vertex points.
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Fig. 12.2 Tiling the surface of the sphere with quadrilaterals. An inscribed cube is projected on the
surface of the sphere. The faces of the cubed-sphere are further subdivided to form a quadrilateral
grid of the desired resolution. Coordinate lines from the Gnomonic equal angle projection are
shown

In the cubed-sphere grid, the eight corner points of the cube create eight vertices
belonging to only three edges, while all other vertices belong to four edges. This
non-uniformity is unavoidable. To see this, consider the vertices as defining a convex
polyhedron. From Euler’s formula for polyhedra, we have that

V—E+F=2

where V' is the number of vertices, E is the number of edges and F is the number of
faces (quadrilaterals). For a conforming quadrilateral grid every face contains four
edges, and every edge is shared by two faces, so E = 2F. We define the degree d of
each vertex to be the number of edges that vertex belongs, and we let Vz, d > 3 be
the number of vertices in our polyhedron that are of degree d, so that V =", V.
In the cubed-sphere grid, every vertex is of degree 3 or 4, but more general grids
may have vertices of higher degree. Since each point of degree d belongs to d V
edges, and all these edges are shared by exactly two such points, summing d V; will
count every edge twice, and thus we have ), dV; = 2E. Combining these results,
we see that

Y —d)y,; =8
d

or
Va=8+Vs+2Ve+3V;+4---

This relation places no restrictions on Vy, the only type of vertex which appears
in a Cartesian grid. But it does place a restriction on V3, showing that any pure
quadrilateral grid on the sphere must have at least eight vertices of degree d. The
most uniform pure quadrilateral grid for the sphere, with no nodes of degree d > 4
must thus contain exactly 8 nodes of degree 3. This explains the popularity of the
cubed-sphere grid, with eight vertices of degree 3 and all remaining vertices are of
degree 4. Another such grid is based on stitching together two octagons (Purser and
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Ranci¢ 1997). This grid is topologically distinct from the cubed-sphere grid and its
eight vertices of degree 3 all lie on the equator.

We note an interesting recently developed grid for the sphere for which every ver-
tex is of degree 4 (Calhoun et al. 2008), but the grid contains both quadrilaterals and
triangles. This grid has the property that it can be mapped to a single Cartesian block,
and is thus logically rectangular if the triangles are treated as degenerate quadrilat-
erals. It is made up almost entirely of quadrilaterals, but the constraint derived above
does not apply because of the presence of one or more triangles.

12.3 Continuum Formulation of the Equations

We now give a formulation of the moist primitive equations which will conserve
energy when discretized by a compatible method in the horizontal directions cou-
pled to a conservative discretization in the vertical. For the vertical discretization we
use the hybrid n pressure vertical coordinate system modeled after CAM and based
on (Kasahara 1974; Simmons and Burridge 1981; Simmons and Striifing 1981) and
also described in Chap. 4. This formulation differs mainly in that we use surface
pressure as opposed to its logarithm as a prognostic variable, and we consider the
moist total energy as opposed to the dry total energy.
In the n coordinate system, the pressure is given by

p(m) = A(m)po + B(n) ps

with n = A(n) + B(n) and a constant reference pressure pg ~ 1,000hPa. The
functions A and B are prescribed to control the spacing of the model surfaces.
They are chosen to allow the coordinate system to transition from a pure pressure
coordinate system near the top of the atmosphere (1 = 7p) to a terrain following
coordinate system near the surface (n = 1), as shown in Fig. 12.3. At the surface,
we require A(1) = 0 and B(1) = 1. We require B(7,p) = 0 so that the model top is
at a constant pressure pop. The value of A(7ep) is chosen to achieve the desired piop
(usually ~ 1 hPa). In n-coordinates, the hydrostatic approximation dp/dz = —gp
can be used to replace the mass density p by an n-coordinate pseudo-density dp/adn.
The material derivative in 7 coordinates can be written (e.g., Satoh 2004, Sect.3.3),

DX _0X | oo 0X
Dt 0t a0

where the V() operator (as well as V - () and Vx() below) is the two-dimensional
gradient on constant n-surfaces, d/dn is the vertical derivative, 7 = Dn/Dt is a
vertical flow velocity and u is the horizontal velocity component (tangent to constant
z-surfaces, not n-surfaces).

The n-coordinate atmospheric primitive equations, neglecting dissipation and
forcing terms can then be written as
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du du  RT,
3—+(C+f)k><u+v( u +<D)+na“+ p“vpzo (12.1)
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These are prognostic equations for u, the temperature 7', density = 8” , and 8” and where
q is the specific humidity (the ratio of water vapor to air). The prognostlc varlables
are functions of time ¢, vertical coordinate n and two coordinates describing the
surface of the sphere. The unit vector normal to the surface of the sphere is denoted
by k. This formulation has already incorporated the hydrostatic equation and the
ideal gas law, p = pRT,. There is a no-flux (7 = 0) boundary condition at n = 1
and 7 = np. The vorticity is denoted by { = k - Vxu, f is a Coriolis term
and @ = Dp/ Dt is the pressure vertical velocity. The virtual temperature 7, and
variable-of-convenience c; are defined by
RT, = RT +(Ry —R)qT ¢y =cp+ (cpp—cp)q

where R and R, the ideal gas constants for dry air and water vapor, respectively
and ¢, cpy the specific heat at constant pressure for dry air and water vapor, respec-
tively. Later we will also make use of ¢, and ¢y, the corresponding specific heats
defined at constant volume.

The diagnostic equations for the geopotential height field @ is

VRT, 0
cpchs+[ L (12.5)
n P 0n

where @; is the prescribed surface geopotential height (given at = 1). To complete
the system, we need diagnostic equations for 7) and w, which come from integrating
(12.3) with respect to n. In fact, (12.3) can be replaced by a diagnostic equation for
f]g—’; and a prognostic equation for surface pressure p;

0 ! ap
v.|l-2Lt = 12.
8tps+/,7 (Bnu) dn=20 (12.6)

top
8p ap 7 ap ,
o [Ny, s 12.7
Ton = "o /n,, (a ) an (127

where (12.6) is (12.7) evaluated at the model bottom (n = 1) after using that
dp/dt = B(n)dps/adt and (1) = 0, B(1) = 1. Using (12.7), we can derive a
diagnostic equation for the pressure vertical velocity w = Dp/ Dt,
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a a n a
w:—p+u-Vp+r']—p=u-Vp—[ v.(Py dn’
ot an n dn

top

The equations have infinitely many conserved quantities (Chap. 11). Here we
will only consider the total mass, tracer mass, potential temperature defined by

My = // 8—de7]dA
an

with (X = 1,q or (p/po)™“T) and the total moist energy E defined by

ap (1
- [f_p w4 etT dﬁdA+[ps(ps dA (12.8)
an \ 2 ?

where d A is the spherical area measure. To compute these quantities in their tradi-
tional units they should be divided by the constant of gravity g. We have omitted
this scaling since g has also been scaled out from (12.1) to (12.4). We note that in
this formulation of the primitive equations, the pressure p is a moist pressure, repre-
senting the effects of both dry air and water vapor. The unforced equations conserve
both the moist air mass (X = 1 above) and the dry air mass (X = 1 —¢q ). However,
in the presence of a forcing term in (12.4) (representing sources and sinks of water
vapor as would be present in a full model) a corresponding forcing term must be
added to (12.3) to ensure that dry air mass is conserved.

The energy (12.8) is specific to the hydrostatic equations. We have omitted terms
from the physical total energy which are constant under the evolution of the unforced
hydrostatic equations (Staniforth et al. 2003). It can be converted into a more uni-
versal form involving 5 lu2 4+ ¢y T + @, with ¢ defined similarly to c7, so that
¢y = ¢y + (Cyo — cv)q We note that ¢, = R + ¢y and ¢py = Ry + cvv so that
¢, T = c;T + RT,. Expanding ¢, T with this expression, integrating by parts with
respect to n and making use of the fact that the model top is at a constant pressure

[—RTvdnz—/pa n—[ ¢dn—(p¢)’
n N=MNwp

and thus
ap (1 , .
=) 5y (F¥ T T+ @) dndA+ | pap®(ip) dA. (12.9)

The model top boundary term in (12.9) vanishes if p,p, = 0. Otherwise it must
be included to be consistent with the hydrostatic equations. It is related to the form
drag, which is the transfer of momentum between the atmosphere and the solid earth
due to topography (e.g., Vallis 2006, Sect. 3.5).
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12.4 Discrete Formulation of the Equations

We discretize the equations exactly in the form shown in (12.1), (12.2), (12.4),
(12.6) and (12.7). The equations are written with u and 7" as the prognostic variables
as opposed to conservative variables so as to minimize the number of worse-than-
quadratic non-linearities. We use Vj- and Vj, to denote the discrete divergence and
gradient operators and 4, to denote the discrete d/9dn operator. We also replace the
n-integrals by sums. The Simmons and Burridge (1981) coordinate system uses a
Lorenz staggering of the variables (Chap. 4) as shown in Fig. 12.3. Let L be the
total number of layers, with variables u, T, ¢, w, @ at layer mid points denoted by
i = 1,2,...,L. We denote layer interfaces by i + %,i = 0,1,...,L, so that
Ni/2 = Nwop and npy1/2 = 1. The §; operator uses centered differences to com-
pute derivatives with respect to n at layer mid point from layer interface values,
8p(X)i = (Xit172— Xi=1/2)/ (Mi+1/2 — ni—1/2). We will use the over-bar notation
for vertical averaging, §; 41/, = (gi+1 + ¢i)/2. We also introduce the symbol 7 to
denote the discrete pseudo-density g—’; given by ; = 8,(p).

We will use 77_5,, to denote the discrete form of the /d/dn operator. This operator
acts on quantities defined at layer mid-points and returns a result also at layer mid-
points. It is defined in terms of 6, and & by

76y(X)i = [(170)i 4172 (Xig1 — Xi) + (17)i—1/2(X; — Xi—1)] (12.10)

27; An;

1/2

3/2

5/2

i-3/2
i+l

i-1/2

i+1/2

- \\ L+1/2

Fig. 12.3 The terrain following n-coordinate layers and layer indexing. There are L layer mid
points denoted by i = 1,2,..., L and L + 1 layer interfaces denoted by i + %,i =0,1,...,L
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where An; = ;4172 — Ni—1/2. We use the over-bar notation since the formula can
be seen as a w-weighted average of a layer interface centered difference approxima-
tion to 1d/dn. This formulation was constructed in Simmons and Burridge (1981)
in order to ensure mass and energy conservation. Here we will use an equivalent
expression that can be written in terms of §,),

_ 1 —
6y (X); = ;[5,, (17 X), — X 8, (7); ] (12.11)

The discrete equations can now be written as

du . 1 _— RT,
N ==+ flhkxu—-V, (§u2+q§)—n8,,(u)— “Vi(p) (12.12)
T — RT,
88— =—u-Viu(T) = 26,(T) + —w (12.13)
! cyp
3 o
m (rq) = —Vp - (rqu) — &y ((77)q) (12.14)
aps =
= —Zv,,-(nu)jAnj (12.15)
j=1
. 3Ps !
(170)i 4172 = _B(ni+1/2)8_t - Z Vi - () ; Anj. (12.16)
j=1

We consider (1) a single quantity given at layer interfaces and defined by (12.16).
The no-flux boundary condition is (§7)1/2 = (§7)r4+1/2 = 0. In (12.16), we used
a midpoint quadrature rule to evaluate the indefinite integral from (12.7). In practice
An can be eliminated from the discrete equations by scaling 7z, but here we retain
them so as to have a direct correspondence with the continuum form of the equations
written in terms of g—’;.

Finally we give the approximations for the diagnostic equations. We first inte-
grate to layer interface i — % using the same mid-point rule as used to derive (12.16),
and then add an additional term representing the integral from i — % toi:

i—1

An;
W = (- Vip)i = Y Vi - (wu); Anj + V- (w); - (12.17)
j=1
L
= (u-Vip)i = ) CijVi - (wu); (12.18)

Jj=1
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where
Anj i>]
Cij =1A4n;/2 i=j
0 i<j
and similar for &,
RT, Ani L (RT
(@ — ®y); = ( "n) Ty ( ”n) A, (12.19)
p i j=ixi N P i
L RT,
=Y Hy T (12.20)
=1 P/
where
A?’}j I < ]
Hij =14n;/2  i=j
0 i>]J
We note for later use that
AT]I' C,'j = AT]J' Hj,' (1221)

12.4.1 Consistency

It is important that the discrete equations be as consistent as possible. In particular,
we need a discrete version of (12.3), the non-vertically averaged continuity equation.
Equation (12.16) implicitly implies such an equation. To see this, apply §; to (12.16)
and then we can derive, at layer mid-points,

B%N ==V (wu) -6, (). (12.22)

A second type of consistency that has been identified as important is that (12.17),
the discrete equation for w, be consistent with (12.16), the discrete continuity equa-
tion (Williamson and Olson 1994). The two discrete equations should imply a
reasonable discretization of @ = Dp/Dt. To show this, we take the average of
(12.16) at layers i — 1/2 and i + 1/2 and combine this with (12.17) (at layer
mid-points i) and assuming that B(#;) = B(n;—1/2) + B(n;41/2) we obtain

0 1. .
o = BW) =+ - Vip)i + 3 ((18n)iz1/2 + (18,)i4172)

which, since u - Vp, p is given at layer mid-points and 77 at layer interfaces, is the
natural discretization of o = dp/dt +u -V, p + nm.
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12.4.2 Discrete Global Integral

Depending on the characteristics of a compatible method, it is often possible to
define a control volume and show that the change in energy in the control volume is
given by the flux of energy through the control volume boundary. These calculations
are beyond the scope of this chapter and we instead focus on the conservation of the
total energy. We denote the discrete global integral by

L
Z AniXimn ~ //XdAdr]

i=1

(X) = Zwmn

where we use our previously defined quadrature formula for the integral with respect
to n and assume the quadrature formula for the integral over the surface of the sphere
with respect to the surface area measure d A is denoted by > Wy, . The quadrature
weights wy,, will be specific to the numerical method.

12.4.3 Compatibility Identities

For an arbitrary scalar / and vector u at layer mid-points, our assumption of a com-
patible method means that we have a discrete version of the divergence/gradient
adjoint relation

[hV-udA+/thdA=0

which we write as

Zwmn th-u—i—Zwm,,u-th =0 (12.23)
mn mn

This is the key property of the horizontal discretization that is needed to show con-
servation. In the vertical, Simmons and Burridge (1981) showed that the §, and
r']T,, operators needed to satisfy two integral identities to ensure conservation. Let
1 be any layer interface variable which satisfies 71,2 = 7r4+1/2 = O and f g
arbitrary functions of layer mid points. The first identity is the adjoint property
(compatibility) for 8, and 7,

L L
> A 08, (f) + Y A fi 8y (i) =0 (12.24)
i=1 i=1

which follows directly from the definition of the 77_5,, difference operator given in
(12.11). The second identity we write in terms of &;,
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L L L
D A fgdyGim) =Y Ani f 8, + Y Anigdy(im f)  (12.25)

i=1 i=1 i=1

which is a discrete integrated-by-parts analog of d( fg) = f dg + gdf. Construction
of methods with both properties on a staggered unequally spaced grid is the reason
behind the complex definition for 76, in (12.11).

12.4.4 Discrete Conservation of Mass and Tracer Mass

Conservation of quantities advected in conservation form, such as mass and tracer
mass in (12.16) and (12.14) are trivially conserved due to the compatibility proper-
ties. Considering (12.14), we see that

i

d
37 (7a) = (1)) = = (= - Grqw) = 8y G =0 1220

after applying (12.23) and (12.24) and using the fact differentiating a constant is zero
(Vi(1) = 0and r']T,,(l) = 0). We note that this equation will hold for any reasonable
time-stepping method (one that can preserve the constant solution to dg/dt = 0)
and thus in practice these quantities will be conserved to machine precision.

Assuming exact time integration, a compatible method can also conserve tracer
mass if one advects concentration instead. Consider

9 _
8—? +u- Vg + 718,(q) = 0. (12.27)

Multiplying this equation by 7, summing with the product of (12.22) and ¢, and
then applying (12.23) and (12.24), we have

ad [ _9q o\
i =)+ (o5 ) -
— (7w - Vi) — (778, (@)) — Vi - (rw) = (g 8, (1) =0 (12.28)

With inexact time stepping, to conserve this quantity to machine precision would
require a time-stepping scheme which has a discrete analog of the product rule,
d(qm)/ot = qadm/dt + mdq/dt. This is not common, but we note that the leapfrog
method satisfies this identity if we let Q = wq and consider the discrete tracer mass
at half time levels defined by

Q@ + 141 = Jq)w(t + At) + q(t + An)r(1)).
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12.4.5 Discrete Conservation of Energy

A compatible method obtains global energy conservation by mimicking the behavior
of the continuum energy dynamics on a term-by-term basis. The discrete form of the
terms in the energy equation which are responsible for the transfer between kinetic,
internal and potential will be in exact balance, while the advection terms will vanish
as in the continuum form of the equations.
We decompose the conserved total energy into kinetic, internal and potential,

<E>=< K>+ <1 >4 < P > where

1 2 *

K = —mu I =nc.T P =ndy.

) P
Starting with (12.12), (12.13), (12.14) and (12.22) and the identities (12.23), (12.24)
and (12.25) we show

DK = {T0) 4 (T2) + (T3) (12.29)
21 = (1)~ (T3 (12:30)
ad

2Py = (1) (1231)

which implies d/dt < E >= 0. Here (T7) is the transfer of potential energy to
kinetic energy defined by
Ty = &5V, - (u)

and (T2) + (T3) is the transfer of internal energy to kinetic energy defined by

RT,
Ty=—mu: =) T3 = (@ = @)V (ru).

To derive (12.29), we sum the product of (12.12) with wu and the product of
(12.22) with %uz to obtain (assuming exact time integration)

d 1 1 — 1
EK = —7mu-Vy (5“2) - Euzvh - (mu) — u - s, () — 5“2 8y ()
RT,
—u- Vu(P) —mu- —=V,p. (12.32)
p

When the discrete integral (-) is applied, the first two terms on the RHS will vanish
by (12.23). The next two terms will vanish by (12.24) and (12.25) with f and g
replaced by u. Applying (12.23) to the fifth term we establish (12.29).
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To derive (12.30), we start with

0

0 d
B_II =cp8—t(nT)+(cpv —cp)— (qnT). (12.33)

ot

The first term is the dry internal energy. To derive the discrete equation for it we sum
the product of (12.13) with ¢, 7 and the product of (12.22) with ¢, T. The second
term is the moist contribution, for which we obtain an equation by summing the
product of (12.13) with (¢, — ¢p)g and the product of (12.14) with (cpy —cp)T .
The result (assuming exact time integration) gives

d
51 =cprV-VpT +cp TV (V) 4+ (cpy—Cp)qav-ViT +(cpy—cp)T Vi -qmv

+ cpm 18y (T) + ¢ T 8y (1) + (cpv — €p)qm 18y (T) + (cpv — )T 8y g

Ty

R
rw  (12.34)
p

+

After applying (-), the first four terms on the RHS will vanish due to (12.23). The
next four terms will vanish due to (12.24). Expanding w with (12.18), we see that

L
<RTU JTC()> __ (Tz) _ <RTUJT Z Cijvh . (”u)j>
p p j=1

Using (12.21), we have that

L
Y An

RT, & L L RT,
Yx 3 CyVy- (nw), = 3 Any Vi - (rw), ZHji( "n)
i=1 L = P Ji

i=1

L
=Y An;Vy-(ru); (D — &), =T5 (12.35)
j=1

and thus

33 (I) = <RT“mo> = —(T») — (T3). (12.36)
t p

Finally, to derive (12.31), we take the discrete integral of the product of (12.22)
and @y, then apply (12.23) and note that n_&, ®d; = 0.

We have thus shown that a compatible discretization of (12.12)—(12.16) will
also satisfy the energy balance equations, (12.29)—(12.31), to within time-truncation
error.
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12.4.6 Potential Temperature Formulation

If one prefers to advect potential temperature 8 = T (p/po)™ withk = R/cp
instead of temperature, as motivated in Chap. 4, it is still possible to obtain energy
conservation in the dry case (¢ = 0). We reformulate (12.12), (12.13) and (12.20)
with

) . | _
G =@ Dbt (G0 0 ) < 8w - 8 ((0/ o))

(12.37)

0 _
o= (16) = =V, - (x6u) =, (ﬁn@) (12.38)

L
(@ =Dy =cp 3 Hy08, ((0/p)") (12.39)
j=1

and solve this system in conjunction with (12.15) and (12.16). The energy balance
equations (12.29), (12.30) and (12.31) are unchanged, but with

T, = —mu-c,0V, ((p/po)).

The calculations needed to show (12.29) and (12.31) are identical to those used
in Sect. 12.4.5. To show (12.30), we need to make liberal use of the exact time
integration assumption and consider

0

0 0 0
arl = 5 (p/po)“m6) = 08, ((p/po)) 57 + (p/po) 5-(x6)  (12:40)

and then apply the same algebra used in Sect. 12.4.5.

12.5 Example Computations

We now present results using the CAM-HOMME global atmospheric model in
an aqua-planet configuration (Neale and Hoskins 2000a,b). In these experiments,
CAM-HOMME is run with the full CAM atmospheric physics parametrizations, but
the surface boundary conditions are greatly simplified by prescribing a planet cov-
ered with water with a fixed zonally symmetric sea surface temperature. A perpetual
March equinox diurnal cycle is used.

HOMME uses a continuous Galerkin ip finite element discretization. It solves
the equations of interest in integral form. The discrete inner product, denoted by
> mn Wma () in Sect. 12.4.2, is defined by decomposing the integral over the surface
of the sphere into a sum of integrals within each element, and then approximating
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each element integral with the p x p tensor-product Gauss-Lobatto quadrature rule.
The global basis and test functions span the space of Cy functions which are poly-
nomials of order p (up to degree p — 1) within each element. With a nodal basis
defined at the Gauss-Lobatto quadrature nodes, the finite element mass matrix will
be diagonal. This makes the method a very efficient way to obtain a high-order
explicit method on unstructured grids for time dependent equations. For details of
the Gauss-Lobatto quadrature and the nodal basis, see Chap. 9.

For our aqua-planet simulations, we use CAM 3.5.1 physics (Gent et al., 2009).
This version advects three tracers: specific humidity ¢, cloud ice and cloud water,
each using (12.14). The forcing terms computed by the CAM physics are applied
with a time-split coupling (Williamson 2002), meaning that the forcings due to the
physics are applied as an adjustment to the prognostic variables and then the flow
is evolved by the HOMME dynamical core without a forcing term. The forcing is
applied every 30 and 15 min in the 3.75 and 0.5 degree simulations, respectively. In
these aqua-planet simulations, @; = 0, so P = T; = 0 and there is no potential
energy term in the total energy budget. A typical snapshot showing fully developed
turbulent flow and the realistic nature of the aqua-planet atmosphere is shown in
Fig. 12.4.

In all cases, mass and tracer mass is conserved to machine precision. For energy
conservation, we saw in Sect. 12.4.5 that a compatible method will exactly mimic
all adiabatic processes in the dynamics. However there are several non-adiabatic
terms not considered in Sect. 12.4.5 which will impact total energy conservation of
a model in practice. The largest term in the CAM-HOMME dynamical core is the
horizontal dissipation of kinetic energy via a hyper-viscosity term. For this term a
corresponding heating term is added to the temperature equation so that total energy

Total (vertically integrated) precipitatable water kg/m2
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0 4 8 12.1620242832 36 40 44 48 52 56 60 64

Fig. 12.4 A snapshot of the vertically summed atmospheric water content (liquid, ice and vapor)
over the surface of an Aqua-planet, simulated with CAM-HOMME
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remains conserved. That is, if the hyper-viscosity term on the right-hand-side of
the momentum equation is represented by D, the amount of energy dissipated is
< g—f]u -D >. To add this back to the system as internal energy, one can add the term
—(1/cp)u - D to the right-hand-side of the temperature equation (Williamson et al.
2009). For the other non-adiabatic processes in CAM-HOMME we do not write
down corresponding heating terms. These include the leapfrog-Robert filter, mois-
ture variance dissipation and temperature variance dissipation. In this section we
first disable these non-adiabatic terms and demonstrate that CAM-HOMME con-
serves total energy to machine precision. We then measure the level of conservation
with these terms enabled.

12.5.1 Adiabatic Results

We first verify that the CAM-HOMME leapfrog time discretization of (12.12)—
(12.16) will satisfy the energy balance equations, (12.29)-(12.30), to within time-
truncation error. We use CAM’s standard 26 vertical levels and coarse resolution
in the horizontal (3.75° average grid spacing at the equator). We use coarse spatial
resolution to verify that conservation is obtained in the presence of large truncation
error levels. For the initial condition, we use a fully spun-up state generated by a reg-
ular run of CAM-HOMME with all dissipation terms needed in the full atmospheric
model. Starting with this initial condition, we then run CAM-HOMME without the
Robert filter and with all dissipation terms disabled. When run in this manor, the
flow will soon become unrealistic as enstrophy will accumulate at the small scales
and the leapfrog scheme has a computational mode. But this inviscid configuration
can be run for short simulations. It is of interest because the only errors in total moist
energy conservation is from the second-order accurate leapfrog time-stepping, and
thus this error will decrease to machine precision at a second-order rate, as shown in
Fig. 12.5. We plot the relative error in total moist energy conservation after 30 min,
|E(t +30m)— E(t)|/ E(t), from eight simulations with At ranging from 300 to 1s.
The simulation with At = 1 has a relative error of 5.6 x 10™!° corresponding to a
heating rate of 10~8 W/m?.

IE-E,I/E,
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Fig. 12.5 Relative error in
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aqua-planet simulations. The
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precision at a second-order 10° 10' 10° 10°
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x1074 Energy Budget Error
2 -

- |E
- KE

10° 10! 10
At

Fig. 12.6 Error in the kinetic and internal energy budget equations from low resolution CAM-
HOMME aqua-planet simulations. The internal energy budget error is at machine precision for
any time-step. The kinetic energy budget error converges to machine precision with decreasing
time-step

One could achieve exact energy conservation by advecting the total energy
instead of temperature or potential temperature. However, such an approach does
not mean that one is accurately solving the energy budget equations, (12.29) and
(12.30). A method which advects total energy can have large errors in these bal-
ance equations which are then effectively lumped into the temperature when it is
recovered from the total energy. To show that the conservation here is in fact due to
the correct representation of these budgets, we plot the error in (12.29) and (12.30)
in Fig. 12.6. From the simulations used in Fig. 12.5, we compute the terms on the
RHS of (12.29) and (12.30) from the flow snapshot at # = 30 min. The terms on the
LHS are computed with centered-in-time differencing of K and I at ¢t = 30 from
their values defined at ¢ = Az/2 using the half-time level definition given at the
end of Sect. 12.4.4. With this definition, (12.30) holds to machine precision when
using leapfrog without the Robert filter. The error in (12.29) converges to machine
precision with decreasing time-step.

12.5.2 Non-Adiabatic Results

We now consider the equations including all dissipation terms needed in the full
atmospheric model:

e A hyper-viscosity term added to (12.12) with a corresponding heating term added
to (12.13)

e A hyper-viscosity term added to (12.13) to dissipate temperature variance

e A sign-preserving reconstruction (Taylor et al. 2009) is used with the hori-
zontal advection operator and the vertical advection operator is replaced by a
Lagrange-remap approach (Lin 2004) with monotone reconstruction (Zerroukat
et al. 2005).
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The hyper-viscosity operators mentioned above are modeled after the terms used in
the Eulerian dynamical core in CAM. In this non-adiabatic case, the energy budget
in the dynamical core can be written as

0

3% (K) =(T2) +(T3) + D1 (12.41)
3
m (I) = —(T2) —(T3) — D1 + D». (12.42)

where D serves to represent the kinetic energy dissipation from the hyper-viscosity
operator and the (much smaller) effects of the Robert filter and time-truncation
errors in the kinetic energy budget. We included it in (12.42) with the opposite
sign to represent the contribution of the compensating heating term used in the
model. In CAM-HOMME, the heating term is not exactly equal to the kinetic energy
dissipation, so this is only an approximation. The remaining term, D, thus con-
tains the errors in the approximation, time-truncation errors and effects of all other
dissipation mechanisms in the model, and d/dt (E) = D».

In these simulations, we compute d/dt < K >,d/dt < I >,T, and T3 as
in the adiabatic case, and then use (12.41) and (12.42) to solve for D; and D,. In
Table 12.1 we present results from the high resolution aqua planet simulation pic-
tured in Fig. 12.4. The simulation used the standard CAM 26 vertical levels, a high
horizontal resolution (0.5 degree average grid spacing at the equator) and a time-step
of 40 s for both tracers and dynamics. We use high resolution for these runs so that
the data reported will be typical of modern simulations. The data is computed from
the instantaneous values, sampled hourly, over a one month simulation time starting
with a spun-up initial condition. For completeness, we also include the impacts of
the velocity and temperature forcing terms applied by the CAM physics routines
which do not appear in the energy budget for the dynamics. For all quantities except
the forcings, there is little variation. That and the lack of seasons in aqua-planet
suggests these global means will be typical for the whole simulation.

The data shows that the moist total energy dissipation in the full model,
d/dt (E) = Dy = —0.013W/m?, is quite small relative to the other terms. This
value corresponds to a relative change, |E — Eg|/Eg, of 2 x 1071 per time-step.
We also followed the methodology used in the adiabatic case above and made short
runs with only selected dissipation mechanisms turned on. These runs verify that
the contribution to D, from the Robert filter, the hyper-viscosity term acting on T
and the various types of dissipation on ¢ are all individually less than 0.013 W/m?
(not shown). The only significant diffusive term in the model is the horizontal
dissipation of kinetic energy (0.6 W/m?), and thus this is the only term for which
a compensating heating term must be included in order to obtain conservation to a
level of 0.013 W/m?2.

Finally, we show that the common practice of running a moist primitive equation
model with a dry energy fixer, as in CAM (Williamson et al. 2009), results in a not
insignificant amount of cooling. The dry total energy is defined as Eqy = K+ Igry+
P, with Iqy = cpnT. It differs from E by only 0.2%. Running CAM-HOMME
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Table 12.1 Averages and standard deviations for some of the terms in the energy bud-
get (12.41)—(12.42), from a high-resolution CAM-HOMME aqua-planet simulation. The CAM
physics forcings of K and [ are given as Fg and F;

Variable Average Standard deviation
(K) 2.653 x 10° J/m? 9.5 x 10*
. X m 8 x10°
(1 2.574 x 10° J/m? 1.8 x 106
(Zary) 2.570 x 10° J/m? 1.8 x 10°
(Fg) —2.53 W/m? 0.23
I . m .
(F;) 2.26 W/m? 6.1
(T, + T3) 3.20 W/m? 0.48
D, —0.59 W/m? 0.055
D, —0.013 W/m? 0.0014

with CAM’s dry energy fixer, we measure the forcing introduced by the fixer as
—0.56 + 0.05W/m?. This is not the result of non-adiabatic moist processes, but is
due entirely to adiabatic terms in the energy budget. Neglecting dissipative terms,

ad RT, RT,
—(Edry—E>= Cp* ‘rw —< Umo>.
ot cyp P

and this term in our simulations is 0.56 + 0.04 W/m?. If d/dt < E >= 0, we have
that d/dt < E4y >= 0.56. Thus if one wishes to maintain a constant total dry
energy in a conservative moist hydrostatic model, one must compensate this level of
heating via some type of fixer.

12.6 Conclusions

Compatible numerical methods are an effective way to obtain conservative meth-
ods on unstructured grids. Here we showed that a compatible method will conserve
mass and moist total energy when used to discretize a standard primitive variable
formulation of the hydrostatic equations. In one dimension, the approach is well
known, an early example includes Simmons and Burridge (1981). For two and three
dimensional unstructured quadrilateral grids a recent example is the finite element
method which has been implemented in CAM-HOMME. Using CAM-HOMME,
we confirmed that without dissipative processes the method conserves moist total
energy to within a second-order time truncation error, which can be reduced to
machine precision by reducing the time step. In the full model, at 0.5 degree res-
olution, the dissipative processes in the dynamics are dominated by the horizontal
diffusion of kinetic energy at —0.6 W/m?2. When this diffusion is implemented via
hyper-viscosity, a heating term can be added which compensates to better than
0.013 W/m?2. The remaining terms (diffusion of temperature variance, monotone
and sign preserving limiters on moisture and the Robert filter) are individually less
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than 0.013 W/m? in magnitude. The common practice of fixing the dry total energy
introduces an additional forcing of 0.5 W/m?.
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Chapter 13

The Pros and Cons of Diffusion, Filters
and Fixers in Atmospheric General
Circulation Models

Christiane Jablonowski and David L. Williamson

Abstract All atmospheric General Circulation Models (GCMs) need some form of
dissipation, either explicitly specified or inherent in the chosen numerical schemes
for the spatial and temporal discretizations. This dissipation may serve many pur-
poses, including cleaning up numerical noise generated by dispersion errors or
computational modes, and the Gibbs ringing in spectral models. Damping pro-
cesses might also be used to crudely represent subgrid Reynolds stresses, eliminate
undesirable noise due to poor initialization or grid-scale forcing from the physics
parameterizations, cover up weak computational stability, damp tracer variance,
and prevent the accumulation of potential enstrophy or energy at the smallest grid
scales. This chapter critically reviews the wide selection of dissipative processes
in GCMs. They are the explicitly added diffusion and hyper-diffusion mechanisms,
divergence damping, vorticity damping, external mode damping, sponge layers, spa-
tial and temporal filters, inherent diffusion properties of the numerical schemes, and
a posteriori fixers used to restore lost conservation properties. All theoretical consid-
erations are supported by many practical examples from a wide selection of GCMs.
The examples utilize idealized test cases to isolate causes and effects, and thereby
highlight the pros and cons of the diffusion, filters and fixers in GCMs.

13.1 Introduction

There are many design aspects that need to be considered when building the
fluid dynamics component, the so-called dynamical core, for atmospheric Gen-
eral Circulation Models (GCMs). Among them are the choice of the equation set
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and prognostic variables, the computational grid and grid staggering options, the
spatial and temporal numerical discretizations, built-in conservation properties, and
the choice of dissipative processes that (1) might be needed to keep a model sim-
ulation numerically stable and (2) might truthfully mimic the caumulative effects of
unresolved subgrid-scale processes on the resolved fluid flow. The latter aspect is
at least a “hope” in the GCM modeling community. Here, the phrase subgrid-scale
denotes the dry adiabatic unresolved processes in the dynamical core. This is in con-
trast to all other unresolved processes that lead to physical parameterizations such
as radiation, convection, cloud processes and planetary boundary layer phenomena.
These are not considered here, even though they are intimately coupled to the equa-
tions of motion. This chapter sheds light on the pros and cons of the most popular
processes to handle both “physical” or “unphysical” subgrid-scale flow and mixing,
and reviews the use of explicitly added and inherent diffusion, filters and fixers in
GCMs. These are rarely documented in the refereed GCM literature but might be
detailed in technical model descriptions.

It is common practice in GCMs to include a parameterization of the effects
of subgrid-scale motions in the horizontal momentum and thermodynamic equa-
tions that is formulated as a local diffusive mixing. In fact, all numerical models
need some form of dissipation, either explicitly specified or inherent in the cho-
sen numerical schemes for the spatial and temporal discretizations. This dissipation
may serve many purposes, including cleaning up numerical noise generated by dis-
persion errors, computational modes, or the Gibbs ringing, crudely representing
subgrid Reynolds stresses, eliminating undesirable noise due to poor initialization
or grid-scale forcing from the physics parameterizations, covering up weak com-
putational stability, damping tracer variance, and preventing the accumulation of
potential enstrophy or energy at the grid scale (Wood et al. 2007; Thuburn 2008a).
Such an accumulation of energy is due to the physical downscale cascade and can
result in excessive small-scale noise. It is known as spectral blocking and leads to
an upturn (hook) or flattening in the kinetic energy spectrum at the smallest scales.
Furthermore, physical “noise” in GCMs might originate from parameterized grid-
scale forcings or from surface boundary conditions such as orography, the land-sea
or land-use mask.

An accumulation of energy and enstrophy at the smallest scales may also arise
due to a numerical misrepresentation of nonlinear interactions, the so-called alias-
ing effect. Nonlinear interactions and aliasing mostly originate from the quadratic
or higher-order terms in the equations of motion. In essence, products of waves can
create new waves that are shorter than 2Ax where Ax is the physical grid spac-
ing. These waves cannot be represented on a model grid and are aliased into longer
waves. Aliasing, if left unchecked, can lead to a blow up of the solution. This phe-
nomenon is characterized as nonlinear computational instability as first discussed
by Phillips (1959). Note that almost all GCMs suffer to some degree from alias-
ing. Exceptions are spectral transform models with quadratic transform grids which
eliminate the aliasing of quadratic advection terms, the most problematic form, but
do not completely eliminate aliasing from higher-order terms. Nonlinear computa-
tional instability does not occur in models that conserve quadratic quantities like
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enstrophy and kinetic energy (Arakawa 1966; Arakawa and Lamb 1981). Alias-
ing errors are not necessarily fatal. Whether an amplification of the waves occurs
depends on the phase relation between the misrepresented and original waves in
the model. More information on nonlinear computational instability and aliasing is
provided in textbooks like Durran (1999, 2010), Kalnay (2003) or Lin (2007).

All mixing processes remove energy and enstrophy from the simulation which
would otherwise build up to unrealistic proportions. Frequently, the included dis-
sipation is restricted to be in the horizontal, as there is usually sufficient vertical
mixing or diffusion in the physical boundary layer turbulence and convective param-
eterizations in full GCMs or sufficient inherent numerical diffusion to control noise
in the vertical direction. Sometimes, vertical diffusion is also explicitly included in
the dynamical core and applied throughout the whole troposphere. An example is
the model by Tomita and Satoh (2004) which is discussed later.

A common expectation might be that dissipative formulations based on turbu-
lence theory or observations provide a physical foundation for the subgrid-scale
mixing. However, such physical motivation is not guaranteed and each ad hoc mix-
ing process in a GCM must be critically reviewed. As pointed out by Mellor (1985)
the horizontal diffusivities in use by GCMs are typically many orders of magni-
tude larger than those which would be appropriate for turbulence closures. Thus,
horizontal diffusion used by most models cannot be considered a representation of
turbulence but should be viewed as a substitute mechanism for unresolved horizon-
tal advective processes. Awareness of this might offer some guidance in choosing
an adequate subgrid-scale mixing scheme.

Mixing in GCMs generally serves as a numerical filter and neither reflects the
mathematical representation of the energy or enstrophy transfer to small scales
nor the representation of physical molecular diffusion (Koshyk and Boer 1995).
Subgrid-scale processes, although small, can have a profound impact on the large-
scale circulation. For example, diffusive mechanisms affect the propagation of
waves and thereby the mean flow through wave-mean flow interactions. In addition,
both inherent and explicitly added dissipation processes smear out sharp gradients
in the tracer fields, and may lead to unphysical and overly strong mixing. Such mix-
ing might provide feedbacks to the physical parameterizations. For example, the
precipitation field might be highly influenced by the diffusive characteristics of the
moisture transport algorithm in the dynamical core. The notion of overly diffusive
GCMs was discussed by Shutts (2005). He argued that numerical advection errors,
horizontal diffusion and parameterization schemes like the gravity wave drag or
convection, act as energy sinks and lead to excessive energy dissipation in GCMs.
However, such a conclusion might be highly model dependent.

In summary, some mixing processes are used for purely numerical reasons to
prevent the model from becoming unstable. Others are meant to mimic subgrid-
scale turbulence processes that are unsolved on the chosen model grid. In practice,
many filters and mixing processes are used at once, which makes it more difficult to
evaluate their individual effects. The form of the diffusion processes in atmospheric
dynamical cores varies widely and is somewhat arbitrary. There are explicit dis-
sipation processes and filters, inherent numerical dissipation, and fixers in GCMs.
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Throughout the chapter we associate the phrase explicit diffusion with processes
explicity added to the equations of motion. The phrase implicit diffusion charac-
terizes the inherent dissipation of numerical schemes. These phrases are intended
to make a distinction from explicit and implicit numerical approximations to dif-
fusion operators. Note that the words “diffusion”, “dissipation” and “viscosity” are
often used interchangeably in the literature. Other characterizations of damping are
smoothing, filtering and mixing.

13.1.1 Model Equations and the Representation of Explicit
Diffusion

Mixing processes in GCMs can appear in many forms. A very dominant form is
based on explicit dissipation mechanisms that get appended to the equations of
motion shown in Chap. 15. In the continuous equations this mixing symbolizes
molecular diffusion. However, GCMs are not capable of representing molecular
diffusion at the nm or mm scale since they are typically applied with horizontal
grid spacings between 20 and 300 km. Nonhydrostatic GCMs (Tomita et al. 2005;
Fudeyasu et al. 2008) and mesoscale limited-area models like the Weather Research
and Forecasting Model WRF (Skamarock et al. 2008) are also run with finer grid
spacings of a few kilometers. Other atmospheric models with even finer scales might
utilize the Large Eddy Simulation (LES) approach. LES is a mathematical model for
turbulence that is based upon the Navier—Stokes equations with built-in low-pass fil-
ter. The underlying idea was initially proposed by Smagorinsky (1963) and further
developed by Deardorff (1970). LES has been extensively used to study small-scale
physical processes and mixing in the atmosphere. But in any case, models truncate
the multi-scale spectrum of atmospheric motions well above the molecular diffu-
sion scales. The unresolved part is typically modeled as dissipation and one might
hope that it adequately captures the adiabatic subgrid-scale processes in some poorly
understood way.

Explicit dissipation can be added to the momentum and thermodynamic equa-
tions in the symbolic form

3(9_1? = Dyn(y) + Phys(y) + Fy (13.1)

where Dyn() denotes the time tendencies of the prognostic variable ¥ according
to the resolved adiabatic dynamics, Phys(y) symbolizes the time tendencies from
the subgrid-scale diabatic physical parameterizations, and Fy, is the dissipation. The
actual form of this dissipation is model dependent. For example, models in momen-
tum form, that utilize the zonal and meridional velocities u, v and temperature T,
might append the diffusive terms F,,, Fy, Fr. Models in vorticity-divergence (¢, §)
form add the diffusion F¢, Fs, Fr, or even replace F¢ with a diffusion of the abso-
lute vorticity F;4 r where f symbolizes the Coriolis parameter. Alternatively, if
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the potential temperature @ is selected in the thermodynamic equation a diffusive
term Fp might be chosen. Dissipation might also be applied to the tracer transport
equations, and in case of nonhydrostatic models to the vertical velocity. Whether
explicit diffusion is needed for computational stability is model dependent. Some
models prefer to control the smallest scales via inherent numerical dissipation and
select Fy, = 0. However, the form of F; is one of the main foci in Sects. 13.3-13.5,
and therefore we introduce the generic form of the forcing here.

13.1.2 Overview of the Chapter

This chapter presents a comprehensive review of dissipative processes and fixers in
general circulation models. Many pointers to references are given, and we illustrate
the practical implications of the diffusion, filters and fixers on the fluid flow in atmo-
spheric dynamical cores. In particular, we review the principles behind the different
dissipative formulations, isolate causes and effects, provide many examples from
today’s GCMs and utilize idealized dynamical core test cases and so-called aqua-
planet simulations to demonstrate the concepts. These test cases are briefly outlined
in Sect. 13.2. Overall, we quote or show examples from over 20 different dynamical
cores to highlight the broad spectrum of the dissipative processes in GCMs. The
models are listed in Sect. 13.2. We characterize fourteen of them in greater detail in
the Appendix since they are used as examples throughout the chapter.

The chapter is organized as follows. Sections 13.3 and 13.4 discuss the most pop-
ular explicit diffusion and damping mechanisms in the dynamical cores of GCMs.
Section 13.3 includes the classical linear and nonlinear horizontal diffusion and
hyper-diffusion, their diffusion coefficients and stability constraints, and physical
consistency arguments. Section 13.4 discusses the 2D and 3D divergence damping,
vorticity damping, Rayleigh friction and diffusive sponges near the model top, and
external mode damping. In general, it is debatable whether filters are considered
explicit dissipation or just a computational technique to keep a model numeri-
cally stable. Here, we choose to present them in their own category in Sect. 13.5
where both tempor