
Program Logics for Sequential Higher-Order Control

Martin Berger

Department of Informatics, University of Sussex

Abstract. We introduce a Hoare logic for call-by-value higher-order functional
languages with control operators such as callcc. The key idea is to build the
assertion language and proof rules around an explicit logical representation of
jumps and their dual ’places-to-jump-to’. This enables the assertion language to
capture precisely the intensional and extensional effects of jumping by internalis-
ing rely/guarantee reasoning, leading to simple proof rules for higher-order func-
tions with callcc. We show that the logic can reason easily about non-trivial
uses of callcc. The logic matches exactly with the operational semantics of the
target language (observational completeness), is relatively complete in Cook’s
sense and allows efficient generation of characteristic formulae.

1 Introduction

Non-trivial control manipulation is an important part of advanced programming and
shows up in many variants such as jumps, exceptions and continuations. Research
on axiomatic accounts of control manipulation starts with [10], where a simple, im-
perative first-order low-level language with goto is investigated. Recently, this re-
search tradition was revived by a sequence of works on similar languages [2–4, 7, 24, 29,
32, 34]. None of those investigates the interplay between advanced control constructs
and higher-order features. The present paper fills this gap and proposes a logic for
ML-like call-by-value functional languages with advanced control operators (callcc,
throw). The key difficulty in axiomatising higher-order control constructs for func-
tional languages (henceforth “higher-order control”) is that program logics are tradi-
tionally based on the idea of abstracting behaviour in terms of input/output relations.
This is a powerful abstraction for simple languages but does not cater well for jump-
ing, a rather more intensional form of behaviour. Consider the well-known program

argfc
def
= callcc λk.(throw k λx.(throw k λy.x)) [12]. This function normalises to

a λ-abstraction, but, as [28] investigates, distinguishes programs by application that
are indistinguishable in the absence of continuations: (λx.(x 1);(x 2)) argfc = 1 and
(λx.λy.(x 1);(y 2)) argfc argfc= 2 with M;N being the sequential composition of M
and N, binding more tightly than λ-abstraction. The reason is that continuations carry
information about contexts that may be returned (jumped) to later. Thus, values in lan-
guages with higher-order control are no longer simple entities, precluding logics based
on input/output relations. Two ways of dealing with the intensional nature of control
manipulation suggest themselves:

– Using continuation-passing style (CPS) transforms [33] to translate away control
manipulating operators and then reason about transformed programs in logics like
[16] for functional languages.

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 194–211, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Program Logics for Sequential Higher-Order Control 195

– Using a direct syntactic representation of intensional features.

We choose the second option for pragmatic reasons: It is difficult to reconstruct a pro-
gram’s specification from the specification of its CPS transform. This is because CPS
transforms increase the size of programs, even where higher-order control is not used.
This increases reasoning complexity considerably. In contrast, in our approach pro-
grams or program parts that do not feature higher-order control can be reasoned about
in simpler logics for conventional functional languages. The more heavyweight log-
ical apparatus for higher-order control is required only where control is manipulated
explicitly, leading to more concise proofs and specifications.

Key Elements of the Present Approach. This work makes three key proposals for a
logical treatment of higher-order control.

– Names as an explicit representation of places to jump to, or being jumped to.
– Jumps x〈ẽ〉A as an explicit logical operator which says that a program jumps to x

carrying a vector ẽ of values, and after jumping, A holds. Jumps are complementary
to the evaluation formulae x〈ẽ〉A, studied in [5, 16, 18, 36], which means a jump to
x carrying values ẽ leads to a program state where A holds.

– Rely/guarantee formulae {A}B and tensor A◦B. {A}B says that if the environment
is as specified by A, then the program together with the environment will act as
constrained by B. Likewise, A◦B says a program has a part that is as described by A,
and a part that is as given by B. Rely/guarantee formulae generalise implication, and
tensor generalise conjunction because in e.g. A∧ (B ⊃C) a free variable must have
the same type in A as in B and C. With rely/guarantee formulae, we weaken this
requirement: e.g. in x〈2u〉 ∧ {x〈vw〉w〈v + 1〉}u〈3〉 the variable x is used to output
in the left conjunct and for input in the right conjunct, with the input occurring in
the rely part of the rely/guarantee formula. The left conjunct says that the program
jumps to x carrying 2 and u (an intensional specification at x). The right conjunct
says that if the environment offers a function to be invoked at x that computes the
successor of its first argument and returns the result at the second, then the jump
to u carrying 3 will happen, a more extensional specification in that the program
together with the assumed environment behaves as a function. Similarly, x〈3〉 ◦
x〈3〉A uses x with different polarities, specifying a program that contains a jump to
x carrying 3 to a target for this jump.

Informal Explanation. Operationally, a program, for example the constant 5, can be
seen as a value-passing jump carrying 5 to some distinguished name, called default
port, left implicit in the language, but made explicit in implementations, usually as a
return address on the stack. It can be left implicit in the absence of higher-order control
because there are no alternatives for returning: every function, if it returns at all, does so
at the default port. Higher-order control breaks this simplicity: for example throw k 5
will jump to k and not to the default port. Our logic deals with multiple return points by
naming the default port in judgements, giving rise to the following shape of judgements
(for total and partial correctness):

M :u A

196 M. Berger

It asserts that the program M satisfies the formula A, assuming that M’s default port
is named u (we do not need preconditions because they can be simulated using rely/
guarantee formulae, see below). Using explicit jumps we can specify:

5 :u u〈5〉 throw k 5 :u k〈5〉.
The left-hand side says that the program 5 terminates and jumps to the default port u
carrying 5 as a value. The assertion on the right expresses that throw k 5 also terminates
with a jump carrying 5, but now the jump is to k, which is not the default port.

Evaluation formulae are used to specify the behaviour of functions. When a func-
tion like λx.x + 1 is invoked, the result is returned at the default port of the invocation.
As functions can be invoked more than once and in different contexts (in the present
context, invoking a function f is the same as jumping to f , and we use both phrases
interchangeably), different default ports are needed for different invocations. In im-
plementations, a dynamically determined place on the stack is used for this purpose.
In addition, when a λ-abstraction like λx.x + 1 is evaluated, the λ-abstraction itself,
i.e. λx.x + 1, is returned at its default port. To express such behaviour we use the fol-
lowing specification (writing u(a)A for ∃a.u〈a〉A, and a(xm)A for ∀xm.a〈xm〉A).

λx.x + 1 :u u(a)a(xm)m〈x + 1〉
This judgement states that the abstraction returns a name a at the default port. This
name can be jumped to (i.e. invoked) with two arguments, a number x and a name m,
the default port for invocations of a. If invoked, the successor of x will be returned at m.

The role of rely/guarantee formulae is to generalise and internalise preconditions.
Consider the application g 3. If jumps to g with two arguments, a number x and a return
port u, yield a jump u〈x+x〉 then the evaluation of g 3 with default port u should induce
a jump u〈6〉. In a program logic with preconditions, we would expect to be able to
derive {g(xm)m〈x + x〉} g 3 :u {u〈6〉}. With rely/guarantee formulae we can express
this by defining

{A} M :m {B} def
= M :m {A}B.

The advantage of internalising preconditions with rely/guarantee formulae are three-
fold. (1) Key structural relationships between jumps and evaluation formulae are easily
expressible as axioms like: x〈ẽ〉 ⊃ {x〈ẽ〉A}A. It states that e.g. a jump g〈3u〉 makes A
true whenever the environment guarantees that jumps to g with arguments 3 and u will
validate A. (2) We gain more flexibility in localising and manipulating assumptions,
leading to more succinct and compositional reasoning. To see why, consider a compli-
cated formula C[x〈2〉] containing a jump to x. Using the axiom just given, and setting

A
def
= x〈2〉u〈3〉, we know that x〈2〉 ⊃ {A}u〈3〉, hence C[x〈2〉] implies C[{A}u〈3〉]. Such

reasoning is cumbersome if all assumptions have to be concentrated in the precondition.
Moreover, local hypotheses can be collected, i.e. we can usually infer from C[{A}u〈3〉]
to {A}C[u〈3〉], hence conventional reasoning based on rigid pre-/postconditions remains
valid unmodified without additional cost (all relevant rules and axioms are derivable).
The added fluidity in manipulating assumptions is vital for reasoning about involved
forms of mutually recursive jumping. (3) Finally, the most important virtue of internal-
ising preconditions is sheer expressive power. With rely/guarantee formulae, it easy

Program Logics for Sequential Higher-Order Control 197

to use different assumptions in a single formula: consider A
def
= g(xm)m〈x + x〉 and

B
def
= g(xm)m〈x · x〉. We can now specify g 3 :u ({A}u〈6〉)∧{B}u〈9〉. This expressive-

ness enables convenient reasoning about complicated behavioural properties of pro-
grams that would be difficult to carry out otherwise.

Contributions. The present work provides the first general assertion method with com-
positional proof rules for higher-order functions with functional control (callcc and
similar operators) and recursion under the full type hierarchy. The work identifies as
key ingredients in this approach: (1) An explicit representation of jumps in formu-
lae, which can specify intensional aspects of control operators in a uniform manner.
(2) Rely/guarantee formulae and an associated tensor to facilitate local specification of
extensional as well as intensional aspects of higher-order control, and to enable compli-
cated forms of reasoning not otherwise possible. (3) Proof rules and axioms that capture
the semantics of PCF+precisely, as demonstrated by strong completeness results. Miss-
ing proofs can be found in the full version of this paper.

2 PCF with Jumps

Now we define our programming language. We extend PCF with callcc and throw,
and call the resulting language PCF+. Arguments are evaluated using call-by-value
(CBV). Later we briefly consider µPCF, a variant of CBV PCF with different control
operators. The relationship between both is explained in [21]. Types, terms and values
are given by the grammar below. Sums, products and recursive types for PCF+ are
straightforward and are discussed in the full version of this paper.

α ::= N || B || Unit || α → β || (α)? V ::= x || c || λxα.M || rec f α.λxβ.M

M ::= V || MN || op(M̃) || if M then N else N′ || callcc || throw
Here (α)? corresponds to (α cont) in SML and is the type of continuations with final
answer type α, c ranges over constants like 0,1,2, ..., op over functions like addition.
We write e.g. ab3 for the vector 〈a,b,3〉, M̃ for the vector 〈M0, ...,Mn−1〉, etc; x, f , ...
range over variables. Names are variables that can be used for jumping. The notions
of free variables fv(M) and bound variables bv(M) of M are defined as usual. Typing
judgements Γ � M : α are standard, with Γ being a finite, partial map from variables
to the types α. From now on we assume all occurring programs to be well-typed. The
semantics of PCF+ is straightforward, cf. [28].

3 The Logic

This section defines the syntax and semantics of the logic. Since variables in programs
are typed, and the logic speaks about such variables, our logic is typed, too. Types are
those of PCF+, with two generalisations. (1) We add a type (α̃)! which is the type
being-jumped-to with arguments typed by the vector α̃. (2) We no longer need function

spaces, because e.g. α def
= N → B can now be decomposed into α◦ def

= (N(B)?)!. Type
α◦ holds of names that can be jumped to with two arguments, first a number and then
another name, which might be used for subsequent jumps carrying a boolean. This is

198 M. Berger

the behaviour of functions N→ B under call-by-value evaluation. If we denote by α the
result of changing all occurring ? in α into ! and vice versa, and if we denote by α◦ the
result of translating PCF+ types as just described, then:

(α → β)◦ = (α◦(β◦)?)!.

Our types are given by the grammar:

α ::= N || B || Unit || (α)? || (αβ)? || (α)! || (αβ)!

Types play essentially the same role in our logic as they do in programming languages,
namely to prevent terms that do not make sense, like x = 5+ t or x〈3〉◦ x〈〉A. Since our
use of types is straightforward, the reader can mostly ignore types in the remainder of
the text, as long as he or she bears in mind that all occurring formulae and judgements
must be well-typed. (Further information about this typing system is given in [15].)

Expressions, Formulae, Assertions. Expressions are standard (e ::= x || c || op(ẽ)) and
formulae for our logic are generated by the following grammar.

A ::= e = e′ || A∧B || ¬A || ∀xα.A || x〈ẽ〉A || x〈ẽ〉A || {A}B || A◦B

Variables, constants and functions are those of §2. Standard logical operators such as
T implication and existential quantification are defined as usual. We often omit type
annotations. Logical operators have the usual rules of precedence, e.g. ∀x.A∧B should
be read as ∀x.(A∧B), A ◦B∧C as (A ◦B)∧C, and {A}B∧C is short for ({A}B)∧C.
We write fv(A) for A’s free variables, and A-x indicates that x /∈ fv(A). Names are also
variables. Typing environments, Γ,Δ, ... are defined as finite maps from names to types.
Typing judgements for expressions Δ � e : α and formulae Δ � A are defined as usual,
e.g. x must be of type N in x + 3 = 2. The new operators are typed as follows.

– Γ � x〈ẽ〉A if Γ � x : (α̃)?, Γ � ei : βi, βi ∈ {αi,αi} and Γ � A.
– Γ � x〈ẽ〉A if Γ � x : (α̃)!, Γ � ei : βi, βi ∈ {αi,αi} and Γ � A.
– For rely/guarantee formulae Γ � {A}B we say x is compensated in A if the type

of x in A is dual to that in Γ. For example x〈2y〉 ⊃ {x〈2y〉y〈3〉}B is typable under

Δ def
= x : (N(B)!)?,y : (B)?.

We write e.g. x〈y·〉A to stand for any x〈yz〉A such that z is fresh and does not occur in A,
and likewise for evaluation formulae. We write x〈ẽ(y)〉A for ∃y.x〈ẽy〉A, assuming y not
to occur in ẽ. Judgements, also called assertions, are of the form M :m A. Judgements
must be well-typed, i.e. M and A must be well-typed and the variables common to A
and M must be given consistent types, e.g. g 3 :u {g〈4u〉T}2 = 3 is well-typed, but
g 3 :u {g〈z〉T}2 = 3 is not.

Examples of Assertions. We continue with simple examples of assertions.

– Let A
def
= g(xk)(even(x) ⊃ k(a)even(a)). This first example specifies a place g to

jump to. If a jump to g happens carrying an even number x as first argument and
k, the default port, then that invocation at g will return at its default port, carrying
another even number. A does not specifying anything if x is odd.

Program Logics for Sequential Higher-Order Control 199

– Next consider the following formulae. A
def
= x(kr)(k〈7〉∨ r〈8〉) and B

def
= {A}u(m)

(m = 7∨m = 8) A specifies a place x to jump to with two arguments, k and r (the
default port), both of which are used for jumping: either jumping to k carrying 7,
or jumping to the default port carrying 8. B specifies a jump to u carrying 7 or 8,
provided the environment provides a place to jump to at x, as just described by A.

– Now consider the formula A
def
= x(ab)a〈bb〉. It says that if we jump to x carrying

two arguments, a and b, both being used for jumping, then the invocation at x
replies with a jump to a, carrying b twice. Figure 2 shows that u(x)A specifies the
behaviour of callcc, assuming u as default port.

– Finally, consider the following formula. A
def
= n(b)b(xy)n(c)c(zr)r〈x〉. The formula

A specifies a jump to n, carrying a function b that can be jumped to with two ar-
guments, x and y. Of those, y is subsequently ignored. If b is invoked, it jumps to
n again, carrying another function c, which also takes two arguments, z and r. Of
these z is also ignored, but r is jumped to immediately, carrying x. It can be shown
that A specifies argfc.

Models and the Satisfaction Relation. This section sketches key facts about the se-
mantics of our logic and states soundness and completeness results. We use a typed π-
calculus to construct our semantics. This choice simplifies models and reasoning about
models for the following reasons.

– Models and the satisfaction relation need to be built only once and then cater for
many different languages with functional control like PCF and µPCF. Thus sound-
ness of axioms needs to be proven only once. Proving soundness and completeness
is also simpler with π-calculus based models because powerful reasoning tools are
available, e.g. labelled transitions, that languages with higher-order sequential con-
trol currently lack.

– Using processes, the semantics is simple, intuitive and understandable, as well as
capturing behaviour of higher-order control precisely. The typed processes that
interpret PCF+ or µPCF-programs are up to bisimilarity exactly the morphisms
(strategies) in the control categories that give fully abstract models to PCF+ or
µPCF[13, 21]. Hence the present choice of model gives a direct link with game-
based analysis of control.

Processes. The grammar below defines processes with expressions e as above, cf. [17]
for details.

P ::= 0 || x〈ẽ〉 || !x(ṽ).P || (νx)P || P|Q || if e then P else Q

We can use this calculus to give fully abstract encodings of PCF+ and µPCF [17, 21].
Translation is straightforward and we show some key cases.

[[λx.M]]u
def= u(a)!a(xm).[[M]]m [[throw]]u

def= u(a)!a(xm)m(b)!b(y·)x〈y〉
[[MN]]u

def
= (νm)([[M]]m|!m(a).(νn)([[N]]n|!n(b).a〈bu〉)) [[callcc]]u

def
= u(a)!a(xm).x〈mm〉

200 M. Berger

This translation generalises a well-known CPS transform [33]. All cases of the trans-
lation are syntactically essentially identical with the corresponding logical rules. This
simplifies soundness and completeness proofs and was a vital rule-discovery heuristic.

The Model and Satisfaction Relations. Models of type Γ are of the form (P,ξ) where
P is a process and ξ maps values names and variables to their denotation. We write
|= M :m A if for all appropriately typed-models (P,ξ) with m fresh in ξ we have

([[M]]mξ|P,ξ) |= A

This satisfaction relation works for total and partial correctness, since termination can
be stated explicitly through jumps in total correctness judgements. On formulae, the sat-
isfaction relation is standard except in the following four cases, simplified to streamline
the presentation (here ∼= is the contextual congruence on typed processes).

– (P,ξ) |= x〈y〉 if P ∼= Q|a〈b〉, ξ(x) = a,ξ(y) = b.
– (P,ξ) |= x〈y〉A if P ∼= Q|!a(v).R with ξ(x) = a and (P|a〈ξ(y)〉,ξ) |= A.
– (P,ξ) |= {A}B if for all Q of appropriate type (Q,ξ) |= A implies (P|Q,ξ) |= B.
– (P,ξ) |= A◦B if we can find Q,R such that P ∼= Q|R, (Q,ξ) |= A and (R,ξ) |= B.

The construction shows that rely/guarantee formulae correspond to (hypothetical)
parallel composition [20].

4 Axioms and Rules

This section introduces all rules and some key axioms of the logic. We start with the
latter and concentrate on axioms for jumps, tensor and rely/guarantee formulae. Some
axioms correspond closely to similar axioms for implication and conjunction. All ax-
ioms and rules are included in the logic exactly when they are typable.

Axioms for Dynamics. We start with the two axioms that embody the computational
dynamics of jumping. The first expresses the tight relationship between jumping and
being-jumped-to (evaluation formulae):

u〈ẽ〉A◦ u〈ẽ〉B ⊃ A◦B (CUT)

[CUT] says that if a system is ready to make a jump to u, say it satisfies u〈ẽ〉A, and if
the system also contains the target for jumps to u, i.e. it satisfies u〈ẽ〉B, then that jump
will happen, and A◦B will also be true of the system.

The next axiom says that a jump x〈ẽ〉A which guarantees A implies the weaker state-
ment that if the environment can be jumped to at x with arguments ẽ, then B holds,
provided the environment can rely on A in its environment.

x〈ẽ〉A ⊃ {x〈ẽ〉{A}B}B (XCHANGE)

Further Axioms for Tensor and Rely/Guarantee Formulae. Now we present some
axioms for the tensor that show its close relationship with conjunction. In parallel, we
also exhibit axioms for rely/guarantee formulae that relate them with implication. As

Program Logics for Sequential Higher-Order Control 201

before, we assume that both sides of an entailment or equivalence are typed under the
same typing environment. This assumption is vital for soundness, as we illustrate below.

A◦B ≡ A∧B A◦B ⊃ A A ⊃ {B}A
A◦ (B◦C) ≡ (A◦B)◦A (∀x.A)◦B-x ≡ ∀x.(A◦B) {A}{B}C ≡ {A◦B}C

A◦B ≡ B◦A {A}B ≡ A ⊃ B B◦ {B}A ⊃ A

Our explanation of these axioms starts on the left. The first axiom says that if A∧B are
typable then tensor is just conjunction. This does not imply that x〈3〉 ◦ x〈3〉A is equiva-
lent to x〈3〉∧ x〈3〉A, since x〈3〉∧ x〈3〉A is not typable. However (x = 3 ◦ y = 1) ≡ (x =
3∧y = 1) is valid. The next two axioms below state associativity and commutativity of
tensor. The top axiom in the middle shows that tensor is not like parallel composition,
because the tensor can “forget” their component formulae. The axiom below shows
that tensor associates as expected with quantification. The bottom axiom in the middle
shows that rely/guarantee formulae reduce to implication if all free variables have the
same type in A as in B, i.e. ({x〈ẽ〉a}x〈e〉) ≡ ((x〈ẽ〉a) ⊃ x〈e〉) is not a valid instance of
the axiom, but ({x〈ẽ〉a}x〈ẽ〉b) ≡ ((x〈ẽ〉a) ⊃ x〈ẽ〉b) is. The top right axiom shows that
it is possible to weaken with a rely formula. The middle axiom on the right shows how
to merge two assumptions in rely/guarantee formulae. The bottom right axiom can be
seen as a typed form of Modus Ponens, and we call it [MP]. The expected forms of
weakening also hold, i.e. if A ⊃ A′ then A ◦B implies A′ ◦B, {A′}B implies {A}B and
{B}A implies {B}A′.

Further Axioms for Jumps and Evaluation Formulae. Before moving on to rules, we
present some axioms for jumps and evaluation formulae.

x〈ẽ〉(A∧ y〈g̃〉B) ≡ y〈g̃〉(B∧ x〈ẽ〉A) x〈ẽ〉T ≡ T
A◦ (x〈ẽ〉B) ≡ x〈ẽ〉(A◦B) x〈ẽ〉∧ y〈g̃〉 ⊃ (x = y∧ ẽ = g̃)

The top left axiom states that free variables like x and y that can be jumped to, are
’always there’, i.e. they cannot come into existence only after some function has been
invoked. The top right axiom says that places to jump to cannot ’refuse’ arguments: in
other words, the statement x〈e〉T carries no information. This axiom is called [NOINFO].
The bottom left axiom says that if a program contains a part that jumps at x then the
program as a whole can also jump at x, provided that the program does not contain a
component that offers an input at x (not offering an input at x is implicit in typability
of the axiom). Finally, the last axiom expresses that our language is sequential: at most
one jump can happen at any time.

Rules for PCF+. The total correctness rules for PCF+ are given in Figure 1. Rules
are subject to straightforward well-formedness conditions. From now on we assume all
rules to be well-typed. We explain the rules in some detail. As [VAR, CONST, ABS]
have already been sketched in the introduction, we start with the rule for application.
The purpose of [APP], the rule for function application, is to ensure the coordination of
functions and their invocations by jumps. One issue is the generation and management
of default ports: the present approach requires that a (terminating) function application
may return its result at the application’s default port, assuming the evaluations of the

202 M. Berger

M :m A
λx.M :u u(a)a(xm)A ABS

λx.M :u u(a)A
rec g.λx.M :u u(a)∃g.(fwga ◦A) REC

−
c :u u〈c〉 CONST

M :m A N :n B
MN :u ∃m.(A◦m(a)∃n.(B◦n(b)a〈bu〉)) APP

−
callcc :u u(a)a(xm)x〈mm〉 CCC

−
x :u u〈x〉 VAR

−
throw :u u(a)a(xm)m(b)b(y·)x〈y〉 THROW

M :m A N :u B
M +N :u ∃m.(A◦m(a)∃n.(B◦n(b)u〈a+b〉)) ADD

M :m A N :u B N′ :u C
if M then N else N′ :u ∃m.(A◦m(a)((a = t ⊃ B)∧ (a = f ⊃C)))

IF
M :u A A ⊃ B

M :u B CONS

Fig. 1. Total Correctness rules for PCF+. The forwarder is given by fwxy
def
= x(ṽ)y〈ṽ〉.

function itself, and that of the argument return their respective results at (distinct) de-
fault ports themselves. [APP] achieves this by explicitly representing the sequence of
jumps that are integral parts of evaluating a function application. First the jump to the
default port of the function is received by an evaluation formula at m. It receives an
argument a. Then the evaluation of the argument is triggered, and its result, should it
return at the fresh default port n, is received by a second evaluation formula at n. Fi-
nally, should both, the function and its argument return at their respective default ports,
a jump to a carrying b and the application’s default port u is executed. By typing we
know that the jump to a must find an evaluation formula expecting two arguments.

Why do we have to represent the internals of application evaluation in the logic ex-
plicitly, rather then have them implicit as in the simpler logics for PCF [16]? After
all, even in PCF, these jumps take place, albeit behind the scenes. The answer is that
because of continuations, functions can return more than once, i.e. can jump to their
default port more than once. The function argfc from the introduction is an example
of such behaviour. The axiomatisation of PCF in [16] hides default ports, because pro-
grams cannot return anywhere but at default ports. It might not be possible to give a
logical account of returning to a port more than once without explicit representation of
default ports.

Representing jumps and default ports in a single formula, as we do in [APP], has
ramifications for typing: when names (like m,n above) are used in a formula for both,
jumping, and for being-jumped-to we need to mediate, in a controlled way, the rigidity
of typing, that enforces all names to be used under the same typing. Our rules use
tensor for this purpose. All rules can be stated without tensors using just rely/guarantee
formulae, but, it seems, not without a making the inference system more complicated.

Using [APP], setting A
def
= ∃m.((m(a)a(xu)u〈x + 1〉) ◦ m(a)∃n.(n〈7〉 ◦ n(b)a〈bu〉))

and assuming that λx.x + 1 :m m(a)a(xr)r〈x + 1〉, we infer:

1 λx.x+1 :m m(a)a(xr)r〈x+1〉

2 7 :n n〈7〉CONST

3 (λx.x+1)7 :u AAPP,1,2

Program Logics for Sequential Higher-Order Control 203

The expected judgement (λx.x + 1)7 :u u〈8〉, is by [CONS] and the following implica-
tion :

A ⊃ ∃a.((a(xu)u〈x+1〉)◦∃n.(n〈7〉 ◦n(b)a〈bu〉)) ⊃ ∃a.((a(xu)u〈x+1〉)◦∃n.a〈7u〉)
⊃ ∃a.((a(xu)u〈x+1〉)◦a〈7u〉) ⊃ u〈8〉

This implication follows from [CUT] and simple logical manipulations.
As second example we consider the application g x, with an assumption on the

behaviour of g. The intent is to illuminate the use of rely/guarantee formulae and

the [XCHANGE] axiom. Let A
def
= even(x)∧ g(xk)(even(x) ⊃ k(a)even(a)). We want

to show that

{A} gx :u {u(a)even(a)}, (1)

recalling that {B} M :m {C} is short for M :m {A}B. First we reason as follows.

1 g :m m〈g〉VAR

2 x :n n〈x〉VAR

3 gx :u ∃m.(m〈 f 〉◦m(a)∃n.(n〈x〉◦n(b)a〈bu〉))APP,1,2

4 {A} gx :u {u(a)even(a)}.CONS,3

The interesting step is the last, where we reason as follows.

∃m.(m〈g〉 ◦m(a)∃n.(n〈x〉 ◦ n(b)a〈bu〉)) ⊃ ∃m.(m〈g〉 ◦m(a)∃n.(a〈xu〉)) ⊃
∃m.(m〈g〉 ◦m(a)a〈xu〉) ⊃ ∃m.g〈xu〉 ⊃ g〈xu〉

The first and third inferences use [CUT], the two others remove unused quantifiers.
Theorem 1 shows that g〈xu〉 is an optimal specification for our program in the sense
that anything that can be said at all about the program gx with anchor u can be derived

from g〈xu〉. We continue by deriving (1), using B
def
= even(x) ⊃ u(a)even(a).

g〈xu〉 ⊃ {g〈xu〉(even(x)∧B)}(even(x)∧B) ⊃ {g(xu)(even(x)∧B)}(even(x)∧B)
⊃ {A}u(a)even(a)

The first implication is by [XCHANGE], the others are straightforward strengthening of
the precondition, and simple first-order logic manipulations. Now (1) follows by the
consequence rule.

The derivation above has a clear 2-phase structure: first a general assertion about the
behaviour of the application is derived without assumptions on free variables. Then such
assumptions are added using [XCHANGE] and the consequence rule. It is noteworthy
that the first phase is mechanical by induction on the syntax of the program, while the
second phase takes place without reference to the program. It is possible to use a more
traditional style of reasoning, where applications of languages rules and [CONS] are
mixed, but this tends to make inferences longer.

204 M. Berger

Like the rule for application, [REC] is an adaption of the corresponding rule in [16],
but forwarding all jumps to the recursion variable g directly to the recursive function at
a. This forwarding corresponds to “copy-cat strategies” in game-semantics [1, 19], here
realising the feedback loop of jumps to f into a that enables recursion by using tensor.
[REC] implies a more convenient rule, given as follows.

λx.M :m m(a)∀ j � i.{A[g/a][j/i]}A
rec g.λx.M :m m(a)∀i.A

REC’

As first example of using [REC] we consider a simple function ω def
= rec g.λx.gx that di-

verges upon invocation. Since our rules and axioms are for total correctness, we should
not be able to specify anything about ω, except that it terminates and returns at its default
port when evaluated as an abstraction, i.e. we show: ω :u u(a)a(xu)T. Mechanically we
infer the following judgement

ω :u u(a)∃g.(fwga ◦ a(xk)g〈xk〉)
We use axiomatic reasoning to obtain ω :u u(a)a(xu)T by [CONS].

u(a)∃g.(fwga ◦ a(xk)g〈xk〉) ⊃ u(a)∃g.(fwga ◦ a(xk){g〈xk〉T}T) ⊃
u(a)∃g.(fwga ◦ {g〈xk〉T}a(xk)T) ⊃ u(a)∃g.(fwga ◦ {fwga}a(xk)T) ⊃
u(a)∃g.a(xk)T ⊃ u(a)a(xk)T

The first line uses [XCHANGE], the next pushes the assumption of the rely/guarantee
formula to the left of the evaluation formula. Then we simply replace that assump-
tion by fwga. We can do this, because that strengthens the assumption, i.e. weakens the
rely/guarantee formula. Then we apply [MP]. The last line removes the superfluous
quantifier. We note that there is a simpler derivation of the same fact, relying on the
implications:

u(a)∃g.(fwga ◦ a(xk)g〈xk〉) ⊃ u(a)T ⊃ u(a)a(xk)T.

The first of those is just weakening of the tensor, while the second is an instance of
[NOINFO].

[CCC] says that callcc is a constant, always terminating, and returning at the default
port, carrying a function, denoted a, as value. This function takes two arguments, x, the
name of another function, and m, the default port for the invocation of a. By typing we
know that m must be a function invoked with an argument of continuation type (α)?.
Whenever a is invoked, it jumps to x, carrying its default port m as first and second
argument. In other words, if the invocation at x terminates at its default port, it does so
at a’s default port. Moreover, x can also jump to m explicitly. Note that m is duplicated
[CCC], i.e. used non-linearly. This non-linearity is the reason for the expressive power
of functional control.

We consider another example of reasoning about callcc: M
def
= callcc λk.7. Me-

chanically, we derive

M :u ∃m.(m(a)a(xr)x〈rr〉 ◦m(a)∃n.(n(b)b(ks)s〈7〉◦ n(b)a〈bu〉))
︸ ︷︷ ︸

A

Program Logics for Sequential Higher-Order Control 205

Then we use axiomatic reasoning to reach the expected judgement M :u u〈7〉.
A ⊃ ∃a.(a(xr)x〈rr〉◦∃b.(b(ks)s〈7〉 ◦a〈bu〉)) ⊃ ∃ab.(a(xr)x〈rr〉◦a〈bu〉◦b(ks)s〈7〉)
⊃ ∃ab.(b〈uu〉 ◦b(ks)s〈7〉) ⊃ ∃ab.u〈7〉 ⊃ u〈7〉

[THROW] says that throw is a function returning at its default port a function a which
takes x as its first argument (by typing a continuation (α)?), and returns at its default
port m a second function b, which in turn takes two argument, the first of which is y (of
type α). The second argument, the default port of y is ignored, since x will be jumped
carrying y as argument.

We continue with reasoning about simple programs with throw. We show that:

throw k 3 :u k〈3〉 ω(throw k 3) :u k〈3〉.
We begin with the assertion on the left. The assertion for this program will be quite
sizable because [APP] must be applied twice. The following abbreviation is useful to
shorten specifications arising from [APP].

A |mnu B
def
= ∃m.(A◦m(a)∃n.(B◦ n(b)a〈bu〉)).

Here we assume that u,n do not occur in M and u,m are not in N. We let |mnu bind less
tightly than all the other operators of the logic. This abbreviation is interesting because
of the following derived rule, which is immediate from the rules.

m(a)a(bu)A |mnu n(b)B ⊃ ∃ab.(A∧B). (2)

From [THROW], k :b b〈k〉 and 3 :n n〈3〉 we get:

throw k 3 :u (g(a)a(xm)m(b)b(y·)x〈y〉) |gbm b〈k〉 |mnu n〈3〉
which simplifies to throw k 3 :u k〈3〉 by applying (2) twice. Now we deal with

ω(throw k 3). As before: ω(throw k 3) :u A with A
def
= m(a)a(bu)T |mnu k〈3〉, but

we cannot apply (2) since throw k 3 does not return at the default port. Instead we
reason from the axioms.

∃n.(k〈3〉 ◦ n(b)a〈bu〉) ⊃ ∃n.k〈3〉(T ◦ n(b)a〈bu〉) ⊃ k〈3〉∃n.(T ◦ n(b)a〈bu〉) ⊃ k〈3〉
Here the first line is an application of [CUT], the second switches quantification with a
jump, and the third line is by [NOINFO], in addition to straightforward logical manipu-
lations. Thus we can use [CUT] once more and infer:

m(a)a(bu)T |mnu k〈3〉 ⊃ ∃m.((m(a).a(bu)T) ◦ m(a)k〈3〉) ⊃ ∃mb.((a(bu)T) ◦ k〈3〉)
⊃ k〈3〉∃mb.((a(bu)T) ◦ T) ⊃ k〈3〉

[IF] simply adds a recipient for the default port at M, the condition of the conditional,
where a boolean b is received. Depending on b, the specification of one of the branches
is enabled. [ADD] is similar to [APP] and the [CONS], the rule of consequence, is stan-
dard in program logics.

206 M. Berger

A Comment on the Shape of Rules. Program logics are usually presented “bottom-up”,
meaning that postconditions in the conclusion of rules are just a meta-variable standing
for arbitrary (well-typed) formulae. This facilitates reasoning starting from a desired
postcondition of the program under specification, and then trying to find an appropriate
premise. We have chosen the “top-down” presentation because it gives simpler and
more intuitive rules, and shortens inferences substantially. A “bottom-up”presentation
of proof rules is possible, and may be useful in some cases. The status of the “bottom-
up” rules (e.g. completeness) is yet to be established.

Completeness. A goal of axiomatic semantics is to be in harmony with the corre-
sponding operational semantics. That means that two programs should be contextually
indistinguishable if and only if they satisfy the same formulae. This property is called
observational completeness. We establish observational completeness as a consequence
of descriptive completeness.

Definition 1. By � we mean the standard typed contextual precongurence for PCF+,
i.e. M � N if for C[M] ⇓ implies C[N] ⇓ for all closing contexts C[·], where ⇓ means
termination.

Theorem 1. (Descriptive Completeness for Total Correctness) Our logic is descrip-
tively complete: for all closed M, N (typable under the same typing), A and m, we
have: � M :m A implies that (1) |= M :m A and (2) whenever |= N :m A then M � N.

The proof of this theorem, and the derivation of observational completeness (as well
as relative completeness in the sense of Cook) from descriptive completeness follows
[14].

The λµ-Calculus. From the rules and axioms for PCF+, it is easy to derive a logic for
µPCF, an extension of the λµ-calculus, a Curry-Howard correspondence for classical
logic, with a recursion operator. The logic enjoys similar completeness properties.

M :m A N :u B
M +N :u ∃mn.(A∧B∧u = a+b) SADD

M :m A
λx.M :u u〈x〉m A

SABS
M :m A

λx.M :u u〈xm〉A SABS’

λx.M :u A
rec g.λx.M :u ∃g.(fwga ◦A) SREC

M :m A N :n B
MN :u ∃mn.((A∧B)◦m〈nu〉) SAPP

M :m m〈n〉u A N :n B
MN :u ∃mn.(A∧B) SAPP’

−
callcc :u u(xm)x〈mm〉 SCCC

−
throw :u u〈x〉m m(y·)x〈y〉 STHROW

−
x :u u = x SVAR

−
c :u u = c SCONST

M :m A N :u B N′ :u C
if M then N else N′ :u ∃m.(A◦ (m = t ⊃ B)∧ (a = f ⊃C)) SIF

M :u A A ⊃ B
M :u B SCONS

M :n ∃ã.(m〈e〉u A◦m〈en〉B)
M :u ∃ã.(A◦B) SCUT

Fig. 2. Some derived rules that are useful for reasoning about PCF+ programs that return at their
default port

Program Logics for Sequential Higher-Order Control 207

5 Simplifying Reasoning

PCF-terms are a subset of PCF+-terms. Reasoning about PCF-terms using the logic for
PCF+ is moderately more laborious than using a logic tailor-made for PCF like [16].
This is because intermediary jumps in function application are represented explicitly in
the former, but not the latter. Reasoning in §4 about simple programs like (λx.x + 1)7
and throw k 3 suggest that intermediate jumps can be eliminated mechanically in ap-
plications where a function and its argument return at the default port. We formalise this
intuition and obtain simplified derivable logical rules and axioms, that can be used to
reason about a large class of programs, including PCF+ programs that do use functional
control. We start by defining two syntactic shorthands that apply only to judgements and
evaluation formulae that return at their default ports (u fresh in both):

M :m A
def
= M :u u(m)A x〈ẽ〉m A

def
= ∀u.x〈ẽu〉u(m)A

We write x(ỹ)m A for ∀ỹ.x〈ỹ〉m A. Using this syntax, λx.x + 1 has the following speci-
fication, as we shall show below. λx.x + 1 :u u〈x〉m m = x + 1. In order to derive spec-
ifications like this more efficiently than by expansion of abbreviations, we introduce
derivable rules and axioms that work directly with this new syntax. Figure 2 lists some
rules. Axioms can be simplified in the same way.

Termination at default ports is not the only place where higher-level rules are useful.
Examples in §4 indicate that reasoning about non-default jumps also often follows more
high-level patterns. To support this intuition, we add more shorthands.

M↗A
def
= M :u A∧m〈·〉∧m �= u a • e ↗ {A} def

= a〈eu〉(A∧m〈·〉∧m �= u)

In both u must be fresh. Rules using these additional rules can be found in Figure 3.

Theorem 2. All rules in Figures 2 and 3, and all associated axioms are derivable.

We continue with some further examples of using the derived rules and axioms. We
start by deriving 3 +throw k 7 :u k〈3〉 once more.

1 k :n n〈k〉 VAR

2 7 :h h = 7 SVAR

3 throw k 7↗k〈y〉 JTHROW”

4 3 :m m = 3 SCONST

5 3+throw k 7↗k〈y〉 JADD’

Now we consider an example that show that the simplified rules are also useful when
reasoning about programs with free variables. Consider

callcc x :m {A}(m = 7∨m = 8) (3)

where A
def
= x(kr)(k〈7〉∨ r〈8〉). Mechanically, using the simplified rules, we infer

208 M. Berger

1 callcc :a a(bc)b〈cc〉 SVAR

2 x :b b = x SCCC

3 callcc x :u ∃ab.(a(bc)b〈cc〉∧b = x)◦a〈bu〉 SAPP,1,2

4 callcc x :u x〈uu〉 CONS,3

5 callcc x :m {A}(m = 7∨m = 8) CONS,4

Line 4 is by a straightforward application of [CUT] and some straightforward logical
manipulations. To get Line 5, we reason as follows.

x〈uu〉 ⊃ {x〈uu〉(u〈7〉∨u〈8〉)}(u〈7〉∨u〈8〉) ⊃ {A}(u〈7〉∨u〈8〉) ⊃ u(m){A}(m〈7〉∨m〈8〉)

The first of these implications uses [XCHANGE], while the second strengthens the pre-
condition of the rely/guarantee formula.

Example (3) shows how easily we can reason about programs that have free variables
which are assumed to act like throwing a continuation. Just as easily one can assume

that a variable acts like callcc and prove x λk.throw k 7 :m {A}m = 7, where A
def
=

x(ab)a〈bb〉.

M↗A
λx.M :u u•x ↗{A} JABS

M :m A N↗B
M +N↗B JADD’

M↗A
M +N↗A JADD

M :m A N↗B
MN↗B JAPP’

M↗A
if M then N else N′↗A

JADD
M↗A

callcc M↗A JCCC
M↗A

MN↗A JAPP
M↗A

throw M N↗A JTHROW

M :m A N↗B
throw M N↗B JTHROW’

M :m m〈k〉 N :n A
throw M N↗k(n)A

JTHROW”

Fig. 3. Some derived rules, helpful for reasoning about PCF+ programs that jump

Relating the Logics for PCF and PCF+. The derivable rules and axioms just discussed
pose the question of the systematic relationship between the present logic and that for
PCF [14, 16]. We give an answer by providing a simple translation of formulae and
judgements from the logic for PCF to that for PCF+, and then showing that the inclusion
on programs preserves derivability. The idea behind the translation is straightforward:
just add fresh default ports.

We continue with a summary of the logic for PCF in [14, 16]. Types and formulae
are given by the following grammar, with expressions being unchanged.

α ::= N || B || Unit || α → β A ::= e = e′ || A∧B || ¬A || ∀xα.A || x〈e〉y A

Program Logics for Sequential Higher-Order Control 209

Judgements are of the form {A} M :m {B}. Next is the translation of PCF-formulae into
PCF+-formulae.

�e = e′� def
= e = e′ �A∧B� def

= �A�∧�B� �¬A� def
= ¬�A�

�∀xα.A� def
= ∀xα◦

.�A� �x〈e〉y A� def
= ∀u.x〈eu〉u(y)�A� u fresh

Please note that the translation changes α to α◦ in the translation of quantifiers (α◦

was defined in §3). Judgements are translated as follows: �{A} M :m {B}� def
= M :u

u(m){�A�}�B� (u fresh). This translation has the following properties.

Theorem 3. 1. The translation of judgements, when applied to rules, takes PCF-rules
to derivable rules for PCF+.

2. � {A} M :m {B} implies � �{A} M :m {B}�, where derivability on the left is in the
logic for PCF, on the right it’s for PCF+.

6 Conclusion

We have investigated program logics for a large class of stateless sequential control con-
structs. One construct not considered here are exceptions. Exceptions are a constrained
form of jumping that is used to escape a context without the possibility of returning, a
feature very useful for error handling. Exceptions are not included in the present logic
because they are caught dynamically, which does not sit comfortably with our typing
system. We believe that a simple extension of the logic presented here can easily ac-
count for exceptions. A second omission is that many programming languages with
interesting control constructs also feature state. We believe that adding state to PCF+or
µPCF can be done easily with the help of content quantification [16].

Related Work. The present work builds upon a large body of preceding work on the
semantics of control, including, but not limited to [11, 17, 21, 22, 25–28]. As mentioned,
the investigation of logics for control manipulation was started by Clint and Hoare [10].
It has been revived by [2–4, 7, 24, 29, 32, 34] (the long version of the present paper will
feature a more comprehensive discussion). None of these approaches investigates logics
for fully-fledged higher-order control constructs like callcc.

The present work adds a new member to a family of logics for ML-like languages
[5, 16, 18, 36], and integrates in a strong sense: e.g. all rules and axioms from [16] are,
adapting the syntax, also valid for PCF+and µPCF. We believe that all common CPS-
transforms between PCF, PCF+ and µPCF are logically fully abstract in the sense of
[23]. This coherence between programming languages, their operational and axiomatic
semantics, and compilations between each other paves the way for a comprehensive
proof-compilation infrastructure for ML-like languages.

Rely/guarantee based reasoning was introduced in [20]. Internalising rely/guarantee
reasoning into the program logic itself by way of rely/guarantee formulae was first
proposed in [30, 31] and has been used in Ambient Logics [9] and in expressive typing
systems [8]. The use of tensor is also found in [30, 31], and has been advocated by
Winskel [35]. In all cases the context is concurrency, not sequential control.

A preliminary version of the present work was finished in 2007, and its key ideas, in
particular rely/guarantee formulae and the tensor have since lead to a Hennessy-Milner

210 M. Berger

logic for typed π-calculus [6]. Neither proof-rules nor axioms for higher-order control
are investigated in [6]. Clarifying the relationship between the present logic and that of
[6] is an interesting research question.

References

1. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. & Comp. 163,
409–470 (2000)

2. Aspinall, D., Beringer, L., Hofmann, M., Loidl, H.-W., Momigliano, A.: A program logic for
resource verification. In: Slind, K., Bunker, A., Gopalakrishnan, G.C. (eds.) TPHOLs 2004.
LNCS, vol. 3223, pp. 34–49. Springer, Heidelberg (2004)

3. Bannwart, F., Müller, P.: A program logic for bytecode. ENTCS 141(1), 255–273 (2005)
4. Benton, N.: A Typed, Compositional Logic for a Stack-Based Abstract Machine. In: Yi, K.

(ed.) APLAS 2005. LNCS, vol. 3780, pp. 364–380. Springer, Heidelberg (2005)
5. Berger, M., Honda, K., Yoshida, N.: A logical analysis of aliasing for higher-order imperative

functions. In: Proc. ICFP, pp. 280–293 (2005); Full version to appear in JFP
6. Berger, M., Honda, K., Yoshida, N.: Completeness and logical full abstraction in modal log-

ics for typed mobile processes. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
99–111. Springer, Heidelberg (2008)

7. Beringer, L., Hofmann, M.: A bytecode logic for JML and types. In: Kobayashi, N. (ed.)
APLAS 2006. LNCS, vol. 4279, pp. 389–405. Springer, Heidelberg (2006)

8. Caires, L.: Spatial-behavioral types, distributed services, and resources. In: Montanari, U.,
Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS, vol. 4661, pp. 98–115. Springer, Heidelberg
(2007)

9. Cardelli, L., Gordon, A.D.: Anytime, Anywhere. Modal Logics for Mobile Ambients. In:
Proc. POPL, pp. 365–377 (2000)

10. Clint, M., Hoare, C.A.R.: Program Proving: Jumps and Functions. Acta Informatica 1, 214–
224 (1972)

11. Duba, B.F., Harper, R., MacQueen, D.: Typing First-Class Continuations in ML. In:
Proc. POPL, pp. 163–173 (1991)

12. Harper, R., Lillibridge, M.: Operational Interpretations of an Extension of Fω with Control
Operators. Journal of Functional Programming 6(3), 393–417 (1996)

13. Honda, K.: Processes and games. ENTCS 71 (2002)
14. Honda, K., Berger, M., Yoshida, N.: Descriptive and Relative Completeness of Logics for

Higher-Order Functions. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 360–371. Springer, Heidelberg (2006)

15. Honda, K., Yoshida, N.: A uniform type structure for secure information flow. In: POPL
2002, pp. 81–92. ACM Press, New York (2002); Full version to appear in ACM TOPLAS

16. Honda, K., Yoshida, N.: A compositional logic for polymorphic higher-order functions. In:
Proc. PPDP 2004, pp. 191–202. ACM Press, New York (2004)

17. Honda, K., Yoshida, N., Berger, M.: Control in the π-calculus. In: Proc. CW 2004, ACM
Press, New York (2004)

18. Honda, K., Yoshida, N., Berger, M.: An observationally complete program logic for impera-
tive higher-order functions. In: LICS 2005, pp. 270–279 (2005)

19. Hyland, J.M.E., Ong, C.H.L.: On full abstraction for PCF. Inf. & Comp. 163, 285–408 (2000)
20. Jones, C.B.: Specification and Design of (Parallel) Programs. In: IFIP Congress, pp. 321–332

(1983)
21. Laird, J.: A Semantic Analysis of Control. PhD thesis, Univ. of Edinburgh (1998)

Program Logics for Sequential Higher-Order Control 211

22. Longley, J.: When is a functional program not a functional program? SIGPLAN Not. 34(9),
1–7 (1999)

23. Longley, J., Plotkin, G.: Logical Full Abstraction and PCF. In: Tbilisi Symposium on Logic,
Language and Information. CSLI (1998)

24. Ni, Z., Shao, Z.: Certified Assembly Programming with Embedded Code Pointers. In:
Proc. POPL (2006)

25. Ong, C.-H.L., Stewart, C.A.: A Curry-Howard foundation for functional computation with
control. In: Proc. POPL, pp. 215–227 (1997)

26. Parigot, M.: λµ-Calculus: An Algorithmic Interpretation of Classical Natural Deduction. In:
Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer, Heidelberg (1992)

27. Plotkin, G.: Call-By-Name, Call-By-Value, and the λ-Calculus. TCS 1(2), 125–159 (1975)
28. Riecke, J.G., Thielecke, H.: Typed exceptions and continuations cannot macro-express each

other. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS,
vol. 1644, pp. 635–644. Springer, Heidelberg (1999)

29. Saabas, A., Uustalu, T.: A Compositional Natural Semantics and Hoare Logic for Low-Level
Languages. In: Proc. Workshop Structural Operational Semantics, SOS (2006)

30. Stirling, C.: A complete compositional proof system for a subset of CCS. In: Brauer, W. (ed.)
ICALP 1985. LNCS, vol. 194, pp. 475–486. Springer, Heidelberg (1985)

31. Stirling, C.: Modal logics for communicating systems. TCS 49, 311–347 (1987)
32. Tan, G., Appel, A.W.: A Compositional Logic for Control Flow. In: Emerson, E.A.,

Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 80–94. Springer, Heidelberg
(2005)

33. Thielecke, H.: Continuations, functions and jumps. Bulletin of EATCS, Logic Column 8
(1999)

34. Thielecke, H.: Frame rules from answer types for code pointers. In: Proc. POPL, pp. 309–319
(2006)

35. Winskel, G.: A complete proof system for SCCS with modal assertions. In: Maheshwari,
S.N. (ed.) FSTTCS 1985. LNCS, vol. 206, pp. 392–410. Springer, Heidelberg (1985)

36. Yoshida, N., Honda, K., Berger, M.: Logical reasoning for higher-order functions with local
state. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 361–377. Springer, Heidel-
berg (2007)

	Program Logics for Sequential Higher-Order Control
	Introduction
	PCF with Jumps
	The Logic
	Axioms and Rules
	Simplifying Reasoning
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

