
A Process-Theoretic Look at Automata

J.C.M. Baeten, P.J.L. Cuijpers, B. Luttik, and P.J.A. van Tilburg

Division of Computer Science, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands,

{j.c.m.baeten,p.j.l.cuijpers,s.p.luttik,p.j.a.v.tilburg}@tue.nl

Abstract. Automata theory presents roughly three types of automata:
finite automata, pushdown automata and Turing machines. The au-
tomata are treated as language acceptors, and the expressiveness of the
automata models are considered modulo language equivalence. This no-
tion of equivalence is arguably too coarse to satisfactorily deal with a
notion of interaction that is fundamental to contemporary computing.
In this paper we therefore reconsider the automaton models from au-
tomata theory modulo branching bisimilarity, a well-known behavioral
equivalence from process theory that has proved to be able to satisfacto-
rily deal with interaction. We investigate to what extent some standard
results from automata theory are still valid if branching bisimilarity is
adopted as the preferred equivalence.

1 Introduction

Automata theory is the study of abstract computing devices, or “machines” [11].
It presents and studies roughly three types of automata: finite automata, push-
down automata and Turing machines. Finite automata are the simplest kind
of automata; they are widely used to model and analyze finite-state state sys-
tems. Pushdown automata add to finite automata a restricted kind of unbounded
memory in the form of a stack. Turing machines add to finite automata a more
powerful notion of memory in the form of an unbounded tape.

In traditional automata theory, automata are treated as language acceptors.
The idea is that a string accepted by the automaton represents a particular com-
putation of the automaton, and the language accepted by it thus corresponds
with the set of all computations of the automaton. The language-theoretic in-
terpretation of automata is at the basis of all the standard results taught in
an undergraduate course on the subject. For instance, the procedure of trans-
forming a nondeterministic finite automaton into a deterministic one is deemed
correct because the resulting automaton is language equivalent to the original
automaton (two automata are language equivalent if they accept the same lan-
guage). Another illustrative example is the correspondence between pushdown
automata and context-free grammars: for every language generated by a context-
free grammar there is a pushdown automaton that accepts it, and vice versa.

The language-theoretic interpretation abstracts from the moments of choice
within an automaton. (For instance, it does not distinguish between, on the one

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 1–33, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 J.C.M. Baeten et al.

hand, the automaton that first accepts an a and subsequently chooses between
accepting a b or a c, and, on the other hand, the automaton that starts with a
choice between accepting ab and accepting ac.) As a consequence, the language-
theoretic interpretation is only suitable under the assumption that an automaton
is a stand-alone computational device; it is unsuitable if some form of interaction
of the automaton with its environment (user, other automata running in parallel,
etc.) may influence the course of computation.

Interaction and nondeterminism nowadays play a crucial role in computing
systems. For instance, selecting an option in a web form can lead to different
responses and different options in the following form, and so a fixed input string
does not look so useful. Also, one browser query will lead to different answers
every day, so it is difficult to see a computer as a function from input to output,
there is inherent nondeterminism.

Process theory is the study of reactive systems, i.e., systems that depend on
interaction with their environment during their execution. In process theory, a
system is usually either directly modeled as a labeled transition system (which is
actually a generalization of the notion of finite automaton), or as an expression
in a process description language with a well-defined operational semantics that
assigns a labeled transition system to each expression. In process theory, interac-
tion between systems is treated as a first-class citizen. One its main contributions
is a plethora of behavioral equivalences that to more or lesser extent preserve the
branching structure of an automaton (see [7] for an overview). One of the finest
behavioral equivalences studied in process theory, which arguably preserves all
relevant moments of choice in a system, is branching bisimilarity [10].

In this paper we shall reconsider some of the standard results from automata
theory when automata are considered modulo branching bisimilarity instead of
language equivalence. We prefer to use branching bisimilarity because it arguably
preserves all relevant moments of choice in a system [10]. Note that all the
positive results obtained in this paper automatically also hold modulo any of
the coarser behavioral equivalences, and hence also modulo Milner’s observation
equivalence [12]. Furthermore, it is fairly easy to see that most of our negative
results also hold modulo observation equivalence; branching structure is needed
only to a limited extent.

In Section 3 we consider regular processes, defined as branching bisimulation
equivalence classes of labeled transition systems associated with finite automata.
Most of the results we present in this section are well-known. The section is
included for completeness and to illustrate the correspondence between finite
automata and a special type of recursive specifications that can be thought of
as the process-theoretic counterpart of regular grammars. We will obtain mostly
negative results. Naturally, the determinization procedure standardly presented
in automata theory to transform a nondeterministic finite automaton into a de-
terministic one is not valid modulo branching bisimilarity, and not every labeled
transition system associated with a finite automaton is described by a regular
expression. We do find a process-theoretic variant of the correspondence between

A Process-Theoretic Look at Automata 3

finite automata and right-linear grammars, while there is no process-theoretic
variant of the correspondence between finite automata and left-linear grammars.

In Section 4 we consider pushdown processes, defined as branching bisimula-
tion equivalence classes of labeled transition systems associated with pushdown
automata. First we investigate three alternative termination conditions: termi-
nation by final state, by empty stack, or by both. Recall that these termination
conditions are equivalent from a language-theoretic perspective. We shall prove
that, modulo branching bisimilarity, the termination by empty stack and ter-
mination by final state interpretations lead to different notions of pushdown
process, while the termination by empty stack and the termination by empty
stack and final state coincide. We argue that termination by empty stack is
better suited for a process-theoretic treatment than termination by final state.
Then, we shall investigate the correspondence between pushdown processes (ac-
cording to the termination by empty stack and final state interpretation) and
processes definable by recursive TSPτ specifications, which can be thought of as
the process-theoretic counterpart of context-free grammars. We shall argue that
not every pushdown process is definable by a recursive TSPτ specification and
identify a subclass of pushdown processes that are definable by (a special type
of) recursive TSPτ specifications.

In Section 5 we consider computable processes, defined as branching bisimu-
lation equivalence classes of labeled transition systems associated with Turing
machines. Being a universal model of computation, the Turing machine model
has been particularly influential, probably due to its close resemblance with the
computer: a Turing machine can be thought of as a computer running a single
program that only interacts with the outside world through its memory, and
only at the very beginning and the very end of the execution of the program.
Thus, the notion of Turing machine focuses on the computational aspect of the
execution of a computer; in particular, it abstracts from the interaction that a
computer has with its environment (user, other computers in a network, etc.).
Since we find interaction important, we shall work with a variation on the notion
of Turing machine, known as off-line Turing machine. This notion starts with an
empty tape, and the machine can take in one input symbol at a time. In [2], a
computable process was defined indirectly, by using an encoding of a transition
system by means of two computable functions (defined by a standard Turing
machine). We show the two ways yield the same set of computable processes.

2 Process Theory

In this section we briefly recap the basic definitions of the process algebra TCPτ

(Theory of Communicating Processes with τ). We refer to [1] for further details.

Syntax. We presuppose a countably infinite action alphabet A, and a countably
infinite set of names N . The actions in A denote the basic events that a process
may perform. In this paper we shall furthermore presuppose a countably infinite
data alphabet D, a finite set C of channels, and assume that A includes special

4 J.C.M. Baeten et al.

actions c?d, c!d, c!?d (d ∈ D, c ∈ C), which, intuitively, denote the event that
datum d is received, sent, or communicated along channel c.

Let N ′ be a finite subset of N . The set of process expressions P over A and
N ′ is generated by the following grammar:

p ::= 0 | 1 | a.p | τ.p | p · p | p + p | p ‖ p | ∂c(p) | τc(p) | N

(a ∈ A, N ∈ N ′, c ∈ C) .

Let us briefly comment on the operators in this syntax. The constant 0 denotes
deadlock, the unsuccessfully terminated process. The constant 1 denotes the
successfully terminated process. For each action a ∈ A there is a unary operator
a. denoting action prefix; the process denoted by a.p can do an a-transition to
the process denoted by p. The τ -transitions of a process will, in the semantics
below, be treated as unobservable, and as such they are the process-theoretic
counterparts of the so-called λ- or ε-transitions in the theory of automata and
formal languages. For convenience, whenever A′ is some subset of A, we write A′

τ

for A′ ∪ {τ}. The binary operator · denotes sequential composition. The binary
operator + denotes alternative composition or choice. The binary operator ‖
denotes parallel composition; actions of both arguments are interleaved, and
in addition a communication c!?d of a datum d on channel c can take place if
one argument can do an input action c?d that matches an output action c!d of
the other component. The unary operator ∂c(p) encapsulates the process p in
such a way that all input actions c?d and output actions c!d are blocked (for
all data) so that communication is enforced. Finally, the unary operator τc(p)
denotes abstraction from communication over channel c in p by renaming all
communications c!?d to τ -transitions.

Let N ′ be a finite subset of N , used to define processes by means of (recursive)
equations. A recursive specification E over N ′ is a set of equations of the form

N
def= p

with as left-hand side a name N and as right-hand side a process expression p. It
is required that a recursive specification E contains, for every N ∈ N ′, precisely
one equation with N as left-hand side; this equation will be referred to as the
defining equation for N in N ′.

One way to formalize the operational intuitions we have for the syntactic
constructions of TCPτ , is to associate with every process expression a labeled
transition system.

Definition 1 (Labelled Transition System). A labeled transition system L
is defined as a four-tuple (S,→, ↑, ↓) where:

1. S is a set of states,
2. → ⊆ S ×Aτ × S is an Aτ -labeled transition relation on S,
3. ↑ ∈ S is the initial state,
4. ↓ ⊆ S is the set of final states.

If (s, a, t) ∈ →, we write s
a−−→ t. If s is a final state, i.e., s ∈ ↓, we write s↓.

A Process-Theoretic Look at Automata 5

Table 1. Operational rules for a recursive specification E (a ranges over Aτ , d ranges
over D, and c ranges over C)

1 ↓ a.p
a−−→ p

p
a−−→ p′

(p + q)
a−−→ p′

q
a−−→ q′

(p + q)
a−−→ q′

p ↓

(p + q) ↓

q ↓

(p + q) ↓

p
a−−→ p′

p · q a−−→ p′ · q

p ↓ q
a−−→ q′

p · q a−−→ q′
p ↓ q ↓

p · q ↓

p
a−−→ p′

p ‖ q
a−−→ p′ ‖ q

q
a−−→ q′

p ‖ q
a−−→ p ‖ q′

p ↓ q ↓

p ‖ q ↓

p
c!d−−→ p′ q

c?d−−−→ q′

p ‖ q
c!?d−−→ p′ ‖ q′

p
c?d−−−→ p′ q

c!d−−→ q′

p ‖ q
c!?d−−→ p′ ‖ q′

p
a−−→ p′ a �= c?d, c!d

∂c(p)
a−−→ ∂c(p

′)

p ↓

∂c(p) ↓

p
c!?d−−→ p′

τc(p)
τ−−→ τc(p

′)

p
a−−→ p′ a �= c!?d

τc(p)
a−−→ τc(p

′)

p ↓

τc(p) ↓

pN
a−−→ p (N

def
= pN) ∈ E

N
a−−→ p

pN ↓ (N
def
= pN) ∈ E

N ↓

We use Structural Operational Semantics [15] to associate a transition relation
with process expressions: we let → be the Aτ -labeled transition relation induced
on the set of process expressions P by operational rules in Table 1. Note that
the operational rules presuppose a recursive specification E.

Let → be an Aτ -labeled transition relation on a set S of states. For s, s′ ∈ S
and w ∈ A∗ we write s

w−−� s′ if there exist states s0, . . . , sn ∈ S and actions
a1, . . . , an ∈ Aτ such that s = s0

a1−−→ · · · an−−→ sn = s′ and w is obtained from
a1 · · · an by omitting all occurrences of τ . If s ε−−� t (ε denotes the empty word),
which just means that t is reachable from s by zero or more τ -transitions, then
we shall simply write s −−� t.

Definition 2 (Reachability). A state t ∈ S is reachable from a state s ∈ S
if there exists w ∈ A∗ such that s

w−−� t.

Definition 3. Let E be a recursive specification and let p be a process expres-
sion. We define the labeled transition system TE(p) = (Sp ,→p , ↑p , ↓p) associated
with p and E as follows:

6 J.C.M. Baeten et al.

1. the set of states Sp consists of all process expressions reachable from p;
2. the transition relation →p is the restriction to Sp of the transition relation

→ defined on all process expressions by the operational rules in Table 1, i.e.,
→p = → ∩ (Sp ×Aτ × Sp).

3. the process expression p is the initial state, i.e. ↑p = p; and
4. the set of final states consists of all process expressions q ∈ Sp such that q↓,

i.e., ↓p = ↓ ∩ Sp .

Given the set of (possibly infinite) labeled transition systems, we can divide
out different equivalence relations on this set. Dividing out language equivalence
throws away too much information, as the moments where choices are made
are totally lost, and behavior that does not lead to a final state is ignored.
An equivalence relation that keeps all relevant information, and has many good
properties, is branching bisimulation as proposed by van Glabbeek and Weij-
land [10]. For motivations to use branching bisimulation as the preferred notion
of equivalence, see [8].

Let → be an Aτ -labeled transition relation, and let a ∈ Aτ ; we write s
(a)−−→ t

if s a−−→ t or a = τ and s = t.

Definition 4 (Branching bisimilarity). Let L1 = (S1,→1, ↑1, ↓1) and L2 =
(S2,→2, ↑2, ↓2) be labeled transition systems. A branching bisimulation from L1

to L2 is a binary relation R ⊆ S1 × S2 such that ↑1 R ↑2 and, for all states s1

and s2, s1 R s2 implies

1. if s1
a−−→1s′1, then there exist s′2, s

′′
2 ∈ S2 such that s2−−�2s′′2

(a)−−→2s′2, s1 R s′′2
and s′1 R s′2;

2. if s2
a−−→2 s′2, then there exist s′1, s′′1 ∈ S1 such that s1 −−�1 s′′1

(a)−−→1 s′1,
s′′1 R s2 and s′1 R s′2;

3. if s1↓1, then there exists s′2 such that s2 −−�2 s′2 and s′2↓2; and
4. if s2↓2, then there exists s′1 such that s1 −−→1 s′1 and s′1↓1.

The labeled transition systems L1 and L2 are branching bisimilar (notation:
L1 ↔b L2) if there exists a branching bisimulation from L1 to L2.

Branching bisimilarity is an equivalence relation on labeled transition systems [5].
We need as auxiliary notions in our paper the notion of inert τ -transition and

the notion of branching degree of a state. For a definition of these notions we first
define the notion of branching bisimulation on a labeled transition system, and
the notion of quotient of a labeled transition system by its maximal branching
bisimulation.

Let L = (S,→, ↑, ↓) be a labeled transition system. A branching bisimula-
tion on L is a binary relation R on S that satisfies conditions 1–4 of Defini-
tion 4 for all s1 and s2 such that s1 R s2. Let R be the maximal branch-
ing bisimulation on L. Then R is an equivalence on S; we denote by [s]R
the equivalence class of s ∈ S with respect to R and by S/R the set of all
equivalence classes of S with respect to R. On S/R we can define an Aτ -
labeled transition relation →R by [s]R

a−−→R [t]R if, and only if, there exist

A Process-Theoretic Look at Automata 7

s′ ∈ [s]R and t′ ∈ [t]R such that s′ a−−→ t′. Furthermore, we define ↑R = [↑]R
and ↓R = {s | ∃s′ ∈ ↓. s ∈ [s′]R}. Now, the quotient of L by R is the labeled
transition system L/R = (S/R,→/R, ↑/R, ↓/R). It is straightforward to prove
that each labeled transition system is branching bisimilar to the quotient of this
labeled transition system by its maximal branching bisimulation.

Definition 5 (Inert τ-transitions). Let L be a labeled transition system and
let s and t be two states in L. A τ-transition s

τ−−→ t is inert if s and t are
related by the maximal branching bisimulation on L.

If s and t are distinct states, then an inert τ -transition s τ−−→ t can be eliminated
from a labeled transition system, e.g., by removing all outgoing transitions of
s, changing every outgoing transition t a−−→ u from t to an outgoing transition
s a−−→ u, and removing the state t. This operation yields a labeled transition
system that is branching bisimilar to the original labeled transition system.

For example, consider Figure 1. Here, the inert τ -transition from state s to t
in the transition system on the left is removed by removing the transition s

a−−→u
and moving all outgoing transitions of t to s, resulting in the transition system
on the right. This is possible because s and t are branching bisimilar.

s

tu

v w

τa

a b

s

v w

a b

Fig. 1. Removing an inert τ -transition

To get a notion of branching degree that is preserved modulo branching bisim-
ilarity, we define the branching degree of a state as the branching degree of the
corresponding equivalence class of states modulo the maximal branching bisim-
ilarity.

Definition 6 (Branching degree). Let L be a labeled transition system, and
let R be its maximal branching bisimulation. The branching degree of a state s
in L is the cardinality of the set {(a, [t]R) | [s]R

a−−→R [t]R} of outgoing edges of
the equivalence class of s in the quotient L/R.

We say that L has finite branching if all states of L have a finite branching
degree. We say that L has bounded branching if there exists a natural number
n ≥ 0 such that every state has a branching degree of at most n.

Branching bisimulations respect branching degrees in the sense that if R is a
branching bisimulation from L1 to L2, s1 is a state in L1 and s2 is a state in
L2 such that s1 R s2, then s1 and s2 have the same branching degree. Let p
and q be process expressions in the context of a recursive specification E; the

8 J.C.M. Baeten et al.

following properties pertaining to branching degrees are fairly straightforward
to establish: If TE(p) and TE(q) have bounded branching (or finite branching),
then TE(p ‖ q) has bounded branching (or finite branching) too, and if TE(p)
has bounded branching (or finite branching), then TE(∂c(p)) and TE(τc(p)) have
bounded branching (or finite branching) too.

3 Regular Processes

A computer with a fixed-size, finite memory is just a finite control. This can
be modeled by a finite automaton. Automata theory starts with the notion of
a finite automaton. As non-determinism is relevant and basic in concurrency
theory, we look at a non-deterministic finite automaton.

Definition 7 (Finite automaton). A finite automaton M is defined as a five-
tuple (S,A′,→, ↑, ↓) where:

1. S is a finite set of states,
2. A′ is a finite subset of A,
3. → ⊆ S ×A′

τ × S is a finite A′
τ -labeled transition relation on S,

4. ↑ ∈ S is the initial state,
5. ↓ ⊆ S is the set of final states.

Clearly, from a finite automaton we obtain a labeled transition system by simply
omitting A′ from the five-tuple and declaring → to be an Aτ -labeled transition
relation. In the remainder of this paper there is no need to make the formal
distinction between a finite automaton and the labeled transition system thus
associated to it.

Two examples of finite automata are given in Figure 2.

c

a

a a

a
τ

b

b

a

a

a
a

b

b

Fig. 2. Two examples of finite automata

A Process-Theoretic Look at Automata 9

Definition 8 (Deterministic finite automaton). A finite automaton M =
(S,A′,→, ↑, ↓) is deterministic if, for all states s, t1, t2 ∈ S and for all actions
a ∈ A′, s

a−−� t1 and s
a−−� t2 implies t1 = t2.

In the theory of automata and formal languages, it is usually also required in the
definition of deterministic that the transition relation is total in the sense that
for all s ∈ S and for all a ∈ A′ there exists t ∈ S such that s a−−→ t. The extra
requirement is clearly only sensible in the language interpretation of automata;
we shall not be concerned with it here.

The upper automaton in Figure 2 is non-deterministic and has an unreachable
c-transition. The lower automaton is deterministic and does not have unreach-
able transitions; it is not total.

In the theory of automata and formal languages, finite automata are consid-
ered as language acceptors.

Definition 9 (Language equivalence). The language L(L) accepted by a la-
beled transition system L = (S,→, ↑, ↓) is defined as

L(L) = {w ∈ A∗ | ∃s ∈ ↓ such that ↑ w−−� s} .

Labeled transition systems L1 and L2 are language equivalent (notation: L1 ≡
L2) if L(L1) = L(L2).

Recall that a finite automaton is a special kind of labeled transition system, so
the above definition pertains directly to finite automata. The language of both
automata in Figure 2 is {aaa} ∪ {ab2n−1 | n ≥ 1}; the automata are language
equivalent.

A language L ⊆ A∗ accepted by a finite automaton is called a regular language.
A regular process is a branching bisimilarity class of labeled transition systems
that contains a finite automaton.

The following standard results pertaining to finite automata are found in every
textbook on the theory of automata and formal languages:

1. For every finite automaton there exists a language equivalent automaton
without τ -transitions.

2. For every finite automaton there exists a language equivalent deterministic
finite automaton.

3. Every language accepted by a finite automaton is the language described by
a regular expression, and, conversely, every language described by a regular
expression is accepted by a finite automaton.

4. Every language accepted by a finite automaton is generated by a regular
(i.e., right-linear or left-linear) grammar, and, conversely, every language
generated by a regular grammar is accepted by a finite automaton.

We shall discuss below to what extent these results are still valid in branching
bisimulation semantics.

10 J.C.M. Baeten et al.

Silent steps and non-determinism. Not every regular process has a representa-
tion as a finite automaton without τ -transitions, and not every regular process
has a representation as a deterministic finite automaton. In fact, it can be proved
that there does not exist a finite automaton without τ -transitions that is branch-
ing bisimilar with the upper finite automaton in Figure 2. Nor does there exist
a deterministic finite automaton branching bisimilar with the upper finite au-
tomaton in Figure 2.

Regular grammars and regular expressions. Not every regular process is given
by a regular expression, see [3]. We show a simple example in Figure 3 of a
finite transition system that is not bisimilar to any transition system that can
be associated with a regular expression.

a

b

Fig. 3. Not bisimilar to a regular expression

In the theory of automata and formal languages, the notion of grammar is used
as a syntactic mechanism to describe languages. The corresponding mechanism
in concurrency theory is the notion of recursive specification.

We shall now consider the process theory BSPτ (Basic Sequential Processes),
which is a subtheory of the theory TCPτ introduced in Section 2. The syntax
of the process theory BSPτ is obtained from that of TCPτ by omitting sequen-
tial composition, parallel composition, encapsulation and abstraction. A BSPτ

recursive specification over a finite subset N ′ of N is a recursive specification
over N ′ in which only 0, 1, N (N ∈ N ′), a. (a ∈ Aτ) and + are used to build
process expressions.

Consider the operational rules in Table 1 that are relevant for BSPτ , for a
presupposed recursive specification E. Note that whenever p is a BSPτ process
expression and p a−−→q then q is again a BSPτ process expression. Moreover, q is a
subterm of p, or q is a subterm of a right-hand side of the recursive specification
E. Thus, it follows that the set of process expressions reachable from a BSPτ

process expression consists merely of BSPτ process expressions, and that it is
finite. So the labeled transition system TE(p) associated with a BSPτ process
expression given a BSPτ recursive specification E is a finite automaton. Below
we shall also establish the converse, that every finite automaton can be specified,
up to isomorphism, by a recursive specification over BSPτ . First we illustrate
the construction with an example.

Example 1. Consider the automaton depicted in Figure 4. Note that we have
labeled each state of the automaton with a unique name; these will be the
names of a recursive specification E. We will define each of these names with
an equation, in such a way that the labeled transition system TE(S) generated

A Process-Theoretic Look at Automata 11

S T

U

V

a

b
a

a

a

Fig. 4. Example automaton

by the operational semantics in Table 1 is isomorphic (so certainly branching
bisimilar) with the automaton in Figure 4.

The recursive specification for the finite automaton in Figure 4 is:

S
def= a.T ,

T
def= a.U + b.V ,

U
def= a.V + 1 ,

V
def= 0 .

The action prefix a.T on the right-hand side of the equation defining S is used
to express that S has an a-transition to T . Alternative composition is used on
the right-hand side of the defining equation for T to combine the two transitions
going out from T . The 1-summand on the right-hand side of the defining equation
for U indicates that U is a final state. The symbol 0 on the right-hand side of
the defining equation for V expresses that V is a deadlock state.

Theorem 1. For every finite automaton M there exists a BSPτ recursive spec-
ification E and a BSPτ process expression p such that M ↔b TE(p).

Proof. The general procedure is clear from Example 1. Let M = (S,A′,→, ↑, ↓).
We associate with every state s ∈ S a name Ns , and define a recursive specifi-
cation E on {Ns | s ∈ S}. The recursive specification E consists of equations of
the form

Ns
def=

∑
{a.Nt | s

a−−→ t} [+ 1] ,

with the contention that the summation
∑

{a.Nt | s a−−→ t} denotes 0 if the set
{a.Nt | s

a−−→ t} is empty, and the optional 1-summand is present if, and only
if, s↓. It is easily verified that the binary relation R = {(s, Ns) | s ∈ S} is a
branching bisimulation. ��

Incidentally, note that the relation R in the proof of the above theorem is an
isomorphism, so the proof actually establishes that for every finite automaton
M there exists a BSPτ recursive specification E and a BSPτ process expression
p such that the labeled transition system associated with p and E is isomorphic
to M.

12 J.C.M. Baeten et al.

The above theorem can be viewed as the process-theoretic counterpart of
the result from the theory of automata and formal languages that states that
every language accepted by a finite automaton is generated by a so-called right-
linear grammar. There is no reasonable process-theoretic counterpart of the
similar result in the theory of automata and formal languages that every language
accepted by a finite automaton is generated by a left-linear grammar, as we shall
now explain.

Table 2. Operational rules for action postfix operators (a, β ∈ Aτ)

p
β

−−→ p′

p.a
β

−−→ p′.a

p↓

p.a
a−−→ 1

a

b

Fig. 5. A simple finite automaton

To obtain the process-theoretic counterpart of a left-linear grammar, we
should replace the action prefixes a. in BSPτ by action postfixes .a, with the
operational rules in Table 2. Not every finite automaton can be specified in the
resulting language. To see this, note that action postfix distributes over alterna-
tive composition and is absorbed by 0. Therefore, for every process expression
p over BSPτ with action postfix instead of action prefix there exist finite sets I
and J and elements wi (i ∈ I) and wj (j ∈ J) of A∗ such that

p ↔b

∑

i∈I

Ni.wi +
∑

j∈J

1.wj [+ 1] .

(Recall that empty summations are assumed to denote 0.) Hence, for every such
process expression p, if p

a−−→ p′, then p′ ↔b w for some w ∈ A∗. A process
expression denoting the finite automaton in Figure 5 cannot have this property,
for after performing an a-transition there is still a choice between terminating
with a b-transition, or performing another a-transition. We conclude that the
automaton in Figure 5 cannot be described modulo branching bisimilarity in
BSPτ with action postfix instead of action prefix.

Conversely, with action postfixes instead of action prefixes in the syntax, it
is possible to specify labeled transition systems that are not branching bisimilar
with a finite automaton.

Example 2. For instance, consider the recursive specification over {X} consisting
of the equation

X
def= 1 + X.a .

A Process-Theoretic Look at Automata 13

a a a a

aaa

a

a

Fig. 6. Infinitely branching process of unguarded equation

The labeled transition system associated with X by the operational semantics
is depicted in Figure 6. Note that in this figure, the initial state is also final.
It can be proved that the infinitely many states of the depicted labeled transi-
tion systems are all distinct modulo branching bisimilarity. It follows that the
labeled transition system associated with X is not branching bisimilar to a finite
automaton.

We conclude that the classes of processes defined by right-linear and left-linear
grammars do not coincide.

4 Pushdown and Context-Free Processes

As an intermediate between the notions of finite automaton and Turing machine,
the theory of automata and formal languages treats the notion of pushdown au-
tomaton, which is a finite automaton with a stack as memory. Several definitions
of the notion appear in the literature, which are all equivalent in the sense that
they accept the same languages.

Definition 10 (Pushdown automaton). A pushdown automaton M is de-
fined as a six-tuple (S,A′,D′,→, ↑, ↓) where:

1. S a finite set of states,
2. A′ is a finite subset of A,
3. D′ is a finite subset of D,
4. → ⊆ S×(D′∪{ε})×A′

τ ×D′∗×S is a (D′∪{ε})×A′
τ ×D′∗-labeled transition

relation on S,
5. ↑ ∈ S is the initial state, and
6. ↓ ⊆ S is the set of final states.

If (s, d, a, δ, t) ∈ →, we write s
d,a,δ−−−−→ t.

The pair of a state together with particular stack contents will be referred to as
the configuration of a pushdown automaton. Intuitively, a transition s

d,a,δ−−−−→ t
(with a ∈ A′) means that the automaton, when it is in a configuration consisting
of a state s and a stack with the datum d on top, can consume input symbol a,
replace d by the string δ and move to state t. Likewise, writing s

ε,a,δ−−−−→ t means

14 J.C.M. Baeten et al.

that the automaton, when it is in state s and the stack is empty, can consume
input symbol a, put the string δ on the stack, and move to state t. Transitions
of the form s

d,τ,δ−−−−→ t or s
ε,τ,δ−−−→ t do not entail the consumption of an input

symbol, but just modify the stack contents.
When considering a pushdown automaton as a language acceptor, it is gener-

ally assumed that it starts in its initial state with an empty stack. A computation
consists of repeatedly consuming input symbols (or just modifying stack contents
without consuming input symbols). When it comes to determining whether or not
to accept an input string there are two approaches: “acceptance by final state”
(FS) and “acceptance by empty stack” (ES). The first approach accepts a string if
the pushdownautomaton can move to a configurationwith a final state by consum-
ing the string, ignoring the contents of the stack in this configuration. The second
approach accepts the string if the pushdown automaton can move to a configura-
tion with an empty stack, ignoring whether the state of this configuration is final
or not. These approaches are equivalent from a language-theoretic point of view,
but not from a process-theoretic point of view, as we shall see below. We shall also
consider a third approach in which a configuration is terminating if it consists of a
terminating state and an empty stack (FSES). We shall see that, from a process-
theoretic point of view, the ES and FSES approaches lead to the same notion of
pushdown process, whereas the FS approach leads to a different notion.

s t

ε, a, 1
1, a, 11

1, b, ε

1, b, ε

Fig. 7. Example pushdown automaton

Depending on the adopted acceptance condition, the pushdown automaton
in Figure 7 accepts the language {ambn | m ≥ n ≥ 0} (FS) or the language
{anbn | n ≥ 0} (ES,FSES).

Definition 11. Let M = (S,A′,D′,→, ↑, ↓) be a pushdown automaton. The
labeled transition system T (M) associated with M is defined as follows:

1. the set of states of T (M) is S × D′∗;
2. the transition relation of T (M) satisfies

(a) (s, dζ) a−−→(t, δζ) iff s
d,a,δ−−−−→ t for all s, t ∈ S, a ∈ A′

τ , d ∈ D′, δ, ζ ∈ D′∗,
and

(b) (s, ε) a−−→ (t, δ) iff s
ε,a,δ−−−−→ t;

3. the initial state of T (M) is (↑, ε); and
4. for the set of final states ↓ we consider three alternative definitions:

(a) (s, ζ)↓ in T (M) iff s↓ (the FS interpretation),
(b) (s, ζ)↓ in T (M) iff ζ = ε (the ES interpretation), and
(c) (s, ζ)↓ in T (M) iff s↓ and ζ = ε (the FSES interpretation).

A Process-Theoretic Look at Automata 15

a a a

b b b

bb

a

b

Fig. 8. A pushdown process

This definition now gives us the notions of pushdown language and pushdown
process: a pushdown language is the language of the transition system associated
with a pushdown automaton, and a pushdown process is a branching bisimilar-
ity class of labeled transition systems containing a labeled transition system
associated with a pushdown automaton.

The labeled transition system in Figure 8 is the labeled transition system
associated with the pushdown automaton of Figure 7 according to the FSES
or ES interpretations. To obtain the labeled transition system associated to the
pushdown automaton in Figure 7 according to the FS interpretation, all states
should be made final.

The following standard results pertaining to pushdown automata are often
presented in textbooks on the theory of automata and formal languages:

1. Every language accepted by a pushdown automaton under the acceptance
by empty stack interpretation is also accepted by a pushdown automaton
under the acceptance by final state interpretation, and vice versa.

2. Every language accepted by a pushdown automaton is accepted by a push-
down automaton that only has push transitions (i.e., transitions of the form
s

ε,a,d−−−−→ t or s
d,a,ed−−−−−→) and pop transitions (i.e., transitions of the form

s
d,a,ε−−−−→ t).

3. Every language accepted by a pushdown automaton is also generated by
a context-free grammar, and every language generated by a context-free
grammar is accepted by a pushdown automaton.

Only push and pop transitions. It is easy to see that limiting the set of transitions
to push and pop transitions only in the definition of pushdown automaton yields
the same notion of pushdown process:

1. Eliminate a transition of the form s
ε,a,ε−−−−→ t by adding a fresh state s′,

replacing the transition by the sequence of transitions s
ε,a,d−−−−→ s′ d,τ,ε−−−−→ t

(with d just some arbitrary element in D′).
2. Eliminate a transition of the form s

ε,a,δ−−−−→ t, with δ = en · · · e1 (n ≥ 1), by
adding new states s2, . . . , sn and replacing the transition s

ε,a,δ−−−−→ t by the
sequence of transitions

s
ε,a,e1−−−−→ s2

e1,τ,e2e1−−−−−−→ · · · en−2,τ,en−1en−2···e1−−−−−−−−−−−−−−→ sn
en−1,τ,enen−1···e1−−−−−−−−−−−−−→ t .

16 J.C.M. Baeten et al.

3. Eliminate a transition of the form s
d,a,δ−−−−→ t, with δ = en · · · e1 (n ≥ 0),

by adding new states s1, . . . , sn and replacing the transition s
d,a,δ−−−−→ t by

transitions s
d,a,ε−−−−→ s1, s1

ε,τ,e1−−−−→ s2 and s1
f,τ,e1f−−−−−→ s2 for all f ∈ D′, and

the sequence of transitions

s2
e1,τ,e2e1−−−−−−→ · · · en−2,τ,en−1en−2···e1−−−−−−−−−−−−−−→ sn

en−1,τ,enen−1···e1−−−−−−−−−−−−−→ t .

Branching degree. In [14] the structure of the labeled transition systems as-
sociated with pushdown automata was intensively studied (without termina-
tion conditions). In particular, they show these labeled transition systems have
bounded branching. However, the pushdown processes that are generated mod-
ulo branching bisimulation may still exhibit infinite branching. See for example
the pushdown automaton in Figure 9 that generates the pushdown process of
Figure 6.

ε, τ, 1
1, τ, 11

1, τ, ε

1, a, ε

1, a, ε

Fig. 9. Pushdown automaton that generates an infinitely branching pushdown process

Nevertheless, we conjecture that whenever a pushdown process has finite
branching, it has bounded branching. More precisely:

Conjecture 1. In every pushdown process there is a bound on the branching
degree of those states that have finite branching.

Termination conditions. Recall that from a language-theoretic point of view the
different approaches to termination of pushdown automata (FS, ES, FSES) are
all equivalent, but not from a process-theoretic point of view. First, we argue
that the ES and FSES interpretations lead to the same notion of pushdown
process.

Theorem 2. A process is a pushdown process according to the ES interpretation
if, and only if, it is a pushdown process according to the FSES interpretation.

Proof. On the one hand, to see that a pushdown process according to the ES
interpretation is also a pushdown process according to the FSES interpretation,
let L be the labeled transition system associated with a pushdown automaton M
under the ES interpretation, and let M ′ be the pushdown automaton obtained
from M by declaring all states to be final. Then L is the labeled transition system
associated with M ′ under the FSES interpretation.

On the other hand, to see that a pushdown process according to the FSES
interpretation is also a pushdown process according to the ES interpretation,

A Process-Theoretic Look at Automata 17

let M = (S,A′,D′,→, ↑, ↓) be an arbitrary pushdown automaton. We shall
modify M such that the labeled transition system associated with the modified
pushdown automaton under the ES interpretation is branching bisimilar to the
labeled transition system associated with M under the FSES interpretation. We
define the modified pushdown automaton M ′ = (S′,A′,D′ � {∅},→′, ↑′, ∅) as
follows:

1. S′ is obtained from S by adding a fresh initial state ↑′, and also a fresh state
s↓ for every final state s ∈ ↓;

2. →′ is obtained from → by
(a) adding a transition (↑′, ε, τ, ∅, ↑) (the datum ∅, which is assumed not to

occur in M, is used to mark the end of the stack),
(b) replacing all transitions (s, ε, a, δ, t) ∈ → by (s, ∅, a, δ∅, t) ∈ →′, and
(c) adding transitions (s, ∅, τ, ε, s↓) and (s↓, ε, τ, ∅, s) for every s ∈ ↓.

We leave it to the reader to verify that the relation

R = {((s, δ), (s, δ∅)) | s ∈ S & δ ∈ D′∗} ∪
{((↑, ε), (↑′, ε))} ∪ {((s, ε), (s↓, ε)) | s ∈ ↓}

is a branching bisimulation from the labeled transition associated with M under
the ES interpretation to M ′ under the FSES interpretation. ��

If we apply this modification on the pushdown automaton in Figure 7, then we
get the result shown in Figure 10 where the states ↑, s↓, t↓ are added and five
transitions, ↑ ε,τ,∅−−−−→ s to put the end-of-stack marker on the stack, s

∅,τ,ε−−−−→ s↓

and t
∅,τ,ε−−−−→ t↓ to remove this marker when in the FSES case termination could

occur, and s↓ ε,τ,∅−−−−→ s and t↓ ε,τ,∅−−−−→ t to put the end-of-stack marker back.
We proceed to argue that a pushdown process according to the ES interpreta-

tion is also a pushdown process according to the FS interpretation, but not vice
versa. The classical proof (see, e.g., [11]) that a pushdown language according
to the “acceptance by final state” approach is also a pushdown language accord-
ing to the “acceptance by empty stack” approach coincide employs τ -transitions
in a way that is valid modulo language equivalence, but not modulo branching
bisimilarity. For instance, the construction that modifies a pushdown automaton

↑ s t

s↓ t↓

∅, a, 1∅

1, a, 11

ε, τ, ∅ 1, b, ε

1, b, ε

∅, τ, ε ∅, τ, ε

ε, τ, ∅ ε, τ, ∅

Fig. 10. Example pushdown automaton accepting on empty stack

18 J.C.M. Baeten et al.

M into another pushdown automaton M ′ such that the language accepted by M
by final state is accepted by M ′ by empty stack adds τ -transitions from every
final state of M to a fresh state in M ′ in which the stack is emptied. The τ -
transition introduces, in M ′, a choice between the original outgoing transitions
of the final state in M and termination by going to the fresh state; this choice
was not necessarily present in M, and therefore the labeled transition systems
associated with M and M ′ may not be branching bisimilar.

Theorem 3. A process is a pushdown process according to the ES interpretation
only if it is a pushdown process according to the FS interpretation, but not vice
versa.

Proof. On the one hand, to see that a pushdown process according to the ES
interpretation is also a pushdown process according to the FS interpretation, let
M = (S,A′,D′,→, ↑, ↓) an arbitrary pushdown automaton. We shall modify M
such that the labeled transition system associated with the modified pushdown
automaton under the ES interpretation is branching bisimilar to the labeled
transition system associated with M under the FS interpretation. We define the
modified pushdown automaton M ′ = (S′,A′,D′ � {∅},→′, ↑′, ↓′) as follows:

1. S′ is obtained from S by adding a fresh initial state ↑′, and also a fresh state
s↓ for every state s ∈ S;

2. ↓′ is the set {s↓ | s ∈ S} of all these newly added states;
3. →′ is obtained from → by

(a) adding a transition (↑′, ε, τ, ∅, ↑) (the datum ∅, which is assumed not to
occur in M, is used to mark the end of the stack),

(b) replacing all transitions (s, ε, a, δ, t) ∈ → by (s, ∅, a, δ∅, t) ∈ →′, and
(c) adding transitions (s, ∅, τ, ε, s↓) and (s↓, ε, τ, ∅, s) for every s ∈ S.

We leave it to the reader to verify that the relation

R = {((s, δ), (s, δ∅)) | s ∈ S & δ ∈ D′∗} ∪
{((↑, ε), (↑′, ε))} ∪ {((s, ε), (s↓, ε)) | s ∈ S}

is a branching bisimulation from the labeled transition associated with M under
the ES interpretation to M ′ under the FS interpretation.

On the other hand, there exist pushdown processes according to the FS in-
terpretation for which there is no equivalent pushdown process according to the
ES interpretation. An example is the pushdown automaton shown in Figure 11.

The labeled transition system associated with it according to the FS interpre-
tation is depicted in Figure 12; it has infinitely many terminating configurations.
Moreover, no pair of these configurations is branching bisimilar, which can be
seen by noting that the nth state from the left can perform at most n− 1 times
a b-transition before it has to perform an a-transition again.

In contrast with this, note that the labeled transition system associated with
any pushdown automaton according to the ES interpretation necessarily has
finitely many terminating configurations, for the pushdown automaton has only
finitely many states and the stack is required to be empty. ��

A Process-Theoretic Look at Automata 19

1, b, ε

ε, a, 1
1, a, 11

Fig. 11. The counter pushdown automaton

a a a

bbb

a

b

Fig. 12. Labeled transition system associated with automaton of Figure 11 according
to the FS interpretation

a a a

bbb

a

b

Fig. 13. Labeled transition system associated with automaton of Figure 11 according
to the FSES (or ES) interpretation

Context-free specifications. We shall now consider the process-theoretic version
of the standard result in the theory of automata and formal languages that the set
of pushdown languages coincides with the set of languages generated by context-
free grammars. As the process-theoretic counterparts of context-free grammars
we shall consider recursive specifications in the subtheory TSPτ of TCPτ , which
is obtained from BSPτ by adding sequential composition · . So a TSPτ recursive
specification over a finite subset N ′ of N is a recursive specification over N ′ in
which only the constructions 0, 1, N (N ∈ N ′), a. (a ∈ Aτ), · and + occur.

TSPτ recursive specifications can be used to specify pushdown processes. To
give an example, the process expression X defined in the TSPτ recursive speci-
fication

X
def= 1 + a.X · b.1

specifies the labeled transition system in Figure 13, which is associated with the
pushdown automaton in Figure 11 under the FSES interpretation.

Next, we will show by contradiction that the FS interpretation of this push-
down automaton (see Figure 12) cannot be given by a TSPτ recursive specifi-
cation. Recall that under this interpretation, there are infinitely many distinct
states in this pushdown process and all these states are terminating. This im-
plies that all variables in a possible TSPτ recursive specification for this pro-
cess would have a 1-summand to ensure termination in all states. On the other
hand, we discuss further on in this paper that any state of a TSPτ recursive

20 J.C.M. Baeten et al.

specification can be represented by a sequential composition of variables using
the Greibach normal form. Each variable in this normal form must be terminat-
ing, since all states are terminating, and each variable can do a bounded number
of b-transitions without performing a-transitions in between. To get sequences of
b-transitions of arbitrary length, variables are sequentially composed. However,
since all variables are also terminating this would result in the possibility to skip
parts of the intended sequence of b-transitions and hence lead to branching. This
branching is not present in the process in Figure 12, hence this process cannot be
represented by a TSPτ recursive specification. Since this impossibility already
occurs for a very simple example such as a counter, we restrict ourselves to only
use the FSES interpretation in the remainder of this paper.

That the notion of TSPτ recursive specification still naturally corresponds
with with the notion of context-free grammar is confirmed by the following
theorem.

Theorem 4. For every pushdown automaton M there exists a TSPτ recursive
specification E and process expression p such that T (M) and TE(p) are language
equivalent, and, vice versa, for every recursive specification E and process ex-
pression p there exists a pushdown automaton M such that T (M) and TE(p) are
language equivalent.

We shall see below that a similar result with language equivalence replaced by
branching bisimilarity does not hold. In fact, we shall see that there are pushdown
processes that are not recursively definable in TSPτ , and that there are also
TSPτ recursive specifications that define non-pushdown processes can be defined.
We shall present a restriction on pushdown automata and a restriction on TSPτ

recursive specifications that enable us to retrieve the desired equivalence: we shall
prove that the set of so-called popchoice-free pushdown processes corresponds
with the set of processes definable by a transparency-restricted TSPτ recursive
specification. We have not yet been able to establish that our result is optimal in
the sense that a pushdown process is definable by a recursive TSPτ specification
only if it is popchoice-free, although we conjecture that this is the case.

Consider the pushdown automaton in Figure 14, which generates the tran-
sition system shown in Figure 15. In [13], Moller proved that this transition
system cannot be defined with a BPA recursive specification, where BPA is the
subtheory of TSPτ obtained by omitting the τ -prefix and the constant 0 and by
disallowing 1 to occur as a summand in a nontrivial alternative composition. His
proof can be modified to show that the transition system is not definable with

ε, c, ε
1, c, 1

1, b, ε 1, b, ε

ε, a, 1
1, a, 11

Fig. 14. Pushdown automaton that is not popchoice-free

A Process-Theoretic Look at Automata 21

c c c c

bbb b

a a a

bbb

a

b

Fig. 15. Transition system of automaton of Figure 14

a TSPτ recursive specification either. We conclude that not every pushdown
process is definable with a TSPτ recursive specification.

Note that a push of a 1 onto the stack in the initial state of the pushdown
automaton in Figure 14 can (on the way to termination) be popped again in the
initial state or in the final state: the choice of where the pop will take place cannot
be made at the time of the push. In other words, in the pushdown automaton
in Figure 14 pop transitions may induce a choice in the associated transition
system; we refer to such choice through a pop transition as a popchoice. We
shall prove below that by disallowing popchoice we define a class of pushdown
processes that are definable with a TSPτ recursive specification.

Definition 12. Let M be a pushdown automaton that uses only push and pop
transitions. A d-pop transition is a transition s

d,a,ε−−−−→ t, which pops a datum
d. We say M is popchoice-free iff whenever there are two d-pop transitions
s

d,a,ε−−−−→ t and s′ d,b,ε−−−−→ t′, then t = t′. A pushdown process is popchoice-free if
it contains a labeled transition system associated with a popchoice-free pushdown
automaton.

The definition of a pushdown automaton uses a stack as memory. The stack
itself can be modeled as a pushdown process, in fact (as we will see shortly) it
is the prototypical pushdown process. Given a finite set of data D′, the stack
has an input channel i over which it can receive elements of D′ and an output
channel o over which it can send elements of D′. The stack process is given by
a pushdown automaton with one state ↑ (which is both initial and final) and
transitions ↑ ε,i?d,d−−−−−→ ↑, ↑ e,i?d,de−−−−−−→ ↑, and ↑ d,o!d,ε−−−−−→ ↑ for all d, e ∈ D′. As this
pushdown automaton has only one state, it is popchoice-free. The transition
system of the stack in case D′ = {0, 1} is presented in Figure 16. The following
recursive specification defines a stack:

S
def= 1 +

∑

d∈D′
i?d.S · o!d.S ; (1)

we refer to this specification of a stack over D′ as ES .
The stack process can be used to make the interaction between control and

memory in a pushdown automaton explicit [4]. This is illustrated by the follow-
ing theorem, stating that every pushdown process is equal to a regular process
interacting with a stack.

22 J.C.M. Baeten et al.

i?0

o!0 i?1

o!1

i?0

o!0 i?1

o!1 i?0

o!0 i?1

o!1

Fig. 16. Stack over D′ = {0, 1}

Theorem 5. For every pushdown automaton M there exists a BSPτ process
expression p and a BSPτ recursive specification E, and for every BSPτ process
expression p and BSPτ recursive specification there exists a pushdown automaton
M such that

T (M) ↔b TE∪ES(τi,o(∂i,o(p ‖ S))) .

Proof. Let M = (S,A′,D′,→, ↑, ↓) be a pushdown automaton; we define the
BSPτ recursive specification E as follows:

– For each s ∈ S and d ∈ D′ � {∅} it has a variable Vs,d (where ∅ is a special
symbol added to D′ to denote that the stack is empty).

– For each pop transition t
d,a,ε−−−−→ t the right-hand side of the defining equation

for Vs,d has a summand a.
∑

e∈D′∪{∅} o?e.Vt,e .

– For each push transition s
d,a,ed−−−−−→ t the right-hand side of the defining equa-

tion for Vs,d has a summand a.i!d.Vt,e , and for each push transition s
ε,a,e−−−−→ t

the right-hand side of the defining equation for Vs,∅ has a summand a.i!∅.Vt,e .
– For each s ∈ S such that s↓ the right-hand side of the defining equation for

Vs,∅ has a 1-summand.

We present some observations from which it is fairly straightforward to estab-
lish that T (M) ↔b TE∪ES (τi,o(∂i,o(V↑,∅ ‖ S))). In our proof we abbreviate the
process expression S · i!dn.S · · · i!d1.S by Sdn···d1 , with, in particular, Sε = S.

First, note that whenever T (M) has a transition (s, d) a−−→ (t, ε), then

∂i,o(Vs,d ‖ S∅)
a−−→ ∂i,o((

∑

e∈D′
{∅}
o!e.Vt,e) ‖ S∅)

o!?∅−−−→ ∂i,o(Vt,∅ ‖ S) .

The abstraction operator τi,o() will rename the transition labeled o!?∅ into a
τ -transition. This τ -transition is inert in the sense that it does not preclude

A Process-Theoretic Look at Automata 23

any observable behavior that was possible before the τ -transition. It is well-
known that such inert τ -transitions can be omitted while preserving branching
bisimilarity.

Second, note that whenever T (M) has a transition (s, dζ) a−−→ (t, ζ) with ζ
nonempty, say ζ = eζ′, then

∂i,o(Vs,d ‖ Sζ)
a−−→ o!?e−−−→∂i,o(Vt,e ‖ Sζ′) ,

and, since the second transition is the only step possible after the first a-
transition, the τ -transition resulting from applying τi,o() is again inert.

Third, note that whenever T (M) has a transition (s, dζ) a−−→ (t, edζ), then

∂i,o(Vs,d ‖ Sζ)
a−−→ i!?d−−→∂i,o(Vt,e ‖ Sdζ) ,

and again the τ -transition resulting from applying τi,o() is inert.
Finally, note that whenever T (M) has a transition (s, ε) a−−→ (t, e), then

∂i,o(Vs,∅ ‖ S) a−−→ i!?∅−−→∂i,o(Vt,e ‖ S∅) .

Conversely, let E be a BSPτ recursive specification, let p be a BSPτ process
expression, and let M = (S,A′,→, ↑, ↓) be the associated labeled transition
system. We define a pushdown automaton M as follows:

– The set of states, the action alphabet, and the initial and final states are the
same as those of the finite automaton.

– The data alphabet is the set of data D′ of the presupposed recursive speci-
fication of a stack.

– Whenever s a−−→ t in M, and a �= i!d, o?d (d ∈ D′), then s
d,a,d−−−−→ t;

– Whenever s
i!d−−→ t in M, then s

ε,τ,d−−−−→ t and s
e,τ,de−−−−→ t for all e ∈ D′.

– Whenever s
o?d−−−→ t in M, then s

d,τ,ε−−−−→ t.

We omit the proof that every transition of TE∪ES (τi,o(∂i,o(V↑,∅ ‖ S))) can be
matched by a transition in T (M) in the sense required by the definition of
branching bisimilarity. ��

In process theory it is standard practice to restrict attention to guarded recur-
sive specifications. Roughly, a TSPτ recursive specification is guarded if every
occurrence of a name occurs in the argument of an action prefix a. (a ∈ A).
For a precise definition of guardedness we refer to [1].

Every guarded recursive specification over TSPτ can be brought into restricted
Greibach normal form, that is, satisfying the requirement that every right-hand
side of an equation only has summands that are 1 or of the form a.ξ, where
a ∈ Aτ and ξ = 1, or ξ is a name, or ξ is a sequential composition of two names.
A convenient property of recursive specification in restricted Greibach normal
form is that every reachable state in the labeled transition system associated
with a name N in such a recursive specification will be denoted by a (general-
ized) sequential composition of names (see, e.g., the labeled transition system in
Figure 17).

24 J.C.M. Baeten et al.

Let p be a TSPτ process expression in the context of a guarded recursive
specification E. Then the associated labeled transition system TE(p) has finite
branching (see, e.g., [1] for a proof). It follows that, e.g., the labeled transi-
tion system in Figure 6 is not definable by a guarded recursive specification in
restricted Greibach normal form. It is possible with the following unguarded
specification:

X
def= 1 + X · a.1 . (2)

This should be contrasted with a standard result in the theory of automata
and formal languages that, after translation to our process-theoretic setting,
states that even if E is not guarded, then still there exists a guarded recursive
specification E′ in Greibach normal such that TE(p) and TE′(p) are language
equivalent.

In this paper we choose to follow the standard practice of using guarded
recursive specifications, even though this means that we cannot find a complete
correspondence with respect to infinite branching pushdown processes. We leave
the generalization of our results to an unguarded setting as future work.

Still, restricting to guarded recursive specifications in restricted Greibach
normal form is not sufficient to get the desired correspondence between pro-
cesses definable by TSPτ recursive specifications and processes definable as a
popchoice-free pushdown automaton. Consider the following guarded recursive
specification, which is in restricted Greibach normal form:

X
def= a.X · Y + b.1 ,

Y
def= 1 + c.1 .

The labeled transition system associated with X , which is depicted in Figure 17,
has unbounded branching. So, according to our conjecture, cannot be a push-
down process.

Note that the unbounded branching is due to the 1-summand in the defining
equation for Y by which Y n c−−→ Y m for all m < n. A name N in a recursive

X X · Y X · Y 2 X · Y 3

1 Y Y 2 Y 3

a a a

b b b b

ccc

c c

c

a

c

Fig. 17. Process with unbounded branching

A Process-Theoretic Look at Automata 25

specification is called transparent if its defining equation has a 1-summand; oth-
erwise it is called opaque. To exclude recursive specifications generating labeled
transition systems with unbounded branching, we will require that transparent
names may only occur as the last element of reachable sequential compositions
of names.

Definition 13 (Transparency restricted). Let E be a recursive specifica-
tion over TSPτ in restricted Greibach normal form. We call such a specification
transparency-restricted if for all (generalized) sequential compositions of names
ξ reachable from a name in E it holds that all but the last name in ξ is opaque.

As an example, note that the specification of the stack over D′ defined in (1)
above is not transparency restricted, because it is not in Greibach normal form.
But the same process can be defined with a transparency-restricted recursive
specification: it suffices to add, for all d ∈ D′, a name Td to replace S · o!d.1.
Thus we obtain the following transparency-restricted specification of the stack
over D′:

S
def= 1 +

∑

d∈D′
i?d.Td · S ,

Td
def= o!d.1 +

∑

e∈D′
i?e.Te · Td .

It can easily be seen that the labeled transition system associated with a name
in a transparency-restricted specification has bounded branching: the branching
degree of a state denoted by a reachable sequential composition of names is equal
to the branching degree of its first name, and the branching degree of a name
is bounded by the number of summands of the right-hand side of its defining
equation. Since 1-summands can be eliminated modulo language equivalence
(according to the procedure for eliminating λ- or ε-productions from context-free
grammars), there exists, for every TSPτ recursive specification E a transparency-
restricted specification E′ such that TE(p) and TE′(p) are language equivalent
(with p an arbitrary process expression in the context of E).

For investigations under what circumstances we can extend the set of push-
down processes to incorporate processes with unbounded branching, see [4]. In
this paper a (partially) forgetful stack is used to deal with transparent variables
on the stack. However, if we allow for τ -transitions in the recursive specifications,
we can use the stack as is presented above. Note also that the paper does not
require the recursive specifications to be transparency-restricted, but this comes
at the cost of using a weaker equivalence (namely contrasimulation [9] instead
of branching bisimulation) in some cases.

We are now in a position to establish a process-theoretic counterpart of the
correspondence between pushdown automata and context-free grammars.

Theorem 6. A process is a popchoice-free pushdown process if, and only if, it
is definable by a transparency-restricted recursive specification.

26 J.C.M. Baeten et al.

Proof. For the implication from right to left, let E be a transparency-restricted
recursive specification, and let I be a name in E. We define a pushdown automa-
ton M = (S,A′,D′,→, ↑, ↓) as follows:

1. The set S consists of the names occurring in E, the symbol 1, an extra initial
state ↑, and an extra intermediate state t.

2. The set A′ consists of all the actions occurring in E.
3. The set D′ consists of the names occurring in E and the symbol 1.
4. The transition relation → is defined as follows:

(a) there is a transition ↑ ε,τ,1−−−−→ I;
(b) if the right-hand side of the defining equation for a name N has a sum-

mand a.1, then → has transitions N
1,a,ε−−−−→ 1 and N

N ′,a,ε−−−−−→ N ′,
(c) if the right-hand side of the defining equation for a name N has a sum-

mand a.N ′, then there are transitions N
d,a,N ′d−−−−−−→ t and t

N ′,τ,ε−−−−−→ N ′

(d ∈ D′), and
(d) if the right-hand side of the defining equation for a name N has a sum-

mand a.N ′ · N ′′, then there are transitions N
d,a,N ′′d−−−−−−→ N ′ (d ∈ D′).

5. The set of final states ↓ consists of 1 and all variables with a 1-summand.

We leave it to the reader to check that TE(I) ↔b T (M). Using the procedure
described earlier in this section, the set of transitions can be limited to include
push and pop transitions only. The pushdown automaton resulting from the
procedure is popchoice-free, for an N -pop transition leads to state N .

The proof of the implication from left to right is an adaptation of the classical
proof that associates a context-free grammar with a given pushdown automaton.
Let M = (S,A′,D′,→, ↑, ↓) be a popchoice-free pushdown automaton. We define
a transparency-restricted specification E with for every state s ∈ S a name Nsε

and for every state s a name Nsdt if M has transitions that pop datum d leading
to the state t. The defining equations in E for these names satisfy the following:

1. The right-hand side of the defining equation for Nsε has
(a) a summand 1 if, and only if, s↓, and
(b) a summand a.Ntdw · Nwε whenever s

ε,a,d−−−−→ t and all d-pop transitions
lead to w.

2. Nsε
def= 0 if Nsε has no other summands.

3. The right-hand side of the defining equation for Nsdt has
(a) a summand a.1 if, and only if, s

d,a,ε−−−−→ t, and
(b) a summand a.Nuew ·Nwdt whenever s

d,a,ed−−−−−→u and all e-pop transitions
lead to state w.

4. Nsdt
def= 0 if Nsdt has no other summands.

It is easy to see that the resulting specification is transparency-restricted, and
that TE(N↑ε) ↔b T (M). ��

Consider the pushdown automaton shown in Figure 7. It is easy to see that this
pushdown automaton is popchoice-free, since both 1-pop transitions lead to the

A Process-Theoretic Look at Automata 27

same state t. Using the method described in the proof of Theorem 6 we can now
give the following recursive specification over TSPτ :

Nsε
def= 1 + a.Ns1t · Ntε ,

Ntε
def= 1 ,

Ns1t
def= b.1 + a.Ns1t · Nt1t ,

Nt1t
def= b.1 .

We can reduce this specification by removing occurrences of Ntε (for the right-
hand side of the defining equation of this name is just 1) and substituting oc-
currences of Nt1t by b.1. We get

Nsε
def= 1 + a.Ns1t ,

Ns1t
def= b.1 + a.Ns1t · b.1 .

Now, we see that Ns1t = (1+a.Ns1t) · b.1 = Nsε · b.1 and therefore we have that
Nsε

def= 1 + a.Nsε · b.1 which is equal to the specification we gave before.
Thus, we have established a correspondence between a popchoice-free push-

down processes on the one hand, and transparency-restricted recursive speci-
fication over TSPτ on the other hand, thereby casting the classical result of
the equivalence of pushdown automata and context-free grammars in terms of
processes and bisimulation.

5 Computable Processes

We proceed to give a definition of a Turing machine that we can use to generate a
transition system. The classical definition of a Turing machine uses the memory
tape to hold the input string at start up. We cannot use this simplifying trick, as
we do not want to fix the input string beforehand, but want to be able to input
symbols one symbol at a time. Therefore, we make an adaptation of a so-called
off-line Turing machine, which starts out with an empty memory tape, and can
take an input symbol one at a time. Another important consideration is that we
allow termination only when the tape is empty again and we are in a final state:
this is like the situation we had for the pushdown automaton.

Definition 14 (Turing machine). A Turing machine M is defined as a six-
tuple (S,A′,D′,→, ↑, ↓) where:

1. S is a finite set of states,
2. A′ is a finite subset of A,
3. D′ is a finite subset of D,

28 J.C.M. Baeten et al.

4. → ⊆ S × (D′ ∪ {ε})× (A′ ∪ {τ})× (D′ ∪ {ε})× {L, R}× S is a finite set of
transitions or steps,

5. ↑ ∈ S is the initial state,
6. ↓ ⊆ S is the set of final states.

If (s, d, a, e, M, t) ∈ →, we write s
d,a,e,M−−−−−−→ t, and this means that the machine,

when it is in state s and reading symbol d on the tape, will execute input action
a, change the symbol on the tape to e, will move one step left if M = L and right
if M = R and thereby move to state t. It is also possible that d and/or e is ε: if
d is ε, we are looking at an empty part of the tape, but, if the tape is nonempty,
then there is a symbol immediately to the right or to the left; if e is ε, then a
symbol will be erased, but this can only happen at an end of the memory string.
The exact definitions are given below.

At the start of a Turing machine computation, we will assume the Turing
machine is in the initial state, and that the memory tape is empty (denoted
by �).

By looking at all possible executions, we can define the transition system of
a Turing machine. Also Caucal [6] defines the transition system of a Turing
machine in this way, but he considers transition systems modulo isomorphism,
and leaves out all internal τ -moves.

Definition 15. Let M = (S,A′,D′,→, ↑, ↓) be a Turing machine. The labeled
transition system of M is defined as follows:

1. The set of states is {(s, �̄) | s ∈ S} ∪ {(s, �δ�) | s ∈ S, δ ∈ D′∗ − {ε}},
where in the second component there is an overbar on one of the elements
of the string �δ� denoting the contents of the memory tape and the present
location. The box indicates a blank portion of the tape.

2. A symbol can be replaced by another symbol if the present location is not a
blank. Moving right, there are two cases: there is another symbol to the right
or there is a blank to the right.

– (s, �δd̄�) a−−→ (t, �δe�̄) iff s
d,a,e,R−−−−−→ t (d, e ∈ D′, δ ∈ D′∗),

– (s, �δd̄fζ�) a−−→ (t, �δef̄ζ�) iff s
d,a,e,R−−−−−→ t, for all d, e ∈ D′, δ, ζ ∈ D′∗.

Similarly, there are two cases for a move left.

– (s, �d̄δ�) a−−→ (t, �̄eδ�) iff s
d,a,e,L−−−−−→ t (d, e ∈ D′, δ ∈ D′∗),

– (s, �δf d̄ζ�) a−−→ (t, �δf̄eζ�) iff s
d,a,e,L−−−−−→ t, for all d, e ∈ D′, δ, ζ ∈ D′∗.

3. To erase a symbol, it must be at the end of the string. For a move right,
there are three cases.

– (s, �d̄�) a−−→ (t, �̄) iff s
d,a,ε,R−−−−−→ t (d ∈ D′),

– (s, �δd̄�) a−−→ (t, �δ�̄) iff s
d,a,ε,R−−−−−→ t (d ∈ D′, δ ∈ D′∗ − {ε}),

– (s, �d̄fδ�) a−−→ (t, �f̄ δ�) iff s
d,a,ε,R−−−−−→ t (d ∈ D′, δ ∈ D′∗).

A Process-Theoretic Look at Automata 29

Similarly for a move left.
– (s, �d̄�) a−−→ (t, �̄) iff s

d,a,ε,L−−−−−→ t (d ∈ D′),
– (s, �d̄δ�) a−−→ (t, �̄δ�) iff s

d,a,ε,L−−−−−→ t (d ∈ D′, δ ∈ D′∗ − {ε}),
– (s, �δf d̄�) a−−→ (t, �δf̄�) iff s

d,a,ε,L−−−−−→ t (d ∈ D′, δ ∈ D′∗).
4. To insert a new symbol, we must be looking at a blank. We can only move

right, if we are to the left of a (possible) data string. This means there are
two cases for a move right.
– (s, �̄) a−−→ (t, �d�̄) iff s

ε,a,d,R−−−−−→ t (d ∈ D′),
– (s, �̄fδ�) a−−→ (t, �df̄δ�) iff s

ε,a,d,R−−−−−→ t (d ∈ D′, δ ∈ D′∗).
Similarly for a move left.
– (s, �̄) a−−→ (t, �̄d�) iff s

ε,a,d,L−−−−−→ t (d ∈ D′),
– (s, �δf�̄) a−−→ (t, �δf̄�) iff s

ε,a,d,L−−−−−→ t (d ∈ D′, δ ∈ D′∗).
5. Finally, looking at a blank, we can keep it a blank. Two cases for a move

right.
– (s, �̄) a−−→ (t, �̄) iff s

ε,a,ε,R−−−−−→ t,
– (s, �̄fδ�) a−−→ (t, �f̄δ�) iff s

ε,a,ε,R−−−−−→ t (d ∈ D′, δ ∈ D′∗).
Similarly for a move left.
– (s, �̄) a−−→ (t, �̄) iff s

ε,a,ε,L−−−−−→ t,
– (s, �δf�̄) a−−→ (t, �δf̄�) iff s

ε,a,ε,L−−−−−→ t (d ∈ D′, δ ∈ D′∗).
6. The initial state is (↑, �̄);
7. (s, �̄) ↓ iff s ↓.

Now we define a computable process as the branching bisimulation equivalence
class of a transition system of a Turing machine.

In order to make the internal communications of a Turing machine explicit, we
need now two stacks, one on the left containing the contents of the memory tape
to the left of the current symbol and one on the right containing the contents of
the memory tape to the right of the current symbol:

Sl def= 1 +
∑

d∈D
li?d.Sl · lo!d.Sl ,

Sr def= 1 +
∑

d∈D
ri?d.Sr · ro!d.Sr .

Then, we get the following characterization of computable processes.

Theorem 7. If process p is a computable process, then there is a regular process
q with

p ↔b τli,lo,ri,ro(∂li,lo,ri,ro(q ‖ Sl ‖ Sr)) .

Proof. Suppose there is a Turing machine M = (S,A′,D′,→, ↑, ↓) generating a
transition system that is branching bisimilar to p. We proceed to define a BSP
specification for the regular process q. This specification has variables Vs,d for

30 J.C.M. Baeten et al.

s ∈ S and d ∈ D′ ∪ {∅}. Moreover, there are variables Ws,∅ denoting that the
tape is empty on both sides.

1. The initial variable is W↑,∅;
2. Whenever s

d,a,e,r−−−−−→ t (d, e ∈ D′), variable Vs,d has a summand

a.li!e.
∑

f∈D′∪{∅}
ro?f.Vt,f

3. Whenever s
d,a,e,L−−−−−→ t (d, e ∈ D′), variable Vs,d has a summand

a.ri!e.
∑

f∈D′∪{∅}
lo?f.Vt,f

4. Whenever s
d,a,ε,R−−−−−→ t (d ∈ D′), variable Vs,d has a summand

a.(ro?∅.(lo?∅.Wt,∅ +
∑

f∈D′
lo?f.li!f.ri!∅.Vt,∅) +

∑

f∈D′
ro?f.Vt,f)

5. Whenever s
d,a,ε,L−−−−−→ t (d ∈ D′), variable Vs,d has a summand

a.(lo?∅.(ro?∅.Wt,∅ +
∑

f∈D′
ro?f.ri!f.li!∅.Vt,∅) +

∑

f∈D′
lo?f.Vt,f)

6. Whenever s
ε,a,d,R−−−−−→ t, variable Vs,∅ has a summand

a.li!d.(ro?∅.ri!∅.Vt,∅ +
∑

f∈D′
ro?f.Vt,f)

and variable Ws,∅ has a summand a.li!∅.li!d.ri!∅.Vt,∅;
7. Whenever s

ε,a,d,L−−−−−→ t, variable Vs,∅ has a summand

a.ri!d.(lo?∅.li!∅.Vt,∅ +
∑

f∈D′
lo?f.Vt,f)

and variable Ws,∅ has a summand a.ri!∅.ri!d.li!∅.Vt,∅;
8. Whenever s

ε,a,ε,R−−−−−→ t, variable Vs,∅ has a summand

a.(ro?∅.ri!∅.Vt,∅ +
∑

f∈D′
ro?f.Vt,f)

and variable Ws,∅ has a summand a.Wt,∅;
9. Whenever s

ε,a,ε,L−−−−−→ t, variable Vs,∅ has a summand

a.(lo?∅.li!∅.Vt,∅ +
∑

f∈D′
lo?f.Vt,f)

and variable Ws,∅ has a summand a.Wt,∅;

A Process-Theoretic Look at Automata 31

10. Whenever s ↓, then variable Ws,∅ has a summand 1.

As before, it can checked that this definition of q satisfies the theorem. ��

The converse of this theorem does not hold in full generality, as a regular process
can communicate with a pair a stacks in ways that cannot be mimicked by a tape.
For instance, by means of the stacks, an extra cell on the tape can be inserted or
removed. We can obtain a converse of this theorem, nonetheless, if we interpose,
between the regular process and the two stacks, an additional regular process
Tape, that can only perform actions that relate to tape manipulation, viz.

1. o!d (d ∈ D′), the current symbol can be read;
2. o!ε, we are looking at a blank cell at the end of the string;
3. i?e (e ∈ D′), the current symbol can be replaced;
4. i?ε, the current symbol can be erased if we are at an end of the string;
5. i?L, a move one cell to the left, executed by pushing the current symbol on

top of the right-hand stack and popping the left-hand stack;
6. i?R, a move one cell to the right, executed by pushing the current symbol

on top of the left-hand stack and popping the right-hand stack.

Thus, we have given a characterization of what is a computable process.
In [2], a computable process was defined in a different way. Starting from

a classical Turing machine, the internal communication is made explicit just
like we did, by a regular process communicating with two stacks. This shows
that a computable function can be described in this way. Next, a computable
transition system is coded by means of a computable branching degree function
and a computable outgoing edge labeling function. Next, this is again mimicked
by a couple of regular processes communicating with a stack. Using this, a similar
characterization of computable processes can be reached.

Theorem 8. A process is computable in the sense of [2] iff it is computable as
defined here.

Proof. Sketch.
If a process is computable in the sense of [2] then we can find a regular

process communicating with two stacks such that their parallel composition,
after abstraction, is branching bisimilar to it. Moreover, the two stacks together
can behave as a tape. Using the theorem above, this means that the process is
computable in our sense.

For the other direction, if a process is computable in our sense, then there
is a Turing machine for it as defined above. From this Turing machine, we can
compute in each state the branching degree and the labels of the outgoing edges.
Thus, these functions are computable, and the process is computable in the sense
of [2]. ��

What remains to be done, is to find a characterization of all recursive specifi-
cations over TCP that, after abstraction, give a computable process. In [2], it
was found that all guarded recursive specifications over the algebra there yielded

32 J.C.M. Baeten et al.

computable processes, but that was in the absence of the constant 1. We already
found, in the previous section, that guardedness is not enough in the presence
of 1, and we needed to require transparency-restrictedness. It remains to find a
way to extend this notion to all of TCP, so including parallel composition.

6 Conclusion

Every undergraduate curriculum in computer science contains a course on au-
tomata theory and formal languages. On the other hand, an introduction to
concurrency theory is usually not given in the undergraduate program. Both
theories as basic models of computation are part of the foundations of computer
science. Automata theory and formal languages provide a model of computation
where interaction is not taken into account, so a computer is considered as a
stand-alone device executing batch processes. On the other hand, concurrency
theory provides a model of computation where interaction is taken into account.
Concurrency theory is sometimes called the theory of reactive processes.

Both theories can be integrated into one course in the undergraduate curricu-
lum, providing students with the foundation of computing. This paper provides
a glimpse of what happens to the Chomsky hierarchy in a concurrency setting,
taking a labeled transition system as a central notion, and dividing out bisimu-
lation semantics on such transition systems.

References

1. Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra (Equational Theories
of Communicating Processes). Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, Cambridge (2009)

2. Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: On the consistency of Koomen’s fair
abstraction rule. Theoretical Computer Science 51, 129–176 (1987)

3. Baeten, J.C.M., Corradini, F., Grabmayer, C.A.: A characterization of regular
expressions under bisimulation. Journal of the ACM 54(2), 1–28 (2007)

4. Baeten, J.C.M., Cuijpers, P.J.L., van Tilburg, P.J.A.: A context-free process as
a pushdown automaton. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008.
LNCS, vol. 5201, pp. 98–113. Springer, Heidelberg (2008)

5. Basten, T.: Branching bisimilarity is an equivalence indeed!. Information Process-
ing Letters 58(3), 141–147 (1996)

6. Caucal, D.: On the transition graphs of Turing machines. In: Margenstern, M.,
Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 177–189. Springer, Heidelberg
(2001)

7. van Glabbeek, R.J.: The Linear Time – Branching Time Spectrum II. In: Best, E.
(ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)

8. van Glabbeek, R.J.: What is Branching Time Semantics and why to use it?. Bulletin
of the EATCS 53, 190–198 (1994)

9. van Glabbeek, R.J.: The Linear Time – Branching Time Spectrum I. In: Bergstra,
J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 3–99. Else-
vier, Amsterdam (2001)

A Process-Theoretic Look at Automata 33

10. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. Journal of the ACM 43(3), 555–600 (1996)

11. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation. Pearson, London (2006)

12. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

13. Moller, F.: Infinite results. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996.
LNCS, vol. 1119, pp. 195–216. Springer, Heidelberg (1996)

14. Muller, D.E., Schupp, P.E.: The theory of ends, pushdown automata, and second-
order logic. Theoretical Computer Science 37, 51–75 (1985)

15. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60-61, 17–139 (2004)

	A Process-Theoretic Look at Automata
	Introduction
	Process Theory
	Regular Processes
	Pushdown and Context-Free Processes
	Computable Processes
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

