

Lecture Notes in Computer Science 5961
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Farhad Arbab Marjan Sirjani (Eds.)

Fundamentals
of Software Engineering
Third IPM International Conference, FSEN 2009
Kish Island, Iran, April 15-17, 2009
Revised Selected Papers

13

Volume Editors

Farhad Arbab
Center for Mathematics and Computer Science (CWI)
Science Park 123, 1098 XG Amsterdam, The Netherlands
and Leiden University, The Netherlands
E-mail: farhad@cwi.nl

Marjan Sirjani
Reykjavik University, School of Computer Science
Kringlan 1, 103 Reykjavik, Iceland
and University of Tehran, Iran
E-mail: marjan@ru.is

Library of Congress Control Number: 2009942995

CR Subject Classification (1998): D.2, D.2.4, F.4.1, D.2.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-11622-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-11622-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12840984 06/3180 5 4 3 2 1 0

Preface

The present volume contains the proceedings of the Third IPM International
Conference on Fundamentals of Software Engineering (FSEN), Kish, Iran, April
15–17, 2009. FSEN 2009 was organized by the School of Computer Science at
the Institute for Studies in Fundamental Sciences (IPM) in Iran, in cooperation
with the ACM SIGSOFT and IFIP WG 2.2.

This conference brought together around 100 researchers and practitioners
working on different aspects of formal methods in software engineering from 15
different countries. The topics of interest in FSEN span over all aspects of formal
methods, especially those related to advancing the application of formal methods
in software industry and promoting their integration with practical engineering
techniques. The Program Committee of FSEN 2009 consisted of top researchers
from 24 different academic institutes in 11 countries. We received a total of 88
submissions from 25 countries out of which the Program Committee selected
22 as regular papers, 5 as short papers, and 7 as poster presentations in the
conference program. Each submission was reviewed by at least three independent
referees, for its quality, originality, contribution, clarity of presentation, and its
relevance to the conference topics. This volume contains the revised versions of
the regular and short papers presented at FSEN 2009.

Three distinguished keynote speakers delivered their lectures at FSEN 2009
on models of computation: automata and processes (Jos Baeten), verification,
performance analysis and controller synthesis for real-time systems (Kim Larsen),
and theory and tool for component-based model-driven development in rCOS
(Zhiming Liu). Our invited speakers also contributed to this volume by sub-
mitting their keynote papers, which were accepted after they were reviewed by
independent referees.

We thank the Institute for Studies in Fundamental Sciences (IPM), Tehran,
Iran for their financial support and local organization of FSEN 2009. We thank
the members of the Program Committee and the external reviewers for their
time, effort, and contributions to making FSEN a quality conference. We are
grateful for the help of Behnaz Changizi in preparing the pre-proceedings of
FSEN 2009 and this volume. Last but not least, our thanks go to our authors
and conference participants, without whose submissions and participation FSEN
would not have been possible.

November 2009 Farhad Arbab
Marjan Sirjani

Conference Organization

General Chair

Hamid Sarbazi-azad IPM, Iran;
Sharif University of Technology, Iran

Steering Committee

Farhad Arbab CWI, The Netherlands;
Leiden University, The Netherlands

Christel Baier University of Dresden, Germany

Frank de Boer CWI, The Netherlands;
Leiden University, The Netherlands

Ali Movaghar IPM, Iran;
Sharif University of Technology, Iran

Jan Rutten CWI, The Netherlands;
Vrije University Amsterdam, The Netherlands

Hamid Sarbazi-azad IPM, Iran;
Sharif University of Technology, Iran

Marjan Sirjani Reykjavik University, Reykjavik, Iceland;
University of Tehran, Iran;
IPM, Iran

Program Chairs

Farhad Arbab CWI, The Netherlands;
Leiden University, The Netherlands

Marjan Sirjani Reykjavik University, Reykjavik, Iceland;
University of Tehran, Iran;
IPM, Iran

Program Committee

Luca Aceto Reykjavik University, Reykjavik, Iceland
Gul Agha University of Illinois at Urbana - Champaign,

USA
Christel Baier University of Dresden, Germany
Frank de Boer CWI, The Netherlands;

Leiden University, The Netherlands

VIII Conference Organization

Marcello Bonsangue Leiden University, The Netherlands
Mario Bravetti University of Bologna, Italy
Michael Butler University of Southampton, UK
James C. Browne University of Texas at Austin, USA
Dave Clarke CWI, The Netherlands;

K.U. Leuven, Belgium
Nancy Day University of Waterloo, Canada
Wan Fokkink Vrije Universiteit Amsterdam,

The Netherlands
Masahiro Fujita University of Tokyo, Japan
Maurizio Gabbrielli University of Bologna, Italy
Jan Friso Groote Technical University of Eindhoven,

The Netherlands
Einar Broch Johnsen University of Oslo, Norway
Joost Kok Leiden University, The Netherlands
Zhiming Liu United Nations University, Macao, China
Seyyed Hassan Mirian Sharif University of Technology, Iran
Ugo Montanari University of Pisa, Italy
Peter Mosses Swansea University, UK
Mohammad

Reza Mousavi Technical University of Eindhoven,
The Netherlands

Ali Movaghar IPM, Iran;
Sharif University of Technology, Iran

Andrea Omicini University of Bologna, Italy
Jan Rutten CWI, The Netherlands;

Vrije University Amsterdam, The Netherlands
Davide Sangiorgi University of Bologna, Italy
Sandeep Shukla Virginia Tech, USA
Carolyn Talcott SRI International, USA
Zijiang Yang Western Michigan University, USA

Local Organization

Hamidreza Shahrabi IPM, Iran

External Reviewers

Ahuja, Sumit
Amato, Gianluca
Andrei, Oana
Astefanoaei, Lacramioara
Atif, Muhammad
Bacciu, Davide
Bartocci, Ezio

Behjati, Razieh
Birgisson, Arnar
Bistray, Denes
Blechmann, Tobias
Blom, Stefan
Bokor, Peter
Browne, James

Conference Organization IX

Bundgaard, Mikkel
Cacciagrano, Diletta Romana
Callanan, Sean
Carbone, Marco
Chen, Qichang
Chen, Zhenbang
Chessa, Stefano
Chiniforooshan Esfahani, Hesam
Chockler, Hana
Chothia, Tom
Costa, David
Crouzen, Pepijn
Cuijpers, Pieter
De Nicola, Rocco
Di Berardini, Maria Rita
Di Giusto, Cinzia
Dovland, Johan
Edmunds, Andrew
Eker, Steven
Fantechi, Alessandro
Ferreira, Carla
Ferretti, Stefano
Fuentes, Thaizel
Gerrits, Dirk
Ghassemi, Fatemeh
Grabe, Immo
Griesmayer, Andreas
Groesser, Marcus
Gruener, Andreas
Hugues, Jerome
Haghighi, Hassan
Hallerstede, Stefan
Hansen, Henri
Hasegawa, Masahito
Hoenicke, Jochen
Huang, Xiaowan
Izadi, Mohammad
Izadi, Mohammad Javad
Jaeger, Manfred
Jagannath, Vilas
Jaghoori, Mohammad Mahdi
Jahangard, Amir
Jose, Bijoy
Kane, Kevin
Karmani, Rajesh

Kemper, Stephanie
Khosravi, Ramtin
Kim, Minyoung
Kleijn, Jetty
Klein, Joachim
Klint, Paul
Klueppelholz, Sascha
Koehler, Christian
Korthikanti, Vijay Anand Reddy
Kyas, Marcel
Li, Dan
Lin, Cui
Lluch Lafuente, Alberto
Luettgen, Gerald
Maamria, Issam
Magnani, Matteo
Mathaikutty, Deepak
Mathijssen, Aad
Montaghami, Vajihollah
Montangero, Carlo
Mooij, Arjan
Morisset, Charles
Nangia, Saurabh
Nanz, Sebastian
Orzan, Simona
Osaiweran, Ammar
Patel, Hiren
Polini, Andrea
Razavi, Niloofar
Ren, Shangping
Reniers, Michel
Rezazadeh, Abdolbaghi
Riganelli, Oliviero
Ripon, Shamim
Roggenbach, Markus
Rossi, Davide
Said, Mar Yah
Sabouri, Hamideh
Schlatte, Rudolf
Shali, Amin
Silva, Alexandra
Snidaro, Lauro
Snook, Colin
Stappers, Frank
Steffen, Martin

X Conference Organization

Stehr, Mark-Oliver
Stolz, Volker
Suhaib, Syed
Sun, Meng
Tartamella, Chris
Tesei, Luca
Tuosto, Emilio
Turini, Franco
Voorhoeve, Marc
Wang, Chao

Wang, Shuling
Wang, Xu
Willemse, Tim
Wu, Zeng
van der Wulp, Jeroen
Xue, Bin
Yang, Ping
Yang, Zijiang
Zavattaro, Gianluigi
Zhan, Naijun

Table of Contents

Session 1. Invited Papers

A Process-Theoretic Look at Automata . 1
J.C.M. Baeten, P.J.L. Cuijpers, B. Luttik, and P.J.A. van Tilburg

Verification, Performance Analysis and Controller Synthesis for
Real-Time Systems . 34

Uli Fahrenberg, Kim G. Larsen, and Claus R. Thrane

rCOS: Theory and Tool for Component-Based Model Driven
Development . 62

Zhiming Liu, Charles Morisset, and Volker Stolz

Session 2. Regular Papers

Termination in Higher-Order Concurrent Calculi . 81
Romain Demangeon, Daniel Hirschkoff, and Davide Sangiorgi

Typing Asymmetric Client-Server Interaction . 97
Franco Barbanera, Sara Capecchi, and Ugo de’Liguoro

Equational Reasoning on Ad Hoc Networks . 113
Fatemeh Ghassemi, Wan Fokkink, and Ali Movaghar

Towards a Notion of Unsatisfiable Cores for LTL . 129
Viktor Schuppan

Rule Formats for Determinism and Idempotence . 146
Luca Aceto, Arnar Birgisson, Anna Ingolfsdottir,
MohammadReza Mousavi, and Michel A. Reniers

The Complexity of Reachability in Randomized Sabotage Games 162
Dominik Klein, Frank G. Radmacher, and Wolfgang Thomas

Applying Step Coverability Trees to Communicating Component-Based
Systems . 178

Jetty Kleijn and Maciej Koutny

Program Logics for Sequential Higher-Order Control 194
Martin Berger

Modular Schedulability Analysis of Concurrent Objects in Creol 212
Frank de Boer, Tom Chothia, and Mohammad Mahdi Jaghoori

XII Table of Contents

A Timed Calculus for Wireless Systems . 228
Massimo Merro and Eleonora Sibilio

Model Checking Linear Duration Invariants of Networks of
Automata . 244

Miaomiao Zhang, Zhiming Liu, and Naijun Zhan

Automata Based Model Checking for Reo Connectors 260
Marcello M. Bonsangue and Mohammad Izadi

On the Expressiveness of Refinement Settings . 276
Harald Fecher, David de Frutos-Escrig, Gerald Lüttgen, and
Heiko Schmidt

Bounded Rational Search for On-the-Fly Model Checking of LTL
Properties . 292

Razieh Behjati, Marjan Sirjani, and Majid Nili Ahmadabadi

Automated Translation and Analysis of a ToolBus Script for
Auctions . 308

Wan Fokkink, Paul Klint, Bert Lisser, and Yaroslav S. Usenko

Executable Interface Specifications for Testing Asynchronous Creol
Components . 324

Immo Grabe, Marcel Kyas, Martin Steffen, and Arild B. Torjusen

Compositional Strategy Mapping . 340
Gregor Gössler

A Sound Analysis for Secure Information Flow Using Abstract Memory
Graphs . 355

Dorina Ghindici, Isabelle Simplot-Ryl, and Jean-Marc Talbot

Refinement Patterns for Hierarchical UML State Machines 371
Jens Schönborn and Marcel Kyas

Specification and Validation of Behavioural Protocols in the rCOS
Modeler . 387

Zhenbang Chen, Charles Morisset, and Volker Stolz

The Interplay between Relationships, Roles and Objects 402
Matteo Baldoni, Guido Boella, and Leendert van der Torre

A Coordination Model for Interactive Components 416
Marco A. Barbosa, Luis S. Barbosa, and José C. Campos

Table of Contents XIII

Session 3. Short Papers

Evolution Control in MDE Projects: Controlling Model and Code
Co-evolution . 431

Jacky Estublier, Thomas Leveque, and German Vega

An xADL Extension for Managing Dynamic Deployment in Distributed
Service Oriented Architectures . 439

Mohamed Nadhmi Miladi, Ikbel Krichen, Mohamed Jmaiel, and
Khalil Drira

A First Step towards Security Policy Compliance of Connectors 447
Sun Meng

A Safe Implementation of Dynamic Overloading in Java-Like
Languages . 455

Lorenzo Bettini, Sara Capecchi, and Betti Venneri

Fundamental Concepts for the Structuring of Functionality into
Modular Parts . 463

Alexander Gruler and Michael Meisinger

Author Index . 471

A Process-Theoretic Look at Automata

J.C.M. Baeten, P.J.L. Cuijpers, B. Luttik, and P.J.A. van Tilburg

Division of Computer Science, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands,

{j.c.m.baeten,p.j.l.cuijpers,s.p.luttik,p.j.a.v.tilburg}@tue.nl

Abstract. Automata theory presents roughly three types of automata:
finite automata, pushdown automata and Turing machines. The au-
tomata are treated as language acceptors, and the expressiveness of the
automata models are considered modulo language equivalence. This no-
tion of equivalence is arguably too coarse to satisfactorily deal with a
notion of interaction that is fundamental to contemporary computing.
In this paper we therefore reconsider the automaton models from au-
tomata theory modulo branching bisimilarity, a well-known behavioral
equivalence from process theory that has proved to be able to satisfacto-
rily deal with interaction. We investigate to what extent some standard
results from automata theory are still valid if branching bisimilarity is
adopted as the preferred equivalence.

1 Introduction

Automata theory is the study of abstract computing devices, or “machines” [11].
It presents and studies roughly three types of automata: finite automata, push-
down automata and Turing machines. Finite automata are the simplest kind
of automata; they are widely used to model and analyze finite-state state sys-
tems. Pushdown automata add to finite automata a restricted kind of unbounded
memory in the form of a stack. Turing machines add to finite automata a more
powerful notion of memory in the form of an unbounded tape.

In traditional automata theory, automata are treated as language acceptors.
The idea is that a string accepted by the automaton represents a particular com-
putation of the automaton, and the language accepted by it thus corresponds
with the set of all computations of the automaton. The language-theoretic in-
terpretation of automata is at the basis of all the standard results taught in
an undergraduate course on the subject. For instance, the procedure of trans-
forming a nondeterministic finite automaton into a deterministic one is deemed
correct because the resulting automaton is language equivalent to the original
automaton (two automata are language equivalent if they accept the same lan-
guage). Another illustrative example is the correspondence between pushdown
automata and context-free grammars: for every language generated by a context-
free grammar there is a pushdown automaton that accepts it, and vice versa.

The language-theoretic interpretation abstracts from the moments of choice
within an automaton. (For instance, it does not distinguish between, on the one

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 1–33, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 J.C.M. Baeten et al.

hand, the automaton that first accepts an a and subsequently chooses between
accepting a b or a c, and, on the other hand, the automaton that starts with a
choice between accepting ab and accepting ac.) As a consequence, the language-
theoretic interpretation is only suitable under the assumption that an automaton
is a stand-alone computational device; it is unsuitable if some form of interaction
of the automaton with its environment (user, other automata running in parallel,
etc.) may influence the course of computation.

Interaction and nondeterminism nowadays play a crucial role in computing
systems. For instance, selecting an option in a web form can lead to different
responses and different options in the following form, and so a fixed input string
does not look so useful. Also, one browser query will lead to different answers
every day, so it is difficult to see a computer as a function from input to output,
there is inherent nondeterminism.

Process theory is the study of reactive systems, i.e., systems that depend on
interaction with their environment during their execution. In process theory, a
system is usually either directly modeled as a labeled transition system (which is
actually a generalization of the notion of finite automaton), or as an expression
in a process description language with a well-defined operational semantics that
assigns a labeled transition system to each expression. In process theory, interac-
tion between systems is treated as a first-class citizen. One its main contributions
is a plethora of behavioral equivalences that to more or lesser extent preserve the
branching structure of an automaton (see [7] for an overview). One of the finest
behavioral equivalences studied in process theory, which arguably preserves all
relevant moments of choice in a system, is branching bisimilarity [10].

In this paper we shall reconsider some of the standard results from automata
theory when automata are considered modulo branching bisimilarity instead of
language equivalence. We prefer to use branching bisimilarity because it arguably
preserves all relevant moments of choice in a system [10]. Note that all the
positive results obtained in this paper automatically also hold modulo any of
the coarser behavioral equivalences, and hence also modulo Milner’s observation
equivalence [12]. Furthermore, it is fairly easy to see that most of our negative
results also hold modulo observation equivalence; branching structure is needed
only to a limited extent.

In Section 3 we consider regular processes, defined as branching bisimulation
equivalence classes of labeled transition systems associated with finite automata.
Most of the results we present in this section are well-known. The section is
included for completeness and to illustrate the correspondence between finite
automata and a special type of recursive specifications that can be thought of
as the process-theoretic counterpart of regular grammars. We will obtain mostly
negative results. Naturally, the determinization procedure standardly presented
in automata theory to transform a nondeterministic finite automaton into a de-
terministic one is not valid modulo branching bisimilarity, and not every labeled
transition system associated with a finite automaton is described by a regular
expression. We do find a process-theoretic variant of the correspondence between

A Process-Theoretic Look at Automata 3

finite automata and right-linear grammars, while there is no process-theoretic
variant of the correspondence between finite automata and left-linear grammars.

In Section 4 we consider pushdown processes, defined as branching bisimula-
tion equivalence classes of labeled transition systems associated with pushdown
automata. First we investigate three alternative termination conditions: termi-
nation by final state, by empty stack, or by both. Recall that these termination
conditions are equivalent from a language-theoretic perspective. We shall prove
that, modulo branching bisimilarity, the termination by empty stack and ter-
mination by final state interpretations lead to different notions of pushdown
process, while the termination by empty stack and the termination by empty
stack and final state coincide. We argue that termination by empty stack is
better suited for a process-theoretic treatment than termination by final state.
Then, we shall investigate the correspondence between pushdown processes (ac-
cording to the termination by empty stack and final state interpretation) and
processes definable by recursive TSPτ specifications, which can be thought of as
the process-theoretic counterpart of context-free grammars. We shall argue that
not every pushdown process is definable by a recursive TSPτ specification and
identify a subclass of pushdown processes that are definable by (a special type
of) recursive TSPτ specifications.

In Section 5 we consider computable processes, defined as branching bisimu-
lation equivalence classes of labeled transition systems associated with Turing
machines. Being a universal model of computation, the Turing machine model
has been particularly influential, probably due to its close resemblance with the
computer: a Turing machine can be thought of as a computer running a single
program that only interacts with the outside world through its memory, and
only at the very beginning and the very end of the execution of the program.
Thus, the notion of Turing machine focuses on the computational aspect of the
execution of a computer; in particular, it abstracts from the interaction that a
computer has with its environment (user, other computers in a network, etc.).
Since we find interaction important, we shall work with a variation on the notion
of Turing machine, known as off-line Turing machine. This notion starts with an
empty tape, and the machine can take in one input symbol at a time. In [2], a
computable process was defined indirectly, by using an encoding of a transition
system by means of two computable functions (defined by a standard Turing
machine). We show the two ways yield the same set of computable processes.

2 Process Theory

In this section we briefly recap the basic definitions of the process algebra TCPτ

(Theory of Communicating Processes with τ). We refer to [1] for further details.

Syntax. We presuppose a countably infinite action alphabet A, and a countably
infinite set of names N . The actions in A denote the basic events that a process
may perform. In this paper we shall furthermore presuppose a countably infinite
data alphabet D, a finite set C of channels, and assume that A includes special

4 J.C.M. Baeten et al.

actions c?d, c!d, c!?d (d ∈ D, c ∈ C), which, intuitively, denote the event that
datum d is received, sent, or communicated along channel c.

Let N ′ be a finite subset of N . The set of process expressions P over A and
N ′ is generated by the following grammar:

p ::= 0 | 1 | a.p | τ.p | p · p | p+ p | p ‖ p | ∂c(p) | τc(p) | N
(a ∈ A, N ∈ N ′, c ∈ C) .

Let us briefly comment on the operators in this syntax. The constant 0 denotes
deadlock, the unsuccessfully terminated process. The constant 1 denotes the
successfully terminated process. For each action a ∈ A there is a unary operator
a. denoting action prefix; the process denoted by a.p can do an a-transition to
the process denoted by p. The τ -transitions of a process will, in the semantics
below, be treated as unobservable, and as such they are the process-theoretic
counterparts of the so-called λ- or ε-transitions in the theory of automata and
formal languages. For convenience, whenever A′ is some subset of A, we write A′

τ

for A′ ∪ {τ}. The binary operator · denotes sequential composition. The binary
operator + denotes alternative composition or choice. The binary operator ‖
denotes parallel composition; actions of both arguments are interleaved, and
in addition a communication c!?d of a datum d on channel c can take place if
one argument can do an input action c?d that matches an output action c!d of
the other component. The unary operator ∂c(p) encapsulates the process p in
such a way that all input actions c?d and output actions c!d are blocked (for
all data) so that communication is enforced. Finally, the unary operator τc(p)
denotes abstraction from communication over channel c in p by renaming all
communications c!?d to τ -transitions.

Let N ′ be a finite subset of N , used to define processes by means of (recursive)
equations. A recursive specification E over N ′ is a set of equations of the form

N
def= p

with as left-hand side a name N and as right-hand side a process expression p. It
is required that a recursive specification E contains, for every N ∈ N ′, precisely
one equation with N as left-hand side; this equation will be referred to as the
defining equation for N in N ′.

One way to formalize the operational intuitions we have for the syntactic
constructions of TCPτ , is to associate with every process expression a labeled
transition system.

Definition 1 (Labelled Transition System). A labeled transition system L
is defined as a four-tuple (S,→, ↑, ↓) where:

1. S is a set of states,
2. → ⊆ S ×Aτ × S is an Aτ -labeled transition relation on S,
3. ↑ ∈ S is the initial state,
4. ↓ ⊆ S is the set of final states.

If (s, a, t) ∈ →, we write s a−−→ t. If s is a final state, i.e., s ∈ ↓, we write s↓.

A Process-Theoretic Look at Automata 5

Table 1. Operational rules for a recursive specification E (a ranges over Aτ , d ranges
over D, and c ranges over C)

1 ↓ a.p
a−−→ p

p
a−−→ p′

(p + q) a−−→ p′
q

a−−→ q′

(p + q) a−−→ q′
p ↓

(p + q) ↓
q ↓

(p + q) ↓

p
a−−→ p′

p · q a−−→ p′ · q

p ↓ q
a−−→ q′

p · q a−−→ q′
p ↓ q ↓

p · q ↓

p
a−−→ p′

p ‖ q
a−−→ p′ ‖ q

q
a−−→ q′

p ‖ q
a−−→ p ‖ q′

p ↓ q ↓

p ‖ q ↓

p
c!d−−→ p′ q

c?d−−−→ q′

p ‖ q
c!?d−−→ p′ ‖ q′

p
c?d−−−→ p′ q

c!d−−→ q′

p ‖ q
c!?d−−→ p′ ‖ q′

p
a−−→ p′ a �= c?d, c!d

∂c(p) a−−→ ∂c(p′)

p ↓

∂c(p) ↓

p
c!?d−−→ p′

τc(p) τ−−→ τc(p′)

p
a−−→ p′ a �= c!?d

τc(p) a−−→ τc(p′)

p ↓

τc(p) ↓

pN
a−−→ p (N def= pN) ∈ E

N
a−−→ p

pN ↓ (N def= pN) ∈ E

N ↓

We use Structural Operational Semantics [15] to associate a transition relation
with process expressions: we let → be the Aτ -labeled transition relation induced
on the set of process expressions P by operational rules in Table 1. Note that
the operational rules presuppose a recursive specification E.

Let → be an Aτ -labeled transition relation on a set S of states. For s, s′ ∈ S
and w ∈ A∗ we write s w−−� s′ if there exist states s0, . . . , sn ∈ S and actions
a1, . . . , an ∈ Aτ such that s = s0

a1−−→ · · · an−−→ sn = s′ and w is obtained from
a1 · · · an by omitting all occurrences of τ . If s ε−−� t (ε denotes the empty word),
which just means that t is reachable from s by zero or more τ -transitions, then
we shall simply write s −−� t.

Definition 2 (Reachability). A state t ∈ S is reachable from a state s ∈ S
if there exists w ∈ A∗ such that s w−−� t.

Definition 3. Let E be a recursive specification and let p be a process expres-
sion. We define the labeled transition system TE(p) = (Sp ,→p , ↑p , ↓p) associated
with p and E as follows:

6 J.C.M. Baeten et al.

1. the set of states Sp consists of all process expressions reachable from p;
2. the transition relation →p is the restriction to Sp of the transition relation

→ defined on all process expressions by the operational rules in Table 1, i.e.,
→p = → ∩ (Sp ×Aτ × Sp).

3. the process expression p is the initial state, i.e. ↑p = p; and
4. the set of final states consists of all process expressions q ∈ Sp such that q↓,

i.e., ↓p = ↓ ∩ Sp .

Given the set of (possibly infinite) labeled transition systems, we can divide
out different equivalence relations on this set. Dividing out language equivalence
throws away too much information, as the moments where choices are made
are totally lost, and behavior that does not lead to a final state is ignored.
An equivalence relation that keeps all relevant information, and has many good
properties, is branching bisimulation as proposed by van Glabbeek and Weij-
land [10]. For motivations to use branching bisimulation as the preferred notion
of equivalence, see [8].

Let → be an Aτ -labeled transition relation, and let a ∈ Aτ ; we write s (a)−−→ t
if s a−−→ t or a = τ and s = t.

Definition 4 (Branching bisimilarity). Let L1 = (S1,→1, ↑1, ↓1) and L2 =
(S2,→2, ↑2, ↓2) be labeled transition systems. A branching bisimulation from L1
to L2 is a binary relation R ⊆ S1 × S2 such that ↑1 R ↑2 and, for all states s1
and s2, s1 R s2 implies

1. if s1
a−−→1s

′
1, then there exist s′2, s

′′
2 ∈ S2 such that s2−−�2s

′′
2

(a)−−→2s
′
2, s1 R s′′2

and s′1 R s′2;
2. if s2

a−−→2 s
′
2, then there exist s′1, s′′1 ∈ S1 such that s1 −−�1 s′′1

(a)−−→1 s
′
1,

s′′1 R s2 and s′1 R s′2;
3. if s1↓1, then there exists s′2 such that s2 −−�2 s

′
2 and s′2↓2; and

4. if s2↓2, then there exists s′1 such that s1 −−→1 s
′
1 and s′1↓1.

The labeled transition systems L1 and L2 are branching bisimilar (notation:
L1 ↔b L2) if there exists a branching bisimulation from L1 to L2.

Branching bisimilarity is an equivalence relation on labeled transition systems [5].
We need as auxiliary notions in our paper the notion of inert τ -transition and

the notion of branching degree of a state. For a definition of these notions we first
define the notion of branching bisimulation on a labeled transition system, and
the notion of quotient of a labeled transition system by its maximal branching
bisimulation.

Let L = (S,→, ↑, ↓) be a labeled transition system. A branching bisimula-
tion on L is a binary relation R on S that satisfies conditions 1–4 of Defini-
tion 4 for all s1 and s2 such that s1 R s2. Let R be the maximal branch-
ing bisimulation on L. Then R is an equivalence on S; we denote by [s]R
the equivalence class of s ∈ S with respect to R and by S/R the set of all
equivalence classes of S with respect to R. On S/R we can define an Aτ -
labeled transition relation →R by [s]R

a−−→R [t]R if, and only if, there exist

A Process-Theoretic Look at Automata 7

s′ ∈ [s]R and t′ ∈ [t]R such that s′ a−−→ t′. Furthermore, we define ↑R = [↑]R
and ↓R = {s | ∃s′ ∈ ↓. s ∈ [s′]R}. Now, the quotient of L by R is the labeled
transition system L/R = (S/R,→/R, ↑/R, ↓/R). It is straightforward to prove
that each labeled transition system is branching bisimilar to the quotient of this
labeled transition system by its maximal branching bisimulation.

Definition 5 (Inert τ-transitions). Let L be a labeled transition system and
let s and t be two states in L. A τ-transition s

τ−−→ t is inert if s and t are
related by the maximal branching bisimulation on L.

If s and t are distinct states, then an inert τ -transition s τ−−→ t can be eliminated
from a labeled transition system, e.g., by removing all outgoing transitions of
s, changing every outgoing transition t a−−→ u from t to an outgoing transition
s a−−→ u, and removing the state t. This operation yields a labeled transition
system that is branching bisimilar to the original labeled transition system.

For example, consider Figure 1. Here, the inert τ -transition from state s to t
in the transition system on the left is removed by removing the transition s a−−→u
and moving all outgoing transitions of t to s, resulting in the transition system
on the right. This is possible because s and t are branching bisimilar.

s

tu

v w

τa

a b

s

v w

a b

Fig. 1. Removing an inert τ -transition

To get a notion of branching degree that is preserved modulo branching bisim-
ilarity, we define the branching degree of a state as the branching degree of the
corresponding equivalence class of states modulo the maximal branching bisim-
ilarity.

Definition 6 (Branching degree). Let L be a labeled transition system, and
let R be its maximal branching bisimulation. The branching degree of a state s
in L is the cardinality of the set {(a, [t]R) | [s]R

a−−→R [t]R} of outgoing edges of
the equivalence class of s in the quotient L/R.

We say that L has finite branching if all states of L have a finite branching
degree. We say that L has bounded branching if there exists a natural number
n ≥ 0 such that every state has a branching degree of at most n.

Branching bisimulations respect branching degrees in the sense that if R is a
branching bisimulation from L1 to L2, s1 is a state in L1 and s2 is a state in
L2 such that s1 R s2, then s1 and s2 have the same branching degree. Let p
and q be process expressions in the context of a recursive specification E; the

8 J.C.M. Baeten et al.

following properties pertaining to branching degrees are fairly straightforward
to establish: If TE(p) and TE(q) have bounded branching (or finite branching),
then TE(p ‖ q) has bounded branching (or finite branching) too, and if TE(p)
has bounded branching (or finite branching), then TE(∂c(p)) and TE(τc(p)) have
bounded branching (or finite branching) too.

3 Regular Processes

A computer with a fixed-size, finite memory is just a finite control. This can
be modeled by a finite automaton. Automata theory starts with the notion of
a finite automaton. As non-determinism is relevant and basic in concurrency
theory, we look at a non-deterministic finite automaton.

Definition 7 (Finite automaton). A finite automaton M is defined as a five-
tuple (S,A′,→, ↑, ↓) where:

1. S is a finite set of states,
2. A′ is a finite subset of A,
3. → ⊆ S ×A′

τ × S is a finite A′
τ -labeled transition relation on S,

4. ↑ ∈ S is the initial state,
5. ↓ ⊆ S is the set of final states.

Clearly, from a finite automaton we obtain a labeled transition system by simply
omitting A′ from the five-tuple and declaring → to be an Aτ -labeled transition
relation. In the remainder of this paper there is no need to make the formal
distinction between a finite automaton and the labeled transition system thus
associated to it.

Two examples of finite automata are given in Figure 2.

c

a

a a

a
τ

b

b

a

a

a
a

b

b

Fig. 2. Two examples of finite automata

A Process-Theoretic Look at Automata 9

Definition 8 (Deterministic finite automaton). A finite automaton M =
(S,A′,→, ↑, ↓) is deterministic if, for all states s, t1, t2 ∈ S and for all actions
a ∈ A′, s a−−� t1 and s a−−� t2 implies t1 = t2.

In the theory of automata and formal languages, it is usually also required in the
definition of deterministic that the transition relation is total in the sense that
for all s ∈ S and for all a ∈ A′ there exists t ∈ S such that s a−−→ t. The extra
requirement is clearly only sensible in the language interpretation of automata;
we shall not be concerned with it here.

The upper automaton in Figure 2 is non-deterministic and has an unreachable
c-transition. The lower automaton is deterministic and does not have unreach-
able transitions; it is not total.

In the theory of automata and formal languages, finite automata are consid-
ered as language acceptors.

Definition 9 (Language equivalence). The language L(L) accepted by a la-
beled transition system L = (S,→, ↑, ↓) is defined as

L(L) = {w ∈ A∗ | ∃s ∈ ↓ such that ↑ w−−� s} .

Labeled transition systems L1 and L2 are language equivalent (notation: L1 ≡
L2) if L(L1) = L(L2).

Recall that a finite automaton is a special kind of labeled transition system, so
the above definition pertains directly to finite automata. The language of both
automata in Figure 2 is {aaa} ∪ {ab2n−1 | n ≥ 1}; the automata are language
equivalent.

A language L ⊆ A∗ accepted by a finite automaton is called a regular language.
A regular process is a branching bisimilarity class of labeled transition systems
that contains a finite automaton.

The following standard results pertaining to finite automata are found in every
textbook on the theory of automata and formal languages:

1. For every finite automaton there exists a language equivalent automaton
without τ -transitions.

2. For every finite automaton there exists a language equivalent deterministic
finite automaton.

3. Every language accepted by a finite automaton is the language described by
a regular expression, and, conversely, every language described by a regular
expression is accepted by a finite automaton.

4. Every language accepted by a finite automaton is generated by a regular
(i.e., right-linear or left-linear) grammar, and, conversely, every language
generated by a regular grammar is accepted by a finite automaton.

We shall discuss below to what extent these results are still valid in branching
bisimulation semantics.

10 J.C.M. Baeten et al.

Silent steps and non-determinism. Not every regular process has a representa-
tion as a finite automaton without τ -transitions, and not every regular process
has a representation as a deterministic finite automaton. In fact, it can be proved
that there does not exist a finite automaton without τ -transitions that is branch-
ing bisimilar with the upper finite automaton in Figure 2. Nor does there exist
a deterministic finite automaton branching bisimilar with the upper finite au-
tomaton in Figure 2.

Regular grammars and regular expressions. Not every regular process is given
by a regular expression, see [3]. We show a simple example in Figure 3 of a
finite transition system that is not bisimilar to any transition system that can
be associated with a regular expression.

a

b

Fig. 3. Not bisimilar to a regular expression

In the theory of automata and formal languages, the notion of grammar is used
as a syntactic mechanism to describe languages. The corresponding mechanism
in concurrency theory is the notion of recursive specification.

We shall now consider the process theory BSPτ (Basic Sequential Processes),
which is a subtheory of the theory TCPτ introduced in Section 2. The syntax
of the process theory BSPτ is obtained from that of TCPτ by omitting sequen-
tial composition, parallel composition, encapsulation and abstraction. A BSPτ

recursive specification over a finite subset N ′ of N is a recursive specification
over N ′ in which only 0, 1, N (N ∈ N ′), a. (a ∈ Aτ) and + are used to build
process expressions.

Consider the operational rules in Table 1 that are relevant for BSPτ , for a
presupposed recursive specification E. Note that whenever p is a BSPτ process
expression and p a−−→q then q is again a BSPτ process expression. Moreover, q is a
subterm of p, or q is a subterm of a right-hand side of the recursive specification
E. Thus, it follows that the set of process expressions reachable from a BSPτ

process expression consists merely of BSPτ process expressions, and that it is
finite. So the labeled transition system TE(p) associated with a BSPτ process
expression given a BSPτ recursive specification E is a finite automaton. Below
we shall also establish the converse, that every finite automaton can be specified,
up to isomorphism, by a recursive specification over BSPτ . First we illustrate
the construction with an example.

Example 1. Consider the automaton depicted in Figure 4. Note that we have
labeled each state of the automaton with a unique name; these will be the
names of a recursive specification E. We will define each of these names with
an equation, in such a way that the labeled transition system TE(S) generated

A Process-Theoretic Look at Automata 11

S T

U

V

a

b
a

a

a

Fig. 4. Example automaton

by the operational semantics in Table 1 is isomorphic (so certainly branching
bisimilar) with the automaton in Figure 4.

The recursive specification for the finite automaton in Figure 4 is:

S
def= a.T ,

T
def= a.U + b.V ,

U
def= a.V + 1 ,

V
def= 0 .

The action prefix a.T on the right-hand side of the equation defining S is used
to express that S has an a-transition to T . Alternative composition is used on
the right-hand side of the defining equation for T to combine the two transitions
going out from T . The 1-summand on the right-hand side of the defining equation
for U indicates that U is a final state. The symbol 0 on the right-hand side of
the defining equation for V expresses that V is a deadlock state.

Theorem 1. For every finite automaton M there exists a BSPτ recursive spec-
ification E and a BSPτ process expression p such that M ↔b TE(p).

Proof. The general procedure is clear from Example 1. Let M = (S,A′,→, ↑, ↓).
We associate with every state s ∈ S a name Ns , and define a recursive specifi-
cation E on {Ns | s ∈ S}. The recursive specification E consists of equations of
the form

Ns
def=

∑
{a.Nt | s a−−→ t} [+ 1] ,

with the contention that the summation
∑

{a.Nt | s a−−→ t} denotes 0 if the set
{a.Nt | s a−−→ t} is empty, and the optional 1-summand is present if, and only
if, s↓. It is easily verified that the binary relation R = {(s,Ns) | s ∈ S} is a
branching bisimulation. ��

Incidentally, note that the relation R in the proof of the above theorem is an
isomorphism, so the proof actually establishes that for every finite automaton
M there exists a BSPτ recursive specification E and a BSPτ process expression
p such that the labeled transition system associated with p and E is isomorphic
to M.

12 J.C.M. Baeten et al.

The above theorem can be viewed as the process-theoretic counterpart of
the result from the theory of automata and formal languages that states that
every language accepted by a finite automaton is generated by a so-called right-
linear grammar. There is no reasonable process-theoretic counterpart of the
similar result in the theory of automata and formal languages that every language
accepted by a finite automaton is generated by a left-linear grammar, as we shall
now explain.

Table 2. Operational rules for action postfix operators (a, β ∈ Aτ)

p
β

−−→ p′

p.a
β

−−→ p′.a

p↓

p.a
a−−→ 1

a

b

Fig. 5. A simple finite automaton

To obtain the process-theoretic counterpart of a left-linear grammar, we
should replace the action prefixes a. in BSPτ by action postfixes .a, with the
operational rules in Table 2. Not every finite automaton can be specified in the
resulting language. To see this, note that action postfix distributes over alterna-
tive composition and is absorbed by 0. Therefore, for every process expression
p over BSPτ with action postfix instead of action prefix there exist finite sets I
and J and elements wi (i ∈ I) and wj (j ∈ J) of A∗ such that

p ↔b

∑
i∈I

Ni.wi +
∑
j∈J

1.wj [+ 1] .

(Recall that empty summations are assumed to denote 0.) Hence, for every such
process expression p, if p a−−→ p′, then p′ ↔b w for some w ∈ A∗. A process
expression denoting the finite automaton in Figure 5 cannot have this property,
for after performing an a-transition there is still a choice between terminating
with a b-transition, or performing another a-transition. We conclude that the
automaton in Figure 5 cannot be described modulo branching bisimilarity in
BSPτ with action postfix instead of action prefix.

Conversely, with action postfixes instead of action prefixes in the syntax, it
is possible to specify labeled transition systems that are not branching bisimilar
with a finite automaton.

Example 2. For instance, consider the recursive specification over {X} consisting
of the equation

X
def= 1 +X.a .

A Process-Theoretic Look at Automata 13

a a a a

aaa

a

a

Fig. 6. Infinitely branching process of unguarded equation

The labeled transition system associated with X by the operational semantics
is depicted in Figure 6. Note that in this figure, the initial state is also final.
It can be proved that the infinitely many states of the depicted labeled transi-
tion systems are all distinct modulo branching bisimilarity. It follows that the
labeled transition system associated with X is not branching bisimilar to a finite
automaton.

We conclude that the classes of processes defined by right-linear and left-linear
grammars do not coincide.

4 Pushdown and Context-Free Processes

As an intermediate between the notions of finite automaton and Turing machine,
the theory of automata and formal languages treats the notion of pushdown au-
tomaton, which is a finite automaton with a stack as memory. Several definitions
of the notion appear in the literature, which are all equivalent in the sense that
they accept the same languages.

Definition 10 (Pushdown automaton). A pushdown automaton M is de-
fined as a six-tuple (S,A′,D′,→, ↑, ↓) where:

1. S a finite set of states,
2. A′ is a finite subset of A,
3. D′ is a finite subset of D,
4. → ⊆ S×(D′∪{ε})×A′

τ ×D′∗×S is a (D′∪{ε})×A′
τ ×D′∗-labeled transition

relation on S,
5. ↑ ∈ S is the initial state, and
6. ↓ ⊆ S is the set of final states.

If (s, d, a, δ, t) ∈ →, we write s d,a,δ−−−−→ t.

The pair of a state together with particular stack contents will be referred to as
the configuration of a pushdown automaton. Intuitively, a transition s

d,a,δ−−−−→ t
(with a ∈ A′) means that the automaton, when it is in a configuration consisting
of a state s and a stack with the datum d on top, can consume input symbol a,
replace d by the string δ and move to state t. Likewise, writing s ε,a,δ−−−−→ t means

14 J.C.M. Baeten et al.

that the automaton, when it is in state s and the stack is empty, can consume
input symbol a, put the string δ on the stack, and move to state t. Transitions
of the form s

d,τ,δ−−−−→ t or s ε,τ,δ−−−→ t do not entail the consumption of an input
symbol, but just modify the stack contents.

When considering a pushdown automaton as a language acceptor, it is gener-
ally assumed that it starts in its initial state with an empty stack. A computation
consists of repeatedly consuming input symbols (or just modifying stack contents
without consuming input symbols). When it comes to determining whether or not
to accept an input string there are two approaches: “acceptance by final state”
(FS) and “acceptance by empty stack” (ES). The first approach accepts a string if
the pushdown automaton can move to a configurationwith a final state by consum-
ing the string, ignoring the contents of the stack in this configuration. The second
approach accepts the string if the pushdown automaton can move to a configura-
tion with an empty stack, ignoring whether the state of this configuration is final
or not. These approaches are equivalent from a language-theoretic point of view,
but not from a process-theoretic point of view, as we shall see below. We shall also
consider a third approach in which a configuration is terminating if it consists of a
terminating state and an empty stack (FSES). We shall see that, from a process-
theoretic point of view, the ES and FSES approaches lead to the same notion of
pushdown process, whereas the FS approach leads to a different notion.

s t

ε, a, 1
1, a, 11

1, b, ε

1, b, ε

Fig. 7. Example pushdown automaton

Depending on the adopted acceptance condition, the pushdown automaton
in Figure 7 accepts the language {ambn | m ≥ n ≥ 0} (FS) or the language
{anbn | n ≥ 0} (ES,FSES).

Definition 11. Let M = (S,A′,D′,→, ↑, ↓) be a pushdown automaton. The
labeled transition system T (M) associated with M is defined as follows:

1. the set of states of T (M) is S × D′∗;
2. the transition relation of T (M) satisfies

(a) (s, dζ) a−−→(t, δζ) iff s d,a,δ−−−−→ t for all s, t ∈ S, a ∈ A′
τ , d ∈ D′, δ, ζ ∈ D′∗,

and
(b) (s, ε) a−−→ (t, δ) iff s

ε,a,δ−−−−→ t;
3. the initial state of T (M) is (↑, ε); and
4. for the set of final states ↓ we consider three alternative definitions:

(a) (s, ζ)↓ in T (M) iff s↓ (the FS interpretation),
(b) (s, ζ)↓ in T (M) iff ζ = ε (the ES interpretation), and
(c) (s, ζ)↓ in T (M) iff s↓ and ζ = ε (the FSES interpretation).

A Process-Theoretic Look at Automata 15

a a a

b b b

bb

a

b

Fig. 8. A pushdown process

This definition now gives us the notions of pushdown language and pushdown
process: a pushdown language is the language of the transition system associated
with a pushdown automaton, and a pushdown process is a branching bisimilar-
ity class of labeled transition systems containing a labeled transition system
associated with a pushdown automaton.

The labeled transition system in Figure 8 is the labeled transition system
associated with the pushdown automaton of Figure 7 according to the FSES
or ES interpretations. To obtain the labeled transition system associated to the
pushdown automaton in Figure 7 according to the FS interpretation, all states
should be made final.

The following standard results pertaining to pushdown automata are often
presented in textbooks on the theory of automata and formal languages:

1. Every language accepted by a pushdown automaton under the acceptance
by empty stack interpretation is also accepted by a pushdown automaton
under the acceptance by final state interpretation, and vice versa.

2. Every language accepted by a pushdown automaton is accepted by a push-
down automaton that only has push transitions (i.e., transitions of the form
s

ε,a,d−−−−→ t or s d,a,ed−−−−−→) and pop transitions (i.e., transitions of the form
s

d,a,ε−−−−→ t).
3. Every language accepted by a pushdown automaton is also generated by

a context-free grammar, and every language generated by a context-free
grammar is accepted by a pushdown automaton.

Only push and pop transitions. It is easy to see that limiting the set of transitions
to push and pop transitions only in the definition of pushdown automaton yields
the same notion of pushdown process:

1. Eliminate a transition of the form s
ε,a,ε−−−−→ t by adding a fresh state s′,

replacing the transition by the sequence of transitions s ε,a,d−−−−→ s′
d,τ,ε−−−−→ t

(with d just some arbitrary element in D′).
2. Eliminate a transition of the form s

ε,a,δ−−−−→ t, with δ = en · · · e1 (n ≥ 1), by
adding new states s2, . . . , sn and replacing the transition s

ε,a,δ−−−−→ t by the
sequence of transitions

s
ε,a,e1−−−−→ s2

e1,τ,e2e1−−−−−−→ · · · en−2,τ,en−1en−2···e1−−−−−−−−−−−−−−→ sn
en−1,τ,enen−1···e1−−−−−−−−−−−−−→ t .

16 J.C.M. Baeten et al.

3. Eliminate a transition of the form s
d,a,δ−−−−→ t, with δ = en · · · e1 (n ≥ 0),

by adding new states s1, . . . , sn and replacing the transition s
d,a,δ−−−−→ t by

transitions s d,a,ε−−−−→ s1, s1
ε,τ,e1−−−−→ s2 and s1

f,τ,e1f−−−−−→ s2 for all f ∈ D′, and
the sequence of transitions

s2
e1,τ,e2e1−−−−−−→ · · · en−2,τ,en−1en−2···e1−−−−−−−−−−−−−−→ sn

en−1,τ,enen−1···e1−−−−−−−−−−−−−→ t .

Branching degree. In [14] the structure of the labeled transition systems as-
sociated with pushdown automata was intensively studied (without termina-
tion conditions). In particular, they show these labeled transition systems have
bounded branching. However, the pushdown processes that are generated mod-
ulo branching bisimulation may still exhibit infinite branching. See for example
the pushdown automaton in Figure 9 that generates the pushdown process of
Figure 6.

ε, τ, 1
1, τ, 11

1, τ, ε

1, a, ε

1, a, ε

Fig. 9. Pushdown automaton that generates an infinitely branching pushdown process

Nevertheless, we conjecture that whenever a pushdown process has finite
branching, it has bounded branching. More precisely:

Conjecture 1. In every pushdown process there is a bound on the branching
degree of those states that have finite branching.

Termination conditions. Recall that from a language-theoretic point of view the
different approaches to termination of pushdown automata (FS, ES, FSES) are
all equivalent, but not from a process-theoretic point of view. First, we argue
that the ES and FSES interpretations lead to the same notion of pushdown
process.

Theorem 2. A process is a pushdown process according to the ES interpretation
if, and only if, it is a pushdown process according to the FSES interpretation.

Proof. On the one hand, to see that a pushdown process according to the ES
interpretation is also a pushdown process according to the FSES interpretation,
let L be the labeled transition system associated with a pushdown automaton M
under the ES interpretation, and let M ′ be the pushdown automaton obtained
fromM by declaring all states to be final. Then L is the labeled transition system
associated with M ′ under the FSES interpretation.

On the other hand, to see that a pushdown process according to the FSES
interpretation is also a pushdown process according to the ES interpretation,

A Process-Theoretic Look at Automata 17

let M = (S,A′,D′,→, ↑, ↓) be an arbitrary pushdown automaton. We shall
modify M such that the labeled transition system associated with the modified
pushdown automaton under the ES interpretation is branching bisimilar to the
labeled transition system associated with M under the FSES interpretation. We
define the modified pushdown automaton M ′ = (S′,A′,D′ � {∅},→′, ↑′, ∅) as
follows:

1. S′ is obtained from S by adding a fresh initial state ↑′, and also a fresh state
s↓ for every final state s ∈ ↓;

2. →′ is obtained from → by
(a) adding a transition (↑′, ε, τ, ∅, ↑) (the datum ∅, which is assumed not to

occur in M, is used to mark the end of the stack),
(b) replacing all transitions (s, ε, a, δ, t) ∈ → by (s, ∅, a, δ∅, t) ∈ →′, and
(c) adding transitions (s, ∅, τ, ε, s↓) and (s↓, ε, τ, ∅, s) for every s ∈ ↓.

We leave it to the reader to verify that the relation

R = {((s, δ), (s, δ∅)) | s ∈ S & δ ∈ D′∗} ∪
{((↑, ε), (↑′, ε))} ∪ {((s, ε), (s↓, ε)) | s ∈ ↓}

is a branching bisimulation from the labeled transition associated with M under
the ES interpretation to M ′ under the FSES interpretation. ��

If we apply this modification on the pushdown automaton in Figure 7, then we
get the result shown in Figure 10 where the states ↑, s↓, t↓ are added and five
transitions, ↑ ε,τ,∅−−−−→ s to put the end-of-stack marker on the stack, s ∅,τ,ε−−−−→ s↓

and t
∅,τ,ε−−−−→ t↓ to remove this marker when in the FSES case termination could

occur, and s↓
ε,τ,∅−−−−→ s and t↓

ε,τ,∅−−−−→ t to put the end-of-stack marker back.
We proceed to argue that a pushdown process according to the ES interpreta-

tion is also a pushdown process according to the FS interpretation, but not vice
versa. The classical proof (see, e.g., [11]) that a pushdown language according
to the “acceptance by final state” approach is also a pushdown language accord-
ing to the “acceptance by empty stack” approach coincide employs τ -transitions
in a way that is valid modulo language equivalence, but not modulo branching
bisimilarity. For instance, the construction that modifies a pushdown automaton

↑ s t

s↓ t↓

∅, a, 1∅

1, a, 11

ε, τ, ∅ 1, b, ε

1, b, ε

∅, τ, ε ∅, τ, ε

ε, τ, ∅ ε, τ, ∅

Fig. 10. Example pushdown automaton accepting on empty stack

18 J.C.M. Baeten et al.

M into another pushdown automaton M ′ such that the language accepted by M
by final state is accepted by M ′ by empty stack adds τ -transitions from every
final state of M to a fresh state in M ′ in which the stack is emptied. The τ -
transition introduces, in M ′, a choice between the original outgoing transitions
of the final state in M and termination by going to the fresh state; this choice
was not necessarily present in M, and therefore the labeled transition systems
associated with M and M ′ may not be branching bisimilar.

Theorem 3. A process is a pushdown process according to the ES interpretation
only if it is a pushdown process according to the FS interpretation, but not vice
versa.

Proof. On the one hand, to see that a pushdown process according to the ES
interpretation is also a pushdown process according to the FS interpretation, let
M = (S,A′,D′,→, ↑, ↓) an arbitrary pushdown automaton. We shall modify M
such that the labeled transition system associated with the modified pushdown
automaton under the ES interpretation is branching bisimilar to the labeled
transition system associated with M under the FS interpretation. We define the
modified pushdown automaton M ′ = (S′,A′,D′ � {∅},→′, ↑′, ↓′) as follows:

1. S′ is obtained from S by adding a fresh initial state ↑′, and also a fresh state
s↓ for every state s ∈ S;

2. ↓′ is the set {s↓ | s ∈ S} of all these newly added states;
3. →′ is obtained from → by

(a) adding a transition (↑′, ε, τ, ∅, ↑) (the datum ∅, which is assumed not to
occur in M, is used to mark the end of the stack),

(b) replacing all transitions (s, ε, a, δ, t) ∈ → by (s, ∅, a, δ∅, t) ∈ →′, and
(c) adding transitions (s, ∅, τ, ε, s↓) and (s↓, ε, τ, ∅, s) for every s ∈ S.

We leave it to the reader to verify that the relation

R = {((s, δ), (s, δ∅)) | s ∈ S & δ ∈ D′∗} ∪
{((↑, ε), (↑′, ε))} ∪ {((s, ε), (s↓, ε)) | s ∈ S}

is a branching bisimulation from the labeled transition associated with M under
the ES interpretation to M ′ under the FS interpretation.

On the other hand, there exist pushdown processes according to the FS in-
terpretation for which there is no equivalent pushdown process according to the
ES interpretation. An example is the pushdown automaton shown in Figure 11.

The labeled transition system associated with it according to the FS interpre-
tation is depicted in Figure 12; it has infinitely many terminating configurations.
Moreover, no pair of these configurations is branching bisimilar, which can be
seen by noting that the nth state from the left can perform at most n− 1 times
a b-transition before it has to perform an a-transition again.

In contrast with this, note that the labeled transition system associated with
any pushdown automaton according to the ES interpretation necessarily has
finitely many terminating configurations, for the pushdown automaton has only
finitely many states and the stack is required to be empty. ��

A Process-Theoretic Look at Automata 19

1, b, ε

ε, a, 1
1, a, 11

Fig. 11. The counter pushdown automaton

a a a

bbb

a

b

Fig. 12. Labeled transition system associated with automaton of Figure 11 according
to the FS interpretation

a a a

bbb

a

b

Fig. 13. Labeled transition system associated with automaton of Figure 11 according
to the FSES (or ES) interpretation

Context-free specifications. We shall now consider the process-theoretic version
of the standard result in the theory of automata and formal languages that the set
of pushdown languages coincides with the set of languages generated by context-
free grammars. As the process-theoretic counterparts of context-free grammars
we shall consider recursive specifications in the subtheory TSPτ of TCPτ , which
is obtained from BSPτ by adding sequential composition · . So a TSPτ recursive
specification over a finite subset N ′ of N is a recursive specification over N ′ in
which only the constructions 0, 1, N (N ∈ N ′), a. (a ∈ Aτ), · and + occur.

TSPτ recursive specifications can be used to specify pushdown processes. To
give an example, the process expression X defined in the TSPτ recursive speci-
fication

X
def= 1 + a.X · b.1

specifies the labeled transition system in Figure 13, which is associated with the
pushdown automaton in Figure 11 under the FSES interpretation.

Next, we will show by contradiction that the FS interpretation of this push-
down automaton (see Figure 12) cannot be given by a TSPτ recursive specifi-
cation. Recall that under this interpretation, there are infinitely many distinct
states in this pushdown process and all these states are terminating. This im-
plies that all variables in a possible TSPτ recursive specification for this pro-
cess would have a 1-summand to ensure termination in all states. On the other
hand, we discuss further on in this paper that any state of a TSPτ recursive

20 J.C.M. Baeten et al.

specification can be represented by a sequential composition of variables using
the Greibach normal form. Each variable in this normal form must be terminat-
ing, since all states are terminating, and each variable can do a bounded number
of b-transitions without performing a-transitions in between. To get sequences of
b-transitions of arbitrary length, variables are sequentially composed. However,
since all variables are also terminating this would result in the possibility to skip
parts of the intended sequence of b-transitions and hence lead to branching. This
branching is not present in the process in Figure 12, hence this process cannot be
represented by a TSPτ recursive specification. Since this impossibility already
occurs for a very simple example such as a counter, we restrict ourselves to only
use the FSES interpretation in the remainder of this paper.

That the notion of TSPτ recursive specification still naturally corresponds
with with the notion of context-free grammar is confirmed by the following
theorem.

Theorem 4. For every pushdown automaton M there exists a TSPτ recursive
specification E and process expression p such that T (M) and TE(p) are language
equivalent, and, vice versa, for every recursive specification E and process ex-
pression p there exists a pushdown automaton M such that T (M) and TE(p) are
language equivalent.

We shall see below that a similar result with language equivalence replaced by
branching bisimilarity does not hold. In fact, we shall see that there are pushdown
processes that are not recursively definable in TSPτ , and that there are also
TSPτ recursive specifications that define non-pushdown processes can be defined.
We shall present a restriction on pushdown automata and a restriction on TSPτ

recursive specifications that enable us to retrieve the desired equivalence: we shall
prove that the set of so-called popchoice-free pushdown processes corresponds
with the set of processes definable by a transparency-restricted TSPτ recursive
specification. We have not yet been able to establish that our result is optimal in
the sense that a pushdown process is definable by a recursive TSPτ specification
only if it is popchoice-free, although we conjecture that this is the case.

Consider the pushdown automaton in Figure 14, which generates the tran-
sition system shown in Figure 15. In [13], Moller proved that this transition
system cannot be defined with a BPA recursive specification, where BPA is the
subtheory of TSPτ obtained by omitting the τ -prefix and the constant 0 and by
disallowing 1 to occur as a summand in a nontrivial alternative composition. His
proof can be modified to show that the transition system is not definable with

ε, c, ε
1, c, 1

1, b, ε 1, b, ε

ε, a, 1
1, a, 11

Fig. 14. Pushdown automaton that is not popchoice-free

A Process-Theoretic Look at Automata 21

c c c c

bbb b

a a a

bbb

a

b

Fig. 15. Transition system of automaton of Figure 14

a TSPτ recursive specification either. We conclude that not every pushdown
process is definable with a TSPτ recursive specification.

Note that a push of a 1 onto the stack in the initial state of the pushdown
automaton in Figure 14 can (on the way to termination) be popped again in the
initial state or in the final state: the choice of where the pop will take place cannot
be made at the time of the push. In other words, in the pushdown automaton
in Figure 14 pop transitions may induce a choice in the associated transition
system; we refer to such choice through a pop transition as a popchoice. We
shall prove below that by disallowing popchoice we define a class of pushdown
processes that are definable with a TSPτ recursive specification.

Definition 12. Let M be a pushdown automaton that uses only push and pop
transitions. A d-pop transition is a transition s

d,a,ε−−−−→ t, which pops a datum
d. We say M is popchoice-free iff whenever there are two d-pop transitions
s

d,a,ε−−−−→ t and s′
d,b,ε−−−−→ t′, then t = t′. A pushdown process is popchoice-free if

it contains a labeled transition system associated with a popchoice-free pushdown
automaton.

The definition of a pushdown automaton uses a stack as memory. The stack
itself can be modeled as a pushdown process, in fact (as we will see shortly) it
is the prototypical pushdown process. Given a finite set of data D′, the stack
has an input channel i over which it can receive elements of D′ and an output
channel o over which it can send elements of D′. The stack process is given by
a pushdown automaton with one state ↑ (which is both initial and final) and
transitions ↑ ε,i?d,d−−−−−→ ↑, ↑ e,i?d,de−−−−−−→ ↑, and ↑ d,o!d,ε−−−−−→ ↑ for all d, e ∈ D′. As this
pushdown automaton has only one state, it is popchoice-free. The transition
system of the stack in case D′ = {0, 1} is presented in Figure 16. The following
recursive specification defines a stack:

S
def= 1 +

∑
d∈D′

i?d.S · o!d.S ; (1)

we refer to this specification of a stack over D′ as ES .
The stack process can be used to make the interaction between control and

memory in a pushdown automaton explicit [4]. This is illustrated by the follow-
ing theorem, stating that every pushdown process is equal to a regular process
interacting with a stack.

22 J.C.M. Baeten et al.

i?0

o!0 i?1

o!1

i?0

o!0 i?1

o!1 i?0

o!0 i?1

o!1

Fig. 16. Stack over D′ = {0, 1}

Theorem 5. For every pushdown automaton M there exists a BSPτ process
expression p and a BSPτ recursive specification E, and for every BSPτ process
expression p and BSPτ recursive specification there exists a pushdown automaton
M such that

T (M) ↔b TE∪ES(τi,o(∂i,o(p ‖ S))) .

Proof. Let M = (S,A′,D′,→, ↑, ↓) be a pushdown automaton; we define the
BSPτ recursive specification E as follows:

– For each s ∈ S and d ∈ D′ � {∅} it has a variable Vs,d (where ∅ is a special
symbol added to D′ to denote that the stack is empty).

– For each pop transition t d,a,ε−−−−→ t the right-hand side of the defining equation
for Vs,d has a summand a.

∑
e∈D′∪{∅} o?e.Vt,e .

– For each push transition s d,a,ed−−−−−→ t the right-hand side of the defining equa-
tion for Vs,d has a summand a.i!d.Vt,e , and for each push transition s ε,a,e−−−−→ t
the right-hand side of the defining equation for Vs,∅ has a summand a.i!∅.Vt,e .

– For each s ∈ S such that s↓ the right-hand side of the defining equation for
Vs,∅ has a 1-summand.

We present some observations from which it is fairly straightforward to estab-
lish that T (M) ↔b TE∪ES (τi,o(∂i,o(V↑,∅ ‖ S))). In our proof we abbreviate the
process expression S · i!dn.S · · · i!d1.S by Sdn···d1 , with, in particular, Sε = S.

First, note that whenever T (M) has a transition (s, d) a−−→ (t, ε), then

∂i,o(Vs,d ‖ S∅)
a−−→ ∂i,o((

∑
e∈D′
{∅}

o!e.Vt,e) ‖ S∅)
o!?∅−−−→ ∂i,o(Vt,∅ ‖ S) .

The abstraction operator τi,o() will rename the transition labeled o!?∅ into a
τ -transition. This τ -transition is inert in the sense that it does not preclude

A Process-Theoretic Look at Automata 23

any observable behavior that was possible before the τ -transition. It is well-
known that such inert τ -transitions can be omitted while preserving branching
bisimilarity.

Second, note that whenever T (M) has a transition (s, dζ) a−−→ (t, ζ) with ζ
nonempty, say ζ = eζ′, then

∂i,o(Vs,d ‖ Sζ)
a−−→ o!?e−−−→∂i,o(Vt,e ‖ Sζ′) ,

and, since the second transition is the only step possible after the first a-
transition, the τ -transition resulting from applying τi,o() is again inert.

Third, note that whenever T (M) has a transition (s, dζ) a−−→ (t, edζ), then

∂i,o(Vs,d ‖ Sζ)
a−−→ i!?d−−→∂i,o(Vt,e ‖ Sdζ) ,

and again the τ -transition resulting from applying τi,o() is inert.
Finally, note that whenever T (M) has a transition (s, ε) a−−→ (t, e), then

∂i,o(Vs,∅ ‖ S) a−−→ i!?∅−−→∂i,o(Vt,e ‖ S∅) .

Conversely, let E be a BSPτ recursive specification, let p be a BSPτ process
expression, and let M = (S,A′,→, ↑, ↓) be the associated labeled transition
system. We define a pushdown automaton M as follows:

– The set of states, the action alphabet, and the initial and final states are the
same as those of the finite automaton.

– The data alphabet is the set of data D′ of the presupposed recursive speci-
fication of a stack.

– Whenever s a−−→ t in M, and a �= i!d, o?d (d ∈ D′), then s
d,a,d−−−−→ t;

– Whenever s i!d−−→ t in M, then s
ε,τ,d−−−−→ t and s

e,τ,de−−−−→ t for all e ∈ D′.
– Whenever s o?d−−−→ t in M, then s

d,τ,ε−−−−→ t.

We omit the proof that every transition of TE∪ES (τi,o(∂i,o(V↑,∅ ‖ S))) can be
matched by a transition in T (M) in the sense required by the definition of
branching bisimilarity. ��

In process theory it is standard practice to restrict attention to guarded recur-
sive specifications. Roughly, a TSPτ recursive specification is guarded if every
occurrence of a name occurs in the argument of an action prefix a. (a ∈ A).
For a precise definition of guardedness we refer to [1].

Every guarded recursive specification over TSPτ can be brought into restricted
Greibach normal form, that is, satisfying the requirement that every right-hand
side of an equation only has summands that are 1 or of the form a.ξ, where
a ∈ Aτ and ξ = 1, or ξ is a name, or ξ is a sequential composition of two names.
A convenient property of recursive specification in restricted Greibach normal
form is that every reachable state in the labeled transition system associated
with a name N in such a recursive specification will be denoted by a (general-
ized) sequential composition of names (see, e.g., the labeled transition system in
Figure 17).

24 J.C.M. Baeten et al.

Let p be a TSPτ process expression in the context of a guarded recursive
specification E. Then the associated labeled transition system TE(p) has finite
branching (see, e.g., [1] for a proof). It follows that, e.g., the labeled transi-
tion system in Figure 6 is not definable by a guarded recursive specification in
restricted Greibach normal form. It is possible with the following unguarded
specification:

X
def= 1 +X · a.1 . (2)

This should be contrasted with a standard result in the theory of automata
and formal languages that, after translation to our process-theoretic setting,
states that even if E is not guarded, then still there exists a guarded recursive
specification E′ in Greibach normal such that TE(p) and TE′(p) are language
equivalent.

In this paper we choose to follow the standard practice of using guarded
recursive specifications, even though this means that we cannot find a complete
correspondence with respect to infinite branching pushdown processes. We leave
the generalization of our results to an unguarded setting as future work.

Still, restricting to guarded recursive specifications in restricted Greibach
normal form is not sufficient to get the desired correspondence between pro-
cesses definable by TSPτ recursive specifications and processes definable as a
popchoice-free pushdown automaton. Consider the following guarded recursive
specification, which is in restricted Greibach normal form:

X
def= a.X · Y + b.1 ,

Y
def= 1 + c.1 .

The labeled transition system associated with X , which is depicted in Figure 17,
has unbounded branching. So, according to our conjecture, cannot be a push-
down process.

Note that the unbounded branching is due to the 1-summand in the defining
equation for Y by which Y n c−−→ Y m for all m < n. A name N in a recursive

X X · Y X · Y 2 X · Y 3

1 Y Y 2 Y 3

a a a

b b b b

ccc

c c

c

a

c

Fig. 17. Process with unbounded branching

A Process-Theoretic Look at Automata 25

specification is called transparent if its defining equation has a 1-summand; oth-
erwise it is called opaque. To exclude recursive specifications generating labeled
transition systems with unbounded branching, we will require that transparent
names may only occur as the last element of reachable sequential compositions
of names.

Definition 13 (Transparency restricted). Let E be a recursive specifica-
tion over TSPτ in restricted Greibach normal form. We call such a specification
transparency-restricted if for all (generalized) sequential compositions of names
ξ reachable from a name in E it holds that all but the last name in ξ is opaque.

As an example, note that the specification of the stack over D′ defined in (1)
above is not transparency restricted, because it is not in Greibach normal form.
But the same process can be defined with a transparency-restricted recursive
specification: it suffices to add, for all d ∈ D′, a name Td to replace S · o!d.1.
Thus we obtain the following transparency-restricted specification of the stack
over D′:

S
def= 1 +

∑
d∈D′

i?d.Td · S ,

Td
def= o!d.1 +

∑
e∈D′

i?e.Te · Td .

It can easily be seen that the labeled transition system associated with a name
in a transparency-restricted specification has bounded branching: the branching
degree of a state denoted by a reachable sequential composition of names is equal
to the branching degree of its first name, and the branching degree of a name
is bounded by the number of summands of the right-hand side of its defining
equation. Since 1-summands can be eliminated modulo language equivalence
(according to the procedure for eliminating λ- or ε-productions from context-free
grammars), there exists, for every TSPτ recursive specificationE a transparency-
restricted specification E′ such that TE(p) and TE′(p) are language equivalent
(with p an arbitrary process expression in the context of E).

For investigations under what circumstances we can extend the set of push-
down processes to incorporate processes with unbounded branching, see [4]. In
this paper a (partially) forgetful stack is used to deal with transparent variables
on the stack. However, if we allow for τ -transitions in the recursive specifications,
we can use the stack as is presented above. Note also that the paper does not
require the recursive specifications to be transparency-restricted, but this comes
at the cost of using a weaker equivalence (namely contrasimulation [9] instead
of branching bisimulation) in some cases.

We are now in a position to establish a process-theoretic counterpart of the
correspondence between pushdown automata and context-free grammars.

Theorem 6. A process is a popchoice-free pushdown process if, and only if, it
is definable by a transparency-restricted recursive specification.

26 J.C.M. Baeten et al.

Proof. For the implication from right to left, let E be a transparency-restricted
recursive specification, and let I be a name in E. We define a pushdown automa-
ton M = (S,A′,D′,→, ↑, ↓) as follows:

1. The set S consists of the names occurring in E, the symbol 1, an extra initial
state ↑, and an extra intermediate state t.

2. The set A′ consists of all the actions occurring in E.
3. The set D′ consists of the names occurring in E and the symbol 1.
4. The transition relation → is defined as follows:

(a) there is a transition ↑ ε,τ,1−−−−→ I;
(b) if the right-hand side of the defining equation for a name N has a sum-

mand a.1, then → has transitions N 1,a,ε−−−−→ 1 and N
N ′,a,ε−−−−−→ N ′,

(c) if the right-hand side of the defining equation for a name N has a sum-

mand a.N ′, then there are transitions N d,a,N ′d−−−−−−→ t and t
N ′,τ,ε−−−−−→ N ′

(d ∈ D′), and
(d) if the right-hand side of the defining equation for a name N has a sum-

mand a.N ′ ·N ′′, then there are transitions N d,a,N ′′d−−−−−−→ N ′ (d ∈ D′).
5. The set of final states ↓ consists of 1 and all variables with a 1-summand.

We leave it to the reader to check that TE(I) ↔b T (M). Using the procedure
described earlier in this section, the set of transitions can be limited to include
push and pop transitions only. The pushdown automaton resulting from the
procedure is popchoice-free, for an N -pop transition leads to state N .

The proof of the implication from left to right is an adaptation of the classical
proof that associates a context-free grammar with a given pushdown automaton.
LetM = (S,A′,D′,→, ↑, ↓) be a popchoice-free pushdown automaton. We define
a transparency-restricted specification E with for every state s ∈ S a name Nsε

and for every state s a name Nsdt if M has transitions that pop datum d leading
to the state t. The defining equations in E for these names satisfy the following:

1. The right-hand side of the defining equation for Nsε has
(a) a summand 1 if, and only if, s↓, and
(b) a summand a.Ntdw ·Nwε whenever s ε,a,d−−−−→ t and all d-pop transitions

lead to w.
2. Nsε

def= 0 if Nsε has no other summands.
3. The right-hand side of the defining equation for Nsdt has

(a) a summand a.1 if, and only if, s d,a,ε−−−−→ t, and
(b) a summand a.Nuew ·Nwdt whenever s d,a,ed−−−−−→u and all e-pop transitions

lead to state w.
4. Nsdt

def= 0 if Nsdt has no other summands.

It is easy to see that the resulting specification is transparency-restricted, and
that TE(N↑ε) ↔b T (M). ��

Consider the pushdown automaton shown in Figure 7. It is easy to see that this
pushdown automaton is popchoice-free, since both 1-pop transitions lead to the

A Process-Theoretic Look at Automata 27

same state t. Using the method described in the proof of Theorem 6 we can now
give the following recursive specification over TSPτ :

Nsε
def= 1 + a.Ns1t ·Ntε ,

Ntε
def= 1 ,

Ns1t
def= b.1 + a.Ns1t ·Nt1t ,

Nt1t
def= b.1 .

We can reduce this specification by removing occurrences of Ntε (for the right-
hand side of the defining equation of this name is just 1) and substituting oc-
currences of Nt1t by b.1. We get

Nsε
def= 1 + a.Ns1t ,

Ns1t
def= b.1 + a.Ns1t · b.1 .

Now, we see that Ns1t = (1+a.Ns1t) · b.1 = Nsε · b.1 and therefore we have that
Nsε

def= 1 + a.Nsε · b.1 which is equal to the specification we gave before.
Thus, we have established a correspondence between a popchoice-free push-

down processes on the one hand, and transparency-restricted recursive speci-
fication over TSPτ on the other hand, thereby casting the classical result of
the equivalence of pushdown automata and context-free grammars in terms of
processes and bisimulation.

5 Computable Processes

We proceed to give a definition of a Turing machine that we can use to generate a
transition system. The classical definition of a Turing machine uses the memory
tape to hold the input string at start up. We cannot use this simplifying trick, as
we do not want to fix the input string beforehand, but want to be able to input
symbols one symbol at a time. Therefore, we make an adaptation of a so-called
off-line Turing machine, which starts out with an empty memory tape, and can
take an input symbol one at a time. Another important consideration is that we
allow termination only when the tape is empty again and we are in a final state:
this is like the situation we had for the pushdown automaton.

Definition 14 (Turing machine). A Turing machine M is defined as a six-
tuple (S,A′,D′,→, ↑, ↓) where:

1. S is a finite set of states,
2. A′ is a finite subset of A,
3. D′ is a finite subset of D,

28 J.C.M. Baeten et al.

4. → ⊆ S × (D′ ∪ {ε})× (A′ ∪ {τ})× (D′ ∪ {ε})× {L,R}× S is a finite set of
transitions or steps,

5. ↑ ∈ S is the initial state,
6. ↓ ⊆ S is the set of final states.

If (s, d, a, e,M, t) ∈ →, we write s d,a,e,M−−−−−−→ t, and this means that the machine,
when it is in state s and reading symbol d on the tape, will execute input action
a, change the symbol on the tape to e, will move one step left if M = L and right
if M = R and thereby move to state t. It is also possible that d and/or e is ε: if
d is ε, we are looking at an empty part of the tape, but, if the tape is nonempty,
then there is a symbol immediately to the right or to the left; if e is ε, then a
symbol will be erased, but this can only happen at an end of the memory string.
The exact definitions are given below.

At the start of a Turing machine computation, we will assume the Turing
machine is in the initial state, and that the memory tape is empty (denoted
by �).

By looking at all possible executions, we can define the transition system of
a Turing machine. Also Caucal [6] defines the transition system of a Turing
machine in this way, but he considers transition systems modulo isomorphism,
and leaves out all internal τ -moves.

Definition 15. Let M = (S,A′,D′,→, ↑, ↓) be a Turing machine. The labeled
transition system of M is defined as follows:

1. The set of states is {(s, �̄) | s ∈ S} ∪ {(s,�δ�) | s ∈ S, δ ∈ D′∗ − {ε}},
where in the second component there is an overbar on one of the elements
of the string �δ� denoting the contents of the memory tape and the present
location. The box indicates a blank portion of the tape.

2. A symbol can be replaced by another symbol if the present location is not a
blank. Moving right, there are two cases: there is another symbol to the right
or there is a blank to the right.

– (s,�δd̄�) a−−→ (t,�δe�̄) iff s
d,a,e,R−−−−−→ t (d, e ∈ D′, δ ∈ D′∗),

– (s,�δd̄fζ�) a−−→ (t,�δef̄ζ�) iff s
d,a,e,R−−−−−→ t, for all d, e ∈ D′, δ, ζ ∈ D′∗.

Similarly, there are two cases for a move left.

– (s,�d̄δ�) a−−→ (t, �̄eδ�) iff s
d,a,e,L−−−−−→ t (d, e ∈ D′, δ ∈ D′∗),

– (s,�δf d̄ζ�) a−−→ (t,�δf̄eζ�) iff s
d,a,e,L−−−−−→ t, for all d, e ∈ D′, δ, ζ ∈ D′∗.

3. To erase a symbol, it must be at the end of the string. For a move right,
there are three cases.

– (s,�d̄�) a−−→ (t, �̄) iff s
d,a,ε,R−−−−−→ t (d ∈ D′),

– (s,�δd̄�) a−−→ (t,�δ�̄) iff s
d,a,ε,R−−−−−→ t (d ∈ D′, δ ∈ D′∗ − {ε}),

– (s,�d̄fδ�) a−−→ (t,�f̄ δ�) iff s
d,a,ε,R−−−−−→ t (d ∈ D′, δ ∈ D′∗).

A Process-Theoretic Look at Automata 29

Similarly for a move left.
– (s,�d̄�) a−−→ (t, �̄) iff s

d,a,ε,L−−−−−→ t (d ∈ D′),
– (s,�d̄δ�) a−−→ (t, �̄δ�) iff s

d,a,ε,L−−−−−→ t (d ∈ D′, δ ∈ D′∗ − {ε}),
– (s,�δf d̄�) a−−→ (t,�δf̄�) iff s

d,a,ε,L−−−−−→ t (d ∈ D′, δ ∈ D′∗).
4. To insert a new symbol, we must be looking at a blank. We can only move

right, if we are to the left of a (possible) data string. This means there are
two cases for a move right.
– (s, �̄) a−−→ (t,�d�̄) iff s

ε,a,d,R−−−−−→ t (d ∈ D′),
– (s, �̄fδ�) a−−→ (t,�df̄δ�) iff s

ε,a,d,R−−−−−→ t (d ∈ D′, δ ∈ D′∗).
Similarly for a move left.
– (s, �̄) a−−→ (t, �̄d�) iff s

ε,a,d,L−−−−−→ t (d ∈ D′),
– (s,�δf�̄) a−−→ (t,�δf̄�) iff s

ε,a,d,L−−−−−→ t (d ∈ D′, δ ∈ D′∗).
5. Finally, looking at a blank, we can keep it a blank. Two cases for a move

right.
– (s, �̄) a−−→ (t, �̄) iff s

ε,a,ε,R−−−−−→ t,
– (s, �̄fδ�) a−−→ (t,�f̄δ�) iff s

ε,a,ε,R−−−−−→ t (d ∈ D′, δ ∈ D′∗).
Similarly for a move left.
– (s, �̄) a−−→ (t, �̄) iff s

ε,a,ε,L−−−−−→ t,
– (s,�δf�̄) a−−→ (t,�δf̄�) iff s

ε,a,ε,L−−−−−→ t (d ∈ D′, δ ∈ D′∗).
6. The initial state is (↑, �̄);
7. (s, �̄) ↓ iff s ↓.

Now we define a computable process as the branching bisimulation equivalence
class of a transition system of a Turing machine.

In order to make the internal communications of a Turing machine explicit, we
need now two stacks, one on the left containing the contents of the memory tape
to the left of the current symbol and one on the right containing the contents of
the memory tape to the right of the current symbol:

Sl def= 1 +
∑
d∈D

li?d.Sl · lo!d.Sl ,

Sr def= 1 +
∑
d∈D

ri?d.Sr · ro!d.Sr .

Then, we get the following characterization of computable processes.

Theorem 7. If process p is a computable process, then there is a regular process
q with

p ↔b τli,lo,ri,ro(∂li,lo,ri,ro(q ‖ Sl ‖ Sr)) .

Proof. Suppose there is a Turing machine M = (S,A′,D′,→, ↑, ↓) generating a
transition system that is branching bisimilar to p. We proceed to define a BSP
specification for the regular process q. This specification has variables Vs,d for

30 J.C.M. Baeten et al.

s ∈ S and d ∈ D′ ∪ {∅}. Moreover, there are variables Ws,∅ denoting that the
tape is empty on both sides.

1. The initial variable is W↑,∅;
2. Whenever s d,a,e,r−−−−−→ t (d, e ∈ D′), variable Vs,d has a summand

a.li!e.
∑

f∈D′∪{∅}
ro?f.Vt,f

3. Whenever s d,a,e,L−−−−−→ t (d, e ∈ D′), variable Vs,d has a summand

a.ri!e.
∑

f∈D′∪{∅}
lo?f.Vt,f

4. Whenever s d,a,ε,R−−−−−→ t (d ∈ D′), variable Vs,d has a summand

a.(ro?∅.(lo?∅.Wt,∅ +
∑

f∈D′
lo?f.li!f.ri!∅.Vt,∅) +

∑
f∈D′

ro?f.Vt,f)

5. Whenever s d,a,ε,L−−−−−→ t (d ∈ D′), variable Vs,d has a summand

a.(lo?∅.(ro?∅.Wt,∅ +
∑

f∈D′
ro?f.ri!f.li!∅.Vt,∅) +

∑
f∈D′

lo?f.Vt,f)

6. Whenever s ε,a,d,R−−−−−→ t, variable Vs,∅ has a summand

a.li!d.(ro?∅.ri!∅.Vt,∅ +
∑

f∈D′
ro?f.Vt,f)

and variable Ws,∅ has a summand a.li!∅.li!d.ri!∅.Vt,∅;
7. Whenever s ε,a,d,L−−−−−→ t, variable Vs,∅ has a summand

a.ri!d.(lo?∅.li!∅.Vt,∅ +
∑

f∈D′
lo?f.Vt,f)

and variable Ws,∅ has a summand a.ri!∅.ri!d.li!∅.Vt,∅;
8. Whenever s ε,a,ε,R−−−−−→ t, variable Vs,∅ has a summand

a.(ro?∅.ri!∅.Vt,∅ +
∑

f∈D′
ro?f.Vt,f)

and variable Ws,∅ has a summand a.Wt,∅;
9. Whenever s ε,a,ε,L−−−−−→ t, variable Vs,∅ has a summand

a.(lo?∅.li!∅.Vt,∅ +
∑

f∈D′
lo?f.Vt,f)

and variable Ws,∅ has a summand a.Wt,∅;

A Process-Theoretic Look at Automata 31

10. Whenever s ↓, then variable Ws,∅ has a summand 1.

As before, it can checked that this definition of q satisfies the theorem. ��

The converse of this theorem does not hold in full generality, as a regular process
can communicate with a pair a stacks in ways that cannot be mimicked by a tape.
For instance, by means of the stacks, an extra cell on the tape can be inserted or
removed. We can obtain a converse of this theorem, nonetheless, if we interpose,
between the regular process and the two stacks, an additional regular process
Tape, that can only perform actions that relate to tape manipulation, viz.

1. o!d (d ∈ D′), the current symbol can be read;
2. o!ε, we are looking at a blank cell at the end of the string;
3. i?e (e ∈ D′), the current symbol can be replaced;
4. i?ε, the current symbol can be erased if we are at an end of the string;
5. i?L, a move one cell to the left, executed by pushing the current symbol on

top of the right-hand stack and popping the left-hand stack;
6. i?R, a move one cell to the right, executed by pushing the current symbol

on top of the left-hand stack and popping the right-hand stack.

Thus, we have given a characterization of what is a computable process.
In [2], a computable process was defined in a different way. Starting from

a classical Turing machine, the internal communication is made explicit just
like we did, by a regular process communicating with two stacks. This shows
that a computable function can be described in this way. Next, a computable
transition system is coded by means of a computable branching degree function
and a computable outgoing edge labeling function. Next, this is again mimicked
by a couple of regular processes communicating with a stack. Using this, a similar
characterization of computable processes can be reached.

Theorem 8. A process is computable in the sense of [2] iff it is computable as
defined here.

Proof. Sketch.
If a process is computable in the sense of [2] then we can find a regular

process communicating with two stacks such that their parallel composition,
after abstraction, is branching bisimilar to it. Moreover, the two stacks together
can behave as a tape. Using the theorem above, this means that the process is
computable in our sense.

For the other direction, if a process is computable in our sense, then there
is a Turing machine for it as defined above. From this Turing machine, we can
compute in each state the branching degree and the labels of the outgoing edges.
Thus, these functions are computable, and the process is computable in the sense
of [2]. ��

What remains to be done, is to find a characterization of all recursive specifi-
cations over TCP that, after abstraction, give a computable process. In [2], it
was found that all guarded recursive specifications over the algebra there yielded

32 J.C.M. Baeten et al.

computable processes, but that was in the absence of the constant 1. We already
found, in the previous section, that guardedness is not enough in the presence
of 1, and we needed to require transparency-restrictedness. It remains to find a
way to extend this notion to all of TCP, so including parallel composition.

6 Conclusion

Every undergraduate curriculum in computer science contains a course on au-
tomata theory and formal languages. On the other hand, an introduction to
concurrency theory is usually not given in the undergraduate program. Both
theories as basic models of computation are part of the foundations of computer
science. Automata theory and formal languages provide a model of computation
where interaction is not taken into account, so a computer is considered as a
stand-alone device executing batch processes. On the other hand, concurrency
theory provides a model of computation where interaction is taken into account.
Concurrency theory is sometimes called the theory of reactive processes.

Both theories can be integrated into one course in the undergraduate curricu-
lum, providing students with the foundation of computing. This paper provides
a glimpse of what happens to the Chomsky hierarchy in a concurrency setting,
taking a labeled transition system as a central notion, and dividing out bisimu-
lation semantics on such transition systems.

References

1. Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra (Equational Theories
of Communicating Processes). Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, Cambridge (2009)

2. Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: On the consistency of Koomen’s fair
abstraction rule. Theoretical Computer Science 51, 129–176 (1987)

3. Baeten, J.C.M., Corradini, F., Grabmayer, C.A.: A characterization of regular
expressions under bisimulation. Journal of the ACM 54(2), 1–28 (2007)

4. Baeten, J.C.M., Cuijpers, P.J.L., van Tilburg, P.J.A.: A context-free process as
a pushdown automaton. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008.
LNCS, vol. 5201, pp. 98–113. Springer, Heidelberg (2008)

5. Basten, T.: Branching bisimilarity is an equivalence indeed!. Information Process-
ing Letters 58(3), 141–147 (1996)

6. Caucal, D.: On the transition graphs of Turing machines. In: Margenstern, M.,
Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 177–189. Springer, Heidelberg
(2001)

7. van Glabbeek, R.J.: The Linear Time – Branching Time Spectrum II. In: Best, E.
(ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)

8. van Glabbeek, R.J.: What is Branching Time Semantics and why to use it?. Bulletin
of the EATCS 53, 190–198 (1994)

9. van Glabbeek, R.J.: The Linear Time – Branching Time Spectrum I. In: Bergstra,
J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 3–99. Else-
vier, Amsterdam (2001)

A Process-Theoretic Look at Automata 33

10. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. Journal of the ACM 43(3), 555–600 (1996)

11. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation. Pearson, London (2006)

12. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

13. Moller, F.: Infinite results. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996.
LNCS, vol. 1119, pp. 195–216. Springer, Heidelberg (1996)

14. Muller, D.E., Schupp, P.E.: The theory of ends, pushdown automata, and second-
order logic. Theoretical Computer Science 37, 51–75 (1985)

15. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60-61, 17–139 (2004)

Verification, Performance Analysis and
Controller Synthesis for Real-Time Systems

Uli Fahrenberg, Kim G. Larsen�, and Claus R. Thrane

Department of Computer Science, Aalborg University, Denmark
kgl@cs.aau.dk

Abstract. This article aims at providing a concise and precise Trav-
ellers Guide, Phrase Book or Reference Manual to the timed automata
modeling formalism introduced by Alur and Dill [7, 8]. The paper gives
comprehensive definitions of timed automata, priced (or weighted) timed
automata, and timed games and highlights a number of results on associ-
ated decision problems related to model checking, equivalence checking,
optimal scheduling, and the existence of winning strategies.

1 Introduction

The model of timed automata, introduced by Alur and Dill [7, 8], has by now
established itself as a classical formalism for describing the behaviour of real-
time systems. A number of important algorithmic problems has been shown
decidable for it, including reachability, model checking and several behavioural
equivalences and preorders.

By now, real-time model checking tools such as UppAal [17,57] and Kronos

[32] are based on the timed automata formalism and on the substantial body of
research on this model that has been targeted towards transforming the early
results into practically efficient algorithms — e.g. [13, 14, 19, 21] — and data
structures — e.g. [20,54, 56].

The maturity of a tool like UppAal is witnessed by the numerous applications
— e.g. [38,40,45,48,52,55,60,61] — to the verification of industrial case-studies
spanning real-time controllers and real-time communication protocols. More re-
cently, model-checking tools in general and UppAal in particular have been
applied to solve realistic scheduling problems by a reformulation as reachability
problems — e.g. [1,42,47, 62].

Aiming at providing methods for performance analysis, a recent extension of
timed automata is that of priced or weighted timed automata [9,18], which makes
it possible to formulate and solve optimal scheduling problems. Surprisingly,
a number of properties have been shown to be decidable for this formalism
[9,18,29,41,58]. The recently developed UppAal Cora tool provides an efficient
tool for solving cost-optimal reachability problems [53] and has been applied
successfully to a number of optimal scheduling problems, e.g. [15,22,44].

� Corresponding author.

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 34–61, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Verification, Performance Analysis and Controller Synthesis 35

Most recently, substantial efforts have been made on the automatic synthe-
sis of (correct-by-construction) controllers from timed games for given control
objectives. From early decidability results [12, 63] the effort has lead to efficient
on-the-fly algorithms [34, 68] with the newest of the UppAal toolset, UppAal

Tiga [16], providing an efficient tool implementation with industrial applications
emerging, e.g. [50].

This survey paper aims at providing a concise and precise Travellers Guide,
Phrase Book or Reference Manual to the land and language of timed automata.
The article gives comprehensive definitions of timed automata, weighted timed
automata, and timed games and highlights a number of results on associated de-
cision problems related to model checking, equivalence checking, optimal schedul-
ing, and the existence of winning strategies. The intention is that the paper
should provide an easy-to-access collection of important results and overview of
the field to anyone interested.

The authors are indebted to an anonymous reviewer who provided a number
of useful comments for improving the paper.

2 Timed Automata

In this section we review the notion of timed automata introduced by Alur
and Dill [7,8] as a formalism for describing the behaviour of real-time systems.
We review the syntax and semantics and highlight the, by now classical, region
construction underlying the decidability of several associated problems.

Here we illustrate how regions are applied in showing decidability of reacha-
bility and timed and untimed (bi)similarity. However, though indispensable for
showing decidability, the notion of region does not provide the means for effi-
cient tool implementations. The verification engine of UppAal instead applies
so-called zones, which are convex unions of regions. We give a brief account of
zones as well as their efficient representation and manipulation using difference-
bound matrices.

2.1 Syntax and Semantics

Definition 1. The set Φ(C) of clock constraints ϕ over a finite set (of clocks)
C is defined by the grammar

ϕ ::= x � k | ϕ1 ∧ ϕ2 (x ∈ C, k ∈ �, � ∈ {≤, <,≥, >}).

The set Φ+(C) of extended clock constraints ϕ is defined by the grammar

ϕ ::= x � k | x− y � k | ϕ1 ∧ ϕ2 (x, y ∈ C, k ∈ �, � ∈ {≤, <,≥, >}).

Remark 1. The clock constraints in Φ(C) above are also called diagonal-free
clock constraints, and the additional ones in Φ+(C) are called diagonal. We re-
strict ourselves to diagonal-free clock constraints here; see Remark 4 for one rea-
son. For additional modelling power, timed automata with diagonal constraints
can be used, as it is shown in [8,26] that any such automaton can be converted to
a diagonal-free one; however the conversion may lead to an exponential blow-up.

36 U. Fahrenberg, K.G. Larsen, and C.R. Thrane

Off

Light
x ≤ 100

Bright
x ≤ 100

press?
x := 0 press?

x ≤ 3

x := 0

press?
x > 3

x := 0
x = 100

x := 0

press?

x := 0

x = 100
x := 0

Fig. 1. A light switch modelled as a timed automaton

Definition 2. A timed automaton is a tuple (L, �0, F, C,Σ, I, E) consisting of a
finite set L of locations, an initial location �0 ∈ Q, a set F ⊆ Q of final locations,
a finite set C of clocks, a finite set Σ of actions, a location invariants mapping
I : L → Φ(C), and a set E ⊆ L× Φ(C) ×Σ × 2C × L of edges.

We shall denote an edge (�, ϕ, a, r, �′) ∈ E by �
ϕ,a,r−−−→ �′. Also, 2C denotes the

set of all subsets of C; in general, we will write BA for the set of mappings from
a set A to a set B.

Example 1. Figure 1 provides a timed automaton model of an intelligent light
switch. Starting in the “Off” state, a press of the button turns the light on, and
it remains in this state for 100 time units (i.e. until clock x = 100), at which
time the light turns off again. During this time, an additional press resets the
clock x and prolongs the time in the state by 100 time units. Pressing the button
twice, with at most three time units between the presses, triggers a special bright
light.

Definition 3. A clock valuation on a finite set C of clocks is a mapping v :
C → �≥0. The initial valuation v0 is given by v0(x) = 0 for all x ∈ C. For a
valuation v, d ∈ �≥0, and r ⊆ C, the valuations v + d and v[r] are defined by

(v + d)(x) = v(x) + d

v[r](x) =

{
0 for x ∈ r,

v(x) for x /∈ r.

Verification, Performance Analysis and Controller Synthesis 37

Definition 4. The zone of an extended clock constraint in Φ+(C) is a set of
clock valuations C → �≥0 given inductively by

�x � k� = {v : C → �≥0 | v(x) � k},
�x − y � k� = {v : C → �≥0 | v(x) − v(y) � k}, and

�ϕ1 ∧ ϕ2� = �ϕ1� ∩ �ϕ2�.
We shall write v |= ϕ instead of v ∈ �ϕ�.
Definition 5. The semantics of a timed automaton A = (L, �0, F, C,Σ, I, E) is
the transition system �A� = (S, s0, Σ ∪�≥0, T = Ts ∪ Td) given as follows:

S =
{
(�, v) ∈ L×�C

≥0

∣∣ v |= I(�)
}

s0 = (�0, v0)

Ts =
{
(�, v) a−→ (�′, v′)

∣∣ ∃� ϕ,a,r−−−→ �′ ∈ E : v |= ϕ, v′ = v[r]
}

Td =
{
(�, v) d−→ (�, v + d)

∣∣ ∀d′ ∈ [0, d] : v + d′ |= I(�)
}

Remark 2. The transition system �A� from above is an example of what is known
as a timed transition system, i.e. a transition system where the label set includes
�≥0 as a subset and which satisfies certain additivity and time determinacy
properties. We refer to [2] for a more in-depth treatment.

Also note that the semantics �A� contains no information about final states
(derived from the final locations in F); this is mostly for notational convenience.

Definition 6. A (finite) run of a timed automaton A = (L, �0, F, C,Σ, I, E) is
a finite path ρ = (�0, v0) → · · · → (�k, vk) in �A�. It is said to be accepting if
�k ∈ F .

Example 1 (continued). The light switch model from figure 1 has as state set

S = {Off} ×�≥0 ∪ {Light,Bright} × [0, 100]

where we identify valuations with their values at x. A few example runs are given
below; we abbreviate “press?” to “p”:

(Off, 0) 150−−→ (Off, 150)
p−→ (Light, 0) 100−−→ (Light, 100) −→ (Off, 0)

(Off, 0)
p−→ (Light, 0) 10−→ (Light, 10)

p−→ (Light, 0) 100−−→ (Light, 100) −→ (Off, 0)

(Off, 0)
p−→ (Light, 0) 1−→ (Light, 1)

p−→ (Bright, 0) 100−−→ (Bright, 100) −→ (Off, 0)

2.2 Reachability

We are concerned with the following problem: Given a timed automaton A =
(L, �0, F, C,Σ, I, E), is any of the locations in F reachable? We shall later define
the timed language generated by a timed automaton and see that this reachabil-
ity problem is equivalent to emptiness checking : Is the timed language generated
by A non-empty?

38 U. Fahrenberg, K.G. Larsen, and C.R. Thrane

�0

�1

a

y ≤ 2

y := 0

b

x ≤ 2

x := 0

c x ≥ 4 ∧ y ≤ 2

Fig. 2. A timed automaton with two clocks

Example 2 (cf. [2, Ex. 11.7]). Figure 2 shows a timed automaton A with two
clocks and a final location �1. To ask whether �1 is reachable amounts for this au-
tomaton to the question whether there is a finite sequence of a- and b-transitions
from �0 which brings clock values into accordance with the guard x ≥ 4 ∧ y ≤ 2
on the edge leading to �1.

An immediate obstacle to reachability checking is the infinity of the state space
of A. In general, the transition system �A� has uncountably many states, hence
straight-forward reachability algorithms do not work for us.

Notation 1. The derived transition relations in a timed automaton A = (L, �0,
F, C,Σ, I, E) are defined as follows: For (�, v), (�′, v′) states in �A�, we say that

– (�, v) δ−→ (�′, v′) if (�, v) d−→ (�′, v′) in �A� for some d > 0,
– (�, v) α−→ (�′, v′) if (�, v) a−→ (�′, v′) in �A� for some a ∈ Σ, and
– (�, v) � (�′, v′) if (�, v) (δ−→ ∪ α−→)∗ (�′, v′).

Definition 7. The set of reachable locations in a timed automaton A = (L, �0,
F, C,Σ, I, E) is

Reach(A) =
{
� ∈ L

∣∣ ∃v : C → �≥0 : (�0, v0) � (�, v)
}
.

Hence we can now state the reachability problem as follows:

Problem 1 (Reachability). Given a timed automaton A = (L, �0, F, C,Σ, I, E),
is Reach(A) ∩ F �= ∅ ?

Definition 8. Let A = (L, �0, F, C,Σ, I, E) be a timed automaton. A reflexive,
transitive relation R ⊆ L × �C

≥0 × L × �C
≥0 is a time-abstracted simulation

provided that for all (�1, v1) R (�2, v2),

– for all (�1, v1)
δ−→ (�′1, v′1) there exists some (�′2, v′2) such that (�′1, v′1) R (�′2, v′2)

and (�2, v2)
δ−→ (�′2, v

′
2), and

Verification, Performance Analysis and Controller Synthesis 39

2 4
x

2

y

{a, b} {a} {a, c}

{b} ∅

2 4
x

2

y

Fig. 3. Time-abstracted bisimulation classes for the two-clock timed automaton from
Example 2. Left: equivalence classes for switch transitions only; right: equivalence
classes for switch and delay transitions.

– for all a ∈ Σ and (�1, v1)
a−→ (�′1, v′1), there exists some (�′2, v′2) such that

(�′1, v
′
1) R (�′2, v

′
2) and (�2, v2)

a−→ (�′2, v
′
2).

The relation R is called a time-abstracted bisimulation if it is also symmetric;
it is said to be F -sensitive if additionally, (�1, v1) R (�2, v2) implies that �1 ∈ F
if and only if �2 ∈ F .

Note that for ease of exposition, we require (bi)simulation relations to be reflexive
and transitive here; hence bisimulations are equivalence relations. Except for this,
a time-abstracted (bi)simulation on A is the same as a standard (bi)simulation
on the transition system derived from �A� with transitions δ−→ and a−→. Likewise,
the quotient introduced below is just the bisimulation quotient of that derived
transition system.

Definition 9. Let A = (L, �0, F, C,Σ, I, E) be a timed automaton and R ⊆ L×
�

C
≥0×L×�C

≥0 a time-abstracted bisimulation. The quotient of �A� = (S, s0, Σ∪
�≥0, T) with respect to R is the transition system �A�R = (SR, s

0
R, Σ ∪ {δ}, TR)

given by SR = S/R, s0R = [s0]R, and with transitions

– π
δ−→ π′ whenever (�, v) δ−→ (�′, v′) for some (�, v) ∈ π, (�′, v′) ∈ π′, and

– π
a−→ π′ whenever (�, v) a−→ (�′, v′) for some (�, v) ∈ π, (�′, v′) ∈ π′.

The following proposition expresses that F -sensitive quotients are sound and
complete with respect to reachability.

Proposition 1 ([4]). Let A = (L, �0, F, C,Σ, I, E) be a timed automaton, R ⊆
L×�C

≥0×L×�C
≥0 an F -sensitive time-abstracted bisimulation and � ∈ F . Then

� ∈ Reach(A) if and only if there is a reachable state π in �A�R and v : C → �≥0
such that (�, v) ∈ π.

40 U. Fahrenberg, K.G. Larsen, and C.R. Thrane

Example 2 (continued). We shall now try to construct, in a näıve way, a time-
abstracted bisimulation R for the timed automaton A from Figure 2 which is
as coarse as possible. Note first that we cannot have (�0, v) R (�1, v′) for any
v, v′ : C → �≥0 because �1 ∈ F and �0 /∈ F . On the other hand it is easy to see
that we can let (�1, v) R (�1, v′) for all v, v′ : C → �≥0, which leaves us with
constructing R on the states involving �0.

We handle switch transitions α−→ first: If v, v′ : C → �≥0 are such that v(y) ≤ 2
and v′(y) > 2, the state (�0, v) has an a-transition available while the state (�0, v′)
has not, hence these cannot be related in R. Similarly we have to distinguish
states (�0, v) from states (�0, v′) where v(x) ≤ 2 and v′(x) > 2 because of b-
transitions, and states (�0, v) from states (�0, v′) where v(x) < 4 and v′(x) ≥ 4
because of c-transitions. Altogether this gives the five classes depicted to the left
of Figure 3, where the shading indicates to which class the boundary belongs,
and we have written the set of available actions in the classes.

When also taking delay transitions δ−→ into account, one has to partition the
state space further: From a valuation v in the class marked {a, b} in the left of
the figure, a valuation in the class marked {a} can only be reached by a delay
transition if v(y) < v(x); likewise, from the {a} class, the {a, c} class can only
be reached if v(y) ≤ v(x) − 2. Hence these two classes need to be partitioned as
shown to the right of Figure 3.

It can easily be shown that no further partitioning is needed, thus we have
defined the coarsest time-abstracted bisimulation relation for A, altogether with
eight equivalence classes.

2.3 Regions

Motivated by the construction in the example above, we now introduce a time-
abstracted bisimulation with a finite quotient. To ensure finiteness, we need the
maximal constants to which respective clocks are compared in the invariants and
guards of a given timed automaton. These may be defined as follows.

Definition 10. For a finite set C of clocks, the maximal constant mapping
cmax : C → �

Φ(C) is defined inductively as follows:

cmax(x)(y � k) =

{
k if y = x

0 if y �= x

cmax(x)(ϕ1 ∧ ϕ2) = max
(
c(x)(ϕ1), c(x)(ϕ2)

)
For a timed automaton A = (L, �0, F, C,Σ, I, E), the maximal constant mapping
is cA : C → � defined by

cA(x) = max
{
cmax(x)(I(�)), cmax(x)(ϕ)

∣∣ � ∈ L, �
ϕ,a,r−−−→ �′ ∈ E

}
.

Notation 2. For d ∈ �≥0 we write �d� and 〈d〉 for the integral, respectively
fractional, part of d, so that d = �d� + 〈d〉.

Verification, Performance Analysis and Controller Synthesis 41

2 4
x

2

y

Fig. 4. Clock regions for the timed automaton from Example 2

Definition 11. For a timed automaton A = (L, �0, F, C,Σ, I, E), valuations
v, v′ : C → �≥0 are said to be region equivalent, denoted v ∼= v′, if

– �v(x)� = �v′(x)� or v(x), v′(x) > cA(x), for all x ∈ C, and
– 〈v(x)〉 = 0 iff 〈v′(x)〉 = 0, for all x ∈ C, and
– 〈v(x)〉 ≤ 〈v(y)〉 iff 〈v′(x)〉 ≤ 〈v′(y)〉 for all x, y ∈ C.

Proposition 2 ([4]). For a timed automaton A = (L, �0, F, C,Σ, I, E), the
relation ∼= defined on states of �A� by (�, v) ∼= (�′, v′) if � = �′ and v ∼= v′ is an
F -sensitive time-abstracted bisimulation. The quotient �A�∼= is finite.

The equivalence classes of valuations of A with respect to ∼= are called regions,
and the quotient �A�∼= is called the region automaton associated with A.

Proposition 3 ([8]). The number of regions for a timed automaton A with a
set C of n clocks is bounded above by

n! · 2n ·
∏
x∈C

(2cA(x) + 2).

Example 2 (continued). The 69 regions of the timed automaton A from Figure 2
are depicted in Figure 4.

Propositions 1 and 2 together now give the decidability part of the theorem
below; for PSPACE-completeness see [6, 37].

Theorem 3. The reachability problem for timed automata is PSPACE-complete.

2.4 Behavioural Refinement Relations

We have already introduced time-abstracted simulations and bisimulations in
Definition 8. As a corollary of Proposition 2, these are decidable:

42 U. Fahrenberg, K.G. Larsen, and C.R. Thrane

Theorem 4. Time-abstracted simulation and bisimulation are decidable for timed
automata.

Proof. One only needs to see that time-abstracted (bi)simulation in the timed
automaton is the same as ordinary (bi)simulation in the associated region au-
tomaton; indeed, any state in �A� is untimed bisimilar to its image in �A�∼=. The
result follows by finiteness of the region automaton. ��

The following provides a time-sensitive variant of (bi)simulation.

Definition 12. Let A = (L, �0, F, C,Σ, I, E) be a timed automaton. A reflexive,
transitive relation R ⊆ L×�C

≥0 × L×�C
≥0 is a timed simulation provided that

for all (�1, v1) R (�2, v2),

– for all (�1, v1)
d−→ (�′1, v′1), d ∈ �≥0, there exists some (�′2, v′2) such that

(�′1, v
′
1) R (�′2, v

′
2) and (�2, v2)

d−→ (�′2, v
′
2), and

– for all (�1, v1)
a−→ (�′1, v′1), a∈Σ, there exists some (�′2, v′2) such that (�′1, v′1) R

(�′2, v
′
2) and (�2, v2)

a−→ (�′2, v
′
2).

R is called a timed bisimulation if it is also symmetric. Two states (�1, v1),
(�2, v2) ∈ �A� are said to be timed bisimilar, written (�1, v1) ∼ (�2, v2), if there
exists a timed bisimulation R for which (�1, v1) R (�2, v2).

Note that, except for our requirement of reflexivity and transitivity, a timed
(bi)simulation on A is the same as a standard (bi)simulation on �A�.
Definition 13. Two timed automata A = (LA, �A0 , F

A, CA, ΣA, IA, EA) and
B = (LB, �B0 , F

B, CB , ΣB, IB, EB) are said to be timed bisimilar, denoted A ∼
B, if (�A0 , v0) ∼ (�B0 , v0) in the disjoint-union transition system �A� � �B�.
Timed simulation of timed automata can be analogously defined. The following
decidability result was established for parallel timed processes in [36]; below we
give a version of the proof which has been adapted for timed automata.

Theorem 5. Timed similarity and bisimilarity are decidable for timed automata.

Before the proof, we need a few auxiliary definitions and lemmas. The first is
a product of timed transition systems which synchronizes on time, but not on
actions:

Definition 14. The independent product of the timed transition systems �A� =
(SA, sA

0 , Σ
A ∪�≥0, T

A), �B� = (SB, sB
0 , Σ

B ∪�≥0, T
B) associated with timed

automata A, B is �A� × �B� = (S, s0, ΣA ∪ΣB ∪�≥0, T) given by

S = SA × SB s0 = (sA
0 , s

B
0)

T =
{
(p, q) a−→ (p′, q)

∣∣ a ∈ Σ, p
a−→ p′ ∈ TA

}
∪
{
(p, q) b−→ (p, q′)

∣∣ b ∈ Σ, q
b−→ q′ ∈ TB

}
∪
{
(p, q) d−→ (p′, q′)

∣∣ d ∈ �≥0, p
d−→ p′ ∈ TA, q

d−→ q′ ∈ TB
}

Verification, Performance Analysis and Controller Synthesis 43

We need to extend region equivalence ∼= to the independent product. Below, ⊕
denotes vector concatenation (direct sum); note that (p1, q1) ∼= (p2, q2) is not the
same as p1 ∼= q1 and p2 ∼= q2, as fractional orderings 〈xA〉 � 〈xB〉, for xA ∈ CA,
xB ∈ CB , have to be accounted for in the former, but not in the latter. Hence
(p1, q1) ∼= (p2, q2) implies p1 ∼= q1 and p2 ∼= q2, but not vice-versa.

Definition 15. For states pi = (�pi , vpi) in �A� and qi = (�qi , vqi) in �B� for
i = 1, 2, we say that (p1, q1) ∼= (p2, q2) iff �p1 = �p2 ∧ �q1 = �q2 and vp1 ⊕ vq1 ∼=
vp2 ⊕ vq2 .

Note that the number of states in
(�A� × �B�)∼= is finite, with an upper bound

given by Proposition 3. Next we define transitions in
(�A� × �B�)∼=:

Notation 6. Regions in
(�A� × �B�)∼= will be denoted X,X ′. The equivalence

class of a pair (p, q) ∈ �A� × �B� is denoted [p, q].

Definition 16. For X,X ′ ∈
(�A� × �B�)∼= we say that

– X
a−→
 X

′ for a ∈ Σ if for all (p, q) ∈ X there exists (p′, q) ∈ X ′ such that
(p, q) a−→ (p′, q) in �A� × �B�,

– X
b−→r X

′ for b ∈ Σ if for all (p, q) ∈ X there exists (p, q′) ∈ X ′ such that
(p, q) b−→ (p, q′) in �A� × �B�, and

– X
δ−→ X ′ if for all (p, q) ∈ X there exists d ∈ �≥0 and (p′, q′) ∈ X ′ such that

(p, q) d−→ (p′, q′).

Definition 17. A subset B ⊆
(�A�× �B�)∼= is a symbolic bisimulation provided

that for all X ∈ B,

– whenever X a−→
 X
′ for some X ′ ∈

(�A� × �B�)∼=, then X ′ a−→r X
′′ for some

X ′′ ∈ B,
– whenever X a−→r X

′ for some X ′ ∈
(�A� × �B�)∼=, then X ′ a−→
 X

′′ for some
X ′′ ∈ B, and

– whenever X δ−→ X ′ for some X ′ ∈
(�A� × �B�)∼=, then X ′ ∈ B.

Note that it is decidable whether
(�A�× �B�)∼= admits a symbolic bisimulation.

The following proposition finishes the proof of Theorem 5.

Proposition 4. The quotient
(�A� × �B�)∼= admits a symbolic bisimulation if

and only if A ∼ B.

Proof (cf. [36]). For a given symbolic bisimulation B ⊆
(�A� × �B�)∼=, the set

RB =
{
(p, q)

∣∣ [p, q] ∈ B
}
⊆ �A� × �B� is a timed bisimulation. For the other

direction, one can construct a symbolic bisimulation from a timed bisimulation
R ⊆ �A� × �B� by BR =

{
[p, q]

∣∣ (p, q) ∈ R
}

44 U. Fahrenberg, K.G. Larsen, and C.R. Thrane

2.5 Language Inclusion and Equivalence

Similarly to the untimed setting, there is also a notion of language inclusion
and equivalence for timed automata. We need to introduce the notion of timed
trace first. Note that we restrict to finite timed traces here; similar results are
available for infinite traces in timed automata with Büchi or Muller acceptance
conditions, see [8].

Definition 18. A timed trace over a finite set of actions Σ is a finite sequence
((t1, a1), (t2, a2), . . . , (tk, ak)), where ai ∈ Σ and ti ∈ �≥0 for i = 1, . . . , k, and
ti < ti+1 for i = 1, . . . , k− 1. The set of all timed traces over Σ is denoted TΣ∗.

In a pair (ti, ai), the number ti is called the time stamp of the action ai, i.e. the
time at which event ai occurs.

Remark 3. Timed traces as defined above are also known as strongly monotonic
timed traces, because of the assumption that no consecutive events occur at
the same time. Weakly monotonic timed traces, i.e. with requirement ti ≤ ti+1
instead of ti < ti+1, have also been considered, and there are some subtle differ-
ences between the two; see [65] for an important example.

Definition 19. A timed trace ((t1, a1), . . . , (tk, ak)) is accepted by a timed au-
tomaton A = (L, �0, F, C,Σ, I, E) if there is an accepting run

(�0, v0)
t1−→ (�0, v0 + t1)

a1−→ (�1, v1)
t2−t1−−−→ · · ·

· · · ak−1−−−→ (�k−1, vk−1)
tk−tk−1−−−−−→ (�k−1, vk−1 + tk − tk−1)

ak−→ (�k, vk)

in A. The timed language of A is L(A) = {τ ∈ TΣ∗ | τ accepted by A}.

It is clear that L(A) = ∅ if and only if none of the locations in F is reachable,
hence Theorem 3 provides us with the decidability result in the following theo-
rem. Undecidability of universality was established in [8]; we give an account of
the proof below.

Theorem 7. For a timed automaton A = (L, �0, F, C,Σ, I, E), deciding whether
L(A) = ∅ is PSPACE-complete. It is undecidable whether L(A) = TΣ∗.

Proof. We may show that the universality problem for a timed automata is
undecidable by reduction from the Σ1

1 -hard problem of deciding whether a given
2-counter machine M has a recurring computation.

Let the timed language Lu be the set of timed traces encoding recurring
computations of M . Observe that Lu = ∅ if and only if M does not have such
a computation. We then construct a timed automaton Au which accepts the
complement of Lu, i.e. L(Au) = TΣ∗\Lu. Hence the language of Au is universal
if and only if M does not have a recurring computation.

Recall that a 2-counter, or Minsky, machine M is a finite sequence of labeled
instructions {I0, · · · , In} and counters x1 and x2, with Ii for 0 ≤ i ≤ n − 1 on
the form

Verification, Performance Analysis and Controller Synthesis 45

1

1 1
time

Ii Ii+1 Ii+2

1111 111112222 2222

Fig. 5. Timed trace encoding a increment instruction Ii+1 of a 2-counter machine

Ii : xc := xc + 1; goto Ij or Ii :

{
if xc = 0 then goto Ij

else xc = xc-1; goto Ik

for c ∈ 1, 2, with a special In : Halt instruction which stops the computation.
The language Lu is designed such that each Ii and the counters x1 and x2

are represented by actions in Σ. A correctly encoded computation is represented
by a timed trace where “instruction actions” occur at discrete intervals, while
the state (values of x1 and x2) is encoded by occurrences of “counter actions”
in-between instruction actions (e.g. if xi = 5 after instruction Ij , then action xi

occurs 5 times within the succeeding interval of length 1).
When counters are incremented (or decremented), one more (or less) such

action occurs through the next interval, and increments and decrements are
always from the right. Additionally we require corresponding counter actions to
occur exactly with a time difference of 1, such that if xi occurs with time stamp
a then also xi occurs with time stamp a+ 1, unless xi is the rightmost xi action
and Ii at time stamp �a� is a decrement of xi. Figure 5 shows a increment of x1
(from 4 to 5) using actions 1 and 2.

We obtain Au as a disjunction of timed automata A1, . . . , Ak where each Ai

violates some property of a (correctly encoded) timed trace in Lu, either by
accepting traces of incorrect format or inaccurate encodings of instructions.

Consider the instruction: (p): x1:= x1+1 goto (q), incrementing x1 and
jumping to q. A correct encoding would be similar to the one depicted in Figure 5
where all 1’s and 2’s are matched one time unit later, but with an additional
1 action occurring. In order to accept all traces except this encoding we must
consider all possible violations, i.e.

– not incrementing the counter (no change),
– decrementing the counter,
– incrementing the counter more than once,
– jumping to the wrong instruction, or
– incrementing the wrong counter,

and construct a timed automaton having exactly such traces.
Figure 6 shows the timed automaton accepting traces in which instruction p

yields no change of x1. ��

46 U. Fahrenberg, K.G. Larsen, and C.R. Thrane

Σ

1
z := 0

2

p

1

1
z = 1

Σ \ {1}

Σ

Fig. 6. Timed automaton which violates the encoding of the increment instruction

Turning our attention to timed trace inclusion and equivalence, we note the
following.

Proposition 5. Let A and B be timed automata. If A is timed simulated by B,
then L(A) ⊆ L(B). If A and B are timed bisimilar, then L(A) = L(B).

By a standard argument, Theorem 7 implies undecidability of timed trace inclu-
sion and equivalence, a result first shown in [7].

Theorem 8. Timed trace inclusion and equivalence are undecidable for timed
automata.

There is also a notion of untimed traces for timed automata.

Definition 20. The untiming of a set of timed traces L ⊆ TΣ∗ over a finite
set of actions Σ is the set

UL =
{
w = (a1, . . . , ak) ∈ Σ∗ ∣∣ ∃t1, . . . , tk ∈ �≥0 : ((t1, a1), . . . , (tk, ak)) ∈ L

}
.

Hence we have a notion of the set UL(A) of untimed language of a timed automa-
ton A. One can also define an untime operation U for timed automata, forgetting
about the timing information of a timed automaton and thus converting it to a
finite automaton; note however that UL(A) ⊆ L(UA) in general.

Lemma 1 ([8]). For A a timed automaton, UL(A) = L(�A�∼=) provided that
δ-transitions in �A�∼= are taken as silent.

As a corollary, sets of untimed traces accepted by timed automata are regular :

Theorem 9 ([8]). For a timed automaton A = (L, �0, F, C,Σ, I, E), the set
UL(A) ⊆ Σ∗ is regular. Accordingly, whether UL(A) = ∅ is decidable, and
so is whether UL(A) = Σ∗. Also untimed trace inclusion and equivalence are
decidable.

2.6 Zones and Difference-Bound Matrices

As shown in the above sections, regions provide a finite and elegant abstraction
of the infinite state space of timed automata, enabling us to prove decidability of
reachability, timed and untimed bisimilarity, untimed language equivalence and
language emptiness.

Verification, Performance Analysis and Controller Synthesis 47

Z =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ≤ 3

x1 − x2 ≤ 10

x1 − x2 ≥ 4

x1 − x3 ≤ 2

x3 − x2 ≤ 2

x3 ≥ −5 x0

x1 x2

x3

5

3
2

10

-4

2

Fig. 7. Graph representation of extended clock constraint

Unfortunately, the number of states obtained from the region partitioning is
extremely large. In particular, by Proposition 3 the number of regions is expo-
nential in the number of clocks as well as in the maximal constants of the timed
automaton. Efforts have been made in developing more efficient representations
of the state space [20, 25, 56], using the notion of zones from Definition 4 as a
coarser and more compact representation of the state space.

An extended clock constraint over a finite set C may be represented using
a directed weighted graph, where the nodes correspond to the elements of C
together with an extra “zero” node x0, and an edge xi

k−→ xj corresponds to a
constraint xi − xj ≤ k (if there is more than one upper bound on xi − xj , k is
the minimum of all these constraints’ right-hand sides). The extra clock x0 is
fixed at value 0, so that a constraint xi ≤ k can be represented as xi − x0 ≤ k.
Lower bounds on xi − xj are represented as (possibly negative) upper bounds
on xj − xi, and strict bounds xi − xj < k are represented by adding a flag to
the corresponding edge.

The weighted graph in turn may be represented by its adjacency matrix, which
is known as a difference-bound matrix or DBM. The above technique has been
introduced in [39].

Example 3. Figure 7 gives an illustration of an extended clock constraint to-
gether with its representation as a difference-bound matrix. Note that the clock
constraint contains superfluous information.

Zone-based reachability analysis of a timed automaton A uses symbolic states
of the type (�, Z), where � is a location of A and Z is a zone, instead of the
region-based symbolic states of Proposition 2.

Definition 21. For a finite set C, Z ⊆ �C
≥0, and r ⊆ C, define

– the delay of Z by Z↑ = {v + d | v ∈ Z, d ∈ �≥0} and
– the reset of Z under r by Z[r] = {v[r] | v ∈ Z}.

Lemma 2 ([46, 69]). If Z is a zone over C and r ⊆ C, then Z↑ and Z[r] are
also zones over C.

48 U. Fahrenberg, K.G. Larsen, and C.R. Thrane

x0

x1 x2

x3

3
7

5

3
2

4

-4

-2

-1
-2

2

1
x0

x1 x2

x3

33
2

-4

2

Fig. 8. Canonical representations. Left: shortest-path closure; right: shortest-path re-
duction.

Extended clock constraints representing Z↑ and Z[r] may be computed efficiently
(i.e. in time cubic in the number of clocks in C) by representing the zone Z in a
canonical form obtained by computing the shortest-path closure of the directed
graph representation of Z, see [54].

Example 3 (continued). Figure 8 shows two canonical representations of the
difference-bound matrix for the zone Z of Figure 7. The left part illustrates
the shortest-path closure of Z; on the right is the shortest-path reduction [54]
of Z, essentially obtained by removing redundant edges from the shortest-path
closure. The latter is useful for checking zone inclusion, see below.

The zone automaton associated with a timed automaton is similar to the region
automaton of Proposition 2, but uses zones for symbolic states instead of regions:

Definition 22. The zone automaton associated with a timed automaton A =
(L, �0, F, C,Σ, I, E) is the transition system �A�Z = (S, s0, Σ ∪ {δ}, T) given as
follows:

S =
{
(�, Z)

∣∣ � ∈ L,Z ⊆ �C
≥0 zone

}
s0 =

(
�0, �v0�)

T =
{
(�, Z) δ�

(
�, Z↑ ∧ I(�)

)}
∪
{
(�, Z) a�

(
�′, (Z ∧ ϕ)[r] ∧ I(�′)

) ∣∣ � ϕ,a,r−−−→ �′ ∈ E
}

The analogue of Proposition 1 for zone automata is as follows:

Proposition 6 ([69]). A state (�, v) in a timed automaton A = (L, �0, F, C,Σ,
I, E) is reachable if and only if there is a zone Z ⊆ �

C
≥0 for which v ∈ Z and

such that (�, Z) is reachable in �A�Z .

The zone automaton associated with a given timed automaton is infinite and
hence unsuitable for reachability analysis. Finiteness can be enforced by employ-
ing normalization, using the fact that region equivalence ∼= has finitely many
equivalence classes:

Verification, Performance Analysis and Controller Synthesis 49

Definition 23. For a timed automaton A and a zone Z ⊆ �C
≥0, the normaliza-

tion of Z is the set {v : C → �≥0 | ∃v′ ∈ D : v ∼= v′}

The normalized zone automaton is defined in analogy to the zone automa-
ton from above, and the analogue of Proposition 6 holds for the normalized
zone automaton. Hence we can obtain a reachability algorithm by applying any
search strategy (depth-first, breadth-first, or another) on the normalized zone
automaton.

Remark 4. For timed automata on extended clock constraints, i.e. with diagonal
constraints permitted, it can be shown [24, 27] that normalization as defined
above does not give rise to a sound and complete characterization of reachability.
Instead, one can apply a refined normalization which depends on the difference
constraints used in the timed automaton, see [24].

In addition to the efficient computation of symbolic successor states according
to the � relation, termination of reachability analysis requires that we can effi-
ciently recognize whether the search algorithm has encountered a given symbolic
state. Here it is crucial that there is an efficient way of deciding inclusion Z1 ⊆ Z2
between zones. Both the shortest-path-closure canonical form as well as the more
space-economical shortest-path-reduced canonical form [54], cf. Example 3, allow
for efficient inclusion checking.

In analogy to difference-bound matrices and overcoming some of their prob-
lems, the data structure called clock difference diagram has been proposed [56].
However, the design of efficient algorithms for delay and reset operations over
that data structure is a challenging open problem; generally, the design of effi-
cient data structures for computations with (unions of) zones is a field of active
research, see [3, 11, 64] for some examples.

3 Weighted Timed Automata

The notion of weighted — or priced — timed automata was introduced indepen-
dently, at the very same conference, by Behrmann et.al. [18] and Alur et.al. [9]. In
these models both edges and locations can be decorated with weights, or prices,
giving the cost of taking an action transition or the cost per time unit of delaying
in a given location. The total cost of a trace is then simply the accumulated (or
total) weight of its discrete and delay transitions.

As a first result, the above two papers independently, and with quite different
methods, showed that the problem of cost-optimal reachability is computable for
weighted timed automata with non-negative weights. Later, optimal reachability
for timed automata with several weight functions was considered in [59] as well
as optimal infinite runs in [29,41].

Definition 24. A weighted timed automaton is a tuple A = (L, �0, F, C,Σ,
I, E,R, P), where (L, �0, F, C,Σ, I, E) is a timed automaton, R : L → � a loca-
tion weight-rate mapping, and P : E → � an edge weight mapping.

50 U. Fahrenberg, K.G. Larsen, and C.R. Thrane

�1

R = 4

�2

R = 2
�3

y ≤ 4 x := 0
a P = 1

x ≤ 2 ∧ y ≥ 3

c P = 4

y ≤ 4x := 0 b

Fig. 9. A weighted timed automaton with two clocks

The semantics of A is the weighted transition system �A� = (S, s0, Σ ∪�≥0,
T, w), where (S, s0, Σ ∪ �≥0, T) is the semantics of the underlying timed au-
tomaton (L, �0, F, C,Σ, I, E), and the transition weights w : T → � are given
as follows:

w
(
(�, v) d−→ (�, v + d)

)
= dR(�)

w
(
(�, v) a−→ (�′, v′)

)
= P

(
�

ϕ,a,r−−−→ �′
)

with v |= ϕ, v′ = v[r]

We shall denote weighted edges and transitions by symbols e−→
w

to illustrate an
edge or a transition labeled e with weight w.

3.1 Optimal Reachability

The objective of optimal reachability analysis is to find runs to a final location
with the lowest total weight as defined below.

Example 4. Figure 9 shows a simple weighted timed automaton with final lo-
cation �3. Below we give a few examples of accepting runs, where we identify
valuations v : {x, y} → �≥0 with their values (v(x), v(y)). The total weights of
the runs given here are 17 and 11; actually the second run is optimal in the sense
of Problem 2 below:

(�1, 0, 0) 3−→
12

(�1, 3, 3) a−→
1

(�2, 0, 3) c−→
4

(�3, 0, 3)

(�1, 0, 0) a−→
1

(�2, 0, 0) 3−→
6

(�2, 3, 3) b−→
0

(�2, 0, 3) c−→
4

(�3, 0, 3)

Definition 25. The total weight of a finite run ρ = s0 −−→
w1

s1 −−→
w2

· · · −−→
wk

sk in
a weighted transition system is w(ρ) =

∑k
i=1 wk.

We are now in a position to state the problem with which we are concerned here:
We want to find accepting runs with minimum total weight in a weighted timed
automaton A. However due to the possible use of strict clock constraints on
edges and in locations of A, the minimum total weight might not be realizable,
i.e. there might be no run which achieves it. For this reason, one also needs to
consider (infinite) sets of runs and the infimum of their members’ total weights:

Verification, Performance Analysis and Controller Synthesis 51

Problem 2 (Optimal reachability). Given a weighted timed automaton A, com-
pute W = inf

{
w(ρ)

∣∣ ρ accepting run in A
}

and a set P of accepting runs for
which infρ∈P w(ρ) = W .

The key ingredient in the proof of the following theorem is the introduction
of weighted regions in [18]. A weighted region is a region as of Definition 11
enriched with an affine cost function describing in a finite manner the cost of
reaching any point within it. This notion allows one to define the weighted re-
gion automaton associated with a weighted timed automaton, and one can then
show that optimal reachability can be computed in the weighted region automa-
ton. PSPACE-hardness in the below theorem follows from PSPACE-hardness of
reachability for timed automata.

Theorem 10 ([18]). The optimal reachability problem for weighted timed au-
tomata with non-negative weights is PSPACE-complete.

Similar to the notion of regions for timed automata, the number of weighted
regions is exponential in the number of clocks as well as in the maximal constants
of the timed automaton. Hence a notion of weighted zone — a zone extended
with an affine cost function — was introduced [53] together with an efficient,
symbolic A∗-algorithm for searching for cost-optimal tracing using branch-and-
bound techniques. In particular, efficient means of generalizing the notion of
symbolic successor to incorporate the affine cost functions were given.

During the symbolic exploration, several small linear-programming problems
in terms of determining the minimal value of the cost function over the given
zone have to be dealt with. Given that the constraints of these problems are
simple difference constraints, it turns out that substantial gain in performance
may be achieved by solving the dual problem of minimum-cost flow [67]. The
newly emerged branch UppAal Cora provides an efficient tool for cost-optimal
reachability analysis, applying the above data structures and algorithms and
allowing the user to guide and heuristically prune the search.

3.2 Multi-weighted Timed Automata

The below formalism of doubly weighted timed automata is a generalization
of weighted timed automata useful for modeling systems with several different
resources.

Definition 26. A doubly weighted timed automaton is a tuple

A = (L, �0, F, C,Σ, I, E,R, P)

where (L, �0, F, C,Σ, I, E) is a timed automaton, R : L → �
2 a location weight-

rate mapping, and P : E → �
2 an edge weight mapping.

The semantics of a doubly weighted timed automaton is a doubly weighted
transition system defined similarly to Definition 24, and the total weight of finite

52 U. Fahrenberg, K.G. Larsen, and C.R. Thrane

R = (1, 4)

x ≤ 2

�1
R = (2, 1)

x ≤ 3

�2

y ≤ 2

�3
y := 0a

x ≥ 2 ∧ y ≥ 1

y := 0b

Fig. 10. A doubly weighted timed automaton with two clocks

runs is defined accordingly as a pair; we shall refer to the total weights as w1 and
w2 respectively. These definitions have natural generalizations to multi-weighted
timed automata with more than two weight coordinates.

The objective of conditional reachability analysis is to find runs to a final lo-
cation with the lowest total weight in the first weight coordinate while satisfying
a constraint on the other weight coordinate.

Example 5. Figure 10 depicts a simple doubly weighted timed automaton with
final location �3. Under the constraint w2 ≤ 3, the optimal run of the automaton
can be seen to be

(�1, 0, 0)
1/3−−−→

(1
3 , 43)

(�1, 1/3, 1/3) a−→ (�2, 1/3, 0)
5/3−−−−→

(10
3 , 5

3)
(�2, 2, 5/3) b−→ (�3, 2, 0)

with total weight
(11

3 , 3
)
.

The precise formulation of the conditional optimal reachability problem is as
follows, where we again need to refer to (possibly infinite) sets of runs:

Problem 3 (Conditional optimal reachability). Given a doubly weighted timed
automaton A and M ∈ �, compute W = inf

{
w1(ρ)

∣∣ ρ accepting run in A,
w2(ρ) ≤ M} and a set P of accepting runs such that w2(ρ) ≤ M for all ρ ∈ P
and infρ∈P w(ρ) = W .

Theorem 11 ([58,59]). The conditional optimal reachability problem is compu-
table for doubly weighted timed automata with non-negative weights and without
weights on edges.

The proof of the above theorem rests on a direct generalization of weighted to
doubly-weighted zones. An extension can be found in [59], where it is shown that
also the Pareto frontier, i.e. the set of cost vectors which cannot be improved in
any cost variable, can be computed.

3.3 Optimal Infinite Runs

In this section we shall be concerned with computing optimal infinite runs in
(doubly) weighted timed automata. We shall treat both the limit ratio viewpoint
discussed in [29] and the discounting approach of [41].

Verification, Performance Analysis and Controller Synthesis 53

R = 2
x ≤ 3

H
R = 5
x ≤ 3

M
R = 9

L

x = 3 x := 0

d

x = 3

d

y ≥ 2 x, y := 0

a P = 2

y ≥ 2 x, y := 0

a P = 1

Fig. 11. A weighted timed automaton modelling a simple production system

Example 6. Figure 11 shows a simple production system modelled as a weighted
timed automaton. The system has three modes of production, High, Medium,
and Low. The weights model the cost of production, so that the High production
mode has a low cost, which is preferable to the high cost of the Low production
mode. After operating in a High or Medium production mode for three time
units, production automatically degrades (action d) to a lower mode. When in
Medium or Low production mode, the system can be attended to (action a),
which advances it to a higher mode.

The objective of optimal-ratio analysis is to find an infinite run in a doubly
weighted timed automaton which minimizes the ratio between the two total
weights. This will be formalized below.

Definition 27. The total ratio of a finite run ρ = s0
w1−−→
z1

s1
w2−−→
z2

· · · wk−−→
zk

sk in

a doubly weighted transition system is

Γ (ρ) =
∑k

i=1 wk∑k
i=1 zk

.

The total ratio of an infinite run ρ = s0
w1−−→
z1

s1
w2−−→
z2

· · · is

Γ (ρ) = lim inf
k→∞

Γ (s0 → · · · → sk).

A special case of optimal-ratio analysis is given by weight-per-time models, where
the interest is in minimizing total weight per accumulated time. The example
provided in this section is a case of this. In the setting of optimal-ratio analysis,
these can be modelled as doubly weighted timed automata with R2(�) = 1 and
P2(e) = 0 for all locations � and edges e.

Example 6 (continued). In the timed automaton of Figure 11, the following
cyclic behaviour provides an infinite run ρ:

(H, 0, 0) 3−→ (H, 3, 3) d−→ (M, 0, 3) 3−→ (M, 3, 6) d−→ (L, 3, 6) 1−→

(L, 4, 7) a−→ (M, 0, 0) 3−→ (M, 3, 3) a−→ (H, 0, 0) −→ · · ·

Taking the weight-per-time viewpoint, the total ratio of ρ is Γ (ρ) = 4.8.

54 U. Fahrenberg, K.G. Larsen, and C.R. Thrane

Problem 4 (Minimum infinite ratio). Given a doubly weighted timed automaton
A, compute W = inf

{
Γ (ρ)

∣∣ ρ infinite run in A
}

and a set P of infinite runs for
which infρ∈P Γ (ρ) = W .

The main tool in the proof of the following theorem is the introduction of the
corner-point abstraction of a timed automaton in [29]. This is a finite refinement
of the region automaton of Definition 11 in which one also keeps track of the
corner points of regions. One can then show that any infinite run with minimum
ratio must pass through corner points of regions, hence these can be found in
the corner-point abstraction by an algorithm first proposed in [51].

The technical condition in the theorem that the second weight coordinate
be strongly diverging means that any infinite run ρ in the closure of the timed
automaton in question satisfies w2(ρ) = ∞, see [29] for details.

Theorem 12 ([29]). The minimum infinite ratio problem is computable for
doubly weighted timed automata with non-negative and strongly diverging second
weight coordinate.

For discount-optimal analysis, the objective is to find an infinite run in a weighted
timed automaton which minimizes the discounted total weight as defined below.
The point of discounting is that the weight of actions is discounted with time,
so that the impact of an event decreases, the further in the future it takes place.

In the definition below, ε is the empty run, and (�, v) → ρ denotes the con-
catenation of the transition (�, v) → with the run ρ.

Definition 28. The discounted total weight of finite runs in a weighted timed
automaton under discounting factor λ ∈ [0, 1[is given inductively as follows:

wλ(ε) = 0

wλ

(
(�, v) a−→

P
ρ
)

= P + wλ(ρ)

wλ

(
(�, v) d−→ ρ

)
= R(�)

∫ d

0
λτdτ + λdwλ(ρ)

The discounted total weight of an infinite run ρ = (�0, v0)
d1−→ (�0, v0 + d1)

a1−→
P1(�1, v1) −→ · · · is

wλ(ρ) = lim
k→∞

wλ

(
(�0, v0) −→ · · · ak−−→

Pk

(�k, vk)
)

provided that the limit exists.

Example 6 (continued). The discounted total weight of the infinite run ρ in
the timed automaton of Figure 11 satisfies the following equality, where It =∫ t

0 λ
τdτ = − 1

ln λ(1 − λt):

wλ(ρ) = 2I3 + λ3(5I3 + λ3(9I1 + λ(1 + 5I3 + λ3(2 + wλ(ρ)))))

With a discounting factor of λ = .9 for example, the discounted total weight of
ρ would hence be wλ(ρ) ≈ 40.5.

Verification, Performance Analysis and Controller Synthesis 55

Problem 5 (Minimum discounted weight). Given a weighted timed automaton A
and λ ∈ [0, 1[, compute W = inf

{
wλ(ρ)

∣∣ ρ infinite run in A
}

and a set P of
infinite runs for which infρ∈P wλ(ρ) = W .

The proof of the following theorem rests again on the corner-point abstraction,
and on a result in [10]. The technical condition that the timed automaton be
time-divergent is analogous to the condition on the second weight coordinate in
Theorem 12.

Theorem 13 ([41]). The minimum discounted weight problem is computable for
time-divergent weighted timed automata with non-negative weights and rational λ.

4 Timed Games

Recently, substantial effort has been made towards the synthesis of winning
strategies for timed games with respect to safety and reachability control ob-
jectives. From known region-based decidability results, efficient on-the-fly al-
gorithms have been developed [34, 68] and implemented in the newest branch
UppAal Tiga.

For timed games, as for untimed ones, transitions are either controllable or
uncontrollable (i.e. under the control of an environment), and the problem is to
synthesize a strategy for when to take which (enabled) controllable transitions
in order that a given objective is guaranteed regardless of the behaviour of the
environment.

Definition 29. A timed game is a tuple (L, �0, F, C,Σc, Σu, I, E) with Σc ∩
Σu = ∅ and for which the tuple (L, �0, F, C,Σ = Σc ∪ Σu, I, E) is a timed
automaton.

Edges with actions in Σc are said to be controllable, those with actions in Σu

are uncontrollable.

Example 7. Figure 12 provides a simple example of a timed game. Here, Σc =
{c1, c2, c4} and Σ2 = {u1, u2, u3}, and the controllable edges are drawn with
solid lines, the uncontrollable ones with dashed lines.

We only treat reachability games here, where the goal of the game is to reach a
final location. There is also a somewhat dual notion of safety games, where one
instead wants to avoid final locations, see [34] for details.

We need the notion of strategy; essentially, a strategy provides instructions
for which controllable edge to take, or whether to wait, in a given state:

Definition 30. A strategy for a timed game A = (L, �0, F, C,Σc, Σu, I, E) is a
partial mapping σ from finite runs of A to Σc ∪ {δ}, where δ /∈ Σ, such that for
any run ρ = (�0, v0) → · · · → (�k, vk),

– if σ(ρ) = δ, then (�, v) d−→ (�, v + d) in �A� for some d > 0, and
– if σ(ρ) = a, then (�, v) a−→ (�′, v′) in �A�.

56 U. Fahrenberg, K.G. Larsen, and C.R. Thrane

�1 �2 �3 �4

�5 �6

x > 1 u1

x ≤ 1
c1

x < 1 x := 0u2

x < 1
u3

x ≥ 2 c2

c3

x ≤ 1c4

Fig. 12. A timed game with one clock. Controllable edges (with actions from Σc) are
solid, uncontrollable edges (with actions from Σu) are dashed.

A strategy σ is said to be memoryless if σ(ρ) only depends on the last state

of ρ, i.e. if ρ1 = (�0, v0)
d1−→ (�0, v0 + d1) → · · · → (�k, vk), ρ2 = (�0, v0)

d′
1−→

(�0, v0 + d′1) → · · · → (�k, vk) imply σ(ρ1) = σ(ρ2).

An outcome of a strategy is any run which adheres to its instructions in the
obvious manner:

Definition 31. A run (�0, v0)
d1−→ (�0, v0+d1) → · · · → (�k, vk) in a timed game

A = (L, �0, F, C,Σc, Σu, I, E) is said to be an outcome of a strategy σ provided
that

– for all (�i, vi)
d−→ (�i, vi + d) and for all d′ < d, we have σ

(
(�0, v0) → · · · →

(�i, vi + d′)
)

= δ, and
– for all (�i, vi + d) a−→ (�i+1, vi+1) for which a ∈ Σc, we have σ

(
(�0, v0) →

· · · → (�i, v′i)
)

= a.

An outcome is said to be maximal if �k ∈ F , or if (�k, vk) a−→ (�k+1, vk+1) implies
a ∈ Σu.

Hence an outcome is maximal if it stops in a final state, or if no controllable
actions are available at its end. An underlying assumption is that uncontrollable
actions cannot be forced, hence a maximal outcome which does not end in a
final state may “get stuck” in a non-final state. The aim of reachability games
is to find strategies all of whose maximal outcomes end in a final state:

Definition 32. A strategy is said to be winning if any of its maximal outcomes
is an accepting run.

Example 7 (continued). The following memoryless strategy is winning for the
reachability game on the timed game from Figure 12:

Verification, Performance Analysis and Controller Synthesis 57

σ(�1, v) =

{
δ if v(x) �= 1
c1 if v(x) = 1

σ(�2, v) =

{
δ if v(x) < 2
c2 if v(x) ≥ 2

σ(�3, v) =

{
δ if v(x) < 1
c3 if v(x) ≥ 1

σ(�4, v) =

{
δ if v(x) �= 1
c4 if x(x) = 1

Problem 6 (Reachability game). Given a timed game A, does there exist a win-
ning strategy for A?

An important ingredient in the proof of the following theorem is the fact that
for reachability (as well as safety) games, it is sufficient to consider memoryless
strategies. This is not the case for other, more subtle, control objectives (e.g.
counting properties modulo some N) as well as for the synthesis of winning
strategies under partial observability.

Theorem 14 ([12,63]). The reachability game is decidable for timed games.

In [35] the on-the-fly algorithm applied in UppAal Tiga has been extended to
timed games under partial observability.

The field of timed games is a very active research area. Research has been
conducted towards the synthesis of optimal winning strategies for reachability
games on weighted timed games. In [5,30] computability of optimal strategies is
shown under a certain condition of strong cost non-zenoness, requiring that the
total weight diverges with a given minimum rate per time. Later undecidability
results [28,33] show that for weighted timed games with three or more clocks this
condition (or a similar one) is necessary. Lately [31] proves that optimal reach-
ability strategies are computable for one-clock weighted timed games, though
there is an unsettled (large) gap between the known lower bound complexity
P and an upper bound of 3EXPTIME.

References

1. Abdeddäım, Y., Kerbaa, A., Maler, O.: Task graph scheduling using timed au-
tomata. In: IPDPS, p. 237. IEEE Computer Society, Los Alamitos (2003)

2. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modeling,
Specification and Verification. Cambridge University Press, Cambridge (2007)

3. Allamigeon, X., Gaubert, S., Goubault, E.: Inferring min and max invariants using
max-plus polyhedra. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079,
pp. 189–204. Springer, Heidelberg (2008)

4. Alur, R.: Timed automata. In: Halbwachs, Peled [43], pp. 8–22
5. Alur, R., Bernadsky, M., Madhusudan, P.: Optimal reachability for weighted timed

games. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004.
LNCS, vol. 3142, pp. 122–133. Springer, Heidelberg (2004)

6. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking for real-time systems. In:
LICS, pp. 414–425. IEEE Computer Society, Los Alamitos (1990)

7. Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Paterson, M.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)

58 U. Fahrenberg, K.G. Larsen, and C.R. Thrane

8. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

9. Alur, R., Torre, S.L., Pappas, G.J.: Optimal paths in weighted timed automata.
In: Benedetto, Sangiovanni-Vincentelli [23], pp. 49–62

10. Andersson, D.: Improved combinatorial algorithms for discounted payoff games.
Master’s thesis, Uppsala University, Department of Information Technology (2006)

11. Asarin, E., Bozga, M., Kerbrat, A., Maler, O., Pnueli, A., Rasse, A.: Data-
structures for the verification of timed automata. In: Maler, O. (ed.) HART 1997.
LNCS, vol. 1201, pp. 346–360. Springer, Heidelberg (1997)

12. Asarin, E., Maler, O., Pnueli, A.: Symbolic controller synthesis for discrete and
timed systems. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS
1994. LNCS, vol. 999, pp. 1–20. Springer, Heidelberg (1995)

13. Behrmann, G., Bengtsson, J., David, A., Larsen, K.G., Pettersson, P., Yi, W.:
Uppaal implementation secrets. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT
2002. LNCS, vol. 2469, p. 3. Springer, Heidelberg (2002)

14. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds in
zone based abstractions of timed automata. In: Jensen, Podelski [49], pp. 312–326

15. Behrmann, G., Brinksma, E., Hendriks, M., Mader, A.: Production scheduling
by reachability analysis - a case study. In: IPDPS. IEEE Computer Society, Los
Alamitos (2005)

16. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
Uppaal-tiga: Time for playing games! In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007)

17. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

18. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn,
J., Vaandrager, F.W.: Minimum-cost reachability for priced timed automata. In:
Benedetto, Sangiovanni-Vincentelli [23], pp. 147–161

19. Behrmann, G., Hune, T., Vaandrager, F.W.: Distributing timed model checking
- how the search order matters. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 216–231. Springer, Heidelberg (2000)

20. Behrmann, G., Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Efficient timed reach-
ability analysis using clock difference diagrams. In: Halbwachs, Peled [43], pp. 341–
353

21. Behrmann, G., Larsen, K.G., Pelánek, R.: To store or not to store. In: Hunt Jr.,
W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 433–445. Springer, Hei-
delberg (2003)

22. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Optimal scheduling using priced
timed automata. SIGMETRICS Performance Evaluation Review 32(4), 34–40
(2005)

23. Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.): HSCC 2001. LNCS,
vol. 2034. Springer, Heidelberg (2001)

24. Bengtsson, J., Yi, W.: On clock difference constraints and termination in reach-
ability analysis of timed automata. In: Dong, J.S., Woodcock, J. (eds.) ICFEM
2003. LNCS, vol. 2885, pp. 491–503. Springer, Heidelberg (2003)

25. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: De-
sel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets.
LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)

Verification, Performance Analysis and Controller Synthesis 59

26. Bérard, B., Petit, A., Diekert, V., Gastin, P.: Characterization of the expressive
power of silent transitions in timed automata. Fundam. Inform. 36(2-3), 145–182
(1998)

27. Bouyer, P.: Untameable timed automata! In: Alt, H., Habib, M. (eds.) STACS
2003. LNCS, vol. 2607, pp. 620–631. Springer, Heidelberg (2003)

28. Bouyer, P., Brihaye, T., Markey, N.: Improved undecidability results on weighted
timed automata. Inf. Process. Lett. 98(5), 188–194 (2006)

29. Bouyer, P., Brinksma, E., Larsen, K.G.: Staying alive as cheaply as possible. In:
Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 203–218. Springer,
Heidelberg (2004)

30. Bouyer, P., Cassez, F., Fleury, E., Larsen, K.G.: Optimal strategies in priced
timed game automata. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS,
vol. 3328, pp. 148–160. Springer, Heidelberg (2004)

31. Bouyer, P., Larsen, K.G., Markey, N., Rasmussen, J.I.: Almost optimal strategies
in one clock priced timed games. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS
2006. LNCS, vol. 4337, pp. 345–356. Springer, Heidelberg (2006)

32. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: A
model-checking tool for real-time systems. In: Y. Vardi, M. (ed.) CAV 1998. LNCS,
vol. 1427, pp. 546–550. Springer, Heidelberg (1998)

33. Brihaye, T., Bruyère, V., Raskin, J.-F.: On optimal timed strategies. In: Pettersson,
Yi [66], pp. 49–64

34. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)

35. Cassez, F., David, A., Larsen, K.G., Lime, D., Raskin, J.-F.: Timed control with
observation based and stuttering invariant strategies. In: Namjoshi, K.S., Yoneda,
T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 192–206.
Springer, Heidelberg (2007)

36. Čerāns, K.: Decidability of bisimulation equivalences for parallel timer processes.
In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 302–315.
Springer, Heidelberg (1993)

37. Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-
time systems. In: Larsen, Skou [60], pp. 399–409

38. D’Argenio, P.R., Katoen, J.-P., Ruys, T.C., Tretmans, J.: The bounded retrans-
mission protocol must be on time! In: Brinksma, E. (ed.) TACAS 1997. LNCS,
vol. 1217, pp. 416–431. Springer, Heidelberg (1997)

39. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990)

40. Ernits, J.P.: Memory arbiter synthesis and verification for a radar memory interface
card. Nord. J. Comput. 12(2), 68–88 (2005)

41. Fahrenberg, U., Larsen, K.G.: Discount-optimal infinite runs in priced timed au-
tomata. Electr. Notes Theor. Comput. Sci. 239, 179–191 (2009)

42. Fehnker, A.: Scheduling a steel plant with timed automata. In: RTCSA, pp. 280–
286. IEEE Computer Society, Los Alamitos (1999)

43. Halbwachs, N., Peled, D.A. (eds.): CAV 1999. LNCS, vol. 1633. Springer, Heidel-
berg (1999)

44. Hansen, M.R., Madsen, J., Brekling, A.W.: Semantics and verification of a language
for modelling hardware architectures. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.)
Formal Methods and Hybrid Real-Time Systems. LNCS, vol. 4700, pp. 300–319.
Springer, Heidelberg (2007)

60 U. Fahrenberg, K.G. Larsen, and C.R. Thrane

45. Hendriks, M.: Model checking the time to reach agreement. In: Pettersson, Yi [66],
pp. 98–111

46. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
real-time systems. Inf. Comput. 111(2), 193–244 (1994)

47. Hune, T., Larsen, K.G., Pettersson, P.: Guided synthesis of control programs using
uppaal. Nord. J. Comput. 8(1), 43–64 (2001)

48. Jensen, H.E., Larsen, K.G., Skou, A.: Scaling up Uppaal automatic verification
of real-time systems using compositionality and abstraction. In: Joseph, M. (ed.)
FTRTFT 2000. LNCS, vol. 1926, pp. 19–30. Springer, Heidelberg (2000)

49. Jensen, K., Podelski, A. (eds.): TACAS 2004. LNCS, vol. 2988. Springer, Heidelberg
(2004)

50. Jessen, J.J., Rasmussen, J.I., Larsen, K.G., David, A.: Guided controller synthesis
for climate controller using uppaal tiga. In: Raskin, J.-F., Thiagarajan, P.S. (eds.)
FORMATS 2007. LNCS, vol. 4763, pp. 227–240. Springer, Heidelberg (2007)

51. Karp, R.M.: A characterization of the minimum cycle mean in a digraph. Disc.
Math. 23(3), 309–311 (1978)

52. Lamport, L.: Real-time model checking is really simple. In: Borrione, D., Paul, W.
(eds.) CHARME 2005. LNCS, vol. 3725, pp. 162–175. Springer, Heidelberg (2005)

53. Larsen, K.G., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T., Pettersson,
P., Romijn, J.: As cheap as possible: Efficient cost-optimal reachability for priced
timed automata. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS,
vol. 2102, pp. 493–505. Springer, Heidelberg (2001)

54. Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Efficient verification of real-time
systems: compact data structure and state-space reduction. In: IEEE Real-Time
Systems Symposium, pp. 14–24. IEEE Computer Society, Los Alamitos (1997)

55. Larsen, K.G., Mikucionis, M., Nielsen, B., Skou, A.: Testing real-time embedded
software using uppaal-tron: an industrial case study. In: Wolf, W. (ed.) EMSOFT,
pp. 299–306. ACM, New York (2005)

56. Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Clock difference diagrams. Nord. J.
Comput. 6(3), 271–298 (1999)

57. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. STTT 1(1-2), 134–152
(1997)

58. Larsen, K.G., Rasmussen, J.I.: Optimal conditional reachability for multi-priced
timed automata. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 234–
249. Springer, Heidelberg (2005)

59. Larsen, K.G., Rasmussen, J.I.: Optimal reachability for multi-priced timed au-
tomata. Theor. Comput. Sci. 390(2-3), 197–213 (2008)

60. Larsen, K.G., Skou, A. (eds.): CAV 1991. LNCS, vol. 575. Springer, Heidelberg
(1992)

61. Lindahl, M., Pettersson, P., Yi, W.: Formal design and analysis of a gear con-
troller. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 281–297. Springer,
Heidelberg (1998)

62. Maler, O.: Timed automata as an underlying model for planning and scheduling.
In: Fox, M., Coddington, A.M. (eds.) AIPS Workshop on Planning for Temporal
Domains, pp. 67–70 (2002)

63. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed
systems (an extended abstract). In: Mayr, E.W., Puech, C. (eds.) STACS 1995.
LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995)

64. Møller, J.B., Lichtenberg, J., Andersen, H.R., Hulgaard, H.: Difference decision
diagrams. In: Flum, J., Rodŕıguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683,
pp. 111–125. Springer, Heidelberg (1999)

Verification, Performance Analysis and Controller Synthesis 61

65. Ouaknine, J., Worrell, J.: Universality and language inclusion for open and closed
timed automata. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp.
375–388. Springer, Heidelberg (2003)

66. Pettersson, P., Yi, W. (eds.): FORMATS 2005. LNCS, vol. 3829. Springer, Heidel-
berg (2005)

67. Rasmussen, J.I., Larsen, K.G., Subramani, K.: Resource-optimal scheduling using
priced timed automata. In: Jensen, Podelski [49], pp. 220–235

68. Tripakis, S., Altisen, K.: On-the-fly controller synthesis for discrete and dense-time
systems. In: Wing, J.M., Woodcock, J.C.P., Davies, J. (eds.) FM 1999. LNCS,
vol. 1708, pp. 233–252. Springer, Heidelberg (1999)

69. Yi, W., Pettersson, P., Daniels, M.: Automatic verification of real-time communi-
cating systems by constraint-solving. In: Hogrefe, D., Leue, S. (eds.) FORTE. IFIP
Conference Proceedings, vol. 6, pp. 243–258. Chapman & Hall, Boca Raton (1994)

rCOS: Theory and Tool for
Component-Based Model Driven Development�

Zhiming Liu, Charles Morisset, and Volker Stolz

Intl. Institute for Software Technology (UNU-IIST),
United Nations University, Macao SAR, China

{lzm,morisset,vs}@iist.unu.edu
http://rcos.iist.unu.edu

Abstract. We present the roadmap of the development of the rCOS
theory and its tool support for component-based model driven software
development (CB-MDD). First the motivation for using CB-MDD, its
needs for a theoretical foundation and tool support are discussed, fol-
lowed by a discussion of the concepts, techniques and design decisions
in the research of the theory and the development of the prototype tool.
The concepts, techniques and decisions discussed here have been formal-
ized and published. References to those publications are provided with
explanations. Based on the initial experiences with a case study and
the preliminary rCOS tool development, further development trajectory
leading to further integration with transformation and analysis plug-ins
is delineated.

Keywords: contract, component, design pattern, model transformation.

1 Introduction

Complexity has long been recognized as an essential property of software, not
an accidental one [12,13]. The inherent complexity is due to four fundamental
attributes; the complexity of the domain application, the difficulty of managing
the development process, the flexibility possible to offer through software, and the
problem of characterizing the behavior of software systems [1]. The first attribute
implies the challenges in the requirements capture and analysis and the problem
of changeability of software to meet continuously changing requirements for addi-
tional functionality and features, the second one focus on the management of the
development process and team, the third indicates the difficulties and creativ-
ity needed in making the right design decisions, and the final one pin-points
the difficulty in software analysis, validation and verification for correctness
assurance.

We are now facing an even greater scale of complexity with modern software-
intensive systems [41]. We see these systems in our everyday life, such as in

� Supported by the projects HighQSoftD and HTTS funded Macao S&TD Fund and
the grants CNSF No. 60970031, NSFC No.90718014 and STCSM No.08510700300.

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 62–80, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://rcos.iist.unu.edu

rCOS: Theory and Tool for Component-Based Model Driven Development 63

aircraft, cars, banks and supermarkets [5]. These systems provide their users
with a large variety of services and features. They are becoming increasingly
distributed, dynamic and mobile. Their components are deployed over large net-
works of heterogeneous platforms and thus the interoperability of the distributed
components becomes important. Components are also embedded within hardware
devices. In addition to the complexity of functional structure and behavior, mod-
ern software systems have complex aspects concerning organizational structure
(i.e. system topology), distribution, interactions, security and real-time.

For example, the CoCoME benchmark system [5] is a trading system for an
enterprise of stores. It has components for processing sales, management of dif-
ferent stores and management of enterprise. These components are deployed on
different computers in different places, and they interact among themselves and
with external systems such as banks and product suppliers, through different
middlewares (such as RMI and CORBA). The application software components
have to be embedded with controllers of hardware devices such as product code
scanners, printers, and credit card readers.

A complex system is open to total breakdown [35], and we suffer from the long
lasting software crisis1 where projects fail due to our failure to master the com-
plexity. Given that the global economy, as well as our every day life, depends on
software systems, we cannot give up in advancing the theory and the engineering
methods to master the increasing complexity of software development.

In this paper, we present the rCOS approach to CB-MDD for handling soft-
ware complexity. Section 2 motivates the research in the rCOS modeling theory
and the development of a prototype tool. There, we first show how CB-MDD is
a natural path in the advance of software engineering in handling complexity by
separation of concerns. It is then followed by a discussion of the key theme, prin-
ciples, challenges, and essential techniques of a component-based model driven
approach. We stress the importance and the add-ins of tool support, and argue
that a tool must be supported by a sound and appropriate modeling theory. In
Section 3, we summarize the theoretical aspects of rCOS and show how they
meet the needs discussed in Section 2. Section 4 reports our initial experience
with the tool, and based on the lessons learned, we delineate the further develop-
ment trajectory leading to further integration with transformation and analysis
plug-ins. Concluding remarks are given in Section 5.

2 Natural Path to CB-MDD

In software engineering, the complexity of a system development is mastered by
separation of concerns. Models of software development processes are proposed
for dividing and conquering the problems in software development. The tradi-
tional approaches are mostly variants of the waterfall model in that problems of
software development are divided into the problems of requirements capture and
analysis, design, coding and testing, and solved at different level of abstractions.

1 Booch even calls this state of affairs “normal” [1].

64 Z. Liu, C. Morisset, and V. Stolz

2.1 Early Notions of Components and Models

In a waterfall process, the principles of structured programming [10] and modu-
larization [34] are used to construct a software system by decomposing it into
procedures and modules. The concept of modules is thus an early analogy of
the notion of components. With the notions of decomposition and modules, the
initial waterfall process changed into the evolutionary development, and the spi-
ral model is proposed with more consideration of project management and risks
control [38]. Procedures as components do not support large scale software devel-
opment, and the original modules as components do not have explicitly specified
contracts of interfaces to be used in third party composition [40].

For applications with higher demands for correctness assurance and depend-
ability, rigorous testing after implementation for software defect detection is not
enough, and a best effort at defect detection is required in each phase of the
development process. This advances the waterfall model to the V-model. In a V-
model development process, artifacts produced in each phase should be properly
documented and validated. Tools are then developed to help in the documenta-
tion of the artifacts produced in different cycles for different versions to ensure
their consistency. Tools for prototyping and simulation are also used for system
validation in different phases. Taking documents of artifacts as “models”, though
not necessarily formal models, a non-trivial software development is to produce,
validate, and test models with some tool support.

Software systems for safety critical applications are required to be provably
correct, not only syntactically but also semantically . For this, each phase is
required to produce semantically verifiable models and this needs the modeling
notation to be formally defined and a sound theory to be developed for verifying
and reasoning about properties of models. Model verification is only realistic
and trustworthy with support of automated tools. Indeed, in the last forty years
or so, a large body of formal notations and theories have been developed based
on two different models, state based [21,42,37], event based [18,30] and property
based [28,29,22]. Development of theorem proving [39], model checking [20,36]
and simulation [9] tools have rapidly advanced recently. All of these methods
and techniques have their uses in some aspects of system development, and the
challenge is now to select and adapt them to a harmonic whole. It is impor-
tant to note that development of tool support also requires the models formally
described because tools are software and can only manipulate formally defined
notations.

2.2 Theoretical and Tool Support to Successful CB-MDD

Components and models are in the scope of software engineering. In industrial
practice models are often manually built, and an initial code outline is generated
from a model of a detailed design. Only recently component-based model driven
design is becoming a clear and mainstream discipline. The discipline requires
that in a development process

rCOS: Theory and Tool for Component-Based Model Driven Development 65

– each phase is based on the construction of models,
– models in later phases are constructed from those in earlier phases by model

transformations,
– code is an executable model generated from models in the design phase.

For a safety critical application, it is further required that

– the models constructed are verifiable,
– model transformation are proven to preserve desirable properties of the mod-

els, such as functional correctness, and
– the model transformations generate conditions about the models, called proof

obligations, that are verified by using verification techniques and tools.

This implies that what is critical to CB-MDD is a modeling approach with
sound theoretical foundation and strong technical and tool support. The approach
should integrate techniques and tools for correct by construction through model
transformations and those for analysis and verification. The transformations
support the engineering design and reduce the burden on automated verification.
These form the theme of the rCOS method and in what follows we describe the
key features of this modeling approach.

Multi-dimensional separation of concerns. The models at each phase should
separate the different views and characterize the different aspects of the software
architecture at the given level of abstraction. A unified set of different notations,
such as UML, is often used as the modeling language. There is also a consensus
on notations for the different views of a software system, such as use cases for
requirements, class diagrams for structural design, sequence and state diagrams
for interaction protocols and reactive behaviors. Separation of concerns2 has to
deal with the important issue of the correctness and consistency of different views
[4,33]. There are existing UML profiles with precisely defined syntaxes and tools
for building models, which ensure and check their syntactic correctness and consis-
tency. The problem of semantic correctness and consistency is much harder, and a
semantic theory has to be developed for the unified modeling language. Our expe-
rience with rCOS [3,6] is that the challenge lies in that the semantic theory must
support separation of concerns to allow us to factor the system model into models
of different views and to consistently integrate models together under an execu-
tion semantics of the whole system. This is even more difficult when we have to
integrate object-orientation into a theory of CB-MDD such as rCOS [17]. The se-
mantic theory is also needed for the models to be verifiable by verification tools
and manipulatable by automated correctness preserving model transformations,
and properly formalized models are needed for automatic generation of test suites.
Separation of concerns and multi-view modeling are the key to the scalability of
the method and allow us to take advantage of different theories and their tool sup-
port for the analysis and manipulation of different views and aspects. To this end,

2 Here, multi-dimensional separation of concerns is related to what it meant in [32], but
with a wider extension.

66 Z. Liu, C. Morisset, and V. Stolz

we need to advance the ideas of “putting theories together” [2,15] and “unifying
semantic theories of programming” [19] to produce, analyze and transform models
with integrated tool support.

Object-orientation in CB-MDD. The rCOS method integrates object ori-
entation as an important part. Among other reasons including reusability and
maintenance, there are three reasons from our own experience. Firstly, object-
oriented analysis and design complements structured analysis and design in han-
dling the complexity of the organizational structure of the system [1]. Concepts,
their instances and their relations in the application domain naturally form the
structure of the domain and can be directly modeled by the notions of classes,
objects and associations or attributes. This is found to be very useful for do-
main understanding, and requirements capture and analysis. The combination
of use cases for functional requirements analysis and decomposition with object
orientation for structural analysis and decomposition works systematically and
effectively in both practical and formal component-based development [23,6].
Secondly, the use of design patterns [14,23] makes the object-oriented design
through model transformations more systematic and thus has much higher pos-
sibility for automation [17,27]. Finally, most, if not all, industrial component-
based technologies are implemented in the object-oriented paradigm.

Component-based architecture. For a model driven design, we need a pre-
cise and strong notion of component-based architecture such that

1. it describes the system functionalities and behavior,
2. it captures the decomposition of the system into components that cooperate

and interact to fulfill the overall system functionalities,
3. it supports composition, coordination and connection of components and

describes the hierarchical and dependency relationships among components.

Unlike the conventional notions of components which used to be about pro-
grams in code, components in CB-MMD are involved in all phases of the devel-
opment and represented in different languages. Composition, coordination and
connection of components can only be defined based on the interface behaviors
of the components. Independent deployment, interoperability, reuse of existing
(commercial off-the-shelf) components also require components to have explic-
itly specified contracts of interfaces [40,3,6]. The modeling language should be
expressive enough for specifying the multi-view and hierarchical nature of com-
ponents and allows abstraction by information hiding.

Scaling and automating refinement. Formal techniques and tools for ver-
ification are mainly for defect detection. They do not support decision making
of the designer in systematic and correct model construction. The basic notion
we find in formal methods that supports correct by design is program refinement
[31,19]. However, the classical refinement techniques need to be generalized and
unified to support the separation of concerns and allow models of different views

rCOS: Theory and Tool for Component-Based Model Driven Development 67

to be refined separately and hierarchically, such as data functionality refine-
ment, interaction refinement and object-oriented structure refinement [17,3,44].
We need to scale up refinement rules and automate them via exploration of for-
mal use [17,27] and automation of design patterns [14,23] for abstract models and
refactoring rules [11] for models at lower levels of abstraction, such as a design
class diagram. Automation of the scaled refinement rules provides us with the
implementation of model transformations. Application of such a model trans-
formation generates proof obligations for verification of properties of the models
before and after the transformation. These verification tasks can be carried out
by integrated verification tools, such as a theorem prover, a static checker, or a
model checker. This gives a seamless combination of tools for verification and
correctness by construction. Therefore, automation of a rich set of refinement
rules is the key to extensively tool supported model driven development. It turns
out to be the greatest challenge, too, in the tool development.

Tool supported development process. A convincing conclusion drawn from
the above discussion is that CB-MMD needs an integrated tool suite supported
by a sound theory, instead of a single purpose tool. With the tool support,
a software system must be developed in a clearly defined engineering process
in which different activities at different stages of development are performed
by project participants in different roles. We take this view very important, as
only with an engineering process it allows us to define at which points in the
development process should various models (or informally called artifacts) be
produced, and different kinds of manipulation, analysis, checking and verification
be performed, with different tools. The rCOS tool, introduced in Sec. 4, intends
to provide such an integrated tool suite and already allows one to run some
model transformations and checking.

3 Theoretical Foundation of rCOS

We summarize the main concepts and models of software artifacts defined in
rCOS without going into technical details. Such details can be found in our
earlier publications [17,3,6,44].

An essential concept in rCOS is that of components and rCOS provides a
multi-dimensional approach to modeling a component. Along the vertical dimen-
sion, a component K has various models with different details, i.e. in different
levels of abstraction, in different stages and for different purposes. A component
implementation as a piece of program, contracts of components at the level of
requirements specification and design, and publications for component usages
and synthesis. On the horizontal dimension is the hierarchical and dependency
relationships among components. It captures the composition of the component
from sub-components with connectors, coordinators and glue programs. The third
dimension separates the different views and characterize the different aspects of
the component at the given level of abstraction, including the data and class
structure, data functionality, interaction protocol, reactive behavior, etc.

68 Z. Liu, C. Morisset, and V. Stolz

3.1 Component Implementation and Component Refinement

At the code level, a component has a provided interface K.pIF, possibly a required
interface K.rIF and a piece of program code K.code(m) for each method m() in
the provided interface. The required interface K.rIF contains the methods that
are called in the code of the component K, but not declared in the provided
interface or defined as internal methods in the component.

Interfaces. In rCOS, an interface is a syntactic notion, and each interface I

is a declaration of a set I.fields of typed variables of the form x : T , called fields,
and a set I.methods of method signatures of the form m(x : T, y : V), where x : T

and y : V are the input and output parameters with their types.

UTP as root of semantic theory. In principle, different components can
be implemented in different programming languages. We thus need a semantic
model for “unifying theories” of different programming languages, and thanks
to Hoare and He, we use the well studied UTP [19]. The essential theme of
UTP that helps rCOS is that a program in any programming language can be
defined as a predicate, called a design. A design is specified as a pair of pre- and
post-conditions, denoted as pre(x) � post(x, x′), of the observables x and x′ of the
program, and its says that if the program executes from a state where the initial
values x satisfies pre(x) the programs will terminates in a state where the final
values x′ satisfies the relation post(x, x′) with the initial values x. Observables
include program variables and auxiliary variables dependable on the observable
behavior being defined, such as termination, denoted by ok and ok′ in sequen-
tial programs and interaction traces tr and tr′ in communicating programs. The
rCOS tool provides a textual language for specifying the methods, with a syn-
tax mixing both designs (pre/post-conditions, non-deterministic choice, etc) and
sequential code (conditional statement, loop, etc).

Semantics and refinement of components. With the definition of designs
and the refinement calculus established in UTP, the semantics of a component K

is defined as a function λCrIF · spc.K. The type of the function is from the set of
specification functions C of the required method methods in K.rIF to the specifi-
cation functions of the required methods in K.pIF. For any specification function
C (called a contract later) of the required interface K.rIF, spc.K(C) is the function
that gives each required method n() a design C(n()) calculated in the calculus of
UTP, and thus defines the semantics of each m() of the provided interface K.pIF as
a design. The semantics spc.K(C)(m) is calculated from the code of m by replacing
each invocation to a required method n() by the semantics C(n()). Notice that if
K.rIF is an empty interface, λCrIF · spc.K is a constant function.

Components are in general reactive programs and thus concurrent program-
ming languages are used for their implementation. The semantics of each method
is thus defined as a reactive design. In [3], the domain of reactive designs RD
is a sub-domain of the domain of designs D characterized by lifting function
H : D → RD such thatH(p � R) =̂ (true � wait′) � wait � (p � R), stating that when

rCOS: Theory and Tool for Component-Based Model Driven Development 69

wait is true the execution stays in the wait state and proceeds according to the
design p � R otherwise. In this specification, Boolean observables wait and wait′

represents the synchronization so that the execution of the program is suspended
when it is in a wait state. We also introduce guarded designs g&(p � R) to specify
the reactive behavior H(p � R) � g � (true � wait′), where “... � g � ...” is the math
infix operator operators for the programming construct if g then ... else

A component K1 is a refinement of K, denoted by K � K1, if they have the
same provided and required interfaces, and for each contract C of K.rIF and each
provided method m ∈ K.pIF, the design spc.K(C)(m) � spc.K1(C)(m) holds in the
refinement calculus of UTP. A work in progress is to automatically generate the
proof obligations in Isabelle/HOL that a design is a refinement of another one.

Object-orientation in rCOS. To support object-oriented design of compo-
nents, types of fields of component interfaces can be classes and thus the values
of these fields are objects. We have extended UTP to define object-oriented
programs and developed an object-oriented refinement calculus to handle both
structure and behavior refinement [17,44]. The object-oriented semantic model
in rCOS provides formal treatment of aliasing, inheritance and dynamic bind-
ing. These features are needed in CB-MDD when constructing, transforming and
verifying models in later stages of the development.

3.2 Contracts

In the CB-MDD paradigm, a component is developed by model transformations
from its requirements analysis model to a design model and finally an implementa-
tion model. We take the view that the analysis model specifies the functionalities
from the users’ perspective and describes what does the component do for what
kind of users. A kind of users is called an actor in the UML community and the
actors together define the environment of the component.

Component-based development allows the use of an existing component to
realize a model of a component in the analysis model. The fitness of the existing
component for the purpose in the model must be checkable without information
about the design and implementation of the existing component. For this, the
analysis model of a component should be a black box characterization of what is
needed for the component to be designed and used in building and maintaining a
software. The information needed depends on the application of the component.
For example, for a sequential program, the specification of the static data func-
tionality of the interface methods is enough, but information about the worst
execution time of methods is needed for a real-time application, and for reactive
systems we also need reactive behavior of the component and the interaction
protocol in which the environment interacts with the component. For the treat-
ment of different applications, the intention of rCOS is to support incremental
modeling and separation of concern.

Contracts for black-box modeling. In rCOS, a black box behavior model of
interfaces called a contract is defined, and its current version focuses on reactive
systems. A contract C = (I, θ,F) defines for an interface I, denoted by C.IF,

70 Z. Liu, C. Morisset, and V. Stolz

– an initial condition θ, denoted by C.init, that specifies the allowable initial
states of the intended component,

– a specification function F , and denoted by C.spec, specifying the reactive be-
havior by giving each method m ∈ C.IF.methods a reactive design C.spec(m).

Note that the specification function C.spec combines the static (data) function-
ality view and the reactive dynamic behavior view [4]. A contract also has a
third view, the structure view, that defines the data- and class structures. It is
represented by a UML class diagramit, which defines the data types and classes
of the objects of the component.

Refinement of contracts. For the study of the consistency of contracts, sepa-
ration of concerns and refinement among contracts, an execution semantics of a
contract C (and thus components) is defined in [3] by its failures, failure.C, and
its divergences, divergence.C [36]. A contract C1 refines a contract C2, denoted by
C2 � C1, if C1 is neither more likely to diverge, i.e. divergence.C1 ⊆ divergence.C2,
nor more likely to block the actors, i.e. failure.C1 ⊆ failure.C2.

Correctness of components. It is now clear that λCrIF · spc.K calculates a
contract of the provided interface of K for a given contract of Cr of its required
interface. A component K fulfills or implements a contract C if there exists a
contract such that C � spc.K(Cr). Clearly, spc.K(Cr) is the strongest provided
contract for Cr. We call a pair of contracts C = (P, R) of K.pIF and K.rIF a
contract of component K if P � spc.K(R), that is K fulfills the provided services
P if the environment provides K with services R. We define the relation of
alternate refinement between component contracts such that for publications
C1 = (P1, R1) and C2 = (P2, R2), C1 � C2 if P1 � P2 but R1 � R2, meaning that the
refined component provides “better” services while requiring “weaker” services.

3.3 Publications

A contract of the interface of a component is good to be used by the designer of
the component and for verification of the correctness of the design. However, it is
rather operational for a user of the component. A user prefers a more declarative
and more abstract specification in the form of a user manual. This is the notion
of publications [16,25] for assembling components. Therefore, a publication is
about the usage of the component.

In rCOS, a publication P = (I, θ,S ,T) specifies for an interface I, denoted by
P.IF,

– an initial condition θ, denoted by P.init, that specifies the allowable initial
states of the intended component,

– a specification function S, and denoted by P.spec, specifying the static data
functionality by giving each method m ∈ P.IF.methods a design C.spec(m)
(without guard), and

rCOS: Theory and Tool for Component-Based Model Driven Development 71

– a protocol T , denoted by P.prot, that is a set of traces over the method names
of P.IF.methods, specify the assumed work flows or interaction protocol in
which the actors use services of the intended component.

We define that for a same interface I, a publication P2 is a refinement of a
publication P1 of I if P2.init⇒ P1.init, P1.prot ⊆ P2.prot and for each interface
methods m, P1.spec(m) � P2.spec(m).

In [25], a function P is defined to obtain a publication from a contract C, and
a function C to obtain a contract from a publication; and the pair C,P forms
a Galois Connection between the domains of contracts and publications with
respect to the refinement partial orders.

Component publications and their faithfulness. A publication of a compo-
nent is a specification U = (G, A), where G and A are publications of the provided
interface K.pIF and required interface K.rIF, respectively. We define the relation
of alternate refinement between component publications such that for publica-
tions U1 = (G1, A1) and U2 = (G2, A2), U1 � U2 if G1 � G2 but A1 � A2.

We now extend the functions P and C to publications and contracts of compo-
nents, i.e. to pairs of of publications and pairs of contracts, respectively. A pub-
lication U = (G, A) of K is faithful if there is a contract C = (P, R) of K such that
U � P(C), i.e. G � P(P) and A � P(R). This is the basis for publication certifica-
tion. A component K with a faithful publication U fits in the position of contract
C = (P, R) in a model, if U refines P(C). In [25], a mapping C from publications to
contracts is also defined and a theorem is proven that (P , C) forms a Galois con-
nection between the domain of contracts and the domain of publications.

A component K with a publication U = (G, A) is substitutable by a component
K1 with a publication U1 = (G1, A1) if U � U1 that is defined as G � G1 and
A � A1. Notice that contracts and publications of a component are truly black
box specifications of the component. Contracts are used for design and verification
of components while publications are used for substitutability and assembling.

Theorem of separation of concerns. The fact that (P , C) forms a Galois con-
nection between the domain of contracts and the domain of publications makes
the rCOS theory support the separation of concerns. It allows to preserve the
faithfulness of a publication by refining the the data functionality and shrinking
the protocol in of the provided publication while weakening the data function
functionality and enlarge the protocol of the required required publication.

The notions of contracts and publications of an interface can be combined to
a notion of extended contract3 C = (I, θ,F , T) which specifies the interface, the
initial condition, reactive designs (behavior) and interaction protocol of an in-
tended component. The protocol and the reactive behavior are therefore required
to be consistent so that all traces in the protocol are allowed by the reactive be-
havior F . Our experience with the CoCoME example [5] shows it is desirable for
the design to specify a use case as an extended contract of the provided interface
of a component (see Section 4 too).
3 This is actually the notion of contract defined in [17].

72 Z. Liu, C. Morisset, and V. Stolz

The theorem of separation of concerns in [3] allows to refine the static data func-
tionality and reactive behavior of a contract separately to preserve the consistency
of an extended contract, and thus the faithfulness of a publication. It is interest-
ing to point out that object-oriented refinement [17,44] makes formal use of design
patterns. It is thus crucially important for the refinement of the static functionality
and for scaling and automating refinement to develop tool support.

3.4 Composition

The notion of composition is essential for a component-based design and must
be defined for models of components at all levels of abstraction, and it should
be consistently refactorable to composition of interfaces, static functionality, re-
active behaviors and interaction protocols. As a component-based architecture
description langauge, rCOS defines the basic composition operators for renam-
ing interface methods, restriction on the environment from access to provided
methods, internalization of provided methods to make them autonomously exe-
cuted when they are enabled, plugging the provided interface of one component
to the required interface of another components, and disjoint parallel composi-
tion of components. Internalization and plugging together can represent general
components coordination. In the following, we discuss the nature of these com-
position operators at different levels of abstraction.

Composition of contracts and publications of components. The defi-
nitions of renaming, restriction, plugging and disjoint parallel compositions for
contracts and publications are relatively easier than internalization [25]. How-
ever, for the plugging composition is conditional. A contract C1 = (P1, R1) (or
a publication P1 = (G1, A1)) is composable with C2 = (P2, R2) (resp. publication
P2 = (G2, A2)) if the provided contract P1 in C1 (resp. G1 in P1) refines the re-
quired contract R2 in C2 (resp. A2 in P2).

The difficulty in defining internalization is first to make sure the result of
a composition is still a contract defined in rCOS. For this, the effects of the
autonomous internal executions of the internalized methods must be aggregated
into the remaining interface methods. In [3] a definition for internalization (called
synchronization there) of a component by a process is given and the result proven
to be a component. However, this is better used at the implementation level. In
[25], internalization is directly defined for contracts and publications.

Composition of component implementations. The composition operators
renaming, restriction, plugging and disjoint parallel composition are implemented
as simple connectors following the semantics defined in [3,25]. Internalization is
implemented by using processes (think of a scheduling process) that automat-
ically calls the internalized methods for execution when they are enabled (i.e.
their guards become true). The semantics of the synchronous composition of
a component and a process is defined in [3] and there the composed entity is
proven to be a component.

rCOS: Theory and Tool for Component-Based Model Driven Development 73

Compositional modeling, refinement and verification. At all levels of ab-
straction, the composition operations are proven to be monotonic with respect
to the refinement order. This allows us to carry out compositional design by
model transformations. The relationships of fulfillment of contracts by compo-
nents, faithfulness of component publications, and the fitness of a component in
a model are preserved by the composition operations (for composable composi-
tions). This enables us to do compositional analysis, verification and certification.

4 The rCOS Tool

The rCOS tool focuses on CB-MDD and is oriented towards organizing the de-
velopment activities. It introduces a body of concepts and a hierarchy of artifact
repositories, designed to support team collaboration on development of the mod-
els and generation of code (cf. the paragraph on tool supported development
process in Section 2.2). At the top-level of component repositories is the appli-
cation workspace, representing the whole modelling and development space of an
application. The application workspace is partitioned into components through
hierarchical use cases. A component is characterized by its subset in the model
of different views and represented in different forms depending on the phases of
the development. The application maintains the (requirements) analysis model,
the design model and the platform specific design and implementation. The in-
formal requirements document is mainly a description of the use cases and their
relationships. It is represented in a structured natural language (not stored in
the model) and the use case diagrams [6]. Use cases may refer or use to other
use cases, hence the hierarchical notion of sub-use cases. Each use case is called
a component at this level.

To support construction, understanding and transformations of these models,
a UML profile is defined for rCOS, and models of the views of reactive behavior,
interaction and class structure are created as instances of the metamodel of the
UML profile [7]. The UML model has an equivalent representation in the rCOS
textual syntax and is the input for the various formal analyses.

4.1 Tool Support to Requirement Analysis

An Analyst works on a component, that is, a use case of the application, by
studying its textual requirements and the application domain, and creates an
analysis model consisting of a use case diagram, a conceptual class diagram,
an interface sequence diagram, the functionality specification of the interface
methods, and a state machine diagram. The use case diagram represents the
dependency relation between the actors in this use case and referenced use cases.

Models of different views. The use case diagram describes the dependency
relationships between the actors and the component. Some actors are compo-
nents external to this component. The conceptual class model represent the
domain concepts and objects with their structural inheritance relations involved

74 Z. Liu, C. Morisset, and V. Stolz

in the use cases of the use case diagram. Methods are designed for the component
interface, but not for the other conceptual classes at this stage. The interface se-
quence diagram models the interactions between the actors and the component,
and the interactions among the subcomponents corresponding to the sub-use
cases of the use case diagram. It is thus in general a component sequence dia-
gram (cf. the next subsection). The state diagram represents reactive behavior of
the component and characterizes the flow of control and synchronization of the
component. The functionality specification of the interface methods specifies the
pre- and post-conditions of the methods in rCOS. Therefore, the different views
of a use case together form a model of an extended contract of a component
whose provided interface provides the methods for the actors to call.

Analysis and validation. The Analyst is responsible for verifying that the
models of the different views are consistent, and validating it against the informal
requirements document. The syntactical consistency checking is implemented as
part of the type checker of rCOS, though the full implementation is still ongoing.

We have developed a prototype of a tool for automatic protyping from an
analysis model [24] for validating requirements. For the dynamic consistency of
the sequence diagram and state machine diagram, we translate them into CSP
processes and check deadlock freedom of their composition with the CSP model
checker FDR2 [8]. Here, consistency means that all interaction scenarios defined
by the sequence diagram are accepted by the state machine. Likewise, we check
faithfulness of the contract with regard to an executable rCOS specification (the
component does not deadlock for any interaction in the contract).

Application dependent properties, such as safety and liveness, can be verified
by a combination of model checking the CSP process of the state diagram and
static analysis of the functionality specification of the interface methods.

The Analyst may iterate over this model, creating, decomposing and refining
models. It may also be necessary to revise the informal requirements documents
according to the results of the analysis and validation. She can declare a depen-
dency on another component and, if the component depends on other compo-
nents, the Analyst specifies which interface these required components have to
provide, or she may introduce abstract models of the required components. A
verified and validated model can be frozen and is used for the design of compo-
nents by a Designer.

Remarks. With the support of the tool, the syntactic consistency can be guar-
anteed, such as the method names, parameters and name of attributes in differ-
ent views. The construction of the class diagram, sequence diagram and state
diagram is fully supported by the tool. It however needs domain experts who
understand the syntax and its semantics for writing the correct pre- and post-
conditions of the methods. Another difficulty arises in a team where with multiple
analysts working on different components (even initially disjoint components).
Decomposition of a use case component requires the awareness of the progress
being made on other components to avoid duplicate introduction of components
and to accommodate changes obtained through analysis and design of other

rCOS: Theory and Tool for Component-Based Model Driven Development 75

components. There seems to be no formal and systematic tool support to en-
sure across component consistency except for having project review meetings to
decide what changes should be made. Our experience from the CoCoME case
study [5] is that modelers of different components have to spend a lot time to
discuss with each other the models that they are working on and informing each
other about any new components they introduce.

4.2 Model Transformation Tool to Support Design

A Designer produces a design model from an analyzed component model by
a sequence of model transforms. In rCOS, we intend to support threes kinds
of model transformations for producing an object-oriented design model of the
component, a component-based design model from the object-oriented design
model, and a platform specific design model.

Object-oriented design of a component. This mainly involves stepwise re-
finement of the data functionality of the interface methods. The driving force for
this is repeated applications of the Expert Pattern for Assignment of Responsi-
bilities in object-oriented design [23]. The Expert Pattern provides a systematic
decomposition of the functionality of a method of an object into responsibili-
ties of its related objects, called information experts, which maintain or know
the information for carrying out these responsibilities. The related objects of an
object o can be defined by the navigation paths from o, and they are derivable
from the class diagram (and from the rCOS class declarations).

Formalizing and implementing Expert Pattern. We classify the primitive
responsibilities of an object o of class M into knowing responsibilities and doing
responsibilities [23]. Each object is considered to be responsible for knowing its
attributes and doing its methods. It is also responsible for knowing its linked ob-
jects and for delegating tasks to them, i.e. invoking their methods. For instance,
if an object a contains an object b, then a can access to fields and methods of b,
but if b contains an object c, then a should not access directly to attributes and
methods of c, but rather delegate such actions to b.

Hence, we introduce the following rewriting rules, for any navigation path
p �= this of type M , any fields a and b and any methods m and n:

p.a.b −→ p.find a b() p.a.m(x̄) −→ p.find a m(x̄)
p.m(x̄).a −→ p.find m a(x̄) p.m(x̄1).n(x̄2) −→ p.find m n(x̄1, x̄2)

where the following methods are automatically created in the class M when
needed:

find a b() {return a.b}, find a m(p̄) {return a.m(p̄)}
find m a(p̄) {return m(p̄).a}, find m n(p̄, q̄) {return m(p̄).n(q̄)}

These rules can be inductively applied to any navigation path containing at
least three elements different from this, the number of elements in the path
being decreased by one at each step.

76 Z. Liu, C. Morisset, and V. Stolz

What a method of an object can do, is to change its own attribute and to
delegate the change of the attributes of its linked objects to the corresponding
objects. We also introduce a rule concerning the responsibility of objects with
respect to the modification of their attributes. For any navigation path p �= this
of type M , any attribute a and any expression e, we introduce the following rule:

p.a := e −→ p.set a(e) with set a(x) {a := x}
At the moment, we have implemented a transformation which takes the full
specification of a method m() in normal form and carries out all the responsibility
assignments in one go. We plan to implement a transformation that takes a
part of a specification designated by the user and carries out one step of the
decomposition. For example, she selects a message in a sequence diagram, chooses
a sub-expression from the corresponding functionality specification and asks the
system to generate the intermediate setters and getters to delegate the accesses.
This also generates a more readable design, because it allows the designer to
choose meaningful method names.

Other model transformations. Before and after the application of the ex-
pert pattern, we can improve the low level design by using other design patterns,
such a High Cohesion and Low Coupling (cf. [23] for informal presentation and
[17] for an rCOS formalization) as well as the Creator Patterns, Structure Pat-
terns and Behavior Patters (cf. [14] for informal description and [27] for the
rCOS formalization) and refactoring rules (cf. [11] for informal discussion and
[27,44] for the rCOS formalization). Some of these patterns introduce new classes
and decompose classes. We plan to implement a library of design patterns and
refactoring rules in the rCOS tool. A design pattern or a refactoring rule has
conditions on the model before and after the transformation. The application of
the corresponding automated transformation generates these conditions as proof
obligations to be proved by using theorem proving and/or model checking. This
is how verification tools are to be integrated into the rCOS tool, that is, we pro-
pose a tool suite for verification which is integrated into model transformations.

Effect of transformations. The application of these transformations to an
analysis model refines the interface sequence diagram to an object sequence di-
agram and the conceptual class diagram to a design class diagram in which
methods of a class are introduced, and the functionality specification of inter-
face methods into invocations of the newly introduced methods of the classes and
specification statements of these methods in their classes. Now the design class
diagram can be automatically produced for a transformation, but the automatic
generation of the object sequence diagram is harder and yet to be automated.

Discussion. Pre-processing of the functionality specification of the method is
needed so that it is decomposed into specifications in terms of primitive responsi-
bilities. This sounds unrealistic. However, the practical engineering guidance that
the precondition of a method is mainly to check conditions on existing objects
and the postcondition are mainly about which new objects were created, old ob-
ject deleted, what attributes modification were made on which existing objects.

rCOS: Theory and Tool for Component-Based Model Driven Development 77

Our experience is that with the class diagram this guidance actually helps in writ-
ing and understanding the functionality specification of a method in a normal form
that is essentially a conjunction of disjunctions of sequential compositions of prim-
itive responsibilities [6]. An expression can represent a significant computation,
such as the greatest common divisor of two integers or the shortest paths between
two nodes of a graph, and it needs to be coded by a programmer. We have also de-
fined refinement rules to transform universally and existentially quantified speci-
fication statements into loops [6]. These rules can be easily automated.

Component-based design. The designer takes the object-oriented design
model and identifies “permanent objects” and decides if they should be made into
components according to their features. The features include if they logically repre-
sents existing components, hardware devices, external subsystems, or they can be
reused in different models of this application and other applications. A permanent
object that aggregatesa large amount objects and functionality is also suggested to
be made into a component. The identification of objects as subcomponents in the
object sequence diagram also defines the interfaces among the subcomponents. We
can then abstract the object sequence diagram into a component sequence diagram
by hiding the object interactions inside the identified components [43]. This step
of abstraction is yet to be automated as a transformation. It generates the invari-
ant that none of these objects is null for proof that the identified objects are indeed
permanent. The execution of this transformation will also produce a component
diagram representing the original component as the composition of the identified
components. Reuse of existing designed components is also decided when apply-
ing the transformation. This generates proof obligations for checking fitness and
composability of existing design components.

Platform specific design and implementation. The Designer decides on
components that should maintain persistent data, and defines database map-
pings and primary keys for these components, and plans database queries to
access the persistent data.

The model of component-based design obtained from the object-oriented de-
sign services as the platform independent design and employs direct object method
interactions. The Designer studies the nature of the components, such as their
distribution and deployment requirements, and decides the concrete interaction
mechanisms and middlewares for individual interfaces.

5 Concluding Remarks

We have presented the motivation, the theme, the features and challenges of
the rCOS theory and its tool support. The presentation is mostly informal,
but what we are delighted about is that all the informal concepts, artifacts
and design activities have their formalized versions in the rCOS theory and
formulated in the roadmap of the design of the rCOS tool (cf. [17,3,6]). We take
this as a promising sign of the research as we believe a theory and a tool can be

78 Z. Liu, C. Morisset, and V. Stolz

effective only when they can be embedded into a practical software engineering
processes. Except for application specific significant algorithms, nearly all the
code can be automatically generated from a well specified design model. Also,
transformations from a platform independent design to a platform specific design
with existing industry standards can be mostly automated.

We have left out the discussion about system integration of the paper due
the lack of space. System integration is mainly about the design of GUI objects
and hardware controller that need to interact with each other and with the
domain components. Modeling, analysis and design of these interactions can be
done in a pure event-based modeling theory and its tools support for embedded
information systems design [6].

There is a long way to fulfill our vision on the design and the implementation
of the tool set out in [26]. The main challenge is still in the automation of model
transformations from analysis models to platform independent design models. It
is not enough to only provide a library of implementation transformations, but
more importantly, the tool should provide guiding information on which rule is
to be used. It is also difficult to support consistent and correct reuse of already
designed methods when applying the Expert pattern to design a method, and
the reuse of already designed components when designing a new component.

On the engineering side, our tool shows the same aspects and their respective
problems as the software engineering discipline we would like to apply it to:
development of the tool requires understanding of formal methods to correctly
encode the requirements and algorithms, such as transformations and their pre-
conditions, just as the model designers need to understand how to properly model
a contract (including technicalities that might be necessary to make a problem
actually amenable to the model checked), or write relational functionality speci-
fications. While our progress in the tool development is steady but slow, we feel
that it is well in scope of a commercial application from usability, presentation
and documentation, included guided story-telling of use cases. As a matter of
fact, we have only been able to make this progress with our limited resources
because we have been harnessing existing infrastructure such as UML for mod-
elling, and the QVT language for transformation, just as we want developers to
harness existing theories in their designs and their validation.

Acknowledgements. We would like to thank our colleagues in the rCOS team
(cf. http://rcos.iist.unu.edu) for their collaboration and discussions. We are
in particular grateful to Anders P. Ravn for his suggestions and comments. We
also thank the anonymous reviewers for their comments.

References

1. Booch, G.: Object-oriented analysis and design with applications. Addison-Wesley,
Reading (1994)

2. Burstall, R., Goguen, J.: Putting theories together to make specifications. In:
Reddy, R. (ed.) Proc. 5th Intl. Joint Conf. on Artificial Intelligence, pp. 1045–
1058. Department of Computer Science, Carnegie-Mellon University, USA (1977)

http://rcos.iist.unu.edu

rCOS: Theory and Tool for Component-Based Model Driven Development 79

3. Chen, X., He, J., Liu, Z., Zhan, N.: A model of component-based programming. In:
Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 191–206. Springer,
Heidelberg (2007)

4. Chen, X., Liu, Z., Mencl, V.: Separation of concerns and consistent integration
in requirements modelling. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W.,
Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 819–831.
Springer, Heidelberg (2007)

5. Chen, Z., Hannousse, A.H., Hung, D.V., Knoll, I., Li, X., Liu, Y., Liu, Z., Nan,
Q., Okika, J.C., Ravn, A.P., Stolz, V., Yang, L., Zhan, N.: Modelling with rela-
tional calculus of object and component systems–rCOS. In: Rausch, A., Reussner,
R., Mirandola, R., Plášil, F. (eds.) The Common Component Modeling Example.
LNCS, vol. 5153, pp. 116–145. Springer, Heidelberg (2008)

6. Chen, Z., Liu, Z., Ravn, A.P., Stolz, V., Zhan, N.: Refinement and verification in
component-based model driven design. Science of Computer Programming 74(4),
168–196 (2008); Special Issue on the Grand Challenge. UNU-IIST TR 388

7. Chen, Z., Liu, Z., Stolz, V.: The rCOS tool. In: Fitzgerald, J., Larsen, P.G.,
Sahara, S. (eds.) Modelling and Analysis in VDM: Proceedings of the Fourth
VDM/Overture Workshop, Newcastle University. CS-TR-1099 in Technical Report
Series (May 2008)

8. Chen, Z., Morisset, C., Stolz, V.: Specification and validation of behavioural pro-
tocols in the rCOS modeler. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS,
vol. 5961, pp. 387–401. Springer, Heidelberg (2010)

9. CWB. The concurrency workbench,
http://homepages.inf.ed.ac.uk/perdita/cwb/

10. Dijkstra, E.: Notes on structured programming. In: Dahl, O.-J., Hoare, C.A.R.,
Dijkstra, E.W. (eds.) Structured Programming. Academic Press, London (1972)

11. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code. Addison-Wesley, Reading (1999)

12. Frederick, P., Brooks, J.: No silver bullet: essence and accidents of software engi-
neering. Computer 20(4), 10–19 (1987)

13. Frederick, P., Brooks, J.: The mythical man-month: after 20 years. IEEE Soft-
ware 12(5), 57–60 (1995)

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)

15. Goguen, J., Burstall, R.: Institutions: abstract model theory for specification and
programming. Journal of ACM 39(1), 95–146 (1992)

16. Jifeng, H., Li, X., Liu, Z.: Component-based software engineering. In: Van Hung,
D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 70–95. Springer, Heidel-
berg (2005); UNU-IIST TR 330

17. He, J., Liu, Z., Li, X.: rCOS: A refinement calculus of object systems. Theor.
Comput. Sci. 365(1-2), 109–142 (2006); UNU-IIST TR 322

18. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

19. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall, Engle-
wood Cliffs (1998)

20. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley Professional (2003)

21. Jones, C.B.: Systematic Software Development using VDM. Prentice-Hall, Engle-
wood Cliffs (1990)

22. Lamport, L.: The temporal logic of actions. ACM Transactions on Programming
Languages and Systems 16(3), 872–923 (1994)

http://homepages.inf.ed.ac.uk/perdita/cwb/

80 Z. Liu, C. Morisset, and V. Stolz

23. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process, 2nd edn. Prentice-Hall, Englewood
Cliffs (2001)

24. Li, D., Li, X., Liu, J., Liu, Z.: Validation of requirements models by automatic
prototyping. J. Innovations in Systems and Software Engineering 4(3), 241–248
(2008)

25. Liu, Z., Kang, E., Zhan, N.: Composition and refinement of components. In: Post
event Proceedings of UTP 2008. LNCS. Springer, Heidelberg (to appear, 2009)

26. Liu, Z., Mencl, V., Ravn, A.P., Yang, L.: Harnessing theories for tool support. In:
Proc. of the Second Intl. Symp. on Leveraging Applications of Formal Methods,
Verification and Validation (isola 2006), pp. 371–382. IEEE Computer Society, Los
Alamitos (2006); Full version as UNU-IIST Technical Report 343

27. Long, Q., Qiu, Z., Liu, Z.: Formal use of design patterns and refactoring. In: Mar-
garia, T., Steffen, B. (eds.) International Symposium on Leveraging Applications of
Formal Methods, Verification and Validation. Communications in Computer and
Information Science, vol. 17, pp. 323–338. Springer, Heidelberg (2008)

28. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems:
specification. Springer, Heidelberg (1992)

29. Manna, Z., Pnueli, A.: The temporal logic of reactive systems: safety. Springer,
Heidelberg (1992)

30. Milner, R.: Communication and concurrency. Prentice-Hall, Englewood Cliffs
(1989)

31. Morgan, C.C.: Programming from Specifications. Prentice-Hall, Englewood Cliffs
(1994)

32. Ossher, H., Tarr, P.: Using multidimensional separation of concerns to (re)shape
evolving software. Commun. ACM 44(10), 43–50 (2001)

33. Paige, R., Brooke, P., Ostroff, J.: Metamodel-based model conformance and mul-
tiview consistency checking. ACM Trans.Softw.Eng.Methodol. 16(3), 11 (2007)

34. Parnas, D.: On the criteria to be used to decompose systems into modules. Com-
munication of ACM 15, 1053–1058 (1972)

35. Peter, L.: The Peter Pyramid. William Morrow, New York (1986)
36. Roscoe, A.W.: Theory and Practice of Concurrency. Prentice-Hall, Englewood

Cliffs (1997)
37. Schneider, A.: The B-method. Masson (2001)
38. Sommerville, I.: Software Engineering, 6th edn. Addison-Wesley, Reading (2001)
39. SRI. PVS specification and verification system, http://pvs.csl.sri.com/
40. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.

Addison-Wesley, Reading (1997)
41. Wirsing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer, A. (eds.): Software-Intensive

Systems and New Computing Paradigms. LNCS, vol. 5380. Springer, Heidelberg
(2008)

42. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice-
Hall, Englewood Cliffs (1996)

43. Yang, L., Stolz, V.: Integrating refinement into software development tools. In:
Pu, G., Stolz, V. (eds.) 1st Workshop on Harnessing Theories for Tool Support
in Software. Electr. Notes in Theor. Comp. Sci., vol. 207, pp. 69–88. Elsevier,
Amsterdam (2008); UNU-IIST TR 385

44. Zhao, L., Liu, X., Liu, Z., Qiu, Z.: Graph transformations for object-oriented re-
finement. Formal Aspects of Computing 21(1-2), 103–131 (2009)

http://pvs.csl.sri.com/

Termination
in Higher-Order Concurrent Calculi�

Romain Demangeon1, Daniel Hirschkoff1, and Davide Sangiorgi2

1 ENS Lyon, Université de Lyon, CNRS, INRIA, France
2 Università di Bologna, Italy

Abstract. We study termination of programs in concurrent higher-
order languages. A higher-order concurrent calculus combines features of
the λ-calculus and of the message-passing concurrent calculi. However,
in contrast with the λ-calculus, a simply-typed discipline need not guar-
antee termination; and, in contrast with message-passing calculi such as
the π-calculus, divergence can be obtained even without a recursion (or
replication) construct.

We first consider a higher-order calculus where only processes can be
communicated. We propose a type system for termination that borrows
ideas from termination in Rewriting Systems (and following the approach
to termination in the π-calculus in [DS06]). We then show how this type
system can be adapted to accommodate higher-order functions in mes-
sages. Finally, we address termination in a richer calculus, that includes
localities and a passivation construct, as well as name-passing commu-
nication. We illustrate the expressiveness of the type systems on a few
examples.

1 Introduction

A system is terminating when it cannot perform an infinite number of transition
steps. Termination is a difficult property to ensure: for instance, the termina-
tion of a rewriting system is not decidable in the general case. The problem of
termination has been widely studied in sequential languages, including higher-
order ones such as the λ-calculus, employing static analysis and especially type
systems.

Ensuring termination for concurrent and mobile systems is much more chal-
lenging, as such systems are rarely confluent. The presence of mobility, under
the form of an evolving topology of communication (new servers can be cre-
ated, information travels across the system along dynamically evolving connec-
tions), adds even more complexity to the task. Previous works on this subject
[YBH04, San06, DS06] rely on type systems to ensure termination in a con-
current context, in the setting of the π-calculus (π). In some of these systems,
weights are assigned to π-calculus channels, and typability guarantees that, at

� This work has been supported by the European Project FET-GC II IST-2005-16004
Sensoria, and by the french ANR projects “CHoCo” and “Complice”.

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 81–96, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

82 R. Demangeon, D. Hirschkoff, and D. Sangiorgi

each reduction step that involves the firing of a replicated term, the total weight
associated to the process decreases.

In this work, we want to address the problem of termination in languages that
include powerful primitives for distributed programming. The most important
primitive that we focus on is process passing, that is, the ability to transmit
an entity of computation along messages. We therefore study higher-order con-
current languages, and focus on the Higher-Order π-calculus, HOpi [San92], as
working formalism to analyse termination in this setting.

To our knowledge, there exists no result on termination for higher-order con-
current processes. In some sense, formalisms like HOpi combine features from
both the λ-calculus and the π-calculus, and ensuring termination in such a set-
ting involves the control of difficulties related both to the higher-order aspects
and to the concurrency aspects of the model.

In contrast with name-passing concurrent languages such as the π-calculus,
where recursion (or a similar operator such as replication) is needed in order
to have non-terminating programs, in HOpi, similarly to the λ-calculus, non-
termination can show up already in the fragment without recursion. As an ex-
ample, consider the following process:

Q0 = P0 | a〈P0〉, where P0 = a(X).(X | a〈X〉)

(P receives a process on channel a, spawns the received process and emits a
copy of this process on a again). Q0 can only reduce to itself, giving rise to a
divergence.

Also, in contrast with the λ-calculus, where termination is ensured by adopting
a simple type discipline, such as that of the simply-typed λ-calculus, which rules
out recursive types, the HOpi processQ0 is typable without resorting to recursive
types (Q0 is a process of simply-typed HOpi, where name a is used to carry
processes, and the variables used are process variables).

To sum up, calculi like HOpi put together ideas from π-calculus and λ-
calculus, and in both these calculi termination has been studied (using type
systems). We cannot however directly adapt existing ideas. On the one hand,
the type systems for termination in the π-calculus essentially impose constraints
on the recursion (or replication) operators; we cannot directly adopt the idea
in HOpi because HOpi has no recursion. On the other hand, the type systems
for termination in the λ-calculus put constraints on self-applications, notably
by forbidding recursive types. We cannot directly adopt these either, because of
non-terminating examples like the one above. Indeed, there is no explicit self-
application in Q0, and Q0 is actually typable in the simplest of the type systems
of HOpi, which corresponds to the simply-typed discipline of the λ-calculus,
without recursive types.

The goal of this paper is to propose more refined type disciplines, that allow
us to rule out non-terminating programs such as the one above while retaining
a non-trivial expressiveness.

A solution could be to exploit the standard encoding of HOpi in π [SW01], that
respects termination, and use it, together with existing type systems for π, to

Termination in Higher-Order Concurrent Calculi 83

infer termination in HOpi. However this would not be applicable in extensions
of HOpi that are not encodable in π (or that appear difficult to encode), for
instance, in distributed versions of the calculus. If one wishes to handle models
for distributed computing (including explicit locations and mobility of locations),
the techniques and type systems for termination should be directly formulated
on HOpi. Further, a direct formulation would allow one to make enhancements
of the techniques that are tailored to (and therefore more effective on) higher-
order concurrency. We nevertheless analyse the approach via the encoding in the
π-calculus in Sect. 2.3, to compare it with our system in terms of expressiveness.

In this paper, we first (Sect. 2) analyse termination in HOpi2, a higher-order
calculus where processes are the only values exchanged. We propose a type sys-
tem for termination using techniques from term-rewriting, in which termination
is guaranteed by a decreasing weight associated to processes. This is also the
approach followed in [DS06] for termination in the π-calculus. The technical de-
tails and the proofs are however rather different, for the reasons outlined earlier
(e.g., name-passing vs process passing, absence of replication or recursion). We
present the basic type system, make some assessment of its expressiveness, and
describe a few important refinements (though only briefly, due to lack of space).

The system for HOpi2 is a starting point, from which we build a similar type
system for HOpiω, a richer higher-order calculus where the values communicated
also include higher-order functions (Sect. 3 – the names HOpi2 and HOpiω are
inspired from [SW01]). The additional constructs for functions have to be con-
trolled in order to rule out diverging behaviours.

These results pave the way for the study of a further and much richer ex-
tension, the calculus we call PaPi (Sect. 4). PaPi is equipped with powerful
primitives that are found in formalisms for global computing: in addition to
standard name-passing (as in the π-calculus) and higher-order communication,
we also handle explicit localities and passivation. Passivation is the operation
of intrusively capturing a running computation, in order to be able to modify
the process being executed (for instance to discard, duplicate or update it). We
provide several examples to illustrate the expressive power given by the combi-
nation of primitives in PaPi. Analysing and controlling interaction in PaPi is a
challenging task. We discuss how the ideas we developed to control process pass-
ing in HOpi2 and HOpiω can be combined with the approach to name passing
of [DS06] in order to guarantee termination.

2 HOpi2

This section is dedicated to the study of HOpi2, a basic higher-order process
calculus, with processes as the only communication values.

2.1 The Calculus

We shall use symbols P,Q,R, S for processes, X,Y for process variables, and
names a, b, c for channels.

84 R. Demangeon, D. Hirschkoff, and D. Sangiorgi

a〈Q〉.P1 | a(X).P2 → P1 | P2[Q/X]

P1 → P ′
1

P1 | P2 → P ′
1 | P2

P → P ′

(νc)P → (νc)P ′
Q ≡ P P → P ′ P ′ ≡ Q′

Q → Q′

Fig. 1. The Operational Semantics of HOpi2

The grammar for processes of HOpi2 is the following:

P ::= 0 | P |P | a〈P 〉.P | a(X).P | X | (νc)P .

Structural congruence (≡) is defined in the standard way on HOpi2. We shall
omit trailing occurrences of 0 in processes of the form a〈P 〉.0. Reduction is de-
fined by the rules of Fig. 1. Q[P/X] stands for the capture avoiding substitution
of variable X with process P in Q. A process P is terminating if there exists no
infinite sequence of reductions emanating from P . We suppose that all processes
we shall manipulate obey a Barendregt convention: all bound names are pairwise
distinct and different from all free names (similar notations and conventions will
be adopted for the calculi we study in the next sections).

To see how HOpi2 processes interact, consider S1 = a〈b〈0〉.0〉.a〈b(Z).0〉 and
S2 = a(X).a(Y).(X | Y). S1 is a process which sends on a the code of a process
emitting 0 on b, and then sends on a the code of a process receiving on b. S2 is a
process which upon reception of two processes on a (in sequence) executes these
in parallel. Process S1 | S2 performs two reductions to become b〈0〉.0 | b(Z).0,
after which a synchronisation on b can take place.

As discussed above, recursive outputs (“self-emissions”) can lead to diverging
behaviours in HOpi2: in process Q0 from Sect. 1, a process containing an output
on a is sent over channel a itself in a〈P0〉. Our type system, in Sect. 2.2, puts
constraints on self-emissions in order to control divergence.

2.2 A Type System to Ensure Termination in HOpi2

The types for channels are of the form Chn(�), where � is interpreted as the type
of processes (throughout the paper, we use the syntax Ch(T) to denote the type
of a channel carrying values of type T), and n is a natural number, called the
level of the channel being typed. We use Γ to range over typing contexts, that are
lists of typing hypotheses. If a : Chn(�) belongs to Γ , we write Γ (a) = Chn(�),
and lvlΓ (a) = n. Processes (and process variables in Γ) are typed using simply
a natural number.

Figure 2 presents the rules of our type system for HOpi2. (This system, and
all systems we shall study in the paper, are syntax directed : there is one typing
rule per syntactic construct. We shall exploit this when referring to the typing
rules by only mentioning the construct they deal with.) The actual control takes
place in the output rule, where we ensure that the level of the transmitted process

Termination in Higher-Order Concurrent Calculi 85

Γ (X) = n

Γ � X : n

Γ, c : Chk(�) � P : n

Γ � (νc)P : n

Γ � P1 : n1 Γ � P2 : n2

Γ � P1 | P2 : max(n1, n2)

Γ � 0 : 0

Γ � P : k Γ � Q : m
lvlΓ (a) = n k < n

Γ � a〈P 〉.Q : max(m,n)

Γ, X : k − 1 � P : n
lvlΓ (a) = k

Γ � a(X).P : n

Fig. 2. HOpi2: Typing Rules

is strictly smaller than the level of the carrying channel: this way, we exclude
“self-emissions”. This discipline is at the basis of the termination proof: when a
communication is performed, an output of weight n is traded for possibly several
new outputs appearing in the process, that all have a smaller weight.

We can check that process Q0 from Sect. 1 is ruled out by our system: as P0
contains an output on a, its level is at least the level of a. As a consequence, the
output rule forbids P0 to be sent on a itself, and Q0 is not typable.

To establish soundness of our type system, we introduce a measure on typing
derivations that decreases along reductions. We use notation D : (Γ � P : n) to
mean that D is a derivation of the typing judgment Γ � P : n. Below and in the
remainder of the paper, � will stand for multiset union.

Definition 1. If D : (Γ � P : n), we define m(D) by induction over the struc-
ture of D as follows (to ease presentation, we take advantage of the fact that the
type system is syntax-directed, and reason according to the shape of P):

– mD(0) = mD(X) = ∅;
– mD(P1 | P2) = mD(P1) �mD(P2)
– mD((νc)P) = mD(a(X).P) = mD(P);
– mD(a〈P 〉.Q) = mD(Q) � {n} if lvl(a) = n according to Γ .

We note that if D : (Γ � P : n) and P ≡ P ′, there exists D′ s.t. D′ : (Γ �
P ′ : n) and m(D) = m(D′). <mul denotes the multiset extension of the standard
ordering on integers (e.g., {2, 2} <mul {3}).

Lemma 1. If D : (Γ � P : n), then m(D) <mul {n+ 1}.

Proposition 1. If D : (Γ � P : n) and P → P ′ then there exist D′ and n′ ≤ n
such that D′ : (Γ � P : n′) and m(D′) <mul m(D).

Proof (Sketch). We reason by induction on the derivation of the transition
of P . The most interesting case is when P = a〈P1〉.Q1 | a(X).Q2 → P ′ =
Q1 | Q2[P1/X]. By the typing hypothesis, we get lvl(a) = n and D0 : (Γ � P1 : k)
for some D0 and k. We can build a typing derivation D′ for P ′ such that there
exists c satisfying m(D′) = m(D) \ {n} �m(D0)c, where m(D0)c stands for the
multiset union of c copies of m(D0). Indeed, an output on a in P is erased along
the reduction, and there are possibly several copies of P1 which appear in P ′: c

86 R. Demangeon, D. Hirschkoff, and D. Sangiorgi

is defined as the number of occurrences of X in Q2 which do not appear inside
messages. From typability of a〈P1〉.Q1, we get k < n, and from Lemma 1 we
deduce m(D0) <mul {n}. Thus m(D′) <mul m(D). ��

Corollary 1. If Γ � P : n, then P terminates.

Proof. Follows from Proposition 1 and the fact that the multiset extension of a
terminating order is terminating. ��

2.3 An Analysis of the Type System for HOpi2

Typing via Encoding into π. We now compare the expressiveness of our type
system with the expressiveness induced on HOpi2 by the translation into π and
the existing type system [DS06] for the π-calculus.

Translating HOpi2 processes. We use (an adaption of) the standard encoding of
HOpi2 into the π-calculus [San92] (see also [Tho96]). The target calculus of our
encoding is the simply typed monadic π-calculus, with unit as base type (the
unique value of type unit is noted �), and where replication is allowed only on
inputs. The encoding is rather standard – we only recall the clauses for input,
output and process variables (an unambiguous correspondence between HOpi2
process variables and their counterpart as π names is implicitly assumed):

�a(X).P � = a(x).�P � �X� = x �a〈Q〉.P � = (νha) a〈ha〉.(�P � | !ha.�Q�)

A higher-order output action a〈Q〉.P is translated into the emission of a new
name (ha), which intuitively is the address where process Q can be accessed.
Interactions on ha and x, noted using CCS prefixes, actually involve the trans-
mission of the unique value of type unit.

Proposition 2. For any HOpi2 process P , P terminates iff �P � terminates.

Typing the encoding. We rely on the first type system of [DS06] to type the
encoding of a HOpi2 process. This type system assigns levels to names, in order
to control replicated processes. If we call os(P) the multiset consisting of channel
names that are used as subject of an output in a π process P , and where the
output does not occur under a replication, then !a(x).P is well-typed if the level
of a is strictly greater than the level of all names in os(P). We write Γ �pi P
for typability in the π-calculus according to [DS06]. All processes typable using
this type system are terminating.

There exist HOpi2 processes that can be proved to terminate using the type
system for HOpi2, but whose encoding fails to be typable using the type system
for π. A very simple example is given by R0 = a(X).a〈X〉. We indeed have

�R0� = a(hX).(νha) a〈ha〉.!ha.hX ,

which is not typable: indeed, hX and ha necessarily have the same type (both
are transmitted on a), which prevents subprocess !ha.hX from being typable.

Termination in Higher-Order Concurrent Calculi 87

This example suggests a way to establish a relationship between the type sys-
tems in HOpi2 and in π. Consider for that the type system for HOpi2 obtained by
replacing rule (In) in Figure 2 with the following one, the other rules remaining
unchanged (the typing judgment for this modified type system shall be written
Γ �m P : n):

(In′)
Γ,X : k �m P : n lvlΓ (a) = k

Γ �m a(X).P : n

Clearly, the modified type system is more restrictive, that is, Γ �m P : n implies
Γ � P : n, but not the converse (cf. process R0 seen above).

Using this system, we can establish the following property, that allows us to
draw a comparison between typability in HOpi2 and in the π-calculus:

Proposition 3. Let S be a HOpi2 process. If Γ �m S : m, then there exists Δ,
a typing context for π, such that Δ �pi �S�.
Proof (Sketch). The crux of this proof is the correspondence between the typing
of output actions in HOpi2 and the typing of replications in π.

The encoding seen above induces a translation of HOpi2 typing contexts as
follows (type checking the encoding of a restricted term induces similar typing
assumptions):

�∅� = ∅ �Γ,X : n� = �Γ �, x : Chn(unit)

�Γ, a : Chn(�)� = �Γ �, a : Chn(Chn(unit))

To show that Γ �m S : m implies �Γ � �pi �S�, we focus on replicated terms in
�S�. Every replication appearing in �S� corresponds to the encoding of an output
of S. It therefore appears in a context of the form (νha) a〈ha〉.(!ha.�P � | �Q�),
corresponding to an output action a〈P 〉.Q occurring in S. As Γ �m S : m, the
rule for output gives Γ ′ �m a : Chn(�) and Γ ′ �m P : m′ for some Γ ′, with
m′ < n. This means that �Γ ′� �pi ha : Chn(unit) and ∀b ∈ os(�P �), �Γ ′�(b) =
Chm(T) with m ≤ m′. Thus n > m, and the replicated input at ha is well-typed
(in π). ��

Remark 1 (The limits of our type system)
Symmetrically to the example process R0 seen above, there exist terms that

can be typed via the encoding, but that are rejected by our type system: consider

R1 = a〈a〈0〉〉 | a(X).0 and R2 = a(X).b(Y).X | a〈a〈0〉〉 | b〈0〉 .

None of these processes is typable, because they contain “self-emissions” (an
output action on channel a occurring inside a process emitted on a). However,
R1 and R2 are terminating. Their encodings in π are

�R1� = (νha) a〈ha〉.!ha.(νh′a) a〈h′a〉.!h′a.0 | a(x).0 and
�R2� = a(x).b(y).x | (νha) a〈ha〉.!ha.(νh′a) a〈h′a〉.!h′a.0 | (νhb) b〈hb〉.!hb.0 ,

88 R. Demangeon, D. Hirschkoff, and D. Sangiorgi

which are both typable using the system of [DS06]. A suitable assignment for
R1 is, e.g., lvl(a) = 1, lvl(ha) = lvl(h′a) = 2; both replications are typed as
the first one trades a name of level 2 for a name of level 1 and the second one
has no output at all in its continuation. R2 can be typed with the same level
assignment, and lvl(hb) = lvl(h′b) = 2.

It thus appears that self-emissions can be innocuous, while they are system-
atically rejected by the system of Sect. 2. Self-emissions in R1 and R2 are remi-
niscent of recursive calls in continuations of replicated π processes, like, e.g., in
!a(x).b(y).a〈y〉. It turns out that constructions like the one we find in R2 show
up in examples (see Remark 2 below).

As pointed out in the Introduction, a direct type system can be the basis for
refinements and extensions. Indeed, both the refinements discussed at the end of
this section, and the extensions presented in Sect. 4 allow us to handle processes
that go well beyond those that can be treated via encodings into the pi-calculus.

Towards More Expressive Type Systems. We now discuss some possible
refinements of our type system that allow us to overcome the limitations we have
presented. Some of these refinements are inspired by the type systems developed
in [DS06], some are specific to our higher-order setting.

A first enrichment consists in attaching two pieces of information to a channel,
instead of simply a level. First, a channel a has a weight, which stands for the
contribution of active outputs on a to the global weight of a process. For instance,
in the process P1 = a1〈P2〉, with P2 = b1〈Q1〉 | b2〈Q2〉, the global weight of P2 is
equal to the sum of the weights attached to names b1 and b2. Second, a channel
a has a capacity, which is an upper bound on the weight of processes that may
be sent on a: P1 is well-typed provided the capacity of a1 is greater than the
weight of P2. This approach can be related to the observations we have made
above about �R1� and �R2�, where the level of a (resp. ha) plays the rôle of the
weight (resp. the capacity).

As a second enrichment, we use multisets of natural numbers to represent the
weight and the capacity attached to a channel, as well as the type attached to
a process. The rules defining a type system that includes these two enrichments
are presented on Fig. 3, where M,N denote multisets of natural numbers. In
the rule for output, M2 plays the rôle of the capacity (which must dominate the
weight of Q), and M1, the weight of the output on a, is combined with the weight
(M) of the continuation process P . As an example, if the outputs on a (resp. on
b) weight {1} (resp. {2}), the process a〈P 〉 | a〈P ′〉 | b〈Q〉 has type {2, 1, 1}.

In the rule for input, o(M,P,X) stands for the multiset obtained by computing
the multiset union of as many copies of M as there are occurrences of X that
do not appear in a message in P . Formally:

o(M,0, X) = ∅
o(M,X,X) = M, o(M,Y,X) = ∅, Y �= X
o(M,P1 | P2, X) = o(M,P1, X) � o(M,P2, X)
o(M,a(Y).P,X) = o(M,P,X), Y �= X, o(M,a(X).P,X) = ∅
o(M,a〈Q〉.P,X) = o(M, (νc) P,X) = o(M,P,X)

Termination in Higher-Order Concurrent Calculi 89

Γ � 0 : ∅
Γ (X) = M

Γ � X : M

Γ, c : ChM1,M2(�) � P : N

Γ � (νc)P : N

Γ � P1 : M1

Γ � P2 : M2

Γ � P1 | P2 : M1 �M2

Γ � P : M Γ � Q : N

Γ (a) = ChM1,M2(�) N <mul M2

Γ � a〈Q〉.P : M �M1

Γ, X : M2 � P : M Γ (a) = ChM1,M2(�) o(M2, P, X) <mul M1

Γ � a(X).P : M

Fig. 3. Typing Processes using Multisets

Computing o(M,P,X) is necessary because communication of a process Q can
have the effect of spawning several copies ofQ. Accordingly, the weight associated
to the channel transmitting Q must be strictly greater than the total weight of
the processes spawned along consumption of the message.

To establish soundness of this type system, we rely as previously on a measure
on terms. The measure of a process P is given by the multiset union of the
weights associated to all names that are used in output, for occurrences that are
not themselves within a message in P . We show that the type of P (i.e., the
multiset given by the typing judgment for P) is always greater than the measure
of P . Intuitively, this is the case because the process variables contribute to the
type, but not to the measure. In a reduction of the form a.〈Q〉.P1 | a(X).P2 →
P1 | P2[Q/X], with Γ (a) = ChM1,M2(�) and Γ � Q : N , an output of type M1
is consumed and a process Q of type N is spawned in P2 for each occurrence of
X in P2. The typing rule for outputs enforces M2 >mul N and the typing rule
for input enforces M1 >mul o(M2, P2, X). This entails that M1 is greater than
the multiset union of the measure of each process Q spawned in P2. Thus the
measure globally decreases, which guarantees termination.

We can check that using this type system, certain forms of “self-emission”,
like in R1 = a〈a〈0〉〉 | a(X).0, can be typed. If we assign weight {1} and capacity
{2} to a, the output is well-typed because process a〈0〉 has weight {1}<mul {2}.
The input is also well-typed as the weight of a is greater than o({2},0, X) = ∅.

We have studied a third refinement of our type system, defined for a higher-
order formalism with a primitive construct for replication. This in principle does
not add expressiveness to the calculus, because replication is encodable in HOpi2
(using a process similar to Q0 from Sect. 1). However, in terms of typability, hav-
ing a primitive replication, and a dedicated typing rule for it, helps in dealing
with examples. The type system to handle replication in presence of higher-order
communications controls divergences that can arise both from self-emissions and
from recursion in replications (as they appear in the setting of [DS06]). More de-
tails about this analysis are given in an extended version of this paper [DHS09].

A further refinement: handling successive input prefixes. Inspired by the third
type system of [DS06], we can treat sequences of input prefixes as a kind of

90 R. Demangeon, D. Hirschkoff, and D. Sangiorgi

‘single input action’, that has the effect of decreasing the weight of the process
being executed.

Let us sketch the main idea behind this approach. Consider a process of the
form a1(X1).ak(Xk).P . We make sure that the weight associated to the
sequence of inputs is strictly greater than the weight of the processes that are
spawned in the continuation P . If Γ (ai) = ChMi

1,Mi
2(�), then the former quantity

is equal to M1
1 �· · ·�Mk

1 . To compute the latter quantity, one has, like above, to
take into account the multiplicity of the Xis (whose weight is given by typing)
in P — again, we only consider occurrences of these process variables that are
not within messages.

According to this approach, the overall weight of a process can temporarily
increase along communications, before a sequence of inputs is consumed. How-
ever, each consumption of a whole sequence of inputs induces a global weight
loss, thus ensuring termination (it can be shown that for a divergence to exist,
there must be infintely many consumptions of whole sequences of inputs). Tech-
nically, the shape of the soundness proof follows the lines of the justification of
a corresponding type system for the name-passing paradigm in [DHS08].

This way, processR2 = a(X).b(Y).X | a〈a〈0〉〉 | b〈0〉 can be typed by assigning
type Ch{1},{1,1}(�) to a and Ch{2},{2}(�) to b. The input sequence is typed as
the total weight of the sequence is {2, 1}, and the total weight of the processes
spawned is {1, 1} (one occurrence of X , no occurrence of Y). The outer output
on a is typed as the weight of the object process is {1} (an output on a) and the
capacity of a is {1, 1}. The inner output on a and the output on b are well-typed
as the capacities of these two names are greater than ∅, the weight of 0.

Remark 2 (Encoding the choice operator). To illustrate the expressiveness of
the resulting type system, we show in [DHS09] the typability of Nestmann and
Pierce’s protocol for modelling (separate) choice [NP00] — precisely, the pro-
tocol adapted to a higher-order calculus. From the termination viewpoint, this
protocol is interesting because it is non-trivial, and because its termination is not
a straightforward property to establish, as the protocol involves some forms of
backtracking. Also, when rewritten in the higher-order paradigm (more precisely,
in an extension of HOpiω– see Sect. 3), the protocol makes use of some patterns
or combinations of operators that are delicate for termination (in particular, a
pattern similar to a(X).b(Y).X in the above example).

3 HOPiω: Transmitting Higher-Order Functions

The Calculus. We now present HOpiω, a calculus inspired from HOPiunit,→,�

in [SW01]. The main difference between HOpiω and HOpi2 is that the values
communicated in HOpiω can be �, the unique element of type unit, or functions
(precisely parametrised processes) of arbitrarily high order (the order indicating
the level of arrow nesting in the type). The grammar for processes and values
(we use metavariables v, w, not to be confused with names, to range over values,
and x, y to range over variables) is the following:

Termination in Higher-Order Concurrent Calculi 91

P := 0 | P |P | a〈v〉.P | v�v� | a(x).P | (νa)P v = � | x → P

x → P is a function from values to processes, and v�w� is the application of
a function to its argument. We will restrict ourselves to meaningful usages of
(higher-order) functions, which can be ensured by adopting a standard type
discipline (see below).

The operational semantics of HOpiω is given by the rules below (rules for
closure w.r.t. parallel composition, restriction, and structural congruence are
omitted): communication involves the transmission of a value, and β-reduction
takes place when a function is applied to a value.

a〈v〉.Q1 | a(x).Q2 → Q1 | Q2[v/x] (x → P)�v� → P [v/x]

HOpi2 processes can be seen as HOpiω processes by replacing communication
of processes with communication of values of type unit → �, and, accordingly,
usages of process variables with an application to �. For instance, the diverging
example Q0 in HOpi2 becomes a〈x → P 〉 | P where P = a(y).(y��� | a〈y〉).

The following is an example HOpiω process:

P = a〈x → (x��� | x���)〉 | b1〈x1 → c〈�〉〉.b2〈x2 → c(z).0〉
| b1(y1).b2(y2).a(y3).(y3�y1� | y3�y2�) .

Channel c has type Ch(unit), channels b1, b2 have type Ch(unit → �) (see
the grammar for types below), and channel a has type Ch((unit → �) → �).
P can do two communications on b1 and b2. Then, a function (in this case, a
duplicator) can be transmitted on a, and successively applied to the functions
sent on b1 and b2 (corresponding to processes emitting and receiving on c). After
these three reductions, we obtain c〈�〉 | c〈�〉 | c(z).0 | c(z′).0, which can still
do two synchronisations.

Type System. The grammar for types for HOpiω includes types for values, given
by T ::= unit | (T →n �), and channel types, of the form Chn(T). We restrict
ourselves to using only well-formed value types, defined as follows:

Definition 2 (Well-formed value types). We say that T is a well-formed
value type at level n w.r.t. a typing context Γ (written LvlΓ (T) = n or simply
Lvl(T) = n when there is no ambiguity on Γ), whenever either T = unit and
n = 0, or T ′ is a well-formed value type at level n′, T = T ′ →n � and n′ < n.

The rules defining our type system for HOpiω are presented in Fig. 4. As in
Sect. 2, types are annotated with a level, and the type assigned to a process is
given by a natural number. The type of a process P is bound to dominate both
the maximum level of outputs contained in P (not occurring inside a message),
and the maximum level associated to function v1, in applications v1�v2� that
occur in P not inside a message.

92 R. Demangeon, D. Hirschkoff, and D. Sangiorgi

Typing values
Γ �� : unit

Γ, x : T � P : n

Γ � x �→ P : T →n+1 �

Typing processes

Γ � 0 : 0
Γ, a : Chk(T) � P : n

Γ � (νa)P : n

Γ � P1 : n1 Γ � P2 : n2

Γ � P1 | P2 : max(n1, n2)

Γ � v1 : T →n �
Γ � v2 : T

Γ � v1�v2� : n

Γ, x : T � P : n

Γ (a) = Chk(T)

Γ � a(x).P : n

Γ � v : T Γ � P : n′

Γ (a) = Chn(T) Lvl(T) = k n > k

Γ � a〈v〉.P : max(n, n′)

Fig. 4. Typing Rules for HOpiω

Soundness. As before, we associate to a process a measure that decreases along
reductions. Relying as above on os(P), the multiset of names used in output
subject position in P , does not work, because β-reduction may let os(P) grow.

Definition 3 (Measure on processes in HOpiω). Let P be a well-typed
HOpiω process. We define M(P) = os(P) � fun(P), where: (i) os(P) is the
multiset of the levels of the channel names that are used in an output in P ,
without this output occurring in message position. (ii) fun(P) is defined as the
multiset union of all {k}, for all v1�v2� occurring in P not within a message,
such that v1 is of type T →k �.

Proposition 4 (Soundness). If Γ � P : n for some HOpiω process P , then P
terminates.

Proposition 4 is established by observing that M(P) decreases at each step of
transition:

– If the transition is a communication, the continuations of the processes in-
volved in the communication contribute to the global measure the same way
they did before communication, because a type preserving substitution is
applied. M(P) decreases because an output has been consumed.

– If the transition is a β-reduction involving a function of level k, a process
of level strictly smaller than k is spawned in P . Therefore, all new messages
and active function applications that contribute to the measure are of a level
strictly smaller than l, and M(P) decreases.

4 Controlling Communication and Passivation

PaPi: A Calculus with Locations and Passivation. The objective of this section
is to study termination in presence of further constructs that are known to
be challenging in the semantics of higher-order concurrent languages, notably

Termination in Higher-Order Concurrent Calculi 93

constructs of locations (i.e., explicit spatial distribution) and of passivation. We
consider a calculus, which we refer to as PaPi (for ‘Passivation Pi-calculus’),
that integrates such constructs with the higher-order features of HOpi2 and the
name-passing capabilities of the π-calculus.

In PaPi, names belong to two sorts: they are either channels or locations. We
use a, b, c to denote channels, and l to denote locations. We let n stand for any
name, be it used as a channel or as a location, and names x, y, z will denote
name variables. The syntax of PaPi is as follows:

P ::= 0 | P |P | a〈n〉.P | a(x).P | !a(x).P
| l[P] | l(X) � P | a〈P 〉.P | a(X).P | (νn)P .

Note that replication is allowed only on name-passing input prefixes. l[P] stands
for the process P running at location l (locations can be nested). The con-
struct l(X) � P corresponds to passivation, that is, the operation that consists
in capturing a computation running at location l, calling it X , and proceeding
according to P . Passivation can be found in calculi like Kells [SS05, HHH+08]
or Homer [HGB04].

The operational semantics of PaPi is described by the following reduction
rules (we omit the rules for closure of reduction w.r.t. structural congruence,
restriction and parallel composition):

a〈n〉.P | a(x).Q → P | Q[n/x] a〈P 〉.Q1 | a(X).Q2 → Q1 | Q2[P/X]

l[Q] | l(X) � P → P [Q/X]
P → P ′

l[P] → l[P ′]

It has to be noted that we do not claim here that the combination of primitives
provided in PaPi (first and higher-order message passing, localised interaction,
passivation) makes this calculus a proposal for a model for distributed or com-
ponent based programming. Indeed, important interaction mechanisms such as
communication between distant locations, or subjective mobility, are not avail-
able in PaPi.

Our primary goal is instead to study how the constructs of PaPi, which have
the advantage of being presented in a rather simple way, can be taken into ac-
count in our termination analysis. We believe that the way we handle these
can be smoothly adapted to small variations: for instance, typing distant com-
munication in kπ [HHH+08] should be done pretty much like we type local
communication in PaPi.

We now provide a few examples of PaPi processes to illustrate typical idioms
that can be programmed using passivation.

Dup c(r).l(X) �
(
l[X] | (νl′) (r〈l′〉 | l′[X])

)
Res c(l).l(X) � l[P0] DynUpd c(l).d(X).(l(Y) � l[X])

Coloc l1(X) �
(
l2(Y) � (l1[X |Y] | l2[0])

)

94 R. Demangeon, D. Hirschkoff, and D. Sangiorgi

Dup performs code duplication: when a message is received on channel c, the
computation running at location l is duplicated, and the location of the new
copy is sent back on r, the channel transmitted along c.

Process Res (reset): upon reception of a location name l along c, the compu-
tation taking place at l is replaced with P0, that can be considered as a start
state. Essentially the same “program” can be used when we want to replace the
code running at l with a new version, that is transmitted along some channel d:
this is a form of dynamic update (process DynUpd).

“Co-localisation”: processes running at locations l1 and l2 are put together,
and computation proceeds within location l1. This might trigger new interac-
tions between formerly separated processes. This is a form of objective mobility
(running computations are being moved around).

Termination in PaPi. In PaPi, divergences arise both from recursion in usages of
the passivation and process-passing mechanisms, and from recursive calls in the
continuation of replicated (name-passing) inputs. We control the latter source
of divergences by resorting to the type discipline of [DS06], while the former is
controlled by associating levels to locations and to process-carrying channels.

However, the mere superposition of these two systems (of Sect. 2.2 and of
[DS06]) does not work, as the two mechanisms can cooperate to produce diver-
gences. Indeed, consider the non terminating process P1 = l(X)�!a.X | l[a] | a
(channel a, which is used in a CCS-like fashion, carries values of type unit). The
usages of passivation (which can be treated as a form of process passing) and
name passing in P1 are unfortunately compliant with the principles of the afore-
mentioned type systems. In this particular case, we must take into account the
fact that X can be instantiated by a process containing an output on a channel
having the same level as a. More generally, we must understand how the two
type systems can interact, in order to avoid diverging behaviours.

In PaPi, every entity (process, location, name-passing channel and process-
passing channel) is given a level which is used to control both sources of diver-
gences. The base types for names are unit and loc (for location names). The
level of a name-passing channel a corresponds to the maximum level allowed
for the continuation P in a replicated input of the form !a(x).P . The level of a
process-passing channel corresponds to the maximum level of a process sent on
this channel. The level of a location corresponds to the maximum level a process
executing at this location can have. In turn, the level of a process P corresponds
to the maximum level of messages and locations that occur in P neither within
a higher-order output nor under a replication.

The rules defining the type system for termination in PaPi are given in Fig. 5.
As far as typing termination is concerned, higher-order inputs (resp. outputs)
are typed like passivations (resp. located processes). We can moreover remark
that this type system subsumes the type system of [DS06] for the π-calculus: if a
π process P is typable according to [DS06], then it is typable as a PaPi process.

Remark 3. It has to be noted that the type system we present can be made
more expressive by exploiting ideas from Sect. 2.3. Indeed, what we control here

Termination in Higher-Order Concurrent Calculi 95

Γ � 0 : 0

Γ (X) = m

Γ � X : m

Γ, v : T � P : m

Γ � (νv) P : m

Γ � P1 : m1 Γ � P2 : m2

Γ � P1 | P2 : max(m1, m2)
Γ, X : k − 1 � P : m Γ (l) = lock

Γ � l(X) � P : m

Γ (l) = lock Γ � Q : m′ k > m′

Γ � l[Q] : k

Γ, X : k − 1 � P : m Γ (a) = Chk(�)
Γ � a(X).P : m

Γ � P : m Γ � Q : m′

Γ (a) = Chk(�) k > m′

Γ � a〈Q〉.P : max(k, m)
Γ, x : T � P : m Γ (a) = Chk(T)

Γ � a(x).P : m

Γ � P : m Γ � v : T

Γ (a) = Chk(T)
Γ � a〈v〉.P : max(k, m)

Γ, x : T � P : m

Γ (a) = Chk(T) k > m

Γ � !a(x).P : 0

Fig. 5. Typing Rules for PaPi

using a unique level for names could be refined by associating channels with
three natural numbers: one is its weight, and the other two are interpreted as
capacities, to control the two sources of recursion: the weight of name passing
outputs on one side, and the weight of process passing outputs and located
processes on the other side. In what we have presented, these three components
of the type of a name are merged into a single one.

Termination. For lack of space, we do not present the soundness proof of our
type system for PaPi. It essentially follows the same strategy as in the previous
sections. At its core is the definition of a measure on processes, that takes into
account the contribution of locations and first- and higher-order messages that
do not occur within a message. We then show that this measure decreases along
reductions, which finally gives:

Proposition 5. If Γ � P : m for a PaPi process P , then P terminates.

Examples of typing. Process P1 seen above cannot be typed. The typing rule
for locations forces the level of the location l to be strictly greater than lvl(a)
when typing l[a]. The typing rule of passivation forces the level of l to be equal
to 1 + lvl(X). Thus lvl(X) ≤ lvl(a) and the typing rule for replicated inputs
cannot be applied to !a.X .

For process Coloc to be typable, lvl(l1), the level assigned to l1, should be
greater than lvl(l2). In this case, we can observe that it is safe to take two
processes running in separate locations and let them run in parallel, as Coloc
does: while this might trigger new interactions (inter-locations communication
is forbidden in PaPi), this is of no harm for termination.

96 R. Demangeon, D. Hirschkoff, and D. Sangiorgi

5 Concluding Remarks

In this paper, we have analysed termination in higher-order concurrent lan-
guages, using the higher-order π-calculus as a core formalism to build the basis
of our type systems. For future work, we plan to examine how the type systems
we have presented can be adapted to existing process calculi in which processes
can be exchanged in communications or can move among locations such as, e.g.,
Ambients [CG98], Homer [HGB04], Kells [SS05, HHH+08]. Another question
we would like to address is type inference; for this, [DHKS07] could serve as a
starting point.

References

[CG98] Cardelli, L., Gordon, A.D.: Mobile Ambients. In: Nivat, M. (ed.)
FOSSACS 1998. LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg
(1998)

[DHKS07] Demangeon, R., Hirschkoff, D., Kobayashi, N., Sangiorgi, D.: On the Com-
plexity of Termination Inference for Processes. In: Barthe, G., Fournet, C.
(eds.) TGC 2007 and FODO 2008. LNCS, vol. 4912, pp. 140–155. Springer,
Heidelberg (2008)

[DHS08] Demangeon, R., Hirschkoff, D., Sangiorgi, D.: Static and Dynamic Typing
for the Termination of Mobile Processes. In: Proc. of IFIP TCS 2008.
Springer, Heidelberg (2008)

[DHS09] Demangeon, R., Hirschkoff, D., Sangiorgi, D.: Termination in Higher- Or-
der Concurrent Calculi (2009) (long version of this paper) (in preparation)

[DS06] Deng, Y., Sangiorgi, D.: Ensuring Termination by Typability. Information
and Computation 204(7), 1045–1082 (2006)

[HGB04] Hildebrandt, T., Godskesen, J.C., Bundgaard, M.: Bisimulation Congru-
ences for Homer — a Calculus of Higher Order Mobile Embedded Re-
sources. Technical Report TR-2004-52, Univ. of Copenhagen (2004)

[HHH+08] Hirschkoff, D., Hirschowitz, T., Hym, S., Pardon, A., Pous, D.: Encapsula-
tion and Dynamic Modularity in the Pi-calculus. In: Proc. of the PLACES
2008 workshop. ENTCS. Elsevier, Amsterdam (2008) (to appear)

[NP00] Nestmann, U., Pierce, B.C.: Decoding Choice Encodings. Information and
Computation 163(1), 1–59 (2000)

[San92] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and
Higher-Order Paradigms. PhD Thesis, University of Edinburgh, 1992.

[San06] Sangiorgi, D.: Termination of Processes. Mathematical Structures in Com-
puter Science 16(1), 1–39 (2006)

[SS05] Schmitt, A., Stefani, J.-B.: The Kell Calculus: A Family of Higher-Order
Distributed Process Calculi. In: Priami, C., Quaglia, P. (eds.) GC 2004.
LNCS, vol. 3267, pp. 146–178. Springer, Heidelberg (2005)

[SW01] Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, Cambridge (2001)

[Tho96] Thomsen, B.: Calculi for Higher Order Communication Systems. PhD
Thesis, University of London (1996)

[YBH04] Yoshida, N., Berger, M., Honda, K.: Strong Normalisation in the Pi-
Calculus. Information and Computation 191(2), 145–202 (2004)

Typing Asymmetric Client-Server Interaction�

Franco Barbanera1, Sara Capecchi2, and Ugo de’Liguoro2

1 Dipartimento di Matematica e Informatica, Università di Catania
barba@dmi.unict.it

2 Dipartimento di Informatica, Università di Torino
{capecchi,deligu}@di.unito.it

Abstract. We investigate client-server interaction where duties and
rights of the parties are asymmetric, in the sense that the client is al-
lowed to abort any session before the server has completed, but not vice
versa. This implies that the client can interact with any server offering
at least what she is looking for, but possibly more.

We formalize such asymmetry in the setting of session types via a form
of subtyping in depth, which we call prefix relation. This is apparently
conflicting with the rigid duality imposed by session types; nonetheless
the resulting system retains all basic correctness properties.

Moreover, the system we propose highlights interesting aspects con-
cerning the flow of communication inside a session. In particular it reveals
that usual subtyping theories cannot be extended by means of prefix,
which turns out to be a different concept.

Keywords: Process calculi, Type Systems, Session Types , Client/
Server Interaction Protocols, Subtyping, Contro/Covariance.

1 Introduction

Client/server is the relationship between two software applications in which one
of them, the client, addresses its request of a service to the other one, the server,
which is expected to fulfill the request. It is an intrinsically asymmetric relation-
ship, not just because there is one interacting end that provides a service and
the other that makes use of it. There are also differences in the rights and duties
of the parties: it is indeed unreasonable to prohibit to the client to abort the
connection at any time, while it would be unfair to admit such a behavior on
the server side.

In [4] a theory of contracts is proposed in order to formalize the search for a
service on the web and to discipline the client/server relationship. A contract is
an abstract specification of the service. A client will comply with a service if it
will successfully terminate any interaction with the service, which however might
provide more. Since (the dual of) a contract is able to specify the interaction
protocol also on the client side, the compliance of the client with the server can
be checked by formally proving that the dual of the client contract is (with some

� This work has been partially supported by the MIUR project EOS-DUE.

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 97–112, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

98 F. Barbanera, S. Capecchi, and U. de’Liguoro

simplification) the initial part of the server contract. The same asymmetry is at
the heart of the subcontract relationship studied in [4].

Following the suggestion in [15], we consider types as a natural candidate to
formalize contracts, and more precisely the session types introduced in [8], a
type system for a dialect of the π-calculus adding primitives to handle sessions.
A session is an abstraction of a sequence of communications through a private
channel between two parties. It is created by connecting over a session channel
(often called live channel) in such a way that both privacy and duality are guar-
anteed. The type system is then used to abstract a discipline of the interaction
into a session type and to ensure safe handshaking-communications.

The idea is that of changing the interpretation of the typing x : S, where S is
a session type, according to the cases of x being the server or the client end in
a session. In the server case S represents its duties, namely the commitment to
an interaction which is at least of the shape (and the length) represented by S.
If x is instead the client end, then S represents the client’s rights, telling that it
is entitled to ask at most an interaction of that shape.

According to the system in [8] sessions have to be symmetric. A simple exam-
ple of symmetric interaction is between the following sketchy calculator server
and one of its possible clients:

CalcServer1 =def accept a(x).x � { add : x?(n).x?(m).x![n + m],
. . .
div : x?(n).x?(m).x![n div m]}

CalcClient1 =def request a(x).x � div.x![21].x![5].x?(n)

The type of the name x along which a client might interact with CalcServer1 is

Sserver1 = &〈add : ?(int) ?(int) ![int]end, . . . , div : ?(int) ?(int) ![int]end〉,

while the type of the x on the side of CalcClient1 is exactly its dual:

Sclient1 = Sserver1 = ⊕〈add : ![int] ![int] ?(int)end, . . . , div : ![int] ![int] ?(int)end〉

However, the service request of CalcClient1 would be satisfied also by the server

CalcServer2 =def accept a(x).x � { add : x?(n).x?(m).x![n + m],
. . .
div : x?(n).x?(m).x![n div m].x![n mod m]}

whose typing of x is just “longer” than Sserver1:

Sserver2 = &〈add : ?(int) ?(int) ![int]end, . . . , div : ?(int) ?(int) ![int] ![int]end〉

Can the concept of “being longer” be caught by means of subtyping? It is indeed
tempting to try to extend the subtyping theory of session types introduced in
[7] so that Sclient1 is a subtype of Sclient2, that we can assume for x because of
narrowing rule. However, as we shall argue in the sequel, this is not the case,
and in fact the idea of extending a protocol represented by a type by some sort

Typing Asymmetric Client-Server Interaction 99

of subtyping in depth (whereas the subtyping of [7] is essentially in width w.r.t.
branching/selection types) reveals to be of a different nature. Because of this we
introduce a new relation among session types which we call prefix, axiomatize it
and study its effect w.r.t. the “more liberal” system of session types in [20]. We
choose the latter system as the basis of the present study also because it uses
polarized channel names as private channels inside a session (like in [7] before).
We profit of polarities to mark the server and the client end of a session, which
we type differently w.r.t. the prefix relation.

The resulting system, when restricted to first-order sessions (i.e. transmitting
just values and labels for selection among a branching of processes), satisfies a
property we call weak compliance, which roughly says that a typed server cannot
exhaust its actions on a channel before the dually typed client does. We call it
weak compliance in contrast to the strong compliance considered in [4] because,
as it is well known, session types do not guarantee deadlock freeness, so that
we cannot expect that the client will also complete the interaction on its side.
Technically the result is achieved by means of a simple semantics of session types
interpreting types as sets of usages of channel names.

When considering higher order sessions (exchanging channel names of other
sessions), the problem of variance of the types for input/output of a session
is faced. We throughly study the possibility of adapting to the prefix relation
the same variance rules that do hold in the case of subtyping in [7]. From the
problems that arise we distill our solution, consisting in having both input and
output types covariant w.r.t. the prefix, but we constrain the rules used to type
the transmission of the (private) channel of a session. The resulting system nicely
formalizes delegation, which in the world of object oriented programming is
the act of transparently passing the interaction with a third party from one
object providing a first part of a service, to another object that provides its
continuation.

The full system of asymmetric session types retains all the basic properties
of the original, symmetric system, namely subject reduction and error freeness.
Unfortunately the semantics of first order types does not extend to higher order
sessions, and we are able to prove a slightly weaker result of compliance in that
case.

2 The πS-Calculus and Its Operational Semantics

Session types are a type system for a dialect of the π-calculus introduced in
[8]. From now on we will call πS-calculus the π-calculus extended with primi-
tives structuring sessions. πS-calculus names are divided into sorts: names a, b, ..,
x, y. . .∈ N , (polarized) channels κp, κ′p, . . . ∈ C, labels l, l′, . . .∈ L. The term syn-
tax is presented in Figure 1, where we omit definitions (and hence recursion) in
order to focus on the essential issues and to keep the technical development
simpler. Such a syntax is based on the second system introduced in [20], where
polarized names are used for (private) channels, building over an idea that first
appeared in [6] (a preliminary version of [7].) Notice that we take into account

100 F. Barbanera, S. Capecchi, and U. de’Liguoro

e ::= ground exprs p, q ::= + | − polarities
| x | true | false | 0 | 1 | . . . vars and consts u, u′ ::= x | κ
| not(e) | e + e′ | . . . operators k, k′ ::= a | x | κ | κp names, channels

π ::= prefixes P, Q ::= processes
| request a(x) session request | 0 inaction
| accept a(x) session acceptance | π.P prefixed process
| k![e] data sending | k � {l1 :P1, .., ln :Pn} label branching
| k?(x) data reception | P |Q parallel composition
| throw k[k′] channel sending | (νκ)P restriction
| catch k(x) channel reception | if e then P else Q conditional branch
| k � l label selection

Fig. 1. Term syntax of the πS-calculus (without recursion)

the monadic version of the system, since our notions and results simply extend
to the polyadic case.

Communications belonging to a session are opened through a public name
and pursued through a private channel, specific to the session, which is created
at connection time. The syntax used for the initiation of a session is:

request a(x).P | accept a(x).Q (1)

A process opening a session by a request action over a will be called a client w.r.t.
the name a; symmetrically, a server w.r.t. a opens the session using accept. Of
course a process can be client and server w.r.t. different names, and even w.r.t.
the same name that could be used to open several sessions.

A polarized channel name is a channel name decorated with a polarity: κp, κp

where p ∈ {+,−} and + = − and − = +. We use polarities not only, as in [7,20],
to couple the owners of a private channel, but also to distinguish between the
client’s and server’s end of it (‘−’ for the client and ‘+’ for the server). Indeed
the process term in (1) reduces to:

(νκ)({κ−/x}P | {κ+/x}Q) (2)

where the channel name κ is fresh. Note that occurrences of channels are always
polarized (even in the scope of a binder). The only use of unpolarized channels
is in the binder operator (νκ), which binds all the channels κp in its scope,
regardless of p.

Free and bound names and channel names in P are denoted, respectively, by
fn(P) and bn(P) and defined as in [20]. Substitution and α-congruence, written
P ≡α Q, are defined as usual.

The operational semantics of the calculus is usually defined in terms of a
reduction relation up to structural congruence (see in particular [20], §§ 2.1 and
3.1). However, in order to make proofs simpler, we consider an equivalent LTS
semantics. The labels of the LTS are from Act, the set of actions α, defined by:

α ::= a(κ+) | a[κ−] | κp(v) | κp[v] | κp l | κp � l | κνk | τ.

Typing Asymmetric Client-Server Interaction 101

where v is ambiguous for c, κq, κ, and k is either a name or a channel, possibly
polarized; τ represents an internal action as for CCS. The dual action α is defined
only in the following cases:

κp(v) = κp[v] κp[v] = κp(v) κp l = κp � l κp � l = κp l

The relation P
α−→ Q is then defined in Figure 2. It is an adaptation of the

early semantics of the π-calculus (see e.g. [16]), where the symmetric of E-Par,
E-Close and E-Link are omitted.

By denoting with P −→ Q the reduction semantics, as defined in [20]§3.1,
the proof of the following can be provided by essentially mimicking that of the
Harmony Lemma in [19].

Proposition 1. The LTS semantics and the reduction semantics are equivalent:

1. if P ≡ α−→ P ′ then P
α−→≡ P ′;

2. P −→ P ′ if and only if P τ−→≡ P ′.

κ+, κ− �∈ fn(P)
E-Acc

accept a(x)P
a(κ+)−→ {κ+/x}P

κ+, κ− �∈ fn(P)
E-Req

request a(x)P
a[κ−]−→ {κ−/x}P

E-Input

κp?(x).P
κp(c)−→ {c/x}P

e ↓ c
E-Output

κp![e].P
κp[c]−→ P

li ∈ {l1, . . . , ln}
E-Brn

κp � {l1 :P1, .., ln :Pn} κp�li−→ Pi

E-Sel

κp � l.P
κp�l−→ P

P
α−→ P ′ κ �∈ α

E-Res

(νκ)P α−→ (νκ)P ′

P
κ

p
1 [κ

q
2]−→ P ′ κ1 �= κ2

E-Open

(νκq
2)P

κ
p
1νκ

q
2−→ P ′

P
α−→ P ′

bn(α) ∩ fn(Q) = ∅
E-Par

P |Q α−→ P ′|Q
P

κp(κ′)−→ P ′ Q
κpνκ′−→ Q′

E-Close

P |Q τ−→ (νκ′)(P ′|Q′)

e ↓ true
E-IfT

if e then P else Q
τ−→ P

e ↓ false
E-IfF

if e then P else Q
τ−→ Q

P
a(κ+)−→ P ′ Q

a[κ−]−→ Q′

E-Link

P |Q τ−→ (νκ)(P |Q)

P
α−→ P ′ Q

α−→ Q′
E-Com

P |Q τ−→ P ′|Q′

E-Cat

catch κp
1(x).P

κ
p
1(κ

q
2)−→ {κq

2/x}P
E-Thr

throw κp
1[κ

q
2].P

κ
p
1 [κ

q
2]−→ P

Fig. 2. Early LTS-operational semantics of πS

102 F. Barbanera, S. Capecchi, and U. de’Liguoro

S = S if S = end ↑[S] = ↑[S] ?(T)S = ![T]S ![T]S =?(T)S

&〈l1 :S1, .., ln :Sn〉 = ⊕〈l1 :S1, .., ln :Sn〉 ⊕〈l1 :S1, .., ln :Sn〉 = &〈l1 :S1, .., ln :Sn〉

Fig. 3. Dual session types

3 Asymmetric Session Types

Definition 1 (Types). The sets of types T , and of session types ST , are de-
fined according to the following grammar

Type T ::= bool | nat | int | real | S | ↑[S]

Session type S ::= ?(T)S | ![T]S | &〈l1 : S1, . . . , ln : Sn〉
| ⊕〈l1 : S1, . . . , ln : Sn〉 | end

A session type is first order if neither ?(T)S nor ![T]S occurs in it for any
T ∈ ST ; it is higher order otherwise. We recall that the ordering of labels in
&〈l1 : S1, . . . , ln : Sn〉 and ⊕〈l1 : S1, . . . , ln : Sn〉 is immaterial. The operation S

over ST is defined as in Figure 3. It is easy to check that S = S for any S ∈ ST .
Types are assigned to names according to the rules in Figure 4. Judgments

have either the form Γ � x : T , Γ � e : T or Γ � P � Δ, where x ∈ N , e is
an expression, P is a process and where Γ and Δ are typing contexts, i.e. finite
mappings from names to types. In particular, Γ (x) = T where dom(Γ) ⊆ N ,
and Δ(κp) = S where dom(Δ) ⊆ C. As in [8], Δ is called a typing. Note that
κ+ and κ− are considered as different, so that both may be in dom(Δ) for some
typing Δ. Differently from [20]§3, the domain of a typing contains only polarized
channels. A typing Δ is completed if Δ(κp) = end, for all κp ∈ dom(Δ); balanced
if Δ(κp) = Δ(κp) whenever κp, κp ∈ dom(Δ); strictly balanced if it is balanced
and κp ∈ dom(Δ) implies κp ∈ dom(Δ). In case κp �∈ dom(Δ), Δ · κp : S is
defined as the typing Δ′ such that Δ′(κp) = S and Δ′(κ′q) = Δ(κ′q) if κ′q �= κp.
Δ ·Δ′ denotes the component wise extension of the dot operation, which is hence
defined only if dom(Δ) ∩ dom(Δ′) = ∅.

Beside the restriction of typings Δ to polarized channel names, the main
difference w.r.t. the system in §3 of [20] concerns rules T-Acc and T-Req. In
our system the bound name x in the conclusion is substituted for the polarized
channel name κp appearing in the process {κp/x}P of the premises. The polarity
p is ‘+’ in T-Acc and ‘−’ in T-Req. Such requirements on polarities force to use
the channel represented by x as a server’s or client’s end of a session, respectively.

Session types enforce a perfect symmetry of the server and client actions via
rules T-Acc, T-Req and T-NewS: the first two, together with the additivity
of rule T-Par w.r.t. the left hand typing Γ , ensure that a connection opened
through a name a such that a : ↑[S] ∈ Γ will use a channel κ+ of type S on the

Typing Asymmetric Client-Server Interaction 103

Γ (x) = T
T-Name

Γ � x : T

Δ completed
T-Inact

Γ � 0 � Δ

Γ � P � Δ Γ � Q � Δ′

T-Par

Γ � P | Q � Δ ·Δ′

Γ � a : ↑[S] Γ � {κ+/x}P � Δ · κ+ : S
T-Acc

Γ � accept a(x).P � Δ

Γ � a : ↑[S] Γ � {κ−/x}P � Δ · κ− : S
T-Req

Γ � request a(x).P � Δ

Γ � P � Δ · κp : S Γ � e : T
T-Send

Γ � κp![e].P � Δ · κp : ![T]S

Γ · x : T � P � Δ · κp : S
T-Rcv

Γ � κp?(x).P � Δ · κp : ?(T)S

{Γ � Pi � Δ · κp : Si}i=1,...,n

T-Br

Γ � κp � {l1 : P1, . . . , ln : Pn} � Δ · κp : &〈l1 : S1, . . . , ln : Sn〉
Γ � P � Δ · κp : Si i ∈ {1, . . . n}

T-Sel

Γ � κp � li.P � Δ · κp : ⊕〈l1 : S1, . . . , ln : Sn〉
Γ � P � Δ · κ+ : S · κ− : S

T-NewS

Γ � (νκ)P � Δ

Γ � P � Δ κ �∈ dom(Δ)
T-NewS

′
Γ � (νκ)P � Δ

Fig. 4. The First-Order Type System

server side, and a channel κ− of type S on the client side. Since this channel is
private and a process like (1) reduces to one like (2), the same correspondence
is required to introduce the restriction (νκ) in rule T-NewS.

We wish now to formalize the bias toward the client by breaking such a sym-
metry, allowing sessions in which the client might do less than the server actually
offers. A first attempt could consist in using subtyping (we write T <: T ′), as
introduced in [18] for I/O types and studied in [7] specifically for session types.

For the sake of the subsequent discussion we recall that, w.r.t. the subtyping
of I/O types, of which it saves the covariance of the input and contravariance of
the output types, the theory in [7] includes:

Si <: S′
i (∀i ≤ n) n ≤ m

&〈l1 :S1, .., ln :Sn〉 <: &〈l1 :S′
1, .., ln :S′

m〉
Si <: S′

i (∀i ≤ n) n ≤ m

⊕〈l1 :S1, .., ln :Sm〉 <: ⊕〈l1 :S′
1, .., ln :S′

n〉

making the & covariant and the ⊕ contravariant in width respectively (though
both are covariant in depth).

Since we wish to embody the idea that a server might be ready to do more
than it is declared by its “interface” S, we should add the axiom end <: S to
the theory in [7] and consider a restriction of the narrowing rule (the dual of the
subsumption rule customary in the typed λ-calculus: see e.g. [17]) to positive
channel names only:

104 F. Barbanera, S. Capecchi, and U. de’Liguoro

Γ � P � Δ · κ+ : S S′ <: S
T-Narrow

Γ � P � Δ · κ+ : S′

Now, being & the dual of ⊕ and being ?() the dual of ![] (with ?() covariant
and ![] contravariant in the first argument), it is the case that if S <: S′

then S′ <: S. However, this key property of subtyping relative to duality is
incompatible with the axiom end <: S.

Theorem 1. There is no consistent theory of subtyping, extending the theory in
[7], which includes the axiom end <: S and satisfies the principle that if S <: S′

then S′ <: S.

Proof. Toward a contradiction assume that if S <: S′ then S′ <: S holds;
since end <: S is an instance of the axiom end <: S, for any S we have that
S = S <: end = end. Therefore, by transitivity of <:, it is S <: S′ for any
S, S′ ∈ ST . �
Theorem 1 leads us to introduce a new relation among session types: S � S′,
that we call prefix relation. Roughly, if S � S′ then any interaction pattern
typed by S is the initial part of a pattern typed by S′.

Definition 2 (Prefix Relation over First Order Session Types). The
prefix relation over first-order session types, S � S′ (read “S is a prefix of S′”)
is defined as the least preorder satisfying the following axiom and rules

end � S

S � S′

?(T)S � ?(T)S′
S � S′

![T]S � ![T]S′

Si � S′
i (∀i ≤ n)

&〈l1 :S1, .., ln :Sn〉 � &〈l1 :S′
1, .., ln :S′

n〉
Si � S′

i (∀i ≤ n)

⊕〈l1 :S1, .., ln :Sn〉 � ⊕〈l1 :S′
1, .., ln :S′

n〉

To the system of Figure 4 we add the following rules:

Γ � P � Δ · κ+ : S S′ � S
T-PrefS

Γ � P � Δ · κ+ : S′
Γ � P � Δ · κ− : S S � S′

T-PrefC

Γ � P � Δ · κ− : S′

We remark that, while rule T-PrefS would be sound with <: substituted for
� (it is just narrowing), T-PrefC is not. In fact the soundness of T-PrefC

strictly depends on the fact that, differently than in the case of subtyping, & and
⊕ are invariant in width, while they are both covariant in depth. This is clearly
connected to the following property of � which is the reason why Theorem 1
does not apply in the case of prefix.

Proposition 2. For any S, S′ ∈ ST , if S � S′ then S � S′.

We end the present section by establishing the basic correctness theorem for the
first-order typing system. The definition of P ≡ Q is the obvious extension of
that of the π-calculus and can be found in [20].

Typing Asymmetric Client-Server Interaction 105

Theorem 2 (Subject Reduction of the First-Order Typing System). If
Γ � P �Δ for a (strictly) balanced Δ and P τ−→≡ P ′ then Γ � P ′ �Δ′ for some
(strictly) balanced Δ′.

4 Compliance up to Deadlock

According to [4] a client is “strongly compliant” with a service whenever it
completes all direct interaction sessions with the service. On the other hand,
as remarked in [7], session types do not enforce deadlock freeness in general: a
client might be not strongly compliant because a deadlock occurs that prevents
the session to proceed properly. As a matter of fact more is needed to guarantee
deadlock freeness [12,13] or even the weaker progress property [5]. Since we work
essentially with the original system, we can only expect a weaker concept of
compliance to be warranted for typable systems, up to deadlock occurrences:

Weak Compliance Property: a server cannot exhaust its actions on
a channel before the corresponding client does.

To state and prove a result about weak compliance for typable systems we use
some machinery to extract from a process term P the intended usage of a channel
name κp in P , forgetting about anything else which could incidentally cause a
block and prevent the full exploitation of the capabilities of P using κp. This is
inspired to the idea of using parallel free CCS terms to describe the usage of a
channel in [9,12], and to the theory of contracts [4], where CCS terms describe
the protocol part of a contract.

Definition 3 (Usages). Usages are defined by the grammar:

U, V ::= 0 | �.U | U + V

where � is either input, output or l, l for some label l; we also assume input =
output and output = input. Call Usg the set of usages; over Usg we define an
LTS by the rules:

�.U

 −→ U

U

 −→ U ′

U + V

 −→ U ′

Over Usg it is defined a binary relation �:

U � V ⇔ [U
 −→ U ′ =⇒ V

 −→ V ′].

We overload the notation � by speaking of prefix relation among usages as
well as among types. Notice that we do not need to define � on Usg as a full
simulation, since for our result we need only to check about the outermost action
having as subject a specified channel name.

Usages and types are connected in the sense that the type of a server end
κ+ is a lower bound to its usage, while that of a client end κ− is an upper
bound, which is the contents of Theorem 3 below. To prove that we interpret
session types as sets of usages, and connect the usage U to the capabilities of P
restricted to the channel κp via the notion of trace.

106 F. Barbanera, S. Capecchi, and U. de’Liguoro

Definition 4 (Semantics of First-Order Session Types). Let S ∈ ST ;
then [[S]] is the set of usages defined as follows:

[[end]] = {0}; [[?(T)S]] = {input.U |U ∈ [[S]]}; [[![T]S]]={output.U |U ∈ [[S]]}
[[&〈l1 : S1, . . . , ln : Sn〉]] = {

∑
i∈I li.Ui |{1, . . . , n}⊆I∧∀i∈{1, . . . , n}. Ui∈ [[Si]]};

[[⊕〈l1 : S1, . . . , ln : Sn〉]] = {l.U | ∃i ∈ {1, . . . , n}. l = li ∧ U ∈ [[Si]]}.

By Proposition 1, we can safely abbreviate P τ−→ Q by P −→ Q. In the following
=⇒ denotes the reflexive and transitive closure of −→ and α=⇒ denotes the
composition =⇒ α−→=⇒. Let ψ = α1 · · ·αn be in Act∗ (ε will denote the empty

sequence), then P
ψ

=⇒ Q abbreviates P α1=⇒ · · · αn=⇒ Q.

Definition 5 (Traces). The set Tr (P) of traces of P is defined as

Tr (P) = {ψ ∈ Act∗ | ∃Q. P
ψ

=⇒ Q}.

If ψ ∈ Tr (P) then let ψ�κp be the string of actions α in ψ whose subject is κp,
and write Tr (P, κp) = {ψ�κp | ψ ∈ Tr (P)}.

The mapping usg : Act → Usg is defined by:

usg(κp l) = l; usg(κp � l) = l; usg(κp(v)) = input

usg(κp[v]) = usg(κpνκ′q) = output

This map extends pointwise to Act∗ by imposing usg(ε) = 0. We shall write
simply usg(ψ) for ψ ∈ Act∗.

Lemma 1. Let φ ∈ Act∗, then usg(φ) = usg(φ).

Let A,B ⊆ Usg, then define:

A #∗ B ⇔ ∃U ∈ A. [U
 −→ U ′ =⇒ ∃V ∈ B. V

 −→ V]

A #∗ B ⇔ ∃V ∈ B ∀U ∈ A. U � V.

Theorem 3 (Soundness of First Order Type Interpretation). Let Θ;Γ �
P � Δ be derivable, then:

1. if κ+ ∈ dom(Δ) and A = {usg(ψ) | ψ ∈ Tr (P, κ+)} then [[Δ(κ+)]] #∗ A;
2. if κ− ∈ dom(Δ) and B = {usg(ψ) | ψ ∈ Tr (P, κ−)} then B #∗ [[Δ(κ−)]].

Corollary 1 (Weak Compliance). Let Γ � P�Δ be derivable for some strictly
balanced Δ. If P α=⇒ P ′ for some P ′ and the subject of α is some κ− then
α′ψ′ ∈ Tr (P, κ+), for some ψ′ and α′ such that usg(α′) = usg(α).

Corollary 1 does not extend straightforwardly to higher order sessions and types:
this is due to the fact that the object of a throw action is associated in the typing
Δ to some session type that does not correspond to any usage of the channel in
that term.

Typing Asymmetric Client-Server Interaction 107

5 Delegation via Higher-Order Sessions

Mobility in the πS-calculus is formalized by the primitives throw and catch,
which, respectively, send and receive channel names. According to [8], these
primitives enable to implement delegation, that is the ability for a process to pass
a session to some third party which is in charge of continuing the interaction.
Such a behaviour is reflected in the typing of the subjects of throw and catch
by, respectively, ![S′]S and ?(S′)S. Adapting the rules in [8,20] to our system,
where a polarized channel name κq

2 is replaced by an unpolarized x in the body
of the binding catch κp(x).P , we obtain:

Γ � P � Δ · κp
1 : S S′ �= end

T-Thr
′

Γ � throw κp
1[κ

q
2].P � Δ · κp

1 : ![S′]S · κq
2 : S′

Γ � {κq
2/x}P � Δ · κp

1 : S · κq
2 : S′

T-Cat
′

Γ � catch κp
1(x).P � Δ · κp

1 : ?(S′)S

where in rule T-Cat
′ the implicit assumption that Δ · κp

1 : ![S′]S · κq
2 : S′ is well

formed implies that κq �∈ fn(P).
In presence of T-PrefC, however, the above typing rules force ![S′]S and

?(S′)S to behave invariantly in S′ w.r.t. prefix relation. In fact in rule T-Cat
′

the information about the polarity of κq
2, while needed in the typing of {κq

2/x}P ,
is present in the conclusion only as input type for κp

1. As a consequence, any
process willing to send κq

2 via κp
1 to catch κp

1(x).P cannot make any assumption
about the actual usage of κq

2 in {κq
2/x}P , either as a client or as a server end,

and therefore the session type S′ can be neither shorter (as in the case q = +)
nor larger (when q = −) than the actual usage of κq

2.
Since invariance would be unreasonably restrictive, we need to establish a

relation between the p in the conclusion and the q in the premise of rule T-Cat
′.

As explanatory example, let P ′ =def {κq
2/x}P and consider:

R =def Q | throw κp
1[κ

q
2] | catch κp

1(x)P (3)

where κq
2 ∈ fn(Q).

Suppose that, w.r.t. the prefix relation, ![S′]S is contravariant in S′ and co-
variant in S, and that ?(S′)S is covariant both in S′ and in S (this is actually
the case w.r.t. subtyping I/O types in [18], and session types in [7].) Then we
study under what conditions (νκ1)(νκ2)R is safely typable, in the sense that
both Weak Compliance and Error-Freeness (see [8] and Theorem 4 below) are
preserved.

Let Γ � catch κp
1(x)P � Δ · κp

1 : ?(S1)end, Γ � P ′ � Δ · κq
2 : S2 and Γ �

Q�Δ′ ·κq
2 : S3 be derivable, and suppose that S1 � S2 and S1 � S3, but that S2

and S3 are incompatible (for example, S1 = ?(int)end, S2 = ?(int) ![int]end and
S3 = ?(int) ![bool]end).

108 F. Barbanera, S. Capecchi, and U. de’Liguoro

Case p = −, q = +.

Γ � P ′ � Δ · κ+
2 : S2 S1 � S2

T-PrefS

Γ � P ′ � Δ · κ+
2 : S1

T-Cat
′

Γ � catch κ−
1 (x)P � Δ · κ−

1 : ?(S1)end ?(S1)end � ?(S3)end
T-PrefC

Γ � catch κ−
1 (x)P � Δ · κ−

1 : ?(S3)end

Now, since Γ � throw κ+
1 [κ+

2] � κ+
1 : ![S3]end · κ+

2 : S3 by T-Thr
′, we have that

Γ � R � Δ ·Δ′ · κ−1 ?(S3)end · κ+
1 ![S3]end · κ−2 : S3 · κ+

2 : S3 is derivable so that
(νκ1)(νκ2)R typechecks, but it is unsafe, as Q might require an interaction over
κ−2 which is exactly typed by S3 while P ′, that will receive κ+

2 , is ready to respect
just the unrelated protocol S2.
Case p = −, q = −: using T-PrefC with the premise S1 � S3 and T-PrefS

with the premise ![S2]end � ![S1]end (implied by S1 � S2 and the contravariance
of ![]) we have:

Γ � throw κ+
1 [κ−

2] � κ+
1 : ![S1]end · κ−

2 : S1 S1 � S3

Γ � throw κ+
1 [κ−

2] � κ+
1 : ![S1]end · κ−

2 : S3 ![S2]end � ![S1]end

Γ � throw κ+
1 [κ−

2] � κ+
1 : ![S2]end · κ−

2 : S3

But since Γ � catch κ−1 (x)P�Δ·κ−1 : ?(S2)end is derivable from Γ � P ′�Δ·κ−2 : S2

by T-Cat
′, we have that Γ � R�Δ·Δ′ ·κ−1 ?(S2)end ·κ+

1 ![S2]end·κ−2 : S3 ·κ+
2 : S3

is derivable but unsafe, because the server in Q will be unable to provide a service
with protocol S2 as required by the client in P ′.
Case p = +, q = −.

Γ � P ′ � Δ · κ−
2 : S2

Γ � catch κ+
1 (x)P � κ+

1 : ?(S2)end ?(S1)end � ?(S2)end
T-PrefS

Γ � catch κ+
1 (x)P � κ+

1 : ?(S1)end

This time we derive Γ � throw κ−1 [κ−2]� ![S1]end ·κ−2 : S3 from Γ � throw κ−1 [κ−2]�
![S1]end · κ−2 : S1 by S1 � S3 and T-PrefC; hence we have:

Γ � R � Δ ·Δ′ · κ−1 ?(S1)end · κ+
1 ![S1]end · κ−2 : S3 · κ+

2 : S3

so that (νκ1)(νκ2)R typechecks but it is unsafe since the server κ+
2 in Q will

provide a service of type S3 to the client κ−2 in P ′, whose protocol is S2.
Case p = +, q = +: by the previous derivation (where the polarity of κ2 does
not play any role) we have Γ � catch κ+

1 (x)P � κ+
1 : ?(S1)end; on the other hand

we have Γ � throw κ−1 [κ+
2] � κ−1 : ![S1]end · κ+

2 : S3 from Γ � throw κ−1 [κ+
2] � κ−1 :

![S3]end · κ+
2 : S3 by T-PrefC using the contravariance of ![], which implies

that ![S3]end � ![S1]end. Hence we obtain that Γ � R � Δ · Δ′ · κ−1 ?(S1)end ·
κ+

1 ![S1]end · κ−2 : S3 · κ+
2 : S3 with a similar mismatch as before, but having the

server in P ′ and the client in Q.
We observe that in the cases when p �= q problems arise because of an in-

ner incoherence of the principle of delegation for those particular client/server

Typing Asymmetric Client-Server Interaction 109

Γ � {κp
2/x}P � Δ · κp

1 : S · κp
2 : S′

T-Catp

Γ � catch κp
1(x).P � Δ · κp

1 : ?(S′)S

Γ � P � Δ · κp
1 : S

T-Thrp

Γ � throw κp
1 [κ

p
2].P � Δ · κp

1 : ![S′]S · κp
2 : S′

Fig. 5. The type rules for Higher-Order sessions

asymmetric interactions; namely when the throw process is a client(server) which
delegates an interaction with respect to which it is working as client(server). For
the cases when p = q, instead, the problems depend only on the contravariance
of the output type ![]. So, a way out is to assume covariance of both input
and output higher-order session types (see Definition 6) and put the equal-
ity of polarities of the subject and the object of a catch action (and conse-
quently the duality of them in case of a throw action) into the typing rules (see
Figure 5).

Definition 6 (Prefix Relation over Higher Order Session Types). The
prefix relation over ST is obtained by extending Definition 2 by:

S′
1 � S′

2 S1 � S2

![S′
1]S1 � ![S′

2]S2

S′
1 � S′

2 S1 � S2

?(S′
1)S1 � ?(S′

2)S2

In the rest of this section we report on results that prove the soundness of the
proposed system. Session type system ensure error freeness. To define errors
observe that any process term is structurally congruent to a term of the shape
(νκ)(P1 | · · · | Pn), where the Pi are prefixed processes (including branching) or
selections of the shape if b then Q else R. The Pi are said to be in head position.
If κp is the subject of the prefix of a process Pi we say that Pi is a κ-process.
The parallel of dual κ-processes is a κ-redex.

Definition 7 (Error Freeness). A process P is an error if there exists a chan-
nel κ such that either two κ-processes which do not form a κ-redex occur in P
in head position, or there are more than two k-processes in head position.

A process P is error free if there exists no Q such that P ∗−→ Q which is an
error.

The following result, proved in [8] for the original system, also holds in the
asymmetric case.

Theorem 4 (Error Freeness). If Γ � P � Δ then P is error free.

As said before, besides error freeness, one of the most relevant properties of
asymmetric systems is the Weak Compliance Property. In presence of

110 F. Barbanera, S. Capecchi, and U. de’Liguoro

Higher-order, however, this property does not hold in its full sense, as in Corol-
lary 1. A simple counterexample can help to understand where the problem lies:

accept a(y).request b(x).throw x[y] | request a(y).y?(n) (4)

where the process request a(y).y?(n) is a client just needing a value. The server
to which such a client can connect to in order to get the needed value is
accept a(y).request b(x).throw x[y]. Such a server accepts the connection request
from the client and immediately try to delegate the production of the value for
the client to another server (we can look at the initial process (4) as a simplified
version of the system CalcClient | CalcServer5).

It is not difficult to check that process (4) is typable in an empty session
environment, using {b : ↑ [?(![int] ![bool])], a : ↑ [![int]]} as type environment. It
reduces to the running process (νκ)(request b(x).throw x[κ+] | κ−?(n)) where
we have a κ−-process in head position, but in which we can get an actual dual κ+-
process only in case a typable server is added to the system. Such a potentiality
is represented by the presence in the system of the process throw x[κ+].

The notion of “potential” κ+-process is expressed by the following definition.

Definition 8 (Potential κ+-process generator).
A potential κ+-process generator is any process of the form throw k[κ+].Q

A process P is initial if does not contain any channel name κ neither free nor
bound. A process P is running if there exists an initial Q such that: Q ∗→ P

Theorem 5 (Higher-order Weak Compliance). Let P be a running process
which is a derivative of some typed initial process. If P contains a κ− process in
head position, then it includes either a dual κ+-process (though not necessarily
in head position) or a potential κ+-process generator.

6 Related Work and Conclusion

The main sources of this work are [8,20] and [7] on session types, and [4] for the
idea of formalizing the protocols of asymmetric client/server interaction. With
respect to these works we do not establish stronger results, rather we address
a similar issue in a more complex setting, where processes exchange values and
channels themselves, allowing for mobility and delegation.

A recent contribution which is close to our development, especially for the
type interpretation, is [3]. The semantics proposed there is far more complex
then ours, and different because of use of internal choice that, we think, does
not model properly the label selection and its typing in the session type systems
(for an attempt to establish a weak form of correspondence between contracts,
that use internal choice as well, and session types see [14]).

Introducing the relation of prefix in the rules of the systems breaks the sym-
metry of session type systems studied so far, but surprisingly enough does not
destroy the basic properties of the system, namely subject reduction and error
freeness. Nonetheless a great obstacle remains, which is connected to the fact

Typing Asymmetric Client-Server Interaction 111

that ordinary session types do not guarantee deadlock-freeness in the sense of
[10,12].

Even in presence of these limitations, we think that the system illustrated
in this paper deserves interest. In fact the processes that can be represented in
the π-calculus with sessions are far richer than those considered in the theory of
contracts. They also are interesting w.r.t. the Service Centered Calculus (SCC)
[1] and of recent proposals to detect deadlock freedom in SCC via type systems,
e.g. [2].

References

1. Boreale, M., Bruni, R., Caires, L., Nicola, R.D., Lanese, I., Loreti, M., Martins,
F., Montanari, U., Ravara, A., Sangiorgi, D., Vasconcelos, V., Zavattaro, G.: SCC:
a Service Centered Calculus. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.)
WS-FM 2006. LNCS, vol. 4184, pp. 38–57. Springer, Heidelberg (2006)

2. Bruni, R., Mezzina, L.: Types and Deadlock Freedom in a Calculus of Services,
Sessions and Pipelines. In: Meseguer, J., Roşu, G. (eds.) AMAST 2008. LNCS,
vol. 5140, pp. 100–115. Springer, Heidelberg (2008)

3. Castagna, G., Dezani-Ciancaglini, M., Giachino, E., Padovani, L.: General Session
Types (2008), http://www.sti.uniurb.it/padovani/publications.html

4. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
In: POPL 2008, 35th ACM Symposium on Principles of Programming Languages
(January 2008)

5. Dezani-Ciancaglini, M., de’ Liguoro, U., Yoshida, N.: On Progress for Structured
Communications. In: Barthe, G., Fournet, C. (eds.) TGC 2007 and FODO 2008.
LNCS, vol. 4912, pp. 257–275. Springer, Heidelberg (2008)

6. Gay, S., Hole, M.: Types and Subtypes for Client-Server Interactions. In: Swierstra,
S.D. (ed.) ESOP 1999. LNCS, vol. 1576, pp. 74–90. Springer, Heidelberg (1999)

7. Gay, S., Hole, M.: Subtyping for Session Types in the Pi-Calculus. Acta Informat-
ica 42(2/3), 191–225 (2005)

8. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Disciplines
for Structured Communication-based Programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

9. Igarashi, A., Kobayashi, N.: A Generic Type System for the Pi-Calculus. Theoret-
ical Computer Science 311(1-3), 121–163 (2004)

10. Kobayashi, N.: A Type System for Lock-Free Processes. Information and Compu-
tation 177, 122–159 (2002)

11. Kobayashi, N.: Type Systems for Concurrent Programs. In: Aichernig, B.K.,
Maibaum, T. (eds.) Formal Methods at the Crossroads. From Panacea to Founda-
tional Support. LNCS, vol. 2757, pp. 439–453. Springer, Heidelberg (2003)

12. Kobayashi, N.: A New Type System for Deadlock-Free Processes. In: Baier, C.,
Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer,
Heidelberg (2006)

13. Kobayashi, N.: Type Systems for Concurrent Programs. Extended version of [11].
Tohoku University (2007)

14. Laneve, C., Padovani, L.: The pairing of contracts and session types. In: Degano,
P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS,
vol. 5065, pp. 681–700. Springer, Heidelberg (2008)

http://www.sti.uniurb.it/padovani/publications.html

112 F. Barbanera, S. Capecchi, and U. de’Liguoro

15. Meredith, G., Bjorg, S.: Contracts and types. Commun. ACM 46(10), 41–47 (2003)
16. Parrow, J.: An introduction to the π-calculus. In: Ponse, A., Smolka, S., Bergstra,

J. (eds.) Handbook of Process Algebra, ch. 8, pp. 479–544. Elsevier, Amsterdam
(2001)

17. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
18. Pierce, B.C., Sangiorgi, D.: Typing and subtyping for mobile processes. In: Logic

in Computer Science (1993); Full version in Mathematical Structures in Computer
Science, vol. 6(5) (1996)

19. Sangiorgi, D., Walker, D.: The π-calculus. A Theory of Mobile Processes. CUP
(2001)

20. Yoshida, N., Vasconcelos, V.T.: Language Primitives and Type Disciplines for
Structured Communication-based Programming Revisited. In: SecReT 2006.
ENTCS, vol. 171, pp. 73–93. Elsevier, Amsterdam (2007)

Equational Reasoning on Ad Hoc Networks

Fatemeh Ghassemi1, Wan Fokkink2, and Ali Movaghar1

1 Sharif University of Technology, Tehran, Iran,
2 Vrije Universiteit, Amsterdam, The Netherlands

fghassemi@mehr.sharif.edu, wanf@cs.vu.nl, movaghar@sharif.edu

Abstract. We provide an equational theory for Restricted Broadcast Process
Theory to reason about ad hoc networks. We exploit an extended algebra called
Computed Network Theory to axiomatize restricted broadcast. It allows one to
define an ad hoc network with respect to the underlying topologies. We give a
sound and complete axiomatization for the recursion-free part of the term algebra
CNT, modulo what we call rooted branching computed network bisimilarity.

1 Introduction

In Mobile Ad hoc Networks (MANETs), nodes communicate directly with each other
using wireless transceivers (possibly along multihop paths) without the need for a fixed
infrastructure. The primitive means of communication in MANETs is local broadcast;
only nodes located in the range of a transmitter receive data. Thus nodes participate in
a broadcast according to the underlying topology of nodes. On the other hand, nodes
move arbitrarily, and the topology of the network changes dynamically. Local broadcast
and topology changes are the main modeling challenges in MANETs.

We introduced Restricted Broadcast Process Theory (RBPT) in [6], to specify and
verify ad hoc networks, taking into account mobility. RBPT specifies an ad hoc network
by composing nodes using a restricted (local) broadcast operator, and it specifies a node
by specifying a protocol deployed at a node using RBPT node notation. We modeled
topology changes implicitly in the semantics, and thus verified a network with respect
to different topology changes. An advantage of RBPT compared to similar algebras is
that the specification of an ad hoc network does not include any specification about
changes of underlying topologies. The behavior of an ad hoc network is equivalent to
all its behaviors with respect to the possible topologies.

In this paper we provide an equational system to reason about RBPT terms. To pro-
vide equations for RBPT terms, we need to consider not only their observational be-
haviors, but also the set of topologies for which such behaviors are observed. To this
aim, we first extend RBPT with new terms, called Computed Network Theory (CNT)
because the extended terms contain a specification of a set of topologies and their ob-
served behavior is computed with respect to those topologies. Network restrictions on
the underlying topology are expressed explicitly in the syntax. The operational seman-
tics of CNT is given by constrained labeled transition systems, in which the transitions
are subscripted by a set of network restrictions. Our axiomatization borrows from the
process algebra ACP [3] auxiliary (left merge and communication merge) operators to
axiomatize the interleaving behavior of parallel composition.

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 113–128, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

114 F. Ghassemi, W. Fokkink, and A. Movaghar

We consider an axiomatization of CNT modulo what we call rooted branching com-
puted network bisimilarity. We prove that the axiomatization is sound, and complete for
the recursion-free part of CNT. The application of our equational system is illustrated
with a small running example.

Related works. Related calculi to ours are CBS#, CWS, CMAN, CMN, and the ω-
calculus [11,10,8,9,12]. A complete comparison between ad hoc network algebras can
be found in [6]. They are compared in terms of their specification and modeling con-
cepts. In all related approaches, the only equations between networks were defined by
using structural congruence. None of these papers provides a complete axiomatization
for their algebra of ad hoc networks.

2 Restricted Broadcast Process Theory

Before going through the formal syntax definitions, we define some notations applied
in these definitions. Let V denote a countably infinite set of variables ranged over by
x, y, z, and D a finite set of data values ranged over by u. Let w range over V ∪ D.
We use ŵ to denote a finite sequence w1, . . . , wk for some k ∈ IN , |ŵ| its arity k,
and {ŵ/x̂} for simultaneous substitutions {w1/x1}, . . . , {wk/xk}. Let M denote a set
of message types communicated over a network and ranged over by m, while par :
M → IN defines the number of parameters encapsulated in a message m. For each
message type m, there is a finite set domainm : IP (Dpar(m)) that defines the set of
possible value assignments to the message parameters of m. Let Loc denote a finite set
of logical addresses, ranged over by � which models the hardware addresses of nodes at
which protocols run. We will also use � to denote a parameter of type Loc. Moreover,
A,B,C, · · · denote concrete addresses. An unknown address is presented by ?. The set
of addresses extended with the unknown address is denoted as Loc?, which by abuse of
notation is also ranged over by �.

Restricted Broadcast Process Theory (RBPT) [6] provides a two-level syntax to de-
fine a set of processes deployed at a node, also called protocols, and a set of ad hoc
networks composed of singleton nodes:

P ::= 0 | α.P | P + P | [w1 = w2]P, P | A(ŵ) , A(x̂)
def
= P

N ::= 0 | [[P]]
 | N ‖ N | (ν�)N

A protocol can be a deadlock, modeled by 0. α.P is a process that performs action α
and then behaves as process P . The action α can be a send action m(û)! or a receive
action m(x̂)?. The process P1 +P2 behaves non-deterministically as process P1 or P2.
The guarded command [w1 = w2]P1, P2 defines process behavior based on w1 = w2;
if it evaluates to true, the protocol behaves as P1, and otherwise as P2. We write A(ŵ)

to denote a process invocation defined via a definition A(x̂)
def
= P , with |x̂| = |ŵ|,

where x̂ consists of all names that appear free in P .

As a running example, P (x)
def
= req(x)!.P (x) denotes a process that broadcasts

a message req(x) (par(req) = 1 and domainreq = {0, 1}) recursively, and Q
def
=

req(x)?.rep(x)!.Q a process that receives the message req and replies by sending

Equational Reasoning on Ad Hoc Networks 115

rep(x) (par(rep) = 1 and domainrep = {0, 1}) recursively. An ad hoc network can be
composed of several nodes using the parallel composition operator, where each node is
provided with a unique address (� �=?) and deploys a protocol, and nodes communicate
via restricted broadcast. For instance, the network process [[P (0)]]A ‖ [[Q]]B specifies
an ad hoc network composed of two nodes with logical addresses A and B deploying
processes P (0) and Q respectively. Some address of a network can be hidden from an
external observer using the restriction operator. For example, in (νA)[[P (0)]]A ‖ [[Q]]B
the activities of node A are hidden from the external observer, and only activities per-
formed by B can be observed.

In the following section the syntax of ad hoc networks is extended with new terms,
to obtain the class of what we call computed network terms. As the semantics of RBPT
is subsumed by the one of CNT, we postpone an exposition on the formal semantics of
RBPT until Section 4.

3 Computed Network Theory

As mentioned before, to give the axioms of the equational theory RBPT, we use an ex-
tension of RBPT, called Computed Network Theory (CNT). This process theory exploits
network restrictions, which define a set of topologies; the behavior of process terms is
computed with regard to such network restrictions.

We assume a binary relation > on Loc × Loc?, which imposes connection relations
between addresses. A relation A > ? denotes that a node with logical address A should
be in the range of there unknown address, while A > B denotes a node with address
A is connected to a node with address B. The relation > need not be symmetric and
transitive. By default each node is connected to itself: � > �. A network restriction is
a set of relations � > �′. The network restriction C[B/A] is obtained from the net-
work restriction C by substituting B for A, and C[B/g] is obtained from the network
restriction C by simultaneous substitution of B for � ∈ g where g ⊆ Loc.

A topology is a function γ : Loc → IPLoc, where γ(�) denotes the set of nodes
connected to �. This function models unidirectional connectivity between nodes. Each
network restriction C is representative of the set of topologies that satisfy the relations
in C. In particular, the empty network restriction {} denotes all possible topologies.

CNT extends RBPT with new terms called computed networks, having the structure
as Cη.N , to denote a network whose behavior, with respect to the set of topologies
defined by network restriction C, is performing the action η and then behaving as N .
The parallel composition and restriction are defined over computed networks the same
as RBPT terms. Besides CNT extends RBPT with new operators; choice (+), left execu-
tion () and sync (|):

N ::= 0 | [[P]]
 | Cη.N | N + N | N ‖ N | N N | N |N | (ν�)N

where η can be m(û)!{�} or m(û)?, and C is a network restriction. The operator + de-
fines a non-deterministic choice between CNT terms, and parallel composition defines
computed networks communicating via restricted broadcast. The restriction operator
(ν�) hides a node with address � from an external observer as before. In left execution

116 F. Ghassemi, W. Fokkink, and A. Movaghar

, the left operand must perform the initial action. In the sync operator |, both operands
perform a synchronized initial action.

Bound addresses can be α-converted, meaning that (ν�)N equals (ν�′)N [�′/�] if N
does not contain �′ as a free address. We define functions fl(N) and bl(N) to denote
sets of free and bound addresses in a computed network term N , respectively. Parame-
ters of receive actions like Cm(x̂)?.N are bound names in N while parameters of send
actions like Cm(x̂)!{�}.N are free names in N . A computed network term is called
closed if its set of free names is empty.

4 Operational Semantics of CNT

The operational semantics of CNT is given at two levels (similar to the syntax), in terms
of the operational semantics of protocols and of computed network processes.

Given a protocol, the operational rules of Table 1 induce a labeled transition system,
in which the transitions are of the form P α−→ P ′ with α ∈ {m(û)?,m(û)!}. They
are standard operational rules for basic process algebras. (For explanations about the
protocol operational rules, the reader is referred to [6].)

Table 1. Semantics of protocols

m(x̂)?.P m(û)?−−−→ P{û/x̂}
: Pre1

m(û)!.P m(û)!−−−→ P
: Pre2

P{û/x̂} α−→ P ′

A(û) α−→ P ′ : Inv , A(x) def= P
P1

α−→ P ′
1

P1 + P2
α−→ P ′

1
: Choice

P1
α−→ P ′

1

[u = u]P1, P2
α−→ P ′

1
: Then

P2
α−→ P ′

2

[u1 = u2]P1, P2
α−→ P ′

2
: Else, u1 �= u2

Generally the behavior of a computed network is defined in terms of a set of topolo-
gies; a transition, in which a set of nodes participate in a communication, is possible for
all topologies in which the receiving nodes are connected to the sending node. Therefore
in the operational semantics it is defined for each state which transitions are possible
for which sets of topologies (out of all possible topologies). Network restrictions are
used to define the set of underlying topologies for each transition.

Given a computed network, the operational rules in Table 2 induce a constrained
labeled transition system of transitions N η−→C N ′, where C is a network restriction
defining a set of topologies under which this transition is possible, and η can be a
send or receive. The operational rules of computed networks are shown in Table 2. The
symmetric counterparts of rules Choice ′, Bro, Sync2 and Par have been omitted. In
this table hide(C, �) denotes {�1 > �2|�1 > �2 ∈ C[?/�] ∧ �1 �=?}. Moreover, η[�′/�]
denotes η with all occurrences of � replaced by �′.

Inter1 denotes that a single node can perform the send actions of a protocol at this
node under any valid topology, and its network address is appended to this action.
Inter2 denotes a single node performing a receive action, under the restriction that

Equational Reasoning on Ad Hoc Networks 117

Table 2. Semantics of CNT terms

P
m(û)!−−−→ P ′

[[P]]

m(û)!{
}−−−−−→{} [[P ′]]

: Inter1
P

m(û)?−−−→ P ′

[[P]]

m(û)?−−−→{
>?} [[P ′]]

: Inter2

Cη.N η−→C N
: Pre ′ N1

η−→C N ′
1

N1 + N2
η−→C N ′

1
: Choice ′

N η−→C N ′

N η−→C′ N ′ : Exe, C ⊆ C′ N1
m(û)?−−−→C1 N ′

1 N2
m(û)?−−−→C2 N ′

2

N1 ‖ N2
m(û)?−−−→C1∪C2 N ′

1 ‖ N ′
2

: Recv

N1
m(û)!{
}−−−−−→C1 N ′

1 N2
m(û)?−−−→C2 N ′

2

N1 ‖ N2
m(û)!{
}−−−−−→C1∪C2[
/?] N ′

1 ‖ N ′
2

: Bro
N1

η−→C N ′
1

N1 ‖ N2
η−→C N ′

1 ‖ N2
: Par

N1
m(û)?−−−→C1 N ′

1 N2
m(û)?−−−→C2 N ′

2

N1 | N2
m(û)?−−−→C1∪C2 N ′

1 ‖ N ′
2

: Sync1

N1
η−→C N ′

1

N1 N2
η−→C N ′

1 ‖ N2
: LExe

N1
m(û)!{
}−−−−−→C1 N ′

1 N2
m(û)?−−−→C2 N ′

2

N1 | N2
m(û)!{
}−−−−−→C1∪C2[
/?] N ′

1 ‖ N ′
2

: Sync2

N η−→C N ′

(ν�)N η[?/
]−−−→hide(C,
) (ν�)N ′
: Rest

the node must be connected to some sender (denoted by ?) is added to the network re-
striction. Pre ′ indicates execution of a prefix action. Choice ′ defines that a computed
network can behave non-deterministically. Exe indicates that if a transition is possible
for C, then it is also possible for any more restrictive C′. Recv allows to group together
nodes that are ready to receive the same message. Bro indicates the actual synchroniza-
tion in local broadcast among a transmitter and receivers. This transition is valid for
all topologies in which the transmitter is connected (not essentially bidirectly) to the
receivers, which is captured by C1∪C2[�/?]. The communication results in a transition
labeled with m(û)!{�}, so the message m(û)! remains visible to be received by other
computed networks.

We consider a possible transition of the running example introduced in Section 2.
This transition, given below, results from applications of Inter1, Inter2 and Bro:

[[P (0)]]A ‖ [[Q]]B
req(0)!{A}−−−−−−−→{B>A} [[P (0)]]A ‖ [[rep(0)!.Q]]B

In this transition, node A broadcasts a message req(0) and node B receives it, so that
the parameter x is substituted by 0. This transition is possible for topologies in which
B is connected to A, i.e. the accompanying network restriction is {B > A}.

As the sync operator defines synchronization between two computed networks, its
behavior is defined by Sync1 and Sync2 indicating synchronization on a receive action
(sent by the context) or a communication. LExe defines that in a term composed by
the left execution, the left computed network performs the initial action, and then the
resulting term proceeds as in parallel composition. Par defines locality for a computed

118 F. Ghassemi, W. Fokkink, and A. Movaghar

network; an event in a computed network may result from this same event in a sub-
network.

Another possible transition of [[P (0)]]A ‖ [[Q]]B , resulting from an application of
Inter1 and Par , is:

[[P (0)]]A ‖ [[Q]]B
req(0)!{A}−−−−−−−→{} [[P (0)]]A ‖ [[Q]]B

In this transition, node A sends but B does not participate in communication. This
transition is possible for all possible topologies (so B may be connected to A, but it has
lost the message), denoted by {}.

Rest makes sure that restrictions over invisible addresses are removed and the ad-
dress of a sender with hidden address is concealed from the external observer by con-
verting its address to ?. By using network restrictions, we can easily define the set of
topologies over visible nodes under which such a transition is possible (by removing
restrictions imposed on hidden nodes).

In the running example, if we hide node A, then the possible transitions when A
broadcasts (resulting from Inter1,2, Rest , Bro or Par) are:

(νA)[[P (0)]]A‖ [[Q]]B
req(0)!{?}−−−−−−→{B>?} (νA)[[P (0)]]A ‖ [[rep(0)!.Q]]B

(νA)[[P (0)]]A ‖ [[Q]]B
req(0)!{?}−−−−−−→{} (νA)[[P (0)]]A ‖ [[Q]]B .

Here the observer cannot see who has performed the send action.

5 Computed Network Bisimulation

We define the notion of computed network bisimilarity between nodes in a constrained
labeled transition system, based on the notion of branching bisimilarity [13]. Our ob-
server is distributed over locations of nodes with visible addresses equipped with a
sensor to sense signals (and decrypt the signals in wireless communications). If the
strength of a signal at a node is of a predefined threshold, it concludes that the node
has performed a send action. If it cannot conclude the sender of the message, it will
consider it as a send action with an unknown sender. To define our observational equiv-
alence relation, we introduce the following notations:

– ⇒ denotes the reflexive and transitive closure of receive actions which preserve
topologies:
• N ⇒ N ;

• if N m(û)?−−−→{} N ′ and N ′ ⇒ N ′′, then N ⇒ N ′′.

– η−→C denotes that either η−→C , or η is of the form m(û)!{?} and η[
/?]−−−→C[
/?].

Definition 1. A binary relation R on computed network terms is a branching computed
network simulation, if N1RN2 implies whenever N1

η−→C N ′
1:

– η is of the form m(û)?, and N ′
1RN2;

– or there are N ′
2 and N ′′

2 such that N2 ⇒ N ′′
2

η−→C N ′
2, where N1RN ′′

2 and
N ′

1RN ′
2.

Equational Reasoning on Ad Hoc Networks 119

R is a branching computed network bisimulation if R and R−1 are branching com-
puted network simulations. Computed networks N1 and N2 are branching computed
network bisimilar, written N1 $b N2, if N1RN2 for some branching computed net-
work bisimulation relation R.

Computed network bisimilarity is not a congruence with respect to the choice operator.
To obtain a congruence, we need to add a root condition.

Definition 2. Two computed networks N1 and N2 are rooted branching computed net-
work bisimilar, written N1 $rb N2,

– if N1
η−→C N ′

1, then there is an N ′
2 such that N2

η−→C N ′
2, and N ′

1 $b N ′
2;

– if N2
η−→C N ′

2, then there is an N ′
1 such that N1

η−→C N ′
1, and N ′

1 $b N ′
2.

We proved that branching computed network bisimilarity and rooted branching com-
puted network bisimilarity are equivalence relations over computed networks. More-
over, the latter constitutes a congruence with respect to CNT. See Appendix A and B.

6 CNT Axiomatization

Our axiomatization for CNT terms is given in Table 3. P1−8 axiomatize protocols de-
ployed at a node. In P4, summation

∑
is used to denote a choice over a finite set, in

this case domainm; summation over an empty set denotes 0. Dead explains that hid-
ing an address in a deadlock computed network has no affect. Con expresses that when
a same behavior happens under two different sets of topologies, and if one set is in-
cluded in another set, then from the point view of an external observer, the behavior
occurs for the superset of topologies. Obs expresses when a send from a hidden ac-
tion has no effect and can be equated to any send from a visible action. Cho1−4 define
idempotency, commutativity, associativity and unit element for the choice operator. The
parallel composition of two computed network is defined in an interleaving semantics
the same as in the process algebra ACP [3] by the axiom Br; in a network composed of
two computed networks N1 and N2, each network may perform a local action, or they
may have communication via local broadcast. LEx 1−3 define axioms for left execution;
in left execution, the left operand performs an action (LEx1), choice operator can be
distributed over left execution (LEx 2), and when the left operand cannot do any action,
then left execution results into a deadlock (LEx 3). S1 and S2 define commutativity
and distributivity of choice over the sync operator, respectively. S3 defines that when
an argument in a sync composition is a deadlock, then the result of sync composition
is a deadlock. Sync1−5 define synchronization between two computed network terms.
Generally speaking, two terms can be synchronized if they send/receive the same mes-
sage with the same parameter values. T1 and T2 express when a receive action can be
removed. Res1 defines scope extrusion of the restriction operator. Res2,4 define that the
order and number of repeats of the restriction operator have no effect on the behavior
of computed network terms. Res3 defines distribution of restriction over the choice op-
erator. Res5−7 express the effect of the restriction operator: network restrictions over
hidden addresses are removed. In Res5, restriction has no effect on send actions from
visible addresses, except for removing restrictions over hidden addresses. In Res6, the
address of a hidden sender is converted to ?.

120 F. Ghassemi, W. Fokkink, and A. Movaghar

Table 3. Axiomatization of CNT terms

[[0]]� = 0 P1 [[m(û)!.P]]� = {}m(û)!{�}.[[P]]� P2

[[m(û)?.P]]� = {� >?}m(u)?.[[P]]� P3 [[m(ŷ)?.P]]� =
∑

û∈domainm
[[m(û)?.P [û/ŷ]]]� P4

[[P1 + P2]]� = [[P1]]� + [[P2]]� P5 [[A(û)]]� = [[P [û/x̂]]]�, A(x̂) def= P P6

[[[u = u]P1, P2]]� = [[P1]]� P7 [[[u1 = u2]P1, P2]]� = [[P2]]� (u1 �= u2) P8

0 = (ν�)0 Dead
C1η.N + C2η.N = C1η.N (C1 ⊆ C2) Con
Cm(û)!{?}.N + C[�/?]m(û)!{�}.N = C[�/?]m(û)!{�}.N Obs

N +N = N Cho1 N1 + (N2 +N3) = (N1 +N2) +N3 Cho3

N1 +N2 = N2 +N1 Cho2 N + 0 = N Cho4

N1 ‖ N2 = N1 N2 +N2 N1 +N1 | N2 Br
Cη.N1 N2 = Cη.(N1 ‖ N2) LEx 1

(N1 +N2) N = N1 N +N2 N LEx 2

0 N = 0 LEx 3

N1 | N2 = N2 | N1 S1

(N1 +N2) | N = N1 | N +N2 | N S2

0 | N = 0 S3

C1m(û)!{�}.N1 | C2m(û)?.N2 = C1 ∪ C2[�/?]m(û)!{�}.(N1 ‖ N2) Sync1

C1m(û1)!{�}.N1 | C2n(û2)?.N2 = 0 (m �= n ∨ û1 �= û2) Sync2

C1m(û)?.N1 | C2m(û)?.N2 = C1 ∪ C2m(û)?.(N1 ‖ N2) Sync3

C1m(û1)?.N1 | C2n(û2)?.N2 = 0 (m �= n ∨ û1 �= û2) Sync4

C1m(û1)!.N1{�1} | C2n(û2)!{�2}.N2 = 0 Sync5

Cη.(C′m(û)?.N +N) = Cη.N T1

Cη.({}m(û)?.(N1 +N2) +N2) = Cη.(N1 +N2) T2

(ν�)N1 ‖ N2 = (ν�)(N1 ‖ N2) (� �∈ fl(N2)) Res1 (ν�1)(ν�2)N = (ν�2)(ν�1)N Res2

(ν�)(N1 +N2) = (ν�)N1 + (ν�)N2 Res3 (ν�)N = N (� �∈ fl(N)) Res4

(ν�)Cm(û)!{�′}.N = hide(C, �)m(û)!{�′}.(ν�)N (� �= �′) Res5

(ν�)Cm(û)!{�}.N = hide(C, �)m(û)!{?}.(ν�)N Res6

(ν�)Cm(û)?.N = hide(C, �)m(û)?.(ν�)N Res7

Theorem 1. CNT is a sound axiomatization of the term algebra IP (CNT)/ $rb, i.e.
for all closed computed network terms N1 and N2, if N1 = N2 then N1 $rb N2.

Theorem 2. CNT is a complete axiomatization for the recursion-free part of the term
algebra IP (CNT)/ $rb, i.e. for all closed, recursion-free computed network terms N1
and N2, N1 $rb N2 implies N1 = N2.

We prove this theorem in [7] using a restricted graph model which is isomorphic to the
term algebra IP (CNT)/ $rb, following the approach of [4,13,1]. The basic idea in the
completeness proof is to establish a graph rewriting system on restricted graphs, which
is confluent and strongly normalizing (up to restricted graph isomorphism), and for

Equational Reasoning on Ad Hoc Networks 121

which every rewrite step preserves rooted branching graph bisimilarity. Then we prove
that a rewrite step can be mapped to a proof step in CNT. By finding an identity relation
between functions relating graphs and CNT terms, completeness can be concluded. The
identity relation can be easily proved for basic terms; a basic term only consists of prefix
and choice operators. Axioms in Table 3 allow us to bring all recursion-free closed CNT
terms in basic terms.

We apply the axioms in Table 3 to the running example.

[[P (0)]]A = {}req(0)!{A}.[[P (0)]]A

[[Q]]B =
∑

i=0,1{B >?}req(i)?.[[rep(i)!.Q]]B

[[P (0)]]A ‖ [[Q]]B = [[P (0)]]A [[Q]]B + [[Q]]B [[P (0)]]A + [[P (0)]]A | [[Q]]B

= {}req(0)!{A}.[[P (0)]]A [[Q]]B +
∑

i=0,1{B >?}req(i)?.[[rep(i)!.Q]]B [[P (0)]]A
+ {}req(0)!{A}.[[P (0)]]A |∑i=0,1{B >?}req(i)?.[[rep(i)!.Q]]B

= {}req(0)!{A}.[[P (0)]]A ‖ [[Q]]B +
∑

i=0,1{B >?}req(i)?.[[P (0)]]A ‖ [[rep(i)!.Q]]B
+ {B > A}req(0)!{A}.[[P (0)]]A ‖ [[rep(0)!.Q]]B

indicating that the behavior can be: A can broadcast a message but B does not partici-
pate, or B can receive a message sent by its context, or A can broadcast a message and
B receives it for a set of topologies in which B is connected to A.

Now let C be a hidden node with a behavior like A:

[[P (0)]]A ‖ [[Q]]B ‖ (νC)[[P (0)]]C = (νC)([[P (0)]]A ‖ [[Q]]B ‖ [[P (0)]]C)

= (νC)({}req(0)!{A}.[[P (0)]]A ‖ [[Q]]B ‖ [[P (0)]]C
+ {}req(0)!{C}.[[P (0)]]A ‖ [[Q]]B ‖ [[P (0)]]C
+
∑

i=0,1{B >?}req(i)?.[[P (0)]]A ‖ [[rep(i)!.Q]]B ‖ [[P (0)]]C
+ {B > A}req(0)!{A}.[[P (0)]]A ‖ [[rep(0)!.Q]]B ‖ [[P (0)]]C
+ {B > C}req(0)!{C}.[[P (0)]]A ‖ [[rep(0)!.Q]]B ‖ [[P (0)]]C)

= {}req(0)!{A}.(νC)([[P (0)]]A ‖ [[Q]]B ‖ [[P (0)]]C)
+ {}req(0)!{?}.(νC)([[P (0)]]A ‖ [[Q]]B ‖ [[P (0)]]C)
+
∑

i=0,1{B >?}req(i)?.(νC)([[P (0)]]A ‖ [[rep(i)!.Q]]B ‖ [[P (0)]]C)
+ {B > A}req(0)!{A}.(νC)([[P (0)]]A ‖ [[rep(0)!.Q]]B ‖ [[P (0)]]C)
+ {B >?}req(0)!{?}.(νC)([[P (0)]]A ‖ [[rep(0)!.Q]]B ‖ [[P (0)]]C)

= {}req(0)!{A}.(νC)([[P (0)]]A ‖ [[Q]]B ‖ [[P (0)]]C)
+
∑

i=0,1{B >?}req(i)?.(νC)([[P (0)]]A ‖ [[rep(i)!.Q]]B ‖ [[P (0)]]C)
+ {B > A}req(0)!{A}.(νC)([[P (0)]]A ‖ [[rep(0)!.Q]]B ‖ [[P (0)]]C)

We can derive [[P (0)]]A ‖ [[Q]]B = [[P (0)]]A ‖ [[Q]]B ‖ (νC)[[P (0)]]C , as the following
equality holds:

[[P (0)]]A ‖ [[rep(i)!.Q]]B ‖ (νC)[[P (0)]]C = [[P (0)]]A ‖ [[rep(i)!.Q]]B .

Now consider a protocol called R(x), which can send the request x or receive a request.
When it receives a request y, it either replies by sending the request y, or ignores it and
waits until it receives that request again. The definition of this protocol is

122 F. Ghassemi, W. Fokkink, and A. Movaghar

R(x)
def
= req(x)!.R(x) + req(x)!.S(x) + req(y)?.Z(x, y)

S(x)
def
= req(x)!.S(x) + rep(x)!.R(x)

Z(x, y)
def
= req(y)?.Z(x, y) + rep(y)!.R(x) + req(x)!.Z(x, y)

The behavior of a network consisting of a hidden nodeB, with protocolR(0) deployed,
is:

[[Z(0, i)]]B ={B>?}req(i)?.[[Z(0, i)]]B +{}rep(i)!{B}.[[R(0)]]B +{}req(0)!{B}.[[Z(0, i)]]B

(νB)[[R(0)]]B = (νB)({}req(0)!{B}.[[R(0)]]B + {}req(0)!{B}.[[S(0)]]B
+
∑

i=0,1{B >?}req(i)?.[[Z(0, i)]]B)

= {}req(0)!{?}.(νB)[[R(0)]]B + {}req(0)!{?}.[[S(0)]]B
+
∑

i=0,1{}req(i)?.(νB)[[Z(0, i)]]B

We can derive (νA,B)[[P (0)]]A ‖ [[Q]]B = (νB)[[R(0)]]B , as the following equalities
hold:

(νA,B)([[P (0)]]A ‖ [[rep(0)!.Q]]B) = (νA,B)([[S(0)]]B)

{}req(i)?.(νA, B)([[P (0)]]A ‖ [[rep(i)!.Q]]B) = {}req(i)?.(νB)[[Z(0, i)]]B .

For instance, {}req(i)?.(νA,B)([[P (0)]]A‖[[rep(i)!.Q]]B) = {}req(i)?.(νB)[[Z(0, i)]]B
holds as:

{}req(i)?.(νB)[[Z(0, i)]]B =
{}req(i)?.({}req(i)?.(νB)[[Z(0, i)]]B + {}rep(i)!{?}.(νB)[[R(0)]]B
+{}req(0)!{?}.(νB)[[Z(0, i)]]B) =
{}req(i)?.((νB)[[Z(0, i)]]B + {}rep(i)!{?}.(νB)[[R(0)]]B
+{}req(0)!{?}.(νB)[[Z(0, i)]]B)

{}req(i)?.(νA, B)([[P (0)]]A ‖ [[rep(i)!.Q]]B)

= {}req(i)?.({}rep(i)!{?}.(νA, B)([[P (0)]]A ‖ [[Q]]B)
+{}req(0)!{?}.(νA, B)([[P (0)]]A ‖ [[rep(i)!.Q]]B))

Thus the distributed protocol deployed at nodes A and B is equal to the protocol de-
ployed at node B alone. In other words, two hidden networks are equal if their commu-
nication capabilities are equal (proving when two recursive specifications are equal is
out of scope of this paper).

7 Conclusion

We have extended Restricted Broadcast Process Theory with new operators to obtain
Computed Network Theory, in which the behaviors are computed with respect to a set
of topologies defined by a network restriction. Next we provided a sound and com-
plete axiomatization of the recursion-free part of the term algebra of computed network
theory, modulo the new notion of rooted branching computed network bisimilarity.

Equational Reasoning on Ad Hoc Networks 123

To deal with recursion, we are going to extend the axiomatization with the Recursive
Definition Principle, the Recursive Specification Principle, and the Cluster Fair Ab-
straction Rule (see e.g. [5]). Applying our equational system to real-world case studies
will be our next step.

References

1. Baeten, J.C.M., Bergstra, J.A., Reniers, M.A.: Discrete time process algebra with silent step.
In: Proof, language, and interaction: essays in honour of Robin Milner, pp. 535–569. MIT
Press, Cambridge (2000)

2. Basten, T.: Branching bisimilarity is an equivalence indeed! Inf. Process. Lett. 58(3), 141–
147 (1996)

3. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Information and
Control 60(1-3), 109–137 (1984)

4. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstraction. Theoretical
Computer Science 37, 21–77 (1985)

5. Fokkink, W.J.: Introduction to Process Algebra. Springer, Heidelberg (2000)
6. Ghassemi, F., Fokkink, W.J., Movaghar, A.: Restricted broadcast process theory. In: Cerone,

A., Gruner, S. (eds.) Proc. 6th Conference on Software Engineering and Formal Methods
(SEFM 2008), pp. 345–354. IEEE, Los Alamitos (2008)

7. Ghassemi, F., Fokkink, W.J., Movaghar, A.: Equational reasoning on ad hoc networks. Tech-
nical report, Sharif University of Technology (2009),
http://mehr.sharif.edu/˜fghassemi/Technical%20Report.pdf

8. Godskesen, J.C.: A calculus for mobile ad hoc networks. In: Murphy, A.L., Vitek, J. (eds.)
COORDINATION 2007. LNCS, vol. 4467, pp. 132–150. Springer, Heidelberg (2007)

9. Merro, M.: An observational theory for mobile ad hoc networks. In: Proc. 23rd Confer-
ence on the Mathematical Foundations of Programming Semantics (MFPS XXIII). Elec-
tronic Notes in Theoretical Computer Science, vol. 173, pp. 275–293. Elsevier, Amsterdam
(2007)

10. Mezzetti, N., Sangiorgi, D.: Towards a calculus for wireless systems. In: Proc. 22nd Annual
Conference on Mathematical Foundations of Programming Semantics (MFPS XXII). Elec-
tronic Notes in Theoretical Computer Science, vol. 158, pp. 331–353. Elsevier, Amsterdam
(2006)

11. Nanz, S., Hankin, C.: A framework for security analysis of mobile wireless networks. Theo-
retical Computer Science 367(1), 203–227 (2006)

12. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A process calculus for mobile ad hoc net-
works. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 296–
314. Springer, Heidelberg (2008)

13. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation seman-
tics. Journal of the ACM 43(3), 555–600 (1996)

A Branching Computed Network Bisimilarity Is an Equivalence

To prove that branching computed network bisimilarity is an equivalence, we exploit
semi-branching computed network bisimilarity, following [2]. In the next definition,

N (η)−→C N ′ denotes either N η−→C N ′, or η = m(û)? and N = N ′.

http://mehr.sharif.edu/~fghassemi/Technical%20Report.pdf

124 F. Ghassemi, W. Fokkink, and A. Movaghar

Definition 3. A binary relation R on computed network terms is a semi-branching
computed network simulation, if N1RN2 implies whenever N1

η−→C N ′
1:

– there are N ′
2 and N ′′

2 such that N2 ⇒ N ′′
2

(η)−→C N ′
2, where N1RN ′′

2 and N ′
1RN ′

2.

R is a semi-branching computed network bisimulation ifR andR−1 are semi-branching
computed network simulations. Computed networks N1 and N2 are semi-branching
computed network bisimilar if N1RN2, for some semi-branching computed network
bisimulation relation R.

Lemma 1. Let N1 and N2 be computed network terms, and R a semi-branching com-
puted network bisimulation such that N1RN2.

– If N1 ⇒ N ′
1 then ∃N ′

2 · N2 ⇒ N ′
2 ∧N ′

1RN ′
2

– If N2 ⇒ N ′
2 then ∃N ′

1 · N1 ⇒ N ′
1 ∧N ′

1RN ′
2

Proof. We only give the proof of the first property. The proof is by induction on the
number of ⇒ steps from N1 to N ′

1:

– Base: Assume that the number of steps equals zero. Then N1 and N ′
1 must be equal.

Since N1RN2 and N2 ⇒ N2, the property is satisfied.
– Induction step: Assume N1 ⇒ N ′

1 in n steps, for some n ≥ 1. Then there is

an N ′′
1 such that N1 ⇒ N ′′

1 in n − 1 ⇒ steps, and N ′′
1

m(û)?−−−→{} N ′
1. By the

induction hypothesis, there exists an N ′′
2 such that N2 ⇒ N ′′

2 and N ′′
1 RN ′′

2 . Since

N ′′
1

m(û)?−−−→{} N ′
1 and R is a semi-branching computed network bisimulation, there

are two cases to consider:
• there is an N ′

2 such that N ′′
2 ⇒ N ′

2, N ′′
1 RN ′

2, and N ′
1RN ′

2. So N2 ⇒ N ′
2 such

that N ′
1RN ′

2.

• or there are N ′′′
2 and N ′

2 such that N ′′
2 ⇒ N ′′′

2
m(û)?−−−→{} N ′

2, where N ′′
1 RN ′′′

2

andN ′
1RN ′

2. By definition,N ′′′
2

m(û)?−−−→{} N ′
2 yieldsN ′′′

2 ⇒ N ′
2. Consequently

N2 ⇒ N ′
2 such that N ′

1RN ′
2. �

Proposition 2. The relation composition of two semi-branching computed network
bisimulations is again a semi-branching computed network bisimulation.

Proof. Let R1 and R2 be semi-branching computed network bisimulations with
N1R1N2 and N2R2N3. Let N1

η−→C N ′
1. It must be shown that

∃N ′
3,N ′′

3 : N3 ⇒ N ′′
3

(η)−→ N ′
3 ∧ N1R1 ◦ R2N ′′

3 ∧ N ′
1R1 ◦ R2N ′

3

Since N1R1N2, there exist N ′
2, N ′′

2 such that N2 ⇒ N ′′
2

(η)−→C N ′
2, N1R1N ′′

2 and
N ′

1R1N ′
2. Since N2R2N3 and N2 ⇒ N ′′

2 , Lemma 1 yields that there is a N ′′
3 such that

N3 ⇒ N ′′
3 and N ′′

2 R2N ′′
3 . Two cases can be distinguished:

– η ∈ {m(û)?} and N ′′
2 = N ′

2. It follows immediately that N3 ⇒ N ′′
3

(η)−→C N ′′
3 ,

N1R1 ◦ R2N ′′
3 and N ′

1R1 ◦ R2N ′′
3 .

Equational Reasoning on Ad Hoc Networks 125

– Assume N ′′
2

η−→C N ′
2. Since N ′′

2 R2N ′′
3 and R2 is a semi-branching computed

network bisimulation, there are N ′′′
3 and N ′

3 such that N ′′
3 ⇒ N ′′′

3
(η)−→C N ′

3,

N ′′
2 R2N ′′′

3 and N ′
2R2N ′

3. Since N3 ⇒ N ′′
3 , we have N3 ⇒ N ′′′

3
(η)−→C N ′

3. Fur-
thermore, N1R1N ′′

2 R2N ′′′
3 and N ′

1R1N ′
2R2N ′

3. �

Corollary 3. Semi-branching computed network bisimilarity is an equivalence relation.

Proposition 4. Each largest semi-branching computed network bisimulation is a
branching computed network bisimulation.

Proof. Suppose R is the largest semi-branching computed network bisimulation for
some given constrained labeled transition systems. Let N1RN2, N2 ⇒ N ′

2, N1RN ′
2

and N ′
1RN ′

2. We show that R′ = R ∪ {(N ′
1,N2)} is a semi-branching computed

network bisimulation.

1. If N ′
1

η−→C N ′′
1 , then it follows from (N ′

1,N ′
2) ∈ R that there are N ′′′

2 and N ′′
2 such

that N ′
2 ⇒ N ′′′

2
(η)−→C N ′′

2 with (N ′
1,N ′′′

2), (N ′′
1 ,N ′′

2) ∈ R. And N2 ⇒ N ′
2 yields

N2 ⇒ N ′′′
2

(η)−→C N ′′
2 .

2. If N2
η−→C N ′′

2 , then it follows from (N1,N2) ∈ R that there are N ′′′
1 and N ′′

1 such

that N1 ⇒ N ′′′
1

(η)−→C N ′′
1 with (N ′′′

1 ,N2), (N ′′
1 ,N ′′

2) ∈ R. Since (N1,N ′
2) ∈

R and N1 ⇒ N ′′′
1 , by Lemma 1, there is an N2

′′′ such that N ′
2 ⇒ N2

′′′ and

(N ′′′
1 ,N2

′′′) ∈ R. Since N ′′′
1

(η)−→C N ′′
1 , there are N ∗∗

2 and N ∗
2 such that N2

′′′ ⇒
N ∗∗

2
(η)−→C N ∗

2 with (N ′′′
1 ,N ∗∗

2), (N ′′
1 ,N ∗

2) ∈ R. Since N ′
2 ⇒ N2

′′′ and N2
′′′ ⇒

N ∗∗
2 , we have N ′

2 ⇒ N ∗∗
2 . By assumption, (N ′

1,N ′
2) ∈ R, so by Lemma 1 there is

an N ∗∗
1 such that N ′

1 ⇒ N ∗∗
1 and (N ∗∗

1 ,N ∗∗
2) ∈ R. Since N ∗∗

2
(η)−→C N ∗

2 , there are

N ∗∗∗
1 and N ∗

1 such that N ∗∗
1 ⇒ N ∗∗∗

1
(η)−→C N ∗

1 with (N ∗∗∗
1 ,N ∗∗

2), (N ∗
1 ,N ∗

2) ∈
R. And N ′

1 ⇒ N ∗∗
1 yields N ′

1 ⇒ N ∗∗∗
1

(η)−→C N ∗
1 .

(N ∗∗∗
1 ,N ∗∗

2) ∈ R ∧ (N ∗∗
2 ,N ′′′

1) ∈ R−1 ∧ (N ′′′
1 ,N2) ∈ R

⇒ (N ∗∗∗
1 ,N2) ∈ R ◦ R−1 ◦ R

(N ∗
1 ,N ∗

2) ∈ R∧ (N ∗
2 ,N ′′

1) ∈ R−1 ∧ (N ′′
1 ,N ′′

2) ∈ R
⇒ (N ∗

1 ,N ′′
2) ∈ R ◦ R−1 ◦ R

By Proposition 2 R◦R−1◦R is a semi-branching computed network bisimulation.
Since R is the largest semi-branching computed network bisimulation, and clearly

R ⊆ R◦R−1 ◦R, we have R = R◦R−1 ◦R. Concluding,N ′
1 ⇒ N ∗∗∗

1
(η)−→C N ∗

1
with (N ∗∗∗

1 ,N2), (N ∗
1 ,N ′′

2) ∈ R.

So R′ is a semi-branching computed network bisimulation. Since R is the largest semi-
branching computed network bisimulation, R′ = R.

We will now prove that R is a branching computed network bisimulation. Let
N1RN2, and N1

η−→C N ′
1. We only consider the case when η is of the form m(û)?,

because for other cases, the transfer condition of Definition 1 and Definition 3 are the

same. So there are N ′′
2 and N ′

2 such that N2 ⇒ N ′′
2

(m(û)?)−−−−→C N ′
2 with N1RN ′′

2 and
N ′

1RN ′
2. Two cases can be distinguished:

126 F. Ghassemi, W. Fokkink, and A. Movaghar

1. N ′′
2 = N ′

2: Since N1RN2, N1RN ′
2, and N ′

1RN ′
2, we proved above that N ′

1RN2.
This agrees with the first case of Definition 1.

2. N ′′
2 �= N ′

2: This agrees with the second case of Definition 1.

Consequently R is a branching computed network bisimulation. �
Since any branching computed network bisimulation is a semi-branching computed

network bisimulation, this yields the following corollary.

Corollary 5. Two computed network terms are related by a branching computed net-
work bisimulation if and only if they are related by a semi-branching computed network
bisimulation.

Corollary 6. Branching computed network bisimilarity is an equivalence relation.

Corollary 7. Rooted branching computed network bisimilarity is an equivalence
relation.

B Rooted Branching Computed Network Bisimilarity Is a
Congruence

Theorem 8. Rooted branching computed network bisimilarity is a congruence with
respect to the protocol and computed network operators.

Proof. We need to prove that:

– [[P1]]
 $rb [[P2]]
 implies [[α.P1]]
 $rb [[α.P2]]

– [[P1]]
 $rb [[P2]]
 and [[P ′

1]]
 $rb [[P ′
2]]
 implies [[P1 + P ′

1]]
 $rb [[P2 + P ′
2]]

– [[P1]]
 $rb [[P2]]
 and [[P ′
1]]
 $rb [[P ′

2]]
 implies [[[u1 = u2]P1, P
′
1]]
 $rb [[[u1 =

u2]P2, P
′
2]]

– N1 $rb N2 implies Cη.N1 $rb Cη.N2
– N1 $rb N2 and N ′

1 $rb N ′
2 implies N1 + N ′

1 $rb N2 + N ′
2

– N1 $rb N2 implies (ν�)N1 $rb (ν�)N2
– N1 $rb N2 and N ′

1 $rb N ′
2 implies N1 ‖ N ′

1 $rb N2 ‖ N ′
2

– N1 $rb N2 and N ′
1 $rb N ′

2 implies N1 N ′
1 $rb N2 N ′

2
– N1 $rb N2 and N ′

1 $rb N ′
2 implies N1 | N ′

1 $rb N2 | N ′
2

Clearly, if N1 $rb N2 then N1 $b N2. Consequently the first five cases are straightfor-
ward. We prove the sixth case. To this aim we prove that if N1 $b N2 then (ν�)N1 $b

(ν�)N2. Let N1 $b N2 be witnessed by the branching computed network bisimulation
relation R. We define R′ = {((ν�)N ′

1, (ν�)N ′
2)|(N ′

1,N ′
2) ∈ R}. We prove that R′ is

a branching computed network bisimulation relation. Suppose (ν�)N ′
1

η′
−→C′ (ν�)N ′′

1
resulted from the application of Rest on N ′

1
η−→C N ′′

1 . Since (N ′
1,N ′

2) ∈ R, there are
two cases; in the first case η is a receive action and (N ′′

1 ,N ′
2) ∈ R, consequently

((ν�)N ′′
1 , (ν�)N ′

2) ∈ R′. In second case there are N ′′′
2 and N ′′

2 such that N ′
2 ⇒

N ′′′
2

η−→C N ′′
2 with (N ′

1,N ′′′
2), (N ′′

1 ,N ′′
2) ∈ R. By application of Par , (ν�)N ′

2 ⇒
(ν�)N ′′′

2 with ((ν�)N ′
1, (ν�)N ′′′

2) ∈ R′. There are two cases to consider:

Equational Reasoning on Ad Hoc Networks 127

– η = η: Consequently (ν�)N ′′′
2

η′
−→C′ (ν�)N ′′

2 .
– η �= η: in this case η is of the form m(û)!{?}, η′ = η and C′ = hide(C, �). If
η = η[�/?] then η[?/�] = η and C′ = hide(C[�/?], �) hold, otherwise η[?/�] = η

and C′[�′/?] = hide(C[�′/?], �) hold where �′ �= �. Consequently (ν�)N ′′′
2

η′
−→C′

(ν�)N ′′
2 .

With the above argumentation, there areN ′′′
2 andN ′′

2 such that (ν�)N ′
2⇒(ν�)N ′′′

2
η′
−→C′

(ν�)N ′′
2 with ((ν�)N ′

1, (ν�)N ′′′
2), ((ν�)N ′′

1 , (ν�)N ′′
2) ∈ R′.

Likewise we can prove that N1 $rb N2 implies (ν�)N1 $rb (ν�)N2. To this aim

we examine the root condition in Definition 2. Suppose (ν�)N1
η′
−→C′ (ν�)N ′

1, with the

same argumentation as above, (ν�)N2
η′
−→C′ (ν�)N ′

2. Since N ′
1 $b N ′

2, we proved that
(ν�)N ′

1 $b (ν�)N ′
2. Concluding (ν�)N1 $rb (ν�)N2.

From the three remaining cases, we focus on the most challenging case, which is
the sync operator |; the others are proved in a similar fashion. First we prove that if
N1 $b N2, then N1 ‖ N $b N2 ‖ N . Let N1 $b N2 be witnessed by the branch-
ing computed network bisimulation relation R. We define R′ = {(N ′

1 ‖ N ′,N ′
2 ‖

N ′)|(N ′
1,N ′

2) ∈ R, N ′ any computed network term}. We prove that R′ is a branch-
ing computed network bisimulation relation. Suppose N1 ‖ N η−→C∗ N ∗. There are
several cases to consider:

– Suppose η is a send action m(û)! performed by an address �. First let it be per-

formed by N ′
1, and N participated in the communication. That is, N ′

1
m(û)!{
}−−−−−→C1

N ′′
1 and N m(û)?−−−→C N ′ give rise to the transition N ′

1 ‖ N m(û)!{
}−−−−−→C1∪C[
/?] N ′′
1 ‖

N ′. As (N ′
1,N ′

2) ∈ R and N ′
1

m(û)!{
}−−−−−→C1 N ′′
1 , there are N ′′

2 and N ′′′
2 such that

N ′
2 ⇒ N ′′′

2
m(û)!{
′}−−−−−−→C1[
′/
] N ′′

2 , where (� =?∨� = �′) and (N ′
1,N ′′′

2), (N ′′
1 ,N ′′

2)

∈ R. Hence N ′
2 ‖ N ⇒ N ′′′

2 ‖ N m(û)!{
′}−−−−−−→C1∪C[
′/?] N ′′
2 ‖ N ′ with (N ′

1 ‖
N ,N ′′′

2 ‖ N), (N ′′
1 ‖ N ′,N ′′

2 ‖ N ′) ∈ R′.
Now suppose that the send action was performed by N , and N ′

1 participated in

the communication. That is, N ′
1

m(û)?−−−→C1 N ′′
1 and N m(û)!{
}−−−−−→C N ′ give rise to

the transition N ′
1 ‖ N m(û)!{
}−−−−−→C1[
/?]∪C N ′′

1 ‖ N ′. Since (N ′
1,N ′

2) ∈ R and

N ′
1

m(û)?−−−→C1 N ′′
1 , two cases can be considered: either (N ′′

1 ,N ′
2) ∈ R, or there are

N ′′′
2 and N ′′

2 such that N ′
2 ⇒ N ′′′

2
m(û)?−−−→C1 N ′′

2 with (N ′
1,N ′′′

2), (N ′′
1 ,N ′′

2) ∈ R.

In the first case, N ′
2 ‖ N m(û)!{
}−−−−−→C1∪C[
/?] N ′

2 ‖ N ′, and (N ′′
1 ‖ N ′,N ′

2 ‖ N ′) ∈
R. In the second case, N ′

2 ‖ N ⇒ N ′′′
2 ‖ N m(û)!{
}−−−−−→C1∪C[
/?] N ′′

2 ‖ N ′, and
(N ′

1 ‖ N ,N ′′′
2 ‖ N), (N ′′

1 ‖ N ′,N ′′
2 ‖ N ′) ∈ R′.

The cases where N or N1 does not participate in the communication are straight-
forward.

– The case where η is a receive action m(û)? is also straightforward; it originates
from N1, N , or both.

Likewise we can prove that N1 $rb N2 implies N ‖ N1 $rb N ‖ N2.

128 F. Ghassemi, W. Fokkink, and A. Movaghar

Now let N1 $rb N2. To prove N1|N $rb N2|N , we examine the root condition

from Definition 2. Suppose N1|N m(û)!{
}−−−−−→C∗ N ∗. There are two cases to consider:

– This send action was performed by N1 at node �, and N participated in the

communication. That is, N1
m(û)!{
}−−−−−→C1 N ′

1 and N m(û)?−−−→C N ′, so that N1|N
m(û)!{
}−−−−−→C1∪C[
/?] N ′

1 ‖ N ′. Since N1 $rb N2, there is an N ′
2 such that N2

m(û)!{
′}−−−−−−→C1[
′/
] N ′
2 with (� =? ∨ � = �′) and N ′

1 $b N ′
2. Then N2|N

m(û)!{
′}−−−−−−→C1∪C[
′/?] N ′
2 ‖ N ′. Since N ′

1 $b N ′
2, we proved that N ′

1 ‖ N ′ $b

N ′
2 ‖ N ′.

– The send action was performedN at node �, andN1 participated in the communica-

tion. That is, N1
m(û)?−−−→C1 N ′

1 andN m(û)!{
}−−−−−→C N , so thatN1|N m(û)!{
}−−−−−→C1∪C[
/?]

N1 ‖ N ′. Since N1 $rb N2, there is an N ′
2 such that N2

m(û)?−−−→C1 N ′
2 with

N ′
1 $b N ′

2. Then N2|N m(û)!{
}−−−−−→C1∪C[
/?] N ′
2 ‖ N ′. Since N ′

1 $b N ′
2, we have

N ′
1 ‖ N ′ $b N ′

2 ‖ N ′.

Finally, the case where N1|N m(û)?−−−→C∗ N ∗ can be easily dealt with. This receive action
was performed by both N1 and N .

Concluding, N1|N $rb N2|N . Likewise it can be argued that N|N1 $rb N|N2. �

Towards a Notion of Unsatisfiable Cores for LTL

Viktor Schuppan

FBK-irst, Via Sommarive 18, 38123 Trento, Italy
schuppan@fbk.eu

Abstract. Unsatisfiable cores, i.e., parts of an unsatisfiable formula that
are themselves unsatisfiable, have important uses in debugging specifi-
cations, speeding up search in model checking or SMT, and generating
certificates of unsatisfiability. While unsatisfiable cores have been well in-
vestigated for Boolean SAT and constraint programming, the notion of
unsatisfiable cores for temporal logics such as LTL has not received much
attention. In this paper we investigate notions of unsatisfiable cores for
LTL that arise from the syntax tree of an LTL formula, from converting
it into a conjunctive normal form, and from proofs of its unsatisfiability.
The resulting notions are more fine-granular than existing ones.

1 Introduction

Temporal logics such as LTL have become a standard formalism to specify re-
quirements for reactive systems [37]. Hence, in recent years methodologies for
property-based design based on temporal logics have been developed (e.g., [1]).

Increasing use of temporal logic requirements in the design process necessi-
tates the availability of efficient validation and debugging methodologies. Vacuity
checking [5, 31] and coverage [12] are complementary approaches developed in
the context of model checking (e.g., [3]) for validating requirements given as tem-
poral logic properties. However, with the exception of [13,24], both vacuity and
coverage assume presence of both a model and its requirements. Particularly in
early stages of the design process the former might not be available. Satisfiabil-
ity and realizability [38] checking are approaches that can handle requirements
without a model being avaiable. Tool support for both is available (e.g., [8]).

Typically, unsatisfiability of a set of requirements signals presence of a prob-
lem; finding a reason for unsatisfiability can help with the ensuing debugging.
In practice, determining a reason for unsatisfiability of a formula without au-
tomated support is often doomed to fail due to the sheer size of the formula.
Consider, e.g., the EURAILCHECK project that developed a methodology and
a tool for the validation of requirements [18]. Part of the methodology consists of
translating the set of requirements given by a textual specification into a variant
of LTL and subsequent checking for satisfiability; if the requirements are un-
satisfiable, an unsatisfiable subset of them is returned to the user. The textual
specification considered as a feasibility study is a few 100 pages long.

Another application for determining reasons for unsatisfiability are algorithms
that find a solution to a problem in an iterative fashion. They start with a guess
of a solution and check whether that guess is indeed a solution. If not, rather

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 129–145, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

130 V. Schuppan

than ruling out only that guess, they determine a reason for that guess not being
a solution and rule out guesses doomed to fail for the same reason. Examples are
verification with CEGAR (e.g., [20]) and SMT (e.g., [47]). Automated support
for determining a reason for unsatisfiability is clearly essential.

Current implementations for satisfiability checking (e.g., [16]) point out rea-
sons for unsatisfiability by returning a part of an unsatisfiable formula that is by
itself unsatisfiable. This is called an unsatisfiable core (UC). However, these UCs
are coarse-grained in the following sense. The input formula is a Boolean com-
bination of temporal logic formulas. When extracting an UC current implemen-
tations do not look inside temporal subformulas: when, e.g., φ = (Gψ) ∧ (Fψ′)
is found to be unsatisfiable, then [16] will return φ as an UC irrespective of the
complexity of ψ and ψ′. Whether the resulting core is inspected for debugging
by a human or used as a filter in a search process by a machine: in either case a
more fine-granular UC will likely make the corresponding task easier.

In this paper we take first steps to overcome the restrictions of UCs for LTL by
investigating more fine-grained notions of UCs for LTL. We start with a notion
based on the syntactic structure of the input formula where entire subformulas
are replaced with 1 (true) or 0 (false) depending on the polarity of the corre-
sponding subformula. We then consider conjunctive normal forms obtained by
structure-preserving clause form translations [36]; the resulting notion of core
is one of a subset of conjuncts. That notion is reused when looking at UCs ex-
tracted from resolution proofs from bounded model checking (BMC) [6] runs. We
finally show how to extract an UC from a tableau proof [25] of unsatisfiability.
All 4 notions can express UCs that are as fine-grained as the one based on the
syntactic formula structure. The notion based on conjunctive normal forms pro-
vides more fine-grained resolution in the temporal dimension, and those based
on BMC and on unsatisfied tableau proofs raise the hope to do even better. At
this point we would like to emphasize the distinction between notions of UCs and
methods to obtain them. While there is some emphasis in this paper on methods
for UC extraction, here we see such methods only as a vehicle to suggest notions
of UCs. We are not aware of similar systematic investigation of the notion of UC
for LTL; for notions of cores for other formalisms, for application of UCs, and
for technically related approaches such as vacuity checking see Sect. 8.

In the next Sect. 2 we state the preliminaries and in Sect. 3 we introduce some
general notions. In Sect.s 4, 5, 6, and 7 we investigate UCs obtained by syntactic
manipulation of parse trees, by taking subsets of conjuncts in conjunctive normal
forms, by extracting resolution proofs from BMC runs, and by extraction from
closed tableaux nodes. Related work is discussed in Sect. 8 before we conclude
in Sect. 9. We do not provide a formalization of some parts and discussion of
some aspects in this extended abstract but instead refer to the full version [41].

2 Preliminaries

In the following we give standard definitions for LTL, see, e.g., [3]. Let IB be the
set of Booleans, IN the naturals, and AP a finite set of atomic propositions.

Towards a Notion of Unsatisfiable Cores for LTL 131

Definition 1 (LTL Syntax). The set of LTL formulas is constructed induc-
tively as follows. Boolean constants 0, 1 ∈ IB and atomic propositions p ∈ AP
are LTL formulas. If ψ, ψ′ are LTL formulas, so are ¬ψ, ψ ∨ ψ′, ψ ∧ ψ′, Xψ,
ψUψ′, ψRψ′, Fψ, and Gψ. We use ψ → ψ′ as an abbreviation for ¬ψ ∨ ψ′,
ψ ← ψ′ for ψ ∨ ¬ψ′, and ψ ↔ ψ′ for (ψ → ψ′) ∧ (ψ ← ψ′).

The semantics of LTL formulas is defined on infinite words over the alphabet
2AP . If π is an infinite word in (2AP)ω and i is a position in IN, then π[i] denotes
the letter at the i-th position of π and π[i,∞] denotes the suffix of π starting
at position i (inclusive). We now inductively define the semantics of an LTL
formula on positions i ∈ IN of a word π ∈ (2AP)ω :

Definition 2 (LTL Semantics).

(π, i) |= 1 (π, i) �|= 0 (π, i) |= ψUψ′ ⇔ ∃i′ ≥ i . ((π, i′) |= ψ′ ∧ ∀i ≤ i′′ < i′ . (π, i′′) |= ψ)
(π, i) |= p ⇔ p ∈ π[i] (π, i) |= ψRψ′ ⇔ ∀i′ ≥ i . ((π, i′) |= ψ′ ∨ ∃i ≤ i′′ < i′ . (π, i′′) |= ψ)
(π, i) |= ¬ψ ⇔ (π, i) �|= ψ (π, i) |= Xψ ⇔ (π, i + 1) |= ψ
(π, i) |= ψ ∨ ψ′ ⇔ (π, i) |= ψ or (π, i) |= ψ′ (π, i) |= Fψ ⇔ ∃i′ ≥ i . (π, i′) |= ψ
(π, i) |= ψ ∧ ψ′ ⇔ (π, i) |= ψ and (π, i) |= ψ′ (π, i) |= Gψ ⇔ ∀i′ ≥ i . (π, i′) |= ψ

An infinite word π satisfies a formula φ iff the formula holds at the beginning of
that word: π |= φ⇔ (π, 0) |= φ. Then we call π a satisfying assignment to φ.

Definition 3 (Satisfiability). An LTL formula φ is satisfiable if there exists
a word π that satisfies it: ∃π ∈ (2AP)ω . π |= φ; it is unsatisfiable otherwise.

Definition 4 (Negation Normal Form). An LTL formula φ is in negation
normal form (NNF) nnf (φ) if negations are applied only to atomic propositions.

Definition 5 (Subformula). Let φ be an LTL formula. The set of subformulas
SF (φ) of φ is defined recursively as follows:

ψ = b or ψ = p with b ∈ IB, p ∈ AP : SF(ψ) = {ψ}
ψ = ◦1ψ′ with ◦1 ∈ {¬,X, F, G} : SF(ψ) = {ψ} ∪ SF(ψ′)
ψ = ψ′ ◦2 ψ′′ with ◦2 ∈ {∨,∧, U, R} : SF(ψ) = {ψ} ∪ SF(ψ′) ∪ SF(ψ′′)

Definition 6 (Polarity). Let φ be an LTL formula, let ψ ∈ SF (φ). ψ has
positive polarity (+) in φ if it appears under an even number of negations,
negative polarity (−) otherwise.

We regard LTL formulas as trees, i.e., we don’t take sharing of subformulas into
account. We don’t attempt to simplify formulas before or after UC extraction.

3 Notions and Concepts Related to UCs

In this section we discuss general notions in the context of UCs1 independently
of the notion of UC used. It is not a goal of this paper to formalize the notions
below towards a general framework of UCs. Instead, in the remainder of this
paper we focus on the case of LTL where instantiations are readily available.
1 Terminology in the literature for these notions is diverse. We settled for the term

“unsatisfiable core”, which is used for such notions, e.g., in the context of Boolean
satisfiability (e.g., [26,48]), SMT (e.g., [14]), and declarative specifications (e.g., [45]).

132 V. Schuppan

UCs, Irreducible UCs, and Least-Cost Irreducible UCs When dealing with UCs
one typically considers an input φ (here: LTL formula) taken from a set of
possible inputs Φ (here: all LTL formulas) and a Boolean-valued function foo2 :
Φ → IB with foo(φ) = 0 (here: LTL satisfiability). The goal is to derive another
input φ′ (the UC) with foo(φ′) = 0 from φ s.t. 1. the derivation preserves a
sufficient set of reasons for foo being 0 without adding new reasons, 2. the fact
that foo(φ′) is 0 is easier to see for the user than the fact that foo(φ) is 0, and
3. the derivation is such that preservance/non-addition of reasons for foo being
0 on φ and φ′ can be understood by the user. Typically 1 and 3 are met by
limiting the derivation to some set of operations on inputs that fulfills these
criteria (here: syntactic weakening of LTL formulas). The remaining criterion 2
can be handled by assuming a cost function on inputs where lower cost provides
some reason to hope for easier comprehension by the user (here: see below).

Assuming a set of inputs and a set of operations we can define the following
notions. An input φ′ is called a core of an input φ if it is derived by a sequence of
such operations. φ′ is an unsatisfiable core if φ′ is a core of φ and foo(φ′) = 0. φ′

is a proper unsatisfiable core if φ′ is an unsatisfiable core of φ and is syntactically
different from φ. Finally, φ′ is an irreducible unsatisfiable core (IUC) if φ′ is an
unsatisfiable core of φ and there is no proper unsatisfiable core of φ′. Often IUCs
are called minimal UCs and least-cost IUCs minimum UCs.

Cost functions often refer to some size measure of an input as suggested by a
specific notion of core, e.g., the number of conjuncts when inputs are conjunctions
of formulas and foo is satisfiability. We do not consider specific cost functions.

Granularity of a Notion of UC. Clearly, the original input contains at least as
much information as any of its UCs and, in particular, all reasons for being
unsatisfiable. However, our goal when defining notions of UCs is to come up
with derived inputs that make some of these reasons easier to see. Therefore we
use the term granularity of a notion of core as follows. We wish to determine
the relevance of certain aspects of an input to the input being unsatisfiable by
the mere presence or absence of elements in the UC. In other words, we do not
take potential steps of inference by the user into account. Hence, we say that
one notion of core provides finer granularity than another if it provides at least
as much information on the relevance of certain aspects of an input as the other.
Consider, e.g., a notion of UC that takes a set of formulas as input and defines a
core to be a subset of this set without proceeding to modify the member formulas
versus a notion that also modifies the member formulas. Another example is a
notion of UC for LTL that considers relevance of subformulas at certain points
in time versus a notion that only either keeps or discards subformulas.

4 Unsatisfiable Cores via Parse Trees

In this section we consider UCs purely based on the syntactic structure of the
formula. It is easy to see that, as is done, e.g., in some forms of vacuity checking
2 Although we write foo we still say “unsatisfiable” core rather than “unfooable” core.

Towards a Notion of Unsatisfiable Cores for LTL 133

(a) A formula
given as a
parse tree

∧

ψ′ψ

p

∧

p ¬

∧

FG
(b) and its
UC.

∧

1 1

p

∧

p ¬

∧

FG

Fig. 1. Example of an UC via parse tree. Modified parts are marked blue boxed.

[31], replacing an occurrence of a subformula with positive polarity with 1 or
replacing an occurrence of a subformula with negative polarity with 0 will lead to
a weaker formula. This naturally leads to a definition of UC based on parse trees
where replacing occurrences of subformulas corresponds to replacing subtrees.

Consider the following formula φ = (G(p ∧ ψ)) ∧ (F(¬p ∧ ψ′)) whose parse
tree is depicted in Fig. 1 (a). The formula is unsatisfiable independent of the
concrete (and possibly complex) subformulas ψ, ψ′. A corresponding UC with
ψ, ψ′ replaced with 1 is φ′ = (G(p ∧ 1)) ∧ (F(¬p ∧ 1)), shown in Fig. 1 (b).

Hence, by letting the set of operations to derive a core be replacement of
occurrences of subformulas of φ with 1 (for positive polarity occurrences) or 0
(for negative polarity occurrences), we obtain the notions of core, unsatisfiable
core, proper unsatisfiable core, and irreducible unsatisfiable core via parse tree.

In the example above φ′ is both a proper and an IUC of φ. Note that
(G(p ∧ 1))∧ (F(¬p ∧ ψ′)) and (G(p ∧ ψ))∧ (F(¬p ∧ 1)) are UCs of φ, too, as is
φ itself (and possibly many more when ψ and ψ′ are taken into account).

5 Unsatisfiable Cores via Definitional Conjunctive
Normal Form

Structure preserving translations (e.g., [36]) of formulas into conjunctive nor-
mal form introduce fresh Boolean propositions for (some) subformulas that are
constrained by one or more conjuncts to be 1 (if and) only if the corresponding
subformulas hold in some satisfying assignment. In this paper we use the term
definitional conjunctive normal form (dCNF) to make a clear distinction from
the conjunctive normal form used in Boolean satisfiability (SAT), which we de-
note CNF. dCNF is often a preferred representation of formulas as it’s typically
easy to convert a formula into dCNF, the expansion in formula size is moder-
ate, and the result is frequently amenable to resolution. Most important in the
context of this paper, dCNFs yield a straightforward and most commonly used
notion of core in the form of a (possibly constrained) subset of conjuncts.

5.1 Basic Form

Below we define the basic version of dCNF. It is well-known that φ and dCNF (φ)
are equisatisfiable.

134 V. Schuppan

x(G(p∧ψ))∧(F(¬p∧ψ′)) ↔ xG(p∧ψ) ∧ x
F(¬p∧ψ′)

xG(p∧ψ) ↔ Gxp∧ψ
xp∧ψ ↔ xp ∧ xψ
xp ↔ p

xψ ↔ . . .

. . . ↔ . . .

x
F(¬p∧ψ′) ↔ Fx¬p∧ψ′

x¬p∧ψ′ ↔ x¬p ∧ x
ψ′

x¬p ↔ ¬x′
p

x′
p ↔ p

x
ψ′ ↔ . . .

. . . ↔ . . .

x(G(p∧ψ))∧(F(¬p∧ψ′)) ↔ xG(p∧ψ) ∧ x
F(¬p∧ψ′)

xG(p∧ψ) ↔ Gxp∧ψ
xp∧ψ ↔ xp ∧ xψ
xp ↔ p

x
F(¬p∧ψ′) ↔ Fx¬p∧ψ′

x¬p∧ψ′ ↔ x¬p ∧ x
ψ′

x¬p ↔ ¬x′
p

x′
p ↔ p

(a) A formula given as a dCNF (b) and its UC.

Fig. 2. Example of UC via dCNF for φ = (G(p ∧ ψ))∧ (F(¬p ∧ ψ′)). The “. . .” stand
for definitions of ψ, ψ′, and their subformulas. Modified parts are marked blue boxed.

Definition 7 (Definitional Conjunctive Normal Form). Let φ be an LTL
formula over atomic propositions AP, let x, x′, . . . ∈ X be fresh atomic proposi-
tions not in AP. dCNF aux (φ) is a set of conjuncts containing one conjunct for
each occurrence of a subformula ψ in φ as follows:

ψ Conjunct ∈ dCNFaux (φ) ψ Conjunct ∈ dCNFaux (φ)

b ∈ IB xψ ↔ b ◦1ψ′ with ◦1 ∈ {¬, X, F, G} xψ ↔ ◦1xψ′
p ∈ AP xψ ↔ p ψ′ ◦2 ψ′′ with ◦2 ∈ {∨,∧, U, R} xψ ↔ xψ′ ◦2 xψ′′

Then the definitional conjunctive normal form of φ is defined as

dCNF (φ) ≡ xφ ∧ G
∧

c∈dCNFaux (φ) c

xφ is called the root of the dCNF. An occurrence of x on the left-hand side of a
biimplication is a definition of x, an occurrence on the right-hand side a use.

By letting the operations to derive a core from an input be the removal of
elements of dCNF aux (φ) we obtain the notions of core, unsatisfiable core, proper
unsatisfiable core, and irreducible unsatisfiable core via dCNF. We additionally
require that all conjuncts are discarded that contain definitions for which no
(more) conjunct with a corresponding use exists.

We continue the example from Fig. 1 in Fig. 2. In the figure we identify an
UC with its set of conjuncts. In Fig. 2 (b) the definitions for both ψ and ψ′ and
all dependent definitions are removed. As in Sect. 4 the UC shown in Fig. 2 (b)
is an IUC with more UCs existing.

Correspondence Between Cores via Parse Trees and via dCNF. Let φ be an LTL
formula. From Def. 7 it is clear that there is a one-to-one correspondence between
the nodes in the parse tree of φ and the conjuncts in its dCNF. Therefore, the
conversion between the representation of φ as a parse tree and as a dCNF is
straightforward. Remember that an UC of a parse tree is obtained by replacing
an occurrence of a subformula ψ with 1 or 0, while an UC of a dCNF is obtained
by removing the definition of ψ and all dependent definitions. Both ways to
obtain an UC do not destroy the correspondence between parse trees and dCNFs.
Hence, the notions of UC obtained via parse tree and via dCNF are equivalent.

Towards a Notion of Unsatisfiable Cores for LTL 135

5.2 Variants

We now examine some variants of Def. 7 w.r.t. the information contained in the
UCs that they can yield. Each variant is built on top of the previous one.

Replacing Biimplications with Implications. Definition 7 uses biimplication rather
than implication in order to cover the case of both positive and negative polarity
occurrences of subformulas in a uniform way. A seemingly refined variant is to con-
sider both directions of that biimplication separately.3 However, it is easy to see
that in our setting of formulas as parse trees, i.e., without sharing of subformu-
las, each subformula has a unique polarity and, hence, only one direction of the
biimplication will be present in an IUC. I.o.w., using 2 implications rather than a
biimplication has no benefit in terms of granularity of the obtained cores.

Splitting Implications for Binary Operators. We now consider left-hand and
right-hand operands of the ∧ and ∨ operators separately by splitting the impli-
cations for ∧ and the reverse implications for ∨ into two. For example, xψ′∧ψ′′ →
xψ′ ∧ xψ′′ is split into xψ′∧ψ′′ → xψ′ and xψ′∧ψ′′ → xψ′′ . That variant can be
seen not to yield finer granularity as follows. Assume an IUC dCNF ′ contains a
conjunct xψ′∧ψ′′ → xψ′ but not xψ′∧ψ′′ → xψ′′ . The corresponding IUC dCNF
based on Def. 7 must contain the conjunct xψ′∧ψ′′ → xψ′ ∧ xψ′′ but will not con-
tain a definition of xψ′′ . Hence, also in the IUC based on Def. 7, the subformula
occurrence ψ′′ can be seen to be irrelevant to that core. The case for ∨ is similar.

Temporal Unfolding. Here we rewrite a conjunct for a positive polarity occur-
rence of an U subformula as its one-step temporal unfolding and an additional
conjunct to enforce the desired fixed point. I.e., we replace a conjunct xψ′Uψ′′ →
xψ′Uxψ′′ with xψ′Uψ′′ → xψ′′ ∨ (xψ′ ∧ Xxψ′Uψ′′) and xψ′Uψ′′ → Fxψ′′ .

This can be seen to provide improved information for positive polarity occur-
rences of U subformulas in an IUC as follows. A dCNF for a positive occurrence
of an U subformula ψ′Uψ′′ obtained without temporal unfolding as in the pre-
vious variant results (among others) in the following conjuncts: c = xψ′Uψ′′ →
xψ′Uxψ′′ , C′′′ = {xψ′ → . . .}, and C′′′′ = {xψ′′ → . . .}. An IUC based on that
dCNF contains either 1. none of c, c′′′ ∈ C′′′, c′′′′ ∈ C′′′′, 2. c, c′′′′ ∈ C′′′′, or 3. c,
c′′′ ∈ C′′′, c′′′′ ∈ C′′′′. O.t.o.h., a dCNF with temporal unfolding results in the
conjuncts: c′ = xψ′Uψ′′ → xψ′′ ∨ (xψ′ ∧ Xxψ′Uψ′′), c′′ = xψ′Uψ′′ → Fxψ′′ , and
C′′′, C′′′′ as before. An IUC based on that dCNF contains either 1. none of c′, c′′,
c′′′ ∈ C′′′, c′′′′ ∈ C′′′′, 2. c′, c′′′ ∈ C′′′, c′′′′ ∈ C′′′ ∈ C′′′′, 3. c′′, c′′′′ ∈ C′′′′, or 4. c′,
c′′, c′′′ ∈ C′′′, c′′′′ ∈ C′′′′. For some U subformulas the additional case allows to
distinguish between a situation where unsatisfiability arises based on impossi-
bility of some finite unfolding of the U formula alone (case 2) and a situation
where either some finite unfolding of that formula or meeting its eventuality are
possible but not both (case 4).

3 While we defined biimplication as an abbreviation in Sect. 2, we treat it in this dis-
cussion as if it were available as an atomic operator for conjuncts of this form.

136 V. Schuppan

As an illustration consider the following two formulas: 1. (ψ′Uψ′′) ∧
(¬ψ′ ∧ ¬ψ′′) and 2. (ψ′Uψ′′)∧ ((¬ψ′ ∧ ¬ψ′′) ∨ (G¬ψ′′)) An IUC obtained with-
out temporal unfolding will contain c, c′′′ ∈ C′′′, and c′′′′ ∈ C′′′′ in both cases
while one obtained with temporal unfolding will contain c′, c′′′ ∈ C′′′, and
c′′′′ ∈ C′′′′ in the first case and additionally c′′ in the second case.

Temporal unfolding leading to more fine-granular IUCs can also be applied
to negative polarity occurrences of R formulas in a similar fashion. Application
to opposite polarity occurrences for U and R as well as to negative polarity
occurrences of F and positive polarity occurrences of G subformulas is possible
but does not lead to more fine-granular IUCs.

Splitting Conjunctions from Temporal Unfolding. Our final variant splits the
conjunctions that arise from temporal unfolding. In 4 of the 6 cases where tem-
poral unfolding is possible this allows to distinguish the case where unsatisfi-
ability is due to failure of unfolding in only the first time step that a U, R,
F, or G formula is supposed (not) to hold in versus in the first and/or some
later step. An example using an U formula is 1. (ψUψ′) ∧ (¬ψ ∧ ¬ψ′) versus
2. (ψUψ′) ∧ (¬ψ′ ∧ X(¬ψ ∧ ¬ψ′)).

5.3 Comparison with Separated Normal Form

Separated Normal Form (SNF) [22, 23] is a conjunctive normal form for LTL
originally proposed by Fisher to develop a resolution method for LTL.

The original SNF [22] separates past and future time operators by having a
strict past time operator at the top level of the left-hand side of the implication
in each conjunct and only Boolean disjunction and F operators on the right-hand
side. We therefore restrict the comparison to two later variants [23,17] that allow
propositions (present time formulas) on the left-hand side of the implications.

Compared to [22] the version of SNF in [23] also contains a simpler future
time variant of SNF. [23] further refines our final variant in the last subsection
in two ways. First, it applies temporal unfolding twice to U, weak U, and G
formulas. This allows to distinguish failure of unfolding in the first, second, or
some later step relative to the time when a formula is supposed to hold. Second,
in some cases it has separate conjuncts for the absolute first and for later time
steps. In the example (pU(q ∧ r))∧ ((¬q) ∧ XG¬r) this allows to see that from
the eventuality q ∧ r the first operand is only needed in the absolute first time
step, while the second operand leads to a contradiction in the second and later
time steps. A minor difference is that atomic propositions are not defined using
separate fresh propositions but remain unchanged at their place of occurrence.

[17] uses a less constrained version of [23]: right-hand sides of implications
and bodies of X and F operators may now contain positive Boolean combina-
tions of literals. This makes both above mentioned refinements unnecessary. The
resulting normal form differs from our variant with temporal unfolding in 4 re-
spects: 1. It works on NNF. 2. Positive Boolean combinations are not split into
several conjuncts. 3. Fresh propositions are introduced for U, R, and G formulas
representing truth in the next rather than in the current time step. Because of

Towards a Notion of Unsatisfiable Cores for LTL 137

that, temporal unfolding is performed at the place of occurrence of the respec-
tive U, R, or G formula. 4. As in [23] atomic propositions remain unchanged
at their place of occurrence. The combination of 2 and 4 leads to this variant of
SNF yielding less information in the following example: (F(p ∧ q)) ∧ G¬p. An
IUC resulting from this variant of SNF will contain the conjunct x → F(p ∧ q),
not making it clear that q is irrelevant for unsatisfiability. On the other hand,
unsatisfiability due to failure of temporal unfolding at the first time point only
can in some cases be distinguished from that at the first and/or or later time
points, thus yielding more information; (Gp) ∧ ¬p is an example for that.

6 Unsatisfiable Cores via Bounded Model Checking

By encoding existence of counterexamples of bounded length into a set of CNF
clauses SAT-based Bounded Model Checking (BMC) (e.g., [6]) reduces model
checking of LTL to SAT. Details on BMC can be found, e.g., in [7].

To prove correctness of properties (rather than existence of a counterexample)
BMC needs to determine when to stop searching for longer counterexamples. The
original works (e.g., [6]) imposed an upper bound derived from the graph struc-
ture of the model. A more refined method (e.g., [42]) takes a two-step approach:
For the current bound on the length of counterexamples k, check whether there
exists a path that 1. could possibly be extended to form a counterexample to the
property and 2. contains no redundant part. If either of the two checks fails and
no counterexample of length ≤ k has been found, then declare correctness of the
property. As there are only finitely many states, step 2 guarantees termination.
For other methods to prove properties in BMC see, e.g., [7].

By assuming a universal model BMC provides a way to determine LTL sat-
isfiability (used, e.g., in [16]) and so is a natural choice to investigate notions of
UCs. Note that in BMC, as soon as properties are not just simple invariants of
the form Gp, already the first part of the above check for termination might fail.
That observation yields an incomplete method to determine LTL satisfiability.
We first sketch the method and then the UCs that can be extracted.

The method essentially employs dCNF with splitting conjunctions from tem-
poral unfolding to generate a SAT problem in CNF as follows: 1. Pick some
bound k. 2. To obtain the set of variables instantiate the members of X for each
time step 0 ≤ i ≤ k + 1 and of AP for 0 ≤ i ≤ k. We indicate the time step
by using superscripts. 3. For the set of CNF clauses instantiate each conjunct in
dCNF aux not containing a F or G operator once for each 0 ≤ i ≤ k. Add the
time 0 instance of the root of the dCNF, x0

φ, to the set of clauses. 4. Replace
each occurrence of Xxi

ψ with xi+1
ψ . Note that at this point all temporal opera-

tors have been removed and we indeed have a CNF. Now if for any such k the
resulting CNF is unsatisfiable, then so is the original LTL formula. The resulting
method is very similar to BMC in [29] when checking for termination by using
the completeness formula only rather than completeness and simplepath formula
together (only presence of the latter can ensure termination).

138 V. Schuppan

x0
φ

✔ (x0
φ → x0

p∨XXp) (x1
φ → x1

p∨XXp) (x2
φ → x2

p∨XXp)

✔ (x0
p∨XXp → x0

p,0 ∨ x0
XXp) (x1

p∨XXp → x1
p,0 ∨ x1

XXp) (x2
p∨XXp → x2

p,0 ∨ x2
XXp)

✔ (x0
p,0 → p) (x1

p,0 → p) (x2
p,0 → p)

✔ (x0
XXp → x1

Xp) (x1
XXp → x2

Xp) (x2
XXp → x3

Xp)

✔ (x0
Xp → x1

p,1) (x1
Xp → x2

p,1) (x2
Xp → x3

p,1)

✔ (x0
p,1 → p) (x1

p,1 → p) (x2
p,1 → p)

✔ (x0
φ → x0

G(¬p∧q)) (x1
φ → x1

G(¬p∧q)) (x2
φ → x2

G(¬p∧q))

✔ (x0
G(¬p∧q) → x1

G(¬p∧q)) (x1
G(¬p∧q) → x2

G(¬p∧q)) (x2
G(¬p∧q) → x3

G(¬p∧q))

✔ (x0
G(¬p∧q) → x0¬p∧q) (x1

G(¬p∧q) → x1¬p∧q) (x2
G(¬p∧q) → x2¬p∧q)

✔ (x0¬p∧q → x0¬p) (x1¬p∧q → x1¬p) (x2¬p∧q → x2¬p)

✔ (x0¬p → ¬x0
p,2) (x1¬p → ¬x1

p,2) (x2¬p → ¬x2
p,2)

✔ (¬x0
p,2 → ¬p) (¬x1

p,2 → ¬p) (¬x2
p,2 → ¬p)

(x0¬p∧q → x0
q) (x1¬p∧q → x1

q) (x2¬p∧q → x2
q)

(x0
q → q) (x1

q → q) (x2
q → q)

dCNF core time step 0 time step 1 time step 2

Fig. 3. Example of an UC via BMC. The input formula is φ = (p ∨XXp)∧G(¬p ∧ q).
Clauses that form the SAT IUC are marked blue boxed. A tick in the leftmost column
indicates that the corresponding dCNF clause is part of a UC via dCNF.

Assume that for an LTL formula φ the above method yields an unsatisfiable
CNF for some k and that we are provided with an IUC of that CNF as a subset
of clauses. It is easy to see that we can extract an UC of the granularity of a
dCNF with splitting conjunctions from temporal unfolding by considering any
dCNF conjunct to be part of the UC iff for any time step the corresponding CNF
clause is present in the CNF IUC. Note that the CNF IUC provides potentially
finer granularity in the temporal dimension: the CNF IUC contains information
about the relevance of parts of the LTL formula to unsatisfiability at each time
step. Contrary to the notions of UC in the previous section (see [41]) we currently
have no translation back to LTL for this level of detail. Once such translation
has been obtained it makes sense to define removal of clauses from the CNF as
the operation to derive a core thus giving the notions of core, unsatisfiable core,
proper unsatisfiable core, and irreducible unsatisfiable core via BMC.

As an example consider φ = (p ∨XXp)∧G(¬p ∧ q). The translation into a set
of CNF clauses and the CNF IUC are depicted in Fig. 3. Extracting an UC at
the granularity of a dCNF with splitting conjunctions from temporal unfolding
results in a dCNF equivalent to (p ∨ XXp) ∧ G(¬p ∧ 1). The CNF IUC shows
that the occurrence of ¬p is relevant only at time steps 0 and 2.

7 Unsatisfiable Cores via Tableaux

Tableaux are widely used for temporal logics. Most common methods in BDD-
based symbolic model checking (e.g., [19]) and in explicit state model checking
(e.g., [25]) of LTL rely on tableaux. Therefore tableaux seem to be a natural
candidate for investigating notions of UCs.

Towards a Notion of Unsatisfiable Cores for LTL 139

In this section we only consider formulas in NNF. We assume that the reader
is familiar with standard tableaux constructions for LTL such as [25]. We differ
from, e.g., [25] in that we retain and continue to expand closed nodes during
tableau construction and only take them into account when searching for satisfied
paths in the tableau. We fix some terminology. A node in a tableau is called
1. initial if it is a potential start, 2. closed if it contains a pair of contradicting
literals or 0, 3. terminal if it contains no obligations left for the next time step,
and 4. accepting (for some U or F formula), if it either contains both the formula
and its eventuality or none of the two. A path in the tableau is initialized if it
starts in an initial node and fair if it contains infinitely many occurrences of
accepting nodes for each U and F formula. A path is satisfied if 1. it is initialized,
2. it contains no closed node, and 3. it is finite and ends in a terminal node or
infinite and fair. A tableau is satisfied iff it contains a satisfied path.

Intuitively, closed nodes are what prevents satisfied paths. For an initialized
path to a terminal node it is obvious that a closed node on that path is a
reason for that path not being satisfied. A similar statement holds for initialized
infinite fair paths that contain closed nodes. That leaves initialized infinite unfair
paths that do not contain a closed node. Still, also in that case closed nodes
hold information w.r.t. non-satisfaction: an unfair path contains at least one
occurrence of an U or F formula whose eventuality is not fulfilled. The tableau
construction ensures that for each node containing such an occurrence there will
also be a branch that attempts to make the eventuality 1. That implies that
the reason for failure of fulfilling eventualities is not to be found on the infinite
unfair path, but on its unsuccessful branches. Hence, we focus on closed nodes
to extract sufficient information why a formula in unsatisfiable.

The procedure to extract an UC now works as follows. It first chooses a subset
of closed nodes that act as a barrier in that at least one of these nodes is in the
way of each potentially satisfied path in the tableau. Next it chooses a set of
occurrences of contradicting literals and 0 s.t. this set represents a contradiction
for each of the selected closed tableau nodes. As these occurrences of subformulas
make up the reason for non-satisfaction, they and, transitively, their fathers in
the parse tree of the formula are marked and retained while all non-marked
occurrences of subformulas in the parse tree are discarded and dangling edges
are rerouted to fresh nodes representing 1.

As an example consider the tableau in Fig. 4 for φ =
X(((G(p ∧ q ∧ r)) ∧ (F(¬p ∧ ¬q))) ∨ (p ∧ (Xp) ∧ ¬p ∧X(¬p))). Choosing {n1, n3}
as the subset of closed nodes and the occurrences of q, ¬q in n1 and p, ¬p in
n3 leads to X(((G(1 ∧ q ∧ 1)) ∧ (F(1 ∧ ¬q))) ∨ (p ∧ 1 ∧ ¬p ∧ 1)) as UC. More UCs
result from choosing p, ¬p also in n1, or n5 instead of n3.

In the full version [41] we show that the set of UCs that can be extracted in
that way is equivalent to the set of UCs via parse trees. However, we conjecture
that the procedure can be extended to extract UCs that indicate relevance of
subformulas not only at finitely many time steps as in Sect. 6 but at semilinearly
many. Given, e.g., φ = p ∧ (G(p → XXp)) ∧ (F(¬p ∧X¬p)), we would like to see
that some subformulas are only relevant at every second time step.

140 V. Schuppan

n0
X(((G(p ∧ q ∧ r)) ∧ (F(¬p ∧ ¬q))) ∨

(p ∧ (Xp) ∧ ¬p ∧ X(¬p)))

n2

((G(p ∧ q ∧ r)) ∧ (F(¬p ∧ ¬q))) ∨
(p ∧ (Xp) ∧ ¬p ∧ X(¬p))

((G(p ∧ q ∧ r)) ∧ (F(¬p ∧ ¬q)))
G(p ∧ q ∧ r)
F(¬p ∧ ¬q)
p ∧ q ∧ r
p, q, r
XG(p ∧ q ∧ r)
XF(¬p ∧ ¬q)

n1

((G(p ∧ q ∧ r)) ∧ (F(¬p ∧ ¬q))) ∨
(p ∧ (Xp) ∧ ¬p ∧ X(¬p))

((G(p ∧ q ∧ r)) ∧ (F(¬p ∧ ¬q)))
G(p ∧ q ∧ r)
F(¬p ∧ ¬q)
p ∧ q ∧ r
p, q, r
XG(p ∧ q ∧ r)
¬p, ¬q

n3
((G(p ∧ q ∧ r)) ∧ (F(¬p ∧ ¬q))) ∨
(p ∧ (Xp) ∧ ¬p ∧ X(¬p))

p ∧ (Xp) ∧ ¬p ∧ X(¬p)
p, Xp, ¬p, X¬p

n4
G(p ∧ q ∧ r)
p ∧ q ∧ r
p, q, r
XG(p ∧ q ∧ r)

n5
p
¬p

Fig. 4. Example of an unsatisfied tableau for φ =
X(((G(p ∧ q ∧ r)) ∧ (F(¬p ∧ ¬q))) ∨ (p ∧ (Xp) ∧ ¬p ∧X(¬p))). The initial node
n0 has an incoming arrow, closed nodes n1, n3, n5 are filled red, accepting nodes (all
but n2) have thick double lines, and the terminal node n5 has no outgoing arrow.

8 Related Work

Notions of Core. [16] proposes a notion of UCs of LTL formulas. The context
in that work is a method for satisfiability checking of LTL formulas by using
Boolean abstraction (e.g., [30]). As a consequence, an UC in [16] is a subset of
the set of top-level temporal formulas, potentially leading to very coarse cores.

SAT uses CNF as a standard format and UCs are typically subsets of clauses
(e.g., [9]). Similarly, in constraint programming, an UC is a subset of the set of
input constraints (e.g., [4]); [27] suggests a more fine-grained notion based on
unsatisfiable tuples. Finally, also in SMT UCs are subsets of formulas (e.g., [14]).

For realizability [38] of a set of LTL formulas, partitioned into a set of as-
sumptions and a set of guarantees, [15] suggests to first reduce the number of
guarantees and then, additionally, to reduce the set of assumptions.

Extracting Cores from Proofs. In [34] a successful run of a model checker, which
essentially corresponds to an unsatisfied tableau, is used to extract a temporal
proof from the tableau [25] as a certificate that the model fulfills the specifica-
tion. [32] generates certificates for successful model checking runs of μ-calculus
specifications. [40] extracts UCs from unsatisfied tableaux to aid debugging in
the context of description logics. Extracting a core from a resolution proof is
an established technique in propositional SAT (e.g., [26,48]). In SMT UCs from

Towards a Notion of Unsatisfiable Cores for LTL 141

SAT can be used to extract UCs for SMT [14]. Extraction from proofs is also
used in vacuity checking [33,44].

Applications of Cores. Using UCs to help a user debugging by pointing out a
subset of the input as part of some problem is stated explicitly as motivation in
many works on cores, e.g., [10,4, 9,48].

[43] presents a method for debugging declarative specifications by translating
an abstract syntax tree (AST) of an inconsistent specification to CNF, extract-
ing an UC from the CNF, and mapping the result back to AST highlighting only
the relevant parts. That work has some similarities with our discussion; however,
there are also a number of differences. 1. The exposition in [43] is for first order
relational logic and generalizes to languages that are reducible to SAT, while our
logic is LTL. 2. The motivation and focus of [43] is on the method of core extrac-
tion, and it is accompanied by some experimental results. The notion of a core
as parts of the AST is taken as a given. On the other hand, our focus is on in-
vestigating different notions of cores and on comparing the resulting information
that can be gained. 3. [43] does not consider tableaux. [45] suggests improved al-
gorithms for core extraction compared to [43]; the improved algorithms produce
IUCs at a reasonable cost by using mechanisms similar to [48,21]. The scope of
the method is extended to specification languages with a (restricted) translation
to logics with resolution engine.

Examples of using UCs for debugging in description logics and ontologies
are [40, 46]. For temporal logic, the methodology proposed in [35] suggests to
return a subset of the specification in case of a problem. For [15] see above.

The application of UCs as filters in an iterative search is mentioned in Sect. 1.

Vacuity Checking. Vacuity checking (e.g., [5,31]) is a technique in model checking
to determine whether a model satisfies the specification in an undesired way.
Vacuity asks whether there exists a strengthening of a specification s.t. the model
still passes that strengthened specification. The original notion of vacuity from [5,
31] replaces occurrences of subformulas in the specification with 0 or 1 depending
on polarity and is, therefore, related to the notion of UC in Sect. 4.

The comparison of notions of vacuity with UCs is as follows: 1. Vacuity is
normally defined with respect to a specific model. [13] proposes vacuity with-
out design as a preliminary check of vacuity: a formula is vacuous without de-
sign if it fulfills a variant of itself to which a strengthening operation has been
applied. [24] extends that into a framework for inherent vacuity (see below).
2. Vacuity is geared to answer whether there exists at least one strengthening
of the specification s.t. the model still satisfies the specification. For that it is
sufficient to demonstrate that with a single strengthening step. The question of
whether and to which extent the specification should be strengthened is then
usually left to the designer. In core extraction one would ideally like to obtain
IUCs and do so in a fully automated fashion. [28, 13] discuss mutual vacuity,
i.e., vacuity w.r.t. sets of subformulas. [11] proceeds to obtain even stronger
passing formulas combining several strengthened versions of the original for-
mula. 3. Vacuity typically focuses on strengthening a formula while methods to

142 V. Schuppan

obtain UCs use weakening. The reason is that in the case of a failing specification
a counterexample is considered to be more helpful. Still, vacuity is defined in,
e.g., [5, 31,24] w.r.t. both passing and failing formulas.

[24] proposes a framework to identify inherent vacuity, i.e., specifications
that are vacuous in any model. The framework has 4 parameters: 1. vacuity
type: occurrences of subformulas, sharing of subformulas, etc., 2. equivalence
type: closed or open systems, 3. tightening type: equivalence or preservance of
satisfiability/realizability, and 4. polarity type: strengthening or weakening. Our
notion of UCs via parse tree is very closely related to the following instance of
that framework. Let the vacuity type be that of replacing occurrences of subfor-
mulas with 1 or 0 depending on polarity [5], systems be closed, tightening type
be equivalence or preservance of unsatisfiability, and polarity type be weakening.
Then it is straightforward to show that, given a proper UC φ′ via parse tree of
some unsatisfiable formula φ, 1. φ is inherently vacuous, and 2. φ′ is an IUC iff
it is not inherently vacuous. [24] focuses on satisfiable/realizable instances and
doesn’t make a connection to the notion of unsatisfiable or unrealizable cores.

[44] exploits resolution proofs from BMC runs in order to extract information
on vacuity including information on relevance of subformulas at specific time
steps in a fashion related to our extraction of UCs in Sect. 6. A difference is
that the presentation in [44] only explains how to obtain the notion of k-step
vacuity from some BMC run with bound k but leaves it unclear how to make
the transition from the notion of k-step vacuity to the notion of vacuity and,
similarly, how to aggregate results on the relevance of subformulas at specific
time steps over results for different ks; our method of UC extraction can return
an UC as soon as the generated CNF is unsatisfiable for some k.

[39] suggests to generalize the operations to strengthen a specification by
considering a form of interpolants between a model and its specification. While
this might lead to another possibility to derive a core from a formula, an arbitrary
interpolant might not allow the user to easily see what is happening. Hence, [39]
needs to be concretized to meet that criterion.

Other notions and techniques might be suitable to be carried over from vacuity
detection to UCs for LTL and vice versa. E.g., [2] extends vacuity to consider
sharing of subformulas. We are not aware of any work in vacuity that takes the
perspective of searching an UC of an LTL formula or considers dCNFs as we do.

9 Conclusion

We suggested notions of unsatisfiable cores for LTL formulas that provide strictly
more fine-grained information than the (few) previous notions. While basic no-
tions turned out to be equivalent, some variants were shown to provide or po-
tentially provide more information, in particular, in the temporal dimension.

We stated initially that we see methods of UC extraction as a means to sug-
gest notions of UCs. Indeed, it turned out that each method for core extraction
suggested a different or a more fine-grained notion of UC that should be taken

Towards a Notion of Unsatisfiable Cores for LTL 143

into account. It seems to be likely, though, that some of the more fine-grained
notions can be obtained also with other UC extraction methods.

Directions for future work include defining and obtaining the more fine-grained
notions of UC suggested at the end of Sect.s 6 and 7, investigating the notion of
UC that results from temporal resolution proofs, taking sharing of subformulas
into account, and extending the notions to realizability. Equally important are
efficient implementations. Finally, while in theory two algorithms to obtain UCs
might be able to come up with the same set of UCs, practical implementations
could yield different UCs due to how non-determinism is resolved; hence, an
empirical evaluation of the usefulness of the resulting UCs is needed.

Acknowledgements. The author thanks the research groups at FBK and Ver-
imag for discussions and comments, esp., A. Cimatti, M. Roveri, and S. Tonetta.
Part of this work was carried out while the author was at Verimag/CNRS. He
thanks O. Maler for providing the freedom to pursue this work. Finally, the au-
thor thanks the Provincia Autonoma di Trento for support (project EMTELOS).

References

1. Prosyd, http://www.prosyd.org/
2. Armoni, R., Fix, L., Flaisher, A., Grumberg, O., Piterman, N., Tiemeyer, A.,

Vardi, M.: Enhanced vacuity detection in linear temporal logic. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 368–380. Springer, Heidelberg
(2003)

3. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
4. Bakker, R., Dikker, F., Tempelman, F.: Diagnosing and solving over-determined

constraint satisfaction problems. In: IJCAI (1993)
5. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in

temporal model checking. Formal Methods in System Design 18(2) (2001)
6. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.

In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, p. 193. Springer, Hei-
delberg (1999)

7. Biere, A., Heljanko, K., Junttila, T., Latvala, T., Schuppan, V.: Linear encodings
of bounded LTL model checking. Logical Methods in Computer Science 2(5) (2006)

8. Bloem, R., Cavada, R., Pill, I., Roveri, M., Tchaltsev, A.: RAT: A tool for the
formal analysis of requirements. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 263–267. Springer, Heidelberg (2007)

9. Bruni, R., Sassano, A.: Restoring satisfiability or maintaining unsatisfiability by
finding small unsatisfiable subformulae. In: SAT (2001)

10. Chinneck, J., Dravnieks, E.: Locating minimal infeasible constraint sets in linear
programs. ORSA Journal on Computing 3(2) (1991)

11. Chockler, H., Gurfinkel, A., Strichman, O.: Beyond vacuity: Towards the strongest
passing formula. In: FMCAD (2008)

12. Chockler, H., Kupferman, O., Vardi, M.: Coverage metrics for temporal logic model
checking. Formal Methods in System Design 28(3) (2006)

13. Chockler, H., Strichman, O.: Easier and more informative vacuity checks. In:
MEMOCODE (2007)

http://www.prosyd.org/

144 V. Schuppan

14. Cimatti, A., Griggio, A., Sebastiani, R.: A simple and flexible way of computing
small unsatisfiable cores in SAT modulo theories. In: Marques-Silva, J., Sakallah,
K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 334–339. Springer, Heidelberg (2007)

15. Cimatti, A., Roveri, M., Schuppan, V., Tchaltsev, A.: Diagnostic information for
realizability. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS,
vol. 4905, pp. 52–67. Springer, Heidelberg (2008)

16. Cimatti, A., Roveri, M., Schuppan, V., Tonetta, S.: Boolean abstraction for tem-
poral logic satisfiability. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 532–546. Springer, Heidelberg (2007)

17. Cimatti, A., Roveri, M., Sheridan, D.: Bounded verification of past LTL. In: Hu,
A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 245–259. Springer,
Heidelberg (2004)

18. Cimatti, A., Roveri, M., Susi, A., Tonetta, S.: From informal requirements to
property-driven formal validation. In: Cofer, D., Fantechi, A. (eds.) FMICS 2008.
LNCS, vol. 5596, pp. 166–181. Springer, Heidelberg (2009)

19. Clarke, E., Grumberg, O., Hamaguchi, K.: Another look at LTL model checking.
Formal Methods in System Design 10(1) (1997)

20. Clarke, E., Talupur, M., Veith, H., Wang, D.: SAT based predicate abstraction for
hardware verification. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS,
vol. 2919, pp. 78–92. Springer, Heidelberg (2004)

21. Dershowitz, N., Hanna, Z., Nadel, A.: A scalable algorithm for minimal unsatisfi-
able core extraction. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121,
pp. 36–41. Springer, Heidelberg (2006)

22. Fisher, M.: A resolution method for temporal logic. In: IJCAI (1991)
23. Fisher, M., Dixon, C., Peim, M.: Clausal temporal resolution. ACM Trans. Comput.

Log. 2(1) (2001)
24. Fisman, D., Kupferman, O., Sheinvald-Faragy, S., Vardi, M.: A framework for

inherent vacuity. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS, vol. 5394, pp.
7–22. Springer, Heidelberg (2009)

25. Gerth, R., Peled, D., Vardi, M., Wolper, P.: Simple on-the-fly automatic verification
of linear temporal logic. In: PSTV (1995)

26. Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formu-
las. In: DATE (2003)

27. Grégoire, É., Mazure, B., Piette, C.: MUST: Provide a finer-grained explanation
of unsatisfiability. In: Bessiere, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 317–331.
Springer, Heidelberg (2007)

28. Gurfinkel, A., Chechik, M.: How vacuous is vacuous? In: Jensen, K., Podelski, A.
(eds.) TACAS 2004. LNCS, vol. 2988, pp. 451–466. Springer, Heidelberg (2004)

29. Heljanko, K., Junttila, T., Latvala, T.: Incremental and complete bounded model
checking for full PLTL. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS,
vol. 3576, pp. 98–111. Springer, Heidelberg (2005)

30. Kroening, D., Strichman, O.: Decision Procedures. Springer, Heidelberg (2008)
31. Kupferman, O., Vardi, M.: Vacuity detection in temporal model checking.

STTT 4(2) (2003)
32. Namjoshi, K.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A.

(eds.) CAV 2001. LNCS, vol. 2102, p. 2. Springer, Heidelberg (2001)
33. Namjoshi, K.: An efficiently checkable, proof-based formulation of vacuity in model

checking. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 57–69.
Springer, Heidelberg (2004)

Towards a Notion of Unsatisfiable Cores for LTL 145

34. Peled, D., Pnueli, A., Zuck, L.: From falsification to verification. In: Hariharan, R.,
Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, p. 292. Springer,
Heidelberg (2001)

35. Pill, I., Semprini, S., Cavada, R., Roveri, M., Bloem, R., Cimatti, A.: Formal
analysis of hardware requirements. In: DAC (2006)

36. Plaisted, D., Greenbaum, S.: A structure-preserving clause form translation. J.
Symb. Comput. 2(3) (1986)

37. Pnueli, A.: The temporal logic of programs. In: FOCS (1977)
38. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. POPL (1989)
39. Samer, M., Veith, H.: On the notion of vacuous truth. In: Dershowitz, N., Voronkov,

A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 2–14. Springer, Heidelberg
(2007)

40. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: IJCAI. Morgan Kaufmann, San Francisco (2003)

41. Schuppan, V.: Towards a notion of unsatisfiable cores for LTL. Technical Report
200901000, Fondazione Bruno Kessler (2009)

42. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction
and a SAT-solver. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 108–125. Springer, Heidelberg (2000)

43. Shlyakhter, I., Seater, R., Jackson, D., Sridharan, M., Taghdiri, M.: Debugging
overconstrained declarative models using unsatisfiable cores. In: ASE (2003)

44. Simmonds, J., Davies, J., Gurfinkel, A., Chechik, M.: Exploiting resolution proofs
to speed up LTL vacuity detection for BMC. In: FMCAD (2007)

45. Torlak, E., Chang, F., Jackson, D.: Finding minimal unsatisfiable cores of declar-
ative specifications. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS,
vol. 5014, pp. 326–341. Springer, Heidelberg (2008)

46. Wang, H., Horridge, M., Rector, A., Drummond, N., Seidenberg, J.: Debugging
OWL-DL ontologies: A heuristic approach. In: Gil, Y., Motta, E., Benjamins, V.R.,
Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 745–757. Springer, Heidelberg
(2005)

47. Wolfman, S., Weld, D.: The LPSAT engine & its application to resource planning.
In: IJCAI. Morgan Kaufmann, San Francisco (1999)

48. Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable
Boolean formula. Presented at SAT (2003)

Rule Formats for Determinism and
Idempotence�

Luca Aceto1, Arnar Birgisson1, Anna Ingolfsdottir1,
MohammadReza Mousavi2, and Michel A. Reniers2

1 School of Computer Science, Reykjavik University,
Kringlan 1, IS-103 Reykjavik, Iceland

2 Department of Computer Science, Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

Abstract. Determinism is a semantic property of (a fragment of) a
language that specifies that a program cannot evolve operationally in
several different ways. Idempotence is a property of binary composition
operators requiring that the composition of two identical specifications
or programs will result in a piece of specification or program that is
equivalent to the original components. In this paper, we propose two
(related) meta-theorems for guaranteeing determinism and idempotence
of binary operators. These meta-theorems are formulated in terms of syn-
tactic templates for operational semantics, called rule formats. We show
the applicability of our formats by applying them to various operational
semantics from the literature.

1 Introduction

Structural Operational Semantics (SOS) [18] is a popular method for assigning a
rigorous meaning to specification and programming languages. The meta-theory
of SOS provides powerful tools for proving semantic properties for such lan-
guages without investing too much time on the actual proofs; it offers syntactic
templates for SOS rules, called rule formats, which guarantee semantic proper-
ties once the SOS rules conform to the templates (see, e.g., the references [1,16]
for surveys on the meta-theory of SOS). There are various rule formats in the
literature for many different semantic properties, ranging from basic properties
such as commutativity [15] and associativity [6] of operators, and congruence of
behavioral equivalences (see, e.g., [22]) to more technical and involved ones such
as non-interference [19] and (semi-)stochasticity [12]. In this paper, we propose
rule formats for two (related) properties, namely, determinism and idempotence.

Determinism is a semantic property of (a fragment of) a language that speci-
fies that a program cannot evolve operationally in several different ways. It holds
� The work of Aceto, Birgisson and Ingolfsdottir has been partially supported by

the projects “The Equational Logic of Parallel Processes” (nr. 060013021), and
“New Developments in Operational Semantics” (nr. 080039021) of the Icelandic
Research Fund. Birgisson has been further supported by a research-student grant
nr. 080890008 of the Icelandic Research Fund.

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 146–161, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Rule Formats for Determinism and Idempotence 147

for sub-languages of many process calculi and programming languages, and it is
also a crucial property for many formalisms for the description of timed systems,
where time transitions are required to be deterministic, because the passage of
time should not resolve any choice.

Idempotence is a property of binary composition operators requiring that the
composition of two identical specifications or programs will result in a piece of
specification or program that is equivalent to the original components. Idempo-
tence of a binary operator f is concisely expressed by the following algebraic
equation.

f(x, x) = x

Determinism and idempotence may seem unrelated at first sight. However, it
turns out that in order to obtain a powerful rule format for idempotence, we need
to have the determinism of certain transition relations in place. Therefore, having
a syntactic condition for determinism, apart from its intrinsic value, results in a
powerful, yet syntactic framework for idempotence.

To our knowledge, our rule format for idempotence has no precursor in the
literature. As for determinism, in [8], a rule format for bounded nondeterminism
is presented but the case for determinism is not studied. Also, in [20] a rule
format is proposed to guarantee several time-related properties, including time
determinism, in the settings of Ordered SOS. In case of time determinism, their
format corresponds to a subset of our rule format when translated to the setting
of ordinary SOS, by means of the recipe given in [13].

We made a survey of existing deterministic process calculi and of idempotent
binary operators in the literature and we have applied our formats to them. Our
formats could cover all practical cases that we have discovered so far, which is
an indication of its expressiveness and relevance.

The rest of this paper is organized as follows. In Section 2 we recall some
basic definitions from the meta-theory of SOS. In Section 3, we present our
rule format for determinism and prove that it does guarantee determinism for
certain transition relations. Section 4 introduces a rule format for idempotence
and proves it correct. In Sections 3 and 4, we also provide several examples to
motivate the constraints of our rule formats and to demonstrate their practical
applications. Finally, Section 5 concludes the paper and presents some directions
for future research.

2 Preliminaries

In this section we present, for sake of completeness, some standard definitions
from the meta-theory of SOS that will be used in the remainder of the paper.

Definition 1 (Signature and Terms). We let V represent an infinite set of
variables and use x, x′, xi, y, y

′, yi, . . . to range over elements of V . A signature
Σ is a set of function symbols, each with a fixed arity. We call these symbols
operators and usually represent them by f, g, An operator with arity zero is
called a constant. We define the set T(Σ) of terms over Σ as the smallest set
satisfying the following constraints.

148 L. Aceto et al.

• A variable x ∈ V is a term.
• If f ∈ Σ has arity n and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.

We use t, t′, ti, . . . to range over terms. We write t1 ≡ t2 if t1 and t2 are syntac-
tically equal. The function vars : T(Σ) → 2V gives the set of variables appearing
in a term. The set C(Σ) ⊆ T(Σ) is the set of closed terms, i.e., terms that con-
tain no variables. We use p, p′, pi, . . . to range over closed terms. A substitution
σ is a function of type V → T(Σ). We extend the domain of substitutions to
terms homomorphically. If the range of a substitution lies in C(Σ), we say that
it is a closing substitution.

Definition 2 (Transition System Specifications (TSS), Formulae and
Transition Relations). A transition system specification is a triplet (Σ,L,D)
where
• Σ is a signature.
• L is a set of labels. If l ∈ L, and t, t′ ∈ T(Σ) we say that t l→ t′ is a positive

formula and t
l� is a negative formula. A formula, typically denoted by φ,

ψ, φ′, φi, . . . is either a negative formula or a positive one.
• D is a set of deduction rules, i.e., tuples of the form (Φ, φ) where Φ is a set

of formulae and φ is a positive formula. We call the formulae contained in
Φ the premises of the rule and φ the conclusion.

We write vars(r) to denote the set of variables appearing in a deduction rule
(r). We say that a formula is closed if all of its terms are closed. Substitutions
are also extended to formulae and sets of formulae in the natural way. A set of
positive closed formulae is called a transition relation.

We often refer to a formula t
l→ t′ as a transition with t being its source, l its

label, and t′ its target. A deduction rule (Φ, φ) is typically written as Φ
φ . For

a deduction rule r, we write conc(r) to denote its conclusion and prem(r) to
denote its premises. We call a deduction rule f -defining when the outermost
function symbol appearing in the source of its conclusion is f .

The meaning of a TSS is defined by the following notion of least three-valued
stable model. To define this notion, we need two auxiliary definitions, namely
provable transition rules and contradiction, which are given below.

Definition 3 (Provable Transition Rules). A deduction rule is called a tran-
sition rule when it is of the form N

φ with N a set of negative formulae. A TSS T
proves N

φ , denoted by T � N
φ , when there is a well-founded upwardly branching

tree with formulae as nodes and of which

– the root is labelled by φ;
– if a node is labelled by ψ and the nodes above it form the set K then:

• ψ is a negative formula and ψ ∈ N , or
• ψ is a positive formula and K

ψ is an instance of a deduction rule in T .

Definition 4 (Contradiction and Contingency). Formula t
l→ t′ is said to

contradict t l
� , and vice versa. For two sets Φ and Ψ of formulae, Φ contradicts

Rule Formats for Determinism and Idempotence 149

Ψ , denoted by Φ � Ψ , when there is a φ ∈ Φ that contradicts a ψ ∈ Ψ . Φ is
contingent w.r.t. Ψ , denoted by Φ � Ψ , when Φ does not contradict Ψ .

It immediately follows from the above definition that contradiction and con-
tingency are symmetric relations on (sets of) formulae. We now have all the
necessary ingredients to define the semantics of TSSs in terms of three-valued
stable models.

Definition 5 (The Least Three-Valued Stable Model). A pair (C,U) of
sets of positive closed transition formulae is called a three-valued stable model
for a TSS T when

– for all φ ∈ C, T � N
φ for a set N such that C ∪ U � N , and

– for all φ ∈ U , T � N
φ for a set N such that C � N .

C stands for Certainly and U for Unknown; the third value is determined by
the formulae not in C ∪U . The least three-valued stable model is a three-valued
stable model which is the least with respect to the ordering on pairs of sets of
formulae defined as (C,U) ≤ (C′, U ′) iff C ⊆ C′ and U ′ ⊆ U . When for the
least three-valued stable model it holds that U = ∅, we say that T is complete.

Complete TSSs univocally define a transition relation, i.e., the C component of
their least three-valued stable model. Completeness is central to almost all meta-
results in the SOS meta-theory and, as it turns out, it also plays an essential
role in our meta-results concerning determinism and idempotence. All practi-
cal instances of TSSs are complete and there are syntactic sufficient conditions
guaranteeing completeness, see for example [9].

3 Determinism

Definition 6 (Determinism). A transition relation T is called deterministic
for label l, when if p l→ p′ ∈ T and p

l→ p′′ ∈ T , then p′ ≡ p′′.

Before we define a format for determinism, we need two auxiliary definitions.
The first one is the definition of source dependent variables, which we borrow
from [14] with minor additions.

Definition 7 (Source Dependency). For a deduction rule, we define the set
of source dependent variables as the smallest set that contains

1. all variables appearing in the source of the conclusion, and
2. all variables that appear in the target of a premise where all variables in the

source of that premise are source dependent.

For a source dependent variable v, let R be the collection of transition relations
appearing in a set of premises needed to show source dependency through condi-
tion 2. We say that v is source dependent via the relations in R.

150 L. Aceto et al.

Note that for a source dependent variable, the set R is not necessarily unique.
For example, in the rule

y
l1→ y′ x

l2→ z z
l3→ y′

f(x, y) l→ y′

the variable y′ is source dependent both via the set { l1→} as well as { l2→ ,
l3→}.

The second auxiliary definition needed for our determinism format is the
definition of determinism-respecting substitutions.

Definition 8 (Determinism-Respecting Pairs of Substitutions). Given
a set L of labels, a pair of substitutions (σ, σ′) is determinism-respecting w.r.t. a
pair of sets of formulae (Φ,Φ′) and L when for all two positive formulae s l→ s′ ∈
Φ and t l→ t′ ∈ Φ′ such that l ∈ L, σ(s) ≡ σ′(t) only if σ(s′) ≡ σ′(t′).

Definition 9 (Determinism Format). A TSS T is in the determinism format
w.r.t. a set of labels L, when for each l ∈ L the following conditions hold.

1. In each deduction rule Φ

t
l→ t′

, each variable v ∈ vars(t′) is source dependent

via a subset of { l→ | l ∈ L}, and
2. for each pair of distinct deduction rules Φ0

t0
l→ t′0

and Φ1

t1
l→ t′1

and for each

determinism-respecting pair of substitutions (σ, σ′) w.r.t. (Φ0, Φ1) and L such
that σ(t0) ≡ σ′(t1), it holds that either σ(t′0) ≡ σ′(t′1) or σ(Φ0) contradicts
σ′(Φ1).

The first constraint in the definition above ensures that each rule in a TSS in
the determinism format, with some l ∈ L as the label of its conclusion, can be
used to prove at most one outgoing transition for each closed term. The second
requirement guarantees that no two different rules can be used to prove two
distinct l-labelled transitions for any closed term.

Theorem 1. Consider a TSS with (C,U) as its least three-valued stable model
and a subset L of its labels. If the TSS is in the determinism format w.r.t. L,
then C is deterministic for each l ∈ L.

For a TSS in the determinism format with (C,U) as its least three-valued stable
model, U and thus C ∪ U need not be deterministic. The following counter-
example illustrates this phenomenon.

Example 1. Consider the TSS given by the following deduction rules.

a
l→a

a
l→ b

a
l�

a
l→ a

The above-given TSS is in the determinism format since a l→ a and a
l� contra-

dict each other (under any substitution). Its least three-valued stable model is,
however, (∅, {a l→ a, a

l→ b}) and {a l→ a, a
l→ b} is not deterministic.

Rule Formats for Determinism and Idempotence 151

Example 2. The constraints in Definition 9 are not necessary to ensure deter-
minism. For example, consider the TSS with constant a and rule x

a→ y. The
transition relation a→ is obviously deterministic, but the variable y is not source
dependent in the rule x a→ y. However, as the following two examples show, re-
laxing the constraints in Definition 9 may jeopardize determinism.

To see the need for constraint 1, consider the TSS with constant 0 and unary
function symbol f with rule f(x) a→ y. This TSS satisfies constraint 2 in Defini-
tion 9 vacuously, but the transition relation a→ it determines is not deterministic
since, for instance, f(0) a→ p holds for each closed term p. Note that the variable
y is not source dependent in f(x) a→ y.

The need for constraint 2 is exemplified by the classic non-deterministic choice
operator discussed in Example 7. The rules for this operator satisfy constraint 1,
but not constraint 2. The transition relations defined by those rules are non-
deterministic except for trivial TSSs including this operator.

Corollary 1. Consider a complete TSS with L as a subset of its labels. If the
TSS is in the determinism format w.r.t. L, then its defined transition relation is
deterministic for each l ∈ L.

Constraint 2 in Definition 9 may seem difficult to verify, since it requires checks
for all possible (determinism-respecting) substitutions. However, in practical
cases, to be quoted in the remainder of this paper, variable names are cho-
sen in such a way that constraint 2 can be checked syntactically. For example,
consider the following two deduction rules.

x
a→x′

f(x, y) a→x′
y

a� x
b→x′

f(y, x) a→x′

If in both deduction rules f(x, y) (or symmetrically f(y, x)) was used, it could
have been easily seen from the syntax of the rules that the premises of one
deduction rule always (under all pairs of substitutions agreeing on the value of
x) contradict the premises of the other deduction rule and, hence, constraint 2
is trivially satisfied. Based on this observation, we next present a rule format,
whose constraints have a purely syntactic form, and that is sufficiently powerful
to handle all the examples we discuss in Section 3.1. (Note that, for the examples
in Section 3.1, checking the constraints of Definition 9 is not too hard either.)

Definition 10 (Normalized TSSs). A TSS is normalized w.r.t. L if each
deduction rule is f -defining for some function symbol f , and for each label l ∈ L,
each function symbol f and each pair of deduction rules of the form

(r)
Φr

f(−→s) l→ s′
(r′)

Φr′

f(
−→
t) l→ t′

the following constraints are satisfied:

1. the sources of the conclusions coincide, i.e., f(−→s) ≡ f(
−→
t),

152 L. Aceto et al.

2. each variable v ∈ vars(s′) (symmetrically v ∈ vars(t′)) is source dependent
in (r) (respectively in (r′)) via some subset of { l→ | l ∈ L},

3. for each variable v ∈ vars(r)∩ vars(r′) there is a set of formulae in Φr ∩Φr′

proving its source dependency (both in (r) and (r′))) via some subset of { l→ |
l ∈ L}.

The second and third constraint in Definition 11 guarantee that the syntac-
tic equivalence of relevant terms (the target of the conclusion or the premises
negating each other) will lead to syntactically equivalent closed terms under all
determinism-respecting pairs of substitutions.

The reader can check that all the examples quoted from the literature in
Section 3.1 are indeed normalized TSSs.

Definition 11 (Syntactic Determinism Format). A normalized TSS is in
the (syntactic) determinism format w.r.t. L, when for each two deduction rules

Φ0

f(−→s) l→ s′
and Φ1

f(−→s) l→ s′′
, it holds that s′ ≡ s′′ or Φ0 contradicts Φ1.

The following theorem states that for normalized TSSs, Definition 11 implies
Definition 9.

Theorem 2. Each normalized TSS in the syntactic determinism format w.r.t.
L is also in the determinism format w.r.t. L.

For brevity, we omit the proof of Theorem 2. The following statement is thus a
corollary to Theorems 2 and 1.

Corollary 2. Consider a normalized TSS with (C,U) as its least three-valued
stable model and a subset L of its labels. If the TSS is in the (syntactic) de-
terminism format w.r.t. L (according to Definition 11), then C is deterministic
w.r.t. any l ∈ L.

3.1 Examples

In this section, we present some examples of various TSSs from the literature
and apply our (syntactic) determinism format to them. Some of the examples we
discuss below are based on TSSs with predicates. The extension of our formats
with predicates is straightforward and we discuss it in Section 4.3 to follow.

Example 3 (Conjunctive Nondeterministic Processes). Hennessy and Plotkin, in
[10], define a language, called conjunctive nondeterministic processes, for study-
ing logical characterizations of processes. The signature of the language consists
of a constant 0, a unary action prefixing operator a. for each a ∈ A, and a bi-
nary conjunctive nondeterminism operator ∨. The operational semantics of this
language is defined by the following deduction rules.

0 cana a.x cana

x cana

x ∨ y cana

y cana

x ∨ y cana

Rule Formats for Determinism and Idempotence 153

0 aftera 0 a.x aftera x a.x afterb 0
a �= b

x aftera x′ y aftera y′

x ∨ y aftera x′ ∨ y′

The above TSS is in the (syntactic) determinism format with respect to the
transition relation aftera (for each a ∈ A). Hence, we can conclude that the
transition relations aftera are deterministic.

Example 4 (Delayed Choice). The second example we discuss is a subset of the
process algebra BPAδε + DC [4], i.e., Basic Process Algebra with deadlock and
empty process extended with delayed choice. First we restrict attention to the
fragment of this process algebra without non-deterministic choice + and with
action prefix a. instead of general sequential composition ·. This altered pro-
cess algebra has the following deduction rules, where a ranges over the set of
actions A:

ε↓ a.x
a→x

x↓
x∓ y↓

y↓
x∓ y↓

x
a→x′ y

a→ y′

x∓ y
a→x′ ∓ y′

x
a→x′ y

a�

x∓ y
a→x′

x
a� y

a→ y′

x∓ y
a→ y′

In the above specification, predicate p ↓ denotes the possibility of termination
for process p. The intuition behind the delayed choice operator, denoted by

∓ , is that the choice between two components is only resolved when one
performs an action that the other cannot perform. When both components can
perform an action, the delayed choice between them remains unresolved and
the two components synchronize on the common action. This transition system
specification is in the (syntactic) determinism format w.r.t. {a | a ∈ A}.

Addition of non-deterministic choice + or sequential composition · results
in deduction rules that do not satisfy the determinism format. For example,
addition of sequential composition comes with the following deduction rules:

x
a→x′

x · y a→x′ · y
x↓ y

a→ y′

x · y a→ y′

The sets of premises of these rules do not contradict each other. The extended
TSS is indeed non-deterministic since, for example, (ε ∓ (a.ε)) · (a.ε) a→ ε and
(ε∓ (a.ε)) · (a.ε) a→ ε · (a.ε).

Example 5 (Time Transitions I). This example deals with the Algebra of Timed
Processes, ATP, of Nicollin and Sifakis [17]. In the TSS given below, we spec-
ify the time transitions (denoted by label χ) of delayable deadlock δ, non-
deterministic choice ⊕ , unit-delay operator � � and parallel composition
‖ .

δ
χ→ δ

x
χ→x′ y

χ→ y′

x⊕ y
χ→x′ ⊕ y′ �x�(y) χ→ y

x
χ→x′ y

χ→ y′

x ‖ y χ→x′ ‖ y′

154 L. Aceto et al.

These deduction rules all trivially satisfy the determinism format for time tran-
sitions since the sources of conclusions of different deduction rules cannot be
unified. Also the additional operators involving time, namely, the delay oper-
ator � �d , execution delay operator) *d and unbounded start delay operator
� �ω, satisfy the determinism format for time transitions. The deduction rules
are given below, for d ≥ 1:

�x�1(y) χ→ y

x
χ→x′

�x�d+1(y)
χ→�x′�d(y)

x
χ
�

�x�d+1(y)
χ→�x�d(y)

x
χ→x′

�x�ω χ→�x′�ω

x
χ
�

�x�ω χ→�x�ω

x
χ→x′

)x*1(y) χ→ y

x
χ→x′

)x*d+1(y)
χ→)x′*d(y)

Example 6 (Time Transitions II). Most of the timed process algebras that orig-
inate from the Algebra of Communicating Processes (ACP) from [5,3] such as
those reported in [2] have a deterministic time transition relation as well.

In the TSS given below, the time unit delay operator is denoted by σrel ,
nondeterministic choice is denoted by + , and sequential composition is denoted
by · . The deduction rules for the time transition relation for this process algebra
are the following:

σrel(x)
1→x

x
1→x′ y

1→ y′

x+ y
1→x′ + y′

x
1→x′ y

1�

x+ y
1→x′

x
1� y

1→ y′

x+ y
1→ y′

x
1→x′ x �↓

x · y 1→x′ · y
x

1→x′ y
1�

x · y 1→x′ · y
x

1→x′ x↓ y
1→ y′

x · y 1→x′ · y + y′
x

1� x↓ y
1→ y′

x · y 1→ y′

Note that here we have an example of deduction rules, the first two deduction
rules for time transitions of a sequential composition, for which the premises do
not contradict each other. Still these deduction rules satisfy the determinism for-
mat since the targets of the conclusions are identical. In the syntactically richer
framework of [21], where arbitrary first-order logic formulae over transitions are
allowed, those two deduction rules are presented by a single rule with premise
x

1→x′ ∧ (x �↓ ∨ y
1�).

Sometimes such timed process algebras have an operator for specifying an
arbitrary delay, denoted by σ∗

rel , with the following deduction rules.

x
1�

σ∗
rel(x)

1→σ∗
rel(x)

x
1→x′

σ∗
rel(x)

1→x′ + σ∗
rel(x)

The premises of these rules contradict each other and so, the semantics of this
operator also satisfies the constraints of our (syntactic) determinism format.

Rule Formats for Determinism and Idempotence 155

4 Idempotence

Our order of business in this section is to present a rule format that guarantees
the idempotence of certain binary operators. In the definition of our rule format,
we rely implicitly on the work presented in the previous section.

4.1 Format

Definition 12 (Idempotence). A binary operator f ∈ Σ is idempotent w.r.t.
an equivalence ∼ on closed terms if and only if for each p ∈ C(Σ), it holds that
f(p, p) ∼ p.

Idempotence is defined with respect to a notion of behavioral equivalence. There
are various notions of behavioral equivalence defined in the literature, which are,
by and large, weaker than bisimilarity defined below. Thus, to be as general as
possible, we prove our idempotence result for all notions that contain, i.e., are
weaker than, bisimilarity.

Definition 13 (Bisimulation). Let T be a TSS with signature Σ. A relation
R ⊆ C(Σ) × C(Σ) is a bisimulation relation if and only if R is symmetric and
for all p0, p1, p

′
0 ∈ C(Σ) and l ∈ L

(p0 R p1 ∧ T � p0
l→ p′0) ⇒ ∃p′

1∈C(Σ)(T � p1
l→ p′1 ∧ p′0 R p′1).

Two terms p0, p1 ∈ C(Σ) are called bisimilar, denoted by p0 ↔ p1, when there
exists a bisimulation relation R such that p0Rp1.

Definition 14 (The Idempotence Rule Format). Let γ : L × L → L be
a partial function such that γ(l0, l1) ∈ {l0, l1} if it is defined. We define the
following two rule forms.

1l. Choice rules
{xi

l→ t} ∪ Φ
f(x0, x1)

l→ t
, i ∈ {0, 1}

2l0,l1 . Communication rules

{x0
l0→ t0, x1

l1→ t1} ∪ Φ

f(x0, x1)
γ(l0,l1)→ f(t0, t1)

, t0 ≡ t1 or (l0 = l1 and l0→ is deterministic)

In each case, Φ can be an arbitrary, possibly empty set of (positive or negative)
formulae.

In addition, we define the starred version of each form, 1∗l and 2∗l0,l1
. The

starred version of each rule is the same as the unstarred one except that t, t0 and
t1 are restricted to be concrete variables and the set Φ must be empty in each
case.

156 L. Aceto et al.

A TSS is in idempotence format w.r.t. a binary operator f if each f -defining
rule, i.e., a deduction rule with f appearing in the source of the conclusion, is of
the forms 1l or 2l0,l1 , for some l, l0, l1 ∈ L, and for each label l ∈ L there exists
at least one rule of the forms 1∗l or 2∗l,l.

We should note that the starred versions of the forms are special cases of their
unstarred counterparts; for example a rule which has form 1∗l also has form 1l.

Theorem 3. Assume that a TSS is complete and is in the idempotence for-
mat with respect to a binary operator f . Then, f is idempotent w.r.t. to any
equivalence ∼ such that ↔ ⊆ ∼.

4.2 Relaxing the Restrictions

In this section we consider the constraints of the idempotence rule format and
show that they cannot be dropped without jeopardizing the meta-theorem.

First of all we note that, in rule form 1l, it is necessary that the label of the
premise matches the label of the conclusion. If it does not, in general, we cannot
prove that f(p, p) simulates p or vice versa. This requirement can be stated more
generally for both rule forms in Definition 14; the label of the conclusion must
be among the labels of the premises. The requirement that γ(l, l′) ∈ {l, l′} exists
to ensure this constraint for form 2l,l′ . A simple synchronization rule provides a
counter-example that shows why this restriction is needed. Consider the following
TSS with constants 0, τ , a and ā and two binary operators + and ‖:

α
α→ 0

x
α→x′

x+ y
α→x′

y
α→ y′

x+ y
α→ y′

x
a→x′ y

ā→ y′

x ‖ y τ→x′ ‖ y′

where α is τ , a or ā. Here it is easy to see that although (a+ ā) ‖ (a+ ā) has an
outgoing τ -transition, a+ ā does not afford such a transition.

The condition that for each l at least one rule of the forms 1∗l or 2∗l,l must exist
comprises a few constraints on the rule format. First of all, it says there must
be at least one f -defining rule. If not, it is easy to see that there could exist a
process p where f(p, p) deadlocks (since there are no f -defining rules) but p does
not. It also states that there must be at least one rule in the starred form, where
the targets are restricted to variables. To motivate these constraints, consider
the following TSS.

a
a→ 0

x
a→ a

f(x, y) a→a

The processes a and f(a, a) are not bisimilar as the former can do an a-transition
but the latter is stuck. The starred forms also require that Φ is empty, i.e. there is
no testing. This is necessary in the proof of Theorem 3 because in the presence of
extra premises, we cannot in general instantiate such a rule to show that f(p, p)
simulates p. Finally, the condition requires that if we rely on a rule of the form
2∗l,l′ and t0 ≡/ t1, then the labels l and l′ in the premises of the rule must coincide.

Rule Formats for Determinism and Idempotence 157

To see why, consider a TSS containing a left synchronize operator �, one that
synchronizes a step from each operand but uses the label of the left one. Here
we let α ∈ {a, ā}.

α
α→ 0

x
α→x′

x+ y
α→x′

y
α→ y′

x+ y
α→ y′

x
a→x′ y

ā→ y′

x� y a→x′� y′
In this TSS the processes (a+ ā) and (a+ ā)� (a+ ā) are not bisimilar since the
latter does not afford an ā-transition whereas the former does.

For rules of form 2l,l′ we require that either t0 ≡ t1, or that the mentioned
labels are the same and the associated transition relation is deterministic. This
requirement is necessary in the proof of Theorem 3 to ensure that the target
of the conclusion fits our definition of $f , i.e. the operator is applied to two
identical terms. Consider the following TSS where α ∈ {a, b}.

a
a→ a a

a→ b b
b→ b

x
α→x′ y

α→ y′

x | y α→x′ | y′

For the operator |, this violates the condition t0 ≡ t1 (note that a→ is not
deterministic). We observe that a|a a→ a|b. The only possibilities for a to simulate
this a-transition is either with a a→ a or with a a→ b. However, neither a nor b can
be bisimilar to a | b because both a and b have outgoing transitions while a | b
is stuck. Therefore a and a | a cannot be bisimilar. If t0 �≡ t1 we must require
that the labels match, l0 = l1, and that l0→ is deterministic. We require the
labels to match because if they do not, then given only p

l→ p′ it is impossible
to prove that f(p, p) can simulate it using only a 2∗l,l′ rule. The determinacy of
the transition with that label is necessary when proving that transitions from
f(p, p) can, in general, be simulated by p; if we assume that f(p, p) l→ p′ then we
must be able to conclude that p′ has the shape f(p′′, p′′) for some p′′, in order to
meet the bisimulation condition for $f . Consider the standard choice operator
+ and prefixing operator . of CCS with the | operator from the last example,
with α ∈ {a, b, c}.

α
α→ 0 α.x

α→x

x
α→x′

x+ y
α→x′

y
α→ y′

x+ y
α→ y′

x
α→x′ y

α→ y′

x | y α→x′ | y′

If we let p = a.b + a.c, then p | p a→ b | c and b | c is stuck. However, p cannot
simulate this transition w.r.t. $f . Indeed, p and p | p are not bisimilar.

4.3 Predicates

There are many examples of TSSs where predicates are used. The definitions
presented in Section 2 and 4 can be easily adapted to deal with predicates as
well. In particular, two closed terms are called bisimilar in this setting when, in
addition to the transfer conditions of bisimilarity, they satisfy the same predi-
cates. To extend the idempotence rule format to a setting with predicates, the
following types of rules for predicates are introduced:

158 L. Aceto et al.

3P . Choice rules for predicates

{Pxi} ∪ Φ
Pf(x0, x1)

, i ∈ {0, 1}

4P . Synchronization rules for predicates

{Px0, Px1} ∪ Φ
Pf(x0, x1)

As before, we define the starred version of these forms, 3∗P and 4∗P . The starred
version of each rule is the same as the unstarred one except that the set Φ must
be empty in each case. With these additional definitions the idempotence format
is defined as follows.

A TSS is in idempotence format w.r.t. a binary operator f if each f -defining
rule, i.e., a deduction rule with f appearing in the source of the conclusion, is
of one the forms 1l, 2l0,l1 , 3P or 4P for some l, l0, l1 ∈ L, and predicate symbol
P . Moreover, for each l ∈ L, there exists at least one rule of the forms 1∗l or 2∗l,l,
and for each predicate symbol P there is a rule of the form 3∗P or 4∗P .

4.4 Examples

Example 7. The most prominent example of an idempotent operator is non-
deterministic choice, denoted +. It typically has the following deduction rules:

x0
a→x′0

x0 + x1
a→x′0

x1
a→x′1

x0 + x1
a→x′1

Clearly, these are in the idempotence format w.r.t. +.

Example 8 (External Choice). The well-known external choice operator � from
CSP [11] has the following deduction rules

x0
a→x′0

x0 � x1
a→x′0

x1
a→x′1

x0 � x1
a→x′1

x0
τ→x′0

x0 � x1
τ→x′0 � x1

x1
τ→x′1

x0 � x1
τ→x0 � x′1

Note that the third and fourth deduction rule are not instances of any of the
allowed types of deduction rules. Therefore, no conclusion about the validity of
idempotence can be drawn from our format. In this case this does not point to
a limitation of our format, because this operator is not idempotent in strong
bisimulation semantics [7].

Example 9 (Strong Time-Deterministic Choice). The choice operator that is
used in the timed process algebra ATP [17] has the following deduction rules.

x0
a→x′0

x0 ⊕ x1
a→x′0

x1
a→x′1

x0 ⊕ x1
a→x′1

x0
χ→x′0 x1

χ→x′1

x0 ⊕ x1
χ→x′0 ⊕ x′1

Rule Formats for Determinism and Idempotence 159

The idempotence of this operator follows from our format since the last rule
for ⊕ fits the form 2∗χ,χ because, as we remarked in Example 5, the transition
relation

χ→ is deterministic.

Example 10 (Weak Time-Deterministic Choice). The choice operator + that is
used in most ACP-style timed process algebras has the following deduction rules.

x0
a→x′0

x0 + x1
a→x′0

x1
a→x′1

x0 + x1
a→x′1

x0
1→x′0 x1

1→x′1

x0 + x1
1→x′0 + x′1

x0
1→x′0 x1

1�

x0 + x1
1→x′0

x0
1� x1

1→x′1

x0 + x1
1→x′1

The third deduction rule is of the form 2∗1,1, the others are of forms 1∗a and 1∗1.

This operator is idempotent (since the transition relation 1→ is deterministic,
as remarked in Example 6).

Example 11 (Conjunctive Nondeterminism). The operator ∨ as defined in Ex-
ample 3 by means of the deduction rules

x cana

x ∨ y cana

y cana

x ∨ y cana

x aftera x′ y aftera y′

x ∨ y aftera x′ ∨ y′

satisfies the idempotence format (extended to a setting with predicates). The first
two deduction rules are of the form 3∗cana

and the last one is of the form 2∗a,a.
Here we have used the fact that the transition relations aftera are deterministic
as concluded in Example 3.

Example 12 (Delayed Choice). Delayed choice can be concluded to be idempo-
tent in the restricted setting without + and · by using the idempotence format
and the fact that in this restricted setting the transition relations a→ are deter-
ministic. (See Example 4.)

x↓
x∓ y↓

y↓
x∓ y↓

x
a→x′ y

a→ y′

x∓ y
a→x′ ∓ y′

x
a→x′ y

a�

x∓ y
a→x′

x
a� y

a→ y′

x∓ y
a→ y′

The first two deduction rules are of form 3∗↓, the third one is a 2∗a,a rule, and the
others are 1a rules. Note that for any label a starred rule is present.

For the extensions discussed in Example 4 idempotence cannot be established
using our rule format since the transition relations are no longer deterministic.
In fact, delayed choice is not idempotent in those cases.

5 Conclusions

In this paper, we presented two rule formats guaranteeing determinism of cer-
tain transitions and idempotence of binary operators. Our rule formats cover all

160 L. Aceto et al.

practical cases of determinism and idempotence that we have thus far encoun-
tered in the literature.

We plan to extend our rule formats with the addition of data/store. Also,
it is interesting to study the addition of structural congruences pertaining to
idempotence to the TSSs in our idempotence format.

References

1. Aceto, L., Fokkink, W.J., Verhoef, C.: Structural operational semantics. In: Hand-
book of Process Algebra, ch. 3, pp. 197–292. Elsevier, Amsterdam (2001)

2. Baeten, J.C.M., Middelburg, C.A.: Process Algebra with Timing. EATCS Mono-
graphs. Springer, Berlin (2002)

3. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical
Computer Science, vol. 18. Cambridge University Press, Cambridge (1990)

4. Baeten, J.C.M., Mauw, S.: Delayed choice: An operator for joining Message Se-
quence Charts. In: Proceedings of Formal Description Techniques. IFIP Conference
Proceedings, vol. 6, pp. 340–354. Chapman & Hall, Boca Raton (1995)

5. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Infor-
mation and Control 60(1-3), 109–137 (1984)

6. Cranen, S., Mousavi, M.R., Reniers, M.A.: A rule format for associativity. In: van
Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 447–461.
Springer, Heidelberg (2008)

7. D’Argenio, P.R.: τ -angelic choice for process algebras (revised version). Technical
report, LIFIA, Depto. de Informática, Fac. de Cs. Exactas, Universidad Nacional
de La Plata (1995)

8. Fokkink, W.J., Duong Vu, T.: Structural operational semantics and bounded non-
determinism. Acta Informatica 39(6-7), 501–516 (2003)

9. Groote, J.F.: Transition system specifications with negative premises. Theoretical
Computer Science 118(2), 263–299 (1993)

10. Hennessy, M., Plotkin, G.D.: Finite conjuncitve nondeterminism. In: Rozenberg,
G. (ed.) APN 1987. LNCS, vol. 266, pp. 233–244. Springer, Heidelberg (1987)

11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

12. Lanotte, R., Tini, S.: Probabilistic congruence for semistochastic generative pro-
cesses. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 63–78. Springer,
Heidelberg (2005)

13. Mousavi, M.R., Phillips, I.C.C., Reniers, M.A., Ulidowski, I.: Semantics and ex-
pressiveness of ordered SOS. Information and Computation 207(2), 85–119 (2009)

14. Mousavi, M.R., Reniers, M.A.: Orthogonal extensions in structural operational
semantics. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M.
(eds.) ICALP 2005. LNCS, vol. 3580, pp. 1214–1225. Springer, Heidelberg (2005)

15. Mousavi, M.R., Reniers, M.A., Groote, J.F.: A syntactic commutativity format for
SOS. Information Processing Letters 93, 217–223 (2005)

16. Mousavi, M.R., Reniers, M.A., Groote, J.F.: SOS formats and meta-theory: 20
years after. Theoretical Computer Science (373), 238–272 (2007)

17. Nicollin, X., Sifakis, J.: The algebra of timed processes ATP: Theory and applica-
tion. Information and Computation 114(1), 131–178 (1994)

Rule Formats for Determinism and Idempotence 161

18. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic and
Algebraic Progamming 60, 17–139 (2004); This article first appeared as Technical
Report DAIMI FN-19, Computer Science Department, Aarhus University

19. Tini, S.: Rule formats for compositional non-interference properties. Journal of
Logic and Algebraic Progamming 60, 353–400 (2004)

20. Ulidowski, I., Yuen, S.: Process languages with discrete relative time based on the
ordered SOS format and rooted eager bisimulation. Journal of Logic and Algebraic
Progamming 60, 401–460 (2004)

21. van Weerdenburg, M., Reniers, M.A.: Structural operational semantics with first-
order logic. In: Pre-proceedings of SOS 2008, pp. 48–62 (2008)

22. Verhoef, C.: A congruence theorem for structured operational semantics with pred-
icates and negative premises. Nordic Journal of Computing 2(2), 274–302 (1995)

The Complexity of Reachability in
Randomized Sabotage Games�

Dominik Klein, Frank G. Radmacher, and Wolfgang Thomas

Lehrstuhl für Informatik 7, RWTH Aachen University, Germany
dominik.klein@rwth-aachen.de,

radmacher@automata.rwth-aachen.de,

thomas@automata.rwth-aachen.de

Abstract. We analyze a model of fault-tolerant systems in a proba-
bilistic setting. The model has been introduced under the name of “sab-
otage games”. A reachability problem over graphs is considered, where
a “Runner” starts from a vertex u and seeks to reach some vertex in
a target set F while, after each move, the adversary “Blocker” deletes
one edge. Extending work by Löding and Rohde (who showed PSpace-
completeness of this reachability problem), we consider the randomized
case (a “game against nature”) in which the deleted edges are chosen
at random, each existing edge with the same probability. In this much
weaker model, we show that, for any probability p and ε > 0, the fol-
lowing problem is again PSpace-complete: Given a game graph with u
and F and a probability p′ in the interval [p− ε, p + ε], is there a strat-
egy for Runner to reach F with probability ≥ p′? Our result extends
the PSpace-completeness of Papadimitriou’s “dynamic graph reliabil-
ity”; there, the probabilities of edge failures may depend both on the
edge and on the current position of Runner.

Keywords: games, reachability, probabilistic systems, fault-tolerant
systems.

1 Introduction

The subject of this paper is a model of fault-tolerant computation in which a
reachability objective over a network is confronted with the failure of connections
(edges). It is well known that adding dynamics to originally static models makes
their analysis much harder – in our case, these dynamics are generated by the
feature of vanishing edges in graphs. We build on hardness results of Löding and
Rohde that are explained in more detail below. In the present paper we combine
the aspect of dynamics with probability assumptions, which makes the model
“coarser” or “softer”. We show that, even in the probabilistic framework, the
hardness phenomena of the standard dynamic model are still valid. Technically

� This research was supported by the RWTH Aachen Research Cluster UMIC of the
German Excellence Initiative, German Research Foundation grant DFG EXC 89.

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 162–177, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Complexity of Reachability in Randomized Sabotage Games 163

speaking, we show that the results of Löding and Rohde are preserved in the
more general randomized framework.

Specifically, we consider a two player game based on the model of (discrete)
“sabotage games” suggested by van Benthem (cf. [12]). These games are played
on graphs which edges may be multi-edges. A player, called “Runner”, moves
along edges and wants to reach a vertex in a set F from a given initial ver-
tex u. After each move of Runner, the adversary, called “Blocker”, may delete
an edge; and in this way Runner and Blocker move in alternation. The algorith-
mic problem of “solving this game” asks for a winning strategy for Runner that
enables him to reach a vertex in F against any choice of Blocker in deleting edges.
The theory of these games was developed by Löding and Rohde; see [5,6,4,10,11].
Also, other winning conditions (more general than reachability) were considered;
see [5,11,12].

In the present paper, we modify the sabotage games in a way that corresponds
to a more realistic modeling: The second player Blocker is replaced by random
fault. In each turn an edge (which may be a multi-edge) between two nodes is
hit – each existing (multi-) edge with the same probability – and its multiplicity
is reduced (resp. deleted in case of a single edge). So, in this approach, the player
Runner is not faced with a Blocker, but rather has to play against “nature” [7].
There are several scenarios that motivate this model, e.g. the “Traveling Re-
searcher Problem” as formulated by van Benthem [12], or the analysis of routing
problems in networks where routing is subject to change, reacting to failures of
connections. In such cases, it is rarely realistic to assume that there is an omni-
scient adversary that manipulates the world. The faults in natural scenarios are
usually better modeled as random events. In our work, we use the term “ran-
domized sabotage game” to emphasize our starting point, the sabotage games;
but one might prefer to speak of reachability games against nature.

Our studies extend previous results in two ways: On the one hand, this paper
extends the classical framework of sabotage games in which Löding and Rohde
showed the PSpace-completeness of solving sabotage games with reachability
winning conditions [5]. The natural question arises whether this result can be
transferred when replacing the adversary player Blocker by arbitrary fault. On
the other hand, our work is closely related to a similar question which was studied
by Papadimitriou in his work on “games against nature” [7]. He considered the
problem of “dynamic graph reliability” (DGR), where each edge e fails with
a probability p(e, v) after each turn, i.e. the probability depends on both the
edge e and the current position v of Runner. Papadimitriou’s game model against
nature is rather strong, since for all edges the probabilities of deletion can be
adjusted after each turn; his proof for the PSpace-hardness of DGR heavily
depends on these adjustments. In fact, all problems that are considered in [7,8]
as “games against nature” allow a precise adjustment of the probability for
arbitrary large games, so that a reduction from the PSpace-complete problem
SSAT [7,3] is possible (which is a stochastic version of SAT, with radmoized
quantifiers instead of universal quantifiers). However, it should be noted that
randomized sabotage games are not a special case of DGR, since, in randomized

164 D. Klein, F.G. Radmacher, and W. Thomas

sabotage games, exactly one edge is deleted in each turn. In this paper, we pursue
the question of whether Papadimitriou’s result can be extended to a game model
with a uniform probability distribution (e.g. in each turn, one of the n edges is
deleted with probability p = 1

n).
Our main result says that, in randomized sabotage games with a uniform

distribution of failures where exactly one edge is deleted per turn, for any p ∈
[0, 1] and ε > 0 the following problem is PSpace-complete: Given a game arena
with origin u, a distinguished set F , and a probability p′ in the interval [p −
ε, p+ ε], does Runner have a strategy to reach F from u with probability ≥ p′?

The remainder of this paper is structured as follows. In Section 2 we introduce
the basic notions of randomized sabotage games. Section 3 is concerned with the
PSpace-hardness of the reachability version of randomized sabotage games. Here
we start from the construction of Löding and Rohde [5] on PSpace-hardness for
the original sabotage game. For infinitely many probabilities pk,n ∈ [0, 1] we re-
duce the PSpace-complete problem of Quantified Boolean Formulae (QBF) (see
[8], problem “QSAT”) to the question of whether, given a randomized sabotage
game with u and F , the goal set F is reachable with a probability of pk,n. In order
to complete the proof of our main result, we show in Section 4 that the set of the
probabilities pk,n is dense in the interval [0, 1], and that the parameters k and n
can be computed efficiently such that pk,n ∈ [p− ε, p+ ε]. In Section 5 we address
perspectives which are treated in ongoing work.

2 The Randomized Sabotage Game

A sabotage game is played on a graph (V,E), where V is a set of vertices. The
vertices are connected by a set of edges, given by E ⊆ V × V . We will assume
undirected graphs from now on, i.e. (u, v) ∈ E ⇒ (v, u) ∈ E; however, the ideas
presented here also work for directed graphs in the same way. It should also
be noted that, while in the “classical” notion of sabotage games multi-edges
are allowed, we will restrict ourselves to single edges only. Clearly, the hardness
result presented here also holds for the case of multi-edges (and also, the problem
still belongs to PSpace).

A randomized sabotage game is a tuple G = (G, vin) with a graph G = (V,Ein)
and the initial vertex vin ∈ V . A position of the game is a tuple (vi, Ei). The
initial position is (vin, Ein). In each turn of the game, the player – called Runner –
chooses an outgoing edge (vn, vn+1) in vertex vn of position (vn, En) and moves
to vertex vn+1. Then, a dice with |En| sides is thrown and the chosen edge e is
removed from En. We define En+1 := En \{e}. After this turn, the new position
of the game is (vn+1, En+1); we say that Runner has reached the vertex vn+1.

Clearly, since edges are only deleted and not added, each play and the number
of positions are finite. We only consider reachability as winning condition in this
paper: For a randomized sabotage game G = ((V,Ein), vin) with a set of final
vertices F ⊆ V , Runner wins a play iff he reaches a final vertex v ∈ F .

For the probabilistic analysis, we build up the game tree tG for any ran-
domized sabotage game G. It is convenient to introduce tree nodes also for the

The Complexity of Reachability in Randomized Sabotage Games 165

intermediate positions that result from nature’s moves, i.e. from edge deletions
(in the following nature’s positions are marked with an overline). The root of
the game tree is (vin, Ein), where Runner starts to move. From a position (v,E)
with v �∈ F where Runner moves, the successor nodes are all positions (v′, E)
with (v, v′) ∈ E (a position (v,E), with v ∈ F or (v, v′) �∈ E for all v′, is a leaf).
Now, the successors of (v′, E) are the positions (v′, E′) where E′ results from E
by an edge deletion.

To each node of Runner we associate the probability for Runner to win the
subgame starting in this node. This probability is computed inductively in the
obvious way, starting with 1 and 0 at a leaf (v,E) depending on whether v ∈ F
or not. For an inner node s of Runner with successors si of Nature, suppose
that si has k successors si1, . . . , sik (where again Runner moves) which have,
by induction, probabilities pij for Runner to win. We associate to each si the
probability pi := 1

k

∑
j pij ; then we pick the maximal pi that occurs and associate

it to s (a node with this maximal probability will be chosen by Runner). We
say that Runner wins with probability p if the root of the game tree has a
probability p.

Let p be an arbitrary number in [0, 1]. The Problem Randomized Reachability
Game for probability p is the following:

Given a randomized sabotage game G = ((V,Ein), vin) and a designated
set F ⊆ V , does Runner win this game with probability ≥ p?

Löding and Rohde have already shown that solving classical sabotage games
with reachability winning condition is PSpace-complete [5]. So, the randomized
sabotage game problem for probability p = 1 is PSpace-hard. On the other
hand, the problem of whether Runner wins a randomized sabotage game with
a probability p > 0 is decidable in linear time, because Runner wins with a
probability > 0 iff there is a path from the initial to a final vertex.

Our main result says that the problem remains PSpace-hard if we restrict the
probability to any interval: For any fixed p ∈ [0, 1] and ε > 0, the randomized
reachability game problem for a probability p′ which may vary in the interval
[p− ε, p+ ε] is PSpace-complete. More precisely:

Theorem 2.1. For each fixed p ∈ [0, 1] and ε > 0, the following is PSpace-
complete: Given a randomized sabotage game G with goal set F and a probability
p′ ∈ [p− ε, p+ ε], does Runner win G with probability ≥ p′?

For the proof we use a parametrized reduction of the problem Quantified Boolean
Formulae (QBF): For each QBF-sentence ϕ, we construct a family of instances
Gϕ,k,n and pk,n such that, for each k and n, the sentence ϕ is true iff, over Gϕ,k,n

with u and F , Runner wins with probability ≥ pk,n. Furthermore, we guarantee
that, given p, ε > 0, the probability pk,n can be chosen in [p − ε, p + ε] for
suitable k and n, and that this choice can be made in polynomial time. The
proof that the problem belongs to PSpace is easy, using standard techniques
from the analysis of finite games. The idea is to generate the game tree in a
depth-first manner, with a storage for paths (and some auxiliary information);

166 D. Klein, F.G. Radmacher, and W. Thomas

see [2,8]. In the remainder we treat only the hardness proof. The next section
provides the indicated reduction, and in the subsequent section, we address the
question of the distribution and efficient computation of the probabilities pk,n.

3 PSPACE-Hardness of the Reachability Game

In order to prove the PSpace-hardness, we use a parametrized reduction from
the problem Quantified Boolean Formulae (QBF), which is known to be PSpace-
complete (cf. [8], problem “QSAT”). The reduction uses parts of the construction
of Löding and Rohde [5]. The basic strategy is to construct an arena in such a
way that, in a first part of the game, Runner can select the assignments for
existential quantified variables of the formula, and that he is forced to choose
certain assignments for the universal quantified variables. Then, this assignment
is verified in a second part.

Formally, an instance of the problem QBF is a special quantified boolean
formula, more precisely: Given a boolean expression ϑ in conjunctive normal
form over boolean variables x1, . . . , xm, is ∃x1∀x2 . . .Qmxmϑ true? Without loss
of generality, one requires the formula to start with an existential quantifier. If m
is even, Qm = ∀; otherwise Qm = ∃. For each instance ϕ of QBF, we construct a
game arena Gϕ,k,n and a rational number pk,n such that ϕ is true iff Runner has
a strategy to reach a final vertex in Gϕ,k,n exactly with probability pk,n. Thereby
the parameter k is an arbitrary natural number ≥ 2, and the parameter n ∈ N
essentially has to be greater than the size of ϕ, i.e. n ≥ c · |ϕ| for some constant c.
If Runner plays suboptimally or if the formula is false, the maximum probability
of winning is strictly lower than pk,n; so the reduction meets the formulation of
our game problem.

The arena consists of four types of subparts or “gadgets”: The parametriza-
tion, existential, universal, and verification gadgets. In the parametrization gad-
get, one can, by adding or removing edges, adjust the probability pk,n.

The outline of the proof is the following: We first introduce a construction
to simulate a kind of multi-edge; this is convenient for a feasible analysis of
the probabilistic outcome in a framework where only single edges are allowed.
Then, we briefly recall the construction for the existential, universal, and verifi-
cation gadgets [5], and adapt the argument to meet our model of a play against
nature. In a second step, we introduce the parametrization gadget to adjust
the probability pk,n. Finally, we use this construction to prove our main result
(Theorem 2.1).

3.1 The l-Edge Construction

In the following proofs, it will be necessary to link two vertices u and v in such
a way that the connection is rather strong, i.e. there needs to be a number of
several subsequent deletions until Runner is no longer able to move from u to v or
vice versa. This is achieved by the construction shown in Figure 1, which we will
call an “l-edge” from now on (l ≥ 1). The circled vertex is a goal belonging to the

The Complexity of Reachability in Randomized Sabotage Games 167

•
•

u v

•
•

•

· · ·
l vertices

Fig. 1. An l-edge from u to v

set F of final vertices. Here, if after |l| deletions all the |l| edges between u and
the middle vertices are deleted, Runner is disconnected from v. If |l − 1| or less
edges have been deleted anywhere in the game graph, there is at least one path
from u over some middle vertex to v and an edge between that middle vertex
and the final vertex. Then, Runner can move from u (resp. v) to that middle
vertex and is able to reach v (resp. u) in the next step, or he wins immediately
by moving to the (circled) final vertex.

Lemma 3.1. Given a randomized sabotage game with an l-edge between two
nodes u and v, Runner can guarantee to reach v via this l-edge iff he can guar-
antee to reach u within l − 1 moves.

For a sufficiently high l, depending on the structure of the game-arena, it is
clear that Runner cannot be hindered from winning by edge deletions in an l-
edge; such l-edges will be called “∞-edges” to indicate that destruction of the
connection can be considered impossible. (For classical sabotage games, l can be
bounded by the total number of vertices in the game arena, because if Runner has
a winning strategy in a classical sabotage game, he has also a winning strategy
without visiting any vertex twice [5]. For the constructions in this paper where
∞-edges are used, it will be sufficient to consider ∞-edges as 4-edges.)

Remark 3.2. In order to sharpen the hardness result of this paper to randomized
sabotage games with a unique goal, one may intend to merge final vertices to
one vertex. But this is not always possible: Consider an l-edge to a final vertex v.
Since we do not consider graphs with multi-edges, v cannot be merged with the
other final vertex from the l-edge construction without breaking Lemma 3.1.
For this reason, in this paper, PSpace-hardness is shown only for randomized
sabotage games with at least two final vertices.

3.2 Existential, Universal, and Verification Gadgets

In this section, we briefly recall constructions from [5] to have a self-contained
exposition. We introduce the existential and universal gadgets (applied according
to the quantifier structure of the given formula), and the verification gadget
(corresponding to its quantifier-free kernel).

The Existential Gadget: Intuitively, the existential component allows Runner
to set an existential-quantified variable to true or false. The gadget is depicted

168 D. Klein, F.G. Radmacher, and W. Thomas

a

• •

• •

• •

xi xib

•

in

out
back back

∞ ∞

∞ ∞

∞ ∞

∞ ∞

1 1

4 4

Fig. 2. The ∃-gadget for xi with i odd

a

• •

• •

• s

xi xib

•

in

out
back back

∞

∞

∞ ∞

∞ ∞

∞ 3

1 1

4 4

Fig. 3. The ∀-gadget for xi with i even

in Figure 2. The node a is the input vertex for this gadget, and xi (resp. xi) is
the variable vertex of this component which Runner intends to visit if he sets xi

to false (resp. true). The vertex b is the exit node of this gadget; it coincides
with the in-vertex of the next gadget (i.e. the universal gadget for xi+1, or the
verification gadget if xi is the last quantified variable). The “back”-edges from xi

and xi lead directly to the last gadget of the construction, the verification gadget.
Later, Runner possibly move back via these edges to verify his assignment of the
variable xi. (We will see later that taking these edges as a shortcut, starting from
the existential gadget, directly to the verification gadget, is useless for Runner.)

Of course, Runner has a very high probability of winning the game within
the existential gadget (especially in an l-edge construction for an ∞-edge). But
we are only interested in the worst-case scenario, where edges are deleted in the
following precise manner:

When it is Runner’s turn and he is currently residing in vertex a, he will move
either left or right and can reach xi (resp. xi) in four turns. When Runner moves
towards xi (resp. xi), the 4-edge from xi (resp. xi) to the final vertex may be sub-
sequently subject to deletion so that Runner ends up at node xi (resp. xi) with
no connection to the final vertex left. If Runner then moves towards xi (resp. xi)
and the edge between b and xi (resp. xi) is deleted, he is forced to exit the gadget
via b and move onwards. The 4-edge from xi (resp. xi) to the final vertex remains
untouched so far. If Runner is later forced to move back to xi or xi from the veri-
fication gadget, he can only guarantee a win in one of these vertices.

The Universal Gadget: In the universal component a truth value for the
all-quantified variables is chosen arbitrarily, but this choice can be considered to
Runner’s disadvantage in the worst-case. Runner can be forced to move in one or
the other direction and has to set xi to true or false, respectively. The gadget is
depicted in Figure 3. A path through this gadget starts in node a and is intended
to exit via node b, which coincides with the in-vertex of the next gadget (i.e. the
existential gadget for xi+1, or the verification gadget if xi is the last quantified

The Complexity of Reachability in Randomized Sabotage Games 169

variable). Again, only the worst cases are important for now; Runner is able to
win the game immediately in all other cases. Clearly, Runner is going to move in
the direction of vertex s. There are two interesting scenarios which may happen
with a probability > 0:

In the first scenario, the 3-edge to xi is deleted completely. Then, Runner can
only guarantee to leave the gadget at b via xi (but no visit of xi or the (circled)
final vertex), because the 4-edge from xi to the final vertex and the 1-edge to xi

may be deleted successively. In this case, the 4-edge between xi and the final
vertex remains untouched.

In the second case, only the 4-edge from xi to the final vertex is subject to
deletion. At s, Runner is intended to move downward to xi and leave the gadget
at b. Thereby the 4-edge between xi and the final vertex (which was already
reduced to a 1-edge) is deleted completely, and after this, the 1-edge to xi is
deleted. Consequently, the 4-edge from xi to the final vertex is untouched. If
Runner “misbehaves” in the sense that he moves from s to the left, it may
happen that the final vertex becomes completely disconnected from both xi

and xi; in this case, Runner cannot win in this vertex if he is forced to move
back to xi or xi from the verification gadget.

The Verification Gadget: The verification gadget is constructed in such a
way that, when Runner arrives here, he can only force a win if the assignment
for the variables which has been chosen beforehand satisfies the quantifier-free
kernel of the formula.

The verification gadget for a QBF-formula with k clauses C1, . . . , Ck is de-
picted in Figure 4. Its in-vertex coincides with exit vertex b of the last existen-
tial/universal gadget. For a clause Ci = (¬)xi1 ∨ (¬)xi2 ∨ (¬)xi3 , there are three
paths, each from ci via a single edge and an ∞-edge (the literal edge Lij) back
to the variable vertex xij in the corresponding gadgets. Again, a look at the
interesting scenarios is important:

Assume that Runner has chosen the appropriate assignments of the variables
for a satisfiable formula. He reaches the first selection vertex s1 via the ∞-edge

•

s1

c1 •

•• •

s2

c2 •

•• •

s3

c3 •

•• •

sk

ck •

•• •

•· · ·

in

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞

1
1

1 1 1

1

1
1

1 1 1

1

1
1

1 1 1

1
1

1 1 1

1

Fig. 4. The verification gadget for a formula with k clauses

170 D. Klein, F.G. Radmacher, and W. Thomas

from the last existential/universal gadget. If Runner is in si and the edge to ci is
deleted, he has to proceed to si+1. Now, assume that the edge between si and si+1
is removed. Then, Runner is forced to move towards ci. If the quantifier-free kernel
of the QBF-formula is satisfied with the chosen assignment of Runner, then there
is at least one literal that satisfies the clauseCi. Runner chooses to move alongside
the corresponding literal edgeLij back to xij , into the gadget where he has chosen
the assignment (and wins there by moving to the final vertex). In any other case
Runner is able to win immediately by moving via sk or via si, ci to the (circled)final
vertex. Note that he only has a chance of always winning if his chosen assignment
actually fulfills the quantifier-free kernel of the formula.

If he did not choose a correct assignment or if the formula is not satisfiable,
there is at least one clause that falsifies the QBF-formula, say clause ci. If he is
forced to go to ci, there may be no path that leads him back to the final vertex
of an existential/universal gadget.

As a side remark, one should note that it is never optimal for Runner to
take a “back”-edge (i.e. a literal edge Lij) as a shortcut, moving directly from
some xi (resp. xi) of an existential/universal gadget to the verification gadget.
In this case, the 1-edge connecting ci and the ∞-edge from xi (resp. xi) to the
verification gadget may be destroyed. Then, Runner has to move back and loses
his chance of always winning the game.

We introduced so far the construction from [5] which suffices to show PSpace-
hardness for p = 1: Using the gadgets above, Runner does have a winning strat-
egy iff the given formula is true. For a QBF-formula ϕ, we call the game arena
of this construction Gϕ.

3.3 The Parametrization Gadget

The parametrization gadget is the initial part of the game arena that is con-
structed; it is used to “adjust” the overall winning probability of Runner. Run-
ner starts from the initial vertex in this gadget. For each k ≥ 1, we define the
parametrization gadget Hk; it is depicted in Figure 5.

We reduce the question of whether the QBF-formula ϕ is true to the reacha-
bility problem over certain game arenas that result from combining Hk with Gϕ

b•••a · · ·

k + 1 vertices

• •• •

•

· · ·

•

vertices
k

start out

Fig. 5. The parametrization gadget Hk

The Complexity of Reachability in Randomized Sabotage Games 171

as a graph Hk ◦ Gϕ: The out-vertex b in Hk is identified with the in-vertex a of
the first existential gadget of Gϕ. Assume Gϕ has n0 edges. We get modifications
of Gϕ with any number n ≥ n0 of edges by adding artificial extra edges (without
changing the behavior in the discussed worst case); for instance, this can be
achieved by adding a path with a dead end. We call this game arena Gn

ϕ. In the
sequel, we work with

Gϕ,k,n := Hk ◦ Gn
ϕ .

Since Hk has 4k edges, the overall number of edges in our game arena Gϕ,k,n is
4k + n. Let

pk,n := probability for Runner to traverse the
parametrization gadget Hk of Gϕ,k,n .

Lemma 3.3. Runner wins the randomized reachability game over Gϕ,k,n for
probability pk,n iff the QBF-formula ϕ is true.

Proof. First note the following: If Runner resides at vertex b, and in Hk exactly
the k edges below vertex b have been deleted so far, then Runner wins with
probability 1 iff ϕ is true (this follows immediately from the classical construction
by Löding and Rohde [5]).

Now assume that ϕ is true. In the parametrization gadget Runner starts at
node a and obviously moves towards b. Clearly, if any edge between his current
position and b is deleted, he loses the game immediately. However, if he succeeds
in getting to b, he will always win the game: First, assume the case that, in his k
steps towards b, only edges in Hk were subject to deletion. Then, Runner always
wins by moving in the first existential gadget and traversing Gn

ϕ, as mentioned
before. If we assume the other case that at least one of the k deletions took place
outside of Hk, there is at least one edge leading from b downward to some middle
node, say b′, and there are at least two edges leading from b′ to the two final
vertices in the parametrization gadget. Then, Runner wins by moving from b
downward to b′ and then, depending on the next deletion, by moving to one
of the two final vertices. In both cases, Runner wins over Gϕ,k,n exactly with
the probability pk,n of traversing the parametrization gadget Hk from node a to
node b.

Now, assume that ϕ is false, and that only the k edges below vertex b in Hk

are subject to deletion while Runner moves towards b (this may happen with a
probability > 0). Then, Runner’s only chance to win from b is by moving towards
some final vertex in Gn

ϕ. Since ϕ is false, his winning probability in b is strictly
smaller than 1, and hence his overall winning probability for Gϕ,k,n is strictly
smaller than pk,n. ��

The computation of the probabilities pk,n only depends on the parametrization
gadget Hk and n: Clearly p1,n = 1. For k ≥ 2, the winning probability is obtained
from the probability of not failing in the first step, multiplied by the probability
of not failing in the second step, etc., until the probability of not failing in the
(k − 2)-th step, where Runner tries to get to b within one step. After the first

172 D. Klein, F.G. Radmacher, and W. Thomas

step, Runner has still to cross k − 1 edges; neither of them may be deleted.
Overall, there are 4k + n edges, so Runner does not lose if any of the other
4k + n− (k − 1) edges is deleted. In the last step before reaching b, k − 2 edges
have been deleted, so 4k + n − (k − 2) edges are left in the game. If any other
than the edge between Runner’s current position and b is deleted, Runner is able
to reach b. Generally, in the i-th step there are 4k + n − (i− 1) edges left; and
in order for Runner to still be able to reach b, one of the 3k + n+ 1 edges that
are not between Runner’s current position and b has to be deleted. Altogether,

pk,n =
3k + n+ 1

4k + n
· · · 3k + n+ 1

4k + n− (k − 2)
=

k−2∏
i=0

3k + n+ 1
4k + n− i

.

We can summarize these observations in the following theorem:

Theorem 3.4. Given a QBF-formula ϕ so that Gϕ has n0 edges, for all k, n ∈
N with k ≥ 2 and n ≥ n0 the following holds: Runner wins the randomized
reachability game over Gϕ,k,n for probability pk,n =

∏k−2
i=0

3k+n+1
4k+n−i iff the QBF-

formula ϕ is true.

In order to use this theorem for a reduction to the randomized sabotage game,
we need to show that the game arena can be constructed in polynomial time. In
the following Lemma, we show that the size of the constructed game Gϕ,k,n is
linear in the size of the inputs ϕ, k, and n:

Lemma 3.5. The size of Gϕ is linear in |ϕ|, and the size of Hk is linear in k.

Proof. For the first part, it is sufficient to realize that the size of each gadget
can be bounded by a constant. Since the number of gadgets is linear in the size
of ϕ, the number of vertices and edges of Gϕ is linear in |ϕ|. The only problem
might be the ∞-edges; but by detailed observation, we see that each ∞-edge can
be replaced by a 4-edge, and the construction still works in the same way.

For the second part, it suffices to note that Hk has 2k + 3 vertices and 4k
edges. ��
Now, a preliminary result can be formulated in the following form:

Corollary 3.6. For all k ≥ 2, the following problem is PSpace-hard: Given
a randomized sabotage game with n edges, does Runner win with a probability
≥ pk,n?

3.4 Towards the PSPACE-Hardness for Arbitrary Probabilities

We already have a reduction of QBF to randomized sabotage games with a
varying probability pk,n (which depends on the given game graph). By a closer
look at the term pk,n we see that the probability pk,n can be adjusted arbi-
trary close to 0 and arbitrary close to 1; more precisely: For a fixed k, we have
limn→∞ pk,n = 1; and for a fixed n, we have limk→∞ pk,n = 0. We will show a
stronger result, namely that the probabilities pk,n form a dense set in the interval
[0, 1], and that k and n can be computed efficiently such that pk,n is in a given
interval. More precisely, we shall show the following:

The Complexity of Reachability in Randomized Sabotage Games 173

Theorem 3.7. The set of probabilities {pk,n | k, n ∈ N, k ≥ 2} is dense in
the interval [0, 1]. Moreover, given n0 ∈ N, p ∈ [0, 1], and an ε > 0, there exist
k, n ∈ N with k ≥ 2 and n ≥ n0 such that pk,n ∈ [p− ε, p+ ε]; the computation
of such k, n, and pk,n is polynomial in the numerical values of n0, 1

p , and 1
ε .

The proof of this theorem is the subject of Section 4.
Note that Theorem 3.7 provides a pseudo-polynomial algorithm, since the

computation is only polynomial in the numerical values of n0, 1
p , and 1

ε (and
not in their lengths, which are logarithmic in the numerical values). For our
needs – i.e. a polynomial time reduction to prove Theorem 2.1 – this is no
restriction: The parameter n0 corresponds to the number of edges in the input
game (which has already a polynomial representation), and p and ε are fixed
values (i.e. formally they do not belong to the problem instance).

Now, we prove our main result:

Proof (of Theorem 2.1). For arbitrary p and ε, we give a reduction from QBF to
the randomized sabotage game problem where only probabilities in the interval
[p−ε, p+ε] are allowed. Note that p and ε do not belong to the problem instance;
so they are considered constant in the following.

Given a QBF-formula ϕ, we need to compute a game Gϕ,k,n and a pk,n ∈
[p− ε, p+ ε] such that Runner wins Gϕ,k,n with a probability ≥ pk,n iff ϕ is true.
Given ϕ, we first apply the construction of Section 3.2 to construct an equivalent
sabotage game Gϕ. Let n0 be the number of edges of Gϕ, which is linear in the
size of ϕ according to Lemma 3.5. Then, we can compute k ≥ 2, n ≥ n0, and pk,n

according to Theorem 3.7. For a fixed ε, the computations are polynomial in n0
and hence polynomial in |ϕ|. Now, we extend Gϕ to an equivalent sabotage
game with n edges, denoted Gn

ϕ . This can be achieved by adding n−n0 dummy-
edges (e.g. we can add a path with a dead end). Thereafter, we construct the
randomized sabotage game Gϕ,k,n by combining the parametrization gadget Hk

with the game arena Gn
ϕ.

The claimed equivalence of ϕ to the stated randomized reachability game
problem for probability pk,n holds due to Theorem 3.4. The requirement that
pk,n is in the interval [p− ε, p+ ε] follows from Theorem 3.7. ��

4 On the Distribution and Computation of the
Probabilities pk,n

This section deals with the proof of Theorem 3.7: Given n0 ∈ N, p ∈ [0, 1], and
an ε > 0, we can construct k > 2 and n ≥ n0 in polynomial time with respect to
the numerical values of n0, 1

p , and 1
ε , such that pk,n is in the interval [p−ε, p+ε].

The idea is to first adjust the probability pk,n arbitrary close to 1, and then
go with steps of length below any given ε > 0 arbitrary close to 0; so, we hit
every ε-neighborhood in the interval [0, 1].

In order to adjust the probability pk,n arbitrary close to 1, we first choose k = 2
and a sufficiently high n ≥ n0. (We can artificially increase n by adding a path

174 D. Klein, F.G. Radmacher, and W. Thomas

with a dead end.) We will show that it suffices to choose n := max{n0,) 1
ε*}. For

this choice we obtain p2,n ≥ 1 − ε (≥ p− ε). Then, we decrease the probability
by stepwise incrementing k by 1 (changing Hk to Hk+1 and keeping n constant).
It will turn out that (with the choice of n as above) the probability decreases
by a value that is lower than 1

4k+n+4 (≤ ε). Iterating this, the values converge
to 0, and we hit the interval [p− ε, p+ ε]. Hence, the set of probabilities {pk,n |
k, n ∈ N, k ≥ 2} is dense in the interval [0, 1]. Furthermore, we will show that
it will be sufficient to increase k at most up to 8n. For this choice, we obtain
pk,n ≤ ε (≤ p+ ε).

For the complexity analysis, note the following: After each step, the algorithm
has to check efficiently whether pk,n ∈ [p − ε, p + ε]. The computation of the
term pk,n is pseudo-polynomial in k, n, and the test for pk,n ≤ p + ε is in
addition polynomial in 1

p and 1
ε . Since k and n are pseudo-linear in n0 and 1

ε ,
the whole procedure is pseudo-polynomial in n0, 1

p , and 1
ε .

Four claims remain to be proved:

– The adjustment of pk,n arbitrary close to 1 with the proposed choice of n,
i.e. given ε > 0, for n ≥ 1

ε holds p2,n ≥ 1 − ε.
– The adjustment of pk,n arbitrary close to 0 with the proposed choice of k,

i.e. given ε > 0 and n ≥ 1
ε , for k ≥ 8n holds pk,n ≤ ε.

– The estimation pk,n − pk+1,n <
1

4k+n+4 .
– The test for pk,n ∈ [p− ε, p+ ε] is pseudo-polynomial in k, n, 1

p and 1
ε .

These claims are shown in the rest of this section:

Lemma 4.1. Given ε > 0, for n ≥) 1
ε* we have p2,n ≥ 1 − ε.

Proof. Since n ≥) 1
ε* ≥

1
ε ≥ 1

ε − 8 for ε > 0, the result follows from

p2,n =
n+ 7
n+ 8

≥ 1 − ε ⇐⇒ n ≥ 1
ε
− 8 .

��

Lemma 4.2. Given ε > 0 and n ∈ N with n ≥ 1
ε and n ≥ 4, for k ≥ 8n we

have pk,n < ε.

Proof. First note that we have at least n ≥ 1 and k ≥ 8. Then

pk,n =
k−2∏
i=0

3k + n+ 1
4k + n− i

≤
(

3k + n+ 1
3.5k + n

) k
2

≤
(

4k + 1
4.5k

) k
2

≤
(

4.125k
4.5k

) k
2

=
(

11k
12k

) k
2

=
(

11
12

) k
2

≤
(

11
12

)4n

< ε .

The inequality
(11

12

)4n
< ε remains to be shown. Since 1

n ≤ ε, it is sufficient to
show that

(11
12

)4n
< 1

n :(
11
12

)4n

<
1
n

⇐⇒ n
1
4n <

12
11

⇐⇒ n
√
n

1
4 ≤

√
2

1
4 <

12
11

.

The Complexity of Reachability in Randomized Sabotage Games 175

The inequality n
√
n

1
4 ≤

√
2

1
4 is equivalent to n2 ≤ 2n and holds for all n ≥ 4. ��

Lemma 4.3. For k, n ∈ N with k ≥ 2, we have pk,n − pk+1,n <
1

4k+n+4 .

Proof. In this proof we use the substitution m := 4k + n+ 4.

pk,n − pk+1,n =
k−2∏
i=0

3k + n+ 1
4k + n− i

−
k−1∏
i=0

3k + n+ 4
4k + n+ 4 − i

≤
k−2∏
i=0

3k + n+ 4 + 1
4k + n+ 4 − i

−
k−1∏
i=0

3k + n+ 4
4k + n+ 4 − i

=
k−2∏
i=0

m− k + 1
m− i

−
k−1∏
i=0

m− k

m− i

=
k−1∏
i=0

m− k + 1
m− i

−
k−1∏
i=0

m− k

m− i
=

(m− k + 1)k−1 − (m− k)k−1∏k−1
i=0 m− i

.

Now we can use the equation al−bl = (a−b)(al−1+al−2b+ · · ·+abl−2+bl−1) for
the estimation (d+1)k−1−dk−1 = (d+1)k−2+(d+1)k−3d+· · ·+(d+1)dk−3+dk−2

≤ (k − 1)(d+ 1)k−2. We obtain pk,n − pk+1,n

≤ (k − 1)(m− k + 1)k−2∏k−1
i=0 m− i

=
k − 1

m(m− 1)

k−1∏
i=2

(m− k + 1)
m− i

≤ k − 1
m(m− 1)

.

Since m > k for all k, n ∈ N, we obtain pk,n − pk+1,n <
1
m = 1

4k+n+4 . ��

Lemma 4.4. The computation of the term pk,n is pseudo-polynomial in k and n.
The test for pk,n ≤ p+ ε is pseudo-polynomial in k and n, and polynomial in 1

p

and 1
ε .

Proof. First, we rewrite pk,n in the form

(3k + n+ 1)k−1∏k−2
i=0 4k + n− i

.

Now, we compute the numerator and the denominator separately. For the compu-
tation, we can switch to binary encoding. Each multiplication can be performed
in polynomial time in the length of its binary encoding [13]. We need k− 2 multi-
plications (for this reason, the algorithm is only pseudo-polynomial). The division
and comparison of two rational numbers can be done in polynomial time with re-
spect to the length of their binary representations [13]. So, the quotient pk,n can
be computed in pseudo-polynomial time with respect to k and n, and the test to
check whether pk,n ≤ p+ ε is in addition polynomial in 1

p and 1
ε . ��

5 Perspectives

We have introduced randomized sabotage games, and showed that the reacha-
bility problem for a probability which may vary in a fixed interval [p− ε, p+ ε]
is PSpace-complete. This is a small contribution to the emerging research on the

176 D. Klein, F.G. Radmacher, and W. Thomas

analysis of dynamical networks with aspects of randomness. As concrete open
issues, we mention the following problems:

1. In our proof, it seems difficult to adjust the probability exactly to a given
probability p (in our formulation this is the case ε = 0). It remains open
whether this can be achieved by a refinement of the construction.

2. In our proof, we used the reachability problem with a target set F containing
at least two vertices (see Remark 3.2). One task is to extend the result
to cover also the case of a singleton as target set (note that in the non-
randomized case, the singleton reachability problem is PSpace-hard only if
one allows multi-edges [5]).

3. The proof of our model depends on the restriction that exactly one edge per
turn is deleted (rather than possibly multiple edge deletion occurring sub-
ject to given probabilities). Sharpening the mentioned problem of “dynamic
graph reliability” [7] to probabilities that are independent of Runner’s po-
sition, we can study the model where in every turn each edge fails with a
probability p(e), or even with probability 1

n in the uniform case.
4. Extending the model with a mechanism of restoration is a challenging task

(for instance, reactive Kripke models [1] and backup parity games [11] ad-
dress this issue). In [9] we developed a theory of dynamic networks where
Runner and Blocker are replaced by two players, Constructor and Destruc-
tor, that add resp. delete vertices/edges, and the problem of guaranteeing
certain network properties (like connectivity) is addressed. We are presently
integrating probabilistic features into this model, starting from the present
paper. Another interesting direction of research is to include more general
winning conditions in appropriate logics [2].

Acknowledgments. We thank �Lukasz Kaiser for his help regarding Lemma 4.3.
We also thank the anonymous referees for their valuable comments and sugges-
tions in improving this paper.

References

1. Gabbay, D.M.: Introducing reactive kripke semantics and arc accessibility. In:
Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science.
LNCS, vol. 4800, pp. 292–341. Springer, Heidelberg (2008)

2. Klein, D.: Solving Randomized Sabotage Games for Navigation in Networks.
Diploma thesis, RWTH Aachen (2008)

3. Littman, M.L., Majercik, S.M., Pitassi, T.: Stochastic boolean satisfiability. Jour-
nal of Automated Reasoning 27(3), 251–296 (2001)

4. Löding, C., Rohde, P.: Model checking and satisfiability for sabotage modal logic.
In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp.
302–313. Springer, Heidelberg (2003)

5. Löding, C., Rohde, P.: Solving the sabotage game is PSPACE-hard. Technical
Report AIB-05-2003, RWTH Aachen (2003)

The Complexity of Reachability in Randomized Sabotage Games 177

6. Löding, C., Rohde, P.: Solving the sabotage game is PSPACE-hard. In: Rovan, B.,
Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 531–540. Springer, Heidelberg
(2003)

7. Papadimitriou, C.H.: Games against nature. Journal of Computer and System
Sciences 31(2), 288–301 (1985)

8. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
9. Radmacher, F.G., Thomas, W.: A game theoretic approach to the analysis of

dynamic networks. In: Poetzsch-Heffter, A., Schneider, K. (eds.) Proceedings of
VerAS. Electronic Notes in Theoretical Computer Science, vol. 200(2), pp. 21–37.
Elsevier, Amsterdam (2008)

10. Rohde, P.: Moving in a crumbling network: The balanced case. In: Marcinkowski,
J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 310–324. Springer, Heidelberg
(2004)

11. Rohde, P.: On Games and Logics over Dynamically Changing Structures. PhD
thesis, RWTH Aachen (2005)

12. van Benthem, J.: An essay on sabotage and obstruction. In: Hutter, D., Stephan,
W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp.
268–276. Springer, Heidelberg (2005)

13. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge
University Press, Cambridge (2003)

Applying Step Coverability Trees
to Communicating Component-Based Systems

Jetty Kleijn1 and Maciej Koutny2

1 LIACS, Leiden University
P.O.Box 9512, NL-2300 RA Leiden, The Netherlands

kleijn@liacs.nl
2 School of Computing Science, Newcastle University

Newcastle upon Tyne NE1 7RU, U.K.
maciej.koutny@ncl.ac.uk

Abstract. Like reachability, coverability is an important tool for ver-
ifying behavioural properties of dynamic systems. When a system is
modelled as a Petri net, the classical Karp-Miller coverability tree con-
struction can be used to decide questions related to the (required) capac-
ity of local states. Correctness (termination) of the construction is based
on a monotonicity property: more resources available implies more be-
haviour possible. Here we discuss a modification of the coverability tree
construction allowing one to deal with concurrent occurrences of actions
(steps) and to extend the notion of coverability to a dynamic action-
based notion (thus viewing bandwidth as a resource). We are in particu-
lar interested in component-based systems in which steps are subject to
additional constraints like (local) synchronicity or maximal concurrency.
In general the behaviour of such systems is not monotonous and hence
new termination criteria (depending on the step semantics) are needed.
We here investigate marked graphs, a Petri net model for systems con-
sisting of concurrent components communicating via buffers.

Keywords: Petri nets; step semantics; step coverability tree; bound-
edness; decidability; maximal concurrency; marked graphs; components;
localities.

1 Introduction

Coverability can be applied as an important tool for verifying behavioural prop-
erties of dynamic systems with quantified state information — typically captur-
ing the presence of certain kinds of resources — modelled as parallel program
schemata, like Vector Addition Systems [12], Petri nets [17], or state machines
communicating via buffers [5]. In this paper, Place/Transition Petri nets (PT-
nets) are used as our basic system model. The dynamics of a PT-net derives
from a ‘firing rule’ describing enabledness of individual actions i.e., the potential
to occur at a global state or ‘marking’, and the effect such occurrence has on
a marking. This sequential firing rule can then be extended to step firing rules
for sets or multisets of simultaneously occurring transitions. Firing rules lead

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 178–193, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Applying Step Coverability Trees 179

to behavioural descriptions of a PT-net in terms of firing or step sequences as
well as reachability graphs (labelled transition systems) in which such execution
sequences are combined with state information. The latter have proved to be
very useful as they allow behavioural analysis and verification (including model
checking [22]). An important property for verification purposes is the ‘bound-
edness’ of a PT-net which amounts to saying that its state space is finite. The
standard construction to investigate boundedness is the ‘coverability tree’ (CT)
introduced in [12] and investigated in e.g., [7,10,17,23]. CTs can be used to an-
swer also questions related to boundedness of local states (resources) such as
‘will there be enough resources available?’ (e.g., to avoid deadlocks) or ‘is the
amount of resources generated unbounded?’ (and hence restricting the capacity
of certain parts of the system may constrain its behaviour). Similarly to reacha-
bility graphs or trees, CTs can be a tool for deciding other relevant behavioural
questions as well, even in the case of infinite state spaces. The reason is that the
constructed CT is always finite, with the termination of the construction being
based on a ‘monotonicity’ property implying that no current behaviour is lost
when more resources become available.

The standard CT is defined only for the interleaving (sequential) semantics of
PT-nets and, as a consequence, issues relating to the step based semantics are
not accurately reflected. To capture this aspect of concurrency, the concept of a
‘covering’ step or ‘extended’ step was introduced in [13]. The resulting step cov-
erability tree (SCT) of a PT-net extends the behavioural information conveyed
by the sequential CT, by providing a more concurrency-oriented view of the be-
haviour of the PT-net. Whereas the standard approach is concerned with the use
of resources, here bandwidth is also a resource (steps may require unbounded
capacity), and one may be interested in e.g., whether restricting the bandwidth
of steps can lead to a restricted (or even incorrect) behaviour. Moreover, SCTs
can be applied to other Petri net models or PT-nets operating under a step
semantics involving more concurrency constraints. The sequential and standard
step based semantics of PT-nets are in many respects equivalent. By the sub-
step property each step can be sequentialised to a sequence of transitions with
the same effect and so the reachable markings are the same for both semantics.
However, there are practically relevant extensions of PT-nets for which this does
not hold, such as PT-nets with inhibitor arcs and the a priori step semantics for
which the construction of an SCT needs to be adjusted. However, for such nets
even the standard CT construction no longer works, mainly because the presence
of additional resources may constrain behaviour. Thus in [3], a CT construction
has been developed for (a subclass of) PT-nets with inhibitor arcs. and in [13]
this construction was extended to deal with the a priori step semantics.

In our research we are interested in coverability in the context of distributed
systems consisting of communicating components. Systems of this kind often be-
have in a ‘globally asynchronous locally synchronous’ (GALS) manner implying
that at the local level their computational progress is captured by a maximally
concurrent step semantics. For such systems, an accurate behavioural represen-
tation can be provided by PT-nets with localities (PTL-nets [14]) with explicitly

180 J. Kleijn and M. Koutny

located transitions. A maximally concurrent semantics however does not in gen-
eral satisfy the substep property nor will it be monotonous. Still, it can be viewed
as monotonic in the weaker sense that adding resources can enable larger steps
without invalidating already enabled transitions. This weak monotonicity can
then perhaps be used to construct SCT for such systems. Here we undertake a
first case study of this execution model, by looking at marked graphs, a basic
Petri net model for systems with components communicating through buffers.

The paper is a follow-up to our investigations in [13] where we introduced
SCTs more or less ad hoc for a class of inhibitor nets. It initiates a system-
atic investigation of SCTs, focussing on the correctness of the construction for
systems where transitions occurring in steps are subject to additional synchro-
nisation constraints based on the localities (of the components) they belong to.
Here we explore the construction of step coverability trees for two extreme op-
tions: no synchrony i.e., the standard PT-net step semantics, and full synchrony
i.e., maximal concurrency, for a simple class of nets without local choices. Hence
we recall the construction of SCTs derived from [13], specialising the basic results
and proofs to the case of PT-nets and thus making them more accessible and
so amenable to possible modification. Next, we demonstrate how to construct
SCTs for the class of marked graphs operating under the maximally concurrent
semantics.

We use standard mathematical notation, in particular, � denotes disjoint set
union, N = {0, 1, 2, . . .} the set of natural numbers, and ω the first infinite
ordinal. We assume that ω+α = ω−α = k ·ω = ω, n−ω = 0 ·ω = 0 and n < ω,
for n ≥ 0, k > 0 and α ∈ N ∪ {ω}.

A multiset over a set X (in this paper always finite) is a function μ : X → N,
and an extended multiset (over X) is a function μ : X → N∪{ω}. Any subset of
X may be viewed through its characteristic function as a multiset over X , and
a multiset may always be considered as an extended multiset. For an extended
multiset μ, we write x ∈ μ if μ(x) > 0. For a multiset μ over X , the cardinality
of μ is defined as |μ| df=

∑
x∈X μ(x). We will use formal sums to denote extended

multisets; thus we write 2×a+b+ω×c for the multiset μ with μ(a) = 2, μ(b) = 1,
μ(c) = ω, and μ(x) = 0, for x �= a, b, c. For an extended multiset μ over X ,
its ω-domain is domω(μ) = {x ∈ X | μ(x) = ω}. Let μ and μ′ be extended
multisets over X . We write μ ≤ μ′ and say that μ′ covers μ if μ(x) ≤ μ′(x)
for all x ∈ X . If μ(x) ≤ μ′(x) and μ(x) �= μ′(x), we write μ(x) < μ′(x).
Moreover, (μ + μ′)(x) df= μ(x) + μ′(x), and (μ − μ′)(x) df= max{0, μ(x) − μ′(x)}.
The multiplication of μ by a natural number is given by (n · μ)(x) df= n · μ(x). If
μ is a multiset over X , μ′ an extended multiset over the same set X and k ≥ 0,
then we say that μ is a k-approximation of μ′ if, for all x ∈ X , μ(x) = μ′(x) if
μ′(x) < ω, and otherwise μ(x) > k. We denote this by μ 	k μ

′.
In proofs we may use implicitly Dickson’s Lemma which states that every

infinite sequence of extended multisets over a common finite set contains an
infinite non-decreasing subsequence, and König’s Lemma which states that every
infinite, finitely branching tree has an infinite path starting from the root.

Applying Step Coverability Trees 181

2 PT-Nets

A net is a triple N = (P, T,W) such that P and T are disjoint finite sets of
places and transitions, respectively, and W : (T × P) ∪ (P × T) → N is the
weight function of N . In diagrams, places are drawn as circles and transitions
as rectangles. If W (x, y) ≥ 1 for some (x, y) ∈ (T × P) ∪ (P × T), then (x, y)
is an arc leading from x to y. As usual, arcs are annotated with their weight
if this is 2 or more. A double headed arrow between p and t indicates that
W (p, t) = W (t, p) = 1. We assume that, for every t ∈ T , there is a place p such
that W (p, t) ≥ 1 or W (t, p) ≥ 1, i.e., transitions are never isolated. (Requiring
that transitions are not isolated instead of imposing the stronger condition that
each transition has both at least one input place and at least one output place
has no technical consequences, but it allows for smaller examples.)

Given a transition t of a net N = (P, T,W), we denote by t• the multiset
of places given by t•(p) df= W (t, p) and by •t the multiset of places given by
•t(p) df= W (p, t). Both notations extend to multisets U of transitions in the
following way: U• df=

∑
t∈U U(t) · t• and •U

df=
∑

t∈U U(t) · •t. For a place p, we
denote by •p and p• the multisets of transitions given by p•(t) df= W (p, t) and
•p(t) df= W (t, p), respectively.

The states of a net N = (P, T,W) are given as multisets of places, so-called
markings. Given a marking M of N and a place p ∈ P , we say that p is marked
(under M) if M(p) ≥ 1 and that M(p) is the number of tokens in p. In diagrams,
every token in a place is drawn as a small black dot. Also, if the set of places of
N is implicitly ordered, P = {1, . . . , n}, then we will represent any marking M
of N as the n-tuple (M(1), . . . ,M(n)) of natural numbers.

Transitions represent actions which may occur at a given marking and then
lead to a new marking. First, we discuss the sequential semantics of nets.

A transition t of N = (P, T,W) can occur at a marking M of N if for each
place p, the number of tokens M(p) in p is at leastW (p, t). Formally, t is enabled
at M , denoted by M [t〉, if •t ≤M . If t is enabled at M , then it can be executed
(or fired) leading to the marking M ′ df= M − •t+ t•, denoted by M [t〉M ′. Thus
M ′ is obtained from M by deleting W (p, t) tokens from each place p and adding
W (t, p) tokens to each place p.
A firing sequence from a marking M to marking M ′ in N is a possibly empty
sequence of transitions σ = t1 . . . tn such that M = M0 [t1〉M1 [t2〉M2 · · · Mn−1
[tn〉Mn = M ′, for some markings M1, . . . ,Mn−1 of N . Note, that if σ is the
empty firing sequence, then M = M ′. If σ is a firing sequence from M to M ′,
then we write M [σ〉fs M ′ and call M ′ fs–reachable from M (in N).

Figure 1(a) shows a net with marking (1, 0, 0). It has infinitely many non-
empty firing sequences starting from (1, 0, 0), such as σ1 = t, σ2 = u, σ3 = uv,
and σ4 = uvv. The set of markings fs–reachable from the marking (1, 0, 0) is also
infinite and it comprises, for example, (1, 1, 1), (0, 1, 0), (0, 1, 1), and (0, 1, 2).

Next we define a semantics of nets in terms of concurrently occurring transi-
tions. A step of a net N = (P, T,W) is a multiset of transitions, U : T → N.

182 J. Kleijn and M. Koutny

(a)

3 2

1
t u

v

(b)

(0, 1, ω) (0, 1, 0) (1, 0, 0)(1, ω, ω)(1, ω, ω)

(0, 1, ω)(0, ω, ω)(0, ω, ω) (1, ω, ω)

v
uv t v

u t
v

(c)

(0, 1, ω) (0, 1, 0) (1, 0, 0)(1, ω, ω)(1, ω, ω)

(0, 1, ω)(0, ω, ω)(0, ω, ω) (1, ω, ω)

ω×v
uv t ω×v
u+ ω×v t+ ω×v
ω×v

Fig. 1. A PT-net (a) with its sequential (b) and step (c) coverability trees

A step U is enabled, at a marking M of N if •U ≤ M . Thus, in order for U
to be enabled at M , for each place p, the number of tokens in p under M should
at least be equal to the accumulated number of tokens needed as input to each
of the transitions in U , respecting their multiplicities in U . If U is enabled at
M , then it can be executed leading to the marking M ′ df= M − •U +U•, denoted
M [U〉M ′. Thus the effect of executing U is the accumulated effect of executing
each of its transitions (taking into account their multiplicities in U).
A step sequence from a marking M to marking M ′ in N is a possibly empty
sequence τ = U1 . . . Un of non-empty steps Ui such thatM = M0 [U1〉M1 [U2〉M2
· · · Mn−1 [Un〉Mn = M ′, for some markings M1, . . . ,Mn−1 of N . If τ is a step
sequence from M to M ′ (in N), we write M [τ〉M ′ and M ′ is said to be step–
reachable or simply reachable from M (in N). Obviously, every firing sequence
can be seen as a step sequence. Conversely, it is immediate that every step leading
from a marking M to M ′ can be sequentialised to a firing sequence from M to
M ′. Hence, thanks to this substep property, fs–reachability and step–reachability
are the same for nets.

The net in Figure 1(a) has infinitely many step sequences starting from
(1, 0, 0), e.g., τ1 = t, τ2 = t(t + v), τ3 = t(t + v)(t + 2×v) and τ4 = t(t +
v)(t+ 2×v)(t+ 3×v).

A Place/Transition net (or PT-net) is a net equipped with an initial mark-
ing. It is specified as a tuple N = (P, T,W,M0), where N ′ = (P, T,W) is its
underlying net, and M0 is a marking of N ′. All terminology and notation with
respect to enabling, firing, and steps carry over from N ′ to N . A step (firing)
sequence of N is a step (firing) sequence starting from its initial marking M0.
The set of reachable markings of N consists of all markings reachable from M0.

A place p of a PT-net N = (P, T,W,M0) is bounded if there is n ∈ N such that
M(p) ≤ n for every marking M reachable from M0; otherwise it is unbounded.
N itself is bounded if all its places are bounded. Considering the PT-net in
Figure 1(a), one can easily see that 1 is the only bounded place.

The place boundedness problem for PT-nets is to decide whether a given place
of a PT-net is bounded; the boundedness problem is to decide whether all places
in a given PT-net are bounded.

Applying Step Coverability Trees 183

In the subsequent constructions of coverability trees, we use extended markings
and extended steps, generalising the markings and steps defining the execution
semantics of PT-nets, to extended multisets of respectively places and transi-
tions. Enabling and firing, as well as the result of executing transitions(s), are
defined as for the finite case. Note that since ω − ω = ω, an ω-marked place
remains ω-marked even after the execution of a step which ‘removes’ from it ω
tokens. It should be stressed that the ω-entries in extended markings and steps
do not represent actual tokens or fired transitions, but rather, indicate that the
number of tokens or simultaneous firings of transitions can be arbitrarily high.

3 Coverability Tree

We begin by recalling the notion of a coverability tree for a PT-net and how
such tree can be constructed assuming the sequential semantics of PT-nets (see,
e.g., [10,12,17,7]). A coverability tree CT = (V,A, μ, v0) for a PT-net N =
(P, T,W,M0) has a set of nodes V , a root node v0, and a set of directed labelled
arcs A with labels in T . Each node v is labelled by an extended marking μ(v) of
N . A t-labelled arc from v to w will be denoted as v t−→ w. We write v �A w
(or v �σ

A w) to indicate that node w can be reached from node v (with σ as the
sequence of labels along the path from v to w).

An algorithm for the construction of CT is given in Table 1. Initially, CT has
one node corresponding to the initial marking. A node labelled with an extended
marking that already occurs as a label of a processed node, is terminal and does
not need to be processed since its successors already appear as successors of
this earlier node. For each transition enabled at the extended marking of the
node being processed, a new node and a new arc labelled with that transition
between these two nodes is added. The label of the new node is the extended
marking reached by executing that transition. Note that the algorithm as we give
it here is non-deterministic since one may choose which node to process next.
Imposing an order on the processing of the nodes is not relevant for the results
mentioned here. A key aspect of the algorithm in Table 1 is the condition (*)
which allows one to replace some of the integer entries of an extended marking
by ω (to indicate that the number of tokens in the corresponding place can be
arbitrarily high). This is justified by the monotonicity of the sequential semantics
of PT-nets, according to which any sequence of transitions (starting from some
M ′) labelling the path from an ancestor node to a newly generated one (and
leading to M with M ′ < M) can be repeated indefinitely. This implies the
unboundedness of all places p for which M ′(p) < M(p).

The following are well-known facts (see, e.g., [10,7,3]) about the algorithm in
Table 1, proving its correctness and indicating how its result CT is a finite repre-
sentation of the firing sequences of the PT-net N and provides a useful covering
set for its reachable markings. First of all, we observe that the algorithm always
terminates. This fact can be proved using condition (*) in Table 1, necessary for
the introduction of additional ω-entries in the labels of the nodes.

Fact 1. CT is finite. �

184 J. Kleijn and M. Koutny

Table 1. Algorithm generating a coverability tree of a PT-net N = (P, T, W, M0)

CT = (V, A, μ, v0) where V = {v0}, A = ∅ and μ[v0] = M0

unprocessed = {v0}
while unprocessed �= ∅

let v ∈ unprocessed

if μ[v] /∈ μ[V \unprocessed] then
for every μ[v][t〉M

V = V � {w} and A = A ∪ {v t−→ w} and unprocessed = unprocessed ∪ {w}
if there is u such that u �A v and μ[u] < M (*)
then μ[w](p) = (if μ[u](p) < M(p) then ω else M(p))
else μ[w] = M

unprocessed = unprocessed \ {v}

All firing sequences of N are represented in CT , though sometimes one needs
to ‘jump’ from one node to another (labelled by the same extended marking).

Fact 2. For each firing sequence M0[t1〉M1 . . .Mn−1[tn〉Mn of N , there are arcs
v0

t1−→ w1, v1
t2−→ w2, . . . , vn−1

tn−→ wn in CT such that: (i) μ[wi] = μ[vi] for
i = 1, . . . , n− 1; and (ii) Mi ≤ μ[vi] for i = 0, . . . , n− 1, and Mn ≤ μ[wn]. �

As a consequence, each reachable marking of N is covered by an extended mark-
ing occurring as a label in CT . Also, by the next fact, the ω-entries of an ex-
tended marking appearing in CT , indicate that there are reachable markings of
N which simultaneously grow arbitrarily large on the corresponding places and
have, for other places, exactly the same entries as the extended marking.

Fact 3. For every node v of CT and k ≥ 0, there is a reachable marking M of
N which is a k-approximation of μ[v], i.e., M 	k μ[v]. �

Consequently, boundedness of (each place of) N can be read off from CT .

Fact 4. A place p of N is bounded iff μ[v](p) �= ω for every node v of CT. �

A coverability tree CT for the PT-net in Figure 1(a) is shown in Figure 1(b).
Note that according to the facts above, the markings of places 2 and 3 can grow
unboundedly at the same time and place 1 is the only bounded place.

4 Coverability Tree and Step Semantics

The construction in Table 1 is satisfactory when one considers the sequential se-
mantics of PT-nets. However, it turns out to be problematic when steps and step
sequences are relevant. Consider, for example, the two PT-nets in Figure 2(a, b)
for which the algorithm in Table 1 generates the same coverability tree shown in
Figure 2(c). Yet, clearly, the first PT-net enables arbitrarily large steps (multiple
occurrences of a) whereas the latter enables only singleton steps. An attempt to
fix the problem could be to use steps of executed transitions rather than single

Applying Step Coverability Trees 185

Table 2. Algorithm generating a step coverability tree of a PT-net N = (P, T, W,M0)

SCT = (V, A, μ, v0) where V = {v0}, A = ∅ and μ[v0] = M0

unprocessed = {v0}
while unprocessed �= ∅

let v ∈ unprocessed

if μ[v] /∈ μ[V \unprocessed] then
for every μ[v][U〉M with U ∈ select(μ[v])

V = V � {w} and A = A ∪ {v U−→ w} and unprocessed = unprocessed ∪ {w}
if there is u such that u �A v and μ[u] < M (**)
then μ[w](p) = (if μ[u](p) < M(p) then ω else M(p))
else μ[w] = M

unprocessed = unprocessed \ {v}

transitions to label the arcs. But this still would not be enough since, as in the
case of the PT-net in Figure 2(a), there may be infinitely many steps enabled
at a reachable extended marking. The solution as presented next is to adapt the
coverability tree construction by incorporating not only ordinary steps, but also
extended steps with ω-components.

Table 2 shows an algorithm for constructing a step coverability tree. It is sim-
ilar to that in Table 1 but uses extended steps rather than single transitions to
label edges. The for-loop is executed for steps from a finite yet sufficiently rep-
resentative subset select(.) of extended steps enabled at the non-empty extended
marking under consideration. We define select(μ[v]) as the set of all extended
steps of transitions U enabled at μ[v] with U(t) = ω for each transition t such
that ω×t is enabled at μ[v]. We refer to the algorithm resulting from this instan-
tiation as the SCTC (step coverability tree construction). Figures 1(c) and 2(d)
show the results of applying SCTC to the nets in Figures 1(a) and 2(a).

We now establish the correctness of the SCTC in Table 2. The proof of the first
result is based on the monotonicity of the step semantics employed in condition
(**).

Theorem 1 ([13]). SCT is finite.

The next result shows that every step sequence of the PT-net can be retraced
in SCT if not exactly, then at least through a covering step sequence.

Theorem 2. For each step sequence M0[U1〉 . . . [Un〉Mn of N , there are arcs
v0

V1−→ w1, v1
V2−→ w2, . . . , vn−1

Vn−→ wn in SCT such that: (i) Ui ≤ Vi for
i = 1, . . . , n, and μ[wi] = μ[vi] for i = 1, . . . , n − 1; and (ii) Mi ≤ μ[vi] for
i = 0, . . . , n− 1, and Mn ≤ μ[wn].

Proof. We proceed by induction on n. Clearly, the base case for n = 0 holds.
Assume that the result holds for n and consider Mn[Un+1〉Mn+1.

Let vn be the first generated node such that μ[vn] = μ[wn]. As Mn ≤ μ[vn]
and Mn[Un+1〉Mn+1, there is M such that μ[vn][Un+1〉M and Mn+1 ≤ M . Let
Vn+1 be the ≤-smallest step in select(μ[vn]) satisfying Un+1 ≤ Vn+1 (such a

186 J. Kleijn and M. Koutny

(a)

1

2

a

(b)

1

2

a

(c)

(1, 0)

(1, ω)

(1, ω)

a

a
(d)

(1, 0)

(1, ω)

(1, ω)

ω×a

ω×a

Fig. 2. Two PT-nets (a, b) with their sequential (c) coverability tree, and a step (d)
coverability tree of the first PT-net

step always exists). Moreover, let M ′ be such that μ[vn][Vn+1〉M ′. It is easy
to see that Mn+1 ≤ M ′. We then observe that during the processing of vn

an arc vn
Vn+1−→ wn+1 is created such that Mn+1 ≤ μ[wn+1] which follows from

Mn+1 ≤M ′ ≤ μ[wn+1].
�

As stated next, the ω-entries of the extended markings appearing in SCT , faith-
fully indicate (simultaneous) unboundedness of the corresponding places.

If μ is a multiset over some set X , then we let μω �→k denote the multiset over
X such that, for all x ∈ X , μω �→k(x) = k if μ(x) = ω, and μω �→k(x) = μ(x)
otherwise.

Theorem 3. For every node v of SCT and k ≥ 0, there is a reachable marking
M of N such that M 	k μ[v].

Proof. By induction on the distance from the root of the nodes of the tree. In
the base case, v = v0 is the root of the tree and so μ[v] = M0. Suppose that the
result holds for a node w, and that w U−→ v with μ[w][U〉M ′′. Note that by the
SCTC domω(μ[w]) ⊆ domω(M ′′) ⊆ domω(μ[v]). Let k ∈ N.

First assume that domω(M ′′) = domω(μ[v]). Consider now Y df= Uω �→0 and let
M ′ be a reachable marking of N such that M ′ 	k′ μ[w] where k′ = k+1+ |•Y |.
Then Y df= Uω �→0 is enabled at M ′. Let M be the reachable marking of N such
that M ′[Y 〉M . Since t ∈ domω(U) implies that all input and output places of t
are in domω(μ[w]), it now follows immediately that M 	k μ[v].

Next consider the case that domω(M ′′) �= domω(μ[v]). Thus R df= {p ∈ P |
μ[v](p) = ω ∧M ′′(p) �= ω} �= ∅. For all places p not in R we have μ[v](p) =
M ′′(p). From the construction of SCT we then know, that there is a node u such
that u �A v and μ[u] < M ′′. Hence there is a path u = w1

U1−→ w2 . . . wn
Un−→

wn+1 = v (i.e., wn = w and Un = U) in SCT . Let Wi
df= (Ui)ω �→0 for i = 1, . . . , n

and let cons df=
∑

i∈{1,...,n} |•(Wi)| be the total number of tokens consumed along
the arcs of the path from u to v by non-ω occurrences of transitions. Let M ′ be a
reachable marking of N such that M ′ 	k′ μ[u] where k′ = k+1+ k · cons . Then
σ = (W1 . . .Wn)k is enabled at M ′. Let M be the reachable marking of N such
that M ′[σ〉M . As before, it can now easily be seen that that M 	k μ[v].
�

From Theorems 1, 2, and 3 it follows that step coverability trees (like coverability
trees) can be used to decide on the boundedness of places of a PT-net.

Applying Step Coverability Trees 187

Theorem 4. Place p of N is bounded iff μ[v](p) �= ω for all nodes v of SCT.

The step coverability tree however makes it possible to investigate concurrency
aspects of the behaviour of PT-nets. Not only, as implied by Theorem 3 are all
executable steps covered in the SCT (by the labels of the arcs), it also gives exact
information on possible unbounded auto-concurrency and potential simultaneous
execution of unboundedly many occurrences of (different) transitions. As an
example one may compare the step coverability tree in Figure 1(c) derived for
the PT-net in Figure 1(a) with its coverability tree in Figure 1(b).

Theorem 5. For every k ≥ 0 and every W labelling an arc in SCT, there is a
step U enabled at a reachable marking of N satisfying U 	k W .

Proof. Let v W−→ w be an arc in SCT . Moreover, let k ∈ N, U = Wω �→k+1,
and k′ = |•U |. From W being enabled at μ[v], it follows that domω(•W) ⊆
domω(μ[v]). By Theorem 3, there is a reachable M of N such that M 	k′ μ[v]
and so U is enabled at M . This and U 	k W completes the proof.
�

We then obtain a result which, together with Theorem 1, implies that the step
executability problem for PT-nets is decidable.

Theorem 6. A step U is enabled at some reachable marking of N iff there is
an arc in SCT labelled by W such that U ≤W .

Proof. Follows immediately from Theorems 2 and 5 and the substep property
of the step semantics of PT-nets by which a step U is enabled at a marking M
whenever U ≤ U ′ (U is a substep of U ′) for some U ′ enabled at M .
�

5 Weak Monotonicity and Component-Based Systems

When talking about a component-based distributed system, one is typically
specifying its architecture in terms of components communicating through, e.g.,
point-to-point buffers or partial broadcast. In many cases, such a static descrip-
tion is the only aspect of compositionality which is explicitly specified, and one
simply assumes that the dynamic behaviour follows a standard execution rule
like the one given earlier in this paper in terms of step sequences for PT-nets,
or in terms of interleaving sequences (traces) as in the case of standard process
algebras [15,11,2,16]. As a result, when dealing with software systems, one might
not take into account the fact that an individual component would often run on
a dedicated multi-core processor, or that the clocks of some of these processors
can be tightly synchronised, where one would therefore expect task schedulers
to achieve a significant degree of urgency and synchronisation of enabled tasks
within component(s). In case of hardware, similar observations can be made in
the context of networks-on-a-chip.

A way to capture such synchronicity is to stipulate that actions belonging to a
specific component (or a set of components) are executed with maximal concur-
rency, leading to a clustering of actions into synchronously operating localities,

188 J. Kleijn and M. Koutny

and allowing asynchronous execution at the inter-locality level. As a result, the
component-based nature of the system is reflected at the level of behaviours.

These considerations led to the introduction, in [14], of PT-nets with localities
(PTL-nets, for short). Formally, a PTL-net is a PT-net augmented with a local-
ity mapping associating localities to transitions, and so partitioning the set of
transitions in disjoint sets of co-located transitions. The new enabling condition
for steps allows only those steps to occur which are locally maximally concurrent
with respect to the localities they involve. A special subclass of PTL-nets is one
where the locality mapping maps all transitions to a single location leading to
what is usually referred to as maximally concurrent or maximal step semantics.
In such a case, we omit the explicit locality mapping and state that a step U is
max-enabled at a marking M if •U ≤ M and there is no transition t such that
•U + •t ≤M . The notions of max-reachability, etc, are defined accordingly.

For the problem considered in this paper, an important feature of the (locally)
maximal step semantics is that such steps cannot in general be split and so the
interleaving view of their semantics is not accurate. In particular, the set of
max-reachable markings of a PT-net (lmax-reachable markings of a PTL-net)
is in general a proper (and typically much smaller) subset of the fs–reachable
markings. Another aspect is that, although the dynamic behaviour of PTL-nets
is not monotonic it can be seen as monotonic in a weak sense. Increasing the
number of tokens will never invalidate the enabledness of individual transitions.
Thus providing more tokens may disable a previously enabled step, but will
always lead to the enabling of an extension of this step.

In the last part, we explore the step coverability tree construction for marked
graphs [4] subject to the maximally concurrent semantics. Marked graphs do not
exhibit local choices between transitions and are typically used to model systems
with a high degree of concurrency. A marked graph is an unweighted PT-net
N = (P, T,W,M0), i.e., W (x, y) ≤ 1 for all x, y ∈ (T × P) ∪ (P × T), such that
each place p has one input and one output transition (i.e., |•p| = |p•| = 1) and
each transition t has at least one input and one output place (i.e., |•t| ≥ 1 ≤
|t•|). Although marked graphs are a simple class of nets, they are practically
relevant [24] (see also [9] for a related system model) as they can be thought of
as representing systems consisting of (strongly connected) components without
local choices which communicate through asynchronous buffers, a fairly common
component-based architecture [5].

Each strongly connected component of a marked graph is covered by (concur-
rent) circuits that may share transitions. A circuit (cycle) of N is a non-empty
sequence x1, x2, . . . , xk of distinct places and transitions such that xi+1 ∈ xi

•

for all 1 ≤ i ≤ k − 1, and x1 ∈ xk
•. It is well-known (see, e.g., [6] where marked

graphs are called T-systems) that the token count on a circuit of a marked graph
is invariant under the firing of transitions. As a consequence, transitions with
an input place belonging to an initially unmarked circuit, will never be enabled.
On the other hand, a marked graph is live if and only if all its circuits have at
least one token in the initial marking. (A PT-net is said to be live if for all its

Applying Step Coverability Trees 189

(a) (b)

Fig. 3. Two live marked graphs

fs–reachable markings M and transitions t there is a marking fs–reachable from
M which enables t.) We will restrict ourselves here to live marked graphs.

Figure 3 shows two live marked graphs, which both have an unbounded
(buffer) place under the sequential semantics, but under the maximally con-
current semantics only the one on the right has an unbounded place. However,
adding one token to the left cycle in Figure 3(a) and one token to the right cycle
in Figure 3(b), would reverse the situation. Examples like these demonstrate that
boundedness for maximally concurrent marked graphs is a non-trivial problem,
being sensitive both to the graph structure and initial marking.

For the class of marked graphs and the maximal step semantics we define the
mapping select(.) as in the previous section, but now consider only max-enabled
steps. Thus select(μ[v]) is the set of all extended steps of transitions U max-
enabled at μ[v] with U(t) = ω for each transition t such that ω×t is enabled at
μ[v]. Furthermore we adapt the algorithm in Table 2 by changing line (**) to

‘if there are u, u′ such that u �τ
A u

′ �τ
A v and μ[u] < μ[u′] < M ’

That is, we require not only an inequality on markings, but double inequalities
and the same (maximal) step sequences in-between the three markings. As il-
lustrated by the marked graph in Figure 3(a), the original condition (**) is too
weak. Since, in the maximal step semantics the fact that M [U1 . . . Uk〉M ′ and
M < M ′ does not necessarily guarantee that U1 is enabled at M ′, there is no
guarantee that U1 . . . Uk can be repeated indefinitely.

We refer to the result of a run of the thus modified algorithm as maxSCTmg.
Before establishing that maxSCTmg has the desired properties, we prove using
weak monotonicity, as a general property of all unweighted PT-nets executed
under the maximal step semantics, that maximal step sequences that do not
lead to a decrease of the number of tokens per place and which can be repeated
at least twice from a marking can be repeated indefinitely from that marking.
In what follows, we use M〈τ〉 to denote the marking reached from a marking
M after executing step sequence τ . Moreover, #t(τ) will denote the number of
occurrences of any transition t within τ .

Theorem 7. Let N be an unweighted PT-net with initial marking M0. If κ
and τ are two sequences of steps such that κττ ∈ stepsmax (N) and M0〈κ〉 ≤
M0〈κτ〉 ≤M0〈κττ〉, then κτ i ∈ stepsmax (N) for all i ≥ 1.

Proof. Let τ = U1 . . . Uk and k ≥ 1. By M0〈κτ〉 ≤ M0〈κττ〉 and U1 being
enabled at M0〈κτ〉, there is U such that U1 ≤ U and κττU ∈ stepsmax (N).
Moreover, since N has only arcs with weight 1 and M0〈κττ〉 − M0〈κτ〉 =
M0〈κτ〉−M0〈κ〉 it follows that U = U1. Similarly, we can show that κττU1 . . . Ui

∈ stepsmax(N) for every i ≤ k, and so κτ3 ∈ stepsmax (N). Moreover,

190 J. Kleijn and M. Koutny

M0〈κτ3〉 −M0〈κτ2〉 = M0〈κτ2〉 −M0〈κτ1〉. Hence M0〈κτ2〉 ≤ M0〈κτ3〉. Pro-
ceeding in this way, we easily see that κτ i ∈ stepsmax (N) for all i ≥ 1.
�

We now define a class of extended marked graphs (EMG) which, intuitively, are
strongly connected live marked graphs supplied with some additional infrastruc-
ture for (acyclic) communication.

A Each strongly connected live marked graph belongs to EMG.
B Let N be a net in EMG, t be a transition of N , and p be a fresh place

with an arbitrary marking. Adding an arc from t to p results in a net which
belongs to EMG.

C Let N be a net in EMG, p1, . . . , pk (k ≥ 1) be places of N without outgo-
ing arcs, t a fresh transition, and q1, . . . , qm (m ≥ 1) be fresh places with
arbitrary markings. Adding an arc from each pi to t, and from t to each qj ,
results in a net which belongs to EMG.

D Let N be a net in EMG, p1, . . . , pk (k ≥ 1) be distinct places of N without
outgoing arcs, N ′ be another, disjoint, strongly connected live marked graph
and t1, . . . , tk be distinct transitions of N ′. Adding an arc from each pi to ti
results in a net which belongs to EMG.

Properties important here are that each live marked graph belongs to EMG and
that each PT-net in EMG is live. The next two results provide some insight in
the dynamics of the component nets. By the first observation, the firing distance
between transitions in a component of a marked graph is always bounded.

Proposition 1. Let N be a strongly connected marked graph. Then there is a
constant � such that |#t(τ)−#u(τ)| ≤ � for every step sequence τ of N and for
all transitions t and u.

Proof. Clearly, for any two transitions on any given circuit there is such a con-
stant. The result follows from this, N being connected and covered by cir-
cuits which synchronise on common transitions, and the inequality |a − b| ≤
|a− c| + |c− b| for any a, b, c.
�

Secondly, when a component returns to a marking it must be the case that each
of its transitions has fired the same number of times.

Proposition 2. Let N be a strongly connected marked graph with initial mark-
ing M0, and κτ be a step sequence of N such that M0〈κ〉 = M0〈κτ〉. Then
#t(τ) = #u(τ) for all transitions t and u.

Proof. The equality holds if t and u belong to a circuit. Moreover, N is connected
and covered by circuits which synchronise on common transitions.
�

Now we are ready for a precise characterisation of the behaviour of (extended)
marked graphs subject to the maximal step semantics.

Theorem 8. Let EMG be a net in EMG with initial marking M0.
Then there are non-empty sequences of non-empty steps, κ and τ , such that
κτ i ∈ stepsmax(EMG) for all i ≥ 1. Moreover, #t(τ) > 0 for all t.

Applying Step Coverability Trees 191

Proof. We proceed by induction on the structure of EMG.
A: Then EMG is finite state, and for each reachable marking there is only

one maximal step enabled. Since EMG is live, the statement follows.
B: Then p does not have any influence on the behaviour of N within EMG,

and the result holds by the induction hypothesis.
C: By the induction hypothesis, there are non-empty sequences of non-empty

steps, κ and τ , such that κτ i ∈ stepsmax (N) for all i ≥ 1. Moreover, #t′(τ) > 0
for all t′ of N . We observe that t does not have any influence on the behaviour
of N within EMG. Hence there are sequences μi (i ≥ 0) of steps such that:
μ0μ1 . . . μi ∈ stepsmax (EMG) for all i ≥ 0 with μ̂0 = κ and μ̂i = τ (i ≥ 1),
where each μ̂j is μj after deleting all the occurrences of t.
Let Mi

df= M0〈μ0μ1 . . . μi〉 for i ≥ 1. We observe that from the definition of the
maximal step semantics it follows that, for every h ≤ k and m ≥ 1,
Mm(ph) = M1(ph) +m · #th

(τ) − minj{M1(pj) + (m− 1) · #tj (τ) + #tj (τ ′)}
where each ti is the input transition of pi and τ = τ ′U with U a step of EMG.
Hence, for sufficiently large m, the minimum is realised by l such that #tl

(τ) =
minj{#tj (τ)} > 0 and, moreover, M1(pl) + #t1(τ ′) ≤ M1(pj) + #tj (τ ′) for all
j such that #tl

(τ) = #tj (τ). As a result, for such an m, Mm(pl) = U(tl). This
means, in turn, that there is L such that M(pl) ≤ L for every marking M max-
reachable fromMm (we can takeL = U(tl)+#t1(τ)). Furthermore, there is n ≥ m
such that for all j satisfying #tl

(τ) < #tj (τ) and markingM max-reachable from
Mn, we haveM(pj) > L and so all such places are irrelevant for the executability
of t atM (i.e., they cannot block it). Finally, for each j satisfying #t1(τ) = #tj (τ),
we have thatMi(pj) = M1(pj)−M1(pl)+U(tl) for all i ≥ m. Hence it follows from
the definition of the maximal step semantics that μ̃m = μ̃m+1 = . . . , where each μ̃j

is μj with all the occurrences of transitions of N deleted, and so μm = μm+1 = . . .
which yields the desired result since also #t(μm) > 0.

D: By the induction hypothesis, there are non-empty sequences of non-empty
steps, κ and τ , such that κτ i ∈ stepsmax (N) for all i ≥ 1. Moreover, #t′(τ) > 0
for all t′ of N . We observe that N ′ does not have any influence on the behaviour
of N within EMG. Hence there are sequences μi (i ≥ 0) of steps such that:
μ0μ1 . . . μi ∈ stepsmax (EMG) for all i ≥ 0 with μ̂0 = κ and μ̂i = τ (i ≥ 1),
where each μ̂j is μj after deleting all the occurrences of transitions in N ′.
Let Mi

df= M0[μ0μ1 . . . μi〉 for i ≥ 1. Moreover, let ui be the only input transition
of pi, and I df= {pi | ∀j : #ui(τ) ≤ #uj (τ)}.
We first observe that, due to Proposition 1 and N ′ being finite state, there is m
such that for each marking M which is max-reachable from Mm, places pj /∈ I
have no influence on the firing of tj .

Moreover, also by Proposition 1, for some n ≥ m, there is K such that for
all p, p′ ∈ I and all markings M max-reachable from Mm, |M(p)−M(p′)| ≤ K.
Now, if no place p ∈ I ever blocks a transition belonging to N ′ after Mh, for
some h ≥ n, then N ′ behaves under the maximal step semantics as a strongly
connected live marked graph within EMG. By the induction hypothesis, it has
its own sequences of steps κ′ and τ ′ as in the formulation of this result, and after
at most |τ | · |τ ′| steps N and N ′ start executing a common τ ′′.

192 J. Kleijn and M. Koutny

Otherwise we have such blocking infinitely many times, and so there is L such
that for infinitely many j we have Mj(p) ≤ L for some p ∈ I. And so there is Q
such that for all such indices j, Mj(p) ≤ Q for all p ∈ I. It therefore follows that
the same marking on places I is repeated infinitely many times on the places of
I as well as the places of N ′ (recall that N ′ is finite-state). This means that we
can find two markings, M ′ and after that M ′′, for which, in addition, we have
that they happened after the execution of the same Ul within τ on the part of
N . It now suffices to consider τ ′ to be the step sequence between M ′ and M ′′,
and then proceed similarly as in the previous case.
�

That maxSCTmg is finite now follows from Theorem 8 and the fact that live
marked graphs under the under maximal concurrent semantics are deterministic
systems (the reachability graph does not have any branching nodes). Moreover,
that the ω-markings generated by maxSCTmg are sound and indeed reflect un-
boundedness of places follows from Theorem 7.

Actually, Theorem 8 provides us with a complete description of the behaviour
of extended marked graphs. Since each extended marked graph EMG is a de-
terministic system (with a ‘linear’ reachability graph), it follows from our result
above that there are κ and τ , such that every maximal step sequence of EMG
is a prefix of κτ i for some i ≥ 0. Thus, intuitively, Theorem 8 states that, under
maximal concurrency, a live marked graph behaves as a set of cogs (each cog
corresponding to the cyclic behaviour of a strongly connected component) which
initially can progress fairly erratically, but which after some time all synchronise
and work in a highly regular manner, irrespective of the initial marking (provided
that it puts at least one token on any circuit). This has the consequence that if
one embeds the marked graph in an environment which can add or delete tokens
(without emptying any circuit) then the system sooner or later self-stabilises
assuming a cyclic pattern of execution (see also [9] for comparable results).

6 Concluding Remarks

In this paper we have continued our investigation initiated in [13] on the con-
struction of step coverability trees which can be useful for the analysis of various
Petri net models. It can be already said that SCTs extend in a smooth way
the standard CTs and can be used to answer concurrency-related questions to
which the latter are simply insensitive. We also added results on the viability of
the SCT construction presented in [13] for inhibitor nets by adapting the con-
struction to deal with marked graphs executed under the maximally concurrent
semantics. In particular, the results allow one to decide (place) boundedness for
such a system model. Although the class of marked graphs is limited, we feel
that the results we obtained are a crucial stepping stone in the discovery of
coverability tree constructions for wider classes of system models.

Acknowledgement. We thank the reviewers for their constructive comments. This
research was partially supported by the Rae&Epsrc Davac project, and Nsfc

Grant 60433010.

Applying Step Coverability Trees 193

References

1. Agerwala, T.: A Complete Model for Representing the Coordination of Asyn-
chronous Processes. In: Hopkins Comp. Research Rep., vol. 32. Johns Hopkins
Univ. (1974)

2. Baeten, J.C.M., Weijland, W.P.: Process algebra. Cambridge Tracts in Theoretical
Computer Science, vol. 18. Cambridge University Press, Cambridge (1990)

3. Busi, N.: Analysis Issues in Petri Nets with Inhibitor Arcs. Theoretical Computer
Science 275, 127–177 (2002)

4. Commoner, F., Holt, A.W., Even, S., Pnueli, A.: Marked Directed Graphs. J.
Comput. Syst. Sci. 5, 511–523 (1971)

5. Darondeau, P., Genest, B., Thiagarajan, P.S., Yang, S.: Quasi-Static Scheduling
of Communicating Tasks. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008.
LNCS, vol. 5201, pp. 310–324. Springer, Heidelberg (2008)

6. Desel, J., Esparza, J.: Free Choice Nets. Cambridge University Press, Cambridge
(1995)

7. Desel, J., Reisig, W.: Place/Transition Petri Nets. In: [20], pp. 122–173
8. Esparza, J., Nielsen, M.: Decidability Issues for Petri Nets: A Survey. J. of Inf.

Processing and Cybernetics 30, 143–160 (1994)
9. Ghamarian, A.H., Geilen, M.C.W., Basten, T., Theelen, B.D., Mousavi, M.R., Stu-

ijk, S.: Liveness and Boundedness of Synchronous Data Flow Graphs. In: FMCAD
2006, pp. 12–16 (2006)

10. Hack, M.: Decision Problems for Petri Nets and Vector Addition Systems. Technical
Memo 59, Project MAC, MIT (1975)

11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

12. Karp, R.M., Miller, R.E.: Parallel Program Schemata. J. Comput. Syst. Sci. 3,
147–195 (1969)

13. Kleijn, J., Koutny, M.: Steps and Coverability in Inhibitor Nets. In: Lodaya, K.,
Mukund, M., Ramanujam, R. (eds.) Perspectives in Concurrency Theory, pp. 264–
295. Universities Press, Hyderabad (2008)

14. Kleijn, J., Koutny, M., Rozenberg, G.: Process Semantics for Membrane Systems.
J. of Aut., Lang. and Comb. 11, 321–340 (2006)

15. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

16. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes. Inf. and
Comp. 100, 1–77 (1992)

17. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice-Hall, En-
glewood Cliffs (1981)

18. Petri, C.A.: Fundamentals of a Theory of Asynchronous Information Flow. In: IFIP
Congress 1962, pp. 386–390. North Holland, Amsterdam (1962)

19. Rozenberg, G., Engelfriet, J.: Elementary Net Systems. In: [20], 12–121
20. Reisig, W., Rozenberg, G. (eds.): APN 1998. LNCS, vol. 1491. Springer, Heidelberg

(1998)
21. Rozenberg, G., Thiagarajan, P.S.: Petri Nets: Basic Notions, Structure, Behaviour.

In: Rozenberg, G., de Bakker, J.W., de Roever, W.-P. (eds.) Current Trends in
Concurrency. LNCS, vol. 224, pp. 585–668. Springer, Heidelberg (1986)

22. Valmari, A.: The State Explosion Problem. In: [20], 429–528
23. Wimmel, H.: Entscheidbarkeitsfragen bei Petri Netzen. Habilitation (2007)
24. Yoeli, M.: Specification and Verification of Asynchronous Circuits using Marked

Graphs. In: Rozenberg, G. (ed.) APN 1987. LNCS, vol. 266, pp. 605–622. Springer,
Heidelberg (1987)

Program Logics for Sequential Higher-Order Control

Martin Berger

Department of Informatics, University of Sussex

Abstract. We introduce a Hoare logic for call-by-value higher-order functional
languages with control operators such as callcc. The key idea is to build the
assertion language and proof rules around an explicit logical representation of
jumps and their dual ’places-to-jump-to’. This enables the assertion language to
capture precisely the intensional and extensional effects of jumping by internalis-
ing rely/guarantee reasoning, leading to simple proof rules for higher-order func-
tions with callcc. We show that the logic can reason easily about non-trivial
uses of callcc. The logic matches exactly with the operational semantics of the
target language (observational completeness), is relatively complete in Cook’s
sense and allows efficient generation of characteristic formulae.

1 Introduction

Non-trivial control manipulation is an important part of advanced programming and
shows up in many variants such as jumps, exceptions and continuations. Research
on axiomatic accounts of control manipulation starts with [10], where a simple, im-
perative first-order low-level language with goto is investigated. Recently, this re-
search tradition was revived by a sequence of works on similar languages [2–4, 7, 24, 29,
32, 34]. None of those investigates the interplay between advanced control constructs
and higher-order features. The present paper fills this gap and proposes a logic for
ML-like call-by-value functional languages with advanced control operators (callcc,
throw). The key difficulty in axiomatising higher-order control constructs for func-
tional languages (henceforth “higher-order control”) is that program logics are tradi-
tionally based on the idea of abstracting behaviour in terms of input/output relations.
This is a powerful abstraction for simple languages but does not cater well for jump-
ing, a rather more intensional form of behaviour. Consider the well-known program

argfc
def
= callcc λk.(throw k λx.(throw k λy.x)) [12]. This function normalises to

a λ-abstraction, but, as [28] investigates, distinguishes programs by application that
are indistinguishable in the absence of continuations: (λx.(x 1);(x 2)) argfc = 1 and
(λx.λy.(x 1);(y 2)) argfc argfc= 2 with M;N being the sequential composition of M
and N, binding more tightly than λ-abstraction. The reason is that continuations carry
information about contexts that may be returned (jumped) to later. Thus, values in lan-
guages with higher-order control are no longer simple entities, precluding logics based
on input/output relations. Two ways of dealing with the intensional nature of control
manipulation suggest themselves:

– Using continuation-passing style (CPS) transforms [33] to translate away control
manipulating operators and then reason about transformed programs in logics like
[16] for functional languages.

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 194–211, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Program Logics for Sequential Higher-Order Control 195

– Using a direct syntactic representation of intensional features.

We choose the second option for pragmatic reasons: It is difficult to reconstruct a pro-
gram’s specification from the specification of its CPS transform. This is because CPS
transforms increase the size of programs, even where higher-order control is not used.
This increases reasoning complexity considerably. In contrast, in our approach pro-
grams or program parts that do not feature higher-order control can be reasoned about
in simpler logics for conventional functional languages. The more heavyweight log-
ical apparatus for higher-order control is required only where control is manipulated
explicitly, leading to more concise proofs and specifications.

Key Elements of the Present Approach. This work makes three key proposals for a
logical treatment of higher-order control.

– Names as an explicit representation of places to jump to, or being jumped to.
– Jumps x〈ẽ〉A as an explicit logical operator which says that a program jumps to x

carrying a vector ẽ of values, and after jumping, A holds. Jumps are complementary
to the evaluation formulae x〈ẽ〉A, studied in [5, 16, 18, 36], which means a jump to
x carrying values ẽ leads to a program state where A holds.

– Rely/guarantee formulae {A}B and tensor A◦B. {A}B says that if the environment
is as specified by A, then the program together with the environment will act as
constrained by B. Likewise, A◦B says a program has a part that is as described by A,
and a part that is as given by B. Rely/guarantee formulae generalise implication, and
tensor generalise conjunction because in e.g. A∧ (B ⊃C) a free variable must have
the same type in A as in B and C. With rely/guarantee formulae, we weaken this
requirement: e.g. in x〈2u〉 ∧ {x〈vw〉w〈v + 1〉}u〈3〉 the variable x is used to output
in the left conjunct and for input in the right conjunct, with the input occurring in
the rely part of the rely/guarantee formula. The left conjunct says that the program
jumps to x carrying 2 and u (an intensional specification at x). The right conjunct
says that if the environment offers a function to be invoked at x that computes the
successor of its first argument and returns the result at the second, then the jump
to u carrying 3 will happen, a more extensional specification in that the program
together with the assumed environment behaves as a function. Similarly, x〈3〉 ◦
x〈3〉A uses x with different polarities, specifying a program that contains a jump to
x carrying 3 to a target for this jump.

Informal Explanation. Operationally, a program, for example the constant 5, can be
seen as a value-passing jump carrying 5 to some distinguished name, called default
port, left implicit in the language, but made explicit in implementations, usually as a
return address on the stack. It can be left implicit in the absence of higher-order control
because there are no alternatives for returning: every function, if it returns at all, does so
at the default port. Higher-order control breaks this simplicity: for example throw k 5
will jump to k and not to the default port. Our logic deals with multiple return points by
naming the default port in judgements, giving rise to the following shape of judgements
(for total and partial correctness):

M :u A

196 M. Berger

It asserts that the program M satisfies the formula A, assuming that M’s default port
is named u (we do not need preconditions because they can be simulated using rely/
guarantee formulae, see below). Using explicit jumps we can specify:

5 :u u〈5〉 throw k 5 :u k〈5〉.

The left-hand side says that the program 5 terminates and jumps to the default port u
carrying 5 as a value. The assertion on the right expresses that throw k 5 also terminates
with a jump carrying 5, but now the jump is to k, which is not the default port.

Evaluation formulae are used to specify the behaviour of functions. When a func-
tion like λx.x + 1 is invoked, the result is returned at the default port of the invocation.
As functions can be invoked more than once and in different contexts (in the present
context, invoking a function f is the same as jumping to f , and we use both phrases
interchangeably), different default ports are needed for different invocations. In im-
plementations, a dynamically determined place on the stack is used for this purpose.
In addition, when a λ-abstraction like λx.x + 1 is evaluated, the λ-abstraction itself,
i.e. λx.x + 1, is returned at its default port. To express such behaviour we use the fol-
lowing specification (writing u(a)A for ∃a.u〈a〉A, and a(xm)A for ∀xm.a〈xm〉A).

λx.x + 1 :u u(a)a(xm)m〈x + 1〉

This judgement states that the abstraction returns a name a at the default port. This
name can be jumped to (i.e. invoked) with two arguments, a number x and a name m,
the default port for invocations of a. If invoked, the successor of x will be returned at m.

The role of rely/guarantee formulae is to generalise and internalise preconditions.
Consider the application g 3. If jumps to g with two arguments, a number x and a return
port u, yield a jump u〈x+x〉 then the evaluation of g 3 with default port u should induce
a jump u〈6〉. In a program logic with preconditions, we would expect to be able to
derive {g(xm)m〈x + x〉} g 3 :u {u〈6〉}. With rely/guarantee formulae we can express
this by defining

{A} M :m {B} def
= M :m {A}B.

The advantage of internalising preconditions with rely/guarantee formulae are three-
fold. (1) Key structural relationships between jumps and evaluation formulae are easily
expressible as axioms like: x〈ẽ〉 ⊃ {x〈ẽ〉A}A. It states that e.g. a jump g〈3u〉 makes A
true whenever the environment guarantees that jumps to g with arguments 3 and u will
validate A. (2) We gain more flexibility in localising and manipulating assumptions,
leading to more succinct and compositional reasoning. To see why, consider a compli-
cated formula C[x〈2〉] containing a jump to x. Using the axiom just given, and setting

A
def
= x〈2〉u〈3〉, we know that x〈2〉 ⊃ {A}u〈3〉, hence C[x〈2〉] implies C[{A}u〈3〉]. Such

reasoning is cumbersome if all assumptions have to be concentrated in the precondition.
Moreover, local hypotheses can be collected, i.e. we can usually infer from C[{A}u〈3〉]
to {A}C[u〈3〉], hence conventional reasoning based on rigid pre-/postconditions remains
valid unmodified without additional cost (all relevant rules and axioms are derivable).
The added fluidity in manipulating assumptions is vital for reasoning about involved
forms of mutually recursive jumping. (3) Finally, the most important virtue of internal-
ising preconditions is sheer expressive power. With rely/guarantee formulae, it easy

Program Logics for Sequential Higher-Order Control 197

to use different assumptions in a single formula: consider A
def
= g(xm)m〈x + x〉 and

B
def
= g(xm)m〈x · x〉. We can now specify g 3 :u ({A}u〈6〉)∧{B}u〈9〉. This expressive-

ness enables convenient reasoning about complicated behavioural properties of pro-
grams that would be difficult to carry out otherwise.

Contributions. The present work provides the first general assertion method with com-
positional proof rules for higher-order functions with functional control (callcc and
similar operators) and recursion under the full type hierarchy. The work identifies as
key ingredients in this approach: (1) An explicit representation of jumps in formu-
lae, which can specify intensional aspects of control operators in a uniform manner.
(2) Rely/guarantee formulae and an associated tensor to facilitate local specification of
extensional as well as intensional aspects of higher-order control, and to enable compli-
cated forms of reasoning not otherwise possible. (3) Proof rules and axioms that capture
the semantics of PCF+precisely, as demonstrated by strong completeness results. Miss-
ing proofs can be found in the full version of this paper.

2 PCF with Jumps

Now we define our programming language. We extend PCF with callcc and throw,
and call the resulting language PCF+. Arguments are evaluated using call-by-value
(CBV). Later we briefly consider µPCF, a variant of CBV PCF with different control
operators. The relationship between both is explained in [21]. Types, terms and values
are given by the grammar below. Sums, products and recursive types for PCF+ are
straightforward and are discussed in the full version of this paper.

α ::= N || B || Unit || α → β || (α)? V ::= x || c || λxα.M || rec f α.λxβ.M

M ::= V || MN || op(M̃) || if M then N else N′ || callcc || throw

Here (α)? corresponds to (α cont) in SML and is the type of continuations with final
answer type α, c ranges over constants like 0,1,2, ..., op over functions like addition.
We write e.g. ab3 for the vector 〈a,b,3〉, M̃ for the vector 〈M0, ...,Mn−1〉, etc; x, f , ...
range over variables. Names are variables that can be used for jumping. The notions
of free variables fv(M) and bound variables bv(M) of M are defined as usual. Typing
judgements Γ � M : α are standard, with Γ being a finite, partial map from variables
to the types α. From now on we assume all occurring programs to be well-typed. The
semantics of PCF+ is straightforward, cf. [28].

3 The Logic

This section defines the syntax and semantics of the logic. Since variables in programs
are typed, and the logic speaks about such variables, our logic is typed, too. Types are
those of PCF+, with two generalisations. (1) We add a type (α̃)! which is the type
being-jumped-to with arguments typed by the vector α̃. (2) We no longer need function

spaces, because e.g. α def
= N → B can now be decomposed into α◦ def

= (N(B)?)!. Type
α◦ holds of names that can be jumped to with two arguments, first a number and then
another name, which might be used for subsequent jumps carrying a boolean. This is

198 M. Berger

the behaviour of functions N → B under call-by-value evaluation. If we denote by α the
result of changing all occurring ? in α into ! and vice versa, and if we denote by α◦ the
result of translating PCF+ types as just described, then:

(α → β)◦ = (α◦(β◦)?)!.

Our types are given by the grammar:

α ::= N || B || Unit || (α)? || (αβ)? || (α)! || (αβ)!

Types play essentially the same role in our logic as they do in programming languages,
namely to prevent terms that do not make sense, like x = 5+ t or x〈3〉◦ x〈〉A. Since our
use of types is straightforward, the reader can mostly ignore types in the remainder of
the text, as long as he or she bears in mind that all occurring formulae and judgements
must be well-typed. (Further information about this typing system is given in [15].)

Expressions, Formulae, Assertions. Expressions are standard (e ::= x || c || op(ẽ)) and
formulae for our logic are generated by the following grammar.

A ::= e = e′ || A∧B || ¬A || ∀xα.A || x〈ẽ〉A || x〈ẽ〉A || {A}B || A◦B

Variables, constants and functions are those of §2. Standard logical operators such as
T implication and existential quantification are defined as usual. We often omit type
annotations. Logical operators have the usual rules of precedence, e.g. ∀x.A∧B should
be read as ∀x.(A∧B), A ◦B∧C as (A ◦B)∧C, and {A}B∧C is short for ({A}B)∧C.
We write fv(A) for A’s free variables, and A-x indicates that x /∈ fv(A). Names are also
variables. Typing environments, Γ,Δ, ... are defined as finite maps from names to types.
Typing judgements for expressions Δ � e : α and formulae Δ � A are defined as usual,
e.g. x must be of type N in x + 3 = 2. The new operators are typed as follows.

– Γ � x〈ẽ〉A if Γ � x : (α̃)?, Γ � ei : βi, βi ∈ {αi,αi} and Γ � A.
– Γ � x〈ẽ〉A if Γ � x : (α̃)!, Γ � ei : βi, βi ∈ {αi,αi} and Γ � A.
– For rely/guarantee formulae Γ � {A}B we say x is compensated in A if the type

of x in A is dual to that in Γ. For example x〈2y〉 ⊃ {x〈2y〉y〈3〉}B is typable under

Δ def
= x : (N(B)!)?,y : (B)?.

We write e.g. x〈y·〉A to stand for any x〈yz〉A such that z is fresh and does not occur in A,
and likewise for evaluation formulae. We write x〈ẽ(y)〉A for ∃y.x〈ẽy〉A, assuming y not
to occur in ẽ. Judgements, also called assertions, are of the form M :m A. Judgements
must be well-typed, i.e. M and A must be well-typed and the variables common to A
and M must be given consistent types, e.g. g 3 :u {g〈4u〉T}2 = 3 is well-typed, but
g 3 :u {g〈z〉T}2 = 3 is not.

Examples of Assertions. We continue with simple examples of assertions.

– Let A
def
= g(xk)(even(x) ⊃ k(a)even(a)). This first example specifies a place g to

jump to. If a jump to g happens carrying an even number x as first argument and
k, the default port, then that invocation at g will return at its default port, carrying
another even number. A does not specifying anything if x is odd.

Program Logics for Sequential Higher-Order Control 199

– Next consider the following formulae. A
def
= x(kr)(k〈7〉∨ r〈8〉) and B

def
= {A}u(m)

(m = 7∨m = 8) A specifies a place x to jump to with two arguments, k and r (the
default port), both of which are used for jumping: either jumping to k carrying 7,
or jumping to the default port carrying 8. B specifies a jump to u carrying 7 or 8,
provided the environment provides a place to jump to at x, as just described by A.

– Now consider the formula A
def
= x(ab)a〈bb〉. It says that if we jump to x carrying

two arguments, a and b, both being used for jumping, then the invocation at x
replies with a jump to a, carrying b twice. Figure 2 shows that u(x)A specifies the
behaviour of callcc, assuming u as default port.

– Finally, consider the following formula. A
def
= n(b)b(xy)n(c)c(zr)r〈x〉. The formula

A specifies a jump to n, carrying a function b that can be jumped to with two ar-
guments, x and y. Of those, y is subsequently ignored. If b is invoked, it jumps to
n again, carrying another function c, which also takes two arguments, z and r. Of
these z is also ignored, but r is jumped to immediately, carrying x. It can be shown
that A specifies argfc.

Models and the Satisfaction Relation. This section sketches key facts about the se-
mantics of our logic and states soundness and completeness results. We use a typed π-
calculus to construct our semantics. This choice simplifies models and reasoning about
models for the following reasons.

– Models and the satisfaction relation need to be built only once and then cater for
many different languages with functional control like PCF and µPCF. Thus sound-
ness of axioms needs to be proven only once. Proving soundness and completeness
is also simpler with π-calculus based models because powerful reasoning tools are
available, e.g. labelled transitions, that languages with higher-order sequential con-
trol currently lack.

– Using processes, the semantics is simple, intuitive and understandable, as well as
capturing behaviour of higher-order control precisely. The typed processes that
interpret PCF+ or µPCF-programs are up to bisimilarity exactly the morphisms
(strategies) in the control categories that give fully abstract models to PCF+ or
µPCF[13, 21]. Hence the present choice of model gives a direct link with game-
based analysis of control.

Processes. The grammar below defines processes with expressions e as above, cf. [17]
for details.

P ::= 0 || x〈ẽ〉 || !x(ṽ).P || (νx)P || P|Q || if e then P else Q

We can use this calculus to give fully abstract encodings of PCF+ and µPCF [17, 21].
Translation is straightforward and we show some key cases.

[[λx.M]]u
def= u(a)!a(xm).[[M]]m [[throw]]u

def= u(a)!a(xm)m(b)!b(y·)x〈y〉
[[MN]]u

def
= (νm)([[M]]m|!m(a).(νn)([[N]]n|!n(b).a〈bu〉)) [[callcc]]u

def
= u(a)!a(xm).x〈mm〉

200 M. Berger

This translation generalises a well-known CPS transform [33]. All cases of the trans-
lation are syntactically essentially identical with the corresponding logical rules. This
simplifies soundness and completeness proofs and was a vital rule-discovery heuristic.

The Model and Satisfaction Relations. Models of type Γ are of the form (P,ξ) where
P is a process and ξ maps values names and variables to their denotation. We write
|= M :m A if for all appropriately typed-models (P,ξ) with m fresh in ξ we have

([[M]]mξ|P,ξ) |= A

This satisfaction relation works for total and partial correctness, since termination can
be stated explicitly through jumps in total correctness judgements. On formulae, the sat-
isfaction relation is standard except in the following four cases, simplified to streamline
the presentation (here ∼= is the contextual congruence on typed processes).

– (P,ξ) |= x〈y〉 if P ∼= Q|a〈b〉, ξ(x) = a,ξ(y) = b.
– (P,ξ) |= x〈y〉A if P ∼= Q|!a(v).R with ξ(x) = a and (P|a〈ξ(y)〉,ξ) |= A.
– (P,ξ) |= {A}B if for all Q of appropriate type (Q,ξ) |= A implies (P|Q,ξ) |= B.
– (P,ξ) |= A◦B if we can find Q,R such that P ∼= Q|R, (Q,ξ) |= A and (R,ξ) |= B.

The construction shows that rely/guarantee formulae correspond to (hypothetical)
parallel composition [20].

4 Axioms and Rules

This section introduces all rules and some key axioms of the logic. We start with the
latter and concentrate on axioms for jumps, tensor and rely/guarantee formulae. Some
axioms correspond closely to similar axioms for implication and conjunction. All ax-
ioms and rules are included in the logic exactly when they are typable.

Axioms for Dynamics. We start with the two axioms that embody the computational
dynamics of jumping. The first expresses the tight relationship between jumping and
being-jumped-to (evaluation formulae):

u〈ẽ〉A◦ u〈ẽ〉B ⊃ A◦B (CUT)

[CUT] says that if a system is ready to make a jump to u, say it satisfies u〈ẽ〉A, and if
the system also contains the target for jumps to u, i.e. it satisfies u〈ẽ〉B, then that jump
will happen, and A◦B will also be true of the system.

The next axiom says that a jump x〈ẽ〉A which guarantees A implies the weaker state-
ment that if the environment can be jumped to at x with arguments ẽ, then B holds,
provided the environment can rely on A in its environment.

x〈ẽ〉A ⊃ {x〈ẽ〉{A}B}B (XCHANGE)

Further Axioms for Tensor and Rely/Guarantee Formulae. Now we present some
axioms for the tensor that show its close relationship with conjunction. In parallel, we
also exhibit axioms for rely/guarantee formulae that relate them with implication. As

Program Logics for Sequential Higher-Order Control 201

before, we assume that both sides of an entailment or equivalence are typed under the
same typing environment. This assumption is vital for soundness, as we illustrate below.

A◦B ≡ A∧B A◦B ⊃ A A ⊃ {B}A
A◦ (B◦C) ≡ (A◦B)◦A (∀x.A)◦B-x ≡ ∀x.(A◦B) {A}{B}C ≡ {A◦B}C

A◦B ≡ B◦A {A}B ≡ A ⊃ B B◦ {B}A ⊃ A

Our explanation of these axioms starts on the left. The first axiom says that if A∧B are
typable then tensor is just conjunction. This does not imply that x〈3〉 ◦ x〈3〉A is equiva-
lent to x〈3〉∧ x〈3〉A, since x〈3〉∧ x〈3〉A is not typable. However (x = 3 ◦ y = 1) ≡ (x =
3∧y = 1) is valid. The next two axioms below state associativity and commutativity of
tensor. The top axiom in the middle shows that tensor is not like parallel composition,
because the tensor can “forget” their component formulae. The axiom below shows
that tensor associates as expected with quantification. The bottom axiom in the middle
shows that rely/guarantee formulae reduce to implication if all free variables have the
same type in A as in B, i.e. ({x〈ẽ〉a}x〈e〉) ≡ ((x〈ẽ〉a) ⊃ x〈e〉) is not a valid instance of
the axiom, but ({x〈ẽ〉a}x〈ẽ〉b) ≡ ((x〈ẽ〉a) ⊃ x〈ẽ〉b) is. The top right axiom shows that
it is possible to weaken with a rely formula. The middle axiom on the right shows how
to merge two assumptions in rely/guarantee formulae. The bottom right axiom can be
seen as a typed form of Modus Ponens, and we call it [MP]. The expected forms of
weakening also hold, i.e. if A ⊃ A′ then A ◦B implies A′ ◦B, {A′}B implies {A}B and
{B}A implies {B}A′.

Further Axioms for Jumps and Evaluation Formulae. Before moving on to rules, we
present some axioms for jumps and evaluation formulae.

x〈ẽ〉(A∧ y〈g̃〉B) ≡ y〈g̃〉(B∧ x〈ẽ〉A) x〈ẽ〉T ≡ T
A◦ (x〈ẽ〉B) ≡ x〈ẽ〉(A◦B) x〈ẽ〉∧ y〈g̃〉 ⊃ (x = y∧ ẽ = g̃)

The top left axiom states that free variables like x and y that can be jumped to, are
’always there’, i.e. they cannot come into existence only after some function has been
invoked. The top right axiom says that places to jump to cannot ’refuse’ arguments: in
other words, the statement x〈e〉T carries no information. This axiom is called [NOINFO].
The bottom left axiom says that if a program contains a part that jumps at x then the
program as a whole can also jump at x, provided that the program does not contain a
component that offers an input at x (not offering an input at x is implicit in typability
of the axiom). Finally, the last axiom expresses that our language is sequential: at most
one jump can happen at any time.

Rules for PCF+. The total correctness rules for PCF+ are given in Figure 1. Rules
are subject to straightforward well-formedness conditions. From now on we assume all
rules to be well-typed. We explain the rules in some detail. As [VAR, CONST, ABS]
have already been sketched in the introduction, we start with the rule for application.
The purpose of [APP], the rule for function application, is to ensure the coordination of
functions and their invocations by jumps. One issue is the generation and management
of default ports: the present approach requires that a (terminating) function application
may return its result at the application’s default port, assuming the evaluations of the

202 M. Berger

M :m A
λx.M :u u(a)a(xm)A ABS

λx.M :u u(a)A
rec g.λx.M :u u(a)∃g.(fwga ◦A) REC

−
c :u u〈c〉 CONST

M :m A N :n B
MN :u ∃m.(A◦m(a)∃n.(B◦n(b)a〈bu〉)) APP

−
callcc :u u(a)a(xm)x〈mm〉 CCC

−
x :u u〈x〉 VAR

−
throw :u u(a)a(xm)m(b)b(y·)x〈y〉 THROW

M :m A N :u B
M +N :u ∃m.(A◦m(a)∃n.(B◦n(b)u〈a+b〉)) ADD

M :m A N :u B N′ :u C
if M then N else N′ :u ∃m.(A◦m(a)((a = t ⊃ B)∧ (a = f ⊃C)))

IF
M :u A A ⊃ B

M :u B CONS

Fig. 1. Total Correctness rules for PCF+. The forwarder is given by fwxy
def
= x(ṽ)y〈ṽ〉.

function itself, and that of the argument return their respective results at (distinct) de-
fault ports themselves. [APP] achieves this by explicitly representing the sequence of
jumps that are integral parts of evaluating a function application. First the jump to the
default port of the function is received by an evaluation formula at m. It receives an
argument a. Then the evaluation of the argument is triggered, and its result, should it
return at the fresh default port n, is received by a second evaluation formula at n. Fi-
nally, should both, the function and its argument return at their respective default ports,
a jump to a carrying b and the application’s default port u is executed. By typing we
know that the jump to a must find an evaluation formula expecting two arguments.

Why do we have to represent the internals of application evaluation in the logic ex-
plicitly, rather then have them implicit as in the simpler logics for PCF [16]? After
all, even in PCF, these jumps take place, albeit behind the scenes. The answer is that
because of continuations, functions can return more than once, i.e. can jump to their
default port more than once. The function argfc from the introduction is an example
of such behaviour. The axiomatisation of PCF in [16] hides default ports, because pro-
grams cannot return anywhere but at default ports. It might not be possible to give a
logical account of returning to a port more than once without explicit representation of
default ports.

Representing jumps and default ports in a single formula, as we do in [APP], has
ramifications for typing: when names (like m,n above) are used in a formula for both,
jumping, and for being-jumped-to we need to mediate, in a controlled way, the rigidity
of typing, that enforces all names to be used under the same typing. Our rules use
tensor for this purpose. All rules can be stated without tensors using just rely/guarantee
formulae, but, it seems, not without a making the inference system more complicated.

Using [APP], setting A
def
= ∃m.((m(a)a(xu)u〈x + 1〉) ◦ m(a)∃n.(n〈7〉 ◦ n(b)a〈bu〉))

and assuming that λx.x + 1 :m m(a)a(xr)r〈x + 1〉, we infer:

1 λx.x+1 :m m(a)a(xr)r〈x+1〉

2 7 :n n〈7〉CONST

3 (λx.x+1)7 :u AAPP,1,2

Program Logics for Sequential Higher-Order Control 203

The expected judgement (λx.x + 1)7 :u u〈8〉, is by [CONS] and the following implica-
tion :

A ⊃ ∃a.((a(xu)u〈x+1〉)◦∃n.(n〈7〉 ◦n(b)a〈bu〉)) ⊃ ∃a.((a(xu)u〈x+1〉)◦∃n.a〈7u〉)
⊃ ∃a.((a(xu)u〈x+1〉)◦a〈7u〉) ⊃ u〈8〉

This implication follows from [CUT] and simple logical manipulations.
As second example we consider the application g x, with an assumption on the

behaviour of g. The intent is to illuminate the use of rely/guarantee formulae and

the [XCHANGE] axiom. Let A
def
= even(x)∧ g(xk)(even(x) ⊃ k(a)even(a)). We want

to show that

{A} gx :u {u(a)even(a)}, (1)

recalling that {B} M :m {C} is short for M :m {A}B. First we reason as follows.

1 g :m m〈g〉VAR

2 x :n n〈x〉VAR

3 gx :u ∃m.(m〈 f 〉◦m(a)∃n.(n〈x〉◦n(b)a〈bu〉))APP,1,2

4 {A} gx :u {u(a)even(a)}.CONS,3

The interesting step is the last, where we reason as follows.

∃m.(m〈g〉 ◦m(a)∃n.(n〈x〉 ◦ n(b)a〈bu〉)) ⊃ ∃m.(m〈g〉 ◦m(a)∃n.(a〈xu〉)) ⊃
∃m.(m〈g〉 ◦m(a)a〈xu〉) ⊃ ∃m.g〈xu〉 ⊃ g〈xu〉

The first and third inferences use [CUT], the two others remove unused quantifiers.
Theorem 1 shows that g〈xu〉 is an optimal specification for our program in the sense
that anything that can be said at all about the program gx with anchor u can be derived

from g〈xu〉. We continue by deriving (1), using B
def
= even(x) ⊃ u(a)even(a).

g〈xu〉 ⊃ {g〈xu〉(even(x)∧B)}(even(x)∧B) ⊃ {g(xu)(even(x)∧B)}(even(x)∧B)
⊃ {A}u(a)even(a)

The first implication is by [XCHANGE], the others are straightforward strengthening of
the precondition, and simple first-order logic manipulations. Now (1) follows by the
consequence rule.

The derivation above has a clear 2-phase structure: first a general assertion about the
behaviour of the application is derived without assumptions on free variables. Then such
assumptions are added using [XCHANGE] and the consequence rule. It is noteworthy
that the first phase is mechanical by induction on the syntax of the program, while the
second phase takes place without reference to the program. It is possible to use a more
traditional style of reasoning, where applications of languages rules and [CONS] are
mixed, but this tends to make inferences longer.

204 M. Berger

Like the rule for application, [REC] is an adaption of the corresponding rule in [16],
but forwarding all jumps to the recursion variable g directly to the recursive function at
a. This forwarding corresponds to “copy-cat strategies” in game-semantics [1, 19], here
realising the feedback loop of jumps to f into a that enables recursion by using tensor.
[REC] implies a more convenient rule, given as follows.

λx.M :m m(a)∀ j � i.{A[g/a][j/i]}A
rec g.λx.M :m m(a)∀i.A

REC’

As first example of using [REC] we consider a simple function ω def
= rec g.λx.gx that di-

verges upon invocation. Since our rules and axioms are for total correctness, we should
not be able to specify anything about ω, except that it terminates and returns at its default
port when evaluated as an abstraction, i.e. we show: ω :u u(a)a(xu)T. Mechanically we
infer the following judgement

ω :u u(a)∃g.(fwga ◦ a(xk)g〈xk〉)

We use axiomatic reasoning to obtain ω :u u(a)a(xu)T by [CONS].

u(a)∃g.(fwga ◦ a(xk)g〈xk〉) ⊃ u(a)∃g.(fwga ◦ a(xk){g〈xk〉T}T) ⊃
u(a)∃g.(fwga ◦ {g〈xk〉T}a(xk)T) ⊃ u(a)∃g.(fwga ◦ {fwga}a(xk)T) ⊃
u(a)∃g.a(xk)T ⊃ u(a)a(xk)T

The first line uses [XCHANGE], the next pushes the assumption of the rely/guarantee
formula to the left of the evaluation formula. Then we simply replace that assump-
tion by fwga. We can do this, because that strengthens the assumption, i.e. weakens the
rely/guarantee formula. Then we apply [MP]. The last line removes the superfluous
quantifier. We note that there is a simpler derivation of the same fact, relying on the
implications:

u(a)∃g.(fwga ◦ a(xk)g〈xk〉) ⊃ u(a)T ⊃ u(a)a(xk)T.

The first of those is just weakening of the tensor, while the second is an instance of
[NOINFO].

[CCC] says that callcc is a constant, always terminating, and returning at the default
port, carrying a function, denoted a, as value. This function takes two arguments, x, the
name of another function, and m, the default port for the invocation of a. By typing we
know that m must be a function invoked with an argument of continuation type (α)?.
Whenever a is invoked, it jumps to x, carrying its default port m as first and second
argument. In other words, if the invocation at x terminates at its default port, it does so
at a’s default port. Moreover, x can also jump to m explicitly. Note that m is duplicated
[CCC], i.e. used non-linearly. This non-linearity is the reason for the expressive power
of functional control.

We consider another example of reasoning about callcc: M
def
= callcc λk.7. Me-

chanically, we derive

M :u ∃m.(m(a)a(xr)x〈rr〉 ◦m(a)∃n.(n(b)b(ks)s〈7〉◦ n(b)a〈bu〉))︸ ︷︷ ︸
A

Program Logics for Sequential Higher-Order Control 205

Then we use axiomatic reasoning to reach the expected judgement M :u u〈7〉.

A ⊃ ∃a.(a(xr)x〈rr〉◦∃b.(b(ks)s〈7〉 ◦a〈bu〉)) ⊃ ∃ab.(a(xr)x〈rr〉◦a〈bu〉◦b(ks)s〈7〉)
⊃ ∃ab.(b〈uu〉 ◦b(ks)s〈7〉) ⊃ ∃ab.u〈7〉 ⊃ u〈7〉

[THROW] says that throw is a function returning at its default port a function a which
takes x as its first argument (by typing a continuation (α)?), and returns at its default
port m a second function b, which in turn takes two argument, the first of which is y (of
type α). The second argument, the default port of y is ignored, since x will be jumped
carrying y as argument.

We continue with reasoning about simple programs with throw. We show that:

throw k 3 :u k〈3〉 ω(throw k 3) :u k〈3〉.

We begin with the assertion on the left. The assertion for this program will be quite
sizable because [APP] must be applied twice. The following abbreviation is useful to
shorten specifications arising from [APP].

A |mnu B
def
= ∃m.(A◦m(a)∃n.(B◦ n(b)a〈bu〉)).

Here we assume that u,n do not occur in M and u,m are not in N. We let |mnu bind less
tightly than all the other operators of the logic. This abbreviation is interesting because
of the following derived rule, which is immediate from the rules.

m(a)a(bu)A |mnu n(b)B ⊃ ∃ab.(A∧B). (2)

From [THROW], k :b b〈k〉 and 3 :n n〈3〉 we get:

throw k 3 :u (g(a)a(xm)m(b)b(y·)x〈y〉) |gbm b〈k〉 |mnu n〈3〉

which simplifies to throw k 3 :u k〈3〉 by applying (2) twice. Now we deal with

ω(throw k 3). As before: ω(throw k 3) :u A with A
def
= m(a)a(bu)T |mnu k〈3〉, but

we cannot apply (2) since throw k 3 does not return at the default port. Instead we
reason from the axioms.

∃n.(k〈3〉 ◦ n(b)a〈bu〉) ⊃ ∃n.k〈3〉(T ◦ n(b)a〈bu〉) ⊃ k〈3〉∃n.(T ◦ n(b)a〈bu〉) ⊃ k〈3〉

Here the first line is an application of [CUT], the second switches quantification with a
jump, and the third line is by [NOINFO], in addition to straightforward logical manipu-
lations. Thus we can use [CUT] once more and infer:

m(a)a(bu)T |mnu k〈3〉 ⊃ ∃m.((m(a).a(bu)T) ◦ m(a)k〈3〉) ⊃ ∃mb.((a(bu)T) ◦ k〈3〉)
⊃ k〈3〉∃mb.((a(bu)T) ◦ T) ⊃ k〈3〉

[IF] simply adds a recipient for the default port at M, the condition of the conditional,
where a boolean b is received. Depending on b, the specification of one of the branches
is enabled. [ADD] is similar to [APP] and the [CONS], the rule of consequence, is stan-
dard in program logics.

206 M. Berger

A Comment on the Shape of Rules. Program logics are usually presented “bottom-up”,
meaning that postconditions in the conclusion of rules are just a meta-variable standing
for arbitrary (well-typed) formulae. This facilitates reasoning starting from a desired
postcondition of the program under specification, and then trying to find an appropriate
premise. We have chosen the “top-down” presentation because it gives simpler and
more intuitive rules, and shortens inferences substantially. A “bottom-up”presentation
of proof rules is possible, and may be useful in some cases. The status of the “bottom-
up” rules (e.g. completeness) is yet to be established.

Completeness. A goal of axiomatic semantics is to be in harmony with the corre-
sponding operational semantics. That means that two programs should be contextually
indistinguishable if and only if they satisfy the same formulae. This property is called
observational completeness. We establish observational completeness as a consequence
of descriptive completeness.

Definition 1. By � we mean the standard typed contextual precongurence for PCF+,
i.e. M � N if for C[M] ⇓ implies C[N] ⇓ for all closing contexts C[·], where ⇓ means
termination.

Theorem 1. (Descriptive Completeness for Total Correctness) Our logic is descrip-
tively complete: for all closed M, N (typable under the same typing), A and m, we
have: � M :m A implies that (1) |= M :m A and (2) whenever |= N :m A then M � N.

The proof of this theorem, and the derivation of observational completeness (as well
as relative completeness in the sense of Cook) from descriptive completeness follows
[14].

The λµ-Calculus. From the rules and axioms for PCF+, it is easy to derive a logic for
µPCF, an extension of the λµ-calculus, a Curry-Howard correspondence for classical
logic, with a recursion operator. The logic enjoys similar completeness properties.

M :m A N :u B
M +N :u ∃mn.(A∧B∧u = a+b) SADD

M :m A
λx.M :u u〈x〉m A

SABS
M :m A

λx.M :u u〈xm〉A SABS’

λx.M :u A
rec g.λx.M :u ∃g.(fwga ◦A) SREC

M :m A N :n B
MN :u ∃mn.((A∧B)◦m〈nu〉) SAPP

M :m m〈n〉u A N :n B
MN :u ∃mn.(A∧B) SAPP’

−
callcc :u u(xm)x〈mm〉 SCCC

−
throw :u u〈x〉m m(y·)x〈y〉 STHROW

−
x :u u = x SVAR

−
c :u u = c SCONST

M :m A N :u B N′ :u C
if M then N else N′ :u ∃m.(A◦ (m = t ⊃ B)∧ (a = f ⊃C)) SIF

M :u A A ⊃ B
M :u B SCONS

M :n ∃ã.(m〈e〉u A◦m〈en〉B)
M :u ∃ã.(A◦B) SCUT

Fig. 2. Some derived rules that are useful for reasoning about PCF+ programs that return at their
default port

Program Logics for Sequential Higher-Order Control 207

5 Simplifying Reasoning

PCF-terms are a subset of PCF+-terms. Reasoning about PCF-terms using the logic for
PCF+ is moderately more laborious than using a logic tailor-made for PCF like [16].
This is because intermediary jumps in function application are represented explicitly in
the former, but not the latter. Reasoning in §4 about simple programs like (λx.x + 1)7
and throw k 3 suggest that intermediate jumps can be eliminated mechanically in ap-
plications where a function and its argument return at the default port. We formalise this
intuition and obtain simplified derivable logical rules and axioms, that can be used to
reason about a large class of programs, including PCF+ programs that do use functional
control. We start by defining two syntactic shorthands that apply only to judgements and
evaluation formulae that return at their default ports (u fresh in both):

M :m A
def
= M :u u(m)A x〈ẽ〉m A

def
= ∀u.x〈ẽu〉u(m)A

We write x(ỹ)m A for ∀ỹ.x〈ỹ〉m A. Using this syntax, λx.x + 1 has the following speci-
fication, as we shall show below. λx.x + 1 :u u〈x〉m m = x + 1. In order to derive spec-
ifications like this more efficiently than by expansion of abbreviations, we introduce
derivable rules and axioms that work directly with this new syntax. Figure 2 lists some
rules. Axioms can be simplified in the same way.

Termination at default ports is not the only place where higher-level rules are useful.
Examples in §4 indicate that reasoning about non-default jumps also often follows more
high-level patterns. To support this intuition, we add more shorthands.

M↗A
def
= M :u A∧m〈·〉∧m �= u a • e ↗ {A} def

= a〈eu〉(A∧m〈·〉∧m �= u)

In both u must be fresh. Rules using these additional rules can be found in Figure 3.

Theorem 2. All rules in Figures 2 and 3, and all associated axioms are derivable.

We continue with some further examples of using the derived rules and axioms. We
start by deriving 3 +throw k 7 :u k〈3〉 once more.

1 k :n n〈k〉 VAR

2 7 :h h = 7 SVAR

3 throw k 7↗k〈y〉 JTHROW”

4 3 :m m = 3 SCONST

5 3+throw k 7↗k〈y〉 JADD’

Now we consider an example that show that the simplified rules are also useful when
reasoning about programs with free variables. Consider

callcc x :m {A}(m = 7∨m = 8) (3)

where A
def
= x(kr)(k〈7〉∨ r〈8〉). Mechanically, using the simplified rules, we infer

208 M. Berger

1 callcc :a a(bc)b〈cc〉 SVAR

2 x :b b = x SCCC

3 callcc x :u ∃ab.(a(bc)b〈cc〉∧b = x)◦a〈bu〉 SAPP,1,2

4 callcc x :u x〈uu〉 CONS,3

5 callcc x :m {A}(m = 7∨m = 8) CONS,4

Line 4 is by a straightforward application of [CUT] and some straightforward logical
manipulations. To get Line 5, we reason as follows.

x〈uu〉 ⊃ {x〈uu〉(u〈7〉∨u〈8〉)}(u〈7〉∨u〈8〉) ⊃ {A}(u〈7〉∨u〈8〉) ⊃ u(m){A}(m〈7〉∨m〈8〉)

The first of these implications uses [XCHANGE], while the second strengthens the pre-
condition of the rely/guarantee formula.

Example (3) shows how easily we can reason about programs that have free variables
which are assumed to act like throwing a continuation. Just as easily one can assume

that a variable acts like callcc and prove x λk.throw k 7 :m {A}m = 7, where A
def
=

x(ab)a〈bb〉.

M↗A
λx.M :u u•x ↗{A} JABS

M :m A N↗B
M +N ↗B JADD’

M↗A
M +N ↗A JADD

M :m A N ↗B
MN ↗B JAPP’

M↗A
if M then N else N′↗A

JADD
M↗A

callcc M↗A JCCC
M↗A

MN ↗A JAPP
M↗A

throw M N ↗A JTHROW

M :m A N ↗B
throw M N ↗B JTHROW’

M :m m〈k〉 N :n A
throw M N↗k(n)A

JTHROW”

Fig. 3. Some derived rules, helpful for reasoning about PCF+ programs that jump

Relating the Logics for PCF and PCF+. The derivable rules and axioms just discussed
pose the question of the systematic relationship between the present logic and that for
PCF [14, 16]. We give an answer by providing a simple translation of formulae and
judgements from the logic for PCF to that for PCF+, and then showing that the inclusion
on programs preserves derivability. The idea behind the translation is straightforward:
just add fresh default ports.

We continue with a summary of the logic for PCF in [14, 16]. Types and formulae
are given by the following grammar, with expressions being unchanged.

α ::= N || B || Unit || α → β A ::= e = e′ || A∧B || ¬A || ∀xα.A || x〈e〉y A

Program Logics for Sequential Higher-Order Control 209

Judgements are of the form {A} M :m {B}. Next is the translation of PCF-formulae into
PCF+-formulae.

e = e′� def
= e = e′
A∧B� def

=
A�∧
B�
¬A� def
= ¬
A�

∀xα.A� def
= ∀xα◦

.
A�
x〈e〉y A� def
= ∀u.x〈eu〉u(y)
A� u fresh

Please note that the translation changes α to α◦ in the translation of quantifiers (α◦

was defined in §3). Judgements are translated as follows:
{A} M :m {B}� def
= M :u

u(m){
A�}
B� (u fresh). This translation has the following properties.

Theorem 3. 1. The translation of judgements, when applied to rules, takes PCF-rules
to derivable rules for PCF+.

2. � {A} M :m {B} implies �
{A} M :m {B}�, where derivability on the left is in the
logic for PCF, on the right it’s for PCF+.

6 Conclusion

We have investigated program logics for a large class of stateless sequential control con-
structs. One construct not considered here are exceptions. Exceptions are a constrained
form of jumping that is used to escape a context without the possibility of returning, a
feature very useful for error handling. Exceptions are not included in the present logic
because they are caught dynamically, which does not sit comfortably with our typing
system. We believe that a simple extension of the logic presented here can easily ac-
count for exceptions. A second omission is that many programming languages with
interesting control constructs also feature state. We believe that adding state to PCF+or
µPCF can be done easily with the help of content quantification [16].

Related Work. The present work builds upon a large body of preceding work on the
semantics of control, including, but not limited to [11, 17, 21, 22, 25–28]. As mentioned,
the investigation of logics for control manipulation was started by Clint and Hoare [10].
It has been revived by [2–4, 7, 24, 29, 32, 34] (the long version of the present paper will
feature a more comprehensive discussion). None of these approaches investigates logics
for fully-fledged higher-order control constructs like callcc.

The present work adds a new member to a family of logics for ML-like languages
[5, 16, 18, 36], and integrates in a strong sense: e.g. all rules and axioms from [16] are,
adapting the syntax, also valid for PCF+and µPCF. We believe that all common CPS-
transforms between PCF, PCF+ and µPCF are logically fully abstract in the sense of
[23]. This coherence between programming languages, their operational and axiomatic
semantics, and compilations between each other paves the way for a comprehensive
proof-compilation infrastructure for ML-like languages.

Rely/guarantee based reasoning was introduced in [20]. Internalising rely/guarantee
reasoning into the program logic itself by way of rely/guarantee formulae was first
proposed in [30, 31] and has been used in Ambient Logics [9] and in expressive typing
systems [8]. The use of tensor is also found in [30, 31], and has been advocated by
Winskel [35]. In all cases the context is concurrency, not sequential control.

A preliminary version of the present work was finished in 2007, and its key ideas, in
particular rely/guarantee formulae and the tensor have since lead to a Hennessy-Milner

210 M. Berger

logic for typed π-calculus [6]. Neither proof-rules nor axioms for higher-order control
are investigated in [6]. Clarifying the relationship between the present logic and that of
[6] is an interesting research question.

References

1. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. & Comp. 163,
409–470 (2000)

2. Aspinall, D., Beringer, L., Hofmann, M., Loidl, H.-W., Momigliano, A.: A program logic for
resource verification. In: Slind, K., Bunker, A., Gopalakrishnan, G.C. (eds.) TPHOLs 2004.
LNCS, vol. 3223, pp. 34–49. Springer, Heidelberg (2004)

3. Bannwart, F., Müller, P.: A program logic for bytecode. ENTCS 141(1), 255–273 (2005)
4. Benton, N.: A Typed, Compositional Logic for a Stack-Based Abstract Machine. In: Yi, K.

(ed.) APLAS 2005. LNCS, vol. 3780, pp. 364–380. Springer, Heidelberg (2005)
5. Berger, M., Honda, K., Yoshida, N.: A logical analysis of aliasing for higher-order imperative

functions. In: Proc. ICFP, pp. 280–293 (2005); Full version to appear in JFP
6. Berger, M., Honda, K., Yoshida, N.: Completeness and logical full abstraction in modal log-

ics for typed mobile processes. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
99–111. Springer, Heidelberg (2008)

7. Beringer, L., Hofmann, M.: A bytecode logic for JML and types. In: Kobayashi, N. (ed.)
APLAS 2006. LNCS, vol. 4279, pp. 389–405. Springer, Heidelberg (2006)

8. Caires, L.: Spatial-behavioral types, distributed services, and resources. In: Montanari, U.,
Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS, vol. 4661, pp. 98–115. Springer, Heidelberg
(2007)

9. Cardelli, L., Gordon, A.D.: Anytime, Anywhere. Modal Logics for Mobile Ambients. In:
Proc. POPL, pp. 365–377 (2000)

10. Clint, M., Hoare, C.A.R.: Program Proving: Jumps and Functions. Acta Informatica 1, 214–
224 (1972)

11. Duba, B.F., Harper, R., MacQueen, D.: Typing First-Class Continuations in ML. In:
Proc. POPL, pp. 163–173 (1991)

12. Harper, R., Lillibridge, M.: Operational Interpretations of an Extension of Fω with Control
Operators. Journal of Functional Programming 6(3), 393–417 (1996)

13. Honda, K.: Processes and games. ENTCS 71 (2002)
14. Honda, K., Berger, M., Yoshida, N.: Descriptive and Relative Completeness of Logics for

Higher-Order Functions. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 360–371. Springer, Heidelberg (2006)

15. Honda, K., Yoshida, N.: A uniform type structure for secure information flow. In: POPL
2002, pp. 81–92. ACM Press, New York (2002); Full version to appear in ACM TOPLAS

16. Honda, K., Yoshida, N.: A compositional logic for polymorphic higher-order functions. In:
Proc. PPDP 2004, pp. 191–202. ACM Press, New York (2004)

17. Honda, K., Yoshida, N., Berger, M.: Control in the π-calculus. In: Proc. CW 2004, ACM
Press, New York (2004)

18. Honda, K., Yoshida, N., Berger, M.: An observationally complete program logic for impera-
tive higher-order functions. In: LICS 2005, pp. 270–279 (2005)

19. Hyland, J.M.E., Ong, C.H.L.: On full abstraction for PCF. Inf. & Comp. 163, 285–408 (2000)
20. Jones, C.B.: Specification and Design of (Parallel) Programs. In: IFIP Congress, pp. 321–332

(1983)
21. Laird, J.: A Semantic Analysis of Control. PhD thesis, Univ. of Edinburgh (1998)

Program Logics for Sequential Higher-Order Control 211

22. Longley, J.: When is a functional program not a functional program? SIGPLAN Not. 34(9),
1–7 (1999)

23. Longley, J., Plotkin, G.: Logical Full Abstraction and PCF. In: Tbilisi Symposium on Logic,
Language and Information. CSLI (1998)

24. Ni, Z., Shao, Z.: Certified Assembly Programming with Embedded Code Pointers. In:
Proc. POPL (2006)

25. Ong, C.-H.L., Stewart, C.A.: A Curry-Howard foundation for functional computation with
control. In: Proc. POPL, pp. 215–227 (1997)

26. Parigot, M.: λµ-Calculus: An Algorithmic Interpretation of Classical Natural Deduction. In:
Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer, Heidelberg (1992)

27. Plotkin, G.: Call-By-Name, Call-By-Value, and the λ-Calculus. TCS 1(2), 125–159 (1975)
28. Riecke, J.G., Thielecke, H.: Typed exceptions and continuations cannot macro-express each

other. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS,
vol. 1644, pp. 635–644. Springer, Heidelberg (1999)

29. Saabas, A., Uustalu, T.: A Compositional Natural Semantics and Hoare Logic for Low-Level
Languages. In: Proc. Workshop Structural Operational Semantics, SOS (2006)

30. Stirling, C.: A complete compositional proof system for a subset of CCS. In: Brauer, W. (ed.)
ICALP 1985. LNCS, vol. 194, pp. 475–486. Springer, Heidelberg (1985)

31. Stirling, C.: Modal logics for communicating systems. TCS 49, 311–347 (1987)
32. Tan, G., Appel, A.W.: A Compositional Logic for Control Flow. In: Emerson, E.A.,

Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 80–94. Springer, Heidelberg
(2005)

33. Thielecke, H.: Continuations, functions and jumps. Bulletin of EATCS, Logic Column 8
(1999)

34. Thielecke, H.: Frame rules from answer types for code pointers. In: Proc. POPL, pp. 309–319
(2006)

35. Winskel, G.: A complete proof system for SCCS with modal assertions. In: Maheshwari,
S.N. (ed.) FSTTCS 1985. LNCS, vol. 206, pp. 392–410. Springer, Heidelberg (1985)

36. Yoshida, N., Honda, K., Berger, M.: Logical reasoning for higher-order functions with local
state. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 361–377. Springer, Heidel-
berg (2007)

Modular Schedulability Analysis of Concurrent
Objects in Creol�

Frank de Boer1, Tom Chothia1,2, and Mohammad Mahdi Jaghoori1

1 CWI, Kruislaan 413, Amsterdam, The Netherlands
2 School of Computer Science, University of Birmingham, UK

{jaghouri,t.chothia,f.s.de.boer}@cwi.nl

Abstract. We present an automata theoretic framework for modular
schedulability analysis of real time asynchronous objects modeled in the
language Creol. In previous work we analyzed the schedulability of ob-
jects modeled as Timed Automata. In this paper, we extend this frame-
work to support enabling conditions for methods and replies to messages
and we extend the Creol language to allow the specification of real time
information. We provide an algorithm for automatically translating Creol
code annotated with this real time information to timed automata. This
translation handles synchronization mechanisms in Creol, as well as pro-
cessor release points. With this translation algorithm, we can analyze
end-to-end deadlines, i.e., the deadline on the time since a message is
sent until a reply is received.

1 Introduction

Analyzing schedulability of a real time system consists of checking whether all
tasks are accomplished within their deadlines. We employed automata theory in
our previous work [7,8] to provide a high-level framework for modular schedu-
lability analysis of asynchronous concurrent objects. Concurrent objects, having
a dedicated processor each, are analyzed individually for schedulability with re-
spect to their behavioral interfaces. A behavioral interface specifies at a high
level and in the most general terms how an object may be used. As in modu-
lar verification [11], which is based on assume-guarantee reasoning, individually
schedulable objects can be used in systems compatible with their behavioral in-
terfaces. The schedulability of such systems is then guaranteed. Compatibility
being subject to state space explosion can be efficiently tested [8]. Schedulability
analysis and compatibility checking can be performed in Uppaal [12].

In this paper, we show the application of the modular schedulability analy-
sis framework to Creol [9]. Creol is a full-fledged object-oriented modeling lan-
guage based on concurrent objects. Creol objects communicate by asynchronous
message passing, where receiving a message starts a new process in the object
for executing the corresponding method. The processes in each object may be
� This work is partly funded by the European IST-33826 STREP project CREDO on

Modeling and Analysis of Evolutionary Structures for Distributed Services.

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 212–227, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Modular Schedulability Analysis of Concurrent Objects in Creol 213

interleaved only at processor release points, i.e., the running process may be
interrupted only when it voluntarily releases the processor. Then a process is
nondeterministically taken out of the process queue and executed (called context-
switch). In the case of a conditional release point, the running process is in-
terleaved if and only if the condition is false. The rest of the method will be
suspended until this condition is satisfied. Furthermore, an object can wait for
a reply to a message it sends. This way one can model synchronous communi-
cation. If waiting is not performed in a release point, the waiting process will
block the object (cf. Section 4).

Creol is a strongly typed modeling language supporting for instance multiple
inheritance and type-safe dynamic class upgrades [15]. Schedulability analysis
can be seen as a complementary feature for Creol. In this paper, we show how
to add real time information to a Creol model. For every statement, the modeler
can specify its (best- and worst-case) execution time. All method calls are given
a deadline. In addition, an object is assigned a scheduling strategy (e.g., Earliest
Deadline First, Fixed Priority Scheduling, etc.) to resolve the nondeterminism
in selecting from among the enabled processes.

The object model of the schedulability analysis framework is similar to that of
Creol, as objects have dedicated processors and communicate by asynchronous
message passing. However, methods in this framework are modeled as timed
automata [1] and run atomically to the end. The actions of these automata are
sending messages. A self call, i.e., a message sent to the object itself, can be
assigned an explicit deadline; otherwise, the called method (subtask) inherits
the remaining deadline of the parent task (called delegation).

In this paper in Section 5, we provide an algorithm for extracting timed au-
tomata from Creol code. When the processor is released in the middle of a
method, the rest of the method is modeled as a new automaton modeling the
subtask. The subtask is added to the queue by means of a delegation self call
before releasing the processor. Thus the subtask inherits the remaining deadline
of the parent task. The subtask is, however, disabled as long as the condition of
the release point is false. To model this, we need to extend the framework such
that methods are assigned enabling conditions (cf. Section 3). The scheduler
may schedule a task only if its enabling condition evaluates to true at the time
of context switch. The subtasks generated by processing the release points are
given as enabling condition the condition of the release point.

In Creol, in addition to messages, objects can send ‘replies’. Ideally each re-
ply should correspond to a method invocation, but this leads to an infinite state
model for a nonterminating system. Instead, method invocations are statically
labeled and we associate replies to the labels. Thus, replies to different invoca-
tions associated with the same label are not distinguished. Replies should also
be covered in the behavioral interface. Receiving a reply does not trigger a new
task, but it may enable a suspended task that has been waiting for it. The sched-
uler automata model is adapted to handle replies properly. The compatibility
check is also enhanced to include checking the correct and in time exchange of

214 F. de Boer, T. Chothia, and M.M. Jaghoori

replies. The deadline until a reply is received is called an end-to-end deadline.
Timely replies ensure end-to-end deadlines.

Related Work. Schedulability has been studied for actor languages [14] and
event driven distributed systems [6]. Unlike these works, we work with non-
uniformly recurring tasks as in task automata [5] which fits better the nature
of message passing in object-oriented languages. The advantage of our work
over task automata is that tasks are specified and may in turn create new tasks.
Furthermore, a task may give up the processor before it is accomplished. Finally,
we deal with end-to-end deadlines as a caller can wait for a reply from the callee.

The works of [2,10] is similar to ours as they extract automata from code
for schedulability analysis. However, first of all they deal with programming
languages and timings are usually obtained by profiling the real system. Our work
is applied on a model before the implementation of the real system. Therefore,
our main focus is on studying different scheduling policies and design decisions.
More importantly, we address schedulability in a modular way.

A characteristic of our work is modularity. A behavioral interface models the
most general message arrival pattern for an object. A behavioral interface can be
viewed as a contract as in ‘design by contract’ [13] or as a most general assump-
tion in modular model checking [11] (based on assume-guarantee reasoning);
schedulability is guaranteed if the real use of the object satisfies this assump-
tion. In the literature, a model of the environment is usually the task generation
scheme in a specific situation. For example in TAXYS [2], different models of the
environment can be used to check schedulability of the application in different
situations. However, a behavioral interface in our analysis covers all allowable
usages of the object, and is thus an over-approximation of all environments in
which the object can be used. This adds to the modularity of our approach;
every use of the object foreseen in the interface is verified to be schedulable.

2 Preliminaries

In this section, we define timed automata as it forms the basis of our analyses.

Definition 1 (Timed Automata). Suppose B(C) is the set of all clock con-
straints on the set of clocks C. A timed automaton over actions Σ and clocks C
is a tuple 〈L, l0,−→, I〉 representing

– a finite set of locations L (including an initial location l0);
– the set of edges −→⊆ L× B(C) ×Σ × 2C × L; and,
– a function I : L �→ B(C) assigning an invariant to each location.

An edge (l, g, a, r, l′) implies that action ‘a’ may change the location l to l′ by
resetting the clocks in r, if the clock constraints in g (as well as the invariant of
l′) hold. Since we use Uppaal [12], we allow defining variables of type boolean
and bounded integers. Variables can appear in guards and updates.

A timed automaton is called deterministic if and only if for each a ∈ Act, if
there are two edges (l, g, a, r, l′) and (l, g′, a, r′, l′′) from l labeled by the same
action a then the guards g and g′ are disjoint (i.e., g ∧ g′ is unsatisfiable).

Modular Schedulability Analysis of Concurrent Objects in Creol 215

Networks of timed automata. A system may be described as a collection of timed
automata communicating with each other. In these automata, the action set is
partitioned into input, output and internal actions. The behavior of the system
is defined as the parallel composition of those automata A1 ‖ · · · ‖ An. Semanti-
cally, the system can delay if all automata can delay and can perform an action if
one of the automata can perform an internal action or if two automata can syn-
chronize on complementary actions (inputs and outputs are complementary). In
a network of timed automata, variables can be defined locally for one automaton,
globally (shared between all automata), or as parameters to the automata.

A location can be marked urgent in an automaton to indicate that the au-
tomaton cannot spend any time in that location. This is equivalent to resetting
a fresh clock x in all of its incoming edges and adding an invariant x ≤ 0 to
the location. In a network of timed automata, the enabled transitions from an
urgent location may be interleaved with the enabled transitions from other au-
tomata (while time is frozen). Like urgent locations, committed locations freeze
time; furthermore, if any process is in a committed location, the next step must
involve an edge from one of the committed locations.

3 The Modular Schedulability Analysis Framework

In this section, we present the automata-theoretic framework for modular
schedulability analysis of asynchronous objects. The framework in [7,8] is ex-
tended here such that methods (and their corresponding messages) have en-
abling conditions. In addition, methods can send reply signals implying that
the method execution has finished. This enables modeling Creol synchronization
mechanisms.

Modeling behavioral interfaces. The abstract behavior of an object is spec-
ified in its behavioral interface. This interface consists of the messages the object
may receive and send and provides an overview of the object behavior in a single
automaton. It should also contain the reply signals the object may receive. A
behavioral interface can also be seen as an abstraction (over-approximation) of
the environments that can communicate with the object. A behavioral interface
abstracts from specific method implementations, the queue in the object and the
scheduling strategy.

We assume two finite global sets: M for method names and T for labels.
Sending and receiving messages are written as m! and m?, respectively. Sending
a message can be labeled with t ∈ T . Sending and receiving a reply associated
to the label t are written as t! and t?, respectively. A behavioral interface B
providing a set of method names MB ⊆ M is formally defined as a deterministic
timed automaton over alphabet ActB such that ActB is partitioned into three
sets of actions:

– object outputs received by the environment: ActBO = {m?|m ∈ M∧m �∈MB}
– object inputs sent by the environment: ActBI = {m(d)!|m ∈MB ∧ d ∈ N}
– replies to the object outputs: ActBr = {t!|t ∈ T }

216 F. de Boer, T. Chothia, and M.M. Jaghoori

The integer d associated to input actions represents a deadline. A correct
implementation of the object should be able to finish method m before d time
units. The methods MB must exist in the classes implementing the interface B.
Other methods are sent by the object and should be handled by the environment.

A behavioral interface includes the replies received by the object, because they
are necessary for the schedulability of the methods waiting for the corresponding
replies. These will also be used in compatibility checking to make sure that other
objects provide timely reply signals.

Modeling classes. One can define a class as a set of methods implementing a
specific behavioral interface. A class R implementing the behavioral interface B
is a set {(m1, E1, A1), . . . , (mn, En, An)} of methods, where

– MR = {m1, . . . ,mn} ⊆ M is a set of method names such that MB ⊆MR;
– for all i, 1 ≤ i ≤ n, Ai is a timed automaton representing method mi with

the alphabet Acti = {m!|m ∈MR}∪ {m(d)! | m ∈ M∧ d ∈ N}∪ {t?|t ∈ T };
– for all i, 1 ≤ i ≤ n, Ei is the enabling condition for mi.

Classes have an initial method which is implicitly called upon initialization and
is used for the system startup. Method automata only send messages or wait
for replies while computations are abstracted into time delays. Receiving mes-
sages (and buffering them) is handled by the scheduler automata explained next.
Sending a message m ∈ MR is called a self call. Self calls may or may not be
assigned an explicit deadline. The self calls with no explicit deadline are called
delegation. Delegation implies that the internal task (triggered by the self call) is
in fact the continuation of the parent task; therefore, the delegated task inherits
the (remaining) deadline of the task that triggers it. As explained in the next
section, delegation is essential in modeling Creol models correctly.

Modeling schedulers. A scheduler automaton implements a queue for storing
messages and their deadlines. It is strongly input enabled, i.e., it can receive any
message inMR at any time. Whenever a method is finished, the scheduler selects
another enabled message from the queue (based on its scheduling strategy) and
starts the corresponding method (called context-switch). A message in the queue
is enabled if its enabling condition evaluates to true. We have shown in [7] that
we may put a finite bound on the queue length and still derive schedulability
results that hold for any queue length (cf. next subsection). An Error location is
reachable when a queue overflow occurs or a task misses its deadline.

Due to lack of space, for the details of modeling a scheduler in Uppaal and
handling the deadlines using clocks we refer to our previous work [8]. We explain
how to extend it here to support enabling conditions and replies. An enabling
condition may include the availability of a reply. Since enabling conditions do
not depend on clock values, and are statically defined for each method, we can
define in Uppaal a boolean function to evaluate the enabling condition for each
method when needed. An example of this function is given in Section 6. The
selection strategy (which is specified as a guard) is then conjuncted with the
result of the evaluation of this function.

Modular Schedulability Analysis of Concurrent Objects in Creol 217

As explained in Section 5, a reply is modeled by setting to true the variable
associated to its corresponding label. However, when all the processes in the
queue are disabled, receiving a reply may enable one of these processes. To
handle this situation, we require the behavioral interface (in individual object
analysis) or the replier object (when objects are put together) to synchronize
with the scheduler on the reply channel. The scheduler then has the chance to
select the enabled process for execution in the same way as in context-switch.

Modular Schedulability Analysis. An object is an instance of a class to-
gether with a scheduler automaton. To analyze an object in isolation, we need
to restrict the possible ways in which the methods of this object could be called.
Therefore, we only consider the incoming method calls specified in its behavioral
interface. Receiving a message from another object (i.e., an input action in the
behavioral interface) creates a new task (for handling that message) and adds
it to the queue. The behavioral interface doesn’t capture (internal tasks trig-
gered by) self calls. In order to analyze the schedulability of an object, one needs
to consider both the internal tasks and the tasks triggered by the (behavioral
interface, which abstractly models the acceptable) environment.

We can generate the possible behaviors of an object by making a network of
timed automata consisting of its method automata, behavioral interface automa-
ton B and a concrete scheduler automaton. The inputs of B written as m! will
match with inputs in the scheduler written as m? and the outputs of B written
as m? will match outputs of method automata written as m!.

An object is schedulable, i.e., all tasks finish within their deadlines, if and
only if the scheduler cannot reach the Error location with a queue length of
�dmax/bmin�, where dmax is the longest deadline for any method called on any
transition of the automata (method automata or the input actions of the behav-
ioral interface) and bmin is the shortest termination time of any of the method
automata [7]. We can calculate the best case runtime for timed automata as
shown by Courcoubetis and Yannakakis [3].

Once an object is verified to be schedulable with respect to its behavioral
interface, it can be used as an off-the-shelf component. To ensure the schedula-
bility of a system composed of individually schedulable objects, we need to make
sure their real use is compatible with their expected use specified in the behav-
ioral interfaces. The product of the behavioral interfaces, called B, shows the
acceptable sequences of messages that may be communicated between the ob-
jects. Compatibility is defined as the inclusion of the visible traces of the system
in the traces of B [8].

To avoid state-space explosion, we test compatibility. A trace is taken from
B and turned into a test case by adding Fail, Pass and Inconc locations.
Deviations from the trace either lead to Inconc, when the step is allowed in
B, or otherwise lead to Fail. The submission of a test case consists of having
it synchronize with the system. This makes the system take the steps specified
in the original trace. The Fail location is reachable if and only if the system is
incompatible with B along this trace. This property, called nonlaxness, as well
as soundness, are proved in our previous work [8].

218 F. de Boer, T. Chothia, and M.M. Jaghoori

4 Real-Time Creol

Creol [9] is an object oriented modeling language for distributed systems. Creol
fits our schedulability analysis framework, as a model consists of concurrent
objects which communicate by asynchronous message passing. However, method
definitions are more complex and may release the processor or wait for a reply
to a message. In this section, we explain briefly the Creol modeling language and
show how to add real time information to Creol code.

We abstract from method parameters and dynamic object creation. However,
classes can have parameters. Class instances can communicate by objects given
as class parameters, called the known objects. We can thus define the static
topology of the system. The class behavior is defined in its methods, where a
method is a sequence of statements separated by semicolon. A simplified syntax
for Creol covered in our translation is given in Figure 1. For expressions, we
assume the syntax that is accepted by Uppaal.

Methods can have processor release points which define interleaving points
explicitly. When a process is executing, it is not interrupted until it finishes or
reaches a release point. Release points can be conditional, written as await g. If
g is satisfied, the process keeps the control; otherwise, it releases the processor.
When the processor is free, an enabled process is nondeterministically selected
and started. The suspended process will be enabled when the guard evaluates
to true. The release statement unconditionally releases the processor and the
continuation of the process is immediately enabled.

If a method invocation p is associated with a label t, written as t !p(), the
sender can wait for a reply using the blocking statement t? or in a nonblocking
way by including t? in a release point, e.g., as in await t?. A reply is sent back
automatically when the called method finishes. Before the reply is available,
executing await t? releases the processor whereas the blocking statement t? does
not. While the processor is not released, the other processes in the object do not
get a chance for execution.

In standard Creol, different invocations of a method call are associated with
different values of the label. For instance executing the statement t !p() twice
results in two instances of the label t. Dynamic labels give rise to an infinite
state space for non-terminating reactive systems. To be able to perform model
checking, we treat every label as a static tag. Therefore, different invocations of

g : Guard
b : Boolean
t : Label
m : Method
p : Invocation
x : Object
s : Statement
v : Variable
e : Expression
N : Identifier

g ::= b | t? | !g | g ∧ g
p ::= x.m | m
S ::= s | s; S
s ::= v := e | !p() | t!p() | t? | release | await g

| if b then S else S fi | while b do S od
V dcl ::= N : [int | bool]
mtd ::= op N == S
cl ::= class N([V dcl]∗,) begin [var V dcl]∗ [mtd]+ end

Fig. 1. The simplified grammar for the covered subset of Creol (adapted from [9])

Modular Schedulability Analysis of Concurrent Objects in Creol 219

1 class MutEx (l e f t : Entity , r i gh t : Ent ity) begin
2 var taken : bool
3 op i n i t i a l ==
4 taken := f a l s e /∗@b1 @w1 : time de l ay ∗/
5 op reqL ==
6 await ! taken ; /∗@b1 @w2 : b e s t and worst case ∗/
7 taken := t rue ; /∗@b1 @w1∗/
8 l ! l e f t . grant () ; /∗@b4 @w4 @d10 : d = dead l i ne ∗/
9 await l ? ; /∗@b2 @w2∗/

10 taken := f a l s e /∗@b1 @w1∗/
11 op reqR ==
12 await ! taken ; /∗@b1 @w2∗/
13 taken := t rue ; /∗@b1 @w1∗/
14 r ! r i gh t . grant () ; /∗@b4 @w4 @d10∗/
15 await r ? ; /∗@b2 @w2∗/
16 taken := f a l s e /∗@b1 @w1∗/
17 end

Fig. 2. A Creol class for mutual exclusion with timing information

a method call with the same label are not distinguished in our framework. Alter-
natively, one could associate replies to message names, but this is too restrictive.
By associating replies to labels, we can still distinguish the same message sent
from different methods with different labels.

Adding Real-Time. The modeler should specify for every statement how long
it takes to execute. The directives @b and @w are used for specifying the best-
case and worst-case execution times for each statement. We assume some default
execution time for different types of statements, e.g., for checking a guard, as-
signment or sending a message. The default value is used when no execution
time is provided. Furthermore, every method call, including self calls, must be
associated with a deadline using @d directive. This deadline specifies the relative
time before which the corresponding method should be scheduled and executed.
Since we do not have message transmission delays, the deadline expresses the
time until a reply is received. Thus, it corresponds to an end-to-end deadline.

A worst-case execution time delay for a blocking statement t? is ignored.
This statement may take so long as the deadline specified for the corresponding
method call. In other words, we assume that external calls finish within their
deadline. This is a fair assumption as long as individually schedulable objects are
meant to be used in environments compatible with their behavioral interfaces.

Example 1. Figure 2 shows the Creol code for a mutual exclusion handler object
annotated with timing information. An instance of MutEx should be provided

220 F. de Boer, T. Chothia, and M.M. Jaghoori

with two instances of a class Entity representing the two objects (on its left and
right) trying to get hold of the MutEx object. To do so, they may call reqL
or reqR, respectively. The request is suspended if the object is already taken;
otherwise, it is granted. The MutEx waits until the requester entity finishes its
operation (in its grant method).

5 Generating Timed Automata from Creol

In this section, we explain the algorithm for automatically deriving automata
from Creol code. We assume that the given Creol models are correctly typed and
annotated with timing information. We use the same syntax for expressions and
assignments in Creol, as is used by Uppaal. This allows for a more direct trans-
lation. For the sake of simplicity, we abstract from parameter passing, however,
it can be modeled in Uppaal, by extending the queue to hold the parameters.

In applying the framework (cf. Section 3), the idea is that Creol classes are
modeled as classes in the framework, and methods are represented by timed
automata. In the next subsection, we explain how to extract timed automata
from Creol code for methods. A class is then modeled by collecting the automata
representing its methods. Every class should also be accompanied by a behavioral
interface specification (using timed automata) and a scheduler automaton.

There are two major complications in this translation. Firstly, methods may
release the processor before their completion. In these cases, the rest of the
method is modeled as a sub-task in a separate automaton. Since the sub-task
should inherit the deadline of the original task, it is put back into the queue using
the delegation mechanism (cf. Section 3). The condition of the release point is
used as its enabling condition.

When the condition in a release point includes t?, i.e., waiting until the reply
to the call with label t is available, we replace t with a global variable which is set
to true by the callee when it finishes. The behavioral interface should capture the
expected time when the reply is made ready. This time must match the deadline
provided when performing the corresponding call. See Section 6 for an example.

The second complication is how we can map a possibly infinite state Creol
model to finite state automata. We do this by abstracting away some information:
variables from a finite domain can be mapped to themselves but conditions
on potentially infinite variables are mapped to true, we perform this mapping
with the function f in Figure 3. The user must state which variables must be
mapped to true. This means that our automata over-approximate the behaviors
of the Creol model. A more advanced abstraction would map potentially infinite
variables to finite domains in order to narrow the over-approximation. Due to
lack of space we do not elaborate on this abstraction in this paper.

5.1 The Translation Algorithm

In this section, we present our translation algorithm, which can be seen as a
custom form of graph transformations [4]. For each method, we start by an au-
tomaton with two locations and one transition where the final location is urgent

Modular Schedulability Analysis of Concurrent Objects in Creol 221

21 s1 ; s2 seq
=⇒ 21 s2s1

21 v := e
/*@b @w*/ assign=⇒ 21

c <= w
c >= b

f(v := e), c := 0

21 /*@b @w @d*/
! rec.m()

call=⇒ 21

c <= w

c >= b
invoke[m][rec][self]!

deadline := d, c := 0

21 /*@b @w @d*/
t ! rec.m()

label=⇒
21

c <= w

c >= b
invoke[m][rec][self]!

deadline := d, d_t := d,
c_x_t[self] := 0, c := 0

21 t? /*@b*/ ret=⇒ 21

c_x_t[self] <= d_t

x_t[self] &&
 c >= b

21 release
/*@b @w*/ rel=⇒ 21

c <= w

c >= b
delegate[x1][self]!

c := 0

21 await g
/*@b @w*/

{g may contain t?}
crel=⇒

2

1 c <= w

delegate[x1][self]!
f(!g) && c >= b

c := 0

f(g) && c >= b
c := 0 {, x_t[self] := false}

21 if (g) then s1 else s2 fi
/*@b @w*/ if

=⇒ 21 c <= w

s2
f(!g) && c >= b

c := 0

s1
f(g) && c >= b

c := 0

21 while (g) do s od
/*@b @w*/ while=⇒

21
c <= w

f(!g) && c >= b
c := 0

s

f(g) && c >= b
c := 0

Fig. 3. Automata expansion rules

(marked u). We put the whole body of the method as a big statement on this
transition. This automaton (treated as a graph) is expanded by matching and
expanding the statements as in Figure 3. The expansion and finalization of this
automaton is explained in the sequel. As part of the finalization, the automaton
is duplicated for each possible release point, and each of these automata is given
a proper enabling condition.

Expanding Creol statements. The expansion of statements works by applying
repeatedly the rules in Figure 3. The labels 1 and 2 on the locations show the

222 F. de Boer, T. Chothia, and M.M. Jaghoori

correspondence between the left and right hand sides of the rules. The locations
marked u all correspond to the final location of the starting automaton (see
above). These rules are applied as long as they are enabled, i.e., the label on
left-hand side can be matched with a transition (according to the grammar in
Section 4). The rule is then applied by removing this transition, and adding
instead the new transitions and locations on the right hand side between the
locations marked 1 and 2. It can be easily shown that the order of applying the
rules is not important [4, Section 3.3]. When applying these rules, the following
notes should be considered.

Since different methods in a class are modeled in different automata, the
class variables need to be defined globally. Variables are defined as arrays, and
the identity of the object is used to distinguish between variables of different
instances of the same class. The function f is used to add [self] to every variable
used in an expression (as in the assign rule). For every label t, a boolean variable
x_t, a clock c_x_t and an integer d_t are defined such that these names are
unique. Similar to variables, x_t and c_x_t are also treated as arrays indexed
by self . The value of d_t is the same for all objects of this type.

The rules call and label translates the calls. If a label is not present, only
the deadline is set to d. The calls are translated into a synchronization on the
“invoke” channel. This implies that we do not allow explicit delegation. Instead,
release points should be used as a high-level construct for breaking a method
into subtasks. Every method should be self-contained and correspond to a single
job, which is given a static deadline.

Every time the rules rel and crel are applied, the text x1 should be replaced
by a fresh name, not used already in the model. This name will be used as the
name of the sub-task modeling the continuation of the method. A conditional
release point may also include a check whether the response to a previous method
call labeled by ‘t’ is available. In this case, a fresh boolean variable (written x_t,
e.g., in the ret rule) is introduced which will be set to true by the callee (or in
the behavioral interface, when performing individual schedulability analysis). In
this case, a check on ‘t?’ can be replaced by a check on x_t. The variable x_t
must be reset after it is used for enabling a suspended method. This is done at
the transition labeled g on the right side of the rule crel (shown in curly braces).

The blocking statement t? is translated to a transition with a guard waiting
until x_t is set to true (ret rule). This transition takes a maximum time equal
to the deadline of the corresponding method call. This is achieved by resetting
a clock c_x_t and setting d_t to the corresponding deadline value at the label
rule, and checking c_x_t against d_t at the ret rule.

The execution times for every statement are applied with the help of a clock
c. In the case of if , while and crel , it is treated as the delay before evaluating
the guard. The delegation step in a conditional release is performed in zero time
(using a committed location marked c). The time delays provided by the modeler
can in principle model the computation that is abstracted away when modeling
the system at a high level.

Modular Schedulability Analysis of Concurrent Objects in Creol 223

c <= 2

c <= 1

c <= 2

c <= 4c <= 1

delegate[reqL1][self]!taken[self] && c >= 1
c := 0

start[reqL][self]?
c := 0

!taken[self]
 &&
c >= 1
c := 0

finish[self]!

delegate[reqL2][self]!

c >= 1
taken[self] := false,
 c := 0

c >= 2 &&
!reqL_l[self]
c := 0

c >= 2 &&
reqL_l[self]
reqL_l[self]:=false,
c := 0

c >= 4
invoke[grant][Left][self]!

deadline := 10,
c := 0

c >= 1
taken[self] := true,
 c := 0

c <= 1

c <= 2

c <= 4c <= 1

start[reqL1][self]?
c := 0

finish[self]!

delegate[reqL2][self]!

c >= 1
taken[self] := false,
 c := 0

c >= 2 &&
!reqL_l[self]
c := 0

c >= 2 &&
reqL_l[self]
reqL_l[self]:=false,
c := 0

c >= 4
invoke[grant][Left][self]!

deadline := 10,
c := 0

c >= 1
taken[self] := true,
 c := 0

c <= 1

start[reqL2][self]?
c:=0,
reqL_l[self] := false

finish[self]!

c >= 1
taken[self] := false,
 c := 0

Fig. 4. Three automata are generated for the method reqL in Figure 2. The unreachable
locations in reqL1 and reqL2 are not shown. The enabling conditions for reqL, reqL1
and reqL2 are true, !taken and reqL_l, respectively.

Finalizing the methods. The rules given above generate an automaton with only
Uppaal primitive actions on its labels, i.e., assignments, channel synchroniza-
tions or guards. This automaton called m (where m is the name of the method)
has one start location with no incoming transitions and one urgent final loca-
tions marked ‘u’. This automaton will schedule a sub-task whenever the method
should release the processor. This sub-task, when scheduled, should continue
where the parent task left off.

To complete the modeling of release points, the automaton m is duplicated
once for each release point to model the corresponding subtask. For the dupli-
cated automata, each automaton is given the name generated when processing
the corresponding release point (the new name x1 above). The start location of
each of these automata is changed to the location where the resumed sub-task
should start; this corresponds to the location marked 2 in the rel and crel rules.

We finalize each automaton, n, by adding the following:

– a new location marked initial,
– a transition with a synchronization on “ start [n][self]?” from the initial lo-

cation to the start location (defined above) in order to enable the scheduler
to start this task. This transition must have an update “c := 0”.

– a transition with the label “ finish [self]! ” from the urgent final location to
the initial location. This allows restarting the method if it is called again.

The guards of conditional release points are set as the enabling conditions of the
corresponding automata. Other automata have true as their enabling condition.
If the enabling condition of a method automaton requires waiting for a reply
associated to a label t, the variable x_t needs to be reset on the ‘start ’ transition.
We illustrate this process in the next section.

224 F. de Boer, T. Chothia, and M.M. Jaghoori

5.2 End-to-End Deadlines

When calling a method with a deadline and waiting for the response later in the
method, we are, in fact, enforcing an end-to-end deadline on the method call.
This deadline must be enforced on the behavioral interface for the arrival of the
response (with the assumption that only individually schedulable objects will be
used together). This is crucial to the schedulability of the caller object. If no such
restriction on the arrival of the response is enforced, the caller may be provided
with the reply too late, therefore it will miss the deadline for performing the task
enforced by the method that is waiting for the reply. This restriction is reflected
in the extended compatibility check (cf. Section 6.1).

6 Schedulability Analysis of Creol

Having generated method automata for a Creol class, we can perform schedu-
lability analysis as explained in Section 3. Figure 4 shows the automata gener-
ated for the method reqL from Figure 2. The automata for reqR are similar.
Since reqL has two release points, it results in three method automata; one
for the method itself, and one for each possible subtask generated by releasing
the processor. Figure 5 shows the function modeling the enabling conditions for
MutEx.

To be able to perform schedulability analysis for this object, we need the
behavioral interface specification, as in Figure 6. When put together with its be-
havioral interface, the object will be checked to make sure it finishes the incoming
messages (‘requests’ in MutEx example) within their deadlines. The outputs of
the object are also ensured to conform to the behavioral interface. For each
output, the object may wait for a reply. The behavioral interface provides the
expected replies assuming that the end-to-end deadlines for the output messages
are satisfied. The object is analyzed to find the proper scheduling strategy. For
schedulability of MutEx, an ‘earliest deadline first’ strategy is needed to favor
old requests to new ones.

1 bool i sEnabled (int msg , int s e l f) {
2 i f (msg == reqL1) return ! taken [s e l f] ;
3 else i f (msg == reqL2) return reqL_l [s e l f] ;
4 else i f (msg == reqR1) return ! taken [s e l f] ;
5 else i f (msg == reqR2) return reqR_r [s e l f] ;
6 return t rue ; // o ther method automata
7 }

Fig. 5. An example function capturing enabling conditions

Modular Schedulability Analysis of Concurrent Objects in Creol 225

x1 <= d_r

x1 <= d_l

x1 <= d_l

x1 <= d_r

invoke[reqR][self][Right]!
deadline=XD

invoke[reqL][self][Left]!
deadline=XD

reply[self]!
reqR_r[self] := true

invoke[grant][Right][self]?
x1=0

reply[self]!
reqL_l[self] := true

invoke[grant][Left][self]?
x1=0

reply[self]!
reqL_l[self] := true

invoke[grant][Left][self]?
x1=0

reply[self]!

reqR_r[self] := true

invoke[grant][Right][self]?
x1=0

invoke[reqR][self][Right]!
deadline=XD

invoke[reqL][self][Left]!
deadline=XD

invoke[reqL][self][Left]!
deadline=XDinvoke[reqR][self][Right]!

deadline=XD

Fig. 6. The behavioral interface for the MutEx object

FAIL

PASS

r:int[0,OBJ-1]
r != 5

reply[r]?

r:int[0,OBJ-1]
reply[r]?

r:int[0,OBJ-1]
reply[r]?

r:int[0,OBJ-1]
reply[r]?

!reqR_r[2] deadline < 10

deadline < XDdeadline < XD

m:int[0,MSG],
s:int[0,OBJ-1],
r:int[0,OBJ-1]

s != r
invoke[m][r][s]?

m:int[0,MSG], s:int[0,OBJ-1], r:int[0,OBJ-1]
! (m == grant && r == 3 && s == 2) &&
! (m == grant && r == 4 && s == 2) &&
s != r invoke[m][r][s]?

m:int[0,MSG],
s:int[0,OBJ-1],
r:int[0,OBJ-1]
! (m == reqL && r == 5 && s == 1) &&
! (m == grant && r == 5 && s == 0) &&
s != r
invoke[m][r][s]?

m:int[0,MSG],
s:int[0,OBJ-1],
r:int[0,OBJ-1]
!(m == reqR && r == 5 && s == 0) &&
!(m == reqL && r == 5 && s == 1) &&
 s != r

invoke[m][r][s]?

deadline >= 10
invoke[grant][0][5]!

x1 >= d_r

reqR_r[2]
reply[2]!

x1 < d_r
reply[5]?

invoke[grant][3][2]?
x1 = 0

deadline >= XD
invoke[reqL][2][4]!

invoke[reqL][5][1]?deadline >= XD
invoke[reqR][2][3]!

invoke[reqR][5][0]?

Fig. 7. Test case for compatibility including reply to messages

6.1 Checking Compatibility

Once schedulability is established, the objects can be put together to form a sys-
tem. Then we should check if the usage of the objects in the system is compatible
with their behavioral interfaces.

A complication in forming a system is making methods send reply signals. If
when calling a method, a label t is assigned to the method call, the called method
should set the variable corresponding to this label, namely x_t (cf. previous sec-
tion), to true and send a reply signal by synchronizing on the reply channel
when the method finishes. In individual object analysis, this is performed by the

226 F. de Boer, T. Chothia, and M.M. Jaghoori

behavioral interface. When making a system, this can be added automatically
by a static check of the model.

When testing for compatibility, we should also check if the correct replies to
methods are received. To do so, the objects need to synchronize with the test
case on reply channel (as well as invoke and delegate channels). In the case of
sending messages, the test-case checks the compatibility of the deadline values.
For replies, we check if the correct variable (corresponding to the correct label)
is set to true. Compatibility thus ensures that replies arrive in time with respect
to the end-to-end deadline requirements (cf. Section 5.2).

Figure 7 shows a test case for checking the compatibility of a system using the
MutEx object. In this system, the deadline for grant method is assumed to be 10
in the behavioral interface of the Entity class. The test case does not show the
Inconc location. Any message or reply not foreseen in the behavioral interfaces
will lead to Fail.

7 Conclusions and Future Work

Creol is full-fledged object oriented modeling language with a formal seman-
tics supporting strong typing. Schedulability analysis is added to Creol as a
complementary feature in this paper. We investigated deriving automata from
Creol code augmented with real time information. We can then apply to Creol
the automata-theoretic framework for schedulability analysis. To this end, the
framework is extended to support enabling conditions for methods. We adapted
the compatibility check such that it includes checking for timely replies to the
external method calls.

With this translation, we provide a solution to the schedulability analysis of
concurrent object models without restricting the task generation to periodic pat-
terns or pessimistic approximations. Instead, automata are used to enable mod-
eling nonuniformly recurring tasks. We explained how ‘processor release points’
and synchronization mechanisms (waiting for a reply to an asynchronous call)
are handled.

Due to lack of space, a formal proof of correctness was not given in this
paper. This can be given based on the formal semantics of Creol and Timed
automata. The Creol semantics is un-timed, therefore we either have to extend
its semantics with real time, or we would have to ignore the timed aspects in
our proof. We can then show an operational correspondence or bisimulation
between the transition systems defined for a Creol model by its semantics, and
the network of timed automata that the Creol model is translated to by the
timed automata semantics.

As further work, one can study adding scheduling policies to the original
semantics of Creol. This provides an execution platform for the schedulable Creol
objects. We are currently working on an extension of the framework such that
it supports multi-core processors, where each object can have more than one
thread of execution. This enables us to analyze more realistic models.

Modular Schedulability Analysis of Concurrent Objects in Creol 227

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

2. Closse, E., Poize, M., Pulou, J., Sifakis, J., Venter, P., Weil, D., Yovine, S.: TAXYS:
A tool for the development and verification of real-time embedded systems. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 391–395.
Springer, Heidelberg (2001)

3. Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-
time systems. Formal Methods in System Design 1(4), 385–415 (1992)

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theoretical Computer Science. Springer,
Heidelberg (2006)

5. Fersman, E., Krcal, P., Pettersson, P., Yi, W.: Task automata: Schedulability,
decidability and undecidability. Information and Computation 205(8), 1149–1172
(2007)

6. Garcia, J.J.G., Gutierrez, J.C.P., Harbour, M.G.: Schedulability analysis of dis-
tributed hard real-time systems with multiple-event synchronization. In: Proc.
12th Euromicro Conference on Real-Time Systems, pp. 15–24. IEEE, Los Alamitos
(2000)

7. Jaghoori, M.M., de Boer, F.S., Chothia, T., Sirjani, M.: Schedulability of asyn-
chronous real-time concurrent objects. J. Logic and Alg. Prog. 78(5), 402–416
(2009)

8. Jaghoori, M.M., Longuet, D., de Boer, F.S., Chothia, T.: Schedulability and com-
patibility of real time asynchronous objects. In: Proc. Real Time Systems Sympo-
sium, pp. 70–79. IEEE CS, Los Alamitos (2008)

9. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling 6(1), 35–58 (2007)

10. Kloukinas, C., Yovine, S.: Synthesis of safe, QoS extendible, application specific
schedulers for heterogeneous real-time systems. In: Proc. 15th Euromicro Confer-
ence on Real-Time Systems (ECRTS 2003), pp. 287–294. IEEE Computer Society,
Los Alamitos (2003)

11. Kupferman, O., Vardi, M.Y., Wolper, P.: Module checking. Information and Com-
putation 164(2), 322–344 (2001)

12. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1-2), 134–152
(1997)

13. Meyer, B.: Eiffel: The language. Prentice-Hall, Englewood Cliffs (1992);(first print-
ing: 1991)

14. Nigro, L., Pupo, F.: Schedulability analysis of real time actor systems using
coloured petri nets. In: Agha, G.A., De Cindio, F., Rozenberg, G. (eds.) APN
2001. LNCS, vol. 2001, pp. 493–513. Springer, Heidelberg (2001)

15. Yu, I.C., Johnsen, E.B., Owe, O.: Type-safe runtime class upgrades in Creol. In:
Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 202–217.
Springer, Heidelberg (2006)

A Timed Calculus for Wireless Systems�

Massimo Merro and Eleonora Sibilio

Dipartimento di Informatica, Università degli Studi di Verona, Italy

Abstract. We propose a timed process calculus for wireless systems,
paying attention in modelling communication collisions. The operational
semantics of our calculus is given in terms of a labelled transition system .
The calculus enjoys a number of desirable time properties such as (i) time
determinism: the passage of time is deterministic; (ii) patience: devices
will wait indefinitely until they can communicate; (iii) maximal progress:
data transmissions cannot be delayed, they must occur as soon as a
possibility for communication arises.

The main behavioural equality of our calculus is a timed variant of
barbed congruence, a standard branching-time and contextually-defined
program equivalence. As an efficient proof method for timed barbed con-
gruence we define a labelled bisimilarity. We then apply our bisimulation
proof-technique to prove a number of algebraic properties.

1 Introduction

Wireless technology spans from user applications such as personal area networks,
ambient intelligence, and wireless local area networks, to real-time applications,
such as cellular, and ad hoc networks. The IEEE 802.11 standard [1] contains a
series of specifications for wireless LAN technologies. The basic building block of
an 802.11 network is the basic service set (BBS), which is a set of stations that
have successfully synchronised and that communicate using radio transceivers.
In independent BBS (IBBS) stations communicate directly with each other with-
out using any distribution system. IBBS networks are sometimes referred to as
ad hoc networks. In this paper, we propose a formal model for IBBS networks
paying particular attention to communication interferences. Communication in-
terferences represent the main concern when evaluating the network throughput,
i.e. the average rate of successful message delivery over a communication channel.

In concurrent systems, an interference occurs when the activity of a compo-
nent is damaged or corrupted because of the activities of another component. In
Ethernet-like networks communication channels are full-duplex; that is, a node
can transmit and receive at the same time. As a consequence, collisions caused
by two simultaneous transmissions are immediately detected and repaired by
retransmitting the message after a randomly-chosen period of time. This is not
possible in wireless networks where radio signals span over a limited area, called
transmission cell , and channels are half-duplex : on a given channel, a device can

� This work was partially supported by the PRIN 2007 project “SOFT”.

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 228–243, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Timed Calculus for Wireless Systems 229

either transmit or receive, but cannot do both at the same time. As a conse-
quence, in wireless systems communication collisions can only be detected at
destination by receivers exposed to different transmissions.

In the last twenty-five years, process calculi [2,3,4,5,6] have been intensively
used to study the semantics of concurrent/distributed systems, and to develop
verification techniques for such systems. In the literature, there exist a number of
process calculi modelling wireless systems [7,8,9,10,11,12,13,14]. All these calculi
rely on the presence of some MAC level protocol to avoid interferences. However,
in wireless systems collisions cannot be eliminated although there exist proto-
cols to reduce their occurrences (see, for instance, the IEEE 802.11 CSMA/CA
protocol [1] for unicast communications). Due to their influence on networks’
performance, communication collisions represent a serious problem that should
be taken into account when modelling wireless systems.

Many protocols for wireless networks rely on a common notion of time among
the devices, provided by some clock synchronisation protocol. Most clock syn-
chronisation protocols for ad hoc networks [15,16,17,18,19,20] follow the “clock
correction” approach correcting the local clock of each node to run in par with
a global time scale.1 This approach heavily rely on network connectivity. In a
connected network all nodes are in touch with each other, although not always
directly. Wireless networks are usually assumed to be connected; disconnected
devices can be considered as not being part of the network as, in general, they
need to re-authenticate to rejoin the network.

In this paper, we propose a timed calculus for wireless networks, called TCWS,
in which all wireless devices are synchronised using a clock-correction synchro-
nisation protocol. Our notion of time is modelled through a simple action σ, in
the style of Hennessy and Regan [22], to denote idling until the next clock cycle.
Time proceeds in discrete steps represented by occurrences of the action σ.

As in Hennessy and Regan’s timed CCS [22], and Prasad’s timed CBS [23],
our TCWS enjoys three basic time properties:

– time determinism: the passage of time is deterministic, i.e. a node (and hence
a network) can reach at most one new state by performing the action σ;

– patience: nodes will wait indefinitely until they can communicate;
– maximal progress: data transmissions cannot be delayed, they must occur as

soon as a possibility for communication arises.

The operational semantics of our calculus is given in terms of a labelled transition
system (LTS). As usual for ad hoc networks, the communication mechanism is
broadcast. We provide a notion of network well-formedness to take into account
node-uniqueness, network connectivity, transmission exposure, and transmission
consistency. We then prove that our labelled transition semantics preserves net-
work well-formedness.

A central concern in process calculi is to establish when two terms have the
same observable behaviour, that it, they are indistinguishable in any context. Be-
havioural equivalences are fundamental for justifying program transformations.
1 An excellent survey of existing clock synchronisation protocols for sensor networks

(and more generally for ad-hoc networks) can be found in [21].

230 M. Merro and E. Sibilio

Table 1. The Syntax

Values
u ::= x variable∣∣ v closed value

Networks:
M, N ::= 0 empty network∣∣ M1 | M2 parallel composition∣∣ n[W]νt node

Processes:
W ::= P inactive process∣∣ A active process

P, Q ::= nil termination∣∣ !〈u〉.P broadcast∣∣ ?(x).P receiver∣∣ σ.P delay∣∣ �?(x).P �Q receiver with timeout∣∣ [u1 = u2]P, Q matching∣∣ H〈ũ〉 recursion

A ::= 〈v〉t.P active sender∣∣ (x)v.P active receiver

Our program equivalence is a timed variant of (weak) reduction barbed congru-
ence, a branching-time contextually-defined program equivalence. Barbed equiv-
alences [24] are simple and intuitive but difficult to use due to the quantification
on all contexts. Simpler proof techniques are based on labelled bisimilarities [2],
which are co-inductive relations that characterise the behaviour of processes us-
ing a labelled transition system. We define a labelled bisimilarity which is a proof
method for timed reduction barbed congruence. We then apply our bisimulation
proof-technique to prove a number of algebraic laws.

2 The Calculus

In Table 1, we define the syntax of TCWS in a two-level structure, a lower
one for processes and a upper one for networks. We use letters a, b, c, . . . for
logical names, x, y, z for variables, u for values, and v and w for closed values,
i.e. values that do not contain free variables. Closed values actually denotes
messages that are transmitted as TCP/IP packets. Packets contains a number
of auxiliary informations such as the network address of the transmitter. So,
sometimes we write m:v to mean a message v transmitted by node m. With an
abuse of notation, structured messages of the form m:v are ranged by the same
letters v and w. We write ũ to denote a tuple u1, . . . , uk of values.

A Timed Calculus for Wireless Systems 231

Networks are collections of nodes (which represent devices) running in par-
allel and using a unique common channel to communicate with each other. We
use the symbol 0 to denote an empty network, while M1 | M2 represents the
parallel composition of two sub-networks M1 and M2. Nodes cannot be created
or destroyed. All nodes have the same transmission range. We write n[P]νt for
a node named n (the device network address) executing the sequential process
P . The tag ν denotes the set of (the names of) the neighbours of n. Said in
other words, ν contains all nodes in the transmission cell of n. In this manner,
we model the network topology. Notice that the network topology could have
been represented using some kind of restriction operator à la CCS over node
names. We preferred our notation to keep at hand the neighbours of a node.
The variable t is a semantic tag ranging over positive integers to represent node
exposure. Thus, a node n[W]νt , with t > 0, is exposed to a transmission (or more
transmissions) for the next t instants of time.

Processes are sequential and live within the nodes. For convenience, we dis-
tinguish between non-active and active processes . An active process is a process
which is currently transmitting or receiving. An active node is a node with an ac-
tive process inside. The symbol nil denotes the skip process. The sender process
!〈v〉.P allows to broadcast the value v. Once the transmission starts the process
evolves into the active sender process 〈v〉δv .P which transmits the message v for
the next δv time units, the time necessary to transmit v. In the construct 〈v〉t.P
we require t > 0. The receiver process ?(x).P listens on the channel for incoming
messages. Once the reception starts the process evolves into the active receiver
process (x)w.P and starts receiving. When the channel becomes free the receiver
calculates the CRC to check the integrity of the received packets. Upon success-
ful reception the variable x of P is instantiated with the transmitted message
w. The process σ.P models sleeping for one time unit. The process �?(x).P Q
denotes a receiver with timeout. Intuitively, this process either starts receiving
a value in the current instant of time, evolving into an active receiver, or it idles
for one time unit, and then continues as Q. Process [v1 = v2]P,Q is the stan-
dard “if then else” construct: it behaves as P if v1 = v2, and as Q otherwise.
In processes σ.P, ?(x).P , �?(x).P Q, and !〈v〉.P the occurrence of process P is
said to be guarded. We write H〈ṽ〉 to denote a process defined via a definition
H(x̃) def= P , with | x̃ |=| ṽ |, where x̃ contains all variables that appear free in P .
Defining equations provide guarded recursion, since P may contain only guarded
occurrences of process identifiers, such asH itself. We use a number of notational
conventions.

∏
i∈I Mi means the parallel composition of all sub-networksMi, for

i ∈ I. We write !〈v〉 for !〈v〉.nil, and 〈v〉δ for 〈v〉δ.nil. We recall that in the active
sender process 〈v〉r .P it holds that r > 0. However, sometimes, for convenience,
we write 〈v〉0.P assuming the following syntactic equality 〈v〉0.P = P . Simi-
larly, an active receiver node m[(x)w .P]νt makes only sense if t > 0. However,
for convenience, we sometimes write m[(x)w.P]ν0 , which is syntactically equals
to m[{w/x}P]ν0 .

In the terms ?(x).P , �?(x).P Q, and (x)v.P the variable x is bound in P .
This gives rise to the standard notion of α-conversion. We identify processes

232 M. Merro and E. Sibilio

Table 2. LTS - Process transitions

(SndP)
−

!〈v〉.P !v−−→ 〈v〉δv .P
(RcvP)

−
?(x).P

?m:v−−−−−→ (x)m:v.P

(RcvTO)
−

�?(x).P �Q ?m:v−−−−−→ (x)m:v .P
(Timeout)

−
�?(x).P �Q σ−−→ Q

(Nil-σ)
−

nil
σ−−→ nil

(Rcv-σ)
−

?(x).P
σ−−→?(x).P

(Sigma)
−

σ.P
σ−−→ P

(ActSnd)
r > 0

〈v〉r.P σ−−→ 〈v〉r−1.P
(ActRcv)

−
(x)v.P

σ−−→ (x)v.P

and networks up to α-conversion. We assume there are no free variables in our
networks. The absence of free variables in networks is trivially maintained as
the network evolves. We write {v/x}P for the substitution of the variable x with
the value v in P . We define structural congruence, written ≡, as the smallest
congruence which is a commutative monoid with respect to the parallel operator.

Given a network M , nds(M) returns the names of the nodes which constitute
the network M . For any network M , actsnd(M) and actrcv(M) return the set
of active senders and active receivers of M , respectively. Thus, for instance,
for N = m[!〈w〉]νt | n[〈v〉r.P]ν

′

t′ we have nds(N) = {m,n} and actsnd(N) =
{n}. Given a network M and an active sender n ∈ actsnd(M), the function
active(n,M) says for how long the node will be transmitting. For instance, if N
is the network defined as before, active(n,N) = r. If n is not an active sender
then active(n,N) = 0. Finally, given a network M and a node m ∈ nds(M),
the function ngh(m,M) returns the set of neighbours of m in M . Thus, for N
defined as above ngh(m,N) = ν.

2.1 The Operational Semantics

We give the operational semantics of our calculus in terms of a Labelled Tran-
sition System (LTS). Table 2 contains a simple LTS for processes. Rules (SndP)
and (RcvP) model the beginning of a transmission. In rule (SndP) a sender evolves
into an active sender. For convention we assume that the transmission of a value
v takes δv time units. In rule (RcvP) a receiver evolves into an active receiver
(x)m:v.P where m is the transmitter’s name and v is the value that is supposed
to be received after δv instants of time. The process �?(x).P Q can start a re-
ception in the current instant of time, as ?(x).P , or it can idle for one time
unit evolving into Q. Rules (RcvTO) and (Timeout) model these two different

A Timed Calculus for Wireless Systems 233

Table 3. LTS - Begin transmission

(Snd)
P

!v−−→ A

m[P]νt
m!v−−−−→ m[A]νt

(Rcv)
m ∈ ν P

?m:v−−−−−→ A

n[P]ν0
m?v−−−−→ n[A]νδv

(RcvPar)
M

m?v−−−−→ M ′ N
m?v−−−−→ N ′

M | N m?v−−−−→ M ′ | N ′ (Sync)
M

m!v−−−−→ M ′ N
m?v−−−−→ N ′

M | N m!v−−−−→ M ′ | N ′

(Coll)
m ∈ ν t′:=max(t,δv)

n[(x)w.P]νt
m?v−−−−→ n[(x)⊥.P]νt′

(Exp)
m ∈ ν W �=(x)w.P t′:=max(t,δv)

n[W]νt
m?v−−−−→ n[W]νt′

(OutRng)
m �∈ ν m �= n

n[W]νt
m?v−−−−→ n[W]νt

(Zero)
−

0
m?v−−−−→ 0

behaviours, respectively. The remaining rules regards time passing. Rules (Nil-σ),
(Rcv-σ), and (Sigma) are straightforward. In rule (ActSnd) the time necessary to
conclude the transmission is decreased. In rule (ActRcv) the derivative does not
chance as a reception terminates only when the channel is sensed free. Notice
that sender processes do not perform σ-actions. This is to model the maximal
progress property.

We have divided the LTS for networks in two sets of rules corresponding to
the two main aspects of a wireless transmission. Table 3 contains the rules to
model the initial synchronisation between the sender and its neighbours. Table 4
contains the rules for modelling time passing and transmission ending. Let us
comment on the rules of Table 3. Rule (Snd) models a node starting a broadcast
of message v to its neighbours in ν. By maximal progress, a node which is ready
to transmit will not be delayed. Rule (Rcv) models the beginning of the reception
of a message v transmitted by a station m. This happens only when the receiver
is not exposed to other transmissions i.e. when the exposure indicator is equal
to zero. The exposure indicator is then updated because node n will be exposed
for the next δv instants of time. Rule (RcvPar) models multiple receptions. Rule
(Sync) serves to synchronise the components of a network with a broadcast trans-
mission originating from a node m. In rule (Coll) an active receiver n is exposed
to a transmission originating from a node m. This transmission gives rise to a
collision at n. Rule (Exp) models the exposure of a node n (which is not an
active receiver) to a transmission originating from a transmitter m. In this case,
n does not take part to the transmission. Notice that a node n[?(x).P]ν0 might
execute rule (Exp) instead of (Rcv). This is because a potential (synchronised)
receiver might miss the synchronisation with the sender for several reasons (in-
ternal misbehaving, radio signals problems, etc). Such a situation will give rise
to a failure at n (see rule (RcvFail) in Table 4). Rule (OutRng) regards nodes
which are out of the range of a transmission originating from a node m. Rule

234 M. Merro and E. Sibilio

Table 4. LTS - Time passing/End transmission

(Time-0)
W

σ−−→ W ′

n[W]ν0
σ−−→ n[W ′]ν0

(Time-t) t > 0 W
σ−−→ W ′ W � ?v−−−→

n[W]νt
σ−−→ n[W ′]νt−1

(RcvFail) t > 0 P
?⊥−−−→ A

n[P]νt
σ−−→ n[A]νt−1

(Zero-σ)
−

0
σ−−→ 0

(Par-σ)
M

σ−−→ M ′ N
σ−−→ N ′

M | N σ−−→ M ′ | N ′

(Zero) is similar but regards empty networks. Rules (RcvPar) and (Sync) have
their symmetric counterpart.

Let us explain the rules in Table 3 with an example.

Example 1. Consider the network

Net
def= k[!〈v〉.?(x).P]νk

0

∣∣ l[?(x).Q]νl

0

∣∣ m[!〈w〉]νm

0

∣∣ n[?(y).R]νn

0

with the following communication topology: νk = {l,m, l̂}, νl = {k,m}, νm =
{k, l, n, l̂, m̂}, and νn = {m}. There are two possible broadcast communications
originating from stations k and m, respectively. Let us suppose k starts broad-
casting. By applying rules (Snd), (Rcv), (Exp), (OutRng), (RcvPar), and (Sync)
we have:

Net
k!v−−−→ k[〈v〉δv .?(x).P]νk

0

∣∣ l[(x)k:v.Q]νl

δv

∣∣ m[!〈w〉]νm

δv

∣∣ n[?(y).R]νn

0

= Net1 .

Now, by maximal progress, the station m must start transmitting at the same
instant of time. Supposing δv < δw we have:

Net1
m!w−−−−→ k[〈v〉δv .?(x).P]νk

δw

∣∣ l[(x)⊥.Q]νl

δw

∣∣ m[〈w〉δw]νm

δv

∣∣ n[(y)m:w.R]νn

δw

= Net2 .

Now, node l is exposed to a collision and its reception is doomed to fail. Notice
that, although node m was already exposed when it started transmitting, node
n will receive correctly the message w from m.

Let us comment on rules of Table 4. Rules (Time-0) and (Time-t) model the
passage of one time unit for non-exposed and exposed nodes, respectively. In
both rules the exposure indicator is decreased. Notice that for W = !〈v〉.P none
of these two rules can be applied, as for maximal progress no transmission can
be delayed. Notice also that for W = (x)v.P and t = 1, by an application of
rule (Time-t), the node evolves into n[{v/x}P]ν0 which syntactically equals to

A Timed Calculus for Wireless Systems 235

Table 5. LTS - Matching and recursion

(Then)
n[P]νt

λ−−→ n[P ′]νt′

n[[v = v]P, Q]νt
λ−−→ n[P ′]νt′

(Else)
n[Q]νt

λ−−→ n[Q′]νt′ v1 �= v2

n[[v1 = v2]P, Q]νt
λ−−→ n[Q′]νt′

(Rec)
n[{ṽ/̃x}P]νt

λ−−→ n[P ′]νt′ H(x̃) def= P

n[H〈ṽ〉]νt
λ−−→ n[P ′]νt′

n[{v/x}P]ν0 . Finally, notice that for W =?(x).P and t > 0 rule (Time-t) can-
not be applied. In this case, we must apply rule (RcvFail) to model a failure in
reception. This may happen, for instance, when the receiver misses the pream-
ble starting a transmission, or when a receiver wakes up in the middle of an
ongoing transmission. Again, we recall that we assumed the syntactic equality
m[(x)v .P]ν0 = m[{v/x}P]ν0 . Rule (Zero-σ) is straightforward. Rule (Par-σ) models
time synchronisation. This is possible because our networks are connected. Rule
(Par-σ) has its symmetric counterpart.

Example 2. Let us continue with the previous example. Let us show how the
system evolves after δv and δw time units. We recall that 0 < δv < δw. For
simplicity let us define δ := δw − δv:

Net2
σ−−→

δv
k[?(x).P]νδ

∣∣ l[(x)⊥.Q]νδ
∣∣ m[〈w〉δ]ν0

∣∣ n[(y)m:w.R]νδ
σ−−→ k[(x)⊥.P]νδ−1

∣∣ l[(x)⊥.Q]νδ−1

∣∣ m[〈w〉δ−1]ν0
∣∣ n[(y)m:w.R]νδ−1

σ−−→
δ−1

k[{⊥/x}P]ν0
∣∣ l[{⊥/x}Q]ν0

∣∣ m[nil]ν0
∣∣ n[{m:w/y}R]ν0 .

Notice that, after δv instants of time, node k will start a reception in the middle
of an ongoing transmission (the transmitter being m). This will lead to a failure
at k.

In the rest of the paper, the metavariable λ will range over the following
labels: m!v, m?v, and σ. In Table 5 we report the obvious rules for nodes con-
taining matching and recursive processes (we recall that only guarded recursion
is allowed).

2.2 Well-Formedness

The syntax presented in Table 1 allows to derive inconsistent networks, i.e.
networks that do not have a realistic counterpart. Below we give a number of
definitions to rule out ill-formed networks.

As networks addresses are unique, we assume that there cannot be two nodes
with the same name in the same network.

Definition 1 (Node uniqueness). A network M is said to be node-unique if
whenever M ≡M1 | m[W1]

ν
t | n[W2]

ν′

t′ it holds that m �= n.

236 M. Merro and E. Sibilio

We also assume network connectivity, i.e. all nodes are connected to each other,
although not always directly. We recall that all nodes have the same transmission
range. Formally,

Definition 2 (Network connectivity). A network M is said to be connected
if

– whenever M ≡ N | m[W1]
ν
t | n[W2]

ν′

t′ with m ∈ ν′ it holds that n ∈ ν;
– for all m,n ∈ nds(M) there is a sequence of nodes m1, . . . ,mk ∈ nds(M),

with neighbouring ν1, . . . , νk, respectively, such that m=m1, n=mk, and mi ∈
νi+1, for 1 ≤ i ≤ k−1.

The next definition is about the consistency of exposure indicators of nodes.
Intuitively, the exposure indicators of active senders and active receivers must
be consistent with their current activity (transmission/reception). Moreover, the
neighbours of active senders must have their exposure indicators consistent with
the duration of the transmission.

Definition 3 (Exposure consistency). A network M is said to be exposure-
consistent if the following conditions are satisfied.

1. If M ≡ N | m[(x)v.P]νt , then t > 0.
2. If M ≡ N | m[(x)v.P]νt , with v �= ⊥, then 0 < t ≤ δv.
3. If M ≡ N | m[〈v〉r.P]νt , then 0 < r ≤ δv.

4. If M ≡ N | m[〈v〉r.P]νt | n[W]ν
′

t′ , with m ∈ ν′, then 0 < r ≤ t′.
5. Let M ≡ N | n[W]νt with t>0. If active(k,N) �= t for all k in ν∩actsnd(N),

then there is k′ in ν\nds(N) such that whenever N ≡ N ′ | l[W ′]ν
′

t′ , with
k′ ∈ ν′, then t′ ≥ t.

The next definition is about the consistency of transmitting stations. The first
and the second part are about successful transmissions, while the third part is
about collisions.

Definition 4 (Transmission consistency). A network M is said to be tran-
smission-consistent if the following conditions are satisfied.

1. If M ≡ N | n[(x)v.Q]νt and v �= ⊥, then | actsnd(N) ∩ ν | ≤ 1.

2. If M ≡ N | m[〈w〉r .P]νt | n[(x)v.Q]ν
′

t′ , with m ∈ ν′ and v �= ⊥, then (i)
v = m:w, and (ii) r = t′.

3. If M ≡ N | n[(x)v.P]νt , with | actsnd(N) ∩ ν |> 1, then v = ⊥.

Definition 5 (Well-formedness). A network M is said to be well-formed if
it is node-unique, connected, exposure-consistent, and transmission-consistent.

In the sequel, we will work only with well-formed networks.

A Timed Calculus for Wireless Systems 237

3 Properties

We start proving three desirable time properties of TCWS: time determinism,
patience, and maximal progress. We then show that our LTS preserves network
well-formedness.

Proposition 1 formalises the determinism nature of time passing: a network
can reach at most one new state by executing the action σ.

Proposition 1 (Time Determinism). Let M be a well-formed network. If
M

σ−−→M ′ and M
σ−−→M ′′ then M ′ and M ′′ are syntactically the same.

Proof By induction on the length of the proof of M
σ−−→M ′. �

In [22,23], the maximal progress property says that processes communicate as
soon as a possibility of communication arises. However, unlike [22,23], in our cal-
culus message transmission requires a positive amount of time. So, we generalise
the property saying that transmissions cannot be delayed.

Proposition 2 (Maximal Progress). Let M be a well-formed network. If

there is N such that M
m!v−−−−→ N then M

σ−−→M ′ for no network M ′.
Proof Because sender nodes cannot perform σ-actions. �
The last time property is patience. In [22,23] patience guarantees that a process
will wait indefinitely until it can communicate. In our setting, this means that
if no transmissions can start then it must be possible to execute a σ-action to
let time pass.

Proposition 3 (Patience). Let M be a well-formed network. If M
m!v−−−−→M ′

for no network M ′ then there is a network N such that M
σ−−→ N .

Proof By contradiction and then by induction on the structure of M . �
Finally, we prove that network well-formedness is preserved at runtime. In par-
ticular, the preservation of exposure- and transmission-consistency are the more
interesting and delicate results.

Theorem 1 (Subject reduction). IfM is a well-formed network, andM
λ−−→

M ′ for some label λ and network M ′, then M ′ is well-formed as well.
Proof By transition induction. �

4 Observational Semantics

In this section we propose a notion of timed behavioural equivalence for our
wireless networks. Our starting point is Milner and Sangiorgi’s barbed congru-
ence [24], a standard contextually-defined program equivalence. Intuitively, two
terms are barbed congruent if they have the same observables, in all possible con-
texts, under all possible evolutions. The definition of barbed congruence strongly
relies on two crucial concepts: a reduction semantics to describe how a system

238 M. Merro and E. Sibilio

evolves, and a notion of observable which says what the environment can observe
in a system.

From the operational semantics given in Section 2.1 it should be clear that
a wireless network evolves transmitting messages. Notice that a transmission in
a network does not require any synchronisation with the environment. Thus,
we can define the reduction relation � between networks using the following
inference rule

(Red) M
m!v−−−−→ N

M � N
.

We write �� for the reflexive and transitive closure of �.
Now, let us focus on the definition of an appropriate notion of observable.

In our calculus, as in CCS [2] and in π-calculus [4], we have both transmission
and reception of messages. However, in broadcast calculi only the transmission of
messages may be observed [25,10]. In fact, an observer cannot see whether a given
node actually receives a broadcast value. In particular, if the node m[!〈v〉.P]νt
evolves into m[〈v〉r .P]νt we do not know whether some of the neighbours have
actually synchronised for receiving the message v. On the other hand, if a non-
exposed node n[?(x).P]ν0 evolves into n[(x)m:v.P]νt , then we can be sure that
some node in ν has started transmitting. Notice that node n can certify the
reception of a message v from a transmitter m only if it receives the whole
message without collisions.

Following Milner and Sangiorgi [24] we use the term “barb” as synonymous
of observable.

Definition 6 (Barbs). Let M be a well-formed network. We write M ↓n, if
M ≡ N | m[〈v〉r.P]νt , for some m, v, r, P, t and ν, such that n ∈ ν and n /∈
nds(N). We write M ⇓n if there is M ′ such that M �� M ′ ↓n.

The barb M ⇓n says that there is a transmission at M reaching the node n of
the environment. The observer can easily detect such a transmission placing a
receiver with timeout at n. Say, something like n[�?(x).0 !〈w〉.0]νt , where M |
n[�?(x).0 !〈w〉.0]νt is well-formed, and f ∈ ν, for some fresh name f . In this
manner, if n is currently exposed to a transmission then, after a σ-action, the
fresh barb at f is definitely lost. One may wonder whether the barb should
mention the namem of the transmitter, which is usually recorded in some specific
field of the packets. Notice that, in general, due to communication collisions, the
observer may receive incomprehensible packets without being able to identify
the transmitter. In fact, if M ↓n there might be different nodes of M which are
currently transmitting to n. So, in our opinion, in our setting, it does not make
sense to put the name of the transmitter in the barb.

Now, everything is in place to define our timed notion of barbed congruence.
In the sequel, we write R to denote binary relations over well-formed networks.

Definition 7 (Barb preserving). A relation R is said to be barb preserving
if whenever M R N it holds that M ↓n implies N ⇓n.

A Timed Calculus for Wireless Systems 239

Definition 8 (Reduction closure). A relation R is said to be reduction-
closed if M R N and M � M ′ imply there is N ′ such that N �� N ′ and M ′ R
N ′.

As we are interested in weak behavioural equivalences, the definition of reduction
closure is given in terms of weak reductions.

Definition 9 (σ-closure). A relation R is said to be σ-closed if M R N and
M

σ−−→M ′ imply there is N ′ such that N �∗ σ−−→ �∗ N ′ and M ′ R N ′.

When comparing two networks M and N , time must pass in the same manner
for M and N .

Definition 10 (Contextuality). A relation R is said contextual if M R N ,
for M and N well-formed, implies M | O R N | O for all networks O such that
M | O and N | O are well-formed.

Finally, everything is in place to define timed reduction barbed congruence.

Definition 11 (Timed reduction barbed congruence). Timed reduction
barbed congruence, written ∼=, is the largest symmetric relation over well-formed
networks which is barb preserving, reduction-closed, σ-closed, and contextual.

5 Bisimulation Proof Methods

The definition of timed reduction barbed congruence is simple and intuitive.
However, due to the universal quantification on parallel contexts, it may be
quite difficult to prove that two terms are equivalent. Simpler proof techniques
are based on labelled bisimilarities. In this section, we propose an appropriate
notion of bisimulation between networks. As a main result, we prove that our
labelled bisimilarity is a proof-technique for timed reduction barbed congruence.

First of all we have to distinguish between transmissions which may be ob-
served and transmissions which may not be observed.

(Shh) M
m!v−−−−→ N ngh(m,M)⊆nds(M)

M
τ−−→ N

(Out)
M

m!v−−−−→ N ν:=ngh(m,M)\nds(M) �=∅

M
m!v�ν−−−−−−→ N

Rule (Shh) models transmissions that cannot be detected by the environment.
This happens if none of the potential receivers is in the environment. Rule (Out)
models a transmission of a message that may be potentially received by the
nodes ν of the environment. Notice that this transmission can be really observed
at some node n ∈ ν only if no collisions arise at n during the transmission of v.

In the sequel, we use the metavariable α to range over the following actions:
τ , σ, m?v, and m!vν. Since we are interested in weak behavioural equivalences,
that abstract over τ -actions, we introduce a standard notion of weak action: =⇒
denotes the reflexive and transitive closure of

τ−−→; α==⇒ denotes =⇒ α−−→ =⇒; α̂==⇒
denotes =⇒ if α = τ and α==⇒ otherwise.

240 M. Merro and E. Sibilio

Definition 12 (Bisimilarity). A relation R over well-formed networks is a
simulation if M R N implies that

– nds(M) = nds(N)
– whenever M

α−−→M ′ there is N ′ such that N α̂==⇒ N ′ and M ′ R N ′.

A relation R is called bisimulation if both R and its converse are simulations. We
say that M and N are bisimilar, written M ≈ N , if there is some bisimulation
R such that M R N .

The requirement that two bisimilar networks must have the same nodes is quite
reasonable. Technically, this is necessary to prove that the bisimilarity is a
congruence.

In order to prove that our labelled bisimilarity implies timed reduction barbed
congruence we have to show its contextuality.

Theorem 2 (≈ is contextual). Let M and N be two well-formed networks
such that M ≈ N . Then M | O ≈ N | O for all networks O such that M | O
and N | O are well-formed.
Proof See the Appendix. �

Theorem 3 (Soundness). Let ngh be a neighbouring function and M and N
two well-formed networks wrt ngh such that M ≈ N . Then M ∼= N .
Proof Contextuality follows from Theorem 2. Reduction and σ-closure follow
by definition. As to barb preservation, it follows by Theorem 2 choosing O def=
n[�?(x).0 !〈w〉.0]νt such that M | O and N | O are well-formed, and f ∈ ν, for
some fresh name f . �
Below, we report a number of algebraic properties on well-formed networks that
can be proved using our bisimulation proof-technique.

Theorem 4. 1. n[nil]νt ≈ n[Sleep]νt , where Sleep def= σ.Sleep.
2. n[nil]νt ≈ n[P]νt , if P does not contain sender processes.
3. n[σr .P]νs ≈ n[σr.P]νt if s ≤ r and t ≤ r.
4. m[〈v〉r .P]νt | n[(x)v .Q]ν

′

r ≈ m[〈v〉r.P]νt | n[σr.{v/x}Q]ν
′

r , if ν′ = {m}.
5. m[!〈v〉.P]νs | n[(x)w.Q]ν

′

t ≈ m[!〈v〉.P]νs | n[(x)⊥.Q]ν
′

t , if m ∈ ν′.
6. m[!〈v〉.P]νt | N ≈ m[!〈w〉.P]νt | N , if for all n ∈ ν it holds that N ≡ n[W]ν

′

t′ |
N ′, with t′ ≥ max(δv, δw).

Proof By exhibiting the appropriate bisimulations. �
The first and the second law show different but equivalent nodes that do not
interact with the rest of the network. The third law is about exposed and sleep-
ing nodes. The forth law is about successful reception. The fifth law is about
collisions: due to maximal progress the node m will start transmitting and the
active receiver n is doomed to fail. The sixth law tells about the blindness of re-
ceivers exposed to collisions. In particular, if all neighbours of a transmitter are
exposed, then the content of the transmission is irrelevant as all recipients will
fail. Only the duration of the transmission may be important as the exposure
indicators of the neighbours may change.

A Timed Calculus for Wireless Systems 241

6 Future and Related Work

We have proposed a timed process calculus for IBBS networks with a focus
on communication collisions. To our knowledge this is the first timed process
calculus for wireless networks. In our model, time and collisions are treated in a
completely orthogonal way.

We believe that our calculus represents a solid basis to develop probabilistic
theories to do quantitative evaluations on collisions, and more generally on node
failures. This will be one of the next directions of our research. We are also inter-
ested in using our timed calculus as a basis to develop trust models for wireless
systems. Trust establishment in ad hoc networks is an open and challenging
field. In fact, without a centralised trusty entity it is not obvious how to build
and maintain trust. Nevertheless, the notion of time seems to be important to
represent credentials’ expiration.

For simplicity, in TCWS we assume a static network topology. As a conse-
quence, our result mainly applies to stationary networks. Notice, movement is not
relevant in important classes of wireless systems, most notably sensor networks
(not all sensor networks are stationary, but the stationary case is predominant).
We believe it is possible to extend our calculus to model disciplined forms of mo-
bility along the lines of [13,14] in which neighbourings may change maintaining
the network connectivity. This will be one of the next directions of our research.

Let us examine now the most relevant related work. Nanz and Hankin [8]
have introduced a calculus for Mobile Wireless Networks (CBS�), relying on
graph representation of node localities. The main goal of the paper is to present
a framework for specification and security analysis of communication protocols
for mobile wireless networks. Merro [10] has proposed a process calculus for
Mobile Ad Hoc Networks with a labelled characterisation of reduction barbed
congruence. Godskesen [11] has proposed a calculus for mobile ad hoc networks
(CMAN). The paper proves a characterisation of reduction barbed congruence
in terms of a contextual bisimulation. It also contains a formalisation of an
attack on the cryptographic routing protocol ARAN. Singh, Ramakrishnan, and
Smolka [9] have proposed the ω-calculus, a conservative extension of the π-
calculus. A bisimulation in “open” style is provided. The ω-calculus is then used
for modelling the AODV routing protocol. Ghassemi et al. [13] have proposed
a process algebra for mobile ad hoc networks (RBPT) where, topology changes
are implicitly modelled in the (operational) semantics rather than in the syntax.
The authors propose a notion of bisimulation for networks parameterised on a
set of topology invariants that must be respected by equivalent networks. This
work in then refined in [14] where the authors propose an equational theory
for an extension of RBPT. All the previous calculi abstract from the presence
of interferences. Mezzetti and Sangiorgi [7] have instead proposed the CWS
calculus, a lower level calculus to describe interferences in wireless systems. In
their LTS there is a separation between transmission beginning and transmission
ending. Our work was definitely inspired by [7].

None of the calculi mentioned above deals with time, although there is an
extensive literature on timed process algebra. Aceto and Hennessy [26] have

242 M. Merro and E. Sibilio

presented a simple process algebra where time emerges in the definition of a
timed observational equivalence, assuming that beginning and termination of
actions are distinct events which can be observed. Hennessy and Regan [22] have
proposed a timed version of CCS. Our action σ takes inspiration from theirs. The
authors have developed a semantic theory based on testing and characterised in
terms of a particular kind of ready traces. Prasad [23] has proposed a timed
variant of his CBS [27], called TCBS. In TCBS a time out can force a process
wishing to speak to remain idle for a specific interval of time; this corresponds
to have a priority. Corradini et al. [28] deal with durational actions proposing
a framework relying on the notions of reduction and observability to naturally
incorporate timing information in terms of process interaction. Our definition
of timed reduction barbed congruence takes inspiration from theirs. Laneve and
Zavattaro [29] have proposed a timed extension of π-calculus where time proceeds
asynchronously at the network level, while it is constrained by the local urgency
at the process level. They propose a timed bisimilarity whose discriminating is
weaker when local urgency is dropped.

Acknowledgements. We thank Sebastian Nanz for a preliminary discussion on
timed calculi for wireless networks, and Davide Quaglia for insightful discussions
on the IEEE 802.11 standard. Many thanks to Matthew Hennessy and Andrea
Cerone for their precious comments on a early draft of the paper.

References

1. IEEE 802.11 WG: ANSI/IEEE standard 802.11: Wireless LAN medium access
control (MAC) and physical layer (PHY) specifications. IEEE Computer Society,
Los Alamitos (2007)

2. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

3. Bergstra, J., Klop, J.: Process algebra for synchronous communication. Information
and Computation 60, 109–137 (1984)

4. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes (Parts I and II).
Information and Computation 100, 1–77 (1992)

5. Cardelli, L., Gordon, A.: Mobile ambients. Theoretical Computer Science 240(1),
177–213 (2000)

6. Hennessy, M., Riely, J.: A typed language for distributed mobile processes. In: 25th
POPL. ACM Press, New York (1998)

7. Mezzetti, N., Sangiorgi, D.: Towards a Calculus For Wireless Systems. Electronic
Notes in Theoretical Computer Science 158, 331–353 (2006)

8. Nanz, S., Hankin, C.: A Framework for Security Analysis of Mobile Wireless Net-
works. Theoretical Computer Science 367(1-2), 203–227 (2006)

9. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A Process Calculus for Mobile Ad
Hoc Networks. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS,
vol. 5052, pp. 296–314. Springer, Heidelberg (2008)

10. Merro, M.: An Observational Theory for Mobile Ad Hoc Networks (full paper).
Information and Computation 207(2), 194–208 (2009)

A Timed Calculus for Wireless Systems 243

11. Godskesen, J.: A Calculus for Mobile Ad Hoc Networks. In: Murphy, A.L., Vitek, J.
(eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 132–150. Springer, Heidelberg
(2007)

12. Godskesen, J.: A Calculus for Mobile Ad-hoc Networks with Static Location Bind-
ing. Electronic Notes in Theoretical Computer Science 242(1), 161–183 (2009)

13. Ghassemi, F., Fokkink, W., Movaghar, A.: Restricted Broadcast Process Theory.
In: SEFM, pp. 345–354. IEEE Computer Society, Los Alamitos (2008)

14. Ghassemi, F., Fokkink, W., Movaghar, A.: Equational Reasoning on Ad Hoc net-
works. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS, vol. 5961, pp. 113–128.
Springer, Heidelberg (2010)

15. Mock, M., Frings, R., Nett, E., Trikaliotis, S.: Continuous Clock Synchronization in
Wireless Real-Time Applications. In: SRDS, pp. 125–133. IEEE Computer Society,
Los Alamitos (2000)

16. Ganeriwal, S., Kumar, R., Srivastava, M.: Timing-Sync Protocol for Sensor Net-
works. In: SenSys, pp. 138–149. ACM Press, New York (2003)

17. Sichitiu, M.L., Veerarittiphan, C.: Simple, Accurate Time Synchronization for
Wireless Sensor Networks. In: WCNC, pp. 1266–1273. IEEE Computer Society,
Los Alamitos (2003)

18. Su, W., Akyildiz, I.: Time-Diffusion Synchronization Protocols for Sensor Net-
works. IEEE/ACM Transactions on Networking 13(2), 384–397 (2005)

19. Li, Q., Rus, D.: Global Clock Synchronization in Sensor Networks. IEEE Transac-
tions on Computers 55(2), 214–226 (2006)

20. Yoon, S., Veerarittiphan, C., Sichitiu, M.L.: Tiny-sync: Tight time synchronization
for wireless sensor networks. ACM Transactions on Sensor Networks 3(2), 81–118
(2007)

21. Sundararaman, B., Buy, U., Kshemkalyani, A.D.: Clock synchronization for wire-
less sensor networks: a survey. Ad Hoc Networks 3(3), 281–323 (2005)

22. Hennessy, M., Regan, T.: A process algebra for timed systems. Information and
Computation 117(2), 221–239 (1995)

23. Prasad, K.: Broadcasting in Time. In: Hankin, C., Ciancarini, P. (eds.) COORDI-
NATION 1996. LNCS, vol. 1061, pp. 321–338. Springer, Heidelberg (1996)

24. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992.
LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992)

25. Rathke, J., Sassone, V., Sobocinski, P.: Semantic Barbs and Biorthogonality. In:
Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 302–316. Springer, Heidelberg
(2007)

26. Aceto, L., Hennessy, M.: Towards action-refinement in process algebras. Informa-
tion and Computation 103(2), 204–269 (1993)

27. Prasad, K.: A Calculus of Broadcasting Systems. Science of Computer Program-
ming 25(2-3) (1995)

28. Corradini, F., Ferrari, G., Pistore, M.: On the semantics of durational actions.
Theoretical Computer Science 269(1-2), 47–82 (2001)

29. Laneve, C., Zavattaro, G.: Foundations of web transactions. In: Sassone, V. (ed.)
FOSSACS 2005. LNCS, vol. 3441, pp. 282–298. Springer, Heidelberg (2005)

Model Checking Linear Duration Invariants of
Networks of Automata�

Miaomiao Zhang1, Zhiming Liu2, and Naijun Zhan3

1 School of Software Engineering, Tongji University, Shanghai, China
miaomiao@tongji.edu.cn

2 International Institute of Software Technology,
United Nations University, Macau, China

Z.Liu@iist.unu.edu
3 Lab. of Computer Science, Institute of Software, CAS, Beijing, China

znj@ios.ac.cn

Abstract. Linear duration invariants (LDIs) are important safety properties of
real-time systems. In this paper, we reduce the problem of verification of a net-
work of timed automata against an LDI to an equivalent problem of model check-
ing whether a failure state is never reached. Our approach is first to transform each
component automaton Ai of the network A to an automaton Gi. The transforma-
tion helps us to record entry and exit to critical locations that appear in the LDI.
We then introduce an auxiliary checker automaton S and define a failure state to
verify the LDI on a given interval. Since a model checker checks exhaustively, a
failure of the checker automaton to find the failure state will prove that the LDI
holds.

1 Introduction

The invariants constructed from linear inequalities of integrated durations of system
states are important properties of real-time systems. For example, in a container un-
loading system, the required property has the form “for any observation interval that is
longer than 60 seconds, the idle time for a device is at most one twentieth of the time”.

This kind of properties are often specified by linear duration invariants (LDIs) [13]
of the following form:

A ≤ � ≤ B ⇒
∑
s∈S

cs
∫
s ≤M (1)

where
∫
s is the duration of state s, A, B, cs and M are real numbers. The duration

∫
s

of state s and the length � are mappings from time intervals to reals. For an observation
time interval [b, e],

∫
s defines the accumulated time for the presence of state s over [b, e]

and � is the length e− b of the interval. An LDI D simply says that for any observation
time interval [b, e], if the length � of the interval satisfies the constraintA ≤ � ≤ B then

� The work is partly supported by the projects NSFC-60603037, NSFC-90718014, NSFC-
60721061, NSFC-60573007, NSFC-90718041, NSFC-60736017, STCSM No.08510700300,
and HighQSoftD and HTTS funded by Macao S&TD Fund.

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 244–259, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Model Checking Linear Duration Invariants of Networks of Automata 245

the durations of the system states over that interval should satisfy the linear constraint∑
s∈S cs

∫
s ≤M . We use Σ(D) to denote the sum of the durations

∑
s∈S cs

∫
s.

In this paper we consider the problem of automatic verification of a network of timed
automata against an LDI, where each automaton is closed and diagonal-free. To address
the issue, several algorithms have been proposed in the literature e.g. [3,10]. Different
from the existing methods, in this paper, we develop a technique to reduce the problem
of verification of a network of timed automata against an LDI to an equivalent problem
of model checking whether a failure state cannot be reached. This will allow us to use
existing model checkers, such as UPPAAL, to check the LDI. Our approach is first to
transform each automaton Ai of the network A to an automaton Gi. The transformation
helps us to record entry and exit to critical locations that appear in the LDI.

Then we introduce an auxiliary timed automaton S from A and the LDI. S is used to
calculate the observation time and the sum Σ(D). In S we use a variable gc to record
observation time, and another variable d to calculate the durations of system states. To
approach the goal, the timed automaton S is constructed in different ways according
to whether the constant B in (1) is finite or not. Subsequently, we define a failure state
in S from the LDI D, and prove that D is satisfied by A iff the failure state is never
reached.

The rest of the paper is organized as follows. Section 2 recalls some basic notions of
timed automaton and Duration Calculus. The main technical contribution is presented
in Section 3. We present algorithms on how to construct the transformed automata Gi

from an LDI and Ai, and the two kinds of automata S respectively corresponding to
the cases when B is finite and when B is infinite, and prove the main theorems. A case
study is given in Section 4 to illustrate our technique. Section 5 gives a comparison
between our approach and related work, discusses future work and concludes the paper.

2 Preliminaries

In this section, we introduce the notions that will be used later including the modelling
language of UPPAAL, and Linear Duration Invariants (LDIs) defined in DC.

2.1 The Modelling Language

We first recall the notion of timed automata given in [1,2]. A timed automaton is a finite
state machine equipped with a set of clocks. We use a set X of real value variables
to represent the clocks and let Φ(X) be the set of clock constraints on X , which are
conjunctions of the formulas of the form x ≤ c or c ≤ x, where x ∈ X and c ∈ N.
Formally,

Definition 1. A timed automaton A is a tuple A = (L, l0, Σ,X,E, I), where

– L is a finite set of locations,
– l0 ∈ L is the initial location,
– Σ is a finite set of actions, co-actions and the internal τ action,
– X is a finite set of clocks,

246 M. Zhang, Z. Liu, and N. Zhan

– I is a mapping that assigns each location l∈L with a clock constraint I(l) ∈ Φ(X)
called the invariant at l.

– E ⊆ L× Φ(X) ×Σ × 2X × L is a relation among locations, whose elements are
called edges and annotated with an action, a guard and a set of clocks to be reset.

Network of timed automata. A set of N timed automata Ai = (Li, li0, Σi, Xi, Ei, Ii),
i = 1 . . .N , on the same sets of clocks and actions, are often composed into a network
A. A location for the network A is a vector l = (l1, . . . , li, . . . , lN) ∈ L1 × . . .× LN

with the invariant I(l) = ∧iIi(li).

Binary synchronisation. Channels are declared as chan C. An edge labelled with C! is
synchronized with another labelled with C?. A synchronized pair is chosen nondeter-
ministically if several combinations are enabled.

Priorities on processes. We follow the definition of priority of processes given in UP-
PAAL [15]. Process priorities are specified on the system level, using the separator <
to indicate that the process at the right hand has a higher priority to the one at the left
side. If an instance of a template set is listed, all processes in the set will have the same
priority.

The semantics of timed automata, networks of timed automata, channels are given in
[15] and the reference file of the UPPAAL tool is also referred to [15].

2.2 Duration Calculus and Linear Duration Invariants

Duration calculus DC [12] is a logic for reasoning about durations of states of real-
time systems. A comprehensive introduction to DC is given in the monograph by Zhou
and Hansen [14]. In DC, a state s is interpreted as a function from the time domain
R+ to the boolean values 1, 0, and s is 1 at time t if the system is in state s at the time
point and 0 otherwise. the duration of state s over the time interval [b, e] is defined as
the integral

∫ e

b s(t)dt, which is exactly the accumulated present time of s in the interval
[b, e]. � is used to denote the length of considered interval, which is defined by

∫
1. We

have the following measure laws on durations1:

1. 0 ≤
∫
s ≤ �

2.
∫
¬s= �−

∫
s

3.
∫
s1 ∨ s2=

∫
s1 +

∫
s2 −

∫
s1 ∧ s2

We consider the set of DC models that corresponds to all the behaviors of the network
of timed automata A. A behavior ρ of A is of the form (S0, t0)(S1, t1) . . ., where each
Si is called a state of A which is a subset of the state variables of A and tis are incre-
mental, i.e. ti ≤ ti+1 for any i ∈ N. Each behaviour defines an interpretation I of the
DC formulas over the state variables of A: for any state variable s of A, Is(t) = 1 iff
∃i · (s ∈ Si ∧ t ∈ [ti, ti+1]). We also denote such I by (s, t) where s = (S0, S1, . . .)
and t = (t0, t1, . . .) are respectively the sequence of states Si and the sequence of time

1 There are six axioms on durations (see [14]), but here we just list some of them which are used
in this paper.

Model Checking Linear Duration Invariants of Networks of Automata 247

stamps ti of ρ. Hence, (s, t, [b, e]) is a DC model representing an observation of A in
the time interval [b, e]. We also call (s, t, [b, e]) an A-model of DC.

For a given network of timed automata A, we define the set of A-models of DC with
integral observation intervals [11] as

MI(A) =̂ {σ | σ = (s, t, [b, e]) ∈M(A) and b, e ∈ N, b ≤ e}

Linear duration invariants. A linear duration invariant (LDI) of a network of timed
automata A is a DC formula D of the form

A ≤ � ≤ B ⇒
∑
s∈L

cs

∫
s ≤ M

where A,B, cs andM are real numbers.
An LDI D is evaluated in an A-model (I, [b, e]) to tt, denoted by (I, [b, e]) |= D,

iffA ≤ e− b ≤ B ⇒
∑

s∈L cs
∫ e

b Is(t)dt ≤M holds. D is satisfied by A, denoted by
A |= D, if (I, [b, e]) |= D holds for all A-models (I, [b, e]). We use Σ(D) to denote
the the sum of the durations

∑
s∈L cs

∫
s.

Digitization of LDIs w.r.t. timed automaton. Henzinger et al. [5] studied the question
of which real-time properties can be verified by considering system behaviours featur-
ing only integer durations. These results are applied to timed automata in [7], and it is
shown that an approach using digital clocks is applicable to the verification of closed,
diagonal-free timed automata. The digitization of duration calculus has also been stud-
ied in [6,8,9]. As to the digitization of an LDI, the following theorem has been proved
in [11], where A is closed and diagonal-free.

Theorem 1. M(A) |= D ⇔ MI(A) |= D.

Therefore only the set of integral A models of DC are studied in [11]. In the rest of
the paper, we also only consider model σ = (s, t, [b, e]) ∈ MI(A) that represents an
observation of an integral behavior of A (i.e behavior in which transitions take place
only at integer time) from an integer time point to an integer time point. So we will
restrict A to be an integer-time model.

3 Verification of LDIs

In this section, we present our technique to reduce the verification of the satisfaction of
an LDI D by a network of timed automata A to checking the property whether a failure
state cannot be reached. In what follows, each automaton Ai is referred to an integer-
time model. We start with the calculation of the duration of a location of the composite
automaton of the network, i.e. a location vector.

3.1 Duration of a Location Vector sj

Let A be a network of N timed automata Ai = (Li, li0, Σi, Xi, Ei, Ii), i = 1, . . . , N .
A location of A is a vector l = (l1, . . . , li . . . lN), where li ∈ Li.

248 M. Zhang, Z. Liu, and N. Zhan

A location can be seen as a state variable. In the following, we require that each
state expression sj of a duration term

∫
sj in the LDI D is constructed by using logical

connectives from the locations li of the component automata Ai. For example, l1 ∧ l2
asserts that A is in a location where A1 and A2 are respectively in location l1 and l2.
We are particularly interested in those state expressions sj of the form la1 ∧ . . . ∧ lak

,
where lai ∈ Lai for {a1, . . . , ak} ⊆ {1, . . . , N}. We represent such a state expres-
sion by a vector with free locations f ∈ (L1 ∪ {×1}) × . . .× (LN ∪ {×N}), such that
f [ai] = laiand f [b] = ×b for b ∈ {1, . . . , N} \ {a1, . . . , ak}. This defines the set of
vectors whose bth component ×b can be any location of Ab.

Using the axioms in Subsection 2.2, it is easy to equivalently transform a general
LDI to an LDI in which all state expressions can be represented by either a full location
vector A or a vector with free locations. Thus, in the rest of the paper we only consider
LDIs of this form.

We call each sj that appears in an LDI critical location vector of A and use K to
denote the number of critical location vectors in the LDI. A location li of an automaton
Ai is called p-critical location of sj if li occurs in sj as a non-free location and Ai is a
critical automaton of sj . A location li of an automaton Ai is called p-critical location
if it is a p-critical location of some sj . We use W to denote the number of p-critical
locations.

Example 1. Consider the following LDI

cs1

∫
(l11, l22, l31) + cs2

∫
(×1,×2, l31) + cs3

∫
(×1, l21, l32) ≤M

Its critical location vectors are respectively s1 = (l11, l22, l31), s2 = (×1,×2, l31) and
s3 = (×1, l21, l32), while its p-critical locations are l11, l22, l31, l21 and l32. Obviously,
in this example,K = 3 andW = 5.

For a critical location vector sj of A, with the elapse of one time unit, A stays in sj for
one time unit if each automaton Ai critical to sj stays in the p-critical location of sj
for one time unit. This one unit delay of A in sj causes an increase of csj to the sum
Σ(D) of the LDI.

Main technique. With the above definitions, the main idea of the technique can be
sketched as follows:

– Firstly, we construct a network of automata G from A and D to record the entry
and exit of the p-critical locations.

– As we need to check from any reachable state, whenever the antecedent of the LDI
is true implies that its conclusion holds, we introduce S to count the observation
time gc and the sums of the durations of the critical location vectors d from any
reachable state.

– Finally, we construct a failure state such that A |= D if and only if this failure state
is never reached in S.

3.2 Transformation of the Network of Automata

The network of automataA is first transformed to another network of automata to record
the entry and exit of the p-critical locations. For this, we need to introduce a Boolean

Model Checking Linear Duration Invariants of Networks of Automata 249

array active with size W to indicate whether the p-critical locations are entered. The
index k of this array denotes the (k + 1)th p-critical location in the LDI. Initially the
value of active[k] is 0. It is set to 1 when the (k + 1)th p-critical location is entered,
and set to 0 when this location is exited.

We transform each component automaton Ai to an automaton Gi. Gi is similar to
Ai except that for the entry and exit of each p-critical location, the value of the corre-
sponding active is updated by 1 and 0 respectively. Note here if the initial location of
Ai is the (k + 1)th p-critical location, then an additional urgent location is introduced
in Gi to set the value of active[k] to 1. We call G = (G1, ‖ . . . , ‖ GN) constructed by
this procedure the network of transformed automata of A for D.

Example 2. Fig.1 gives a case of the transformation from A1 to G1, where l0 is the first
p-critical location and l2 is the third p-critical location. An additional urgent location
is introduced to set the value of active[0] to 1.

l2

l1l0

(a)

l2

l1l0active[0]=1

active[0]=1
active[2]=0

active[2]=1

active[0]=0

(b)

Fig. 1. Transformation from A1 to G1 a)A1 b) G1

3.3 Construction of the Auxiliary Automaton S
In order to check whether the LDI is satisfied, we check for any path from a reachable
state that the sum of the durations of the critical location vectors does not exceed M
within the time interval [A,B]. For this, we build an auxiliary automaton S, where the
following variables are introduced and initialized to 0.

– gc is a local variable in S to record the length of an observation interval from sr in
a path of G, and

– x is a local clock variable in S to record the elapse of one time unit, and
– d is a local variable in S to record the sum of the durations of the critical location

vectors, i.e. the value Σ(D).

In the construction of S, to bound the value of d and gc, we need to use different
methods depending on the constant B in an LDI is finite or infinite. For the update of
variable gc, we introduce B + 1-normalization when B is finite and A-normalization
when B is infinite. Here A is the other constant in the antecedent of the LDI.

Definition 2. (B + 1-normalization)

normB+1(gc) =
{

gc + 1, if gc ≤ B
B + 1, if gc > B

The intuition is that gc records the length of the current observation interval, and there-
fore the LDI D is satisfied trivially whenever gc > B. Hence, we do not need to record
all the values of gc that are bigger than B. It is sufficient to record B + 1 when the
length of the observation time exceedsB.

250 M. Zhang, Z. Liu, and N. Zhan

Definition 3. (A-normalization)

normA(gc) =
{

gc + 1, if gc < A
A, if gc ≥ A

Intuitively, theA normalization is dual to theB-normalization. With this normalization,
for checking LDI D when gc equals A, we only need to check whether there exists a
path along which the value of Σ(D) is bigger thanM .

In both cases (when B is finite and B is infinite), we require that the process S has
higher priority than any other process. This is declared by system G1, . . . ,GN < S ,
which means that at a given time-point, a transition in Gi is enabled only if all transitions
of S are disabled.

p0

x<=1

p1

x<=1

x==1
accum(),
x=0

x==1
x=0

x==1
x=0

Fig. 2. Auxiliary automaton S

When B is finite. Fig. 2 shows the automaton S when B is finite. There are two
locations p0 and p1 and initially S stays in p0. The trick that S will nondeterministically
stay in p0 for any number of time units before moving to p1 ensures that gc and d will
start to count from any reachable state of A.

In location p1 of S, with the elapse of one time unit, the values of gc and d are up-
dated. These are implemented by the function accum() given in Fig 3, where we still
use sj to denote a critical location vector and K to denote the number of critical loca-
tion vectors. In accum(), the first assignment assigns gc the value of gc+ 1 if gc ≤ B
and the valueB + 1 otherwise, i.e. it is the implementation of theB + 1 normalization.

Note that with one time unit elapsed, A may not stay in any of the critical location
vectors or may stay in several critical location vectors during the time unit. Therefore,
function accum() uses a “for” loop to handle the latter case so that the update of d
is correct. By the definitions of Subsection 3.1, checking if the duration of a critical
location vector sj is 1 over the one time unit interval is equivalent to checking if the
duration of each p-critical location of this vector is 1. The following theorem is used to
decide if the duration of a p-critical location is 1.

Theorem 2. Let G be the network of transformed automata of A and S be the auxiliary
automaton of A defined above. With one time unit elapsed when function accum() is
executed, for the kth p-critical location l, if active[k − 1] = 1 then the duration of l is
1 over this one time unit interval, otherwise the duration of l is 0.

Proof. Since each component automaton Ai we only consider its integer-time models,
each discrete transition of the transformed automaton Gi is therefore taken at integer

Model Checking Linear Duration Invariants of Networks of Automata 251

time point too. As observed from S, in location p1 function accum() is enabled each
one time unit. By the declaration of process priority: system G1, . . . ,GN < S, we have
that any transition that is enabled to exit or enter a p-critical location must be executed
after the execution of accum().

Let l be the kth p-critical location of Gi. Let τ1 be the transition that enters the
p-critical location l with the assignment active[k − 1] = 1 and τ2 be the transition
that exits location l with the assignment active[k − 1] = 0. In location p1, consider
the one time unit interval II = [S.x = 0,S.x = 1], where x is the local clock in S.
At time point S.x = 1, function accum() is executed before any other enabled transi-
tion to check the duration of l over the interval II . To do this, it checks the value of
active[k − 1].

– When active[k − 1] = 1, suppose the duration of l is not 1 over the interval II ,
that is, it is either 0 or lies in the interval (0, 1). In the former case, it implies that at
the time point S.x = 1, τ1 is taken before accum(), which violates the assumption
of process priority. In the latter case, it means that the time point that the action
τ1 takes place lies in the interval II ′ = (S.x = 0,S.x = 1). This also contradicts
the fact that Gi is an integer-time model. Therefore, when active[k − 1] = 1, the
duration of l is 1 over II .

– When active[k − 1] = 0, suppose the duration of l is not 0 over the interval II , that
is, it is either 1 or lies in the interval (0, 1). If it is 1, then it must be the case that
Gi stays in l for one time unit and τ2 is executed before accum(). This also violates
the assumption of process priority. If the duration of l is in the interval (0, 1), then
the time point τ2 takes place lies in the interval II ′ = (S.x = 0,S.x = 1). However
this kind of transition is not allowed in Gi. So when active[k − 1] = 1, the duration
of l is 0 over II .

We conclude the proof.
�

The above theorem allows the calculation of the duration of a critical location vector
in terms of the information of entry or exit of its p-critical locations. Obviously, if the
duration of a critical location vector sj is 1 over one time unit interval, the value of d is
increased by the value of the coefficient of this vector, i.e, csj . So the construction of S
correctly records the durations of the critical location vectors from any reachable state
of A. In addition, all the variables introduced are bounded. This is because by assigning
0 to d when gc > B, the value of variable d is finite, also gc is bounded by B + 1.

void accum()
{ gc = (gc ≤ B?gc + 1 : B + 1)

for (j = 1, j ≤ K , j + +)
{ if each p-critical location of sj is entered

d = (gc ≤ B?d + csj : 0)
}

}

Fig. 3. Function accum() when B is finite

252 M. Zhang, Z. Liu, and N. Zhan

The corresponding failure state. The failure state F is A ≤ gc ≤ B ∧ d > M . We
check F cannot be reached in S. This property can be expressed in CTL [4] as

ψ1 =̂ A[] not F (2)

We call F the failure state of D for A.

Lemma 1. Let D be an LDI of the network of timed automata A, G the network of
transformed automata of A for D, S the auxiliary automaton of A for D, G ‖ S the
parallel composition of G and S, P(G ‖ S) the set of all paths of G ‖ S and ψ1 the
failure state property. Then there exists a path ρg ∈ P(G ‖ S) such that ρg �|= ψ1 iff
there exists a path ρ ∈ P(A) such that ρ �|= D.

Proof. From the construction procedure for G and S, there is an obvious correspon-
dence between a path ρ of A and a path ρg of G ‖ S starting from the initial locations,
that represents an observation of the system in the two models. Let �(ρ) be the length
of ρ, which represents the time of the observation, and last(ρg) be the last node of ρg.

1. When �(ρ) ≤ B, the value of gc at last(ρg) equals �(ρ), and the value of d at
last(ρg) is the value of the sum Σ(D).

2. When �(ρ) > B, the value of gc at last(ρg) is B + 1.

Consequently, the lemma follows immediately from the definition of the satisfaction
relations |= for LDIs and the definition of the failure state.
�

Theorem 3. Let F be the failure state of D for A. WhenB is finite, A |= D if and only
if state F is never reached in G ‖ S .

Construction example. Fig. 4 and Fig.5 give a case of the construction of the network
of transformed automata G from A and the correspondent automaton S. The LDI is of
the form:

A ≤ � ≤ B ⇒ cs1

∫
(lj , lm) + cs2

∫
(×1, ln) ≤M

The critical location vectors are s1 = (lj , lm) and s2 = (×1, ln). The first p-critical
location is lj , the second p-critical location is lm and the third p-critical location is ln.

When B is infinite. In terms of the automaton S constructed in the previous subsec-
tion, gc can increase infinitely and d could take an arbitrary value in case B is infinite.
The above theorem is not applicable anymore. To bound the value of gc we will use
“A-normalization” introduced before. Now we try to find a upper bound of d.

Definition 4. A critical location vector sp in A is said positive if csp > 0. Let L+ be
the set of all positive critical location vectors in A, li the ith p-critical location of a
positive critical vector sp and u(li) the maximum time units that Ai stays in li. We
define u(sp) = min{u(l1), . . . , u(li), . . . , u(lN)}, and call Q =

∑
sp∈L+

(csp × u(sp))
the maximum increment of A.

Model Checking Linear Duration Invariants of Networks of Automata 253

lj

A = A1||A2

G = G1||G2

x = 0,
li

x == 5

x ≤ 4

A1 : A2 :

G1 : G2 :

x ≤ 5

x == 4
x = 0,

ln
x = 0,

lm

x == 1

x ≤ 1

x == 2
x = 0,

lj
x = 0

li

x == 5

x ≤ 4

x ≤ 1

x == 4
x = 0

lnx = 0
lm

x == 1

x == 2
x = 0

x ≤ 1 x ≤ 2

active[0] = 0

active[0] = 1

active[1] = 1

active[1] = 0,
active[2] = 1

active[1] = 1

x ≤ 2

U

x ≤ 5

x == 1
x = 0

x == 1

x ≤ 1

x == 1
x = 0,
accum()

S :

x = 0

active[2] = 0

Fig. 4. The network of transformed automata G and the auxiliary automaton S in the example

void accum()
{gc = (gc ≤ B?gc + 1 : B + 1)
if active[0]× active[1] == 1

d = (gc ≤ B?d + cs1 : 0)
if active[2] == 1

d = (gc ≤ B?d + cs2 : 0)}

Fig. 5. The update function accum() in the example

Note that u(sp) is the maximum time that A stays in sp because of the clock synchro-
nization. This value is used in the calculation of Q, and Q is used to detect if a path
of A contains a positive loop that takes non-zero time. If there is no positive loop in a
path of A, the value of d along that path can increase at most Q. In other words, if the
value of d along a path increases more thanQ, then there must be a positive loop in the
path. It is in general difficult to calculate the actual value of u(sp) as it requires all the
u(li)’s. So usually we calculate a value that is bigger than u(sp) and assign it to u(sp)
when calculatingQ.

254 M. Zhang, Z. Liu, and N. Zhan

Example. Suppose in the example shown in Fig. 4, cs1 > 0 and cs2 > 0, then we can
let Q = 4 × cs1 + 2 × cs2 .

The auxiliary automaton S+ is similar to the one shown in Fig.2 except that the
updates of gc and d are different. In other words, the function accum() is different.
For any critical location vector sj , we make the variable d bounded by updating it in
different ways depending on whether the coefficient csj of

∫
sj in Σ(D) is negative or

not.

1. The update of gc is done by the A-normalization.
2. The update of d is done according to the following rules:

– if sj has a non-negative coefficient csj , then if gc ≥ A ∧ d > M then d is up-
dated toM + 1; otherwise updated to d+ csj ;

– if sj has a negative coefficient csj , then if gc ≥ A ∧ d < M −Q then d keeps
unchanged, otherwise d is updated to d+ csj .

When csj is non-negative, if gc ≥ A and d > M , by setting d to M + 1, the value of d
is finite. Moreover, when gc ≥ A, gc remains as A, so gc is a bounded variable. Since
the states that satisfy gc ≥ A ∧ d = M + 1 imply G ‖ S+ �|= D, it is obvious that the
update does not change the verification result.

If csj is negative, the update of d is done by setting d = (gc ≥ A ∧ d < M −Q?d :
d+ csi). It is not hard to see why we set d to d+ csi if ¬(gc ≥ A ∧ d < M −Q): we
have to evaluate the value of d precisely when we do not have enough information for
verifying if D is satisfied.

Now we prove that if gc ≥ A ∧ d < M −Q, d keeping unchanged does not change
the checking result of the LDI. To the end, we define another graph S• that is the same
as S+ except that if gc ≥ A ∧ d < M − Q the assignment for d is d = d + csj in
function accum().

Similar to the case whenB is finite, we define the failure state F ′: gc ≥ A ∧ d > M .
Also, we use CTL to express that F ′ is never reached.

ψ2 =̂ A[] not F ′ (3)

Lemma 2. Let P(G ‖ S+) be the set of pathes of G ‖ S+. There exists a path ρ ∈
P(G ‖ S+) such that ρ �|= ψ2 if and only if there exists a path ρ′ ∈ P(G ‖ S•) such
that ρ′ �|= ψ2.

Proof. Notice that the topological structure of S+ and S• are the same. Each path
ρ = s+0 , . . . , s

+
m in G ‖ S+ corresponds to exactly one path ρ• = s•0, . . . , s

•
m in G• ‖ S.

Let s+i and s•i be any two corresponding nodes respectively in ρ and ρ•. Then the value
of gc at vertex s+i is the same as the value of that at vertex s•i . Due to the different
updates of d in ρ and ρ• for the negative coefficient of a vertex, we know that at vertex
s+i , the value of d is bigger than or equal to the value of d at s•i . Hence, if a path ρ′ = ρ•

in G ‖ S• does not satisfy ψ2, then its corresponding path ρ in G ‖ S+ does not satisfy
ψ2.

To prove the other direction, let ρ in G ‖ S+ be such that ρ �|= ψ2 and ρ starts
from the initial location. If ρ• �|= ψ2, we are done. Otherwise, we need to show that
there will be a “positive cycle” in ρ, i.e. there is a cycle such that going along the

Model Checking Linear Duration Invariants of Networks of Automata 255

cycle will increase the value of d properly by at least 1. We now give the illustration
for the case ρ �|= ψ2 ∧ ρ• |= ψ2. This case denotes that the values of d on ρ and
on ρ• are different and there should be a first node s+j along ρ where the condition
gc ≥ A ∧ d < M −Q ∧ csj < 0 holds. Thus, from s+j , the value of d is increased by
at least Q+ 1 to make ρ �|= ψ2.

From the definition of Q, in ρ there must be a “positive cycle” along which d will
be increased by at least 1. From the correspondence relation between ρ and ρ•, ρ• must
also have a positive cycle C. Thus ρ′ is formed by increasing the number of repetition
of the cycle C in ρ•, such that ρ′ �|= ψ2.
�

Therefore we conclude that d is a bounded integer variable. We now have another main
theorem.

Theorem 4. When B is infinite, A |= D if and only state F ′ cannot be reached in
G ‖ S+.

4 Case Study

We now use a simplified automated container system to illustrate our techniques. We
assume there are infinite number of containers to be transported from a ship to a yard.
One quay crane (QC) and two track cars (TC) are used to unload these containers. As
to a container in the ship, the QC first transports it to an idle TC, then the TC delivers
it to the yard. It takes 5 time units for a QC to move down and pick up a container, then
it will wait until one of the TCs is idle. If either of the TCs is idle, the QC spends 3
time units unloading the container to the idle TC, and 10 time units to get back to its
initial position to handle the next container. Once a TC receives a container, it needs 15
time units to finish the delivery to the yard. Since the QC is a heavy equipment, it is
expected that the utilization of the QC is higher. We thus have the requirement that the
accumulated time of the QC waiting for an idle TC is at most one twentieth of the time
in any interval.

The automata QC and TC are shown in Fig 6. V2 is the location at which QC waits
for an idle TC. The boolean variable idle[i] is used to indicate whether TC[i] is idle
(it takes value 1 when idle) or not with an initial value 1. The urgent channel down[i]

V4
x<=10

V3

x<=3

V2V1

x<=5

idle[1]==1
down[1]!
x=0

idle[0]==1
down[0]!
x=0

x==10
x=0

x==5
x=0

x==3
x=0

(a)

U3

x<=15

U2

x<=3

U1

x==15
idle[id]=1 x==3

x=0

down[id]?
x=0, idle[id]=0

(b)

Fig. 6. Automated container system: (a) QC automaton (b)TC automaton

256 M. Zhang, Z. Liu, and N. Zhan

ensures that if the QC is at location V2, and as soon as TC[i] is idle, then the con-
tainer unloading is done immediately. The whole system is A =QC‖ TC[0]‖ TC[1].
The above requirement can be easily specified by the following DC formula:

� > 0 ⇒ ∫
(V 2,×2,×3) ≤ 0.05� (4)

The above formula can be easily transformed to the following LDI:

D : � > 0⇒ 19
∫

(V 2,×2,×3)−
∫
(×1,×2,×3) ≤ 0 (5)

The critical location vector is s1 = (V 2,×2,×3) andQ = 2000. We also declare system
QC0,TC0,TC1 < S . Following the techniques in Section 3, the transformed QC, the
auxiliary automaton S and the function accum() are given in Fig.7 and Fig.8.

V4x<=10 V3x<=3

V2V1

x<=5

idle[1]==1
down[1]!
x=0,
active[0]=0

idle[0]==1
down[0]!
x=0,
active[0]=0

x==10
x=0

x==5
x=0,
active[0]=1

x==3
x=0

(a)
p0

x<=1

p1

x<=1

x==1
x=0,
accum()

x==1
x=0

x==1
x=0

(b)

Fig. 7. Automated container system: (a) Transformed QC automaton (b) S automaton

void accum()
{ gc = (gc < A?gc + 1 : A)

if active[0] == 1
d = (gc ≥ A ∧ d > M?M + 1 : d + 19)

d = (gc ≥ A ∧ d < M −Q?d : d− 1)
}

Fig. 8. Function accum()

The failure state is specified as C : A[] not d > 0. We checked whether the failure
state is never reached with UPPAAL and got G ‖ S |= C. Therefore, we have A |= D.
If the unloading time from a TC to the yard is changed to a big value, e.g, 35, C does
not hold any more and UPPAAL can generate a counter-example.

This case can also be extended to a more complicated system with more QCs and TCs.
However, the transformed automata and S do not change if the LDI remains unchanged.

5 Conclusion

This paper studies the problem of automatic verification of a network of timed au-
tomaton against an LDI. To solve this problem, several algorithms have been proposed

Model Checking Linear Duration Invariants of Networks of Automata 257

in the literature [3,10]. For improving the complexity the algorithm proposed in [11]
is restricted to the class of the so-called digitalized properties. However, these model
checking algorithms can only apply to one automaton, and cannot deal with the case
when B is infinite in an efficient way. In addition, there is no available tool to support
these algorithms. Recently some works have been done [17,18,19] for developing model
checking tools for Duration Calculus. However, to our knowledge, compared with the
model checkers of other temporal logics, the tools are still not widely applicable in
industrial fields.

In [16], we give an algorithm to reduce model checking an LDI to model checking
a CTL formula. The basic idea of that algorithm is: Instead of checking an automaton
A against the LDI directly, we first construct an untimed model H from A and the
LDI, and then construct a CTL formula φ from the LDI and then use a popular model
checker, such as UPPAAL or SPIN, to check if H |= φ. This technique is simple and
works well for one automaton. However, in order to apply the approach to real-time
systems modelled as a network of automata with a common set of clocks and actions,
we have to construct a composite automaton of the network explicitly. Obviously, it is
not always feasible to manually construct such a composite automaton because of the
high complexity and mistakes may be inevitable.

To avoid the construction of composite automata, in this paper, we have presented
a different approach to this problem. We first construct a network of automata G to
record the entry end exit of the p-critical locations. The construction of each Gi is
very similar to the automaton Ai itself, and is simpler than the transformed model H
proposed in [16]. As we need to check from any reachable state, when the antecedent
of the LDI is true, whether or not the consequence is true, we then introduce S to
count the observation time gc and the sum of the durations of the critical locations
d from any reachable state. The trick that S can stay in the initial state for arbitrary
time units ensures that S starts the calculation of gc and d from any reachable state of
G. Also, the introduction of S is convenient for the user to simplify the specification.
Without this, more extra variables and channels need to be introduced in the trans-
formed network G and more complex expression of temporal logic needs to be defined.
Finally, we define a failure state such that A |= D if and only if this failure state is
never reached in S. Such checking can be done by some popular model checkers like
UPPAAL.

In our future work, we will implement a tool that integrates the construction of S
and G. This tool is able to transform a xml file that has been constructed in UPPAAL
to describe the original automata A to two xml files that describe respectively trans-
formed S and G. Then UPPAAL uses these two files as the input to do the checking.
In this way, the checking of an LDI can be done without manually constructing the
transformed automata. These will help to make Duration Calculus more applicable in
practical applications.

The other direction of the future work is to apply the technique and tool to schedula-
bility analysis and scheduler synthesis. There have been other approaches to formalising
real-time scheduling, for instance, in [20] TLA is used to specify a system and analyze

258 M. Zhang, Z. Liu, and N. Zhan

the schedulability of the system by proving that the system and the scheduler satisfy
the given scheduling constraint. Using the Duration Calculus, Zhou Chaochen et al for-
malized a well-established scheduler EDF [22] and defined the semantics of scheduled
programs [21]. We believe that these techniques will be useful in our future work on
real-time scheduling analysis and synthesis, based on model checking DC properties.

Acknowledgment. We are grateful to Anders P. Ravn for his comments on how to
improve the presentation, and in particular for his suggestion on the algorithm of the
calculation of the sum of the durations that simplified the algorithm in an earlier version
of the paper. Without his help, this paper would not have become its present form.

References

1. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science 126(2),
183–235 (1994)

2. Alur, R.: Timed Automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS,
vol. 1633, pp. 8–22. Springer, Heidelberg (1999)

3. Braberman, V.A., Van Hung, D.: On Checking Timed Automata for Linear Duration Invari-
ants. In: Proc. RTSS 1998, pp. 264–273. IEEE Computer Society Press, Los Alamitos (1998)

4. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “Not Never” Revisited: On Branching versus
Linear Time Temporal Logic. Journal of the ACM 33(1), 151–178 (1986)

5. Henzinger, T., Manna, Z., Pnueli, A.: What Good Are Digital Clocks? In: Kuich, W. (ed.)
ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992)

6. Chakravorty, G., Pandya, P.K.: Digitizing Interval Duration Logic. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 167–179. Springer, Heidelberg (2003)

7. Bosnacki, D.: Digitization of Timed Automata. In: Proc. FMICS 1999, pp. 283–302 (1999)
8. Van Hung, D., Giang, P.H.: Sampling Semantics of Duration Calculus. In: Jonsson, B., Par-

row, J. (eds.) FTRTFT 1996. LNCS, vol. 1135, pp. 188–207. Springer, Heidelberg (1996)
9. Franzle, M.: Model-Checking Dense-Time Duration Calculus. Formal Asp. Comput. 16(2),

121–139 (2004)
10. Li, X., Van Hung, D.: Checking Linear Duration Invariants by Linear Programming. In: Jaf-

far, J., Yap, R.H.C. (eds.) ASIAN 1996. LNCS, vol. 1179, pp. 321–332. Springer, Heidelberg
(1996)

11. Thai, P.H., Van Hung, D.: Verifying Linear Duration Constraints of Timed Automata. In:
Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 295–309. Springer, Heidelberg
(2005)

12. Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A Calculus of Durations. Information Processing
Letters 40(5), 269–276 (1991)

13. Zhou, C., Zhang, J., Yang, L., Li, X.: Linear Duration Invariants. In: Langmaack, H., de
Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863, pp. 86–
109. Springer, Heidelberg (1994)

14. Zhou, C., Hansen, M.R.: Duration Calculus. A Formal Approach to Real-Time Systems
(2004)

15. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. In: Bernardo, M., Corradini,
F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)

16. Zhang, M., Van Hung, D., Liu, Z.: Verification of Linear Duration Invariants by Model
Checking CTL Properties. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC
2008. LNCS, vol. 5160, pp. 395–409. Springer, Heidelberg (2008)

Model Checking Linear Duration Invariants of Networks of Automata 259

17. Pandya, P.K.: Interval Duration Logic: Expressiveness and Decidability. ENTCS 65(6)
(2002)

18. Meyer, R., Faber, J., Rybalchenko, A.: Model Checking Duration Calculus: A Practical Ap-
proach. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281,
pp. 332–346. Springer, Heidelberg (2006)

19. Fränzle, M., Hansen, M.R.: Deciding an Interval Logic with Accumulated Durations. In:
Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 201–215. Springer, Hei-
delberg (2007)

20. Liu, Z., Joseph, M.: Specification and Verification of Fault-Tolerance, Timing, and Schedul-
ing. ACM Trans. Program. Lang. Syst. 21(1), 46–89 (1999)

21. Zhou, C., Hansen, M.R., Ravn, A.P., Rischel, H.: Duration Specifications for Shared Proces-
sors. In: Vytopil, J. (ed.) FTRTFT 1992. LNCS, vol. 571, pp. 21–32. Springer, Heidelberg
(1991)

22. Zheng, Y., Zhou, C.: A Formal Proof of the Deadline Driven Scheduler. In: Langmaack, H.,
de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863, pp.
756–775. Springer, Heidelberg (1994)

Automata Based Model Checking for
Reo Connectors

Marcello M. Bonsangue1,2 and Mohammad Izadi1,3,4

1 LIACS - Leiden University, The Netherlands
2 Centrum voor Wiskunde en Informatica (CWI), The Netherlands

3 Dept. of Computer Engineering, Sharif University of Technology, Tehran, Iran
4 Research Institute for Humanities and Cultural Studies, Tehran, Iran

Abstract. Reo is a connector language for the exogenous composition
and orchestration of components in a software system. An operational se-
mantics of Reo connectors can be given in terms of Büchi automata over
a suitable alphabet of records, capturing both synchronization and con-
text dependency requirements. In this paper, we define an action based
linear time temporal logic for expressing properties of Reo connectors.
Formulas can be synthesized into Büchi automata representing Reo con-
nectors, thus leading to an automata based model checking algorithm.
By generalizing standard automata based model checking algorithms for
linear time temporal logic, we give an efficient on-the-fly algorithm for
the model checking of formulas for Reo connectors.

1 Introduction

Reo [1] is a coordination language based on connectors for the orchestration
of components in component based systems. Primitive connectors such as syn-
chronous channels or FIFO queues are composed to build circuit-like component
connectors which exhibit complex behavior and play the role of glue code in
exogenously coordinating the components to produce a system.

Reo generalizes dataflow networks and Khan networks because it allows to
express behavior including state-based, context dependent, multi-party synchro-
nization and mutual exclusion. Typically, the operational description of Reo con-
nectors is given in terms of constraint automata [4]. Constraint automata are
acceptors of timed data streams (also known as abstract behavioral types) [2],
but are much more concrete and suitable for model checking analysis. A con-
straint automaton is a labeled transition system in which each transition label
contains two parts: a set N of port names that are synchronized if the transition
is taken and a proposition g on the data. The latter acts as constraint on the
data that could be communicated through the ports in N . The data flowing
through the ports in N is mutually exclusive with respect to any communication
by ports not in N .

Two specific shortcomings of the constraint automata model of Reo, are that
it cannot model desired fairness constraints and that it cannot model connec-
tors with behavior depending upon the absence of communication requests on a
connector boundary. This latter feature is called context dependency [7].

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 260–275, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Automata Based Model Checking for Reo Connectors 261

In [12] we have shown that every constraint automaton can be translated
into an essentially equivalent Büchi automaton. The basic idea is the use of
records as data structures for modeling multi-party synchronization as well as
mutual exclusion: ports in the domain of a record are allowed to communicate
simultaneously the data assigned to them, while ports not in the domain of the
record are blocked so that no communication can happen. Because our model is
based on Büchi automata, we can easily express fairness conditions admitting
only executions for which some actions occur infinitely many times [21].

In order to address context-dependent behavior, we extended in [13] our model
with the possibility of testing if some ports of the environment are willing to com-
municate or not. More concretely, we considered a Büchi variant of Kozen’s finite
automata on guarded strings [16]. An infinite guarded string is an alternating
sequence of sets of ready ports and records of fired ports (together with their
respective data flow). This idea has been similarly and independently pursued
for another extension of constrain automata, called intensional automata [8].

In this paper, we continue our line of work by presenting a variant of linear
time temporal logic that is interpreted over infinite guarded strings. Traditional
temporal logics [5] ignore the actions of the system specified, and concentrate
on the sequence of states a system goes through. Inspired by an extension of
linear time temporal logic to include modalities to talk about actions [18], we
use propositions for the specification of sets of ports that must be ready to
communicate at the connector boundary, and next-state modalities indexed by
records for the specification of the one-step data flow in the connector.

The logic is very simple and yet powerful enough to specify mutual exclusion,
multi-party synchronization, context dependencies and fairness constraints. We
show through some examples how our logic can serve as a specification formal-
ism for Reo connectors. The main results of this paper are an adaption of the
construction of a Büchi automaton from a temporal formula [22] to our logic
and the presentation of an efficient on-the-fly algorithm for the model checking
of our logic for Reo connectors.

Forgetting about time, our logic has a similar goal of the time scheduled-data-
stream logic (TSDSL) [3]. An interesting feature of TSDSL is the combination
of standard LTL operators with path modality that allow to reason about the
timed data streams by means of regular expressions. In this paper, we show
that the untimed fragment of TSDSL can be embedded in our logic even if the
latter does not have path modalities. The inclusion is in fact a consequence of
the fact that (extended) regular expressions can be encoded in a linear time
temporal logic with actions. However our logic is more expressive than TSDSL,
as it allows for example to distinguish between non-deterministic and context
dependent behavior. Furthermore, only a rough sketch for model checking a
TSDSL has been given in [3], which combines the standard LTL model checking
approach [21] with automata synthesis from regular expressions [11].

A branching time-abstract variant of TSDSL, called BTSL, is introduced
in [15]. It is a minor variation of a fragment of the reconfiguration logic pre-
viously introduced in [6], tailored towards an efficient model checking. While

262 M.M. Bonsangue and M. Izadi

in our automata-based approach the state-space is generated dynamically and
only the minimal amount of information required by the verification procedure
is stored in memory, the approach to model checking in [15] is symbolic, where
the entire constraint automaton for a Reo connector is represented by means of
a binary decision diagram [5].

The remainder of this paper is organized as follows. In Section 2 we present an
informal introduction to the Reo connectors. A formal model of Reo connectors
in terms of Büchi automata is given in Section 3. In Section 4 we present a logic
for specifying Reo connectors, and a global model checking algorithm is given
in Section 5. We conclude with Section 6 where we give an efficient on the fly
model checking algorithm.

2 Reo Connectors

Reo is an exogenous coordination language which is based on a calculus of com-
ponent connectors [1]. In Reo software components are independent processes
which communicate solely through ports. Ports are related by a network of con-
nectors that specifies the glue code. These connectors build together what is
called a coordination system.

A Reo connector consists of a set of source, sink and internal nodes, and
a user-defined semantics. A connector may accept the data offered at source
nodes by components, or produce data for sink nodes. Component coordination
is achieved by delaying or synchronizing those operations. Reo connectors are
composed by conjoining some of their source or sink nodes to form internal nodes
not accessible from the environment.

A �� B A �� B A � �� B

Fig. 1. Basic Reo connectors: synchronous, lossy synchronous, and FIFO1

Figure 1 shows the graphical representation of some binary Reo connectors
whose composition allows for expressing a rich set of coordination strategies [1].

The synchronous channel is a connector with one source and one sink end. It
accepts a data item through its source end if and only if it can simultaneously
dispense it through its sink.

A lossy synchronous channel is similar to a synchronous channel, but it never
delays the port at the source end. If the port at its sink is pending the channel
transfers the data item, otherwise the data item is lost. The behavior of this
channel is context-sensitive: it has to be able to sense the absence of a request
for data from the port connected at the sink.

A FIFO1 channel is an asynchronous connector. Data from the source is
accepted as long as the buffer is empty. The data item received is stored in
the channel and communicated to the port at the sink node, when requested.
More general FIFO channels with two or more buffer cells can be produced by
composing several FIFO1 channels [4].

Automata Based Model Checking for Reo Connectors 263

3 Reo and Büchi Automata

In this section we introduce an operational model of Reo based on Büchi au-
tomata. The idea is to model a Reo connector by an ordinary Büchi automaton
with transitions labeled by records assigning port names to data. Having records
as actions of our model reflects the assumption of Reo that only the data flow
among the synchronizing ports of the connectors is observable. Since Reo con-
nectors are reactive, we describe their behavior in terms of all their infinite
executions, i.e. as the set of all possible infinite runs accepted by the automaton.

3.1 Records for Synchronization

To begin with, let us first recall the concept of record. Let N be a finite nonempty
set of port names and D be a finite nonempty set of data. We write RecN (D) =
N ⇀ D for the set of records with entries from a set of data D and labels from
a set of port names N , consisting of all partial functions from N to D. For a
record r ∈ RecN (D) we write dom(r) for the domain of r . Sometimes we use
the more explicit notation r .= [n1 = d1, . . . ,nk = dk] for a record r ∈ RecN (D),
with dom(r) = {n1, . . . ,nk} and r(ni) = di for 1 ≤ i ≤ k . We denote by τ the
record with empty domain, that is dom(τ) = ∅, and call it the empty record.

We use records as data structures for modeling constrained synchronization
of ports in N . Following [19], we see a record r ∈ RecN (D) as carrying both
positive and negative information: only the ports in the domain of r have the
possibility to exchange the data assigned to them by r , while the other ports
in N \ dom(r) are definitely constrained to not perform any communication.
This intuition is formalized by the fact that only for ports n ∈ dom(r) data can
be retrieved, using record selection r .n. Formally, r .n is just (partial) function
application r(n).

For simplicity, in this paper we do not distinguish between input and output
communications. In fact, a record merely reports the data value exchanged at
a port, but not whether it has been received or sent. Clearly, such a distinction
can be incorporated by using either a set of port names or a data domain that
distinguishes between these two types of values.

3.2 Büchi Automata of Records

A stream (i.e., an infinite string) of records describes a possible data flow among
the ports of a system. Sets of streams of records are just languages, and as such
some of them can be recognized by ordinary Büchi automata. Next we recall
some basic definitions and facts on Büchi automata [23].

Definition 1. A Büchi automaton is a tuple B = 〈Q , Σ,−→,Q0,F 〉 where, Q
is a finite set of states, Σ is a finite nonempty set of symbols called alphabet,
−→⊆ (Q ×Σ×Q) is a transition relation, Q0 ⊆ Q is a nonempty set of initial
states and F ⊆ Q is a set of accepting (final) states.

264 M.M. Bonsangue and M. Izadi

We often write q a−→ p instead of (q, a, p) ∈−→. For technical convenience, we
view a terminating computation as an execution repeating for ever its last state.

A model of a (finite state) Reo connector over a finite set of port names N and
finite set of data D consists of a Büchi automaton B = 〈Q , Σ,−→,Q0,F 〉 where
Σ = RecN (D) together with a valuation function V :Q → 22N

, assigning to each
state in Q truth values to each subset of ports in N (or, equivalently, assigning
to each state a Boolean expression over ports in N). The intuition is that names
in N are the port at the boundary of a connector, Q describes the states of the
connector, and a transition q r−→ p gives a possible one-step behavior, meaning
that each port A ∈ dom(r) has the possibility to receive or send the data item
r .A leading from a state q to a state p, while the other ports in N \ dom(r) do
not perform any data communication. Finally the valuation function V tells us
the possible sets of ports of the connector that must be ready to communicate
in a given state before an outgoing transition is taken from that state.

We refer to such a model as a Büchi automaton (on streams) of records ab-
breviated by BAR. The model of Reo connector here differs from that of [13] so
as to simplify the presentation of the model checking algorithm to be introduced
in Section 5, but the difference is inessential. In [13] the states of an automaton
modeling a Reo connector are labeled by Boolean expressions over the set of
port names N , whereas here we considered 22N

. Clearly, the two structures are
isomorphic up to Boolean equivalences.

The BARs depicted in Figure 2 are models of some of the basic Reo connectors
between two ports A and B over a singleton data set {d}. Pictorially, we label
states with sets of ports which evaluated to true. The leftmost BAR is a model a
synchronous channel: it accepts a data item through one of its ports if and only
if it can simultaneously dispense it through its other port. Both ports A and B
must be willing to communicate before the transition is taken.

The rightmost BAR is a model of a FIFO1 connector initially empty. In that
state, data from the port A is accepted independently from the port B willingness
to communicate, which explain the two sets of ports A and AB . The data item
received is stored and eventually communicated to the port B , when B is enabled
(independently from A willing to start a new communication).

The BAR in the middle is more interesting. It is a model of the lossy syn-
chronous channel. Data items from port A are always accepted, and transferred
synchronously to the port B if B is ready to accept, otherwise the data item
is lost. The context sensitive behavior of this connector is obtained by acting
differently depending on the presence or not of the port B in the set of ports
ready to communicate.

BARs are acceptors of infinite guarded strings [14] over the alphabet RecN (D).
An infinite guarded string is an alternating infinite sequence N0r0N1r1 · · · where
ri ∈ RecN (D) and dom(ri) ⊆ Ni for all i ≥ 0. Intuitively, a guarded string
represents an execution of a Reo connector, where for each step it records the
ports ready for a communication and the actual data flow among a subset of
them. The constraint dom(ri) ⊆ Ni is in line with the intuition that if some ports

Automata Based Model Checking for Reo Connectors 265

�� �������	
������AB

[A=d;B=d]

��

[A=d;B=d]��
�� �������	
������AB

[A=d;B=d]

��
�����������������	A

[A=d]

��

[A=d]

��

�����������������	A
AB

[A=d]
�����������������	B
AB

[B=d]

��

Fig. 2. BAR models of basic Reo connectors

can take part in a communication, then all those ports (and possibly more) must
be ready to communicate (enabled).

Definition 2. An infinite computation for a guarded string N0r0N1r1 · · · in a
BAR is an infinite sequence q0, r0, q1, r1, ..., of alternating states and records in
which q0 ∈ Q0, V (qi)(Ni) is true and qi

ri−→ qi+1 for all i ∈ N. An infinite
guarded string γ is accepted by a BAR B if there is an infinite computation for
γ in B with at least one of the final states occurring infinitely often.

The language of a BAR B , denoted by L(B), is the set of all infinite guarded
strings accepted by it.

We say that two BARs B1 and B2 are language equivalent if L(B1) = L(B2).
For example, we can delete from a BAR B all its inconsistent states obtaining a
language equivalent BAR, where a state is said to be inconsistent if every set of
ports (including the empty one) is evaluated to false. Also, we can delete from
a BAR B all its inconsistent transitions obtaining a language equivalent BAR,
where a transition q ri−→ p is inconsistent if V (q)(S) is false for all S ⊇ dom(ri).

Because BARs are based on ordinary Büchi automata, several kinds of fairness
requirements on Reo connectors can be easily modeled. We just give an example
here. Consider a merger connecting two input ports A and B to a single output
port C . It transmits synchronously data items from either A or B to the port
C only if all three ports are wiling to communicate. In this case, only one of the
two input ports is chosen non-deterministically. Two BAR model of this merger
connector are shown in Figure 3. The rightmost model allows unfair executions
in which data values from the same source are always preferred. The leftmost
BAR model disallows those unfair executions.

We conclude this section by mentioning that using the richer structure of the
alphabet of BARs, one can give a general definition of synchronous product that
works even if the alphabets of the two automata are different. The idea is that
two transitions synchronize if they are labeled by compatible records (i.e. on
the common ports they communicate the same data values), whereas they are
interleaved if they are labeled with records not referring to ports of the other
automaton. Valuations of sets of names are conjoined after being extended to
the ports of the other automaton. More details on the join operator of two BARs
as well as on the hiding of ports can be found in [12,13].

266 M.M. Bonsangue and M. Izadi

��������ABC

[A=d;C=d]

��

[B=d;C=d]		
�� ���������������	ABC

[A=d;C=d]

��

[B=d;C=d]

�� ���������������	ABC

[A=d;C=d]
��

[B=d;C=d]

��
��������ABC

[B=d;C=d]

[A=d;C=d]

Fig. 3. Merger connectors

4 Record-Based Linear-Time Temporal Logic

In this section we introduce a record based linear time temporal logic (ρLTL)
which is an extension of linear time temporal logic (LTL) [21] for reasoning
about data flow, synchronization and context dependencies of Reo connectors.
We use as atomic propositions sets of port names, indicating the ports ready to
communicate, and index the usual next state operator of LTL with a record, for
the specification of communicating ports and of their respective data flow.

Definition 3. The set of ρLTL formulas over a finite set of port names N and
finite set of data D is defined inductively by the following syntax:

φ :: = N | ¬φ |φ ∨ φ| 〈r〉φ |φUφ.

where N ⊆ N and r ∈ RecN (D).

Formulas of ρLTL are interpreted over infinite guarded strings. A necessary
condition to interpret a formula for a guarded string is that both use the same set
of port names N and data set D, which will be assumed in the sequel. Intuitively,
N holds for a guarded string if N is the first guard of the string, whereas 〈r〉φ
holds if r is the first action of the string and φ holds for its remaining suffix.

Formally, given an infinite guarded string M = N0r0N1r1 · · · , we define M i as
the suffix Ni , ri ,Ni+1, ri+1, · · · , for i ≥ 0. Recall that we consider only guarded
strings for which ri ∈ RecN (D) and dom(ri) ⊆ Ni for all i ≥ 0. The semantics
of a ρLTL formula is defined inductively as follows:

M |= N iff N0 = N
M |= φ1 ∨ φ2 iff M |= φ1 or M |= φ2
M |= ¬φ iff M �|= φ
M |= 〈r〉φ iff r0 = r and M 1 |= φ
M |= φ1Uφ2 iff ∃j ≥ 0 such thatM j |= φ2 and ∀0 ≤ i < j ,M i |= φ1

Automata Based Model Checking for Reo Connectors 267

As usual, we denote by ‖ φ ‖, the set of all models of the ρLTL formula φ,
and define logical equivalence between ρLTL formulas as φ1 ≡ φ2 if and only
if ‖ φ1 ‖=‖ φ2 ‖. If B is a BAR and φ a ρLTL formula, we say that B |= φ if
L(B) ⊆‖ φ ‖.

Several other operators can be derived from the basic operators of ρLTL. The
Boolean operators ∧ and → are derived in the obvious way. We can write true
for instance as N ∨ ¬N , for some N ⊆ N . The temporal modalities eventually
and always can be derived as usual, by setting ♦φ = trueUφ and �φ = ¬♦¬φ,
respectively. The dual operator of the until is the release operator defined by
φR ψ = ¬(¬φU ¬ψ). The weak variant ‘W ’ of the until operator is obtained
as φW ψ = (φU ψ) ∨ �φ. The dual operator of 〈r〉φ is [r]φ = ¬〈r〉¬φ, which
intuitively holds for a guarded string if either its first action is different from r
or its continuation satisfies φ. In fact, [r]φ ≡ ¬〈r〉true ∨ 〈r〉φ. For example, the
formula [r]false is satisfied by all guarded strings with as first action a record
different from r .

4.1 Some Useful Encodings

The standard next operator of linear time temporal logic is defined as ©φ =∨
r∈RecN (D)〈r〉φ. It is not hard to see that the next operator is self-dual, in

the sense that ¬ © φ ≡ ©¬φ. Further, because our models are infinite strings,
©true ≡ true, meaning that connectors are reactive and cannot stop the data
flow (progress is always possible).

A data constraint δ for a set of names N ⊆ N is a satisfiable propositional
formula built from the atoms ’dA ∈ P ’, ’dA = d ’, and ’dA = dB ’, where A,B ∈
N , d ∈ D and P ⊆ D. Data constraints, together with a set of names on which
they are defined can be viewed as a symbolic representation of a set of records.
We can therefore define a derived operator 〈N , δ〉φ, for δ a data constraint for
N , by setting

〈N , δ〉φ =
∨

{〈r〉φ|dom(r) = N , r |= δ} ,

where r |= (dA ∈ P) if r .A ∈ P , r |= (dA = d) if r .A = d and r |= (dA = dB) if
r .A = r .B (disjunction and negation are as expected).

In [3], timed scheduled-data expressions are introduced to specify data stream
logic. Leaving out time, scheduled-data expressions are ordinary regular expres-
sions built from either data constraints or records. Scheduled-data expressions
α are incorporated in data stream logic of [3] by formulas of the type 〈〈α〉〉φ.
We can encode them in ρLTL by using the following inductive translation:

〈〈0〉〉φ = false 〈〈1〉〉φ = φ
〈〈N , δ〉〉φ = 〈N , δ〉φ 〈〈r〉〉φ = 〈r〉φ
〈〈α1 + α2〉〉φ = 〈〈α1〉〉φ ∨ 〈〈α2〉〉φ 〈〈α1 × α2〉〉φ = 〈〈α1〉〉φ ∧ 〈〈α2〉〉φ
〈〈α1;α2〉〉φ = 〈〈α1〉〉(〈〈α2〉〉φ) 〈〈α∗〉〉φ = 〈〈α〉〉trueUφ

where 0 is the unit with respect to the union operator +, and 1 is the unit with
respect to the composition operator ;. In fact we have

268 M.M. Bonsangue and M. Izadi

〈〈0 + α〉〉φ ≡ 〈〈0〉〉φ ∨ 〈〈α〉〉φ ≡ false ∨ 〈〈α〉〉φ ≡ 〈〈α〉〉φ
〈〈1;α〉〉φ ≡ 〈〈1〉〉(〈〈α〉〉φ) ≡ 〈〈α〉〉φ .

Scheduled-data expressions allow to express formulas that hold only for exter-
nally observable steps, thus not sensible to a finite number of internal steps.
Given a ρLTL formula φ, we define ♦τφ = 〈〈τ∗〉〉([τ]false ∧ φ). Informally, ♦τφ
holds if φ holds after finitely many internal τ steps.

4.2 Specifying Reo Connectors

Next we present few examples of specifications of basic Reo connectors. First of
all, let us consider a synchronous channel from a port A to a port B . If both
ports are enabled, then the channel must let the data flow. This can be expressed
by the following ρLTL formula:

�({A,B} → 〈〈AB , dA = dB 〉〉true) . (1)

The above formula is clearly satisfied by our BAR model of synchronous channel
in Figure 2. However, it is also satisfied by the BAR modeling a lossy synchronous
channel. This because (1) does not guarantee that data cannot flow through a
single port. This is done by adding to the specification of a synchronous channel
the following

�(¬〈〈A, true〉〉true ∨ ¬〈〈B , true〉〉true) .

The above formula does not hold for the lossy synchronous channel. In fact, for
such a connector it holds that if the port A is enabled but B is not, then the
data at A is lost. This is expressed by

�(({A} ∧ ¬{A,B}) → 〈〈A, true〉〉true)

Further, in a lossy synchronous channel, data cannot flow through port B alone,
that is �¬〈〈B , true〉〉true.

Differently from the two previous channels, a FIFO1 channel is asynchronous,
meaning that data does not flow simultaneously through its ports A and B , that
is �¬〈〈AB , true〉〉true. Further, a data item received through port A is never
lost, as it is output to port B as soon as B is enabled. Of course, this does not
need to be immediate and it can even be the case that B is never enabled. This
is specified by means of a weak until operator allowing possibly infinitely many
internal steps between the two observable actions:

�
∧
d∈D

〈[A = d]〉(〈τ〉true ∧ ¬({B} ∨ {A,B}))W 〈[B = d]〉) .

To complete the specification of a FIFO1 channel, we need the converse of the
above property, saying that after data flows through port B the store of the
channel is empty and hence a new data item can flow through port A as soon
as A is enabled:

�〈〈B , true〉〉(〈τ〉true ∧ ¬({A} ∨ {A,B}))W 〈〈A, true〉〉) .
Thus in a FIFO1 channel, data flows through two ports alternately, and never
simultaneously.

Automata Based Model Checking for Reo Connectors 269

5 From Formulas to Automata: Model Checking

Next we introduce a global translation of ρLTL formulas into BARs. Our con-
struction is based on the translation from ordinary LTL formulas to Büchi au-
tomata [22], adapted so to take into account the next state operator indexed by
records. For simplicity, the resulting BAR will have multiple sets of acceptance
states in which, a run is accepted if and only if for each acceptance set there
exists at least one state that appears infinitely often in that run. To obtain an
ordinary BAR, one can use the fact that for each generalized Büchi automaton
there is a language equivalent ordinary Büchi automaton [23].

We begin by defining the closure CL(φ) of a ρLTL formula φ as the set
CL(φ) = CL′(φ) ∪ {¬ψ|ψ ∈ CL′(φ)}, where we identify ¬¬φ with φ and CL′(φ)
is defined as the smallest set such that

– φ ∈ CL′(φ),
– if ¬ψ ∈ CL′(φ) then ψ ∈ CL′(φ),
– if φ1 ∨ φ2 ∈ CL′(φ) then φ1, φ2 ∈ CL′(φ),
– if 〈r〉ψ ∈ CL′(φ) then ψ ∈ CL′(φ),
– if ¬〈r〉ψ ∈ CL′(φ) then ¬〈r〉true, 〈r〉¬ψ ∈ CL′(φ),
– if φ1 U φ2 ∈ CL′(φ) then φ1, φ2, 〈r〉(φ1 U φ2) ∈ CL′(φ) for all r ∈ RecN (D).

The set CL(φ) is finite, and its size is linear in the size of the formula φ.
The states of the BAR associated with a formula φ are the propositionally

and temporally consistent subsets of CL(φ), the so called atoms. Formally, an
atom A ⊆ CL(φ) is a set such that

1. ψ ∈ A if and only if ¬ψ �∈ A,
2. φ1 ∨ φ2 ∈ A if and only if φ1 ∈ A or φ2 ∈ A,
3. ¬〈r〉φ ∈ A if and only if ¬〈r〉true ∈ A or 〈r〉¬φ ∈ A,
4. φ1 U φ2 ∈ A if and only if φ1 ∈ A or φ2, 〈r〉(φ1 U φ2) ∈ CL′(φ) for some

r ∈ RecN (D).

Note that latter two items can be explained by the following equivalences

¬〈r〉φ ≡ [r]¬φ ≡ ¬〈r〉true ∨ 〈r〉¬φ and φ1Uφ2 ≡ φ2 ∨ (φ1 ∧©(φ1Uφ2))

already discussed at the end of Section 4.

Definition 4. Let φ be an ρLTL formula over names N and data D. We define
BAR(φ) = 〈Q ,RecN (D),→,Q0,F ,V 〉 to be the generalized Büchi automaton of
records such that

– Q is the set of atoms of φ,
– Q0 is the set of atoms containing φ itself,
– V (q)(N) = true if and only if N ∈ q, for every N ⊆ N ,
– q r−→ p if and only if 〈r〉φ ∈ q, φ ∈ p, and r �= r ′ for all ¬〈r ′〉true ∈ q.
– F consists of the accepting sets FαU β = {q ∈ Q |αU β �∈ q orβ ∈ q} for

each αU β ∈ CL(φ).

270 M.M. Bonsangue and M. Izadi

The following theorem shows the correctness of the above construction:

Theorem 1. Let φ be a ρLTL formula over names N and data D. The language
accepted by BAR(φ) is the set of all models of φ, that is L(BAR(φ)) =‖ φ ‖.

The above result can be used for an automata based procedure for model check-
ing Reo connectors. Given a BAR model B of a Reo connector, and a ρLTL
formula φ over the same set of port names N and data set D, saying that B |= φ
is equivalent to check whether L(B) does not contain any models of ¬φ. From the
above theorem, this is equivalent to check if L(B)∩L(BAR(¬φ)) = ∅. Therefore,
if this intersection is empty, it proves that the connector B satisfies the property
φ. Otherwise, every element of this intersection is a counterexample. Recall that
intersecting two Büchi automata is just a simple extension of the product con-
struction, and checking for emptiness is decidable [23]. The complexity of the
model checking procedure is linear in the number of states of B and exponential
in the length of the formula φ [21].

6 On-the-Fly Model Checking

In this section, we sketch an algorithm to construct the BAR for a ρLTL on-the-
fly by generating the state space of the automaton incrementally, when required
by the model checking procedure. The algorithm is a generalization of the on-
the-fly approach proposed in [9] for standard LTL and extended with modalities
for actions in a similar way as in [18].

For technical convenience we will work with ρLTL+ formulas, that is ρLTL
formulas in positive forms:

φ :: = N | ¬N |φ ∧ φ |φ ∨ φ | © φ | 〈r〉φ | [r]φ |φUφ |φRφ

where N ⊆ N and r ∈ RecN (D). It is obvious that every ρLTL formula is
equivalent to a positive one by pushing the negation inside every operator. The
inclusion of the ordinary next state operator ©φ is to simplify the presentation.

The algorithm works by building a graph underlying the BAR to be defined
for a formula φ. The nodes are labeled by sets of formulas which are obtained
by decomposing into their sub-formulas according to their boolean structures.
Temporal formulas are handled by just deciding what should be true at the node
and what must be true at any next node. For an on-the-fly construction of the
graph, we need to store some information at every node of the graph. More
specifically, a node is a record containing the following fields:

1. Incoming. A set of elements of the form (q,X) where q is a node and X ⊆
RecN (D). Intuitively, a pair (q,X) ∈ Incoming represents a transition from
q to the current node labeled by the record r , for r ∈ X . A special element
init is used to mark initial nodes.

2. Old. A set of formulas that have already been processed and hold in the
current node (provided the properties in New are satisfied).

Automata Based Model Checking for Reo Connectors 271

3. New. A set of formulas that have not yet been processed and that have to
be satisfied in the current node.

4. Next+. A set of next-state formulas which this node satisfies. Thus they
assert formulas that must be satisfied in any successor node.

5. Next-. A set of records which are not allowed to label outgoing transition
from the current node.

The algorithm for building the graph of the automaton satisfying a ρLTL+
formula φ stores the nodes of the graph already computed in the list Nodes Set.
For all nodes in this list, it holds that the New field is empty. In this case, Old
contains the set of formulas which the node satisfies. The full graph can then be
constructed using the information in the Incoming field of each node.

The algorithm starts with a node q0 with its New field set to {φ}, Incoming =
{init} and with all other fields initially set to empty. When processing a node q
the algorithm removes a formula ψ from its New field and tries all possible ways
to satisfy it, by looking at the syntactic structure of ψ:

- If ψ is a (negation of a) subset of N then if ¬ψ is in Old the node q is
discarded because it contains a contradiction. Otherwise ψ is added to Old .

- If ψ = ψ1 ∧ ψ2 then both ψ1 and ψ2 are added to New because they both
need to be satisfied in the node q.

- If ψ = ψ1∨ψ2 then a new node is created with the same fields as the current
node q. Then ψ1 is added to the New field of one node and ψ2 to the other.
The two nodes correspond to the two ways ψ can be satisfied.

- If ψ = ©ϕ or ψ = 〈r〉ϕ then ψ is added to the Next+ field of the current
node.

- The case when ψ = [r]ϕ is novel with respect to the algorithm in [9]. Because
ψ ≡ ¬〈r〉true ∨ 〈r〉ϕ, a new node is created with the same fields as the
current node. The record r is added to the field Next- of one node, whereas
the formula 〈r〉φ is added to the Next+ field of the other node.

- If ψ = ψ1Uψ2 then a new node is created with the same fields as the current
node q. Because ψ ≡ ψ2 ∨ (ψ1 ∧ ©ψ), the formula ψ2 is added to the New
field of one node, while ψ1 and ©ψ are added to the fields New and Next+
of the other node, respectively.

- If ψ = ψ1Rψ2 then a new node is created with the same fields as the current
node q. Because ψ ≡ ψ2 ∧ (ψ1 ∨ ©ψ), the formula ψ2 is added to the New
field of both nodes, ψ1 is added to the New field of one node and ©ψ to the
Next+ of the other node.

When the New field is empty, the current node is ready to be added to the set
Nodes Set. If there is already another node in the list with the same Old, Next+,
and Next- fields, then the only Incoming field of the copy that already exists
needs to be updated by adding the edges in the Incoming field of the current
node.

If there is no such node, then the current node is added to the list Nodes Set,
but differently from the original algorithm [9], there are several ways how a
current node is formed for its successors: if the information about the labels of

272 M.M. Bonsangue and M. Izadi

the outgoing transitions is inconsistent (i.e. Next+ is empty or there is a record
r in Next- that is also used in a next state formula 〈r〉ϕ in Next+) then there is
no successor node.

Otherwise, if the formulas in the Next+ field of the current node are only of
type ©ϕ, then a successor node is created with a transition from the current
node to the new node labeled by r for each record r not in the Next- field of the
current node. The formulas to be satisfied by this new node are all formulas in
the Next+ field of the current node stripped off of their next state modality.

Finally, in the remaining case that there is a formula 〈r〉φ in Next+ with no r
in the Next- field, then a successor node is created with a transition labeled by r
from the current node to the new node. As in the previous case, the formulas to
be satisfied by this new node are all formulas in the Next+ field of the current
node stripped off by their next state modality.

The above sketched algorithm defines for every ρLTL+ formulas a BAR
BAR(φ) over port names N and data set D as follows. The states are the set of
nodes in Nodes Set, as returned by the algorithm. Every node with the Init in its
Incoming field is an initial state. The transitions of the form q r−→ p are exactly
those such that r ∈ X for (q,X) in the Incoming field of p. The valuation function
V (q)(S) is true if and only if Pos(q) ⊆ S and S ∩ Neg(q) = ∅, where Pos(q) and
Neg(q) are the sets of positive and negative occurrences of a subset of names N in
the field Old of the node q. Finally, for each subformula ψ1Uψ2 of ψ we define an
accepting state F containing all nodes q such that ψ1 U ψ2 �∈ t(q) or ψ2 ∈ t(q),
where t(q) is the union of the fields Old, Next+ and the set containing ¬〈r〉true
for each record r in the field Next- of the node q.

Theorem 2. Let φ be a ρLTL+ formula over names N and data D and BAR(φ)
be the BAR produced by the above algorithm. Then, the accepted language of
BAR(φ) is the set of all models of φ, that is L(BAR(φ)) =‖ φ ‖.

As explained in the previous section, a formula about a Reo connector can be
verified by (1) constructing the automaton for the negation of the formula, (2)
constructing the product automaton using the model of the Reo connector, and
(3) checking the resulting automaton for emptiness.

7 Conclusion

In this paper we have presented a model and a logic for the full Reo language
of connectors. The model is based on ordinary Büchi automata. The logic is an
extension of the linear time temporal logic with records labeling the next time
operator. Records are used for modeling synchronization and mutual exclusion of
port data flow. Sets of port names are used as propositions for modeling context
dependencies of connectors.

We have presented extensions of the ordinary global and on the fly construc-
tion of automata for linear time temporal formulas, the basis of an automata-
based approach for model checking Reo connectors. We believe that our approach
opens the way to verifying Reo connectors by model checking using professional

Automata Based Model Checking for Reo Connectors 273

software tools like Spin [10]. Further work should investigate the possibilities that
arise from exporting Reo connectors modeled as Büchi Automata into Promela
code. Ideally, once a connector has been defined it should be possible for a user
to verify it by exporting it in the Promela syntax, for example using a graphical
frontend like GOAL [20].

References

1. Arbab, F.: Reo: a Channel-based Coordination Model for Component Composition.
Mathematical Structures in Computer Science 14(3), 329–366 (2004)

2. Arbab, F., Rutten, J.J.M.M.: A Coinductive Calculus of Component Connectors.
In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755,
pp. 34–55. Springer, Heidelberg (2003)

3. Arbab, F., Baier, C., de Boer, F., Rutten, J.J.M.M.: Models and Temporal Logics
for Timed Component Connectors. In: Proc. of SEFM 2004, pp. 198–207. IEEE
Computer Society, Los Alamitos (2004)

4. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modelling Component Con-
nectors in Reo by Constraint Automata. Science of Computer Programming 61,
75–113 (2006)

5. Clarke, E., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge
(1999)

6. Clarke, D.: Reasoning about Connector Reconfiguration II: Basic reconfiguration
Logic. In: Proc. of FSEN 2005. ENTCS, vol. 159, pp. 61–77. Elsevier, Amsterdam
(2006)

7. Clarke, D., Costa, D., Arbab, F.: Connector Colouring I: Synchronisation and
Context Dependency. Science of Computer Programming 66(3), 205–225 (2007)

8. Costa, D.: Intensional Constraint Automata. Unpublished notes (2008)
9. Gerth, R., Peled, D., Vardi, M., Wolper, P.: Simple On-the-fly Automatic Verifica-

tion of Linear Temporal Logic. In: Proc. of the Int. Sym. on Protocol Specification,
Testing, and Verification (PSTV 1995), pp. 3–18. Chapman & Hall, Boca Raton
(1995)

10. Holzmann, G.J.: The Model Checker SPIN. IEEE Transactions on Software Engi-
neering 23(5), 279–295 (1997)

11. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation, 3rd edn. Addison-Wesley, Reading (2006)

12. Izadi, M., Bonsangue, M.M.: Recasting Constraint Automata into Büchi Au-
tomata. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008.
LNCS, vol. 5160, pp. 156–170. Springer, Heidelberg (2008)

13. Izadi, M., Bonsangue, M.M., Clarke, D.: Modeling Component Connectors: Syn-
chronisation and Context-Dependency. In: Proc. of SEFM 2008, pp. 303–312. IEEE
Computer Society, Los Alamitos (2008)

14. Kaplan, D.M.: Regular Expressions and the Equivalence of Programs. Journal of
Compiting System Science 3, 361–386 (1969)

15. Klüppelholz, S., Baier, C.: Symbolic Model Checking for Channel-based Compo-
nent Connectors. In: Proc. of FOCLASA 2006. ENTCS, vol. 175(2), pp. 19–37.
Elsevier, Amsterdam (2007)

16. Kozen, D.: Automata on guarded strings and applications. Matématica Contem-
porânea 24, 117–139 (2003)

274 M.M. Bonsangue and M. Izadi

17. Kupferman, O., Vardi, M.: Verification of Fair Transition Systems. In: Alur, R.,
Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 372–382. Springer, Heidel-
berg (1996)

18. Madhusudan, P.: On the Fly Model Checking for Linear Time Temporal Logic.
M.Sc. Thesis, Anna University, Madras, India (1996)

19. Remy, D.: Efficient Representation of Extensible Records. In: Proc. ACM SIG-
PLAN Workshop on ML and its applications, pp. 12–16 (1994)

20. Tsay, Y., Chen, Y., Tsai, M., Wu, K., Chan, W.: GOAL: A Graphical Tool for
Manipulating Büchi Automata and Temporal Formulae. In: Grumberg, O., Huth,
M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 466–471. Springer, Heidelberg (2007)

21. Vardi, M.: An Automata-Theoretic Approach to Linear Temporal Logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996)

22. Vardi, M., Wolper, P.: An Automata-Theoretic Approach to Automatic Program
Verification. In: Proc. of (LICS 1986), pp. 322–331 (1986)

23. Thomas, W.: Automata on Infinite Objects. In: Handbook of Theoretical Computer
Science, vol. B, pp. 133–191. Elsevier, Amsterdam (1990)

A The Algorithm

In this appendix we present the pseudo code of algorithm sketched in Section 6.
The algorithm constructs a graph of nodes and is called Create Graph. It uses
the function Expand which processes every node and updates the list of nodes
Nodes Set.

Creat Graph(φ)
1. return(Expand([Name: = New Name(), Incoming : = {Init},
2. New : = {φ}, Old : = ∅,Next+: = ∅,Next−: = ∅], ∅));

Expand(Node, Nodes Set)
1. if Node.New = ∅
2. then if ∃N ∈ Nodes Setwith N .Old = Node.Old) and
3. Next+(N) = Next+(Node) and Next−(N) = Next−(Node)
4. then { Incoming(N): = Incoming(N) ∪ Incoming(Node);
5. return(Nodes Set); }
6. else if (∃ 〈r〉φ, 〈r ′〉ψ ∈ Next+(Node) with r �= r ′) or
7. (∃r ∈ Next−(Node)〈r〉φ ∈ Next+(Node))
8. then return(Nodes Set ∪ {Node})
9. else if � ∃〈r〉φ ∈ Next+(Node)
10. then return(Expand([Name: = New Name(),
11. Incoming : = {(Name(Node),
12. RecN (D)\Next−(Node))}
13. New : = StriptNexts(Next+(Node))
14. old : = ∅
15. Next+: = ∅, Next−: = ∅],
16. Nodes Set ∪ {Node}))
17. else return(Expand([Name: = New Name(),

Automata Based Model Checking for Reo Connectors 275

18. Incoming : = {(Name(Node), {r})},
19. New : = StriptNexts(Next+(Node)),Old : = ∅
20. Next+: = ∅, Next−: = ∅], Nodes Set ∪ {Node}))
21. else let η ∈ New(Node)
22. then New(Node): = New(Node)\{η};
23. switch

24. case η = e or η = ¬e or η = true or η = false :
25. if η = false or Neg(η) ∈ Old(Node)
26. then return(Nodes Set)
27. else {Old(Node): = Old(Node) ∪ {η};
28. return(Expand(Node, Nodes Set))}
29.

30. case η = φUψ or η = φVψ or η = φ ∨ ψ :
31. Node1: = [Name: = New Name(), Incoming : = Incoming(Node),
32. New : = New(Node) ∪ (New1(η)\Old(Node)),
33. Old : = Old(Node) ∪ {η},
34. Next+: = Next+(Node) ∪ Next1(η),Next−: = Next−(Node)]
35. Node2: = [Name: = New Name(), Incoming : = Incoming(Node),
36. New : = New(Node) ∪ (New2(η)\Old(Node)),
37. Old : = Old(Node) ∪ {η},
38. Next+: = Next+(Node),Next−: = Next−(Node)]
39. return(Expand(Node2,Expand(Node1, Nodes Set)))
40.

41. case η = φ ∧ ψ :
42. Old(Node): = Old(Node) ∪ {η},
43. New(Node): = New(Node) ∪ ({φ, ψ}\Old(Node))
44. return(Expand(Node, Nodes Set))
45.

46. case η =©φ or η = 〈r〉φ :
47. Old(Node): = Old(Node) ∪ {η},
48. Next+(Node): = Next+(Node) ∪ (η}
49. return(Expand(Node, Nodes Set))
50.

51. case η = [r]φ :
52. Node1: = [Name: = New Name(), Incoming : = Incoming(Node),
53. New : = New(Node), Old : = Old(Node) ∪ {η},
54. Next+: = Next+(Node),Next−: = Next−(Node) ∪ {r}]
55. Node2: = [Name: = New Name(), Incoming : = Incoming(Node),
56. New : = New(Node), Old : = Old(Node) ∪ {η},
57. Next+: = Next+(Node) ∪ {〈r〉φ},Next−: = Next−(Node)]
58. return(Expand(Node2,Expand(Node1, Nodes Set))).

In the above algorithm we define StripNexts(S) = {φ | © φ ∈ S or 〈r〉φ ∈ S}
for each set of ρLTL+ formulas S .

On the Expressiveness of Refinement Settings�

Harald Fecher1, David de Frutos-Escrig2, Gerald Lüttgen3, and Heiko Schmidt4

1 Albert-Ludwigs-Universität Freiburg, Germany
fecher@informatik.uni-freiburg.de

2 Universidad Complutense Madrid, Spain
defrutos@sip.ucm.es

3 University of York, U.K.
gerald.luettgen@cs.york.ac.uk

4 Christian-Albrechts-Universität Kiel, Germany
hsc@informatik.uni-kiel.de

Abstract. Embedded-systems designers often use transition system-
based notations for specifying, with respect to some refinement preorder,
sets of deterministic implementations. This paper compares popular such
refinement settings — ranging from transition systems equipped with
failure-pair inclusion to disjunctive modal transition systems — regard-
ing the sets of implementations they are able to express. The paper’s
main result is an expressiveness hierarchy, as well as language-preserving
transformations between various settings. In addition to system design-
ers, the main beneficiaries of this work are tool builders who wish to
reuse refinement checkers or model checkers across different settings.

1 Introduction

Many of today’s embedded systems employ control software that runs on special-
ized computer chips, performing dedicated tasks often without the need of an op-
erating system. System designers typically specify such software using notations
based on labeled transition systems: a possibly nondeterministic specification
allows for a set of deterministic implementations, amenable to quality checks via
testing or model checking. Verifiers benefit from the reduced state space in possi-
bly nondeterministic abstractions from deterministic implementations. Choosing
a suitable refinement setting for a given application in hand depends on various
aspects, e.g., expressiveness, conciseness, and verification support.

In the concurrency-theory literature many refinement settings have been stud-
ied, with a focus on compositionality and full abstraction of, and logical charac-
terizations and decision procedures for the underlying refinement preorders, see,
e.g., [17] and the numerous references therein. Less attention has been paid to
questions of expressiveness. In the context of top-down development, where sets
of allowed implementations are specified at different design levels, it is of spe-
cial interest to characterize the expressible sets of implementations. In general,
� Research support provided by DFG (FE 942/2-1, RO 1122/12-2), EPSRC

(EP/E034853/1) and MEC (TIN2006-15660-C02-01, TIN2006-15578-C02-01).

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 276–291, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On the Expressiveness of Refinement Settings 277

the more sets a formalism can describe, the more expressive it is and the more
flexibility a system designer has by describing finer sets of implementations.

We perform the expressiveness comparison using language-preserving trans-
formations, where the language of a refinement setting is the expressible set
of deterministic implementations. This is analogous for trace-based languages,
where language-preserving transformations have been developed between au-
tomata that differ in their fairness notion (Büchi, Muller, Rabin, Streett, parity),
see [19] and the references therein.

Language-preserving transformations are valuable in the context of model
checking, too, where abstract models reduce the size of the state space, while
at the same time staying amenable to quality checks: if a property is model
checked for an abstract model, then it is guaranteed to hold for each of its
implementations. Therefore, a model checking tool over a refinement setting A1
can be reused for another setting A2 if every model from A2 can be converted
into an equivalent model from A1 that defines the same language.

This paper studies and compares the expressiveness of almost a dozen refine-
ment settings designed for deterministic transition systems. To do so, several
intricate language-preserving transformations are developed. We also show how
algorithms for checking a specification’s consistency and for checking refinement
can be derived from our transformations. While the expressiveness hierarchy is
valuable for informing system designers on their choice of refinement setting, our
transformations allow tool builders to reuse their refinement checkers or model
checking algorithms across different settings.

2 Basic Notions: Refinement Settings and Expressiveness

To begin with, let L denote a finite set of possible actions (i.e., transition labels1),
|M | the cardinality of a set M , and P(M) its power set. M∗ stands for the set
of finite sequences over M , and · for sequence concatenation. For R ⊆M1 ×M2,
we write m1Rm2 if (m1,m2) ∈ R and let R−1 = {(m2,m1) | (m1,m2) ∈ R}. If
X ⊆ M1, Y ⊆ M2, we let X ◦ R = {m2 ∈ M2 | ∃m1 ∈ X : (m1,m2) ∈ R} and
R ◦ Y = {m1 ∈M1 | ∃m2 ∈ Y : (m1,m2) ∈ R}, which are, e.g., used to describe
the successors, resp. predecessors, of a transition relation. For � ⊆M1×L×M2,
we define the set of outgoing labels of m1 ∈ M1 by O�(m1) = {a ∈ L | ∃m2 ∈
M2 : m1

a� m2}, and let a� stand for the relation {(m1,m2) | m1
a� m2}.

Relation � is deterministic if ∀m, a : |{m}◦ a� | ≤ 1. Depending on the context,
a function f : M1 → M2 is also interpreted as a higher order function from
P(M1) to P(M2) with f(X) = {f(m1) | m1 ∈ X}.

Definition 1. A transition system (TS) T is a tuple (S, S0,→) such that S is
its set of states, S0 ⊆ S its non-empty set of initial states, and → ⊆ S×L×S its
transition relation. T is finite if |S| <∞, and it is deterministic if |S0| = 1 and
→ is deterministic. Tdet denotes the set of all deterministic transition systems.
(DetTSs), which we also call implementations.
1 State predicates can be encoded via transition labels and are therefore omitted.

278 H. Fecher et al.

...
������ !

������ ! ������ !

������ !
...

��
req

����
�� req

���
��

�

$1 ���
��

�
$2����

��

(a) ...
������ !

������ !

������ !
...

��
req

����
��

$1 ���
��

�

(b) ...
������ !

������ !

������ !
...

��
req

���
��

�

$2����
��

(c) ...
������ !

������ !

������ !
...

��

req

��

$1
��

$2
��

(d)

Fig. 1. Vending machine example

Note that DetTSs (up to equivalence) are the natural model for implementations
in the context of open systems, where communication with the environment takes
place via actions: the executions behave deterministically up to the behavior of
the environment, which can only control the kind of communication (i.e., which
action is executed). Since it is unusual in system modeling to specify exactly one
implementation, abstract models are used to describe sets of implementations. In
the context of closed systems, this is commonly done by a Kripke structure or by
an automaton (it describes a set of traces, known as its language). Analogously
we are looking for abstract models in the context of open systems, i.e., looking
for models that describe sets of DetTSs, as illustrated by the following example:

Example 1. Consider a part of a vending machine specification, as shown in Fig.
1(a). The TS is nondeterministic, since following a req action it can either ask for
$1 or for $2. This nondeterminism is desired, because the specification should
be refinable to either a cheap machine (requesting $1, shown in Fig. 1(b)) or
an expensive machine (requesting $2, shown in Fig. 1(c)). However, it depends
on the employed refinement setting whether these two implementations can be
modeled without also modeling the undesired implementation shown in Fig. 1(d),
which gives the user the choice whether to pay $1 or $2. For instance, in failure
pair semantics [4] model (a) has the undesired implementation (d), whereas in
ready pair semantics [27] it has not.

Many equivalences on TSs are introduced in the literature, see [17] for an
overview. Their preorders lead to different refinement notions; however, if re-
stricted to DetTSs, they collapse as was first observed by Park [28] and further
examined by Engelfriet [10]. Therefore, it is sufficient to present as equivalence
notion on DetTSs only one of them, e.g., bisimulation.

Definition 2. R ⊆ S1 × S2 is a simulation between two TSs T1 and T2 if
∀s1 ∈ S0

1 : ∃s2 ∈ S0
2 : (s1, s2) ∈ R, and for all (s1, s2) ∈ R, a ∈ L we have

∀s′1 ∈ {s1}◦ a→1: ∃s′2 ∈ {s2}◦ a→2: s′1Rs
′
2, which can equivalently be written as

({s1}◦ a→1) ⊆ R ◦ ({s2}◦ a→2). We say that T1 is simulated by T2 if there is a
simulation R between T1 and T2. Further, we say that T1 and T2 are bisimilar (or
simply equivalent), and then write T1 ≡ T2, if there is a simulation R between
T1 and T2 such that R−1 is a simulation between T2 and T1.

On the Expressiveness of Refinement Settings 279

We can now define refinement settings as families of models, into which DetTSs
are embedded, with an order relating them.

Definition 3. A refinement setting A is a tuple (A,Af ,+, h), where A is a set
of so called models, Af ⊆ A is a distinguished subclass of so called finite models,
+ is a preorder on A, called refinement, and h : Tdet → A is an embedding,
i.e., ∀T1, T2 ∈ Tdet : T1 ≡ T2 ⇔ h(T1) + h(T2). The language A(α) of a model
α ∈ A (also called its set of implementations or its possible worlds) is the set
of refining implementations of α, i.e., {T ∈ Tdet | h(T) + α}.

Though this is not required by the definition, it is best to first think of h(Tdet)
as the bottom elements of the refinement preorder +. They correspond to the
implementations. Then, equivalence on DetTSs (T1 ≡ T2) must imply “refine-
ment equivalence”, i.e., h(T1) + h(T2), and, directly implied by equivalence of
≡, h(T2) + h(T1) on these bottom elements. For the other direction, refinement
between models on the implementation level must be enough to establish equiv-
alence on DetTSs, which makes sure that every implementation can be specified
alone, without any other, non-equivalent refining implementations.

Now in fact, the definition also allows non-implementations below implemen-
tation level, i.e., below elements of h(Tdet). These appear, e.g., in (disjunctive)
mixed transition systems [26] and are unsatisfiable, i.e., have an empty language.
Our notion of expressiveness is based on the expressible languages of a refinement
setting:

Definition 4. Let A = (A,Af ,+, h) be a refinement setting. A language-pre-
serving transformation from A1 to A2 is a total function f : Af

1 → Af
2 such that

A1(α) = A2(f(α)) for all α ∈ Af
1 . We say that A1 is at least as expressive as

A2 if there is a language-preserving transformation from A2 to A1.

Reconsider Ex. 1 where we claimed that model (a) expresses, with respect to
ready pair semantics, implementations (b) and (c), whereas it also has the further
implementation (d) with respect to failure pair semantics. If we show that there is
also no other specification that expresses exactly (b) and (c) (up to equivalence)
in failure pair semantics, we know that there can be no language-preserving
transformation from ready pair semantics to failure pair semantics. To prove
that ready pair semantics is more expressive than failure pair semantics, we also
have to prove that every language expressible in failure pair semantics can also
be expressed in ready pair semantics.

By Def. 4, language-preserving transformations are mapping finite abstract
models to finite abstract models (though implementations may be infinite). We
are especially interested in such mappings because they preserve the (direct)
amenability to applications like model checking. Furthermore, expressiveness
results for infinite models are mostly trivial, because infinite initial state sets
can be used to describe any desired language (by dedicating one initial state to
each desired implementation).

280 H. Fecher et al.

3 A Wide Collection of Refinement Settings

This section recalls popular refinement settings that have been studied in the
literature, where models are either TSs, synchronously communicating TSs [12],
modal/mixed TSs [25,7], or disjunctive modal/mixed TSs [26]. It is easily checked
that all these settings are indeed refinement settings.

Transition systems. First note that TS-based models equipped with trace inclu-
sion or simulation, when taking h as the identity function, do not yield refinement
settings, since DetTSs cannot be embedded into these refinement preorders, i.e.,
DetTSs T1, T2 can be found such that h(T1) + h(T2) but T1 �≡ T2, e.g., T1 = ������ !��

and T2 = ������ !������ !�� a �� . Therefore, preorders in refinement settings must preserve, in
both directions, the enabledness of actions when comparing DetTSs, e.g., every
refinement of T2 above must have action a enabled in its root state, which T1 has
not. We present refinement settings based on failure pairs (also called failures)
[4], failure traces (also called refusal) [29], ready pairs (also called readiness) [27],
ready traces [1], possible worlds [32], and ready simulations [2]2. For a TS T ,

– a ready trace of s ∈ S is a trace starting in s, together with the sets of
enabled actions after every subtrace. Formally, the set of ready traces of T is
the smallest set TrTRT ⊆ S× ((P(L) ·L)∗ ·P(L)) with (s,O→(s)) ∈ TrTRT and
((s′, σ) ∈ TrTRT ∧ s a→ s′) ⇒ (s,O→(s)aσ) ∈ TrTRT, for any s, s′ ∈ S, a ∈ L.

– a ready pair of s ∈ S is a trace starting in s, together with the set of
enabled actions after the complete trace. Formally, the set of ready pairs
TrTR ⊆ S× (L∗ · P(L)) is the set of traces from TrTRT where each but the last
element from P(L) is removed.

– a failure pair of s ∈ S is a trace starting in s, together with a set of actions
that are not enabled after the complete trace. Formally, the set of failure
pairs TrTF ⊆ S × (L∗ · P(L)) is the set of traces that can be obtained by
replacing the last element (the one from P(L)) in a trace from TrTR by any
subset of its complement.

– a failure trace of s ∈ S is a trace starting in s, together with, for every
subtrace, a set of actions that are not enabled after the subtrace. Formally,
the set of failure traces TrTFT ⊆ S × ((P(L) · L)∗ · P(L)) is the set of traces
that can be obtained by replacing every element in P(L) from a trace in
TrTRT by any subset of its complement.

Now the refinement settings of ready pair inclusion Tr, ready trace inclusion Trt,
failure pair inclusion Tf , failure trace inclusion Tft, ready simulation Trs and
possible worlds inclusion Tpw consist of TSs, the identity embedding on DetTSs,
and the refinement notion given by ready pair inclusion: (S0

1 ◦TrT1
R) ⊆ (S0

2 ◦TrT2
R);

resp. ready trace inclusion: (S0
1 ◦TrT1

RT) ⊆ (S0
2 ◦TrT2

RT); resp. failure pair inclusion:
(S0

1 ◦TrT1
F) ⊆ (S0

2 ◦TrT2
F); resp. failure trace inclusion: (S0

1 ◦TrT1
FT) ⊆ (S0

2 ◦TrT2
FT);

resp. ready simulation: T1 is ready simulated by T2 if there exists a simulation R

2 For space reasons, compact definitions, conforming with the standard ones, are used.

On the Expressiveness of Refinement Settings 281

������ !

������ ! ������ !

������ ! ������ ! ������ !

������ ! ������ !

��
a
����
� a

���
��

b
����
� c�� c��

e�� d��

(a)

≥r

≥f

�≥rt

�≥ft

������ !

������ !

������ ! ������ !

������ !

��
a��

b
����
� c

���
��

d��

(b)

≤f

≤ft

�≤r

�≤rt

������ !

������ ! ������ !

������ ! ������ !

������ !

��
a
����
� a

���
��

b �� c��

d��

(c)

������ !

������ !

������ ! ������ !

������ ! ������ !

��
a��

b
����
� b

���
��

c �� d��

(d)

≤rt

�≤rs

������ !

������ ! ������ !

������ ! ������ !

������ !������ !

��
a
����
� a

���
��

b �� b��
c �� d��

(e)

Fig. 2. Illustration of the refinement preorders on TSs, where ≤x stands for refinement
with respect to refinement notion x. These examples are derived from Counterexamples
5, 6, and 8 of [17].

between T1 and T2 (i.e., T1 is simulated by T2) such that the enabled actions are
the same for related elements, i.e., (s1, s2) ∈ R ⇒ O→1(s1) = O→2(s2); resp.
possible worlds inclusion: Trs(T1) ⊆ Trs(T2). Fig. 2 illustrates some differences
between the refinement notions. In all these cases, and also in the forthcoming
ones when we will consider other more sophisticated classes of transition systems,
a system is finite if and only if its set of states is finite.

Synchronously-communicating transition systems. Synchronously-communica-
ting TSs [12] extend TSs by a predicate e(s) on states s that indicates which
actions must be present (i.e., enabled) at s and thus cannot be removed by
refinements. Formally, a synchronously-communicating transition system (STS)
without fairness is a tuple (T , e) such that T is a TS and e : S → P(L) is its
existence predicate. It is must-saturated if a ∈ e(s) implies the existence of an
outgoing transition labeled by a, i.e., ∀s ∈ S : e(s) ⊆ O→(s). For the definition
of the refinement settings S of STSs and Sms of must-saturated STSs, DetTSs
are embedded by taking e to be O→, and (T1, e1) refines (T2, e2) if there exists
a simulation R between T1 and T2 such that (s1, s2) ∈ R⇒ e2(s2) ⊆ e1(s1). For
example, ������ ! ������ !������ !�� a �� a �� is an implementation of the STS on the left of Fig. 3,

whereas ������ ! ������ !������ !�� a �� b �� is not.

Modal/mixed transition systems. Mixed TSs [7] have must-transitions (that must
be present in an implementation) and may-transitions (nothing else may be
present in an implementation). A modal TS [25] has the additional requirement
that every must-transition also has to be a may-transition. Formally, a mixed
transition system is a tuple (T , ↪→) such that T is a TS, where its transition
relation is called may-transition relation here, and ↪→ ⊆ S ×L× S is its must -
transition relation. It is a modal transition system if ↪→ ⊆ →. For the definition
of the refinement settings M of mixed TSs and Mmod of modal TSs, DetTSs are
embedded by taking → as the must-transition relation, and (T1, ↪→1) refines
(T2, ↪→2) if there exists a simulation R between T1 and T2 such that R−1 is a
simulation between (S2, ∅, ↪→2) and (S1, ∅, ↪→1).

Modal/mixed TSs, as well as their disjunctive variants presented in the follow-
ing, were originally designed for general transition systems as implementations.

282 H. Fecher et al.

������ ! ������ !��
ab

�� ab ��
{a} ∅

������ !

������ !

������ !

.

��

a
��

�
�

	

a ��

�

�

b��

�� b

�

��

�

�
b�

��

�
�

b

��

b
����

��

��

������

Fig. 3. An example STS (left) and disjunctive mixed TS (right)

Interpreting them with respect to DetTS leads to new kinds of modeling tech-
niques, which improve the succinctness of these settings, allowing for more com-
pact representations, as, e.g., discussed in [14]. For example, two a-labeled must-
transitions from the same state leading to states s1 and s2 require any implemen-
tation to implement, after the only possible a-step, both the behavior of s1 and
s2. We call such behavior conjunctive behavior.

Disjunctive modal/mixed transition systems. Disjunctive modal/mixed TSs [26]
generalize modal/mixed TSs by introducing hypertransitions that point to sets
of states rather than single states. A must-hypertransition t indicates that the
implementation must have a transition with corresponding label to a state that
is related to at least one element in the target set of t, i.e., the targets are
interpreted disjunctively. We present disjunctive modal TSs as a special case of
their mixed version, where must-hypertransitions need not necessarily occur as
may-transitions: a disjunctive mixed transition system is a tuple (T , �→) such that
T is a TS, where its transition relation is called may-transition relation here and
�→ ⊆ S×L×P(S) is its must -hypertransition relation. It is a disjunctive modal
transition system if all must-hypertransition target sets are non-empty and only
have elements that are also targets of may-transitions, i.e., ∀s ∈ S, a ∈ L, S̈ ∈
{s}◦ a�→: S̈ �= ∅ ∧ S̈ ⊆ {s}◦ a→. For the definition of the refinement settings D of
disjunctive mixed TSs and Dmod of disjunctive modal TSs, DetTSs are embedded
by taking {(s, a, {s′}) | s a→ s′} as must-hypertransitions, and (T1, �→1) refines
(T2, �→2) if there is a simulation R between T1 and T2 such that ∀(s1, s2) ∈ R,
a ∈ L, S̈2 ∈ {s2}◦ a�→2: ∃S̈1 ∈ {s1}◦ a�→1: ∀s′1 ∈ S̈1 : ∃s′2 ∈ S̈2 : s′1Rs

′
2. For

example, ������ !������ !�� a �� b
�� is an implementation of the disjunctive mixed TS on

the right of Fig. 3, whereas ������ ! ������ !������ !�� a �� b �� is not.

4 Comparison

This section establishes an expressiveness hierarchy constructively by presenting
language-preserving transformations or showing their non-existence by counter-
example. In particular, we have paid attention to simple transformations and
small-sized transformed models. All transformations also work for infinite-state
systems but, not surprisingly, their mappings are not guaranteed to be finite.

On the Expressiveness of Refinement Settings 283

6 14

235

���� ����

c

��

c

��
ab

��

����
ab

��

����
��

b

��
a

��

T t
=⇐=

"#$%&'()1

"#$%&'()2 "#$%&'()3

"#$%&'()4 "#$%&'()5 "#$%&'()6

��

�� ��

c

��
a

��

 �� b

!!

b ��

c

""
b

��

##��

a
��

������a
����

c
��

T t
⊆

=⇒

6 146

25235

���� ����

c

��
c

��

$$�
�

c

��
ab

��

�����
abc

���
�

����� b
��

a

��
ab

%%

Fig. 4. Illustration of the transformations’ images T t
= and T t

⊆. Targets of transitions
without source indicate initial states. Transitions having a set as label indicate a set
of transitions, one for each label. The numbers of the state names in the left and right
systems correspond to the state subset encoding.

To begin with, the identity function is a transformation from Sms into S; from
Mmod into M; from Dmod into D; from Tpw into Trs; and from Trs into Tpw.

Trace inclusions. Due to the coinductive definition of simulation, checking re-
finement in simulation-based settings only depends on what remains to be con-

sidered in the future, e.g.,
������ !
������ !������ !�� a &&���

b
''��� is not an implementation of Trs,rt of Fig. 6

in simulation-like approaches, because the refinement relation has to decide for
one of the two initial states. This is different in trace-like approaches, where at
any time it is possible to go back in a trace and resolve nondeterminism differ-

ently, as long as the traces still coincide. Consequently
������ !
������ !������ !�� a &&���

b
''��� is a refinement

of Trs,rt in trace-like settings. A transformation from a trace-like setting to Trs
therefore has to make every previous nondeterministic choice explicit in the state
space. Hence, power sets over states are used in the transformations from Trt,
resp. from Tft, as illustrated in Fig. 4.

Transformation 1. For any TS T , Trt(T) = Trs(T t
=) = Trt(T t

=) and Tft(T) =
Trs(T t

⊆) = Trt(T t
⊆) = Tft(T t

⊆) with

T t
� = (P(S), Ψ t

�(S0), {(S̈, a, S̈′) | a ∈ L ∧ S̈′ ∈ Ψ t
�(S̈◦ a→)}) , where

 ∈ {=,⊆} and Ψ t
�(Ŝ) = {{s ∈ Ŝ | O→(s) L} | L ⊆ L} \ {∅}.

Transformations from pair to trace approaches are similar, except that all reach-
able states with respect to the underlying label trace are collected (since a fail-
ure/ready pair has as history information only the underlying label trace and
no intermediate failure/ready sets). Hence, pairs of original states and allowed
labels are the state set of these transformations, as illustrated in Fig. 5.

Transformation 2. For any TS T , Tr(T) = Trs(T p
=) = Trt(T p

=) = Tr(T p
=) and

Tf(T) = Trs(T p
⊆) = Trt(T p

⊆) = Tft(T p
⊆) = Tr(T p

⊆) = Tf(T p
⊆) with

T p
� = (P(S) × P(L), Ψp

�(S0), {((S̈, L), a, Z ′) | a ∈ L ∧ Z ′ ∈ Ψp
�(S̈◦ a→)}),

where ∈ {=,⊆} and Ψp
�(Ŝ) = {(Ŝ, L̂) | ∃s ∈ Ŝ : O→(s) L̂}.

The increase of expressiveness of these settings is illustrated in Fig. 10: the
failure approach cannot express an exclusive alternative between two labels.

284 H. Fecher et al.

146c 146abc

3

25a 25b 35a 35

((�� ����

c

��

c

��

$$�
�� c

���
��

		�����
c

��

�����
�� ab

��

����
ab

��

a

��

���
��� b

��

))�
�

a
��

����
�

T p
=⇐=

"#$%&'()1

"#$%&'()2 "#$%&'()3

"#$%&'()4 "#$%&'()5 "#$%&'()6

��

�� ��

c

��
a

��

 �� b

!!

b ��

c

""
b

��

##��

a
��

������a
����

c
��

T p
⊆

=⇒

146c 146abc

146ac 146bc
3

25a 25b 25ab 35a 35
*+ ,-
./ 01

*+ ,-
./ 01

���� ((��

**�� ����

c

++

c

!!

,,!! c """

--""

c
##

��###

a

..

b

��

����

ab
$$

��

a

%%

//%
%b

&&

00
ab
''

��
a

((
(

11((

Fig. 5. Illustration of the transformations’ images T p
= and T p

⊆ . In the right picture,
states that have the same targets are identified. A transition pointing to an oval indi-
cates a set of transitions pointing to each element inside the oval. The numbers (resp.
labels) of the state names in the left and right pictures correspond to the state (resp.
label) subset encoding in the respective transformation.

������ !

������ !
������ !

��

��

a
������

b

**����Tr,ft :
������ ! ������ !

������ ! ������ !

��

��

a ��

b
�� b ��

Tft,r :
������ !

������ !
������ !

������ ! ������ !

��

��

a ��
b 22��
��

b		���
�

a
������
b ��

b
33����Trs,rt :

Fig. 6. TSs illustrating increases of expressiveness

However, the ready approach can do it, as shown by Tr,ft in Fig. 6. This is re-
flected by the axiom c.Pa + c.Pb ≡ c.Pa + c.Pb + c(Pa + Pb), which is valid for
failure semantics, but not for the semantics based on ready sets. In pair ap-
proaches, behavior can only be described up to alternatives having the same
label path histories, whereas a trace approach can also distinguish alternatives
that have the same label path history but different next-step possibilities (up
to failure or ready interpretation). For example, no TS with respect to failure

pair, resp. ready pair, can have
������ !

������ !������ !������ !�� a &&���
b
''��� b �� and ������ !������ !�� b �� as implementa-

tions, without also having ������ ! ������ !������ !�� b �� b �� as implementation. However, Tft,r of
Fig. 6 defines such a language via failure trace (resp. ready trace). Ready simu-
lation increases the expressiveness even more by distinguishing also alternatives
with the same label path history and next-step possibilities, but different future
behaviors in the past. For example, no TS with respect to a trace approach

can have
������ ! ������ !
������ !������ !�� a &&���

b
''���

b ��
and

������ !
������ !������ !������ !�� a &&���

b
''��� b �� as implementations, without also

having
������ !
������ !������ !�� a &&���

b
''��� . However, Trs,rt of Fig. 6 defines such a language via ready

simulation. The following lemma summarizes the above results, from which the
‘strictly greater’ expressiveness results for the TS-based settings are derived by
transitivity arguments.

Lemma 1. For Tr,ft Tft,r, Trs,rt in Fig. 6 and arbitrary T , we have:

Tr(Tr,ft) �= Tft(T), Tft(Tft,r) �= Tr(T) and Trs(Trs,rt) �= Trt(T).

On the Expressiveness of Refinement Settings 285

"#$%&'()1 "#$%&'()2��
ab
�� ab ��
{a} ∅

=⇒
1a 1ab

2∅

���� ((��

a

--
a 44

a
��

����
ab

--ab
55

ab
))

66))

Fig. 7. Example of the transformation from Sms to Trs. For STSs, the image of e is
depicted close to the state. The numbers (resp. labels) of the state names in the right
picture correspond to the state (resp. label) subset encoding of the transformation.

The following proposition shows how our transformations and the efficient deci-
sion procedures for simulation-like preorders [6] can be used to decide the corre-
sponding inclusion problems. However, in general such derived algorithms would
have limited practical relevance since deciding trace-like preorders is PSPACE-
complete [31], but in some particular cases the complexity of the decision pro-
cedure is certainly much lower.

Proposition 1. T is ready trace (failure trace, ready pair, failure pair) included
in T̃ iff T t

= (resp. T t
⊆, T p

= , T p
⊆) is ready simulated by T̃ t

= (resp. T̃ t
⊆, T̃ p

= , T̃ p
⊆).

Ready simulation and must-saturated STS. Trs is transformed to Sms by setting
the existence predicate to the set of labels for which an outgoing transition exists.

Transformation 3. For any TS T , Trs(T) = Sms((T ,O→)).

For transforming Sms to Trs, every state s is combined with a ready set L ⊆ L,
indicating that exactly these labels may not be removed. The incoming transi-
tions are determined by the incoming ones of s. Fig. 7 presents a simple example.

Transformation 4. For any must-saturated STS (T , e), Sms((T , e)) = Trs((S′,
S′ ∩ (S0 × P(L)),→′)) with

S′ = {(s, L) | e(s) ⊆ L ⊆ O→(s)}, →′= {((s, L), a, (s′, L′)) | s a→ s′ ∧ a ∈ L}.

S is indeed strictly more expressive than Trs, because the latter does not allow
one to specify the empty language.

Lemma 2. For the STS ������ !��
{a} and arbitrary T , we have S(������ !��

{a}) �= Trs(T).

If we allow the initial set of a TS to be empty and therefore not to have any
DetTS as refinement, we obtain, by the following algorithm, that S and Sms are
equally expressive. Hence, the empty set is the only language that increases the
expressive power of S and any other equally expressive refinement setting.

Proposition 2. An STS can be linearly transformed to an equivalent must-
saturated one (possibly with an empty initial state set) by successively removing
those states s and their in- and outgoing transitions, for which e(s) �⊆ O→(s).

Remaining settings. S is transformed to M by modeling predicate e via must-
transitions to a special state sall that is refined by each implementation state.

286 H. Fecher et al.

"#$%&'()1

"#$%&'()2

"#$%&'()3

.

��

a
��

�
�

	

a 22

�

�

b��

�� b

�

77

�

�
b�

88

�
�

b
��

b
����

��

99

������

=⇒

1 12

13

12323

2 3

::**
a

++
66++ a

,,
��,,

b
,,

��,,
b��

b
++

66++

b---
;;---

b ��

b ��

b

<<
{b}

{b}

{b}

{b}{b}

{b}

∅

Fig. 8. Example of the transformation from D to S. For disjunctive mixed TSs, solid
(dashed) arrows model must-transitions (resp. may-transitions). Branching solid arrows
model must-hypertransitions. The numbers of the state names in the right picture
correspond to the state subset encoding; e.g., the self loop of state {2, 3} is obtained
by choosing g and h such that g(2) = 3, g(3) = 2, h({2}) = 2, and h({2, 3}) = 2.

Transformation 5. For any STS (T , e), S((T , e)) = M(((S ∪ {sall}, S0,→
∪ ({sall} × L× {sall)})), ↪→′)) with sall /∈ S and ↪→′=

⋃
s∈S{s} × e(s) × {sall}.

M (resp. Mmod) is transformed to D (resp. Dmod) by turning each must-transition
pointing to s into a must-hypertransition pointing to {s}.

Transformation 6. Let �→′= {(s, a, {s′}) | s a
↪→ s′}. Then for any mixed TS

(T , ↪→), M((T , ↪→)) = D((T , �→′)), and for any modal transition system (T , ↪→),
Mmod((T , ↪→)) = Dmod((T , �→′)).

We proceed with the transformation from D to S. The new states are subsets
S̈ ⊆ S, with the intuition that a related implementation state has to be related
to all elements of S̈. Transitions from S̈ lead to those subset states that consist
of a combination of targets of must-hypertransitions from states s ∈ S̈, together
with one may-target for each s ∈ S̈. In the definition of these successor sets Ca

S̈
,

we use choice functions h : P(S) → S for the selection of an element from a must-
hypertransition target, and g : S → S for the selection of a may-transition target.
The existence predicate holds for a at S̈ iff there is a must-hypertransition with
label a and leaving a state in S̈. Fig. 8 shows an example of this transformation.

Transformation 7. For any disjunctive mixed TS (T , �→), D((T , �→)) =
S(((P(S), {{s0} | s0 ∈ S0},

⋃
S̈⊆S,a∈L{S̈}× {a}×Ca

S̈
),O �→)) with Ca

S̈
= {g(S̈)∪

h(S̈◦ a�→) | ∀s ∈ S̈ : s a→ g(s) ∧ ∀S̈′ ∈ (S̈◦ a�→) : h(S̈′) ∈ S̈′}.

Finally, we present the transformation from D to Mmod with complexity
O((2|S|)|L|) and, by restriction to M, obtain a transformation from M into Mmod

with complexity O(|S||L|).
A first observation is that Mmod can represent conjunctive behavior since

the properties described by all must-transition targets have to hold after the
step. However, a state in Mmod cannot enforce the existence of a label a and,
at the same time, model disjunctive behavior after the execution of a (via non-
determinism) because, as soon as an outgoing must-transition (with implicit
may-transition) exists, all further outgoing may-transitions with the same label

On the Expressiveness of Refinement Settings 287

are redundant: in deterministic refinements, the unique transition of the im-
plementation already has to match with the may-transition corresponding to
the must-transition. The solution is to distribute the needed requirements to
multiple states, where one state (s,−) enforces action existence, and several
further states (s, S̈), with S̈ ⊆ S, encode the nondeterministic behavior. Must-
transitions to all these states make sure that each of them is related to a single
implementation state, which therefore has to meet all of the requirements. These
must-transitions originate from another kind of state (s, f) ∈ S × Fs, which en-
codes a complete resolution of the next-step nondeterminism in the D-system.
Here, Fs is a set of functions that collect, per label a, a set from Ca

{s}, i.e., an el-
ement from every must-hypertransition target together with one may-transition
target. The resulting collection contains those D-states to which the successor of
a related implementation state must be related. To be precise, no element can be
collected if no must-transition is present (a /∈ O �→(s)∧ g(a) = ∅). For contradic-
tory states, Fs is empty. A state (s, f) points, via a-labeled must-transitions, to
every element of g(a)×({−}∪P(S)). A state (s,−) encodes the labels necessary
in s via must-transitions to state sall, which is refined by any implementation
state. A state (s, S̈) is used to model the nondeterministic behavior of (i) the
must-hypertransition target S̈, or (ii) the may-transitions if S̈ = {s}◦ a→. This
is achieved by outgoing may-transitions to every element s′ of S̈, combined with
any value of Fs′ . For technical reasons, (s, S̈) points to sall if S̈ does not corre-
spond to a must-hypertransition target or to the may-transition targets. Fig. 9
shows an example of this transformation.

Transformation 8. For any disjunctive mixed TS (T , �→), D((T , �→)) =
Mmod(((S′, S0′,→′), ↪→′)) with Ca

{s} as in Transf. 7 and

Fs = {f : L → P(S) | ∀a ∈ L : f(a) ∈ Ca
{s} ∨ (a /∈ O �→(s) ∧ f(a) = ∅)}

S′ = {sall} ∪ {(s, x) | s ∈ S ∧ x ∈ Fs ∪ {−} ∪ P(S)}
S0′ = {(s, x) | s ∈ S0 ∧ x ∈ Fs} W a

s = ({s}◦ a�→) ∪ {{s}◦ a→}
→′ = ↪→′ ∪ ({sall} × L × {sall}) ∪ {((s, x), a, sall) | x ∈ {−} ∪ P(S) \W a

s } ∪
{((s, S̈), a, (s′, f ′)) | s′ ∈ S̈ ∧ S̈ ∈W a

s ∧ f ′ ∈ Fs′}
↪→′ = {((s, f), a, (s′, x′)) | f ∈ Fs ∧ s′ ∈ f(a) ∧ x′ ∈ {−} ∪ P(S)} ∪

{((s,−), a, sall) | a ∈ O �→(s)}

Here, we allow the initial state set to be empty; this does not affect expressiveness,

since, e.g., the modal TS ������ ! ������ !
������ !

������ !�� a ==���
a
''...

a ��
also describes the empty language.

This concludes our presentation of transformations since all remaining transfor-
mations can be obtained by composition, yielding quite competitive (efficient)
equivalent models.

Consistency checking and expressiveness hierarchy. As a corollary, our transfor-
mations also yield a technique for checking consistency, i.e., whether the language

288 H. Fecher et al.

"#$%&'()1

"#$%&'()2

"#$%&'()3

.

��

a
��

�
�

	

a 22

�

�

b��

�� b

�

77

�

�
b�

88

�
�

b
��

b
����

��

99

������

=⇒

*+ ,-
./ 01

*+ ,-

./ 01

*+ ,-

./ 01

*+ ,-
./ 01

*+ ,-
./ 01

1,2,∅ 1,∅,∅ 1,3,∅

2,−

2,22,3

2,∅ 3,−

3,233,12

3,∅

3,∅,2 3,∅,233,∅,12 3,∅,13

2,∅,23

1,− 1,231,∅

sall

sall
sall

��

a ��//
//

a

//

b

00

a
�
�

>>�
�

a000 ??000

b
11

��1111111111
a 2

2

��22

b
!
!
!

��!
!
!

b333 44333

b

@@

a
4
4

AA4
4a

�
�

BB�
�b

5
5

CC5
5

b
6

6
6

6
6

6
6

116
6

6

a 3 3 3553 3 3
b 1 1 1 1

DD1 1 1 1 1

b

�
�

���
�

b 0 0 0990 0 0

b7777 7

""777777 7
b888888

EE88888888

b������

FF��������������
b

���

GG��b99999

HH99999999

b:::

II::
b

;;;;;

JJ;;;;;;;;;;;;

b

��

b

<<
ab

<
<

<

GG<<
b

!
!

,,!
!

a==
KK===

a

��!
!
!

a
2

2

LL2
2

ab

>

&?
@

%//

ab

%

@?
&

>JJ

ab

%

@?
&

>JJ

Fig. 9. Example of the transformation from D to Mmod. On the right, the may-
transitions that are implied by must-transitions are omitted, and the symbols of the
state names correspond to the encoding of the transformation: (i) pairs with second
element “−” correspond to the states that encode the existent labels; (ii) the remain-
ing pairs, which have a subset as second element, encode the may-transition targets
and the must-hypertransitions (states (s, S̈) are omitted if S̈ /∈ W a

s ∪W b
s , since they

do not influence refinement); (iii) a triple corresponds to states that have a complete
resolution where the second (resp. third) component encodes the image of a (resp. b).
To improve readability, several copies of state sall are used.

Considered refinement settings:
D: Disjunctive mixed transition systems

Dmod: Disjunctive modal transition systems
M: Mixed transition systems

Mmod: Modal transition systems
S: Synchronously-communicating transition systems

Sms: Must-saturated s.-c. transition systems
Tpw: Possible worlds inclusion
Trs: Ready simulation
Trt: Ready trace inclusion
Tr: Ready pair inclusion
Tft: Failure trace inclusion
Tf : Failure pair inclusion

S, Mmod, M, Dmod, D

Trs, Tpw, Sms

Trt

Tft Tr

Tf

			
	 ���

�

���
��

			
		

m
or

e
ex

pr
es

si
ve

""

Fig. 10. Refinement settings for DetTSs ordered with respect to their expressiveness

of a model is non-empty. This is trivial for trace-like settings, ready simulation
settings and must-saturated STSs, because these settings cannot describe the
empty language.

Corollary 1. For a disjunctive mixed (resp. disjunctive modal, mixed, modal,
synchronously-communicating) TS, consistency can be checked by transforming
it via our transformations into an STS, applying the algorithm given in Prop. 2,
and finally checking if the initial state set is non-empty.

On the Expressiveness of Refinement Settings 289

Corollary 2. Our transformations yield the expressiveness hierarchy of refine-
ment settings depicted in Fig. 10.

5 Related Work

For trace and tree languages, many transformations have been developed be-
tween automata having different fairness constraints (Büchi, Muller, Rabin,
Streett, parity), see, e.g., [19] and the references therein. Transformations be-
tween non-automata settings are given in [5] and [24], where the must-testing
and ready simulation (2

3 -bisimulation) preorders, respectively, are transformed
to prebisimulation. In [16], forward/backward simulation and trace inclusion are
transformed to disjunctive modal TSs (underspecified TSs). These transforma-
tions implicitly demonstrate that the transformed settings are less or equally
expressive with respect to the describable sets of (not necessarily deterministic)
TSs. Transformations preserving the complete preorder (and not only the lan-
guages) are given in [15] and [18], where [15] proves that disjunctive modal TSs
can be transformed into 1-selecting modal TSs but not vice versa, whereas [18]
presents transformations between modal TS variants with transition labels and
predicates on states.

An alternative approach to the examination of expressiveness is taken, e.g.,
in [11,17], where preorders are compared regarding their coarseness. This com-
parison approach obviously does not lead to applicable transformations between
settings.The obtained hierarchy – known as the linear-time branching-time spec-
trum – coincides with ours for many TS-based settings, but not in general, as is
illustrated by possible worlds semantics and ready simulation semantics: by def-
inition of possible-worlds semantics, they trivially have the same expressiveness
in our language-based sense although the possible worlds preorder is finer than
the ready simulation preorder. For the coinciding settings, our results cannot be
immediately derived from the corresponding results in [17]. Consider, e.g., the
increase of expressiveness between ready trace inclusion and ready simulation. It
cannot be derived from Counterexample 8 of [17], illustrated here in Figs. 2(d)
and (e), since both systems have exactly the same sets of implementations, both
with respect to ready trace inclusion and ready simulation.

Yet another approach to studying the expressiveness of refinement settings is
via modal logics in the style of Hennessy-Milner [20]. While much work focuses
on characterizing preorders on general TSs, [3] shows a correspondence between
the preorder underlying modal TSs and the prime and consistent formulas of
Hennessy-Milner logic.

The problem of consistency checking is considered, e.g., in [21]. The authors
present an algorithm, along with a complexity study, for checking the consistency
of sets of modal TSs, i.e., for checking non-emptiness of the intersection of the
modal TSs’ implementation sets in terms of general TSs. [23] gives algorithms
and complexity results of consistency checks for several refinement notions.

Further refinement settings have been proposed in the literature, albeit for
general TSs rather than DetTSs, e.g., in [22,8,9,30,13,14]. We believe that all of

290 H. Fecher et al.

them (when ignoring their possible fairness constraints) can be transformed into
disjunctive mixed/modal TSs and vice versa while preserving their languages in
terms of general TSs.

6 Conclusions

This paper studied the expressiveness of popular TS-based specification for-
malisms with respect to their describable languages in terms of deterministic
TSs. Our results are summarized in the expressiveness hierarchy depicted in
Fig. 10. Our work is of importance for system designers and verification-tool
builders alike. The established expressiveness hierarchy aids system designers in
selecting the right specification formalism for a problem in hand, while our trans-
formations allow tool builders to reuse refinement checking algorithms across
different formalisms. The results of this paper reveal that STSs combine expres-
siveness with succinctness and easy-to-comprehend models and thus seem to be
a good choice for modeling sets of DetTSs.

Regarding future work, we wish to examine the succinctness of our refine-
ment settings, show that our transformations lie in optimal complexity classes,
and compare refinement settings based on preorders that abstract from internal
computation, e.g., those mentioned in [23].

References

1. Baeten, J., Bergstra, J., Klop, J.: Ready-trace semantics for concrete process alge-
bra with the priority operator. Computer J. 30(6), 498–506 (1987)

2. Bloom, B., Istrail, S., Meyer, A.: Bisimulation can’t be traced. J. ACM 42(1),
232–268 (1995)

3. Boudol, G., Larsen, K.G.: Graphical vs. logical specifications. Theoretical Com-
puter Science 106(1), 3–20 (1992)

4. Brookes, S., Hoare, C., Roscoe, A.: A theory of communicating sequential processes.
J. ACM 31(3), 560–599 (1984)

5. Cleaveland, R., Hennessy, M.: Testing equivalence as a bisimulation equivalence.
Formal Aspects of Computing 5(1), 1–20 (1993)

6. Cleaveland, R., Sokolsky, O.: Equivalence and preorder checking for finite-state sys-
tems. In: Handbook of Process Algebra, pp. 391–424. North-Holland, Amsterdam
(2001)

7. Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems.
ACM TOPLAS 19(2), 253–291 (1997)

8. Dams, D., Namjoshi, K.S.: The existence of finite abstractions for branching time
model checking. In: LICS, pp. 335–344. IEEE, Los Alamitos (2004)

9. Dams, D., Namjoshi, K.S.: Automata as abstractions. In: Cousot, R. (ed.) VMCAI
2005. LNCS, vol. 3385, pp. 216–232. Springer, Heidelberg (2005)

10. Engelfriet, J.: Determinacy → (observation equivalence = trace equivalence). The-
oretical Computer Science 36, 21–25 (1985)

11. Eshuis, R., Fokkinga, M.M.: Comparing refinements for failure and bisimulation
semantics. Fundam. Inf. 52(4), 297–321 (2002)

On the Expressiveness of Refinement Settings 291

12. Fecher, H., Grabe, I.: Finite abstract models for deterministic transition systems:
Fair parallel composition and refinement-preserving logic. In: Arbab, F., Sirjani,
M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 1–16. Springer, Heidelberg (2007)

13. Fecher, H., Huth, M.: Ranked predicate abstraction for branching time: Com-
plete, incremental, and precise. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS,
vol. 4218, pp. 322–336. Springer, Heidelberg (2006)

14. Fecher, H., Huth, M., Schmidt, H., Schönborn, J.: Refinement sensitive formal
semantics of state machines with persistent choice. In: AVoCS. ENTCS (2007) (to
appear)

15. Fecher, H., Schmidt, H.: Comparing disjunctive modal transition systems with an
one-selecting variant. J. Logic and Algebraic Programming 77, 20–39 (2008)

16. Fecher, H., Steffen, M.: Characteristic μ-calculus formula for an underspecified
transition system. In: EXPRESS 2004. ENTCS, vol. 128, pp. 103–116 (2005)

17. Glabbeek, R.v.: The linear time–branching time spectrum I. The semantics of
concrete, sequential processes. In: Handbook of Process Algebra, pp. 3–99. North-
Holland, Amsterdam (2001)

18. Godefroid, P., Jagadeesan, R.: On the expressiveness of 3-valued models. In: Zuck,
L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS,
vol. 2575, pp. 206–222. Springer, Heidelberg (2002)

19. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002)

20. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
ACM 32(1), 137–161 (1985)

21. Hussain, A., Huth, M.: Automata games for multiple-model checking. ENTCS 155,
401–421 (2006)

22. Janin, D., Walukiewicz, I.: Automata for the modal mu-calculus and related results.
In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 552–562.
Springer, Heidelberg (1995)

23. Larsen, K.G., Nyman, U., Wasowski, A.: On modal refinement and consistency. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 105–119.
Springer, Heidelberg (2007)

24. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Com-
put. 94(1), 1–28 (1991)

25. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210. IEEE,
Los Alamitos (1988)

26. Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In:
LICS, pp. 108–117. IEEE, Los Alamitos (1990)

27. Olderog, E., Hoare, C.: Specification-oriented semantics for communicating pro-
cesses. Acta Informatica 23(1), 9–66 (1986)

28. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)

29. Phillips, I.: Refusal testing. Theoretical Computer Science 50(3), 241–284 (1987)
30. Shoham, S., Grumberg, O.: 3-valued abstraction: More precision at less cost. In:

LICS, pp. 399–410. IEEE, Los Alamitos (2006)
31. Shukla, S., Hunt, H., Rosenkrantz, D., Stearns, R.: On the complexity of relational

problems for finite state processes. In: Meyer auf der Heide, F., Monien, B. (eds.)
ICALP 1996. LNCS, vol. 1099, pp. 466–477. Springer, Heidelberg (1996)

32. Veglioni, S., de Nicola, R.: Possible worlds for process algebras. In: Sangiorgi, D.,
de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 179–193. Springer,
Heidelberg (1998)

Bounded Rational Search for On-the-Fly Model
Checking of LTL Properties

Razieh Behjati1, Marjan Sirjani1,2,3, and Majid Nili Ahmadabadi1,4

1 Department of Electrical and Computer Engineering,
University of Tehran, Tehran, Iran

2 School of Computer Science, Reykjavik University, Iceland
3 School of Computer Science,

Institute for Research in Fundamental Sciences, Tehran, Iran
4 School of Cognitive Science,

Institute for Research in Fundamental Sciences, Tehran, Iran
behjati@ut.ac.ir, msirjani@ut.ac.ir, mnili@ut.ac.ir

Abstract. Model checking is considered as a promising approach for
assuring the reliability of concurrent systems. Besides its strength it suf-
fers from the state explosion problem, which reduces its applicability es-
pecially when systems grow larger. In this paper we propose a bounded
rational verification approach for on-the-fly model checking of LTL prop-
erties. We optimize memory usage by increasing the probability of find-
ing counter-examples. Since in on-the-fly model checking we do not have
complete knowledge about the model, we use a machine learning method
based on interaction and reward receiving. Based on the concept of fair-
ness we propose a heuristic for defining rewards. We also exploit the ideas
of probabilistic model checking in order to find a measure of correctness
of the system in the case where no violations are found after generating
a certain number of runs of the system. The experimental results show
that this approach easily outperforms classic model checking approaches.

Keywords: Concurrent Systems Verification, Reinforcement Learning,
Approximate Probabilistic Model Checking.

1 Introduction

Model checking [5,7] is the problem of deciding whether or not a property speci-
fied in temporal logic holds for a system. Recently, it has gained wide acceptance
within the hardware and protocol verification communities, and is finding more
applications in the domain of software verification. The great feature of this tech-
nique is that it can be done fully automatically, provided that the state space of
the system under investigation is finite. Given a model and the desired property,
an automatic model checker either returns true, meaning that the model satisfies
the property, or provides a counter-example which is a possible run of the model
violating the given property.

Unfortunately, model checking has its own drawbacks which make it inapplica-
ble in many practical cases. The most important problem against model checking

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 292–307, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Bounded Rational Search for On-the-Fly Model Checking of LTL Properties 293

is the state explosion problem. This problem concerns the size of the system’s
state space which grows exponentially in the size of the model’s specification.
Over the past two decades, researchers have developed a large number of tech-
niques to overcome state explosion, including: partial-order reduction methods
[14,29], symmetry reduction [6,12,25], bounded model checking [3], and symbolic
model checking [4,22].

In this paper we propose a technique to tackle state explosion problem. As
stated by Clarke and Wing in [8] a model checking tool must be error detec-
tion oriented. Which means, it must be optimized for finding errors and not
for guaranteeing correctness. Therefore, in our proposed technique we seek two
main goals. The first goal is to make the model checking procedure more ef-
ficient in finding bugs (faulty runs) by improving the search algorithm using
Reinforcement Learning. The second goal is to provide an approximate answer
for the outsized models where the typical model checkers usually end up with
state space explosion.

General Idea

To achieve the first goal we design and develop a framework in which a Reinforce-
ment Learning agent walks through the state space looking for counter-examples.
In the Reinforcement Learning framework an agent learns through interactions
with an environment. In this framework, for each of its actions the agent receives
a reward, which is the key to guide the agent to its goal. The LTL model checking is
based on searching for a ’fair accepting cycle’ in the Büchi automaton,B, which is
the product of the automaton of the model,BS , and the automaton of the negation
of the property, B¬ϕ. We define a reward function which gives the agent negative
rewards for finding non-accepting cycles and positive rewards for finding unfair
accepting cycles. If an accepting cycle is fair then a counter example is found, the
goal is reached and the search is over. We use a Monte Carlo method to control the
agent’s search. Monte Carlo methods are a class of computational algorithms that
rely on repeated random sampling to compute their results and tend to be used
when it is infeasible or impossible to compute an exact result with a deterministic
algorithm. This feature allows them to provide an answer even without having the
complete knowledge about the underlying problem. In this context, using a Monte
Carlo method to control the agent’s search allows us to benefit from the on-the-fly
technique in LTL model checking.

In our proposed approach if a counter-example (a fair accepting cycle) is
found, the model checking procedure stops and reports it. Otherwise, the agent
continues searching the state space until the number of generated runs reaches
an upper bound, N. To provide a termination condition for the agent’s search
and to provide an answer to the model checking problem even for very large
systems, we use a probabilistic approach, specifically the quantitative method
presented in [15], which provides an (ε, δ)-approximation of the correctness of
the model. In this technique N is proportional to 1/ε and ln 1/δ, but the size of
the model does not affect its value. Therefore, it provides an effective approach
for verifying models with very large or even infinite state spaces.

294 R. Behjati, M. Sirjani, and M.N. Ahmadabadi

The quantitative model checking approach as presented in [15], is applicable
when the sample runs are generated independently according to an identical dis-
tribution which provides unbiased probabilities for randomly generating sample
runs. But in the guided search that we use the sample runs are not generated
independently. After a sample run is evaluated, the rewarding system results in a
change in the probabilities, therefore making the generation of runs that violate
(satisfy) the property more (less) probable. In fact, the rewarding system results
in a bias in the probabilities of generating sample runs. For the reward function
proposed in this paper we have proved (Appendix A) that this bias strengthens
the (ε, δ)-approximation of [15], which enables us to use this approximation in
our proposed approach.

The closest work to our approach is presented in [1], which uses Reinforcement
Learning for checking liveness properties. But there is a significant difference
between the two Reinforcement Learning settings. We search the product Büchi
automaton B, instead of the model’s Büchi automaton BS , which allows us
to model check liveness properties as well as all other LTL properties. We also
consider quantitative model checking which lets us to provide a stopping criterion
for the search and to use that in order to provide a probabilistic reply for over-
sized models.

To the best of our knowledge it is the first work in the literature which aug-
ments a learning-based, guided search method for error detection with probabilis-
tic approaches which provides a measure of correctness when the guided search
fails to find a counter-example. The main features of the proposed technique are
the following:

– The technique uses a machine learning approach, or more precisely, trains
a Reinforcement Learning agent for improving the search algorithm and
rapidly finding counter-examples.

– It exploits the ideas of probabilistic model checking in order to provide an
appropriate termination condition for the agent’s search.

– Since we use a Monte Carlo method for evaluating the states we can get
benefit from the on-the-fly technique in LTL model checking.

In the rest of the paper we first describe backgrounds of the work, including
LTL model checking, Reinforcement Learning, and quantitative model checking.
Next, in Section 3, we specify how these approaches are put together to provide
an effective model checking framework. Experimental results are presented in
Section 4. Section 5 briefly introduces the related works. Finally we conclude
the work in Section 6, and propose directions for future works.

2 Backgrounds

2.1 LTL Model Checking

Given a concurrent system S and a linear-temporal-logic formula ϕ, the LTL
model checking problem is to decide whether S satisfies ϕ. This problem can

Bounded Rational Search for On-the-Fly Model Checking of LTL Properties 295

be elegantly solved by reducing it to the language emptiness problem for finite
automata over infinite words [30]. For this purpose the system, S, and negation
of the property, ¬ϕ, are modeled as Büchi automata BS and B¬ϕ, respectively.
The product Büchi automaton, B, is then defined as B = BS ×B¬ϕ, and is used
to check whether the language L(B) of B is empty.

Usually we are only interested in finding counter-examples which violate ϕ.
Therefore, our main goal is to prove non-emptiness of B, by finding a cycle that
is reachable from an initial state and contains an accepting state. In addition,
this accepting cycle must be fair, meaning that any enabled transitions should
eventually get a turn to be executed within the cycle.

Since Büchi automaton BS can grow exponentially large for a concurrent
system S, one can avoid the state explosion problem by avoiding the explicit
construction of BS . The alternate solution is to generate the initial states of BS

first and then generate next states on demand. This on-the-fly approach con-
siderably reduces the space requirements, since it constructs only the reachable
part of BS . This approach is especially useful when we are only looking for errors
not proving the correctness of the system.

2.2 Reinforcement Learning and Monte Carlo Policy

Reinforcement Learning [27] refers to a learning framework for learning from
interaction to achieve a goal. The learner in this framework is called the agent
and everything outside the agent, which the agent interacts with, is called the
environment. These interact continually; the agent selects actions and the envi-
ronment responds to those actions by presenting new situations to the agent and
giving it rewards. The agent’s goal is to maximize values of the rewards that it
gains over time.

More specifically, the agent and the environment interact in a sequence of
discrete time steps, t = 0, 1, 2, 3, · · · . At each time step, t, the agent receives a
representation of the environment’s state, st ∈ S, where S is the set of possible
states, and on that basis selects an action, at ∈ A(t), where A(t) is the set of
actions available in state st. One time step later, as a consequence of its action,
the agent receives a numerical reward, rt+1 ∈ R, and finds itself in a new state,
st+1 [27]. In many cases the agent-environment interaction breaks naturally into
subsequences, which are called episodes. Each episode ends in a special state
called the terminal state, followed by a reset to a starting state. Tasks with
episodes of this kind are called episodic tasks. Fig. 1 shows the agent-environment
interaction.

During the learning procedure the agent develops a policy denoted πt, which
is a mapping from state representations to probabilities of selecting possible
actions. In general, the agent in the Reinforcement Learning problem is looking
for a policy that maximizes the expected return, where the return Rt, is defined
as some specific function of the reward sequence. Using the return values one
can define the value function Q on states. The value of a state is the total
amount of reward an agent can expect to accumulate over the future starting
from that state. The value of taking action a in state s under a policy π, denoted

296 R. Behjati, M. Sirjani, and M.N. Ahmadabadi

Fig. 1. The Reinforcement Learning framework

Qπ(s, a), is defined as the expected return starting from s, taking the action a,
and thereafter following policy π:

Qπ(s, a) = Eπ{Rt|st = s, at = a}.

There are several ways for defining the return using the reward sequence. One
approach is to invoke the concept of discounting. According to this approach,
the agent tries to select actions so that the sum of the discounted rewards it
receives over the future is maximized. In particular, it chooses at to maximize
the expected discounted return:

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑

k=0

γkrt+k+1;

where 0 ≤ γ ≤ 1 is called the discount rate.
Several approaches exist for determining the optimal policy. One of these

approaches is the Monte Carlo method, which is the method that we used in
our work. In this approach, the value function is repeatedly altered to more
closely approximate the value function for the current policy, and the policy is
repeatedly improved with respect to the current value function [27].

2.3 Quantitative Model Checking

In this section we briefly introduce quantitative model checking [15], in which
a Monte Carlo method is used to compute an (ε, δ)-approximation of the cor-
rectness of a model. The main idea in quantitative model checking is to use
N independent random samples Z1, . . . , Zn identically distributed according to
random variable Z with mean μZ , and to take μ̃Z = (Z1 + . . .+ ZN)/N as the
approximation of μZ [15]. In the model checking problem each Zi, represents
a sample run in the model. For an accepting run the value of Zi is set to zero
and for a non-accepting run it is set to one. In this setting μZ represents the
probability of encountering a non-accepting run in the model.

An important issue in providing an (ε, δ)-approximation is determining the
value ofN . According to the zero-one estimator theorem [20], ifN is proportional
to Υ = 4ln(2/δ)/μZε

2 then μ̃Z approximates μZ with absolute error ε and with
probability 1 − δ; in other words Pr[μZ(1 − ε) ≤ μ̃Z ≤ μZ(1 + ε)] ≥ 1 − δ.

Bounded Rational Search for On-the-Fly Model Checking of LTL Properties 297

There are two main difficulties in using the zero-one estimator for the calcu-
lation of N . The first is that N depends on 1/μZ , the inverse of the value that
we want to approximate. The second difficulty comes from the factor 1/μZε

2 in
the expression for Υ , which can result in unnecessarily large values for N . To
solve these problems, [9] has proposed optimal approximation algorithm (OAA)
by introducing a more practical approach for calculating N , called generalized
zero-one estimator theorem. The OAA algorithm makes use of the outcomes
of previous experiments to compute N . We also use this algorithm to find the
appropriate value for N .

3 The Verification Procedure

In this section, we explain our model checking algorithm. We first describe the
structure and settings of the Reinforcement Learning problem. We continue the
explanation about our proposed approach by describing how probabilistic meth-
ods are used to provide a termination condition for agent’s search. For the ter-
mination condition we provide an upper-bound N on the number of generated
paths. One should note that for small models where the paths are too short
this termination condition may stop the procedure when there is still plenty of
free memory available, while on the other hand for very large systems it may
still encounter state explosion problem. Compared to the classical approaches,
it is less probable for our proposed approach -due to its approximate and error
detection nature- to encounter the state explosion problem.

3.1 Applying Reinforcement Learning

The first step to form a Reinforcement Learning solution to a problem is to
define the sets of states and actions, the reward function, the value function and
the agent’s policy. Structural similarities between the Reinforcement Learning
and the model checking problem have simplified this step.

States and Actions. For a model S and a property ϕ, we use B = BS ×B¬ϕ

to define states and actions of the RL problem. For any state s in B there is a
state, sRL, in the RL problem and for any transition outgoing from s there is
an action a ∈ A(sRL). In this task the set of initial states is fixed and the agent
starts its search from one of these initial states.

Fairness. Before we can go any further in establishing the RL problem, we
should note that LTL model checking only concerns fair runs, which means that
among all the accepting cycles only fair ones represent a valid counter-example.
There are two ways to include fairness. In the first method, introduced in [1],
finding fair paths is considered as part of the agent’s goal. Therefore, the agent’s
task is to look for fair, accepting paths. To achieve this, the states of the RL
problem should also contain information about the executed processes and their
order of execution, which results in an increase both in the number of states and
the size of states, leading to a much larger state space.

298 R. Behjati, M. Sirjani, and M.N. Ahmadabadi

To avoid unnecessarily large numbers of states in our approach, we use a
second way for ensuring fairness of the reported counter-examples. Here, we let
the agent to generate both fair and unfair paths. Therefore, if the agent reports
an accepting cycle, its fairness should be checked first. If the cycle is fair, it is a
valid counter-example. Otherwise, the agent receives an appropriate reward and
continues to searching for the next run.

Reward Function. In the RL framework the agent is directed to its goal by the
means of a reward function. Here the goal is to find a counter-example. In fact
the agent is looking for an accepting cycle in the Büchi automaton B, which is a
path ending to a loop with at least one accepting state in that loop. Therefore,
the agent’s task is to start from an initial state, then take a sequence of actions
until it reaches a cycle. If the cycle is accepting and fair then the agent has found
a counter-example, otherwise it should reset the state to an initial state and start
looking for the next run. Since it is an episodic task the agent generates paths in
order to gain the maximum return. We use the discounted return (Section 2.2)
with a discounting factor γ for this task.

Therefore, the most important part of the work is to define a reward function
that appropriately provides a discounted return which correctly leads the agent
to its goal. For this purpose we assign a negative reward to a transition (action)
leading to a recurring state if it is at the end of a non-accepting cycle, a positive
reward if it is at the end of an unfair accepting cycle, and zero to all other
transitions. Note that if the accepting cycle which the agent finds is a fair cycle
then a valid counter-example is found and we are done. Using this heuristic,
we discourage the agent from seeking non-accepting cycles by giving it negative
rewards any time it finds one, and we encourage it to find accepting cycles by
positively rewarding finding such cycles.

Value Function and Policy. To completely determine the task we must also
establish the value function and the agent’s policy. We use a Monte Carlo method
for this purpose. Monte Carlo methods are ways of solving the Reinforcement
Learning problem based on averaging sample returns. The most important fea-
ture of Monte Carlo methods is that they do not assume complete knowledge
of the environment. Monte Carlo methods require only experience sample se-
quences of states, actions, and rewards from actual or simulated interaction
with an environment [27]. This setting updates π, the agent’s policy, and Q, the
value function, according to the following formulas:

π(s) = arg maxa Q(s, a) (1)

Qπk(s, πk+1(s)) = Qπk(s, arg maxa Q
πk(s, a)) = maxa Q

πk(s, a) (2)

We use a soft-max, on-policy algorithm to iteratively evaluate π and Q. The
soft-max nature of the algorithm ensures that all possible state-action pairs has
the chance of being selected by the agent. The algorithm is in fact ε-greedy,
meaning that it assigns the largest probability to the best action, but do not

Bounded Rational Search for On-the-Fly Model Checking of LTL Properties 299

completely eliminate other actions, allowing the agent to discover even better
actions in the future. For this purpose the algorithm starts by setting ε to one,
then reduces it (for example by dividing it by two) after generating every K
episodes.

On-the-fly Model Checking. Using a Monte Carlo method which does not
assume complete knowledge of the environment allows us to get benefit from
on-the-fly model checking. For this purpose we input a description of the desired
model, and the Büchi automaton for the negation of the property. While making
an episode we use the model’s description and the property to generate new states
from the previous ones. Since we do not store the state space, we may do this
over and over for a special pair of source and target states. Since it is a low cost
task it does not harm the performance, while on the other hand it allows us to
save memory.

3.2 Providing a Measure of Correctness

We use the idea of quantitative model checking to provide an upper bound, N ,
on the number of episodes that the agent must generate before it stops searching
the state space. If the agent finds an accepting cycle it reports that as a counter-
example, otherwise it should continue generating episodes until it generates N
non-accepting cycles. N is the optimum upper bound on the number of episodes
according to which pZ , the probability of the correctness of the model, satisfies
Pr[pZ ≥ 1/(1 + ε)] ≥ 1 − δ. We use OAA to calculate N . The inputs to OAA
are a number of random variables with mean pZ , each of which indicating a run of
the model (an episode). The value of a random variable representing an accepting
run is one, and for a non-accepting run it is zero. Since we are only interested in
the situations where all the runs are non-accepting, we assume that all inputs of
OAA are equal to 1, which yields in a the following formula for the value of N :

N = ε× 2(1 +
√
ε)(1 + 2

√
ε)(1 +

ln 3/2
ln 2/δ

)γ

γ =
4(e− 2)ln(2/δ)

ε2

We can always increase the value of N such that the confidence and probability
get higher and higher, while state explosion has not stopped us.

The main difference between our proposed approach and the quantitative
model checking proposed in [15] comes from the difference in assigning probabil-
ities to transitions. In the quantitative model checking, all transitions outgoing
from a specific state have equal probabilities, while in our approach the RL
agent assigns different probabilities to such transitions. In a state s, the agent
takes the transition that it has found to be the best transition with probability
1 − ξ + ξ

|A(s)| , and takes each of the other transitions with probability ξ
|A(s)| .

Another difference is that, probabilities that the agent assigns to transitions
change over time as it searches more, while in the quantitative model checking

300 R. Behjati, M. Sirjani, and M.N. Ahmadabadi

Learning Based Probabilistic Model Checking Algorithm
input: the specification of the model (S), and the desired property (φ)
input: 0 < ε, δ ≤ 1
output: either (false, counter-example) or (true, Pr[pz ≥ 1/(1 + ε)] ≥ 1− δ)
(1) Calculate N using ε and δ

(2) Initialize for all s ∈ S, and a ∈ A(s):
Q(s, a)← arbitrary
Returns(s, a)← empty list
π ← an arbitrary soft-max policy

(3) Repeat for N times:
(a) Generate an episode using π
(b) If the episode represents an accepting run and the run is fair

return (false, the run);
(c) Else

For each pair s, a appearing in the episode
R ← return following the first occurrence of s, a
Append R to Returns(s, a)
Q(s, a) ← average(Returns(s,a))

For each s in the episode
a∗ ← arg maxa Q(s, a)
For all a ∈ A(s):

π(s, a) ←
{

1− ξ + ξ
|A| , a = a∗;

ξ
|A| , a �= a∗.

(4) return (true, Pr[pz ≥ 1/(1 + ε)] ≥ 1− δ)

Fig. 2. The proposed probabilistic model checking algorithm

the probabilities are fixed. In fact the agent starts with equal probabilities for
all transition outgoing from a state, then it changes these probabilities in order
to make transitions leading to counter-examples more probable. In other words,
it starts from an unbiased setting then makes a bias towards finding accepting
runs. Since this bias strengthens Pr[pz ≥ 1/(1 + ε)] ≥ 1 − δ, we can still use
this method to approximate the correctness of the model.

The key to gain the desired bias in the probabilities is the correct definition of
the reward function. For a reward function that assigns a negative reward (e.g.
-1) for non-accepting cycles and a positive reward (e.g. 1) for unfair accepting
cycles, this property holds (the proof is available in Appendix A). Fig 2 shows
our proposed model checking algorithm.

4 Experimental Results

To evaluate the feasibility and performance of our proposed algorithm we imple-
mented and used it to model check the dining philosophers problem for different

Bounded Rational Search for On-the-Fly Model Checking of LTL Properties 301

sizes. For the modeling language we used Rebeca [24], which is an actor-based
language for modeling concurrent, reactive systems.

A Rebeca model consists of a set of rebecs (reactive objects) which are con-
currently executed. Rebecs are encapsulated active objects, with no shared vari-
ables. Each rebec is instantiated from a Reactive-Class and has a single thread
of execution which is triggered by reading messages from an unbounded message
queue. Rebecs communicate by asynchronous message passing. The messages
which are sent by the sender rebec are put in the message queue of the receiver
rebec. The receiver takes a message from top of its message queue and executes
the corresponding message server atomically.

Dining philosophers problem: The model for the dining philosophers prob-
lem is simple. n philosophers are sitting around a table with n forks among them.
A philosopher either thinks or picks up the two forks next to him and eats. After
finishing his meal, he releases the forks and continues thinking.

There are two reactive-classes in the Rebeca model that we used in our exper-
iments, one for representing philosophers and the other for representing forks.
In this model a philosopher requests both his forks at the same time, since mes-
sage passing is asynchronous in Rebeca, the left and right forks may serve these
requests in any order. The philosopher then waits until it acquires both forks,
then releases both of them. Again these messages may be served in any order.

We have model checked two properties for this model. The first one is a
safety property ensuring that a specific fork is not kept by two philosophers
simultaneously. The given model satisfies this property. Model checking results
for this property are given in Table 1. We examined the approach several times
and for each value of n, three sample trials are reported in Table 1. As shown
in the first column of the table, in this experiment ε was set to 0.053, and δ
was set to 0.1, therefore after generating N = 662 correct runs the algorithm
reports with confidence more than 90% that the model is correct with probability
more than 95%. The column labeled ’Path Len.’ determines the maximum and
average lengthes of the paths generated in each trial. The total number of states
generated in each trial is also given in the sixth column.

We used Modere [19], the Rebeca model checking engine, to verify the same
model. This time we were stopped at n = 5, because of the state explosion
problem. The results are shown in Table 3. Compared to Modere which is a
classical model checker, our approach is very efficient and capable of checking
models with a very large state space. The results also show that considering
time and space, for small models (e.g. n = 2 in dining philosophers problem),
the classical approaches are better choices while for larger models (n ≥ 4), where
classical approaches fail, our approach is very promising.

The next property, which is a liveness property, ensures that whenever a
philosopher acquires one of his forks, he eventually eats. This property is not
satisfied in the model. The results for this experiment are shown in Table 2.
This table has an additional column labeled by ’# paths’ which determines
the number of paths generated before reaching the counter example. Again we
used Modere to verify the model for the same property. The results are shown

302 R. Behjati, M. Sirjani, and M.N. Ahmadabadi

Table 1. Model checking results for the safety property, using the proposed approach.
The last column is the maximum total memory the program used during its execution.

ε, δ, N n Trial Path Len. (Avg/Max) Time (ms) # States Mem (MB)
1 34.95/66 4579 124 64.92

2 2 35.18/90 4594 130 64.85
3 35.42/74 4657 127 64.5
1 77.09/492 14813 3604 69.43

0.053, 4 2 78.56/502 15359 3627 75.61
0.1, 3 77.06/415 14672 3550 81.75
662 1 112.39/498 23938 13080 73.23

5 2 111.21/483 23921 12512 72.78
3 112.00/572 25655 13312 82.46
1 1647.11/35936 104937688 324542 724.3

10 2 1300.68/30119 64579203 227908 490.27
3 1457.09/27812 82241000 247318 616.17

Table 2. Model checking results for the liveness property, using the proposed approach.
The last column is the maximum total memory the program used during its execution.

ε, δ, N n Trial Path Len. (Avg/Max) Time (ms) # paths # States Mem (MB)
1 33.25/42 16 4 62 5.04

2 2 35.21/58 234 14 61 8.82
3 36.3/61 15 3 70 21.4
1 86.92/172 297 14 1170 60.48

0.053, 4 2 49.2/50 47 5 173 37.56
0.1, 3 75.4/90 78 5 234 58.12
662 1 154.17/374 281 6 845 51.07

5 2 112.44/345 563 18 200 58.08
3 97.11/234 515 19 195 62.48
1 829.43/34195 10690328 432 94761 699.59

10 2 923.28/27005 10859750 411 72438 218.85
3 1570.34/196857 31652797 317 201944 711.64

Table 3. Model checking results using Modere

Safety Property Liveness Property
n Time Path Len. (Max) # States Time Path Len. (Max) # States
2 < 1s 117 1266 < 1s 136 1375
4 > 33h not available not available ≈ 3s 1674 32747

Table 4. Comparison of the average number of runs generated before finding a counter-
example

n Random model checking The proposed approach
4 44.33 7.17
5 66.33 12.33

in Table 3. According to the results for n = 2 and n = 4, our approach is
strongly optimized for finding counter-examples, since it is able to find such
paths after generating a less number of states compared to Modere. Comparing
the lengthes, our approach also finds shorter paths. We can conclude that our
approach outperforms Modere also in finding counter-examples.

Bounded Rational Search for On-the-Fly Model Checking of LTL Properties 303

In order to provide a better evaluation of our approach we implemented a
random model checker and used it to verify the liveness property of the dining
philosophers problem for n = 4 and n = 5. Table 4 shows the average number of
runs generated by each of the tools before finding a counter-example. The results
show that our proposed approach is more efficient than random model checking
since it can find counter-examples after generating a less number of runs.

5 Related Works

Related works fall into two categories. The first category includes works that
use Reinforcement Learning to find counter-examples in a model. The only work
in this category is presented in [1]. There are two main differences between our
approach and the one presented in [1]. First, in [1] the reward function is defined
in a way to find cycles in BS that violate a given liveness property, without
involving B¬ϕ in the state space of the Reinforcement Learning problem. In our
approach on the other hand we have set up the Reinforcement Learning problem
based on the product B = BS × B¬ϕ, which allows us to model check all LTL
properties. The second difference regards the termination condition. In [1], it is
not clear what does the agent do when the model is infinite, or when no counter-
example is found before encountering state explosion. As specified earlier we use
the idea of quantitative model checking to overcome this problem.

Probabilistic approaches to the model checking problem offer another category
of related works. A group of these works concern stochastic model checking.
These approaches are used for model checking probabilistic models, since regular
model checking algorithms are not applicable to them. The works presented in
[2,13,21], are samples of stochastic model checking.

In addition to these approaches there are other approaches that invoke prob-
abilistic reasoning in model checking non-probabilistic models. Random model
checking is one of these approaches. The basis of random model checking is to
provide a random walk through the state space. In contrast to the classical model
checking which uses Breadth First Search, in random model checking nothing is
stored, only a set of random runs of the model is generated and evaluated. Ran-
dom model checkers generate and check many runs, some of which may occur
more than once. One can increase the probability of finding counter-examples
by generating more runs. But, regardless of the number of generated paths, it is
not possible to certainly conclude the model is correct if there are no counter-
examples found. Therefore these approaches can only provide an approximation
of the correctness of the model.

In [17] it is shown that for certain specifications the CTL model checking
problem reduces to a question of reachability in the system’s state-transition
graph, and applies a simple, randomized algorithm to this problem. To answer
this question, a random walk starts from an initial state and continues until a
state with a given label is found. If such a state is found, the model checking
procedure finishes, otherwise it continues until a total number of transitions are
followed. At this point the algorithm reports that no state with the given label

304 R. Behjati, M. Sirjani, and M.N. Ahmadabadi

is reachable. However there would a probability of error in this answer, which is
in inverse proportion to the number of explored transitions. The main limitation
of this approach is that it is only applicable for a subset of CTL properties. The
main advantage of this approach is that it is very efficient according to time and
memory costs.

Another probabilistic algorithm for model checking is presented in [28]. This
algorithm trades space with time: when the memory is over because of state
explosion the algorithm does not give up verification, instead it just proceeds at
a lower speed and its results will hold with some arbitrarily small probability
of error. In addition, [26] proposes various heuristic algorithms that combine
random walks on the state space with bounded breadth first search in a parallel
context.

Quantitative model checking [15] and Monte Carlo model checking [16] are
other randomized approached that use Monte Carlo methods to provide a mea-
sure of correctness of the model. In these works an (ε, δ)-approximation of the
correctness of the model is calculated. Similar works are also proposed in [18,10].
In fact we obtained the idea of providing an (ε, δ)-approximation of the model’s
correctness from these works. These works search the state space via random
walks therefore do not face the state space explosion problem. Together with the
(ε, δ)-approximation this feature has made these approaches very promising.
The contribution of our work to these approaches is that we have replaced the
random search with a guided search which allows us to find counter-examples
more rapidly.

6 Conclusion and Future Works

In this paper we proposed an efficient approach for model checking large or
infinite state systems. In the design of the proposed approach we concerned the
following features:

1. A model checker should be error detection oriented, meaning that it must
be optimized for finding errors and not for certifying correctness.

2. A model checker should terminate with an answer, even an approximate one.

We use a Reinforcement Learning agent in order to optimize memory usage by
providing a guided search for finding counter-examples. We invoke the concept
of fairness to propose a heuristic reward function which correctly leads the agent
to finding counter-examples. Besides, we use probabilistic methods to provide a
termination condition for the agent’s search as well as to provide an approxi-
mate measure for the correctness of the model. The experimental results show
that our approach can go beyond the limits of classical model checkers. While
classical model checkers are better choices for the verification of small models,
our approach is promising for model checking large or infinite state models, espe-
cially when the model is faulty. Experimental results also show that the proposed
approach outperforms random model checking.

Bounded Rational Search for On-the-Fly Model Checking of LTL Properties 305

Currently our approach is limited to LTL properties. An interesting direction
to continue the work is to extend it to the model checking problem of Computa-
tional Tree Logic [11,23] formulas. In the future we should also work on providing
a more accurate, tighter approximation of the correctness of the model, consid-
ering the bias in the probabilities that the agent assigns to transitions. We have
a plan to improve the implementation of the proposed algorithm and add it as
a special capability to Modere.

References

1. Araragi, T., Cho, S.M.: Checking liveness properties of concurrent systems by
reinforcement learning. In: Edelkamp, S., Lomuscio, A. (eds.) MoChArt IV. LNCS
(LNAI), vol. 4428, pp. 84–94. Springer, Heidelberg (2007)

2. Beauquier, D., Slissenko, A., Rabinovich, A.: A logic of probability with decid-
able model-checking. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS,
vol. 2471, pp. 306–321. Springer, Heidelberg (2002)

3. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
bdds. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

4. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Information and Computation 98(2), 142–170
(1992)

5. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems 8, 244–263 (1986)

6. Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal
logic model checking. Form. Methods Syst. Des. 9(1-2), 77–104 (1996)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2000)

8. Clarke, E.M., Wing, J.M., et al.: Formal methods: State of the art and future
directions. ACM Computing Surveys 28, 626–643 (1996)

9. Dagum, P., Karp, R., Luby, M., Ross, S.: An optimal algorithm for monte carlo
estimation. In: FOCS 1995, Washington, DC, USA, p. 142. IEEE Computer Society,
Los Alamitos (1995)

10. Darbon, J., Lassaigne, R., Peyro, S.: Approximate probabilistic model checking
for programs. In: Second IEEE International Conference on Intelligent Computer
Communication and Processing, ICCP 2006 (2006)

11. Allen Emerson, E.: Temporal and modal logic, pp. 995–1072 (1990)
12. Allen Emerson, E., Prasad Sistla, A.: Symmetry and model checking. Form. Meth-

ods Syst. Des. 9(1-2), 105–131 (1996)
13. Etessami, K., Kwiatkowska, M.Z., Vardi, M.Y., Yannakakis, M.: Multi-objective

model checking of markov decision processes. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 50–65. Springer, Heidelberg (2007)

14. Godefroid, P.: Using partial orders to improve automatic verification methods. In:
Clarke, E., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 176–185. Springer,
Heidelberg (1991)

15. Grosu, R., Smolka, S.A.: Quantitative model checking. In: ISoLA (Preliminary
proceedings). Technical Report, vol. TR-2004-6, pp. 165–174. Department of Com-
puter Science, University of Cyprus (2004)

306 R. Behjati, M. Sirjani, and M.N. Ahmadabadi

16. Grosu, R., Smolka, S.A.: Monte carlo model checking. In: Halbwachs, N., Zuck, L.D.
(eds.) TACAS 2005. LNCS, vol. 3440, pp. 271–286. Springer, Heidelberg (2005)

17. Haslum, P.: Model checking by random walk. In: ECSEL Workshop (1999)
18. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic

model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
73–84. Springer, Heidelberg (2004)

19. Jaghoori, M.M., Movaghar, A., Sirjani, M.: Modere: The model-checking engine of
Rebeca. In: ACM Symposium on Applied Computing - Software Verificatin Track,
pp. 1810–1815 (2006)

20. Kapp, R.M., Luby, M., Madras, N.: Monte-carlo approximation algorithms for
enumeration problems. J. Algorithms 10(3), 429–448 (1989)

21. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007)

22. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic, Dordrecht (1993)
23. Pnueli, A.: The temporal semantics of concurrent programs, pp. 1–20 (1979)
24. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and verification of

reactive systems using Rebeca. Fundamenta Informaticae 63(4), 385–410 (2004)
25. Prasad Sistla, A., Emerson, E.A.: On-the-fly model checking under fairness that

exploits symmetry. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 232–
243. Springer, Heidelberg (1997)

26. Sivaraj, H., Sivaraj, H., Gopalakrishnan, G., Gopalakrishnan, G.: Random walk
based heuristic algorithms for distributed memory model checking. In: Proc. of
Parallel and Distributed Model Checking (PDMC 2003). ENTCS, vol. 89, p. 2003.
Elsevier, Amsterdam (2003)

27. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge

28. Tronci, E.: A probabilistic approach to automatic verification of concurrent sys-
tems. In: Proc. Asia-Pacific Software Engineering Conference (APSEC 2001), pp.
317–324. IEEE Computer Society, Los Alamitos (2001)

29. Valmari, A.: A stubborn attack on state explosion. Form. Methods Syst. Des. 1(4),
297–322 (1992)

30. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Proc. 1st Symp. on Logic in Computer Science, Cambridge, June
1986, pp. 332–344 (1986)

A Proof of Correctness

In this section we prove that our proposed reward function provides the desired
bias in the probabilities assigned to the transitions. Suppose that we have the
model given in Fig. 3. We use pk

a(s) to show the sum of probabilities of paths
with length k, starting from s and ending to an accepting loop. Similarly we use
pk

n(s) to show the sum of probabilities of paths with length k, starting from s
and ending to a non-accepting loop. Therefore, for any state si, at any step of
the learning procedure we have:

∞∑
k=1

(pk
a(si) + pk

n(si)) = 1.

Bounded Rational Search for On-the-Fly Model Checking of LTL Properties 307

Fig. 3. A sample model

Using the discounted return defined in Section 2.2, for a reward function that
assigns a negative reward of −r1 to non-accepting cycles, a positive reward of
r2 to unfair accepting cycles, and no reward (zero) to all actions leading to non-
terminal states, the value of an action corresponding to (s, ai, si) is calculated
using the following formula:

Q(s, ai) =
∞∑

j=1

γj(pj
a(si) − pj

n(si)), (3)

Now we consider three possible cases:

1. The agent has only discovered non-accepting cycles. In this case because of the discount-
ing factor γj and the negative reward assigned to such cycles, Eq. 3 results in a larger value
for an action leading to a longer non-accepting path than an action leading to a shorter one.
In this way this reward function conducts the agent to seek for longer paths which enables the
agent to visit more states and actions and therefore makes it more probable for the agent to
find accepting paths.

2. The agent has only discovered accepting cycles. In this case because of the discounting
factor γj and the positive reward assigned to such cycles, Eq. 3 results in a larger value for an
action leading to a shorter accepting path than an action leading to a longer one. In this way
the reward function conducts the agent to find shorter counter-examples.

3. The agent has discovered some accepting cycles and some non-accepting cycles. In
this case according to Eq. 3, the agent more probably selects transitions that ends either to
longer non-accepting paths or to shorter accepting paths.

In all of the above cases the probabilities change in the direction that makes
discovery of counter-examples more probable.

Automated Translation and Analysis
of a ToolBus Script for Auctions

Wan Fokkink2,1, Paul Klint1,3, Bert Lisser1, and Yaroslav S. Usenko4,1

1 Software Engineering Cluster,
Centrum voor Wiskunde en Informatica,

Amsterdam, The Netherlands
2 Theoretical Computer Science Section,

Vrije Universiteit Amsterdam, The Netherlands
3 Programming Research Group,

Universiteit van Amsterdam, The Netherlands
4 INRIA Lille - Nord Europe,

Parc Scientifique de la Haute Borne
40, avenue Halley
Bat.A, Park Plaza

59650 Villeneuve d’Ascq, France

Abstract. ToolBus allows to connect tools via a software bus. Pro-
gramming is done using the scripting language Tscript, which is based
on the process algebra ACP. In previous work we presented a method for
analyzing a Tscript by translating it to the process algebraic language
mCRL2, and then applying model checking to verify certain behavioral
properties. We have implemented a prototype based on this approach.
As a case study, we have applied it on a standard example from the
ToolBus distribution, distributed auction, and detected a number of
behavioral irregularities in this auction Tscript.

1 Introduction

ToolBus [1,2] provides a simple, service-oriented view on organizing software
systems by separating the coordination of software components from the ac-
tual computation that they perform. It organizes a system along the lines of a
programmable software bus. Programming is done using the scripting language
Tscript that is based on the process algebra ACP (Algebra of Communicating
Processes) [3] and abstract data types. The tools connected to the ToolBus

can be written in any language and can run on different machines.
A Tscript can be tested, as any other software system, to observe whether

it exhibits the desired behavior. An alternative approach for analyzing commu-
nication protocols is model checking, which constitutes an automated check of
whether some behavioral property is satisfied. This can be, roughly, a safety
property, which must be satisfied throughout any run of the system, or a live-
ness property, which should eventually be satisfied in any run of the system. To
perform model checking, the communication protocol must be specified in some

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 308–323, 2010.
� Springer-Verlag Berlin Heidelberg 2010

Automated Translation and Analysis of a ToolBus Script for Auctions 309

formal language, and the behavioral properties in some temporal logic. Strong
points of model checking are that it attempts to perform an exhaustive explo-
ration of the state space of a system, and that it can often be fully automated.

As one of the main aims of Tscript, Bergstra and Klint [2] mention that it
should have “a formal basis and can be formally analyzed”. The formal basis
is offered by the process algebra ACP, but ways to formally analyze Tscripts
were lacking until recently [4]. There a number of obstructions for an automatic
translation from Tscript to ACP were classified, and solutions were proposed.
Firstly, each Tscript process has a built-in queue to store incoming messages,
which is left implicit in the process description; in mCRL2, all of these queues
are specified explicitly as a separate process. Secondly, Tscript supports dy-
namic process creation; in mCRL2, we chose to start with a fixed number of
ToolBus processes, and let a master process divide connecting tools over these
processes. Thirdly, we expressed the iterative star operator of Tscript as a re-
cursive equation in mCRL2. And fourthly, we developed some guidelines on how
to deal with so-called result variables in Tscript.

The work in [4] was initiated by the developers of the ToolBus, who are keen
to integrate model checking into the design process. Based on [4], we have now
implemented a prototype translation from Tscript into the formal modeling
language mCRL2 [5]. This language is also based on the process algebra ACP,
extended with equational abstract data types [6]. As a result, Tscript can then
be model checked using the mCRL2 or CADP toolset [7].

We report on an exploratory case study, to investigate in how far the auto-
mated translation from Tscript to mCRL2 can serve as a way to formally verify
Tscripts. The case study concerns a distributed auction, in which the auction
master and the bidders are cooperating from different computers. This auction
Tscript has been used extensively for teaching purposes at various universities
and in numerous demonstrations of the ToolBus. We translated the Tscript

of the auction system to mCRL2, and analyzed the resulting model with sev-
eral different approaches. We performed on-the-fly model checking with CADP.
On-the-fly means that only the part of the state space needed for checking a
property is generated; this is essential here, because the state space of the trans-
lated auction system is infinite. Moreover, we enriched the model with behavior
from the environment, containing an error action that is triggered if a certain
series of events occurs. To perform symbolic model checking, we translated the
model and the property that we wanted to check into a Parametrized Boolean
Equation System [8], and analyzed this symbolic object with the mCRL2 toolset.

This analysis revealed two deadlocks and a race condition in the auction
system. First of all, a deadlock occurs when the master process is busy with a
sale, and a new bidder connects to the system, but disconnects very quickly. In
this case, the master wishes to synchronize with the bidder process, and will wait
indefinitely for this synchronization. A second deadlock occurs since processes
that subscribe to certain types of notes in the ToolBus, may never unsubscribe.
This can happen when a process terminates after completing its task. Although
not considered to be a real error, it does show up in our analysis. A third and

310 W. Fokkink et al.

more serious error is that a bidder can, for a very short time slot, bid for the last
item that has already been sold, while the master interprets this as a bid for the
next item. Finally, we discuss a possible Denial of Service attack. We proposed
fixes for the problems we found, and verified that with these fixes the system
behaves correctly.

This paper is set up as follows. Section 2 gives a brief overview (taken from [4])
of the ToolBus and Tscript, and presents the auction example. Section 3 gives
a brief overview (taken from [4]) of mCRL2 and CADP. Section 4 discusses the
translation scheme from Tscript to mCRL2 that originates from [4]. Section
5 presents an analysis of the auction example using this translation scheme.
Finally, Section 6 contains conclusions.

Related Work. Our work has its origins in the formal verification of interface
languages [9,10]. The aim is to get a separation of concerns, in which the (in
our case Tscript) interfaces that connect software components can be analyzed
separately from the components themselves. Our work is closest in spirit to
Pipa [11], an interface specification language for an aspect-oriented extension
of Java called AspectJ [12]. In [11] it is discussed how one could transform
an AspectJ program together with its Pipa specification into a Java program
and JML specification, in order to apply existing JML-based tools for verifying
AspectJ programs, see also [13].

Many publications on model checking and other verification experiments in
process algebra present one of the following two setups. Either verification of
a (hand-made) model is presented, without an implementation in mind, or a
model is reverse engineered from the source code of a working system, and then
analyzed. Here we mention the works that focus on using process algebra for
both the (forward) development and the analysis of a system.

ToolBus is not the only system where process algebra is used as a scripting
language to describe coordination of software components. Many of these put
focus on the architectural design as well as on obtaining the working executable
system by either code generation or interpretation of process algebra. Some of
these make use of the verification possibilities process algebra-based tools like
FDR2, CADP, μCRL, mCRL2 and CWB offer.

In [14] a distributed Java system based on CSP is proposed. In [15] a method-
ology for control system implementation is proposed based on the ideas of [14].
In [16] Analytical Software Design (ASD) method based on Sequence-Based
Specifications (SBS) [17] is presented. As demonstrated in [18], the method al-
lows for verified software development where a CSP model is generated from
SBSs and verified in FDR2. Yet another CSP-based approach is CSP++ [19],
which is a C++ library for executing CSP models.

The most recent version of CAESAR from the CADP toolset provides a func-
tionality called EXEC/CAESAR for C code generation. This C code interfaces
with the real world, and can be embedded in applications. This allows rapid
prototyping directly from the LOTOS specification. The implementation of the
process algebraic formalism χ [20], for modeling and analyzing the dynamics and
control of, for instance, production plants, is also centered around the ToolBus.

Automated Translation and Analysis of a ToolBus Script for Auctions 311

In [21] a method of software integration based on χ is presented. It allows to
generate source code and test cases from χ models.

As related work in the context of the ToolBus, Diertens [22,23] uses the
ToolBus to implement a platform for simulation and animation of process
algebra specifications in the language PSF. In this approach, Tscript is auto-
matically generated from a PSF specification.

2 ToolBus and Tscript

The behavior of the ToolBus consists of the parallel composition of a vari-
able number of processes. In addition to these processes, a variable number of
external tools written in different languages may be connected to the Tool-

Bus via network sockets or OS level pipes. All interactions between processes
and connected tools are controlled by Tscripts, which are based on predefined
communication primitives. The classical procedure interface (a named procedure
with typed arguments and a typed result) is thus replaced by a more general
behavior description.

A Tscript process is built from the standard process algebraic constructs:
atomic actions (including the deadlock delta and the internal action tau), al-
ternative composition +, sequential composition · and parallel composition ‖.
The binary star operation p ∗ q represents zero or more repetitions of p, followed
by q. Atomic actions are parametrized with data parameters (see below), and
can be provided with a relative or absolute time stamp. A process definition is
of the form Pname(x1, . . . , xn) is P , with P a Tscript process expression and
x1, . . . , xn a list of data parameters. Process instances may be created dynami-
cally using the create statement.

The following communication primitives are available. A process can send
a message (using snd-msg), which should be received, synchronously, by an-
other process (using rec-msg). Furthermore, a process can send a note (using
snd-note), which is broadcast to other, interested, processes. A process may
subscribe and unsubscribe to certain notes. The receiving processes read notes
asynchronously (using rec-note) at a low priority. Processes only receive notes
to which they have subscribed. Communication between ToolBus and tools is
based on handshaking communication. A process may send messages in several
formats to a tool (snd-eval, snd-do, snd-ack-event), and can receive values
(rec-value) and events (rec-event) from a tool.

The only values that can be exchanged between the ToolBus and connected
tools are terms of some sort (basic data types booleans, integers, strings and
lists). In these terms, two types of variables are distinguished: value variables
whose value is used in expression, and result variables (written with a question
mark) who get a value assigned to them as a result of an action or a process
call. Manipulation of data is completely transparent, i.e., data can be received
from and sent to tools, but inside ToolBus there are hardly any operations on
them. ATerms [24] are used to represent data terms; ATerms support maximal
subterm sharing, and use a very concise, binary format. In general, an adapter is

312 W. Fokkink et al.

needed for each connected tool, to adapt it to the common data representation
and message protocols imposed by ToolBus.

The ToolBus was introduced in the mid-1990s for the implementation of the
ASF+SDF Meta-Environment [25,26] but has been used for the implementation
of various other systems as well. The source code and binaries of the ToolBus

and related documentation can be found at www.meta-environment.org.

2.1 The Auction Example

Consider a completely distributed auction, in which the auction master and the
bidders are cooperating via a workstation in their own office. Challenges are how
to synchronize bids, how to inform bidders about higher bids, and how to decide
when the bidding is over. In addition, bidders may connect and disconnect from
the auction whenever they want. This example is described in full detail in [2].
Since that time it has become a standard application of the ToolBus, most of
all it has been used extensively in teaching and demonstrations. Its architecture
is shown in Fig. 1, where ToolBus processes are represented by ellipses.

The auction is initiated by the process Auction, which executes the master
tool (the user interface used by the auction master), and then handles connec-
tions and disconnections of new bidders, the introduction of new items for sale
at the auction, and the actual bidding process. A delay is used to determine the
end of the bidding activity per item. A Bidder process is created for each new
bidder tool that connects to the auction; it describes the possible behavior of
the bidder. The auxiliary process ConnectBidder, which handles the connection
of a new bidder to the auction, consists of the following steps:

- Receive a connection request from some bidder. This may occur when some-
one executes a bidder tool outside the ToolBus (possibly on another com-
puter). As part of its initialization, the bidder tool will attempt to make a
connection with the ToolBus system running the auction Tscript.

- Create an instance of the process Bidder that defines the behavior of this
particular bidder.

- Ask the bidder for its name, and send that name to the auction master.
The auxiliary process OneSale handles all steps needed for the sale of one item:

- Receive an event from the master tool announcing a new item for sale.
- Broadcast this event to all connected bidders, and perform one of the fol-

lowing four steps as long as the item is not sold:
• Receive a new bid from one of the bidders. If the bid is too low, reject

it and inform the bidder. If the bid is acceptable, inform the bidder and
notify all bidders that a higher bid has been received.

• Ask for a final bid if no bids were received during the last 10 seconds.
• Declare the item sold if no new bids arrive within 10 seconds after asking

for a final bid.
• Connect a new bidder.

The Tscript of this auction system takes care of the issues mentioned earlier,
i.e., synchronizing bids, informing bidders, and completing a sale.

www.meta-environment.org

Automated Translation and Analysis of a ToolBus Script for Auctions 313

Fig. 1. Architecture of the auction application

3 mCRL2 and CADP

An mCRL2 [5] specification is built from the standard process algebraic con-
structs: atomic actions (including the deadlock δ and the internal action τ),
alternative composition +, sequential composition · and parallel composition ‖.
One can define synchronous communication of actions. The following two oper-
ators combine data with processes. The sum operator

∑
d:D p(d) describes the

process that can execute the process p(d) for values d of sort D. The conditional
operator → . describes the if -then-else. The process b→ x . y (where b is a
boolean) has the behavior of x if b is true and the behavior of y otherwise.

Data elements are terms of some sort. Next to equational abstract data
types, mCRL2 also supports built-in functional data types. Atomic actions are
parametrized with data parameters, and can be provided with an absolute time
stamp. A process definition is of the form Pname(x1, . . . , xn) = P , with P an
mCRL2 process and x1, . . . , xn a list of parameters.

The mCRL2 toolset (www.mcrl2.org) supports formal reasoning about sys-
tems specified in mCRL2. It is based on term rewriting techniques and on formal
transformation of process algebraic and data terms. mCRL2 specifications are
first transformed to a linear form [5, Section 5], in a condition-action-effect style.
The resulting specification can be simulated interactively or automatically, there
are a number of symbolic optimization tools, and the corresponding Labeled
Transition System (LTS) can be generated. This LTS can, in turn, be minimized
modulo a range of behavioral semantics, and model checked with the mCRL2
toolset or the CADP toolset [7].

4 From Tscript to mCRL2

Both Tscript and mCRL2 are based on the process algebra ACP [3]. In spite
of this common origin, the languages have some important differences. In [4],
we proposed how these differences can be bridged. For instance, the binary

www.mcrl2.org

314 W. Fokkink et al.

star operation in Tscript can be encoded by means of recursive equations in
mCRL2. And dynamic process creation in Tscript can be modeled in mCRL2
by statically fixing the maximal number of process instances that can be ac-
tive simultaneously; these process instances are present from the start, and the
master process divides connecting tools over these processes. And the notion of
discrete time in Tscript can be modeled using a tick action synchronization
(cf. [27,28,29]). Here we go over two of the main differences, and show how they
relate to the auction example.

Asynchronous Communication. According to the semantics of the ToolBus,
each process created by Tscript has a queue for incoming notes. A rec-note
will inspect the note queue of the current process, and if the queue contains a note
of a given form, it will remove the note and assign values to variables appearing
in its argument list; these can be used later on in the process expression in which
the rec-note occurs.

mCRL2 contains no built-in primitives for asynchronous communication.
Therefore, in mCRL2, note queues are handled by a separate AsyncComm pro-
cess. It also takes care of subscriptions/unsubscriptions and lets any process send
any note at any time. Any process can inspect its queue for incoming notes by
synchronously communicating with AsyncComm.

AsyncComm(subscribers :L(Pid), queues:L(L(Msg))) =∑
p:Pid r subscribe(p) · AsyncComm(subscribers � p, queues)

+
∑

p:Pid r unsubscribe(p)·
AsyncComm(rem list elem(subscribers , p), set elem(queues , p, []))

+
∑

note:Msg r snd note(note)·
AsyncComm(subscribers , distr note(queues, subscribers ,note))

+
∑

p:Pid

∑
ntype:NoteType

(p < #queues ∧ has note of type(queues .p,ntype)) →
s rec note(p, get first of type(queues .p,ntype))·
AsyncComm(subscribers , set elem(queues, p,

rem first of type(queues .p,ntype)))

The process AsyncComm is parametrized by the list of subscribers (for the sake
of simplicity we assume that processes can subscribe/unsubscribe to all notes
simultaneously), and by the list of note queues containing the pending notes for
the subscribed processes. The four summands of the process definition reflect
the four actions that AsyncComm react upon.

The first two summands handle the subscription and unsubscription. A pro-
cess willing to subscribe performs s subscribe(id) action that synchronizes to the
r subscribe(p) action of the first summand. This can only happen for the value of
p that is equal to id , and as a result of this action the id is added to subscribers .
In a similar way an id of the unsubscribing process is removed from subscribers
and its queue is emptied.

The third summand says that a sent note is distributed into the queues of
all subscribers. The fourth summand deals with reception of a note by a pro-
cess p. It can only happen if its queue has a note of the appropriate type. In

Automated Translation and Analysis of a ToolBus Script for Auctions 315

this case the first note of this type is taken from the queue, and is delivered to
process p.

4.1 Structure of the Translator

The actual translation program is implemented as a sequence of transformation
steps. The first step performs unfoldings of Tscripts and some other syntac-
tic sugar removals as a Tscript to Tscript transformation implemented in
ASF [26].

The simplified Tscript is then compiled by a part of the ToolBus system to
an internal representation, containing a finite automata representation for each
process in the Tscript. Each state n of such a representation is translated to
an mCRL2 process of the form

Pn(−−→v:V) =
∑

−−−→
v1:V1

c1(−→v) → a1(
−→
f1(−→v),−→v1) · Pn(1)(−→g1(−→v ,−→v1))

+
. . .

+
∑

−−−→
vk:Vk

ck(−→v) → ak(−→fk(−→v),−→vk) · Pn(k)(−→gk(−→v ,−→vk))

where k is the number of outgoing transitions from state n and for any transition
i such that 1 ≤ i ≤ k, n(i) is the next state of process P . The vector −−→

v:V
represents the local variables of process P in state n. The vectors −−→

vi:Vi represent
the input variables (if any) that are being assigned by performing the action
ai of transition i. These variables are used to determine the values of the local
variables in the next state using the vector of functions −→gi (−→v ,−→vi).

As the final step, the standard parts, like the AsyncComm process, are added to
the generated mCRL2 model. As a result the generated mCRL2 model performs
the actions of the Tscript. By performing deadlock or reachability analysis one
can obtain a trace to an undesirable state of the mCRL2 model. The actions
in this trace map directly to the actions of the Tscript.This gives a possibil-
ity to locate and correct the problem in the Tscript. The modified Tscript

can be translated to mCRL2 again and the analysis can be repeated. In this
iterative way one can get a Tscript where all formulated behavioral properties
are satisfied. Executing this Tscript and performing some tests of the working
system can reveal additional problems that can also be formulated as behavioral
properties and checked with the mCRL2 level.

5 Analysis of the Auction System

We translated the Tscript of the auction system to mCRL2 using the prototype
translator. A small example is given in Figure 2.

The structure of the resulting mCRL2 model is presented in Figure 3. Here
each ToolBus process is represented by an mCRL2 process, and an extra pro-
cess AsyncComm is added to model the asynchronous communication of Tool-

Bus.

316 W. Fokkink et al.

Tscript fragment

tool bidder is {}
%% Declaration of the tool type "bidder"

process ConnectBidder is
let Bidder : bidder in

rec-connect(Bidder?) . snd-msg(new(Bidder)) ...
endlet

%% Suppose the auction runs on location ($HOST, $PORT). Then a tool of
%% type "bidder" can be launched on any client by entering the command:
%% wish-adapter $HOST $PORT -TB_TOOL_NAME bidder ...

becomes mCRL2 fragment

sort bidder; Msg = struct new(bidder)|any-higher-bid|... ;
%% Tool types are represented in mCRL2 as sorts. "Msg" is a sort
%% added to the mCRL2 specification to represent a Tscript message.

act rec-connect : bidder; snd-msg : Msg;
%% Some mCRL2 declarations of Tscript built-in actions.

proc ConnectBidder() = sum(Bidder:bidder,
rec-connect(Bidder) . ConnectBidder1(Bidder));

%% "sum(Bidder:bidder" introduces a local variable "Bidder" of sort "bidder".
%% "rec-connect" communicates with "snd-connect" defined in an environment.

ConnectBidder1(Bidder : bidder) = snd-msg(new(Bidder)) ...
%% Here "Bidder" is initialised with the value received by "rec-connect".

Fig. 2. Fragment of a translation from Tscript into mCRL2

The mCRL2 translation of the auction Tscript has been analyzed1 for the
presence of deadlocks and some other behavioral properties. This revealed two
deadlocks and a race condition. Moreover, we encountered a possible Denial of
Service attack. We proposed fixes for the detected problems and verified that
with these fixes the system behaves correctly.

Finding 1: two deadlocks due to a fast disconnect. One deadlock occurs when
a newly connected bidder disconnects immediatly instead of sending its name.
In this case the newly created Bidder process handles the disconnect, and the
Master process keeps waiting for the bidder’s name forever. This problem can be
resolved by postponing the creation of the Bidder process till after the reception
of the name of the new bidder.

Another problem occurs when the Master process is busy with OneSale, and a
new bidder connects to the system. After executing ConnectBidder(Mid,Bid?),
theMasterprocessattemptstodosnd-msg(Bid,new-item(Descr,HighestBid)).
This has to synchronizewith the rec-msgof the connected new bidder. In case that
bidder has alreadydisconnectedby that time, the synchronization is impossible and
theMasterprocess and thewhole systemdeadlocks.Many solutions arepossible for
this problem. The one we chose consists of two parts.

1 The source code of the auction script and the full mCRL2 model can be found
at www.win.tue.nl/~yusenko/sources/Auction/sources.zip

www.win.tue.nl/~yusenko/sources/Auction/sources.zip

Automated Translation and Analysis of a ToolBus Script for Auctions 317

Auction Bidder 1 Bidder 2 Bidder n

create
rec−note

rec−connect

snd−ack−event

snd−do

snd−
msg

rec−
msg

snd−eval

snd_note
subscribe

unsubscribe

rec−event
rec−value
rec−disconnect

ToolBus

AsyncComm

Tools

Process message QueuesSubscribtion list

Fig. 3. Auction Tscript in mCRL2

1. The Bidder process has to perform a rec-msg before disconnecting. This
patch alone, however, does not solve the problem, since it introduces another
one. In case the bidder tool connects not during an ongoing sale, the rec-msg
would wait for synchronization forever. That is why we need another patch
as well.

2. When a new bidder connects at a moment that there is no sale, the Master
process does snd-msg(Bid,no-new-item). The newly-created Bidder pro-
cess waits for either new-item or a no-new-item message before proceeding
further, or receiving a disconnect from its tool.

After bringing this fix into the Tscript, we could regenerate the mCRL2 model
and verify that this deadlock has been resolved.

Finding 2: a missing unsubscribe. The Bidder process contains no unsubscribe
commands, also not before successful termination. This situation can be seen as a
violation of the stylistic constraint that every subscribe command has a
corresponding unsubscribe command. We found this situation by generating the
underlying LTS of our mCRL2 model with the lps2lts tool. The tool reported a
deadlock situation: due to the way we modeled the process creation/termination
mechanism in mCRL2, the missing unsubscribe command lead to a
deadlock. To be more precise, in case a new Bidder tool connects to the system af-
ter the missing unsubscribe command, the corresponding Bidder process cannot
perform subscribe any longer. We resolved this problem by adding the missing
unsubscribe.

Finding 3: buying the next item while bidding for the previous one. A third and
more serious error that we detected is that a bidder can, for a very short time

318 W. Fokkink et al.

Bidder Tool Bidder Auction Master Tool

rec-event(Mid, new-item(table, E1))snd-do(Bid, new-item(table, E1))

HighestBid:=E1

OK

MyLastBid:=E2

snd-do(Bid, any-higher-bid)

snd-do(Bid, sold(E2))

rec-event(Bid, bid(E2)) snd-do(Mid, new-bid(Bid, E2))

E2>HighestBid

snd-do(Bid, accept(accepted))

snd-do(Bid, new-item(bicycle, E1))

bid(E2)

snd-ack-event(Bid, bid(E2)

MyLastBid=E2

accepted

snd-ack-event(Mid, new-item(table, E1))

any-higher-bid

rec-event(Mid, new-item(bicycle, E1))

HighestBid:=E2

snd-do(Mid, update-highest-bid(Bid, E2))snd-do(Bid, update-bid(E2))

new-item

new-bid

update-bid

sold

new-item

Fig. 4. Normal external behavior

slot, bid for the last item that has already been sold, while the master interprets
this as a bid for the next item.

We demonstrate this race condition with a small example. Suppose that the
auction master sells a table and a bicycle, both for the price of E1. Bidder B1
intends to bid E2 (a larger amount than E1) for the table. In the next paragraphs
we explain the desired behavior of the auction, and possible erroneous behavior
that may occur in this situation.

The desired scenario for the aforementioned example is as follows. After a new
item (the table) is presented at the auction for the price of E1, the bidder bids
E2. The bid is accepted, and the bidder is informed about this fact. Then every
bidder receives a note that the current price is raised to E2. Bidder B1 does not
bid anymore, receives a note any-higher-bid, and receives a note that the item
is sold for the price of E2. From this bidder B1 can derive that he has bought
the table. This sequence of events is depicted in Fig. 4.

However, using model checking, we found the following erroneous scenario.
After the table is presented at the auction for the price of E1, the item is sold
for this price. During the selling of that item, three broadcasts are performed

Automated Translation and Analysis of a ToolBus Script for Auctions 319

Bidder Tool Bidder Auction Master Tool

rec-event(Mid, new-item(table, E1))snd-do(Bid, new-item(table, E1))

snd-ack-event(Mid, new-item(table, E1))

rec-event(Bid, bid(E2)) snd-do(Mid, new-bid(Bid, E2))

E2>HighestBid

HighestBid:=E1

HighestBid:=E1

bid(E2)

any-higher-bid

rec-event(Mid, new-item(bicycle, E1))

snd-do(Bid, any-higher-bid)

snd-do(Bid, sold(E1))

snd-do(Bid, accept(accepted)

snd-do(Bid, new-item(bicycle, E1))

snd-ack-event(Bid, bid(E2))

ERROR

MyLastBid>E1

MyLastBid:=E2

accepted

HighestBid:=E2

new-item

sold

new-item

new-bid

Fig. 5. Erroneous external behavior

to the bidders: new-item, any-higher-bid, and sold. Bidder B1 bids E2 under
the illusion that he bids on the table, because the note sold has not arrived yet.
The bid gets accepted, but the auction master thinks that this is a bid for the
next item, being the bicycle. This sequence of events is depicted in Fig. 5.

To find this issue, we used the following property:

If a Bidder tool bids m and this bid gets accepted (accept(accepted)
message is received), then the following sold(n) message it receives
should be such that m ≤ n.

We used two methods to check this property. One way is in formulating the
property as a μ-calculus [30] formula and performing on-the-fly model checking
with the mCRL2 toolset or with the CADP tool evaluator [7]. Another way is
in adding an observer process in parallel to the system. The process will observe
the relevant actions in the way the environment (Bidder tool) does it. In case

320 W. Fokkink et al.

the property violation is detected, the observer performs the s error action.
The presence of this action and a shortest trace to it can be detected with the
mCRL2 tool lps2lts during the LTS generation. Concretely, the relevant part
of the observer process look as follows:
ToolBidder 1(tid :TId , accepted :Bool ,my last bid :Int) =∑

msg:Msg r ack event(tid ,msg)·
(accepted ∧ is bid1 (msg)) → ToolBidder 1(tid , false , bid1 0 (msg))

. ToolBidder 1(tid , accepted ,my last bid)
+
∑

msg:Msg r do(tid ,msg)·
(is sold0 (msg) →

((my last bid > sold0 0 (msg)) → s error·
ToolBidder 1(tid , accepted , 0)

. ToolBidder 1(tid , accepted , 0)
)

. is accept0 (msg) →
((accept0 0 (msg) = trm accepted) →

ToolBidder 1(tid , true,my last bid)
. ToolBidder 1(tid , false,my last bid)

)

. ToolBidder 1(tid , accepted ,my last bid)
)

+ . . .
Here the first summand reacts to the r ack event action and, in case the last bid
has been accepted, sets the value of the my last bid parameter to the amount
in the last bid. The second summand reacts to r do. Here two messages of the
tscript are important: sold and accept. The latter one is used to set the
accepted parameter to represent the fact that our last bid has been accepted.
The former one leads to the check if our property my last bid > sold0 0 (msg)
holds. In case it does not, the s error action is executed.

We believe that this problem can be resolved in many different ways. However,
not much can be done without increasing the level of detail in the communication
protocol between the auction Tscript and the tools. We propose a solution to
this problem without changing this protocol. We extend the bid message that is
synchronously communicated from the Bidder process to the Auction process
with the description of the item for which the bid is valid. In case the Auction
process receives a bid for a wrong item, it rejects this bid.

Additionally we had to add an extra condition to the case when a new bidder
connects during an ongoing sale. Namely, we make it impossible to connect in this
way if the item has already been sold. In this case the connection is performed
after this sale round is finished.

To verify the fact that this solution actually works we had to decorate the
accept and sold messages that are sent to the Bidder tool with the description
and the amount information. An important assumption for our solution to work
is that the consecutive sale items must have different descriptions. We could
verify that the resulting Tscript does not have the erroneous behavior.

Automated Translation and Analysis of a ToolBus Script for Auctions 321

An important observation related to this problem has been proposed by an
anonymous reviewer. The root of the problem lays in the fact that a bid comes
into a race condition with the sold message. In case a bid comes late and there
is no next item to be sold, the bidder will have to wait for the rejection of its bid
forever. To avoid this problem the reviewer proposed to allow a choice between
snd-msg(bid(...,...)) and rec-note(sold(...)). We implemented this fix
and checked that the rejection is always received by the bidder tool.

Finding 4: infinite queues. Although using on-the-fly model checking we could
detect some important issues, we could not analyze the entire behavior of the
auction Tscript, due to the fact that its LTS is infinite. We could handle
some sources of infinity, like infinite domains for data types, by bounding these
domains.

Another source of infinity has to do with the asynchronous communication
and queues for notes. For example, one process may keep sending notes while
another process is not willing to receive them. Such a situation can happen in
case one of the bidders keeps bidding very actively. The following part of the
Bidder process illustrates such a phenomenon.

(rec -event(Bid , bid(Amount ?)).

...

+ rec -note(update -bid(Amount ?)) .

snd -do(Bid , update -bid(Amount))

+ rec -note(any -higher -bid) . snd -do(Bid , any -higher -bid)

+ rec -disconnect (Bid).delta) *

In case a Bidder tool is active in sending bids, the first alternative is enabled
and can be chosen. As a result, the parallel OneSale process adds an update-bid
note to the message queue of our Bidder process. For any fixed-size note queue,
an overflow can be reached by executing a sufficiently large number of first
alternatives without ever taking the second one.

This can be seen as a problem that has to be solved by the scheduler of the
ToolBus. Another way to look at this problem is to see it as a possibility of a
Denial of Service attack, leading to an overflow.

Some of such queue size problems can be tackled with the help of timing. We
could impose that no time can progress as long as a process can receive a note
(so-called maximal progress). However, the aforementioned problem can happen
without reception of any notes and, therefore, without any progress of time at
all. To solve this issue we chose to limit the number of bids per time unit that the
Bidder process is willing to accept from its tool. By combining the two timing
restrictions into the mCRL2 model, we could get to a finite LTS.

6 Conclusions and Future Work

Our general aim is to have a process algebra-based software development envi-
ronment where both formal verification and production of an executable system
is possible. We implemented a prototype translation from Tscript to mCRL2.

322 W. Fokkink et al.

This translation makes it possible to verify Tscript in an automated fashion,
and to explore behavioral properties of executable software systems that have
been built with the ToolBus.

We automatically translated a standard Tscript application, a distributed
auction, to mCRL2, and analyzed it using on-the-fly and symbolic model check-
ing techniques. As a result, four flaws were detected in the original Tscript

description of this auction system. We could fix all the issues, and verified the
correctness of the fixed Tscript by automatically translating it to mCRL2. We
could also execute and test the fixed model to ensure it still works.

In the future we aim at applying the presented techniques to analyze a large
existing Tscript with the help of model checking. An example of such a system
is the the ASF+SDF Meta-Environment [25,26]. It is also of our interest to
develop a new Tscript from scratch in a way that formal verification with
mCRL2 contributes to every stage of the development process.

References

1. Bergstra, J.A., Klint, P.: The ToolBus coordination architecture. In: Hankin, C.,
Ciancarini, P. (eds.) COORDINATION 1996. LNCS, vol. 1061, pp. 75–88. Springer,
Heidelberg (1996)

2. Bergstra, J.A., Klint, P.: The discrete time ToolBus - a software coordination
architecture. Sci. Comput. Program. 31(2-3), 205–229 (1998)

3. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Infor-
mation and Control 60(1-3), 109–137 (1984)

4. Fokkink, W., Klint, P., Lisser, B., Usenko, Y.S.: Towards formal verification of
ToolBus scripts. In: Meseguer, J., Roşu, G. (eds.) AMAST 2008. LNCS, vol. 5140,
pp. 160–166. Springer, Heidelberg (2008)

5. Groote, J.F., Mathijssen, A.H.J., Reniers, M.A., Usenko, Y.S., van Weerdenburg,
M.J.: The formal specification language mCRL2. In: Proc. Methods for Modelling
Software Systems. Dagstuhl Seminar Proceedings, vol. 06351 (2007)

6. Bergstra, J.A., Heering, J., Klint, P.: Module algebra. J. ACM 37(2), 335–372
(1990)

7. Garavel, H., Mateescu, R., Lang, F., Serwe, W.: CADP 2006: A toolbox for the
construction and analysis of distributed processes. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007)

8. Groote, J.F., Willemse, T.A.C.: Parameterised boolean equation systems. Theor.
Comput. Sci. 343(3), 332–369 (2005)

9. Wing, J.M.: Writing Larch interface language specifications. ACM Trans. Program.
Lang. Syst. 9(1), 1–24 (1987)

10. Guaspari, D., Marceau, C., Polak, W.: Formal verification of Ada programs. IEEE
Trans. Software Eng. 16(9), 1058–1075 (1990)

11. Zhao, J., Rinard, M.C.: Pipa: A behavioral interface specification language for
aspectJ. In: Pezzé, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 150–165. Springer,
Heidelberg (2003)

12. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of aspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–353. Springer, Heidelberg (2001)

Automated Translation and Analysis of a ToolBus Script for Auctions 323

13. Larsson, D., Alexandersson, R.: Formal verification of fault tolerance aspects. In:
Supplementary Proceedings of International Symposium on Software Reliability
Engineering (ISSRE) Conference, pp. 279–280. IEEE, Los Alamitos (2005)

14. Hilderink, G.H., Bakkers, A.W.P., Broenink, J.F.: A distributed real-time Java
system based on CSP. In: Proc. ISORC 2000, pp. 400–410. IEEE, Los Alamitos
(2000)

15. Orlic, B., Broenink, J.F.: Design Principles of the SystemCSP Software Framework.
In: McEwan, A.A., Ifill, W., Welch, P.H. (eds.) CPA 2007, pp. 207–228 (2007)

16. Hopcroft, P.J., Broadfoot, G.H.: Combining the box structure development method
and CSP for software development. Electr. Notes Theor. Comput. Sci. 128(6), 127–
144 (2005)

17. Prowell, S.J., Poore, J.H.: Foundations of sequence-based software specification.
IEEE Trans. Software Eng. 29(5), 417–429 (2003)

18. Broadfoot, G.H.: Asd case notes: Costs and benefits of applying formal methods
to industrial control software. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.)
FM 2005. LNCS, vol. 3582, pp. 548–551. Springer, Heidelberg (2005)

19. Doxsee, S., Gardner, W.B.: Synthesis of C++ software from verifiable CSPm spec-
ifications. In: Proc. ECBS 2005, pp. 193–201 (2005)

20. Beek, B., Man, K.L., Reniers, M., Rooda, K., Schiffelers, R.: Syntax and consistent
equation semantics of hybrid χ. J. Log. Algebr. Program. 68(1-2), 129–210 (2006)

21. Braspenning, N.C.W.M., van de Mortel-Fronczak, J.M., Rooda, J.E.: A model-
based integration and testing method to reduce system development effort. Electr.
Notes Theor. Comput. Sci. 164(4), 13–28 (2006)

22. Diertens, B.: Simulation and animation of process algebra specifications. Technical
Report P9713, University of Amsterdam (1997)

23. Diertens, B.: Software (re-)engineering with PSF III: An IDE for PSF. Technical
Report PRG0708, University of Amsterdam (2007)

24. van der Brand, M., de Jong, H., Klint, P., Olivier, P.: Efficient annotated terms.
Softw., Pract. Exper. 30(3), 259–291 (2000)

25. Klint, P.: A meta-environment for generating programming environments. ACM
TOSEM 2(2), 176–201 (1993)

26. den van Brand, M.G.J., van Deursen, A., Heering, J., de Jong, H.A., de Jonge, M.,
Kuipers, T., Klint, P., Moonen, L., Olivier, P.A., Scheerder, J., Vinju, J.J., Visser,
E., Visser, J.: The ASF+SDF meta-environment: A component-based language
development environment. In: Wilhelm, R. (ed.) CC 2001. LNCS, vol. 2027, pp.
365–370. Springer, Heidelberg (2001)

27. Fokkink, W., Ioustinova, N., Kesseler, E., van de Pol, J., Usenko, Y.S., Yushtein,
Y.A.: Refinement and verification applied to an in-flight data acquisition unit. In:
Brim, L., Jančar, P., Křet́ınský, M., Kucera, A. (eds.) CONCUR 2002. LNCS,
vol. 2421, pp. 1–23. Springer, Heidelberg (2002)

28. Blom, S., Ioustinova, N., Sidorova, N.: Timed verification with μCRL. In: Broy, M.,
Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 178–192. Springer, Heidelberg
(2004)

29. Wijs, A.: Achieving discrete relative timing with untimed process algebra. In:
ICECCS, pp. 35–46. IEEE, Los Alamitos (2007)

30. Mateescu, R., Sighireanu, M.: Efficient on-the-fly model-checking for regular
alternation-free mu-calculus. Sci. Comput. Program. 46(3), 255–281 (2003)

Executable Interface Specifications
for Testing Asynchronous Creol Components�

Immo Grabe1, Marcel Kyas2,��, Martin Steffen3, and Arild B. Torjusen3

1 Christian-Albrechts University Kiel, Germany
2 Department of Computer Science, Freie Universität Berlin, Germany

3 Department of Informatics, University of Oslo, Norway
igb@informatik.uni-kiel.de, marcel.kyas@fu-berlin.de,

{msteffen,aribraat}@ifi.uio.no

Abstract. We propose and explore a formal approach for black-box test-
ing asynchronously communicating components in open environments.
Asynchronicity poses a challenge for validating and testing components.
We use Creol, a high-level, object-oriented language for distributed sys-
tems and present an interface specification language to specify components
in terms of traces of observable behavior.

The language enables a concise description of a component’s behav-
ior, it is executable in rewriting logic and we use it to give test specifica-
tions for Creol components. In a specification, a clean separation between
interaction under control of the component or coming from the environ-
ment is central, which leads to an assumption-commitment style descrip-
tion of a component’s behavior. The assumptions schedule the inputs,
whereas the outputs as commitments are tested for conformance with
the specification. The asynchronous nature of communication in Creol
is respected by testing only up-to a notion of observability. The existing
Creol interpreter is combined with our implementation of the specifica-
tion language to obtain a specification-driven interpreter for testing.

1 Introduction

To reason about open distributed systems and predicting their behavior is intrin-
sically difficult. A reason for that is the inherent asynchronicity and the resulting
non-determinism. It is generally accepted that the only way to approach com-
plex systems is to “divide-and-conquer”, i.e., consider components interacting
with their environment. Abstracting from internal executions, their black-box
behavior is given by interactions at their interface. In this paper we use Creol
[1], a programming and modeling language for distributed systems based on
concurrent, active objects communicating via asynchronous method calls.
� Part of this work has been supported by the EU-project IST-33826 Credo: Modeling

and analysis of evolutionary structures for distributed services and the German-
Norwegian DAAD-NWO exchange project Avabi (Automated validation for behav-
ioral interfaces of asynchronous active objects).

�� M. Kyas’ research was partly performed while employed at University of Oslo.

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 324–339, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.cwi.nl/projects/credo/
http://www.ifi.uio.no/avabi/

Executable Interface Specifications 325

To describe and test Creol components, we introduce a concise specification
language over communication labels. The expected behavior is given as a set of
traces at the interface. Both input and output interactions are specified but play
quite different roles. As input events are not under the control of the object, but
of the environment, input is considered as assumptions about the environment
whereas output describes commitments of the object. For input interactions, we
ensure that the specified assumptions on the environment are fulfilled by schedul-
ing the incoming calls in the order specified, while for output events, which are
controlled by the component, we test that the events occur as specified. An
expression in the specification language thus gives an assumption-commitment
style specification[2] for a component by defining the valid observable output be-
havior under the assumption of a certain scheduling of the input. Scheduling and
testing of a component is done by synchronizing the execution of the component
with the specification. As a result, the scheduling is enforced in the execution
of the component and the actual outgoing interactions from the component are
tested against the output labels in the specification. This gives a framework for
testing whether an implementation of a component conforms with the interface
specification. Incorrect or nonconforming behavior of the component under a
given scheduling is reported as an error.

It is important in the specification, to carefully distinguish between the inter-
actions which are scheduled and those for which the component is responsible
and which are checked for conformance. We do so by formalizing well-formedness
conditions on specifications. Well-formedness enforces a syntactic distinction be-
tween input and output specifications and, in addition, assures that only “mean-
ingful” traces, i.e., those corresponding to possible behavior, can be specified.
Besides that, the specification language captures two crucial features of the in-
terface behavior of Creol objects. First, Creol allows to dynamically create ob-
jects and threads (via asynchronous method calls), which gives rise to dynamic
scoping. This is reflected in the interface behavior by scope extrusion and the
specification language allows to express freshness of communicated object and
thread references. Second, due to the asynchronous nature of the communication
model, the order in which outgoing messages from a component are observed
by an external observer does not necessarily reflect the order in which they
where actually sent. We take this asynchronous message passing into account by
only considering trace specifications up-to an appropriate notion of observational
equivalence.

Contributions. The paper contains the following contributions: We formalize
the interface behavior of a concurrent, object-oriented, language plus a corre-
sponding behavioral interface specification language in Sect. 2 and Sect. 3. This
gives the basis for testing active Creol objects, where a test environment can be
simulated by execution of the specifications. Sect. 4 explains how to compose
a Creol program and a specification and how to use this for testing. Further-
more, the existing Creol interpreter is extended with the implementation of the
specification language. This yields a specification-driven interpreter for testing
asynchronous Creol components. The implementation is described in Sect. 5

326 I. Grabe et al.

2 The Creol Language

Creol [3,1] is a high-level object-oriented language for distributed systems, fea-
turing active objects and asynchronous method calls. Concentrating on the core
features, we elide inheritance, dynamic class upgrades, etc. They would compli-
cate the interface description, but not alter the basic ideas presented here.

The Creol-language features active objects and its communication model is
based on exchanging messages asynchronously. This is in contrast with object-
oriented languages based on multi-threading, such as Java or C#, which use “syn-
chronous” message passing in which the calling thread inside one object blocks
and control is transferred to the callee. Exchanging messages asynchronously
decouples caller and callee, which makes that mode of communication advanta-
geous in a distributed setting. On the receiver side, i.e., at the side of the callee,
each object possesses an input “queue” in which incoming messages are waiting
to be served by the object. To avoid uncontrolled interference, each object acts
as a monitor, i.e., at most one method body is executing at each point in time.
The choice, which method call in the input queue is allowed to enter the object
next is non-deterministic.

After presenting the abstract syntax in the next section, we sketch the op-
erational semantics, concentrating on the external behavior, i.e., the message
exchange with the environment.

2.1 Syntax

The abstract syntax of the calculus, which is in the style of standard object
calculi [4], is given in Tab. 1. It distinguishes between user syntax and run-
time syntax, the latter underlined. The user syntax contains the phrases in
which programs are written; the run-time syntax contains syntactic material
additionally needed to express the behavior of the executing program in the
operational semantics.

The basic syntactic category of names n, which count among the values v,
represents references to classes, to objects, and to threads. To facilitate reading,
we allow ourselves to write o and its syntactic variants for names referring to
objects, c for classes, and n when being unspecific. Technically, the disambigua-
tion between the different roles of the names is done by the type system and
the abstract syntax of Tab. 1 uses the non-specific n for names. The unit value
is represented by () and x stands for variables, i.e., local variables and formal
parameters, but not instance variables.

A component C is a collection of classes, objects, and (named) threads, with
0 representing the empty component. The sub-entities of a component are com-
posed using the parallel-construct ‖. The entities executing in parallel are the
named threads n〈t〉, where t is the code being executed and n the name of the
thread. The name n of the thread is, at the same time, the future reference
under which the result value of t, if any, will be available. In this paper, when
describing the interface behavior, we restrict ourselves to the situation where
the component consists of one object only, plus arbitrary many threads/method

Executable Interface Specifications 327

Table 1. Abstract syntax

C ::= 0 | C ‖ C | ν(n:T).C | n[(O)] | n[n, F, L] | n〈t〉 component
O ::= F, M object
M ::= l = m, . . . , l = m method suite
F ::= l = f, . . . , l = f fields
m ::= ς(n:T).λ(x:T, . . . , x:T).t method
f ::= ς(n:T).λ().v | ς(n:T).λ().⊥n′ field
t ::= v | stop | let x:T = e in t thread
e ::= t | if v = v then e else e | if undef (v.l()) then e else e expr.
| v@l(�v) | v.l(�v) | v.l() | v.l := ς(s:n).λ().v
| new n | claim@(n, n) | get@n | suspend(n) | grab(n) | release(n)

v ::= x | n | () values
L ::= ⊥ | $ lock status

bodies under execution. A class c[(O)] carries a name c and defines its methods
and fields in O. An object o[c, F, L] with identity o keeps a reference to the
class c it instantiates, stores the current value F of its fields, and maintains a
binary lock L indicating whether any code is currently active inside the object
(in which case the lock is taken) or not (in which case the lock is free). The sym-
bols / and ⊥ indicate that the lock is taken or free respectively. Of the three
kinds of entities at the component level—threads n〈t〉, classes n[(O)], and objects
o[c, F, L]—only the threads are active, executing entities, being the target of the
reduction rules. The objects, in contrast, store the state in their fields or instance
variables, whereas the classes are constant entities specifying the methods.

The named threads n〈t〉 are incarnations of method bodies “in execution”.
Each thread belongs to one specific object “inside” which it executes, i.e., whose
instance variables it has access to. Object locks are used to rule out unprotected
concurrent access to the object states: Though each object may have more than
one method body incarnation partially evaluated, at each time point at most one
of those bodies (the lock owner) can be active inside the object. Method calls in
Creol are issued asynchronously, i.e., the calling thread continues executing and
the code of the method being called is computed concurrently in a new thread
located in the callee object. The ν-operator is used for hiding and dynamic
scoping, as known from the π-calculus [5]. In a component C = ν(n:T).C′, the
scope of the name n (of type T) is restricted to C′ and unknown outside C. ν-
binders are introduced when dynamically creating new named entities, i.e., when
instantiating new objects or new threads. The scope of a ν-binder is dynamic,
when the name is communicated by message passing, the scope is enlarged.

Besides components, the grammar specifies the lower level syntactic constructs,
in particular, methods, expressions, and (unnamed) threads, which are basically
sequences of expressions. A method ς(s:T).λ(�x:�T).t provides the method body t
abstracted over the ς-bound “self” parameter, here s, and the formal parameters
�x. For uniformity, fields are represented as methods without parameters (except
self), with a body being either a value or yet undefined. Note that the methods
are stored in the classes but the fields are kept in the objects. In freshly created

328 I. Grabe et al.

Table 2. Internal steps

o[c, F, L] ‖ n〈let x:T = o.l() in t〉 τ−→ o[c, F, L] ‖ n〈let x:T = F.l(o)() in t〉 FLookup

o[c, F, L] ‖ n〈let x:T = o.l := v in t〉 τ−→ o[c, F.l := v, L] ‖ n〈let x:T = o in t〉 FUpdate

n〈let x : T = o@l(�v) in t〉 τ−→
ν(n′:T)(n〈letx : T = n′ in t〉 ‖ n′〈let x : T = o.l(�v) in stop〉) CallOi

objects, the lock is free, and all fields carry the undefined reference ⊥c, where class
name c is the (return) type of the field.

We use f for instance variables or fields and l = ς(s:T).λ().v, resp. l =
ς(s:T).λ().⊥c for field variable definition (l is the label of the field). Field access
is written as v.l() and field update as v′.l := ς(s:T).λ().v. By convention, we
abbreviate the latter constructs by l = v, l = ⊥c, v.l, and v′.l := v. Note that
the construct v.l() is used for field access only, but not for method invocation.
The expression v@l(�v) denotes an asynchronous method call, v.l(�v) is run-time
syntax for a synchronous call and hence not available for the user. We also use
v⊥ to denote either a value v or a symbol ⊥c for being undefined. Direct access
to fields across object boundaries is forbidden by convention, and we do not
allow method update. Instantiation of a new object from class c is denoted by
new c.

The expression o@l(�v) denotes an asynchronous method call, where the caller
creates a new thread/future reference and continues its execution. The further
expressions claim, get, suspend, grab, and release deal with synchronization. They
take care of releasing and acquiring the lock of an object appropriately. As they
work pretty standard and as lock-handling is not visible at the interface (and
thus does not influence the development), we omit describing them in detail here
and refer to the longer version [6].

2.2 Operational Semantics

The operational semantics of a program being tested is given in two stages: steps
internal to the program, and those occurring at the interface. The two stages
correspond to the rules of Tab. 2 and 4. The internal rules deal with steps not
interacting with the object’s environment, such as sequential composition, con-
ditionals, field lookup and update, etc. The rules are standard and most are
omitted here. We also omit the definition of structural congruence here, spec-
ifying standard structural properties such as associativity, commutativity, and
basic facts about scoping. The elided rules can be found in the long version [6].
The communication labels, the basic building blocks of the interface interactions,
are given in Tab. 3. A component or object exchanges information with the en-
vironment via call - and return-labels, and the interactions is either incoming
or outgoing (marked ? resp. !). The basic label n〈call o.l(�v)〉 represents a call

Executable Interface Specifications 329

of method l in object o. In that label, n is a name identifying the thread that
executes the method in the callee and is therefore the (future) reference under
which the result of the method call will be available (if ever) for the caller. The
incoming label n〈return(v)〉? hands the value from the corresponding call back
to the object, which renders it ready to be read. Its counterpart, the outgoing
return, passes the value to the environment. Besides that, labels can be prefixed
by bindings of the form ν(n:T) which express freshness of the transmitted name,
i.e., scope extrusion. As usual, the order of such bindings does not play a role.

Given a basic label γ = ν(Ξ).γ′ where Ξ is a name context such that ν(Ξ)
abbreviates a sequence of single n:T bindings and where γ′ does not contain
any binders, we call γ′ the core of the label and refer to it by �γ . We define
the core analogously for receive and send labels. The free names fn(a) and the
bound names bn(a) of a label a are defined as usual, whereas names(a) refer to
all names of a.

The interface behavior is given by the 4 rules of Tab. 4, which correspond to
the 4 different kinds of labels, a call or a return, either incoming or outgoing.
The external steps are given as transitions of the form Ξ � C a−→ Ξ́ � Ć, where
Ξ and Ξ́ represents the assumption/commitment contexts of C before and after
the step, respectively. In particular, the context contains the identities of the
objects and threads known so far, and the corresponding typing information.
This information is checked in incoming communication steps, and updated when
performing a step (input or output).

These two operations are captured by the following notation

Ξ � a : T and Ξ + a (1)

which constitute part of the rules’ premises in Tab. 4. Intuitively, they mean the
following: label a is well-formed and well-typed wrt. the information Ξ and refers
to an asynchronous call which results in a value of type T . If not interested in the
type, we write Ξ � a : ok , instead. The right-hand notation of (1) extends the
binding context Ξ by the bindings transmitted as part of label a appropriately.
For lack of space, we omit the formal definitions here. Intuitively, they make sure
that only well-typed communication can occur and that the context is kept up-to
date during reduction. Rule CallI deals with incoming calls, and basically adds
the new thread n (which at the same time represents the future reference for
the eventual result) in parallel with the rest of the program. In the configuration
after the reduction step, the meta-mathematical notation M.l(o)(�v) stands for
t[o/s][�v/�x], when the method suite [M] equals [. . . , l = ς(s:T).λ(�x:�T).t, . . .]. Note
that the step is only possible, if the lock of the object is free (⊥); after the step,
the lock is taken (/). Rule CallO deals with outgoing calls. Remember that

Table 3. Communication labels

γ ::= n〈call n.l(�v)〉 | n〈return(n)〉 | ν(n:T).γ basic labels
a ::= γ? | γ! input and output labels

330 I. Grabe et al.

Table 4. External steps

a = ν(Ξ ′). n〈call o.l(�v)〉? Ξ � a : T Ξ́ = Ξ + a
CallI

Ξ � C ‖ o[c, F,⊥] a−→ Ξ́ � C ‖ o[c, F,$] ‖ n〈let x:T = M.l(o)(�v) in release(o); x〉

a = ν(Ξ ′). n〈call o.l(�v)〉! Ξ ′ = fn(�a�) ∩Ξ1

Ξ́1 = Ξ1 \Ξ ′ Δ � o Ξ́ = Ξ + a
CallO

Ξ � ν(Ξ1).(C ‖ n〈let x:T = o.l(�v) in t〉) a−→ Ξ́ � ν(Ξ́1).(C)

a = ν(Ξ ′). n〈return(v)〉? Ξ � a : ok Ξ́ = Ξ + a
RetI

Ξ � C
a−→ Ξ́ � C ‖ n〈v〉

a = ν(Ξ ′). n〈return(v)〉! Ξ ′ = fn(�a�) ∩ Ξ1 Ξ́1 = Ξ1 \Ξ ′ Ξ́ = Ξ + a
RetO

Ξ � ν(Ξ1).(C ‖ n〈v〉) a−→ Ξ́ � ν(Ξ́1).C

an asynchronous call, as given in CallOi from Tab. 2, does not immediately
lead to an interface interaction, but is an internal step, which only afterwards
(asynchronously) leads to the interface interaction as specified in CallO. Thus
the t in the consequence of the rule always equals stop and the named thread
n serves only to issue the outgoing call. Furthermore, the binding context Ξ
is updated and, additionally, previously private names mentioned in Ξ1 might
escape by scope extrusion, which is calculated by the second and third premise.
Rules RetI and RetO deal with returning the value at the end of a method
call.

We write Ξ1 � C1
t=⇒ Ξ2 � C2 if Ξ1 � C reduces in a number of internal and

external steps to Ξ2 � C2, exhibiting t as the trace of the external steps.

3 A Behavioral Interface Specification Language

The behavior of an object (or a component consisting of a set of objects, for
that matter) at the interface is described by a sequence of labels as given by
Tab. 3. The black-box behavior of a component can therefore be described by
a set of traces, each consisting of a finite sequence of labels. To specify sets of
label traces, we employ a simple trace language with prefix, choice and recursion.
Table 5 contains its syntax. The syntax of the labels in the specification language,
naturally, quite resembles the labels of Tab. 3. Comparing Tabs. 3 and 5, there are
two differences: first, instead of names or references n, the specification language
here uses variables. Second, the labels here allow a binding of the form (x:T).γ,
which has no analog in Tab. 3; the form ν(x:T).γ corresponds to ν(n:T).γ, of
course. Both binding constructs act as variable declarations, with the difference
that ν(x:T).γ not just introduces a variable (together with its type T), but in

Executable Interface Specifications 331

Table 5. Specification language

γ ::= x〈call x.l(�x)〉 | x〈return(x)〉 | ν(x:T).γ | (x:T).γ basic labels
a ::= γ? | γ! input and output labels
ϕ ::= X | ε | a.ϕ | ϕ + ϕ | rec X.ϕ specifications

addition asserts that the names represented by that variable must be fresh. The
binding (x:T).γ corresponds to a conventional variable declaration, introducing
the variable x which represents arbitrary values (of type T), either fresh or
already known.

In the specification, it is important to distinguish between input and output
interactions, as input messages are under the control of the environment, whereas
the outputs are to be provided by the object as specified. This splits the specifi-
cation into an assumption part under the responsibility of the environment, and
a commitment part, controlled by the component. Hence, the input interactions
are the ones being scheduled, whereas the outputs are not; they are used for test-
ing that the object behaves correctly. To specify non-deterministic behavior, the
language supports a choice operator, and we distinguish between choices taken
by the environment—external choice—and those the object is responsible for—
internal choice. Especially, we do not allow so-called mixed choice, i.e., choices
are either under control of the object itself and concerns outgoing communica-
tion, or under control of the environment and concerns incoming communication.
These restrictions are formalized next as part of the well-formedness conditions.

3.1 Well-Formedness

The grammar given in Tab. 5 allows to specify sets of traces. Not all specifica-
tions, however, are meaningful, i.e., describe traces actually possible at the inter-
face of a component. We therefore formalize conditions to rule out such ill-formed
specification where the main restrictions are: Typing: Values handed over must
correspond to the expected types for that methods. Scoping: Variables must be
declared (together with their types) before their use. Communication patterns:
No value can be returned before a matching outgoing call has been seen at the
interface. Specifications adhering to these restrictions are called well-formed.

Well-formedness is given straightforwardly by structural induction by the rules
of Tab. 6. The rules formalize a judgment of the form

Ξ � ϕ : wf p (2)

which stipulates ϕ’s well-formedness under the assumption context Ξ. The meta-
variable p (for polarity) stands for either ?, !, or ?!, where ?! indicates the polarity
for an empty sequence or for a process variable, and ? and ! indicate well-formed
input and output specifications respectively. As before, Ξ contains bindings from
variables and class names to their types. The class names are considered as con-
stants and also, the context Ξ will remain unchanged during the well-formedness

332 I. Grabe et al.

Table 6. Well-formedness of trace specifications

WF-Emtpy

Ξ � ε : wf ?!

Ξ � X
WF-Var

Ξ � X : wf ?!

a = ν(Ξ ′).n〈call o.l(�v)〉? Ξ � a : ok Ξ́ = Ξ + a Ξ́ � ϕ : wf p

WF-CallI

Ξ � a.ϕ : wf ?

a = ν(Ξ ′).n〈return(v)〉? Ξ � a : ok Ξ́ = Ξ + a Ξ́ � ϕ : wf p

WF-RetI

Ξ � a.ϕ : wf ?

Ξ � ϕ1 : wf p Ξ � ϕ2 : wf p

WF-Choice

Ξ � ϕ1 + ϕ2 : wf p

Ξ,X � ϕ : wf p

WF-Rec

Ξ � rec X.ϕ :wf p

derivation, since all classes are assumed to be known in advance and class names
cannot be communicated. This is in contrast to the variables, which represent
object references and references to future variables (resp. thread names). Besides
that, the context also stores process variables X . The rules work as follows: The
empty trace is well-formed (cf. rule WF-Empty), and a process variable X
is well-formed, provided it had been declared before (written Ξ � X , cf. rule
WF-Var). We omit the rules WF-CallO and WF-RetO for outgoing calls,
resp. outgoing get-labels, as they are dual to WF-CallI and WF-RetI.

3.2 Observational Blur

Creol objects communicate asynchronously and the order of messages might not
be preserved during communication. Thus, an outside observer or tester can not
see messages in the order in which they had been sent, and we need to relax the
specification up-to some appropriate notion of observational equivalence, denoted
by ≡obs and defined by the rules of Tab. 7. Rule Eq-Switch captures the asyn-
chronous nature of communication, in that the order of outgoing communication
does not play a role. The definition corresponds to the one given in [7] and also
of [8], in the context of multi-threading concurrency. Rule Eq-Plus allows to
distribute an output over a non-deterministic choice, provided that it’s a choice
itself over outputs, as required by the well-formed condition in the premise.
Rule Eq-Req finally expresses the standard unrolling of recursive definitions.
We omit further standard equivalence rules, such as defining commutativity and
associativity of + and neutrality of ε.

Next we state that well-formedness is preserved under the given equivalence.

Lemma 1. If Ξ � ϕ : wf p and ϕ ≡obs ϕ
′, then Ξ � ϕ′ : wf p.

Given the equivalence relation, the meaning of a specification is given oper-
ationally by the rather obvious reduction rules of Tab. 8. The next lemmas

Executable Interface Specifications 333

Table 7. Observational equivalence

Eq-Switch

ν(Ξ) . γ1! . γ2! . ϕ ≡obs ν(Ξ) . γ2! . γ1! . ϕ

� (ϕ1 + ϕ2) : wf !

Eq-Plus

γ!.(ϕ1 + ϕ2) ≡obs γ!.ϕ1 + γ!.ϕ2

rec X.ϕ ≡obs ϕ[rec X.ϕ/X] Eq-Rec

Table 8. ϕ rules

Ξ́ = Ξ + a
R-Pref

Ξ � a.ϕ
a−→ Ξ́ � ϕ

Ξ � ϕ1
a−→ Ξ́ � ϕ′

1
R-Plus1

Ξ � ϕ1 + ϕ2
a−→ Ξ́ � ϕ′

1

ϕ ≡obs ϕ′ Ξ � ϕ′ a−→ Ξ � ϕ′′
R-Equiv

Ξ � ϕ
a−→ Ξ � ϕ′′

express simple properties of the well-formedness condition, connecting it to the
reduction relation.

Lemma 2. Assume Ξ � ϕ : wf .

1. Exactly one of the three conditions holds: Ξ � ϕ : wf ?!, Ξ � ϕ : wf ?, or
Ξ � ϕ : wf !

2. If ϕ a−→ with a an input, then Ξ � ϕ : wf ?. Dually for outputs.
3. If Ξ � ϕ : wf ?, then ϕ a−→ with a an input. Dually for outputs.

Lemma 3 (Subject reduction). Ξ � ϕ : wf and Ξ � ϕ
a−→ Ξ́ � ϕ́, then

Ξ́ � ϕ́ : wf .

Lemma 4. Assume Ξ � C. If Ξ � C t=⇒, then Ξ � ϕt : wf (where ϕt is the
trace t interpreted to conform to Tab. 5, i.e., the names of t are replaced by
variables).

4 Scheduling and Asynchronous Testing of Creol Objects

Next we put together the (external) behavior of an object (Sect. 2) and its
intended behavior specified as in Sect. 3. Table 9 defines the interaction of the
interface description with the component, basically by synchronous parallel com-
position. Both ϕ and the component must engage in corresponding steps, which,
for incoming communication schedules the order of interactions with the com-
ponent whereas for outgoing communication the interaction will take place only
if it matches an outgoing label in the specification and an error is raised if in-
put is required by the specification. The component can proceed on its own via

334 I. Grabe et al.

Table 9. Parallel composition

Ξ � C
τ−→ Ξ � Ć

Par-Int

Ξ � C ‖ ϕ −→ Ξ � Ć ‖ ϕ

Ξ1 � C
a−→ Ξ́1 � Ć Ξ1 � ϕ

b−→ Ξ́2 � ϕ́ � a �σ b
Par

Ξ1 � C ‖ ϕ −→ Ξ́1 � Ć ‖ ϕ́σ

Ξ � ϕ : wf ?

Par-Err-Call

Ξ � ν(Ξ ′).(C ‖ n〈let x:T = o.l(�v) in t〉 ‖ ϕ) −→ �

Ξ � ϕ : wf ?

Par-Err-Ret

Ξ � ν(Ξ ′).(C ‖ n〈v〉 ‖ ϕ) −→ �

internal steps (cf. rule Par-Int). Rule Par requires that, in order to proceed,
the component and the specification must engage in the “same” step, where ϕ’s
step b is matched against the step a of the component. The matching is not
simple pattern matching as it needs to take into account in particular the two
different kinds of bindings in the specification language, ν(x:T) as the freshness
assertion and (x:T) representing standard variable declarations. Here � a �σ b
states that there exist a substitution σ such that the label a produced by the
component and the label b specified by the interface description can be matched.
We omit the details of the matching and refer to the longer version [6]. The rules
Par-Err-Call and Par-Err-Ret report an error if the specification requires
an input as the next step and the object however could do an output, either a
call or a return. In the rule � indicates the occurrence of an error. Note that the
equivalence relation, according to the rule Eq-Switch, allows the reordering of
outputs, but not of inputs.

Example 1. To illustrate the testing we sketch the well-known example of a travel
agency. A client asks the travel agent for a cheap flight and the travel agent finds
the cheapest flight by asking the flight companies. To test an implementation of
the travel agent program we give a specification modeling the behavior of the
client and the flight companies and specifying the expected behavior of the travel
agent. The client sends two messages. First a start message and then the request.
The travel agent tries to get the price information from the flight companies and
then reports the result to the client.

ϕb = nc1〈call b.start()〉? . nc1〈return()〉! . nc2〈call b.getPrice(x)〉? .
n1〈call p1.l(x)〉! . n2〈call p2.l(x)〉! .
n1〈return(v1)〉? . n2〈return(v2)〉? . nc2〈return(minv)〉!

Executable Interface Specifications 335

5 Implementing a Specification-Driven Creol Interpreter

The operational semantics of the object-oriented language Creol [1] is formal-
ized in rewriting logic [9] and executable on the Maude rewriting engine [10].
To obtain a specification-driven interpreter for testing Creol objects, we have
formalized our behavioral interface specification language in rewriting logic, too.
In the combined implementation we synchronize communication between speci-
fication terms and objects. The specification generates the required input to the
object and tests whether the output behaviour of the object conforms to the
specification. The original Creol interpreter consists of 21 rewrite rules and the
extension adds 20 more.

We have argued that specified method calls should not be placed into the
callee’s input queue, but the call should be answered immediately. I.e., if an
incoming call is specified and the lock of the object is free, the corresponding
method code should start executing immediately. In the current version of the
interpreter the incoming messages are generated from the specification, which
amounts to the same as only allowing scheduled calls to interact with the object.

A Creol state configuration is a multiset of objects, classes, and messages. The
rewrite rules for state transitions are on the form rl Cfg => Cfg’, effectively
evolving the state of one object by executing a statement. Some statements gen-
erate new messages. Finally, some rules are concerned with scheduling processes
and receiving messages. For the scheduling interpreter we introduce terms Spec
for specifications and add rules on the form (Spec || O) Cfg => (Spec’ ||
O’) Cfg’ to test the object O with respect to Spec, where || represents the
synchronous parallel composition. Each rule evolves the state of a specification
and the state of an object in a synchronized manner: any interaction only takes
place when it matches a complementary label in the specification. For example,
the Par rule in Tab. 9 is implemented by several Maude rules, of which we
show Par-incoming-call and Par-remote-async-call, that handle the cases
of synchronized incoming and outgoing calls; we also show the Par-Err-Call
rule in Tab. 10. The rules are conditional rewrite rules, in which conditions of
the form Var:=term bind term to the variable Var. Parts of the term that are
not changed, like attributes, are represented by “. . . ”.

The rule Par-incoming-call combines the R-Pref rule in Tab. 8 for the
specification with the CallI rule in Tab. 4 for interface behavior via the Par

rule. The rule only applies if the process, Pr of the object <O:C | ...> is idle
(i.e., the lock is free). The specification for O, <call(T,R,M,P)? . sp>(O), starts
with an incoming call label with thread name T, receiver R, method name M, and
parameters P, and could by R-Pref reduce to sp. The careful reader might
expect that the receiver mentioned in the specification should be the same as
the object identifier O. However since a specification can contain variables, the
receiver R might be identical to O but it may also be a variable, which will
be matched with O in the procLab function. The function procLab (process
label) generates concrete values from the variables in the specification label;
builds an invoc message, i.e. a term representing a method call; and returns the
message and a mapping of the variables to the values. The message and the

336 I. Grabe et al.

Table 10. Sample Maude rules

crl <call(T,R,M,P)?.sp>(O) || <O:C | ..., Pr:idle, ...> Cfg

=> <app(getS(Res),sp)>(O) || <O:C | ..., Pr:synch, ...> getM(Res) Cfg

if Res:=procLab(O , call(T,R,M,P)?) [label Par-incoming-call] .

crl <call(T,R,M,P)!.sp>(O) || <O:C | ...,Pr:{L | call(A;E;Q;EL);SL},...> Cfg

=> <app(Sub,sp)>(O) || <O:C | ...,Pr:{insert(A,Lab,L) | SL},...> Cfg

(invoc(O,Lab,Q,Args) from O to Rcv)

if Lab:=label(O,N) ∧ Rcv:=evalGuard(E,(S::L),noMsg) ∧
Args:=evalGuardList(EL,(S::L),noMsg) ∧
Sub:=matchCall(Lab,Rcv,Q,Args,call(T,R,M,P)) ∧ noMismatch(Sub)

[label Par-remote-async-call] .

crl <inSp>(O) || <O:C | ...,Pr:{L | call(A;E;Q;EL);SL},...> Cfg

=> <epsilon>(O) || <O:C | ...,Pr:{L | call(A;E;Q;EL);SL},...> Cfg

errorMsg("ERROR") if E=/="this" [label Par-Err-Call] .

substitution are extracted by the functions getM and getS, respectively. The
message is placed into the configuration and the substitution is applied to sp
using the app function. Method binding and the rules for executing the bound
code are specified by equations in the Creol interpreter. Since equations will be
applied before any other rewrite rules this ensures that the execution of the code
resulting from the call starts before any other invoc message can interfere.

In the Par-remote-async-call rule the object is in a state where the next
step in the executing process is an outgoing call and the specification starts
with a call out. The matchCall function tries to match the concrete values de-
rived from the object’s state against the variables in the label. The condition
noMismatch(Sub) blocks the conditional rule if no match is possible, otherwise
the outgoing call takes place and the substitution Sub is applied to the remain-
der of the specification. The last rule implements the Par-Err-Call rule. The
distinction between input and output specifications is enforced by different sub-
sorts: the variable inSp matches all specifications of incoming messages. When
the next step of the executing process is a call statement, then this leads to an
error, as expected.

Here we focus on the run-time behavior of specifications. Hence, we simply
assume well-formedness and don’t give the Maude formalization.

6 Conclusion

We have presented a formalization of the interface behavior of Creol together
with a behavioral interface specification language. We have formally described
how to use this specification language for black-box testing of asynchronously
communicating Creol components and we have presented our rewriting logic
implementation of the testing framework.

Executable Interface Specifications 337

Related work. Systematic testing is indispensable to assure quality of software
and systems (cf. [11,12,13,14,15], amongst others). [16] presents an approach to
integrate black-box and white-box testing for object-oriented programs. Equiva-
lence is based on the idea of observably equivalent terms and fundamental pairs
as test cases, but not in an asynchronous setting (and as in [17] [18] [19] [20]).
In the approach, pairs of (ground) terms are used for the test cases. Testing
for concurrent object-oriented programs based on synchronization sequences is
investigated in [21], using Petri nets and OBJ as foundation. Long in his thesis
[22] presents ConAn (“concurrency analyser”), which generates test drivers from
test scripts. The method allows to specify sequences of component method calls
and the order in which the calls should be issued. It can be seen as an extension
of the testing method for monitors from [23]. For scheduling the intended order,
an external clock is used, which is introduced for the purpose of testing, only. In
the context of C#, [24] presents model-based analysis and model-based testing,
where abstract models of object-oriented programs are tested. The approach,
however, does not target concurrent programs.

Even if not specifically targeting Creol, [25] pursues similar goals as this paper,
validating component interfaces specified in rewriting logic. In contrast to here,
the interface behavior is specified by first-order logic over traces, where from a
given predicate an assumption part and a guarantee part can be derived. Our
approach is more specific in that we schedule incoming calls to a component,
and test the output behavior.

In [26], the authors target Creol as language and investigate how different
schedulings of object activity restrict the behavior of a Creol object, thus lead-
ing to more specific test scenarios. The focus, however, is on the intra-object
scheduling, and the test purposes are given as assertions on the internal state
of the object. This is in contrast to the setting here, focusing on the interface
communication. The testing methodologies are likewise different. We execute
the behavioral trace specification directly in composition with the implemen-
tation being tested. They use a scheduling strategy and a model for an object
implementation to generate test cases which then are used afterwards to test for
compliance with an implemented Creol object.

Future work. We plan to extend the theory to components under test instead of
single objects. This leads to complex scheduling policies and complex specifica-
tions. Furthermore, there are several interesting features of the Creol language
which may be added, including first-class futures, promises, processor release
points, inheritance and dynamic class updates. For the specification language
we want to investigate how to extend it with assertion statements on labels,
which leads to scheduling policies sensitive to the values in the communication
labels. Natural further steps for the implementation are to extend it to include a
check for well-formedness according to Tab. 6, and also to modify the matching
algorithm to distinguish between fresh and already known names. The genera-
tion of Creol messages from specifications can also be made more sophisticated
to achieve better test coverage. It is also interesting to combine the approach we
describe here with model checking and abstraction. By using the built-in search

338 I. Grabe et al.

functionality of Maude, model checking of invariants can be done easily. We plan
to additionally use Maude’s LTL model checker with our testing framework.

Acknowledgement. We thank Andreas Grüner for giving insight to the field
of testing of (concurrent) object-oriented languages, the members of the PMA
group for valuable feedback and the anonymous referees for insightful and
constructive criticism.

References

1. Johnsen, E.B., Owe, O., Yu, I.C.: Creol: A type-safe object-oriented model for dis-
tributed concurrent systems. Theoretical Computer Science 365(1-2), 23–66 (2006)

2. de Roever, W.P., de Boer, F.S., Hannemann, U., Hooman, J., Lakhnech, Y., Poel,
M., Zwiers, J.: Concurrency Verification: Introduction to Compositional and Non-
compositional Proof Methods. Cambridge University Press, Cambridge (2001)

3. The Creol language, http://heim.ifi.uio.no/creol
4. Abadi, M., Cardelli, L.: A Theory of Objects. Monographs in Computer Science.

Springer, Heidelberg (1996)
5. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, part I/II. In-

formation and Computation 100, 1–77 (1992)
6. Grabe, I., Kyas, M., Steffen, M., Torjusen, A.B.: Executable interface specifications

for testing asynchronous Creol components. Technical Report 375, University of
Oslo, Dept. of Computer Science (July 2008)

7. Steffen, M.: Object-Connectivity and Observability for Class-Based, Object-
Oriented Languages. Habilitation thesis, Technische Faktultät der Christian-
Albrechts-Universität zu Kiel (July 2006)

8. Jeffrey, A., Rathke, J.: A fully abstract may testing semantics for concurrent ob-
jects. In: 17th Annual IEEE Symposium on Logic in Computer Science, pp. 101–
112. IEEE Computer Society Press, Los Alamitos (2002)

9. Meseguer, J.: Conditional rewriting as a unified model of concurrency. Theoretical
Computer Science 96, 73–155 (1992)

10. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: The Maude 2.0 system. In Nieuwenhuis, R., ed.: RTA 2003. In: Nieuwenhuis,
R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 76–87. Springer, Heidelberg (2003)

11. Myers, G.J.: The Art of Software-Testing. John Wiley & Sons, New York (1979)
12. Patton, R.: Software Testing, 2nd edn. SAMS (July 2005)
13. Gaudel, M.C.: Testing can be formal, too. In: Mosses, P.D., Schwartzbach, M.I.,

Nielsen, M. (eds.) CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915,
pp. 82–96. Springer, Heidelberg (1995)

14. Binder, R.V.: Testing Object-Oriented Systems, Models, Patterns, and Tools.
Addison-Wesley, Reading (2000)

15. Bertolino, A.: Software testing research: Achievements, challenges, dreams. In:
FOSE 2007: Future of Software Engineering, pp. 85–103. IEEE Computer Soci-
ety Press, Los Alamitos (2007)

16. Chen, H.Y., Tse, T.H., Chan, F.T., Chen, T.Y.: In black and white: An integrated
approach to class-level testing of object-oriented program. ACM Transactions of
Software Engineering and Methodology 7(3), 250–295 (1998)

http://heim.ifi.uio.no/creol

Executable Interface Specifications 339

17. Bernot, G., Gaudel, M.C., Marre, B.: Software testing based on formal specifica-
tions. IEEE Software Engineering Journal 6(6), 387–405 (1991)

18. Doong, R.K., Frankl, P.G.: The ASTOOT approach to testing object-oriented pro-
grams. ACM Transactions on Software Engineering and Methodology 3(2), 101–130
(1994)

19. Doong, R.K., Frankl, P.G.: Case studies on testing object-oriented programs. In:
TAV4: Proceedings of the symposium on Testing, analysis, and verification, pp.
165–177. ACM Press, New York (1991)

20. Frankl, P.G., Doong, R.K.: Tools for testing object-oriented programs. In: Pro-
ceedings of the 8th Pacific Northwest Conference on Software Quality, pp. 309–324
(1990)

21. Chen, H.Y., Sun, Y.X., Tse, T.H.: A strategy for selecting synchronization se-
quences to test concurrent object-oriented software. In: Proceedings of the 27th
International Computer Software and Application Conference (COMPSAC 2003).
IEEE Computer Society Press, Los Alamitos (2003)

22. Long, B.: Testing Concurrent Java Components. PhD thesis, University of Queens-
land (July 2005)

23. Brinch Hansen, P.: Reproducible testing of monitors. Software – Practice and Ex-
perience 8, 223–245 (1978)

24. Jacky, J., Veanes, M., Campbell, C., Schulte, W.: Model-Based Software Testing
and Analysis with C#. Cambridge University Press, Cambridge (2008)

25. Johnsen, E.B., Owe, O., Torjusen, A.B.: Validating behavioral component inter-
faces in rewriting logic. Fundamenta Informaticae 82(4), 341–359 (2008)

26. Schlatte, R., Aichernig, B., de Boer, F., Griesmayer, A., Johnsen, E.B.: Testing
concurrent objects with application-specific schedulers. In: Fitzgerald, J.S., Hax-
thausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 319–333.
Springer, Heidelberg (2008)

Compositional Strategy Mapping

Gregor Gössler

INRIA Grenoble – Rhône-Alpes, Pop Art team

Abstract. With the increasing complexity of embedded systems, cou-
pled with the need for faster time-to-market and high confidence in the
reliability of the product, design methods that ensure correctness by
construction are, when available, the solution of choice. When dealing
with open systems, the system behavior has to be considered in terms of
strategies. In this paper, we are interested in a design flow supporting the
refinement of strategies, rather than in computing a strategy by perform-
ing discrete controller synthesis on some given level of abstraction. We
consider a platform-based design process consisting of successive map-
ping steps. The goal of each step is to map a strategy constructed so far
onto a lower-level platform. The mapping is performed component-wise,
using an abstraction of the environment of each component. We provide
compositionality results ensuring that the refinement carries over to the
global strategy, and illustrate the approach with examples.

1 Introduction

With the increasing complexity of embedded systems, coupled with the need
for faster time-to-market and high confidence in the reliability of the product,
design methods that ensure correctness by construction are, when available, the
solution of choice. When dealing with reactive systems, which interact with their
environment, the behavior of the system to be designed has to be considered in
terms of strategies: can some desired behavior be enforced in spite of the —
potentially non cooperative — environment?

Computing a strategy satisfying some property is expensive, and although
modular and compositional discrete controller synthesis have been studied for
some decades, this remains a hard problem. In particular, progress properties
are notoriously more difficult to tackle compositionally than safety properties.
Therefore, most modular approaches focus on safety properties, e.g., [8,13], or
consider special cases. The interesting approach of [4], based on secure equilib-
ria, is limited to two components. More closely related to our work, [5] defines
a strong notion of modular refinement between “sociable” interface automata
— allowing for interaction through shared actions and variables —, such that
the refinement relation between a pair of components is independent of the en-
vironment. [3] defines refining contexts ensuring compositional refinement in a
framework of components communicating through streams.

In this paper, we are interested in a design flow supporting the refinement of
strategies, rather than in discrete controller synthesis performed on some given

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 340–354, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Compositional Strategy Mapping 341

level of abstraction. We consider a platform-based design process consisting of
successive mapping steps [12]. The goal of each step is to map a strategy σ
constructed so far, which guarantees a desired behavior on a system S, onto
a system S′. If the mapping succeeds, a refinement relation is automatically
constructed, showing how σ can be implemented using the primitives provided
by S′. The mapping is performed component-wise, using an abstraction of the
behavior of the environment of each component. We provide compositionality
results ensuring that the refinement carries over to the global strategy.

Mapping is particularly interesting in a heterogeneous framework supporting
different models of interaction and execution, and thus, different ways of imple-
menting a desired behavior. We therefore formulate the results in a subset of the
heterogeneous component framework BIP [10,2].

To our knowledge, this is the first work on compositional mapping of strate-
gies. In contrast to many approaches limited to safety, strategy refinement and
mapping support arbitrary strategies. We expect compositionally verifying re-
finement of a strategy ensuring some property to be less pessimistic than com-
positionally synthesizing a strategy ensuring the same property “from scratch”,
especially for properties other than safety.

The paper is organized as follows. Section 2 introduces the component frame-
work. Section 3 defines strategy refinement and mapping, and provides a set of
compositionality, correctness, and completeness results. In Section 4 we illustrate
the method with the distributed implementation of a centralized specification.
Section 5 concludes.

2 Component Model

In the following, we present a simplified version of the component model BIP
(behavior – interaction – priority) introduced in [10,1,2].

Given a relation R ⊆ X × Y , let dom(R) = {x ∈ X | ∃y ∈ Y . (x, y) ∈ R}.
For X ′ ⊆ X , let R(X ′) = {y ∈ Y | ∃x ∈ X ′ . (x, y) ∈ R}.

We consider action vocabularies A partitioned into controllable actions Ac and
uncontrollable actions Au. Uncontrollable actions are used to represent input
events that cannot be triggered nor prevented by the modeled system.

Definition 1 (Interaction model). An interaction α over an action vocabu-
lary (or set of ports) A is a subset of A. An interaction model over A is a set
IC of interactions such that

⋃
α∈IC α = A.

An interaction is a set of component actions taking place simultaneously. For the
sake of simplicity, we suppose that for any interaction α, α∩Au �= ∅ =⇒ |α| = 1,
that is, uncontrollable actions can only interleave. According to the presence of
uncontrollable actions, we partition IC into ICc and ICu.

Definition 2 (Behavior). A behavior is a tuple B = (Q, IC,→) with Q a set
of states, IC an interaction model, and → ⊆ Q×IC×Q a deterministic transition
relation (that is, q α→ q′ ∧ q α→ q′′ =⇒ q′ = q′′).

342 G. Gössler

Given a behavior B = (Q, IC,→), α ∈ IC, and q ∈ Q, let enabledB(α)(q) ⇐⇒
∃q′ ∈ Q . q α→ q′.

Definition 3 (Predecessors). Given a behavior B = (Q, IC,→) and a set of
states Q′ ⊆ Q, the predecessors of Q′ by interaction α is the predicate preα(Q′) =
{q ∈ Q | ∃q′ ∈ Q′ . q

α→ q′}.

We define two operations on behaviors: restriction and composition.
Given a behavior Bk with vocabulary Ak and an interaction α, let α[k] =

α ∩Ak, and IC[k] = {α[k] | α ∈ IC} \ {∅}.

Definition 4 (Composition). Given an interaction model IC and a set of
behaviors Bi = (Qi, IC[i],→i), i = 1, ..., n, with disjoint action vocabularies, let
‖IC{Bi}i = (Q, IC,→) be their composition such that Q = Q1 × ... × Qn and

q
α→ q′ if α ∈ IC, and for any i = 1, ..., n, qi

α[i]→ i q
′
i if α[i] ∈ IC[i], and q′i = qi if

α[i] = ∅.

This is the standard synchronized product with interactions IC . A higher-level
definition of composition, allowing for composition of interaction models, can be
found in [10].

Definition 5 (Execution model). An execution model over B = (Q, IC,→)
is a tuple of predicates U = (Vα)α∈ICc over Q. The restriction of B with U is
the behavior B/U = (Q, IC,→′) where →′= {(q, α, q′) ∈→| Vα(q) ∨ α ∈ ICu}.

In this simplified presentation we call component a behavior, and system a top-
level component. In a composition ‖IC{Bi}i, we note an interaction α of some
component Bk as Bk.α, or α if there is no ambiguity.

Definition 6 (Interface interaction). Given an interactionα anda component
Bk with vocabulary Ak, let IFk(α) = α \Ak be the interface interaction of α.

3 Strategy Refinement

We first introduce some notions used to reason about strategies.

Definition 7 (Unfolding). An unfolding of a behavior B = (QB, IC,→B) is a
tuple σ = (Q, IC,→, l, Q0) such that (Q, IC,→) is a behavior, l : Q → QB is a
total labeling function such that ∀q, q′ ∈ Q ∀α ∈ IC . q α→ q′ =⇒ l(q) α→B l(q′),
and Q0 ⊆ Q is a set of initial states. By abuse of notation, we identify B with
its trivial unfolding (QB, IC,→B, idQB , QB).

Example 1. Consider the system mutex = ‖IC{P1, P2, S} consisting of the three
components shown in Fig. 1 with IC = {a1, p1|p, v1|v, a2, p2|p, v2|v}. Two pro-
cesses contend for the use of a shared resource, with a semaphore ensuring mutual
exclusion. All actions are controllable.

Fig. 2 shows an unfolding σ ofmutex modeling a first-come-first-served policy
for fair resource use. σ has two states labeled with the same product state w1w2

Compositional Strategy Mapping 343

s1

u1

s2

u2

free

busy

w2v pw1v1 v2

a1

p1

a2

p2

P1 S P2

Fig. 1. Two components P1 and P2 coordinated by a semaphore S

v2|v

a1 p1|p

a1

a1

s1s2

a2

s1w2

p2|p

s1u2

p2|p

w1w2

a2

w1s2

w1w2

w1u2

v1|v

p1|p

v1|v
v2|v

a2

u1s2

u1w2

Fig. 2. Unfolding σ (the semaphore states are omitted)

where both components are waiting for access to the critical section. Depend-
ing on the order in which the access has been requested (a1; a2 or a2; a1), the
component having made the request first is granted access.

We extend the definitions of composition and restriction to unfoldings.

Definition 8 (Composition). Given an interaction model IC and unfoldings
σi = (Qi, IC[i],→i, li, Q

0
i), i = 1, ..., n, let ‖IC{σi}i = (Q, IC,→, l, Q0) where

– Q = Q1 × ...×Qn, Q0 = Q0
1 × ...×Q0

n;

– q
α→ q′ if α ∈ IC and for any i = 1, ..., n, either qi

α[i]→ i q
′
i, or α[i] = ∅ and

q′i = qi.
– l(q1, ..., qn) = (l1(q1), ..., ln(qn)).

Definition 9 (Restriction). The restriction of an unfolding σ = (Q, IC,→,
l, Q0) with U = (Va)a∈ICc , is the unfolding σ/U = (Q, IC,→′, l, Q0) where →′=
{(q, α, q′) ∈→| α ∈ ICu ∨ Vα(q)}.

344 G. Gössler

Definition 10 (Strategy). A strategy σ over a behavior B = (QB, IC,→B)
is an unfolding σ = (Q, IC,→, l, Q0) of B that is closed under uncontrollable
transitions, that is, if q ∈ Q and ∃α ∈ ICu ∃y . l(q) α→B y, then ∃q′ ∈ Q s.t.
q

α→ q′ and l(q′) = y.

Example 2. The unfolding σ of mutex from Fig. 2 is a strategy.

Definition 11 (Projection). Given an unfolding σ = (Q, IC,→, l, Q0) over
‖IC{Ci}i/U , let ≈k ⊆ Q×Q be the greatest fixpoint of

≈k =
{
(p, q) | ∀α ∈ IC . α[k] �= ∅ =⇒(

∀p′ ∈ Q .
(
p

T∗α→ p′ =⇒ ∃q′ . (q T∗α→ q′ ∧ p′ ≈k q
′)
)
∧

∀q′ ∈ Q .
(
q

T∗α→ q′ =⇒ ∃p′ . (p T∗α→ p′ ∧ p′ ≈k q
′)
))}

where T = {α ∈ IC | α[k] = ∅}. The projectionπk(σ) of σ on Ck = (Qk, IC[k],
→k) is the unfolding (Q′, IC[k],→′, l′, Q′

0) where (Q′, IC,→′, Q′
0) is the reduction

of (Q, IC,→, Q0) with respect to the weak bisimulation equivalence ≈k [7]. For
q ∈ Q we write [q]k for the state of πk(σ) representing the equivalence class of
q. We put l′([q]k) = qk if l(q) = (q1, ..., qn).

Example 3. The projection σi = πi(σ) of σ on each of the components P1, P2,
and S, of Example 1 is equal to the trivial unfolding of the components.

Given a system B = ‖IC{Bi}i∈K/U = (Q, IC,→), an unfolding σ = (Qσ, IC,
→σ, l, Q

0
σ) over B, α ∈ IC, and q ∈ Qσ, let enabledσ(α)(q) ⇐⇒ ∃q′ ∈ Qσ . q

α→
q′. For k ∈ K, let disabledk,σ(α) be a function associating with each interaction
α a predicate over Q×Qσ characterizing the states in which α is locally enabled
in all involved components except for k, but disabled in σ:

disabledk,σ(α) = ¬enabledσ(α) ∧
∧
i�=k

α[i] �=∅

enabledBi(α[i])

We first define (non-compositional) strategy refinement.

Definition 12. Given behaviors B1 = (Q1, IC,→1) and B2 = (Q2, IC ′,→2),
unfoldings σ = (Q, IC,→, l, Q0) and σ′ = (Q′, IC ′,→′, l′, Q′

0) over B1 and B2,
respectively, and a relation � ⊆ Q2 ×Q1, we define ≤B1,B2 (σ, σ′) ⊆ Q′ ×Q as
the greatest fixpoint of

≺ = � ∩
{
(y, x) | ∀α ∈ ICc s.t. x

α→ x′

∃m ≥ 0 ∃b0, ..., bm ∈ (IC ′)c ∃y1, ..., ym, y
′ ∈ Q′ .

y0 = y
b0→ ′ ...

bm−1→ ′ ym
bm→ ′ y′ ∧ ∀i = 1, ...,m . yi ≺ x ∧ y′ ≺ x′ (1)

∧ ∀β ∈ (IC ′)u . y
β→2 y

′′ =⇒(
y′′ ≺ x ∨ ∃α ∈ ICu . x

α→ x′ ∧ y′′ ≺ x′
)}

(2)

σ′ refines σ if Q0 ⊆ ≤B1,B2 (σ, σ′)(Q′
0).

Compositional Strategy Mapping 345

Intuitively, line (1) defines a simulation relation: from any pair of states x,
y of the local strategies with y ≺ x, whenever σ can make a transition x α→
x′, σ′ can make a sequence of transitions such that both target states again
satisfy the relation, and all intermediate states visited by σ′ are related with
x. Line (2) ensures refinement to be contravariant: simulation is preserved by
all uncontrollable transitions of σ′. Unlike the usual definition of refinement
with respect to safety properties, an unfolding σ′ refines σ if it simulates σ (the
underlying behaviors may be incomparable). This ensures that the behavior
offered by σ — which may be used when the component B1 is deployed — is
also provided by σ′. The refinement relation is an alternating simulation [6]. A
weaker definition of refinement such as (alternating) trace inclusion would not
be sufficient to ensure compositionality in this framework.

3.1 Stability

The following definition adds sufficient conditions to Definition 12, ensuring re-
finement between two unfoldings σ and σ′ to be compositional. Intuitively, the
moves of σ′ are required to be enabled in the global system env′ whenever the
corresponding move of σ is enabled in env, and the effect of σ′ on env′ must not
be not more restrictive than the effect of σ on env. A more detailed explanation
is given after the definition.

Definition 13 (Strategy refinement). Given env =
(
‖IC{Ci}i

)
/U , env′ =(

‖IC ′{C′
i}i

)
/U ′ with state spaces Qenv and Qenv′ , respectively, an unfolding

σG = (QG, IC,→G, lG, Q
0
G) over env with projection σ = (Q, IC[k],→, l, Q0)

over Ck = (Qk, IC[k],→k), an unfolding σ′ = (Q′, IC ′[k],→′, l′, Q′
0) over C′

k =
(Q′

k, IC ′[k],→′
k), and a predicate inv over Qenv ×QG ×Qenv′ called refinement

invariant. We define ≤inv
env,env′ (σ, σ′) ⊆ Q′ ×Q as the greatest fixpoint of

≺ =
{
(y, x) ∈ Q′ ×Q | ∀α ∈ ICc s.t. x

α[k]→ x′

∃m ≥ 0 ∃b0, ..., bm−1 ∈ (IC ′)c ∃β ∈ (IC ′)c ∪ {∅} ∃y1, ..., ym, y
′ ∈ Q′ .

y0 = y
b0→ ′ ...

bm−1→ ′ ym
bm=β[k]→ ′ y′ ∧ IFk(α) = IFk(β) ∧ y′ ≺ x′∧ (3)

∀i = 0, ...,m .
(
inv ∧ enabledσG(α) =⇒

enabledenv′(bi)
)
[l(x)/Qk, l

′(yi)/Q′
k]∧ (4)

∀i = 1, ...,m . yi ≺ x ∧ (y � x =⇒ yi � x)∧ (5)(
ym � x =⇒ preα ◦ preβ(y′ � x′)

)
(6)

∧ ∀β ∈ (IC ′[k])u .
(
y

β→k
′ y′′ =⇒

(
y′′ ≺ x ∧ (y � x =⇒ y′′ � x)

∨ ∃α ∈ IC[k]u . x α→ x′ ∧ y′′ ≺ x′ ∧ (y � x =⇒ y′′ � x′)
))}

(7)

where we suppose w.l.o.g. that ∀q ∈ Q′ . q
∅→ ′ q, and the predicate � is defined

such that for any x ∈ Qk, y ∈ Q′
k,

y � x ⇐⇒ inv∧
∧

γ∈ICc\IC[k]

(
enabledσG(γ)[l(x)/Qk] =⇒ ¬disabledk,env′(γ)[l′(y)/Q′

k]
)

346 G. Gössler

σ′ refines σ under inv, written σ′ +inv
env,env′ σ, if (1) Q0 ⊆ ≤ (Q′

0), and (2)
∀qG ∈ Q0

G ∀q ∈ Q0 ∀q′ ∈ Q′ . (q′ ≤ q =⇒ � [lG(qG)/Qenv, qG/QG, l′(q′)/Q′
k] =

true), where ≤=≤inv
env,env′ (σ, σ′).

σ′ refines σ, written σ′ +env,env′ σ, if σ′ +inv
env,env′ σ for some inv.

The definition of ≺ deserves some explanation. Line (3) states that for each
transition α of σ, σ′ can make a sequence of internal transitions, followed by a
transition β such that IF (α) = IF (β), that is, both interactions are not distin-
guishable by other components than k. The target states must satisfy ≺ again.
Line (4) requires that sequence of transitions to be enabled from y whenever α is
enabled form x. Line (5) specifies that all intermediate states must refine x. The
predicate � (“less restrictive than”) over QG × Qenv × Qenv′ characterizes the
states for which the behavior of other components than k is not more restricted
in env′ than in σG, both due to interactions that are not offered by k, or due to
the execution model. In the sequel we will write �Ck

whenever an ambiguity may
arise. The implication in line (5) ensures that � is invariant under the internal
moves of σ′. Similarly, line (6) requires invariance of � under the pair of transi-
tions α and β (both transitions act on disjoint state spaces, therefore preα and
preβ commute). Line (7) ensures contravariance: each uncontrollable transition
of env′ either preserves ≺ and �, or is matched by an uncontrollable transition
in σ such that the target states satisfy again ≺ while ensuring invariance of �.

The relation ≤ depends on env and env′. This is because strategy refinement
takes into account an abstraction of the environment, even if the actual simu-
lation relation is local to a pair of components. The abstraction distinguishes
states according to the interactions they disable; transitions are distinguished
according to the set of interactions they can participate in.

The global unfolding σG allows to use information about the desired global
behavior, if available, to make the definitions of enabled and � less pessimistic.
Whenever the global strategy σG is not explicitly specified, we conservatively
assume σG =

(
‖IC({σ} ∪ {Ci}i�=k)

)
/U . We drop the subscript env, env′ when

both systems are clear from the context.
The role of the refinement invariant is to provide information about related

states in both systems env and env′, e.g., to require equivalence of the states of
two observers. In the simplest case, inv = true. Condition (1) in the definition
of + ensures that every initial state of σ is simulated by some initial state of σ′;
condition (2) ensures that � is satisfied for all initial states of σG.

Example 4. Consider the system S = ‖IC{initiator, bus, target}/U composed
of the three components shown in Fig. 3, under the interaction model IC =
{arrive, !req|?req, timeout, !ack|?ack, !msg|?msg, go, done} and the restriction U =
(Vα)α∈IC, where Varrive = ¬target.exec, Vgo = ¬initiator.exec, and Vα = true
otherwise. U thus ensures mutual exclusion between the gray component states,
that is, invariance of the predicate ¬(initiator.exec ∧ target.exec). All actions
except for timeout are controllable. Let us check whether (the trivial unfold-
ings of) the three components in S are refined by (the trivial unfoldings of)

Compositional Strategy Mapping 347

the components of Fig. 4 in S′ = ‖IC ′{initiator′, bus′, target′}/U with IC ′ =
(IC ∪ {lose}) \ {timeout}. We compute �initiator=

= inv ∧
(
enabledinitiator(target.go) =⇒ ¬disabledinitiator′(target′.go)

)
∧
(
enabledinitiator(!req|?req) =⇒ ¬disabledinitiator′(!req|?req)

)
∧ ...

= inv ∧
(
target.waiting ∧ ¬initiator.exec =⇒ ¬(target′.waiting ∧ initiator′.exec)

)
∧
(
(initiator.exec ∨ initiator.retry) ∧ bus.idle =⇒

initiator′.exec ∨ bus′.busy′ ∨ bus′.done′
)

and similarly for the two other pairs, and fix the refinement invariant to express
that for any pair of initial and refining component, states of the same name
are intended to be equivalent: inv = (initiator.idle ⇐⇒ initiator′.idle) ∧ We
compute the relation ≤inv

S,S′ for each pair of components with the result shown
in Table 1. In particular, the idle state of components initiator, bus, and target
is refined by the idle state of initiator’, bus’, and target’, respectively. Component
target’ refines target in spite of the added uncontrollable transition lose, since
the target state idle of the latter refines state waiting of component target.

Assuming {idle} with idle=(idle,idle,idle) as the set of initial states of the
strategy σG of S, we have �initiator [idle/QS, initiator′.idle/Qinitiator′] = true. It

initiator

retry

exec

!req

idle?ack

arrive

!req

bus target

idle

waiting

exec

?msg

idle

?req

!msg

!ack done

done

?ack

busy

timeout
waiting

waiting’

go

Fig. 3. Component behaviors

exec

!req

idle?ack

arrive

?req ?req

?req

!msg !msg

idle

waiting

exec

?msglose
done

!ack!ack

waiting

idle busy busy’

done done’

initiator’ bus’ target’

go

Fig. 4. Refining components

348 G. Gössler

Table 1. Relations ≤inv
S,S′ (initiator, initiator′), ≤inv

S,S′ (bus, bus′), ≤inv
S,S′ (target, target′)

initiator idle exec waiting retry waiting’

initiator’ idle exec waiting - waiting

target idle waiting exec
target’ idle idle, waiting idle, exec

bus idle busy done

bus’ idle, busy busy, busy’ done, done’

follows that initiator′ +inv
S,S′ initiator. In the same way, we obtain bus′ +inv

S,S′ bus

and target′ +inv
S,S′ target.

Strategy refinement is compositional:

Theorem 1 (Strategy refinement). Let env =
(
‖IC{Ci}i

)
/U and env′ =(

‖IC ′{C′
i}i

)
/U ′. Given unfoldings σi over Ci, σ′i over C′

i, i = 1, ..., n, and σG

over env, if ∀i . σ′i +inv σi with respect to σG then σ′ +inv σG, where σ′ =
‖IC ′{σ′i}i/U

′.

That is, the composition of locally refining strategies is a refining strategy.

Proof (sketch). Let ≤i=≤inv
env,env′ (σi, σ

′
i), σG = (Q, IC,→, l, Q0), and σ′ =

(Q′, IC ′,→′, l′, Q′
0). By hypothesis, ∀k . σ′k + σk. Assume that for some states

x = (x1, ..., xn) ∈ Q and y = (y1, ..., yn) ∈ Q′, ∀i . yi ≤i xi. For α ∈ IC, let
owners(α) = {k | α[k] �= ∅}.

– If x α→ x′ ∈ σG, then by refinement between the local strategies there are
b0, ..., bm−1 and β ∈ (IC ′)c ∪{∅} with owners(α) = owners(β) enabled at y

in σ′ such that yi
b0→ ...

β[i]→ y′i ∈ σ′i for β[i] �= ∅ and yi = y′i for β[i] = ∅, and
y′i ≤i x

′
i.

– By Definition 13, if yi
u→ y′i then y′i ≤i xi, or xi

u→ x′i and y′i ≤i x
′
i.

In both cases, �i is preserved for i = 1, ..., n by definition of ≤.
By induction it follows that y ≤ x, where ≤=≤inv

env,env′ (σG, σ
′). By hypoth-

esis, for any qi ∈ Q0
i there exists q′i ∈ (Q0

i)
′ such that q′i ≤ qi, i = 1, ..., n. It

follows that Q0 ⊆≤ (Q′
0). On the global level, �env= inv, and by hypothesis we

have inv[lG(q0G)/Qenv, q
0
G/QG, l

′(q′)/Q′] = true for any q0G ∈ Q0
G, q0 ∈ Q0, and

q′ ∈ Q′ with q′ ≤ q0. It follows that σ′ + σG.

Remark 1. Definition 13 and Theorem 1 assume one-to-one component refine-
ment, in order to keep the syntactic simplicity of one-to-one correspondence. It
is still possible to reason about refinement where components are removed or
added, by representing a component Ck that exists only in S (resp. S′), by a
“neutral” component C̄k in S′ (resp. S) with the same controllable interactions
IC[k]c that are always enabled.

Compositional Strategy Mapping 349

Definition 14 (Stability). An unfolding p is stable in S if there exists a strat-
egy σ such that σ + p.

Corollary 1 (Stability). Given an unfolding p over ‖IC{Ci}i/U and a refine-
ment invariant inv, if for each component Ck, pk = πk(p) is stable — say,
σk +inv pk for some strategy σk — then p is stable, and ‖IC{σi}i/U +inv p.

Proof. By Theorem 1, ‖IC{σi}i/U +inv ‖IC{pi}i/U . Clearly, p is a restriction of
‖IC{pi}i/U . The claim ‖IC{σi}i/U +inv p follows from the fact that restricting
the mapped unfolding strengthens the premises of the implications in Defini-
tion 13.

Example 5. Coming back to Example 4, suppose that we have found the unfold-
ing σ shown in Fig. 5 cycling through the initial state (idle,idle,idle) of S. Notice
that this unfolding is not a strategy, as it does not contain the uncontrollable
timeout transition enabled in initiator.waiting. We want to find a strategy σ′ over
S′ = ‖IC ′{initiator′, bus′, target′}/U .

We will use Corollary 1 to construct a global strategy σ′ refining σ. We com-
pute the local projections σi of σ on the components, as shown in Fig. 6 and
check their refinement by the strategies given by the trivial unfoldings of the
components of S′. It is not difficult to show that σ′i +inv

S,S′ σi for all three com-
ponents. According to Corollary 1, the trivial unfolding of S′ refines σ.

(i,i,i) (e,i,i) (w,b,i) (w,d,w) (i,i,w) (i,i,e)

done

req msgarrive ack exec

Fig. 5. Unfolding σ (where req =!req|?req etc.)

idle exec waiting
!reqarrive

?ack

idle
?req

busy done
!msg

!ack

idle
?msg

waiting
exec

exec

done

Fig. 6. Unfoldings σi = πi(σ)

local

global

component Ci

πi

unfolding σi

unfolding σ

system S

component C ′
i

system S′

πi

unfolding σ′i

unfolding σ′
‖

component C ′′
i

system S′′

strategy σ′′i

strategy σ′′

2

2

Theorem 1

2

2

Corollary 1

Fig. 7. Design flow using strategy refinement

350 G. Gössler

The scheme of Fig. 7 summarizes a possible design flow supported by the results
above.

3.2 Strategy Mapping

Theorem 1 provides a means to check for refinement between a pair of unfold-
ings. A strategy can be automatically and compositionally mapped on another
system. The following definition and proposition allow to map a strategy σ on
an unfolding σ′, that is, construct the maximal sub-strategy σ′′ ⊆ σ′ effectively
refining σ.

Definition 15 (Strategy mapping). Let env =
(
‖IC{Ci}i

)
/U , env′ =(

‖IC ′{C′
i}i

)
/U ′ with state spaces Qenv and Qenv′ , respectively, an unfolding σG

over env with projection σk = (Q, IC[k],→, l, Q0) over Ck = (Qk, IC[k],→k),
a component C′

k = (Q′
k, IC

′[k],→′
k), an unfolding σ′k = (Q′, IC ′[k],→′, l′, Q′

0)
over C′

k, and a refinement invariant inv over Qenv ×QG ×Qenv′ . The mapping
of σk on σ′k, written σk ↘inv σ

′
k, is the unfolding σ′′k =

(
dom(≤), IC ′[k],→′′,

l′, Q′
0 ∩ dom(≤)

)
where ≤=≤inv

env,env′ (σk, σ
′
k) and

→′′ =
{
(q0, b, q1) ∈→′ | b ∈ (IC ′)u ∨ ∃m ≥ 0 ∃b1, ..., bm−1 ∈ (IC ′)c ∃α ∈ ICc

∃β ∈ (IC ′)c ∃q2, ..., qm+1 ∈ Q′ ∃q̄0 ∈ ∩i=0,...,m ≤ (qi) ∃ ¯qm+1 ∈≤ (qm+1) .

q0
b0=b→ ′ ...

bm=β[k]→ ′ qm+1 ∧ q̄0
α[k]→ ¯qm+1 ∧ β[k] �= ∅ ∧ IFk(α) = IFk(β)∧

∀i = 0, ...,m .
((
inv ∧ enabledσG(α) =⇒

enabledenv′ (bi)
)
[l(q̄0)/Qk, l

′(qi)/Q′
k] ∧ (q0 � q̄0 =⇒ qi � q̄0)

)
∧(

qm � q̄0 =⇒ preα ◦ preβ(qm+1 � ¯qm+1)
)}

Proposition 1. If σ′k is a strategy then σk ↘inv σ
′
k (as defined in Definition 15)

is a strategy.

Proof. Since σ′k is a strategy, it is closed under uncontrollable actions. By Defi-
nition 15, all uncontrollable actions of the mapping target are preserved in the
mapped unfolding.

Mapping an unfolding σ on a target unfolding σ′, rather than directly on the
underlying behavior B, allows to improve precision, as mapped states may be
distinguished in a mapping on σ′ that may be confused when mapping on B.

Example 6. In Example 5, we verified refinement between the unfoldings σi and
strategies σ′i, where the latter were given. For components initiator and target,
the same strategies can be obtained as the mappings σinitiator ↘inv initiator′

and σtarget ↘inv target′, respectively. For component bus, the mapped strategy
σbus ↘inv bus′ is the trivial unfolding of bus’ from which the transition ?req from
state done is removed.

Proposition 2 (Correctness). Let env =
(
‖IC{Ci}i

)
/U , env′ =

(
‖IC ′{C′

i}i

)
/

U ′, σi = (Qi, IC[i],→i, li, Q
0
i) be an unfolding on Ci, i = 1, ..., n, and inv be a

refinement invariant. If ∀i . C′
i +inv

env,env′ σi, then

Compositional Strategy Mapping 351

– ∀k . σk ↘inv C
′
k +inv σk, and

– ‖IC ′{σi ↘inv C
′
i}i/U

′ +inv ‖IC{σi}i/U .

Proposition 3 (Completeness). If (σ ↘inv C′) �+inv σ, then there is no
strategy σ′ over C′ refining σ under inv.

Proof (sketch). Suppose on the contrary that such a σ′ exists. Let σ = (Q, IC,→,
l, Q0), C′ = (Q′, IC ′,→′), σ′ = (Q′′, IC ′,→′′, Q′′

0), ≤0=≤inv
env,env′ (σ,C′), and

≤1=≤inv
env,env′ (σ, σ′). There is a state q0 ∈ Q0 such that q0 ∈≤1 (Q′′

0)\ ≤0 (Q′)
with some q̄0 ≤1 q0. By definition of ≤·, there is some state q reachable from q0
in σ and q̄ reachable from q̄0 in σ′ such that q̄ ≤1 q and

– either, some controllable successor simulating a state of σ exists in σ′ but not
in C′. Formally, ∃q′ ∈ Q ∃α ∈ ICc . q

α→ q′, and ∃q̄′ ∈ Q′′ ∃β ∈ (IC ′)c . q̄
β→

′′ q̄′ with q̄′ ≤1 q
′. Then, l(q̄)

β→ ′ l(q̄′) (since σ′ is an unfolding over C′), in
contradiction to the hypothesis;

– or an uncontrollable successor of l(q̄) not refining q or a successor, exists in

C′ but not in σ′. Formally, ∃y ∈ Q′ ∃β ∈ (IC ′)u . l(q̄)
β→ ′ y. Then, ∃q̄′ ∈

Q′′ . q̄
β→ ′′ q̄′ with l(q̄′) = y (since σ′ is a strategy, and C′ is deterministic),

which is again in contradiction to the hypothesis.

The claim follows.

4 Application: Distributed Algorithms

An interesting application domain of strategy mapping is to solve the follow-
ing problem: how to deploy a centralized component-based system, whose com-
ponents are coordinated through synchronization primitives, on a distributed
platform where only lower-level communication primitives are available? We il-
lustrate the principle with the mapping of a simple strategy ensuring mutual
exclusion and fairness, on Kessels’ distributed mutual exclusion algorithm [11].

Consider the centralized system mutex = ‖IC{P1, P2, S} of Fig. 1 with IC =
{a1, p1|p, v1|v, a2, p2|p, v2|v} and the first-come-first-served strategy σ of Fig. 2.
We call ww1 (resp. ww2) the state labeled with w1w2 reached with a1; a2 (resp.
a2; a1) in which P1 (resp. P2) is served first. All other states of σ are uniquely
identified by their label. Let σP1 , σP2 , and σS be the projections of σ on P1, P2,
and S, respectively. We want to map strategy σ on the target platform given by
two components implementing Kessels’ mutual exclusion algorithm [11]:

K1: K2:

req[1] = 1; req[2] = 1;

turn[1] = turn[2]; turn[2] = !turn[2];

await (!req[2] or turn[1]!=turn[2]); await (!req[1] or turn[1]=turn[2]);

// critical section // critical section

req[1] = 0; req[2] = 0;

352 G. Gössler

According to Remark 1, we model Kessels’ algorithm with two components and
one dummy component obs =

(
{q⊥}, {p, v},

{
(q⊥, {p}, q⊥), (q⊥, {v}, q⊥)

})
“re-

fining” the semaphore. obs has only one state and is always ready to make a p
or v action. We will use this component as an observer to identify transitions in
which one of the components K1, K2 enters or leaves its critical section.

Kessels’ algorithm is modeled as component model ks = ‖IC ′{K1,K2, obs}/U
withK1 andK2 as shown in Fig. 8, IC ′ = {t1, t′1, a1, p1|p, v1|v, t2, t′2a2, p2|p, v2|v}
and U = (Vα)α∈IC defined as follows:

α Vα

t1 turn2
t′1 ¬turn2
p1|p ¬req2 ∨ turn1 �= turn2
t2 ¬turn1
t′2 turn1
p2|p ¬req1 ∨ turn2 = turn1

and Vα = true for all other α ∈ IC ′, where reqi = l2i ∨ l3i ∨ l4i ∨ l6i ∨ l7i ∨ l8i , and
turni = l5i ∨ l6i ∨ l7i ∨ l8i . While the BIP framework supports variable assignment
between components [1,9], the component states are explicit in the simplified
presentation adopted here. We therefore represent the reading with a pair of
transitions ti and t′i and the execution model shown above.

Let us now map strategy σ on ks, that is, implement mutual exclusion with
the fairness constraint modeled by σ, in a distributed setting where the compo-
nents K1, K2 communicate only through shared variables. According to Kessels’
algorithm where in case of conflict, K1 is given priority over K2 if and only if
turn1 �= turn2, we fix the refinement invariant

inv = (ww1 =⇒ turn1 �= turn2) ∧ (ww2 =⇒ turn1 = turn2)

and compute

�P1= inv ∧
(
enabledP1,σ(a2) =⇒ ¬disabledK1,ks(a2)

)
∧(

enabledP1,σ(p2|p) =⇒ ¬disabledK1,ks(p2|p)
)
∧(

enabledP1,σ(v2|v) =⇒ ¬disabledK1,ks(v2|v)
)

= inv ∧
(
¬w2 ∨ ww1 ∨ u1 ∨ ¬(l32 ∨ l72) ∨ ¬req1 ∨ turn1 = turn2

)
for component P1/K1, and similarly for components P2/K2 and S/obs. The
refinement relation ≤=≤inv

mutex,ks (σP1 ,K1) is shown in Table 4.
In order to prove refinement of P1 by K1, we have to show according to

Definition 13 that (1) the initial state s1 of P1 is refined by some initial state
of K1 (all of whose states are by definition initial states in its trivial unfolding):
this condition is obviously satisfied; and (2) for any state q′ among the states
l11, l

2
1, l

5
1, l

6
1 simulating the initial state s1 of the projection of σ, we have �P1

[(s1, s2, idle)/Qmutex, q
′/QK1] = true). This condition is satisfied, too. It follows

that K1 +inv
mutex,ks πP1(σ). Similarly, it can be shown that K2 +inv

mutex,ks πP2(σ)

Compositional Strategy Mapping 353

t′i

ti

t′i
ti pi

piai

ai

l2i l3i l4il1i

l8il7il6il5i

vi

vi

Fig. 8. Behavior of component Ki

Table 2. ≺ after 1 iteration and greatest fixpoint ≤inv
mutex,ks (σP1 , K1) of ≺

l11 l21 l31 l41 l51 l61 l71 l81

s1 • • - - • • - -
w1 • • • - • • • -
u1 - - - • - - - •

and obs +inv
mutex,ks πS(σ). The mappings σK1 := σP1 ↘inv K1, σK2 := σP2 ↘inv

K2, and σobs := σS ↘inv obs are equal to the target components K1, K2, and
obs, that is, their full behavior of the target components is used to implement
σ. With Theorem 1, global refinement, that is, ks +inv σ, follows.

In this example, we have mapped σ on a system whose behavior is very close
to that of σ. This does not need to be the case, however, as long as the available
behavior of the target platform is “expressive enough” to refine σ.

5 Conclusion

We have presented an approach to compositionally cope with strategies, by way
of refinement and mapping, in a platform-based design process consisting of
successive mapping steps. The latter are performed component-wise; composi-
tionality results ensure that the refinement carries over to the global strategy.
The results are formulated in a subset of the heterogeneous component frame-
work BIP. We intend to implement them in the tool Prometheus [9], and apply
the approach to models of highly concurrent systems of loosely interacting com-
ponents, such as sensor networks and genetic networks.

This work opens several interesting research directions. We are currently
studying the application of the results presented here to the special case of
reach strategies which generalize the notion of acyclic paths in closed systems,
to strategies ensuring reachability properties.

A rigorous design flow which allows to separately refine components, is cru-
cial to cope with the fast growing complexity of embedded systems. The design
flow outlined in Fig. 7 needs to be further developed to be usable in real life:

354 G. Gössler

for instance, it is current practice to refine different components with a com-
mon implementation (shared refinement), or to map a component on a set of
lower-level components, which is required for co-design. Another direction worth
further study is the application to distributed fault-tolerant implementation of
component-based systems.

References

1. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: Proc. SEFM 2006 (invited paper), pp. 3–12. IEEE, Los Alamitos (2006)

2. Bliudze, S., Sifakis, J.: The algebra of connectors — structuring interaction in BIP.
In: Proc. EMSOFT 2007, pp. 11–20. ACM, New York (2007)

3. Broy, M.: Compositional refinement of interactive systems. J. ACM 44(6), 850–891
(1997)

4. Chatterjee, K., Henzinger, T.: Assume-guarantee synthesis. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 261–275. Springer, Heidel-
berg (2007)

5. de Alfaro, L., Dias da Silva, L., Faella, M., Legay, A., Roy, P., Sorea, M.: Sociable
interfaces. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 81–
105. Springer, Heidelberg (2005)

6. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proc. 9th Annual Sympo-
sium on Foundations of Software Engineering (FSE), pp. 109–120. ACM Press,
New York (2001)

7. Fernandez, J.-C., Mounier, L.: “On the Fly” verification of behavioural equiva-
lences and preorders. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575.
Springer, Heidelberg (1992)

8. Gaudin, B., Marchand, H.: An efficient modular method for the control of concur-
rent discrete event systems: A language-based approach. Discrete Event Dynamic
System 17(2), 179–209 (2007)

9. Gössler, G.: Component-based design of heterogeneous reactive systems in
prometheus. Research Report 6057, INRIA (2006)

10. Gössler, G., Sifakis, J.: Composition for component-based modeling. Science of
Computer Programming 55(1-3), 161–183 (2005)

11. Kessels, J.L.W.: Arbitration without common modifiable variables. Acta Informat-
ica 17(2), 135–141 (1982)

12. Keutzer, K., Malik, S., Newton, A.R., Rabaey, J.M., Sangiovanni-Vincentelli, A.:
System level design: Orthogonalization of concerns and platform-based design.
IEEE Trans. on Computer-Aided Design 19(12) (2000)

13. Wonham, W.M., Ramadge, P.J.: Modular supervisory control of discrete event
systems. Mathematics of Control Signals and Systems 1(1), 13–30 (1988)

A Sound Analysis for Secure Information Flow Using
Abstract Memory Graphs

Dorina Ghindici1, Isabelle Simplot-Ryl1, and Jean-Marc Talbot2

1 CNRS/INRIA/Univ. Lille 1, France
2 LIF/CNRS/Univ. de Provence, France

Abstract. In this paper we present a flow-sensitive analysis for secure informa-
tion flow for Java bytecode. Our approach consists of computing, at all program
points, an abstract memory graph (AMG) which tracks how input values of a
method may influence its outputs. This computation subsumes a points-to anal-
ysis (reflecting how objects depend on each other) by addressing dependencies
arising from data of primitive types and from the control flow of the program.
Our graph construction is proved to be sound for both intra-procedural and inter-
procedural analysis by establishing a non-interference theorem stating that if an
output value is unrelated to an input one in the AMG then the output remains un-
changed when the input is modified. In contrast with many type-based informa-
tion flow techniques, our approach does not require security levels to be known
during the computation of the graph: security aspects of information flow are
checked by labeling ”a posteriori” the AMG with security levels.

1 Introduction

Information flow analysis [18] detects how data may flow between variables focusing
on data manipulations of primitive types. This analysis is used to check data propa-
gation in programs with regard to security requirements and aims to avoid that pro-
grams leak confidential information: observable/public outputs of a program must not
disclose information about secret/confidential values manipulated by the program. Non-
interference [11] defines the absence of illicit information flows by stating that public
outputs of a program remain unchanged if the secret inputs are modified. Data are la-
beled with security levels, usually high for secret/confidential values and low for ob-
servable/public variables. Some information flows arise from assignments (direct flow),
others from the control structure of a program (implicit flow). For example, the code
l=h generates a direct flow from h to l, while if(h)thenl=1elsel=0 gener-
ates an implicit flow still from h to l. If h has security level high and l low, then the
examples are insecure, as secret data can be infered by the reader of l.

In object oriented languages, like Java, the information flow analysis is related to
the analysis of references. Points-to analysis is a static analysis which computes for
every object the set of objects to which it may point to at runtime. Points-to analysis
is intensively used in optimizations and as a premiminary part of several static analysis
technics such as escape analysis [19,22] or object-oriented program slicing [12].

In this paper we propose a sound flow-sensitive analysis of Java programs that com-
putes an abstract memory graph including references and primitive types. The computed

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 355–370, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

356 D. Ghindici, I. Simplot-Ryl, and J.-M. Talbot

graph is a points-to graph extended with primitive values and dependencies raised by
the control flow. This abstract memory graph (denoted AMG) characterizes on one hand
how fields of objects point to other objects, and on the other hand the dependencies be-
tween primitive values through direct or indirect flow, in the sense of non-interference.
This yields an analysis which is more general than “traditional” information flow anal-
ysis (in particular, than type-based information flow analysis as initiated in [21]) as it
computes an AMG abstracting the dependencies between program data: a node a is
related to b if the value of b may influence the value of a. These dependencies are not
made explicit in “traditional” information flow analysis and replaced by coarser flows
of security levels from an a priori fixed security lattice [7].

In our work, we compute these dependencies between values independently of any
a priori information like security levels. Therefore, when applied to secure information
flow, our approach allows to reuse the same analysis for various security lattices without
re-analysing the code.

class Rate {
int avg, min, max;

}

class Income {
int sal, tax;
..
void tax(Rate p1){
int tmp;
if(sal < p1.avg)
tmp = p1.min;

else
tmp = p1.max;

tax = sal * tmp;}
}

Fig. 1. Example

Let us consider the example in Figure 1, for tax and
salary calculations. The AMG of method tax contains de-
pendencies between fields tax and sal, min, max (due
to direct flow) and between tax and avg, sal (due to im-
plicit flow). Considering that the AMG is annotated with se-
curity levels high for sal field and low for tax field, the
program is insecure as a high value flows to a low value.
The program is secure if we consider a second security pol-
icy expressing that both sal and tax fields are high.

The paper is structured as follows: we discuss related
work in Section 2. Section 3 presents the JVM model used in
this paper and defines non-interference. Section 4 describes
the construction of an AMG during the intra-method anal-
ysis of sequential programs. We present the correctness of
the construction in Section 5, proving a non-interference theorem. Section 6 describes
the inter-procedural analysis and adds support for method invocation. Section 7 applies
the AMG to information flow.

2 Related Work

Information flow enforcement is a well studied area. A considerable amount of work on
information flow control, based on static analysis [7,16,21] and on theoretical founda-
tions [1], has been achieved in the last decades. Some of these works have also been im-
pletemented: JFlow [16], for instance, is a powerful tool that permits static type check-
ing of flow annotations in Java programs. In recent years, much of the literature has
focused on object-oriented [2,5] languages. In the sequel, we discuss works addressing
non-interference for Java(-like) and low-level languages (eg Java bytecode).

Most of the approaches for Java are typed-based [5,20]. Their main weakness is that
they are flow-insensitive (i.e., they do not take into account the order of statements in a
program). The programl=h; l=0; (where h has the security level high and l low) will
be rejected, as type systems require every subprogram to be well typed. However, Hunt

A Sound Analysis for Secure Information Flow Using Abstract Memory Graphs 357

and Sands proposed recently a family of flow-sensitive type systems [13] for track-
ing information flow. Typed-based approaches for low-level languages have also been
proposed, as in [3,6,15].

Our approach leads to a flow sensitive information flow analysis for object-oriented
programs. In this sense, it is similar to [2] where a pointer alias has been used to perform
an inter-procedural and flow sensitive information flow analysis for object-oriented pro-
grams. However, this work addresses a high level language, including control structures
(eg if-then-else and while-do) and is developed in the style of Hoare logic
while we consider a fully static analysis approach.

Program dependence graphs (PDGs) traditionally defined for program slicing can be
used for information flow analysis [12]. This approach is indeed more powerful than
type based techniques as PDG’s are flow sensitive. But this latter approach differ from
ours: AMG, the graph built by our method and PDG’s don’t have the same kind. Though
PDG’s may contain nodes representing objects (for handling alias information), most
of their nodes represent statements of the program (one node per statement), whereas
nodes in AMG represent objects and values manipulated by the program. Hence, due to
the use of allocation site model in our method, an AMG contains roughly one node per
bytecode like new, iconst n making it much smaller than a PDG.

As in [8], we address low-level programs with a context- and flow-sensitive approach
based on abstract interpretation for mono-threaded bytecode; however, in [8], the ab-
stract domain is restricted to boolean functions leading to a field- and object insentivite
analysis whereas we rely on an accurate points-to analysis to model in a precise way
object references and values of object fields.

Most of the previous cited works require the lattice security model of information
flow to be known from the very beginning of the analysis. We believe that traditional
information flow analysis can be recovered as an abstract interpretation of our AMGs,
this abstract interpretation taking into account the security levels.

3 Non-interference for Java Virtual Machine Programs

3.1 Notation

We consider finite directed graphs whose edges are labelled by elements of the set L: a
graphG is given by (V,E) where V is its set of vertices (or nodes), andE ⊆ V ×V ×L
is its set of labelled edges. In G = (V,E), the edge from vertex u to v, labeled with l
is denoted (u, v, l), adj G(u, l) is the set of adjacent vertices of u in G, reached by an
edge labeled by l, and a node u is a leaf if for any node v and label l, (u, v, l) �∈ E.

A vertex v is reachable from u in a graph G if there is a path (a sequence of edges
leading) from u to v and we denote by ReachG(u) the set of vertices reachable from u
in G. We define G�u the subgraph of G = (V,E) given by (ReachG(u), {(v, w, l) |
(v, w, l) ∈ E and v ∈ ReachG(u)}). The union of two graphs (V1, E1) ∪ (V2, E2) is
the graph (V1 ∪ V2, E1 ∪E2); the graph inclusion (G1 ⊆ G2) is defined accordingly.

For a graph G = (V,E), G[(u, l) �→ v] agrees with G except that all the edges of
the form (u, u′, l) in E are replaced by a unique edge (u, v, l). Finally, for a function
f , by f [x �→ e] we denote the function f ′ such that f ′(y) = f(y) if y �= x and
f ′(x) = e.

358 D. Ghindici, I. Simplot-Ryl, and J.-M. Talbot

3.2 The Java Virtual Machine Model

We consider a set of class names Classes , a set of methods Methods and a set Fields
of field names. The set of JVM values is defined as Jv = Val ∪ Obj where Val is the
set of primitive values, and Obj the set of objects, including the special value null.
The function Type : Obj → Classes returns the type of an object.

Due to limited space, we focus on the formal model of a subset of the JVM instruction
set: prim op stands for a primitive operation taking two operands, pushing the result
on the stack; pop pops the top of the stack. iconst n (resp. aconst null) pushes
the primitive value n (resp. null) on the stack. new C creates new object of type C in
the memory. goto a jumps to address a and ifcmp a does the same only if the top of
the stack is greater or equal to second element on the stack. load x pushes the content
of the local variable x on the stack whereas store x pops the top of the stack and
stores it into the local variable x. getfield fC′ loads on the stack the field fC′ of the
object at the top of the stack and putfield fC′ stores the top of the stack in the field
fC′ of an object on the stack. Finally, invokemC′ is the virtual invocation of method
mC′ and areturn returns an object and exit the method.

Support for full Java is presented in [10] and [9]. We assume the bytecode programs
to be well-typed, to successfully pass the class file verifier and we deal only with exe-
cutions that terminate and do not throw exceptions.

Memory model. We represent the memory heap as a directed graph1, i.e. a memory
graph,G which is a triple (V,E, ς). A node of V designates a location: V is partitioned
into O(V) ⊆ Obj for locations containing object references and V(V) for locations
containing values of Val . For short, we use O(G) and V(G) instead of O(V) and V(V)
respectively. Edges from E represent field references and are labeled with field names
from Fields . As values contained in locations may change during the execution, we use
an injective function ς : V(V) → Val that labels each node from V(V) with the value
stored in this location; the (unique) node null as well as nodes of V(V) are exactly
the leaves of memory graphs. For each primitive field of an object, the memory has a
location (node) containing (labeled with) the value of the field and this vertex is the
target of a unique edge.

We consider an allocator functionG′ = new(o, C) which creates a new graph struc-
ture for an object named o of type C; o is the root of the graph. The graph G′ contains
the initial values of the new created object (vertices containing 0 for fields of primitive
type and edges to null for fields of type object).

For a memory graphG = (V,E, ς),G[u �→ l] designates the graph (V,E, ς[u �→ l]).
We naturally extend the definition of union, inclusion, G�u , and G[(u, f) �→ v] to
memory graphs. Moreover, we write G1 ≡ G2 when the memory graphs G1 and G2
are isomorphic (considering both edge and vertex labelling).

1 The advantage of this representation is the independence between objects and actual locations
where these objects are allocated. However, the graph representing the memory is isomor-
phic to any address assignment in an execution. This independence property is crucial when
comparing memories for two executions of the same method for different input values.

A Sound Analysis for Secure Information Flow Using Abstract Memory Graphs 359

Operational semantics. For a method m of class C, nm denotes the number of its
arguments, χm its set of local variables, Pm its instruction list, Pm[i] the ith bytecode
of the method m. A (concrete) state is a pair Q = (fr , G), where fr represents a stack
of frames corresponding to a dynamic chain of method calls (with the current frame on
the top), andG is a memory graph. A frame is a triple (pc, ρ, s), where pc < |Pm| is the
program counter (i.e., an index into Pm), ρ : χm → Jv represents a value assignment
of local variables and s is a stack with elements in Jv . The operational semantics of
Java bytecode is presented in Figure 3. The concatenation n :: s denotes a stack having
n on top, while fC′ designates the field f of the class C′.

p0

2000 0

p1

1500 0.08 0.10

sa
l tax av

g m
i
n

max

(a) After 0

p0

2000 200

p1

1500 0.08 0.10

sa
l tax av

g m
i
n

max

(b) After 17

Fig. 2. Memory Graph for tax method

Figure 2 shows memory graphs of the tax method (Figure 2(a) at the beginning of
the method, Figure 2(b) after executing the entire method). For instance, the putfield
rule depends on the type of the manipulated field: changing the value of a primitive field
means changing the label of a vertex (e.g. instruction 17 actually modifies the label of
the memory location corresponding to the tax field), whereas changing an object field
consists of changing the edge to the vertex containing the new pointed object.

The intra-method control flow graph CFm of a method m is the graph with Pm as
set of vertices and edges from i to each elements of succ(i), with succ(i) being (for
i ∈ Pm): {a} if Pm[i] = goto a, {a, i + 1} if Pm[i] = ifcmp a, ∅ if Pm[i] =
areturn and {i+1} otherwise. We also use the notation pred(i) = {j | i ∈ succ(j)}.
An exit-point in a control flow graph is a node without successor.

For a method m, a block B is a subset of the instruction list Pm together with a
distinguished instruction Entry(B), called the entry-point of B such that the control
flow graph CFB of B is a subgraph of CFm; all vertices in CFB are reachable from
Entry(B) and CFB has a unique exit-point Exit(B). We assume thatPm is itself a block
by adding, if needed, a unique (fake) exit-point to its control flow graph. A state Q =
((i, ρ, s) :: fr,G) is a good initial state for a block B, if B[i] is defined and executing
the block B starting from the state Q terminates in a state denoted by instrB(Q).

We use the notion of postdominance of [4]: let B be a block. Then, in CFB , its
control flow graph, a node n′ post-dominates a node n if n′ �= n and n′ belongs to
every path from n to Exit(B). We denote PD(n) the set of post-dominators of n. The
immediate post-dominator of n, ipd(n) ∈ PD(n) satisfies that ∀n′ ∈ PD(n), if n′ �=
ipd(n), then n′ ∈ PD(ipd(n)). InB, the dependency region of a conditional instruction
B[i] = ifcmp a is the set of instructions executed under this condition: reg(i) =
ReachCFB

(i) � ReachCFB
(ipd(i)). We define a function cxt : B → ℘(B) representing

the context (the set of conditional bytecodes) under which each instruction is executed:
cxt(i) = {j | i �= j ∧ i ∈ reg(j)}.

360 D. Ghindici, I. Simplot-Ryl, and J.-M. Talbot

Pm[i] = prim op n = op(n1, n2)

F ′ −→ ((i + 1, ρ, n :: s) :: fr, G)

Pm[i] = goto a

F −→ ((a, ρ, s) :: fr, G)

Pm[i] = aconst null

F −→ ((i + 1, ρ, null :: s) :: fr, G)

Pm[i] = pop

((i, ρ, n :: s) :: fr, G) −→ ((i + 1, ρ, s) :: fr, G)

Pm[i] = iconst n

F −→ ((i + 1, ρ, n :: s) :: fr, G)

Pm[i] = new C o = C
fresh(Ci,G)
i G′ = new(o, C)

F −→ ((i + 1, ρ, o :: s) :: fr, G ∪ G′)

Pm[i] = ifcmp a n1 < n2

F ′ −→ ((i + 1, ρ, s) :: fr, G)

Pm[i] = ifcmp a n1 ≥ n2

F ′ −→ ((a, ρ, s) :: fr, G)

Pm[i] = load x

F −→ ((i + 1, ρ, ρ(x) :: s) :: fr, G)

Pm[i] = store x

((i, ρ, n :: s) :: fr, G) −→ ((i + 1, ρ[x �→ n], s) :: fr, G)

Pm[i] = getfield fC′ n �= null n′ ∈ adjG(n, fC′) n′ ∈ Obj

((i, ρ, n :: s) :: fr, G) −→ ((i + 1, ρ, n′ :: s) :: fr, G)

Pm[i] = getfield fC′ n �= null n′ ∈ adjG(n, fC′) n′ �∈ Obj

((i, ρ, n :: s) :: fr, (V, E, ς)) −→ ((i + 1, ρ, ς(n′) :: s) :: fr, (V, E, ς))

Pm[i] = putfield fC′ n �= null v ∈ Val n′ ∈ adjG(n, fC′)

((i, ρ, v :: n :: s) :: fr, G) −→ ((i + 1, ρ, s) :: fr, G[n′ �→ v])

Pm[i] = putfield fC′ n �= null v /∈ Val

((i, ρ, v :: n :: s) :: fr, G) −→ ((i + 1, ρ, s) :: fr, G[(n, fC′) �→ v])

Pm[i] = invoke mC′ o �= null

((i, ρ, pnm :: · · · :: p1 :: o :: s) :: fr, G) → ((0, {0 �→ o, 1 �→ p1 . . . nm �→ pnm}, ε) :: (i, ρ, s) :: fr, G)

Pm[i] = areturn

((i, ρ, v :: s) :: (i′, ρ′, s′) :: fr, G) −→ ((i′ + 1, ρ′, v :: s′) :: fr, G)

where F = ((i, ρ, s) :: fr, G), F ′ = ((i, ρ, n1 :: n2 :: s) :: fr, G). prim op stands for primitive operations with

two parameters. The function fresh(c, G) returns the least natural k such that ck is not used as a vertex label in G.

Fig. 3. A subset of operational semantics rules

3.3 Non-interference

Our analysis computes an abstraction of the links between values of different objects.
We formalize this notion of dependency through non-interference: roughly, at the
method level, the non-interference between an object o and an input value ι (of primitive
type) can be stated as “changing of value of ι does not affect the value of o”. The “value”
of an object is defined by the values of its fields of primitive type and recursively, by
the “values” of its object fields. An input value of a block is a value of primitive type
chosen in the concrete state before the execution of the block; formally:

Definition 1 (Set of input values). Let Q = ((i, ρ, s) :: fr,G) be a state. Then, the set
of input values of Q is I(Q) = V(G) ∪ {x ∈ χm | ρ(x) ∈ Val}.

A Sound Analysis for Secure Information Flow Using Abstract Memory Graphs 361

Definition 2 (Value-change). A value-change of a state Q = ((i, ρ, s) :: fr,G) and
an input value ι from I(Q) is a stateQ′ = ((i, ρ′, s) :: fr,G′) such that for some value
a of primitive type, either ι ∈ V(G), ρ = ρ′ and G′ = G[ι �→ a], or ι ∈ {x ∈ χm |
ρ(x) ∈ Val}, ρ′ = ρ[ι �→ a] andG′ = G.

Definition 3 (Non-interference). For any block B and any state Q, let G,GB be the
memory graphs ofQ and instrB(Q) respectively. For any input value ι from I(Q) and
for any object node o in G, ι does not interfer in B with o if for any value-changeQ′ of
Q and ι, one has GB�o ≡ G′

B�o , G′
B being the memory graph of instrB(Q′).

4 Intra-Method Abstract Dependency

0: load p0
1: getfield sal
2: load p1
3: getfield avg
4: ifcmp 9
5: load p1
6: getfield min
7: store tmp
8: goto 12
9: load p1

10: getfield max
11: store tmp
12: load p0
13: load p0
14: getfield sal
15: load tmp
16: imul
17: putfield tax
18: return

p0

p0.tax

p0.sal

p1

p1.max

p1.min

p1.avg

〈
t
a

x
,
d〉

〈s
a

l,
d
〉

〈ta
x
, d〉〈

ta
x

,
i〉

〈m
ax

, d
〉

〈min, d〉

〈a
v
g
,
d〉

〈tax
, d〉

〈tax, d〉

〈ta
x
,
i〉

Fig. 4. Example

The core of our analysis is an algorithm that
builds an AMG, that is an ”abstraction” of the
memory graph containing all possible depen-
dencies between objects and input values. In this
section, we present the intra-method analysis fo-
cusing on programs without method calls: the al-
gorithm consists in computing an AMG for each
program point of a method. Inter-method analy-
sis will be addressed in Section 6.

The abstract model: AMGs Let us present the
abstract model on the example in Figure 1. The
Java bytecode of method tax and the AMG ob-
tained after the analysis of the method are de-
picted in Figure 4.

The AMGG at a program point is a represen-
tation of the memory such that, when restricted
to objects, G and the memory graph are related
by an abstraction relation. Then this abstraction
is extended with primitive values and implicit
flow dependencies. Nodes in AMG contain abstractions of JVM objects, constants and
newly created objects as well as initial values of primitive type of the method. For an
AMG G = (V,E), O(V) = O(G) denotes the set of nodes abstracting JVM objects
and V(V) = V(G), nodes abstracting primitive nodes.

Hence, nodes of the graphG are defined to take into account the model:

– nn
pc, pc < |Pm|: node modeling all the objects created by the execution of the object

allocation instruction pc 2. As for memory graphs, the graph structure rooted at nn
pc

contains nodes for each primitive field, and edges to the node nnull−1 , which is the
abstraction of null, for object fields,

– nc
pc, pc < |Pm|: constant value “created” at instruction pc. There is a unique node

for every constant creation statement in the method.

2 We use the object allocation site model: all objects created at the same program statement have
the same abstraction.

362 D. Ghindici, I. Simplot-Ryl, and J.-M. Talbot

Edges represent flows (i.e., dependencies) between nodes; they are labeled with pairs
〈f, t〉, where f ∈ Fields is the name of the field and t ∈ F = {d,i} is the type
of flow: i for implicit flow and d for direct flows, with the order relation i � d. In
Figure 4, the edge labeled 〈tax,d〉 between p0 and p0.sal means that there is direct
flow, arising from an assignment, from p0.sal to the field tax of p0. The edge labeled
〈tax,i〉 between p0 and p0.sal shows that the value of p0.sal might be deduced from
the field tax of p0, as it depends on the condition tested at instruction 4.

To deal with implicit flows, we use the notion of regions. When executing an instruc-
tion i which adds an edge (u, v, 〈f,d〉), edges having the form (u, v′, 〈f,i〉) are also
added, where v′ is the value tested by conditional instructions in cxt(i). The intuition
behind is that someone who knows the control structure of the program and can observe
the field f of u, is able to deduce the value of v′.

Implicit flows are from objects modified inside a region to values on which the ex-
ecution of the region depends. These facts allow us to deduce some properties of an
AMG G: (i) any node u ∈ V(G) ∪ {nnull−1 } is a leaf, and (ii) for any edge of type
(u, u′, 〈f,i〉) ∈ E, u ∈ O(G) \ {nnull−1 } and u′ ∈ V(V). These properties state
that edges between two references are always direct edges: if u1, u2 ∈ O(G) and
(u1, u2, 〈f, t〉) ∈ E then t = d. Value nodes are always leaves, and implicit edges
are always between a reference and a value node. Thus, edges to primitive values are
not imprecated in the graph restricted to objects. Our construction is a points-to graph
prolonged by edges about primitive values and implicit flows.

Abstract semantics. Building the AMG requires to model local variables and stack
contents, and to deal with implicit flow, we must know the conditions under which the
local variables and the stack are modified. Thus, elements from stack and local variables
have the form (u, t) where u ∈ V and t ∈ F . Hence, an abstract state is of the form
Q = (ρ, s, (V,E)) where (V,E) is the AMG, ρ is a mapping from χm to ℘(V × F)
and s is the stack with elements in ℘(V ×F).

For each bytecode b, we define an abstract rule Q′ = instrb(Q,Γ) where Γ is the
set of nodes u corresponding to values on which depends the execution of the bytecode,
reflecting the impact of the implicit flow. The abstract rules are presented in Figure 5.

To reflect the impact of control regions on stack and local variables, every instruction
modifying these latter takes into consideration the values in the context. For example,
the instruction new pushes on the stack a new abstract value as well as the context under
which the operation takes place, that is pairs from TVΓ . The store bytecode not only
stores the top of the stack in the local variable array, but also TVΓ .

The instruction getfield pushes on the stack the adjacent of u, if u is an object
reference, or keeps u on the stack if it is a primitive value arising from implicit flow.

The most significant bytecode is putfield, as it modifies the AMG. Apart edges
from direct nodes in u (having the form (e,d)) to elements in v, implicit flow edges
from the nodes e ((e,d) ∈ u) to nodes in Γ , the instruction adds implicit flow edges
from nodes e ((e,d) ∈ u) to implicit nodes e′ ((e′,i) ∈ u). The presence of nodes like
(e′,i) in u means that the objects in u depend on e′. Thus, we propagate the implicit
dependencies of an object to every field being modified of that object.

For instance, the putfield bytecode at instruction 17 in Figure 4 assigns the field
tax of p0 and generates the following edges labeled: (i) 〈tax,d〉 from p0 to p0.sal,

A Sound Analysis for Secure Information Flow Using Abstract Memory Graphs 363

(ρ, s, G)

(ρ, s, G)
goto a

(ρ, v1 :: v2 :: s, G)

(ρ, v1 ∪ v2 ∪ TVΓ :: s, G)
prim op

(ρ, s, G)

(ρ, {(nn
i , d)} ∪ TVΓ :: s, G)

new i C

(ρ, s, G)

(ρ, {(nnull−1 , d)} ∪ TVΓ :: s, G)
aconst null

(ρ, v :: s, G)

(ρ, s, G)
pop

(ρ, s, G)

(ρ, {(nc
i , d)} ∪ TVΓ :: s, G)

iconst iv

(ρ, v1 :: v2 :: s, G)

(ρ, s, G)
ifcmp a

(ρ, s, G)

(ρ, ρ(x) ∪ TVΓ :: s, G)
load x

(ρ, u :: s, G)

(ρ[x 	→ u ∪ TVΓ]s, G)
store x

(ρ, u :: s, G)

(ρ, {(e, t) | e ∈ adjG(e′, 〈f
C′ , t〉) ∧ e′ ∈ V u

d } ∪ {(e, i) | e ∈ V u
i } ∪ TVΓ :: s, G)

getfield f
C′

(ρ, v :: u :: s, (V, E))⎛⎝ρ, s,

⎛⎝V,
E ∪{(e, e′, 〈f

C′ , t〉)|(e, d) ∈ u, e �= nnull−1 , (e′, t) ∈ v}
∪{(e, e′, 〈f

C′ , i〉)|(e, d) ∈ u, e �= nnull−1 , e′ ∈ Γ ∪ V u
i }

⎞⎠⎞⎠ putfield f
C′

with V u
d = {e | (e, d) ∈ u} V u

i = {e | (e, i) ∈ u} TVΓ = {(e, i) | e ∈ Γ}

Fig. 5. Subset of the abstract transformation rules

p1.min, p1.max and (ii) 〈tax,i〉 from p0 to tmp, was modified in a control region
depending on these two fields.

Algorithm. Our analysis is a flow sensitive may-analysis [19], computing an AMG at
each program point as the union of graphs created by all the execution paths reaching
that point; it is defined in the context of a monotone framework [17] for data flow
analysis. To comply with this framework, we define an order relation � and a join
operator � on the property space S (the set of pairs (Q,Γ) augmented with ⊥ the
neutral element of �) such that (S,�,�) forms a semi-joint lattice which satisfies the
Ascending Chain Property (all increasing sequences in S become eventually constant).

The execution of a method is abstracted as a set of equations based on the abstract
rules instrb: the analysis of a block of instructions B ⊆ Pm of a method m, assumed
to be represented by its control flow graph CFB , is described by an equation system EB ,
starting from a given initial state (Q0, Γ0) (recall that we consider terminating execu-
tions without exceptions and we consider here initial states that allow such executions).
For every node i in CFB , (Qi, Γi) represents the state and the context (required by the
implicit flow) under which the instruction i is executed. The context represents the con-
ditions tested (the top of the stack) by instructions in cxt(i). Thus, for all i in CFB:

(Qi, Γi) = (SQ �
⊔

j∈pred(i) instrB[j](Qj , Γj),
SΓ ∪ {u | (u, t) ∈ v with Qk = (ρ, v :: s,G), k ∈ cxt(i)}) (1)

where (SQ, SΓ) equals to (Q0, Γ0) if i = Entry(B) and to (⊥,∅) otherwise.
The abstract rules are monotone with respect to the ordering relation �, thus we

can solve the system (1) using standard methods for monotone dataflow analysis. For
a block B and a pair (Q,Γ), we define instrB(Q,Γ) as the state instrB[e](Qe, Γe)

364 D. Ghindici, I. Simplot-Ryl, and J.-M. Talbot

where e = Exit(B) and (Qe, Γe) is obtained in the least solution of the system of
equations EB starting from the initial state (Q,Γ).

5 Soundness of the Intra-method Analysis

We now prove the correctness of the AMG construction with respect to non-interference:
if there is no dependency (path in the abstract graph) between an object and an input
value, then changing the input value in the concrete graph will not affect the concrete
graph of the object. As we compare, in this section, concrete and abstract worlds, we
denote by e a concrete element and by e an abstract element. Note that e is just an abstract
element, and not necessarily the abstraction of e.

5.1 Relations between Abstract and Concrete Worlds

We first formally relate abstract and concrete semantics: we consider an abstraction
function to relate memory graphs restricted to objects nodes and AMGs. Because of
the allocation site model, it is possible to relate concrete nodes to abstract nodes in a
non ambiguous manner. However, for complete graphs (including nodes representing
values), we cannot define an abstract relation as it is not possible to associate uniquely
a concrete node value with an abstract one in the model we use.

Definition 4 (α-abstraction). Let G be a memory graph andG be an AMG. An abstrac-
tion function α fromG toG is a mapping from O(G) to O(G) respecting the allocation
site model (for all k, all the Ck

i are mapped to nn
i , and α(null) = nnull−1) and the

graph α(G) = ({α(u) | u ∈ O(G)}, {(α(u), α(v), 〈e,d〉) | u, v ∈ O(G) ∧ (u, v, e) ∈
E}) is included into G.

We say then that G is an α-abstraction of G, denoted by G α G.

The abstraction function is carried over concrete and abstract states.

Definition 5 (State abstraction). Let Q = ((pc, ρ, s) :: fr,G) be a concrete state,
Q = (ρ, s,G) be an abstract state and α be an abstraction function from O(G) to
O(G). Q is an α-abstraction ofQ (denotedQ α Q) if G α G, s α s, and ρ α ρ,
with: s α s if s, s are both empty or if s =v :: s1, s =v :: s1, s1 α s1, and
(α(v),d) ∈ v if v ∈ O(G), the local variables abstraction ρ α ρ is defined similarly.

We now extend the abstraction relation to take into account nodes of primitive type that
correspond to input values.

Definition 6 (α-abstraction extension). Let Q = ((i, ρ, s) :: fr , (V,E, ς)) be a con-
crete state, and Q = (ρ, s, (V ,E)) such that Q α Q for an abstraction function α.

Then, αQ
Q : I(Q) −→ ℘(V(V)) is the unique extension of α in Q if

∀ι ∈ I(Q) ∩ V(V), αQ
Q(ι) = {ι | ∃(α(u), ι, 〈f,d〉) ∈ E, with (u, ι, f) ∈ E}

∀ι ∈ I(Q) ∩ χm, αQ
Q(ι) = {e | (e,d) ∈ ρ(ι))}

A Sound Analysis for Secure Information Flow Using Abstract Memory Graphs 365

Definition 7. Let Q = (ρ, s, (V ,E)) be an abstract state. Let β ⊆ V(V). For any
o ∈ O(V), we have free(o, β,Q) if one of the following conditions holds:

- ∃(u, o, 〈f,d〉) ∈ E and β ∩ adj(V ,E)(u, 〈f,i〉) = ∅,
- ∃x such that (o,d) ∈ ρ(x) and �(ι,i) ∈ ρ(x) with ι ∈ β,
- ∃i such that (o,d) ∈ s[i] and �(ι,i) ∈ s[i] with ι ∈ β.

The function free(o, β,Q) expresses that o is not bound to any ι of β in Q, meaning
that at least one occurrence of o on stack, local variables or in AMG does not implicitly
depend on β. As varying ι may influence the execution path, and thus the objects being
created, this condition ensures, in the following non-interference theorem, the existence
of the object o (with α(o) = o) after any value-change from β.

Theorem 1 (Non-interference). Let B be an instruction block, Q be a concrete state
with G as memory graph, Q be an abstract state and α be an abstraction function
such that Q α Q. Let G′ be the abstract graph of instrB(Q,Γ). For an object

node o in O(G) and an input value ι from I(Q) such that free(α(o), αQ
Q(ι), Q), if

ReachG′(α(o) ∩ αQ
Q(ι)) = ∅ then ι does not interfere with o in B.

5.2 Analysis Correctness

We show first that when the AMGs are restricted to references, our analysis is a sound
points-to analysis. We rely on the dataflow framework, slightly adapted to take into
account the flow information of the Γ ’s.

Proposition 1 (Points-to correctness). LetB be a block,Q be a good initial (concrete)
state for B, α be an abstraction function, and Q be an abstract state. Then, for any set
of abstract values Γ , Q α Q implies instrB(Q) α instrB(Q,Γ).

The complete proof is presented in [10]. We now prove the correctness of the primitive
edges (implicit and direct flow) as a non-interference theorem, relying on the correct-
ness of the points-to analysis.

To prove the non-interference theorem, according to Definition 3, we need to make
values vary at some program point according to Definition 2 and to check the impact
of this variation on objects at another program point. Thus, we first define the notion of
state variation that captures how a concrete execution state, corresponding to a program
point i, might change when an input value ι has changed in the past of this execution.
Definition 8 contains an over estimation of the set of states that the JVM can reach after
this change: the main impact is on the memory graph, but the local variables and stack
can also be affected. The correctness of the definition is proved later in Proposition 2.

Definition 8 (State variation). Let Q = ((i, ρ, s) :: fr,G) and Q′ = ((i, ρ′, s′) ::
fr,G′) be two concrete states. Let Q = (ρ, s,G) be an abstract state. Let α be an
abstraction function. Let β ⊆ V(G) be a set of nodes of primitive type.

Then Q and Q′ are state variation from each other with respect to Q and β, denoted

by Q
Q,β←→ Q′, if Q α Q, Q′ α Q and

– ∀x, ρ(x) = ρ′(x) ∨ ∃ι ∈ β such that (ι, t) ∈ ρ(x),

366 D. Ghindici, I. Simplot-Ryl, and J.-M. Talbot

– ∀i, s[i] = s′[i] ∨ ∃ι ∈ β such that (ι, t) ∈ s[i],
– for all v ∈ O(G) ∪ O(G′), either v ∈ O(G) ∩ O(G′) or ¬free(α(v), β,Q),
– for all v in O(G) ∩ O(G′), for all fields f from Type(v),

• either there exists a unique node w such that (v, w, f) is an edge from G and
from G′ and, moreover if w ∈ V(G′), then w is labeled similarly in G andG′.

• or some edge (α(v), ι, 〈f, t〉) exists in G for some ι in β.

From state variation definition, we can state that a variation of a state regarding to a set
β, does not impact the objects o which have no dependence to any node of β.

Lemma 1. Let α be an abstraction function, Q= ((i, ρ, s) :: fr,G), and Q= (ρ, s,G)
with Q α Q. Let β ⊆ V(G), and o ∈ O(G) such that there exists no path from α(o)

to any node of β in G. Then, in any state variation Q′ Q,β←→ Q with Q′ = ((i, ρ′, s′) ::
fr,G′), if free(α(o), β,Q), we have G�o ≡ G′�o .

Proposition 2 states the state variation correctness, by claiming that changing an input
value and executing a block with a state variation leads us to a state variation.

Proposition 2 (State variation correctness). Let B be an instruction block. For all
concrete states Q1, Q

′
1, for all abstract state Q1, for all Γ1,

If Q′
1

Q1,β←→ Q1 then instrB(Q′
1)

instrB(Q1,Γ1),β←→ instrB(Q1).

We can now conclude with the proof of the non-interference theorem.

Proof of Theorem 1. Let B be an instruction block. Let Q1 = ((i, ρ1, s1) :: fr1, G1)
be a concrete state, Q1 = (ρ1, s1, G1) such that Q1 α Q1, Q2 = instrB(Q1),
and Q2 = instrB(Q1, Γ1). Let o ∈ O(G1) be an object node and ι ∈ I(Q1) be an
input value. Let us consider a value-changeQ′

1 = ((i, ρ′1, s1) :: fr1, G′
1) of Q1 and ι.

According to Definition 2, either ι is a value node of G1 and then G′
1 = G1[ι �→ v],

or ι is a local variable and then ρ′1 = ρ1[ι �→ v] (for some v ∈ Val). Let us denote

β = αQ1
Q1

(ι), then, the first case corresponds to the graph variation rule in Definition 8,

the second case to the local variables variation rule of Definition 8, thus Q′
1

Q1,β←→ Q1.

We denote Q′
2 = instrB(Q′

1). According to Proposition 2, we have Q′
2

Q2,β←→ Q2. As

freeα(α(o), αQ1
Q1

(ι), Q1), graph variation rule of Definition 8 says that o ∈ O(G′
1) ∩

O(G′
2). As by hypothesis, ReachG2

(α(o) ∩ αQ1(ι)) = ∅, by applying Lemma 1, we
obtain G2�o ≡ G′

2�o (for G2, G
′
2 the memory graphs of resp. Q2, Q

′
2), ie ι does not

interfer with o in B.
�

6 Inter-method Analysis

In this section, we add a support for a context-insensitive or a context-sensitive analysis
with the same semantics rules depending on the inter-procedural control flow graph.

In programs with method call, the size of the call stack in the concrete execution is
not bounded: this is one of the main problems for abstract interpretation as it deals only
with finite abstract domains. Some works of the literature propose an abstraction of the

A Sound Analysis for Secure Information Flow Using Abstract Memory Graphs 367

i : invoke m
i + 1 : ...

(a) Original code

i : iconst 0
i′ : iconst 0
a0 : ifcmp c0
b0 : pop

: ...
bnm : pop
bnm+1 : aconst null
bnm+2 : goto h(i + 1)
c0 : invoke m
h(i + 1) : ...

(b) Transformed code

i′

a0

Qa0 = (ρ, unm :: · · · :: u0 :: s, G)

b0

bnm

bnm+1

bnm+2

Qa0

Qb0
= (ρ, unm−1 :: .. :: u0 :: s, G)

(ρ, s, G)

Qh = (ρ, nnull−1 :: s, G)

c0

Pm[0]

Pm[j]

Qa0

Qc0

h(i + 1)

Qh(ζ, u, G′)

where Qc0
= ({0 �→ u0, . . . , nm �→ unm}, ε, G)

(c) Transformed Control Flow

Fig. 6. Bytecode transformation

call stack [14]. We follow a different direction and propose an analysis without any
abstraction of the call stack: we are going to keep the same abstract domain than in the
intra-method analysis, in which we occult the call stack and only consider the current
frame of the method: the method invocation can be added to the framework used. To
do so, we use a code transformation: we replace each invoke bytecode by an “if”
region as depicted in Figures 6(a) and 6(b) and we add the following convenient abstract
semantics rules for invoke and areturn bytecodes (where ζ is a special value) :

(ρ, unm :: · · · :: u0 :: s, G)

({0 �→ u0, . . . , nm �→ unm}, ε, G)
invoke m

(ρ, u :: s, G)

(ζ, u, G)
areturn

The invocation of a method implies the creation of a new frame, the old one called
the calling context being preserved. Conversely, the return of the method yields the
destruction of the current frame, the calling context being resumed. Obviously, the two
abstract rules given above do not mimick this process. This is the role devoted to the
program transformation by means of its abstraction.

This transformation is syntactical and harmless: the path c0Pm[0] . . . Pm[j] corre-
sponds to method invocation, while the path b0 . . . bnm+2 is dead code 3 and is used
to “transmit” the context under which the method was invoked to the immediate suc-
cessor of the invocation, thus “hiding” the context save and reload that occur the con-
crete execution of an invocation. The equivalent of a context reload is done on abstract
states by the join operator when computingQh(i+1). We extend the operator to the case
where the local variables have the special value ζ: (ζ, u,G) � (ρ, v :: s,G′) = (ρ, v ::
s,G′)� (ζ, u,G) = (ρ, u :: s,G�G′), thus as G�G′ = G′,Qh(i+1) = (ρ, u :: s,G′)

3 However, note that this code perserves usual Java properties: the stack is well typed and has
always a fixed size at each program point.

368 D. Ghindici, I. Simplot-Ryl, and J.-M. Talbot

which contains the local variables of Qa0
, the stack of Qa0

increased with the return
value of m, and the memory resulting from the execution of m.

Soundness. In order to show that the extended abstract model is sound with respect
to the non-interference, we prove that the abstract semantics rules for invoke and
areturn have the same properties as the rest of bytecode. We only have to define
an extension of the relation α for an abstraction relation α taking into account the
new value ζ. This extension is necessary for the areturn bytecode, in order to prove
the relation α for the value returned by the invoked method. This definition is suffi-
cient, since the relation α for the rest of the calling context is being insured by the
code transformation. For the same reasons, we need to define an extension for the state
variation definition: for the areturn bytecode, and thus the special value ζ, the state
variation must hold only for the returned value.

7 Secure Information Flow

Most of the previous works on non-interference require the lattice security model of
information flow to be known from the beginning. The AMG contains points-to and
control flow dependency information. Once computed, the AMG can be labeled with
security levels and non-interference checked. We can consider any kind of “programs”,
let us for example consider a method m (with n parameters), for which we want to
check non-interference. We have to define a initial abstract state Q

m
init = ({0 �→

{np
0,d}, . . . , n �→ {np

n,d}}, ε, Ginit) for the analysis such that Ginit = (V init, Einit)
and V init contains all the nodes required by the allocation site model, constants and
null value, and nodes representing formal parameters. For each parameter i, np

i de-
notes the ith parameter of the method. We add to Ginit the minimal subgraph rooted
by np

i , G
p

i = (V
p

i , E
p

i). This graph represents the parameter and all of its content. To
avoid infinite graphs, we use a parameter h, which is called the height of the analysis,
and represents how deep we unfold the recursive data structures. The graph G

p

i is the
minimal graph that contains np

i such that ∀u ∈ O(V
p

i), for each field f1 of Type(u):

– either there exists a path u1
1u

1
2 . . . u

1
ku

2
1u

2
2 . . . u

2
k . . . u

h
1u

h
2 . . . u

h
ku labeled by

(〈f1,d〉〈f2,d〉〈f3,d〉 . . . 〈fk,d〉)h in G
p

i such that ∀1 ≤ i ≤ h, 1 ≤ j ≤ h,
Type(ui

l) = Type(uj
l), then (u, uh

1 , 〈f1,d〉) ∈ Ep

i ,

– or u.f1 ∈ V p

i and (u, u.f1, 〈f,d〉) ∈ Ep

i .

Then, we use that description of “formal” initial state. Let (L,�,�) be a lattice of
security levels; for example, L = {low, high}. We can now define security levels on
types: let λt : Fields ×Classes → L be a function that associates a security level with
a field of a class. A security function is a function that associated security levels to input
values and to return values (denoted by the set Ret): λi :

⋃
0≤i≤n V(V

p

i) ∪ Ret → L
such that if v is the field f of a class C, then λi(v) = λt(f, C).

We say that a method is secure if values accessible from parameters or return value
contain at least a field of higher security level than their own on the path.

A Sound Analysis for Secure Information Flow Using Abstract Memory Graphs 369

Theorem 2 (Secure information flow). Letm be a method, and λi a security function.
Let Q = (ρ, u :: s, (V ,E)) = instrm(Qinit, ε), and Ret = {v ∈ V | ∃(v, t) ∈ u}. The
method has secure information flow with respect to L if for every node v ∈ V(V) and

every path o0
〈f1,t1〉→ o1 . . . ok

〈fk,tk〉→ ok+1 with o0 ∈ Ret ∪ {v ∈ V | v = ns
−1 ∨ v =

np
i }, ∃i such that λi(v) � λt(fi,Type(oi)).

For example, we can define two security policies for the graph in Figure 4:
(i) λt(sal, Income) = high and λt(tax, Income) = high and (ii) λt(sal, Income) =
high and λt(tax, Income) = low. In the first case, the program is secure, while in
the second case the program is insecure as there is an edge (p0, p0.sal, 〈tax,i〉) and
λi(p0.sal) 5 λt(tax, Income).

The advantage of our approach is that security annotations must not be known a
priori. Changing a security level does not require a new analysis. Note that we can also
have more precise policies on instances: if o and o′ have the same type, o.f and o′.f
can be given different security levels using a function λe : Einit → L instead of λt. It
is more precise but require the user to precise all the policies.

8 Conclusion

Information flow analysis aims to avoid that programs leak confidential information: ob-
servable/public outputs of a program must not disclose information about secret/private
values manipulated by the program. Motivated by information flow analysis for Java
bytecode, we propose an algorithm to compute AMGs, which tracks, at different pro-
gram points, how input values may influence the outputs. Such a graph is a points-to
graph extended with primitive values and flows arising from the control structure of a
program. We prove the soundness of our construction by a non-interference theorem: if
a node a is related to a node b then the value of b may influence the value of a.

In contrast with usual information flow techniques, our approach is flow-sensitive
and the security levels are not required to be known during the graph computation.
Changing a security level does not require reanalyzing the code. Our main goal is to
provide an algorithm which can be use for information flow. In the same time, as the
AMG includes the points-to graph, our framework can be exploited for any points-to
application in program analysis, such as escape analysis and optimization.

References

1. Abadi, M., Banerjee, A., Heintze, N., Riecke, J.G.: A core calculus of dependency. In: Proc.
POPL 1999, pp. 147–160. ACM Press, New York (1999)

2. Amtoft, T., Bandhakavi, S., Banerjee, A.: A logic for information flow in object-oriented
programs. ACM SIGPLAN Notices 41(1), 91–102 (2006)

3. Avvenuti, M., Bernardeschi, C., De Francesco, N.: Java bytecode verification for secure in-
formation flow. ACM SIGPLAN Notices 38(12), 20–27 (2003)

4. Ball, T.: What’s in a region?: or computing control dependence regions in near-linear time
for reducible control flow. ACM Letters on Programming Languages and Systems 2(1-4),
1–16 (1993)

370 D. Ghindici, I. Simplot-Ryl, and J.-M. Talbot

5. Banerjee, A., Naumann, D.A.: Secure information flow and pointer confinement in a java-like
language. In: Proc. IEEE CSFW 2002, Washington, DC, USA, p. 253 (2002)

6. Barthe, G., Pichardie, D., Rezk, T.: A certified lightweight non-interference java bytecode
verifier. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 125–140. Springer, Hei-
delberg (2007)

7. Denning, D.E.: A lattice model of secure information flow. Communications of the
ACM 19(5), 236–243 (1976)

8. Genaim, S., Spoto, F.: Information Flow Analysis for Java Bytecode. In: Cousot, R. (ed.)
VMCAI 2005. LNCS, vol. 3385, pp. 346–362. Springer, Heidelberg (2005)

9. Ghindici, D., Grimaud, G., Simplot-Ryl, I.: Embedding verifiable information flow analysis.
In: Proc. PST 2006, Toronto, Canada, November 2006, pp. 343–352 (2006)

10. Ghindici, D., Simplot-Ryl, I., Talbot, J.-M.: A sound dependency analysis for secure infor-
mation flow (extended version). Technical Report 0347, INRIA (November 2007)

11. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Symposium on
Security and Privacy, pp. 11–20 (1982)

12. Hammer, C., Krinke, J., Snelting, G.: Information flow control for java based on path condi-
tions in dependence graphs. In: Proc. IEEE ISSSE 2006, pp. 87–96 (2006)

13. Hunt, S., Sands, D.: On flow-sensitive security types. In: Proc. POPL 2006, pp. 79–90. ACM
Press, New York (2006)

14. Jeannet, B., Serwe, W.: Abstracting call-stacks for interprocedural verification of imperative
programs. In: Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116,
pp. 258–273. Springer, Heidelberg (2004)

15. Kobayashi, N., Shirane, K.: Type-based information flow analysis for low-level languages.
In: Proc. APLAS 20O2, Shanghai, China, pp. 302–316 (2002)

16. Myers, A.C.: Jflow: practical mostly-static information flow control. In: Proc. POPL 1999,
pp. 228–241. ACM Press, New York (1999)

17. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Heidelberg
(1999)

18. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Journal on Se-
lected Areas in Communications 21(1), 5–19 (2003)

19. Salcianu, A., Rinard, M.: Pointer and escape analysis for multithreaded programs. ACM
SIGPLAN Notices 36(7), 12–23 (2001)

20. Sun, Q., Banerjee, A., Naumann, D.A.: Modular and constraint-based information flow infer-
ence for an object-oriented language. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148,
pp. 84–99. Springer, Heidelberg (2004)

21. Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow analysis. Journal of
Computer Security 4(2-3), 167–187 (1996)

22. Whaley, J., Rinard, M.: Compositional pointer and escape analysis for Java programs. In:
Proc. OOPSLA 1999, Denver. ACM SIGPLAN Notices, vol. 34, pp. 187–206 (1999)

Refinement Patterns for
Hierarchical UML State Machines

Jens Schönborn1,� and Marcel Kyas2,��

1 Christian-Albrechts-Universität zu Kiel, Germany
jes@informatik.uni-kiel.de

2 Department of Computer Science, Freie Universität Berlin, Germany
marcel.kyas@fu-berlin.de

Abstract. While the semantics of (labeled) transition systems and the
relations between these are well understood, the same still needs to be
achieved for UML 2.x state machines, because the UML standard is
ambiguous and admits many semantics, which are often defined in terms
of labeled transition systems.

A formal semantics for UML state machines with interlevel transitions
and notions of refinement are described to enable the study of transfor-
mations, i.e., functions from state machines to state machines, and to
establish the conditions under which these transformations are refine-
ment steps. Many of these transformations are described and shown to
be refinement steps. A language extension is finally proposed that help
modelers to ensure that all transformations are indeed refinements.

1 Introduction

Automaton-based languages are popular for modeling systems, because they are
intuitively understood. The semantics of and the relations between flat transi-
tion systems are well understood. Languages of hierarchic automata, like State-
Charts [1] and their object-oriented variant [2], ROOM [3], Argos [4], and UML
2.x state machines [5], provide structuring mechanisms and concise notations.
The increased expressive power gained by this is at the expense of accessibil-
ity: understanding the meaning of a state machine is often hard and requires
expert knowledge. The semantics of and especially the relations between these
hierarchical UML state machines, which we analyze in this paper, are not yet
understood completely. This is caused by the underspecified standard [6] and by
the complexities introduced by hierarchy and interlevel transitions, i.e., transi-
tions between different levels of the hierarchy. Many semantics for UML state
machines have been proposed in the literature, e.g., [7, 8, 9, 10, 11, 12], which of-
ten differ in the way fireable transitions are chosen. Our language of UML state

� J. Schönborn’s work has been supported by DFG-project FE 942/1-1 RO 1122/12-2
refism (http://www.informatik.uni-kiel.de/˜refism/refism.html).

�� M. Kyas’ work has been supported by EU-project IST-33826 CREDO: Modeling and
analysis of evolutionary structures for distributed services (http://credo.cwi.nl).

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 371–386, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

372 J. Schönborn and M. Kyas

machines and its semantics follows [12], which we believe to formalize state hier-
archy and interlevel transition [5] most faithfully, and is summarized in Sect. 2.

The above mentioned loss of accessibility becomes apparent in top-down de-
velopment methods, where the desire is to refine a first model of a system by a
series of design steps, which preserve all desired properties and eliminate unde-
sired behaviors, with the intention to arrive at a final model that is executable.
The compact notation of UML state machines makes it hard to relate the syntac-
tic descriptions of the model: hierarchy and priorities have undesired effects on
refinement. Often changes can be made liberally, since the priority rules will dis-
regard these changes. Other changes may have far reaching consequences, since
the newly defined behavior can eliminate existing behavior completely due to
priorities. Finally, simple steps like removing a transition may just change the
behavior instead of restricting it. The notion of refinement used in this paper is
described in Section 3 and follows David Park [13].

This paper concerns “patterns of refinement.” These are syntactic transfor-
mations of a state machine that are in effect refinements. Syntactic patterns
can be supported by tools, which can check syntactic side conditions, and al-
low modelers to refine the system easily, because they are not concerned with
proving validity of the refinement steps. Many patterns have been proposed in
literature for flat state machines [14] or for UML state machines with different
priority rules [15]. Our refinement patterns are described in Section 4. Previ-
ously described patterns are shown to be invalid in our semantics and others
have been adapted. The formalization of redefinable, a predicate on states that
enables transformations on state machines, is the main technical contribution.
It makes the context of underspecification explicit.

We go first steps towards a theory of refinement, which may be integrated
into tool-supported, UML based development processes, with our semantics, a
formulation of refinement for UML state machines, and refinement patterns.

To conclude, we compare our refinement patterns to previously published pat-
terns in Section 5. The nature of UML’s choice of priorities introduces complex
side conditions, which are avoided by other researchers, because they either do
not consider hierarchy at all or use non-standardized priorities that simplify their
calculus, effectively creating a language not defined by the OMG.

2 UML State Machines

UML State Machines are a variant of Harel’s Statecharts [1]. The most important
difference is, that UML state machines use a run-to-completion step semantics:
One single event is selected and the reaction is computed up to the point the
system stabilizes. Remaining events are considered for future transitions. Harel’s
Statecharts use all events for the transition, and the reaction will try to use the
largest set of transitions.

Many assumptions and transformations of the Statechart-like languages do
not hold for UML state machines. For example, interlevel transitions cannot be

Refinement Patterns for Hierarchical UML State Machines 373

eliminated from UML state machines like in Argos [4], because this changes their
semantics.

We focus on refinements patterns for hierarchical state machines with inter-
level transitions here. We use a subset of the state machines syntax and semantics
defined in [12], which we summarize below. Object and variable states are not
considered because they may be encoded in the state machines states and events.
Actions remain uninterpreted and are observations of the system.

2.1 Syntax

The basic concepts of UML 2.0 state machines are transitions and states be-
tween transitions. States form a hierarchy: A state may contain regions, which
are separated by dashed lines and each region may again contain states such
that the resulting structure forms a tree with a region, here always called ε as
root. For the sake of brevity we omit most pseudo states, especially fork- and
join-pseudostates, as well as entry-, exit-, and do-activities. The semantics of
completion events is a subtle and imprecise matter [6]. We therefore omit them.

Finally, we do not treat variables here. The states that arise from variables
and their assignments could be encoded into the states of the state machine
itself, whereas the values received by events can be encoded by creating enough
events to encode these values. Moreover, the theory presented in this paper is
not concerned with the state that arises from variables and their assignments
but with the graphical notation of state machines. Variables and their assign-
ments are best treated by traditional data refinement techniques [16], which
may well complement our method. Consequently, we only focus on events that
trigger transitions and use actions as uninterpreted observations of the state
machines reaction, as we show later. Our mathematical notation follows Davey
and Priestley [17] and all concepts are summarized in Table 1.

Definition 1 (State Hierarchy). Let V be a set of vertexes, partitioned into
states S and regions R with the root region ε ∈ R. The function prt : R \ {ε} →
S+S → R, read parent, maps states to their containing regions, and regions to
their containing states such that the derived containment relation 6, defined as
the transitive closure of {(z, prt(z)) | z ∈ S ∪ R \ {ε}}, is irreflexive, i.e. a tree
with root ε. The relation 2 denotes the reflexive closure of 6. Then (S,R, prt)
is called a state hierarchy. A state s is called basic state if ∀r ∈ R : prt(r) �= s.
A state hierarchy is called flat, if for all ∀s ∈ S : prt(s) = ε. The downset
↓ (v) � {v′ ∈ V | v 2 v′} denotes all vertexes below v. Similarly, the upset
↑(v) � {v′ ∈ V | v′ 2 v} denotes all vertexes above v. Furthermore the downset
resp. upset without the vertex itself is �(v) �↓(v) \ {v} resp. �(v) �↑(v) \ {v}.

Configurations describe snapshots of a state machine’s execution. They consist
of the active states. We call a region, different from the root region, active if and
only the containing state is active. At any time, the root region is active. For any
active non empty region there is exactly one active state in that region and for
all active states all regions in these states are active. Formally, a configuration is

374 J. Schönborn and M. Kyas

a subtree of the state hierarchy, as defined below. Each state machine will start
in an initial configuration.

Definition 2 (Configuration). The set of all configurations C of a state hier-
archy (S,R, prt) is a set of sets of states S ⊆ S, where the sets of states satisfy
the following well-formedness conditions:

1. ∃s ∈ S : prt(s) = ε
2. ∀r ∈ R \ {ε} : prt(r) ∈ S ∧ (∃s ∈ S : prt(s) = r) =⇒ (∃s ∈ S : prt(s) = r)
3. ∀s, s′ ∈ S : s �= s′ =⇒ prt(s) �= prt(s′)

Transitions are triggered by an event, e.g., a message the machine is receiving.
If a transition is taken, then an action is performed as part of the reaction.

Definition 3 (Transitions). A transition t � (s, e, ψ, s′) is a tuple, in which
s, s′ ∈ S s called source state and s′ called target state. Event e ∈ E is called its
trigger (which has to be provided to enable the transition), and E denotes the set
of all events. ψ ∈ Ψ is called its action, where Ψ is a set of uninterpreted actions
that contains the special ‘do nothing’-action skip. The set of all transitions is
denoted by T and projections of transitions to the corresponding components are
denoted by πsor(t), πev(t), πact(t), and πtar(t), respectively.

Suppose that there is state s from which no transition emanates which is trig-
gered by some event e. According to the UML semantics, e is consumed without
any other effect (except when e is deferrable). This default behavior interferes
with any refinement method, because the modeler cannot add a state and it’s
outgoing transitions in two refinement steps.

Instead, we allow the modeler to change UML’s default behavior by declar-
ing an event redefinable for a state: e is consumed but the reaction is chaotic:
any well-formed configuration and any multiset of actions may be generated as a
reaction. Then adding transitions emanating s preserves behavior and is a refine-
ment step. Observe that unlike in Rumpe’s work [14], adding a transition does
not restrict behavior, thus prohibiting the introduction of further transitions
triggered by the same event, for the outgoing event, such that more transitions
for the same event may be added in different steps.

Definition 4 (Redefinable). The predicate redef(e, s) indicates that state s is
still redefinable with respect to the event e. As long as a state is redefinable, all
behavior triggered by e can emanate from s, which models the effect of possible
future redefinitions. A redefinable state is written «redef E», where E enumerates
all events that are redefinable.

Hierarchical states require us to consider the property of redefinable of the con-
taining states when adding a new state as exemplified in the following.

Example 1. Suppose a state machine as depicted in Fig. 1 on the left where no
states are marked redefinable. Now we add a new state s0 as substate of s1 which
redefinable wrt. event e and a transition from s0 to s3 as depicted in Fig. 1 on

Refinement Patterns for Hierarchical UML State Machines 375

s1

s3

e/ψ1

s1

s3s0 «redef e»
e/ψ1

e/ψ2

Fig. 1. State machine before (left) and after (right) refinement

Table 1. Notation

Model elements
v ∈ V vertexes
s ∈ S states
r ∈ R regions
ε ∈ R root region
e ∈ E events
ψ ∈ Ψ actions
skip ‘do nothing’-action

t ∈ T transitions
S ∈ C configurations
Si ∈ C initial configuration

Functions
s & s′ s′ is a proper substate of s
s ' s′ s & s′ or s = s′

prt(v) Parent vertex of v
↑(v) upset {v′ | v′ ∈ V ∧ v ' v′}.
↓(v) downset {v′ | v′ ∈ V ∧ v′ ' v}.

default(r) Default state in region r
redef (e, s) State s is redefinable for event e

πsor(t) Source state of transition t
πev(t) Trigger of transition t
πact(t) Action of transition t
πtar(t) Target state of transition t

the right. We would now observe behavior ψ2 rather than ψ1 as we have expected
it from the facts that s1 already has an outgoing transition triggered by e and
it is not marked redefinable wrt. to e. Therefore we require:

∀e ∈ E : ∀s ∈ S : redef (e, s) =⇒ ∀s′ ∈ ↓(s) ∩ S : redef(e, s′) (1)

Definition 5 (State Machines). A state machine SM is a tuple ((S,R, prt), T,
default, redef ,Si), where (S,R, prt) is a state hierarchy, default : R → S assigns
to each non empty region a default state, T is a set of transitions, and Si ∈ C its
initial configuration.

2.2 Operational Semantics

In this section we define the semantics of a UML state machines. We loosely
follow [12], where a detailed semantics of UML state machines is described. The
execution proceeds as follows: After selecting an event from an input pool, the
state machine selects a maximal conflict-free set of transitions, moves to the new
configuration, and outputs all actions as part of the effect. A transition may leave
and enter many states at once, because the states are structured hierarchically.
We have to compute the set of states a transition is leaving and the set of states
it is entering. This is computed using the least common region:

Definition 6 (LCR). Let (S,R, prt) be well-formed. The least common region
is the lowest region which contains all of a given subset of the states S′ ⊆ S .

lcr(S′) � r ⇐⇒ r ∈ R ∧ (
∧

s∈S′
s 6 r) ∧ (∀r′ ∈ R :

∧
s∈S′

s 6 r′ =⇒ r 2 r′)

376 J. Schönborn and M. Kyas

Since any state hierarchy is a tree with root ε, 〈V,2〉 induces a join-semilattice
with top element ε. We observe the following properties: (1) v � v′ ∈ R if v �= v′

and v, v′ ∈ S, and (2) v � v′ ∈ S if v �= v′ and v, v′ ∈ R. Consequently, lcr is a
well-defined function.

Two transitions are in conflict, if they leave a common state. A transition t
leaves all states of a configuration S that are below the least common region of
both its source and target state. This is formalized by ↑(lcr({πsor(t), πtar(t)}))∩S.

Definition 7 (Conflicting Transitions). The set of pairs of transitions that
conflict in configuration S is:

conflict(S) � {(t, t′) ∈ T × T | S ∩ (↑(lcr({πsor(t), πtar(t)}))) ∩
(↑(lcr({πsor(t′), πtar(t′)}))) �= ∅} .

Example 2. The two transitions labeled e/ψ1 and e/ψ2 of right state machine in
Fig. 1 conflict when event e is dispatched end states s0 and s1 are active.

Definition 8 (Enabled Transitions). A transition is enabled for trigger e ∈
E and active states S if the source state is active and if the trigger of the tran-
sition is e. enabled(e,S) � {t ∈ T | πsor(t) ∈ S ∧ πev(t) = e}
When transitions are in conflict, they are selected by priority. A transition whose
source is more deeply nested has higher priority. By defining priority on states
rather than on transitions we are able to consider redefinable states. A state s
has priority over state s′ if and only if: s 6 s′.

While a state machine will try to execute as many fireable transitions as
possible for a given event, there might be many solutions to those sets.

Definition 9 (Fireable Transitions). A set of transitions is fireable if it is
a non empty maximal set of enabled and conflict-free transitions such that no
enabled transition which is not in the set and with higher priority exists.

fireable(e,S) �
{
T ′ ⊆ enabled(e,S) | T ′ �= ∅ ∧(

∀t, t′ ∈ T ′ : (t, t′) ∈ conflict(S) =⇒ t = t′
)
∧
(
∀t ∈ enabled(e,S) \ T ′ :(

∀t′ ∈ T ′ : ¬(πsor(t) 6 πsor(t′)) ∧ ∃t′ ∈ T ′ : (t, t′) ∈ conflict(S)
))}

Definition 10 (Update Configuration). Define the update of a state config-
uration S with respect to a transition t as

upd(t,S) � S\ ↑(lcr({πsor(t), πtar(t)})) ∪
enter(lcr({πsor(t), πtar(t)}), πtar(t)) ,

where

enter(v, s) �⎧⎪⎪⎪⎨⎪⎪⎪⎩
{v} ∪

⋃
r∈R∧prt(r)=v enter(r, s) if v ∈ S

∅ if v ∈ R \ dom(default)
enter(default(v), s) if v ∈ (R ∩ dom(default))\ ↓(s)
enter(next(v, s), s) otherwise,

Refinement Patterns for Hierarchical UML State Machines 377

where next(v, s) � s′ ∈↓(s)∩ ↑(v) ⇐⇒ ∀s′′ ∈↓(s)∩ ↑(v) : s′′ 2 s′. Define the
update of a state configuration with respect to a set of transitions

upd(T ′,S) �
{
S if T ′ = ∅
upd(T ′ \ {t}, upd(t,S)) for some t ∈ T ′.

Proposition 1. The configuration upd(T ′,S) is uniquely determined for any set
T ′ ∈ fireable(e,S).

Proof. Computing upd(T ′,S) is confluent, i.e., the order in which transitions are
chosen from T ′ is irrelevant, because T ′ ∈ fireable(e,S) is conflict free.
�

Definition 11 (Effect). Let T ′ be a set of transitions. Its effect πact(T ′) is the
multiset �πact(t) | t ∈ T ′	. (We write M IN for the set of all multisets over M .)

The effect of a transition is a multiset, because we do not consider the states of
the variables, where the order of executing the actions might have an observable
effect, and because the different orders of executing actions is an unnecessary
complication. Instead, we could have chosen sequences of actions, with transi-
tions that only differ in the order of actions.

As long as a state is marked redefinable wrt. some event arbitrary behavior
may occur upon receiving that event. This anticipates all future changes to the
state that involves transitions triggered that event.

Definition 12 (Chaotic Behavior). We have chaotic behavior if there is a
currently active state in configuration S that is still marked redefinable with
respect to event e and there exists a set of fireable transitions such that all tran-
sitions in that set do not have higher priority.

univ(e,S) ⇐⇒ ∃s ∈ S : redef (e, s) ∧(
fireable(e,S) = ∅ ∨ ∃T ′ ∈ fireable(e,S) : ∀t ∈ T ′ : ¬(πsor(t) 6 s)

)
Definition 13 (Structural Operational Semantics). The operational se-
mantics of a state machine is given by the rules below:

T ′ ∈ fireable(e,S)

S e/πact(T ′)−−−−−−−→ upd(T ′,S)
step

univ(e,S) υ ∈ Ψ IN S′ ∈ C
S e/υ−−→ S′ chaos

fireable(e,S) = ∅ {s ∈ S | redef (e, s)} = ∅
S e/skip−−−→ S

discard

−→∗ denotes the transitive closure of the defined transition relation.

The structural operational semantics gives rise to a new transition system. For
a state machine SM we refer to its semantic counter-part as TS . The set of
all traces of a state machine, written [[SM]], is a sequence of possibly infinite
sequences of pairs e/ψ.

378 J. Schönborn and M. Kyas

Note that actions can be included into the semantics as follows: Change the
update function upd such that the effect of a single transition is applied to both
a configuration and a variable assignment. Now use configurations together with
variable assignments as the SOS transitions system states and adapt the SOS-
rules accordingly.

3 Refinement and Simulation

The UML 2.x standards use the term refinement or its opponent abstraction
in various locations without a specified meaning. The closest characterization
is [5, p. 696]:

Specifies a refinement relationship between model elements at different
semantic levels, such as analysis and design. The mapping specifies the
relationship between the two elements or sets of elements. The mapping
may or may not be computable, and it may be unidirectional or bidirec-
tional. Refinement can be used to model transformations from analysis
to design and other such changes.

This characterization does not specify what is actually meant by refinement. It
serves to document development steps but does not specify what the relation
between two models is. This relation is a “semantic variation point.”

On the other hand, refinement has a very specific sense in literature (see,
e.g., [16] for references) and relates the behavior of two entities. The intuition is
that the more specific entity C can substitute for the more abstract one A in a
context C in such a way that C cannot distinguish C from A.

A refinement in the sense of [5, p. 106] is not a behavioral refinement, be-
cause UML 2.x allows for the refining operation to “add new preconditions and
postconditions” whereas behavioral refinement would only allow to remove pre-
conditions.

Refinement relations are often understood as pre-orders � on systems, where
M � M ′ is read as: All observations made about M are also observations
made about M ′. Observational equivalence M ≡ M ′ can then be understood
as M �M ′ ∧M �M ′.

A transformation is a mapping T from state machines M to state machines
T (M). Such transformations can be formalized as graph transformations, that
just change a part of the state machine and leave the remainder invariant.

Subsequently, we study transformations on UML 2.x state machines and char-
acterize the semantics preserved by them. A transformation T preserves behav-
ior, if and only if T (M) � M holds for all state machines M . It is well known,
that different observations allow for different semantics and that the semantics
form a lattice: Graph isomorphism is the strongest congruence, mutual trace
inclusion the weakest one [18].

Bernhard Rumpe [14] defines behavioral refinement by trace-inclusion, i.e., an
automaton C refines an automaton A, if all runs of C are also runs of A. For
the purpose of this paper we will use the stronger notion of simulation [13]. We
have to adapt the usual definition of simulation to the predicate redefinable.

Refinement Patterns for Hierarchical UML State Machines 379

s3

s1

s0

s2
e1

e1
s3

s1

s0

s2
e1

s3

s1

s0

s2

s4

e1

e1 e2

Fig. 2. State Machines

Definition 14 (Refinement). Let SM C and SM A be two state machines and
TSC and TSA their corresponding transition systems. A relation Re ⊆ CC ×CA

is called a refinement (simulation) if:

1. Initial configurations are related: (Si
C ,Si

A) ∈ Re.
2. For all (SC ,SA) ∈ Re and all e ∈ E :

(a) If SC
e/ψ−−→ S′

C , then there exists S′
A with (S′

C ,S′
A) ∈ Re and SA

e/ψ−−→ S′
A.

(b) {s ∈ SC | redef(e, s)} ⊆ {s ∈ SA | redef(e, s)}.

If there exists a simulation relation between SM C and SM A, then we write
SM C � SM A.

The property redefinable models chaotic behavior and must be preserved by
refinements. This simulation relation is transitive and implies trace inclusion.

4 Refinement Patterns

UML state machines are hierarchical machines. Transferring flat patterns to this
setting requires heavy changes on the side conditions. We show this, by no means
all problems, by an example. Consider the state machines in Fig. 2. Since the
inner-most transition labeled e is prioritized, this transition system will never
reach s3. Thus we are allowed to delete the outer transition, resulting in the
state machine in Fig. 2 in the middle. On the other hand, we might also add a
new state and a new transition, resulting in the state machine of Fig. 2 on the
right. Now we cannot remove the transition from s0 to s3, since it is describing
a transition from the configuration {s0, s1} to {s3}, which will never be taken,
and a transition {s0, s4} to {s3}, which may be taken. Therefore, removing the
transition is not a transformation that preserves simulation. This demonstrates
that the transformations based on flat semantics cannot be transferred to our
setting without large modification.

Semantics Preserving Transformations. In this subsection we discuss se-
mantics preserving transformations.

Definition 15. The set of all reachable configurations is defined as
creach(SM) � {S ∈ C | Si −→∗ S}. The set of all reachable states is defined
as sreach(SM) � {s | ∃S ∈ creach(SM) : s ∈ S}.

We may add or remove any transitions emanating a redefinable state.

380 J. Schönborn and M. Kyas

Proposition 2 (Modify Transitions 1). Let SM � ((S,R, prt), T, default,
redef ,Si) be a state machine, s a state and e an event of SM such that redef(e, s).
Then ((S,R, prt), T ′∪T ′′, default, redef ,Si) ≡ SM where T ′′ ⊆ {(s, e, ψ, s′) | ψ ∈
Ψ, s′ ∈ S} and T ′ � T \ {(s, e, ψ, s′) | ψ ∈ Ψ, s′ ∈ S}. Since inter-region transi-
tions are not well formed we require: ∀t ∈ T ′′ : πsor(t) � πtar(t) ∈ R.

Proof (sketch). We only need to consider configurations in which s is active.
We distinguish two cases: (1) the CHAOS-rule applies to the configuration and
thus no enabled transition with higher priority exists. Then in the semantics
transition system all possible transitions are present, regardless whether they
are also present in the syntactic representation of the state machine. (2) the
STEP-rule is applied, then a transition with higher priority is fired.
�

We may add or remove transitions emanating a state as long as for any reachable
sub-configuration of the state there exists a fireable transition triggered by or
an active substate redefinable wrt. the same event that has higher priority.

Proposition 3 (Modify Transitions 2). Let SM � ((S,R, prt), T, default,
redef ,Si) be a state machine, s ∈ S a state and e ∈ E an event such that
∀S ∈ creach(SM) : s ∈ S implies fireable(e,S∩ �(s)) �= ∅ ∨ ∃s′ ∈ (S∩ �
(s)) : redef(e, s′). Then ((S,R, prt), T ′ ∪ T ′′, default, redef ,Si) ≡ SM where
T ′′ ⊆ {(s, e, ψ, s′) | ψ ∈ Ψ, s′ ∈ S} and T ′ � T \ {(s, e, ψ, s′) | ψ ∈ Ψ, s′ ∈ S}.
Again we have to require ∀t ∈ T ′′ : πsor(t) � πtar(t) ∈ R in order to avoid
inter-region transitions.

Proof (sketch). Let SM � ((S,R, prt), T, default, redef ,Si) be a state machine
and e be an event s.t. ∀S ∈ creach(SM) : s ∈ S =⇒ fireable(e,S∩ �(s)) �=
∅ ∨ ∃s′ ∈ (S∩ �(s)) : redef (e, s′). Let S ∈ creach(SM) such that s ∈ S. Now we
have two cases: If ∃s′ ∈ (S∩ �(s)) : redef(e, s′) holds then the proof is similar
to the proof of Proposition 2. If fireable(e,S∩ �(s)) �= ∅ then there is an enabled
transition with higher priority because only states in the downset are considered.
In this case the added resp. removed transitions do not contribute to the state
machine’s semantics.
�

For any transition we may add or remove transitions with the same event, action
and source. Their target state has to be the default state of the contained region.

Proposition 4 (Modify Target State). Let SM � ((S,R, prt), T, default,
redef ,Si) be a state machine and t � (s, e, ψ, s′) a transition. Then ((S,R, prt),
T ′∪T ′′, default, redef ,Si) ≡ SM where T ′′ ⊆ {(s, e, ψ, s′′) | ∃r : s′′ = default(r)∧
prt(r) = s′} and T ′ � T \ {(s, e, ψ, s′′) | ∃r ∈ R : s′′ = default(r) ∧ prt(r) = s′}.

Proof (sketch). t as well as the transitions in T ′′ share the same source state s.
Thus at most one of them is actually fired. Since the actions are equal there is
no difference in this regard. Since the lower target states are the default states
of their containing regions it follows from Definition 10 that the sames states are
entered. This happens either by default, which is the third case of the definition
of enter, or as the target state, which is first case.
�

Refinement Patterns for Hierarchical UML State Machines 381

Any number of basic states may be added to a region of the state machine. If
the states are added to the root region they are redefinable wrt. to all events.
Otherwise, if the parent state of the region is not redefinable with respect to an
event, then the newly added substates must not be redefinable with respect to
the same event either. If the region was empty, one of the newly added states
must be the default state.

Proposition 5 (Extending State Set). Let SM � ((S,R, prt), T, default,
redef ,Si) be a state machine and r ∈ R and S′ such that S ⊂ S′. For any state
s ∈ S′ and event e ∈ E define redef′(e, s) � redef (e, s) if s ∈ S, redef′(e, s) � /
if r = ε and redef′(e, s) � redef(e, prt(r)) otherwise. For any vertex v ∈ S′ ∪ R
define prt′(v) � prt(v) if v ∈ S ∪ R and otherwise prt′(v) � r. For any re-
gion r′ ∈ R define default′(r′) � default(r′) if r′ �= r or r ∈ dom(default), and
default′(r) � s′ for some state s′ ∈ S′\S. Define Si′ � Si if prt(r) �∈ Si and Si′ �
Si ∪ {default′(r)} otherwise . Then SM ≡ ((S′, R, prt′), T, default′, redef′,Si′).

We may remove any non reachable basic states and transitions emanating these
states. Functions parent, default and redefinable are restricted to the new set of
states.

Proposition 6 (Remove Non Reachable Basic States). Let SM � ((S,R,
prt), T, default, redef ,Si) be a state machine, S′ � (S \ sreach(SM)) ∩ {s ∈ S |
∀r : prt(r) �= s} and T ′ � {t ∈ T | πsor(t) ∈ S \ S′}. Let prt′ equal prt,
default′ equal default and redef′ equal redef on domain (S \S′)∪R. Then SM ≡
((S \ S′, R, prt′), T ′, default′, redef′,Si).

A new region may be added to any state.

Proposition 7 (Add Regions). Let SM � ((S,R, prt), T, default, redef ,Si) be
a state machine and s ∈ S. Then SM ≡ ((S,R′, prt′), T, default, redef ,Si) where
R ⊂ R′, and for any vertex v ∈ S ∪ R′ define prt′(v) � s if v ∈ R′ \ R and
prt′(v) � prt(v) otherwise.

All empty regions, except the root region, may be removed.

Proposition 8 (Remove Empty Regions). Let SM � ((S,R, prt), T, default,
redef ,Si) be a state machine and R′ � R \ {r ∈ R | ∀s ∈ S : prt(s) �= r ∧ r �= ε}.
Let prt′ equal prt on domain S∪R′. Then SM ≡ ((S,R′, prt′), T, default, redef ,Si).

Note that we can add resp. remove a non reachable state containing regions
and other states by multiple successive application of Prop. 7 and Prop. 5 resp.
Prop. 8 and Prop. 6.

Definition 16 (State Hierarchy Epimorphism). Let (S′, R′, prt′) and
(S,R, prt) be two state hierarchies. A function α : (S′, R′, prt′) → (S,R, prt) is
called a state hierarchy epimorphism, if: α : S → S′ is total and onto, α : R → R′

is total and onto, α(ε) = ε, and α(prt(v)) = prt′(α(v)). To avoid the duplication
of actions, we require that two regions must not be mapped into the same parent
state, i.e. we do not copy regions without their containing state:
∀r, r′ ∈ R′ \ {ε} : prt′(r) = prt′(r′) ⇒ α(r) �= α(r′) ∨ r = r′

382 J. Schönborn and M. Kyas

We may duplicate states together with their incoming and outgoing transitions.

Proposition 9 (Duplicating States and Transitions). Let SM � ((S,R,
prt), T, default, redef ,Si) be a state machine, (S′, R′, prt′) a state hierarchy such
that α : (S′, R′, prt′) → (S,R, prt) is a state hierarchy epimorphism. Define

1. T ′={(s, e, ψ, s′) | (α(s), e, ψ, α(s′)) ∈ T∧α(lcr({s, s′})) = lcr({α(s), α(s′)})}
2. ∀r′ ∈ R′ : default(α(r′)) = α(default′(r′))
3. ∀s ∈ S′ : redef′(e, s) = redef (e, α(s))
4. Si′ = enter′(ε, default′(ε))

Then ((S′, R′, prt′), T ′, default′, redef′,Si′) ≡ SM .

Example 3. Consider the state machine in Fig. 3 on the left. Duplicating all
states and regions below the root region yields the state machine depicted in
Fig. 3 on the right. The corresponding state hierarchy epimorphism maps states
identified by a letter and a number to the state identified by the letter. Since
default′ has to be a function, either E1 or E2 can be the default state in the root
region. One of them has to be the default state, because otherwise default(α(ε)) =
default(ε) = E and default′(r) is undefined, which contradicts condition 2.

A transition t′ from A1 to B2 labeled with e/ψ1 must not be added, even
though α(A1) = A, α(B2) = B and there is a transition from A to B labeled
with e/ψ1: When the states {A,C ,E} are active and event e is dispatched,
the state machine in Fig. 3 on the left reacts with ψ1, ψ2. When the states
{A1 ,C1 ,E1} are active, the state machine in Fig. 3 on the right reacts with ψ1
only. Therefore Fig. 3 on the right cannot refine Fig. 3 on the left with t′ added.
Adding t′ is prevented by α(lcr({s, s′})) = lcr({α(s), α(s′)}).

Assume that the topmost object in the hierarchy to be duplicated is a region
which contains two states A and B and there is a transition from A to B labeled
e/ψ1. Now duplicating the region duplicates A and B to A1 ,A2 ,B1 ,B2 . Similar
as above α(A1) = A, α(B2) = B holds and the transition t′′ from A1 to B2 la-
beled with e/ψ1 must not be added, too, because the transition leaves one region
and enters the other region without leaving or entering the state containing both
regions. This is not a valid transition according to the UML semantics. Adding
t′′ is prevented by the constraint α(lcr({s, s′})) = lcr({α(s), α(s′)}).

Reducing Nondeterminism. So far we only discussed patterns with simu-
lation equivalence. We now present patterns that reduce nondeterminism and
thereby remove behavior from the system.

We may remove the redefinable property from states as long as Property (1)
of redefinable presented right after Example 1 is preserved.

Proposition 10 (Remove Redefinable). Let SM � ((S,R, prt), T, default,
redef ,Si) be a state machine. Let redef′ be such that ∀e ∈ E : ∀s ∈ S :
redef′(e, s) =⇒ redef (e, s) ∧ ∀s′ ∈↓(s) ∩ S : redef′(e, s′). Then ((S,R, prt), T,
default, redef′,Si) � SM .

Refinement Patterns for Hierarchical UML State Machines 383

E

A

F

e/ψ3

B

C D

e/ψ1

e/ψ1

e/ψ2

e/ψ2

E1

A1

F1

e/ψ3

B1

C1 D1

e/ψ1

e/ψ1

e/ψ2

e/ψ2

E2

A2

F2

e/ψ3

B2

C2 D2

e/ψ1

e/ψ1

e/ψ2

e/ψ2

e/ψ3e/ψ3

Fig. 3. A state machine before(left) and after(right) state duplication

Proof (sketch). Any reachable configurationS of ((S,R, prt), T, default, redef′,Si)
is a reachable configuration of SM . From the definition of redef ′ follows that {s ∈
S | redef ′(e, s)} ⊆ {s ∈ S | redef(e, s)} with equality as simulation.
�

If a state is not redefinable wrt. an event and has more than one outgoing
transition triggered by that event, one of the transitions can be removed if all
sets of fireable transitions containing the transition to be removed are not fireable
after removal.

Proposition 11 (Remove Transitions). Let SM A � ((S,R, prt), T, default,
redef ,Si), e ∈ E, s ∈ S such that not redef (e, s) and T ′ � {t ∈ T | πsor(t) =
s ∧ πev(t) = e}, t ∈ T ′ and SM C � ((S,R, prt), T \ {t}, default, redef ,Si). If
|T ′| > 1 and ∀SA ∈ CA : ∀T ′′ ∈ fireableSMA

(πev(t),SA) : t ∈ T ′′ ⇒ T ′′ \ {t} �∈
fireableSMC

(πev(t),SA). Then SM C � SM A.

Proof (sketch). Let t be the deleted transition. Because the states and redef re-
main unaffected we can use equality as simulation relation, i.e. (SC ,SA)∈Re ⇔
SC = SA. Let (SC ,SA) ∈ Re. Let e ∈ E and SC

e/ψ−−→ S′
C such that e = πev(t)

and πsor(t) ∈ SC , otherwise we have SA
e/ψ−−→ S′

A where S′
C = S′

A. Let T ′′ be

the set of transitions that is fired when commencing step SC
e/ψ−−→ S′

C . We have
|T ′′| > 0 since |{t′ ∈ T | πsor(t) = πsor(t′) ∧ πev(t) = πev(t′)}| > 1. We show

that T ′′ ∈ fireableSMA(πev(t),SA) and thus SA
e/ψ−−→ S′

A where S′
C =S′

A. Suppose
T ′′ �∈fireableSMA

(πev(t),SA) then T ′′∪{t}∈fireableSMA
(πev(t),SA) otherwise we

have T ′′ �∈ fireableSMC
(πev(t),SC). This is a contradiction to ∀SA ∈CA : ∀T ′′ ∈

fireableSMA(πev(t),SA) : t∈T ′′ ⇒ T ′′ \ {t} �∈fireableSMC (πev(t),SA).
�

Refinement relations are based on the semantics and not in the syntactic model.
In flat state machines a step in the semantics corresponds to the firing of at
most one transition. Then deletion of a transition in the model removes all
corresponding steps in the semantics, and the side condition is always satisfied.
The side condition is caused by hierarchy and orthogonal regions, where the
semantic steps are composed of more than one syntactic transition.

Example 4. Consider the state machine in Figure 4 with active states {A,C ,E}.
On event e the machine can evolve to {B ,D ,E} with actions ψ1, ψ2 and to {F}

384 J. Schönborn and M. Kyas

E AB FC D
e/ψ1e/ψ2 e/ψ3

Fig. 4. Removal of conflicting transitions

with action ψ3. When the transition from A to B is removed, the following re-
actions are possible: With action ψ2 to {A,D ,E} and with action ψ3 to {F}.
Removing the transition does not remove behavior but it changes it. The set
{(A, e, ψ1,B), (C , e, ψ2,D)} is a set of fireable transitions. After deleting transi-
tion (C , e, ψ2,D) {(A, e, ψ1,B)} is a set of fireable transitions. Therefore deleting
the transition is not a refinement according to Prop. 11.

5 Conclusions, Related Work, and Future Work

We have studied refinement patterns for hierarchical UML state machines. We be-
lieve that our semantics is closest to the semantics defined in the UML standard [5]
when compared to work cited below. We also believe, that we cover the richest sub-
set of the UML state machine language. We are aware that the patterns presented
in this paper are not complete but that is not the goal of the paper. Rather than
providing more, probably more complex and confusing, patterns we selected a ba-
sic subset of transformations. In any case changes of the model, not covered by
the patterns presented, can be checked with standard automated refinement tech-
niques on the semantic transition systems. Therefore we believe that the transfor-
mations presented are valuable basis in a practical setting. The question whether
there are additional simple and useful patterns is future work.

In order to facilitate the development of state machines, we have introduced
a new stereotype «redef E», which expresses that the annotated state is under-
specified with respect to the reaction to events of E. Without this stereotype,
UML state machines drop events to which no reaction is specified.

The most comprehensive discussion of refinement of automata in an object-
oriented setting can be found in Bernhard Rumpe’s doctoral thesis [14]. He
presents a formalism in which underspecification of event handling allows ar-
bitrary behavior. Behavior is constrained if transitions are defined in the state
machines that handle the given event. This is in contrast to UML state machines,
where an event that is not handled by a transition is removed from the event
pool without a state change or a reaction.

From a methodical point of view, explicit underspecification is an advantage,
because state machines may drop events if they cannot be handled. Rumpe [14]
leaves underspecification implicit, where it is not apparent whether the develop-
ment of the system has been “finished.”

Sun Meng et al. [15] propose refinement patterns similar to ours. Their seman-
tics is based on Lattela et.al. [7], where the priority relation is inverted to ours:
Sun Meng delegates events “downwards” to substates whereas we delegate them
upwards towards the superstates, as required in [5]. Another difference stems

Refinement Patterns for Hierarchical UML State Machines 385

from a different interpretation of the stutter rule: If an event cannot be handled
by the state machine, Meng defers the event whereas we drop the event.

The refinement patterns for μ-charts of Reeve and Reeves [19] do not carry
to our setting, either. μ-charts have parallel regions, but they have no hierarchy
and, consequently, no interlevel transitions. The theory deals with feedback of
events, i.e., events generated in a transition are feed back to the state machine.
This does not happen in UML state machines. As Rumpe, Reeve and Reeves
default to chaotic behavior and restrict by adding transitions, whereas we specify
chaotic behavior explicitly.

The main results are: Some transformations proposed by Rumpe do not carry
over to Sun Meng’s or our setting, since the language features do not carry over.
Other patterns appear to be quite general, but have different side conditions
under which the transformation is a refinement. Compare, for instance the rule
for adding transitions, Proposition 2 in this paper, Proposition 6.6 in [14] and
Law 5 in [15]. In [14], a transition may be added, if no other transition leaving
the same source state exists, because he considers that state under-specified, and
any behavior is allowed if nothing is specified. In [15], a transition may be added
under a the same condition, but there, lack of specified behavior causes stutter-
ing. Finally, in our case the side conditions are more complex, since the state
machine drops events if nothing is specified. This cannot be refined freely, since
it might change subsequent behavior, or generate unexpected actions. Therefore,
we mark states with redefinable to specify that the state is underspecified.

Many features of the UML state machine language have not been considered
here. Some of those features can be covered easily, like fork and join states, entry
points, exit points, and junction. We did not present our results for these features
for lack of space. Local and internal transitions are also easy to include, because
they are semantically similar. Syntax and semantics can be found in [12], and
the patterns need only marginal changes. Other language features are harder
challenges, e.g., history pseudo states and final states.

UML allows to associate actions to states, which are executed on entering or
leaving a state (this can be simulated in our setting) and also while the state is
active. The latter may be investigated in the future.

Also, event deferral is not considered. If an event is marked as “deferrable” and
no transition is triggered by this event, then it will not be considered for selection,
effectively disabling the discard rule. The resulting patterns are similar to [15].

Object states, variable states, and actions that transform these are not consid-
ered. Our requirement of equality of actions implied in Def. 14 already prepares
for handling these. The refined system may use any sequence of actions that is
a data-refinement of the original action. This is outside the scope of this paper
and treated exhaustively in, e.g., de Roever and Engelhardt [16].

References
1. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-

puter Programming 8(3), 231–274 (1987)
2. Harel, D., Gery, E.: Executable object modeling with Statecharts. Computer 30(7),

31–42 (1997)

386 J. Schönborn and M. Kyas

3. Selic, B., Gullekson, G., Ward, P.T.: Real-Time Object-Oriented Modeling. John
Wiley & Sons, Inc., New York (1994)

4. Maraninchi, F., Rémond, Y.: Argos: an automaton-based synchronous language.
Comp. Lang. 27(1/3), 61–92 (2001)

5. OMG: UML 2.1.2 Superstructure Specification (November 2007),
http://www.omg.org/cgi-bin/docs/formal/2007-11-02.pdf

6. Fecher, H., Schönborn, J., Kyas, M., de Roever, W.P.: 29 new unclarities in the
semantics of UML 2.0 state machines. In: Lau, K.-K., Banach, R. (eds.) ICFEM
2005. LNCS, vol. 3785, pp. 52–65. Springer, Heidelberg (2005)

7. Latella, D., Majzik, I., Massink, M.: Towards a formal operational semantics of
UML Statechart diagrams. In: Ciancarini, P., Gorrieri, R. (eds.) FMOODS, pp.
331–347. Kluwer Academic Publishers, Dordrecht (1999)

8. von der Beeck, M.: A structured operational semantics for UML-statecharts. Soft-
ware and Systems Modeling 1(2), 130–141 (2002)

9. Bianco, V.D., Lavazza, L., Mauri, M.: A formalization of UML Statecharts for
real-time software modeling. In: The Sixth Biennal World Conference of Integrated
Design Process Technology, IDPT 2002 (2002)

10. Jürjens, J.: Formal semantics of interacting uml subsystems. In: Jacobs, B.,
Rensink, A. (eds.) FMOODS, pp. 29–44. Kluwer Academic Publishers, Dordrecht
(2002)

11. Börger, E., Cavarra, A., Riccobene, E.: Modeling the meaning of transitions from
and to concurrent states in UML state machines. In: SAC, pp. 1086–1091. ACM
Press, New York (2003)

12. Fecher, H., Schönborn, J.: UML 2.0 state machines: Complete formal semantics
via core state machine. In: Brim, L., Haverkort, B.R., Leucker, M., van de Pol,
J. (eds.) FMICS 2006 and PDMC 2006. LNCS, vol. 4346, pp. 244–260. Springer,
Heidelberg (2007)

13. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)

14. Rumpe, B.: Formale Methodik des Entwurfs verteilter objektorientierter Systeme.
Herbert Utz Verlag Wissenschaft (1997)

15. Meng, S., Naixiao, Z., Barbosa, L.S.: On semantics and refinement of UML State-
charts: A coalgebraic view. In: SEFM, pp. 164–173. IEEE, Los Alamitos (2004)

16. de Roever, W.P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods
and their Comparison. Cambridge Tracts in Theoretical Computer Science, vol. 47.
Cambridge University Press, Cambridge (1998)

17. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cam-
bridge University Press, Cambridge (2002)

18. van Glabbeek, R.J.: The linear time-branching time spectrum (extended abstract).
In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–297.
Springer, Heidelberg (1990)

19. Reeve, G., Reeves, S.: Logic and refinement for charts. In: Estivill-Castro, V.,
Dobbie, G. (eds.) ACSC. CRPIT, vol. 48, pp. 13–23. Australian Computer Society
(2006)

http://www.omg.org/cgi-bin/docs/formal/2007-11-02.pdf

Specification and Validation of Behavioural
Protocols in the rCOS Modeler

Zhenbang Chen1,2, Charles Morisset1, and Volker Stolz1

1 United Nations University
Institute for Software Technology

P.O.Box 3058, Macau SAR
{zbchen,cm,vs}@iist.unu.edu

2 National Laboratory for Parallel and Distributed Processing
Changsha, China

Abstract. The rCOS modeler implements the requirements modelling
phase of a model driven component-based software engineering process.
Components are specified in rCOS, a relational calculus for Refinement
of Component and Object Systems. As an aid to the software engineer,
the modeler helps to separate the different concerns by creating differ-
ent artifacts in the UML model: use cases define a scenario through a
sequence diagram, and methods are given as guarded designs in rCOS.
rCOS interface contracts are specified through state machines with mod-
elling variables. Messages and transitions in the diagrams are labelled
with method invocations.

The modeler checks the consistency of those artifacts through the
process algebra CSP and the model checker FDR2: a scenario must follow
a contract, and an implementation must not deadlock when following the
contract. We illustrate the translation and validation with a case study.

1 Introduction

Software engineering is becoming more complex due to the increasing size and
complexity of software products. Separation of concerns is an effective means to
tackle modelling of complex system. The quality of a system can be improved
by applying formal techniques in different development stages.

In our previous work, we introduced the notion of an integrated specifica-
tion that derives a specification of a component-based system from a UML-like
model for a use case [2]. A use case defines a syntactic interface (the provided
methods) and controller class implementing this interface plus its referenced data
structures, a system sequence diagram involving only a single actor and the com-
ponent that describes the external behaviour, and a state machine describing
the internal behaviour of the component. In the sequence diagram and the state
machine, guarded transitions are labelled with methods from the interface.

Apart from the usual notion of well-definedness (also called static consis-
tency) for an object-oriented design, we require the dynamic consistency of
the specification: the state machine must accept all interaction sequences

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 387–401, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

388 Z. Chen, C. Morisset, and V. Stolz

described by the system sequence diagram, and any implementation of the in-
terface must not deadlock if invoked according to the protocol given through the
state machine.

We have implemented the requirements modelling stage of a use case-driven
model-based component development process following the rCOS methodology
in the rCOS modeler. An rCOS model is a UML model extended through the
rCOS UML profile [5]. The tool supports static checking of the dynamic consis-
tency of the model through semi-automated translation into the process algebra
CSP and the model checker FDR2 [19,6].

We define an automated abstraction into ‘flat’ rCOS that only uses primitive
types. The abstraction is further parametrized according to criteria specified by
the user, e.g. to hide method- (and thus message-) arguments/return parameters.
This flat representation is then translated into CSP, which we use to check that
the generated rCOS design follows the protocol by checking the deadlock freedom
of parallel composition of the generated CSP processes.

The paper is organized as follows: Section 2 presents our approach of separa-
tion of concerns including the underlying theory, the used modelling artifacts,
and a brief explanation of integrated specification and checking; we explain the
dynamic consistency checking in Section 3, which contains the translation from
the rCOS model to CSP and the abstraction method used in the translation;
finally, Section 4 concludes.

Related work. Olderog et al. present CSP-OZ, a formal method combining
CSP with the specification Object-Z, with UML modelling and Java implemen-
tations [12]. They use a UML profile to annotate the model with additional data.
Model properties can then be verified on the CSP, and their notion of contracts
of orderings between method invocations through JML and CSPjassda can be
enforced on Java programs at runtime. Their tool Syspect is also built on the
Eclipse Rich Client Platform.

Executable UML [11] introduces a UML profile that gives a suitable semantics
for direct execution to a subset of UML. As such, it focuses on execution and
not formal verification. Use cases and state diagrams are used, procedures are
specified in an action language.

The practicability of generating a PROMELA specification for the Spin model
checker from rCOS has been investigated in [22]. The semantics of the rCOS
(PROMELA) specification is derived from executing the main method. The
model is executed by the model checker for a bounded number of objects and
invariants are checked.

Snook and Butler [20] use B as the underlying theory during the modeling
and design process using UML. The class diagrams and state diagrams in UML
can be translated to a B description, including the function specifications and
guards for operations. They also use a state variable in B to represent tran-
sitions during the translation of a state diagram. The refinement notion in B
supports refinement between different UML models in the development stages.
Ng and Butler discuss a similar translation of UML state machines to CSP in
[14,13].

Specification and Validation of Behavioural Protocols 389

Our concern in this paper is checking the consistency of multi-view specifi-
cations. The translation to CSP also extends to the verification of component
composition in the rCOS theory (see [1]).

2 Separation of Concerns

The rCOS language is based on UTP, Unifying Theories of Programming [8],
and is object-oriented. We give here a brief description of its main features. We
refer to [4] for further details.

Method. A method m ∈ Meth is a tuple m = (Name, in, out , g, d) where Name
is the name of the method, in (resp. out) is a set of input parameters together
with their type, g ∈ G is the guard and d ∈ D is the design. A guard is a boolean
expression, which does not contain any primed variable from the post-state, and
cannot refer to parameters of the method. A design could be

– a pre/post-condition pair [p � R], where p and R are predicates over the
observables,

– a conditional statement d1 e� d2, where d1 and d2 are designs and e is a
boolean expression,

– a sequence d1; d2, where d1 and d2 are designs,
– a loop &(e, d1), where d1 is a design and e is a boolean expression or
– an atomic command, such as an assignment, a variable declaration, a method

call, skip or chaos.

Interfaces. An interface I ∈ I is a tuple I = (FDec,MDec) where FDec is
the fields declaration section and MDec the method declaration section. Each
signature is of the form (m, in, out), where in are input parameters and out are
the output parameters.

Class. A class c ∈ C is a tuple c = (FDec,MSpec) where FDec is a set of fields
and MSpec ⊆ Meth a set of methods. We assume that we can project onto the
public and private attributes (or methods) of interfaces (and classes respectively)
through I .FDecpub and I .FDecpriv .

Contracts of Interfaces. A contract Ctr = (I , Init ,MSpec,Prot) specifies

– the allowable initial states by the initial condition Init , a predicate over the
attributes in I .

– the synchronization condition g on each declared method and the function-
ality of the method by the specification function MSpec : I .MDec → (G×D)
that assigns each method defined in I to a guarded design g&D.

– Prot is called the protocol and is a set of sequences of call events; each is of
the form ?op1(x1), . . . , ?opk(xk). A protocol can be specified through many
different means, here we will consider protocols generated from sequence
diagrams and state machines.

390 Z. Chen, C. Morisset, and V. Stolz

UML-based Requirement Specification

The models are defined in the Unified Modeling language (UML), and we apply
Model Driven Development and Architecture (MDD/MDA) techniques [16].

For the modelling part, we use UML models and a UML profile to tie together
the necessary information, e.g. by assigning which specification belongs to a use
case. The specifications are bundled in packages and tagged with stereotypes
from the profile to mark them as belonging to the rCOS modeling domain. The
profile is documented in [5].

The advantage of using UML is three-fold: firstly, we can provide the familiar
modelling notations for the system developer, yet augmented with a rigorous un-
derlying mathematical semantics; secondly, we can reuse the UML meta-model
by using a profile to get an rCOS meta-model, because rCOS intentionally over-
laps with UML; lastly, there are numerous tools and methodologies for UML,
and UML models are the de facto standard models that they create or exchange,
so we can harness their powers to enhance the rCOS tool, e.g. we support import-
ing from the UML tool MagicDraw [15], and also re-used an existing graphical
UML modeler, saving us development effort.

2.1 Example

We use one use case (called ProcessSale) of our recent case study [3] as the
example, which is a trading system based on Larman’s textbook [9], originally
called the Point of Sale (POS) system. The trading system records sales, handles
both cash payments and card payments as well as inventory management. The
system includes hardware components such as computers, bar code scanners,
card readers, printers, and software to run the system. The normal courses of
interactions in the ProcessSale use case are informally described:

1. The cashier sets checkout mode to express check out or normal check out.
2. When a customer comes to the checkout with their items to purchase, the

cashier indicates the system to handle a new sale.
3. The cashier enters each item, either by typing or scanning in the bar code; if

there is more than one of the same item, the cashier can enter the quantity.
The system records each item and its quantity and calculates the subtotal.
When the cash desk is operating in express mode, only a predefined maximum
number of items can be entered.

4. When there are no more items, the cashier indicates to the system end of
entry. The total of the sale is calculated.

5. The customer can pay by cash or credit card. If by cash, the amount received
is entered. In express mode, only cash payment is allowed. After payment,
the inventory of the store is updated and the completed sale is logged.

There are exceptional or alternative courses of interactions, e.g., the entered bar
code is not known in the system. At the requirements level, we capture these
exceptional conditions as preconditions.

Specification and Validation of Behavioural Protocols 391

2.2 Integrated Specification

In the requirements modelling stage of software development, each use case is
modelled as a component, with the specification of the contract of its provided
interface containing the interaction protocol, the reactive behaviour, and the
functionalities the methods provided in the interface. The main advantage of
the rCOS methodology is that we can assure consistency of the multi-view spec-
ifications [10], for example by checking trace equivalence or deadlock freedom
of the diagrams. We generate appropriate CSP specifications [3] for the FDR2
model checker [7,6]. While looking at state machines for verification, combining
UML and CSP is certainly not new, cf. [14], but we hope to make state diagrams
more prominent in a formal development process, and we also consider guarded
designs. The overview of the integrated specification and checking is shown in
Fig. 1: the interface serves as the signature of a contract that contains a sequence
diagram for the scenario and the state machine for the protocol. A component
can implement a contract, and a component can be refined. We later discuss the
different operations like generating CSP from the different artifacts, or integrat-
ing the contract with a functionality specification (a class containing the business
logic) into a guarded design that implements the contract. Together with appro-
priate helper functions for abstractions, we can then turn an implementation
into a ‘flat’ rCOS program. We can then use again CSP to verify that the im-
plementation actually follows a contract. This is interesting for implementations
coming from third parties that claim to respect a particular contract.

The component in the contract box aggregates the relevant data like objects,
classes, and their associations taking part in the use case. The data types and
classes are modelled as a class diagram that is derived from the problem de-
scription. We borrow the term “conceptual” class diagram from Larman [9] to
indicate that at this stage, we do not assign visibility to the attributes and as-
sume that they are all public. Also, there are initially no methods except for the

Sequence
Diagram

State
Machine

interface component

component

implemented by

CSP CSPconsistent?

generates generates

signature
signature

integration

deadlocks? CSP

abstraction

is refined by

: transformation : relation : reference

Contract Implementation

Fig. 1. Overview of specification and checking

392 Z. Chen, C. Morisset, and V. Stolz

controller class implementing the provided interface, and each method of the
controller class can be specified with a guard and the function specification. The
function specification of the enterItem method in the control class CashDesk for
the CashDeskIF contract of the ProcessSale use case is as follows.
public enterItem(Barcode code, int qty ;) {

VAR LineItem item ;
[pre : store .catalog. find(c) != null ,

post : line ’ = LineItem.new(c, q) ;
line .subtotal’ = store.catalog. find(c). price ∗ q;

sale . lines .add(line)] ;
[� itemCounter’ = itemCounter + 1]

}

In rCOS, the notation [p � R1;R2] stands for [p � R1]; [true � R2] and that for
each post-condition, there is an implicit statement leaving all the variables non
concerned by the post-condition unchanged.

For different concerns, the sequence and state diagrams illustrate the inter-
action of the user with the system, which will have to conform to the protocol
in the component contract. We allow only a limited use of the UML sequence
diagram (collaboration) facility: there is only one actor (the user) and one pro-
cess (the system). Messages only flow from the user to the system and represent
invocations of methods in the component interface. We allow the usual control
structures such as iteration and conditional branches in the sequence diagram.
These have controlling expressions in the form of boolean queries or counters.

While the sequence diagram describes the possible interactions with the sys-
tem the user can have, the state machine describes the contract of the provided
interface. Edges in the UML state machine are labelled with an operation of the
interface, which may have the form g & op(x̄; ȳ), indicating that this edge may be

Fig. 2. Sequence Diagram Fig. 3. State Diagram

Specification and Validation of Behavioural Protocols 393

triggered by an invocation of method op iff the guarding expression g is evaluated
to be true. We allow nondeterminism by having multiple outgoing edges from
the same state, each labelled with the same method and potentially overlapping
guards for specification purposes, but point it out to the user as potentially un-
desired in the light of a future implementation of the protocol. Choice nodes
with a boolean expression allow if-then-else constructs, or non-deterministic in-
ternal choice (not present in example). The protocol of the CashDeskIF contract
is modelled by the sequence diagram in Fig. 2 and the dynamic flow of control
by the state diagram in Fig. 3.

Naturally, there is a close relation between the trace languages over the
method calls induced by the sequence diagram and the state diagram: the state
machine must at least accept the runs of the sequence diagram. Conversely, the
problem description should specify if the state machine is allowed to offer more
behaviour than the sequence diagram.

3 Verification

For the translation of UML state machines into CSP, we limit ourselves to a
subset of the features available in UML. Some of the limitations are arbitrary
and based on the practical diagrams that we use in the case study. Some obvious
extensions and shorthands are left open as future work.

We only allow a single initial state and plain states, connected by transitions.
State labels do not carry any semantics and are just informative; they may be
used e.g. to generate labels in subsequent stages.

Given a contract Ctr , transitions between states are labelled with an operation
op(x̄; ȳ) ∈ I .MDec from the associated interface I of the contract that have a
‘flat’ guarded design gCtrop

&DCtrop
. In an integrated specification, the operation

op is mapped to a guarded design gCop & DCop in a class C. The guarding
expression gCtrop

may only refer to private attributes of the interface (modelling
variables), and gop only to members of the class. Missing guards are assumed to
be true. We do not use UML’s effects to designate an activity that occurs when a
transition fires, but will instead use the method specification from the contract.

For the translation to CSP, the rCOS guarded designs must be mapped into
CSP. As this is generally hard to automate because some abstraction needs to
be applied, we proposed that this step is done by a verification engineer [10].

We simplify and automate things as much as possible in the tool: for exam-
ple, constructs over integers (or sets thereof) can usually be trivially abstracted
into CSP. We expect that modelers use mostly primitive types in guards of
state machines and sequence diagrams. Also the guarded design derived from an
integrated specification uses integers to identify the current and successor state.

Objects and object references of course pose a problem, since CSP has no
concept of object orientation. Thus objects and any use of navigation in com-
plex expressions must be broken down. Since we can handle ‘flat’ rCOS, that
only uses primitive types, more easily as described above, we solve the problem by
allowing the verification engineer to define an abstraction function

394 Z. Chen, C. Morisset, and V. Stolz

α : rCOS → rCOS . α should preserve the refinement relation, that is formally in
rCOS, ∀m ∈ rCOS : m � α(m). That way, we translate an object oriented rCOS
specification into CSP by going through an intermediate step where the verifica-
tion engineer applies the abstraction function (in this case from object-oriented
to ‘flat’ rCOS), from which we then generate the CSP. We intend to provide a
library of abstractions, for example, only considering object identifiers (again in
the form of integer values) for objects, and for common types like sets and bags.
For the latter, there can be different granularity, like only considering if such
a structure is empty or if it may be full in a three-valued abstraction. Another
simple abstraction is hiding variables. Since the result has to be another valid
rCOS specification, all expressions referring to the now hidden variables have to
be properly abstracted as well. Currently it is the responsibility of the user to
consider the implications of his chosen abstraction with regard to soundness and
completeness of any property of the abstracted model, and the impact on the
size of the state space of the model.

Let Csp denote a syntactically and statically valid CSP specification consisting
of a set of process definitions. We consider now contracts in CtrSM , that are
contracts for which the protocol is defined by a state machine sm = 〈i : V, S :
2V, trans : 2(V×MName×V)〉, where trans ⊆ (S × MName × S) is the relation
defining transitions between states and operations of the interface.

We define the translation function for a contract csp : Ctr → Csp by
following the outgoing transitions from the initial state of the state machine
(denoted in the following by Ctr .sm). This also eliminates unreachable parts.
Whether we chose a breadth-first or depth-first strategy does not matter. cspsm :
V → Csp recursively translates all outgoing transitions of a state. We map each
state in the state machine (italic s, t, . . .) to a CSP process (typewriter s,t,. . .)
using unique names. We remind the reader that these are variables and thus
placeholders for the identifier of a state or process.

Also, we need to consider that we need slightly different translations depend-
ing on the target mode of our translation: at least the state machine may be in
the role of specification or implementation (sequence diagram vs. state machine,
state machine vs. implementation, two implementations against each other). The
specification is always translated using internal choice, while the implementation
uses external choice for call-ins. Therefore, we use in the definitions below the
choice operator

∏
to indicate that we choose angelic or demonic behaviour de-

pending on the context we use the translation in. Thus we have:

csp : CtrSM → Csp

csp(Ctr) = PInit ∪ cspsm(Ctr .sm.i),
PInit =

∏
c̄ ∈Ctr .Init(Ctr .I .FDecpriv)

smi(c̄) (non-deterministic initialisation
of I .FDecpriv)

where PInit is a CSP process invoking the process corresponding to the initial
state smi with given values c̄ as per the specification if I .init from the interface
for the formal parameters st = I .FDec, and

Specification and Validation of Behavioural Protocols 395

cspsm : V → Csp

cspsm(s) = s(st) ∪
⋃
t∈ts

cspsm(t.t) (translation of transitive closure)

s(st) = csptrans (ts, ∅) (a process for each state)
ts = {〈s,m, t〉 | 〈s,m, t〉 ∈ sm.trans} (outgoing transitions of s).

In the translation of the outgoing transitions in csptrans , we choose a translation
that returns a single CSP process definition and handles both kinds of choice:
as specification, we are allowed to call any method enabled by the protocol (in-
ternal choice), as implementation we have to accept every path the environment
exercises (external choice). Guards have to be handled specially when trans-
lating with internal choice. The specification must only chose enabled courses
of interaction, thus we turn each guard into an if-then-else over the guarding
expression. A specification may still deadlock if no branch is enabled. The recur-
sive construction below collects all enabled transitions in the specification and
implementation and allows them to chose any enabled transition:

csptrans (ts, ps) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
cspval(m.g) & csp(〈s,m, t〉) iff ts = {〈s,m, t〉}, ps = ∅
(csp(〈s,m, t〉)

∏
ps)cspval(m.g) � (

∏
ps) iff ts={〈s,m, t〉}, ps �=∅

csptrans (ts\{t}, ps∪ {csp(〈s,m, t〉)}) cspval(m.g) � csptrans (ts\{t}, ps),
t ∈ ts, otherwise (push choice into branches).

The function cspval for translating integer and boolean operations into CSP is
omitted, since we do not handle navigation paths and method calls as we assume
‘flat’ rCOS as input. We only allow simple boolean and integer operations (and
finite sets thereof). We do not consider the degenerate case of a contract without
any methods. For csp(〈s,m, t〉), we handle the translation of a transition to a
regular state in CSP:

csp(〈s,m, t〉) = call m?x̄→ cspm

(
m, ret m!c̄→ t(st)

)
We split the call and return of a method m into two different events call m and
ret m, so that the environment can synchronize on them. The return values
c̄ in the output event must be valid expressions over variables in the formal
parameters st plus any locally declared variables. The process t is created by the
previous definition of cspsm since we translate all states in the transitive closure.
Again choice resolves the non-determinism if there is more than one successor
state (consider e.g. the predicate exmode=true
 exmode=false which allows
progress with either of the values). Likewise, cspval(m.g) is the abstraction of an
rCOS guard into CSP. In case of a deterministic post -mapping through cspm()
below, it degenerates into a single branch.

The declaration of the CSP channels for events call m and ret m requires
the mapping of ‘flat’ rCOS types of input and output/return parameters to CSP
data types (currently only integers and boolean, for objects and set-like data
structures see future work).

396 Z. Chen, C. Morisset, and V. Stolz

We define the translation of a sequential composition of designs mixed with
CSP expressions, assuming right-associativity of the operator to simplify the
rules: d1; d2; d3, . . . = d1; (d2; (d3; (. . .) . . .)). We convert an imperative program
with assignments into a functional style, where de is the continuation that has
to be executed/translated at the end of a sequence:

cspm(d, de) = match d with
| skip −→ cspm(de, skip) if de �= skip,

skip else (end of translation branch)
| d1; d2 −→ cspm(d1, d2; de)
| Var T x; dv; End x −→ cspm(dv, skip); cspm(de, skip)

(assignments introduce new scope)
| x := e −→

∏
x∈cspval(e)

cspm(de, skip) (new scope for x)

| &(e, d1) −→ W(st),where W is a fresh process name,
W(st) = cspm(d1, W(st)) cspval (e) � cspm(de, skip)

| [p � R] −→ cspm(R, de) cspval(p) � STOP
| d1 e� d2 −→ cspm(d1, de) cspval(e) � cspm(d2, de)
| d1
 d2 −→ cspm(d1, de)

∏
cspm(d2, de)

| chaos −→ CHAOS
| csp −→ csp; cspm(de, skip) (any CSP process)

The translation of contracts in CtrSeqD , contracts whose protocol is defined as a
sequence diagram, is done by the function csp : CtrSeqD → Csp, which proceeds
in a similar manner and exercises the same syntactical features of rCOS.

Verification of consistency and implementation. As we have shown in
Fig. 1, we can now verify by using the FDR2 model checker that given a state
machine sm and contract CtrSM = (I , Init ,MSpec, sm) and given a sequence
diagram and a contract CtrSeqD = (I , Init ,MSpec, seqd), we have csp(CtrSeqD) ‖

M

csp(CtrSM) is deadlock free, in which M is the set of generated CSP events (the
method calls), that is, the traces specified in the sequence diagram are accepted
by the state machine.

Before we can consider verifying an implementation against a contract, we
discuss an abstraction framework that can be used to get a suitable over-approx-
imation of an rCOS class into ‘flat’ rCOS that can be translated into CSP.

Integration. In [2], we describe how we integrate the state machine with a
class containing the functionality specification to obtain a guarded design that
we summarize in the following. We introduce a new variable state that holds
a symbolic representation of the state that execution is currently in. Then, for
each operationm we add a guard that only accepts the call-in into the method if
we are in a state that has an outgoing transition labeled with m. Any additional
guards on the transition (in the example the test itemCounter < max) or on
the design of m need to be respected as well. In the body, we update the state
variable to the successor state.

Specification and Validation of Behavioural Protocols 397

We do not repeat the formalisation in [2] here, but rather use the example to
illustrate the effect on the enterItem method. By integrating the class with the
contract as given through the state machine we obtain:
public enterItem(Barcode code, int qty ;) {

((state = 13928840) ∨ (state = 9528594) ∨ (state = 14696984) ∨
((itemCounter < max) ∧ (state = 4957896))) &
VAR LineItem item ;
[pre : store .catalog. find(c) != null ,

post : line ’ = LineItem.new(c, q) ;
line .subtotal’ = store.catalog. find(c). price ∗ q;

sale . lines .add(line)] ;
[� itemCounter’ = itemCounter + 1] ;
if (state = 13928840) then {[� state ’ = 9528594]}
else { if (state = 9528594) then {[� state ’ = 9528594]}

else { if (state = 14696984) then {[� state ’ = 4957896]}
else { if (state = 4957896) then {[� state ’ = 4957896]}

else { skip /∗ not reached ∗/}}}}}

The state identifiers have been automatically generated. Observe how enterItem

has been used on four transitions, where one of them held the additional guard.
Formally, we denote this integration of a contract and a class by integrate(Ctr ,C)
(compare with Fig. 1 again).

The Abstraction Process

In order to translate an rCOS specification to a CSP process, it may be necessary
to abstract some parts of the designs. Indeed, a design usually contains functional
specifications, which may not be relevant to the conformance to the protocol.

The design for enterItem(Barcode code, int qty) above contains informa-
tion concerning both the protocol and the functional specification. Indeed, the
variable item and the first pre/post-condition (checking if the code is in the
store catalog and adding the item to the sale) have no concern with the proto-
col. It is then possible to ‘remove’ the statements related to item, or, in other
words, to keep only those related to the variables concerned with the proto-
col, which are itemCounter, state and max for enterItem. Moreover, in the
perspective of a ‘flat’ rCOS, all references to object with navigation paths (i.e.
x.y where x �= this) should also be removed. We first introduce the function
μ : Exp × 2VAR → B, which indicates if an expression should be kept or not:

μ(e, l) = match e with
| const → true
| x → true if x ∈ l
| x → false if x �∈ l
| path.x → true if x ∈ l ∧ path = this
| path.x → false if x �∈ l ∨ path �= this
| ¬e1 → μ(e1, l)
| e1 op e2 → μ(e1, l) ∧ μ(e2, l) (where op ∈ {∧,∨,=, �=,+,−, /, ∗})
| m(in; out) → false

The abstraction process is an over-approximation, so every entity should refine
its abstraction. We introduce the function αp : Pred × 2VAR → Pred which
abstracts every non atomic expression to true.

398 Z. Chen, C. Morisset, and V. Stolz

The designs are abstracted by the function αk : D × 2VAR → D :

αk(d, l) = match d with
| [p � R] → [αp(p, l) � αp(R, l)]
| d1 e � d2 → αk(d1, l) e � αk(d2, l) if μ(e, l)
| d1 e � d2 → αk(d1, l) (αk(d2, l) if ¬μ(e, l)
| d1 (d2 → αk(d1, l) (αk(d2, l)
| d1; d2 → αk(d1, l); αk(d2, l)
| �(e, d1) → �(e, αk(d1, l)) if μ(e, l)
| �(e, d1) → Var bool b; (b := true (b := false);

�(b, αk(d1, l); (b := false (b := true)) if ¬μ(e, l)
| x := e → x := e if x ∈ l ∧ μ(e, l)
| x := e → skip if x �∈ l ∨ ¬μ(e, l)
| path.x := e → x := e if x ∈ l ∧ μ(e, l) ∧ path= this
| path.x := e → skip if x �∈ l ∨ ¬μ(e, l) ∨ path �= this
| Var T x → Var T x if x ∈ l
| Var T x → skip if x �∈ l
| m(in, out) → skip

| skip,chaos → skip,chaos

This function removes every statement not only composed with variables given
as a parameter and atomic expressions. Note that the conditional statement is
asbtracted as a non deterministic choice if the condition is not atomic. In the
same way, if the condition of a loop is not atomic, a new boolean variable b is
introduced, and the design of the loop is extended to let the choice to set b to
true or to false.

We extend the abstraction αk to methods with the function αm : Meth ×
2VAR → Meth which, given a method and a list of variables, returns the method
with the corresponding abstracted design.

Since the above design does not contain any reference to code or qty, we
can create a new method by removing these parameters from enterItem. This
abstraction is done by the function αpar : Meth × 2VAR → Meth, defined by:

αpar((Name, in, out , g, d), l) = (Name, in ′, out ′, g, d)

with in ′ = in \ (l \FV (D)), out ′ = out \ (l \FV (D)) and FV (D) stands for the
free variables in D. Note by removing only (l \ FV (D)), we ensure to remove
only unused parameters. The functions αk and αpar can be composed to define
the function α : Meth × 2VAR → Meth:

α((Name , in, out , g, d), l) = αpar(αm((Name, in , out , g, d), l), in ∪ out)

The method enterItem can be abstracted by α, by keeping only the variables
itemCounter, state and max:
α(enterItem, {itemCounter, state, max}) = public enterItem() {

((state = 13928840) ∨ (state = 9528594) ∨ (state = 14696984) ∨
((itemCounter < max) ∧ (state = 4957896))) &
[� itemCounter’ = itemCounter + 1] ;
if (state = 13928840) then {[� state ’ = 9528594]}
else { if (state = 9528594) then {[� state ’ = 9528594]}

Specification and Validation of Behavioural Protocols 399

else { if (state = 14696984) then {[� state ’ = 4957896]}
else { if (state = 4957896) then {[� state ’ = 4957896]}

else { skip /∗ not reached ∗/}}}}}

Finally, we introduce the function αC : C × 2FDec → C which abstracts all
the methods of a given class: αC((FDec,MDec), l) = (l, {α(m, l) | m ∈ MDec}),
(abstraction w.r.t. variables in l).

Now we are in a position to show that the integrated class still follows a
contract: we first calculate the integrated specification from the contract Ctr ∈
CtrSM and the implementation C, apply the appropriate abstraction function
with respect to the interface to obtain a new flat rCOS specification impl . Then,
we translate the abstracted methods into CSP and create a process that accepts
a call to a method based on the current state through external choice, updates
its state variables and starts over:

implCtr ,C = αC(integrate(Ctr ,C),Ctr .I .FDecpriv)
PC(state, st) =

m∈impl.MSpec

csp(m, PC((state, st)))

We also need an initial process to start execution and have to state the initial
state (derived from the state machine) and the initial values for the remaining
attributes which are given in the contract, that is:

InitC =
∏{(∏

{P(i, st) | st ∈ Ctr .Init(Ctr .I .FDec)}
)
| i ∈ Ctr .sm.i

}
Then we check the trace refinement property of impl against csp(Ctr). While the
CSP generated from the contract (state machine) consists of a process for each
state and a single method call can occur in various places, the overall structure
of the CSP for the integrated specification is a single process allowing external
choice over all possible guarded method calls, after which it will return to its
main process again.

We could also apply the CSP translation of a whole class to an implementation
we received from a third party to validate that it respects the contract, provided
that we can find a suitable abstraction function.

4 Conclusion

We integrate the power of consistent UML modelling with the application of
formal methods: a requirements model of a use case based on the rCOS method-
ology consists of hierarchical components, a protocol for an interface contract
given as a state machine, the scenario to implement in the form of a sequence
diagram, and the functionality specification in rCOS. Specification of behaviour
in rCOS usually considers trace languages of method invocations instead of data.

The state machines and sequence diagrams can make use of the non-object
oriented subset of rCOS designs, that we call ‘flat’ rCOS, for the functionality
specification of operations. This seems like a very strong restriction in the age of

400 Z. Chen, C. Morisset, and V. Stolz

object-oriented or even component-based development. But we show based on
our example from the recent CoCoME [18] case study for a component-based
point-of-sale system that this approach is already sufficient to ensure consis-
tency of the specification between the sequence diagram and the state machine,
and the state machine and an implementation (for example, it successfully de-
tects an accidental inconsistency between an older version of the diagrams in
[4]). We translate the artifacts into the process algebra CSP and use the model
checker FDR2 to check the deadlock freedom. From our limited experience, as
any counter example is a sequence of method invocations, it is easy to debug the
model with regard to that particular trace. To get from a fully object-oriented
rCOS specification of a class to ‘flat’ rCOS that is suitable for translation to
CSP, the user employs a set of abstraction functions, like projection of a class
onto a subset of its attributes.

As an illustration, we apply the technique from [2] to obtain an integrated
specification in the form of a complete guarded design from the model and check
it against the state machine.

We have implemented the rCOS modeler on top of the Eclipse Rich Client
platform that can be used to graphically design a requirements model [5] and
run the above transformation. Next, we intend to provide different abstractions
for sets (e.g. precise, two- or three-valued) and for object instantiation.

In the larger scope, we plan semi-automated model transformation from a
requirements model to a design- and component-model [21], proof support for
refinement and abstractions, and code generation to provide an integrated soft-
ware engineering solution for use case-driven models.

The Eclipse plugin of the rCOS modeler and the model used in this paper are
freely available from http://rcos.iist.unu.edu.

Acknowledgements

This work was partially supported by the project HTTS funded by the Macao
Science and Technology Development Fund, by the National Basic Research
Program of China (973) under Grant No. 2005CB3218025 and NSFC under
Grant No. 90612009.

References

1. Chen, X., He, J., Liu, Z., Zhan, N.: A model of component-based programming. In:
Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 191–206. Springer,
Heidelberg (2007)

2. Chen, X., Liu, Z., Mencl, V.: Separation of concerns and consistent integration
in requirements modelling. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W.,
Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 819–831.
Springer, Heidelberg (2007)

3. Chen, Z., Hannousse, A.H., Hung, D.V., Knoll, I., Li, X., Liu, Y., Liu, Z., Nan, Q.,
Okika, J.C., Ravn, A.P., Stolz, V., Yang, L., Zhan, N.: Modelling with relational
calculus of object and component systems–rCOS. In: Rausch et al [18], ch. 3

http://rcos.iist.unu.edu

Specification and Validation of Behavioural Protocols 401

4. Chen, Z., Li, X., Liu, Z., Stolz, V., Yang, L.: Harnessing rCOS for tool support
- the CoCoME Experience. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal
Methods and Hybrid Real-Time Systems. LNCS, vol. 4700, pp. 83–114. Springer,
Heidelberg (2007); UNU-IIST TR 383

5. Chen, Z., Liu, Z., Stolz, V.: The rCOS tool. In: Fitzgerald, J., Larsen, P.G., Sahara,
S. (eds.) Modelling and Analysis in VDM: Proceedings of the Fourth VDM/Over-
ture Workshop. CS-TR-1099 in Technical Report Series, Newcastle University (May
2008)

6. Formal Systems (Europe) Ltd. FDR2 User Manual (2005)
7. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood

Cliffs (1985)
8. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall, Engle-

wood Cliffs (1998)
9. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and the Unified Process, 3rd edn. Prentice-Hall Intl., Engle-
wood Cliffs (2005)

10. Liu, Z., Mencl, V., Ravn, A.P., Yang, L.: Harnessing theories for tool support. In:
Proc. of the Second Intl. Symp. on Leveraging Applications of Formal Methods,
Verification and Validation (isola 2006), pp. 371–382. IEEE Computer Society, Los
Alamitos (2006); Full version as UNU-IIST Technical Report 343

11. Mellor, S., Balcer, M.: Executable UML: A foundation for model-driven architec-
ture. Addison-Wesley, Reading (2002)

12. Möller, M., Olderog, E.-R., Rasch, H., Wehrheim, H.: Integrating a formal method
into a software engineering process with UML and Java. Formal Aspects of Com-
puting 20(2), 161–204 (2008)

13. Ng, M.Y., Butler, M.: Tool support for visualizing CSP in UML. In: George, C.W.,
Miao, H. (eds.) ICFEM 2002. LNCS, vol. 2495, pp. 287–298. Springer, Heidelberg
(2002)

14. Ng, M.Y., Butler, M.: Towards formalizing UML state diagrams in CSP. In: SEFM,
pp. 138–147. IEEE Computer Society, Los Alamitos (2003)

15. NoMagic, Inc. Magicdraw, http://www.magicdraw.com
16. Object Management Group. MDA Guide (2003),

http://www.omg.org/cgi-bin/doc?omg/03-06-01

17. Pu, G., Stolz, V. (eds.): 1st Workshop on Harnessing Theories for Tool Support in
Software. Electr. Notes in Theor. Comp. Sci., vol. 207. Elsevier, Amsterdam (2008)

18. Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.): The Common Compo-
nent Modeling Example. LNCS, vol. 5153. Springer, Heidelberg (2008)

19. Roscoe, A.W.: Theory and Practice of Concurrency. Prentice-Hall, Englewood
Cliffs (1997)

20. Snook, C.F., Butler, M.J.: UML-B: Formal modeling and design aided by UML.
ACM Trans. Softw. Eng. Methodol. 15(1), 92–122 (2006)

21. Yang, L., Stolz, V.: Integrating refinement into software development tools. In: Pu,
Stolz [17], pp. 69–88

22. Yu, X., Wang, Z., Pu, G., Mao, D., Liu, J.: The verification of rCOS using Spin.
In: Pu, Stolz [17], pp. 49–67

http://www.magicdraw.com
http://www.omg.org/cgi-bin/doc?omg/03-06-01

The Interplay between Relationships, Roles and Objects

Matteo Baldoni1, Guido Boella2, and Leendert van der Torre3

1 Dipartimento di Informatica - Università di Torino - Italy
baldoni@di.unito.it

2 Dipartimento di Informatica - Università di Torino - Italy
guido@di.unito.it

3 University of Luxembourg
leendert@vandertorre.com

Abstract. In this paper we study the interconnection between relationships and
roles. We start from the patterns used to introduce relationships in object oriented
languages, and we show how the role model proposed in powerJava can be used to
define roles. In particular, we focus on how to implement roles in an abstract way
in objects representing relationships, and to specify the interconnections between
the roles. Abstract roles cannot be instantiated. To participate in a relationship,
objects have to extend the abstract roles of the relationship. Only when roles are
implemented in the objects offering them, they can be instantiated, thus allowing
another object to play those roles.

1 Introduction

The need of introducing the notion of relationship as a first class citizen in Object Ori-
ented (OO) programming, in the same way as this notion is used in OO modelling, has
been argued by several authors, at least since Rumbaugh [1]: he claims that relation-
ships are complementary to, and as important as, objects themselves. Thus, they should
not only be present in modelling languages, like ER or UML, but they also should be
available in programming languages, either as primitives, or, at least, represented by
means of suitable patterns.

Two main alternatives have been proposed by Noble [2] for modelling relationships
by means of patterns:

– The relationship as attribute pattern: the relationship is modelled by means of
an attribute of the objects which participate in the relationship. For example, the
Attend relationship between a Student and a Course can be modelled by
means an attribute attended of the Student and of an attribute attendee of
the Course.

– The relationship object pattern: the relationship is modelled as a third object linked
to the participants. A class Attendmust be created and its instances related to each
pair of objects in the relationship. This solution underlies languages introducing
primitives for relationships, e.g., Bierman and Wren [3].

These two solutions have different pros and cons, as Noble [2] discusses. But they both
fail to capture an important modelling and practical issue. If we consider the kind of

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 402–415, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Interplay between Relationships, Roles and Objects 403

examples used in the works about the modelling of relationships, we notice that rela-
tionships are also essentially associated with another concept: students are related to
tutors or professors [3,4], basic courses and advanced courses [4], customers buy from
sellers [5], employees are employed by employers, underwriters interact with reinsur-
ers [2], etc. From the knowledge representation point of view, as noticed by ontologist
like Guarino and Welty [6], these concepts are not natural kinds like person or organi-
zation. Rather, they all are roles involved in a relationship.

Roles have different properties than natural kinds, and, thus, are difficult to model
with classes: roles can played by objects of different classes, they are dynamically ac-
quired, they depend on other entities - the relationship they belong to and their players.
Moreover, when an object of some natural type plays a certain role in a relationship, it
acquires new properties and behaviors. For example, a student in a course has a tutor,
he can take the exam and get a mark for the exam, another property which exists only
as far as he is a student of that course.

We introduce roles in OO programming languages, in an extension of the Java pro-
gramming language, called powerJava, described in [7,8,9,10]. The language powerJava
introduces roles as a way to structure the interaction of an object with other objects call-
ing their methods. Roles express the possibilities of interaction offered by the object to
other ones (e.g., a Course offers the role Student to a Person which wants to
interact with it), i.e., the methods they can call and the state of interaction. First, these
possibilities change according to the class of the callers of the methods. Second, a role
maintains the state of the interaction with a certain individual caller. As roles have a
state and a behavior, they share some properties with classes. However, roles can be
dynamically acquired and released by an object playing them. Moreover, they can be
played by different types of classes. Roles in powerJava are essentially inner classes
which are linked not only to an instance of the outer class, called institution, but also
to an instance representing the player of the role. The player of the role, to invoke the
methods of the roles it plays, it has to be casted to the role, by specifying both the role
type and the institution it plays the role in (e.g., the course in which it is a student).

In [11] we add roles to the relationship as attribute pattern: the relationship is mod-
elled as a pair of roles (e.g., attending a course is modelled by the role Student played
by Person and BasicCourse played by Course) instead of a pair of links, like in
the original pattern. In this way, the state of the relationships and the new behavior re-
sulting from entering the relationship can be modelled by the fact that roles are adjunct
instances with their state and behavior. However, that solution fails to capture the coor-
dination between the two roles, since in this pattern the roles are defined independently
in each of the objects offering them (Person offering BasicCourse and Course
offering Student). This is essentially an encapsulation problem, raised by the pres-
ence of a relationship.

In this paper, we provide a solution to this limitation first by extending the rela-
tionship object pattern with roles, and then by introducing abstract roles defined by
relationships and extended by roles of objects offering them. When roles are defined in
the relationships, the interconnection between the roles can be specified (e.g., the meth-
ods describing the protocol the roles use to communicate). When roles are extended in
the objects offering them, they can be customized to the context. Roles defined in the

404 M. Baldoni, G. Boella, and L. van der Torre

relationships are abstract and thus they cannot be instantiated. Roles can be instantiated
only when they are extended in the objects which will participate to the relationship.

2 Roles and Relationships

Relations are deeply connected with roles. This is accepted in several areas: from mod-
elling languages like UML and ER to knowledge representation discussed in ontologies
and multiagent systems.

Pearce and Noble [12] notice that relationships have similarities with roles. Objects
in relationships have different properties and behavior: “behavioural aspects have not
been considered. That is, the possibility that objects may behave differently when par-
ticipating in a relationship from when they are not. Consider again the student-course
example [...]. In practice, a course will have many more attributes, such as a curriculum,
than we have shown.”

The link between roles and relationships is explicit in modelling languages like UML
in the context of collaborations: a classifier role is a classifier like a class or interface,
but “since the only requirement on conforming instances is that they must offer op-
erations according to the classifier role, [...] they may be instances of any classifier
meeting this requirement” [13]. In other words: a classifier role allows any object to fill
its place in a collaboration no matter what class it is an instance of, if only this object
conforms to what is required by the role. Classification by a classifier role is multiple
since it does not depend on the (static) class of the instance classified, and dynamic (or
transient) in the sense above: it takes place only when an instance assumes a role in a
collaboration [14].

As noticed by Steimann [15], roles in UML are quite similar to the concept of inter-
face, so that he proposes to unify the two concepts. Instead, there is more in roles than
in interfaces. Steimann himself is aware of this fact: “another problem is that defining
roles as interfaces does not cover everything one might expect from the role concept.
For instance, in certain situations it might be desirable that an object has a separate
state for each role it plays, even for different occurrences in the same role. A person
has a different salary and office phone number per job, but implementing the Employee
interface only entails the existence of one state upon which behaviour depends. In these
cases, modelling roles as adjunct instances would seem more appropriate.”

To do this, Steimann [16] proposes to model roles as classifiers related to relation-
ships, but such that these classifiers are not allowed to have instances. In Java terminol-
ogy, roles should be modelled as abstract classes, where some behavior is specified, but
not all the behavior, since some methods are left to be implemented in the class extend-
ing them. These abstract classes representing roles should be then extended by other
classes in order to be instantiated. However, given that in a language like Java multiple
inheritance is not allowed, this solution is not viable, and roles can be identified with
interfaces only.

In this paper, we overcome the problem of the lack of multiple inheritance, by al-
lowing objects participating to the relationship to offer roles which inherit from ab-
stract roles related to the relationship, rather than imposing that objects extend the roles
themselves. This is made possible by powerJava.

The Interplay between Relationships, Roles and Objects 405

class Printer {
private int printedTotal;
private void print(){...}

definerole User {

private int printed;

public void print(){ ...
printed = printed + pages;
Printer.print(that.getName());
}}}

role User playedby UserReq
{ void print();

int getPrinted(); }

interface UserReq
{ String getName();

String getLogin();}

jack = new AuthPerson();
laser1 = new Printer();
laser1.new User(jack);
laser1.new SuperUser(jack);
((laser1.User)jack).print();

Fig. 1. A role User inside a Printer

3 Roles in powerJava

Baldoni et al. [10] introduce roles as affordances in powerJava, an extension of the
object oriented programming language Java. Java is extended with:

1. A construct defining the role with its name, the requirements and the operations.
2. The implementation of a role, inside an object and according to its definition.
3. How an object can play a role and invoke the operations of the role.

Figure 1 shows the use of roles in powerJava. First of all, a role is specified as a sort
of interface (role - right column) by indicating with an interface or class who can
play the role (playedby) and which are the operations acquired by playing the role.
Second (left column), a role is implemented inside an object as a sort of inner class
which realizes the role specification (definerole). The inner class implements all
the methods required by the role specification as it were an interface.

In the bottom part of the right column of Figure 1 the use of powerJava is depicted.
First, the candidate player jack of the role is created. It implements the requirements
of the roles (AuthPerson implements UserReq and SuperUserReq). Before the
player can play the role, however, an instance of the object hosting the role must be
created first (a Printer laser1). Once the Printer is created, the player jack
can become a User too. Note that the User is created inside the Printer laser1
(laser1.newUser(jack)) and that the playerjack is an argument of the construc-
tor of role User of type UserReq. Moreover jack plays the role of SuperUser.

The player jack to act as a User must be first classified as a User by means of
a so-called role casting ((laser1.User) jack). Note that jack is not classified
as a generic User but as a User of Printer laser1. Once jack is casted to
its User role, it can exercise its powers, in this example, printing (print()). Such
method is called a power since, in contrast with usual methods, it can access the state
of other objects: namespace shares the one of the object defining the role. In the ex-
ample, the method print() can access the private state of the Printer and invoke
Printer.print().

406 M. Baldoni, G. Boella, and L. van der Torre

4 Relationship as Attribute with Roles Pattern

We first summarize how the relationship as attribute pattern is extended with roles in
[11], and in the next section the relationship object pattern with roles. Then, starting
from the limitation of these new patterns, in Section 6 we define a new solution intro-
ducing abstract roles in relationships. As an example we will use the situation where
a Person can be a Student and follow a Course as a BasicCourse in his cur-
riculum. Note that BasicCourse is not a subtype of Course, since a Course can
be either a BasicCourse or an BasicCourse in different curricula.

In [11], the relationship as attribute pattern is extended with roles by reducing the
relationship not only to two symmetric attributes attended and attendees but
also to a pair of roles (see Figure 2). E.g., a Person plays the role of Student with
respect to the Course and the Course plays the role of BasicCoursewith respect
to the Person.

The role Student is associated with players of type Person in the role specifica-
tion (role), which specifies that a Student can take an exam (takeExam). Analo-
gously, the role BasicCourse is associated with players of type Course in the role
definition, which specifies that a Course can communicate with the attendee.

The role Student is implemented locally in the class Course and, viceversa, the
role BasicCourse is defined locally in the class Person. Note that this is not con-
tradictory, since roles describe the way an object offers interaction to another one: a
Student represents how a Course allows a Person to interact with itself, and, thus,
the role is defined inside the class Course. Moreover the behavior associated with the
role Student, i.e., giving exams, modifies the state of the class including the role or
calls its private methods, thus violating the standard encapsulation. Analogously, the
communicatemethod of BasicCourse, modifies the state of the Person hosting
the role by adding a message to the queue. These methods, in powerJava terminology,
exploit the full potentiality of methods of roles, called powers, of violating the standard
encapsulation of objects.

To associate a Person and a Course in the relationship, the role instances must
be created starting from the objects offering the role, e.g. if
Course c: c.new Student(p)

When the player of a role invokes a method of a role, a power, it must be first role
casted to the role. For example, to invoke the method takeExam of Student, the
Person must first become a Student. To do that, however, also the object offering
the role must be specified, since the Person can play the role Student in different in-
stances of Course; in this case the Course c:
((c.Student)p).takeExam(...).

This pattern with roles allows state and behavior to be added to a relationship be-
tween Person and Course, without adding a new class representing the relationship.
The limitation of this pattern is that the two roles Student and BasicCourse are
defined independently in the two classes Person and Course. Thus, there is no war-
ranty that they are compatible with each other (e.g., they communicate using the same
protocol, despite the fact that they offer the methods specified in the role specification).
Moreover, we would like that all roles of a relationship can access the private state of
each other (i.e., share the same namespace). However, this would be feasible only if the

The Interplay between Relationships, Roles and Objects 407

role Student playedby Person
{ int takeExam(String work); }

role BasicCourse playedby Course
{ void communicate(String text); }

class Person{
String name;
private Queue messages;
private HashSet<BasicCourse> attended; //BasicCourses followed
definerole BasicCourse {
Person tutor;
// method access the state of outer class
void communicate (String text)

{ Person.messages.add(text); }
BasicCourse(Person t){

tutor=t;
Person.attended.add(this); }}//add link

class Course {
String code;
String title;
//students of the course
private HashSet<Student> attendees;
private int evaluate(String x){...}
definerole Student {
int number;
int mark;
int takeExam(String work)
{ return mark = Course.evaluate(work); }

Student () //add link
{ Course.attendees.add(this); }}}

Fig. 2. Relationship as attribute with roles pattern in powerJava

two roles Student and BasicCourse are defined by the same programmer in the
same context. This is not possible since the two player classes Person and Course
may be developed independently.

The pattern has different pros and cons; the following list integrates Noble [2]’s
discussions on them:

– It allows simple one-to-one relationships: it does not require a further class and its
instance to represent the relationship between two objects.

– It allows a state and operations to be introduced into the objects entering the rela-
tionship, which was not possible without roles in the relationship as attribute pat-
tern.

– It allows the integration of the role and the element offering it by means of powers.
– It allows us to show which roles can be offered by a class, and, thus, in which

relationships they can participate, since they are all defined in the class.

408 M. Baldoni, G. Boella, and L. van der Torre

class AttendBasicCourse{
Student attendee;
BasicCourse attended;
static Hashset<AttendBasicCourse> all;

definerole Student {
int mark;
int number;
int takeExam(String work){

mark= AttendBasicCourse.attended.evaluate(work);}
}

definerole BasicCourse {
String program;
Person tutor;
private int evaluate(String work){...}
void communicate(String t){

//invoke the requirement of the player
AttendBasicCourse.attendee.that.getMessage(t);}

}

AttendBasicCourse(Person p, Course c, String p, Person t){
attendee = this.new Student(p);
attended = this.new BasicCourse(c,p,t);
AttendBasicCourse.all.add(this);

}

static void communicate(String text){
for (AttendBasicCourse x: all) x.attended.communicate(text);}

}

Fig. 3. Relationship object with roles pattern, part I

Disadvantages of the relationship as attribute with roles pattern:

– It requires that the roles are already implemented offline inside the classes which
participate in the relationship.

– It does not assure coherence of the pair of roles like student-course, buyer-seller,
bidder-proponent, since they are defined separately in two different classes.

– The role cast to allow a player to invoke a power of its role requires to know the
identity of the other participant in the relationship.

– It does not allow us to distinguish which is the role played in the other
object participating in the relationship (e.g., a Student in the attendees
set of a Course can follow the Course as a BasicCourse or an
AdvancedCourse).

The Interplay between Relationships, Roles and Objects 409

class Person{
String name;
Queue messages;
void getMessage(String text) {messages.add(text)};

}
class Course {

String code;
String title;

}

role Student playedby Person
{ int takeExam(String work); }

role BasicCourse playedby Course
{ void communicate(String text); }

class University{
public static void main (String[] args){
Person p = new Person();
Course c = new Course();
a = new AttendBasicCourse(p,c,program,tutor);
//p as a Student of Course takes the exam
((a.Student)p).takeExam(work);
//c’s message to Student of Course
((a.BasicCourse)c).communicate(text);}}

Fig. 4. Relationship object with roles pattern, part II

5 Relationship Object Pattern

The alternative relationship object with roles pattern introduces an
AttendBasicCourse class modelling the relationship between Person and
Course. However, the AttendBasicCourse class is not linked to a Person and a
Course. Rather, the Person plays the role Student in the class
AttendBasicCourse and the Course the role BasicCourse (see Figures 3,
4 and the UML diagram in Figure 5)1. Like in the previous solution the roles are
modelled as inner classes. In this example, the roles are implemented in the class
AttendBasicCourse. Its instances contain the properties and behaviors added
when instances of Person and Course, respectively, participate in the relationship.
Additionally, properties and behaviors which are associated to the relationship itself,
like entering in the relationship and constraints on the participants can be added to the
relationship class.

To relate a Person and a Course in a relationship, an instance of
AttendBasicCourse must be created, together with an instance of Student
played by the Person and of BasicCourse played by the Course. To invoke a

1 The arrow starting from a crossed circle, in UML, represents the fact that the source class can
be accessed by the arrow target class.

410 M. Baldoni, G. Boella, and L. van der Torre

− attendee: ...

+ mark: 10

+ Student(Person,...)− getMessage(String)

+ tutor: person

+ giveExam(String)
+ communicate(String)

c.Course

+ code: CS110
+ title: "programming"

− evaluate(String)

:AttendBC.BasicCourse

+ BasicCourse(Course,...)

:AttendBC.Student

a:AttendBasicCourse

+ communicate(String)
+ AttendBasicCourse(...)

− attended: ...

that

Person

RQ

that

Course

RQ

AttendBasicCourse.this AttendBasicCourse.this

p:Person

+ name: John
− messages: ...

+ number: 1234

Fig. 5. The UML representation of the relationship object with roles pattern example

power of Student, a Person must be role casted to the role Student starting from
an instance of the class AttendBasicCourse.
Advantages of the relationship role object with roles pattern:

– It allows a state and operations of the relationship to be introduced besides the state
and operations added to the objects entering the relationship.

– It allows listing all instances of the relationship and centralize operations like en-
tering the relationship and to check constraints on the relationship.

– It enforces to create both role instances at the same time, since they are linked to
the same relation instance, thus avoiding the risk of inconsistencies.

– It allows the integration of the role with the relationship and with the other role,
since the powers of a role can access both. In this way it is possible to deal with
coordination issues [7].

– To make a role cast it is necessary only to know the relationship instance, thus, the
other participant can change without notice.

– It does not require that the classes of players already implement the role classes. To
play a role it is sufficient to satisfy the requirements.

Disadvantages of the relationship object with roles pattern:

– It requires a further class and its instance.
– It does not allow the integration of roles with the objects offering them (e.g.,
Student is defined separately of the class Course, which, as a consequence,
cannot be accessed). Thus, to play a role, an object is required to offer additional
methods (see getMessage in Figure 3).

6 Abstract Roles and Relationships

From the above discussion, the following requirements emerge:

– to define the interaction between the roles separately from the classes offering them
to participate in the relationship. This guarantees that the interaction between the
objects eventually playing the roles is performed in the desired way;

– that the roles of a relationship have access to the private state of each other to
facilitate their programming;

The Interplay between Relationships, Roles and Objects 411

– that the roles also have access to the private states of the objects offering them (like
in powerJava) to customize them to the context.

These requirements mirror the complexities concerning encapsulation, which arise when
relationships are taken seriously, as noticed by Noble and Grundy [5].

A solution to the encapsulation problem is possible in powerJava by exploiting an
often disregarded feature of Java. Inner classes share the namespace of the outer classes
containing them. When a class extends an inner class in Java, it maintains the property
that the methods defined in the inner class which it is extending continue to have access
to the private state of the outer class instance containing the inner class. If the inner class
is extended by another inner class, the resulting inner class belongs to the namespaces
of both outer classes. Moreover, an instance of such an inner class has a reference to
both outer class instances so to be able to access their states. The possible ambiguities of
identifiers accessible in the two outer classes and in the superclass are resolved by using
the name of the outer class as a prefix of the identifier (e.g., Course.registry).

This feature of Java, albeit esoteric, has a precise semantics, as discussed by [17].
The new solution we propose allows the introduction of a new class representing the

relationship as in the relationship object with roles pattern, and to define the roles inside
it. The idea is illustrated in Figure 8 as an UML diagram.

First, as in the relationship object with roles pattern, a class for creating relation-
ship objects is created (e.g., AttendBasicCourse): it will contain the implemen-
tation of the roles involved in the relationship (e.g., Student and BasicCourse in
AttendBasicCourse), see Figure 6. The interaction between the roles is defined at
this level since the powers of each role can access the state of the other roles and of the
relationship.

These roles must be defined as abstract and so they cannot be instantiated. Moreover,
the methods containing the details about the customization of the role can be left unfin-
ished (i.e., declared as abstract) if they need to be completed depending on the classes
offering the roles which extend the abstract roles.

Second, the same roles in the relationship can be implemented in the classes partici-
pating in the relationship (and, thus, they can be extended separately), accordingly to the
relationship as attribute pattern, see Figure 7 (Person offering BasicCourse and
Course offering Student). However, these roles (e.g., Student and
BasicCourse), rather than being implemented from scratch, extend the abstract roles
of the relationship object class (e.g., AttendBasicCourse), filling the gaps left by
abstract methods in the abstract roles (both public and protected methods). The ex-
tension is necessary to customize the roles to their new context. Methods which are
declared as final in the abstract roles cannot be overwritten, since they represent the in-
teraction among roles in the scope of the relationship. Further methods can be declared,
but they are not visible from outside since both the abstract role and the concrete one
have the signature of the role declaration.

Note that the abstract roles are not extended by the classes participating in the rela-
tionship (e.g., Course and Person), but by roles offered by (i.e., implemented into)
these classes (e.g.,Student andBasicCourse). Otherwise, the classes participating
in the relationship could not extend further classes, since Java does not allow multiple
inheritance, thus limiting the code reuse possibilities.

412 M. Baldoni, G. Boella, and L. van der Torre

role Student playedby Person
{ int takeExam(String work); }

role BasicCourse playedby Course
{ void communicate(String text); }

class AttendBasicCourse {
Student attendee;
BasicCourse attended;

abstract definerole Student {
int mark;
int number;
//method modelling interaction
final int takeExam(String work){

return mark = evaluate(work);}
//method to be implemented which is not public
abstract protected int evaluate(String work);

}

abstract definerole BasicCourse {
String program;
Person tutor;
//method to be implemented which is public
abstract void communicate(String text);

}

AttendBasicCourse(String pr, Person t){
attendee = c.new Student(p,this);
attended = p.new BasicCourse(c,this,t);

}
}

Fig. 6. Abstract roles

The advantage of these solution is that roles can share both the namespace of the
relationship object class and the one of the class offering the roles, as we required above.
This is possible since extending a role implementation is the same as extending an inner
class in Java: roles are compiled into inner classes by the powerJava precompiler.

Based on this idea we propose here a limited extension of powerJava, which allows
abstract roles to be defined inside relationship object classes, and to let standard roles
extend them. The resulting roles will belong both to the namespace of the class offering
them and to the relationship object class. Moreover, the resulting roles will inherit the
methods of the abstract roles.

Note that the abstract roles cannot be instantiated. This is so that the are used only to
implement both the methods which define the interaction among the roles, and the meth-
ods which are requested to be contextualized. The former will be final methods which
are inherited, but which cannot be overwritten in the eventual extending role: they will
access the state and methods of the outer class and of the sibling roles. The latter will

The Interplay between Relationships, Roles and Objects 413

class Course {
String code, title;
private HashSet<Student> attendees;

definerole Student extends AttendBasicCourse.Student {
Student() {

Course.this.attendee = this;
}
//abstract method implementation
protected int evaluate(String work)

{ /*Course specific
implementation of the method */ } } }

class Person {
String name;
private Queue messages;
private HashSet<BasicCourse> attended;
//courses followed as BasicCourse

definerole BasicCourse extends AttendBasicCourse.BasicCourse {
BasicCourse(Person t) {

tutor=t;
Person.this.attended=this; }
//abstract method implementation
void communicate (String text)

{Person.this.messages.add(text);
} } }

Fig. 7. Abstract roles extended

be abstract protected methods, which are used in the final ones, and which must be im-
plemented in the extending class to tailor the interaction between the abstract role and
the class offering the role. If these methods are declared as protected they are not visible
outside the package. These methods have access to the class offering the extending roles.

Besides adding the property abstract to roles, three other additions are necessary
in powerJava.

First, we add an additional constraint to powerJava: if a role implementation extends
an abstract role, it must have the same name. Thus, the abstract and concrete role have
the same requirements. Moreover, it is only possible to extend abstract roles, while
general inheritance among roles is not discussed here.

Second, the methods of the abstract role can make reference to the outer class of the
extending role. This is realized by means of a reserved variable outer, which is of
type Object since it is not possible to know in advance which classes will offer the
extended role. This variable is visible only inside abstract roles.

Third, to create a role instance it is also necessary to have at disposal the relationship
object offering the abstract roles, and the two roles must be created at the same time.

For example, the constructor of a relationship:

414 M. Baldoni, G. Boella, and L. van der Torre

:AttendBC.Student

that

+ number: 1234
+ mark: 10

+ Student(Person,...)
+ giveExam(String)

AttendBasicCourse.this AttendBasicCourse.this

a:AttendBasicCourse

+ communicate(String)
+ AttendBasicCourse(...)

− attended: ...
− attendee: ...

that

RQ

+ number: 1234
+ mark: 10

+ Student(Person,...)

:Course.Student

− evaluate(String)

RQ

Course

PersonCourse.this

Person.this

+ tutor: person

+ communicate(String)

:AttendBC.BasicCourse

+ BasicCourse(Course,...)

+ tutor: person

+ communicate(String)

:Student.BasicCourse

+ BasicCourse(Course,...)c.Course

+ code: CS110
+ title: "programming"

+ getCode()

p:Person

+ name: John
− messages: ...

+ getName()

Fig. 8. The UML representation of the new relationship pattern

AttendBasicCourse(Person p, Course c){//...
c.new Student(p,this);
p.new BasicCourse(c,this); }

Where Student and BasicCourse are the class names of the concrete roles imple-
mented in p and c and they are the same as the abstract roles defined in the relation.

The types of the arguments Person and Course are the requirements of the roles
Student and BasicCourse which will be used to type the that parameter refer-
ring to the player of the role.

Moreover, the first and the second argument of the constructor are added by default:
the first one represents the player of the role, while the second one, present only in roles
extending abstract roles, is the reference to the relationship object. This is necessary
since the inner class instance represented by the role has two links to the two outer
class instances it belongs to. This reference is used to invoke the constructor of the
abstract role, as required by Java inner classes. For example, the constructor of the role
Course.Student is the following one.

Student(Person p, AttendBasicCourse a){ a.super(); //... }

However, these complexities are hidden by powerJava which adds the necessary param-
eters and code during precompilation.

The entities related by the relationship must preexist to it:

Person p = new Person();
Course c = new Course();
AttendBasicCource r = new AttendBasicCourse(p,c);
((c.Student)p).takeExam(w);
((p.BasicCourse)c).communicate(text);

The Interplay between Relationships, Roles and Objects 415

7 Conclusion

In this paper we discuss how abstract roles can be introduced when relationships are
modelled in OO programs: first abstract roles are defined in the relationship object class,
which specify the interaction, and then the abstract roles are extended in the classes
offering them. This pattern solves the encapsulation problems raised when relationships
are introduced in OO.

We introduce abstract roles using the language powerJava, a role endowed version
of Java ([7,8,9,10,11]).

References

1. Rumbaugh, J.: Relations as semantic constructs in an object-oriented language. In: Procs. of
OOPSLA, pp. 466–481 (1987)

2. Noble, J.: Basic relationship patterns. Pattern Languages of Program Design, vol. 4. Addison-
Wesley, Reading (2000)

3. Bierman, G., Wren, A.: First-class relationships in an object-oriented language. In: Black,
A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 262–286. Springer, Heidelberg (2005)

4. Albano, A., Bergamini, R., Ghelli, G., Orsini, R.: An object data model with roles. In: Procs.
of Very Large DataBases (VLDB 1993), pp. 39–51 (1993)

5. Noble, J., Grundy, J.: Explicit relationships in object-oriented development. In: Procs. of
TOOLS 18 (1995)

6. Guarino, N., Welty, C.: Evaluating ontological decisions with ontoclean. Communications of
ACM 45(2), 61–65 (2002)

7. Baldoni, M., Boella, G., van der Torre, L.: Roles as a coordination construct: Introducing
powerJava. Electronic Notes in Theoretical Computer Science 150, 9–29 (2006)

8. Baldoni, M., Boella, G., van der Torre, L.W.N.: Modelling the interaction between objects:
Roles as affordances. In: Lang, J., Lin, F., Wang, J. (eds.) KSEM 2006. LNCS (LNAI),
vol. 4092, pp. 42–54. Springer, Heidelberg (2006)

9. Baldoni, M., Boella, G., van der Torre, L.: Interaction among objects via roles: sessions and
affordances in powerjava. In: Procs. of PPPJ 2006, pp. 188–193. ACM, New York (2006)

10. Baldoni, M., Boella, G., van der Torre, L.: Interaction between Objects in powerJava. Journal
of Object Technology 6, 7–12 (2007)

11. Baldoni, M., Boella, G., van der Torre, L.: Relationships meet their roles in object oriented
programming. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 440–448.
Springer, Heidelberg (2007)

12. Pearce, D., Noble, J.: Relationship aspects. In: Procs. of AOSD, pp. 75–86 (2006)
13. OMG: OMG Unified Modeling Language Specification, Version 1.3 (1999)
14. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.

Addison-Wesley, Reading (1999)
15. Steimann, F.: A radical revision of UML’s role concept. In: Evans, A., Kent, S., Selic, B.

(eds.) UML 2000. LNCS, vol. 1939, pp. 194–209. Springer, Heidelberg (2000)
16. Steimann, F.: On the representation of roles in object-oriented and conceptual modelling.

Data and Knowledge Engineering 35, 83–848 (2000)
17. Smith, M., Drossopoulou, S.: Inner classes visit aliasing. In: ECOOP 2003 Workshop on

Formal Techniques for Java-like Programming (2003)

A Coordination Model for Interactive
Components

Marco A. Barbosa, Luis S. Barbosa, and José C. Campos

Department of Informatics & Computer Science and Technology Center (CCTC)
Minho University, Portugal

{marco,lsb,jfc}@di.uminho.pt

Abstract. Although presented with a variety of ‘flavours’, the notion
of an interactor, as an abstract characterisation of an interactive com-
ponent, is well-known in the area of formal modelling techniques for in-
teractive systems. This paper replaces traditional, hierarchical, ‘tree-like’
composition of interactors in the specification of complex interactive sys-
tems, by their exogenous coordination through general-purpose software
connectors which assure the flow of data and the meet of synchronisation
constraints. The paper’s technical contribution is twofold. First a modal
logic is defined to express behavioural properties of both interactors and
connectors. The logic is new in the sense that its modalities are indexed
by fragments of sets of actions to cater for action co-occurrence. Then,
this logic is used in the specification of both interactors and coordination
layers which orchestrate their interconnection.

Keywords: Interactors, coordination models.

1 Introduction

Modern interactive systems resort to increasingly complex architectures of user
interface components. With the generalisation of ubiquitous computing, the no-
tion of interactive system itself changed. Single interactive devices have been
replaced by frameworks where devices are combined to provide services to a
number of different, often anonymous, users accessing them in a competing way.
This may explain the increasing interest on rigorous methodologies to develop
useful, workable models of such systems. In such a setting, the concept of an in-
teractor was originally proposed by Faconti and Paternò [13], as an abstraction
for a graphical object capable of both input and output, typically specified in
a process algebra. This was further generalised by Duke and Harrison [12] for
modelling interactive systems. Interactors become able not only to communicate
through i/o ports, but also to convey information about their state through a
rendering relation that maps the latter to some presentation medium.

The framework outlined in [12], however, does not prescribe a specification
notation for the description of interactor state and behaviour. Several possibil-
ities have been considered. One of them, which directly inspired this piece of
research, was developed by the third author in [8] and resorts to Modal Action

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 416–430, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Coordination Model for Interactive Components 417

Logic (MAL) [19] to specify behavioural constraints. Another one [18] uses LO-
TOS to express a relation between input and output ports. Actually, the notion
of an interactor as a structuring mechanism for formal models of interactive sys-
tems, has been an influential one. It has been used, for example, with LOTOS
[13,17], Lustre [10], Petri nets [6], Higher Order Processes [11], or Modal Action
Logic [9].

Whatever the approach, modelling complex interactive systems entails cre-
ating architectures of interconnected interactors. In [8] such models are built
hierarchically through ’tree-like’ aggregation. Composition is typically achieved
by the introduction of additional axioms and/or dedicated interactors to express
the control logic for communication. This, in turn, adds dramatically to the
complexity of the proposed models. Moreover, it does not promote a clear sep-
aration of concerns between modelling interactors and the specification of how
they interact with each other.

This is exactly the point where the contribution of this paper may be placed.
We adopt an exogenous coordination approach to the composition of interactors
which entails an effective separation of concerns between the latter and the
specification of how they are organised into specific architectures and interact to
achieve common goals. Exogenous coordination draws a clear distinction between
the loci of computational effort and that of interaction control, the latter being
blind with respect to the structure of values and procedures which typically
depend on the application domains.

Our approach is based on previous work on formal calculi for component
coordination published in [4,2] and closely inspired by Arbab’s Reo model [1].
In this paper we propose a particular model wherein complex coordinators, called
connectors, are compositionally built out of simpler ones. This implies that not
only should it be generally possible to produce different systems by composing
the same set of interactors in different ways, but also that the difference between
two systems composed out of the same set of interactors must arise out of their
composition shemes, i.e., their glue code.

Research reported here is a follow-up of a previous attempt to use the co-
ordination paradigm to express the logic governing the composition of interac-
tors, reported in [3], where a process algebra framework was used to specify
connector’s behavioural constraints. This, however, proved difficult to smoothly
combine with interactors whose evolution is typically given by modal assertions.
In this paper an extension to Hennessy-Milner logic [14] is proposed to express
behavioural properties of both interactors and connectors. The novelty in the
logic is the fact that its modalities are indexed by sets of actions to cater for
action co-occurrence. Moreover, modalities are interpreted as asserting the exis-
tence of transitions which are indexed by a set of actions of which only a subset
may be known. Both co-occurrence and such a sort of partial information about
transitions seem to be essential for software coordination.

The rest of the paper is organised as follows. Section 2 introduces modal lan-
guage M, which is used to specify interactors in section 3, and software connec-
tors in section 4. Section 5 brings interactors and the coordination layer together

418 M.A. Barbosa, L.S. Barbosa, and J.C. Campos

through the notion of a configuration. A few examples are discussed to assess the
merits of proposed approach. Finally, a few topics for future work are discussed
in section 6.

2 A Logic for Behaviour

2.1 A Modal Language

Like many other computing artefacts, both interactors and connectors exhibit
reactive behaviour. They evolve through reaction, either to internal events (e.g.,
an alarm timeout) or to the accomplishment of interactions with environment
(e.g., the exchange of a datum in a channel end). Following a well established
convention in formal modelling, we refer to all such reaction points simply as
actions, collected on a denumerable set Act. Then we define modal operators
which qualify the validity of logical formaluæ with respect to action occurrence,
or, more generally, to action co-occurrence.

Having mechanisms to express co-occurrence becomes crucial in modelling
coordination code. For example, what characterises a synchronous channel, the
most elementary form of software glue to connect two running interactors, is pre-
cisely the fact that any interaction in its input end is simultaneous with another
interaction in the output end. Note that temporal simultaneity is understood
here as atomicity: simultaneous actions cannot be interrupted.

The modal language introduced in the sequel is similar to the well-known
Hennessy-Milner logic [14], but for a detail which makes it possible to express
(and reason about) action co-occurrence. The basic idea is that a formula like
〈a〉φ, for a ∈ Act, which in [14] asserts the existence of a transition indexed
by a leading to a state which verifies assertion φ, is re-interpreted by replacing
’indexed by a’ by ’indexed by a set of actions of which a is part of’. Therefore,
modalities are relative to sets of actions, whose elements are represented by
juxtaposition, regarded as factors of a (eventually larger) compound action.

In detail, modalities are indexed by either positive or negative action factors,
denoted by K and ∼K, for K ⊆ Act, respectively. Intuitively, a positive (respec-
tively, negative) factor refers to transitions whose labels include (respectively,
exclude) all actions in it. Annotation ∼ may be regarded as an involution over
P(Act) (therefore, ∼∼K = K).

Formally M has the following syntax, whereW is a positive or negative action
factor and Ψ ranges over elementary propositions,

φ ::= Ψ | true | false | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 → φ2 | 〈W 〉φ | [W]φ

Its semantics is given by a satisfiability relation wrt to system’s states. For the
non modal part this is as one would expect: for example s |= true, s �|= false and
s |= φ1 ∧ φ2 ⇔ s |= φ1 ∧ s |= φ2. For the modal connectives, we define

s |= 〈W 〉φ ⇔ 〈∃ s′ : 〈∃ θ : s θ−→ s′ : W ≺ θ〉 : s′ |= φ〉

s |= [W]φ ⇔ 〈∀ s′ : 〈∃ θ : s θ−→ s′ : W ≺ θ〉 : s′ |= φ〉

A Coordination Model for Interactive Components 419

where

W ≺ X �
{
W = K, for K ⊆ Act ⇒ K ⊆ X

W =∼K, for K ⊆ Act ⇒ K �⊆ X

For example, if there exists a state s′ such that s abcd−→ s′ and s′ verifies some
formula φ, then s |= 〈bd〉φ. Dually, assertion [∼abc]false states that all transitions
whose labels do not involve, at least and simultaneously, actions in set {a, b, c}
lead to states which validate false and their occurrence is, therefore, impossible.

Modal connectives can be extended to families of both ’positive’ or ’negative’
action factors as follows:

s |= 〈F 〉φ⇔ 〈∃ W : W ∈ F : 〈W 〉φ〉
s |= [F]φ⇔ 〈∀ W : W ∈ F : [W]φ〉

where F ⊆ (P(Act) ∪ ∼P(Act)). Just as actions in an action factor are rep-
resented by juxtaposition, as in 〈abc〉, action factors in a family thereof are
separated by commas, as in 〈J,K,L〉. Set complement to P(Act) ∪ ∼P(Act) is
denoted by symbol − as in [−K]false or 〈−〉true, the latter abbreviating −∅. The
first assertion states that only transitions exactly labelled by factor K can oc-
cur. The second one that there exists, from the current state, at least a possible
transition (of which no particular assumption is made).

Most results on Hennessy-Milner logic carry over M. In particular, it can be
shown that modal equivalence in M entails bisimulation equivalence for processes
in CCS-like calculus extended with action co-occurrence. Although this is not
the place to explore the structure of M, the following extension laws are needed
in the sequel: for all a, a′ ∈ Act, K,K ′ ⊆ Act,

[a]φ ⇐ [aa′]φ and 〈a〉φ ⇐ 〈aa′〉φ (1)
[K]φ ⇐ [K,K ′]φ and 〈K〉φ ⇒ 〈K,K ′〉φ (2)
[K]φ ∧ [K ′]φ ⇔ [K,K ′]φ (3)
〈K〉φ ∨ 〈K ′〉φ ⇔ 〈K,K ′〉φ (4)

Proofs proceed by unfolding definitions. For example, the first part of (1) is
proved as follows:

s |= [a]φ

⇔ { definition }

〈∀ s′ : 〈∃ θ : s θ−→ s′ : {a} ⊆ θ〉 : s′ |= φ〉
⇐ { set inclusion }

〈∀ s′ : 〈∃ θ : s θ−→ s′ : {a, a′} ⊆ θ〉 : s′ |= φ〉
⇔ { definition }

s |= [aa′]φ

420 M.A. Barbosa, L.S. Barbosa, and J.C. Campos

It is also easy to see that, for K and K ′, both positive or both negative,

[K,K ′]φ ⇒ [K ∪K ′]φ (5)
〈K,K ′〉φ ⇐ 〈K ∪K ′〉φ (6)

2.2 Typical Properties

To exemplify the use of the logic and introduce some notation to be used in
the sequel, let us consider a number of properties useful for the specification of
both interactors and coordination schemes. Most of the latter are designed to
preclude interactions in which some action factor K is absent. This leads to the
following property schemes

onlyK � [∼K]false and forbidK � only ∼K

Properties above entails conciseness in expression. For example, assertion onlyK∧
onlyL∧forbidM abbreviates, by (3), to onlyK,L,∼M . A dual property asserts the
existence of at least a transition ofwhich a particular action pattern is a factor, i.e.,
permK � 〈K〉true. Or, not only possible, but also mandatory, mandatoryK �
〈−〉true ∧ onlyK.

More complex patterns of behaviour are expressed by nesting modalities, as in
[K]〈L〉φ, which expresses a sort of invariant: after every occurrence of an action
with factor K, there is, at least, a transition labelled by actions in L which
validates φ. The complement of 〈−〉true is [−]false which asserts no transition is
possible. Notice that their duals — 〈−〉false and [−]true — are just abbreviations
of constants false and true, respectively.

3 M-Interactors

3.1 A Language for M-Interactors

As stated in the Introduction, our aim is to use a single specification notation for
both interactors, which, in this setting, correspond to the computational entities,
and connectors, which cater for the coordination of the former. Modal language
M is, of course, our candidate for this double job — this section focuses on its
first part.

The definition of a M-interactor is adapted from [12], but for the choice of the
behaviour specification language. Formally,

Definition 1. An interactor signature is a triple (S, α, Γ), where S is a set of
sorts, α a S-indexed family of attribute symbols, and Γ a set of action symbols.
An M-interactor is a tuple (Δ, ρ, γ,AxΔ) where Δ is an interactor signature,
ρ : P ←− α and γ : P ←− Γ are rendering relations, from attributes and actions,
respectively, to some presentation medium P, and AxΔ a set of axioms over Δ
expressed in the M language.

A Coordination Model for Interactive Components 421

The set of ports provided by an interactor is defined by ρ, γ, and Γ . Ports
induced by ρ are output ports used to read the value of attributes and are always
available. This condition is expressed by 〈∀ p : p ∈ range ρ : 〈p〉true〉. Ports in
Γ are input/output ports and their availability is governed by axioms in AxΔ.

Syntactically, the definition of an interactor has three main declarations: of
attributes, actions and axioms. The first two define the signature. The ren-
dering relation is given by annotations on the attributes. Actions can also be
annotated to assert whether or not that they are available to the user. Fig. 1
shows a very simple example of an interactor modelling an application window.

interactor window
attributes

vis visible,newinfo : bool
actions

hide show update invalidate
axioms

[hide] ¬visible
[show] visible
[update] newinfo
[invalidate] ¬newinfo
forbidhide show
forbidupdate invalidate

Fig. 1. A window interactor

Two attributes are declared, indicat-
ing whether the window is visible or
displays new information.

Available actions model the change
of visibility and information displayed
in the window. Their effect in the state
of the interactor is defined by the a-
xioms in the figure. In this example,
the rendering relation is defined by
the vis annotation, which indicates
that all attributes are (visually) per-
ceivable.

Although the behavioural pro-
perties specified in this example are
rather simple, in general, it is neces-
sary to specify when actions are per-
mitted or required to happen. This is
achieved with the perm and mandatory
assertions, typically stated in a guarded context. Thus,

– permK→Φ, where Φ is a non modal proposition over the state space of the
interactor, as perceived by the values of its attributes. The assertion means
that if actions containing action factor K are permitted then Φ evaluates to
true.

– Φ→mandatoryK, meaning actions containing action factor K are inevitable
whenever Φ evaluates to true.

A useful convention establishes that permissions, but not obligations, are as-
serted by default. I.e., by default anything can happen, but nothing must happen.
This facilitates makes adding or removing permissions and obligations incremen-
tally when writing specifications.

3.2 Composing Interactors

In the literature, and specifically in [8], interactors are composed in the ’classi-
cal’ way, i.e., by a specification import mechanism, illustrated below by means
of a small example. In the literature, and specifically in [8], interactors are

422 M.A. Barbosa, L.S. Barbosa, and J.C. Campos

interactor space
attributes

vis state : {open, closed}
actions

open close
axioms

perm open → state = closed
[open] state = open
perm close → state = open
[close] state = closed

Fig. 2. The space interactor

interactor spaceSign
aggregates

window via oI
window via cI

attributes

vis state : {open, closed}
actions

vis open close
axioms

perm open → state = closed
[open] state ′ = open
perm close → state = open
[close] state ′ = closed
only open oI .update oI .show ∨ only close cI .update cI .show

Fig. 3. A classical solution

composed in the ’classical’ way, i.e., by a specification import mechanism, il-
lustrated below by means of a small example. This will be contrasted in section
5 to a coordination-based solution. Consider a system that controls access to
a specific space (e.g, an elevator), modelled by the interactor in Fig. 2. Now
suppose two indicators have to be added to this model, one to announce open
events, the other to signal close events. We will use instances of the window
interactor from Fig. 1 to act as indicators. The ’classical’ aggregation strategy,
as in [8], requires that two instances of the window interactor be imported into
one instance of space to build the new interactor. The rules that govern their
incorporation are as follows:

– the open (respectively, close) indicator must be made visible and have its
information updated whenever the system is opened (respectively, closed).

Additionally, it should be noted that whenever a window is made visible, it might
overlap (and hide) another one. The resulting interactor is presented in figure

A Coordination Model for Interactive Components 423

3, where a new axiom expresses the coordination logic. The fact that M allows
for action co-occurrence means that constraints on actions become simpler and
more concise than their MAL counterparts, as used in [8]: in our example only
an additional axiom is needed. Nevertheless, this solution still mixes concerns
by expressing the coordination of interactors cI and oI at the same level than
the internal properties of the underlying space interactor. How such two levels
can be disentangled is the topic of the following sections.

4 The Coordination Layer

Actually, coordination entails a different perspective. As in [1] this is achieved
through specific connectors which abstract the idea of an intermediate glue
code to handle interaction. Connectors have ports, thought of as interface points
through which messages flow. Each port has an interaction polarity (either input
or output), but, in general, connectors are blind with respect to the data values
flowing through them. The set of elementary interactions of a connector C forms
its sort, denoted by sort.[[C]]. By default the sort of C is the set of its ports, but
often such is not the case. For example, a synchronous channel with ports a and
a′ has a unique possible interaction: the simultaneous activation of both a and
a′, represented by aa′.

Connectors are specified at two levels: the data level, which records the flow
of data, and the behavioural one which prescribes all the activation patterns for
ports. Formally, let C be a connector with m input and n output ports. Assume
D as a generic type of data values and P as a set of (unique) port identifiers.
Then,

Definition 2. The specification of a connector C is given by a relation data.[[C]] :
Dn ←− Dm, which relates data present at its m input ports with data at its n
output ports, and an M assertion, port.[[C]], over its sort, sort.[[C]], which specifies
the relevant properties of its port activation pattern.

4.1 Elementary Connectors

The most basic connector is the synchronous channel which exhibits two ports,
a and a′, of opposite polarity. This connector forces input and output to become
mutually blocking. Formally, data.[[a �� a′]] = IdD, i.e., the identity relation
in D, and

sort.[[a �� a′]] = {aa′} port.[[a �� a′]] = only aa′

Its static semantics is simply the identity relation on data domain D and its
behaviour is captured by the simultaneous activation of its two ports.

Any coreflexive relation provides channels which can loose information, thus
modelling unreliable communications. Therefore, we define, an unreliable channel
as data.[[a � �� a′]] ⊆ IdD and

sort.[[a � �� a′]] = {a, aa′} port.[[a � �� a′]] = only a

424 M.A. Barbosa, L.S. Barbosa, and J.C. Campos

The behaviour expression states that all valid transitions involve input port a,
although not necessarily a′. This corresponds either to a successful communica-
tion, represented by the simultaneous activation of both ports, or to a failure,
represented by the single activation of the input port.

As an example of a connector which is not stateless consider fifo1, a channel
with a buffer of a single position. Formally, data.[[a � �� a′]] = IdD and

sort.[[a � �� a′]] = {a, a′} port.[[a � �� a′]] = [a]only a′,∼a

Notice that its port specification equivales to [a](only a′ ∧ forbida), formalising
the intuition of a strict alternation between the activation of ports a and a′.

If channels forward information, drains absorb it. However they play a funda-
mental role in controlling the flow of data along the coordination code. A drain
has two input, but no output, ports. Therefore, it looses any data item crossing
its boundaries. A drain is synchronous if both write operations are requested
to succeed at the same time (which implies that each write attempt remains
pending until another write occurs in the other end-point). It is asynchronous if,
on the other hand, write operations in the two ports do not coincide. The data
part coincides in both connectors: D × D. Then

sort.[[a � � �
a′]] = {aa′} port.[[a � � �

a′]] = only aa′

sort.[[a � � �
a′]] = {a, a′} port.[[a � � �

a′]] = only a, a′ ∧ forbidaa′

4.2 New Connectors from Old

Connectors can be combined in three different ways: by placing them side-by-
side, by sharing ports or introducing feedback wires to connect output to input
ports. In the sequel, note that behaviour annotations in the specification of
connectors can always be presented in a disjunctive form

port.[[C]] = φ1 ∨ φ2 ∨ · · · ∨ φn (7)

where each φi is a conjunction of

[K] · · · [K]︸ ︷︷ ︸
n

onlyF

Also let t|a and t#a, for t ∈ Dn and a ∈ P , represent, respectively, a tuple of
data values t from which the data corresponding to port a has been deleted, and
the tuple component corresponding to such data. Then,

Join. This combinator places its arguments side-by-side, with no direct interac-
tion between them. Then,

data.[[C1 � C2]] = data.[[C1]] × data.[[C2]]
sort.[[C1 � C2]] = sort.[[C1]] ∪ sort.[[C2]]
port.[[C1 � C2]] = port.[[C1]] ∨ port.[[C2]]

A Coordination Model for Interactive Components 425

The relevance of sorts becomes now clear. Take, for example, the aggregation of
two synchronous channels Their joint behaviour is

port.[[(a �� a′ � c �� c′)]] = only aa′ ∨ only cc′

A transition labelled by, say, aa′c does not violate the behaviour prescribed
above, but it is made invalid by the sort specification, which is {aa′, cc′}.

Share. The effect of share is to plug ports with identical polarity. The aggregation
of output ports is done by a right share (C i

j > z), where C is a connector, i
and j are ports and z is a fresh name used to identify the new port. Port z
receives asynchronously messages sent by either i or j. When input from both
ports is received at same time the combinator chooses one of them in a non-
deterministic way. Let data.[[C]] : Dn ←− Dm. Then, the data flow relation
data.[[C i

j > z]] : Dn−1 ←− Dm for this operator is given by

r (data.[[C i
j > z]]) t ⇔ t′ (data.[[C]]) t ∧ r|z = t′|i,j ∧ (r#z = t′#i ∨ r#z = t′#j)

At the behavioural level, its effect is that of a renaming applied to the M-formula
capturing the behavioural patterns of C, i.e.,

port.[[(C i
j > z)]] = {z ← i, z ← j} port.[[C]]

over

sort.[[(C i
j > z)]] = {z ← i, z ← j} sort.[[C]]

Figure 4 represents a merger formed by sharing the output ports of a synchronous
channel and a 1-place buffer.

(
a �� a′

b � �� b′

)
a′
b′ > w =

a ��
w

b �
GG

Fig. 4. A merger : only aw ∨ [b]only w,∼b

On the other hand, aggregation of input ports is achieved by a left share mech-
anism (z <i

j C). This behaves like a broadcaster sending synchronously messages
from z to both i and j. This case is slightly more complex: before renaming, all
computations of C in which ports i and j are activated independently of each
other must be synchronised. Therefore, we take all disjuncts in port.[[C]] in which
ports i and j are involved, form their conjunction to force co-occurrence, and
apply renaming. Formally, let φθ be a disjunct in port.[[C]] (recall (7)) involving
only ports in θ. Define φi = 〈

∨
φθ ∈ port.[[C]] : i ∈ θ : φθ〉 and, similarly, φj .

Therefore, for σ = {z ← i, z ← j},

port.[[(z <i
j C)]] = σ(φi ∧ φj) ∨ 〈

∨
φθ′ ∈ port.[[C]] : i /∈ θ′ ∧ j /∈ θ′ : φθ′〉

426 M.A. Barbosa, L.S. Barbosa, and J.C. Campos

and, again,

sort.[[(z <i
j C)]] = {z ← i, z ← j} sort.[[C]]

On the other hand, relation data.[[z <i
j C]] : Dn ←− Dm−1 is given by

t′ (data.[[z <i
j C]]) r ↔ t′ (data.[[C]]) t ∧ r|z = t|i,j ∧ r#z = t#i = t#j

As an example let us calculate the sharing of input ports a and b in a connector
composed by three, otherwise non interfering, synchronous channels,

port.[[z <a
b (a �� a′ � b �� b′ � c �� c′)]]

⇔ { definition }

{z ← a, z ← b}(only aa′ ∧ only bb′) ∨ only cc′

⇔ { renaming and (3) }

only za′, zb′ ∨ only cc′

⇔ { (5) }

only za′b′ ∨ only cc′

which asserts that input on z co-occurs with output at both a′ and b′. Replacing
b �� b′ by a one-place buffer leads to the connector depicted in Fig. 5 which
is calculated as follows

port.[[z <a
b (a �� a′ � b � �� b′ � c �� c′)]]

≡ { definition }

{z ← a, z ← b}(only aa′ ∧ [b]only b′,∼b) ∨ only cc′

≡ { renaming }

(only za′ ∧ [z]only b′,∼b) ∨ only cc′

Hook. This combinator encodes a feedback mechanism, drawing a direct con-
nection between an output and an input port. This has a double consequence:
the connected ports must be activated simultaneously and become externally
non observable. The formal definition is omitted here (but see [5]) because this
combinator is not used in the examples to follow. For the sake of curiosity, note

z <a
b

⎛⎜⎜⎝
a �� a′

b � �� b′

c �� c′

⎞⎟⎟⎠ =

a′

z

��

� �� b′

c �� c′

Fig. 5. A broadcaster and a detached channel

A Coordination Model for Interactive Components 427

the following ’extreme’ situations arising from hooking a synchronous channel
and a 1-place buffer, respectively,

(only aa′) �a
a′ = only ∅ = true

[a](only a′,∼a) �a
a′ = [∅](true ∧ false) = false

as one may have expected given the buffer strict alternation activation discipline.

5 Configurations of M-Interactors

Having introduced M-interactors and the coordination layer on top of the same
modal language, we may now complete the whole picture. The key notion is
that of a configuration, i.e., a collection of interactors interconnected through a
connector built from elementary connectors, combined trough the combinators
defined above. Formally,

Definition 3. A configuration is a tuple 〈I,C, σ〉, where I = {Ii| i ∈ n} is a
collection of interactors, C is a connector and σ a mapping of ports in I to ports
in C. The behaviour of a configuration is given by the conjunction of the modal
theories for each In ∈ I, as specified by their axioms, and the port specification
port.[[C]] of connector C, after renaming by σ.

Fig. 6. A coordination-based solutio

To illustrate the envisaged
approach, consider again
the example discussed in
section 3. A coordination-
based solution, depicted in
Fig. 6, replaces the hierar-
chical import of window into
spaceSign interactor, by a
configuration in which the
two instances of the for-
mer and one instance of the
original space interactor are
connected by

BC � B � B

a connector which joins to-
gether two broadcasters B. Each B is formed by two synchronous channels and
a lossy channel, sharing their input ports, i.e.

B � z <w
c (w <a

b (a �� a′ � b �� b′) � c
� �� c′)

An easy calculation yields port.[[B]] = only za′, zb′, z, which, by (5), equiv-
ales to only za′b′. In a configuration in which, through a renaming σ, port z is
linked to S.open, a′ to oI.update, b′ to oI.show and c′ to cI.hide, one may prove

428 M.A. Barbosa, L.S. Barbosa, and J.C. Campos

(i.e., discover, rather than assert) a number of desirable properties of the con-
figuration. For example, from axiom permS.open, a default axiom of interactor
space in section 3, and σ only za′b′, one concludes that

permS.open oI.update oI.show

i.e., there are transitions in which all the three ports are activated at the same
time. But, because the connector does not allow actions not including the simul-
taneous activation of such three ports, the joint behaviour of the configuration
asserts not only possibility but also necessity of this transition, i.e.,

permS.open oI.update oI.show ∧ onlyS.open oI.update oI.show

This is stronger than the corresponding axiom added to interactor spaceSign
in Fig. 3, although it can be deduced from the modal theory of this interactor
(which, of course, includes perm open). Note we are focussing only on one of the
two B connectors in BC, thus this conclusion does not interfere with a similar
possibility for the other connection of interactor instances S and cI (recall the
behavioural effect of � is disjunction).

On the other hand, one also has permS.open cI.hide because action zc′ is in
sort.[[B]], but, now only as a possibility, because an unreliable channel was used
to connect these ports. From this property and onlyS.open oI.update oI.show
above, we can easily conclude that cI.hide cannot occur independently of S.open,
oI.update and oI.show. Again, this is stronger than the interactor model in Fig.
3, where the hide action was left unrestricted.

As a final example, consider an interactor which has to receive the location
coordinates supplied by two different input devices but in strict alternation. The
connector to plug these three interactors is the alternate merger depicted in Fig.
7, formally, defined as

b<d′
f a<

d
c (c �� c′ � d

� �� d′ � f � �� f ′)c′
f ′>w

a?

�
?

MM
w

b
�

NN

Fig. 7. An alternate merger

Its behavioural pattern is

port.[[AM]] = only awb ∧ [b]onlyw,∼b

Clearly, each activation of port a is syn-
chronous with b and w. But then data re-
ceived in b (say, the coordinates of the one
of the devices) is stored in the buffer. Next
action is necessarily w, whose completion
empties the buffer.

6 Conclusions and Future Work

It was our intention to set the foundations for an approach to modelling in-
teractive systems entailing a true separation of concerns between modelling of

A Coordination Model for Interactive Components 429

individual components (interactors) and their architectural organisation. For
this a new modal logic (the M language) was introduced, which is similar to the
Hennessy-Milner logic [14] but for the fact that its modal connectives are indexed
by sets of actions (actions factors). These action factors are interpreted over the
compound actions (themselves represented by sets) that label transitions us-
ing set inclusion. This makes it possible to express properties over co-occurring
actions in the logic.

Although the main drive behind the development of M was the need for a
modal logic expressive enough to define the coordination layer, the language was
also used to specify interactors, thus providing a single language for expressing
the behaviour of both interactors and connectors that bind them.

The approach presents two major benefits over [13] or [8]. First of all, it pro-
motes a clear separation of concerns between the specification of the individual
interactors and the specification of how they interact with each other. Further-
more, it frees us from the rigid structure imposed by hierarchical organisation.

At this point, it is worthwhile pointing out that when composing interactors
into different configurations, the resulting behaviour becomes an emergent fea-
ture of the model. Hence, we discover, rather than assert, what the system will
be like. This is particularly relevant in a context were one is interested in ex-
ploring the impact of different design decisions at the architectural level. Recent
related work on the use of (some type of) logic to specify component behaviour
include [7] and [15], the latter with an emphasis on property verification.

A number of lines of research have been opened by the current endeavour. A
main one concerns temporal extension. Actually, language M seems expressive
enough to express connector’s behaviour, but not so when facing more elaborate
interactor’s specifications. A typical case relates to expressing obligation require-
ments. We are currently studying how M can be extended in a way similar to
D. Kozen’s μ-calculus [16] in order to address these temporal issues.

Acknowledgements. The authors wish to thank Michael D. Harrison for useful
comments on a preliminary version of this paper.

References

1. Arbab, F.: Reo: a channel–based coordination model for component composition.
Mathematical Structures in Comp. Sci. 14(3), 329–366 (2004)

2. Barbosa, M.A., Barbosa, L.S.: A relational model for component interconnection.
Journal of Universal Computer Science 10(7), 808–823 (2004)

3. Barbosa, M.A., Barbosa, L.S., Campos, J.C.: Towards a coordination model for
interactive systems. In: Cerone, A., Curzon, P. (eds.) FMIS 2007: Proc. 1st Inter.
Workshop in Formal Methods for Interactive Systems. Electronic Notes in Theo-
retical Computer Science, vol. 347, pp. 89–103. Elsevier, Amsterdam (2007)

4. Barbosa, M.A., Barbosa, L.S.: Specifying software connectors. In: Liu, Z., Araki,
K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 52–67. Springer, Heidelberg (2005)

5. Barbosa, M.A.: Specification and Refinement of Software Connectors. PhD thesis,
DI, Universidade do Minho (to appear, 2009)

430 M.A. Barbosa, L.S. Barbosa, and J.C. Campos

6. Bastide, R., Navarre, D., Palanque, P.A.: A tool-supported design framework
for safety critical interactive systems. Interacting with Computers 15(3), 309–328
(2003)

7. Bowles, J.K.F., Moschoyiannis, S.: Concurrent logic and automata combined: A
semantics for components. In: Canal, C., Viroli, M. (eds.) Proc. of FOCLASA
2006, vol. 175(2), pp. 135–151. Elsevier, Amsterdam (2006)

8. Campos, J.C., Harrison, M.D.: Model checking interactor specifications. Auto-
mated Software Engineering 8(3/4), 275–310 (2001)

9. Campos, J.C., Harrison, M.D.: Systematic analysis of control panel interfaces us-
ing formal tools. In: Graham, T.C.N., Palanque, P. (eds.) DSV-IS 2008. LNCS,
vol. 5136, pp. 72–85. Springer, Heidelberg (2008)

10. d’Ausbourg, B., Seguin, C., Durrieu, G., Roché, P.: Helping the automated valida-
tion process of user interfaces systems. In: ICSE 1998: Proc. 20th Inter. Conf. on
Software Engineering, pp. 219–228. IEEE Computer Society, Los Alamitos (1998)

11. Dittmar, A., Forbrig, P.: A unified description formalism for complex hci-systems.
In: SEFM 2005: Proc. 3rd IEEE Inter. Conf. on Software Engineering and Formal
Methods, pp. 342–351. IEEE Computer Society, Los Alamitos (2005)

12. Duke, D.J., Harrison, M.D.: Abstract interaction objects. Computer Graphics Fo-
rum 12(3), 25–36 (1993)

13. Faconti, G., PaternÚ, F.: An approach to the formal specification of the compo-
nents of an interaction. In: Vandoni, C., Duce, D. (eds.) Eurographics 1990, pp.
481–494. North-Holland, Amsterdam (1990)

14. Hennessy, M.C., Milner, A.J.R.G.: Algebraic laws for non-determinism and con-
currency. Journal of ACM 32(1), 137–161 (1985)

15. Johnsen, E.B., Owe, O., Torjusen, A.B.: Validating behavioural component inter-
faces in rewriting logic, vol. 159, pp. 187–204. Elsevier, Amsterdam (2006)

16. Kozen, D.: Results on the propositional μ-calculus. Theor. Comp. Sci. (27), 333–
354 (1983)

17. Markopoulos, P.: On the expression of interaction properties within an interactor
model. In: Palanque, P., Bastide, R. (eds.) Design, Specification and Verification
of Interactive Systems 1995 (1995)

18. PaternÜ, F.D.: A Method for Formal Specification and Verification of Interactive
Systems. PhD thesis, Department of Computer Science, University of York (1995);
Available as Technical Report YCST 96/03

19. Ryan, M., Fiadeiro, J., Maibaum, T.: Sharing actions and attributes in Modal
Action Logic. In: Ito, T., Meyer, A.R. (eds.) TACS 1991. LNCS, vol. 526, pp.
569–593. Springer, Heidelberg (1991)

Evolution Control in MDE Projects:
Controlling Model and Code Co-evolution

Jacky Estublier, Thomas Leveque, and German Vega

LIG-IMAG, 220, rue de la Chimie BP53, 38041 Grenoble Cedex 9, France
{Jacky.Estublier,Thomas.Leveque,German.Vega}@imag.fr

Abstract. The dream of Model Driven Engineering (MDE) is that Soft-
ware Engineering activities should be performed only on models, but in
practice a significant amount of programming is still being performed.
There is a clear need to keep code and models strongly synchronized
when they represent the same entities at different levels of abstraction.
We observe that versioning is ill supported by MDE tools, and that
no strong synchronization is ensured between code and model versions.
This, among other things, explains why MDE is not widely adopted in
industry.

This paper presents the solution developed in the CADSE project for
providing consistent support for model and code co-evolution. It is shown
that it requires to (1) define, what evolution policy is to be applied, (2)
closely synchronize both ways, the model entities and the computer ar-
tifacts, and (3) enforce consistency constraints and evolution policies
during the commit and check-out of both model elements and their cor-
responding artifacts.

Keywords: Domain Specific Languages (DSL), metamodel-based en-
vironments, composition of DSL interpreters, composition of models.

1 Introduction

The main claim of Model Driven Engineering (MDE) [9] is that Software Engi-
neering activities will be performed mostly, if not only, on models, all along the
life cycle of software products. Almost 10 years later, this vision is still not a
reality in industry, except for a few niches and in certain specific conditions [2].

It is an observation that the major progresses in Software Engineering (code
engineering) are due to the high quality of environments and tools that assist
Software Engineers in their day to day work. A major problem faced, and to a
large extent solved, is evolution control; but it took three decades from SCCS
[8] before obtaining reliable and convenient version and configuration control
systems.

No such history is available for MDE. Today, model versioning and merging is
a current research topic in its infancy. Therefore, no evolution-control system of
industrial strength is currently available for model engineering. What makes the
situation even worse is that in practice, a large fraction of Software Engineering

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 431–438, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

432 J. Estublier, T. Leveque, and G. Vega

activities consists in developing code and many other files, such as scripts, meta-
data, or documentation. From a purist MDE point of view, all these files are
models, but from a Software Engineering perspective, these files are managed in
the “old” way, relying on traditional evolution control tools, while no such tool
exist for (real) models.

This situation requires the definition of new evolution control paradigms for
software projects that are made of a mixture of models and files. On one hand,
these evolution paradigms must take into account the nature of models and must
be adapted to model engineering practices. On the other hand, such paradigms
must respect the code-engineering practice and must rely on the tools and sys-
tems available in traditional Software Engineering. We believe that this lack of
consistent evolution support, on all grounds - policies, methods, tools, and en-
vironment, is one of the major reasons why MDE did not succeeded in industry
so far.

This paper shows that at least three issues have to be addressed for defin-
ing such evolution paradigm and its associated tools. We believe that evolution
control, in MDE projects, requires solving the three issues:

– Synchronization of model elements with code and files
– Definition and support of evolution policies
– Definition and support of consistency constraints

Section 2 presents how are synchronized model elements and code, section 3
describes how can be defined evolution policies, and section 4 shows how consis-
tency is computed and enforced. Finally, section 5 concludes and proposes future
works.

2 Synchronizing Model and Software Artifacts

Model transformations began to be used for maintaining consistency between
model and software artifacts when the application code is fully derived from
a model [5]. In that case, users only work on the model, while artifacts are
(re)generated when needed; in other words, the model is a high-level source
code.

In general, models do not contain enough details to be executable. This is why
developers work on model and code at the same time. Usually, code skeletons are
generated from the model, but the model cannot be reconstructed from artifacts
and vice versa. Hence, we fall into synchronization issues where modifications
on model and artifacts must be reconciled. Few MDE tools support permanent
synchronization both ways between model and artifacts.

In our CADSE environment [4], traceability links can be defined between the
model and the artifacts. These links translate the operations performed on the
model to modifications performed on artifacts and vice-versa. It is possible, for
example, to define that the concept of service defined in a metamodel should be
mapped to an Eclipse java project with a specific structure and specific files (e.g.
metadata information and templates). The synchronization ensures that each

Evolution Control in MDE Projects 433

Fig. 1. Model and code versioning

time a service is defined in a model the corresponding Eclipse project is created.
Conversely, changes in some files (metadata) are translated into attributes and
relationships in the model.

This synchronization mechanism enables Software Engineering activities be
performed either on models or on files, depending on the nature of the activity,
while enforcing consistency between both views. This means that a model ele-
ment and its mapping must evolve in concert, and since versioning is defined at
the file granularity, versioning must also be applied on each model element indi-
vidually. This characteristic alone disqualifies most model versioning approaches
where the grain of versioning is a complete model, or a large fraction of it.

The CADSE environment is an eclipse plug-in. The model is found in an
Eclipse window, while the artefacts are provided as eclipses projects or files.
Under Eclipse, users can directly create, delete, or change model elements and
execute engineering operations such as build, package, or edit on these elements.

3 Evolution Policies

Versioning should be a mechanism that serves an evolution policy. Unfortunately,
in most systems, only the mechanism exists, while the evolution policy remains
undefined and relies on the good will of developers. In the CADSE project, the
ambition is to make explicit and automatic the evolution policy. To that end,
we have defined a version model and a versioning mechanism and we show how
versioning policies can be defined and enforced.

3.1 Data Model, Version Model

We use ECore [1], which is an Object oriented data model. Basic entities are
classes, which have attributes and operations, and which are related to other

434 J. Estublier, T. Leveque, and G. Vega

classes by relations and possibly by the special inheritance relationship. This is
enough for our purpose (please refer to [3] for more details), but this data model
does not include any versioning concept.

Before addressing evolution policies, we need to define the concept of a version
and its associated version model. Two objects are versions of each other if they
share something (otherwise they are two independent objects) and if they are
different in some way (otherwise it is the same object). Following [6], we decided
to make explicit the common part constituted of shared attributes, and the
difference as two objects. The different parts (not common one) are called “the
revisions”. A versioned object (by language abuse often called a revision) is the
union of the information found in the common part and the one found in one of
its revisions. A branch is the common part and all its revisions. By convention,
the name of a branch is the name of the common part. This is a symbolic name,
where the name of a revision is an integer and the name of a versioned object
has the form “branch.revision”.

3.2 Object Evolution Control

Evolution control refers to the criteria by which new versions of an object are
created. Two classes of criteria can be identified: (1) how important is the change
that has been made on an object (to which extend it changes its semantics); and
(2) when to record the change. In theory, a change should be recorded only when
the object is in a stable state. Unfortunately, we do know enough on the object
semantics to evaluate the object state which is mostly on the artifact state: is the
code of videoPlayer.3 consistent, reliable and so on. For that reason, as usual,
the decision to commit changes is left to the engineer. Depending on the change
importance, versioning may mean:

– Update the current value of the object in the repository
– Create a new revision of the object (in same variant)
– Create a new variant
– Create a new object

Traditionally, this choice is also left to the user. However the importance of a
change can be related to the semantics embedded in each attribute.

In our system, a versioning characteristic which can be mutable, immutable,
final or transient is associated to each attribute and relationship. If a muta-
ble attribute is changed, the next commit will simply update its value in the
repository. If an immutable and revision attribute is changed, the next commit
will create a new revision of the object. If an immutable and shared attribute is
changed, next commit will create a new branch. Changes in a transient attribute
are supposed to be transparent for the versioning system and final attributes, if
they need to be changed, must create a new object.

3.3 Relationship Evolution Control

Relationships are seen as attributes of the source element and can consequently
have the mutable, immutable, final , transient evolution characteristics. However,

Evolution Control in MDE Projects 435

due to our version model, the origin of a relation can be a revision, or a branch,
and the destination can also be a branch, or a destination. This leads to the
definition of different kinds of relationships:

– Global references (Branch to Branch). Only the last state (entity source and
entity destination) of the link is saved. This is called product first in [7].

– Contextual references (Revision to branch). This is the way to define a non-
versioned entity.

– Branch to revision. This is possible, but seldom used.
– Version-specific references (Revision to revision).
– Effective references (X to Set(Revision)). Instead of pointing on one or all

revisions of an entity, effectivity, which comes from the PDM world [3], as-
sociates a subset of all revisions.

In section 3.2, we have shown that each attribute and relationship can be an-
notated to indicate how the object should react (from the versioning point of
view) when that attribute changes. Based on attribute annotations, we can up-
date, create a new revision or create a new variant only when needed. But this
mechanism ignores the impact of such changes on the surrounding objects. This
is what we call change propagation, defined at type level, using the following
annotations on relationships:

– MutableDestination: changing the revision number of the destination ob-
ject does not have impact on the origin entity, but now the link targets the
new one.

– ImmutableDestination: a new revision of the origin entity is created when
the destination object revision changes.

– EffectiveDestination: the entity is compatible with the previous and the
new destination state.

– FinalDestination: the destination is not allowed to be modified.

The annotations on attributes and link allow defining (at type level) the evo-
lution strategy to be applied. It allows, for each kind of change, for the precise
definition of the evolution control that the system should perform. It also allows
the definition of the versions to be created (i.e. update, revision, or variant), and
the objects to which the change propagates.

Our objective is to avoid version proliferation, which is why defining state and
action propagation is a priority for us. In all cases, it is important to realize that
these annotations are defined at type level by software experts. In a workspace,
the developers only “see” a versioned object, the distinction branch/revision and
the revision numbers are not visible. Additionally, propagation and evolution
strategy are fully automated and transparent.

4 Definition and Support of Consistency Constraints

Remember that the goal of versioning is to store objects in a given state so that
they can be used at a later time. One purpose of storing different versions is to re-
cover from crashes and mistakes, but the major purpose is to reuse stored versions

436 J. Estublier, T. Leveque, and G. Vega

in different assemblies. Reuse is the major driver for setting versioning strategies.
Optimizing reuse entails a number of issues. In theory, the lower is the gran-

ularity of the objects to reuse, the higher is the number of possible different
assemblies. This is theoretical only because: (1) not all assemblies are valid, and
(2) the capability for a human to build a complete and consistent assembly with-
out help is limited. Indeed, these reasons explain the current practices. As they
are not able to build an assembly piece by piece, developers only use existing as-
semblies (snapshots, baselines), built and checked by somebody else. Any change
in the assembly produces a new revision of everything. Consequently, this results
in a huge number of useless revisions, as only the new revision of the baseline will
actually be used. Ironically, this practice generates a huge number of revisions
of everything, while in practice the grain of reuse is highly coarse. Namely, the
reuse granularity is the complete baseline which explains why reuse is far from
optimal. Optimizing reuse requires the following:

– Allow all possible assemblies.
– Avoid inconsistent assemblies.
– Help in building complete and consistent assemblies.

From a versioning point of view, these requirements translate as: (1) a version
should be at the lowest possible granularity level, (2) version compatibility should
be defined and controlled, (3) the number of versions should be minimized and
(4) the dependencies should be known.

The propagation control mechanism described above already solves the first
and the last of the above requirements. This is because the granularity is the
element, because the minimum side effects of a change are computed (relation-
ship propagation) in order to find out the elements that really need to be saved
(modified) and because revisions are only created when required (immutable at-
tributes). All and only the useful versions (updates, revisions and variants) are
created.

For two elements, o.i and d.j, link r is said to be consistent if o or o.i is
the origin of r, and if d is the destination (if r is branch), or if j pertains to the
effectivity of r. An assembly is said to be consistent , if all links between
elements pertaining to the assembly are consistent. We define a required-set
as a set of relationship types RS=R1, . . . Rn. An assembly is said to be
complete, with respect to a required-set RS, if for all elements of the assembly,
each link whose type is in RS leads to another element of the same assembly.

Note that the above definition of consistency relies on the effectivity mech-
anism. On one hand, the definition is conservative because the system only
records in the effectivity those pairs (origin-destination) that have been tested
in a workspace. Other pairs may be consistent but have not been tested. On the
other hand, the effectivity is not a formal proof of compatibility. More precisely,
the system assumes that only assemblies that have been tested are committed
on the shared repository.

Workspace management is strongly linked to these definitions. In our system,
assemblies can be explicitly built, by importing the element d or revision d.j

Evolution Control in MDE Projects 437

that the user thinks is needed from the shared repository to the workspace. But
before importing d, the system checks which revisions of d are consistent with
the elements already present in the current workspace. If such revisions d exist,
then the system imports the most recent revision of d. If no such revision of
d exists the system sends a warning to the user. This manual process can be
widely facilitated by declaring some relationship type as required. In this case,
importing an element automatically imports all required elements. Associating
a required-set RS to a workspace is such that importing an element ensures the
completeness of that element with respect to RS.

Based on these mechanisms, creating, maintaining and evolving complete and
consistent assemblies is easy and does not require from the user any knowledge
of dependencies and compatibility.

5 Conclusion

The MDE approach is still novel and as such lacks methods and tools required
by practitioners. This work seeks to provide concepts, methods and tools that
allow for closely controlling the evolution of a software product, all along its life
cycle, while following a MDE approach. First, developers have to deal with both
models and files. These files could represent programs in case models are not
rich enough to be executable, which is most often the case, and in case those
files are needed for compiling, packaging, or documenting. We believe that this
situation is not due to the transition from code to model engineering but that,
at least for the foreseeable future, models and files will co-exist and will have to
be managed together consistently.

The models we suggest developing are not primarily intended to describe the
application to build. Instead, our models provide a high-level description of the
information found in the computer during the project life cycle. A large fraction
of these models represent application components, as well as other concepts.
In a CADSE system, the software expert specifies models and metamodels for
describing how model elements are linked with computer artefacts. A model
element may be mapped to a few lines in a file, or to large structures such as
projects. We believe that synchronizing models and artefacts is a prerequisite to
any MDE projects.

The next topic that hampers MDE is evolution control. As a model element
can be potentially mapped to large software artefacts that need to be versioned,
the model element has to be versioned as well. This raises the issues of versioning
model elements and software artefacts in a consistent manner.

The design of our system is based on few principles. First, the developer must
be oblivious of the complexity involved in versioning and in evolution control. To
that end, the developer works in a workspace in which the concept of version does
not appear. Versioning is automatically executed following the evolution strategy
that has been defined. Versioning and evolution strategies are established once
and for all by software experts at the metamodel level.

438 J. Estublier, T. Leveque, and G. Vega

The system explicitly targets reuse. To that end, the versioning granularity
is rather low (i.e. a single model element), while version proliferation is avoided.
This feature ensures that all possible combinations of elements are possible.
Among other things, the evolution strategy renders explicit the kind of versions
to be created with respect to the changes performed and with respect to the
semantic of the links established among objects. The evolution characteristics
established on links allow the software expert to express what does mean com-
patibility and in which way changes propagate.

During the execution of the evolution strategy, the system creates the ver-
sions as required, but also automatically updates and records compatibility in-
formation. Based on the recorded compatibility information, the system is able
to determine if an assembly is consistent, as well as to suggest which changes
would be required for making the assembly consistent, or to assist the user in
rendering a workspace consistent.

Completeness can be checked, with respect to some relationship types. There-
fore, the system is capable to build, or to assess, complete and consistent assem-
blies with minimal knowledge from the developers.

We believe that this system, which has been daily in production over the last
3 years, is a significant step towards the practical use of the MDE approach in
software engineering.

CADSEg can be downloaded from http://cadse.imag.fr/

References

1. Emf project, http://www.eclipse.org/modeling/emf/?project=emf
2. Tarr, P., Hailpern, B.: Model-driven development: The good, the bad, and the ugly.

IBM Systems Journal 45(3), 451 (2006)
3. Estublier, J., Vega, G.: Reconciling software configuration management and product

data management. In: ESEC-FSE 2007: Proceedings of the the 6th joint meeting of
the European software engineering conference and the ACM SIGSOFT symposium
on The foundations of software engineering, pp. 265–274. ACM, New York (2007)

4. Lalanda, P., Leveque, T., Estublier, J., Vega, G.: Domain specific engineering envi-
ronments. In: APSEC (2008)

5. Helsen, S., Czarnecki, K.: Classification of model transformation approaches. In:
OOPSLA (2003)

6. Navathe Raji Ahmed, S.B.: Version management of composite objects in cad
databases. ACM, New York (1991)

7. Westfechtel, B., Conradi, R.: Towards a uniform version model for software config-
uration management. LNCS. Springer, Heidelberg (1997)

8. Rochkind, M.J.: The source code control system. IEEE Trans. on Software Engi-
neering, 364–370 (1975)

9. Schmidt, D.C.: Model-driven engineering, p. 7 (2006)

http://cadse.imag.fr/
http://www.eclipse.org/modeling/emf/?project=emf

An xADL Extension for Managing Dynamic
Deployment in Distributed Service Oriented

Architectures

Mohamed Nadhmi Miladi1, Ikbel Krichen1, Mohamed Jmaiel1,
and Khalil Drira2,3

1 University of Sfax, ReDCAD laboratory, ENIS, Box.W 1173, 3038, Sfax, Tunisia
MohamedNadhmi.Miladi@isimsf.rnu.tn,

2 CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France
3 Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse, France

Abstract. In this paper, we present “3DxSoAdl” an xADL exten-
sion for Managing Dynamic Deployment in Distributed Service Oriented
Architectures (SOA). This extension describes the deployment and the
management process of SOA architectures thanks to three major parts.
The first, describes, in the repository container, the services to be de-
ployed. The second, describes the distribution of the services over the
deployment nodes. The last part describes how to manage the dynamic
evolving of architectures based on redeployment actions.

Keywords: SOA, SCA, xADL extension, Distributed deployment de-
scription, Deployment management.

1 Introduction

Software architectures today increasingly operate in large scale distributed sys-
tems with variable and unpredictable execution context as well as continuous
user requirement discrepancy. In compliance with this trend, the deployment of
these architectures should be managed to react with resource variability, user
needs change and system faults.

Managing architecture deployment at development level is costly to build,
difficult to modify, and usually provides only partial handling of system faults.
Dynamically evolving deployment architectures should be managed following a
set of well defined rules elaborated during the design process [1]. This requires us-
ing appropriate design techniques, models, languages and tools, to reason about
the architecture’s dynamic evolving. In this challenging research area, Service-
Oriented Architecture (SOA) approach seems to be a promising technical ap-
proach. SOA enables dynamic evolution of applications, making responses for
adaptiveness interaction to new possible needs [2].

In this paper, we make a strong case in favor of describing the deployment
and its dynamic management of distributed service-oriented architectures. In
this research direction, several works have been conducted in the field of Archi-
tecture Description Language (ADL). After a thorough study of these languages

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 439–446, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

440 M.N. Miladi et al.

and their numerous proposed extensions, we adopted xADL which we extend to
achieve the deployment description and the dynamic management of its evolving.
In order to handle the deployment description of service-oriented architectures,
we introduce additional notations to represent the deployment nodes, to describe
the deployed services and to specify the repositories containing service descrip-
tions. We also provide notations to describe the management actions needed to
handle the dynamic management of the architecture deployment.

The proposed extension provides a flexible solution for specifying the rul-
ing mechanisms for the SOA deployment and its management. The proposed
notation also supports automatic refinement for generating platform-specific de-
ployment actions for middleware implementing SOA technology, like OSGi. Our
extension has been also integrated with higher notations approaches including
many abstraction levels following the Model-Driven Architecture (MDA).

The rest of this paper is organized as follows: Section 2 presents our xADL
extension. In section 3, we discuss some related works. Section 4 concludes this
paper and presents future work directions.

2 The Deployment and Its Management Description in
“3DxSOADL”

We present, in this section, an xADL extension called “3DxSoAdl” (Dynamic
Distributed Deployment eXtensible Service Oriented Architecture Description
Language). Compared to most proposed ADLs that focus on the configuration
concept in a component-based architecture, our contribution adopts a modular
approach based on a service-oriented paradigm supporting concepts such as reg-
istry, services . . . The description proposed, here, is more useful especially for
an applicative point of view. It focuses on building and managing applications
through a service-oriented approach. This vision follows various groups of ven-
dors, including BEA, IBM, Oracle, SAP, and committee efforts including OASIS
[3]. It is based on the “serviceComponent” notation which describes a software
building block that exposes one or more services to potential requesters [4]. In ad-
dition, the proposed ADL extension highlights the deployment aspect of software
architectures. The architecture deployment description provides a more suitable
distributed vision of the architecture structure than a traditional configuration
description. The deployment description stresses a transparent description of the
deployment containers including node notation. Deployment containers descrip-
tion is crucial in a distributed context. It can be decisive in a further architecture
implementation and in the choice of the architecture entities to deploy. More-
over, our contribution is based on standards including SCA and SOARM to cope
with the wide diversity of the proposed notations by current ADLs. Finally, the
described deployment structure will be dynamically managed to ensure a context
change adaptation and to meet the various evolving requirements.

This xADL extension can be incorporated as a part of a refinement process,
based on the MDA approach [5]. It layers various levels of abstraction to model
and manage the SOA architecture deployment onto the underlying execution

An xADL Extension for Managing Dynamic Deployment in Distributed SOA 441

MDA
PID Structural Model PID Management Modelg

Platform Independent Deployment (PID)Model

R fi t

Distributed
Repository

Distributed SOA
Structure

Dynamic Distributed
Deployment

PIM
Refinement

Mapping

3DxSOADL

OSGi
Other

PlatformsPSM

Fig. 1. The refinement process for deploying and managing software architectures

platform. The “3DxSoAdl” notations plays a mediator role between a highly
abstract deployment and management models (Platform independent deploy-
ment model) and a platform-specific deployment and management description
as depicted in Figure 1. Our description reduces the gap between an abstract
modeling and its implementation. It provides (i) a modeling that traces a de-
ployed architecture (ii) explicit redeployment actions that can be automatically
translated into architectural management scripts. Tracing the deployed architec-
ture and redeployment actions is extremely benefited to achieve statistics mea-
surement, prevention actions, testing operations, and responsibility checking. In
this paper, we focus only on describing the basic notations of the “3DxSoAdl”
extension. Refinement aspects will be detailed in a more extended version.

This extension focuses on providing, on one hand, a description close to an
SOA platform (such as OSGi, Jini,. . .) in order to model the SOA architecture
deployment in a distributed context. On the other hand, it provides explicit
description for dynamically managing the architecture deployment evolving.

Our contribution is composed of two major parts. The first, allows to describe
the SOA architecture deployment and the second for describing the dynamic
management of its evolving. In the first part, we provide deployment notations
such as node notation. Moreover, we provide notations for describing SOA ar-
chitecture deployment structure. This description is achieved using SOA stan-
dards such as “SOARM” [6] (Service Oriented Architecture Reference Model).
More specifically, our extension is based on the SCA (Service Component Archi-
tecture) [4] specification that provides suitable solutions for SOA architectures
description. In the second part, we describe the dynamic management of the
architecture deployment evolving thanks to some management actions. This de-
scription is achieved through three XML schemas.

2.1 Distributed Repository Schema

This schema focuses on providing a description of all functional entities that
can be useful for architecture deployment. It binds between them and their

442 M.N. Miladi et al.

Binding service operations

"ServiceComponent " provided service

Fig. 2. Distributed repository schema

real implementation location. This binding is useful for the deployment and the
management process. The achievement of this schema is basically inspired from
SCA specification. The Distributed repository schema is composed of one or
some distributed repositories. Each one of them belongs to a specific node and
it includes the description of a set of “serviceComponents” as depicted in Figure
2. All schemas presented in this section are generated using the “XMLSpy” tool.

The “serviceComponent” description is crucial in various SOA tasks including
the service discovery and service invocation. It is defined with two parts. The
first, describes the functional aspect of “serviceComponent”. It includes a unique
identifier called “scid”, a “serviceComponent” name, a set of “servicePorts” that
describes “serviceComponent” interfaces (inspired from SOADL [7]) and a ver-
sion number. In addition, we describe “serviceComponent” implementation in
an abstract manner. It can be used to model some future implementation. This
description extends xADL notations and more especially by its “implementation
schema”. More specifically, a “serviceComponent” is a modular unit that handles
a set of services. Their descriptions are involved in “servicePort” notation.

The “servicePort” can be either “service” or “reference” as depicted in Fig-
ure 2. First, “service” that represents “serviceComponent” provided services,
has a service name and a set of operations containing called parameters. Sec-
ond, “reference” that represents “serviceComponent” required services, has also

An xADL Extension for Managing Dynamic Deployment in Distributed SOA 443

a reference name. For each reference, we define two operations: bind and un-
bind. They enable the communication establishment and release between two
“serviceComponents” through their “servicePorts”. These operations describe
the basic operations to connect/disconnect a reference to one or many services.
The cardinality binding is described with the multiplicity notation.

The second part focuses on non-functional aspects. A “serviceComponent”
can also have a description that depicts its basic functionality and some “poli-
cySets” (referring to the SOA reference model standard). “PolicySets” describes
the quality of services (QoS) and some constraints that can be applied in SOA
architecture (such as security policies, transaction, reliable transmission of mes-
sages, encryption of messages, and so on). They can be divided into two types.
The ”Interaction policies” that establish the contract between the providers and
the consumers of the services (for example, the format of ”wires”, authentic-
ity, confidentiality, and so on). The “Implementation policies”, which affect the
contract between a component and its container (i.e. the manner in which the
container must manage environmental component such as access control, moni-
toring). Moreover, it can own some properties.

2.2 Distributed SOA Structure Schema

This schema, called “archOSStructure”, ensures a double function: it models (i)
the registry concept which is specific to the SOA approach. For each node of
the application and for each service deployed in a given node, two references are
established. The first references a description of the deployed service established
in the previous schema. The second, references the invocation of the deployed
service. This latter ensures SOA tasks including the publication and service dis-
covery during the deployment phase. (ii) It describes the deployed distributed
architecture structure. The “archOSStructure” schema, provides a deployment
description from which we can either acquire a wide view of the overall system ar-
chitecture deployment despite its complexity and its large-scale deployment. In-
deed, this deployment view describes which “serviceComponents” are deployed,
on which nodes they are deployed and which connections are established. This
is depicted in Figure 3.

This schema is defined through a set of nodes owning some “serviceCompo-
nents” and connections within these “serviceComponents” called attachment,
as depicted in Figure 3. First, “nodeRegistry” notation models active registry
container. Each node is identified with “nodeId” and owns a set of deployed “ser-
viceComponents”. For each “serviceComponent”, we provide a reference to its
description. This description is useful in the service discovery task. We provide
also “REF” which references the deployed service model ensuring its invocation
after its discovery.

Second, attachment notation describes connections within the deployed “ser-
viceComponents”. They can be either “attached” or “remoteAttached”. The first
kind describes connections between “serviceComponents” within the same node
(local attachment). It is described by the service and reference identification
(called “idProv” and “idReq”) and the name of the “bindOperation” (defined in

444 M.N. Miladi et al.

"Service Component"
connections

Logical deployment description

Deployed "Service Component"
reference in the Registry

Deployed "Service Component"
description in the Repository

Deployed "Service
Component" identifier

Fig. 3. Distributed SOA structure schema

the reference notation) called “bindOperationName”. The second kind describes
the connection between “serviceComponents” in different nodes. This latter ex-
tends the attached notation described earlier by modeling the provider node and
the requested node.

2.3 Dynamic Distributed Deployment Schema

This schema, called “archOSConfiguration”, is designed to dynamically manage
the architecture deployment evolving. This management is achieved through a
set of management actions presented in the “archOSStructure” schema. These
actions focus mainly on the structural management of the deployed architecture
to meet the non-functional requirements.

These actions can be classified into two types: actions that affect the deployed
architecture (“serviceComponents” deployment and connection) and actions that
affect deployed structures (nodes and repositories). The first type involves “ser-
viceComponent” deployment management actions. In fact, it includes “deploy”
action that is described by “sourceLocation” representing the deployed “service-
Component” name, “repositoryURL” representing the repository address and
“nodeID” representing the node on which “serviceComponent” will be deployed.
Moreover, it involves also “serviceComponents” connection management actions
that own, on one hand, “attach” and “remoteAttach” (inherited from
“archOSStructure” schema). In the other hand, “detach” and “remoteDetach” in
their turn express “serviceComponent” disconnection. The second type, changes
the architecturaldeployment structure. In fact, the architecture deploymentnodes
can be altered through the “addNode” and “deleteNode” actions. Moreover, the
repository system can be changed using the “addRepository” and “deleteReposi-
tory” actions. In addition, “serviceComponent” can be either shifted within

An xADL Extension for Managing Dynamic Deployment in Distributed SOA 445

repositories system (depending on the system requirements) or modified by the
“addServiceComponent” and “deleteServiceComponent” actions.

3 Related Works

Despite efforts in developing new Architecture Description Languages or propos-
ing new extensions, most the achieved research efforts focus on component-based
architectures with few solutions for SOA. SO-ADL [7] handles service oriented
architectures. However, it stresses the behavior interaction description. Our ex-
tension completes this effort and provides means for the description of the SOA
architecture deployment and its management. The challenge in describing ar-
chitecture deployments is to provide solutions for dynamically manage this de-
ployment. Research in this field can be sub-categorized in various classes. Works
including [8] switch within only predefined configuration to dynamically man-
age their architecture. Other classes try to overcome this weakness by providing
ADL extension including dynamic Acme [9] and Olan ADL [10]. But, some of
these extensions still have some weakness in the dynamic description handling
(OLAN does not permit the communication between the new instances and the
primitive ones and dynamic Acme can not describe for instance the removal of
components or connections). Some other classes are based either on new ADLs
for dynamic aspect handling including C&C-ADL [11], or on the elaboration
of ADL projects development including “Plastik” project [12] or “ArchWare”
[13]. Despite all these research efforts, dynamic properties handled in the lit-
erature focus on the configuration aspect. The extension, proposed here, raises
these efforts by handling the dynamic management deployment aspect including
changing the architecture deployment within nodes.

4 Conclusion

In this paper, we presented an xADL extension named “3DxSoAdl” for describ-
ing the deployment and management activities for service oriented architectures.
Using our extension, we can provide (i) a description that models a structural
logical deployment in SOA architectures. This description is based on the spec-
ification standard SOARM and SCA (ii) it ensures requirement properties (i.e.
QoS preservation), the context adaptation, the system failure recovery by dy-
namically managing the architecture deployment evolving. This management is
achieved through the modeling of management actions that can react with the
system context variations; (iii) it provides also a conceptual friendly description
and flexible description notation. The “3DxSoAdl” extension involves notations
that can easily be extended to various SOA implementations.

This extension provides notations to model the deployment and its manage-
ment for SOA architecture independently from all specific technical implemen-
tations. To ensure the cohesion between the platform-independent models and
the platform-specific models, a “3DxSoAdl” refinement has been developed. It
translates SOA specifications described using “3DxSoAdl” notations into OSGi

446 M.N. Miladi et al.

specifications and implements the management of the architecture deployment
on specific OSGi platform such as Oscar, Felix or Equinox.

References

1. Meservy, T., Fenstermacher, K.: Transforming software development: an MDA road
map. Computer 38(9), 52–58 (2005)

2. Carey, M.: Soa what? Computer 41(3), 92–94 (2008)
3. SCA: Service component architecture-assembly model specification-sca version

1.00 (2007),
http://www.osoa.org/download/attachments/35/SCA/AssemblyModel/

V100.pdf?version=1

4. Curbera, F.: Component contracts in service-oriented architectures. Com-
puter 40(11), 74–80 (2007)

5. Miller, J., Mukerji, J.: MDA guide version 1.0.1. Technical report, Object Manage-
ment Group OMG (2003)

6. SOARM: Service oriented architecture reference model,
http://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf

7. Jia, X., Ying, S., Zhang, T., Cao, H., Xie, D.: A new architecture description
language for service-oriented architec. In: GCC 2007: Proceedings of the Sixth
International Conference on Grid and Cooperative Computing, pp. 96–103. IEEE
Computer Society, Los Alamitos (2007)

8. Allen, R., Vestal, S., Cornhill, D., Lewis, B.: Using an architecture description
language for quantitative analysis of real-time systems. In: WOSP 2002: Proceed-
ings of the 3rd international workshop on Software and performance, pp. 203–210.
ACM, New York (2002)

9. Wile, D.: Using dynamic acme. In: Proceedings of a Working Conference on Com-
plex and Dynamic Systems Architecture, Brisbane, Australia (December 2001)

10. Bellissard, L., Ben Atallah, S., Boyer, F., Riveill, M.: Distributed application con-
figuration. In: ICDCS 1996: Proceedings of the 16th International Conference on
Distributed Computing Systems (ICDCS 1996), Washington, DC, USA, pp. 579–
585. IEEE Computer Society, Los Alamitos (1996)

11. Ĉımpan, S., Leymonerie, F., Oquendo, F.: Handling dynamic behaviour in software
architectures. In: Morrison, R., Oquendo, F. (eds.) EWSA 2005. LNCS, vol. 3527,
pp. 77–93. Springer, Heidelberg (2005)

12. Batista, T.V., Joolia, A., Coulson, G.: Managing dynamic reconfiguration in
component-based systems. In: Morrison, R., Oquendo, F. (eds.) EWSA 2005.
LNCS, vol. 3527, pp. 1–17. Springer, Heidelberg (2005)

13. Oquendo, F., Warboys, B., Morrison, R., Dindeleux, R., Gallo, F., Garavel, H., Oc-
chipinti, C.: Archware: Architecting evolvable software. In: Oquendo, F., Warboys,
B.C., Morrison, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 257–271. Springer,
Heidelberg (2004)

http://www.osoa.org/download/attachments/35/SCA/AssemblyModel/V100.pdf?version=1
http://www.osoa.org/download/attachments/35/SCA/AssemblyModel/V100.pdf?version=1
http://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf

A First Step towards Security Policy Compliance of
Connectors

Sun Meng

CWI, Kruislaan 413, Amsterdam, The Netherlands
M.Sun@cwi.nl

Abstract. Connectors have emerged as a powerful concept for composition and
coordination of concurrent activities encapsulated as components and services.
The widespread use of connectors in service-oriented applications is hindered by
the lack of adequate security support. A security policy defines a set of secu-
rity requirements that correspond to permissions, prohibitions and obligations to
some executions when some contextual conditions are satisfied. In this paper, we
propose the use of a scenario-based visual notation, called Policy Sequence Chart
(PSC), for specifying security policies, and investigate an approach in which con-
nectors are compliant with the security policies.

Keywords: Security Policy, Policy Sequence Chart, Connector, Compliance, Reo.

1 Introduction

Service-oriented computing (SOC) [12] is an emerging paradigm for the development
of complex applications that may run on large-scale distributed systems. Such systems,
which typically are heterogeneous and geographically distributed, usually exploit com-
munication infrastructures whose topology frequently varies and components can, at
any moment, connect to or detach from. Compositional coordination models and lan-
guages provide a formalisation of the “glue code” that interconnects the constituent
components/services and organises the communication and cooperation among them in
a distributed environment. They support large-scale distributed applications by allow-
ing construction of complex component connectors out of simpler ones. An example of
such a model is Reo [2], which offers a powerful glue language for implementation of
coordinating component connectors based on a calculus of channels.

As organizations increase their use of services and adopt them as the primary build-
ing blocks to construct fairly complex distributed applications, security policy disclo-
sure become crucial. The widespread adoption of coordination mechanisms in service-
oriented applications can not happen without proper solutions for security problems. In
this paper, we propose to use a scenario-based visual notation, called Policy Sequence
Chart (PSC) to specify security policies in service coordination. A security policy is
specified as a set of PSCs which describes the behavior that should be guaranteed /
prohibited by a connector.

Once a security policy of a connector is specified, it should be enforced in the tar-
get connector implementation. This can be achieved by deploying the relevant security

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 447–454, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

448 S. Meng

mechanisms and monitoring the execution steps of the target connector. Then the com-
pliance of the connector with the policy should be checked.

Many works in the last years investigate the problem of modeling policies and com-
pliance rules. For example, Schneider [16] uses security automata for specifying en-
forceable security policies and discusses mechanisms for enforcing security policies
specified by such automata, which can be applied to safety-critical systems. Access
control lists (ACLs) are used in [15] to capture simple policies in an unambiguous way.
However, ACLs lack the expressive power being needed by providers. Another option
is to write policies in an XML-based language, such as ODRL [14], which can be used
for securely specifying and managing rights and conditions. Unfortunately, most of
such languages lack formal semantics and make policies written in them ambiguous.
Governatori et al. [8] developed a Formal Contract Language (FCL) for representing
compliance requirements extracted from service contracts. FCL expresses normative
behavior of the contract signing parties by means of chains of permissions, obliga-
tions, and violations. Brunel et al. [6] use Labeled Kripke Structures (LKS) which are
a state/event extension of LTL both for specifying system behavior and related security
requirements, also defined in a form of permissions, obligations, and violations. Re-
cently, visual specifications of security policies written in modeling notations such as
UML and graph transformation are studied. For example, Koch et al. use UML object
diagrams and OCL constraints for specifying a role-based access control policy in [11].

In this paper, we propose using a scenario-based visual notation, termed Policy Se-
quence Chart (PSC), for specifying security policies, and investigate an approach in
which connectors are compliant with the security policies. Within the PSC language,
a policy is seen as a set of message exchage sequences. The language can be used to
describe permissions, prohibitions, obligations and violations. We allow the users to
explicitly specify forbidden scenarios, which can only be implicitly defined in LSCs.
Furthermore, the mandatory behavior in PSCs is separated into weak and strong obli-
gations, where weakly obligated behavior can be violated and the system can still be
considered as compliant with the policy if the corresponding sanctions are specified
and enforced. The semantics for PSCs can be defined by constraint automata and be
used to check the compliance between connectors and security policies that should be
enforced by the connectors.

The remainder of this paper is organized as follows. Section 2 presents the basic
elements in the PSCs language. In Section 3 we discuss the problem of compliance of
Reo connectors with respect to the security policies specified by PSCs. Finally, Section
4 concludes the paper.

2 Policy Sequence Charts

2.1 Sequence Charts

In recent years, scenario based languages such as UML Sequence Diagrams (SDs) [13],
message sequence charts (MSCs) [9,10], and LSCs [7], are being widely used to capture
behavioral requirements of applications. Sequence charts are the core of these widely
accepted notations, which represent a global view of interactions among the compo-
nents (in the broadest sense) inside a system. Each sequence chart corresponds to a

A First Step towards Security Policy Compliance of Connectors 449

User

displayonlineBank

BankBanksite
Actno−and−pwd

verify

ok

verifying

Fig. 1. A Permitted Policy Sequence Chart (pPSC)

single temporal sequence of interactions among system components/services and pro-
vides a partial system description. Sequence charts are close to users’ understanding and
they are often employed to refine use cases and to provide an abstract view of the system
behavior. A sequence chart has two dimensions: a horizontal dimension representing the
components participating in the scenario, and a vertical one representing time, i.e., the
component temporal evolution or lifeline, represented by a vertical line. Actually the
focus of a sequence chart lies on interactions between components by means of arrows.
Such interactions, referred to as messages between a number of lifelines during a sys-
tem run, define particular communications between lifelines of an interaction and can
represent synchronous or asynchronous communications between components.

Figure 1 describes the basic syntax of a sequence chart. It captures a scenario in
which a customer uses an online banking service of a bank and log in to the system. The
customer keys in the account number and the password and the bank site sends customer
information to the bank. Then the bank verifies the correctness of the information. Once
the bank clears the customer, the banksite displays the online banking webpage to the
customer.

2.2 Policy Sequence Charts

The main goal of PSC is to develop a scenario-based visual language to specify secu-
rity policies of connectors and to allow compliance analysis. A security policy might
concern permissions / prohibitions / obligations of a system behavior (“it is permitted /
forbidden / obligatory that...”). For example, in an online bank system, we can have the
following policies:

– A customer is permitted to transfer to another account only if the amount of the
transfer is not more than 5000 euros.

– The system is obliged to stop the internet transaction of a bank customer if the user
has been idle for more than 5 minutes.

In more complex situations, some security requirements can be violated while the sys-
tem may still be considered compliant with the policy. For example, in the online bank
system, a security rule specifies that a customer is forbidden to perform an account
transfer if the account balance is negative after the transfer. According to the business
model, there may be different possible implementations of this security rule. One com-
pliant implementation would be, for some customers, to block any attempt to transfer
an amount more than the account balance. However, for some other customers, another
implementation would be to accept violations of the rule and implement a sanction,

450 S. Meng

such as paying bank charges when the customer’s account balance is negative. The sec-
ond implementation should also be compliant with the policy if the policy specifies that
the customer is obliged to pay bank charges when the account balance is negative.

Due to the different types of security policies, there are 4 types of PSCs: permitted
policy sequence charts (pPSCs), forbidden policy sequence charts (fPSCs), obligatory
policy sequence charts (oPSCs) and sanction for violating policy sequence charts (sP-
SCs). Each PSC consists of two parts: a main chart Ξ and a prechart p (or a guard
condition p). The main chart is activated by the prechart or when the guard condition
is satisfied. Sometimes the activating condition is weak, possibly degenerating to true,
and the prechart itself will be even empty. For such cases, we may omit the second part
and only use the main chart to specify the PSC.

Figure 1 shows an example of a pPSC, which is a basic sequence chart depicted in a
(green) frame. The chart describes a possible behavior of the system and needs not be
satisfied in all system runs. We only require that at least one run satisfies it.

Figure 2 and 3 are two examples of fPSCs. In Figure 2 we use a prechart to specify a
sequence of events. Once the prechart is traversed successfully, the behavior described
by the main chart is prohibited and can not be satisfied by any system run. Another
option for the trigger of the forbidden behavior is to use a guard condition, as shown
by Figure 3. The main chart for fPSCs, depicted by dashed (red) borderlines, can be of
type strong prohibition or weak prohibition, denoted by the keywords strong or weak
labeling the frame for the main chart respectively. The behavior specified by a strong
prohibition can not happen, while weak prohibition can be violated, if corresponding
sanctions are specified by some sPSCs, and the sanctions are enforced.

Figure 4 describes an example of an oPSC. In the chart we use a prechart to describe
the sequence of events activating the obligated behavior. The prechart is shown in the
upper part of the figure (in dashed line style). Thus, whenever the message sequence in

User BankBanksite

displayonlineBank

nok

verify
Actno−and−pwd

strong

verifying

Fig. 2. A Forbidden Policy Sequence Chart (fPSC) with Prechart

User

transfer(amount,newaccount)

Banksite Bank

User.account.balance<amount

transfer(amount,User.account,newaccount)
weak

Fig. 3. A fPSC with Guard Condition

A First Step towards Security Policy Compliance of Connectors 451

User BankBanksite

verifyActno−and−pwd

nok

verify

nok

Actno−and−pwd

Actno−and−pwd verify

nok

displayErrorpage
strong

Fig. 4. An Obligatory Policy Sequence Chart (oPSC) with Prechart

User

transfer(amount,newaccount)

Banksite Bank

User.account.balance<amount

transfer(amount,User.account,newaccount)

weak
paycharges

Fig. 5. A Sanction for Violating Policy Sequence Chart (sPSC)

the prechart occurs, i.e., the customer fails 3 times to login the online bank system, the
banksite should display an error page to the customer. Similar like fPSCs, the main chart
of an oPSC can be of type strong obligation or weak obligation, denoted by the keywords
strong or weak labeling the frame for the main chart respectively. Security policies
specified with strong oPSCs can not be violated. Policies specified with weak oPSCs
can be violated by a system which is still compliant with the policies, if corresponding
sanctions are specified with some sPSCs, and the sanctions are enforced by the system.

A sPSC specifies the sanction when some violation happens. Actually, two types of
violations may occur: a forbidden behavior that happens, or a (weakly) obligatory behav-
ior that does not happen. The prechart of the sPSC specifies the violation, which can be
the sequence chart in a given fPSC, or a confliction with a given oPSC. For example, the
sPSC given in Figure 5 specifies the sanction when the prohibited behavior in Figure 3
happens. The sanction is captured by the main chart, which is depicted in a (blue) frame
and can still be of type strong obligation or weak obligation, denoted by the keywords
strong or weak. Sanctions specified as a weak obligation can also be violated.

3 Compliance of a Connector with Its Security Policy

Here we consider connectors specified as Reo circuits. Reo [2] is a channel-based ex-
ogenous coordination model wherein connectors are compositionally constructed from

452 S. Meng

Sequencer Sequencer

EXR
m2m1

C1?

C1!

C2!C2?

C3?

Fig. 6. An Example Connector among Three Components

C1

weak

m1

m2

C2 C3

m1strong

m2
m1

C1 C2 C3

d =m1C1!

{C1!}

(1) (2)

{C2?}
d =m1C2?

d =m2
{C2!,C1?}

C2!
d =m2C1?

{C1!}
d =m1C1!

{C3?}
d =m1C3?

(3)

s1 s2 s3 s4 s5s0

Fig. 7. Security Policy and Behavior of the Example Connector

simpler ones. Details about Reo and its semantics can be found in [2,3,4]. Complex
connectors in Reo are organized in a network of primitive connectors, called channels.
A connector provides the protocol that controls and organizes the communication, syn-
chronization and cooperation among the components/services that they interconnect.
Figure 6 is an example connector which interconnects three components. EXR and
Sequencer used in Figure 6 are exclusive router and sequencer, respectively.

A security policy P is specified by giving a set of PSCs. Given a connector and a
policy, we focus on the meaning of compliance of the connector with the policy in this
section.

As an example, we present part of the connector among three components C1, C2
and C3 as in Figure 6. The communication among the components encoded in the
connector is specified by the constraint automata in Figure 7 (3). The security policy
consists of the two PSCs given in Figure 7 (1) and (2). The first PSC specifies the weakly
forbidden behavior. If C1 sends an asynchronous messagem1 to C2, it is prohibited to
receive a synchronous messagem2 fromC2 later. The sequence of the first 3 transitions
is performed and violates the fPSC in Figure 7 (1). So, according to (2), there is a
strong obligation for C1 to send an asynchronous message m1 to C3 as a sanction.
This is performed by the specified behavior in (3). Thus, according to our approach, the
connector is compliant with its security policy, even if the first rule is violated.

A First Step towards Security Policy Compliance of Connectors 453

We say that a non-forbidden policy (i.e., a policy specified by pPSC, oPSC or sPSC)
is fulfilled by a connector if the event sequences given in the chart is going to be per-
formed from the current state of the connector, and a forbidden policy specified by fPSC
is fulfilled by a connector if the event sequences given in the chart is not performed from
any state of the connector. For example, the obligation for C1 to send the asynchronous
messagem1 to C3 in Figure 7 (2) is fulfilled at state s3 in Figure 7 (3).

A violation may induce a sequence of further obligations. We use Wsanc(, η, si)
to denote the rule which is weakly obligatory in state si of a run r because of the vio-
lation of η, where 	 ∈ {o, f} denotes the type of the violation of η (obligations being
not fulfilled or forbidden behavior occurred). A sequence of sanctions is a sequence of
sPSCs 〈Pi = (pi, Ξi)〉i∈I , where the last obligation (in case of finite sequence) type can
be either weak or strong obligation, and all the other obligations are weak. A sequence
〈Pi〉i∈I of sanctions is triggered by violation of η if the first sanction in the sequence
isWsanc(, η, si) for violation of a sequence η at some state si, and every of the suc-
cessive sanction in the sequence is triggered by the violation of the previous sanction.
If a sequence of sanctions triggered by a violation ends with a fulfilled obligation, then
the violation is called managed. A connector is compliant with a policy if

– either there is no violation,
– or each time some violation happens, the associated sanction is enforced. In other

words, every sequence of violations is managed.

4 Conclusion and Future Work

In this paper we propose a formalism for specifying and managing security policies that
apply when some security requirements are violated, which is called Policy Sequence
Chart (PSC), and investigate the compliance of connectors with security policies spec-
ified as PSCs. Within PSC a security policy is specified as a set of PSCs, including
scenarios for permitted, prohibited and obligated communications. Violation of policies
has been investigated in [6] by using Labeled Kripke Structures, but the approach does
not consider explicit prohibitions and the violations only apply to single transitions.
Comparing to other approaches, the PSC language is simple, but sufficiently expressive
and user-friendly for capturing security requirements on connectors.

As future work we plan to introduce timing constraints so that we can deal with obli-
gations with deadline as discussed in [5]. The notion of compliance between connectors
and policies should also be further investigated to consider more complex requirements.
We also intend to conduct some larger case studies to validate the approach. The existing
tools, for example, the Reo model checker [1], may be useful to check for compliance
of connectors with respect to security policies.

Acknowledgements. The work reported in this paper is supported by a grant from the
GLANCE funding program of the Dutch National Organization for Scientific Research
(NWO), through project CooPer (600.643.000.05N12).

454 S. Meng

References

1. Eclipse Coordination Tools, http://reo.project.cwi.nl/
2. Arbab, F.: Reo: A Channel-based Coordination Model for Component Composition. Mathe-

matical Structures in Computer Science 14(3), 329–366 (2004)
3. Arbab, F., Rutten, J.: A coinductive calculus of component connectors. In: Wirsing, M., Pat-

tinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 34–55. Springer, Heidel-
berg (2003)

4. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in Reo by con-
straint automata. Science of Computer Programming 61, 75–113 (2006)

5. Brunel, J., Bodeveix, J.-P., Filali, M.: A state/event temporal deontic logic. In: Goble, L.,
Meyer, J.-J.C. (eds.) DEON 2006. LNCS (LNAI), vol. 4048, pp. 85–100. Springer, Heidel-
berg (2006)

6. Brunel, J., Cuppens, F., Cuppens-Boulahia, N., Sans, T., Bodeveix, J.-P.: Security policy
compliance with violation management. In: Proc. of the Workshop on Formal Methods in
Security Engineering (FMSE 2007), pp. 31–40. ACM Press, New York (2007)

7. Damm, W., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. Formal Methods
in System Design 19(0) (2001)

8. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business processes
and business contracts. In: Proceedings of the International Enterprize Distributed Object
Computing Conference (EDOC 2006), pp. 221–232. IEEE Computer Society, Los Alamitos
(2006)

9. ITU-TS. Recommendation Z.120 : Message Sequence Chart (MSC), Geneva (1996)
10. ITU-TS. Recommendation Z.120(11/99) : MSC 2000, Geneva (1999)
11. Koch, M., Parisi-Presicce, F.: Visual Specifications of Policies and Their Verification. In:

Pezzé, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 278–293. Springer, Heidelberg (2003)
12. Papazoglou, M.P., Georgakopoulos, D.: Service Oriented Computing. Comm. ACM 46(10),

25–28 (2003)
13. Object Management Group. Unified Modeling Language: Superstructure - version 2.1.1

(2007), http://www.uml.org/
14. ODRL: The Open Digital Rights Language Initiative, http://odrl.net
15. Pfleeger, C.P.: Security in Computing. Prentice Hall, New Jersey (1997)
16. Schneider, F.B.: Enforceable security policies. ACM Transactions on Information and Sys-

tem Security 3(1), 30–50 (2000)

http://reo.project.cwi.nl/
http://www.uml.org/
http://odrl.net

A Safe Implementation of Dynamic Overloading in
Java-Like Languages&

Lorenzo Bettini1, Sara Capecchi1, and Betti Venneri2

1 Dipartimento di Informatica, Università di Torino
{bettini,capecchi}@di.unito.it

2 Dipartimento di Sistemi e Informatica, Università di Firenze
venneri@dsi.unifi.it

Abstract. We present a general technique for extending Java-like languages with
dynamic overloading, where method selection depends on the dynamic type of
the parameter, instead of just the receiver. To this aim we use a core Java-language
enriched with encapsulated multi-methods and dynamic overloading. Then we
define an algorithm which translates programs to standard Java code using only
basic mechanisms of static overloading and dynamic binding. The translated
programs are semantically equivalent to the original versions and preserve type
safety.

Keywords: Language extensions, Multi-methods, Dynamic Overloading.

1 Introduction

A multi-method can be seen as a collection of overloaded methods, called branches,
associated to the same message, but the method selection takes place dynamically ac-
cording to the run-time types of both the receiver and the arguments, thus implementing
dynamic overloading. Though multi-methods are widely studied in the literature, they
have not been added to mainstream programming languages such as Java, C++ and C#,
where overloading resolution is a static mechanism (the most appropriate implemen-
tation of an overloaded method is selected statically by the compiler according to the
static type of the arguments).

In this paper we present a general technique for extending Java-like languages with
dynamic overloading. To this aim we use the core languages FDJ and FSJ which are
extensions of Featherweight Java [7] with multi-methods and static overloading, re-
spectively. Then, we define an algorithm which translates FDJ programs to FSJ code
using only basic mechanisms of static overloading and dynamic binding. Both FDJ and
FSJ are based on [2], where we studied an extension of FJ with static and dynamic
overloading from the linguistic point of view; thus, in that paper, we focused on the
type system and the crucial conditions to avoid statically any possible ambiguities at
run-time. The multi-methods we are considering are encapsulated in classes and not
external functions, and the branch selection is symmetric: during dynamic overloading

& This work has been partially supported by the MIUR project EOS DUE.

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 455–462, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

456 L. Bettini, S. Capecchi, and B. Venneri

selection the receiver type of the method invocation has no precedence over the argu-
ment types.

The translation here presented can be regarded as a formalization of a general tech-
nique to implement dynamic overloading in mainstream object-oriented languages.
The translation is type safe (i.e., the generated code will not raise type errors) and
the translated code will have the same semantics of the original program using dy-
namic overloading. In particular, since the translated code uses only static overloading
and dynamic binding, it does not introduce a big overhead (it performs method selec-
tion in constant time, independently from the width and depth of inheritance hierar-
chies) as in other approaches in the literature [4,6]. In [3] we presented doublecpp,
http://doublecpp.sf.net, a preprocessor for C++ which is based on the approach
here presented ([3] also sketches a very primordial and informal version of the transla-
tion algorithm); the translation presented in this paper is the first formalization of our
technique for implementing dynamic overloading through static overloading.

We briefly present the parts of the core language FDJ (Featherweight Java + Dy-
namic overloading), which is an extension of FJ (Featherweight Java) [7] with multi-
methods, that are relevant for the translation algorithm (we refer to [2] for further de-
tails). In the following we assume that the reader is familiar with FJ, then we will
concentrate on the features of FDJ. The syntax of FDJ is the following:

L ::= class C extends C {C f; K; M} classes
K ::= C(C f){super(f); this.f=f;} constructors
M ::= C m (C x){return e;} methods
e ::= x

∣∣ e.f
∣∣ e.m(e)

∣∣ new C(e) expressions
v ::= new C(v) values

The distinguishing feature, w.r.t. FJ, consists in the definition of multi-methods: the pro-
grammer is allowed to specify more than one method with the same name and different
signatures; any definition of a method m in a class C is interpreted as the definition of a
new branch of the multi-method m (this difference w.r.t. FJ is evident in the typing [2]).
The new branch is added to all the other branches of m that are inherited (if they are
not redefined) from the superclasses of C (copy semantics of inheritance [1]). In FDJ
we also permit method redefinition with a covariant return type, a feature that has been
recently added to Java. In the present paper we limit multi-methods to one parameter.
We do not see this as a strong limitation from a pragmatic point of view. Indeed, most
of the examples found in the literature dealing with multi-methods consider only one
parameter.

A program is a pair (CT,e) of a class table (mapping from class names to class dec-
larations) and an expression e (the program’s main entry point). The subtyping relation
<: on classes (types) is induced by the standard subclass relation. The types of FDJ
are the types of FJ extended with multi-types, representing types of multi-methods. A
multi-type is a set of arrow types associated to the branches of a multi-method, and is
of the shape: {C1 → C′1, . . . ,Cn → C′n}. We will write multi-types in a compact form,
by using the sequence notation: {C→ C′}. Σ will range over multi-types. We extend the
sequence notation also to multi-method definitions: C′ m (C x){return e;} represents a
sequence of method definitions, each with the same name m but with different signatures

A Safe Implementation of Dynamic Overloading in Java-Like Languages 457

(and possibly different bodies): C′1 m (C1 x){return e1;} . . . C′n m (Cn x){return en;}.
The multi-type of the above multi-method will be denoted by {C→ C′}.

Multi-types are constrained by two crucial consistency conditions, formulated in [5],
which must be checked statically, in order to be well-formed: a multi-type {B→ B′} is
well-formed if ∀ (Bi → B′i),(B j → B′j) ∈ {B→ B′} the following conditions are verified:
1) Bi �= B j, 2) Bi <: B j ⇒ B′i <: B′j. The first condition requires that all input types
are distinct. The second condition guarantees that a branch specialization is safe: if
statically a branch selection has a return type, and if dynamically a more specialized
branch is selected, the return type is consistent with the static selection (it is a subtype).
The original definition of well-formedness of [5] also contained a third condition, which
is always implied by the other two conditions in our context where we only have single
inheritance and one parameter.

The mtype(m,C) lookup function returns the type of m in the class C which is a multi-
type. In particular, since we consider copy semantics of inheritance, the multi-type con-
tains both the signatures of the branches defined (or redefined) in the current class and
the ones inherited by the superclass:

class C extends D {C f; K; M} B′ m (B x){return e;} ∈ M

mtype(m,C) = {B→ B′}∪{Bi → B′i ∈ mtype(m,D) | ∀B j → B′j ∈ {B→ B′},Bi �= B j}
class C extends D {C f; K; M} m �∈ M

mtype(m,C) = mtype(m,D)

Note that we cannot implement mtype(m,C) simply as {B→ B′} ∪mtype(m,D) due to
possible method overriding with covariant return types.

The semantics of method invocation is type driven in that it uses mtype to select the
most specialized version among the set of matching branches (it is unique, by well-
formedness, if that set is not empty). The selected method body is not only the most
specialized w.r.t. the argument type but also the most redefined version associated to
that signature. This way, we model standard method overriding inside our mechanism
of dynamic overloading. The language FSJ has the same syntax as FDJ but the multi-
methods are intended as standard overloaded methods and then the overloading resolu-
tion is static.

2 From FDJ to FSJ: The Translation Algorithm

We now use FDJ and FSJ to formalize the transformation from an extended Java with
dynamic overloading to standard Java (with static overloading): in this section we show
how multi-methods can be implemented by static overloading and dynamic binding. Our
goal is to define a general technique to extend a language with dynamic overloading.
The solution presented here is inspired by the one described by Ingall in [8] (on which
also the Visitor pattern is based), but it does not suffer from possible implementation
problems when implementing manually this technique.

We provide a translation algorithm that, given an FDJ program using dynamic over-
loading, produces an equivalent FSJ program only using static overloading and dynamic
binding. This translation is thought to be automatically executed by a program transla-
tor (a preprocessor) that has to be run before the actual language compiler. Note that the

458 L. Bettini, S. Capecchi, and B. Venneri

code generated by our translation uses neither RTTI nor, more importantly, type down-
casts which are very common in other proposals and that are notoriously sources of type
safety violations. Thus, we provide a formal framework to reason about correctness of
compilers when adding dynamic overloading to a language.

In order to give an informal idea of the proposed translation, let us consider the
following example (for simplicity, in the following, we will use the full Java syntax,
e.g., assignments and sequentialization).

Suppose we have the following FDJ program, where B2 <: B1 are not shown:

class A1{
C m (B1 x){return e1;}
C m (B2 x){return e2;}

};

A1 z = new A1();
B1 y = new B2();
z.m(y);

Then we consider the semantics of the method invocation z.m(y): it will select the sec-
ond branch of m in A1 since, in spite of being declared statically as B1, y is of type B2

dynamically.
Let classes A1, B1 and B2 be written in FSJ as follows:

class A1{
C m (B1 x){return x.disp m(this);}
C m (B2 x){return x.disp m(this);}
C m (B1 x){return e1;}
C m (B2 x){return e2;}

}
class B1{

// original contents
C disp m (A1 x){return x. m(this);}

}

class B2 extends B1{
// original contents
C disp m (A1 x){return x. m(this);}

}

Summarizing, all method definitions are renamed by adding the (reserved) prefix and
all the branches of the original multi-methods (including the ones implicitly inherited
with copy semantics) are modified using the forward invocation x.disp m(this). Now
let us analyze how the method invocation z.m(y) proceeds in FSJ:

1. z.m(y) will select the branch C m (B1 x){return x.disp m(this);} in A1 (remem-
ber that y is statically of type B1);

2. x.disp m(this) will select the (only) branch of disp m in B2, since dynamic bind-
ing is employed also in the static overloading invocation;

3. x. m(this) in B2 will use static overloading, and thus will select a branch of m in
A1 according to the static type of the argument: the argument this is of type B2 and
thus the second branch of m in A1 will be selected.

Therefore, z.m(y) in the translated FSJ program, where classes are modified as above,
has the same behavior as in the FDJ original program (since they execute the same
method body e2). Consider the same classes of the previous example and the following
additional classes (where B3 <: B2 and C′ <: C):

A Safe Implementation of Dynamic Overloading in Java-Like Languages 459

class A2 extends A1{
C′ m (B3 x){return e3;}

};

A1 z = new A2();
B1 y = new B3();
z.m(y);

The dynamic overloading semantics will select the branch C′ m(B3 x) in A2. In this case
the program would be translated in FSJ as follows (the translation of class A1 is the
same as before):

class A2 extends A1{
C m (B1 x){return x.disp m(this);}
C m (B2 x){return x.disp m(this);}
C′ m (B3 x){return x.disp m(this);}
C′ m (B3 x){return e3;}

}

class B1{
// original contents
C disp m (A1 x){return x. m(this);}
C disp m (A2 x){return x. m(this);}

}

class B2 extends B1{
// original contents
C disp m (A1 x){return x. m(this);}
C disp m (A2 x){return x. m(this);}

}

class B3 extends B2{
// original contents
C′ disp m (A2 x){return x. m(this);}

}

Let us interpret the method invocation z.m(y) in FSJ:

1. As in the previous example, z.m(y) will select the branch C m (B1 x){return . . .;}
(remember that x is statically of type B1);

2. since dynamic binding is employed, the implementation of m in A2 will be selected
dynamically;

3. the method invocation x.disp m(this) will select statically the second branch of
disp m in B1, since this is (statically) of type A2, but since dynamic binding is
employed, the version of such method provided in B3 will be actually invoked dy-
namically (note that disp m in B3 is an override of disp m in B2 with covariant
return type, which is sound);

4. the method invocation x. m(this) in B3 will select a branch of m in A2 according
to the static type of the argument: the argument this is of type B3 and thus the
branch C′ (B3 x) of m in A2 will be selected.

Again, z.m(y) in FSJ has the same behavior as in FDJ (they both execute the method
body e3). The reader can easily verify that if y is assigned an instance of B2 we would
execute e2, just as in the first example, i.e., the body of the branch with parameter B2 as
defined in A1, implicitly inherited by A2. Summarizing, the idea of our translation is that
the dynamic overloading semantics can be obtained, in a static overloading semantics
language, by exploiting dynamic binding and static overloading twice: this way the
dynamic selection of the right method is based on the run time types of both the receiver
and the argument of the message.

Note that the key point in our translation is to rename by m every method m and then
introduce a new overloaded method m, which is the entry point for dynamic overload-
ing interpretation. The branches of this new multi-method m in a FSJ class Ai are built
starting from the branches of the original FDJ m by considering the set of all the param-
eters types B j of m in Ai (including the ones inherited by copy semantics). One might be

460 L. Bettini, S. Capecchi, and B. Venneri

tempted to say that the added methods C m (B1,2 x){returnx.disp m(this);} in A2 are
useless since they would be inherited from A1: however, their presence is fundamental
to make our translated code work, since what matters in this context is the static type of
this; thus, these methods must be present also in A2.

Our translation also relies on a new multi-method disp m introduced in the Bi’s
classes. Let us consider how the branches of disp m are built. Regarding the definition
of the multi-method m in a FDJ class Ai, for each type Bi, such that Bi is the type of the
parameter of a branch of m, we add a branch to disp m in the class Bi with parameter of
type Ai. We add the same branch to disp m in each class B j such that Bi <: B j and B j is
the type of the parameter of a branch of m in Ai or in a superclass Ak (Ai <: Ak).

Let us consider the classes in the second example:

– B1 and B2 are the parameter types of the branches of m in A1, thus we add a branch
to disp m in B1 and B2, with parameter of type A1.

– B3 is the type of the parameter of the branch of m in A2 so we add a branch to disp m
in B3, with parameter of type A2. Moreover, since B3 <: B2 and since B2 is the type
of parameter of a branch of m in A1 (A2 <: A1), we add a branch to disp m in B2,
with parameter of type A2; recursively, we add such a branch to B1, since B2 <: B1

and since B1 is the type of parameter of a branch of m in A1 (A2 <: A1).

To insert the correct disp methods following the strategy above, it is enough to re-
trieve all the branches of a multi-method in a class (including those inherited with copy
semantics); for each of such methods in a class Ai, say B′ m(B j x) {. . .}, we insert in B j a
method B′ disp m(Ai x) {return x. m(this);}. It is easy to verify that this procedure
adds exactly all and only the disp that are required to make our translation work. Sum-
marizing, the method m, in the FSJ translated version, aims at statically using the type
of Ai and dynamically using the type of the B j, while the method disp m has exactly the
opposite task. Together these two methods realize the dynamic overloading semantics.

Let us now present formally our translation, which is defined on well-typed FDJ pro-
grams, so assuming properties concerning well typedness of programs. In the following
we introduce some auxiliary notations: given a set of method definitions M, a method
definition M, a method name m, a class table CT and class C extends D {C f; K; M} ∈
dom(CT) we use the following notations:

– M \ m = {B′ m′(B x) {return e;} ∈ M | m′ �= m}
– rename(M,m) = (M \ m)∪{B′ m(B x) {return e;} | B′ m(B x) {return e;} ∈ M}
– rename(CT,C,m) is the class table CT′ that is obtained from CT by renaming the

methods with name m in the class C, i.e., CT′ is such that:
• CT′(C) = class C extends D {C f; K; rename(M,m)}
• ∀C′ ∈ dom(CT) such that C′ �= C, CT′(C′) = CT(C′)

– CT(C) ←← M is the class table CT′ obtained from CT by adding to C the method
definition M, i.e., CT′ is such that:
• CT′(C) = class C extends D {C f; K; M M}
• ∀C′ ∈ dom(CT) such that C′ �= C, CT′(C′) = CT(C′)

Definition 1 (Translation algorithm from FDJ to FSJ). Let p = (CT,e) be well typed
FDJ program, then the corresponding FSJ translated version, denoted by (CT,e), is
obtained from p by performing the following algorithm:

A Safe Implementation of Dynamic Overloading in Java-Like Languages 461

1. CT := CT
2. ∀class C extends D {C f; K; M} ∈ dom(CT)

(a) ∀m ∈ Names(M)
i. CT := rename(CT,C,m)

ii. ∀B→ B′ ∈ mtype(m,C), using CT
A. CT := CT(B) ←← B′ disp m(C x) {return x. m(this);}
B. CT := CT(C) ←← B′ m(B x) {return x.disp m(this);}

Note that the algorithm needs both the original CT and a new class table CT, which
contains the translated classes; the former is used to drive the translation, in particular
for the lookup functions and for retrieving the original method definitions, while the
latter is updated at every step (we use the assignment operator := to update the class
table CT). Thus, we start by initializing CT with a copy of the original class table CT
(this way we also copy all the class fields and constructor definitions that will not be
changed during the translation). Then, for every class in CT we perform the three steps
that act on method names and method definitions. Note that the renaming (step 2(a)i)
is always performed starting from CT, thus incrementally renaming method names one
by one. Step 2(a)iiA generates the disp methods in target classes; the branches to be
generated are collected starting from the original client class in CT, using the mtype
function that implements the copy semantics of inheritance; this is crucial to make the
translation algorithm work correctly. Step 2(a)iiB adds the entry point branches, that
have the same name of the multi methods in the original program, that forward to the
disp methods. Note that in Steps 2(a)iiA and 2(a)iiB it is crucial to start from the
original class, otherwise, the algorithm would treat also the added or renamed methods
in successive steps.

Finally, we observe that the translated program (CT,e) differs from the original one
(CT,e) only with respect to method definitions, affecting neither the body of the origi-
nal methods (i.e., the translation never acts on method bodies) nor the main expression
e. The translation algorithm here defined preserves both type safety and semantics of
the original programs, then it implements dynamic overloading in a type safe and cor-
rect way.

3 Conclusions and Related Work

Some object-oriented languages and calculi have been proposed to study multi-methods
and dynamic overloading; we refer to [2] for an extensive discussion of these ap-
proaches. Here we list only a few recent works which are more related to the issues
of the present paper.

Parasitic methods [4] are a linguistic extension of Java with asymmetric multi-
methods, with the main goal of retaining modularity. The approach does not use copy
semantics, the selection of the most specialized method relies on instanceof checks
and consequent type casts (thus it does not perform constantly as in our solution, but es-
sentially linearly on the number of branches), the dispatching semantics is complicated
by the use of textual order of method declarations.

MultiJava [6] is a backward-compatible extension to Java supporting multi-methods
and open classes. New methods in a class C can be added by defining external method

462 L. Bettini, S. Capecchi, and B. Venneri

families in a different compilation unit w.r.t. to the one containing C definition. The
drawback of this approach is that extending, or modifying an existing method, can only
be done by explicitly subclassing all affected variants and overriding the corresponding
branches. This complicates the extensibility and can lead to an inconsistent distribution
of code. MultiJava is directly compiled into Java bytecode. Relaxed MultiJava [9] in-
creases flexibility of MultiJava w.r.t. overloading; however, it is obtained by allowing a
function call to be ambiguous; these ambiguities are caught at class load time.

In [10] C++ is extended with open multi-methods and symmetric dispatch. Differ-
ently from our approach, open multi-methods are external to classes, as the external
added methods of MultiJava.

The translation algorithm presented in this paper can be extended in two directions.
Firstly, we could consider methods with more than one parameter. In this case, the
translation gets more complicated, and it is the subject of an ongoing work. The second
extension, which has a stronger practical impact, consists in handling multiple inheri-
tance. Multiple inheritance introduces subtle ambiguity problems that have always been
the drawback of introducing dynamic overloading in mainstream languages. From the
point of view of the language, in [2] we showed how the type-checking can rule out
all possible ambiguities due to multiple inheritance; then, we have only to extend the
translation algorithm.

References

1. Ancona, D., Drossopoulou, S., Zucca, E.: Overloading and Inheritance. In: FOOL 8 (2001)
2. Bettini, L., Capecchi, S., Venneri, B.: Featherweight Java with Dynamic and Static Over-

loading. Science of Computer Programming 74(5-6), 261–278. Elsevier, Amsterdam (2009)
3. Bettini, L., Capecchi, S., Venneri, B.: Double Dispatch in C++. Software: Practice and Ex-

perience 36(6), 581–613 (2006)
4. Boyland, J., Castagna, G.: Parasitic Methods: Implementation of Multi-Methods for Java. In:

Proc. of OOPSLA, pp. 66–76. ACM, New York (1997)
5. Castagna, G.: Object-Oriented Programming: A Unified Foundation. Progress in Theoretical

Computer Science. Birkhauser, Basel (1997)
6. Clifton, C., Millstein, T., Leavens, G.T., Chambers, C.: MultiJava: Design rationale, compiler

implementation, and applications. ACM Trans. Prog. Lang. Syst. 28(3) (May 2006)
7. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: a minimal core calculus for Java and

GJ. ACM TOPLAS 23(3), 396–450 (2001)
8. Ingalls, D.: A Simple Technique for Handling Multiple Polymorphism. In: Proc. OOPSLA,

pp. 347–349. ACM Press, New York (1986)
9. Millstein, T., Reay, M., Chambers, C.: Relaxed multijava: balancing extensibility and modu-

lar typechecking. SIGPLAN Not. 38(11), 224–240 (2003)
10. Pirkelbauer, P., Solodkyy, Y., Stroustrup, B.: Open multi-methods for C++. In: GPCE, pp.

123–134. ACM, New York (2007)

Fundamental Concepts for the Structuring of
Functionality into Modular Parts�

Alexander Gruler1 and Michael Meisinger2

1 Institut für Informatik, Technische Universität München, Germany
gruler@in.tum.de

2 Calit2, University of California, San Diego, USA
mmeisinger@ucsd.edu

Abstract. Today, many software systems offer a multitude of different,
user-observable functions, which in their entirety form the very complex
overall system’s functionality. However, practical experience shows that
many question are directly related to the user-observable sub-functions.
Regarding the development process, this requires to relate the entire sys-
tem’s functionality to its sub-functions in a formal way. In this context,
decomposing and modeling the functionality in a structured way is essen-
tial. In this paper, we identify and define fundamental concepts for the
structuring of a system’s functionality into modular parts. We formalize
these concepts using Focus, a stream-based theory for the specification
of reactive systems. In particular, we define the notion of self-contained,
autonomous sub-functions and introduce a canonical decomposition of
functionality, inherent to the structure and nature of the functionality.
Subsequently, we discuss topics of methodology that guide a modular
functional decomposition. All in all, this gives a modular structuring
concept for the behavior of multi-functional systems.

1 Introduction

The functionality offered by software systems is continuing to move towards
the center of interest for system development. For many software-intensive sys-
tems, the overall functionality is a combination of different individual, user-
observable functions which in general serve different purposes. In this context,
we also speak of multi-functional systems; typical examples from our daily life
are mobile phones and premium class automobiles. In a modern automobile, e.g.
the entertainment devices and the driver assistance functions are commonly seen
as different, independent sub-functions of the system “car”.

When looking at a system, we can decompose its entire functionality in arbi-
trary ways into sub-functions. What an observer actually perceives as a stand-
alone sub-function is very subjective and influenced by various design drivers.
Essential for the construction of the entire system behavior is how to relate its
individual sub-functions. Typical relations include the “is-part-of” relation, the

� This paper is available in a much more detailed version as the Technical Report [5].

F. Arbab and M. Sirjani (Eds.): FSEN 2009, LNCS 5961, pp. 463–470, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

464 A. Gruler and M. Meisinger

“influences”-relation and the refinement relation; e.g. the functionality of playing
a CD is part of the entertainment function, while the driver assistance functions
influence the movement of the car (The car does not accelerate if the Electronic
Stability Control detects skids, even if the gas pedal is pushed further down).
Together, these relations induce a structure on the set of functions.

The structure of the functionality is of particular interest, especially for the
development of subsequent design models, such as component architectures, and
of concrete implementations. Having only a loose set of unrelated sub-functions
provides no guidance on how the functionalities should be implemented by com-
ponents. A structured view on the functionality is important for both the con-
sumers and the developers of a system. In particular, a model of the functionality
is the link between the needs of the consumers and the construction approach
of the implementers. Furthermore, a structured functionality model helps to ef-
fectively deal with challenges such as unwanted feature interactions. However,
compared to the systematic development of component architectures, the act of
decomposing a system’s overall functionality is currently less understood. Struc-
turing the functionality into a hierarchical way is not yet guided by conceptual or
methodological principles. Besides, the meaning of proven engineering concepts
such as modularity and compositionality (cf. Parnas [6] and Dijkstra [4]) is not
precisely defined for the structuring of a system’s functionality.

In this paper, we identify fundamental concepts for the structuring of a sys-
tem’s functionality and define them using a stream-based semantics based on
Focus [3]. Here, individual functionalities are represented as services. We mo-
tivate and formally define the notion of (independent) autonomous services. We
argue that functionality can be decomposed in a canonical way, where the de-
composition is purely enforced by the structure and nature of the functionality
itself, not by the way in which an observer perceives it. In particular, the canon-
ical structuring is not only defined by the syntactical interface of a function,
but by the (functional dependent) messages, which are communicated within a
localized syntactic interface. This results in a canonical hierarchical structure for
the functionality which represents a decomposition into modular, self-contained
sub-functions. Based on these introduced theoretical concepts, in Section 3, we
introduce and formally define further structuring principles that guide the hi-
erarchical structuring of the behavior of multi-functional systems: We formalize
the concept of a service hierarchy, which captures the decomposition of services
into modular sub-services, we define the notion of a conflict between services
and show how resolving conflicting services induce a natural service hierarchy.
Finally, note, that this paper is available in a much more detailed version [5].

2 A Semantical Foundation for Modeling Functionality

In this section, we introduce the theoretical concepts for the modeling and hi-
erarchical structuring of functionality. These concepts are the formal basis for a
canonical decomposition of a function. The semantics of our concepts grounds on
the Focus [3] theory for the specification and development of reactive systems.

Fundamental Concepts for the Structuring of Functionality 465

In Focus, systems are composed of communicating components with behaviors
given as input/output relations defined by total stream-processing functions. A
service theory [2] exists on top of the Focus theory. A service corresponds to a
part (or slice) of the (total) behavior of a component and is consequently rep-
resented as a partially defined stream-processing function. Services are offered
by components and can be seen as cross-sections through the black-box behav-
ior of a component or a system; conversely a system can be understood as the
combination of all its services, cf. Figure 1(a). Services can be related to other
services in various ways, e.g. a service is a sub-service of another (super-) ser-
vice, if its functionality is completely offered by the (super-) service. Despite of
the fact that knowledge of the Focus theory and its concepts is an essential
requirement to understand this paper, due to space limitations we have to omit
an introduction of all basic concepts of the Focus theory, here. All necessary
basics are described in the extended version of this paper [5] or in [3,2].

Compared to the fundamental concepts, the concepts we introduce in this
section support a systematic design methodology (cf. Section 3) which is set up
for the construction of a maximally modular service hierarchy. But what is a
“maximally modular” decomposition? It is a decomposition of a function into
independent sub-services, where each sub-service encapsulates a self-contained,
closed piece of functionality. We call such a decomposition canonical because it
is only induced by the nature of the function itself, i.e. the way how the function
relates inputs to outputs, respectively, and not by another, arbitrary criteria.

The fundamental idea behind a canonical decomposition is that of autonomous
service partitions. While service slicing and projection [2,5] are technical means
to allow the derivation of many possible sub-services from a given service, these
sub-services do not necessarily encapsulate an independent or connected piece
of functionality. In contrast, an autonomous service partition represents an in-
dependent, implied piece of functionality, i.e. it is a self-contained sub-service
whose outputs are exclusively influenced by messages on its input channels.

Definition 1 (Autonomous Service Partition (ASP)). Let S ∈ F[I � O]
and S ′ ∈ F[I ′ � O′] be two services where (I ′ � O′) subIntf (I � O), and
I ′, O′ �= ∅. We call the service S′ an autonomous service partition (ASP) of S
if

(i) ∀x, x̃ ∈ Dom(I) : (x|I ′ = x̃|I ′) =⇒({
y
∣∣ ∃z : (z ∈ S.x) ∧ (y=z|O′)

}
=
{
y
∣∣ ∃z : (z ∈ S.x̃) ∧ (y = z|O′)

})
(ii) and S′ = S † (I ′ � O′) is a service slice of S .

We write S*(I ′ � O′) to denote an ASP in F[I ′ � O′] which is derived from S.

According to the definition, an ASP is defined on a subset of the input channels
of a service, in a way that this subset holds all necessary information to produce
the outputs for the given subset of output channels. In other words, the output
histories of an ASP only depend on those parts of the input histories that are
not discarded by the restriction operation |, i.e. the restriction has captured and
preserved all functional coherences contained in the original (unrestricted) his-
tories. Note, that for an ASP we require that the projection contains at least one

466 A. Gruler and M. Meisinger

input and one output channel. There exists always an autonomous partitioning
of a service Sys into sub-services. In some cases the only existing decomposition
is the service Sys itself, which we then call the trivial ASP. In such a case the
service specifies a behavior which is inherently complex, i.e. where for all outputs
actually the configuration of all input channels, i.e. the entire history ∈ H(I),
is necessary. Illustratively, this means that we cannot find a subset of output
channels where the output histories depend on the messages of a subset of the
input channels only.

An ASP may encapsulate several independent ASPs. For a canonical decom-
position we are interested in minimal ASPs which are unique regarding the de-
composition. A minimal ASP represents a sub-service that contains exactly one
autonomous behavior and does not encapsulate any further non-trivial ASPs.
In particular, from a minimal ASP all its input channels are essentially needed:
Projecting away one more input channel destroys the property of being an ASP.

Definition 2 (Minimal and Exact Autonomous Service Partitions). We
call an ASP S′ = S*(I ′ � O′) minimal, if

�(Ĩ � Õ) :
(
(Ĩ � Õ) subIntf (I ′ � O′)

)
∧ S*(Ĩ � Õ)

We write S*min(I ′ � O′) for a minimal ASP. We call a minimal ASP S*min(I ′ �
O′) exact, if there exists no other minimal ASP S̄ with the same set of input
channels I ′, but spanning more output channels, i.e. with S̄ = S*min(I ′ � Ō)
and O′ ⊂ Ō. We write S*exct(I ′ � O′) for an exact ASP.

The concept of a minimal ASP is not yet sufficient to define a canonical decom-
position, since for a given minimal ASP we can remove output channels while
still preserving the property of being a minimal ASPs. The notion of an exact
ASP uniquely marks that minimal ASP in such a family of ASPs which com-
prises the largest set of output channels. The set of all exact ASPs characterizes
the most modular structuring of a service where all independent sub-functions
are represented as individual ASPs. The following definition reflects this idea.

Definition 3 (Canonical Functional Decomposition). Let Si ∈ F[Ii �
Oi], i ∈ N, be services. A canonical functional decomposition of a service Sys ∈
F[ISys � OSys] is the maximal set of services {S1, . . . , Sn} such that

(i) every service Si is an exact autonomous partition of Sys, i.e.
∀i ∈ {1, . . . , n} : Si = Sys*exct(Ii � Oi),

(ii) and the sets of input and output channels of the services Si are pairwise
disjoint, i.e. ∀i, j ∈ N : Ii ∩ Ij = ∅ = Oi ∩Oj ,

If the service Sys is completely covered by the exact partitions Si, that is if
ISys =

⊎
i Ii and OSys =

⊎
iOi, we call the canonical decomposition perfect.

Note, that the requirement (ii) in Def. 3 is implied by (i), since minimal par-
titions are always disjoint regarding their syntactical interfaces. Further, note
that a canonical decomposition is always unique. Since we can always find an
autonomous partition of a service, we can also always find a canonical decompo-
sition, which in the most trivial case is simply a singleton set containing only a
single service, namely the original service Sys. We call such a canonical decom-
position trivial. A detailed example illustrating Def. 1-3 can be found in [5].

Fundamental Concepts for the Structuring of Functionality 467

3 Methodological Integration of the Theoretical Concepts

The theoretical concepts introduced so far provide the necessary formal frame-
work for decomposing services. However, they give no guidance of how to con-
struct a useful hierarchical decomposition of the entire system’s functionality. In
the following, we discuss in a methodological context how the introduced con-
cepts can be used to construct such a service hierarchy. Before we do so, we
briefly define the concept of a (canonical) service hierarchy based on [5,1].

The fundamental idea of a service hierarchy is to decompose a service into a
set of sub-services. Sub-services themselves can be further decomposed into sub-
services again. This leads to a hierarchical structuring of services, the service
hierarchy, which itself is a variant of a rooted tree where the nodes represent
services and the edges represent the sub-service relation.

Definition 4 (Service Hierarchy). Let H = (V,E) be a rooted tree, spec :
V → F a function which associates a service (specification) to every node of H.
We call the tuple

(
(V,E), spec

)
a service hierarchy, if

(i) every child-node is a sub-service of its parent node, i.e.
∀(u, v) ∈ E : spec(v) ≺sub spec(u) ,

(ii) and the syntactical interface of any compound service is determined by the
interfaces of its children, i.e. ∀u ∈ V, spec(u) ∈ F[I � O] :(
I =

⋃
v: (u,v)∈E

In(spec(v))
)

∧
(
O =

⋃
v: (u,v)∈E

Out(spec(v))
)

The ruling principle in a service hierarchy is that the behavior (I/O-relation) of
any compound service can be completely derived from the behaviors of all of its
sub-services. This allows to split up a service into a set of sub-services, where on
the one hand both the semantical and syntactical interfaces of the super-service
are determined by its sub-services. On the other hand, a super-service cannot
have an “additional” functionality which is not part of its sub-services.

Definition 5 (Canonical Service Hierarchy). Let SD =
(
(V,E), spec

)
be a

service hierarchy. We call SD canonical if for every service s, which is not a leaf
node, the set of its children children(ρ(s)) is its perfect canonical decomposition.

A canonical service hierarchy is a hierarchy with depth 1. It represents the most
modular form of how a functionality can be structured in direct sub-functions.
It is a decomposition into purely self-contained, independent sub-services which
cover the entire (syntactical and semantical) interface of their super-service. The
sub-services of such a canonical hierarchy represent functionalities which cannot
be further decomposed into autonomous parts.

3.1 Hierarchical Structuring of Services

Methodologically, a service hierarchy can be the result of different structuring
strategies following different approaches. In the following, we differentiate be-
tween two scenarios: (1) The decomposition of a very complex service into a
service hierarchy according to certain criteria, and (2) the construction of a
service hierarchy from a flat set of (unrelated) services (representing use cases).

468 A. Gruler and M. Meisinger

Decomposition of a Service into a Modular Service Hierarchy An im-
portant design driver for the transition to subsequent design models is to struc-
ture the functionality, represented by the set of services, in a maximally modular
way. Here, with “modular”, we mean decomposition of the functionality offered
by a system—represented by a single, possibly very complex service S—into
smaller, self-contained, non-overlapping parts that are functionally independent
and at the same time cover a maximal part of the behavior of S.

The canonical decomposition (cf. Def. 3) of a service embodies this idea. It
represents a partitioning of a service S into disjoint, modular parts {S1, . . . , Sn},
where each partition Si, i ∈ N, encapsulates a separate piece of behavior within
a precisely localized syntactical interface. In particular, the canonical decompo-
sition is perfect if the partitions cover the entire behavior of the original service
S. Figure 1(b) shows a perfect canonical decomposition into three services.

By adding all the service partitions Si as sub-services of S, we get a canonical
service hierarchy (cf. Def. 5) of S. Because the Si are a perfect canonical decom-
position of S, the required property of a service hierarchy that the behavior of
any compound service must always be completely defined by the behaviors of
its sub-services, is automatically guaranteed.

A (non-trivial) perfect canonical decomposition does not always exist: In some
cases where we find a canonical decomposition, the contained autonomous ser-
vice partitions do not completely cover the functionality required by their super-
service. In many cases we cannot even find a non-trivial canonical decomposition,
since the functional dependencies of the service to be decomposed are too com-
plex. In such a case, a decomposition will always result in a set of sub-services
with “overlapping” functionality, i.e. is not autonomous in the sense of Definition
1. For more details concerning a decomposition methodology see the correspond-
ing part in [5].

System

S1

S2

S3

S4

(a) An arbitrary decompo-
sition into sub-services.

System

S6

S7

S5

(b) Perfect canonical de-
composition into exact au-
tonomous partitions.

System

S5a

S6

S7

S5c

S5b

(c) Further hierarchical
decomposition of the
autonomous partition S5.

Fig. 1. Different decompositions of the black-box behavior of a component. A white
circle denotes an input channel, a black circle denotes an output channel.

Fundamental Concepts for the Structuring of Functionality 469

Hierarchical Combination of Services Induced by Conflicts During the
early phases of system development, services provide an adequate way of for-
malizing the requirements posed to a system. From this point of view, a service
can be seen as the formalization of a use-case, restricting the set of possible
implementations of the system. Specifying the functionality of a system in this
way usually results in a set of unrelated services as illustrated in Figure 1(a):
Here, the services may overlap in arbitrary ways, i.e. some services depend on
common input channels, while other services specify requirements on the same
output channels.

The resulting system exhibits the behavior of all these services, i.e. it has to
meet all service specifications in parallel. However, the services can be conflicting
or even contradictory, in particular during early phases of RE. Here, a conflict
is any contradicting behavior resulting from the combination of two modularly
specified services that are (direct or indirect) sub-services of the same super-
service. More precisely, two services are conflicting if both services produce for
identical input history on common input channels different output histories on
at least one common output channel.

Definition 6 (Conflicts Between Services). Let S1 ∈ F[I1 � O1], S2 ∈
F[I2 � O2] be two services, I = I1 ∩ I2 a common subset of input channels, and
O = O1 ∩ O2 a common subset of output channels of S1 and S2 . We call the
services S1 and S2 conflicting, if

∃x1 ∈ Dom(S1), x2 ∈ Dom(S2), x ∈ H(I) :(
x1|I = x = x2|I

)
∧

(
S1 † (I � O).x �= S2 † (I � O).x

)
Otherwise we call the services conflict free. The histories x are called conflicts.
We write Conflicts(S1, S2) to denote the set of all conflicting input histories x
between the services S1 and S2.

Because the system has to provide the functionality specified by all individual
services, we have to resolve conflicts within the set of services in order to con-
struct a valid system. One way to resolve a conflict between two services is to
prioritize one service over the others. However, prioritization of services already
hints at which services depend on one another in the sense that they describe a
related piece of functionality. More precisely, the act of prioritization of services
induces a “natural” hierarchical structure on the set of services.

From a methodological point of view, this provides guidance of how to com-
bine services in a hierarchy in order to yield compound services: Given two
conflicting services S1 = (I1 � O1) and S2 = (I2 � O2), we specify a new ser-
vice R = (I1 ∪ I2 � O1 ∪ O2), called the resolving service, where Dom(R) =
Conflicts(S1, S2). The behavior of R needs to be specified manually by the sys-
tem designer, implementing the design decisions how the conflicts are resolved.
The semantical interpretation of the service hierarchy has to ensure that all in-
put histories in Dom(R) are processed by the resolving service R only. Then,
the services S1, S2 and R can be combined forming a new super-service S, since
the behavior of S is completely defined by the services S1, S2 and R.

470 A. Gruler and M. Meisinger

Figure 1(c) illustrates the composition of services in this way: The services
S5a, S5b and S5c are composed forming the service S5 shown in Figure 1(b).
The structuring of S5 in this way yields a representation that explicitly distin-
guishes between its modular (S5a and S5b) and overlapping parts (S5c), which
encapsulates the conflicting input histories. Regarding feature interaction, this
has the advantage to leave the modular specification of the conflicting services
untouched and to make the resolution of the conflict explicit in a specific service.

4 Conclusion

With the increasing complexity of software-intensive systems, their offered func-
tionality moves in the center of interest for an effective development. In particu-
lar, the construction of multi-functional, distributed systems with their complex
functional dependencies and interactions benefits from functionality oriented
design and implementation strategies. We have introduced and defined funda-
mental concepts for the hierarchical structuring of functionality. Based on the
concept of sub-service, we have formalized the general concept of functional hi-
erarchy, and in particular of its canonical form. The functionality of a system
can be structured in different ways. One fundamental way —especially valuable
for the transition to subsequent design models or modular verification— is to
decompose the functionality into independent, self-contained parts. We have for-
malized this idea introducing the concept of autonomous services. A structuring
into autonomous services represents a canonical decomposition implementing
the idea of functional modularity. For non-autonomous services, we have defined
the notion of a conflict. Based on this notion, we can characterize and represent
conflicting functionalities as a precisely defined set of related services, where the
part of the functionality which is not involved in the conflict, and the conflict-
ing part, are explicitly modeled. We have placed the introduced concepts into a
methodological context and outlined their application for constructing a service
hierarchy. Note that due to space limitations, we had to omit essential concepts
and definitions which are described in more detail in [5].

References

1. Broy, M.: Two sides of structuring multi-functional software systems: Function hi-
erarchy and component architecture. In: Kim, H.-K., et al. (eds.) SERA 2007, pp.
3–10. IEEE Computer Society, Los Alamitos (2007)

2. Broy, M., Krüger, I., Meisinger, M.: A formal model of services. ACM Transactions
on Software Engineering Methodology (TOSEM) 16(1) (2007)

3. Broy, M., Stølen, K.: Specification and Development of Interactive Systems - Focus
on Streams, Interfaces and Refinement. Springer, New York (2001)

4. Dijkstra, E.W.: Ch. I: Notes on structured programming. Academic Press, London
(1972)

5. Gruler, A., Meisinger, M.: Hierarchical decomposition of multi-functional systems.
Technical Report TUM-I0901, Technische Universität München (2009)

6. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Commun. ACM 15(12), 1053–1058 (1972)

Author Index

Aceto, Luca 146

Baeten, J.C.M. 1
Baldoni, Matteo 402
Barbanera, Franco 97
Barbosa, Luis S. 416
Barbosa, Marco A. 416
Behjati, Razieh 292
Berger, Martin 194
Bettini, Lorenzo 455
Birgisson, Arnar 146
Boella, Guido 402
Bonsangue, Marcello M. 260

Campos, José C. 416
Capecchi, Sara 97, 455
Chen, Zhenbang 387
Chothia, Tom 212
Cuijpers, P.J.L. 1

de Boer, Frank 212
de Frutos-Escrig, David 276
de’Liguoro, Ugo 97
Demangeon, Romain 81
Drira, Khalil 439

Estublier, Jacky 431

Fahrenberg, Uli 34
Fecher, Harald 276
Fokkink, Wan 113, 308

Ghassemi, Fatemeh 113
Ghindici, Dorina 355
Gössler, Gregor 340
Grabe, Immo 324
Gruler, Alexander 463

Hirschkoff, Daniel 81

Ingolfsdottir, Anna 146
Izadi, Mohammad 260

Jaghoori, Mohammad Mahdi 212
Jmaiel, Mohamed 439

Kleijn, Jetty 178
Klein, Dominik 162
Klint, Paul 308
Koutny, Maciej 178

Krichen, Ikbel 439
Kyas, Marcel 324, 371

Larsen, Kim G. 34
Leveque, Thomas 431
Lisser, Bert 308
Liu, Zhiming 62, 244
Lüttgen, Gerald 276
Luttik, B. 1

Meisinger, Michael 463
Meng, Sun 447
Merro, Massimo 228
Miladi, Mohamed Nadhmi 439
Morisset, Charles 62, 387
Mousavi, MohammadReza 146
Movaghar, Ali 113

Nili Ahmadabadi, Majid 292

Radmacher, Frank G. 162
Reniers, Michel A. 146

Sangiorgi, Davide 81
Schmidt, Heiko 276
Schönborn, Jens 371
Schuppan, Viktor 129
Sibilio, Eleonora 228
Simplot-Ryl, Isabelle 355
Sirjani, Marjan 292
Steffen, Martin 324
Stolz, Volker 62, 387

Talbot, Jean-Marc 355
Thomas, Wolfgang 162
Thrane, Claus R. 34
Torjusen, Arild B. 324

Usenko, Yaroslav S. 308

van der Torre, Leendert 402
van Tilburg, P.J.A. 1
Vega, German 431
Venneri, Betti 455

Zhang, Miaomiao 244
Zhan, Naijun 244

	Title Page
	Preface
	Organization
	Table of Contents
	Session 1. Invited Papers
	A Process-Theoretic Look at Automata
	Introduction
	Process Theory
	Regular Processes
	Pushdown and Context-Free Processes
	Computable Processes
	Conclusion
	References

	Verification, Performance Analysis and Controller Synthesis for Real-Time Systems
	Introduction
	Timed Automata
	Syntax and Semantics
	Reachability
	Regions
	Behavioural Refinement Relations
	Language Inclusion and Equivalence
	Zones and Difference-Bound Matrices

	Weighted Timed Automata
	Optimal Reachability
	Multi-weighted Timed Automata
	Optimal Infinite Runs

	Timed Games
	References

	rCOS: Theory and Tool for Component-Based Model Driven Development
	Introduction
	Natural Path to CB-MDD
	Early Notions of Components and Models
	Theoretical and Tool Support to Successful CB-MDD

	Theoretical Foundation of rCOS
	Component Implementation and Component Refinement
	Contracts
	Publications
	Composition

	The rCOS Tool
	Tool Support to Requirement Analysis
	Model Transformation Tool to Support Design

	Concluding Remarks
	References

	Session 2. Regular Papers
	Termination in Higher-Order Concurrent Calculi
	Introduction
	HOpi2
	The Calculus
	A Type System to Ensure Termination in HOpi2
	An Analysis of the Type System for HOpi2

	HOPi: Transmitting Higher-Order Functions
	Controlling Communication and Passivation
	Concluding Remarks
	References

	Typing Asymmetric Client-Server Interaction
	Introduction
	The S-Calculus and Its Operational Semantics
	Asymmetric Session Types
	Compliance up to Deadlock
	Delegation via Higher-Order Sessions
	Related Work and Conclusion
	References

	Equational Reasoning on Ad Hoc Networks
	Introduction
	Restricted Broadcast Process Theory
	Computed Network Theory
	Operational Semantics of CNT
	Computed Network Bisimulation
	CNT Axiomatization
	Conclusion
	Branching Computed Network Bisimilarity Is an Equivalence
	Rooted Branching Computed Network Bisimilarity Is a Congruence

	Towards a Notion of Unsatisfiable Cores for LTL
	Introduction
	Preliminaries
	Notions and Concepts Related to UCs
	Unsatisfiable Cores via Parse Trees
	Unsatisfiable Cores via Definitional Conjunctive Normal Form
	Basic Form
	Variants
	Comparison with Separated Normal Form

	Unsatisfiable Cores via Bounded Model Checking
	Unsatisfiable Cores via Tableaux
	Related Work
	Conclusion
	References

	Rule Formats for Determinism and Idempotence
	Introduction
	Preliminaries
	Determinism
	Examples

	Idempotence
	Format
	Relaxing the Restrictions
	Predicates
	Examples

	Conclusions
	References

	The Complexity of Reachability in Randomized Sabotage Games
	Introduction
	The Randomized Sabotage Game
	PSPACE-Hardness of the Reachability Game
	The l-Edge Construction
	Existential, Universal, and Verification Gadgets
	The Parametrization Gadget
	Towards the PSPACE-Hardness for Arbitrary Probabilities

	On the Distribution and Computation of the Probabilities pk,n
	Perspectives
	References

	Applying Step Coverability Trees to Communicating Component-Based Systems
	Introduction
	PT-Nets
	Coverability Tree
	Coverability Tree and Step Semantics
	Weak Monotonicity and Component-Based Systems
	Concluding Remarks
	References

	Program Logics for Sequential Higher-Order Control
	Introduction
	PCF with Jumps
	The Logic
	Axioms and Rules
	Simplifying Reasoning
	Conclusion
	References

	Modular Schedulability Analysis of Concurrent Objects in Creol
	Introduction
	Preliminaries
	The Modular Schedulability Analysis Framework
	Real-Time Creol
	Generating Timed Automata from Creol
	The Translation Algorithm
	End-to-End Deadlines

	Schedulability Analysis of Creol
	Checking Compatibility

	Conclusions and Future Work
	References

	A Timed Calculus for Wireless Systems
	Introduction
	The Calculus
	The Operational Semantics
	Well-Formedness

	Properties
	Observational Semantics
	Bisimulation Proof Methods
	Future and Related Work
	References

	Model Checking Linear Duration Invariants of Networks of Automata
	Introduction
	Preliminaries
	The Modelling Language
	Duration Calculus and Linear Duration Invariants

	Verification of LDIs
	Duration of a Location Vector sj
	Transformation of the Network of Automata
	Construction of the Auxiliary Automaton S

	Case Study
	Conclusion
	References

	Automata Based Model Checking for Reo Connectors
	Introduction
	Reo Connectors
	Reo and Büchi Automata
	Records for Synchronization
	Büchi Automata of Records

	Record-Based Linear-Time Temporal Logic
	Some Useful Encodings
	Specifying Reo Connectors

	From Formulas to Automata: Model Checking
	On-the-Fly Model Checking
	Conclusion
	The Algorithm

	On the Expressiveness of Refinement Settings
	Introduction
	Basic Notions: Refinement Settings and Expressiveness
	A Wide Collection of Refinement Settings
	Comparison
	Related Work
	Conclusions
	References

	Bounded Rational Search for On-the-Fly Model Checking of LTL Properties
	Introduction
	Backgrounds
	LTL Model Checking
	Reinforcement Learning and Monte Carlo Policy
	Quantitative Model Checking

	The Verification Procedure
	Applying Reinforcement Learning
	Providing a Measure of Correctness

	Experimental Results
	Related Works
	Conclusion and Future Works
	Proof of Correctness

	Automated Translation and Analysis of a ToolBus Script for Auctions
	Introduction
	ToolBus and Tscript
	The Auction Example

	mCRL2 and CADP
	From Tscript to mCRL2
	Structure of the Translator

	Analysis of the Auction System
	Conclusions and Future Work
	References

	Executable Interface Specifications for Testing Asynchronous Creol Components
	Introduction
	The Creol Language
	Syntax
	Operational Semantics

	A Behavioral Interface Specification Language
	Well-Formedness
	Observational Blur

	Scheduling and Asynchronous Testing of Creol Objects
	Implementing a Specification-Driven Creol Interpreter
	Conclusion
	References

	Compositional Strategy Mapping
	Introduction
	Component Model
	Strategy Refinement
	Stability
	Strategy Mapping

	Application: Distributed Algorithms
	Conclusion
	References

	A Sound Analysis for Secure Information Flow Using Abstract Memory Graphs
	Introduction
	Related Work
	Non-interference for Java Virtual Machine Programs
	Notation
	The Java Virtual Machine Model
	Non-interference

	Intra-Method Abstract Dependency
	Soundness of the Intra-method Analysis
	Relations between Abstract and Concrete Worlds
	Analysis Correctness

	Inter-method Analysis
	Secure Information Flow
	Conclusion
	References

	Refinement Patterns for Hierarchical UML State Machines
	Introduction
	UML State Machines
	Syntax
	Operational Semantics

	Refinement and Simulation
	Refinement Patterns
	Conclusions, Related Work, and Future Work
	References

	Specification and Validation of Behavioural Protocols in the rCOS Modeler
	Introduction
	Separation of Concerns
	Example
	Integrated Specification

	Verification
	Conclusion
	References

	The Interplay between Relationships, Roles and Objects
	Introduction
	Roles and Relationships
	Roles in powerJava
	Relationship as Attribute with Roles Pattern
	Relationship Object Pattern
	Abstract Roles and Relationships
	Conclusion
	References

	A Coordination Model for Interactive Components
	Introduction
	A Logic for Behaviour
	A Modal Language
	Typical Properties

	M-Interactors
	A Language for M-Interactors
	Composing Interactors

	The Coordination Layer
	Elementary Connectors
	New Connectors from Old

	Configurations of M-Interactors
	Conclusions and Future Work
	References

	Session 3. Short Papers
	Evolution Control in MDE Projects: Controlling Model and Code Co-evolution
	Introduction
	Synchronizing Model and Software Artifacts
	Evolution Policies
	Data Model, Version Model
	Object Evolution Control
	Relationship Evolution Control

	Definition and Support of Consistency Constraints
	Conclusion
	References

	An xADL Extension for Managing Dynamic Deployment in Distributed Service Oriented Architectures
	Introduction
	The Deployment and Its Management Description in ``3DxSOADL"
	Distributed Repository Schema
	Distributed SOA Structure Schema
	Dynamic Distributed Deployment Schema

	Related Works
	Conclusion
	References

	A First Step towards Security Policy Compliance of Connectors
	Introduction
	Policy Sequence Charts
	Sequence Charts
	Policy Sequence Charts

	Compliance of a Connector with Its Security Policy
	Conclusion and Future Work
	References

	A Safe Implementation of Dynamic Overloading in Java-Like Languages
	Introduction
	From FDJ to FSJ: The Translation Algorithm
	Conclusions and Related Work
	References

	Fundamental Concepts for the Structuring of Functionality into Modular Parts
	Introduction
	A Semantical Foundation for Modeling Functionality
	Methodological Integration of the Theoretical Concepts
	Hierarchical Structuring of Services

	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

