

Lecture Notes in Computer Science 5952
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Yale N. Patt Pierfrancesco Foglia
Evelyn Duesterwald Paolo Faraboschi
Xavier Martorell (Eds.)

High Performance
Embedded Architectures
and Compilers

5th International Conference, HiPEAC 2010
Pisa, Italy, January 25-27, 2010
Proceedings

13

Volume Editors

Yale N. Patt
The University of Texas at Austin
Department of Electrical and Computer Engineering
1 University Station C0803, Austin, TX 78712-0240, USA
E-mail: pattyn@austin.utexas.edu

Pierfrancesco Foglia
Università di Pisa, Dipartimento di Ingegneria della Informazione
Via Diotisalvi 2, 56100 Pisa, Italy
E-mail: foglia@iet.unipi.it

Evelyn Duesterwald
IBM T.J.Watson Research Center
19 Skyline Drive, Hawthorne, NY 10532, USA
E-mail: duester@us.ibm.com

Paolo Faraboschi
Hewlett-Packard
Cami de Can Graells 1-21, Sant Cugat del Vallés, 08174 Barcelona, Spain
E-mail: paolo.faraboschi@hp.com

Xavier Martorell
Technical University of Catalunya (UPC), Computer Architecture Department
c/Jordi Girona 1-3, 08034 Barcelona, Spain
E-mail: xavim@ac.upc.edu

Library of Congress Control Number: 2009942994

CR Subject Classification (1998): B.2, C.1, D.3.4, B.5, C.2, D.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-11514-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-11514-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12838325 06/3180 5 4 3 2 1 0

Preface

Message from the General Co-chairs

It is our honor and pleasure as General Co-chairs to welcome you to the pro-
ceedings of HiPEAC 2010 which was held in Pisa. This was the fifth HiPEAC
conference, following in the strong tradition of the first conference in Barcelona
in 2005 and the subsequent conferences in Ghent (2007), Goteborg (2008), and
Paphos (2009).

HiPEAC 2010 offered a rich and diverse set of technical and non-technical ac-
tivities. The technical activities included most importantly another strong tech-
nical program, and in addition, eight workshops and five tutorials, all central
to the HiPEAC network roadmap. The workshops explored multi-cores, simula-
tion and performance evaluation, compiler and optimizations, design reliability,
reconfigurable computing, interconnection networks, operating system and com-
puter architecture codesign. The tutorials dealt with statistical methodology to
evaluate program speed-ups, design for reliability, how to teach introductory
computer architecture and programming, programming FPGA-based accelera-
tors and adaptability.

We were particularly fortunate to have two keynote addresses, one by Bob
Iannucci, formerly from Nokia, on how data center thinking can be effectively
ushered into the embedded system domain, and one by Roger Espasa from Intel
on the Larrabee Architecture.

The non-technical activities reflected the academic, historical, and cultural
charm of Pisa, a major center of Tuscany, and we hope the participants took
advantage of our scheduled guided tour of historical Pisa and the conference
banquet in a historic villa.

The planning of every conference starts well in advance, and HiPEAC 2010
was no exception. Were it not for the unselfish and hard work of a large num-
ber of devoted individuals, this conference could not have been successful. First,
we thank the Program Co-chairs Evelyn Duesterwald and Paolo Faraboschi for
putting together an outstanding Technical Program, which is the sine qua non
of every conference, and we are looking forward to this one. Special thanks to
Alessandro Bardine from the University of Pisa, who helped us with the local
organization and the team from the CARGO group in Pisa for their support.
We would also like to thank Sandro Bartolini (Siena) for putting together an at-
tractive pre–conference program; Wouter De Raeve (Ghent), our Finance Chair
for running the books; Roberto Giorgi (Siena) for timely publicity campaigns;
Xavier Martorell (BSC) for the hard work in putting together the proceedings;
Michiel Ronsse (Ghent) for administering the submission and review system;
and Klaas Millet (Ghent) for administering the website. We are pleased to ac-
knowledge the advice of Antonio Prete and of our senior mentors from HiPEACs

VI Preface

past, Per Stenström and Koen De Bosschere, chair of the HiPEAC2 network.
Thanks to you all.

Finally, we would like to gratefully acknowledge the Seventh Framework Pro-
gramme of the European Union, represented by project officer Panagiotis Tsar-
chopoulos, for sponsoring the event, and for providing both needed moral support
and the money for travel grants.

November 2009 Yale N. Patt
Pierfrancesco Foglia

Message from the Program Co-chairs

We are pleased to present the proceedings of the HiPEAC 2010 Conference.
In the call for papers we emphasized HiPEAC’s focus on the convergence of
the challenges faced by the high–performance general–purpose and embedded
worlds. Not long ago, the computational requirements of today’s embedded de-
vices were of concern only in the supercomputing realm. Conversely, the energy
and cost consideration traditionally associated with embedded computing have
become key design criteria for high-performance and general-purpose computing.

The Program Committee selected 23 papers among the 94 submissions to
appear at the conference. The selection process required 365 reviews, with 275
from PC members and 90 from an external review committee of 47 experts
individually selected by the Program Co-chairs. All papers received at least
three reviews with an average of 3.9 reviews per paper. All papers, regardless of
their standing, were considered for general discussion and final selection at the
PC meeting.

The PC meeting was held on September 12, 2009 at the UPC facilities in
Barcelona, with 13 of the 27 PC members attending the meeting in person, and
several others by telephone. At the close of each paper discussion, the recom-
mendations of the PC members who had reviewed the paper were followed by an
advisory vote from the entire committee and a final binding decision by the Pro-
gram Co-chairs. PC members left the room during the discussion of any paper
they had a conflict with.

We were also honored to have two excellent keynote speakers this year. Bob
Iannucci, former CTO of Nokia and CEO and Co–founder of Sensaré LLC, en-
lightened us about “Embedded Systems as Datacenters.” Roger Espasa, princi-
pal engineer at Intel, presented “Larrabee: A Many-Core Intel Architecture for
Visual Computing.”

It takes the enthusiasm of many people to put together a successful program
and we would like to mention some of them here. Michiel Ronsse spent endless
hours administering the web system for paper submissions and reviews. Per Sten-
ström and Koen De Bosschere offered valuable suggestions for the program and
committee selection process. We would also like to thank the PC members who
put enormous effort into reviewing the papers and selecting the final program, as
well as all the members of the external review committee who graciously agreed
to lend their expertise.

November 2009 Evelyn Duesterwald
Paolo Faraboschi

Organization

Executive Committee

General Co-chairs Yale N. Patt (UT Austin, USA)
Pierfrancesco Foglia (Università di Pisa, Italy)

Program Co-chairs Evelyn Duesterwald (IBM T.J. Watson Research
Center, USA)

Paolo Faraboschi (HP Labs, Spain)
Workshop/Tutorials Chair Sandro Bartolini (Università di Siena, Italy)
Local Arrangements Chair Alessandro Bardine (Università di Pisa, Italy)
Finance Chair Wouter De Raeve (Ghent University, Belgium)
Publicity Chair Roberto Giorgi (Università di Siena, Italy)
Publications Chair Xavier Martorell (BSC, Spain)
Submissions Chair Michiel Ronsse (Ghent University, Belgium)
Web Chair Klaas Millet (Ghent University, Belgium)

Program Committee

Erik Altman IBM T.J. Watson Research Center, USA
Albert Cohen INRIA Saclay, France
Jesus Corbal Intel Labs, Barcelona, Spain
Jack Davidson University of Virginia, USA
Koen De Bosschere Ghent University, Belgium
Jim Dehnert Google, Inc., USA
Giuseppe Desoli STMicroelectronics, Italy
Pedro C. Diniz Technical University of Lisbon

(IST)/INESC–ID, Portugal
Carol Eidt Microsoft Corporation, USA
Babak Falsafi EPFL Lausanne, Switzerland
Georgi Gaydadjiev TU Delft, The Netherlands
Thomas Gross ETH Zurich, Switzerland
Rajiv Gupta University of California, Riverside, USA
Mary Jane Irwin Penn State University, USA
Wolfgang Karl Karlsruhe Institute of Technology (KIT),

Germany
Josep Llosa Universitat Politènica de Catalunya, Spain
Scott Mahlke University of Michigan, USA
Sally A. McKee Chalmers University of Technology, Sweden
Avi Mendelson Microsoft Corporation, Israel
Michael O’Boyle University of Edinburgh, UK
Daniel Ortega HP Labs, Barcelona, Spain

X Organization

Emre Ozer ARM Cambridge, UK
Keshav Pingali UT Austin, USA
Milos Prvulovic Georgia Tech, USA
Cristina Silvano Politecnico di Milano, Italy
David Whalley Florida State University, USA
Donald Yeung University of Maryland, USA

External Review Committee

Eduardo Argollo
Hans Boehm
Rajesh Bordawekar
Greg Bronevetsky
Anton Chernoff
Bruce Childers
Dave Christie
Tom Conte
Al Davis
Chen Ding
Amer Diwan
Jose Duato
Lieven Eeckhout
Ayose Falcon
Hubertus Franke
Maria Garzaran

Roberto Gioiosa
Wei Hsu
Michael Huang
Robert Hundt
Paolo Ienne
Ravi Iyer
Mahmut Kandemir
Steve Keckler
Mikko Lipasti
Gabriel Loh
Grant Martin
Frank Mueller
Walid Najjar
Nacho Navarro
Kevin O’Brien
David Penry

Luigi Raffo
Partha Ranganathan
Erven Rohou
Yannakis Sazeides
Andre Seznec
Uma Srinivasan
Per Stenström
John Stratton
Olivier Temam
Osman Unsal
Manish Vachharajani
Neil Vachharajani
Sami Yehia
Cliff Young
Antonia Zhai

Steering Committee

Anant Agarwal MIT, USA
Koen De Bosschere Ghent University, Belgium
Joel Emer Intel, USA
Wen–mei W. Hwu UIUC, USA
Margaret Martonosi Princeton University, USA
Michael O’Boyle University of Edinburgh, UK
Andr Seznec IRISA, France
Per Stenström Chalmers University, Sweden
Theo Ungerer University of Augsburg, Germany
Mateo Valero UPC, Spain

Table of Contents

Invited Program

Embedded Systems as Datacenters (Keynote) . 1
Bob Iannucci

Larrabee: A Many-Core Intel Architecture for Visual Computing
(Keynote) . 2

Roger Espasa

Architectural Support for Concurrency

Remote Store Programming: A Memory Model for Embedded
Multicore . 3

Henry Hoffmann, David Wentzlaff, and Anant Agarwal

Low-Overhead, High-Speed Multi-core Barrier Synchronization 18
John Sartori and Rakesh Kumar

Improving Performance by Reducing Aborts in Hardware Transactional
Memory . 35

Mohammad Ansari, Behram Khan, Mikel Luján, Christos Kotselidis,
Chris Kirkham, and Ian Watson

Energy and Throughput Efficient Transactional Memory for Embedded
Multicore Systems . 50

Cesare Ferri, Samantha Wood, Tali Moreshet, Iris Bahar, and
Maurice Herlihy

Compilation and Runtime Systems

Split Register Allocation: Linear Complexity Without the Performance
Penalty . 66

Boubacar Diouf, Albert Cohen, Fabrice Rastello, and John Cavazos

Trace-Based Data Layout Optimizations for Multi-core Processors 81
Olga Golovanevsky, Alon Dayan, Ayal Zaks, and David Edelsohn

Buffer Sizing for Self-timed Stream Programs on Heterogeneous
Distributed Memory Multiprocessors . 96

Paul M. Carpenter, Alex Ramirez, and Eduard Ayguadé

Automatically Tuning Sparse Matrix-Vector Multiplication for GPU
Architectures . 111

Alexander Monakov, Anton Lokhmotov, and Arutyun Avetisyan

XII Table of Contents

Reconfigurable and Customized Architectures

Virtual Ways: Efficient Coherence for Architecturally Visible Storage
in Automatic Instruction Set Extensions . 126

Theo Kluter, Samuel Burri, Philip Brisk, Edoardo Charbon, and
Paolo Ienne

Accelerating XML Query Matching through Custom Stack Generation
on FPGAs . 141

Roger Moussalli, Mariam Salloum, Walid Najjar, and
Vassilis Tsotras

An Application-Aware Load Balancing Strategy for Network
Processors . 156

Rainer Ohlendorf, Michael Meitinger, Thomas Wild, and
Andreas Herkersdorf

Memory-Aware Application Mapping on Coarse-Grained Reconfigurable
Arrays . 171

Yongjoo Kim, Jongeun Lee, Aviral Shrivastava, Jonghee Yoon, and
Yunheung Paek

Multicore Efficiency, Reliability, and Power

Maestro: Orchestrating Lifetime Reliability in Chip Multiprocessors 186
Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke

Combining Locality Analysis with Online Proactive Job Co-scheduling
in Chip Multiprocessors . 201

Yunlian Jiang, Kai Tian, and Xipeng Shen

RELOCATE: Register File Local Access Pattern Redistribution
Mechanism for Power and Thermal Management in Out-of-Order
Embedded Processor . 216

Houman Homayoun, Aseem Gupta, Alex Veidenbaum,
Avesta Sasan (M.A. Makhzan), Fadi Kurdahi, and Nikil Dutt

Performance and Power Aware CMP Thread Allocation Modeling 232
Yaniv Ben-Itzhak, Israel Cidon, and Avinoam Kolodny

Memory Organization and Optimization

Multi-level Hardware Prefetching Using Low Complexity Delta
Correlating Prediction Tables with Partial Matching 247

Marius Grannaes, Magnus Jahre, and Lasse Natvig

Scalable Shared-Cache Management by Containing Thrashing
Workloads . 262

Yuejian Xie and Gabriel H. Loh

Table of Contents XIII

SRP: Symbiotic Resource Partitioning of the Memory Hierarchy in
CMPs . 277

Shekhar Srikantaiah and Mahmut Kandemir

DIEF: An Accurate Interference Feedback Mechanism for Chip
Multiprocessor Memory Systems . 292

Magnus Jahre, Marius Grannaes, and Lasse Natvig

Programming and Analysis of Accelerators

Tagged Procedure Calls (TPC): Efficient Runtime Support for
Task-Based Parallelism on the Cell Processor . 307

George Tzenakis, Konstantinos Kapelonis, Michail Alvanos,
Konstantinos Koukos, Dimitrios S. Nikolopoulos, and Angelos Bilas

Analysis of Task Offloading for Accelerators . 322
Roger Ferrer, Vicenç Beltran, Marc Gonzàlez,
Xavier Martorell, and Eduard Ayguadé

Offload – Automating Code Migration to Heterogeneous Multicore
Systems . 337

Pete Cooper, Uwe Dolinsky, Alastair F. Donaldson,
Andrew Richards, Colin Riley, and George Russell

Computer Generation of Efficient Software Viterbi Decoders 353
Frédéric de Mesmay, Srinivas Chellappa, Franz Franchetti, and
Markus Püschel

Author Index . 369

Embedded Systems as Datacenters
(Keynote)

Bob Iannucci

CEO and Co–founder, Sensaré LLC

Abstract. Designing embedded systems the way we did 20 years ago is
still alive and well. As expected, with declining costs, embedded systems
are appearing in more and more applications. Advances to the state of the
art in creating such systems, where memory and processor are precious
resources, have continued, and this work is to be applauded. But just as
interestingly, embedded systems are taking on not only problems that
require loosening the memory and processor constraints but also those
problems that push us into the domain of datacenter design. Datacenter
design is where system thinking about heterogeneous parallel processing,
data archiving, mission-critical connectivity, and energy management are
first-order concerns. In this talk I will illustrate the latter case with some
recent explorations and give some attention to how datacenter thinking
can be effectively ushered into this new domain.

Biography of Bob Iannucci
Bob is co-founder and CEO of Sensaré LLC, a startup pursuing opportunities
in mobile sensing. Formerly, Bob was senior vice president and CTO of Nokia.
There, he played a defining role in reshaping the company’s long-term R&D
strategy. Challenging traditional management thinking, he brought open inno-
vation to Nokia and built a research environment suited to Internet ways of
working and systems-level thinking. With three decades in the IT industry, first
at IBM during the mainframe days, then at Digital with its minis, and next
at Compaq in the 1990s, plus three startups, he brings insights in reshaping
mature businesses into growth businesses and tackling the so-called Innovator’s
Dilemma. Bob holds a PhD in Electrical Engineering and Computer Science
from the Massachusetts Institute of Technology, and is the author and co-author
of two books and several academic papers. He holds five patents.

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, p. 1, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Larrabee: A Many-Core Intel Architecture for
Visual Computing

(Keynote)

Roger Espasa

Principal Engineer, Intel Corporation

Abstract. This talk will describe a many-core visual computing archi-
tecture code named Larrabee. Larrabee uses multiple in-order x86 CPU
cores that are augmented by a wide vector processor unit, as well as
some fixed function logic blocks. The talk will go into an overview of the
Larrabee architecture and will cover the LRB Vector ISA in detail. We’ll
then cover the Larrabee programming model and finally close with how
one would target Larrabee for high performance 3D graphics.

Biography of Roger Espasa
Roger Espasa got his Ph.D. in 1997 at the Universitat Politècnica de Catalunya.
In 1999-2001 he worked for the Alpha Microprocessor Group (Compaq at the
time) on a vector extension to the Alpha architecture. The project, codenamed
Tarantula, never shipped, but was an 8-way SMT EV8 coupled to a large vector
unit. In 2002, the Alpha team, and the tiny subsidiary that we had created
in Barcelona to work on Tarantula was acquired by Intel. Since then Roger has
been working at Intel, where he currently is a Principal Engineer. At Intel, Roger
worked first on a vector extension for Nehalem, which again did not ship and
later applied the vector concept to Larrabee. Since 2005, Roger has worked on
the Larrabee architecture, where he is responsible for the vector instruction set
and the texture sampler.

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, p. 2, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Remote Store Programming
A Memory Model for Embedded Multicore

Henry Hoffmann, David Wentzlaff, and Anant Agarwal

Tilera Corporation
hank@alum.mit.edu, wentzlaf@tilera.com, agarwal@tilera.com

Abstract. This paper presents remote store programming (RSP), a pro-
gramming paradigm which combines usability and efficiency through the
exploitation of a simple hardware mechanism, the remote store, which
can easily be added to existing multicores. The RSP model and its hard-
ware implementation trade a relatively high store latency for a low load
latency because loads are more common than stores, and it is easier to
tolerate store latency than load latency. This paper demonstrates the
performance advantages of remote store programming by comparing it
to cache-coherent shared memory (CCSM) for several important embed-
ded benchmarks using the TILEPro64 processor. RSP is shown to be
faster than CCSM for all eight benchmarks using 64 cores. For five of
the eight benchmarks, RSP is shown to be more than 1.5× faster than
CCSM. For a 2D FFT implemented on 64 cores, RSP is over 3× faster
than CCSM. RSP’s features, performance, and hardware simplicity make
it well suited to the embedded processing domain.

1 Introduction

Due to the scaling limitations of uniprocessors, multicore architectures, which
aggregate multiple processing cores onto a single chip, have become ubiquitous
in many disciplines of computing. One of the key design features of a multicore
architecture is its programming model, which must handle inter-core communi-
cation. Cache-coherent shared memory is a popular programming model that is
supported by several commercial multicores including those from Intel, Cavium,
RMI, and Tilera.

In the cache-coherent shared memory (CCSM) model processes communicate
by reading and writing a globally accessible address space. This model is popular
as it is generally considered easy-to-use, and the ease of use derives from the fact
that communication in the CCSM model is accomplished using familiar load and
store instructions. In addition, CCSM communication is one-sided and fine-grain,
which is easy to schedule and overlap with computation. However, reliance on
the abstraction of global, uniformly accessible shared memory makes it difficult
for programmers to determine when their code will result in communication, and
how much that communication will cost.

The CCSM model also makes it difficult to exploit locality for performance in
regularly structured applications, like those typically found in video, image and

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 3–17, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

4 H. Hoffmann, D. Wentzlaff, and A. Agarwal

signal processing. Locality can be especially important for performance on CCSM
architectures which distribute the shared cache using directory protocols [1].
Locality will become more important as more cores are integrated onto a single
chip because both the probability and penalty of non-local access increases with
increasing numbers of cores.

This paper presents the remote store programming (RSP) model, which com-
bines some of the features that make CCSM easy to use while still allowing
programmers to control locality in software for performance. In addition, RSP
requires only a small set of hardware features and is incrementally supportable
in multicore architectures that support standard load and store instructions. Sig-
nificantly, RSP requires less hardware support than the CCSM model but can
achieve higher performance executing regular computations on multicores with
a large number of cores. The RSP model can complement cache-coherent archi-
tectures by providing an alternative for performance-critical code where locality
is an issue. Alternatively, RSP can be implemented as the only programming
model on an architecture which may be attractive for multicore architectures
targeting regular application domains.

In the RSP model processes have private address spaces by default, but they
can give other processes write access to their local memory. Once a producer
has write access to a consumer’s memory, it communicates directly with the
consumer using the standard store instruction to target remote memory, hence
the name “remote store programming.” Communication in the RSP model is one-
sided and fine-grain making it easy to schedule. In addition, consumer processes
are guaranteed to read physically close, or local, memory.

The performance of the RSP model is evaluated by emulating it using the
TILEPro64 processor. This study demonstrates that the RSP paradigm can
achieve efficient parallel implementations on important multicore applications
like video, image, and digital signal processing. An RSP implementation of an
H.264 encoder for HD video achieves a speedup of 30.5x using 40 processes,
while a 2D FFT achieves a speedup of 60x using 64 processes. Additionally, the
TILEPro64 allows comparison of RSP to CCSM. While CCSM is generally faster
or equivalent to RSP using a small number of cores, RSP achieves anywhere from
1.25× to over 3× the performance of CCSM using 64 cores. The speedup relative
to shared memory is due to RSP’s emphasis on locality-of-reference, as RSP
programs always access physically close memory and minimize load latencies.
Furthermore, RSP achieves this performance with less hardware support.

The RSP model is similar to some existing programming models like the parti-
tioned global address space (PGAS) model [2], Digital Equipment Corporation’s
memory channels (MC) model [3], and virtual memory mapped communication
(VMMC) as implemented on the SHRIMP processor [4]. All these models com-
bine features of CCSM while allowing users to manage locality in software. The
RSP model differs in that it is designed specifically for multicore by includ-
ing only mechanisms that can be incrementally supported in existing multicore
architectures.

Remote Store Programming 5

This paper makes the following contributions:

– It identifies the RSP model which is supportable with a small set of hard-
ware features that can be incrementally added to a multicore architecture
supporting loads and stores. This model includes features based on existing
distributed shared memory models and is particularly suited to embedded
processing.

– It describes the high-level features required to support RSP and argues that
this model needs less support than CCSM.

– It presents a detailed performance comparison of the RSP and CCSM models
using eight embedded benchmarks and finds that RSP out-performs CCSM
using large numbers of cores.

The remainder of this paper is organized as follows. Section 2 describes the
RSP model. Section 3 discusses the hardware and system software support re-
quired to implement the model. Section 4 discusses the methodology used to
evaluate RSP and compare it to CCSM using the TILEPro64 multicore proces-
sor. Section 5 presents the comparison of RSP and CCSM performance. Related
work is discussed in Section 6. Finally, the paper concludes in Section 7.

2 The Remote Store Programming Model

This section discusses programming using the RSP model. The term process
refers to the basic unit of program execution. This work assumes that there
is a one-to-one mapping between processes and processor cores, but that re-
striction is easily relaxed. A parallel programming paradigm is distinguished by
three features: process model, communication mechanism, and synchronization
mechanism.

The process model. RSP presents a system abstraction where each process
has its own local, private memory. However, a process can explicitly give a subset
of other processes write access to regions of its private memory. These regions
of memory are referred to as remotely writable. The system abstraction for RSP
is illustrated in Figure 1. The key idea of the remote store paradigm is that
programmers ensure that a process always reads local memory.

Core 0 Core 1
Process 0
x = 1

st x

Process 1
ld x

Memory 1
private

remotely
writable

int x
st x

ld x

Network

Memory 0
private

Fig. 1. Illustration of the remote store programming model. There are two cores, each
of which executes a process. Process 1 allocates a remotely-writable region of memory
to hold the integer x. Process 0 writes a new value into x, and this new data travels
from Process 0’s registers to Process 1’s cache.

6 H. Hoffmann, D. Wentzlaff, and A. Agarwal

The communication mechanism. In an RSP application, processes communi-
cate by writing directly into other processes’ memory using the store instruction
as the communication primitive. A process that wants to consume data uses a
special memory allocation function to allocate remotely writable memory. The
consumer process then makes the address of this memory available to the data
producer. The producer uses the standard store instruction to write to the re-
mote memory. Once the data is stored remotely, the consumer uses standard
load instructions to read the data generated by the producer; however, load
instructions are not allowed to target remote memory.

The synchronization mechanism. Processes in an RSP program synchro-
nize using atomic synchronization operations, like test-and-set or fetch-and-add.
These synchronization operations are allowed to access remote memory and are
the one class of operations that are allowed to read remote memory. One can
easily build more advanced synchronization primitives from these operations, so
high level synchronization features like mutexes, condition variables, and barriers
are available as part of the RSP model.

Given this description, RSP has the following features:

– Familiarity of shared memory programming. Like CCSM, RSP uses standard
load and store instructions to communicate.

– Emphasis on locality of reference. RSP encourages programmers to write
code in such a way that loads always target local, physically close memory.

– One-sided communication. In RSP programs, data is pushed from the pro-
ducer to the consumer. Unlike two-sided communication schemes that require
a send to be accompanied by a receive, remote stores do not require acknowl-
edgement in this model. One-sided communication leads to code that is both
easier to write and higher performing than a two-sided model.

– No explicit support for bulk transfers. The RSP model does not support
a special put operation like SHMEM [5] and UPC [6]1. This omission is
designed to encourage programmers to store data remotely as it is produced
so that data is transferred from the registers of the producer to the cache of
the consumer with no extra buffering or copying.

– No support for remote reads. The RSP model does not support remote loads
or get operations. This omission is designed to encourage users to structure
code such that all reads target local memory, ensuring that loads have mini-
mum latency. RSP focuses on minimizing load latency for two reasons. First,
loads are more common than stores. Second, it is easier to tolerate store la-
tency than load latency. One can overlap communication and computation
with simple hardware support using remote stores, but such overlap would
be hard to achieve for remote loads without more hardware support, like a
direct memory access (DMA) engine or hardware prefetching.

1 The C function memcpy can provide the semantics of a bulk transfer function in the
RSP model, but the RSP model does not assume any additional bulk data movement
mechanisms.

Remote Store Programming 7

3 Implementation of the RSP Model

The RSP model is designed specifically to be incrementally achievable in mul-
ticore architectures that support loads and stores using a small set of hardware
features that have a large impact on program performance. In the RSP model
data is transfered from the registers of a producer into the cache of a consumer
as illustrated in Figure 2(a). The data is not buffered on the producer to be
transferred in bulk, but ideally each datum is sent as it is produced. This model
results in many small messages and does not attempt to amortize the cost of
communication by bundling many messages into a small number of large mes-
sages. In trade, RSP programs exhibit good locality of reference, have lower load
latencies, and outperform CCSM on highly parallel multicores.

RSP needs hardware and operating system support for the following mecha-
nisms: allocating remotely-writable data, executing store instructions targeting
remotely-writable data, maintaining memory consistency, and executing syn-
chronization operations targeting remotely-writable data. These features are dis-
cussed in turn.

Allocation of remotely writable data. Processes must be capable of allo-
cating data that can be written by other processes. Such data should be both
readable and writable by the allocating process.

Store instructions targeting remote data. Processes may execute store in-
structions where the destination register specifies an address in remotely writable
memory. The processor executing such a store should not allocate the cache-line,
but forward the operation to the consumer processor that allocated the data.
This forwarding should be handled in hardware and requires that a message be
sent to the consumer containing both the datum and the address at which it is
to be stored. The consumer receives this message and handles it as it would any
other write. In RSP, data that is allocated as remotely writable can only be
cached in the allocating processor. This protocol preserves locality of reference
by guaranteeing that reads are always local, ensuring minimal load latency.

Support for managing memory consistency. After a producer process
writes data to remote memory, it needs to signal the availability of that memory
to the consumer. To ensure correctness, the hardware must provide sequential
consistency, or a memory fence operation so that the software can ensure correct
execution.

Synchronization instructions may read and write remote data. RSP
allows atomic synchronization operations, such as test-and-set or fetch-and-add,
to both read and write remote data. This allows one to allocate locks, condition
variables, and other synchronization structures in remotely writable memory.

With support for these features a multicore architecture can efficiently imple-
ment remote store programs. This set of features represents a small, incremental
change over the set of features that would be required on any multicore archi-
tecture. On an architecture supporting loads and stores, a core must be able to

8 H. Hoffmann, D. Wentzlaff, and A. Agarwal

Local
Cache

RF

store

Local
Cache

RF

data

load

Core 0 Core 1

(a) RSP

Local
Cache

RF

data

store

Local
Cache

RF

data

load

Core 0 Core 1

Globally Shared Cache

data

(b) CCSM

Fig. 2. Communication mechanisms in multicore. The figure illustrates two different
mechanisms for sending data from Core 0 to Core 1. RSP transfers data directly from
the sender’s registers (the box labeled “RF”) to the receiver’s local memory (cache or
scratch-pad). CCSM transfers data through the global address space.

send a message to a memory controller to handle cache misses. To support RSP,
this capability is augmented so that write misses to remotely allocated data are
forwarded not to the memory controller, but to the core that allocated the data.
The RSP implementation can use the same network that communicates with the
memory controller. The additional hardware support required is logic to deter-
mine whether to send a write miss to the memory controller or to another core.
Unlike RSP, CCSM hardware transfers data from registers to a local cache and
then to a globally shared cache or memory as illustrated in Figure 2(b). To sup-
port CCSM one could implement either a snoopy or a directory-based coherence
protocol. A snoopy protocol would require a centralized structure which would
be difficult to scale to large numbers of cores. Directory-based schemes provide
better scalability, but require additional O(P) bits (where P is the number of pro-
cessors) to store directory information [7] and possibly another network that is
dedicated to coherence messages. In addition to the extra hardware structures, a
cache coherence protocol requires additional design and verification complexity.

4 Evaluation Methodology

This section presents the approach used to evaluate the remote store paradigm
on the TILEPro64 processor. To begin, the TILEPro64 and its implementation
of the RSP model are described. Next the eight benchmarks and the parameters
used in this evaluation are discussed.

4.1 The TILEPro64

The TILEPro64 processor is a 64 core multicore processor with hardware support
for cache-coherent shared memory. Each of the 64 cores is an identical three-
wide VLIW capable of running SMP Linux. Each core has a unified 64KB
L2 cache, and the L2 caches can be shared among cores to provide an effective
4MB of shared, coherent, and distributed L3 cache. Cores are connected through
six low-latency, two-dimensional mesh interconnects [8]. Two of these networks

Remote Store Programming 9

carry user data, while the other four handle memory, I/O and cache-coherence
traffic. The TILEPro64 can run off-the-shelf POSIX threads programs under
SMP Linux.

The TILEPro64 uses a directory-based cache-coherence scheme with full-map
directories. Loads and stores to shared memory which miss in the local L2 cache
generate coherence messages that are handled by a directory on a remote core.
The latency of these coherence messages is proportional to twice the distance
between the accessing core and the core that contains the directory for that
memory location. Clearly, if the directory is physically close, the latency is less
than if the directory is physically far away. Ideally, one wants to access directories
that are physically close to minimize latency.

In addition to standard cache-coherent shared memory, the TILEPro64 al-
lows users to allocate shared memory that is homed on the allocating core. On
this home core, reads and writes function as usual. However, when cores write
remotely homed memory, no cache line is allocated on the remote core. Instead,
these writes stream out of the writing core to the home cache without generating
any other coherence traffic. This homed memory is used to implement remotely
writable memory for remote store programs.

4.2 Benchmark Applications

Table 1 presents the application benchmarks used to compare RSP to CCSM.
These benchmarks include representatives from image, video, and digital signal
processing. For each benchmark optimized implementations are developed for a
single core and then for both the CCSM and RSP paradigms.

For both paradigms, several common optimizations are used. Cache-blocking
is used to reduce the number of data cache misses. Flags are used instead of locks
whenever applicable (one exception is the histogram benchmark described below)
to reduce contention. All stacks and read-only data are allocated as private for
both paradigms, meaning that stack accesses and accesses to global constant
data will not result in coherence traffic.

In the bitonic sort benchmark, a list of integers is sorted by dividing it among
processes. Each process sorts its assigned integers independently using quicksort

Table 1. Benchmark applications used to compare RSP to CCSM

Application Input
Bitonic Sort Integer list of length 128k
Convolution 1920 × 1080 Image
Error Diffusion 4096 × 2048 Image
2D FFT 256 × 256 matrix of complex 16-bit fixed-point values
Histogram 4096 × 2048 Image
Matrix Multiply Two 512 × 512 matrices of 16-bit fixed-point values
Transpose 1024 × 1024 matrix of integers
H.264 Raw 1280 × 720 video

10 H. Hoffmann, D. Wentzlaff, and A. Agarwal

and locally sorted lists are combined through a series of merge steps. Each merge
requires a process to exchange data with a partner. In the CCSM implementation
the array is stored in global shared memory and all updates are done in place.
In the RSP implementation, each process allocates remotely writable memory
and data is copied into the partner’s address space using remote stores. Barriers
synchronize both implementations.

The convolution benchmark convolves an input image with a 3×3 mask. Each
process is responsible for producing separate rows of the output image. In the
CCSM implementation both the input and output arrays are stored in global
shared memory. In the RSP implementation, each process allocates remotely
writable memory to store its assigned rows of both the input and output images.
The RSP implementation requires allocation of additional memory to hold input
values on the border of processes’ assigned regions. Barrier synchronization is
used in both implementations.

The error diffusion benchmark performs Floyd-Steinberg Error Diffusion on
an input image. Each process is responsible for performing computation on sep-
arate columns of pixels, and the computation is done in place. Pixels on the
border between processes are shared and these values are both read and writ-
ten by neighboring processes. In the CCSM implementation, the image is stored
in global memory and flags (also stored in global shared memory) are used to
synchronize access to the image. In the RSP implementation, each process al-
locates private memory to store its assigned regions of the image. In addition,
each process allocates remotely writable regions of memory to store the shared
pixels and flags. When a process produces a value that is to be shared, it stores
one copy locally, then stores another copy, and sets a flag in remotely writable
memory.

The FFT benchmark performs a two-dimensional Fast Fourier Transform
(2DFFT) on an input matrix. The benchmark first performs an FFT on each
row and then performs an FFT on each column. Both implementations use out-
of-place computation for both the row and column FFTs. Before executing the
column FFTs, data is transposed in memory so that the consecutive elements
in a column are unit distance apart. Each process is assigned a set of row FFTs
and a set of column FFTs. In the CCSM implementation, the input, temporary,
and output matrices are all stored in global shared memory. In the RSP im-
plementation, each process allocates remotely writable memory to store results
of the row FFTs, and other data is stored in private, local memory. As the row
FFTs are computed, their results are written directly into this remotely writable
memory.

The histogram benchmark computes a histogram representing the tonal dis-
tribution of an input image. Each process is assigned a separate region of the
image. In the CCSM implementation, the image and the histogram are both
allocated in global shared memory. As a process works on its part of the input
image, it updates the histogram. Each bin of the histogram is guarded by a
separate lock. In the RSP implementation, the histogram is distributed across
processes. Each process allocates remotely writable memory to store temporary

Remote Store Programming 11

results from other processes. Then, the processes all compute the histogram of
their assigned region of the image. Once these local histograms are completed,
each process writes the appropriate local values to a remote process which per-
forms a reduction on the local data. In the RSP implementation, a barrier is
used to synchronize.

The matrix multiplication benchmark multiplies two input matrices to com-
pute an output matrix. Each process is responsible for computing a separate
region of the output matrix. In the CCSM implementation all matrices are al-
located in global shared memory. In the RSP implementation, each process al-
locates remotely writable memory to store the rows and columns of the input
matrix that are needed to compute the assigned region of the output. In both
implementations barriers are used to synchronize.

The transpose benchmark performs the transpose of an input matrix. Each
process is responsible for producing a separate region of the output matrix. In
the SM implementation, both the input and output matrices are allocated in
globally addressable shared memory. In the RSP implementation each process
allocates remotely writable memory to hold a region of the output matrix. Each
process performs its part of the transpose by reading local values and writing
them to the appropriate location in remotely writable memory.

The H.264 benchmark performs Baseline profile H.264 encoding on raw high-
definition video. Both implementations attempt to minimize latency by parti-
tioning the encoding of a frame among multiple processes. Each process is respon-
sible for encoding its assigned region of the frame. To perform this encoding each
process needs data from those processes that are assigned neighboring regions
of the frame. In the CCSM implementation frames and associated meta-data
are stored in global shared memory. In the RSP implementation, each process
allocates remotely writable memory to store its assigned part of the frame and
the overlapping regions assigned to neighboring processes. These overlapping re-
gions of data are stored locally in the process that created them and then copied
to neighboring processes using remote stores. Both implementations synchronize
using a combination of flags and barriers. Additionally, both implementations
are limited to a maximum of 40 processes.

5 Performance Evaluation

This section evaluates the performance of remote store programming. First, the
speedup of RSP implementations of each benchmark is shown and compared to
the speedup achieved with CCSM implementations. Next, the load-latency of
each of the benchmarks is evaluated.

5.1 Speedup Evaluation

Figure 3 illustrates the performance of both the CCSM and RSP implementa-
tions of each of the eight benchmarks as the number of cores is varied from
2 to 64. These results all use one process per core. All speedups are computed

12 H. Hoffmann, D. Wentzlaff, and A. Agarwal

0

8

16

24

32

40

48

56

64

2 4 8 16 32 64

RSP
SM

80.6

(a) Bitonic Sort

0

8

16

24

32

40

48

56

64

2 4 8 16 32 64

RSP
SM

(b) Convolution

0

8

16

24

32

40

48

56

64

2 4 8 16 32 64

RSP
SM

(c) Err. Diff.

0

8

16

24

32

40

48

56

64

2 4 8 16 32 64

RSP
SM

(d) 2D FFT

0

8

16

24

32

40

48

56

64

2 4 8 16 32 64

RSP
SM

(e) Histogram

0

8

16

24

32

40

48

56

64

2 4 8 16 32 64

RSP
SM

(f) Mat. Mul.

0

8

16

24

32

40

48

56

64

2 4 8 16 32 64

RSP
SM

(g) Transpose

0

8

16

24

32

40

48

56

64

2 4 8 16 32 40

RSP
SM

(h) H.264

Fig. 3. Speedup of RSP and CCSM implementations of eight benchmarks. Speedup is
shown on the y-axis while number of cores is on the x-axis. (The RSP implementation
of bitonic sort achieves a speedup of 80.6 on 64 cores.)

relative to an optimized single core implementation. Higher bars represent
greater speedup and greater performance.

For these benchmarks, RSP achieves greater performance than CCSM using
large numbers of cores. Using 16 cores or fewer, RSP is generally higher perform-
ing, but there are some exceptions and overall the approaches achieve similar
performance. However, using 32 or more cores, RSP begins to clearly out perform
CCSM as shown in Figure 4.

Figure 4 shows the ratio of RSP to CCSM performance for each of the eight
benchmarks using 2 to 64 cores. Ratios of less than one indicate that RSP is
slower while ratios greater than one indicate that RSP is faster (higher bars are
better). Figure 4 shows that the performance benefits of RSP are greater for large
numbers of cores. When using more than 32 cores, RSP achieves speedup over
CCSM for each of the eight benchmarks. When using 64 cores, RSP achieves
greater than 1.25x the performance of CCSM for 7 of the 8 benchmarks and
greater than 1.5x the performance of CCSM for 5 of 8. For H.264 on 40 cores,
RSP achieves greater than 1.8x the performance of CCSM. For the FFT on 64
cores, RSP achieves greater than 3x the performance of CCSM.

The transpose benchmark defies the general trend in that the RSP and SM
implementations achieve comparable performance for all numbers of cores. The
reason for the similar speedup numbers is that the transpose benchmark consists
of loads of input values followed by stores which put the transposed matrix in
place. The benchmark time includes the time required for all stores to complete,
so the transpose represents one benchmark where store latency is critical. In this

Remote Store Programming 13

0

0.5

1

1.5

2

2.5

3

3.5

2 4 8 16 32 64

Cores

S
p

ee
d

u
p

 o
f

R
S

P
 Im

p
le

m
en

ta
ti

o
n

s

Bitonic Sort
Convolution
Error Diffusion
FFT
Histogram
Matrix Multiply
Transpose
H.264

Fig. 4. Performance comparison of RSP and CCSM benchmarks. The speedup of RSP
compared to CCSM is shown as a function of the number of cores. Speedups of less
than 1 indicate RSP is slower. Speedups of more than 1 indicate RSP is faster. (The
H.264 speedup listed for 64 represents the value measured using 40 cores.)

case the low load latency of the RSP implementation is cancelled out by its high
store latency.

The relative performance gain of RSP increases with an increasing number
of cores. Locality becomes a larger factor in performance with large core count
and RSP allows software to control locality while CCSM does not. When using
a large number of cores, a cache miss in a CCSM application can result in
accessing a cache-coherence directory that is physically far away. In this case
many of the distant accesses are loads, and the resulting high load latency has a
dramatic effect on performance. However, in the RSP implementation loads do
not generate coherence traffic to remote cores and load latency is lower.

5.2 Locality Evaluation

As discussed in Section 2 and Section 3 the RSP model and its implementation
emphasize the use of physically close memory with the goal of minimizing load
latency. The Tilera simulator allows one to measure the latency of load instruc-
tions that access the L2 cache. This statistic keeps track of the time it takes to
service an L1 data cache miss.

The average L2 load latency is recorded for each of the eight benchmarks.
Figure 5 shows this data expressed as the ratio of RSP load latency to CCSM
load latency for each of the eight benchmarks on 2 to 64 cores. A ratio of 1
indicates that both implementations achieve the same load latency. A ratio of
less than 1 indicates that the RSP load latency is lower than that of CCSM
(lower bars are better).

The L2 load latency generally follows the same trend as the speedup results.
Latencies are similar for both implementations when using a small number of
cores, but the RSP latency tends to be much lower using large numbers of cores.
Using 64 cores, RSP load latency is lower for 6 of the 8 applications.

14 H. Hoffmann, D. Wentzlaff, and A. Agarwal

0

0.5

1

1.5

2

2.5

3

3.5

4

2 4 8 16 32 64

Cores

L
o

ad
 L

at
en

cy
:

R
at

io
 o

f
R

S
P

 t
o

 S
M

Bitonic Sort
Convolution
Error Diffusion
FFT
Histogram
Matrix Multiply
Transpose
H.264

Fig. 5. Ratio of L2 load latency for RSP and CCSM benchmarks. The ratio of the load
latencies for RSP and CCSM implementations is shown as a function of the number
of cores. Ratios less than 1 indicate RSP is lower latency than CCSM, while ratios
greater than 1 indicate RSP load latency is higher.(The H.264 load-latency listed for
64 represents the value measured using 40 cores.)

The two applications for which RSP load latency is higher with 64 cores
are the convolution and matrix multiplication. Figure 4 shows that the RSP
implementations of these benchmarks out perform CCSM despite the higher
load latency.

The difference in performance for the convolution is the result of an increased
number of data TLB misses on the part of the CCSM implementation. In fact,
the CCSM implementation of the convolution produces almost 9 times more
data TLB misses than the RSP implementation. The profiling tool does not
count time spent in the TLB miss towards load latency (it is accounted for
as a separate statistic). This TLB behavior is not an inherent aspect of the
CCSM programming model, but rather a random effect due to the combination
of the input image size and the way in which processes in this application access
globally addressable shared memory. However, page misses are not an issue in
the RSP implementation of this application because each process allocates data
locally and the amount of local data easily fits in the TLB.

For matrix multiplication the difference in performance is explained by the
worst case load latency. To compute average load latency, the latency of all loads
on all cores is averaged; however, for the CCSM matrix multiplication one core
has a consistently higher load latency than the others. In the CCSM implemen-
tation, Core 0 has an average load latency of 13 cycles, while the average for all
cores is 10.1. This difference is due to the fact that core 0 accesses directories that
are, on average, farther away than those accessed by other cores. In contrast, the
RSP implementation has a maximum per-core load latency of 11.5 cycles with
an average of 11.1. Although the CCSM matrix multiply has a lower average
load latency, the maximum is higher and the performance of the application is
determined by the slowest core.

Remote Store Programming 15

On the whole, RSP fulfills its promise of exploiting locality to minimize load
latency. The predictability of load latency and TLB behavior under RSP is an
advantage in embedded systems that tend to require repeatable performance to
meet real-time requirements.

6 Related Work

Both the partitioned global address space (PGAS) model and RSP combine
the familiarity of CCSM with explicit control over locality for performance[2].
The PGAS model is designed to be implemented in high-level languages such
as Unified Parallel C [6], Titanium [9], and Co-Array Fortran (CAF) [10]. The
RSP model is designed to be implemented in hardware and can serve as the
lowest-level communication primitive for an architecture. In this sense, the two
approaches are complementary. A PGAS implementation can benefit from tar-
geting RSP to achieve higher performance than would be available through stan-
dard CCSM mechanisms. A high-level PGAS language targeting RSP would
make the efficiency of RSP available to a greater number of programmers.

Despite the similarities, there are some differences in the way programs are
written using the PGAS and RSP models. While the PGAS model can target
multicore, it was designed for multichip parallel computers with physically dis-
tributed, non-uniform memory access (NUMA) memory architectures like clus-
ters and supercomputers. On these architectures programs typically perform best
when total communication is reduced, the remaining communication is bundled
into a small number of large messages, and communication and computation is
overlapped. These optimization techniques affect the interface as most PGAS
implementations include put and get (or similar) operations that are used to
transfer large buffers between local and remote DRAMs and efficient programs
are structured to make such infrequent, large transfers.

In contrast, the RSP model targets multicore architectures which support
shared address spaces built using relatively powerful on-chip networks to connect
physically distributed caches on the same chip. The network makes it possible
for processors to transfer data from cache to cache (e.g. IBM Cell [11]), reg-
isters to cache (e.g. TILEPro64 as described above [8]), or even from registers
to registers (e.g. Raw [12]). The RSP model is designed to support fine-grained
communication on these types of multicore architectures. Specifically, RSP is
designed to encourage programmers to structure code so that data is transferred
from registers to cache as data is produced without buffering or bulk transfer.

The reflective memory model also combines the familiarity of CCSM with
mechanisms that allow users to control locality [13]. This multichip model sup-
ports a paradigm in which writes in one process’ address space appear (or are
“reflected”) in another address space. Unlike the PGAS model, reflective memory
systems are designed to efficiently support individual writes as a communication
primitive. The two reflective memory implementations that share the most in
common with RSP are virtual memory mapped communication (VMMC) [14]
as implemented on the SHRIMP processor [4] and DEC’s Memory Channels [3].

16 H. Hoffmann, D. Wentzlaff, and A. Agarwal

Like RSP, VMMC [14] uses writes to transfer data between processors’ virtual
address spaces. Using the “automatic update” option of VMMC, both the pro-
ducer and the consumer allocate a data buffer to communicate. The producer
writes its local copy of the memory, the data is stored locally, and the writes
are put on a system bus. The consumer snoops this bus and intercepts writes
that also map to its address space. Unlike VMMC, the RSP implementation
uses messages and can be implemented on a mesh network without requiring a
snoopy protocol or a centralized bus. Furthermore, RSP does not require the
producer to keep a separate copy of the data in its own local memory.

The most significant difference between Memory Channels (MC) and RSP is
that MC allows pages of the shared address space to be mapped to a processor
for read or write access, but not read/write. RSP allows read/write mappings for
home nodes. All 8 benchmarks discussed in this paper make use of read/write
mappings, and disallowing this, as in MC, would add code complexity, copy op-
erations, or both to RSP applications. Unlike RSP, MC requires the OS to ”pin”
shared pages to communicating processors. This restriction limits the number of
sharers to the size of the page table limiting scalability and may effectively waste
a page table entry for processes that communicate infrequently. Furthermore,
RSP can be implemented on heterogeneous cores while MC is restricted to ho-
mogeneous clusters. Finally, MC has hardware support for broadcast/multicast.
While RSP lacks this support, it does not require the additional hardware and
only 2 of the 8 applications could make use of multicast.

Leverich et al. performed a similar study comparing CCSM to streaming mem-
ory for multicore [15]. This study found similar performance for the two models
even though stream programming allows a user to explicitly control locality. In
contrast, the results presented here show that allowing a user to control locality
can have significant benefits for large numbers of cores. There are two major dif-
ferences in the approaches that may account for the different findings. First, the
Leverich study uses a snooping, bus-based coherence protocol, while the study
presented here uses a directory scheme built on a mesh network. The bus-based
scheme may provide better performance for small numbers of cores, but has lim-
ited scalability to large multicores. Second, and perhaps most importantly, the
Leverich study limits the comparison to a maximum of sixteen core chips, where
the study presented here includes performance using 32 and 64 core processors.
In fact, for RSP the most significant performance gains are found when using 32
or more cores.

7 Conclusion

The RSP model is designed to provide high performance and ease-of-use while re-
quiring only incremental hardware support in multicore architectures. As demon-
strated, RSP implementations of eight benchmarks exhibit better performance
than shared memory for large numbers of cores. RSP can augment directory-
based cache-coherence schemes for multicores with many processors. Standard
shared memory techniques can be used for code that is highly dynamic in its

Remote Store Programming 17

memory access patterns, while RSP could be used for performance critical sec-
tions of regularly structured code. Alternatively, RSP can be used as the only
paradigm to provide a convenient and efficient programming model on multicore
DSPs.

References

1. Shan, H., Singh, J.P.: A comparison of MPI, SHMEM and cache-coherent shared
address space programming models on a tightly-coupled multiprocessors. Int. J.
Parallel Program. 29(3), 283–318 (2001)

2. Carlson, W., El-Ghazawi, T., Numric, R., Yelick, K.: Programming with the PGAS
model. In: IEEE/ACM SC 2003 (2003)

3. Gillett, R.B.: Memory channel network for PCI. IEEE Micro 16(1), 12–18 (1996)
4. Blumrich, M.A., Dubnicki, C., Felten, E.W., Li, K.: Protected, user-level dma for

the shrimp network interface. In: Proceedings of the Second IEEE Symposium on
High-Performance Computer Architecture, pp. 154–165 (1996)

5. Quadrics: SHMEM Programming Manual. Quadrics Supercomputers World Ltd.,
Bristol (2001)

6. Chauvin, S., Saha, P., Cantonnet, F., Annareddy, S., El-Ghazawi, T.: UPC Manual
(May 2005), http://upc.gwu.edu/downloads/Manual-1.2.pdf

7. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, San Mateo

8. Wentzlaff, D., Griffin, P., Hoffmann, H., Bao, L., Edwards, B., Ramey, C., Mattina,
M., Miao, C.C., Brown III, J.F., Agarwal, A.: On-chip interconnection architecture
of the Tile Processor. IEEE Micro 27(5), 15–31 (2007)

9. Yelick, K., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishnamurthy,
A., Hilfinger, P., Graham, S., Gay, D., Colella, P., Aiken, A.: Titanium: A high-
performance Java dialect. In: ACM, pp. 10–11 (1998)

10. Numrich, R.W., Reid, J.: Co-array Fortran for parallel programming. SIGPLAN
Fortran Forum 17(2), 1–31 (1998)

11. Kistler, M., Perrone, M., Petrini, F.: Cell multiprocessor communication network:
Built for speed. IEEE Micro 26(3), 10–23 (2006)

12. Taylor, M.B., Lee, W., Miller, J., Wentzlaff, D., Bratt, I., Greenwald, B., Hoff-
mann, H., Johnson, P., Kim, J., Psota, J., Saraf, A., Shnidman, N., Strumpen, V.,
Amarasinghe, S., Agarwal, A.: Evaluation of the Raw Microprocessor: An Exposed-
Wire-Delay Architecture for ILP and Streams. In: International Symposium on
Computer Architecture (June 2004)

13. Jovanovic, M., Milutinovic, V.: An overview of reflective memory systems. IEEE
Concurrency 7(2), 56–64 (1999)

14. Dubnicki, C., Iftode, L., Felten, E., Li, K.: Software support for virtual memory-
mapped communication, April 1996, pp. 372–381 (1996)

15. Leverich, J., Arakida, H., Solomatnikov, A., Firoozshahian, A., Horowitz, M.,
Kozyrakis, C.: Comparing memory systems for chip multiprocessors. SIGARCH
Comput. Archit. News 35(2), 358–368 (2007)

http://upc.gwu.edu/downloads/Manual-1.2.pdf

Low-Overhead, High-Speed Multi-core Barrier
Synchronization

John Sartori and Rakesh Kumar

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

Abstract. Whereas efficient barrier implementations were once a concern only
in high-performance computing, recent trends in core integration make the topic
relevant even for general-purpose CMPs. While the nature of CMP applica-
tions requires low-latency, the cost of low-latency barrier implementations us-
ing hardware-based techniques can be prohibitive for CMPs, where die area
represents opportunities for throughput and yield. Similarly, whereas traditional
multiprocessor barrier implementations were developed primarily for dedicated
environments, scheduling and multi-programming on CMPs require more adapt-
able barrier implementations.

In this paper, we present and evaluate three barrier implementations that are
hybrids of software and dedicated hardware barriers and are specifically tailored
for CMPs. The implementations leverage the unique characteristics of CMPs and
provide low latency comparable to that of dedicated hardware networks at a frac-
tion of the cost. The implementations also support adaptability, enabling efficient
multi-programming and dynamic remapping of the barrier network.

1 Introduction

Barrier synchronization has been a well-studied problem for large-scale, traditional
multiprocessors [1, 2, 3, 4]. A wide variety of barrier implementations have been pro-
posed, ranging from software-based [2,5,6,7,8] to fully hardware-based [3,9,10,11,12].
Several of these implementations have been used in the context of large-scale parallel
applications with large data sizes, coarse-grained parallelism, and high computation to
communication ratios.

Requirements for barrier synchronization for CMPs are different, however. In con-
trast to typical multiprocessor applications which target coarse-grained parallelism,
multi-core applications tend to exploit fine-grained parallelism, making low-latency
synchronization a primary concern. Consequently, multi-core applications can be highly
sensitive to barrier performance. For example, Figure 1 shows the performance of three
OpenMP NAS benchmarks [13] that exploit inner-loop parallelism. As the granularity
of parallelism decreases, the overhead of barrier synchronization becomes relatively
larger, and performance degrades. As the results show, performance can be very sensi-
tive to barrier latency for applications with fine-grained parallelism. So, a barrier im-
plementation for multi-cores should have low latency.

Also, low latency barrier implementations have traditionally been achieved through
dedicated hardware support. For CMPs, however, the high area and power overheads

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 18–34, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Low-Overhead, High-Speed Multi-core Barrier Synchronization 19

Performance Sensitivity of NAS Benchmarks to Relative Barrier Latency

0

1

2

3

4

5

6

7

8

1 1/2 1/4 1/8 1/1

Granularity of Parallelism

CG 16

FT 16

MG 16

S
p
e
e
d
u
p

v
s

S
e
q
u
e
n
t
i
a
l

BM - Thds

6

Fig. 1. The performance of three NAS parallel benchmarks degrades as the granularity of par-
allelism becomes finer and relative barrier latency increases on a 16-threaded workload. When
relative barrier latency becomes high, as can be the case for software barrier implementations,
taking advantage of fine-grained parallelism has little or no benefit.

of hardware barrier implementations are particularly taxing. Figure 2 shows how the
area overhead of additional dedicated links scales with the number of cores for a dedi-
cated hardware barrier tree implementation in 65nm technology. The area cost of dedi-
cated links is determined by the thickness (dependent on metal layer) and length of the
wires [14], and may represent a considerable fraction of the precious die area for CMPs
(up to 16% assuming a 400mm2 die). Since die area is a precious resource for CMPs
(as it can translate into higher throughput – saved area can be used for more cache or
cores – or higher yield – yield varies inversely with die area), a barrier implementation
for multi-cores cannot afford to ignore the area/power costs of providing low latency.

Finally, while applications for high-performance systems are typically run in a ded-
icated system mode, multi-core applications are often expected to run in shared en-
vironments with scheduling and multi-programming. So, barrier implementations for
multi-cores should be adaptable for various levels of participation and dynamically con-
figurable based on the mapping of threads to cores.

In this paper, we revisit barrier synchronization for CMPs and present three CMP
platforms that achieve barrier latencies close to those of dedicated hardware barrier

Area Overhead of Dedicated Network

0.24 0.64 1.36
3.52

9.04

26.56

63.68

0

10

20

30

40

50

60

70

4 8 16 32 64 128 256

CORES

A
re
a
 (
m
m

2
)

Fig. 2. A dedicated network adds considerable area overhead to the chip. The plot above shows the
area overhead of a dedicated tree network in terms of additional wiring cost for 65nm technology.

20 J. Sartori and R. Kumar

networks at a fraction of the cost. The implementations support adaptability, enabling
efficient multi-programming and dynamic remapping of the barrier network.

2 Hardware-Supported Mapping of Virtual Barrier Topologies

Our first CMP-specific optimization accelerates software-based barrier implementa-
tions. One way to reduce the performance overhead of software-based barrier synchro-
nization while keeping area overhead low is to form a virtual hierarchical network atop
the physical mesh. In terms of topologies, a butterfly network can potentially achieve
the lowest latency for global barrier synchronization. However, for this study, we con-
sider a virtual tree network due to the high connectivity/area and messaging costs of the
butterfly ((N/2)·log2N and N ·log2N , respectively) as compared to the tree (N−1 and
2 · (N − 1)). We assume that the existing topology of the network-on-chip for general
purpose communication is a mesh. The following section describes our first platform
for providing low-overhead, accelerated barrier support.

2.1 Implementation

When a group of cores that will perform synchronization is mapped into a virtual barrier
tree, we can reduce the software overhead of synchronization by adding a simple state
machine to each router to control routing of intermediate barrier notifications in the
interconnect, without involving the cores.

The state machine in each router (Figure 3) contains three registers and three notifi-
cation bits. The registers store the location of the parent, left child, and right child of a
node in the network. The notification bits record whether a node has received an arrival
notification from left child, right child, and self. When a thread reaches the barrier, it
sends a notification to itself. When all notification bits are set, the last arriving notifi-
cation is forwarded to the parent node. When the barrier has been satisfied at the root,
completion notices are propagated back down to the leaves of the tree.

CHECK
COMPLETE

(barrier signal)
&&(have parent)

MARK
NOTIFIER

not
complete

(barrier signal)
&&(no parent)

MARK
NOTIFIER

complete&&
(have children) NOTIFY

CHILDREN

complete&&
(no children)

NOTIFY
SELF

RESET STATE

WAIT

Fig. 3. This state machine describes the routing logic for barrier notifications in the virtual net-
work. Arrival notifications are forwarded up the tree when the barrier is satisfied at the current
level. Completion notifications are propagated down the tree after the barrier is satisfied at the
root level.

Low-Overhead, High-Speed Multi-core Barrier Synchronization 21

Since propagation of the intermediate signals in the virtual barrier network can be
performed in hardware, a node only needs to perform the initial arrival notification and
the final check for barrier completion. Moreover, all of the notification details (such as
neighbors, size, etc.) are determined and stored in the routers when the virtual network
is configured. Therefore, rather than using a high overhead, generalized software pro-
cedure to send and receive notifications, we allocate a memory mapped address for use
in barrier algorithms such that a store to the address sends an arrival notification to the
network, and a load from the address stalls until the barrier completion notification is
received at the node.

2.2 Benefits and Overheads

Adding hardware support for virtual networks reduces barrier latency by minimizing
the software overhead of barrier management. Additional cost at routers consists only
of a few registers and a small state machine. This approach adds no additional area
overhead for communication links.

2.3 Map Optimization

While hardware support for virtual barrier networks improves the performance of bar-
riers without adding much overhead, the performance gains are constrained if a naive
strategy is used to map the virtual network onto the physical interconnect. In this sec-
tion, we consider the benefits of intelligent mapping.

Determination of the optimal virtual to physical mapping involves finding the min-
imum depth spanning tree of the graph represented by the CMP cores (vertices) and
mesh links (edges), where depth represents the longest distance from root to leaf. In
general, this problem is NP-complete [15], and the goodness of a solution may depend
on several factors, including the amount of time spent in computation. This may not
be a problem for a statically assigned tree, but for the case of multicore processors, in
which thread-to-core mappings are assigned dynamically at runtime and may change
depending on availability of nodes and number of threads in a thread group, a static
mapping will likely be inadequate.

The algorithm used to determine virtual to physical mappings is described in
Figure 4. When a thread group will utilize barrier synchronization, this algorithm is
executed by the processor’s software runtime at the time a thread-to-core mapping is

NodeList.append(root); hasParent[root] = true
while NodeList not empty do

POP Node i from NodeList with minimum depth
for child in {left,right} do

child = node with min distance(i, child) AND hasParent(child) = false
NodeList.append(child); hasParent[child] = true

end for
end while

Fig. 4. The virtual to physical mapping algorithm bears some similarities to Prim’s algorithm for
minimum spanning trees. The goal of the algorithm is to find the spanning tree with minimum
root-to-leaf depth.

22 J. Sartori and R. Kumar

assigned for the task. Once the involved routers are configured by the runtime, no addi-
tional runtime support is needed during barrier execution. The algorithm selects a root
near the center of the selected mesh nodes to maximize opportunities for fanout as the
tree expands. Exhaustive testing over all possible tree roots confirms that the algorithm
achieves minimum global barrier latency by minimizing the depth of the tree. Figure 5
gives examples of a naive mapping and an optimized mapping for a 16-core CMP.

0 321

4 765

8 11109

12 151413
Node i: Right Child = 2i+1, Left Child = 2i+2

0 321

4 765

8 11109

12 151413
Root = 9

Fig. 5. In the figure on the left, an obvious (but naive) mapping strategy is used to assign tree
neighbors. In this strategy, node i’s children are at indices 2i+1 and 2i+2, and the resulting tree
depth and aggregate hops of the mapping are 8 and 34. In an optimized approach to assigning
the tree structure, a search is performed to find the best tree root, and each node’s children are
determined dynamically to minimize tree depth. The network on the right has a depth of 4 and an
aggregate hop count of 17 – half that of the naive mapping.

2.4 Platform Adaptability

The support for virtual barrier networks described above is easily adaptable to support
semi-global synchronization of dynamic thread groups. When a processor’s runtime
schedules a group of threads, it may assign to them a dynamically computed virtual
barrier tree if they will be performing barrier synchronization. In this case, the runtime
selects a group of cores for the threads to use, computes a virtual to physical mapping
for the graph represented by the cores and mesh links, and configures the state of the
routers to connect and initialize the virtual network.

3 Barrier Implementation Using Hybrid Networks

While the previous CMP-specific barrier implementation accelerates software-based
barrier implementations by providing hardware support for mapping virtual barrier
topologies to physical topologies, in this section, we discuss a CMP-specific barrier
implementation that tries to get the benefits of both software and hardware-based bar-
rier implementations by creating a hybrid network.

A dedicated barrier network includes a dedicated link between two nodes that are
neighbors in the topology. However, for a good mapping strategy, a direct connection
may already exist between the two nodes in the form of a regular mesh link. Thus,
adding an extra dedicated link does not buy additional performance in several cases.
However, there can be a benefit for placing a dedicated link when there is not already a

Low-Overhead, High-Speed Multi-core Barrier Synchronization 23

mesh link connecting two virtual neighbors in the barrier topology. This is the basis of
a technique we call barrier bolstering.

3.1 Implementation

In an attempt to create a perfect barrier tree, with one hop between each level of the tree
for all paths (each node is directly connected to all tree neighbors), we can add a dedi-
cated physical link between two virtual neighbors any time a single-hop path does not
exist between the nodes in the physical network. With this approach, the latency of the
hybrid network would be very close to that of the dedicated network, and presumably,
the cost would be lower, since some virtual links correspond directly to single physical
links in the mesh. However, since wire delay depends on wire length, the effective-
ness of this technique in reducing latency would be somewhat limited, since long wires
(even long dedicated wires) would incur multiple-cycle delays. Also, due to limited
connectivity at each switch in the mesh, the overhead of this strategy approaches that
of a dedicated network as the number of nodes increases.

The previously mentioned approach to barrier bolstering can incur high area over-
heads when the number of cores is large. Also, perceived benefits may in reality be lim-
ited, since long wires require multiple cycle delays. Thus, for our actual implementation
of barrier bolstering, we choose a more cost-effective technique for adding dedicated
links, and we assume that link latency is proportional to link length in hops. Under
this assumption, replacing long virtual links with dedicated links does not buy much
performance relative to the cost.

While it may be unrealistic to assume substantial reduction in latency by replacing
all multi-hop links with dedicated links, it is certainly possible to equalize the latency
of links that have similar latencies by replacing the longer virtual link with a dedicated
link. We define barrier slack as the difference in delay between two virtual links that
connect sibling nodes in the topology. When barrier slack is present, the critical path
of a virtual tree will be limited by the longer of the virtual links at a given level of
the tree. Thus, we can reduce the critical path of the tree by adding a dedicated link
to short circuit the longer path and equalize the latencies of the paths to the siblings.
Figure 6 demonstrates how barrier bolstering can reduce the depth of a barrier tree

Parent

Critical Path
Latency = 3 hopsLeft

Child

Right
Child

Parent

Critical Path
Latency = 2 hopsLeft

Child

Right
Child

Dedicated Link

Fig. 6. This figure demonstrates how dedicated links can be selectively added to reduce the critical
path of a tree. When two virtual links in the same level of the tree differ in length (in hops),
barrier slack exists between the two links. Under certain circumstances, adding a dedicated link
can eliminate the slack and equalize the latencies of the links to that of the shorter link, reducing
the critical path of the tree network.

24 J. Sartori and R. Kumar

by selectively adding dedicated links to equalize the latency of paths to two sibling
nodes. This reduction in latency is mostly attributed to the reduced routing cost on the
dedicated link.

3.2 Benefits and Overheads

Barrier bolstering produces a very low latency barrier implementation, with perfor-
mance close to that of a dedicated network (results in section 6) by selectively adding
dedicated links to reduce the depth of the tree network. Different approaches to bolster-
ing affect the number and lengths of dedicated links that are added, which determines
the area overhead of the bolstering technique.

Figure 7 compares various approaches to barrier bolstering in terms of their wiring
overhead costs. Even if possible to implement with acceptable link latencies, the cost of
the first mentioned technique (with single-hop links for every link) approaches the cost
of a dedicated network for large number of cores. This cost can be reduced somewhat
by realizing that permitting a certain number of two-hop links does not increase the
latency of the barrier. However, in our actual implementation of barrier bolstering, the
wiring cost remains low (less than 1% die area) even for large number of cores.

Area Overheads of Various Hybrid Networks

1.
9

6.
3

23
.0

59
.4

0.
0

0.
0

0.
5 3.

3

14
.7

47
.2

0.
4

0.
7 1.

8 3.
0

0.
0

0.
2

0.
3

0.
0

0.
0

0.
1

0.
1

0

10

20

30

40

50

60

70

4 8 16 32 64 128 256

CORES

PERFECT

SINGLE HOP

TREE

TREE WITH

MIN CRITICAL

PATH

TREE WITH

BARRIER

BOLSTERING

 A
re
a
 (
m
m

2
)

Fig. 7. This figure compares the area overheads for various hybrid network configurations.
Whereas the cost of a perfect single-hop tree (where every node is directly connected to its neigh-
bors) approaches that of a dedicated tree for high core integration (compare to Figure 2), the cost
of slack elimination via barrier bolstering remains low.

3.3 Mapping Considerations for Barrier Bolstering

In the case of barrier bolstering, the virtual to physical mapping algorithm from the
previous implementation (Figure 4) is modified to minimize the slack between sibling
nodes in the virtual tree. Figure 8 shows the new algorithm, which is used during net-
work design to determine the locations of supplemental dedicated links in the network
for optimal global barrier performance. Although the network is optimized for global
barriers, semi-global barriers can also achieve good performance, since they can be
mapped to optimized subtrees of the global tree. During dynamic mapping, the final
if statement of Figure 8 is ignored, since the locations of dedicated links are statically
assigned.

Low-Overhead, High-Speed Multi-core Barrier Synchronization 25

NodeList.append(root); hasParent[root] = true
while NodeList not empty do

POP Node i from NodeList with minimum depth
select children with: min(max(distance(i,left),distance(i,right))) AND min(|distance(i,left)-distance(i,right)|) AND
hasParent(left,right) = false
NodeList.append(left,right); hasParent[left,right] = true
if |distance(i,left)-distance(i,right)| < max correctable slack then

mark longer link as dedicated
end if

end while

Fig. 8. The virtual to physical mapping algorithm for barrier bolstering attempts to minimize
slack between siblings. This algorithm is used to select the locations of dedicated links for best
global barrier performance.

3.4 Platform Adaptability

Since some dedicated links are used in barrier bolstering, the adaptability of the plat-
form for dynamic thread mapping is somewhat lessened. For semi-global synchroniza-
tion, the best case is when a thread group can be mapped to a subtree of the originally
mapped tree. In this case, the threads receive the full benefits of the bolstering. In the
worst case, the virtual to physical mapping for a thread group may not be able to use
any of the dedicated links. In this case, the performance of the bolstered network is
equivalent to that of the unbolstered virtual network.

4 Reducing Virtual Link Latency with Router Bypassing

While the first technique (hardware-supported mapping of virtual barrier topologies)
required no additional link area overhead, the previous technique (barrier bolstering)
allowed closer approximation of the performance of a dedicated hardware barrier net-
work. In this section, we discuss a way to get most of both benefits by allowing direct
virtual connections instead of physical connections in the case of bolstering.

4.1 Implementation

Using a well-mapped virtual topology in conjunction with barrier state machines at
the routing nodes significantly reduces the latency of barrier synchronization. Note,
however, that for a virtual link in a virtual tree, there may be multiple hops between
successive levels of the tree. This occurrence adds latency to the critical path of the tree,
and a significant portion of this latency is due to the packet being routed at multiple
routers along its path between tree levels. A recent work suggests the use of express
virtual channels [16] to mitigate the cost of routing packets that travel multiple hops.

Figure 9 explains the concept of an express virtual channel (EVC). When the down-
stream destination of a packet is further than one hop away, an EVC may be allocated,
spanning all intermediate routers so that the packet can continue on the same virtual
channel without being routed at the intermediate nodes. Routing only needs to be per-
formed again when the packet reaches the terminus of the EVC.

We use EVCs as a way to set up virtual connections between nodes that are logical
neighbors in the virtual barrier topology. Since the set of routing paths to be accelerated

26 J. Sartori and R. Kumar

Link Latency = 1
Routing Cost = 3

EVC Routing Cost = 1
Cost without EVC = 9

Cost with EVC = 5

EVC

Fig. 9. An EVC has a source and sink node and spans multiple hops along a routing path. When a
packet allocates an EVC, it skips the routing stage at intermediate routers and a routing decision
only needs to be made again once the packet exits the EVC.

for a given tree mapping are fixed, EVCs can be planned and allocated efficiently ac-
cording to the state of the configuration registers in the routers. When configured by the
runtime for a specific virtual topology, the registers store the location of virtual neighbor
nodes, describing the parameters for an EVC between the nodes.

4.2 Benefits and Overheads

Using EVCs to enhance routing between virtual neighbors maintains all the benefits of
the virtual network platform and also adds the benefit of reduced routing latency for
some multi-hop virtual links. The extent to which this benefit can improve performance
depends on how well EVCs can be utilized.

The costs incurred to obtain this additional benefit are increased router complexity
to add support for EVCs and potential degradation of other network traffic, since EVCs
suppress communication on intermediate routers when they are allocated until they are
freed. Use of EVCs does not add any area/power cost in terms of communication links.

4.3 Mapping Considerations

The use of EVCs adds a new dimension to the virtual to physical topology mapping
problem. Since EVCs are only allowed to travel along a single routing dimension [16],
the selection criteria for choosing the children of a node when forming a virtual tree
are somewhat different. Whereas in the original algorithm, children were chosen to
minimize the number of hops between successive tree levels, they are now selected
to simultaneously minimize both the number of hops and the number of directional
changes. This implies a different distance function that accounts for the relative costs
of link traversal and routing latency in EVCs. Because the cost of routing is higher than
the cost of link traversal, situations arise in which it is more efficient to travel more hops
in a single direction than fewer hops in multiple directions.

When an EVC flow passes through a router, any other traffic at that router is sup-
pressed. This situation reveals a tradeoff for EVCs. While they exhibit potential to ex-
pedite communication along the EVC path, they also potentially slow down other traffic
that uses any of the routers in the EVC path. We account for this by minimizing the oc-
currence of crossing paths in the same level of the tree whenever possible. This means
that if multiple potential children are located at the same distance, children are selected
to avoid crossing paths in the same tree level. Figure 10 gives the EVC-aware virtual to
physical mapping algorithm.

Low-Overhead, High-Speed Multi-core Barrier Synchronization 27

let distance(i,j) = (link latency)·hops(i,j)+(routing latency)·dirChanges(i,j)
NodeList.append(root); hasParent[root] = true
while NodeList not empty do

POP node i from NodeList with min depth
select children with: min distance(i,child) AND hasParent(child) = false
if multiple potential children with min distance then

select children to minimize crossing paths
end if
NodeList.append(children); hasParent[children] = true

end while

Fig. 10. The EVC-aware virtual to physical mapping algorithm minimizes directional changes
and same-level crossing paths, features that inhibit the utilization or performance of EVCs.

Figure 11 demonstrates that a mapping algorithm that is aware of the tradeoffs in-
herent in the use of EVCs can produce a different mapping than the normal mapping
algorithm, which considers the cost of all hops along a virtual path to be the same,
independent of the directional implications.

26 292827

34 373635

42 454443

50 535251
EVC AWARE

26 292827

34 373635

42 454443

50 535251

EVC UNAWARE

Fig. 11. The figure above compares the same subsection of a 64-core mesh for two mapping
strategies – one that considers EVC tradeoffs during the mapping phase (left) and one that does
not (right). When EVC tradeoffs are considered, virtual paths that change directions are less
desirable.

4.4 Platform Adaptability

Since EVCs are allocated dynamically, not statically like the dedicated links in barrier
bolstering, this platform shares all adaptability features of the original virtual network
platform.

5 Methodology

To obtain our experimental results, we use a modified version of the M5 simulator [17]
that has been adapted to support communication over a network-on-chip (NoC) rather
than a shared bus. In our baseline architecture, the NoC has a rectangular mesh topol-
ogy, with link latency equal to 1 cycle and routing latency equal to 4 cycles. Routers
are pipelined for increased throughput. Table 1 lists some additional details about the
simulated architecture.

28 J. Sartori and R. Kumar

Table 1. Architectural Details

Clock 2GHz Mem Latency 300 cyc Execution In-order
L1 Icache 32KB L1 Dcache 64KB L2 4MB/CORE, 10 cyc

To model a dedicated hardware barrier network, we add an extra set of physical links
to the chip and arrange them in a tree topology. Routing for the dedicated network is
simple, deterministic, and suffers no resource contention. Thus, we specify single cycle
latency for routing on the dedicated network. Link latencies for the dedicated links are
assigned based on the Manhattan distance between the connected nodes.

For virtual barrier configurations, described in section 2, we model routers with sup-
plemental routing logic equivalent to the state diagram of Figure 3. The state machine
logic requires only a few latches and gates. For an N-core processor, the additional state
required at each router is composed of 3 · logN bits to store the indices of the parent,
left child, and right child, and 3 bits to track whether arrival notifications have been
received from left child, right child, and self.

In section 3, we model the addition of select dedicated links to the regular mesh.
All routing latencies remain the same, and link latencies of the dedicated links are
determined by the lengths of the links.

In section 4, we assume the availability of express virtual channels (EVCs). Nec-
essary support for EVCs is described in [16]. When an EVC is allocated, we assume
normal routing latency at the source and termination of the EVC and routing latency of
1 cycle for intermediate routers.

6 Analysis of Results
In this section, we first reinforce the point made in section 1 that barrier synchronization
mechanisms for CMPs need to be different from those for traditional multi-processors.
Then we compare the performance of the various CMP-specific barrier implementations
presented in this paper. Finally, we discuss the implication of new barrier implementa-
tions on performance and design of parallel applications.

6.1 Traditional Barrier Mechanisms in the Context of CMPs

In our revisitation of barrier mechanisms for CMPs, we looked at three categories of
software barrier implementations, categorized based on their communication patterns –
centralized barriers, decentralized barriers, and hierarchical barriers.

Centralized barriers are most commonly found in cache coherent shared memory
systems. In this style of barrier, all participating threads communicate with a central
entity to make known their arrival at the barrier. When the centralized entity receives
notifications from all threads, it responds in turn by sending barrier completion notifi-
cations to the participants. While this type of barrier is simple to implement, obvious
performance and scalability detriments are inherent in the design.

Low-Overhead, High-Speed Multi-core Barrier Synchronization 29

Decentralized barrier algorithms differ from centralized algorithms in that all
threads determine completion of the barrier locally. Thus, decentralized algorithms per-
form notification and completion phases in parallel, at the expense of extra communi-
cation between participants. An example of a decentralized barrier that we evaluated is
a broadcast barrier.

In a hierarchical barrier algorithm, each participant synchronizes with some sub-
set of the global nodes and subsequently propagates the local synchronization state to a
higher level until global synchronization can be determined. Some example implemen-
tations of this type are tree and butterfly barriers [2].

Figure 12 shows the performance of various standard software barrier implementa-
tions on multi-core architectures with different number of cores.

Software Barrier Latency

0

500

1000

1500

2000

2500

0 32 64 96 128 160 192 224 256

CORES

C
Y
C
L
E
S
 /
 B
A
R
R
I
E
R

TREE LL=1

COUNTER

CNTR SENSE

REVERSE

TREE LL=3

BUTTERFLY

LL=1

BUTTERFLY

LL=3

BROADCAST

Fig. 12. This figure shows the latency of different software barrier implementations for varying
number cores. While the hierarchical software implementations show some promise, the other
approaches are constrained by software overheads on the critical path. For implementations that
are sensitive to link latency, LL=X denotes the link latency.

Figure 12 demonstrates a few key CMP-specific points. First, there is no difference
between the performance of the centralized and decentralized software barriers on the
CMP due to the relative expense of barrier management in software as compared to the
relatively low cost of communication between cores. Essentially, notifications arrive
faster than the software is able to process them.

Another observation is that changing the latency of the communication links for
a multi-core architecture has almost no effect on the performance of centralized and
decentralized barriers. This further demonstrates that these implementations are con-
strained by software overhead and shared resource constraints and are unsuitable for
use in CMPs. On the other hand, the hierarchical barriers do respond to changing link
latency, with a more pronounced effect as the depth of the hierarchy grows. This is be-
cause the critical paths of these algorithms depend more directly on link latency. Since
notifications do not always queue up for threads, they must spend time waiting for no-
tifications to travel from one level of the hierarchy to the next.

The final observation to be drawn from the figure is that even though some software
approaches are not completely dominated by software overhead, the barrier synchro-
nization overhead is still unacceptably high for all software barrier implementations

30 J. Sartori and R. Kumar

in scenarios where medium to fine grain synchronization is desirable. So, barriers for
CMPs should preferably not be implemented in software and should have low latency.

We also investigated using dedicated hardware barrier tree networks.

Dedicated Barrier Performance

10

20

30

40

50

60

0 32 64 96 128 160 192 224 256

CORES

VARIABLE

LINK

LATENCY

UNIFORM

LINK

LATENCY
C
Y
C
L
E
S
 /
 B
A
R
R
I
E
R

Fig. 13. Dedicated barrier networks achieve very low latency synchronization. The two curves
represent different assumptions about the routing and latency determination for network links. In
one, uniform link latency is assumed. For the other curve, we assume link latency proportional to
link length.

Figure 13 shows performance scalability for dedicated tree barrier networks. The
two curves represent different assumptions about link latencies. The lower curve cor-
responds to the situation where routing can be done through different metal layers to
normalize the link latency. For the upper curve we assume pipelined links where the
length determines the number of latches necessary and thus the end-to-end latency of
the link. As the latter assumption represents a more realistic scenario, we use this ap-
proach for comparison in the rest of our discussion.

Comparison of Figure 12 and Figure 13 demonstrates that dedicated hardware barrier
implementations have much smaller performance overhead than software implementa-
tions. In fact, compared to the dedicated barrier tree implementation, the best perform-
ing software implementation exhibits up to 22.82x increased latency. However, dedi-
cated hardware barrier networks have prohibitive area overhead (see section 1). So, new
CMP-specific implementations are needed.

6.2 Performance Benefits of CMP-Specific Barriers

Figure 14 compares the latencies of the efficient barrier techniques to those of the ded-
icated hardware barrier network. The results demonstrate that with efficient barrier no-
tifications and minimal support in the NoC, we can achieve close to dedicated perfor-
mance at a greatly reduced cost.

There are several sources of benefits for each of the three barrier implementations.
For example, our first technique (hardware-supported mapping of virtual barrier topolo-
gies to physical topologies) uses loads/stores instead of sends/receives. The formula for
latency of the tree barrier has the form X+Y ·log2N , where X and Y represent the noti-
fication/completion cost and the inter-level traversal latency, respectively. Thus, adding
load/store support for barrier notifications reduces latency by cutting down the value
of X.

Low-Overhead, High-Speed Multi-core Barrier Synchronization 31

Comparison of Efficient Latency Reduction Approaches

0

50

100

150

200

250

0 32 64 96 128 160 192 224 256

CORES

C
Y
C
L
E
S
 /
 B
A
R
R
I
E
R

VIRTUAL

DEDICATED

ROUTER

BYPASS

HYBRID

NETWORK

Fig. 14. The efficient latency reduction techniques all represent ways to approach the performance
of a dedicated network without paying the associated overhead cost. The hybrid approach comes
very close to matching the performance of a dedicated synchronization network with a sizable
reduction in overhead.

Similarly, optimizing the virtual to physical mapping for a synchronization network
can significantly affect performance. Figure 15(a) compares the latency of a naively
mapped virtual tree, in which children are located at the obvious node indices, to an
optimized virtual mapping, in which the children of each node in the tree are selected
intelligently based on the algorithm outlined in Figure 4.

Intelligent vs Naive Mapping for Virtual Barrier

0

100

200

300

400

500

600

0 32 64 96 128 160 192 224 256

CORES

NAIVE

MAPPING

FUNCTION

MIN

CRITICAL

PATH

C
Y
C
L
E
S
 /
 B
A
R
R
I
E
R

0

50

100

150

200

250

0 32 64 96 128 160 192 224 256

CORES

C
Y
C
L
E
S
 /
 B
A
R
R
I
E
R

EVC

AWARE

MAPPING

EVC

UNAWARE

MAPPING

Barrier Latency With EVCs for EVC-Aware and EVC-Unaware Mappings

Fig. 15. Mapping strategies for virtual barrier networks should be intelligent (a), and should con-
sider how to best utilize available network features, such as EVCs (b).

Figure 15(b) shows that if EVCs are employed to expedite routing on virtual links,
then it becomes necessary to consider the limitations of virtual channels when decid-
ing on the optimal virtual to physical mapping. Mappings that are unaware of these
considerations are not able to make the most efficient use of available EVCs. As Fig-
ure 15(b) demonstrates, the benefit of adding EVC capability to the NoC is small unless
an EVC-aware mapping policy is used.

6.3 Implications for Performance and Design of Parallel Applications

To further validate the usefulness of our barrier techniques, we demonstrate how
fast barriers enable large-scale CMPs to exploit fine-grained parallelism and achieve
speedups on challenging benchmark applications. As in [18], we evaluate the perfor-
mance of our barrier techniques for two of the Livermore loops [19] and two bench-
marks from the EEMBC suite [20]. Figure 16 compares the performance of parallel
versions of the Livermore loops that employ software and hardware barrier techniques
on a 128-core CMP against the sequential performance for varying vector lengths.

32 J. Sartori and R. Kumar

Performance Against Sequential for Loop 2

1000

10000

100000

256 512 768 1024 1280 1536 1792 2048

Vector Length

SEQUENTIAL

SOFTWARE

HYBRID

DEDICATED

C
y
c
l
e
s

/

L
o
o
p

I
t
e
r

(
l
o
g
)

Performance Against Sequential for Loop 3

1000

10000

100000

256 512 768 1024 1280 1536 1792 2048

Vector Length

SEQUENTIAL

SOFTWARE

HYBRID

DEDICATED

C
y
c
l
e
s

/

L
o
o
p

I
t
e
r

(
l
o
g
)

Fig. 16. Performance comparison of software, hybrid, and hardware barrier implementations for
Livermore loops 2 and 3. Speedups are relative to sequential execution.

Although the granularity of parallelism is very fine, the efficient barrier techniques
allow the large-scale CMP to achieve substantial speedups. For larger granularity of
parallelism, software barriers can have benefits, but the benefits are very limited com-
pared to those afforded by our efficient barrier techniques. These results demonstrate
the need for low-overhead, CMP-specific barrier techniques.

Figure 17 shows the benefits of efficient barrier approaches for EEMBC Autocorrela-
tion (32 lags, input=xspeech) and Viterbi decoder (input=getti.dat). The Autocorrelation
results demonstrate that while software barriers leave performance on the table, virtual
and hybrid approaches can nearly achieve the performance of a dedicated synchroniza-
tion network. For the Viterbi decoder, using a software barrier implementation actually
results in a slowdown with respect to sequential, while hybrid approaches achieve mod-
est gains. For these benchmarks, performance variation between our efficient techniques
was small. This variation increases with increased application dependence on barriers
and increased number of cores performing synchronization.

In a nutshell, using CMP-specific barrier implementations allows existing parallel
applications to exploit fine-grained parallelism more effectively. It also allows applica-
tions to be parallelized at a finer granularity, potentially resulting in significant applica-
tion speedups.

Speedup vs Sequential for 16 threads

0

2

4

6

8

10

SOFTWARE VIRTUAL HYBRID DEDICATED

S
P
E
E
D
U
P Autocorrelation

Viterbi

Fig. 17. Performance comparison of software, hybrid, and hardware barrier implementations for
EEMBC Autocorrelation and Viterbi decoder. Speedups are relative to sequential execution.

7 Related Work

Barrier synchronization in the context of large scale multiprocessors has been a well-
studied problem [1, 2, 3, 4]. Several approaches target efficient software algorithms
[2,5,6,7,8], but dedicated hardware synchronization networks have also been deployed

Low-Overhead, High-Speed Multi-core Barrier Synchronization 33

in some systems. Notably, IBM’s Bluegene/L [9] contains multiple interconnect net-
works, each with a dedicated purpose. Both the global interrupt network and the col-
lective communication networks of BG/L can be used to achieve low latency barrier
synchronization [3]. Targeting low latency synchronization, other systems have also
used dedicated networks, including the AND-tree barrier synchronization circuits of
the Cray T3D [10], the network-supported fetch-and-add approach of the NYU Ultra-
computer [11], and the barrier register proposed by Beckmann, et al. [12]. While we
evaluate the performance of a dedicated hardware barrier network, we do so in the con-
text of a CMP, where we observe a different set of constraints and design considerations
than those found in previous large-scale multiprocessors.

More recent works have looked at the topic of synchronization in CMPs. Zhu, et
al. propose a synchronization state buffer [21] for reducing the overhead of fine-grain
synchronization support by tracking only actively synchronized data. Sampson, et al.,
suggest the use of barrier filters [18] that are implemented in the memory controllers
of a shared memory processor. These efforts both represent centralized, memory-based
approaches, whereas our techniques are inherently decentralized in nature and focus on
support in the NoC.

Another recent work [22] evaluates barrier performance in CMPs with the intent of
determining how well various barrier algorithms perform on different NoC topologies.
This is similar to the way in which we map virtual topologies onto disparate physical
topologies, however, the mapping strategies used in [22] are naive, leading to a differ-
ent set of conclusions. Another Cray multiprocessor, the T3E [23], uses configurable
routers, equipped with barrier synchronization units to map a virtual topology onto a
separate physical topology.

Our optimization of virtual barrier networks through the use of express virtual chan-
nels (EVCs) is based on the work of Kumar, et al. [16], who propose EVCs as a tech-
nique for approaching an ideal interconnect fabric for NoCs.

8 Conclusion

In this research, we have revisited the subject of barrier synchronization for many-core
CMPs. First, we established that the unique characteristics and constraints of CMPs dic-
tate that software-only barrier implementations perform poorly relative to implementa-
tions that utilize a dedicated synchronization network. Then we observed that the over-
head of adding a dedicated synchronization network to a chip can be high, especially
as core integration continues to increase. Based on these observations, we suggested
several techniques that utilize the existing network on chip with slight modifications to
allow dramatically increased barrier performance without paying the price of a dedi-
cated network. Our techniques allow us to achieve near-dedicated barrier performance
for minimal cost.

References

1. Shang, S., Hwang, K.: Distributed hardwired barrier synchronization for scalable multipro-
cessor clusters. IEEE Trans. Parallel Distrib. Syst. 6(6), 591–605 (1995)

2. Hoefler, T.: A survey of barrier algorithms for coarse grained supercomputers. Chemnitzer
Informatik-Berichte (2004)

34 J. Sartori and R. Kumar

3. Almási, G., et al.: Optimization of MPI collective communication on Bluegene/L systems.
In: ICS 2005, pp. 253–262 (2005)

4. Ramakrishnan, V., Scherson, I.D.: Efficient techniques for nested and disjoint barrier syn-
chronization. J. Parallel Distrib. Comput. 58(2), 333–356 (1999)

5. Chen, J., Watson, W.: Software barrier performance on dual quad-core Opterons. In: NAS
2008, pp. 303–309 (2008)

6. Nikolopoulos, D., Papatheodorou, T.: Fast synchronization on scalable cache-coherent mul-
tiprocessors using hybrid primitives. In: IPDPS 2000, p. 711 (2000)

7. Lee, J.B., Jhon, C.S.: Reducing coherence overhead of barrier synchronization in software
DSMs. In: ICS 1998, pp. 1–18 (1998)

8. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Trans. Comput. Syst. 9(1), 21–65 (1991)

9. Coteus, P., et al.: Packaging the BlueGene/L supercomputer. IBM Journal of Research and
Development 49(2-3), 213–248 (2005)

10. Adams, D.: Cray T3D system architecture overview manual (1993),
ftp://ftp.cray.com/product-info/mpp/T3D Architecture Over/
T3D.overview.html

11. Freudenthal, E., Peze, O.: Efficient synchronization algorithms using fetch-and-add on mul-
tiple bitfield integers. Ultracomputer Note 148 (1988)

12. Beckmann, C., Polychronopoulos, C.: Fast barrier synchronization hardware. In: ICS 1990,
pp. 180–189 (1990)

13. Biswas, R.: NAS parallel benchmarks (2009), http://www.nas.nasa.gov
14. Kumar, R., Zyuban, V., Tullsen, D.: Interconnections in multi-core architectures: Under-

standing mechanisms, overheads, and scaling. In: ISCA 2005 (2005)
15. Althaus, E., Funke, S., Har-peled, S., Knemann, J.: Approximating k-hop minimum-spanning

trees. Operations Research Letters 33, 120 (2005)
16. Kumar, A., et al.: Express virtual channels: Towards the ideal interconnection fabric.

SIGARCH Comput. Archit. News 35(2), 150–161 (2007)
17. Binkert, N.L., et al.: The M5 simulator: Modeling networked systems. MICRO 26(4), 52–60

(2006)
18. Sampson, J., et al.: Exploiting fine-grained data parallelism with chip multiprocessors and

fast barriers. MICRO 39, 235–246 (2006)
19. McMahon, F.: Livermore loops coded in C (1992),

http://www.netlib.org/benchmark/livermorec
20. E.M.B. Consortium: EEMBC (2009), http://www.eembc.org
21. Zhu, W., et al.: Synchronization state buffer: Supporting efficient fine-grain synchronization

on many-core architectures. In: ISCA 2007, pp. 35–45 (2007)
22. Villa, O., Palermo, G., Silvano, C.: Efficiency and scalability of barrier synchronization on

NOC based many-core architectures. In: CASES 2008, pp. 81–90 (2008)
23. Scott, S.L.: Synchronization and communication in the T3E multiprocessor. SIGOPS Oper.

Syst. Rev. 30(5), 26–36 (1996)

ftp://ftp.cray.com/product-info/mpp/T3D_Architecture_Over/T3D.overview.html
ftp://ftp.cray.com/product-info/mpp/T3D_Architecture_Over/T3D.overview.html
http://www.nas.nasa.gov
http://www.netlib.org/benchmark/livermorec
http://www.eembc.org

Improving Performance by Reducing Aborts in
Hardware Transactional Memory

Mohammad Ansari1,�, Behram Khan2, Mikel Luján2, Christos Kotselidis2,
Chris Kirkham2, and Ian Watson2

1 Department of Computer Science, Umm Al-Qura University
mmansari@uqu.edu.sa

2 School of Computer Science, University of Manchester
{bkhan,mlujan,ckotselidis,ckirkham,iwatson}@cs.manchester.ac.uk

Abstract. The optimistic nature of Transactional Memory (TM) systems can
lead to the concurrent execution of transactions that are later found to conflict.
Conflicts degrade scalability, and may lead to aborts that increase wasted work,
and degrade performance. A promising approach to reducing conflicts at run-
time is dynamically, and transparently, reordering the execution of transactions
upon discovery of conflicts. This approach has been explored in Software TMs
(STMs), but not in Hardware TMs (HTMs). Furthermore, STM implementations
of this approach cannot be ported to HTMs easily.

This paper investigates the feasibility of such reordering in HTMs, and
presents two designs that are scalable, independent of the on-chip interconnect,
require only minor modifications to each core, and add no execution overhead
if no conflicts occur. The evaluation takes LogTM-SE as a base line and con-
siders benchmarks with different levels of contention (transactional conflicts).
The results show that the preferred design increases HTM performance by up to
17% when contention is low, 57% when contention is high, and never degrades
performance. Finally, the designs are orthogonal to LogTM-SE; they require no
modification to cache structures, and continue to support transaction virtualiza-
tion, open and closed unbounded nesting, paging, thread suspension, and thread
migration.

1 Introduction

Traditionally, locks have been used to provide synchronization between threads that
access shared data concurrently. Locks are known to be challenging to use, with well-
documented challenges such as deadlocks, race conditions, convoying, and debugging.
Transactional Memory (TM) [1] proposes a programming model to simplify safe ac-
cess to shared data, which is achieved by providing implicit synchronization; the pro-
grammer marks, as transactions, those blocks of code that access shared data, and TM
ensures correct synchronization when those blocks of code execute concurrently.

TM provides implicit synchronization by checking, at runtime, whether accesses by
concurrently executing transactions intersect, i.e., conflict. If a transaction completes

� A large part of this work was conducted while the author was with the School of Computer
Science, University of Manchester.

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 35–49, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

36 M. Ansari et al.

executing and detects no conflict, it commits, but if a conflict is detected, one of the
conflicting transactions is usually aborted. TM implementations may detect conflicts
eagerly (upon access to a data element), or lazily (when the transactional code block
has been completely executed). TM implementations write to shared data, i.e., perform
version management, eagerly (write to shared data in place), or lazily (write to a buffer).
The former has a fast commit phase, but a slower abort phase as it requires the transac-
tion to undo all its updates to shared data, while the latter has a fast abort phase, but a
slower commit phase as it must copy updates from the buffer to the shared data.

TM has been implemented in hardware (HTM) [2,3,4,5,6,7], software (STM) [8,9,
10,11,12,13], or a hybrid of the two (HyTM) [14,15,16,17]. The advantage of HTMs is
a low overhead in performing transactional conflict detection, but at the cost of limiting
the total accesses of each transaction to the size of the L1 or L2 cache. STMs remove
this limitation, but at the cost of increased conflict detection overhead. Research in TM
has focused on reducing the overhead of conflict detection, but also on understanding
TM behavior [18], and even on adapting to dynamic workload characteristics [19, 20].
This paper focuses on HTMs.

As the number of cores on a chip multiprocessor (CMP) rises, efficiently exploiting
the cores to achieve high speedup becomes more challenging, even with TM. TM appli-
cations that scale ideally up to, say, 16 cores, may well find that they scale poorly when
executed on 128 cores due to more and more transactions conflicting and aborting. To
make matters worse, TM implementations have often tried to optimize the execution of
a committing transaction at the cost of penalizing aborts, for example, by using eager
version management.

Steal-on-Abort (SOA) [21] is our technique to improve the performance of TM when
noticeable contention (i.e., transactional conflicts) occurs. SOA targets a pathological
interaction between conflicting transactions called repeat conflicts. This occurs when a
specific transaction A conflicts with, and is aborted by, a specific transaction B. Trans-
action A is restarted after its abort, but performs an access that causes it to repeat its
conflict with transaction B, and then transaction A aborts again. This scenario may
repeat a number of times. SOA proposes that transaction A not be restarted, and in-
stead be stolen by transaction B, to prevent it from being re-executed until transaction
B commits. Once B commits, A is made available for execution. By not executing
transaction A again, a potential repeat conflict and abort is avoided, which could have
wasted cycles, power, and degraded application performance. Additionally, on SOA-
enabled STMs [21], the thread on which transaction A was running acquires a new,
third, transaction C, to execute. If transaction C commits, application performance may
improve.

However, implementations of SOA exist only in STMs [21]. Furthermore, they have
used dynamic data structures such as double-ended queues (deques) that make it diffi-
cult to perform a straightforward port of SOA to HTMs. As a result, the feasibility of
implementing SOA in HTMs remains unexplored.

This paper is the first to investigate implementing SOA in HTMs, and presents
two designs: SOA-HTM-PURE, and SOA-HTM-UTLZN. The former guarantees re-
peat conflicts are eliminated, but implements a restricted form of SOA compared to
STMs. The latter implementation is less restricted, but permits repeat conflicts in certain

Improving Performance by Reducing Aborts in Hardware Transactional Memory 37

scenarios. Notably, both implementations require only simple modifications to each
core, are independent of the on-chip interconnect, and highly scalable. For evaluation,
the designs are implemented in LogTM-SE [7], and continue to offer all the advantages
of LogTM-SE such as unmodified cache structures, and support for transaction virtu-
alization, open and closed unbounded nesting, paging, thread suspension, and thread
migration. Results show that the benefit of SOA seen in STMs extends to HTMs; im-
proving speedup up to 57%, reducing processor usage up to 26%, and reducing the
number of aborts up to 54%. In addition, the HTM designs of SOA also improve perfor-
mance in low contention benchmarks, and, promisingly, improve speedup by increasing
margins as the number of cores rises.

The remainder of this paper is organized as follows. Section 2 presents the designs
of SOA for HTM, and Section 3 discusses how they impact other structures. Section 4
evaluates the designs by implementing them in LogTM-SE, and executing a range of
benchmarks. Section 5 discusses related work, and Section 6 concludes the paper.

2 Steal-on-Abort Hardware Implementation

SOA abstractly consists of the three following actions:

1. Upon abort, a transaction is stolen, and hidden, by its opponent.
2. Upon commit, a transaction makes available for execution any transactions it stole.
3. Optionally, another transaction is acquired and executed in place of the stolen one.

The first two actions are enough to support SOA: they prevent repeat conflicts be-
tween two transactions by preventing them from executing concurrently. The third ac-
tion attempts to increase speedup (if the new transaction commits).

However, these actions are non-trivial to support in hardware. For example, transac-
tions are often tightly-coupled to the threads on which they are executing, as threads
maintain the execution state of an application. It may be impossible for a core to steal
an opponent transaction without stealing the thread on which it is executing. Assum-
ing transactions can be stolen, storing them in hardware is another challenge as there
is no limit to the number of steals that may be performed by a transaction. Thus, it
may become necessary to overflow stolen transactions to memory, which could signifi-
cantly slow down an executing transaction, and increase interconnect bandwidth usage.
Nevertheless, promising results from SOA on STMs give incentive for exploring if an
efficient design for SOA on HTMs can be achieved.

This paper proposes two carefully constructed designs that aim to minimise perfor-
mance degradation, interconnect traffic, and modifications to cores and cache structures.
The latter is particularly important for keeping the designs practically feasible. The first
proposal is called SOA-HTM-PURE, which supports only the first two actions men-
tioned above, and the second is called SOA-HTM-UTLZN, which implements all three
actions.

2.1 SOA-HTM-PURE

A single register, called SOA AMAP (SOA abort map), is added to each core, and has
one bit for each core in the CMP. If a core aborts another, it sets the relevant bit in

38 M. Ansari et al.

Fig. 1. Architecture for SOA on HTM. Only one additional register per-core needed, called
SOA AMAP.

Fig. 2. SOA example. Core 2 has a (data) cache miss, and makes a request to the interconnect that
is forwarded to Core 1. Core 1 responds with a NACK, and records the NACK in its SOA AMAP.
Core 2 receives the NACK, aborts, and suspends. Upon commit, Core 1 notifies all cores recorded
in its SOA AMAP to resume.

SOA AMAP. Since aborting an opponent requires communicating over the intercon-
nect, setting a bit in the register adds negligible overhead. Cores that are aborted stall
indefinitely, and are restarted later by their opponents. For now we assume threads do
not migrate; we address this issue later.

Once a core commits, it checks if any bits are set in its SOA AMAP. If all the bits
are clear, the core commits as normal. In this way, SOA-HTM-PURE adds no overhead
when there is no contention. If one or more bits are set, the corresponding cores are

Improving Performance by Reducing Aborts in Hardware Transactional Memory 39

resumed by sending a message across the interconnect. The exact mechanism for send-
ing such a message is architecture specific. In Section 4.3, the messaging mechanism
is described for our implementation using LogTM-SE, and results in a single outgoing
message from a committing core, and a single multi-cast message from a directory. In
this way, commit overhead is kept low by only adding a single, non-broadcast, message.

SOA should reduce communication traffic if repeat conflicts exist as fewer data re-
quests will be received from cores that restart aborted transactions, and fewer abort
messages will be sent to them in reply. Furthermore, it may be possible to power down
stalled cores to save energy.

The design can feasibly scale to 2048 cores, requiring only a 2048 bit register per
core (existing HTM implementations, for example, have suggested implementing 2048
bit signatures per core [7]), easily exceeding the number of cores expected on CMPs in
the near future.

2.2 SOA-HTM-UTLZN

SOA-HTM-UTLZN is an acronym for “SOA on HTM for utilization”, and extends
SOA-HTM-PURE to add the last action of SOA. SOA-HTM-UTLZN piggybacks on
hardware thread context support that is common in CMPs [22]. Hardware context sup-
port allows a core to store several thread contexts in hardware registers, and swap ex-
ecution between them quickly, primarily to hide memory latency. SOA-HTM-UTLZN
extends SOA-HTM-PURE by swapping threads in hardware contexts if the currently
executing thread is stalled (due to executing a transaction that has been aborted). For
now we assume thread contexts do not migrate; we address this issue later.

SOA-HTM-UTLZN adds a single bit, called CTXT SOA, to each hardware thread
context, which is set if the transaction being executed by the thread is aborted. A core
does not switch to any context that has its CTXT SOA bit set. When a core sends a
resumption message to another core, the other core clears the CTXT SOA bit in all
its thread contexts. This reintroduces the chance of repeat conflicts as the resumption
message will have been sent for only one of the contexts on the other core, and waking
up all contexts prematurely allows them to repeat their conflict with their respective
opponents. However, the benefit of this approach is that it leaves the SOA AMAP reg-
ister unchanged; one bit per core, maintaining the scalability of the design. To support
resuming specific contexts SOA AMAP must map one bit per context, which requires
either the register to increase in size, or the the potential scalability to be reduced.

It should be noted that using hardware contexts to increase utilization has its limits;
if all contexts on a core are stalled due to transactional conflicts, then that core can no
longer execute transactions until a resumption message is received. One option may be
to swap contexts with another core, but there are several design trade-offs involved with
such a mechanism, and we leave it for future work.

3 Impact of SOA

The previous sections described two proposals for implementing SOA in HTM. This
section explores the impact of those designs on processor architecture, transactional
execution, and the operating system.

40 M. Ansari et al.

3.1 Processor Architecture

Each core is extended with a single register called SOA AMAP. A simple messaging
protocol is also required to resume cores, requiring the interconnect to simply forward
the necessary messages to predefined destinations. A strength of the SOA designs pro-
posed is that no other change is required. No other hardware modifications are needed,
and in particular the pipeline, private caches, and shared caches of the core are left un-
changed. This significantly reduces the impact on design verification, making the SOA
proposals attractive for practical implementation.

3.2 Transactional Execution

SOA is only applicable to eager conflict detection, as lazy conflict detection only detects
conflicts with transactions that have committed, which rules out repeat conflicts. The
use of eager version management may increase the benefit of SOA, as it should reduce
the overhead of roll backs if it reduces the number of aborts. The benefit of SOA may
also increase if it is used in conjunction with signature-based conflict detection, as they
may lead to false-positives, which may increase the number of repeat conflicts.

A committing core incurs an overhead of sending messages to resume other cores
if any bits in its SOA AMAP are set. In our implementation, only a single message is
sent by a committing core. There is no increase in overhead on aborting cores. Nested
transactions, both open and closed, are orthogonal to SOA, and work in harmony with it.
For example, the Deque benchmark used in the evaluation executes nested transactions.

3.3 OS Context Migration

Earlier, the SOA designs were restricted to prevent threads from leaving their cores,
because a stalled thread expects to receive a resumption message from the core of the
opponent thread, and the opponent core holds only enough information to send a re-
sumption message to the core that it aborted, not the stalled thread itself. This restric-
tion is simple to remove. First, a stalled thread that is removed from a core needs to
be marked as active, and not stalled. No change is needed in SOA HTM PURE, and
in SOA HTM UTLZN the CTXT SOA bit should be cleared for the thread context in
question.

However, removing this restriction reintroduces repeat conflicts, as the migrated
thread is no longer stalled waiting for its opponent, and could begin re-executing imme-
diately. Furthermore, cores may send resumption messages that are no longer needed,
possibly resuming threads that are not their opponents, which further increases the
chance of repeat conflicts. Nevertheless, earlier work with SOA on STMs suggested
SOA is highly effective even when the implementation reintroduced repeat conflicts,
and contention was already high [21]. Thus, not only is it possible to override the above
restriction, but past results have shown that it may be an acceptable decision.

3.4 OS Virtual Memory Paging

The SOA designs do not peek at memory addresses, and as such are compatible with
support for paging. Furthermore, the modifications required to implement the SOA de-
signs do not impact HTM-specific support for paging.

Improving Performance by Reducing Aborts in Hardware Transactional Memory 41

4 Evaluation

SOA-HTM-PURE and SOA-HTM-UTLZN are evaluated using full-system simulations
with a range of benchmarks, and results compared with a “Base” implementation that
has SOA disabled. The evaluation shows that the designs improve speedup, and re-
duce aborts, although performance of SOA-HTM-UTLZN is mixed; in some cases it
improves performance, while in others it degrades it.

4.1 Methodology

SOA-HTM-PURE and SOA-HTM-UTLZN are implemented in LogTM-SE built on
Simics 3.0.31 [23], and GEMS 2.1 [24] Ruby pipeline and memory timing model.
The simulated platform uses simple in-order SPARC ISA cores running an unmodi-
fied Solaris 9. Experiments are executed with 1, 4, 8, and 16 cores (and corresponding
benchmark threads). Each benchmark thread is bound to an individual processor, using
Solaris’ pset bind(). As a result, OS thread migration and context switching are
implicitly disabled. The architecture of the evaluated CMP is described in Section 4.3.

SOA-HTM-UTLZN is executed with four hardware contexts per processor, and con-
sequently each benchmark is launched with four times as many threads. In order to
isolate the performance benefit of hardware context switching to SOA-HTM-UTLZN
alone, hardware context switching is only permitted when a thread stalls due to SOA,
i.e., cannot be used to hide memory latency.

4.2 Workloads

The microbenchmarks Deque and Btree, and the non-trivial benchmarks Kmeans and
Vacation (from the the STAMP benchmark suite [17]), are used to evaluate SOA-HTM.
In deque, transactions attempt to push or pop a double-ended queue. Transactions in
Btree insert, delete, or lookup items in a B-tree. Kmeans is a clustering algorithm, and
contention is controlled by the number of clusters to which objects are assigned. We
experiment with 1, 5, and 15 clusters, which lead to progressively lower contention. Fi-
nally, Vacation is a travel database simulating multiple customers concurrently booking
flights, hotels, and cars.

4.3 Evaluated CMP Configurations

SOA-HTM-PURE and SOA-HTM-UTLZN are implemented in the LogTM-SE HTM
that is provided with GEMS 2.1. LogTM-SE and the SOA are a complementary union.
LogTM-SE aims to keep cache structures unmodified as this improves the chances of
adoption. Similarly, the SOA designs require minimal changes for each core. LogTM-
SE attempts to achieve high scalability by using a non-broadcast commit phase, and
directory coherency. The SOA designs add no overhead to the commit phase if conflicts
do not occur, and is agnostic of the interconnect or coherency protocol. LogTM-SE uses
eager validation, which is a requirement for SOA.

LogTM-SE is configured to use eager version management, eager conflict detection,
and a conflict resolution policy of self-abort, with exponential backoff (increase backoff

42 M. Ansari et al.

Table 1. Benchmark parameters

Benchmark Parameters

Btree tx:5000, inserts:20%
Deque tx:1024, bkoff:32
Kmeans C1 m:1, n:1, threshold:0.05,

input file:random-n2048-d16-c16.txt
Kmeans C5 m:5, n:5, threshold:0.05,

input file:random-n2048-d16-c16.txt
Kmeans C15 m:15, n:15, threshold:0.05,

input file:random-n2048-d16-c16.txt
Vacation tx:1024, n:8, q:10, u:80, r:65536

on retry). Note that this choice should reduce the benefit of SOA-HTM, as choosing to
abort the opponent is likely to generate more repeat conflicts, and exponential backoff
also reduces repeat conflicts, but at the risk of backing off for too long and harming
performance. A 2048 bit H3 signature is used for conflict detection [25].

Figure 3 presents a block diagram of the 16 core CMP architecture. Further configu-
rations include 1, 4, and 8 core CMPs. In each case, the number of L2 banks is equal to
the number of cores. Cores are connected by a packet-switched interconnect in a grid
topology using 64-byte links and adaptive routing. On-chip memory controllers connect
to standard DRAM banks. A MESI directory protocol enforces inclusion at L2. Each

Fig. 3. Base Log-TM-SE CMP configuration

Improving Performance by Reducing Aborts in Hardware Transactional Memory 43

Table 2. Simulation parameters for SOA-HTM

Feature Description

L1 cache 32KB 4-way split, 64-byte blocks,
1-cycle access.

L2 cache 8MB 8-way unified, 64 byte blocks,
34-cycle access.

Memory 16GB, 500 cycle off-chip access.
L2-Directory Full-bit vector sharer list; 6-cycle latency.
Interconnect grid, 64-byte links, 3-cycle link latency.

L2 tag contains a bit-vector of the L1 sharers and a pointer to the exclusive copy, if it
exists. Table 2 summarizes system parameters that remain fixed for each configuration.

The SOA communication protocol is as follows. Upon commit, a core checks its
SOA AMAP register, and if any bit is non-zero, it sends a single CORE RESUME REQ
message to its local directory, containing the complete value of SOA AMAP. The direc-
tory sends a single multi-cast DIR RESUME REQ message out to each core for which
the corresponding bit is set in the received SOA AMAP value. The design creates mini-
mal overhead; a core only needs to send a single message if any bit is set in SOA AMAP.
If transactions are committing in the common case, then there is little or no overhead
of SOA as NACKs will be rare, and CORE RESUME REQ/DIR RESUME REQ mes-
sages will also be rare, as they are only sent if there is a waiting core. Similarly, if com-
mits are common then there is little change in traffic for the directory. If aborts occur,
then the design will increase commit overhead, and stall cores, but should compensate
by leading to a net increase in performance.

On its own, this protocol is susceptible to deadlock; two transactions may signal each
other to abort, and consequently never restart. However, LogTM-SE itself is suscepti-
ble to such deadlocks, and thus includes a multi-stage abort mechanism that detects and
prevents deadlock cycles. Our extensions to LogTM-SE do not interfere with this mech-
anism, and therefore only abort (and stall) transactions when doing so will not lead to a
deadlock. Consult the LogTM [6] and LogTM-SE [7] papers for further details.

4.4 Results

The evaluation explores the impact of SOA on three scenarios: low contention, high
contention with low repeat conflicts, high contention with high repeat conflicts. The first
scenario should trigger SOA rarely, and is used to illustrate the minimal impact of SOA
on performance when aborts are negligible. The second scenario should trigger SOA
often, but provide little performance improvement since there are few repeat conflicts,
and may even degrade performance due to SOA overhead. The third scenario should
trigger SOA often, and could result in larger performance improvements.

Figures 4a-4f illustrate speedup. A cursory look reveals two important findings. First,
SOA-HTM-PURE gives similar or better performance than Base in all cases. Second,
SOA-HTM-UTLZN improves upon SOA-HTM-PURE in Kmeans C1, but in most other
cases it degrades performance compared to Base.

44 M. Ansari et al.

 0.0

 2.0

 4.0

 6.0

 8.0

 10.0

4 8 16

Sp
ee

du
p

Threads

(a) Btree

Base
SOA−HTM−Pure
SOA−HTM−UTLZN

 0.0

 1.0

 2.0

 3.0

 4.0

 5.0

4 8 16

Sp
ee

du
p

Threads

(b) Deque

 0.0

 1.0

 2.0

 3.0

 4.0

 5.0

4 8 16

Sp
ee

du
p

Threads

(c) Vacation

 0.0

 2.0

 4.0

 6.0

 8.0

 10.0

4 8 16

Sp
ee

du
p

Threads

(d) Kmeans C15

 0.0

 1.0

 2.0

 3.0

 4.0

 5.0

4 8 16

Sp
ee

du
p

Threads

(e) Kmeans C5

 0.0

 1.0

 2.0

 3.0

 4.0

 5.0

4 8 16

Sp
ee

du
p

Threads

(f) Kmeans C1

Fig. 4. Speedup over single-threaded execution. Note different y-axis ranges.

Btree and Kmeans C15 have low contention, aborting on average 10% and 20% of
transactions with 16 cores. In these benchmarks both Base and SOA-HTM-PURE scale
similarly, which is indicative of the low overhead of SOA when aborts are rare. SOA-
HTM-UTLZN degrades performance in both, and the degradation is more severe in
Kmeans C15, which also has a higher percentage of aborts. Profiling data reveals that
SOA-HTM-UTLZN is thrashing local caches by context switching. In Kmeans C15
with 16 cores, we find that the number of L1 data misses increases 10 to 15 fold over
Base and SOA-HTM-PURE.

Deque and Kmeans C5 are benchmarks with a large amount of contention, but few
transactional retries, and thus little scope for repeat conflicts. At 16 cores, Kmeans C5
aborts 65% of its transactions, but retries on average only 1.9 times. However, SOA-
HTM-PURE still improves performance by 16%. In deque an almost identical situation
arises at 16 cores; 78% contention, and 3.5 retries on average increases the scope for
repeat conflicts. The scalability of Deque is limited by transactions accessing either end

Improving Performance by Reducing Aborts in Hardware Transactional Memory 45

of the deque structure, making repeat conflicts highly likely, and this is confirmed by
the 16% performance improvement with SOA-HTM-PURE. For SOA-HTM-UTLZN
the cache misses due to context switching are 1.5 to 2 times higher than Base and SOA-
HTM-PURE at 16 cores, degrading performance by 18% over Base in Deque, and 50%
in Kmeans C5.

Vacation and Kmeans C1 are benchmarks with a large amount of contention, and a
high number of retries. In Vacation, this occurs at 8 and 16 cores, where 77% and 90% of
transactions abort, and the average number of retries is 3.2 and 9.0, respectively. Modest
performance improvements of 6% and 21% are observed with SOA-HTM-PURE. In
Kmeans C1 there is little exploitable parallelism, as all transactions update a single
cluster. By 16 cores, Kmeans C1 aborts 96% of transactions, and its average number
of retries is 24.4. SOA-HTM-PURE results in a performance improvement of 44%,
while SOA-HTM-UTLZN, in one of the few cases where it improves performance,
does so by 57%. Kmeans’ larger performance improvement than Vacation at 16 cores,
despite having a lower number of retries, is indicative of repeat conflicts representing
a smaller number of retries in the latter. It is worth noting that contention is rising in
these benchmarks as the number of cores increases, and SOA-HTM-PURE provides
correspondingly larger performance improvements. Thus we would expect even larger
performance improvements if the benchmarks were executed using a larger number of
cores.

SOA-HTM-UTLZN improved performance in a limited number of cases, and in all
those cases SOA-HTM-PURE improved performance similarly. However, SOA-HTM-
PURE results in better performance in many cases that SOA-HTM-UTLZN does not.
Thus, for brevity we limit further analysis to Base and SOA-HTM-PURE.

Table 3. Average number of retries

Benchmark Base SOA-HTM-PURE
4 cores 8 cores 16 cores 4 cores 8 cores 16 cores

Btree 0 0 0.15 0 0 0.10
Kmeans C15 0 0.1 1.6 0 0.1 0.2
Deque 0 1.6 4.2 0 1.3 3.3
Kmeans C5 0.1 1.9 7.5 0.1 0.6 5.5
Vacation 0.4 3.2 9.0 0.2 1.5 4.1
Kmeans C1 2.0 19.5 24.4 0.7 14.0 16.6

Table 3 illustrates the impact of SOA-HTM-PURE on the average number of trans-
actional retries. For the scalable benchmarks (Btree, Kmeans C15) there are marginal
differences in retries. Only Kmeans C15 at 16 cores is significant, and likely to be re-
sponsible for the performance improvement seen earlier. The remaining benchmarks
all see marked reductions in the number of retries, which increase with the number of
cores, suggesting again that SOA may provide even better results with larger numbers
of cores.

Table 4 shows the number of cycles saved by SOA-HTM-PURE, which is the dif-
ference between Base and SOA-HTM-PURE in the number of cycles spent stalling.

46 M. Ansari et al.

Recall that SOA-HTM-PURE stalls cores upon abort, and those cycles spent stalling
are effectively saved. These saved cycles could be used for executing other applica-
tions, or SOA-HTM-PURE could be extended to sleep cores on abort, and resume upon
notification from the opponent core, thus saving energy. The cycles are not wasted in
executing transactions that abort. The table shows that 8-26% of cycles can be saved in
the high contention experiments, while maintaining or improving speedup over Base. In
some cases SOA-HTM-PURE uses more cycles than Base (shown with negative num-
bers). Although the increase represents a small fraction of the total execution cycles,
small variations can occur since stall cycles also include stalling for cache misses.

Table 4. Average reduction in number of cycles used to execute the benchmarks using SOA-
HTM-PURE. In parenthesis: as a percentage of Base total execution cycles.

Benchmark 4 cores 8 cores 16 cores

Btree -597 (-0.03) -922 (-0.09) -6,793 (-0.84)
Kmeans C15 -662 (-0.03) -3,863 (-0.3) -17,701 (-1.72)
Deque 800 (0.12) 49,191 (5.7) 99,876 (8.51)
Kmeans C5 16,265 (1.1) 13 (0) 166,329 (13.81)
Vacation -32,990 (-0.53) 455,190 (7.61) 1,766,740 (23.34)
Kmeans C1 -20,462 (-1.3) 388,982 (12.2) 1,061,083 (26.44)

5 Related Work

SOA was first implemented in an STM [26, 21] by adding two dynamically sized de-
ques to each thread: one that held ready-to-execute work, and one which held stolen
transactions. Transaction stealing was performed by abstracting transactions into job
objects that held sufficient metadata to enable any thread to execute the transaction.
The implementation resulted in a pseudo thread pool framework for executing transac-
tions. This implementation permitted repeat conflicts, and performance results revealed
it to be highly effective at reducing repeat conflicts, unlike SOA-HTM UTLZN, which
suffered due to increased cache misses. The difficulties in implementing SOA on HTM
using the STM-based solution inspired the work in this paper.

Little other work exists on automatically reducing the impact of contention, or at-
tempting to improve performance when contention occurs. Early work on contention
management [27, 28] developed intricate backoff and work-estimation metrics to try
and resolve conflicts. Recently, CAR-STM [29] implemented a similar framework to
SOA [21] for a different STM. Additionally, CAR-STM allows users can define a rou-
tine to serialize transactions they expect to conflict, although such functionality is sim-
ilar to that presented by Bai et al. [30].

Our earlier work [31,19] on dynamically adapting to available parallelism in an STM
application, by changing the number of threads permitted to execute transactions (in a
thread pool), reduced the number of aborts, and reduced wasted work. Yoo and Lee
[32] implemented a STM transaction scheduling framework that queues threads onto
a global queue if they greater than a user-specified threshold of aborts over a history
window of transactions, which resulted in similar functionality to our adaptive work,

Improving Performance by Reducing Aborts in Hardware Transactional Memory 47

although our solution has the ability to be more responsive in certain cases. In contrast,
the STM transaction scheduling framework of Yoo and Lee is more amenable to an
HTM implementation.

6 Conclusions

This paper has presented the first proposals for SOA in HTM. The two proposed imple-
mentations are scalable, require minimal architectural modifications, and independent
of the on-chip interconnect. The two implementations were seamlessly integrated into
LogTM-SE [7], and were evaluated using a range of benchmarks and contention sce-
narios. The results showed SOA-HTM-PURE to be consistently well performing. Al-
though SOA-HTM-UTLZN outperforms SOA-HTM-PURE in two cases, in most other
cases it provides the worst performance. In scenarios where the benchmark was highly
scalable, SOA-HTM-PURE resulted in no observable performance degradation, and in
one case a performance improvement of 17%. When contention rose, performance be-
gan to improve more consistently, ranging from 16% to 44% with 16 cores, suggesting
that SOA-HTM-PURE may benefit applications with even low contention. Performance
improvements increased with the number of cores, strongly suggesting that larger im-
provements may be observed with larger numbers of cores. Finally, SOA-HTM-PURE
reduced the average number of retries (i.e., aborts) by 54%, and saving up to 26% of
the execution cycles.

References

1. Larus, J.R., Rajwar, R.: Transactional Memory. Morgan and Claypool, San Francisco (2006)
2. Ananian, C.S., Asanovic, K., Kuszmaul, B.C., Leiserson, C.E., Lie, S.: Unbounded transac-

tional memory. In: HPCA 2005: Proceedings of the 11th International Symposium on High-
Performance Computer Architecture (February 2005)

3. Bobba, J., Goyal, N., Hill, M.D., Swift, M.M., Wood, D.A.: Tokentm: Efficient execution of
large transactions with hardware transactional memory. In: ISCA 2008: Proceedings of the
35th Annual International Symposium on Computer Architecture (June 2008)

4. Hammond, L., Wong, V., Chen, M., Carlstrom, B.D., Davis, J.D., Hertzberg, B., Prabhu,
M.K., Wijaya, H., Kozyrakis, C., Olukotun, K.: Transactional memory coherence and consis-
tency. In: ISCA 2004: Proceedings of the 31st Annual International Symposium on Computer
Architecture (2004)

5. Khan, B., Horsnell, M., Rogers, I., Luján, M., Dinn, A., Watson, I.: An object-aware hard-
ware transactional memory system. In: HPCC 2008: Proceedings of the 2008 10th IEEE
International Conference on High Performance Computing and Communications (2008)

6. Moore, K.E., Bobba, J., Moravan, M.M., Hill, M.D., Wood, D.A.: Logtm: Log-based transac-
tional memory. In: HPCA 2006: Proceedings of the 12th International Symposium on High-
Performance Computer Architecture (2006)

7. Yen, L., Bobba, J., Marty, M.M., Moore, K.E., Volos, H., Hill, M.D., Swift, M.M., Wood,
D.A.: Logtm-se: Decoupling hardware transactional memory from caches. In: HPCA 2007:
Proceedings of the 13th International Symposium on High-Performance Computer Architec-
ture (2007)

8. Dice, D., Shalev, O., Shavit, N.N.: Transactional Locking II. In: Dolev, S. (ed.) DISC 2006.
LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

48 M. Ansari et al.

9. Harris, T., Fraser, K.: Language support for lightweight transactions. In: OOPSLA 2003: Pro-
ceedings of the 18th Annual ACM SIGPLAN conference on Object-Oriented Programing,
Systems, Languages, and Applications (2003)

10. Herlihy, M., Luchangco, V., Moir, M.: A flexible framework for implementing software trans-
actional memory. In: OOPSLA 2006: Proceedings of the 21st Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications (October 2006)

11. Lev, Y., Luchangco, V., Marathe, V., Moir, M., Nussbaum, D., Olszewski, M.: Anatomy of
a scalable software transactional memory. In: TRANSACT 2009: Fourth ACM SIGPLAN
Workshop on Transactional Computing (February 2009)

12. Marathe, V., Spear, M., Herio, C., Acharya, A., Eisenstat, D., Scherer III, W., Scott, M.L.:
Lowering the overhead of software transactional memory. In: TRANSACT 2006: First ACM
SIGPLAN Workshop on Transactional Computing (June 2006)

13. Saha, B., Adl-Tabatabai, A.-R., Hudson, R.L., Minh, C.C., Hertzberg, B.: McRT-STM: a
high performance software transactional memory system for a multi-core runtime. In: PPoPP
2006: Proceedings of the 11th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (March 2006)

14. Baugh, L., Neelakantam, N., Zilles, C.: Using hardware memory protection to build a high-
performance, strongly atomic hybrid transactional memory. In: ISCA 2008: Proceedings of
the 35th Annual International Symposium on Computer Architecture (June 2008)

15. Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M., Nussbaum, D.: Hybrid trans-
actional memory. In: ASPLOS-XII: Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating Systems (2006)

16. Lev, Y., Moir, M., Nussbaum, D.: PhTM: Phased transactional memory. In: TRANSACT
2007: Second ACM SIGPLAN Workshop on Transactional Computing (2007)

17. Minh, C.C., Trautmann, M., Chung, J., McDonald, A., Bronson, N., Casper, J., Kozyrakis,
C., Olukotun, K.: An effective hybrid transactional memory system with strong isolation
guarantees. In: ISCA 2007: Proceedings of the 34th Annual International Symposium on
Computer Architecture (June 2007)

18. Bobba, J., Moore, K.E., Volos, H., Yen, L., Hill, M.D., Swift, M.M., Wood, D.A.: Perfor-
mance pathologies in hardware transactional memory. In: ISCA 2007: Proceedings of the
34th annual international symposium on Computer architecture (June 2007)

19. Ansari, M., Kotselidis, C., Jarvis, K., Luján, M., Kirkham, C., Watson, I.: Advanced concur-
rency control for transactional memory using transaction commit rate. In: EUROPAR 2008:
Fourteenth European Conference on Parallel Processing (August 2008)

20. Marathe, V., Scherer III, W., Scott, M.L.: Adaptive software transactional memory. In: Fraig-
niaud, P. (ed.) DISC 2005. LNCS, vol. 3724. Springer, Heidelberg (2005)

21. Ansari, M., Kotselidis, C., Jarvis, K., Luján, M., Kirkham, C., Watson, I.: Steal-on-abort:
Dynamic transaction reordering to reduce conflicts in transactional memory. In: Seznec, A.,
Emer, J., O’Boyle, M., Martonosi, M., Ungerer, T. (eds.) HiPEAC 2009. LNCS, vol. 5409,
pp. 4–18. Springer, Heidelberg (2009)

22. Kongetira, P., Aingaran, K., Olukotun, K.: Niagara: A 32-way multithreaded sparc processor.
IEEE Micro 25(2) (April 2005)

23. Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., Hållberg, G., Högberg, J.,
Larsson, F., Moestedt, A., Werner, B.: Simics: A full system simulation platform. IEEE Com-
puter 35(2) (2002)

24. Martin, M.M.K., Sorin, D.J., Beckmann, B.M., Marty, M.R., Xu, M., Alameldeen, A.R.,
Moore, K.E., Hill, M.D., Wood, D.A.: Multifacet’s general execution-driven multiprocessor
simulator (gems) toolset. SIGARCH Computer Architecture News 33(4) (2005)

25. Yen, L., Draper, S.C., Hill, M.D.: Notary: Hardware techniques to enhance signatures. In:
MICRO 2008: Proceedings of the 41st IEEE/ACM International Symposium on Microarchi-
tecture (November 2008)

Improving Performance by Reducing Aborts in Hardware Transactional Memory 49

26. Ansari, M., Luján, M., Kotselidis, C., Jarvis, K., Kirkham, C., Watson, I.: Steal-on-abort:
Dynamic transaction reordering to reduce conflicts in transactional memory. In: SHCMP
2008: First Workshop on Software and Hardware Challenges of Manycore Platforms (June
2008)

27. Scherer III, W., Scott, M.L.: Contention management in dynamic software transactional
memory. In: CSJP 2004: Workshop on Concurrency and Synchronization in Java Programs
(July 2004)

28. Scherer III, W., Scott, M.L.: Advanced contention management for dynamic software trans-
actional memory. In: PODC 2005: Proceedings of the 24th Annual Symposium on Principles
of Distributed Computing (July 2005)

29. Dolev, S., Hendler, D., Suissa, A.: Car-stm: Scheduling-based collision avoidance and res-
olution for software transactional memory. In: PODC 2008: Proceedings of the 27th annual
ACM symposium on Principles of distributed computing (August 2008)

30. Bai, T., Shen, X., Zhang, C., Scherer, W.N., Ding, C., Scott, M.L.: A key-based adaptive
transactional memory executor. In: IPDPS 2007: Proceedings of the 21st International Paral-
lel and Distributed Processing Symposium (March 2007)

31. Ansari, M., Kotselidis, C., Jarvis, K., Luján, M., Kirkham, C., Watson, I.: Adaptive con-
currency control for transactional memory. In: MULTIPROG 2008: First Workshop on Pro-
grammability Issues for Multi-Core Computers (January 2008)

32. Yoo, R.M., Lee, H.-H.S.: Adaptive transaction scheduling for transactional memory systems.
In: SPAA 2008: Proceedings of the twentieth annual symposium on Parallelism in algorithms
and architectures, New York, NY, USA (2008)

Energy and Throughput Efficient Transactional
Memory for Embedded Multicore Systems

Cesare Ferri1, Samantha Wood1,2, Tali Moreshet3,�,
Iris Bahar1,��, and Maurice Herlihy4,� � �

1 Division of Engineering, Brown University, Providence, RI 02912
2 Computer Science Department, Bryn Mawr College, Bryn Mawr, PA 19010

3 Engineering Department, Swarthmore College, Swarthmore, PA 19081
4 Computer Science Department, Brown University, Providence, RI 02912

Abstract. We propose a new design for an energy-efficient hardware
transactional memory (HTM) system for power-aware embedded de-
vices. Prior hardware transactional memory designs proposed a small,
fully-associative transactional cache at the same level as the L1 cache.
We propose an alternative design that unifies the transactional and L1
caches, and provides a small victim cache to reduce effects of capacity
and conflict evictions. We evaluate our new HTM scheme on a vari-
ety of benchmarks, both in terms of energy and performance. We show
that the victim cache scheme can provide up to a 4X improvement in
energy-delay product, compared to a traditional HTM scheme that uses
a separate transactional cache.

1 Introduction

High-end embedded systems such as smart phones, game consoles, GPS-enabled
automotive systems, and home entertainment centers are becoming increasingly
important in everyday life. Like their general-purpose counterparts, high-end
embedded systems are multicore architectures subject to dynamic and unpre-
dictable loads, increasingly called upon to manage substantial resources in the
form of memory, connectivity, and access to devices. Because many embedded
devices run on batteries, energy efficiency is perhaps the single most important
criterion for evaluating hardware and software effectiveness in embedded devices.

Multicore architectures must provide ways for concurrent threads to synchro-
nize access to shared memory. Prior work, for example [1], suggests that hardware
transactional memory (HTM) can provide both energy and performance bene-
fits over more conventional approaches such as locking. While hardware transac-
tional memory makes fewer resource demands than software transactional mem-
ory, limitations on cache size and associativity bound the size of transactions
that can be run efficiently. For most embedded systems, such limitations are not

� Supported by NSF Grant CCF-0903295.
�� Supported by NSF Grant CCF-0903384.

� � � Supported by NSF Grant CCF-0811289.

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 50–65, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Energy and Throughput Efficient Transactional Memory 51

a major concern, because applications’ resource requirements are typically well-
understood, and transactions that exceed those expectations are likely to be rare.
Nevertheless, these observations suggest the following research question: how can
we design caches for HTM in embedded systems to maximize transaction sizes
without compromising performance or increasing energy consumption?

In this paper, we investigate how a variety of cache designs affects the perfor-
mance and energy consumption of a multicore embedded system that supports
HTM. (A direct comparison of HTM and locking appears in prior work [1].) Prior
work on HTM has focused on a simple cache architecture [1, 2] in which non-
transactional data was stored in a large direct-mapped cache, and a smaller, fully
associative transactional cache was used to store all data accessed within a trans-
action. This architecture has drawbacks. Namely, since the transactional cache is
the only place to store transactional data, any transaction that exceeds the size
of this cache will overflow, forcing transactions to serialize, even if no data con-
flicts exist between them. So, although a small transactional cache is desirable for
energy purposes, making it too small could hurt throughput significantly.

Here, we consider an alternative design suitable for embedded systems in
which both caches are unified into a single L1 cache holding both transactional
and non-transactional entries. A unified cache eliminates the need to maintain
coherence across two same-level caches, but introduces the problem that the
direct-mapped nature of the cache causes more transactions to overflow because
of conflict misses. To compensate, we introduce two levels of defense: we make
the L1 cache 4-way associative, and we introduce a small victim cache to catch
transactional entries evicted from the main cache by conflict misses. Although
we are back to a two-cache architecture, the victim cache is needed only when
the main cache overflows, so a simple, small, direct-mapped victim cache will
suffice.

We test variations of this scheme against a number of benchmarks. We find
that our more sophisticated cache architecture improves the power/performance
profile of most benchmarks relative to previously proposed HTM implementa-
tions. In particular, for 8 core embedded platforms, the energy-delay product
can improve by up to a factor of 4X. These results confirm that ignoring energy
considerations can lead to non-optimal design choices, particularly for resource
constrained embedded platforms.

2 Background and Previous Work

There are many mechanisms for synchronizing access to shared memory. Today,
the two most prominent are locks and transactions. While most of the literature
evaluates these proposals with respect to performance and ease of use, we focus
here on a third criterion important for embedded devices: energy efficiency.

Prior work includes techniques for increasing the efficiency of lock-based syn-
chronization for real-time embedded systems. Tumeo et al. [3] proposed new
techniques for efficient lock-based synchronization in FPGA-based multiproces-
sor system-on-chips (MPSoCs) for real-time applications. Lee et al. [4] improved
the real-time performance of embedded Linux by monitoring the lock hold times.

52 C. Ferri et al.

Other researchers have investigated the energy implications of locks for multi-
processor systems-on-a-chip. Loghi et al. [5] evaluated power-performance trade-
offs in lock implementations. Monchiero et al. [6] proposed a synchronization-
operation buffer as a high-performance yet energy-efficient spin lock implemen-
tation that reduces memory references and network traffic. Yu et al. introduced
energy-efficient producer-consumer communication by compiler-inserted write-
through store insertions to update a cached memory location before exiting a
synchronization region [7].

Others have investigated lock-free synchronization for embedded systems.
Cho et al. considered the benefits of lock-free synchronization for the multi-
writer/multi-reader problem in embedded real-time systems [8]. Yang et al.
showed how to exploit access pattern regularity in a single producer/single con-
sumer synchronization to implement a light-weight synchronization mechanism
that encodes dependence information within each memory access [9].

Transactional memory has been extensively investigated as an alternative
means of synchronization in general-purpose systems. The principle behind the
transactional memory working model is simple: each transaction is speculatively
executed by the CPU, and, if no conflicts with another transaction are detected,
its effects become permanent (that is, the transaction commits). Otherwise, if
conflicts are detected, its effects are discarded (that is, the transaction aborts),
and the transaction is restarted. Transactional memory can be implemented in
hardware (e.g. [2, 10, 11]), in software (e.g., [12, 13]), or via hybrid mechanisms
that combine hardware and software (e.g, [14, 15]). A survey of transactional
memory is provided in [16]. Because previous transactional memory proposals
targeted general-purpose systems, they focused mainly on performance and ease-
of-programming. In our work we target embedded systems, which are resource
and energy constrained. Therefore, we focus on simple hardware transactional
memory, which has minimal demand on resources, and our main design goal is
energy efficiency.

Ferri et al. [1] showed that hardware transactional memory can be imple-
mented in embedded systems with minimal, energy-efficient hardware support.
Their scheme, like all pure HTM systems, is limited to running transactions
whose data sets fit in the hardware cache. Transactions that overflow the cache
are run in a less-efficient serial mode. In this paper, we consider alternative
cache architectures for HTM in embedded systems, architectures designed to re-
duce the likelihood of cache overflow with the additional goal of reducing overall
energy consumption. Specifically, we proposed the use of the L1 cache as the pri-
mary storage space for holding transactional data (along with non-transactional
data). In addition, we use a small victim cache to hold transactional data evicted
from the L1 cache due to conflict misses, thereby reducing the occurrence of
transactional overflows that force transactions to be serialized. While our pro-
posed scheme has similarities to other transactional memory proposals that use
a victim cache (most notably [17]), our work is distinct in that prior work did
not fully evaluate the impact of the victim cache itself on either energy or per-
formance. In addition, since we are focusing on embedded platforms rather than

Energy and Throughput Efficient Transactional Memory 53

general-purpose systems, our findings are driven to a large extent by the resource
constraints existing within these embedded systems.

Unbounded (or virtualized) transactional memory [10,18,19,20] proposals in-
clude additional hardware structures to allow transactions to continue after over-
flowing the L1 cache, and even to migrate from processor to processor. While
some of these proposals may be attractive for general-purpose systems, they are
too complex for today’s embedded systems.

The permissions-only cache (PO cache) of Blundell et al. [21] addresses the
same problem as our victim cache: minimizing transaction overflow. On an over-
flow, speculative data is written back to memory, and the original values are
logged in thread-local storage, but the (much smaller) permission bits are kept
in the cache, allowing the cache coherence protocol to continue to detect conflicts.
(If the the PO cache itself overflows, then an additional serialization mechanism
is called into play.)

While the PO cache scheme may be attractive for general-purpose architec-
tures, it is incompatible with our goal of minimizing changes to the underlying
embedded architecture. Maintaining the undo-log, in fact, would require not
only non-trivial changes to the CPU pipeline (since a write operation should
be monitored and properly propagated into the log), but also cost extra cycles
even for the case of non-conflicting transactions (since logging is not a cycle-free
operation). Moreover, when a transaction aborts, the PO cache scheme must
restore the original memory state from the log, blocking (or perhaps restarting)
any concurrent transactions that attempt to access that data while recovery is in
progress. This functionality would require substantial changes to the base archi-
tecture, tracking more synchronization state, and adding new states, messages,
and behaviors to the standard cache coherence protocols. These changes go far
beyond those needed to support a victim cache.

3 Energy-Efficient HTM for Embedded Systems

All our experiments are conducted using the MPARM multi-processor simulation
framework [22,23]. We chose this embedded system simulator because we can ac-
curately model both performance and power at the cycle level. The performance
and power models are based mostly on data obtained from a 0.13μm technology
provided by STMicroelectronics [24], and the energy model for the fully asso-
ciative caches is based on [25]. MPARM also provided the flexibility necessary
to do extensive design space exploration. Here, we model a system with up to 8
cores, containing a complex memory hierarchy, that supports caches, scratchpad
memories, and multiple types of interconnects.

The baseline configuration allows for a variable number of ARM7 cores (each
with an 8KB L1 cache, evenly split into 4KB of instruction cache and 4KB of
data cache), a set of private memories (256KB each), a single shared memory
bank (256KB), and one bank (16KB) of memory-mapped registers serving as
hardware semaphores. The interconnect is an AMBA-compliant communication
architecture [26]. A cache-coherence protocol (MESI) is also provided by snoop

54 C. Ferri et al.

a) b)

L1

CORE

TOF_outTOF_in

CORE

TOF_outTOF_in

CPU
(ARM7)

L1
cache

(I/D) CPU
(ARM7)()

Scratch mem.

()

Scratch memScratch mem.

Abort

data bus to main memory

Scratch mem.

Abort

data bus to main memory
control signals
to main
memory bus

data bus to main memory

control signals
to main
memory bus

data bus to main memory

Fig. 1. a) Architectural configuration to support hardware transactional memory. Note
the transactional cache holds all transactional data. b) New architectural configuration
to support hardware transactional memory using a victim cache (VC). Note that the
primary storage structure for transactional data is now the L1 cache. In case of conflict
evictions, transactional data can be held in the VC.

devices connected to the master ports. Platforms featuring such cache-coherency
subsystems are not uncommon (e.g., the ARM11 MPCore Multiprocessor [27]).
Note that while the private and shared memories are sized arbitrarily large
(256KB each), they do not significantly impact the performance or power of our
system (as will be shown in Section 4). Next we describe the implementation for
an embedded HTM platform used in prior work.

In the original HTM proposal [2], each core had a transactional cache (TC) in
addition to its L1 cache (see Figure 1a)). In the embedded HTM platform [1], to
start a transaction, the CPU creates a local checkpoint by saving its registers to
a small Scratchpad Memory [28]. The scratchpad memory must be large enough
to hold the entire set of CPU registers.

Each transaction stores two copies of accessed data in the TC: a working copy
and a back up copy. If the data is found in the L1 cache, it must be invalidated
there before being placed in the TC. The transaction modifies the working copy.
If there is no data conflict, the transaction completes successfully, invalidates
the backup copies of the data, and the working copies become visible. On a data
conflict, the snoop device notifies the CPU, invalidating the working copies, and
restoring the back up copies. The CPU enters a low-power mode, and after a
random backoff, re-executes the transaction. Note that in our model we also
considered a realistic state-switching overhead (i.e., idle to active), as described
in Section 4.

When reading/writing data from memory, the TC is always accessed first. In
case of a TC miss, the rest of the memory hierarchy (starting with the L1 cache)
may be accessed. This decision to serialize accesses to the caches is made for
power reasons and since most requested data is located in the TC, this scheme
has a negligible impact on performance.

Energy and Throughput Efficient Transactional Memory 55

Note that it is not strictly necessary to keep valid data in the TC once a
transaction commits. Earlier work [1] shows that it is often advantageous in
terms of energy efficiency to write back the modified lines to the traditional cache
hierarchy after the commit, allowing the transactional cache to be powered down
when not in use. This approach is called aggressive shutdown mode. In order to
flush the TC of its contents, the CPU is stalled and no new instructions are
allowed to execute until flushing is complete. Turning the TC back on at the
start of a new transaction incurs a 0.2μs (40 cycles) overhead. Shutting down
the TC may not be the best choice in case of back-to-back transactions, since it
often results in unnecessarily moving data back and forth between the TC and
the rest of the memory hierarchy.

The embedded HTM platform uses an “eager” type of conflict detection and
resolution scheme. That is, the system detects and resolves a conflict when a
transaction accesses a location, rather than waiting until a transaction is ready
to commit. This strategy is used since it requires fewer modifications to the
original MESI protocol. In particular, neither new bus states nor new coher-
ence signals are needed. For example, in a MESI protocol, a CPU wanting to
write to an address that another CPU has modified must broadcast an invali-
date signal on the bus. By monitoring the invalidate signal, all the other snoop
devices may easily detect the data conflict, and instantaneously forward the in-
formation to the CPU. By forwarding the data to the requester, the responder
effectively aborts its own transaction, allowing the requester to always win the
conflict. While this type of conflict management does not always yield the best
throughput, we can see that it is particularly lightweight, and fits quite well
with the hardware restrictions of an embedded platform. Also, the fact that the
hardware modifications are rather limited not only helps the design verification
process, but also increases significantly the portability of such method to other
invalidation-based cache coherence schemes (e.g., MOESI, MSI).

While prior embedded HTM implementations provided simple hardware solu-
tions that led to good performance benefits, there are two ways that they can fall
short. A transaction triggers an overflow if its data footprint is too large to fit in
the TC, or if one of its entries is evicted from the TC because of a line conflict.
To avoid conflict evictions, transactional cache designs have typically been fully
associative, even though a fully associative transactional cache can consume a
significant amount of energy [1]. We face a dilemma: a larger TC means we can
run larger transactions, but substantially increases power consumption.

In this paper, our goal is two-fold. First, we investigate power-efficient alterna-
tive cache architectures with the objective of reducing the number of transactions
aborted by cache overflows or evictions. Second, we describe an architecture that
can handle larger transactions without requiring a larger, more energy-hungry
TC.

If a transaction overflows the TC, the system switches to serial mode, which
stops all other processors executing transactions (this is handled exclusively by

56 C. Ferri et al.

dedicated hardware). The overflowing transaction runs by itself, using the entire
memory hierarchy, and the other CPUs will wait for the overflowing transaction
to commit before continuing their own transactions. Unless a conflict is detected,
no abort is required.

The problem is, running transactions in serial mode provides no concurrency.
This absence of concurrency is not important for conflicting transactions, which
must execute serially no matter what, but it does matter for large, non-conflicting
concurrent transactions.

It seems wasteful to require transactions to fit in the smaller TC when the
L1 cache, which is normally much larger than the transactional cache, may have
plenty of room. Instead, we propose a new scheme that uses the L1 cache for
both transactional and non-transactional data. This approach yields much more
memory to hold transactional data, reducing the likelihood of overflow. However,
because it is impractical to make the L1 cache highly associative (especially in
a power-constrained embedded platform), we have introduced a new danger:
transactions may be serialized by conflict evictions.

We make two more changes to reduce the likelihood of conflict evictions.
First, we propose a victim cache (VC) between the L1 cache and main memory
to catch transactional items evicted from the L1. Although victim caches have
been proposed for different purposes (e.g., [17, 29, 30]), our work is distinct in
that we are the first to analyze its energy-performance impact specifically for
implementing HTM.

We use the L1 cache as our primary storage structure for holding transactional
data, and only in case of conflict misses do we resort to storing data in the victim
cache. Therefore, our strategy is to access the L1 cache first on a data request and
only after an L1 miss is the VC accessed. As with the TC scheme, by serializing
the cache accesses we save power without hampering performance since most
accesses will hit in the L1 cache.

Transactions continue to execute concurrently while the VC is in use. If, de-
spite everything, the VC overflows, then the transaction asks the system to
continue in serial mode. Because the combination of the L1 and victim caches
provides much more room than the conventional transactional cache, overflows
should be rarer in the victim cache scheme. The second change is to further
reduce conflict evictions by giving the L1 cache a modest level of associativity
(say, 4-way). Our new architectural configuration is shown in Figure 1b).

Note that unlike the TC, the L1 and VC caches do not hold a backup copy
of the transactional data. In case of an abort, the CPU needs to refill the line
from the main memory, thus increasing bus traffic, which is bad for performance
and energy efficiency. However, this cost should be acceptable if the abort rate
is reasonably low. Also, since the VC is only utilized in those cases where trans-
actions do not fit in the L1 cache, it makes sense to keep the VC powered down
unless needed. Similar to the TC, the penalty to reactivate the VC is on the
order of tens of cycles (i.e., 40 cycles).

Energy and Throughput Efficient Transactional Memory 57

4 Experimental Results

In this section we evaluate our proposed HTM platform using a mix of applica-
tions. We first describe the benchmarks used in our experiments as well as our
experimental setup, followed by a detailed discussion of our results.

4.1 Software

To test our ideas, we chose a range of different applications. Three of these
applications were taken from the STAMP benchmark suite [31]:

– Vacation (STAMP): implements a non-distributed travel reservation sys-
tem. Each thread interacts with the database via the system’s transaction
manager. The application features large critical sections.

– K-means (STAMP): a partition-based program (commonly found in image
filtering applications). The number of objects to be partitioned is equally
subdivided among the threads. Barriers and short critical sections are both
used to obtain concurrency.

– Genome (STAMP): a gene sequencing program. A gene is reconstructed by
matching DNA segments of a larger gene. The application has been paral-
lelized through barriers and large critical sections.

– RBTree, SList: applications operating on special data structures (i.e.,
redblack-trees and skip-lists). The workload is composed of a certain number
of atomic operations (i.e., inserts, deletes and lookups) to be performed on
these two data structures. Redblack-trees and skip-lists constitute the funda-
mental blocks of many memory management applications found in embedded
applications.

For each set of applications we also considered an average of the results, called
the “Application Mix”.

4.2 Hardware

For convenience, in Table1 we report the principal system parameters and rela-
tive configurations.

Table 1. Overview of the system configurations

Parameter Configuration(s)
CPU ARMv7, 3-stage in-order pipeline, 200Mhz

L1 cache 4KB 4-way Icache, 4KB 4-way Dcache
Cores {1,4,8}

Tx Policies vanilla-TM, TM-aggressive-L1WB, TM-victim
TC, VC {1-way, 4-way, Fully Associative}, {64B,512B}

Bus Amba AHB

58 C. Ferri et al.

We considered the following alternative HTM implementations.

– vanilla-TM: the original transactional memory implementation [2, 1], con-
sisting of an additional transactional cache (TC). The transactional data
resides exclusively in the TC. The TC is never turned off. While prior works
fixed the TC to be fully associative, we vary this associativity in our exper-
iments.

– TM-aggressive-L1WB: same as vanilla TM, except that the TC is ag-
gressively shut down after each commit, as described in Section 3. Before
turning off the TC, the CPU writes back the modified TC lines into the L1
cache. The overhead of turning the TC back on is 0.2μs (i.e., the CPU will
stall for 40 cycles when reactivating the TC). In our experimental results,
this configuration is referred to as TM-aggressive-L1WB.

– TM-victim: the new victim cache configuration. The VC contains the lines
that were evicted from the (transactional) L1 cache because of conflict
misses. Similar to TM-aggressive-L1WB, the VC is shut down at the end
of each transaction. The modified VC lines will be written back into the
main memory (i.e., SRAM). As with the other configurations, we vary the
associativity of the VC in our experiments.

We also varied two key architectural parameters: the number of cores (i.e., 1,
4 or 8 cores), and the size of the caches (i.e., 64Bytes and 512Bytes).

All three TM configurations incur a penalty of 2μs whenever a core wakes
up from the power-idle state because of an abort due to a data conflict. This
specific value was chosen since it is consistent with that found in real embedded
systems (e.g., [32, 33]).

As mentioned in Section 3, while prior work used the TC along with a direct-
mapped L1 cache, in this study we increased the associativity of the L1 to 4-way
(which is a common degree for the associativity of data caches in embedded
platforms, e.g., [32]). Our initial experiments showed this configuration to be
the best in terms of energy-delay product for all benchmarks. Therefore, all
experimental results shown in this paper assume the 4-way configuration for the
L1 cache.

4.3 Experimental Data

For each application run, we measured both the total execution cycles and the
consumed energy. Then we quantified the energy/ performance tradeoff by con-
sidering the Energy-Delay Product (EDP).

Figure 2 shows five graphs, each reporting the EDP data for a different appli-
cation: RBtree, SkipList, Genome, Vacation, and Kmeans. Note that the scale
for the energy-delay values on the y-axis are different for each benchmark.

First, we see that higher associativity for the VC in the TM-victim configura-
tion does not translate to improvements in energy-delay product. This is because
most transactional data already fits into the L1 data cache, and even a small
direct-mapped VC is enough to take care of almost all conflict misses in the L1.

Energy and Throughput Efficient Transactional Memory 59

RBTree

0

1E+15

2E+15

3E+15

4E+15

5E+15

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

64 512 64 512 64 512

1 core 4 cores 8 cores

TM size (Bytes)

TM assoc

vanilla-TM TM-aggressive-L1WB TM-victim
SkipList

0.0E+00

5.0E+14

1.0E+15

1.5E+15

2.0E+15

2.5E+15

3.0E+15

3.5E+15

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

64 512 64 512 64 512

1 core 4 cores 8 cores

Genome

0

1E+15

2E+15

3E+15

4E+15

5E+15

6E+15

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

64 512 64 512 64 512

1 core 4 cores 8 cores

Vacation

0.0E+00

5.0E+14

1.0E+15

1.5E+15

2.0E+15

2.5E+15

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

64 512 64 512 64 512

1 core 4 cores 8 cores

Kmeans

0.0E+00

4.0E+16

8.0E+16

1.2E+17

1.6E+17

2.0E+17

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C
64 512 64 512 64 512

1 core 4 cores 8 cores

Fig. 2. Energy-Delay Product for the STAMP suite, RBtree, and SkipList benchmarks.
Units are pJ · cycles. Note that the scale for the energy-delay values on the y-axis are
different for each benchmark.

Next, we analyze the TM-victim configuration relative to vanilla-TM and
TM-aggressive-L1WB. In most cases, the TM-victim configuration offers the
best EDP when more than 1 core is available. For example, for the Genome
benchmark, we see that TM-victim has a 4X improvement in EDP compared to
vanilla-TM for the 8 core 64B configuration. Using the TM-aggressive-L1WB
scheme improves EDP a little relative to vanilla-TM, mainly by avoiding ac-
cesses to the TC when not executing transactional code. However, since the
TM-aggressive-L1WB scheme does not address the problem of overflows, it will
not be sufficient in the case of large transactions. In a 1 core system the TM-
victim configuration is penalized in terms of cycles because of 1) the overhead
incurred when flushing the VC to main memory, and 2) the VC wake up time.
For K-means, we found that the time spent within transactions is quite low (i.e.,
about 5%); the only potential benefit of using a victim configuration over a TC
is mainly due to the energy saving when shutting down the VC.

For RBtree and SList, TM-victim offers good EDP; however, it is not the best
option compared to the fully-associative vanilla-TM with a 512 Byte TC. In this
case, the entire data set fits within the TC so no overflow occurs, allowing the
system’s throughput to reach its maximum. The vanilla-TM configuration has
the additional advantage of dissipating less power per data access, on average,

60 C. Ferri et al.

0%

20%

40%

60%

80%

100%

120%

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

64 512 64 512

App.Mix (STAMP) App.Mix (RBtree - SList)

TM size (Bytes)

TM assoc

vanila TM TM-aggressive-L1WB TM-victim

Fig. 3. Transaction Overflow Rate for the STAMP and RBtree-SkipList Application
Mixes with 4 cores

since the larger L1 data cache is only accessed in case of a miss to the TC. In
contrast, the TM-victim always accesses the L1 data cache first. vanilla-TM has
the additional advantage of dissipating less power per data access, on average,
compared with TM-victim, which always accesses the L1 data cache first. Even
TM-aggressive-L1WB offers no advantage over vanilla-TM since this scheme
only leads to increased data transfers between TC and L1 caches.

The general trend to note here is that when a system is executing large non-
conflicting transactions, the victim configuration can often lead to a significantly
better energy-delay product compared to a vanilla-TM configuration, even with
a very small direct mapped VC. To further appreciate these results, we next
consider how a specific configuration may impact the transaction overflow rate
and transaction abort rate.

Figure 3 shows the transaction overflow rate when running with 4 cores for
the STAMP Application Mix and RB-SkipList Application Mix, for various sizes
and associativities. As expected, we see that 1) the overflow rate is very high for
vanilla-TM and TM-aggressive-L1WB, except when the TC is large and highly
associative, and 2) the number of overflowing transactions is drastically reduced
to almost zero with a victim configuration.

We can also notice that EDP and overflow rates are correlated; usually better
EDP corresponds to low overflow rates. For example, as shown in Figure 2 for
the STAMP benchmarks, TM-victim offers the best EDP for a 64 Byte VC
configuration. For the same VC size, Figure 3 shows overflow rate dropping by
the largest absolute amount when switching from a vanilla-TM to a TM-victim
configuration.

As mentioned earlier, another important parameter affecting the performance
of a transactional memory system is the transaction abort rate. Recall that when

Energy and Throughput Efficient Transactional Memory 61

0%

2%

4%

6%

8%

10%

12%

14%

16%

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

64 512 64 512 64 512

1 core 4 cores 8 cores

App.Mix (STAMP)

TM size (Bytes)

TM assoc

vanilla TM TM-aggressive-L1WB TM-victim

Fig. 4. Transaction Abort Rate for the STAMP application mix. No aborts were de-
tected in RBtree and Skip-list.

a transaction detects a data conflict with another transaction, one of the trans-
actions needs to abort, causing the core executing that transaction to go into
a low-power state for some random backoff period while the other transaction
continues to execute. Eventually, the core executing the aborted transaction is
woken up so it can attempt to re-execute that transaction. This whole process
consumes extra energy and cycles, but is required in order to properly synchro-
nize the two transactions. As with the overflow case, the overall effect on the
system is to serialize the execution.

Figure 4 reports the abort rate for the STAMP Application Mix. The equiva-
lent data for RBtree and SkipList is omitted since no aborts were detected for any
configuration. In STAMP, we see that TM-victim is affected by a slightly higher
abort rate than vanilla-TM. This is expected; in vanilla-TM the transactions
overflow most of the time, and hence avoid conflict because of the serialization.
Still, the abort rate is quite acceptable under TM-victim, therefore leading to
overall improvements in EDP for the STAMP benchmarks.

Recall that the RBtree and SkipList do not incur aborts or overflows using
the TM-victim configuration. This type of scenario can be classified as an ideal
case for TM-victim. In fact, we see a very significant improvement in EDP of
about 80% with an 8 core configuration. In summary, if applications requiring
a lot of synchronization still have high inherent parallelism (i.e., incur few data
conflicts), then a TM-victim scheme offers a substantial advantage over vanilla-
TM. If data conflicts are common, then it’s best to let the transaction overflow
as soon as possible and resort to serialized execution, so TM-victim would offer
no advantage over vanilla-TM or TM-aggressive-L1WB.

62 C. Ferri et al.

0.0E+00

5.0E+08

1.0E+09

1.5E+09

2.0E+09

2.5E+09

3.0E+09

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

D
IR

E
C
T

4
-w

a
y

F
A
S
S
O

C

64 512 64 512 64 512 64 512 64 512 64 512

vanilla-TM TM-aggressive-L1WB TM-vicitm vanilla-TM TM-aggressive-L1WB TM-vicitm

App.Mix (STAMP) App.Mix (RBtree-SList)

TM size (Bytes)

TM assoc

TCs

RAMs

L1 Icaches

L1 Dcaches

CPUs

Fig. 5. Energy Distribution of an 8 core system for the STAMP and RBtree-Slist
application mixes. Energy values are given in nJ.

Finally, Figure 5 shows the energy distribution of an 8 core system for the two
types of application mixes. Note that in our model we include power numbers
for a 0.13μm technology, where the dynamic power is dominant; hence, leakage
has not been taken into consideration.

In general, we see that the CPUs and caches consume most of the energy
in the system and the small on-chip SRAMs contribute a negligible amount to
total energy consumption. In addition, we see that while the TM-victim con-
figuration causes the L1 energy consumption to increase. This is due to the
fact that now the L1 is used for both transactional and non-transactional data,
and also because of increased abort rates as the system tries to execute more
transactions in parallel. However, this increased L1 energy consumption is more
than compensated for by the drop in energy consumption in both the CPUs and
VCs. Again, this is expected since the TM-victim configuration doesn’t need
to spend as many CPU cycles executing overflowing transactions serially. The
TM-aggressive-L1WB scheme can help reduce the energy consumption in the
TC, but cannot reduce CPU energy consumption significantly since it still has
to spend about the same amount of time handling overflow transactions as the
vanilla-TM scheme. In the end, even though the TM-aggressive-L1WB scheme
can have lower overall energy consumption than the TM-victim scheme (as in
the case of the STAMP mix), it is not better in terms of EDP since performance
is still hampered by high overflow rates.

Energy and Throughput Efficient Transactional Memory 63

5 Conclusions

We have seen how cache architecture design can increase the size of transac-
tions that can be executed directly in an energy-aware hardware transactional
memory scheme. Some design decisions that individually consume more energy
than their simpler alternatives yield overall energy savings. For example, the
additional energy consumed by making the L1 cache 4-way associative is more
than compensated by the reduced number of conflict evictions resulting in cache
overflows. We also show that only a small, direct-mapped victim cache is suffi-
cient in order to drastically reduce the number of overflow cases, compared to
a traditional HTM scheme. Given a limited amount of storage capacity, overall,
the TM-victim scheme is the better way to go since it is more flexible in how
it makes use of the available memory. Again, this is particularly important in
resource-constrained embedded systems.

There are still open questions. We switch to serial mode both for transactions
that overflow the hardware cache, and for transactions that repeatedly abort
due to data conflicts. Further work is needed to evaluate strategies for switching
aborted transactions: should one switch right away, on the grounds that data
conflicts probably prevent the current transaction mix from executing concur-
rently, or is it more sensible to try several times, hoping that the conflicts are
transient? Can we exploit the observation that in many embedded systems, the
transaction mix is often, but not always, known in advance, and configure the
cache and overflow policies accordingly?

References

1. Ferri, C., Bahar, R.I., Moreshet, T., Viescas, A., Herlihy, M.: Energy efficient syn-
chronization techniques for embedded architectures. In: ACM/IEEE Great Lakes
International Symposium on VLSI (May 2008)

2. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-
free data structures. In: International Symposium on Computer Architecture (May
1993)

3. Tumeo, A., Pilato, C., Palermo, G., Ferrandi, F., Sciuto, D.: HW/SW methodolo-
gies for synchronization in FPGA multiprocessors. In: International Symposium
on Field Programmable Gate Arrays (2009)

4. Lee, J., Park, K.H.: Delayed locking technique for improving real-time performance
of embedded linux by prediction of timer interrupt. In: IEEE Real Time and Em-
bedded Technology and Applications Symposium (2005)

5. Loghi, M., Poncino, M., Benini, L.: Cache coherence tradeoffs in shared-memory
MPSoCs. ACM Transactions on Embedded Computing Systems 5(2), 383–407
(2006)

6. Monchiero, M., Palermo, G., Silvano, C., Villa, O.: Power/performance hardware
optimization for synchronization intensive applications in MPSoCs. In: Design Au-
tomation and Test in Europe Conference (April 2006)

7. Yu, C., Petrov, P.: Latency and bandwidth efficient communication through system
customization for embedded multiprocessors. In: Design Automation Conference
(2008)

64 C. Ferri et al.

8. Cho, H., Ravindran, B., Jensen, E.D.: Lock-free synchronization for dynamic em-
bedded real-time systems. In: Design Automation and Test in Europe Conference
(2006)

9. Yang, C., Orailoglu, A.: Light-weight synchronization for inter-processor commu-
nication acceleration on embedded MPSoCs. In: International Conference on Com-
pilers, Architecture and Synthesis for Embedded Systems (2007)

10. Moore, K.E., Bobba, J., Moravan, M.J., Hill, M.D., Wood, D.A.: LogTM: Log-
based transactional memory. In: International Symposium on High-Performance
Computer Architecture (February 2006)

11. Hammond, L., Carlstrom, B.D., Wong, V., Hertzberg, B., Chen, M., Kozyrakis, C.,
Olukotun, K.: Programming with transactional coherence and consistency (TCC).
ACM SIGOPS Operating Systems Review 38(5), 1–13 (2004)

12. Shavit, N., Touitou, D.: Software transactional memory. Distributed Comput-
ing Special issue(10), 99–116 (1997)

13. Herlihy, M., Koskinen, E.: Transactional boosting: A methodology for highly-
concurrent transactional objects. In: Principles and Practice of Parallel Program-
ming, PPOPP (2008)

14. Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M., Nussbaum, D.: Hybrid
transactional memory. In: International Conference on Architectural Support for
Programming Languages and Operating Systems (2006)

15. Shriraman, A., Dwarkadas, S., Scott, M.L.: Flexible decoupled transactional mem-
ory support. In: Proceedings of the 35th International Symposium on Computer
Architecture (2008)

16. Larus, J., Rajwar, R.: Transactional Memory (Synthesis Lectures on Computer
Architecture). Morgan & Claypool Publishers, San Francisco (2007)

17. Waliullah, M.M., Stenstrom, P.: Starvation-free commit arbitration policies
for transactional memory systems. ACM SIGARCH Computer Architecture
News 35(1), 39–46 (2007)

18. Ananian, C.S., Asanovic, K., Kuszmaul, B.C., Leiserson, C.E., Lie, S.: Unbounded
transactional memory. In: International Symposium on High-Performance Com-
puter Architecture (February 2005)

19. Ceze, L., Tuck, J., Cascaval, C., Torrellas, J.: Bulk disambiguation of speculative
threads in multiprocessors. In: International Symposium on Computer Architecture
(June 2006)

20. Rajwar, R., Herlihy, M., Lai, K.: Virtualizing Transactional Memory. In: Interna-
tional Symposium on Computer Architecture (June 2005)

21. Blundell, C., Devietti, J., Lewis, E.C., Martin, M.: Making the fast case common
and the uncommon case simple in unbounded transactional memory. In: Interna-
tional Symposium on Computer Architecture (June 2007)

22. Angiolini, F., Ceng, J., Leupers, R., Ferrari, F., Ferri, C., Benini, L.: An integrated
open framework for heterogeneous MPSoC design space exploration. In: Design
Automation and Test in Europe Conference (DATE), pp. 1145–1150 (2006)

23. Loghi, M., Angiolini, F., Bertozzi, D., Benini, L., Zafalon, R.: Analyzing on-chip
communication in a MPSoC environment. In: Design Automation and Test in Eu-
rope Conference (DATE), February 2004, pp. 752–757 (2004)

24. STMicroelectronics: Nomadik platform, http://www.stm.com
25. Efthymiou, A., Garside, J.D.: An adaptive serial-parallel cam architecture for low-

power cache blocks. In: International Symposium on Low Power Electronics and
Design (2002)

26. AMBA: ARM Ltd. The advanced microcontroller bus architecture (AMBA),
http://www.arm.com/products/solutions/AMBAHomePage.html

http://www.stm.com
http://www.arm.com/products/solutions/AMBAHomePage.html

Energy and Throughput Efficient Transactional Memory 65

27. Goodacre, J., Sloss, A.N.: Parallelism and the ARM instruction set architecture.
IEEE Computer 38(7) (July 2005)

28. Banakar, R., Steinke, S., Lee, B.S., Balakrishnan, M., Marwedel, P.: Scratchpad
memory: design alternative for cache on-chip memory in embedded systems. In:
Symposium on Hardware/Software Codesign, pp. 73–78 (2002)

29. Jouppi, N.P.: Improving direct-mapped cache performance by the addition of a
small fully-associative cache and prefetch buffers. In: International Symposium on
Computer Architecture (May 1990)

30. Bahar, R.I., Albera, G., Manne, S.: Power and performance tradeoffs using various
caching strategies. In: International Symposium on Low Power Electronics and
Design, August 1998, pp. 64–69 (1998)

31. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transac-
tional applications for multi-processing. In: IISWC 2008: Proceedings of The IEEE
International Symposium on Workload Characterization (September 2008)

32. STMicroelectronics-Cortex: STMicroelectronics Cortex-M3 CPU,
http://www.st.com/mcu/inchtml-pages-stm32.html

33. Freescale-QE: Freescale low-power QE family processor,
http://www.freescale.com/files/microcontrollers/

http://www.st.com/mcu/inchtml-pages-stm32.html
http://www.freescale.com/files/microcontrollers/

Split Register Allocation: Linear Complexity
Without the Performance Penalty

Boubacar Diouf1, Albert Cohen1, Fabrice Rastello2, and John Cavazos3

1 ALCHEMY Group, INRIA Saclay and Paris-Sud University
2 LIP, École Normale Supérieure de Lyon

3 University of Delaware

Abstract. Just-in-time compilers are becoming ubiquitous, spurring the
design of more efficient algorithms and more elaborate intermediate rep-
resentations. They rely on continuous, feedback-directed (re-)compilation
frameworks to adaptively select a limited set of hot functions for ag-
gressive optimization. To date, (quasi-)linear complexity has remained a
driving force in the design of just-in-time optimizers.

This paper describes a split register allocator showing that linear com-
plexity does not imply reduced code quality. We present a split compiler
design, where more expensive ahead-of-time analyses guide lightweight
just-in-time optimizations. A split register allocator can be very aggres-
sive in its offline stage, producing a semantic summary through bytecode
annotations that can be processed by a lightweight online stage. The chal-
lenges are fourfold: (sub-)linear-size annotation, linear-time online pro-
cessing, minimal loss of code quality, and portability of the annotation.

We propose a split register allocator meeting these challenges. A com-
pact annotation derived from an optimal integer linear program (ILP)
formulation of register allocation drives a linear-time algorithm near op-
timality. We study the robustness of this algorithm to variations in the
number of physical registers. Our method is implemented in JikesRVM
and evaluated on standard benchmarks.

1 Introduction

Just-In-Time (JIT) compilers rely on continuous, feedback-directed (re-)
compilation frameworks to select hot functions (frequently executed) for on-
line optimizations. These online optimizations must make important trade-offs
in terms of reducing compilation time for decreased generated code performance.
Reducing compilation overhead has two main benefits, low-complexity algo-
rithms simultaneously increase the amount of code being optimized while reduc-
ing the compilation time for hot functions. In practice, (quasi-)linear complexity
is the rule for JIT compilation. This severely impacts what kind of optimizations
are admissible and how aggressive they may be.

1.1 A Case for Split Compilation

Traditional bytecode language tool chains distribute the roles among offline and
online compilers. Verification and code compaction are typically assigned to

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 66–80, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Split Register Allocation 67

offline compilation, while target-specific optimizations are performed by online
compilation. Split compilation reconsiders this notion: it allows a single optimiza-
tion algorithm to be split into an offline and an online stage, transferring the
semantic information between those stages through carefully designed bytecode
annotations.

Split compilation has the potential to combine the advantages of offline and
online compilation: running expensive analyses offline to prune the optimization
space, defering a more educated optimization decision to the online stage, when
the precise execution context is known. Many JIT compilation efforts tried to
leverage the accuracy of dynamic analysis to outperform native compilers; but
split compilation is a concrete path to get the best of both worlds.

To make a concrete case for split compilation, we selected the (spill-everywhere)
register allocation problem [1,2]. Register allocation is an ideal candidate to
demonstrate how split compilation impacts the design of future bytecode lan-
guages and compilers, and how it differs from plain annotation-enhanced JIT com-
pilation [3]. Indeed:

– the principles of register allocation are reasonably well understood;
– it is one of the most important components of all JIT compilers;
– it is challenging to design an offline analysis that would improve online reg-

ister allocation, while ignoring the exact register count of the target.

1.2 Outline of the Paper

This paper makes two important contributions.

1. We design bytecode annotations enabling a linear-time online algorithm to
achieve high-quality register allocation, with negligible impact on the size of
the bytecode.

2. We demonstrate how such annotations are robust to variations in the number
of registers. With additional provisions in the offline stage, it is even possible
to accommodate radical changes in the instruction set target architecture.

Our method is implemented in the JikesRVM open source JIT compiler for Java
[4], and evaluated on x86. We do believe that it would be easy to port it to
multi-language JIT frameworks like the ECMA-335 CLI standard.1

The paper is organized as follows. Section 2 presents the split register allo-
cation flow and algorithms. Section 3 evaluates split register allocation, with
coverage of performance improvements as well as annotation compaction and
portability. Section 4 explores more complex compilation scenarios. Finally, Sec-
tion 5 discusses related work on annotation-enhanced just-in-time compilation.

2 Split Register Allocation

We first introduce some terminology. An interval characterizing the entire life-
time of a local variable or temporary may contain some idle holes. The live range
1 http://www.ecma-international.org/publications/standards/Ecma-335.htm

68 B. Diouf et al.

of a variable x is the set of program points where x is live; it corresponds to a
union of basic intervals. When linearising the control flow (e.g., when generating
code), the basic interval of a given live range are interleaved with holes. Those
holes correspond either to program points dominated by a redefinition of the
variable (the variable is effectively dead at those points), or to a hole resulting
from the order in which the basic blocks are numbered (a control-flow artifact).
Register pressure refers to the amount of locally living variables. Considering
that a variable is not alive during its idle holes can help in reducing the register
pressure. JikesRVM takes advantage of this.

2.1 Optimization Problem and Baseline Algorithm

Since our primary focus is to illustrate the split compilation concept, we limit
ourselves to the most basic register allocation and assignment problem:

– Spill everywhere allocation: spill the whole live range.
– Single-color assignment: when such a live range is allocated, all its basic

intervals must be assigned to the same register. Some live ranges may be
preassigned due to function call conventions and operand restrictions of some
target instructions;

Throughout the paper, we handle register allocation in different register
classes separately (e.g., general purpose, floating point), and call R the num-
ber of registers in the current class of interest.

Algorithm 1 recalls the main steps of the linear scan algorithm, as imple-
mented in JikesRVM. Every time a basic interval i becomes active, Algorithm 1
calls the function assignOrSuggestSpillCandidate(V (i)), where V (i) is the
live range corresponding to i. According to the allocation that has been per-
formed up to this point, function assignOrSuggestSpillCandidate(V (i))
returns, either a live range or ⊥ (bottom): if it returns a live range, it is the one
to be spilled in order to continue allocation; if it returns ⊥ it was possible to as-
sign V (i) without spilling. These algorithms are the basic framework upon which
the offline and online phases of our split register allocation are constructed.

Algorithm 1. linearScan
Input: list: the list of basic intervals ordered by increasing start point
1: foreach: i ∈ list do
2: toSpill ← assignOrSuggestSpillCandidate(V (i))
3: if toSpill �= ⊥ then
4: if toSpill �= V (i) then
5: Assign V (i) to the register freed by toSpill
6: end if
7: Spill toSpill
8: end if
9: end for
Return: sets of spilled live ranges and register assignments

Split Register Allocation 69

Algorithm 2. assignOrSuggestSpillCandidate
Input: v: a live range
1: if v was previously assigned to a register r then
2: if r is free then
3: Continue with this assignment
4: Return ⊥
5: else if v can be assigned to another register r′ then
6: Assign v to r′

7: Return ⊥
8: else
9: Let v′ be the live range assigned to r
10: Return the live range with the minimum cost among v and v′

11: end if
12: else if v can be assigned to a free register r then
13: Assign v to r
14: Return ⊥
15: else
16: Return v′ with the lowest cost among v and the other live ranges at the current point
17: end if
Return: a live range to spill or ⊥

2.2 The ILP Model

Here, we discuss our formulation of spilling in register allocation as an ILP
problem. We obtain spilling decisions offline and pass this information to the
online compilation phase using annotations. Considering a set S of live ranges,
a spill set of S is any subset S′ of S such that S \ S′ can be allocated over the
R registers (without spilling). We also consider a function which assigns to each
live range in S the cost of spilling it. The cost of a spill set is the sum of the
costs of live ranges within that set. An optimal register allocation is associated
with a spill set with the minimal cost.

We build an ILP model that is optimal among spill-everywhere, single-color
allocations, for a given cost model.

We model register allocation as a {0, 1} linear program, the objective function
being the cost of the spill set. We support multiple classes of registers, each reg-
ister class is further decomposed into 2 subclasses: caller-saved (scratch register)
and callee-saved (non-scratch register). Live ranges are partitioned according to
register classes, and can be of the volatile, non-volatile or preassigned kinds: a
non-volatile live range can only be assigned to some callee-saved register, and a
preassigned live range can only be assigned to a specific physical register.

We create a {0, 1} variable lr for each live range l and register r that l may
be assigned to (considering class and volatility constraints):

lr = 1 if and only if l is assigned to r.

These variables are constrained by 3 kinds of (in)equalities.

1. At most one register per live range (single color assignment):∑
1≤r≤R

lr ≤ 1.

70 B. Diouf et al.

2. Interfering live ranges cannot be assigned to the same register: lr + l′r ≤ 1.
3. The third constraint states that if a live range l interferes with a live range

l′ preassigned to r, then lr = 0.

2.3 Annotation Semantics

The offline stage generates annotations that can be used by an online stage to
characterize important properties of some live ranges. The online stage may run
on a target that may not match what was used to generate the annotations in
the offline stage. This triggers portability problems: we address register count
variations in this section, and defer the discussion of other problems to Section 4.

In the context of register allocation, the most specific portability issue is
related to variations in the number of registers. To define portable annotations,
it would be ideal to prove a general result about the inclusion of an optimal spill
set for a given number of physical registers into one of the optimal spill sets for
a lower number of registers. Unfortunately, this is not true in general. Figure 1
shows a counter example on the allocation of 5 live ranges — the horizontal
bars. Every number on top of a horizontal bar denotes the cost of spilling the
corresponding live range. Dashed black lines correspond to spilled live ranges.
For the left graph, we assume R = 2 registers. For the graph on the right, R = 1
register only. When R = 2, we may optimally spill i3 to assign i1 and i4 to one
register and to assign i2 and i5 to the another one. When R = 1, the single
optimal allocation is to spill i2 and i4 and to assign i1, i3 and i5 to the single
register. In this example we see clearly that an optimal spill set for two registers
is not included in the optimal spill set for one register.

Fig. 1. Counter example to spill set inclusion

Although such an inclusion property does not always hold, we experimentally
validated that only few live ranges should be spilled for R + 1 registers but
allocated for R registers. For example, considering the x86 instruction-set archi-
tecture, when moving incrementally by one register from the minimum number
of registers, to a spill-free2 number of registers for each method, inclusion prop-
erty was violated for only 0.13% of the live ranges over the whole SPEC JVM
2 Until we reach a number of register for which allocation can be done without spilling.

Split Register Allocation 71

suite. This validates the intuition that the semantics of an allocate/spill-oriented
annotation is portable across variations in the register count.

2.4 The Offline Procedure

Our split register allocation procedure derives from three key observations.

1. First, once the ILP solver finds an optimal spill set, it would be possible to
directly annotate the code with the best spill set. This can lead to annotation
bloat (although linear), with total annotation size potentially larger than the
bytecode itself. Jones and Kamin do not address the problem [5].

2. Second, the more detailed the annotation, the more sensitive it is to low-
level decisions on instruction selection and scheduling that may happen after
register allocation. To make the annotation portable, it is important to focus
it on semantic properties that preserve the essence of the offline optimization
while maximizing independence w.r.t. post-pass optimizations in the online
compilation stage. The idea here is to focus the annotation on long live
ranges whose interferences do not vary much w.r.t. post-register allocation
instruction selection and scheduling. Indeed, short live ranges are likely to
be allocated due to their limited interferences and high-rate register usage.

3. Third, notice that a greedy allocation algorithm is typically too conservative,
allocating a live range that should have been spilled or assigning an inap-
propriate register/color. This means that annotations should only pertain to
“must-spill” information.

With those three observations in mind, we devised Algorithm 3. The intuition
behind this algorithm is natural: why store annotations for live ranges on which
a greedy, linear procedure can readily make the right decision?

The algorithm uses an oracle-driven version of the linear scan. Every time
the greedy heuristic wishes to spill a live range which does not belong to the
annotations, the algorithm forces it to spill a live range which is currently active
and which belongs to the annotations. By doing so, we discover live ranges in
the optimal spill set that the linear scan cannot find on its own.

Considering Algorithm 3, at a step where live range V (i) is active (according
to the allocation performed since the beginning of the method being allocated),
function assignOrSuggestSpillCandidate(V (i)) returns, either a live range
or ⊥ (bottom): if it returns a live range, it is the one to be spilled in order to
continue allocation; if it returns ⊥ it was possible to assign i without spilling.
Function findActiveLiveRange(optimalSpills) returns a currently active live
range that is in the set optimalSpills, and set annotation records live ranges that
will not be found by the linear scan.

The algorithm returns live ranges that will not be optimally allocated by the
linear scan and keeps those as the constituents for the compressed annotations.

The final step consists of pairing the live ranges returned by Algorithm 3 with
a “must-spill” tag. This pairing should be as economical as possible to represent,
but it should also make sense across different targets and carry relevant allocation

72 B. Diouf et al.

Algorithm 3. compressAnnotation
Input: list: the list of basic intervals ordered by increasing start point
Input: optimalSpills: the set of live ranges to be spilled as decided by the optimal allocator
1: annotation ← ⊥
2: foreach: i ∈ list do
3: toSpill ← assignOrSuggestSpillCandidate(V (i))
4: if toSpill �= ⊥ then
5: if toSpill /∈ optimalSpills then
6: toSpill ← findActiveLiveRange(optimalSpills)
7: annotation ← annotation ∪ toSpill
8: end if
9: if toSpill �= V (i) then
10: Assign V (i) to the register freed by toSpill
11: end if
12: Spill live range toSpill
13: end if
14: end for
Return: annotation: the compressed annotations

information. For each live range l, we compute the maximal value of R for which
l must be spilled, denoting it as Rmax(l). We do not care much about offline
compilation time in this study: the computation thus boils down to iterating
the ILP model over decreasing values of R, pre-spilling live ranges spilled at the
previous step (for R + 1 register) to guarantee inclusion.

Finally, annotated live ranges need to be stored in a compact persistent
format, together with the bytecode program. Rather than storing every pair
(i, Rmax(l)), we cluster live ranges with the same value of Rmax(l), sort those
clusters, and serialize the list of live ranges in every cluster, prepending each
cluster’s list with the corresponding value of Rmax(l). We end up with separate
strings, one for each size s of the register set, listing the live ranges that must
be spilled for s registers and that were not already listed in a string associated
with size s′ greater than s. This way, most of the space is used to store live range
names, for which we conservatively count up to 4 bytes per live range.

2.5 The Online Procedure

The online stage performs allocation based on a compact spill set collected by
the offline stage, and carried as bytecode annotations.

Our online algorithm follows the steps of Algorithm 1. In addition, at every
basic interval beginning, it checks whether the corresponding live range is present
in the annotation. If so, then spill it (if the live range was not previously spilled).

This algorithm takes its roots in the decoupled allocation/assignment ap-
proach. As our experiments will confirm, the annotation-enhanced linear scan
algorithm results in a much better quality allocation. Yet it does not optimally
preserve the information available in the annotation and may yield spurious spill
code. The reason is simple: register assignment on a colorable (spill-free) graph
is equivalent to a graph coloring decision problem, which is NP-complete on live
ranges [1]. It is not NP-complete with sufficient live-range splitting: linear com-
plexity can be achieved on SSA form following a perfect elimination order — a
greedy reverse post-order traversal of the SSA graph [6]. It is clearly the way to

Split Register Allocation 73

Algorithm 4. onlineAllocation
Input: list: the list of basic intervals sorted in increasing start point
Input: annotation: a set of annotated live ranges
1: foreach: i ∈ list do
2: if V (i) is not spilled then
3: if V (i) ∈ annotation then
4: Spill V (i)
5: else
6: assignOrSuggestSpillCandidate(V (i)
7: end if
8: end if
9: end for
Return: sets of spilled live ranges and register assignments

go for optimality preservation, but it also implies a major engineering endeavor
that has not yet been undertaken in a full-scale JIT compiler. Fortunately, the
interference graphs that arise in non-SSA code are “mostly” chordal [7], which
guarantees the existence of a perfect elimination order in most cases; this mo-
tivates the decoupled approach and explains the observed quality of our online
algorithm.

3 Experimental Evaluation

We implemented split register allocation in JikesRVM version 3.0.1 [4], relying
on CPLEX3 for the offline resolution of optimal allocation problems.

3.1 Methodology

To assess the cost of a spill, we need to define the optimal solution we are aiming
for. The cost model of the spill-everywhere problem is implemented in JikesRVM;
it combines dynamic edge profiling, static use count and instruction type.

We illustrate split register allocation on SPEC JVM benchmarks. Experi-
ments on the DaCapo benchmarks [8] could not be included at the time of the
submission, but we are working hard on it. We target a 2.67GHz Intel Core 2
Quad, running in 32-bit mode, in a PC platform. This configuration is favorable
to register allocation experiments due to the low number of registers, although
the cost of spilling is often marginal due to out-of-order execution and to the
sophisticated memory hierarchy.

Each figure was obtained from 100 individual runs of the benchmark, elimi-
nating the 10% best and 10% worst performing points. We did not conduct a
systematic statistical study of the performance distribution. Instead, we elim-
inated the largest source of variation by selecting a non-adaptive, aggressive
(maximal optimization), profile-directed strategy (with embedded replay), using
the following compilation flags:

-Xmx1024M -Xms1024M -X:irc:O3 -X:aos:enable_recompilation=false -X:aos:initial_compiler=opt
-X:aos:enable_replay_compile=true -X:vm:edgeCounterFile=my_edge_counter_file

3 http://www.ilog.com/products/cplex

74 B. Diouf et al.

Split compilation is of course compatible with adaptive optimization. This
methodology differs from the standard practices in that we do not run an adap-
tive compilation scheme [8,9]. We claim our methodology is relevant in the con-
text of split compilation:

– it eliminates the instability triggered by monitoring-based decisions, allowing
to focus on the effect of the register allocation itself;

– an adaptive execution methodology is needed to compare the relative con-
tributions of JIT-compilation, monitoring, garbage collection, and the effect
of the optimizations themselves [9]; our methodology allows for a fair com-
parison nonetheless, since the online stage of the split allocation does not
introduce significant overhead w.r.t. the original linear scan implementation.

Thanks to its Java API, it was easy to connect CPLEX to our framework.
The total resolution time for the optimal register allocation of all SPEC JVM
benchmarks — running with aggressive optimization including inlining and un-
rolling — takes less than 4 minutes on a Core 2 Quad processor at 2.67GHz with
4GB of RAM.

3.2 Performance Results

Table 1 illustrates the effectiveness of the annotation compression scheme: it
shows the total number of live ranges (Live ranges); the effective number of
live ranges within the annotations (Annotations); the Annotations/Live ranges
ratio (Compression, in percentage); the number of live ranges within the optimal
spill sets (Optimal spill set); the Annotations/Optimal Spill set ratio (Remaining
spills, in percentage); and the size overhead w.r.t. the bytecode itself (Bytecode,
in percentage, counting 4 bytes per annotation).

Table 1. Annotation compression

Benchmark check compress jess raytrace db javac mpegaudio mtrt jack
Live ranges 86672 86870 181396 122993 93055 406348 127847 122755 220871
Annotations 77 105 214 191 98 685 315 195 236
Compression % 0.09% 0.12% 0.12% 0.16% 0.11% 0.17% 0.26% 0.16% 0.11%
Optimal spill set 2950 2984 6408 3765 3210 16821 3830 3877 6400
Remaining spills % 2.60 % 3.51% 3.34% 5.07% 3.05% 4.07% 8.23% 5.03% 3.69%
Bytecode % 0.9% 6.9% 0.9% 6.9% 3.4% 0.5% 0.9% 1.1% 0.6%

Preserving the information collected in the offline stage requires at most 0.26%
of the live ranges to be annotated. This is several orders of magnitude more effec-
tive than state-of-the-art approaches [5], and even comes with a formal guarantee
about optimality. The addition compression row reports the benefits of Algo-
rithm 3, and confirm its important role in making the annotation size negligible
w.r.t. the bytecode size.

Table 2 Considers the analytical cost model of JikesRVM as a metric. All live
ranges annotation correspond to annotation produced by Algorithm 3; LIR4 live
4 Low-level Intermediate Representation of JikesRVM, which does not include yet all

the characteristics of the target architecture.

Split Register Allocation 75

Table 2. Allocation cost penalty compared to optimal

Benchmark check compress jess raytrace db javac mpegaudio mtrt jack average
Original JikesRVM 1.31 1.38 1.16 1.19 1.59 1.41 1.39 1.14 1.27 1.32
All live ranges Annotation 1.02 1.30 1 1.17 1.01 1.25 1.03 1.19 1.03 1.11
LIR live ranges Annotation 1.02 1.30 1 1.17 1.01 1.25 1.03 1.19 1.03 1.11
Java local variables Annotation 1.25 1.44 1.02 1.19 1.59 1.36 1.32 1.13 1.18 1.28

Table 3. Wall-clock speedups of split register allocation

Benchmark check compress jess raytrace db javac mpegaudio mtrt jack average
All live ranges Annotation 0% 12.0% -1.0% 0.9% -0.4% -0.6% 7.5% 1.2% 0.2% 2.2%
LIR live ranges Annotation 0% 12.1% 0.2% 1.0% -0.3% -0.7% 5.1% 1.1% 0.2% 2.1%
Java local variables Annotation 0% 5.1% 0.8% 0.0% -0.3% -0.2% -1.4% 1.1% -0.3% 0.4%

ranges annotation correspond to the intersection between the set of live ranges
present in the LIR and all live ranges annotation; Java local variables annotation
correspond the set of Java local variables present in all live ranges annotation.
Table 2 shows the penalty of using the Original JikesRVM (linear scan), All live
ranges annotation, LIR live ranges annotation and Java local variable annotation
methods in terms of percentage of the optimal spill cost achieved by the ILP
model. The JikesRVM linear-scan misses the optimal cost by 32% on average,
whereas the split allocation only incurs a 11% average penalty. The case for
annotation portability is validated by the very close figures for the full annotation
(All live ranges) and the LIR-only annotation (LIR live ranges). However, when
only annotating Java variables, the annotation loses its effectiveness. Using the
LIR-only annotation appears as the best performance/portability trade-off.

Considering wall-clock execution time as a metric (JIT compilation plus exe-
cution time), Table 3 shows the speedup of split register allocation w.r.t. original
JikesRVM’s allocation algorithm. In most cases, the speedup is consistent be-
tween the optimal and split approaches. Nevertheless, the annotation does not
help much on some benchmarks like javac. The strong improvement in the cor-
responding column in Table 2 indicates that the cost model itself misses the
complex interplay between optimizations and important components of the tar-
get architecture.

3.3 Portability Across Variations of the Register Count

We showed there is no formal inclusion property among optimal spill sets in
general. Nevertheless, for every method and among millions of live ranges, we
varied R from a minimum equal to the number of pre-allocated physical registers
for the method to the spill-free number of registers. Through all these allocation
problems only 0.13% of the intervals spilled for R + 1 registers did not belong
to the optimal spill set for R registers.

To make the annotation portable across variations in the register count, the
compression algorithm must not eliminate a live interval that may be useless for
a given number of registers but useful for a smaller number of registers. We thus
run Algorithm 3 on R = Rmin registers, where Rmin is the minimal number of
registers to enable code generation on the target.

76 B. Diouf et al.

4 Looking Forward

So far, we ignored important issues related with the practical applicability of
split register allocation.

4.1 Portability of the Annotation

Let us first consider the portability of annotation names. The names of the
annotated live ranges must remain consistent between the two stages. Some
annotations may be missing or extraneous, but an annotation designating a live
range during the offline stage must designate to the same live range during the
online stage. There are practical solutions for most portability scenarios.

1. The majority of live ranges correspond to java variables, locations in the
operand stack, and other live ranges synthesized in the intermediate, target-
independent passes of JikesRVM (the LIR). For those live ranges, a non-
ambiguous name can be crafted that is independent of the execution context
when the JIT compiler is triggered.

2. A fraction of live ranges are synthesized along the target-dependent compila-
tion flow: address computation temporaries, conditional predicates, etc. We
discard annotations regarding those live ranges when compiling for another
instruction-set architecture (ISA).5 Fortunately, besides representing a small
minority, these live ranges also feature a very short temporal locality and a
low degree of interference with other live ranges. This reduces the chances of
impacting an important allocation decision that would result in a significant
performance difference. Indeed, we showed that annotation associated with
target-dependent live ranges have negligible impact on performance.

Besides the live range names, annotation properties themselves need to be
portable over multiple targets: liveness properties may vary significantly over the
targets if no assumption is made on the optimization flow. To achieve portability,
we thus make one important assumption: optimizations selected by different
JIT compilers must not vary significantly before the pass where annotations are
loaded and attached to the intermediate representation. This restriction does not
impact target-specific, post-register allocation passes like instruction selection
and local scheduling.

This restriction does not solve all portability problems: reusing annotations
across ISAs remains an issue. There are multiple reasons to be optimistic. Some
of these are due to the context in which JIT compilation is employed, and some
to the nature of the optimizations being performed before register allocation:

– Embedded system designs value the code compression and safety benefits of
bytecode languages, but do not stress portability to the extreme. Although
many processors and hardware configurations may exist, Java or CLI appli-
cations are likely to run on some variant of the ARM instruction set. Varying

5 Such annotations remain usable when varying the register count (or the calling
convention) for a given ISA.

Split Register Allocation 77

the number of registers is important to support the ARM’s compact instruc-
tion encoding options, and to support extensions like vector instructions of
ARM NEON. On general-purpose platforms, an analogous situation holds,
with portability issues from the 32 and 64 bit variants of the x86 instruction
set, different vector instruction sets and sizes, etc.

– Bytecode languages are important for link-time optimization. Complex soft-
ware architectures built of thousands of independently designed components
bring many opportunities for inter-module optimization at link-time. Again,
the ISA portability issue is only secondary to many of these applications.

– Beyond ISA portability, bytecode languages are used for operating system
portability. In this case, the JIT compiler is minimally impacted, and anno-
tations are expected to be robust to changes to the underlying OS.

– Eventually, the software provider may easily specialize the offline stage to
generate annotations for a particular family of targets and for a particular
optimization flow, tagging the annotated bytecode accordingly. This consists
of constructing a (lossless) union annotation considering all live ranges that
occur when compiling to the different targets. Since many live ranges will
remain the same (e.g., those associated with Java local variables and constant
pool, as opposed to operand stack or target-specific temporaries), the union
will not significantly increase the size of the annotation.

4.2 Separate Compilation

Realistic compilation scenarios will run the offline stage separately on the dif-
ferent modules of the application and on its library dependences. This raises a
modularity problem for any annotation-based online compilation approach.

In the context of object-oriented and functional languages, function inlining
is of utmost importance to reach performance levels on par with lower level
imperative implementations. It raises the following dilemma:

– what is the point of annotating code in functions that will later be inlined,
since the effective interference graph will only be known after inlining;

– what is the point of annotating functions whose calling context heavily in-
fluences the internal control flow, hence the spill costs?

Our approach to modular split compilation is twofold.

No performance regression. First of all, if one module depends on a module
without annotations (such as a package form the Java Development Kit), only
the code in the annotated module will benefit from split compilation. This is not
ideal, but not worse than the usual penalty of separate compilation in offline,
static compilers. Conversely, when optimizing a “library” module, it is always
possible to run a context-insensitive split-compilation flow, relying on a repre-
sentative execution profile; this again is consistent with the traditional way of
optimizing libraries in static compilation.

78 B. Diouf et al.

Multiversioning for cross-boundary optimization. Nevertheless, JIT compila-
tion opens many opportunities for link-time optimization, and JIT compilers
for object-oriented and functional languages do implement such advanced tech-
niques, effectively optimizing across module boundaries (e.g., across application-
library boundaries). Split register allocation is possible in this context.

First of all, a context-sensitive annotation of the callee can be tuned according
to the most frequent calling context(s). This is only impactful when the costs of
the live ranges depend on the calling context, which may be the case when the
callee contains complex, data-dependent control-flow.

A more aggressive approach consists in generating multiple versions of the an-
notations for the most frequent call trees. For example, if a library method m2
is frequently called from an application method m1, the offline stage of the split
register allocation may inline m2 into m1, optimize the resulting new method,
and generate the annotation for it. This specialized version of the inlined meth-
ods can later be checked for consistency with the dynamic execution context
(indeed, the library code may have changed in the mean time, or dynamic class
loading may have occurred), and used directly in favor of performing all the opti-
mizations online and dropping the (irrelevant) per-method annotation. Practical
ways to implement this scheme have been proposed in the QuickSilver project
[10]. This scheme has all the benefits of running a JIT compiler offline (better
optimizations, lower overhead) while preserving modularity (up to dynamic class
loading) and the effectiveness of split compilation.

5 Related Work

Annotations are an optional part of the Java bytecode specification from the
start and are part of the class file attributes. They have been used in debugging
and integrated development environments. Syntactic support has been added in
recent versions of Java. The same applies to the ECMA-335 CLI.

Interestingly, annotation-driven JIT compilation was first directed to register
allocation, with the pioneering work of Azevedo et al. [11]. This work demon-
strated how to achieve performance competitive with native priority-based graph
coloring allocation. Jones and Kamin [5] extended their virtual register allocation
approach, dealing with correctness, calling conventions and portability (address-
ing variations of the number of physical registers only).

The split compilation term was first coined in the context of JIT vectorization
[12]. Split register allocation improves on Jones and Kamin’s annotation-driven
approach by leveraging the decoupled allocation (spilling) and assignment (col-
oring) phases of register allocation. Decoupled register allocation is the key to
the compactness and the portability of our annotation. The intuition behind de-
coupled register allocation is that the assignment problem (mapping of variables
to registers with no additional spill) is very easy, as long as the cost of live-
range splitting (the introduction or register moves) is neglected. This intuition
is backed by the important property that spill-free assignment is always possible
if the maximal number of simultaneously live variables (MaxLive) is lower than

Split Register Allocation 79

the number of available registers. The online stage can rely on the colorability
guarantee inherited from the offline stage through the annotation: these strong
ties between the offline and online stages are specific to split compilation algo-
rithms, as opposed to classical annotation-driven JIT compilation.

A fully decoupled approach has been used by Appel and George [13], and
studied in the context of SSA-based register allocation [7,14,15]. Notice that
recent versions of the linear scan algorithm are capable of live range splitting
[16,17]; they are implicitly based on this decoupled approach. This is not the case
for the linear scan implemented in JikesRVM, and leads in practice to spurious
spills (to our disadvantage), as we confirmed in our evaluation.

Pominiville et al. [18] used annotations to mitigate the performance penalty of
Java pointers and arrays, and designed a generic annotation-driven compilation
framework (Soot). Eventually, Krintz and Calder [3] proposed a comprehensive
method to reduce the compilation time overhead through bytecode annotations,
enabling rapid method selection and optimization selection, and precomputing
simple method statistics.

Several papers address two additional important questions related to register
allocation in JIT compilers: is there any room for performance improvement,
and is it important to use a linear-time allocation algorithm? Cavazos provides
an original answer relying on adaptive optimization [19]. Annotation-enhanced
versions of this method would be worth investigating.

When using annotations for optimization, safety issues immediately arise be-
cause of incorrect or malicious uses. Solutions can be found in proof-carrying
code [20], encryption, or correct-by construction annotation designs. We choose
the latter approach, relying on annotations whose misuse can at worst lead to
performance degradations.

6 Conclusion

We designed a split compilation framework dedicated to register allocation.
We experimentally validated the effectiveness of split register allocation and
its portability with respect to register count variations, relying on annotations
whose impact on the bytecode size is negligible. This combination of results is a
strong improvement over the state of the art. It was made possible by revisiting
the decoupling of the spilling and coloring (a.k.a. assignment) phases.

Nevertheless, the approach still depends on the stability of the upstream op-
timization flow in the JIT compiler. Although this restriction is acceptable in
a majority of use cases, it would be useful to design a split register alloca-
tion framework that would be more robust to changes in the optimization flow.
One direction of work consists in revisiting the context of pre-pass allocation
to control register-pressure by inserting additional constraints in the data de-
pendence graph [21]. This would accommodate for scheduling (local and global)
changes, and possibly for code motion, redundancy elimination and hoisting as
well. Beyond register allocation, we would like to investigate the potential of
split compilation through the development, debugging and optimization cycle of
software development.

80 B. Diouf et al.

References

1. Chaitin, G.J., Auslander, M.A., Cocke, A.K.C.J., Hopkins, M.E., Markstein, P.W.:
Register allocation via coloring. Computer languages 6, 47–57 (1981)

2. Briggs, P., Cooper, K.D., Torczon, L.: Improvements to graph coloring register
allocation. ACM Trans. Program. Lang. Syst. 16(3), 428–455 (1994)

3. Krintz, C., Calder, B.: Using annotations to reduce dynamic optimization time. In:
PLDI 2001, pp. 156–167. ACM Press, New York (2001)

4. Alpern, B., et al.: The Jikes RVM project: Building an open source research com-
munity. IBM Systems Journal 44(2), 399–418 (2005)

5. Jones, J., Kamin, S.N.: Annotating java class files with virtual registers for perfor-
mance. Concurrency – Practice and Experience 12(6), 389–406 (2000)

6. Bouchez, F., Darte, A., Rastello, F.: On the complexity of spill everywhere under
ssa form. In: LCTES 2007, pp. 103–112 (2007)

7. Pereira, F.M.Q., Palsberg, J.: Register allocation via coloring of chordal graphs.
In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 315–329. Springer, Heidelberg
(2005)

8. Blackburn, S.M.: The dacapo benchmarks: java benchmarking development and
analysis. In: OOPSLA 2006, pp. 169–190. ACM, New York (2006)

9. Georges, A., Eeckhout, L., Buytaert, D.: Java performance evaluation through
rigorous replay compilation. SIGPLAN Not. 43(10), 367–384 (2008)

10. Serrano, M., Bordawekar, R., Midkiff, S., Gupta, M.: Quicksilver: A quasi-static
compiler for java. In: OOPSLA 2000 (2000)

11. Azevedo, A., Nicolau, A., Hummel, J.: Java annotation-aware just-in-time (ajit)
compilation system. In: Proc. ACM 1999 Conf. on Java Grande, pp. 142–151 (1999)

12. Lesnicki, P., Cohen, A., Cornero, M., Fursin, G., Ornstein, A., Rohou, E.: Split
compilation: an application to just-in-time vectorization. In: GREPS 2007, Brasov,
Romania (September 2007)

13. Appel, A.W., George, L.: Optimal spilling for CISC machines with few registers.
In: PLDI 2001, Snowbird, Utah, USA, June 2001, pp. 243–253. ACM Press, New
York (2001)

14. Hack, S., Grund, D., Goos, G.: Register allocation for program s in SSA-form. In:
Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 247–262. Springer,
Heidelberg (2006)

15. Bouchez, F., Darte, A., Guillon, C., Rastello, F.: Register allocation: What does the
NP-completeness proof of Chaitin et al. really prove? In: Almási, G.S., Caşcaval, C.,
Wu,P. (eds.) KSEM2006. LNCS, vol. 4382, pp. 283–298. Springer,Heidelberg (2007)

16. Wimmer, C., Mössenböck, H.: Optimized interval splitting in a linear scan register
allocator. In: VEE 2005, pp. 132–141. ACM, New York (2005)

17. Sarkar, V., Barik, R.: Extended linear scan: An alternate foundation for global
register allocation. In: Krishnamurthi, S., Odersky, M. (eds.) CC 2007. LNCS,
vol. 4420, pp. 141–155. Springer, Heidelberg (2007)

18. Pominville, P., Qian, F., Vallée-Rai, R., Hendren, L.J., Verbrugge, C.: A frame-
work for optimizing java using attributes. In: Wilhelm, R. (ed.) CC 2001. LNCS,
vol. 2027, pp. 334–354. Springer, Heidelberg (2001)

19. Cavazos, J., Moss, J.E.B., Boyle, M.F.O.: Hybrid optimizations: Which optimiza-
tion algorithm to use? In: Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923,
pp. 124–138. Springer, Heidelberg (2006)

20. Necula, G.: Proof-carrying code. In: PoPL 1997 (January 1997)
21. Touati, S., Eisenbeis, C.: Early periodic register allocation on ilp processors. Par-

allel Processing Letters 14(2) (June 2004)

Trace-Based Data Layout Optimizations for
Multi-core Processors

Olga Golovanevsky1, Alon Dayan1, Ayal Zaks1, and David Edelsohn2

1 IBM Haifa Research Laboratory
{olga,alond,zaks}@il.ibm.com
2 IBM Watson Research Center

edelsohn@us.ibm.com

Abstract. The focus of this paper is on cache-conscious data layout
optimizations. Although these optimizations have already been adopted
by industrial compilers, they were shown to be inefficient for multi-
process1applications on multi-core platforms. Such factors as asymmetric
distribution of processes over hardware resources (cores, cpus or hard-
ware threads), along with their temporal migrations, unpredictably in-
fluence optimization results. Herein we present a new methodology that
extends classical data layout optimizations to support multi-core archi-
tectures. Based on data trace collection that reflects actual interleaving
of data accesses, this method aims to improve spatial locality of the data,
while mitigating potential false sharing events. Introduction of architec-
tural characteristics into an analysis phase further increases the accuracy
of data affinity estimation. Feasibility study of this method, applied to
multi-process webserver lighttpd on Power5 machine, not only showed
performance improvement, but also proved its suitability for incorpora-
tion into an industrial compiler.

Keywords: Compiler optimizations, cache-conscious data layout, spa-
tial locality, false sharing, data affinity.

1 Motivation

Prevalent number of data layout optimizations aim to increase data cache lo-
cality by fitting a data layout to the access pattern exposed in the program.
Research studies on this subject already have a long history. Although numer-
ous frameworks were developed [20], [21], [10], [24], [16], only a few of them found
their place in modern industrial compilers, like IBM XL [4], [5], multi-backend
GCC [6], [7], Open64 for x86 processors [8].

The analysis adopted in these compilers is mostly static, feedback directed
and inter-procedural. They estimate the affinity of data accesses by mapping
them against Control Flow Graph (CFG). Connected by the CFG edges, pro-
gram data accesses form a directed graph, which can be weighted with execution
1 The content of this paper is equally relevant for threads and processes, but in order

to avoid repetitions, we usually mention only processes.

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 81–95, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

82 O. Golovanevsky et al.

frequencies, received from profiling, or statically estimated. Shrinking this graph
into a contracted graph, where nodes represent data objects or types, allows
using its edges as numerical estimation of affinity between nodes. Optimal data
layout is concluded directly from the contracted graph. Variations of this anal-
ysis consider only data accesses that happen in loops [8], [9], [10], other works
count only hot accesses. In absence of profile information, execution frequencies
can be estimated statically from branch prediction [30]. In addition, the data
access cache miss rate can be used to weight graph edges, if provided in profile
information [9].

Although data layout optimizations showed performance improvement on such
benchmark suites as SPEC2000 [11] and SPEC2006 [12], the number of technical
reports that justify their efficiency for real world applications is minor. This fact
can be partially attributed to immaturity of inter-procedural analysis mecha-
nism, such as GCC LTO [13] or SYZYGY [9], but apparently it indicates a
discrepancy between these optimizations in their current state and combination
of modern hardware and applications.

Our experience with a contemporary webserver application, lighttpd [2], pre-
sented in Section 3.1, confirms this assumption. When two data layout optimiza-
tions, namely structure peeling plus indexing [7] and structure reordering [15],
[16], [6] were applied to lighttpd data structures, they showed improvement for
single-process lighttpd (two leftmost bars on Fig. 4a), while for other lighttpd
configurations their influence was mixed.

Evidently multi-core machines, running multi-threaded or multi-process ap-
plications, present a challenge for classical data layout optimizations. Leaving
the transformation part of these optimizations intact, they significantly influence
the method of data affinity estimation. The same statically estimated data access
can belong to different processes, as well as run on different cpus, cores, or, in
the presence of Simultaneous Multithreading (SMT), hardware threads. Sched-
uler decisions on distribution and migration of processes even further mix the
order of data accesses. Additional complexity in the estimation of data affinity
is introduced by the effect of false sharing, caused by cache coherence policy.

All these factors require modern data layout optimizations to capture and
analyze the actual interleaving of data accesses ([27], [26]). Although the im-
portance of collecting data traces was already recognized, we reconsider it with
the following two requirements: (1) efficiency for multi-core processors, running
multi-process applications, and (2) suitability for incorporation into a compiler.
As a result, we developed a new methodology for data affinity estimation that
satisfies both (1) and (2), and applied it to the lighttpd webserver.

(1) was achieved by extending data trace format and analysis with processor
specific characteristics. In addition to the standard fields in the trace record,
we introduced a hardware thread id field, indicating on which hardware
thread the process was running when the record was written. We developed
a data trace analysis algorithm that estimates the optimal data affinity by
increasing spacial locality, while mitigating potential false sharing events. We
extended this algorithm with such architectural parameters as the number

Trace-Based Data Layout Optimizations for Multi-core Processors 83

of CPUs, the number of cores per CPU, and the number of hardware threads
per core. We incorporated this algorithm into the classical data layout opti-
mization schema, described in Section 2.

(2) is guaranteed by small traces, collected by our method, relatively to the
traces, even sampled [21], required for reuse distance [17], [18] and k-distance
[19] analysis, as well as for heap optimization techniques [22], [29], [23].
Linearity of data trace analysis algorithm also contributes to (2).

Obviously other techniques have already targeted the problem of upgrading
data layout optimizations to handle the multi-core, multi-process case. Raman
et al. [25] suggested infusing basic blocks concurrency information, captured
by a performance monitoring tool, into the static analysis model. In the area of
objects pooling optimizations, Sarkar and Tullsen [23] extended the queue-based
Temporal Relationship Graph, suggested by Calder et al. [29], to concurrent
execution of applications. In comparison, our methodology requires no external
tool assistance, and can be integrated into the compilation schema in the way
similar to profiling.

Finally, we applied this methodology to the lighttpd webserver. We estimated
affinity of two data structures, namely server and connection, and on the basis
of the estimation results, applied to them a structure reordering data layout
transformation. In spite of the fact that reordering is usually less effective than
other structure layout transformations [9], and the lighttpd webserver is not a
memory bound application, we received improvement in both L1 and L2 cache
miss rates and the application run time on Power5 platform [3]. Moreover, this
improvement persisted as we increased the number of lighttpd processes.

The rest of this paper presents our methodology (Section 2) and experimental
results (Section 3). In Section 2.1 we describe an enriched trace format and its
generation process. Trace Traversal Algorithm (Section 2.2) that comprises our
methodology of architecture-specific affinity estimation (Section 2.4) occupies
the rest of Section 2. Our experimental results are based on an implementation
of this algorithm for Power5 architecture (Section 3.2). We draw conclusions and
explain perspectives of this research work in Section 4.

2 Methodology

As described in Section 1, classical data layout optimizations are comprised of
the following three stages:

For each data type2:

1. Estimate the affinity between accesses of type components.
2. Derive the affinity between type components from 1 above.
3. Derive the layout of the type from 2 above.

2 Our methodology is equally relevant for data objects and data types, but for simplicity
of description in the rest of this paper we mention only data types, or simply types.
C-language struct construct is an example of data type and variable of type struct
is an example of data object.

84 O. Golovanevsky et al.

Fig. 1. Trace-based data layout optimization process

Our methodology follows the same schema, but implements it differently. In
the classical schema, 1., sometimes combined with 2., is usually a static analysis,
optionally enriched with profiling information. Hagog et al. [6] built Fields Refer-
ence Graph (FRG) that represents distances between fields references, measured
in the number of statically estimated memory accesses that happen between
them. Shen et al. [4] explored frequency-based affinity. Chakrabarti et al. [8]
combined frequency of execution with loop-based affinity. Hundt et al. [9] also
used loop-based affinity, but enhanced it with a number of factors, including
even the cache miss rate.

Our methodology combines stages 1. and 2., and uses a trace of data ac-
cesses for their implementation. Using a data trace essentially simplifies the
static analysis required for data layout optimizations, especially the complicated
case of analyzing hierarchies of structures (though an analysis that guarantees
the safety of data layout transformations, such as type-escape analysis [9],[7], is
still required). Data trace is collected for each data type separately. Only records
generated by accesses of the type under consideration are collected, bypassing
all other data accesses in the program. Therefore it is by an order of magnitude
smaller than traces collected for such techniques as reuse distance [17], [18], or
k-distance analysis [19], which gather all data accesses in the program. A trace
we collect expresses the mutual closeness between accesses of type components,
without trying to simulate cache behavior, like in [29]. In addition, we extend the
standard trace record format with the hardware thread id parameter to reflect
multi-core architecture with SMT.

We build a graph, called Close Proximity Graph (CPG) in [6], with type
components as its nodes. Its edges are weighted with pairwise affinity between
the components they connect. We traverse the trace with time- or size-window.
By comparing trace records, we increase or decrease affinity weights between
the corresponding type components, depending on a number of factors, such as
closeness of trace records in trace, kind of type under consideration (shared or
private to process), location of execution (a processor/a cpu/a core/a hardware
thread). Examples 1-3 (Table 1) illustrate our trace record comparison principles
for Power5 architecture3(Fig. 3). This is different from the construction of the
3 In our methodology we overlook an existence of L3 cache in Power5 architecture,

because it is a victim cache.

Trace-Based Data Layout Optimizations for Multi-core Processors 85

Table 1. Examples of affinity estimation for Power5 architecture (Fig. 3). str is a
structure type that might be shared by a number of processes. It contains fields f1 and
f2 . r1, r2 are two trace records from the trace generated for the str type. The records
r1 and r2 belong to different processes p1, p2, but access fields f1 and f2 of the same
instance of the structure type str.

Example 1. Suppose records r1, r2 represent two read accesses. The process p1 runs on

hardware thread 0 (ht0) and the process p2 executing on hardware thread 1

(ht1). If we put f1 close to f2 so that they fit into a common cache line, then

bringing f1 to L1, will also bring there f2. In this case, if f2 was already in

L1 cache, then first read access to f1 does not influence the read access to f2.

However, if f2 was only in L2 cache or, was not in any cache, then accessing f1

brings f2 into L1 cache, thus saving L1 or L2 miss correspondingly. Therefore

as a result of comparing r1, r2 records, we increase the weight between f1 and

f2 fields, thus increasing probability of their closeness in structure str layout.

Example 2. Suppose we have read after write accesses. The processes p1 and p2 are running

on two different cores of the same CPU, for example, on ht0 and ht2. Suppose

also that f1 and f2 are closely located and can get into the same cache line.

If f2 was already in L1 cache, then a write access to f1 invalidates a L1 cache

line that contains f2, and read access to f2 results in an L1 miss. (This scenario

corresponds to L1 false sharing event.) However, if f2 was in L2 cache, but was

not in L1, then a write access to f1 brings the new value of f2 into L2, and the

read access to f2 results in L2 hit. Finally, if f2 was not even in L2 cache, then

the write access to f1 causes a subsequent L2 hit, when the f2 read happens.

Since winning an L2 hit is more valuable from the latency point of view than

losing an L1 hit, in this case we still increase the weight of the (f1,f2) edge in

the CPG, causing f1 and f2 fields to be positioned close in a str layout.

Example 3. Similarly, let us consider the same scenario as in Example 2., with processes p1

and p2 running on two different cores of two different CPUs, for example, on

ht0 and ht4. If f2 was already in L1 or L2 cache of cpu1, then a write access to

f1 on cpu0 causes invalidation of this cache line in L1 or L2 cache respectively

(i.e. L2 false sharing event). The read access to f2 inevitably causes an L2

miss. Consequently, we reduce the probability of this situation by decreasing

the weight of the (f1,f2) edge, and thus placing them further apart in the str

layout.

FRG in [6], where only positive contributions into affinity weights are counted,
without considering negative factors, like potential false sharing events.

Finally, in 3. we partition CPG using the Kernighan and Lin algorithm [1], into
strongly connected components of a cache line size, combining them into the final
type layout. Fig. 1 presents step-by-step trace-based data layout optimization
process.

As any feedback-directed optimization, our proposed methodology fits into
two-compilations-one-execution schema. During the first compilation, we instru-
ment the program to generate the data access trace. Then, by executing pro-
gram, we generate the data trace. During the second compilation, we analyze
the trace, apply the selected data layout transformation, and proceed with the
rest of compilation.

86 O. Golovanevsky et al.

2.1 Trace Generation

We instrument the program to generate a trace record at each data access of
a component of the type under consideration. The trace records are written to
a single stream shared by all program processes. The instrumentation happens
on inter-procedural level, when the compiler Intermediate Representation (IR)
is close to the source, and source level data types are fully preserved. Although
there may be differences, caused by compiler optimizations, between real data
accesses and those reflected in a trace, they are usually local. In our experience, a
window-based nature of our Trace Traversal Algorithm mostly neutralizes these
differences. Table 2 presents our trace record format.

Table 2. Trace Record Format

Field Name Description

access type corresponds to read or write access
pid is the process id
ht id is the hardware thread id
name is the type component name, such as field name for structure types
size is the component size in bytes
instance id is an instance id, e.g. the index number in an array of structures

2.2 Trace Traversal Algorithm

Our Trace Traversal Algorithm (Fig. 2) receives a trace and a window size as
input parameters. A window size can be measured in number of records in a
window or in time unit, if the trace record format is extended with time infor-
mation.

2.3 Records Comparison Characteristics

The key point of our methodology is the principle of comparison between two
records:

r1: access type1: pid1: ht id1: name1: size1: instance id1 and
r2: access type2: pid2: ht id2: name2: size2: instance id2.

It allows to fully exploit the richness of our trace format. The compare two records

function, in addition to record and new record input parameters, utilizes such
hardware specific characteristics as:

- cpu num, number of CPUs;
- cores per cpu, number of cores per each CPU;
- ht per core, number of hardware threads per each core.

Combinations of these parameters with the hd id allow calculating cpu id and
core id for each record in a trace, i.e. if we define

ht per cpu = cores per cpu · ht per core,

Trace-Based Data Layout Optimizations for Multi-core Processors 87

Input: trace; window size (in time units or in number of records)

Output: CPG

trace traversal algorithm {
initialize empty window;

while (trace) {
get new record;

for each record in window {
compare two records (record, new record);}

insert new record into the bottom of the window;

remove record(s) from the top of the window to fit window size;}}

Input: r1, r2

Output: Wc1,c2

compare two records {
if(!eq component && eq instance) { (1)

if (!eq ht) {
update affinity of Wc1,c2

according to the affinity coefficients;}
else {

increase the affinity of Wc1,c2 according to the value

of eq cpu=1, eq core=1 coefficient;}}}

Fig. 2. Trace Traversal Algorithm with implementation of compare two records func-
tion for shared data type. Wc1,c2 is a contribution for the affinity weight in CPG between
name1 and name2 components.

then

cpu id = � ht id/ht per cpu �,
core id = �(ht id (mod) ht per cpu)/ht per core �.

For each pair of records (r1,r2), we also calculate:

eq cpu =
{

1, if cpu id1 == cpu id2
0, otherwise

where cpu idi is a cpu id on which a record ri was taken. Similarly, we define
the following characteristic of a pair of records (r1,r2): eq ht, eq core, eq pid,
eq component, eq instance.

As it was shown in Examples 1-3 (Table 1), the order of accesses and their
types are critical for the understanding of the contribution of a pair (r1, r2)
to the affinity weight between name1 and name2 components. We define these
characteristics as WW , WR, RW and RR where the letters W and R denote
write and read access types correspondingly, and their order reflects the order
of records in the pair (r1, r2).

Depending on these characteristics, we decide on positive or negative contri-
bution for an affinity weight between name1 and name2 components.

88 O. Golovanevsky et al.

2.4 Calculating Affinity Coefficients

First, let us consider different combinations of these characteristics. Suppose
two records r1 and r2 belong to a trace of a shared data type, and satisfy the
following conditions: eq component = 0, eq instance = 1 and eq ht = 0. Then
we distinguish between the following groups of cases: records were taken on the
same core; different cores of the same CPU; and different CPUs. For each group,
depending on the combination of record access types, we estimate the effect
of the sequence (r1, r2) according to the following heuristic. We assume, with
equal probabilities, that before the sequence (r1, r2) took place, the component,
referenced in the second record r2, was in the L1 cache, or in the L2 cache, or

Table 3. The influence of the pair (r1, r2) on affinity between name1 and name2

components (shared data type, eq component = 0, eq instance = 1, eq ht = 0).

eq cpu=1,

eq core=1

RR,RW ,WR

and WW

Suppose both name1 and name2 components are co-located

in the memory so that they fit into the same cache line. Since

both ht1 and ht2 belong to the same core, the first access,

whether read or write, inevitable brings a cache line that con-

tains both name1 and name2 components into an L1 cache.

Then depending on an initial location of a component name2,

we win or nothing, or an L1 miss, or L2 miss.

eq cpu=1,

eq core=0

RR and RW In this case, if name1 and name2 components fit to the same

cache line, then uploading one of them into an L1 cache only

uploads the second into the common L2 cache. (It happens

because two accesses belong to the same CPU, but different

cores.) On the other hand, since a first access is a read, it

does not displace the component name2 from an L1 or an L2

cache, if it was there before. Thus the only winning situation

is when the component name2 was in the memory before the

sequence (r1, r2) took place.

eq cpu=1,

eq core=0

WR and WW This case is similar to the previous one, but since the first

access is a write, it invalidates the cache line, that contains

the name2 component in the L1 cache in case it was there

before. Thus the subsequent second access results in an L1

cache miss.

eq cpu=0 RR and RW It is clear that when two accesses belong to two different

CPUs, the first read access to the component name1 does

not affect the second access, regardless of the location of the

cache line containing both name1 and name2 components,

whether it is in L1, or L2 cache of the second CPU, or in the

memory.

eq cpu=0 WR and WW In this case, a first write access to the component name1 inval-

idates the cache line, which contains both name1 and name2

components, in the second CPU, independently of whether the

line was in L1 or L2 cache.

Trace-Based Data Layout Optimizations for Multi-core Processors 89

in the memory. Starting from one of these assumptions, we estimate, in terms of
cache misses, how the first access (record r1) influences the second access (record
r2), if they are located closely, i.e. fit into the same cache line. If the influence
is positive, i.e. we can win cache misses by co-locating the components name1,
name2, then we increase the affinity weight between them; otherwise we decrease
it. Tables 3 and 4 illustrate this heuristic for Power5 architecture.

Table 4. Affinity coefficients for a pair (r1, r2), measured in L1 and L2 cache misses
(shared data type, eq component = 0, eq instance = 1, eq ht = 0). + represent po-
tential win, - - potential loss. Three addenda of the affinity value correspond to the
different assumptions about initial location of the component name2: in an L1 cache
(the first addendum), in an L2 cache (the second addendum), or in the memory (the
third addendum).

combination eq cpu = 1, eq core = 1 eq cpu = 1, eq core = 0 eq cpu = 0

RR

no effect no effect no effect

+ L1 miss no effect no effect

+ L2 miss + L2 miss no effect

RW

no effect no effect no effect

+ L1 miss no effect no effect

+ L2 miss + L2 miss no effect

WR

no effect - L1 miss - L2 miss

+ L1 miss no effect - L2 miss

+ L2 miss + L2 miss no effect

WW

no effect - L1 miss - L2 miss

+ L1 miss no effect - L2 miss

+ L2 miss + L2 miss no effect

Additional advantage of this estimation is in its numerical value. Knowing
latencies of cache miss events for a specific architecture, and giving equal prob-
ability to the three initial positions of component2, we can estimate it as:

latency =
1
3
· (latency1 + latency2 + latency3),

where latencyi is the latency of event i, that happens as a consequence of the
execution of sequence (r1, r2), when initially component name2 was in the L1
cache, the L2 cache, or in the memory, respectively. We call these estimated
latencies affinity coefficients. Table 5 exemplifies affinity coefficients for Power5
architecture.

The final algorithm for comparison between two records (Fig. 2) comprises all
characteristics together. However, there is a difference between handling shared
and non-shared (process-private) types of data. For non-shared data types we
consider only records that belong to the same process, i.e. a condition eq pid=1
has to be added to (1) in Fig. 2, while for shared data we consider accesses

90 O. Golovanevsky et al.

Table 5. Affinity coefficients for Power5 platform

combination eq cpu = 1, eq core = 1 eq cpu = 1, eq core = 0 eq cpu = 0
RR 83 78 0
RW 83 78 0
WR 83 74 -156
WW 83 74 -156

from all processes. It can be noted, that for non-shared data the typical ‘if‘
case in algorithm is when hardware threads are equal. Obviously, the second
case represents process migration. For shared data algorithm, the situation is
opposite. A case when hardware threads are different is frequent. Therefore the
numerical estimation of affinity weights described above is especially important
for shared data.

3 Experimental Results

In this section:

1 How to apply our methodology on Power5 machine.
2 Our experience with a lightweight webserver, lighttpd.
3 The performance results.

3.1 The lighttpd Webserver

lighttpd is a configurable multi-process webserver. It features explicit paralleliza-
tion through usage of a fork() Linux function, so that most of a lighttpd code
is executed in parallel, equally dividing its workload among its processes. In
our runs, we used lighttpd version 1.4.19. http load [14] was selected as a client
application.

In the context of our methodology, a data type corresponds to a C-like struc-
ture type, and its components are structure fields. Among numerous lighttpd
structures, we selected the two most referenced. One, called server, represents
server configuration. It is instantiated when lighttpd starts. The only instance of
server is shared by all lighttpd processes. The structure has 51 fields, and its size
is 696 bytes. Second structure, called connection, represent an individual connec-
tion. Numerous connections are served by lighttpd simultaneously. Each lighttpd
process allocates a private array of connections. Size of connection structure is
584 bytes, and it contains 49 fields.

3.2 Platform

For our experiments we used Power5 platform running SUSE Linux Enterprise
Server (SLES) version 11. We found this platform appropriate for our purposes,
since it is characterized by long cache lines (Fig. 3), that strengthen the effect

Trace-Based Data Layout Optimizations for Multi-core Processors 91

Cache Type Line Size Total Size Miss Latency

L1 on-chip 128 bytes 32KB 13 cycles

L2 on-chip 128 bytes 1.9MB 235 cycles4

L3 off-chip 256 bytes 36M 235 cycles

Fig. 3. Power5 2-cpus 4-cores architecture with cache subsystem characteristics

of false sharing [28]. All the runs were executed on a dedicated blade with two
cpus, four cores, and eight hardware threads. We utilized getcpu() system call,
supported in this version of SLES, to fetch the hardware thread id (ht id) to be
printed in each record. Alternatively, sched setaffinity() Linux system call can
be used for assigning processes to specific hardware threads and preventing all
migrations.

Affinity coefficients for Power5 platform are presented in Table 5. They were
calculated by substituting the miss latency values (last column of the table in
Fig. 3) into the three addenda of the affinity estimation given in Table 4.

3.3 The Experimental Procedure

We instrumented lighttpd to generate data trace for connection and server. Linux
POSIX semaphores guaranteed atomicity of record generation, without caus-
ing additional migration of lighttpd processes. For trace generation, we run an
http load request of size that is by an order of magnitude smaller than for per-
formance measurements. For the Trace Traversal Algorithm we used window
size equal to the cache line size (128 bytes). The size of partition in Kernighan
and Lin [1] algorithm was selected similarly. Fields were divided into portions of
equal size and, if needed, partitions were completed by dummy fields in order to
guarantee the balance of the algorithm.

Although a field affinity, estimated by the CPG, can be used for a number
of data layout optimizations, we decided to apply structure reordering. Being
less effective than other data layout transformation [9], reordering requires nei-
ther safety analysis nor changes in data access sites and therefore can be easily

4 Although an L2 miss can result in an L3 hit, for the context of this paper we presume
that data is taken from the memory.

92 O. Golovanevsky et al.

applied. To reorder lighttpd structures, we concatenated the partitions, gener-
ated by Kernighan and Lin algorithm, and aligned them on 128 bytes.

3.4 Performance Results

To measure influence of our methodology on lighttpd, we generated traces and
corresponding layouts for each lighttpd configuration separately. The number of
processes in each configuration was power of two. The results were based on fifty
runs for each configuration. Workload was randomized so that the size of the
input pool exceeded the size of an individual request by an order of magnitude.

The influence of server and connection reordering on lighttpd run time is pre-
sented on Fig. 4b. Although lighttpd is not a memory bound application, we
received a time improvement from connection (11-12%) and server (4-5%) re-
ordering. As opposed to classical data layout optimizations, these results are
stable when the number of lighttpd processes is increased. Apparently, the con-
nection reordering is more influential than server reordering because there are
many instances of connection in lighttpd and only one instance of server. This
proportion is also reflected in the size of the traces. Thus traces of server are two
orders of magnitude smaller than traces of connection.

Fig. 4. Total time improvement obtained by applying (a) GCC data layout optimiza-
tions and (b) our methodology on lighttpd. The horizontal axis shows the number of
lighttpd processes, vertical — the improvement (in percents). (a) The results of applying
peeling plus indexing (Light bars) and reordering (Dark bars) to connection structure.
(b) The results of applying server reordering (Light bars) and connection reordering
(Dark bars) according to our methodology.

The L1 and L2 cache miss rates of loads and stores, received from server
reordering, are presented separately on Fig. 5. They prove that our methodology
was efficient in this case, but apparently its effect was not fully expressed in
lighttpd run time, since it was partly outweighed by heavy I/O operations.

Trace-Based Data Layout Optimizations for Multi-core Processors 93

Fig. 5. Cache miss rate improvement obtained by applying our methodology on lighttpd
server structure types. The chart (a) represents store misses, the chart (b) — load
misses. Dark line shows L1 miss rate improvement, Light line — L2 miss rate im-
provement. The horizontal axis shows the number of lighttpd processes, the vertical —
improvement (in percents).

4 Conclusions and Future Work

This paper presents a new methodology that allows extending the classical data
layout optimizations to be efficient for multi-core processors. As part of this
methodology, we developed a new technique for accurate numerical estimation
of the data affinity, suitable for both multi- and single-core environments. We
extended the classical data trace format with hardware-specific characteristics
that allowed us to correctly identify the negative or positive contributions into
the data affinity estimation. Finally, we showed how our methodology can be
implemented for Power5 architecture, and applied it to real world application
lighttpd. The performance results showed miss rate and total time improvements
stable when the number of lighttpd processes was increased.

Our methodology fits the classical schema of feedback directed optimizations.
The Trace Traversal Algorithm requires O(T) time, where T is the trace length.
Our traces are by an order of magnitude shorter, than those required for alterna-
tive techniques. Therefore we found our methodology suitable for incorporation
into a compiler. In case the time required for trace analysis significantly exceeds
overall compilation time, the trace analysis can be done off line. This option was
already adopted by binary optimization tools [22].

Although, we successfully applied our methodology on the real world appli-
cation lighttpd, checking it on the standard multi-threaded, multi-process suite
of benchmarks is the part of our future plan.

References

1. Kernighan, B., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell
sys. tech. J. 49, 291–308 (1970)

2. Lightweight open-source web server lighttpd, http://www.lighttpd.net/

http://www.lighttpd.net/

94 O. Golovanevsky et al.

3. Sinharoy, B., Kalla, R.N., Tendler, J.M., Eickemeyer, R.J., Joyner, J.B.: POWER5
system microarchitecure. IBM J. of Res. and Dev. 49(4/5), 505–522 (2005)

4. Shen, X., Gao, Y., Ding, C., Archambault, R.: Lightweight Reference Affinity Anal-
ysis. In: Proceedings of the 19th annual international conference on Supercomput-
ing, pp. 131–140. ACM, New York (2005)

5. Curial, S., Zhao, P., Amaral, J.N., Gao, Y., Silvera, R., Archambault, R.: MPADS:
Memory-Pooling-Assisted Data Splitting. In: Proceedings of the 7th international
symposium on Memory management, pp. 101–110. ACM, New York (2008)

6. Hagog, M., Tice, C.: Cache Aware Data Layout Reorganization Optimization in
GCC. In: Proceedings of the GCC Developers’ Summit, pp. 69–92 (2005),
http://www.gccsummit.org/

7. Golovanevsky, O., Zaks, A.: Struct-reorg: current status and future perspectives.
In: Proceedings of the GCC Developers’ Summit, pp. 47–56 (2007),
http://www.gccsummit.org/

8. Chakrabarti, G., Chow, F.: Structure Layout Optimizations in the Open64 Com-
piler:design, Implementaton and Measurements. In: Open64 Workshop at the In-
ternational Symposium on Code Generation and Optimization (2008),
http://www.capsl.udel.edu/conferences/open64/2008

9. Hundt, R., Mannarswamy, S., Chakrabarti, D.: Practical Structure Layout Opti-
mization and Advice. In: Proceedings of the International Symposium on Code
Generation and Optimization, pp. 233–244. IEEE Computer Society, Washington
(2006)

10. Zhao, P., Cui, S., Gao, Y., Silvera, R., Amaral, J.N.: Forma: A Framework for Safe
Automatic array Reshaping. ACM Transactions on Programming Languages and
Systems 30 (2007)

11. SPEC CPU2000, http://www.spec.org/cpu2000/
12. SPEC CPU2006, http://www.spec.org/cpu2006/
13. Link Time Optimizations,

http://gcc.gnu.org/wiki/LinkTimeOptimization
14. http load, multiprocessing http test client,

http://www.acme.com/software/http_load/
15. Chilimbi, T.M., Davidson, B., Larus, J.R.: Cache-conscious structure definition. In:

Proceedings of the ACM SIGPLAN 1999 Conference on Programming Language
Design and Implementation, pp. 13–24. ACM, New York (1999)

16. Chilimbi, T.M., Davidson, B., Larus, J.R.: Efficient Representation and Abstrac-
tions for Quantifying and Exploiting Data Reference Locality. In: Proceedings of
the ACM SIGPLAN 2001 Conference on Programming Language Design and Im-
plementation, pp. 191–202. ACM, New York (2001)

17. Ding, C., Zhong, Y.: Predicting Whole-Program Locality through Reuse Distance
Analysis. In: Proceedings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, pp. 245–257. ACM, New York (2003)

18. Shen, X., Shaw, J., Meeker, B., Ding, C.: Locality Apploximation Using Time. In:
Proceedings of the 34th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pp. 55–61. ACM, New York (2007)

19. Zhong, Y., Orlovich, M., Shen, X., Ding, C.: Array Regrouping and Structure
Splitting Using Whole-Program Reference Affinity. In: Proceedings of the ACM
SIGPLAN 2004 Conference on Programming Language Design and Implementa-
tion, pp. 255–266. ACM, New York (2004)

20. Jeon, J., Shin, K., Han, H.: Abstracting Access Patterns of Dynamic Memory
Using Regular Expressions. ACM Transactions on Programming Languages and
Systems 30 (2007)

http://www.gccsummit.org/
http://www.gccsummit.org/
http://www.capsl.udel.edu/conferences/open64/2008
http://www.spec.org/cpu2000/
http://www.spec.org/cpu2006/
http://gcc.gnu.org/wiki/LinkTimeOptimization
http://www.acme.com/software/http_load/

Trace-Based Data Layout Optimizations for Multi-core Processors 95

21. Agarwal, A., Hennessy, J., Horowitz, M.: Cache Performance of Operating System
and Multiprogramming Workloads. ACM Transactions on Computer Systems 431,
393–431 (1988)

22. Marathe, J., Mueller, F., Mohan, T., Mckee, S.A., De Suoinski, B.R., Yoo, A.:
METRIC: Memory Tracing via Dynamic Binary Rewriting to Identify Cache Inef-
ficiencies. ACM Transactions on Programming Languages and Systems 29, art.n.12
(2007)

23. Sarkar, S., Tullsen, D.M.: Compiler Techniques for Reducing Data Cache Miss
Rate on a Multithreaded Architecture. In: Stenström, P., Dubois, M., Katevenis,
M., Gupta, R., Ungerer, T. (eds.) HiPEAC 2007. LNCS, vol. 4917, pp. 353–368.
Springer, Heidelberg (2008)

24. Rabbah, R.M., Palem, K.V.: Data Remapping for Design Space Optimization of
Embedded Memory Systems. ACM Transactions on Embedded Computing Sys-
tems 2(2), 186–218 (2003)

25. Raman, E., Hundt, R., Mannarsway, S.: Structure Layout Optimization for Mul-
tithreaded Programs. In: Proceedings of the International Symposium on Code
Generation and Optimization, pp. 271–282. IEEE Computer Society, Washington
(2007)

26. Kandemir, M., Ramanujam, J.: Reducing False Sharing and Improving Spatial
Locality in a Unified Compilation Framework. IEEE Transactions on Parallel and
Distributed Systems 14, 337–354 (2003)

27. Ozturk, O., Chen, G., Kandemir, M.: Multi-Compilation: Capturing Interactions
Among Concurrently-Executing Applications. In: Proceedings of the 3rd conference
on Computing frontiers, pp. 157–170. ACM, New York (2006)

28. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 Programs:
Characterization and Methodological Considerations. In: Proceedings of the 22nd
International Symposium on Computer Architecture, pp. 24-36. ACM, New York
(1995)

29. Calder, B., Krintz, C., Austin, T.: Cache-Conscious Data Placement. In: Proceed-
ings of the 8th International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 139–149. ACM, New York (1998)

30. Youfeng, W., James, R.L.: Static Branch Frequency and Program Profile Analysis.
In: Proceedings of the 27th International Symposium on Microarchitecture, pp.
1–11. ACM, New York (1994)

Buffer Sizing for Self-timed Stream Programs on
Heterogeneous Distributed Memory

Multiprocessors

Paul M. Carpenter, Alex Ramirez, and Eduard Ayguadé

Barcelona Supercomputing Center, C/Jordi Girona, 31, 08034 Barcelona, Spain
{paul.carpenter,alex.ramirez,eduard.ayguade}@bsc.es

Abstract. Stream programming is a promising way to expose concur-
rency to the compiler. A stream program is built from kernels that com-
municate only via point-to-point streams. The stream compiler statically
allocates these kernels to processors, applying blocking, fission and fusion
transformations. The compiler determines the sizes of the communication
buffers, which affects performance since local memories can be small.

In this paper, we propose a feedback-directed algorithm that deter-
mines the size of each communication buffer, based on i) the stream
program that has been mapped onto processors, ii) feedback from an
earlier execution, and iii) the memory constraints. The algorithm ex-
poses a trade-off between throughput and latency. It is general, in that
it applies to stream programs with unstructured stream graphs, and it
supports variable execution times and communication rates.

We show results for the StreamIt benchmarks and random graphs. For
the StreamIt benchmarks, throughput is optimal after the first iteration.
For random graphs with stochastic computation times, throughput is
within 3% of optimal after four iterations. Compared with the previ-
ous general algorithm, by Basten and Hoogerbrugge, our algorithm has
significantly better performance and latency.

1 Introduction

Many applications, including video, audio, 3D graphics, and radio, contain abun-
dant task and data parallelism, but it is hard to extract from C source code.
Stream programming represents the application as concurrent kernels, interact-
ing only via point-to-point streams of data. This representation exposes concur-
rency to the compiler, is natural for signal processing, and easier to debug since
it is deterministic. As the industry moves towards multiprocessors [1], there is
increasing interest in portable, efficient, correct use of parallelism.

Much work on stream compilation has focused on blocking and allocation.
Blocking unrolls kernels to amortise fixed costs. Allocation fuses one or more
kernels, from the source program, into each task, in the executable, and maps
these tasks onto processors, balancing loads on processors and buses.

This paper considers a problem that has received less attention: allocating
memory for stream buffers, subject to memory constraints, when computation

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 96–110, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Buffer Sizing for Self-timed Stream Programs 97

times and communication rates are variable. This is an important problem, be-
cause it affects performance, as we explain in Section 2. The buffer sizes are
constrained by the available memory, which may be small. On the Cell Broad-
band Engine [2], for example, code and data must fit in the 256KB local store.

The inputs to the algorithm are the mapped stream program, a program trace
and the machine description, giving the target topology and memory budgets.
A simple model of computation times and communication rates, such as inde-
pendent normal distributions and Poisson arrivals, may be misleading, so the
only options are simulation and real execution. We use coarse-grain simulation,
but real execution could be used instead. The output is the buffer size for the
producer and consumer on each stream, which may be different.

The main contributions of this paper are:

– In Section 3, we describe a feedback-driven method to allocate stream buffers
in a distributed memory machine, when computation times and communi-
cation rates are variable.

– In Section 5.1, we describe two algorithms that analyse profiling information
to find bottleneck cycles caused by undersized communication buffers. The
first uses waiting times only; the second is more complex but more accurate.

– In Section 5.2, we describe an algorithm to allocate stream buffers using the
above algorithms, which converges quickly to a close-to-optimal allocation.

2 Motivation

Double buffering is a well-known technique to overlap communication and com-
putation. There are two situations, however, when a stream ought to be allo-
cated more than two buffers. The first is when a stream covers a long latency or,
equivalently, crosses more than one pipeline stage boundary. The second is when
there are short-duration load imbalances due to variable computation times or
communication rates.

The chain8 benchmark illustrates the first situation, and is shown on the left
of Figure 1. It has eight tasks in a pipeline, with streams between consecutive
tasks, and another stream between the first and last tasks. Figure 1(a) shows
the progress of the first and last tasks relative to the stream between them. The
vertical axis is time, and the horizontal axis is the position in the stream. At
any given time the producer is working on some interval of the stream, which it
owns. It starts at the top left of the plot, at the beginning of both the stream and
time, moving to the right when it sends data to the consumer, and continually
downward through time. The figure also shows the progress of the consumer.

The periodic pattern of waiting is caused by the interaction between two
dependencies. First, the consumer must wait for its data to arrive, which means
that it waits for the producer, plus the latency of the pipeline. This gives a
vertical dependency from producer to consumer. Second, the producer must
wait for an empty consumer-side buffer in which to send its data, and this gives
a horizontal dependency from consumer to producer.

98 P.M. Carpenter, A. Ramirez, and E. Ayguadé

Chain8 Producer-consumer

t1 t2 t8· · · t1 t2

0ms

50ms

100ms

0 40000 80000

Producer, t1Consumer, t8

0 40000 80000

(a) 2 buffers (b) 6 buffers

0ms

5ms

10ms

15ms

20ms

0 500 1000 0 500 1000

(c) 2 buffers (d) 5 buffers
Producer work Push Remote Wait Data Sent Pop Wait Consumer work

Fig. 1. Effect of consumer queue length on chain8 and producer-consumer

Figure 1(b) is for six consumer-side buffers, which increases throughput by
73%, and is sufficient for the producer to be always busy. This shows that double
buffering was not sufficient, but also that the number of buffers can be less than
one plus the difference in pipeline stage, which is the number of buffers allocated
by StreamRoller [3] and SPIR [4]; in this case eight.

The second situation is illustrated using the producer-consumer example on
the right of Figure 1. If the producer and consumer both have fixed computation
times and communication rates, then double buffering is sufficient. Sometimes,
single buffering at one or other end will be enough, even with good load bal-
ancing. Subfigure (c) shows the progress of this example, using double buffering,
when computation times are normally distributed. Increasing the number of con-
sumer buffers to five, as shown in subfigure (d), increases throughput by 20%.

The performance of the queue length assignment algorithm is quantified using
the utilisation, which is the percentage of time that the most heavily loaded
processor or bus is busy. Utilisation is proportional to throughput. If the stream
graph is acyclic, at least one resource ought to be 100% busy. If any resource
has utilisation less than 100%, it must be due to insufficient buffering.

The tradeoff between utilisation and the number of consumer buffers is il-
lustrated in Figure 2. Chain has linearly increasing utilisation until it reaches
100%. Producer-consumer achieves 99% utilisation with 3 producer and 4 con-
sumer buffers, and additional buffering yields diminishing returns.

3 The ACOTES Stream Compiler

This work is part of the ACOTES European project [5], which is developing an
open source stream compiler for embedded systems. The compiler will map a
portable stream program, written in the SPM [6], an annotated version of C,
onto a heterogeneous multicore system, applying blocking and task fusion.

The compiler statically allocates tasks onto processors. Although a dynamic
policy can achieve better load balance [7], it has greater overhead. On a dis-
tributed memory processor, instructions and state cannot be transferred on de-
mand through caches, so a context switch requires all data to be transferred at

Buffer Sizing for Self-timed Stream Programs 99

once. A context switch on the Cell SPE requires about 30μs [8]. The techniques
in this paper can be used to absorb small scale variation in complexity.

Figure 3 shows how the queue length assignment algorithm fits into this stream
compiler. The blocking and partitioning stages transform the program as de-
scribed in the introduction. The queue length assignment stage, which is the
focus of this paper, then determines the optimal buffer allocation.

2 4 6 8

0.
4

0.
6

0.
8

1.
0

Number of consumer buffers

R
es

ou
rc

e
ut

ili
sa

tio
n

prodcons: 3 producer buffers
prodcons: 2 producer buffers
prodcons: 1 producer buffer
chain11

Fig. 2. Memory-performance tradeoff

Blocking
and splitting

Partition
and allocate

Queue length
assignment

Partition

Buffer size
update

Allocation

Coarse grain
simulation

Metrics

Cycle
detection

Bottleneck

E
valu

ation

Final
allocation

Fail

Fig. 3. Mapping phase of the compiler

Our SPM language eliminates deadlock, so the objective function depends
only on performance and latency. The interaction between bounded memory
in process networks and deadlock, but not performance, has been explored in
depth [9,10,11], and these techniques can determine the minimum buffer sizes.

The queue length assignment algorithm is iterative, and consists of a coarse-
grain simulator, a cycle detection algorithm, a buffer size update algorithm, and
an evaluation algorithm. The cycle detection algorithm analyses metrics from
the simulator, and finds a bottleneck cycle. The buffer update algorithm chooses
the initial buffer allocation, and adjusts buffer sizes to resolve the bottleneck.
The evaluation algorithm monitors progress and decides when to stop, choosing
the buffer allocation that achieved the best performance-latency tradeoff.

4 Formalisation of the Problem

Queue length assignment seeks to find an optimal tradeoff, subject to memory
constraints, between throughput and latency We wish to find a close to Pareto
optimal solution: that is, neither latency nor throughput can be improved with-
out making the other one worse. We keep memory use within the constraints,
but do not try to minimise it.

The stream program is represented as a connected, not necessarily acyclic,
digraph, P = (T, S), where T is the set of vertices (tasks), and S is the set of
edges (streams). Each stream s has a producer and consumer buffer size in bytes,
bp(s) and bc(s), and a minimum number of buffers, sufficient to hold the working
set and avoid deadlocks. If P is acyclic, as for ACOTES, deadlock is impossible;
otherwise minimum sizes can be found using the references in Section 3. The
algorithm determines the actual number of buffers, np(s) and nc(s).

100 P.M. Carpenter, A. Ramirez, and E. Ayguadé

Each task has a trace, which is an alternating sequence of computation times
and primitives. There are four communications primitives and a fire primitive,
which marks the firing of a task; i.e. the calling of its work function inside an
implicit loop. The communications primitives use a push model similar to the
DBI variant of TTL [12]. They are described below, assuming, for simplicity, that
the producer and consumer have the same buffer size, which is not required. A
block is the contents of one buffer, and i and j count blocks, starting at zero.
The first argument is the stream.

ProducerAcquire(s, k): Wait for the producer buffer for block i+k to be avail-
able, meaning that the DMA transfer of block i + k − np(s) has completed.

ProducerSend(s): Wait for the consumer buffer for block i to be available,
meaning that the producer has received acknowledgement that block i−nc(s)
has been discarded. Then send the block and increment i.

ConsumerAcquire(s, k): Wait for block j + k to arrive in the consumer buffer.
ConsumerDiscard(s): Discard block j, send acknowledgement, and increment j.

The traces are interpreted using the ASM coarse-grain simulator, which takes
a machine description that defines the target [13]. Queue length assignment needs
only the memory constraints, which are represented using a bipartite graph,
H = (R, E). The set of vertices, R = P ∪ M , is a disjoint union of processors P
and memories M , and the edges, E, connect processors to their local memories.
Each memory has weight equal to the amount of memory available, in bytes,
for stream buffers. Figure 4 shows the memory constraint graph for the Cell
Broadband Engine; the memory weights depend on how much memory is already
being used. We will later assume that each processor is connected to a single
memory, but it may be shared with other processors.

SPE1 SPE2 SPE8

LS1 LS2 LS8

Processors, P :

Memories, M :

Fig. 4. Memory constraint graph for the Cell Broadband Engine

The evaluation algorithm and Section 6 of the paper require an estimate of
latency. Since it is orthogonal to the rest of the paper, and only differences in
latency matter, we use a scheme which ignores delays inside tasks.

Define ft(n) to be the time of firing, n = 0, 1, · · · , Mt−1 of task t, taken from
the fire primitive. Since each task contributes to a common amount of real-world
progress, normalise n to the interval 0 ≤ x < 1 by dividing it by Mt. Then
gt(x) = ft(�Mtx�) gives the time that task t was proportion x ∈ [0, 1) through
the calculation. The latency, L(x), is the difference between the largest gt(x) for
a sink and the smallest gt(x) for a source, which can, unfortunately, be negative
when multiplicities are variable. We report the average value of L(x).

Buffer Sizing for Self-timed Stream Programs 101

5 Description of the Algorithms

In this section, we describe several algorithms for cycle detection and buffer
size update. First we review the standard critical cycle detection algorithm,
and explain when it is applicable. We introduce our baseline algorithm, which
finds the bottleneck cycle by analysing the time each task is blocked on each
stream. This data is easy to obtain, and the algorithm is quite effective. We
then give an example that the baseline algorithm gets wrong, and propose the
token algorithm, which requires extra bookkeeping but achieves better results.
Finally, we describe several variants on the buffer update algorithm, which have
different tradeoffs between speed of convergence and latency.

ProducerAcquire

ProducerSend

ConsumerAcquire

ConsumerDiscard

(448, 0) (0, 1) (480, 0) (0, 1)(13, 1)
(13, 0)

(13, 1)

Style Waiting primitive (§4)
Bold ProducerAcquire
Dashed ConsumerAcquire
Solid ProducerSend
Dotted Computation

(a) Timed event graph (b) Types of edge

Fig. 5. Example timed event graph used by the critical cycle algorithm

5.1 Cycle Detection Algorithms

Critical cycle algorithm: The critical cycle algorithm [14,15,16] solves the
cycle detection problem for homogeneous Synchronous Data Flow (SDF) [17]
with constant computation times and communications latencies. In homogeneous
SDF, every time a producer or consumer fires, it pushes or pops a single buffer
on each stream. All tasks therefore fire at the same rate. The algorithm can be
extended to SDF, where each producer or consumer pushes or pops any fixed
number of buffers, but it requires expanding the graph, which can make it much
bigger [18].

Figure 5(a) shows how producer-consumer, assuming a single buffer at each
end, is represented by this algorithm. Each vertex is the return from a commu-
nications primitive. The edges are distinguished, for the diagram but not the
algorithm, using the convention in subfigure (b), which refers to the primitives
in Section 4. Each edge has weight, which is its fixed computation time or com-
munications latency, and height, which is the fixed difference between the firing
number, which counts the number of times a task has fired, at its two ends.

For example, at the producer side, the dotted line from ProducerAcquire to
ProducerSend, of weight 448 and height 0, represents computation inside a single
iteration. The solid line in the reverse direction, of weight 13 and height 1, is
because the producer cannot reuse its single buffer in the current firing until the
previous DMA has completed.

Throughput is constrained by the critical cycle, which is a cycle with maxi-
mum ratio of total weight divided by total height. There are several algorithms

102 P.M. Carpenter, A. Ramirez, and E. Ayguadé

to find such a cycle, many based on Karp’s Theorem [19], in time O(|S|2|T |) or
so [15], using the terminology of Section 4.

Baseline Algorithm: Our baseline algorithm is more general, because it sup-
ports variable data rates, computation times, and communication latencies. It
finds the bottleneck by analysing wait times in a real execution or simulation.

Figure 6 shows how the stream program and wait times are represented by
the algorithm. Subfigure (a) is an example stream graph with three tasks in a
triangle. Subfigure (b) is the wait-for graph, which has the same three edges per
stream as the timed event graph. Following convention for wait-for graphs, the
arrows point in the opposite direction, from the waiting task. The weight of an
edge is the proportion of the total time that the task at the initial vertex, or
tail, spent waiting in its communications primitive.

t0

t1

t2

t0

t1

t2

0.27

0.34

0.37

t0

t1

t2

0.77

0.09
0.05

0.13

(a) Program (b) Wait-for graph (c) (t0) has zero strength

Fig. 6. Example weighted wait-for graphs

As for the critical cycle algorithm, performance is constrained by dependence
cycles in the wait-for graph. We will use two bounds, one local and one global,
on the maximum increase in performance from relaxing a cycle; i.e. increasing
buffering on one of the streams in the cycle that gets full.

Consider the potential benefit from relaxing cycle C1 = (t0 t2 t1). This can
only be done by increasing buffering on the stream from t0 to t2. Since t1 waits
for 27% of the time, during the ConsumerAcquire primitive in this cycle, we could
reduce the execution time of t1 by at most 27%, before the cycle disappears. Since
all tasks execute for nearly the same amount of wallclock time, any change in
throughput will cause all vertices to have their total waiting time, not just on
the edges of this cycle, reduced by the same amount. It is therefore likely that
the edge in the cycle that disappears first is its weakest edge.

The local bound is the weight of cycle C, denoted w(C), which is the minimum
weight of its edges. If there is no cycle with non-zero weight, then utilisation is
already 100%. This is because every directed acyclic graph has a vertex with no
outgoing edge, which corresponds to a task that never has to wait.

Figure 6(c) is the motivation for the global bound. The maximum weight cycle
is the loop on t0, of weight 0.13, which we will call C2. A moment’s reflection,
however, shows that C2 cannot really be a bottleneck since neither t1 nor t2 ever
wait for t0, even indirectly. If we reduced the time t0 spent waiting on this loop,
it cannot make t1 or t2 go any faster. Since throughput would be unchanged, t0

Buffer Sizing for Self-timed Stream Programs 103

must spend the same total amount of time waiting, so the waiting time would
move from ProducerAcquire to ProducerSend (see Figure 5(b)).

The global bound is the strength of the cycle, denoted s(C), which is the
lowest value of the maximum flow through a single path to the cycle, starting
from any other vertex. Since there is no path at all from t1 to C2 in Figure 6,
the cycle has zero strength: s(C2) = 0. In contrast, the cycle (t1 t2) has strength
0.77, because this is the weight of the only path from the only other vertex, t0.
Increasing the performance of t1 and t2 by any means could reduce execution
time of the program as a whole by 77%. This cycle is the bottleneck, and it has
weight 0.05. The requirement that flow be through a single path makes little
difference in practice, but it reduces considerably the algorithmic complexity.

It is possible for the wait-for graph to be disconnected; e.g. when tasks wait
for each other only through bus contention. This happens rarely, but it causes all
strengths to be zero. Therefore, when all strengths are zero but the utilisation
is below some threshold (currently 100%), the strengths are ignored. Since it
almost never happens, there is little reason to be more sophisticated.

We first calculate the strength of each vertex by computing the all-pairs bot-
tleneck paths [20]. This finds, for every pair of vertices, the value of the maximum
flow through a single path from the first vertex to the second. It is solved using
a variant of Dijkstra’s algorithm, running Dijkstra for each vertex to find the
maximum flow paths into it. The strength of that vertex is given by the path
with the lowest flow. The total execution time is O(|S||T |+ |T |2log|T |), using a
Fibonacci heap [21,22], with the terminology of Section 4.

The algorithm finds a cycle with the maximum value of the minimum of the
local and global bounds. It is straightforward to show that we can take account
of both simply by replacing the weight of every edge e = (a, b) by a new weight,
w′(e) = min (w(e), s(a)). A maximum weight cycle, according to w′, can be
found in time O(|S| log |S|), where S is the set of streams. To find out whether
there is a cycle of weight ≥ W , for some W , just check whether there is any
cycle if you ignore all edges of weight < W . This can be done in time O(|S|) by
attempting to perform a topological sort. To find a maximum weight cycle, first
sort the edge weights, and perturb them so that no two are exactly the same.
Then use bisection on the sorted edge weights.

The baseline algorithm uses data that is easy to obtain, and is usually quite
effective, but it has one limitation. Since each task is represented by a single
vertex, it cannot “see” what is happening inside them.

Figure 7(a) shows an example where the baseline algorithm makes a bad
decision. The maximum weight cycle is (t1 t0 t2), which has weight 0.50. Whether
or not this is a bottleneck depends on the internal behaviour of tasks t1 and t2.
The order of operations per firing of task t1 is shown in subfigure (b). If we
also know that task t1 always waits in step 5, then reducing the waiting time in
step 1 will simply result in a longer waiting time in step 5. It can never advance
the push in step 6, so the critical cycle cannot be (t1 t0 t2).

Token Algorithm: The token algorithm addresses this problem by tracking de-
pendencies through tasks. This is somewhat similar to causal chains [23], except

104 P.M. Carpenter, A. Ramirez, and E. Ayguadé

t3

t0

t1

t2

0.52 s01
1.00

s02

0.50

s12
0.48

s13

0.52

s23

Primitive Wait
time

1. ConsumerAcquire(s01, 0) 0.52
2. ProducerAcquire(s13, 0) n/a
3. ProducerAcquire(s12, 0) n/a
4. ConsumerDiscard(s01) n/a
5. ProducerSend(s13) 0.48
6. ProducerSend(s12) n/a t3

t0

t1

t2

s02

s13

0.52

0.48

0.98

0.48

0.48

0.48

0.47

(a) Wait-for graph (b) Order of primitives in t1 (c) Indirect wait-for graph

Fig. 7. Example where baseline fails

that the aim is to resolve performance bottlenecks rather than artificial dead-
locks. Their algorithm fixes a deadlock after it happens, when all tasks have got
stuck, but we cannot expect all tasks in a cycle to ever be waiting simultaneously.

During the simulation, or at runtime in a dynamic scheme, each task t has a
current token, St, which is the stream that most recently made t wait, directly or
indirectly, because it got full. It has a current waiting time, Wt, which measures
how much the task has already had to wait, so that only increases in waiting
times are charged to streams. It also has a waiting vector, (Vt)s, which gives the
total waiting time for each stream in the whole program. Each consumer buffer
c has a current token, Sc, and current waiting time, Wc, which together record
the producer’s problem at the time the block in that buffer was sent.

When task p blocks for time τ because output stream s is full, it sets Sp ← s
and increases both Wp and Vp[s] by τ . When task p sends a block using buffer c
on output stream s, it records a copy of its current state: Sc ← Sp and Wc ← Wp.
When a task q blocks for time τ because input stream s is empty, it also, after
the data arrives, reads Sc and Wc, from the consumer buffer c containing the end
of the data. It then updates its current token Sq ← Sc to indicate that it had to
wait, indirectly, for whichever stream the producer had to wait for, and calculates
the increase in current waiting time ΔWq ← min(τ, Wc − Wq), which can be
either positive or negative. If it is positive, then Vq [Sq] is increased by ΔWq. In
either case, the current waiting time is then updated using Wq ← Wq + ΔWq.

The waiting vectors are used to construct an indirect wait-for graph, as shown
in Figure 7(c). If Vt[s] > 0, there is an edge from task t to stream s with weight
Vt[s]/L, where L is the total execution time of the run, in the same units. Each
stream s also produces an edge from s to its consumer q. The weight of this edge
is s(q), the strength of q, as defined for the baseline algorithm.

This is effectively viewing each stream as an actor in its own right, which is
always blocked waiting for the consumer to discard its data. This is the most
convenient place to take account of the strengths, which are still relevant by the
same argument as before. The token algorithm finds the maximum weight cycle
in the same way as the baseline algorithm.

Figure 8 shows a second example which clarifies the need for the cycle-based
algorithm outlined above. In the stream program of Figure 8(a), task t0 pushes

Buffer Sizing for Self-timed Stream Programs 105

t0

t1 t2 t3

t4 t5 t6

s01

s03

s04

s06

t0

t1 t2 t3

t4 t5 t6

s03

s06

0.25

0.49 0.49 0.48

0.25

0.50 0.50 0.50

(a) Stream graph for bichain4 (b) Indirect wait-for graph

Fig. 8. Token algorithm: bichain4 example

the outputs in the cyclic order (s01 s03 s04 s06), waiting only in ProducerSend for
streams s03 and s06 due to their longer latency.

When it pushes on stream s04 of the right branch, the most recent wait was
due to stream s03 being full, so it sends the token for s03. Similarly, it sends the
token for stream s06 to stream s01 of the left branch. The indirect wait-for graph
is shown in Figure 8(b), with cycle (t3 s06 t6 s03) going through both streams.

5.2 Buffer Size Update Algorithms

The cycle detection algorithm returns a set of edges in the wait-for graph that
cause a bottleneck cycle by becoming full. Relaxing the cycle involves increasing
memory on one or more of these edges. The purpose of the buffer size update
algorithm is to determine which edges to enlarge, and by how many buffers.

Our simplest algorithm is miserly, meaning that it starts at the minimum
number of buffers, mentioned in Section 4, and each iteration increases the allo-
cation of a single buffer by one. The other algorithms speculatively assign spare
memory, and only take it away if it is needed elsewhere. For all these algorithms,
each stream s demands some number ds of buffers, as for the miserly algorithm,
and requests another rs to be granted out of unused memory, if there is any.
When there is not enough memory to grant all requests within some memory,
we used the following algorithm. The total request in bytes is R =

∑
rsbc(s),

where bc(s) is the size in bytes of a single consumer buffer for stream s. If M
bytes are left after granting all demands, so R > M , then each stream is initially
granted �rjM/R� extra buffers, then possibly one more, if it fits.

In our first alternative, double, each edge requests an extra buffer if it is
currently allocated only one. In our second alternative, exponential, the request
is for some multiple, f − 1, of the number of buffers demanded. We still use a
greedy update algorithm, so that when the number of buffers is increased, the
edge demands, on the next iteration, one more buffer than it was given in total
last time. We used f = 2, so an edge will demand 2k − 1 buffers, and request an
equal number, for k = 1, 2, · · · , until it is given fewer buffers than it wants.

The third alternative, level, uses the top level, the length of the longest path
from a source node, and bottom level, the length of the longest path to a sink
node. The algorithm the same as exponential, except that the request is the max-
imum of a) f − 1 times the number of buffers demanded, b) twice the difference

106 P.M. Carpenter, A. Ramirez, and E. Ayguadé

in top level, and c) twice the difference in bottom level. This tries to give a high
initial allocation to streams that cross a high latency.

6 Evaluation

We used the StreamIt 2.1.1 benchmarks [24], random graphs, and sixteen exam-
ples, including chain8, producer-consumer, bad-baseline, and bichain4. For the
StreamIt benchmarks, we used the program graph, work estimates and commu-
nications rates generated by the StreamIt compiler, and used our algorithm [25]
to produce partitions for an IBM QS20 blade, which has two Cell BEs.

Buffer size update: The first three rows of Figure 9 compare the buffer up-
date algorithms from Section 5.2. These plots also contain results for Basten
and Hoogerbrugge (B&H) [23] and modified StreamRoller [3], which will be dis-
cussed in Section 7. The left column shows as a function of the iteration number,
the utilisation, which is proportional to throughput, as remarked at the end of
Section 2. The right column shows the tradeoff between latency and utilisation.
Any points that cannot be Pareto optimal, because they are beaten on both
utilisation and latency by some point to the top-left, have been removed.

The first row is for random stochastic graphs with 32 tasks and 50 streams.
The graphs are connected and acyclic, but otherwise unstructured. The com-
putation time of each task is normally distributed with a random mean and
variance (clamped above zero). Notice that B&H has poor performance and,
since it increases buffering where it isn’t necessary, high latency.

We found the upper bound on utilisation using an exhaustive search over all
allocations of the buffers on the processor, p, whose memory bound caused the
level algorithm to terminate. All other queues on other processors were set to
their maximum possible size, assuming that all other queues in the same memory
had their minimum size. Since this tends to allow a task near the beginning of
the stream graph to work flat out filling downstream buffers, the steady state
utilisation would be known only after many firings. Instead, we took the utilisa-
tion of the task on p, and scaled by the ratio of the long-term processing times
of the most heavily loaded processor and of p.

The second row shows the StreamIt 2.1.1 benchmarks, with an unroll factor
of 100. The third row shows the stochastic StreamIt benchmarks, which have
normally-distributed computation times, and are intended to show how the al-
gorithms fare for realistic program graphs.

The left column shows that the level algorithm always provides the fastest
convergence. The modified StreamRoller algorithm is similar to the first iteration
of the level algorithm, and B&H is considerably worse. The level heuristic initial
allocation is within 15% of the upper bound on optimal performance, and is
increased to within 3% of optimal after four iterations.

Cycle detection: We evaluate the cycle detection algorithms only, using greedy
buffer update without memory constraints. When task execution times and com-
munications rates are constant, and bus contention is negligible, the critical cycle
algorithm of Section 5.1 is optimal. The last row of Figure 9 shows the utilisation

Buffer Sizing for Self-timed Stream Programs 107

Utilisation vs iteration number Utilisation-latency tradeoff

Buffer size update

Stochastic
random

G(32, 50)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration number

U
til

is
at

io
n

upper bound (see text)

level
exponential
double
miserly
B&H
streamroller

0.4 0.5 0.6 0.7 0.8

0.
5

0.
6

0.
7

Latency

U
til

is
at

io
n

upper bound level
exponential
double
miserly
B&H
streamroller

StreamIt
on 2-Cell

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration number

U
til

is
at

io
n

level
exponential
double
miserly
B&H
streamroller

0.50 0.55 0.60 0.65

0.
90

0.
94

0.
98

Latency

U
til

is
at

io
n

level
exponential
double
miserly
B&H
streamroller

Stochastic
StreamIt

on 2-Cell

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration number

U
til

is
at

io
n

upper bound (see text)

level
exponential
double
miserly
B&H
streamroller

0.45 0.50 0.55 0.60 0.65 0.70

0.
7

0.
8

0.
9

1.
0

Latency

U
til

is
at

io
n

upper bound

level
exponential
double
miserly
B&H
streamroller

Cycle detection

Stochastic
G(8, 12)

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration number

U
til

is
at

io
n

token
baseline
crit. cycle

0.6 0.7 0.8 0.9

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Latency

U
til

is
at

io
n

token
baseline
crit. cycle

Fig. 9. Comparison of the buffer size update and cycle detection algorithms

108 P.M. Carpenter, A. Ramirez, and E. Ayguadé

and latency for an average of six random graphs with stochastic computation
times. The poor performance of the critical cycle algorithm (about 60% utili-
sation), is because it is unable to detect cycles that arise from execution time
variability. The baseline and token algorithms achieve similar performance, al-
though the token algorithm achieves slightly lower latency.

We also evaluated the cycle detection algorithms when there is high bus util-
isation, but for space reasons did not include the graph. The critical cycle al-
gorithm cannot model increased communication latency due to contention [26,
§E.5]. For a benchmark with a single producer task connected to two consumers,
and bus usage close to 100%, the critical cycle algorithm achieves about 70%
utilisation. The baseline and token algorithms measure waiting times directly,
and consistently achieve 100% utilisation.

7 Related Work

Basten and Hoogerbrugge (B&H) [23] is the only other work that also targets
unstructured graphs with variable multiplicities and computation times. Their
algorithm sets each FIFO buffer size to be proportional to the amount of data
streaming through it. This gives a relative size for each buffer, but it is not
motivated by the underlying problems discussed in Section 2, and has poor
performance in Figure 9. We interpreted B&H to mean double buffering on the
producer side, with all the remaining memory allocated to consumer buffers,
rounding the number of buffers up to an integer. If rounding up causes the
buffer allocation to not fit, we reduced the target memory use until it did fit.
The chain8 example in Figure 1 shows the problem with this heuristic. If all data
rates are the same and there is enough memory on tn for ten buffers, Basten and
Hoogerbrugge allocates five buffers to each stream for 70% utilisation, while our
heuristic allocates eight to (t1, tn) and two to (tn−1, tn) for 100% utilisation.

The SDF tool [27] uses an exhaustive search to find all Pareto-optimal buffer
allocations for an SDF graph. It requires exponentially many steps, and only
supports constant computation times and data rates. For an n-way split or join
where each stream needs b buffers, their algorithm requires nb steps, while our
level algorithm requires O(n log2 b) steps to find a single solution.

StreamRoller [3] performs buffer allocation as part of software pipelining,
but it is restricted to graphs with fixed multiplicities and computation times.
The algorithm is similar to the first iteration of the level algorithm, in that
the number of buffers allocated to a stream is always one plus the difference in
pipeline stage. The chain8 example in Section 2 shows that this is conservative,
even when there is no variability. Hence the StreamRoller algorithm can require
more memory than necessary; if there is insufficient memory, it fails.

Due to the unrolling factor we used, StreamRoller failed on at least one
benchmark for all of the graphs in Figure 9. This is true even for the StreamIt
benchmarks, for which our algorithm achieves 100% utilisation on at least one
processor. We modified StreamRoller to use our arbitration scheme described
in Subsection 5.2, and obtained the results shown in Figure 9. Even with this

Buffer Sizing for Self-timed Stream Programs 109

modification, however, our iterative algorithm has about 13% higher performance
for the stochastic random graphs and stochastic StreamIt benchmarks.

The SPIR compiler [4] extends StreamRoller to find a partition and software
pipeline subject to memory and latency constraints. Unlike our approach, com-
putation times and communication rates are constant. As for StreamRoller, the
number of buffers allocated to a stream is one plus the difference in pipeline
stage. Since the problem cannot be solved exactly using ILP, it is a heuristic
which uses two passes of the commercial CPLEX ILP solver. Our algorithm
could be used to improve the buffer allocation of a partition produced by SPIR.

8 Conclusions

In this paper, we presented a feedback-directed algorithm to allocate memory
for communications buffers in a statically-allocated stream program. The algo-
rithm achieves close to optimal performance, even when StreamRoller fails due
to insufficient memory. It achieves significantly higher performance and lower
latency than the previous fully general algorithm, by Basten and Hoogerbrugge.

Acknowledgements

The researchers at BSC-UPC were supported by the Spanish Ministry of Sci-
ence and Innovation (contract no. TIN2007-60625), the European Commission in
the context of the ACOTES project (contract no. IST-34869) and the HiPEAC
Network of Excellence (contract no. FP7/ICT 217068). We would also like to
acknowledge our partners in the ACOTES project for the insightful discussions
on the topics presented in this paper.

References

1. Olukotun, K., Hammond, L.: The future of microprocessors. Queue 3(7), 26–29
(2005)

2. Pham, D., Behnen, E., Bolliger, M., Hofstee, H.: et al.: The design methodology and
implementation of a first-generation Cell processor: a multi-core SoC. In: Custom
Integrated Circuits Conference 2005, pp. 45–49 (2005)

3. Kudlur, M., Mahlke, S.: Orchestrating the execution of stream programs on mul-
ticore platforms. In: Proceedings of the 2008 ACM SIGPLAN conference on Pro-
gramming language design and implementation, pp. 114–124 (2008)

4. Choi, Y., Lin, Y., Chong, N., Mahlke, S., Mudge, T.: Stream Compilation for
Real-Time Embedded Multicore Systems. In: Proceedings of the 2009 International
Symposium on Code Generation and Optimization, vol. 00, pp. 210–220 (2009)

5. IST-034869, A.: Advanced Compiler Technologies for Embedded Streaming,
http://www.hitech-projects.com/euprojects/ACOTES/

6. ACOTES: IST ACOTES Project Deliverable D2.2 Report on Streaming Program-
ming Model and Abstract Streaming Machine Description Final Version (2008)

http://www.hitech-projects.com/euprojects/ACOTES/

110 P.M. Carpenter, A. Ramirez, and E. Ayguadé

7. Becchi, M., Crowley, P.: Dynamic thread assignment on heterogeneous multipro-
cessor architectures. In: Proceedings of the 3rd conference on Computing frontiers,
pp. 29–40. ACM, New York (2006)

8. Hofstee, H.P.: Power efficient processor architecture and the cell processor, pp.
258–262. IEEE Computer Society, Los Alamitos (2005)

9. Parks, T.: Bounded scheduling of process networks. PhD thesis, University of Cal-
ifornia (1995)

10. Buck, J.: Scheduling dynamic dataflow graphs with bounded memory using the
token flow model. PhD thesis, University of California (1993)

11. Geilen, M., Basten, T.: Requirements on the execution of Kahn process networks.
LNCS, pp. 319–334. Springer, Heidelberg (2003)

12. van der Wolf, P., de Kock, E., Henriksson, T., Kruijtzer, W., Essink, G.: Design
and programming of embedded multiprocessors: an interface-centric approach. In:
Proceedings of the 2nd international conference on Hardware/software codesign
and system synthesis, pp. 206–217 (2004)

13. Carpenter, P.M., Ramirez, A., Ayguade, E.: The Abstract Streaming Machine:
Compile-Time Performance Modelling of Stream Programs on Heterogeneous Mul-
tiprocessors. In: SAMOS Workshop 2009, pp. 12–23. Springer, Heidelberg (2009)

14. Ito, K., Parhi, K.: Determining the minimum iteration period of an algorithm. The
Journal of VLSI Signal Processing 11(3), 229–244 (1995)

15. Dasdan, A., Gupta, R.: Faster maximum and minimum mean cycle algorithms for
system-performance analysis. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 17(10), 889–899 (1998)

16. Govindarajan, R., Gao, G.: A novel framework for multi-rate scheduling in DSP ap-
plications. In: International Conference on Application-Specific Array Processors,
pp. 77–88 (1993)

17. Lee, E., Messerschmitt, D.: Synchronous data flow. Proceedings of the IEEE 75(9),
1235–1245 (1987)

18. Lee, E.A.: A coupled hardware and software architecture for programmable digital
signal processors (synchronous data flow). PhD thesis (1986)

19. Karp, R.: A characterization of the minimum cycle mean in a digraph. Discrete
Mathematics 23(3), 309–311 (1978)

20. Pollack, M.: The maximum capacity through a network. Operations Research, 733–
736 (1960)

21. Fredman, M., Tarjan, R.: Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM (J. ACM) 34(3), 596–615 (1987)

22. Vassilevska, V., Williams, R., Yuster, R.: All-pairs bottleneck paths for general
graphs in truly sub-cubic time. In: Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing, pp. 585–589. ACM, New York (2007)

23. Basten, T., Hoogerbrugge, J.: Efficient execution of process networks. Communi-
cating Process Architectures (2001)

24. Gordon, M., Thies, W., Amarasinghe, S.: Exploiting coarse-grained task, data, and
pipeline parallelism in stream programs. ASPLOS, 151–162 (2006)

25. Carpenter, P.M., Ramirez, A., Ayguade, E.: Mapping Stream Programs onto Het-
erogeneous Multiprocessor Systems. In: CASES 2009, October 11-16 (2009)

26. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Ap-
proach, 4th edn. Morgan Kaufmann, San Francisco (2007)

27. Stuijk, S., Geilen, M., Basten, T.: Exploring trade-offs in buffer requirements and
throughput constraints for synchronous dataflow graphs. In: Proceedings of the
43rd annual conference on Design automation, pp. 899–904 (2006)

Automatically Tuning Sparse Matrix-Vector
Multiplication for GPU Architectures

Alexander Monakov1, Anton Lokhmotov2, and Arutyun Avetisyan1,�

1 Institute for System Programming of RAS,
25 Solzhenitsyna street, Moscow, 109004, Russian Federation

{amonakov,arut}@ispras.ru
2 Department of Computing, Imperial College London,
180 Queen’s Gate, London, SW7 2AZ, United Kingdom

anton@doc.ic.ac.uk

Abstract. Graphics processors are increasingly used in scientific appli-
cations due to their high computational power, which comes from hard-
ware with multiple-level parallelism and memory hierarchy. Sparse matrix
computations frequently arise in scientific applications, for example, when
solving PDEs on unstructured grids. However, traditional sparse matrix
algorithms are difficult to efficiently parallelize for GPUs due to irregu-
lar patterns of memory references. In this paper we present a new storage
format for sparse matrices that better employs locality, has low memory
footprint and enables automatic specialization for various matrices and fu-
ture devices via parameter tuning. Experimental evaluation demonstrates
significant speedups compared to previously published results.

1 Introduction

Sparse linear algebra is an important class of algorithmic methods on sparse
matrices, included by researchers from Berkeley into their set of motifs (formerly
known as dwarfs) [1]. In many applications, dimensions of sparse matrices exceed
tens of thousands rows and columns. However, the fraction of non-zero elements
is small relative to the total number of elements, typically in the order of tens of
non-zero elements or fewer per row. Therefore, sparse matrices require specialized
storage formats with space requirements proportional to the number of non-zero
elements, and consequently specialised algorithms.

An example of a problem that requires operations with sparse matrices is
solving a partial differential equation using one of the finite elements methods.
It includes solving a system of linear equations Ax = b, where non-zero elements
of A are arranged in a regular or an irregular pattern depending on whether a
structured or unstructured mesh is used for discretising the original problem.

Solving Ax = b for sparse A is usually done via iterative methods, in which
case the most time-consuming step is computing the matrix-vector product y =

� We acknowledge financial support by the Royal Society and the Russian Foundation
for Basic Research (grant 08-07-91850-KO_a).

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 111–125, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

112 A. Monakov, A. Lokhmotov, and A. Avetisyan

y + At for some t. In the conjugate gradient method, for example, other steps
operate on vectors and are relatively easy to implement efficiently.

In this paper we discuss implementing the sparse matrix-vector product on
NVIDIA GPUs with no specific assumptions about the structure of A. If values
or locations of non-zero elements can be efficiently computed (e.g. when A is
derived from discretization on a regular mesh, its non-zero elements occupy
several diagonals), a specialized implementation will likely demonstrate better
performance. Optimizing for symmetric sparse matrices A or computing y =
y + At for multiple t simultaneously is also out of the scope of this article.

We present a new storage format and show that our tuned implementation
achieves better performance than other implementations we are aware of. Our
implementation can be automatically tuned for other devices in the future.

2 Background

2.1 Sparse Matrix-Vector Multiplication

We implement sparse matrix-vector multiplication (SpMV), that is y = y+Ax,1
where A is a N ×M sparse matrix, x and y are dense M -element and N -element
vectors, respectively.

SpMV performance largely depends on the memory bandwidth: for every ma-
trix element Aij only two floating-point operations are performed (a multiplica-
tion by input vector element xj and accumulation to output vector element yi).
Since the memory bandwidth of GPUs exceeds that of CPUs by nearly an order
of magnitude,2 using GPUs for SpMV is particularly attractive.

When performing SpMV, memory bandwidth is used for:

1. Reading elements of A, specifically:
(a) Reading non-zero elements of A;
(b) Reading explicitly stored zero elements of A, if required by the storage

format;
2. Reading coordinates of stored elements;
3. Servicing cache misses on accesses to vector x (if it is allocated in read-only

cached texture memory, as in our implementation);
4. Reading and writing elements of vector y.

Bandwidth consumption by items 1a and 4 is not affected by the matrix stor-
age format. In our previous work [6] we have presented an approach to optimize
SpMV by using blocked storage format, which allows a reduction in space re-
quired for storing coordinates (item 2) and explicitly encode locality in references
to x (potentially improving item 3) at the cost of storing additional zero elements
(item 1b).
1 Matrix multiplication is fused with vector addition to provide the form usually re-

quired by applications.
2 For example. the theoretical peak bandwidth of NVIDIA GeForce GTX 285 is 159

Gbytes/s, and peak bandwidth of an Intel Core i7 system with DDR3 memory
operating at 1066MHz in triple-channel mode on Intel X58 chipset is 25.6 Gbytes/s.

Automatically Tuning Sparse Matrix-Vector Multiplication 113

⎛
⎜⎜⎝

a 0 b 0
0 c 0 d
0 e 0 0
0 0 0 f

⎞
⎟⎟⎠

row 0 0 1 1 2 3
column 0 2 1 3 1 3
value a b c d e f

for (i = 0; i < NZ; i++)
y[row[i]] += x[column[i]] * value[i];

Matrix Representation SpMV pseudocode

Fig. 1. An example of the COO format. NZ is the number of non-zero elements.

In this paper we present a new non-blocked storage format and SpMV imple-
mentation, which also has space overhead due to explicitly stored zero elements,
but can be tuned to achieve higher performance than other implementations.

2.2 Sparse Matrix Storage Formats

In this section, we briefly describe commonly used formats for storing sparse
matrices and motivate our desire of a specialized storage format for implementing
SpMV on a GPU.

Coordinate (COO) Format. For each non-zero element, both its column and
row indices are explicitly stored (Fig. 1). Elements may either be stored in any
order, or elements from the same row may be required to be packed together.
This format is well suited with respect to storage space for very sparse matrices
with many empty rows, since the storage size is strictly proportional to number
of non-zero elements (i.e. it does not have any overhead due to empty rows).

Implementing SpMV on a GPU with this storage formats requires doing
atomic updates to y vector from parallel threads, which leads to very low per-
formance. With the additional restriction that elements from the same row are
grouped together, a more elaborate implementation is possible [3], which allows
a reduction in the number of updates to y.

Compressed Sparse Row (CSR) Format. Non-zero elements are sorted by
the row index and stored in array value (ordering of elements within a row is
not specified). For each element, only its column index is explicitly stored in
array column (Fig. 2). Additionally, vector row_start stores indices in value of
the first element in each row. Vector row_start has size N + 1; the additional
element at the end stores the total number of non-zero elements to allow uniform
access to all rows.

Implementing SpMV on a GPU with this format is inefficient, since distribut-
ing work across multiple threads leads to various problems. Assigning one thread
per row leads to an inefficient memory access pattern to the column and value
arrays (due to the lack of coalescing, see Section 2.3), and allocating multiple
threads per row to ensure coalescing leads to many idle threads when the aver-
age number of non-zero elements per row is fewer than the number of assigned
threads.

114 A. Monakov, A. Lokhmotov, and A. Avetisyan

⎛
⎜⎜⎝

a 0 b 0
0 c 0 d
0 e 0 0
0 0 0 f

⎞
⎟⎟⎠

row_start 0 2 4 5 6
column 0 2 1 3 1 3
value a b c d e f

for (r = 0; r < N; r++)
for (i = row_start[r];

i < row_start[r+1];
i++)

y[r] += x[column[i]] * value[i];

Matrix Representation SpMV pseudocode

Fig. 2. An example of the CSR format

ELLPACK/ITPACK Format. This format is used in the ELLPACK and
ITPACK software packages to accelerate SpMV for vector processors [5]. Let K
be the maximal number of non-zero elements in one row of the matrix. Then,
for each row, exactly K elements are stored (extra zero elements are included
for rows that contain less that K non-zero elements). As in the CSR, elements
are sorted by row index and only column indices are explicitly stored (Fig. 3).

Note that column and value arrays in the example are stored in column-
major order so that accesses are contiguous with respect to the outer loop. This
allows memory access coalescing for concurrent CUDA threads, each executing
one iteration of the outer loop.

When the number of non-zero elements per row is uneven, overhead from
extra zero elements decreases performance. In extreme cases (e.g., a few rows
with thousands of non-zero elements in an otherwise very sparse matrix) this
overhead becomes larger than useful payload, making the format inapplicable.

Bell and Garland [3] propose a hybrid storage format based on ELLPACK
and COO to address this issue. They choose K for ELLPACK format based on
row fill histogram and store extra elements from rows with more that K non-
zero elements in COO format so that overall performance is maximized (relative
performance of SpMV implementations for COO and ELLPACK formats is eval-
uated in advance). This allows to use fast ELLPACK storage format for most of
the matrix and use COO storage for any remaining non-zero elements, avoiding
high overhead in pure ELLPACK format.

⎛
⎜⎜⎝

a 0 b 0
0 c 0 d
0 e 0 0
0 0 0 f

⎞
⎟⎟⎠

value:⎛
⎜⎜⎝

a b
c d
e 0
f 0

⎞
⎟⎟⎠

column:⎛
⎜⎜⎝

0 2
1 3
1 0
3 0

⎞
⎟⎟⎠

for (r = 0; r < N; r++)
for (i = 0; i < K; i++)

y[r] += x[column[i][r]] * value[i][r];

Matrix Representation SpMV pseudocode

Fig. 3. An example of ELLPACK format

Automatically Tuning Sparse Matrix-Vector Multiplication 115

2.3 The CUDA Programming Model

The CUDA programming model closely follows the organization of NVIDIA
graphics hardware [7]. Computations are launched as multiple parallel threads
executing the same function, called a kernel. The threads are grouped into blocks.
Threads within a block have access to common shared memory and may syn-
chronize using a barrier synchronization instruction.

Physically, a block of threads is executed on a GPU “core” called a multi-
processor. NVIDIA GT200 GPUs include up to 30 such multiprocessors. Each
multiprocessor contains eight single-precision ALUs, one double-precision ALU
and one instruction issue unit. Threads of a block are executed in 32-thread
SIMD groups called warps. The instruction issue unit can switch between active
warps with no overhead, which allows hiding execution latency (most impor-
tantly, memory access latency) when sufficient active warps are available on the
multiprocessor.

The GT200 allows for up to 32 active warps (and hence up to 1024 active
threads) per multiprocessor. The ratio of active warps to the maximum sup-
ported by the multiprocessor is called occupancy. Maximizing the occupancy is
important when optimizing memory-intensive tasks, as it allows improvement of
memory latency hiding by switching between active warps.

Each multiprocessor contains a 16-KiB storage area, which serves as shared
memory for thread blocks running on this multiprocessor. For example, allo-
cating 5 KiB for each block does not allow for more than 3 active blocks per
multiprocessor. The register file is another partitioned resource, as there is no
register save/restore on warp switching. Therefore, the amount of shared mem-
ory per block and the number of registers allocated per thread both affect the
possible amount of active warps.

Off-chip GDDR memory is logicallypartitioned into the global, texture and con-
stant memory spaces. Only global memory can be updated from the CUDA ker-
nel. Texture and constant memory are read-only, but, unlike global memory, are
cached. Constant memory differs from texture memory in maximum size (64 KiB,
texture memory size is unlimited) and preferred access pattern (constant memory
is optimized for the case when all threads from the warp read the same location).

Memory requests are serviced for halves of a warp at a time. To achieve the
highest memory throughput, a memory access pattern must follow coalescing
rules: accessed addresses must fit into a 64 or 128-byte window, and the window
itself must be aligned on 64 or 128 byte boundary, respectively.

3 Sliced ELLPACK

We propose a new storage format, sliced ELLPACK, to improve SpMV perfor-
mance on GPU architectures. This format is parameterized by slice size S: the
input matrix is partitioned into strips of S adjacent rows,3 and each strip is
3 If the number of rows is not divisible by S, empty rows are added, and vector y

must be appropriately padded. Since S is usually small compared to the number of
rows, this has a negligible effect on performance.

116 A. Monakov, A. Lokhmotov, and A. Avetisyan

⎛
⎜⎜⎝

a 0 b 0
0 c 0 d
0 e 0 0
0 0 0 f

⎞
⎟⎟⎠

value:(
a b
c d

)
(

e
f

)
column:(

0 2
1 3

)
(

1
3

) slice_start 0 4 6
column 0 1 2 3 1 3
value a c b d e f

Matrix Strips in ELLPACK format Representation

Fig. 4. An example of the sliced ELLPACK format for S = 2

for (s = 0; s < N; s += S)
for (r = s; r < s + S; r++)
for (i = slice_start[s/S] + r - s;

i < slice_start[s/S + 1];
i += S)

y[r] += x[column[i]] * value[i];

Fig. 5. SpMV pseudocode for the sliced ELLPACK

stored in the ELLPACK format. However, K, the number of non-zero elements
stored per row in the ELLPACK format, may be different for each strip. Addi-
tionally, array slice_start holds indices of the first element in each strip (and
the total number of non-zero elements at the end, as shown in Fig. 4). Thus the
number of non-zero elements per row (including explicitly stored zero elements)
in strip i can be calculated as

Ki =
slice_starti+1 − slice_starti

S

For S = 1 no extra zero elements need to be stored, so this approach results in
the same representation as CSR. When incrementing S, the number of explicitly
stored zero elements increases, reaching the maximum for S = N (the number
of rows), when this approach gives the same representation as ELLPACK. This
allows choosing S sufficiently small to retain the storage space efficiency of the
CSR format, yet large enough so that computations within each strip can be
efficiently mapped onto GPU hardware.

3.1 Implementation of SpMV Using Sliced ELLPACK

To implement SpMV in CUDA using sliced ELLPACK format, we organize the
computations as follows. We assign one CUDA thread block to each S rows of
the matrix, thus launching a one-dimensional grid of N

S CUDA blocks. We assign
T CUDA threads to each block, with the restriction that S divides T . In this
work, we only consider T = 2t, 6 ≤ t ≤ 9, as blocks of other sizes do not run
efficiently on current CUDA devices and T = 512 is the maximum number of

Automatically Tuning Sparse Matrix-Vector Multiplication 117

threads per block. It follows that S = 2s, 0 ≤ s ≤ t ≤ 9. Let τ = T
S be the

number of threads assigned to each row.
If τ = 1, one thread is assigned to each row. If τ > 1, we assign τ threads with

indices r + kS, k ∈ {0, 1, . . . , τ − 1}, to row r, r ∈ {0, 1, . . . , S − 1}, with each
thread operating on elements with stride τ . In other words, we have τ thread
groups with S threads per group. Every group operates on some columns from
the ELLPACK representation of the current strip, with the columns distributed
to the thread groups in the round-robin fashion.

When τ > 1, each thread computes a partial update to vector y. After that,
full updates are computed via parallel reduction over τ elements in shared mem-
ory in log2 τ steps (which, in turn, are performed in parallel for S threads in
each group). This step requires storing τS

2 = T
2 floating-point elements in shared

memory. It follows that the shared memory requirement of our implementation
is two or four bytes per thread (depending on whether single or double precision
format is used). Therefore, the shared memory requirement does not limit oc-
cupancy in our implementation (as explained in Section 2.3, with no more than
1024 threads and 16 KiB shared memory per multiprocessor, requiring less than
16 bytes of shared memory per thread on average does not limit occupancy).

We use texture memory to optimize accesses to slice_start (each thread
of the block reads the same pair of elements during the kernel startup) and to
cache accesses to vector x.

This approach has the following benefits:

1. Matrices with variations in the number of non-zero elements per row do not
suffer from overhead as badly as in the ELLPACK. In addition, having a
single kernel (unlike in the hybrid ELLPACK/COO implementation in [3])
helps achieve better performance.

2. The ability to allocate a variable number of threads per row helps to adapt
to different matrices. It is possible both to allocate one thread per row in
very sparse matrices and to allocate multiple threads per row for matrices
with a small number of rows.

3. Configurations with multiple threads per row likely benefit from higher lo-
cality in vector x references and lower pressure on the TLB.4

3.2 Matrix Reordering for Avoiding Storage Overhead

Our experiments show that the following simple reordering heuristic can greatly
improve the performance of our SpMV implementation (provided that the prob-
lem being solved, in turn, allows reordering of the matrix without the need to
reorder x and y before and after each SpMV operation).

Even though storage overhead in the sliced ELLPACK format is confined only
to slices with imbalance in the number of non-zero elements per row, this still
can cause noticeable performance degradation. This issue can be mitigated by

4 The TLB existence is not documented by NVIDIA, but Volkov and Demmel [9] show
how to derive TLB parameters using a pointer-chasing benchmark.

118 A. Monakov, A. Lokhmotov, and A. Avetisyan

reordering the rows so that rows with equal numbers of non-zero elements are
brought together, forming strips with zero overhead.

It is important to note that reordering rows may result in reduced SpMV
performance. Sparse matrices usually have spatial locality: adjacent rows likely
have more close non-zero elements than unrelated rows. Shuffling rows reduces
this locality, increasing the number of cache misses on accesses to vector x. Thus,
reordering is a matter of trade-off.

Since matrix reordering has to be performed at runtime after the matrix
has been constructed, the reordering algorithm should have low computational
complexity. In our experiments, we have used the following simple heuristic,
which is linear in the number of rows.

Suppose we have a set of B buckets, numbered from 0 to B − 1, for collecting
rows. Rows are scanned from top to bottom, and a row with z non-zero elements
is added to bucket number z (if z ≥ B, such row is considered “overly long” and
added to the last bucket). If adding a row creates a bucket with exactly S rows,
rows from that bucket are output into the new reordered matrix, thus forming a
strip with exactly z elements in each row if z < B−1, and the bucket is emptied
(and can be filled again as the scan progresses). After the scan is complete,
remaining rows from non-empty buckets are appended to the reordered matrix
in arbitrary order.

3.3 Variable-Height Slices

Consider a skewed sparse matrix where a low fraction of rows has an order of
magnitude more non-zero elements than the average number. Our SpMV im-
plementation, when applied to such matrix, would suffer from work imbalance:
thread blocks that process slices with longest rows take a long time to com-
plete compared to most of the other thread blocks. This may cause low GPU
utilization, when only a few long-running thread blocks are left.

To mitigate this effect, we have implemented the following variation to the
proposed sliced ELLPACK format. The height of each slice Si may be different,
with the restriction that Si divides T (the number of threads per block). To
indicate the height of each slice, we store an additional array slice_pos that
stores the cumulative height of slices: slice_pos[i] = Σi−1

j=0Sj .5 The kernel is
also modified to account for a variable number of rows per slice.

Since this format requires additional space for storing slice_pos array and
the corresponding SpMV implementation uses some memory bandwidth for read-
ing it, it is not useful for matrices with low variation in the number of non-zero
elements per row.

Conversion of the input matrix to variable-height sliced ELLPACK format is
parameterized by ω, the approximate number of non-zero elements per thread.
We use an approach similar to the reordering algorithm described above, with
B = ωT being the number of buckets for collecting rows. As soon as any bucket

5 For efficiency, in our implementation this array is interleaved with slice_start and
both are accessed via texture memory.

Automatically Tuning Sparse Matrix-Vector Multiplication 119

for rows of z elements contains k rows, where k divides T and kz ≥ ωT , rows
from that bucket are used to produce a new slice with height k.

4 Experimental Results

To evaluate our implementation, we have used a matrix test suite referenced
in [3] and [11] to facilitate comparison with previous work. We have gathered
baseline performance data using the hybrid ELLPACK/COO algorithm, as the
overall best algorithm described in [3]. The baseline performance data was col-
lected on a GTX 280 card, using CUDA toolkit version 2.3 for compilation. Our
implementation was timed on G200-based GTX 280, GTX 260 and Tesla C1060
cards to demonstrate the effect of tuning.

Table 1 briefly characterizes matrices used for evaluation along with perfor-
mance of our baseline implementation in single and double precision.

Performance in GFLOPS is calculated as 2×NZ
T , where NZ is the number of

non-zero elements and T is the time required for one multiplication by vector
(not including the time to copy data to device and back). Our experiments show
that the variation of time required for one SpMV kernel launch does not exceed
0.1%. Therefore, we time the second from two consecutive kernel launches (the
first is used to exclude one-time overheads from uploading the kernel to the
GPU).

4.1 Performance Evaluation

To evaluate our implementation, we have performed a search over a wide range of
configurations, where parameters assumed all power-of-two values in the specified

Table 1. Matrix data and reference performance results on GeForce GTX 280

Matrix characteristics Nonzeros per row Baseline, GFLOPS
Name Rows Columns Average Maximum 32-bit 64-bit
cant 62451 62451 64.16 78 16.56 9.99
consph 83334 83334 72.12 81 21.09 11.96
cop20k_A 121192 121192 21.65 81 8.32 5.08
dense2 2000 2000 2000.00 2000 3.92 3.33
mac_econ 206500 206500 6.16 44 7.78 5.04
mc2depi 525825 525825 3.99 4 19.12 10.72
pdb1HYS 36417 36417 119.31 204 13.28 9.74
pwtk 217918 217918 53.38 180 21.48 13.82
qcd5_4 49152 49152 39.00 39 21.48 12.66
rail4284 4284 1092610 2633.00 56181 2.54 2.04
rma10 46835 46835 50.68 145 11.16 6.91
scircuit 170998 170998 5.60 353 6.81 4.39
shipsec1 140874 140874 55.46 102 18.22 11.44
webbase-1M 1000005 1000005 3.10 4700 6.50 5.10

120 A. Monakov, A. Lokhmotov, and A. Avetisyan

Table 2. Performance results of the best configurations on GTX 280

Single precision Double precision
Name Speedup (%) GFLOPS Bandwidth Speedup (%) GFLOPS Bandwidth
cant 49.42 24.74 113.08 45.89 14.57 99.32
consph 34.65 28.40 115.18 36.15 16.28 98.55
cop20k_A 56.34 13.01 54.58 86.00 9.45 56.78
dense2 621.28 28.27 114.00 433.35 17.76 106.57
mac_econ 30.31 10.14 48.51 55.56 7.86 57.47
mc2depi 4.75 20.03 98.01 14.28 12.25 98.07
pdb1HYS 92.43 25.56 102.32 52.47 14.85 89.16
pwtk 32.77 28.52 116.66 25.33 17.32 103.98
qcd5_4 19.51 25.67 102.73 22.11 15.46 92.78
rail4284 183.31 7.20 28.86 169.52 5.50 33.02
rma10 84.81 20.62 82.69 95.99 13.54 81.38
scircuit 25.85 8.70 41.23 48.65 6.81 50.73
shipsec1 56.58 28.53 114.21 52.22 17.41 104.56
webbase-1M 46.09 9.50 50.48 37.85 7.19 61.81

ranges. We have tested thread block sizes (T) in the range from 64 to 512. For
the sliced ELLPACK format we have tested slice sizes (S) in the range from 8 to
512, and reordering parameter (B) in the range from 1 to 4096. For the variable-
height sliced ELLPACK format we have tested work per thread parameter (ω)
in the range from 1 to 512.

Table 2 shows performance of the best configurations. Speedups are calculated
relative to the baseline implementation [3]. Bandwidth is listed in Gbytes/s and
is calculated only for data that has no reuse during kernel execution (value,
column, slice_start and y arrays). Since vector x elements are fetched via
texture caches, their contribution to the total bandwidth is hard to quantify.
Therefore, memory bandwidth in Table 2 is the lower bound of the total mem-
ory transfer speed achieved during kernel execution. For single precision, the
bandwidth is roughly four times larger than the GFLOPS value, since the kernel
fetches 8 bytes (one integer from column and one float from value array) for each
two floating-point operations. Likewise, the bandwidth for the double-precision
computations is roughly six times larger than the GFLOPS value.

The results clearly show that the performance is limited by the memory band-
width. For half of the test matrices our implementation approaches the peak
memory bandwidth of GTX 280 (which is roughly 120 Gbytes/s on sequential
memory reading/writing) on non-cached data alone, which also means that frac-
tion of cache hits on accesses to vector x on those tests is high. On five of the
matrices non-cached memory bandwidth does not exceed 60 GBytes/s. This in-
dicates that there is less locality in references to vector x, which causes more
cache misses and small scattered reads, which are inefficient on GPUs.

The exceptionally high speedup achieved for the dense2 matrix is explained
by the fact that the baseline implementation launches only 2000 threads (by
the number of rows in the matrix), which is not enough to optimally utilize the
GPU.

Automatically Tuning Sparse Matrix-Vector Multiplication 121

Fig. 6. Performance (in GFLOPS) of different implementations (single precision)

Figure 6 shows the single-precision performance of the baseline SpMV imple-
mentation, our basic algorithm and two refined variants: with matrix reordering
and with variable-height slices on GTX 280.

Figure 7 shows single-precision performance of all configurations tested for
the consph matrix. Different performance values (on the y axis) for a fixed slice

Fig. 7. Performance (in GFLOPS) of different configurations on the consph matrix

122 A. Monakov, A. Lokhmotov, and A. Avetisyan

size (on the x axis) correspond to different values of the reordering parameter
B. In this example, the best performing thread block size is roughly four times
the slice size: e.g. for 256 threads per block the optimal slice size is 64. This
suggests that the optimal workload is four threads per row or 18 elements per
thread on average. Correspondingly, the variable-height slices variant reaches
the maximum at 16 elements per thread. Similar behaviour is observed on other
test matrices.

4.2 Tuning Is Device-Dependent

Table 3 demonstrates the performance improvement from device-specific tuning.
The value in each cell is the performance difference, in percent, between SpMV
with the best configuration found for the GTX 280 card and SpMV with the
best configuration for the corresponding device (Tesla C1060 or GTX 260). The
speedup on the last five matrices from the test suite is insignificant, hence they
are not listed. Surprisingly, even for these three cards based on the same architec-
ture, the performance difference exceeds 10% in two cases. Therefore, we believe
that automatic tuning is a useful technique of improving SpMV performance.

Table 3. Speedup from device-specific tuning (in %)

Tesla C1060 GTX 260
Name 32-bit 64-bit 32-bit 64-bit
cant 9.74 14.21 0.93 2.87
consph 2.27 7.44 3.02 1.55
cop20k_A 3.52 0.44 3.96 0.68
dense2 0.00 1.92 0.29 1.76
mac_econ 1.53 0.81 4.85 2.64
mc2depi 17.55 1.53 0.76 5.08
pdb1HYS 3.31 3.32 1.67 1.38
pwtk 3.42 1.53 5.32 0.81
qcd5_4 6.12 4.83 1.16 1.87

4.3 Space Requirements

Table 4 shows the comparison of space required for storing the matrix in our
format to the CSR format and the hybrid format from the baseline implemen-
tation. Since space requirements of our implementation depend on slice size and
reordering, the table presents results from configurations with best performance
on GTX 280 in single precision.

“Explicit zeros” column shows relative amount of explicitly stored zero ele-
ments in percent. “To CSR” column shows the difference in space required for
storing the whole matrix relative to the CSR format. We see that space require-
ments of our format are within 2% of the CSR size in most cases. There is a
regression on the cant matrix due to large amount of explicitly stored zero el-
ements. Four tests with low average numbers of non-zero elements per row are

Automatically Tuning Sparse Matrix-Vector Multiplication 123

Table 4. Comparison of required storage space in single precision (in %)

Our implementation Distribution in baseline
Name Explicit zeros To CSR To baseline In ELLPACK In COO
cant 13.56 12.70 -3.24 116.90 0.32
consph 0.01 -0.65 -10.95 112.34 0.00
cop20k_A 0.05 -2.13 -11.70 87.53 17.25
dense2 0.80 0.78 0.00 100.80 0.00
mac_econ 0.05 -7.29 -29.34 113.53 18.88
mc2depi 0.16 -10.90 0.10 100.15 0.00
pdb1HYS 0.09 -0.32 -17.82 115.77 4.03
pwtk 2.25 1.32 0.27 101.15 0.56
qcd5_4 0.00 -1.23 0.04 100.00 0.00
rail4284 0.23 0.22 -38.79 81.88 54.59
rma10 0.21 -0.75 -26.60 108.54 18.67
scircuit 0.66 -7.54 -17.34 89.17 21.78
shipsec1 0.05 -0.83 -7.05 97.38 6.85
webbase-1M 0.03 -13.69 -15.14 64.40 35.79

significantly improved in terms of storage size due to reduction in space required
for storing row boundaries: the CSR format stores one integer per row, while our
format stores one or two integers per slice, depending on whether fixed-height
or variable-height slices are used.

“To baseline” column shows the difference in storage space relative to the
baseline format (hybrid ELLPACK/COO, with the number of rows padded to
the next multiple of 32). Columns 5 and 6 show the percentage of non-zero
elements stored in the ELLPACK and COO parts of the hybrid format. When
calculating the ratio of non-zero elements in the ELLPACK part, explicitly stored
zeros are included. Therefore, the sum of ELLPACK and COO ratios may exceed
100%. Since our format reduces overhead both from explicitly stored zeros in
the ELLPACK format and from row coordinates stored for each element in the
COO format, we see a significant reduction in storage size for most matrices.
Required space is approximately the same for the matrices with low variation in
the number of non-zero elements per row.

5 Related Work

Optimization of SpMV for CPUs has been extensively studied (e.g. see Vuduc’s
dissertation [10], which includes descriptions of many storage formats and pro-
vides experimental data on CPUs). Many researchers note how SpMV imple-
mentations usually extract only several percent of CPU’s peak performance and
note the importance of blocking to reduce pressure on memory subsystem and
to explicitly express data reuse.

Williams et al. [11] present evaluation of optimized SpMV implementations
on multi-core x86 processors, STI Cell and Sun Niagara 2. Following [3], we use
their test suite to evaluate performance of our approach.

124 A. Monakov, A. Lokhmotov, and A. Avetisyan

Operations on dense matrices on GPUs have been thoroughly analyzed, which
is partially due to more regular nature of the problem. Volkov and Demmel [9]
present an experimental study of GPU memory subsystem and an efficient imple-
mentation of dense matrix-matrix multiplication. The implementation is shown
to be nearly optimal under the constraints of hardware implementation.

Several SpMV implementations for GPUs have been described, including
[2,3,4,6,8]. Bell and Garland [3] investigate the performance of several non-
blocked methods. They propose using a hybrid approach to sparse matrix stor-
age, which results in efficient SpMV implementation for most of the test matrices
from [11]. Vázquez et al. [8] improve Bell and Garland’s results by 15% on aver-
age by augmenting ELLPACK format with explicit count of non-zero elements.
SpMV implementations in [2,6] use blocked storage format, which requires costly
conversion and makes them not applicable for matrices where sufficiently filled
blocks cannot be identified. Buatois et al [4] were one of the first to report im-
plementing SpMV in CUDA; however, they did not achieve high performance
due to inefficient usage of GPU memory subsystem.

6 Future Work

We plan to develop this approach into a stand-alone SpMV library with sep-
arated off-line (device-specific) and on-line (run-time, matrix-specific) tuning
stages. We will look into integration with Fluidity, a mature fluid simulation ap-
plication. Prediction of good configuration based on matrix characteristics will
be important for applications with frequently changing sparsity patterns.

Acknowledgments

We thank Alastair Donaldson, Andrey Belevantsev, Alan Mycroft and Paul Kelly
for their helpful discussions and comments. We also thank the anonymous re-
viewers for their comments that helped to improve this paper.

References

1. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer,
K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The
landscape of parallel computing research: A view from Berkeley. Technical Re-
port UCB/EECS-2006-183, EECS Department, University of California, Berkeley
(December 2006)

2. Baskaran, M.M., Bordawekar, R.: Optimizing sparse matrix-vector multiplication
on GPUs. Technical report, IBM TJ Watson Research Center (2009)

3. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA.
NVIDIA Technical Report NVR-2008-004 (2008)

4. Buatois, L., Caumon, G., Lévy, B.: Concurrent number cruncher: An efficient sparse
linear solver on the GPU. In: Perrott, R., Chapman, B.M., Subhlok, J., de Mello,
R.F., Yang, L.T. (eds.) HPCC 2007. LNCS, vol. 4782, pp. 358–371. Springer, Hei-
delberg (2007)

Automatically Tuning Sparse Matrix-Vector Multiplication 125

5. Kincaid, D.R., Oppe, T.C., Young, D.M.: ITPACKV 2D User’s Guide
6. Monakov, A., Avetisyan, A.: Implementing blocked sparse matrix-vector multipli-

cation on NVIDIA GPUs. In: SAMOS, pp. 289–297 (2009)
7. NVIDIA Corporation. NVIDIA CUDA Programming Guide 2.2 (2009)
8. Vázquez, F., Garzón, E.M., Martnez, J.A., Fernández, J.J.: The sparse matrix

vector product on GPUs. Technical report, University of Almeria (2009)
9. Volkov, V., Demmel, J.W.: Benchmarking GPUs to tune dense linear algebra. In:

SC 2008: Proceedings of the 2008 ACM/IEEE conference on Supercomputing, pp.
1–11. IEEE Press, Los Alamitos (2008)

10. Vuduc, R.W.: Automatic performance tuning of sparse matrix kernels, PhD thesis,
University of California, Berkeley (2003); Chair-Demmel, J.W.

11. Williams, S., Oliker, L., Vuduc, R.W., Shalf, J., Yelick, K.A., Demmel, J.: Opti-
mization of sparse matrix-vector multiplication on emerging multicore platforms.
In: SC, p. 38 (2007)

Virtual Ways: Efficient Coherence
for Architecturally Visible Storage

in Automatic Instruction Set Extensions

Theo Kluter1,5, Samuel Burri2, Philip Brisk4,
Edoardo Charbon2,3, and Paolo Ienne1

1 Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Computer and
Communication Sciences, CH-1015 Lausanne, Switzerland

paolo.ienne@epfl.ch
2 Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Engineering,

CH-1015 Lausanne, Switzerland
samuel.burri@epfl.ch

3 Delft University of Technology, Circuits and Systems Group,
NL-2600 AA Delft, The Netherlands

edoardo.charbon@epfl.ch
4 University of California, Riverside, Department of Computer Science and

Engineering, Riverside, CA 92521, USA
philip@cs.ucr.edu

5 Bern University of Applied Sciences, EKT, Microlab, Quellgasse 21,
CH-2501 Biel/Bienne, Switzerland

theo.kluter@bfh.ch

Abstract. Customizable processors augmented with application-specif-
ic Instruction Set Extensions (ISEs) have begun to gain traction in re-
cent years. The most effective ISEs include Architecturally Visible Storage
(AVS), compiler-controlled memories accessible exclusively to the ISEs.
Unfortunately, the usage of AVS memories creates a coherence prob-
lem with the data cache. A multiprocessor coherence protocol can solve
the problem, however, this is an expensive solution when applied in a
uniprocessor context. Instead, we can solve the problem by modifying
the cache controller so that the AVS memories function as extra ways of
the cache with respect to coherence, but are not generally accessible as
extra ways for use under normal software execution. This solution, which
we call Virtual Ways is less costly than a hardware coherence protocol,
and eliminate coherence messages from the system bus, which improves
energy consumption. Moreover, eliminating these messages makes Vir-
tual Ways significantly more robust to performance degradation when
there is a significant disparity in clock frequency between the processor
and main memory.

Keywords:Application-SpecificProcessors,MemoryCoherence, Instruc-
tion Set Extensions, Virtual Ways.

1 Introduction
Extensible processors are a cost-effective platform that can help embedded sys-
tem designers meet their targets for performance and energy efficiency. These

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 126–140, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Virtual Ways: Efficient Coherence for Architecturally Visible Storage 127

processors are augmented with application-specific custom instruction set exten-
sions (ISEs) that improve performance and energy efficiency for critical loops in
embedded applications. ISEs can be identified automatically [11,4], and a system
designer must only verify the ISEs and their interface to the processor, as the pro-
cessor itself has been pre-verified by the vendor. Although extensible processors
cannot compete with application-specific integrated circuits (ASICs) in terms of
performance and energy efficiency, they offer an economic advantage through a
simplified design and verification process and a reduced time-to-market.

To increase performance, ISEs have been augmented with Architecturally Vis-
ible Storage (AVS), which can be registers or compiler-controlled memories [3].
AVS memories are distinct from the cache hierarchy, and Directed Memory Ac-
cess (DMA) transfers move data between main memory and the AVS, bypassing
the caches, which creates a coherence problem. Kluter et al. [9] solved the coher-
ence problem using a snoopy hardware coherence protocol, which was designed
for use in multiprocessor systems. This solution has two drawbacks: area over-
head, and performance degradation due to coherence messages on the system
bus competing with off-chip memory accesses.

Virtual Ways, presented here, is a scheme by which the cache controller is
modified to ensure coherence between the data cache and the AVS memory. Un-
der this scheme, the data cache and AVS memory share a common interface,
and prefetch instructions are used in lieu of DMA transfers. A relaxed form of
inclusion between the data cache and AVS memory provides coherence: the data
in the AVS memory is always a subset of the data in the cache, but writes in
the AVS memory are not automatically written through to the cache, but writes
to the AVS memory (cache) and not written through to the cache (AVS mem-
ory). The cache controller, therefore, evolves into a low-cost hardware coherence
protocol for this specific case.

Virtual Ways and Speculative DMA are compared using a standard cell de-
sign flow to estimate the area overhead of the memory subsystem. For JPEG
compression, in which the AVS memory is a 64-entry register file containing
8-bit registers, and 8 read and 8 write ports, the area overhead of Speculative
DMA was 1.29x, due to the cost of the coherence protocol, including the AVS
memory, while the area overhead of Virtual Ways was 1.09x, due mostly to the
AVS memory and a slightly larger data cache state machine.

Virtual Ways and Speculative DMA are compared using an FPGA-based soft
processor emulation system to measure task latency and memory system energy
consumption. The experiments include a detailed case study of JPEG compres-
sion, and an evaluation of four EEMBC consumer V2 benchmarks: CJPEGV2
(compression), MPEG encoding and decoding, and AES. The most significant
result is that the speedups achieved by Speculative DMA degrade significantly as
the frequency of the processor increases while the frequency of off-chip memory
remains constant, whereas, Virtual Ways does not suffer from any noticeable per-
formance degradation. For CJPEGV2 and MPEG encoding and decoding, Vir-
tual Ways achieved a higher speedup and reduced energy consumption compared

128 T. Kluter et al.

to Speculative DMA, while the results for both metrics were equal for AES, due
to the fact that all data structures in the AVS memories are read-only.

We performed a detailed analysis and case study of an internally-modified
version of JPEG compression that only compresses one color component; we
call this version ”JPEG” for simplicity. The analysis of JPEG includes a kernel-
by-kernel breakdown of the task latency and energy consumption of the two
techniques, and include a design space exploration in which the size and as-
sociativity of the instruction and data caches are varied. In the former study,
Virtual Ways achieves a significant energy reduction in the Quantisation kernel,
while achieving comparable task latencies across all kernels. In the latter study,
Virtual Ways reduces task latency and energy consumption, compared to Specu-
lative DMA, for each configuration. Looking across configurations, Virtual Ways
generally achieves the best results; however, a handful of the best performing
configurations of Speculative DMA do achieve better task latency and/or energy
consumption than the worst performing configurations of Speculative DMA; the
overall trend, however, favors Virtual Ways.

The remainder of the paper is organized as follows: Section 2 details related
work in the domain. Section 3 introduces Virtual Ways and describes their im-
plementation in an extensible processor featuring AVS-enhanced ISEs. Section 4
describes an FPGA-based soft processor emulation system that we use for our
performance evaluation, and Section 5 presents an in-depth case study using
JPEG compression, followed by a more general study using EEMBC consumer
V2 benchmarks. Section 6 concludes the paper.

2 Related Work

In early work on ISEs, the processor’s register file was the I/O interface [4,11].
A typical register file has two read ports and one write port, which limit the
size of each ISE and the attainable speedup. Multi-cycle ISEs [1,10,12,14,15]
overlap computation with I/O operations; however, the I/O interface remained a
bottleneck. Several microarchitectural modifications have successfully improved
input bandwidth, including shadow registers [5], register file clustering [7], and
utilizing the pipeline forwarding logic [6]. Although generally effective, these
techniques do not improve output bandwidth, and data is transferred to the ISE
logic on the granularity of scalar variables; they do not support bulk transfers
of arrays.

Biswas et al. [2] introduced architecturally visible storage (AVS), which was
limited to small ROMs that hold constant values, and state registers. In a subse-
quent work, they augmented their ISEs with small compiler-controlled memories
that hold arrays. DMA transfers move data into and out of the AVS memories
bypassing the cache [3]. This solution is similar to scratchpad memories [13],
which are also placed under compiler control. Scratchpad memories have been
proposed as an alternative to caches for embedded systems, because eliminating
the tag array reduces per-access energy consumption, and deterministic hit/miss
behavior improves predictability of worst-case execution time.

Virtual Ways: Efficient Coherence for Architecturally Visible Storage 129

AVS memories, in contrast, co-exist with caches, rather than replacing them.
As observed by Kluter et al. [9], this leads to a coherence problem, as the DMA
transfers between main memory and AVS memories bypass the cache hierarchy,
and no mechanism exists to ensure coherence between the AVS memory and the
data cache. They corrected the problem using a hardware coherence protocol;
however, the area overhead of the DMA controller and the coherence protocol
were significant. Additionally, coherence messages transmitted on the bus con-
sume energy, and may increase the latency of accesses to off-chip memory.

Under this scheme, the compiler inserts Speculative DMA transfer instructions
to move data from main memory into the AVS memory before an ISE that
accesses the latter may execute. Each line of the AVS memory is augmented
with valid and dirty bits, similar in principle to a cache, but without the tag
arrays. These bits are required to integrate the AVS memory into the hardware
coherence protocol; additionally, the valid bits facilitate the speculative aspect
of DMA, by suppressing transfers when data in the AVS memory is up-to-date.

The data cache and AVS memory snoop bus transactions. A write to data
in the AVS (cache) invalidates a copy of the data that may exist in the cache
(AVS). If the processor reads invalid data from the cache, the coherence protocol
retrieves the valid copy from the AVS memory. Speculative DMA transfers from
main memory into the AVS memory request the write-back o a dirty copy of
the data that may exist in the cache. When a DMA transfer overwrites valid
and dirty data in the AVS memory, the coherence protocol ensures that the
valid data is written back to main memory. When a DMA transfer overwrites
valid and dirty data in the AVS memory, the coherence protocol ensures that
the valid data is written back to main memory, eliminating the need for explicit
DMA transfer instructions to remove data from the AVS memory.

Virtual Ways, presented here, is a lower-cost solution to the coherence prob-
lem. Unlike Speculative DMA, Virtual Ways uses a relaxed form of inclusion,
in which the AVS memory always contains a subset of the data in the cache;
however, ISE writes to the AVS memory employ a write-back policy that only
updates the copy in the data cache when the processor, later, tries to read the
data from the cache. Speculative DMA, in contrast, does not enforce inclusion.

Under Virtual Ways, data is loaded into the AVS memory using prefetch in-
structions, which eliminates the DMA engine. There is no hardware coherence
protocol, which eliminates both the hardware overhead (i.e., duplicated tags)
and the performance and energy overhead due to snooping and coherence traffic
on the system bus. This improves both system performance and energy con-
sumption.

Way Stealing is another solution to the coherence problem for AVS-enhanced
ISEs [8]. The data cache is modified so that each way can be accessed as a
compiler controlled memory, and all of the ways can be read or written in parallel.
Each way, however, is a single-ported memory, which can limit the attainable
speedup. For JPEG compression, for example, our ideal AVS memory is a 64-
entry register file with 8 read and 8 write ports; the large number of read and
write ports are feasible for such a small structure, but are not generally scalable

130 T. Kluter et al.

II

DD AVS

ISE Processor 2Processor 1

Snoopy coherence

(a) State-of-the-art Automatic In-
struction Set Extension algorithms
provide high bandwidth to the ISE
logic by adding Architecturally Vis-
ible Storage; however, they require
extensive hardware added to a stan-
dard processor pipeline to guarantee
memory coherence [3,9].

II

D$ D$

ISE Processor 2Processor 1

In
cl

us
io

nAVS

Snoopy coherence

(b) Virtual Ways, the contribution
of this work, puts the AVS on top
of the data cache and extends the
cache controller state machine to en-
force coherence. This approach re-
moves the separate bus interface of
the AVS and the need for a coher-
ence protocol in single processor sys-
tems.

Fig. 1. The difference between providing coherence in Speculative-DMA and Virtual
Ways. In Speculative DMA the AVS is placed at the same level as the L1-caches. In
Virtual Ways, on the other hand, the AVS is placed above the L1-caches and coherence
is provided by inclusion.

for a larger number of entries. Under Way Stealing, the read and write operations
to each stolen way must be serialized due to th small number of ports, which
limits the maximum attainable speedup.

3 Virtual Ways

Historically, a single cache based processor system allows for a maximum of two
copies of a given data structure in the system. One copy is always in main mem-
ory and one can be in the cache. In an n-way set associative cache, the location
of a datum within the cache is indicated by the tag arrays and the associated
status bits. The cache state-machine keeps track of the datum by updating the
tag and state arrays accordingly. Any memory element in the system that is not
covered by the tag and state arrays of the cache may exhibit coherence problems.
This is precisely what occurs when AVS is introduced to an extensible processor
without some form of coherence. The most recent copy of a particular datum
may reside in the AVS, rather than the cache. Main memory, therefore, is liable
to load an invalid copy of the same datum into the cache, unless it first updates
the value from the AVS.

This is the classic problem of cache coherence; the fact that the AVS is not
actually a cache does not, in principle, alter the problem; however, it does offer
the possibility of a novel lightweight solution that is considerably less costly than
a full-blown coherence protocol, which in the past has been used for multipro-
cessor systems. Our solution, which we call Virtual Ways, is to treat the AVS as

Virtual Ways: Efficient Coherence for Architecturally Visible Storage 131

Fig. 2. The AVS is segmented in chunks the size of a cache line and the state is
maintained for each segment separately. The tag consists of the start address and end
address (length) of the AVS. For optimal performance care must be taken to avoid false
sharing between neighboring data structures.

an additional way of the cache with respect to coherence. ISEs still access the
AVS memory like a scratchpad under control of the compiler. The tag associated
with the AVS memory, which is only used to ensure coherence, is implemented
inside the cache. This way, ISE accesses to the AVS memory bypass the tag,
which saves energy on each lookup. The cache controller is aware of the status
of the data residing in the AVS due to its tag, and takes appropriate actions to
ensure coherence. Virtual Ways can ensure coherence between an L1 cache and
an AVS memory in a uniprocessor system.

For easier integration into the cache some adaptations are needed in compari-
son to scratchpad memories. The memory for the data structure held in the AVS
memory is padded to a multiple of the size of a cache line. As the data structure
to be loaded in the AVS is not necessarily aligned on a cache line boundary, the
AVS must hold one additional cache line in order to accommodate all possible
alignments. For optimal performance, an AVS-aware compiler could align data
structures to avoid false sharing. For example, suppose that one data structure
ends near the beginning of a cache line, and another data structure starts some-
where later on the same line. A write to a location in either data structure that
resides on the cache line will invalidate the entire line, including a portion of the
other data structure. This could, in principle, create unnecessary data transfers
between the cache memories and the AVS.

Figure 2 illustrates the memory structure used to implement an AVS as a
Virtual Way. Two bits per segment are required: one bit determines whether the
segment is valid, and the second bit determines whether the copy in the AVS is
exclusive. One set of tags for the AVS indicates the starting and ending addresses
of the data structure stored in the AVS. This set of tags is used to determine
if a CPU access issued to the cache is within the region contained within the
AVS. The set of tags and the state bits permit the cache controller to determine
where the most recent copy of the requested datum resides.

132 T. Kluter et al.

Invalid

Valid Exclusive

CPU read
CPU w

rit
e

CPU write

Reset

AFU write

pr
ef

et
ch

write−back

Fig. 3. Transition digram for each segment of the AVS; each segment can be in one of
three states Invalid, Valid, or Exclusive. Associated ISEs execute while all segments are
either valid or exclusive. ISE writes to an AVS segment cause it to become exclusive.
An exclusive segment must be written back to the cache when the segment transitions
into another state.

An ISE enhanced with an AVS can only execute when all segments are valid, as
all accesses to the AVS must hit. We do not impose any restrictions on the ISE’s
access patterns within the AVS, beyond the requirement that the data reside
in the AVS before the ISE begins to execute. Specialized prefetch instructions
are used to load data into the AVS and update the tag before the ISE can
execute. Similar to caches, data eviction from the AVS is achieved via lazy write
back; however, an AVS-flush instruction is also available. If the data is accessed
through a normal software instruction, the cache controller, which maintains
coherence, will copy the data into the cache, and invalidate the data in the AVS
if it is overwritten. In our experiments, we did not use the AVS-flush operation.
Our expectation is that the AVS flush operation would only be used to facilitate
context switching; our evaluation platform is application-specific, so we do not
employ multiple processes and context switching does not occur.

3.1 AVS Segment States

Each segment of the AVS can be in one of three states. These are:

1. Invalid State: the initial state of the AVS, in which no segment contains
valid data. This occurs when the processor is first powered up, or if the
AVS contains a copy of a data structure that is not the most recent, i.e., a
separate copy, either in the cache or main memory, has been modified, while
the copy residing in the AVS memory has not been updated.

2. Valid State: a segment of the AVS contains the most recent copy of a data
structure. Valid copies of the same line also exist in the cache.

3. Exclusive State: a segment of the AVS contains the most recent copy of a
data structure. The copy in the cache, if any, is dead.

Figure 3 depicts the state machine for one segment of an AVS. Dashed arrows
indicate the transitions where the data must be written back to the cache.

Virtual Ways: Efficient Coherence for Architecturally Visible Storage 133

3.2 Prefetching Operation

Here, we describe the basic actions of the prefetch instruction, which must com-
plete before an ISE can access the AVS. Here, we define an AVS region to be a
set of m segments, each of which is equal to the size of a cache line. There are
two general cases to consider:

1. AVS Region Match: This occurs if the address of the requested data matches
a segment contained within the AVS. If the state of the segment is valid or
exclusive, then the most recent copy of the data already exists in the AVS; the
data must be loaded into the AVS only if the state is invalid. If a valid copy
of the data exists in another way of the cache, then it can be loaded directly
into the AVS, bypassing the bus; otherwise, the data is loaded from main
memory and is written to the cache and AVS concurrently. See Figure 4 (e)
for a prefetch operation that reloads only one segment.

2. AVS Region Mismatch: This occurs if the address of the requested data
does not match a segment contained within the AVS. If one of the segments
contained within the AVS is currently exclusive, then it must be written
back to the cache/main memory so that the most recent copy of the data
is not lost. Afterwards, all segments are marked invalid and the start and
stop tags are updated for the new data structure. The load operation then
proceeds as described above, with a region match and the AVS segments in
an invalid state. See Figure 4 (f) for the case where the AVS is written back
before it is loaded with a new data structure.

The region matching behavior enforces an inclusive, write-through policy. In-
clusion is maintained, because the lines in the AVS are a subset of the lines in
the cache. This is a relaxed form of inclusion, however, because ISE writes that
modify an AVS segment do not modify the corresponding line in the cache. The
policy is write through, in the sense that prefetch instructions write “through”
the cache directly to the AVS.

3.3 Maintaining Coherence After the ISE Executes

We assume that the data has been prefetched into the AVS, as described in the
preceding section. When an ISE executes, it may modify the data structure in the
AVS. If the data is modified, then at least one line is left in the exclusive state.
After the ISE executes, control returns to the CPU. The data in the AVS will
either be written back upon request, or as dictated by coherence requirements.
The correct action to take by a software load or store instruction depends on
the state of the segment.

1. Invalid State: An invalid segment can be ignored; the data at the requested
address resides in the cache or main memory.

2. Valid State: Here, the AVS contains valid data that was not modified by the
ISE. A valid copy of the data may also exist in the cache. For a read access,
either valid copy of the data can be returned. Writes are somewhat more

134 T. Kluter et al.

Fig. 4. This figure shows some lines of the cache and the corresponding segments in the
AVS together with associated state bits during a typical AVS scenario. The AVS starts
up in invalid state (a) and is then preloaded with a data structure (b) and transitions
to valid state. Execution of the ISE will modify the data structure turning on (some of)
its exclusive bits (c). On a CPU access the data is copied back to the cache and, on a
write access, invalidated in the AVS (d). A prefetch instruction for the same structure
will restore it to the AVS (e). A prefetch instruction for another structure will write
back all exclusive lines and load the requested structure (f).

complex, as coherence must be maintained between the cache and the AVS.
One possibility is to employ a write-through policy that updates the data in
both the AVS and the cache; a second alternative is to update the data in
the cache and invalidate the data in the AVS. We have opted for the latter
option, because a pipelined write-through could potentially cause a mem-
ory consistence problem between the data cache and the AVS. A memory
consistence problem occurs when a read of data does not return the latest
value written to it. This situation can occur with a pipelined write-through.
Applying a write-through without pipelining would drastically impact the
processor’s critical path.

3. Exclusive State: In this case, only the AVS contains the most recent copy of
the data, and this copy must be written back to the cache before the access
can complete; the corresponding line in the cache is marked as dirty, and
the AVS segment reverts to the valid state, as the data in the AVS is no
longer exclusive. Figure 4 (d) depicts the case of a CPU write access when
the corresponding AVS segment is in exclusive state.

3.4 Multiple AVS Memories

The preceding discussion assumes that there is one AVS memory. In principle,
an ISE may access multiple data structures, and writes to both may benefit
from parallel execution. In this case, we would want to instantiate multiple
AVS memories: one per data structure. To facilitate this change, we require an
additional tag and state bits for each AVS that must be checked to maintain
coherence.

Virtual Ways: Efficient Coherence for Architecturally Visible Storage 135

The compiler can avoid inter-AVS transfers by guaranteeing that memory
regions loaded in distinct AVS memories will never overlap. In the most general
case, pointer analysis is undecidable. As described by Biswas et al. [3], only data
structures that have been disambiguated can be moved into an AVS memory.
Although this approach is conservative, it is necessary to ensure correctness when
compiling languages such as C/C++ that permit arbitrary pointer arithmetic.

4 Experimental Setup

Our experimental platform is an internally-developed FPGA-based soft proces-
sor that implements the OpenRISC instruction set. We modified the data cache
implementation to account for Speculative DMA [9] and Virtual Ways. Our
multi-processor platform allows us to emulate from one to seven OpenRISC pro-
cessors. The platform has software-configurable 16 kB instruction caches and
software-configurable 16kB data caches with a choice of MSI-states, MESI-
states, or disabled hardware coherence protocol. Our implementation of Specu-
lative DMA uses the MESI-states protocol in our experiments. Our implementa-
tion of Virtual Ways eliminates the DMA controller, as data is brought into the
AVS memory through the data cache interface. The only other hardware mod-
ification was to augment the cache state machine as described in the preceding
section.

Mimosys Clarity, a compiler that uses the algorithm proposed by Biswas [3],
identified the ISEs and generated the VHDL implementations of the ISE logic.
We modified the AVS memory to support Speculative DMA through a DMA
interface and Virtual Ways through the data cache interface; the appropriate
interface is selected via software control. A system deployed in the real world
would support one option or the other, but not both.

Our goal is to demonstrate that Virtual Ways offers a comparable speedup to
Speculative DMA, but at a significantly reduced hardware and energy cost. We
took the EEMBC consumer V2 testbench suite and performed an ISE identifica-
tion on the unmodified source code by taking the first dataset of each algorithm
as test case. It has to be noted at this point that Mimosys Clarity does not
implement the opportunistic Speculative DMA as proposed by Kluter et al. [9].
All the C-code has been cross-compiled using a gcc 3.4.4 toolchain based on
“newlib” for the OpenRISC.

5 Experimental Results

To perform a comparison between the different methods, we performed a de-
sign space exploration of all algorithms on a non-ISE enhanced processor. We
varied the size and associativity of both the instruction and data caches. The
configuration with the best energy-performance product for a given algorithm
and dataset is chosen as reference for comparison. We performed a similar design
space exploration for the processor augmented with larger AVS-enhanced ISEs,
using both Speculative DMA and Virtual Ways to ensure coherence.

136 T. Kluter et al.

0.6x

0.8x

1.0x

1.2x

1.4x

1.6x

1.8x

0.5x1.0x1.5x2.0x2.5x3.0x

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n

c
e

Relative energy

Software execution
Virtual Ways

Speculative DMA
Reference configuration
I$:4k/2wsa D$:8k/2wsa

Fig. 5. Design space exploration of the CJPEGV2 dataset 1 compression algorithm for
the different architectural versions.

The result of the design space exploration for the CJPEGV2 testbench using
the first data set is plotted in Figure 5. Both Speculative DMA and Virtual Ways
achieved greater speedups than the original code across all cache configurations.
Many, but not all, configurations achieved greater reductions in energy when
Speculative DMA or Virtual Ways were used. Except for the reference cache
configuration, the figure does not indicate which Speculative DMA and Virtual
Way data points correspond to the same configuration; the general trend, how-
ever, appears to be that Virtual Ways achieve marginal better performance with
a noticeable reduction in energy compared to Speculative DMA.

Figure 6 shows the energy and performance plots of the EEMBC consumer
version 2 benchmark suite. For all benchmarks Virtual Ways outperforms the
state-of-the-art while consuming significantly less energy. There are two observa-
tions to be made: (1) for the AES algorithm both Speculative DMA and Virtual
Ways perform equally with an identical energy footprint. The reason lies in the
detection of two AVS memories that contain read-only data structures; therefore,
both methods do not have to infer coherence traffic, and (2) for the MPEG2 ENC
both methods provide better performance at a significant energy cost when com-
pared to the baseline. The increase in energy lies in the access pattern of the
detected AVS. In the MPEG2 ENC benchmark a temporary buffer of the size
of 8 × 8 16-bit integers is used to perform a 64-point Discrete Cosine Trans-
form (DCT). The DCT is selected as potential ISE, and the buffer is placed in
an AVS. Due to the algorithm the buffer is moved forth and back between the
AVS and the data cache consuming significant energy. In case of execution on a
non-ISE enhanced processor the buffer is never evicted from the data-cache due
to the Least Recently Used (LRU) replacement policy. To explain why the other
algorithms do not suffer similarly, we compare the data points corresponding to
the reference cache configuration of the CJPEGV2 algorithm using dataset 1 in
greater detail.

Virtual Ways: Efficient Coherence for Architecturally Visible Storage 137

2.8x 2.8x 2.8x 3.3x

1.0x

0.9x

0.8x

0.7x

0.6x

0.5x

1.1x

1.2x

1.3x

1.4x

1.5x

1.6x

1.7x

R
el

at
iv

e
en

er
g

y

1.0x

1.1x

1.2x

1.3x

1.4x

0.9x

3.2x

AESMPEG2_DECMPEG2_ENCCJPEGV2

S
p

ee
d

u
p

 Virtual Ways

 Speculative DMA

DS2DS1 DS3 DS4 DS5 DS6 DS7 DS1 DS1 DS2DS2 DS3DS3 DS4 DS4DS5 DS5 DS1

1.5x

Fig. 6. Performance and energy results for four EEMBC benchmarks. Each of the al-
gorithms, except the AES, contains five to seven different datasets (DSx). The baseline
is the cache configuration that provides the best energy-performance product when
running on a non-ISE enhanced processor. Overall, Virtual Ways provides similar to
more performance with significant reduced energy consumption when compared to
Speculative DMA.

Figure 7 shows the performance and energy breakdown for the four differ-
ent kernels of the CJPEGV2 algorithm for the reference cache configuration.
Similarly to the MPEG2 ENC benchmark the DCT kernel is the only kernel
containing a custom instruction with an AVS. One would expect to observe two
different scenarios: (1) upon entering the DCT kernel, the data has to be copied
to the AVS, before the custom instruction can start processing the data, and (2)
after leaving the DCT kernel the data has to gradually move back to the data
cache for the processor to be able to process it in the quantization kernel.

Looking into the copying of the data structure into the AVS, Figure 7 shows no
distinct differences between Speculative DMA and Virtual Ways in terms of per-
formance or energy consumption, contrary our observation for the MPEG2 ENC
benchmark. The reason for this lies in the calculation pattern of the color space
conversion. The color space conversion processes a “band” of 1024 pixels, 8 rows
at a time. As this “band” corresponds to a memory size of 24 kB, it cannot fit
in the data cache entirely, and therefore will evict parts of the processed data.
By the time the DCT kernel starts processing, the data required in the AVS
is no longer present in the data cache; therefore, no coherence problem exists
and both Speculative DMA and Virtual Ways need to prefetch the data from
main memory. As this process affects both methods, both architectures perform
equally and consume about the same amount of energy in this particular case.

138 T. Kluter et al.

Color space
conversion

Trans. (DCT)
Cosine
Discrete

Quantisation

Entropy
encoding

One Component
Picture

BMP

RGB−>CCIR601

Cb

Cr

Y

8x8 DCT
values

8x8 color
component values

f(x)

g(x)

values (many 0)
8x8 Quantized

compressed stream
Run−length encoded

1x

0.5x

Ref S−DMA VW

R
el

at
iv

e
ru

n
ti

m
e

1x 1x1x

0.5x

Ref S−DMA VW

R
el

at
iv

e
en

er
g

y
co

n
su

m
p

ti
o

n

1x

0.7x

Rest

0.7x

0.8x

Fig. 7. Left: Schematic diagram of the kernels of the CJPEGV2 compression algorithm.
Right: Performance and energy consumption broken down into the different kernels as
shown on the left for the baseline (Ref), Speculative DMA (S-DMA), and Virtual Ways
(VW).

Figure 7 shows distinct differences for the data eviction process from the AVS.
Where for Speculative DMA the energy consumption in the quantization kernel is
high (4.4× the energy consumed by the non-ISE enhanced architecture), Virtual
Ways expends a comparable amount of energy as the software implementation.
The reason for this is that the data structure in the AVS has been modified by
an ISE in the DCT kernel and is then directly used in the quantization kernel.
In this case, a coherence problem exists between the AVS and the data cache.
In Speculative DMA the coherence protocol will move the data structure back
from the AVS to both the data cache and main memory, which includes expensive
bus transfers; this consumes a significant amount of energy. In contrast, Virtual
Ways simply copies the data directly from the AVS segments to the cache. This
eliminates the need for bus transfers and writes to main memory.

The bus dependency of the Speculative DMA coherence mechanism is an un-
certainty. Due to the well known memory wall problem the processor normally
runs at higher clock frequencies than the external memory. For all of the pre-
ceding experiments, we assumed memory and processor frequencies of 100MHz,
which is a favorable situation for Speculative DMA. Increasing the processor
clock frequency can influence the operation of Speculative DMA in the bench-
mark, as shown in Figure 8(a); Figure 8(a) also shows that the performance of
Virtual Ways is less dependent on the difference between processor and memory
frequencies.

To compare the area of Virtual Ways and Speculative DMA, we implemented
both data caches, including AVS memories, in a 90 nm standard-cell technology,
along with a baseline cache without an AVS; we did not synthesize instruction
caches, the processor, or the ISE computational logic. The results are depicted
in Figure 8(b), which shows that Virtual Ways increases the area of the baseline
cache by 9%, while Speculative DMA increases the area by 29%.

Virtual Ways: Efficient Coherence for Architecturally Visible Storage 139

Speculative DMA

Virtual Ways

100 200 300 400 500 600 800700 900
Processor frequency [MHz]

S
p

ee
d

 u
p

1.0x

1.6x

1.5x

1.4x

1.3x

1.2x

1.1x

(a) Influence of the processor frequency with
respect to the external memory frequency for
the execution of the CJPEGV2 benchmark.

Logic

Tag memory

Data memory

1x

Ref S−DMA VW

1.0x

1.2x

0.8x

0.6x

0.4x

0.2x

R
el

at
iv

e
d

at
a

ca
ch

e
ar

ea

1.09x

1.29x

AVS memory

(b) Area overhead comparison of a
standard data cache (Ref), a Spec-
ulative DMA enhanced data cache
(S-DMA), and a Virtual Ways en-
hanced data cache (VW).

Fig. 8. Frequency robustness and Area of Virtual Ways compared to Speculative DMA

6 Conclusion

Prior work has established that AVS-enhanced ISEs provide a performance im-
provement over ISEs that do not employ AVS; however, the inclusion of AVS in
a processor with caches creates a memory coherence problem. This paper has
introduced Virtual Ways as a low-cost alternative to using a coherence protocol
to maintain this coherence in a single-processor system. Our results show that
a cache enhanced with Virtual Ways consumes less area and energy than Spec-
ulative DMA; additionally, Virtual Ways was shown to be less sensitive than
Speculative DMA to differences in clock frequencies between the processor and
main memory. For these reasons, we believe that Virtual Ways is a much more
attractive solution than Speculative DMA for customizable processors used in
cost and energy-constrained embedded systems.

References

1. Atasu, K., Mencer, O., Luk, W., Özturan, C., Dünda, G.: Fast custom instruction
identification by convex subgraph enumeration. In: Proceedings of the 19th Inter-
national Conference on Application-specific Systems, Architectures and Processors,
Leuven, Belgium, July 2008, pp. 1–6 (2008)

2. Biswas, P., Choudhary, V., Atasu, K., Pozzi, L., Ienne, P., Dutt, N.: Introduction
of local memory elements in instruction set extensions. In: Proceedings of the 41st
Design Automation Conference, San Diego, Calif., June 2004, pp. 729–734 (2004)

3. Biswas, P., Dutt, N., Pozzi, L., Ienne, P.: Introduction of architecturally visible
storage in instruction set extensions. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems CAD-26(3), 435–446 (March 2007)

140 T. Kluter et al.

4. Clark, N., Zhong, H., Mahlke, S.: Processor acceleration through automated in-
struction set customisation. In: Proceedings of the 36th Annual International Sym-
posium on Microarchitecture, San Diego, Calif., December 2003, pp. 129–140 (2003)

5. Cong, J., Han, G., Zhang, Z.: Architecture and compiler optimizations for data
bandwidth improvement in configurable embedded processors. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 14(9), 986–997 (2006)

6. Jayaseelan, R., Liu, H., Mitra, T.: Exploiting forwarding to improve data band-
width of instruction-set extensions. In: Proceedings of the 43rd Design Automation
Conference, San Francisco, Calif., July 2006, pp. 43–48 (2006)

7. Karuri, K., Chattopadhyay, A., Hohenauer, M., Leupers, R., Ascheid, G., Meyr,
H.: Increasing data-bandwidth to instruction-set extensions through register clus-
tering. In: Proceedings of the International Conference on Computer Aided Design,
San Jose, Calif., November 2007, pp. 166–171 (2007)

8. Kluter, T., Brisk, P., Charbon, E., Ienne, P.: Way stealing: Cache-assisted auto-
matic instruction set extensions. In: Proceedings of the 46th Design Automation
Conference, San Francisco, Calif., July 2009, pp. 31–36 (2009)

9. Kluter, T., Brisk, P., Ienne, P., Charbon, E.: Speculative DMA for Architecturally
Visible Storage in Instruction Set Extensions. In: Proceedings of the International
Conference on Hardware/Software Codesign and System Synthesis, Atlanta, Ga.,
October 2008, pp. 243–248 (2008)

10. Pothineni, N., Kumar, A., Paul, K.: Application specific datapath extension with
distributed I/O functional units. In: Proceedings of the 20th International Confer-
ence on VLSI Design, Bangalore, India (January 2007)

11. Pozzi, L., Atasu, K., Ienne, P.: Exact and approximate algorithms for the extension
of embedded processor instruction sets. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems CAD-25(7), 1209–1229 (2006)

12. Pozzi, L., Ienne, P.: Exploiting pipelining to relax register-file port constraints
of instruction-set extensions. In: Proceedings of the International Conference on
Compilers, Architectures, and Synthesis for Embedded Systems, San Francisco,
Calif., September 2005, pp. 2–10 (2005)

13. Steinke, S., Wehmeyer, L., Lee, B.-S., Marwedel, P.: Assigning program and data
objects to scratchpad for energy reduction. In: Proceedings of the Design, Automa-
tion and Test in Europe Conference and Exhibition, Paris (March 2002)

14. Verma, A.K., Brisk, P., Ienne, P.: Rethinking custom ISE identification: A new
processor-agnostic method. In: Proceedings of the International Conference on
Compilers, Architectures, and Synthesis for Embedded Systems, Salzburg, Septem-
ber 2007, pp. 125–134 (2007)

15. Verma, A.K., Brisk, P., Ienne, P.: Fast, quasi-optimal, and pipelined instruction-
set extensions. In: Proceedings of the Asia and South Pacific Design Automation
Conference, Seoul, Korea, January 2008, pp. 334–339 (2008)

Accelerating XML Query Matching through
Custom Stack Generation on FPGAs

Roger Moussalli, Mariam Salloum, Walid Najjar, and Vassilis Tsotras

Department of Computer Science and Engineering
University of California, Riverside

CA 92521, USA
{rmous,msalloum,najjar,tsotras}@cs.ucr.edu

http://www.cs.ucr.edu

Abstract. Publish-subscribe systems present the state of the art in in-
formation dissemination to multiple users. Such systems have evolved
from simple topic-based to the current XML-enabled systems. Here, users
pose complex queries (expressed in XPath) on the structure and content
of the streaming documents. The parts of the documents that match
the user queries are then returned to the users. This paper proposes a
novel hardware architecture that would exploit the parallelism found in
XPath filtering systems. Using an incoming XML stream, parsing and
matching with thousands of user profiles are performed simultaneously
on a single FPGA, thus yielding up to three orders of magnitude higher
throughput when compared to conventional approaches bound by the se-
quential aspect of software computing. By converting XPath expressions
into custom stacks, our architecture is the first providing full support
for all structural XPath constructs, including parent-child and ancestor
descendant relations, whilst allowing wildcarding and recursion.

Keywords: FPGA, XML, Query, XPath, Compilation.

1 Introduction

Increased demand for timely and accurate event-notification systems has lead to
the wide adoption of Publish/Subscribe Systems(or simply pub-sub). A pub-sub
is an asynchronous event-based dissemination system which consists of three
components: publishers, who feed a stream of messages into the system, sub-
scribers, who post their interests (also called profiles), and an infrastructure for
matching subscriber interests with published messages and delivering matched
messages to the interested subscriber. Pub-sub systems have enabled notification
services for users interested in receiving news updates, stock prices, weather up-
dates, etc; examples include google.news.com, pipes.yahoo.com, and www.ticket-
master.com. Pub-sub systems have greatly evolved over time, adding further
challenges and opportunities in their design and implementation. Earlier pub-
subs involved simple topic-based communication. That is, subscribers could
subscribe to a predefined collection of topics (e.g., news, weather, etc.). The

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 141–155, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.cs.ucr.edu

142 R. Moussalli et al.

second generation consists of predicate-based systems which employ the Event-
Condition-Action paradigm to perform profile matching and selective dissemina-
tion of information. Profiles are usually described as conjunctions of (attribute,
value) pairs. For example, a profile could be: (concert, Police) AND (city, Los
Angeles), for a user interested in being notified of Los Angeles concerts of the
Police rock band. The wide adoption of the eXtensible Markup Language (XML)
as the standard format for data exchange has led to the third generation, namely
XML-enabled pub-sub systems. Here messages are encoded as XML documents
and profiles are expressed using XML query languages, such as XPath [19]. Such
systems take advantage of the powerful querying that XML query languages of-
fer: profiles can now describe requests not only on the message values but also
on the structure of the messages 1.

The wide adoption of XML is due to its self-describing and extensible nature;
document content is tagged to provide a detailed description of its organization.
An XML document has a hierarchical (tree) structure that consists of a root
element and sub-elements. In addition, elements (or tags) can appear multiple
times inside the same enclosing element (also referred as recursion). In the XPath
query language queries are composed of a sequence of location steps. Each loca-
tion step consists of an axis and an element. An axis specifies the hierarchical
relationship between the document nodes. We focus on the two most common
axes, namely, parent-child (‘/’) and ancestor-descendant (‘//’). The parent-child
axis specifies that two elements should appear at adjacent levels in the XML doc-
ument tree. Likewise, the ancestor-descendant axis specifies that two elements
can be separated by any number of levels in the XML tree. Wildcard characters
(‘*’) are elements of XPath queries, providing a level of freedom by allowing any
tag of the XML tree to replace them.

XML-filtering becomes a challenging problem when considering that it should
support thousands of subscriptions, high volume of input streams, and should
perform complex structural matching in a timely manner. Many software ap-
proaches have been presented to solve the XML filtering problem [1,6,7,9].These
memory-bound approaches, however, suffer from the Von Neumann bottleneck
and are unable to handle large volume of input streams. On the other hand,
Field Programmable Gate Arryas (FPGAs) have been shown to be particularly
suited for the stream processing of large amounts of data and do not suffer from
the memory bottleneck faced by software implementations [15], [8]. Recently, in
[14] we presented a proof-of-concept approach for the use of FPGAs on XML fil-
tering. This approach, however, does not account for recursive elements in XML
documents, neither for wildcards in the XPath profile expressions; both features
are important constructs for XML documents and the XPath query language.

In this paper we present a novel implementation of XPath queries on FPGA
that does support expressions with ‘/’, ‘//’, ‘*’ and recursive elements in the
XML documents. We present various alternatives and optimizations of this im-
plementations and report on their respective costs benefits and trade-offs in
terms of clock speed and area occupancy on the FPGA. We compare the achieved

1 In the rest we use the terms “profile” and “query” interchangeably.

Accelerating XML Query Matching through Custom Stack Generation 143

throughput to two popular software implementations: the LazyDFA [7] and FiST
[9]. The results show up to three orders of magnitude of increasing throughput,
with the geometric mean of the acceleration reported being 59x.

The rest of the paper is organized as follows: Section 2 presents related work
while Section 3 provides in depth description of the proposed architectures tar-
geted for XPath query matching. Section 4 presents an experimental evaluation
of the FPGA based hardware approach compared to the state of the art software
counterparts. Finally conclusions and open problems for further research appear
in Section 5.

2 Related Work

The popularity of XML as a de facto standard for information exchange has
triggered several research efforts to build scalable and efficient XML filtering
systems. Several approaches have been proposed to solve the XML filtering prob-
lem. An early work, XFilter [1], proposed building a Finite State Machine (FSM)
for each user profile, such that each element in the XPath expression becomes a
state in the FSM. Each profile axis defines the transition between states, where
the final state is the accept state for that FSM. The FSM states are executed
as XML tag events are generated. An open(tag) event drives the FSM to the
next state, while a close(tag) event drives the FSM back to the previous state.
YFilter [6] built upon the work of XFilter, proposed a Non-Deterministic Finite
Automata (NFA) representation of query path expressions which combines all
queries (profiles) into a single machine. This approach yields better results since
it exploits the commonality among path expressions. Green et.al. [7] proposed
a lazy Deterministic Finite Automata. [9] proposed a sequence-based approach
where both the XML document and query are transformed into Prufer sequences
and subsequence matching is performed to determine if the query has a match
in the document.

Nevertheless, the approaches discussed above are entirely software-based so-
lutions abiding by the standard Von Neumann organization. One naive solution
would be implementing the software-based FSM approaches on FPGAs. Such an
approach however, is not efficient because the software approaches must dynami-
cally allocate memory during XML filtering: consider the LazyDFA approach [7],
which constructs the DFA in a lazy fashion during XML filtering. This approach
cannot be implemented on the FPGA because the number of DFA states is not
known in advance. In addition, recursion in XML streams requires dynamic ini-
tiation of multiple NFA processing engines during filtering which is not possible
on FPGAs.

There are several approaches that use specialized parallel architectures for
XML processing [10], [12]. In particular, [10] aimed to accelerate XML parsing
using the Cell Broadband Engine multi-processor which consists of 8 indepen-
dent processors (SPEs) that implement the FSM of the Zurich XML Accelerator
(ZuXA) engine. This approach achieves parallelism by parsing (eight) XML doc-
uments in parallel at a time. In addition to be only suitable for XML parsing, this

144 R. Moussalli et al.

solution is a combination of hardware-software approach. Similarly, the work in
[12] addresses ways to load-balance parallel threads for low-level XML processing
(e.g., XML parsing).

Previous work that have used FPGAs for processing XML documents have
mainly dealt with the problem of XML parsing. In particular, [13] proposes the
ZuXA engine to parse XML documents. This engine employs state machines for
efficient parsing based on set of rules. The paper however does not provide any
discussion how this engine can be adapted to evaluate XPath query expressions
over the XML input.

The works in [11] propose the use of a mixed hardware/software architecture
to solve simple XPath queries having only parent-child axis. A finite state ma-
chine implemented in FPGAs is facilitated to parse the XML document and to
provide partial evaluation of XPath predicates. The results are then reported to
the software part for further processing. Similarly to the ZuXA engine, this ar-
chitecture is limitted to support simple XPath expressions with the parent-child
axis.

Our previous work [14] was the first to propose a pure-hardware solution to
the XML filtering problem. Improvements of more than one order of magnitude
were reported when compared to software. However, this method is unable to
handle recursion in XML documents or wildcards ‘*’ in XPath profiles; such
issues as well as various optimizations are handled by the novel architecture we
present in this paper.

3 XPath Matching Hardware Architecture

Using an XML stream as input, we present a full-hardware XPath matching
system on FPGAs; this section describes the details of the proposed approach.
We start by providing an overview of our SAX Parser implementation, built upon
a tag decoder, leading to a resource-optimized XML event notifier and overall
architecture. The intuition behind mapping XPaths into stacks is then described,
while contrasting with the shortcomings of previous approaches. We then propose
some area saving optimizations through the reduction of the average width of
required stacks. These optimizations would potentially imply a decrease in the
operational frequency of the overall system on FPGA, a limitation which we
prove to overcome using fan-out trees. Finally, we present the incentive behind
the clustering of XPath matching engines, and the underlying technique used to
report matches.

3.1 SAX Parser and Tag Decoder Implementation

The (Simple API for XML) (SAX) Parser [17], is an event-driven XML parser,
ideal for streaming applications. Unlike other parsers (such as DOM [5]), where
the entire XML document need be stored in memory before processing can start,
SAX Parsers would generate open(tag) and close(tag) events on the fly, with all
XPath query matching engines updating states accordingly. As a result, match-
ing ends when the XML stream is complete.

Accelerating XML Query Matching through Custom Stack Generation 145

With FPGAs being limited in hardware resources, a tag decoder is a desirable
feature operating in conjunction with the SAX Parser. Since all query matching
engines would need comparisons against respective tags, all engines executing
in a parallel fashion, many redundant comparisons would take place across sev-
eral engines, thus unnecessarily wasting resources. Decoders solve this issue by
centralizing comparisons, and mapping decoded tags into single bit lines. All re-
maining comparisons are then translated into simple AND gates, hence, allowing
the FPGA resources to be used for more useful computations. Our tag decoder
is inspired from character decoding, the latter becoming conventional in pattern
matching on FPGAs [16], [14], and which was shown to offer up to 83% of area
savings in [14].

Fig. 3 shows how a tag decoder would operate in parallel with a SAX Parser
in order to generate open and close tag events, with a tag being a single bit line
out of the possible n decoded ones. Note that only one of those bit lines is high
at a given point in time. Furthermore, the tag decoder is configured at compile
time to recognize the n unique tags that would appear in the stream of XML
documents.

3.2 Matching XPaths Using Path Specific Stacks

Due to the occurrence of parent-child relations, a stack is an essential feature
of XML filtering systems, where an open(tag) is translated into a push event,
and conversely, a close(tag) would be translated onto a pop event. For instance,
matching the XPath a/b would take place when the open(b) event arises, with
‘a’ being the top of stack. There is no bound to the number of children ‘a’ could
have within the XML document, any of those coming about prior to ‘b’. Thus, it
would not be sufficient to check for the latest tag opened, but instead, the latest
tag opened that still has not been closed.

A single global stack is needed to support the matching of parent-child rela-
tions for all XPath profiles. On the other hand, when using conventional state
machine approaches, matching ancestor-descendant relations of the form c//d
can be translated into a 3-state FSM, as we described in [14].

However, such methods fail to support recursion, a key aspect of XML doc-
uments, where certain tags are allowed to appear as their own children and/or
descendants. Instead of using one global stack and one state machine per XPath
user profile, we propose mapping each XPath into a customized stack, namely a
Path Specific Stack (PSS). The PSS depth would be that of the XML document;
furthermore the PSS width is equivalent to the depth of the XPath profile, where
each tag of the query expression is mapped to a unique column, with regard to
the order in which they appear in the XPath. A ‘1’ would be stored in a column
when matching for the tag mapped to it is true. This occurs with an open(tag)
event for that tag being generated from the SAX Parser, with all previous tags
having matched earlier. The storing of a ‘1’ in the right-most column indicates
a successful match for the entire XPath expression. The width of the stack, the
surrounding logic alongside the tag decoded bit lines routed to it for matching
purposes are all specific to each XPath query.

146 R. Moussalli et al.

Fig. 1. Overview of the matching of XPath a/c/a/c/b. Each cycle refers to an open(tag)
or close(tag) event, relative to the highlighted tag.

Fig. 1 shows a cycle by cycle overview of all the steps required for the matching
of the XPath a/c/a/c/b, where, for simplification purposes, a cycle refers to a
SAX Parser event. Cycle 0 reflects on the initial state of the system prior to any
streaming taking place: the XML document to be streamed is drawn on the left
hand side, whereas a PSS of width five is shown to the right. Each column is
labeled with the corresponding tag of the a/c/a/c/b expression.

When the open(a) event takes place in cycle 1, the first column of the PSS
would store a ‘1’. Consequently, with an open(c) event occurring in cycle 2, a
‘1’ is stored in the second column, allowing the previous partial match stored
in column 0 of the previous Top Of PSS (TOPSS) to propagate diagonally. In
other words, an open(c) event alone is not enough to validate the matching of
tag ‘c’. The fourth column in that same cycle demonstrates this behavior, for
no matching was reported, due to no diagonally propagating ‘1’.

Support for recursion is depicted in cycle 3, where both the first and third
columns indicate a match for tag ‘a’ simultaneously, thus, allowing two possible
matches of the same XPath to be in progress concurrently: one having started at
cycle 1, the other at cycle 3. The state maching approach described in [14] would
not take the new possible matches into consideration, since an FSM cannot reside
in two states simultaneously. Moreover, each XPath query expression is mapped
into a single state machine; therefore, multiple possible matches require multiple
state machines, an issue which we solve using Path Specific Stacks.

With an open(c) event on cycle 4, both previous partial possible matches
propagate diagonally. The occurrence of tags irrelevant to the XPath query has
no negative effect on the matching process. For instance, with ‘d ’ pushed onto
the stack on cycle 5, no partial matches are propagated. Moreover, roll-back to

Accelerating XML Query Matching through Custom Stack Generation 147

the previous state took place on cycle 6 with the close(d) event taking place,
thus popping the TOPSS.

A third partial possible match spawns off on state 7 (first column), while the
first partial match that awaited an open(b) event had to stop propagation for
the moment being, and can only resume matching until the currently pushed ‘a’
is popped.

Propagation of partial matches resumes in cycle 8. Ultimately, a match has
been found in cycle 9, thanks to the partial matching starting propagation from
cycle 3. A match can be seen as a diagonal of 1’s, ending in the fifth column.

Since our proposed architecture is not based on state machines as in [14],
we offer support specific to our system for ancestor-descendant relations, as
explained in Section 3.4.

3.3 Applied Optimizations for PSS Reduced Resource Utilization

As described in Section 3.2, PSS’s have a width equivalent to the depth of the
XPath profile mapped to it. With FPGAs being limited in resources, we propose
some area reduction optimizations to be applied to the PSS. In this section, we
focus on optimizing the PSS mapping of the same XPath profile used as a base
example in Section 3.2.

One key observation reflected in Fig. 1 is that at most, two columns can be
written to with regard to the occurrence of a single event. In other words, tag ‘a’
maps to no more of two of the possible five stack columns, specifically columns
one and three. Similarly, tag ‘c’ maps to columns two and four, whereas tag ‘b’
solely maps to column 5.

We base our optimizations on the introduction of a global stack. The decoded
representation of tags would be pushed or popped onto this stack, in the case of
open(tag) and close(tag) events respectively. Each of the global stack and Path

Fig. 2. Optimized hardware mapping for the matching of XPath a/c/a/c/b. Stack
contents reflect on a macthed state of the expression.

148 R. Moussalli et al.

Specific Stacks are pushed to and popped from concurrently. We refer to the top
of the global stack as TOS. Fig. 2 shows the optimized mapping of the XPath
expression a/c/a/c/b.

One intuitive optimization is not to map the final tag of the XPath expression
to the PSS, rather to the match output signal, indicating whether or not a match
of the query has occurred.

Moreover, with the help of the global stack, the first tag in an XPath need not
be mapped to the PSS. Checking for the second tag consists of AND -ing the first
label’s decoded bit of the TOS, with the tag decoder output bit corresponding
to the second tag; the top most AND gate in Fig. 2 connects the first bit of the
TOS and the bit corresponding to tag ‘c’ from the tag decoder output, in order
to match a/c, the two initial tags of the XPath studied.

One more general optimization that aims to reduce the PSS width is to map
multiple occurrence of different tags to the same column. The rule is to map
one occurrence of a given tag from the XPath query onto the column following
the mapping of the last occurrence of that same tag. By doing so, we fold
the diagonal previously noted in Fig. 1, into the minimal number of columns;
with the exception of the first and last tag in an XPath query expression, the
needed PSS width is defined as the greatest number of repetitions accross all
tags. Considering the expression a/c/a/c/b, tag ‘c’ has the highest number of
occurrences, being equal to two. Note that tag ‘a’ has only one occurrence to
be considered for PSS mapping, since the first tag in an XPath would not be
mapped, as explained earlier. Since tag ‘c’ has the most repetitions, namely
two, the required PSS would have a width of two; the first initial of ‘c’ and the
second occurrence of ‘a’ would map to the first PSS column, whereas the second
occurrence of ‘c’ is mapped onto the second column.

When propagating a ‘1’, the global stack is essential in order to distinguish
between multiple tags mapped to the same column. For instance, in the previous
example, a ‘1’ in the first column of the TOPSS accompanied by a decoded ‘c’
in the TOS, would refer to the second tag in the XPath expression. On the other
hand, a ‘1’ in the first column of the TOPSS accompanied by a decoded ‘a’ in
the TOS states that the partial match has reached the third tag in the XPath
expression.

Fig. 3. High-Level system overview

Accelerating XML Query Matching through Custom Stack Generation 149

The need of the global stack is reflected by some penalty on the logic sur-
rounding the PSS. Looking at Fig. 2, it can be seen that, with the exception
of the top-most AND gate, all remaining gates require an extra input, taking
into account one bit from the TOS. Moreover, since two tags map to the same
column, a 2-input OR gate was inserted prior to the first column of the PSS.
Nonetheless, the reduction in required PSS width is noticeable; the overall area
savings would be used to place structures relevant to achieving high throughput,
as explained in Section 3.5.

3.4 Supporting Wildcards and Ancestor-Descendant Relationships

Wildcards, represented as ‘*’ within XPath query expressions, imply that any tag
from the XML document can be used as a valid replacement. In our architecture,
this would mean that any decoded tag would help propagate the diagonal ‘1’. In
other words, no global stack output is needed at the input of the corresponding
AND gate. In the case of the unoptimized PSS, wildcards are translated into the
output of the previous column directly routed into the input of the wildcard col-
umn, thus no extra logic is required. However, each wildcard should be mapped
to a column of its own, since the tag used to replace a wildcard at a given point
could be similar to any other tag from the XPath query. Therefore, wildcards
exhibit a negative impact on the total occupied area.

Likewise, ancestor-descendant relations also have negative impact on resource
utilization. Tags followed by ancestor-descendant relations should be mapped
onto exclusive columns. The reasoning is that one column would reflect that tag
being an ancestor, having appeared earlier in the document. In order to do so,
the input of the PSS column consists of the regular matching logic propagating
the previous ‘1’, OR-ed with the output of the column itself. Note that PSS
entries are updated solely upon push events. Thus, once the ancestor column
stores a ‘1’, all later pushed entries of that column would reflect the match, until
the initial ‘1’ is popped.

The optimization introduced in Section 3.3 regarding the first tag of an XPath
expression, does not hold when that tag is followed by an ancestor-descendant
relation, unless that tag is a wildcard; in that case, the second tag’s propagating
input is the stack not empty signal generated from the global stack.

3.5 System Architecture

We propose a scalable architecture appropriate for the simultaneous matching
of thousands of XPath profiles.

Addressing Inner and Outer Fan-Outs via Clustering. One observation
is that all stacks on chip would be updating concurrently; hence, all of the
stacks’ addresses would be generated from a common structure, which in turn
requires push and pop notifications from the SAX Parser. Figure 3 illustrates this
matter, where the TOS address is routed to the global stack and all remaining
Path Specific Stacks (in the case of unoptimized PSS’s, there is no need of a

150 R. Moussalli et al.

global stack). This approach however creates a fan-out issue, where the address
signal, the global stack output and the tag decoder output are replicated as many
times as there are XPath profile matching engines (see Fig. 3), thus, affecting
the allowed operational frequency.

A solution to this problem would be clustering, where the global stack, the
SAX parser and the tag decoder would be replicated for clusters of PSS’s, thus
reducing the fan-out. This in turn raises the issue of the fan-out on the input
stream, which would have to be replicated to feed into all clusters.

We refer to the fan-out within clusters as the inner-fanout ; moreover, as the
name indicates, the outer-fanout is caused by the out-of-cluster replication of
the input stream.

One attempt to reduce the outer-fanout is the insertion of a binary fan-out
tree on the input stream. Each node in that tree is a 9-bit buffer, capable of
storing the input stream and an input valid bit. With each leaf of that tree
feeding a single cluster, the outer fan-out would be eliminated, at the cost of
many on-chip resources. Section 4.1 provides a thorough design space exploration
on the allowed inner-fanout vs. tree size compromise. A reduced fan-out tree is
introduced, which occupies less resources than a full tree, while keeping outer
fan-out within reasonable bounds.

Reporting Matches. With thousands of matching engines co-existing on chip,
reporting matches becomes a more complicated issue, where mapping each match
signal exclusively to an FPGA pin is not an option. Our previous approach [14]
suggested the use of priority encoders, where upon the event of a match, the
unique encoded ID of the expression is returned. However, such an approach
fails to acknowledge multiple matches occurring concurrently. XPaths a//b and
c/a/d/b are such examples.

For the application of interest (filtering), the number of matches of each profile
is of no interest, rather whether or not there was at least one match. Thus, we
enhance our matching logic with one bit buffers relative to each PSS (Fig. 3);
these buffers are connected serially. Upon the completion of the input stream, all
of these results would be streamed out in a pipelined fashion, with a single bit
port required. There would be N cycles of overhead required for this mechanism
to complete streaming out, with N being the number of profiles. Nonetheless,
this overhead is minimal when compared to the size of the documents streamed
through the FPGA. In the case of clustering, we provide the option of having
one match output signal per cluster. This would help reduce the overhead of
sending the information out of the FPGA.

4 Experimental Results

We proceed with a design space exploration, where the effects of inner and
outer fan-out, resource utilization and throughput are studied. We present four
hardware systems, namely:

– No Optimization No Tree (NONT), where the PSS optimizations described
in 3.3 are not applied.

Accelerating XML Query Matching through Custom Stack Generation 151

– With Optimization No Tree (WONT), where the PSS optimizations for
area reduction are applied, but the outer fan-out issue is not addressed.

– With Optimization With Tree (WOWT), where we apply both PSS opti-
mizations and a binary fan-out tree having as many leaf nodes as there are
clusters. This system cancels outer fan-out by using part of the optimized
resources.

– With Optimization With reduced Tree (WOWrT); this is an architecture
similar to WOWT, however the fan-out tree is reduced, having fewer leaf
nodes than the number of clusters. While this approach would not eliminate
outer fan-out, we expect that it would scale much better with almost no
penalty on performance.

Our target platform is the Xilinx Virtex 5 LX330 [18] FPGA. With the pro-
posed architecture heavily relying on memory structures, we make use of on-chip
Block RAMs (BRAMs) [3]. These are highly configurable hard-wired memory
blocks embedded in most Xilinx FPGAs. However, since the number of BRAMs
is far fewer than that of all (global and path specific) required stacks, we only
map global stacks to BRAMs. XPath queries on the other hand would be imple-
mented using Distributed Memories (DMEMs) [4], memory structures built from
slice LUTs. We provide a thorough resource utilization and performance study
on the underlying tradeoffs of all of the four aforementioned hardware systems.

The reported performance is measured in throughput (MB/s), i.e., the average
amount of data that can be processed over one second. All hardware systems
assume a single character of 8 bits per cycle from the input stream’s end. We
compare the performance of our hardware systems against both of the LazyDFA
[7] and FiST [9] software approaches.

We used a highly recursive XML Document Type Definition (DTD; which
defines the allowed XML document structure) to generate XML documents and
XPath queries for our experiments. The XML document datasets were generated
by the ToXGENE XML Generator [2], setting the number of unique tags to 32,
each consisting of two bytes. We generated documents of sizes of 5 and 50 MB,
with a maximum XML document depth of 16. The same XML DTD was used
to generate the set of user profiles using the XPath generator package provided
by [6]. The maximum depth of a user profile was fixed at 6 and the probability
of ‘*’ and ‘//’ occurrences was set to 10 percent. We varied the number of user
profile datasets from 128 to 8192 queries.

All software experiments were ran on a quad core 2.33GHz Intel Xeon machine
with 2GB of RAM, running Linux Red Hat 2.6.

4.1 Design Space Exploration

In order to evaluate the tradeoffs of excessive vs. sparse clustering, we ran a
series of experiments, fixing the number of XPath queries at 2048, while varying
the number of queries per cluster, up to 256 clusters (eight queries per cluster).
We could not provide results beyond that point due to the limitation in the
number of available BRAMs. We first compare NONT, WONT and WOWT.

152 R. Moussalli et al.

The larger number of queries in each cluster, the higher the inner fan-out,
thus the lower the outer fan-out, and vice versa. As expected, Fig. 4 shows
that with the absence of clustering, inner fan-out is dominant and the opera-
tional frequency is much lower than achievable for all of three systems studied.
Clustering proves to be beneficial up to a certain point, where the balance be-
tween outer and inner fan-out allows operational frequencies around the best
achievable of 200 MHz. This behavior occurs around 128 queries per cluster.
Beyond that point, where outer fan-out becomes dominant, both of NONT and
WONT’s performance deteriorates. On the other hand, WOWT would exhibit
a rather constant superior performance at around 200 MHz. This is due to the
full binary fan-out tree introduced as an effort to eliminate the effects of outer
fan-out (at the expense of a higher area utilization). This penalty is tolerable
and benefiting while the tree is kept small, up to 128 queries per cluster (where
the tree has 16 leaf nodes and the WOWT area still is smaller than NONT’s).
Beyond that point, the tree grows too large, displaying up to 200% increased
resource utilization.

Fig. 4. Design space exploration with regards to the inner vs. outer fan-out compromise
across three systems at 2048 queries

We then explore the scalability of the proposed architectures with the number
of XPath queries ranging from 128 to 8192 (Fig. 5) and 200 MHz being our target
operational frequency. We fix the number of queries per cluster at 128 (being the
point where the best performance was realized at 2048 queries). However, we now
evaluate the WOWrT setup, where the fan-out tree has a fixed 16 leaf nodes, the
most adequate tree size from the previously shown exploration. Such an approach
would not eliminate outer fan-out, but would keep the area utilization minimal,
while almost no performance deterioration is noticed. For this approach only, we
fix the number of queries per cluster to a more conservative 64. The intuition
is that with outer fan-out reduced thanks to the tree, inner fan-out should be
kept minimal with the help of extra clustering. Furthermore, since the target
operational frequency of 200 MHz was achieved with no tree at 2048 queries, we
only evaluate WOWrT for systems having at least 4098 queries (knowing that
no tree is needed otherwise).

Accelerating XML Query Matching through Custom Stack Generation 153

Fig. 5. Resource utilization comparison across all four proposed systems. NONT,
WONT and WOWT results shown for 128 queries per cluster. WOWrT makes use
of a 16 leaf-tree at 64 queries per cluster.

As shown in Fig. 5, all approaches scale surprisingly well, almost doubling the
resource utilization while doubling the number of XPath queries.

PSS optimizations offer an average 20% of area savings. For the most part,
WOWrT seems to scale as well as WONT, whereas WOWT suffers from the full
binary fan-out tree.

Figure 6 presents the throughput for all approaches: as expected, a throughput
superior to 200 MB/s is achieved up to 2048 queries across all systems. Beyond
that point, a fan-out tree is needed, thus illustrating the benefits of WOWT
and WOWrT, the latter being more consistent, having a smaller fixed size tree.
Otherwise, a decrease in throughput is revealed across the remaining systems.

Fig. 6. Hardware vs. software performance with an increasing number of queries for
streams of 5 MB (left) and 50 MB (right)

4.2 Performance Evaluation

In order to evaluate the performance of our proposed hardware architectures, we
provide a comparison against two state of the art software approaches, namely

154 R. Moussalli et al.

LazyDFA abd FiST (see Fig. 6). We report the throughput as the number of
XPath queries increases from 128 to 8192, for two sets of XML streams of sizes
5 and 50 MB respectively.

Hardware throughput, being the operational frequency of the system, is inde-
pendent of the input stream. On the other hand, the negative effects from the
sequential computing aspect of the software approaches, is noted as the number
of queries increases. Moreover, we show to overcome the Von Neumann memory
bottleneck as hardware systems exhibit a speedup of up to three orders of mag-
nitude, with a geometric mean of 59x. LazyDFA performs much better with the
number of queries kept small; that approach does not scale too well, where FiST
would outperform it beyond 2048 queries.

5 Conclusions and Future Work

In this paper, we presented a novel FPGA based hardware architecture to address
the XML filtering problem. Using custom stack generation, our architecture is
the first providing full support for all structural XPath constructs, including
parent-child and ancestor descendant relations, whilst allowing wildcarding and
recursion. Hardware architectures do not suffer from the memory bottleneck
problem (better known as the Von Neumann bottleneck), since they are highly
suitable for stream processing; they would also not suffer from the limitations of
sequential processing, as the proposed architecture would support thousands of
matching engines operating in a parallel fashion.

We were able to show that through moderate clustering and proper fan-out
reduction, an average throughput of 200 MB/s can be maintained for up to 8192
matching engines, thus yielding up to three orders of magnitude accelerated
throughput when compared to state of the art software approaches for various
stream sizes. The reported geometric average of the acceleration is 59x.

As part of our future work, we would be looking into enhancing our Path Spe-
cific Stacks to support twig matching; here, user profiles are more complicated
as they resemble trees. One common approach used by software systems is to
split the twig into multiple XPaths. However, we are interested in holistic twig
matching, where each engine would detect a twig without splitting it into mul-
tiple paths. The resulting system would be fully implementable on hardware, as
no false positives are generated to reconstruct the twigs using any accompanying
software.

References

1. Altinel, M., Franklin, M.J.: Efficient Filtering of XML Documents for Selective
Dissemination of Information. In: Proceedings of the 35th Int’l Conference on Very
Large Data Bases (VLDB), pp. 53–64 (2000)

2. Barbosa, D., Mendelzon, A., Keenleyside, J., Lyons, K.: ToXgene: a template-based
data generator for XML. In: Proceedings of ACM Management of Data (SIGMOD),
p. 616 (2002)

Accelerating XML Query Matching through Custom Stack Generation 155

3. Block RAM v1.00a,
http://www.xilinx.com/support/documentation/ip documentation/

bram block.pdf

4. Distributed Memory Generator v4.1,
http://www.xilinx.com/support/documentation/ip documentation/

dist mem gen ds322.pdf

5. W3.org on DOM, http://www.w3.org/DOM
6. Diao, Y., Altinel, M., Franklin, M.J., Zhang, H., Fischer, P.: Path sharing and

predicate evaluation for high-performance XML filtering. ACM Trans. on Database
Systems (TODS) 28, 467–516 (2003)

7. Green, T.J., Gupta, A., Miklau, G., Onizuka, M., Suciu, D.: Processing XML
streams with deterministic automata and stream indexes. ACM Trans. on Database
Systems (TODS), 752–788 (2004)

8. Guo, Z., Najjar, W., Vahid, F., Vissers, K.: A quantitative analysis of the speedup
factors of fpgas over processors. In: Proc. of the 12th ACM/SIGDA Int’l Symp. on
Field programmable gate arrays (FPGA), pp. 162–170 (2004)

9. Kwon, J., Rao, P., Moon, B., Lee, S.: FiST: scalable XML document filtering by
sequencing twig patterns. In: Proceedings of the 31st international conference on
Very Large Databases (VLDB), pp. 217–228 (2005)

10. Letz, S., Zedler, M., Thierer, T., Schutz, M., Roth, J., Seiffert, R.: XML offload
and acceleration with Cell broadband engine. XTech.: Building Web 2.0 (2006)

11. Linderman, R.W., Lin, C.S., Linderman, M.H.: FPGA acceleration of information
management services. In: High Performance Embedded Computing, HPEC (2004)

12. Lu, W., Gannon, D.: ParaXML: A Parallel XML Processing Model on Multicore
CPUs, Techincal Report (2008)

13. Lunteren, J.V., Engbersen, T., Bostian, J., Carey, B., Larsson, C.: XML accelerator
engine. In: 1st Int. Workshop on High Performance XML Processing (2004)

14. Mitra, A., Vieira, M.R., Bakalov, P., Najjar, W., Tsotras, J.T.: Boosting XML
Filtering with a Scalable FPGA-based Architecture. In: 4th Biennial Conference
on Innovative Data Systems Research, Asilomar (2009)

15. Muller, R., Teubner, J., Alonso, G.: Streams on Wires – A Query Compiler for
FPGAs. In: Proceedings of the 35th Int’l Conference on Very Large Data Bases,
VLDB (2009)

16. Clark, C.R., Schimmel, D.E.: Efficient Reconfigurable Logic Circuits for Matching
Complex Network Intrusion Detection Patterns. In: 13th international conference
on Field Programmable Logic and Applications, pp. 956–959. Springer, Lisbon
(2003)

17. SAX home page, http://www.saxproject.org
18. XILINX DELIVERS 65nm VIRTEX-5 LX330,

http://www.xilinx.com/prs_rls/2006/silicon_vir/06130lx330delivery.htm

19. XML Path Language (XPath) Version 1.0, W3C Recommendation (1999),
http://www.w3.org/TR/xpath

http://www.xilinx.com/support/documentation/ip_documentation/bram_block.pdf
http://www.xilinx.com/support/documentation/ip_documentation/bram_block.pdf
http://www.xilinx.com/support/documentation/ip_documentation/dist_mem_gen_ds322.pdf
http://www.xilinx.com/support/documentation/ip_documentation/dist_mem_gen_ds322.pdf
http://www.w3.org/DOM
http://www.saxproject.org
http://www.xilinx.com/prs_rls/2006/silicon_vir/06130lx330delivery.htm
http://www.w3.org/TR/xpath

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 156–170, 2010.
© Springer-Verlag Berlin Heidelberg 2010

An Application-Aware Load Balancing Strategy for
Network Processors

Rainer Ohlendorf, Michael Meitinger, Thomas Wild, and Andreas Herkersdorf

Technische Universität München, Institute for Integrated Systems,
Arcisstrasse 21, 80290 Munich, Germany

Rainer.Ohlendorf@tum.de

Abstract. This paper presents and compares different load balancing strategies
in multi-core network processor (NP) chips. In our FlexPath NP system, packets
are differentiated according to application-dependent processing requirements
and optimized processing paths are provisioned for these applications. We
derive a novel load balancing mechanism (S&H) by combining two schemes for
stateful and stateless network applications in order to achieve better overall
system throughput and reduced packet latencies. We show that appropriate QoS
for the different regarded application types can be achieved under varying NP
load conditions, while maintaining an almost uniform utilization of the
available processing resources. Even though the investigations are focused on
the FlexPath NP architecture, the concepts can also be applied to other
architectures, where the incoming load has to be distributed among several
parallel entities within an NP.

Keywords: Communication Systems, Computer Networks, Load Balancing,
Network Processors, Multi-Processor System-on-Chip.

1 Introduction

The trend to implement Internet access and edge nodes with increasing intelligence,
moving away from the traditional best effort model of IP packet delivery, has led to
network processor (NP) architectures with many processing cores and a requirement
to inspect and classify incoming traffic flows towards different service classes. The
FlexPath NP is one architecture proposal that eases the deployment of such a service
differentiation on an NP's architectural level. In this paper, we focus on the load
balancing problem for NPs with parallel processing resources. Starting from state-of-
the-art hashing-based load assignment schemes, we investigate how to increase the
system performance in an NP that processes an application mix. Our main focus is to
meet the Quality-of-Service (QoS) requirements for the network traffic and improve
processing resource utilization for both stateful and stateless networking applications.

Section 2 presents an overview of existing load balancing schemes for network
processors, and an introduction to the FlexPath NP architecture. Section 3 explains the
concept and implementation of the proposed load balancing strategies that improve the

 An Application-Aware Load Balancing Strategy for Network Processors 157

system performance for stateful and stateless networking applications. A simulation
model in SystemC (section 4) is used to evaluate and compare the performance of prior
art and our new load assignment strategies. Experimental results based on real Internet
traffic are presented in section 5. Section 6 concludes the paper.

2 Prior Art

2.1 Load Balancing Schemes in Network Processors

In [1] Dittmann introduces a hashing-based load balancing system for parallel
network processors. For each incoming packet a hash-value is computed out of certain
flow-identifying header fields (typically the IP five-tuple consisting of source and
destination addresses, protocol number, and L4 port numbers). A load balancing table
maintains a list of such hash values, their associated processor, and a timestamp,
when the last packet of the hash value had entered the system. If the incoming
packet's flow has not expired, the packet is forwarded towards the processing engine
(PE) queue specified in the table. If the time stamp for the hash value of the incoming
packet is older than a pre-defined timeout value, the entry is updated to route the
packet towards the least loaded PE queue. Two exceptions from this basic scheme are
presented: An existing flow entry may be re-mapped to another PE before the
timeout, if the corresponding PE queue is overloaded, in order to avoid unnecessary
packet loss. Second, if a single flow entry would exceed the processing capabilities of
a single PE, its packets may be distributed over several PEs, which is called packet
spraying. It is important to realize that packets may be re-ordered, when a re-mapping
takes place during a flow bundle's lifetime, and - of course - when packets of an
excessive flow bundle get sprayed. Packet reordering has been identified to cause
problems with the congestion avoidance of TCP, and should be avoided as far as
possible [5].

This simple, hashing-based scheme is modified by Kencl in [2] to feature an
adaptive control loop in combination with a robust highest-random weight (HRW)
hashing, called AHH (Adaptive HRW Hashing). The adaptive control loop assures
that the weights for the HRW hashing are modified, such that the assignment of flow
bundles to the PEs is more evenly balanced for biased hash bundles found in real
Internet traffic. Packet reordering may occur, when the weight adaptation triggers a
re-balancing of flow bundles from one PE to another.

Internet traffic usually consists of many flows with low activity and only a few
flows with high activity (aggressive flows)[6]. In contrast to AHH, the Adaptive Burst
Shifter (ABS) [3] shifts only the aggressive flows in an unbalanced situation, whereas
the non-aggressive flows are mapped by hashing. Since the shift of few aggressive
flows already has an appreciable effect on PE load, the number of hash flow shifts can
be reduced and thus also packet reordering. ABS uses a Flow Classifier to identify the
aggressive flows, whereas a Load Adapter remaps the aggressive flows to the least
loaded PE, when needed.

Finally, in [4] Shi and Kencl propose to combine their previously developed AHH
and ABS schemes, such that the burst shifting is applied after assigning flows
according to the AHH method. In this way, the Burst Shifter helps to move loads

158 R. Ohlendorf et al.

directly away from most-loaded PEs towards the least-loaded PE, even before the
AHH hashing weight adaptation might react. In addition, the algorithm insures that
flows may only be re-mapped at the beginning of a burst, i.e. when no other packet of
the same flow is already in the system. The combined scheme (referred to as HABS in
the following) results in the best performance of the prior art schemes with respect to
the number of active flow re-mappings and packet reordering rates. However, the
burst shifting algorithm requires maintenance of a lot of state information, which
makes the algorithm somewhat complex for implementation in a high-speed NP
system.

2.2 FlexPath NP Architecture

Our FlexPath NP concept, which has already been presented in [7], consists of a
cluster of PEs (e.g. PowerPC 405 cores or hardware accelerators like crypto cores)
and some architecture-specific hardware units as shown in Figure 1.

Interconnect

Pre-Processor Post-Processor

GEMAC (RX) GEMAC (TX)

Output Buffers

DDR2 SDRAM
Controller

Control Plane
Processor

Memory
Management

(DMA)

Path Dispatcher

I-Path Control

Packet Distributor

Data Plane
PE

HW
Accelerator

(Crypto)

E-Path Control

In
gr

es
s

H
ar

dw
ar

e
P

ro
ce

ss
in

g
Pi

pe
lin

e

Egress H
ardw

are
Processing Pipeline

...

Fig. 1. FlexPath NP Architecture

The basic idea of the FlexPath NP is to support different processing paths that are
optimized for various networking applications. In a FlexPath NP some functions,
which might traditionally be implemented in software on one of the processors, is
moved to hardware situated near the networking interfaces. This hardware is
implemented as a data path pipeline running at full aggregated line speed. It relieves
the PEs from often recurring tasks and also facilitates real time traffic differentiation
and load assignment towards the PEs. When a packet is received from a link, its
header is inspected by the Pre-Processor and a classification for several application
types takes place in the Path Dispatcher [8]. The Packet Distributor consists of a set of
FIFOs for traffic differentiation before the processor cluster and the Multi-Processor
Interrupt Controller. After processing, the packets are sent to the Egress Path Control
[9], which insures correct packet sequence for packets that belong to the same flow.
This is achieved by analyzing flow-specific sequence numbers issued by the Ingress

 An Application-Aware Load Balancing Strategy for Network Processors 159

Path Control and queuing out-of-order packets before forwarding them towards the
output buffers of the NP. Thus, our architecture provides an effective means to reduce
the packet reordering observed in parallel forwarding architectures. Finally, the
packets are sent towards the egress interfaces of the NP. As we have already shown
the architectural concept and implementation results in previous publications, we will
focus on the load balancing problem in the following.

3 Application-Aware Load Balancing for FlexPath NP

We are looking for load balancing strategies that optimize the NP performance with
respect to QoS requirements and maximize PE utilization. As we have laid out in 2.2,
our FlexPath NP environment provides the Path Control unit to solve the problem of
packet reordering in parallel PE network processor units (NPUs). Therefore, we do
not consider this problem to the extent that schemes from the prior art do. We
approach the problem from a different point of view: What would be the optimum
load balancing strategies with respect to overall system utilization, minimum packet
loss rates and processing latencies? As we differentiate the networking applications in
the ingress pipeline of our NPU, we apply a combination of several load balancing
strategies; one for each application type. We will focus on stateless and stateful
networking applications and derive optimized load assignment schemes for these two
classes. For the remainder of this paper, we will use QoS-aware IP forwarding and
IPsec encryption as two representative examples for stateless and stateful network
processing applications.

IP forwarding operates only on the header fields of the current packet to determine
the packet's destination and thus does not require maintenance of a flow-specific state.
In addition, it is still possible to differentiate various QoS priorities according to the
DSCP field in the IP header, if we assume to be within a DiffServ cloud [10], where
packets with a marked priority should be forwarded on a higher priority level in both
the PEs and the output queues.

In contrast, when processing IPsec traffic [11], a flow-specific state has to be
maintained. The state information consists of the connection parameters, sequence
numbers and cryptographic keys. In order to guarantee processing state consistency, it
is necessary to protect the state information by a semaphore locking mechanism, if it
needs to be accessed from several PEs that work on the same flow in parallel. Such
concurrent accesses may however deteriorate the performance significantly due to
blocking accesses.

3.1 Support for Stateless Processing Applications

For stateless IP forwarding traffic, referred to as best effort (BE) and DiffServ high
priority (QoS) in the following, we propose to use a slightly modified form of packet
spraying [1]. The idea behind this is that the packets will experience optimum
processing, as we can exploit a pooling gain from distributing them over a multitude
of PEs. In contrast to the packet spraying mechanism as defined in [1], we do not
maintain a single queue per processor, into which the packets are sprayed. The
spraying is performed out of a single queue per traffic class (e.g. QoS priority level)

160 R. Ohlendorf et al.

by means of the Interrupt Controller. We assign the BE and QoS packets to two
different queues in the Packet Distributor, who will in turn notify all PEs by interrupt
that a packet is waiting to be processed (see also Figure 2). The interrupt priorities for
the processors are configured in such a way that the QoS queue will be worked off
before the BE queue. While a PE is working on a packet, it will mask all interrupts
such that only idling PEs will react to a new packet arrival. As a consequence of the
statistical assignment of packets we can expect a well balanced distribution of the
load among all active PEs, and each packet at the head of the queue will experience
the shortest possible wait time until it gets serviced. The modified spraying technique
avoids head-of-line blocking effects associated with queues dedicated for individual
PEs and also minimizes packet reordering probabilities, as packets only experience
varying processing latencies, but not different queuing delays. However, we do not
guarantee packets from the same flow to be processed by the same PE. The higher
packet reordering rate in comparison to hash-based load assignment schemes is
eliminated by our Path Control unit before the packets reach the NP output buffers.

3.2 Support for Stateful Processing Applications

Due to the consistency and performance implications of shared state information, we
do not apply packet spraying for the class of stateful traffic. Stateful flows are
processed on a single PE with a local copy of the processing state. In case that the
aggregate of flows assigned to a single PE exceeds the overall processing capacity, re-
balancings have to be performed along with a (possibly costly) state information
migration among the involved PEs. The class of adaptive hashing-based schemes
(AHH and HABS) referenced in the prior art section would serve as potential
candidates for balancing this type of traffic.

While analyzing the details of the AHH and HABS schemes, we realized that the
evaluation of the highest random weight is quite computationally intensive and that
flows from an overloaded PE are not necessarily assigned to the least-loaded PE. The
implementation effort becomes even higher for HABS, which complements AHH
with a burst shifter unit that requires additional maintenance of flow state information.

In order to minimize the effort spent for load balancing, while maintaining a close
to optimal PE resource utilization, we propose a new simple, adaptive, hashing-based
scheme, called HLU. The following sections describe the load assignment process of
HLU that has to be performed within the Control Plane processor of the NP. The
resulting flow to PE assignment is then configured into the Path Dispatcher rule base,
which makes the real-time path decision for each incoming packet.

At system startup, we need to make an assignment for all possible flows
(distinguished by a hash value computed from the Internet five-tuple, called FlowID
in the following) to the individual PEs in the processor cluster. A FIFO-type list is
maintained in the Control Plane that stores the assigned FlowIDs for each PE. From
these FIFOs, the hash table used within the Path Dispatcher [8] can be easily derived.
Initially, we fill these FlowID FIFOs with an equal amount of flows. As we know
from previous publications (especially [2]), this initial assignment may not be optimal
due to a bias in the hash value distribution of real Internet traffic.

 An Application-Aware Load Balancing Strategy for Network Processors 161

During system runtime, we measure the load of the individual PEs and adapt the
load assignment by re-balancing flows from the highest-loaded PE towards the least-
loaded PE when an unbalanced situation is observed. In contrast to some schemes
presented in the prior art, we do not rely on queue lengths as a measurement for PE
load; instead we measure the load of the PEs directly. This may be achieved by
inserting only two instructions into the processing software that inform a set of
hardware counters of beginning and end of the processing routine. When provisioning
two counters per PE, we are easily able to determine the individual shares that stateful
and stateless flows have generated on the respective PE.

By removing FlowIDs from the front of the overloaded PEs' FIFO and appending it
to the end of the least-loaded PEs' FIFO, we insure that flows that have been re-
balanced stick with the new assignment as long as possible. This behavior is in
contrast to AHH, where load variations may lead to oscillations of flow assignments
due to the nature of the HRW algorithm. The assignment persistence is beneficial in
the context of stateful networking applications, where re-balancings not only pose the
risk of packet reordering, but also come at the cost of migrating processing context
from one PE to another. Code Listing 1 describes the adaptation routine of HLU,
which is executed periodically (Tadapt) within the Control Plane processor.

The current load figures resulting from the HLU-assigned traffic (i.e. no spraying)
are gathered for each PE),(tiρ and are low pass filtered according to the following
iterative formula:

),(95.),(05.),(__ adaptpasslowpasslow Ttititi −×+×= ρρρ .

From these individual PE loads, maximum, minimum and average utilization
figures are computed as follows:

()),(max _max tipasslowi
ρρ = , ()),(min _min tipasslowi

ρρ =

i

ti
i

passlow

avg

∑
=

),(_ρ
ρ

An adaptation is triggered, when the utilization of the highest-loaded PE maxρ

exceeds an adaptation threshold AT1 and the imbalance between the highest and least-
loaded PE exceeds an adaptation threshold AT2. If maxρ is excessively exceeding the

average load, flows are moved towards the least-loaded PE. The number of flows
moved depends on the amount of overload (avgρρ −max) and number of flow bundles

currently assigned to the highest-loaded PE (FIFO[max].size()). The term is
multiplied with a low-pass factor of sover to factor in the risk of moving an aggressive
flow. Analogous to this, flows are assigned towards an excessively under-utilized PE
with a slower low-pass factor of sunder. The low pass factors help to evenly balance the
loads over several adaptation periods, and wildly oscillating load assignments caused
by aggressive flows are avoided. The algorithm's parameters have been determined by
a set of simulations with realistic Internet backbone traffic and yield optimal results
for the considered traffic with the following values:

AT1=40%, AT2=15%, sover=0.125, sunder=0.0625, Tadapt=50ms.

162 R. Ohlendorf et al.

if(rho_max > AT
1
)

 if(rho_min < rho_avg-AT
2
 or rho_max > rho_avg+AT

2
)

 if(rho_max-rho_avg > rho_avg-rho_min)
 flows=s

over
*(rho_max-rho_avg)*FIFO[max].size();

 else
 flows=s

under
*(rho_avg-rho_min)*FIFO[max].size();

 while(flows>0) {
 FIFO[min].push_back(FIFO[max].pop_front());
 flows--;
 }

Code Listing 1: HLU Adaptation Routine

If HLU shall be applied for traffic with different statistical properties as observed
in the traces we used in this paper, an adaptation of the parameters may be necessary.
This adaptation may also be accomplished during system runtime by implementing a
learning algorithm in the control plane of the NP. However, a detailed discussion is
beyond the scope of the work presented in this paper.

In the following parts of the paper the performance of the proposed load balancing
strategies is shown. In scenarios with a mix of stateful and stateless networking
applications, S&H refers to the combination of spraying and HLU for the respective
application classes.

4 Simulation Model

For evaluating the different strategies we have developed a SystemC [12] model of
the NP system as depicted in Figure 2.

Packet classification and hash table lookup (as required both for AHH and HLU)
are performed by the Path Dispatcher. For FlexPath NP, we demonstrate S&H, where
QoS and BE forwarding traffic is separated into two queues with different interrupt
priorities for spraying. IPSec traffic is assigned to dedicated queues that are associated
to a single PE each using the HLU algorithm. For the reference simulations, the Path
Dispatcher only performs the AHH hash lookup used in HABS. The Burst Shifter
model is only included in the reference simulations. It remaps the flows in overload
situations based on the queue fill levels (indicating a PE's load situation) and the
current flow table entries. The flow table size is fixed to 16 entries in our simulations.
The Packet Distributor contains 16 queues for dedicated assignment, as well as one
spraying queue for QoS and one for BE traffic – with QoS having the highest and the
BE queue having the lowest priority. The queue size is initially set to 32 packet
descriptors for all queues. A packet is lost, when it is assigned to a full queue. Each
queue informs the Multi-Processor Interrupt Controller, whenever a packet is waiting
for processing.

It is important to realize that the queues in the packet distributor should not be seen
as input buffers of a switch architecture, which are generally known to have inferior
throughput performance. Our FlexPath architecture can rather be seen as a concatena-
tion of two output buffer switch architectures. At first, incoming packets from all

 An Application-Aware Load Balancing Strategy for Network Processors 163

input links are stored in the central packet memory. In parallel to the DMA function,
the packets are classified by the Path Dispatcher and packet descriptors are assigned
to the corresponding queue in the packet distributor in front of the processor complex.
The queues can be seen as output buffers of the Path Dispatcher unit, which is
guaranteed to provide line speed performance on the aggregate of incoming links. If
the processor complex is dimensioned for worst case traffic, the queues in the packet
distributor will be emptied instantly. However, we also consider average case
dimensioning, where temporary overloads may occur. In this situation we guarantee
by provisioning application-specific queues that high priority flows cannot be blocked
by lower priority flows, thus avoiding head-of-line blocking effects. Output port
contention is finally resolved by the output buffers behind the processor complex.

Fig. 2. FlexPath NP and Reference Architectures as SystemC Model

The processing latencies in the data plane cluster are derived from a real PPC 405
packet processing software implementation on our Virtex-4 FPGA FlexPath NP
demonstrator system (see [7], and Figure 1) and have been measured as 10 µs for
IPv4 forwarding and

s
Byte

lengthpacket
st IPSecproc μμ 112

64
310, ⋅+=

for IPSec processing (encryption) for packets processed by a single CPU in the system.
In order to cover processing jitter effects, like shared resource conflicts (e.g. bus or
memory), 20% of the packets get a factor of 1.5 and another 10% a factor of 2
processing time penalty in the subsequent system simulations. It is important to mention
that the processing performance of the PPC cores in the demonstrator system (simple C
programming, 200 MHz clock frequency) is not competitive with commercial NP cores

164 R. Ohlendorf et al.

processing multi-Gigabit/s links. However, we prefer to base our simulations on
measured values obtained from our implementation instead of estimated software
performance. Anyway, the effectiveness of the investigated load assignment schemes is
independent of the individual PE's maximum forwarding rate.

In contrast to the original AHH implementation, which assumes uniform
processing latencies for all packets, we are using the real PE loads as input to the
AHH algorithm. Kencl calculated the PE load by multiplying the packet rate with the
processing latency per packet, leading to a theoretical PE load that may exceed 100%
in overload situations. Since in a heterogeneous application-mix the processing
latency cannot be predicted we have to use the real PE loads.

We employ real backbone traffic traces from CAIDA in this publication (see
Table 1). The first set of traces is generated from the Anonymized OC-48 Traces
dataset [13], which consists of five-minute traces taken in 2002. The link is only
about 30% utilized, so we have multiplexed the first packets of traces recorded at 15
minute intervals into a single file. This increases the load but preserves the original
time differences between packets of the original flows. The multiplexed trace is
limited to one minute duration and 3.2 Gbit/s, as this is the limit for our NP data path
modules (32 bit @ 100 MHz on our FPGA demonstrator). This trace is referred to as
OC-48_mux in the following. The second trace set is obtained from the Anonymized
2008 Trace set [14]. We use multiplexed and rate-limited traces from the ChicagoA
trace as OC-192_mux. The trace taken on the ChicagoB link is highly utilized with
bursts exceeding 9 Gbit/s for periods of a few seconds and intermediate idle times.
We have slowed down the trace by a factor of four and limited bursts to 3.2 Gbit/s
(OC-192_quarter). Comparing the traces from 2002 and 2008, we see that both
IPSec and QoS-marked traffic shares have increased significantly - still BE traffic
accounts for more than 90% of the packets seen on a high-speed link.

Although our NP scenario encompasses networking applications usually applied at
the network edge, we had to resort to using backbone traffic traces as edge or access
traces are not made publicly available for privacy and security concerns. We consider
our results to be still valid because backbone traffic is essentially a multiplex of edge
traffic streams, thus the protocol distribution and flow characteristics are preserved.

Table 1. Key Figures of Used Internet Traces

Trace Name Packets Data Rate IPSec QoS BE

OC-48_mux 22,086,716 1.955Gb/s 0.07% 4.14% 95.79%

OC-192_mux 41,223,895 2.819Gb/s 0.40% 4.04% 95.56%

OC-192_quarter 26,473,646 1.320 Gb/s 0.63% 7.39% 91.98%

5 Experiments

5.1 Best-Effort Forwarding Scenario

As the load balancing techniques from the prior art are designed for a homogeneous
processing scenario, we start our investigations with best effort forwarding. This
provides the opportunity to compare HLU and spraying individually to the schemes

 An Application-Aware Load Balancing Strategy for Network Processors 165

from the prior art. The Path Dispatcher only performs the various load assignments
without classifying the traffic into the QoS, IPSec and BE classes. The PEs apply only
the forwarding latency. The benefits of our proposed combination of spraying and
HLU for stateful processing will be investigated in detail in section 5.2. All
simulations in sections 5.1 and 5.2 are performed with the OC-48_mux trace.

In Figure 3 we show the minimum and maximum averaged PE loads of the NP
system using the different presented load balancing techniques in isolation. We
investigate the load balancing behavior with an increasing number of PEs in the data
plane cluster. For packet spraying all PEs are evenly sharing the load. The difference
of individual PE loads from the cluster average is by design limited to AT2=15% in
HLU – we see that it is in practice even less than this threshold. In stark contrast are
the characteristics of the HABS algorithm, which may be explained by the fact that
both AHH and ABS parts are designed to eliminate overloads, but don't further
optimize on the balancing in underload situations, e.g. when the average PE load
drops below 60% for more than 8 PEs in the cluster.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of PEs in Processor Complex

A
ve

ra
g

ed
 P

E
 L

o
ad

 (
%

) HABS max
HABS min
HLU max
HLU min
spray max
spray min

Fig. 3. Minimum and Maximum CPU Loads Observed with Different Load Balancing
Strategies

0.0000%

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

100.0000%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of PEs in Processor Cluster

L
o

ss
 R

at
e

(%
) HABS

HLU
spray
AHH

Fig. 4. System Packet Loss Rates for Different Load Balancing Strategies

Figure 4 shows the resulting packet loss rates of the NP system. It is important to
realize that less than five PEs are inadequate for processing the incoming traffic, i.e.
the NP is in overload with very high packet loss rates. As the overall PE load declines

166 R. Ohlendorf et al.

between 5 and 6 PEs, the packet loss rate is reduced to less than 10-5. With more than
7 PEs, the provided processing power is greater than necessary to cope with the load,
thus the packet loss rate directly corresponds to the effectiveness of the load balancing
algorithm. We can see that the loss rate is the worst with AHH and HLU, HABS is
about half an order of magnitude better, and spraying performs best with lossless
operation. This result may be explained by the fact that AHH and HLU with their
fixed assignment of certain flows to PEs are not so good at dealing with short-lived
bursts in the traffic. These short bursts lead to temporary overflows in the Packet
Distributor buffers. The ABS algorithm performs better by rebalancing such bursts in
between two consecutive adaptation cycles. Packet spraying exhibits the best
performance, because there is no aggregation of burst packets in front of a single PE.
We also see that the performance of HLU roughly matches the performance of AHH
beyond 8 PEs, as both schemes rely on a pure dedicated assignment with the same
adaptation interval.

0

10

20

30

40

50

60

70

80

90

100

5 6 7 8 9 10 11 12 13 14 15 16

Number of PEs in Processor Cluster

A
ve

ra
ge

 L
at

en
cy

 (
µs

)

HABS
HLU
spray

Fig. 5. Average Packet Latency for Different Load Balancing Strategies

0.00001%

0.00010%

0.00100%

0.01000%

0.10000%

1.00000%

10.00000%

0 32 64 96 128 160 192 224 256 288 320 352 384

Cumulated Input Buffer Size (packets)

P
ac

ke
t

L
o

ss
 R

at
e

(%
)

-

10

20

30

40

50

60

A
ve

ra
g

e
P

ac
ke

t
L

at
en

cy
 (

µs
)

HABS - loss HLU - loss spray - loss
HABS - latency HLU - latency spray - latency

Fig. 6. Packet Loss Rate and Average Latency for Different Input Buffer Sizes (6 PEs)

For the remainder of this paper, we exclude the NP overload scenarios and focus
on the range between 5 and 16 PEs. Figure 5 compares the average packet latencies
achievable with each load balancing scheme. The stated latency figures are measured
from receive interface to transmit interface and thus include pre-processing delay, PE
processing delay and possible re-sequencing delays. For packet spraying, the packet

 An Application-Aware Load Balancing Strategy for Network Processors 167

latency is reduced very effectively, until it reaches a minimum floor which is defined
by the processing time without any queuing delays. As PEs have the more evenly
balanced load in contrast to HABS, the latency achieved with HLU is also slightly
better than that of HABS, because shorter average queue lengths can be assumed.

Packet loss rates and latencies are not only dependent on the number of
provisioned PEs, but are heavily dependent on dimensioning the queues in the system.
As we can see in Figure 6, the packet loss rate may be reduced by provisioning larger
packet descriptor queues in the Packet Distributor. In turn, the average packet latency
is increasing, because packets from short bursts now remain sitting in the queue,
while they were lost before. In general, we can see that when architecting an NP
system we can trade off additional PEs with an increased input buffer size. However,
the increased latency might have a negative effect on interactive applications like
voice-over-IP or Internet video. While packet spraying operates losslessly and with
constant latency beyond 48 packets, the other schemes require significantly larger
buffers to reduce losses.

5.2 FlexPath Scenario with QoS Forwarding and IPSec

In the following part we show the performance of combining spraying and HLU
(S&H) with the differentiated processing approach in FlexPath NP. The Path
Dispatcher is now configured to assign QoS and BE packets directly to the two
queues that spray the traffic over all PEs. Only packets identified as IPSec are
assigned to dedicated PEs using the HLU algorithm. As schemes from the prior art do
not consider such a heterogeneous processing approach, we use HABS to balance the
load, irrespective of the actual packet processing requirements. However, in both
cases the PEs will determine whether to apply the forwarding or IPSec latency.
Therefore, the processing requirements are the same for the reference simulations and
the proposed S&H assignment scheme.

0.0000%

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

100.0000%

5 6 7 8 9 10 11 12 13 14 15 16

Number of PEs in Processor Cluster

P
ac

ke
t

L
o

ss
 R

at
e

(%
)

HABS Loss S&H Loss

Fig. 7. Packet Loss Rate of S&H vs. HABS

The results in Figure 7 show a consistent behavior with respect to the individual
characteristics described in section 5.1. As the vast majority of the traffic belongs to
the BE class (see Table 1), we see the same kind of "waterfall" packet loss rate for the
traffic in FlexPath (spraying dominates). However, as IPSec processing takes roughly
a factor of 1,000 longer than plain forwarding, the lossless case for BE forwarding is
achieved only beyond 9 provisioned processors, in contrast to 7 PEs as in the plain
BE forwarding scenario (Figure 4).

168 R. Ohlendorf et al.

Figure 8 shows the average packet latencies, differentiated by their respective
networking application. By giving priority to the QoS packets in FlexPath, we are able
to forward them with almost minimum latency, even while the buffers for BE are in
overload and packets are lost. The latency figures for BE and QoS converge towards the
minimum from 9 PEs onwards. In contrast, the latency for the forwarding packets is
about a factor of three to four larger in the reference simulation (HABS), as the packets
occasionally get stuck in the queue behind IPSec packets (head-of-line blocking effect).

In Figure 9 we show the shares of sprayed and dedicated loads for PE0 from the 12
PE scenario. The combination of packet spraying and dedicated assignment allows
some load "breathing". While a burst of IPSec packets consumes a larger share of the

10

100

1,000

10,000

5 6 7 8 9 10 11 12 13 14 15 16

Number of PEs in Processor Cluster

A
ve

ra
g

e
P

ac
ke

t
L

at
en

cy
 (

µs
)

HABS QoS Latency HABS IPSec Latency HABS BE Latency
S&H QoS Latency S&H IPSec Latency S&H BE Latency

Fig. 8. Packet Latency of S&H vs. HABS

0

10

20

30

40

50

60

1 6 11 16 21 26 31 36 41 46 51 56

Time (s)

P
E

 C
u

m
ul

at
ed

 L
o

ad
 (

%
)

PE_0_QoS
PE_0_IPSec
 PE_0_BE

Fig. 9. Different Traffic Classes' Load Share (S&H)

0.00000%

0.00001%

0.00010%

0.00100%

0.01000%

0.10000%

1.00000%

5 6 7 8 9 10 11 12 13 14 15 16

Number of PEs in Processor Cluster

P
ac

ke
t

R
eo

rd
er

in
g

 R
at

e
(%

)

HABS S&H S&H after Resequencing

Fig. 10. Packet Reordering with HABS and S&H

 An Application-Aware Load Balancing Strategy for Network Processors 169

PE's resources, sprayed traffic is superseded (and processed by other PEs, which carry
less IPSec traffic at the same moment). The supersession is not explicitly triggered by
the control plane CPU, thus it happens instantaneously and packets from the spraying
queues don't get stuck waiting for the IPSec packet to finish.

Figure 10 summarizes the packet reordering rates observed with the reference and
proposed techniques. While spraying most of the incoming traffic initially increases
the packet reordering rate to 0.35%, it can be fully eliminated by the Path Control unit
except for the 6 and 7 PE scenarios, where we observe a single out-of-order packet. In
contrast, HABS achieves a packet reordering rate of 2×10-5 on average.

5.3 Results for Different Traces

We have performed the same simulations as presented in section 5.2 for the two other
traces. The general behavior of our load balancing strategy in comparison to the
schemes from the prior art remains unchanged. The key performance figures obtained
for all three sets of simulations are summarized in Table 2 below. We quote figures
for the minimum number of PEs necessary to achieve lossless operation for the two
sprayed traffic classes with S&H. In both S&H and HABS, packets with dedicated
assignment may be lost due to temporary bursts exceeding the buffer capacity.

Table 2. NP Performance Characteristics for S&H and HABS

Trace # of PEs Packet loss QoS latency IPSec latency BE latency

S&H 0.0000% 15,177 ns 2,131,125 ns 15,378 ns
OC-48_mux 10

HABS 0.1311% 51,600 ns 2,044,273 ns 52,624 ns

S&H 0.0002% 15,926 ns 3,122,052 ns 16,139 ns
OC-192_mux 16

HABS 0.2865% 66,928 ns 1,586,312 ns 69,614 ns

S&H 0.0010% 15,266 ns 3,896,399 ns 15,058 ns
OC-192_quarter 15

HABS 0.4792% 159,945 ns 2,124,968 ns 157,635 ns

6 Conclusion

In this paper, we have investigated the performance of various load balancing
schemes used in a multi-processor NP chip. Based on a survey of NP load balancing
schemes from the prior art, we propose to apply a combination of packet spraying and
a simple hashing-based flow assignment (S&H) for different application types on the
same NP. We have shown that our proposed scheme outperforms the schemes from
the prior art with respect to packet loss rates, latencies, processor utilization and
packet reordering. For packet spraying, which we propose to use for stateless
networking applications, we can exploit a pooling gain effect and achieve an evenly
balanced processor utilization. This even load distribution helps reduce packet loss
and queuing latencies. In addition, we have shown how we can effectively implement
QoS differentiation in the NP to give certain traffic flows priority over others.

As we have seen in the in-depth analysis in section 5.2, our scheme works best if a
large share of the traffic belongs to the stateless traffic class, which can be distributed
by packet spraying. This assumption is valid as we can see from an analysis of current
traffic traces (see Table 1). Even when we assume that the share of stateful applications

170 R. Ohlendorf et al.

further increases, the stateless forwarding applications will remain dominant for the
foreseeable future. When the share of sprayed traffic decreases, the behavior of the
entire system is approaching the characteristics of the individual schemes as discussed
in section 5.1. With 100% of dedicated traffic assignment, we can still achieve the
same performance as with any of the schemes known from the prior art.

We would like to thank the German Research Foundation (DFG) for supporting the
FlexPath NP project within the SPP1148 priority program and CAIDA for providing
the Internet traffic traces. CAIDA is supported by the National Science Foundation,
the US Department for Homeland Security and CAIDA members.

References

[1] Dittmann, G., Herkersdorf, A.: Network Processor Load Balancing for High-Speed Links.
In: SPECTS 2002, San Diego, CA, USA, July 2002, pp. 727–735 (2002)

[2] Kencl, L.: Load Sharing for Multiprocessor Network Nodes, Dissertation, EPFL,
Lausanne, Switzerland (March 2003)

[3] Shi, W., MacGregor, M., Gburzynski, P.: Load Balancing for Parallel Forwarding. IEEE
Transactions on Networking 13(4), 790–801 (2005)

[4] Shi, W., Kencl, L.: Sequence-Preserving Adaptive Load Balancers. In: ANCS 2006, San
Jose, CA, USA (December 2006)

[5] Govind, S., Govindarajan, R., Kuri, J.: Packet Reordering in Network Processors. In:
IPDPS 2007, Long Beach, CA, USA (March 2007)

[6] Brownlee, N., Claffy, K.C.: Understanding Internet Traffic Streams: Dragonflies and
Tortoises. IEEE Communications Magazine (October 2002)

[7] Meitinger, M., Ohlendorf, R., Wild, T., Herkersdorf, A.: FlexPath NP - A Network
Processor Architecture with Flexible Processing Paths. In: SoC 2008, Tampere, Finland
(November 2008)

[8] Ohlendorf, R., Meitinger, M., Wild, T., Herkersdorf, A.: A Processing Path Dispatcher in
Network Processor MPSoCs. IEEE Transactions on VLSI Systems 16(10), 1335–1345
(2008)

[9] Meitinger, M., Ohlendorf, R., Wild, T., Herkersdorf, A.: A Hardware Packet Resequencer
Unit for Network Processors. In: Brinkschulte, U., Ungerer, T., Hochberger, C., Spallek,
R.G. (eds.) ARCS 2008. LNCS, vol. 4934, pp. 85–97. Springer, Heidelberg (2008)

[10] An Architecture for Differentiated Services, IETF RFC 2475 (December 1998),
 http://tools.ietf.org/html/rfc2475

[11] Security Architecture for the Internet Protocol, IETF RFC 4301 (December 2005),
 http://tools.ietf.org/html/rfc4301

[12] SystemC Homepage, http://www.systemc.org
[13] Shannon, C., Aben, E., Claffy, K.C., Andersen, D., Brownlee, N.: The CAIDA OC48

Traces Dataset,
 http://www.caida.org/data/passive/passive_oc48_dataset.xml;
 files used: 20020814-090000-1-anon.pcap, 20020814-091500-1-anon.pcap,
 20020814-093000-1-anon.pcap, 20020814-094500-1-anon.pcap

[14] Shannon, C., Aben, E., Claffy, K.C., Andersen, D.: The CAIDA Anonymized 2008 Internet
Traces, http://www.caida.org/data/passive/passive_2008_dataset.xml,
files used: eq-chic.dirA.20080717-130000.UTC.anon.pcap,

 eq-chic.dirA.20080717-130500.UTC.anon.pcap,
 eq-chic.dirA.20080717-131000.UTC.anon.pcap,
 eq-chic.dirA.20080717-131500.UTC.anon.pcap,
 eq-chic.dirB.20080717-132000.UTC.anon.pcap

Memory-Aware Application Mapping on
Coarse-Grained Reconfigurable Arrays�

Yongjoo Kim1, Jongeun Lee2,��, Aviral Shrivastava3, Jonghee Yoon1,
and Yunheung Paek1

1 School of EECS, Seoul National University, Seoul, Korea
2 School of ECE, Ulsan National Institute of Science and Technology, Ulsan, Korea

Tel.: +82-52-217-2116
jlee@unist.ac.kr

3 Compiler Microarchitecture Lab, Arizona State University, USA

Abstract. Coarse-Grained Reconfigurable Arrays (CGRAs) are a very promis-
ing platform, providing both, up to 10-100 MOps/mW of power efficiency and
are software programmable. However, this cardinal promise of CGRAs criti-
cally hinges on the effectiveness of application mapping onto CGRA platforms.
While previous solutions have greatly improved the computation speed, they have
largely ignored the impact of the local memory architecture on the achievable
power and performance. This paper motivates the need for memory-aware appli-
cation mapping for CGRAs, and proposes an effective solution for application
mapping that considers the effects of various memory architecture parameters
including the number of banks, local memory size, and the communication band-
width between the local memory and the external main memory. Our proposed
solution achieves 62% reduction in the energy-delay product, which factors into
about 47% and 28% reduction in the energy consumption and runtime, respec-
tively, as compared to memory-unaware mapping for realistic local memory ar-
chitectures. We also show that our scheme scales across a range of applications,
and memory parameters.

1 Introduction

Coarse-Grained Reconfigurable Arrays, or CGRAs, are a very promising platform, pro-
viding up to 10 to 100 MOps/mW of power efficiency [1] while still retaining software
programmability. CGRAs are essentially an array of processing elements (PEs), like
ALUs and multipliers, interconnected with a mesh-like network. PEs can operate on

� This work was supported by the Korea Science and Engineering Foundation(KOSEF) NRL
Program grant funded by the Korea government(MEST) (No. 2009-0083190), the Engineering
Research Center of Excellence Program of Korea Ministry of Education, Science and Technol-
ogy(MEST)/ Korea Science and Engineering Foundation(KOSEF) (R11-2008-007-01001-0),
Seoul R&BD Program(10560), the Korea Research Foundation Grant funded by the Korean
Government(MOEHRD) (KRF-2007-357-D00225), 2009 Research Fund of the UNIST (Ulsan
National Institute of Science and Technology), and grants from Raytheon, Stardust foundation,
and NSF (grant no. 0916652).

�� Corresponding author.

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 171–185, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

172 Y. Kim et al.

the result of their neighboring PEs connected through the interconnection network. In
addition, each PE has a small number of local registers to store constants and tempo-
rary values. Array variables are typically stored in the local memory, also called frame
buffer, which is an on-chip SRAM memory with a very high bandwidth toward the
PE array. The word-wide datapaths, area-efficient routing, and word-level programma-
bility make them especially suited for multimedia and compute-intensive applications,
whereas FPGAs can be more appropriate for complex logic and bit manipulation. Sev-
eral CGRAs such as MorphoSys [2], RSPA [3], and ADRES [4], have been proposed
and implemented, and a comprehensive summary of many of them can be found in [5].

One of the biggest challenges for CGRAs is application mapping, or compilation.
Compilation for CGRAs has traditionally focused on two issues: i) placing operations
(such as arithmetic/logic, multiplication, and load/store) of a loop kernel onto the PE
array, and ii) guaranteeing the data flow, or communication, between operations using
the existing interconnection resources. The third dimension, which has been typically
ignored in previous CGRA compilation techniques [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], is
where to place data, typically array variables, in the local memory. We refer to opera-
tion placement and array placement as computation mapping and data mapping, respec-
tively. Data mapping is not an issue if the local memory has uniform memory access
(UMA) architecture—for instance, if the local memory consists of a single large bank.
Then any PE can access any local memory address with equal timing, and thus it does
not matter where to place an array. However, if the local memory has nonuniform mem-
ory access (NUMA) architecture—for instance, if it consists of multiple banks and each
bank is connected to only one row of PEs—where to place array variables among multi-
ple banks can affect computation mapping and greatly impact the quality of the overall
mapping. Since the local memory of a CGRA is accessed by many PEs each cycle, typ-
ically more than a dozen ports exist between the local memory and PEs. Implementing
UMA architecture with such a large number of ports is very expensive, either by single-
bank multi-port memory [9, 13] or through hardware arbitration [16]. Thus a compiler
technique that can effectively manage the complexity of NUMA architecture for CGRA
mapping is highly desirable.

Computation mapping and data mapping are two very closely related problems, so
solving them sequentially does not give the optimal solution. If array placement is fixed
first, and operations are placed later, the computation mapping problem will involve far
more constraints than without array placement, that it may be unsolvable or generate
poorer solutions than without array placement. Besides, it is not clear how to fix array
placement first without doing at least part of computation mapping. On the other hand,
if computation mapping is done first, it automatically determines data mapping, which
can lead to other problems. First, the same array may be placed in multiple banks (du-
plicate array) if the array is reused in multiple references in the loop (i.e., by multiple
loads with different indexes). This can lower the effective size of the local memory and
can significantly degrade the performance especially if the local memory is not very
large. Second, bank utilization can be unbalanced to a large degree, which can lower
the performance if the unbalance in the bank utilization causes extra buffering in the
local memory. Third, in recurrent loops, dependent memory operations must be able to

Memory-Aware Application Mapping on Coarse-Grained Reconfigurable Arrays 173

0%

20%

40%

60%

80%

100%

Td

Tc

Fig. 1. Many multimedia kernels are memory-bound on RSPA. Td= td/(tc + td) and Tc=
tc/(tc + td). Asterisk (*) indicates recurrent loop, where II and tc can be increased due to data
dependence.

access the same array from the same bank. This could be taken care of by constraining
dependent memory operations to be mapped to the same rows, for instance, but other
constraints (e.g., port contention, memory size restriction) may also be necessary. In
general, to guarantee the correctness and optimality of mapping for memory-bound
loops on NUMA CGRAs, we must consider not only computation mapping but also
data mapping. In this paper we propose a compilation technique, which is aware of the
local memory architecture and can find near-optimal mapping considering both array
variables and computation operations in memory-bound loops.

After motivating in Section 2 the need for considering the memory architecture and
data placement during mapping, we explain our target architecture and application map-
ping in general in Section 3, and discuss the related work in Section 4. In Section 5 we
present our memory-aware heuristic that can be applied to any modular scheduling
algorithm such as [9, 13]. Our proposal introduces new costs such as data reuse oppor-
tunity cost and bank balancing cost to steer the mapping process to be more aware of
the architectural peculiarities. Our experimental results indicate that not only is our pro-
posed heuristic able to achieve near-optimal results as compared to single-bank memory
mapping, it can also achieve 62% reduction in the energy-delay product as compared
to memory-unaware mapping for multi-bank memory, which factors to 47% and 28%
reductions in the energy consumption and runtime, respectively. We also demonstrate
that our scheme scales across a range of applications, and memory parameters.

2 Why Consider Data Placement?

If the local memory is large enough, duplicate arrays and unbalanced bank utilization
may not be a problem—simply duplicate arrays as many times as needed if each mem-
ory bank is unlimited. However, we find that it is not the case in many CGRAs such as
MorphoSys and RSPA, and in fact, for larger arrays and loops the entire arrays cannot fit
in the local memory and multiple buffer switchings are necessary even during a single
loop execution. To minimize slowdown due to buffer switching, those architectures of-
ten provide hardware double buffering [2], such that computation (on the PE array) and

174 Y. Kim et al.

data transfer (between the local memory and the system memory) can work on differ-
ent hardware buffers, overlapping computation and data transfer, and buffer switching
can be done instantly, typically in a few cycles. Even with such hardware support, for
memory-bound applications it is hard to avoid data transfer becoming the performance
bottleneck, since memory bandwidth is not as scalable as increasing the number of PEs
on a CGRA.

Figure 1 plots the ratio between tc and td of important loop kernels from MiBench
and SPEC benchmark, using the EMS algorithm [13] on the RSPA architecture [3].
The terms tc and td are the computation time and the data transfer time for a tile of a
loop, where tile is defined by buffer switching. Then the total execution time of a tile
is determined by max(tc, td). The graph shows that all these loop kernels are indeed
memory-bound, i.e., td > tc, with the average tc/(tc + td) being just 22%. Even if we
double the memory bandwidth (of between the local memory and the system memory)
from 2 bytes per cycle to 4 bytes per cycle, most of the loops still remain memory-
bound, with the average tc/(tc + td) increasing to just 37%. Thus it is important to
optimize the data part of the mapping, not just the computation part of it, and even
sacrificing computation mapping to some degree in order to gain in data mapping, or in
other words balancing tc and td, could lead to enhancement in the overall performance.

3 Background: Architecture and Application Mapping

3.1 CGRA Architecture

CGRA is essentially an array of processing elements (PEs), connected through a mesh-
like network (see Figure 2(b)). Each PE can execute an arithmetic or logic operation,
multiplication, or load/store. PEs can load or store data from the on-chip local mem-
ory, but they can also operate on the output of a neighboring PE connected through the
interconnect network. Many resource-constrained CGRA designs have some PEs ded-
icated for some specific functionality. For example, in each row, typically a few PEs
are reserved for multiplication in addition to ALU operations, and a few can perform
loading and storing from/to the local memory. The functionality of a PE, i.e., the choice

Fig. 2. CGRA architecture and application mapping

Memory-Aware Application Mapping on Coarse-Grained Reconfigurable Arrays 175

of source operands, destination of the result, and the operation it performs is specified
in the configuration, which is generated as a result of compiling the application on to
the CGRA.

A CGRA processor is used as a coprocessor to a main processor. The main proces-
sor manages CGRA execution, such as loading of CGRA configurations and initiating
CGRA execution, through memory-mapped I/O. Once the CGRA starts execution, the
main processor can perform other tasks. Interrupts can be used to notify the comple-
tion of CGRA execution. The local memory of a CGRA is managed by the CGRA
through DMA. Hardware double buffering allows for full overlap between computation
and data transfer on the CGRA, as well as quick switches between buffers; this be-
comes very critical for large loops, which may require multiple buffer switches during
the execution of a single loop.

3.2 Application Mapping

CGRAs are typically used to accelerate the innermost loops of applications, thereby
saving runtime and energy. The innermost loop of a perfectly nested loop can be repre-
sented as a data flow graph, in which the nodes represent micro-operations (arithmetic
and logic operations, multiplication, and load/store), and the edges represent the data
dependency between the operations. A loop kernel from MPEG2 is illustrated in Fig-
ure 2(a), where dark nodes represent memory operations. While not for this loop, the
data dependency can be in general loop-carried. The task of mapping an application
onto a CGRA traditionally comprises of mapping the nodes of the data flow graph onto
the PE array of the CGRA, and to map the edges onto the connections between the PEs.
Since the mesh-like interconnection can be restrictive for application mapping, most
CGRAs allow PEs to be used for routing of data (routing PE). In the routing mode, the
PE does not perform any operation, but just transfer one of the inputs to its output. This
flexibility can be exploited by allowing the edges in the data flow graph to be mapped
onto paths (composed alternatively of interconnection and a free PE, starting and end-
ing in an interconnection) in the CGRA. Pipelining is explicit in the CGRA, in the sense
that the result of computation inside one PE can be used by the neighboring PEs in the
next cycle. For effective application mapping, the compiler must software-pipeline the
loop before mapping it onto the the PEs for effective mapping. Thus in addition to the
problem of expressing the application in terms of the functionality of PEs, a CGRA
compiler must explicitly perform resource allocation, pipelining, and routing of data
dependencies on the CGRA. It is for these reasons that the problem of application map-
ping on CGRA is challenging.

4 Related Work

Earlier research on CGRAs was mostly about architecture design [5], but with the
recognition that application mapping is the bottleneck, recent work increasingly focuses
on application mapping techniques.

176 Y. Kim et al.

4.1 Architecture

Data transfer architectures between local memory and PEs can be classified into implicit
load-store and explicit load-store architecture. Implicit load-store CGRA architectures,
e.g., MorphoSys [2], do not have explicit load and store instructions. Data has to be
pre-arranged in the local memory, organized like a queue, and the topmost element is
broadcast to the CGRA every cycle. On the other hand, in explicit load-store CGRAs,
e.g., ADRES [4], PEs can explicitly compute the address of the memory location that
they intend to access, and read/write to that location. While the implicit load-store ar-
chitectures are potentially much more power efficient, they are more challenging to
program, and also incur penalties relating to the efforts required to arrange the data in a
very specific order in the local store.

Local memory can be designed as single-bank or multi-bank. Single-bank memory
makes programming much easier; however, it is very difficult to provide all the neces-
sary ports for the PE array with just one bank. One solution is to use multi-port SRAM
cells, which are however extremely expensive in terms of area, power, and speed [17].
With multi-bank memory, it is the responsibility of the programmer/compiler to make
sure the data that a PE accesses is present in a bank that it has access to. Alternatively,
one can use hardware arbitration to make every bank accessible to any PE [16], which
makes the local memory design more complicated with higher power, area, and possi-
bly cycle time compared to multi-bank memory without hardware arbitration. Our work
provides a software solution rather than a hardware solution to the problem of managing
multi-bank memory.

Hardware double buffering, e.g., MorphoSys [2] and RSPA [3], can speed up the
data transfer between the system memory and the CGRA local memory, while some ar-
chitectures, e.g., ADRES [16], opt for a single large buffer. Double buffering becomes
more useful if the local memory size is smaller, or the loops and arrays of the applica-
tions are larger. We assume explicit load-store, multi-bank, and double-buffered local
memory in this work.

4.2 Compilation

Most previous work on application mapping for CGRA [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
does not explicitly consider the local memory architecture or data placement. They
assume that all the required data is already present in the local memory, and every load-
store PE can access that data whenever they need to. Even with such a simplification,
the application mapping problem for CGRA is shown to be very hard [11], having to
deal with operation placement on a 2D array considering the communication between
them (spatial mapping) [12], as well as possibly changing configurations every cycle
(temporal mapping) [8, 13].

One exception to this is [18], which assumes a hierarchical memory architecture,
where the PEs are connected to a L0 local memory, which connects to the external main
memory through an L1 local memory. Since both these local memories are scratchpads,
and therefore statically scheduled, their main interest is in improving the reuse between
the L0 and L1 local memories. An early work [19] on CGRA presents a methodology
to evaluate memory architectures for CGRA mapping; however, it lacks a detailed map-
ping algorithm. [20] also considers memory architecture for mapping, and is therefore

Memory-Aware Application Mapping on Coarse-Grained Reconfigurable Arrays 177

most closely related to our work. However, their mapping assumes multi-bank memory
with arbitration logic and single buffering, and therefore is not applicable to our tar-
get architecture while we explore the impact of partitioned, or multi-banked, memory
architecture and also explore the impact of limited memory bandwidth on the mapping.

5 Our Approach

The real challenge of considering data placement during CGRA mapping is in how to
minimize both tc and td together within a single framework or algorithm. Simply min-
imizing td is trivial; for instance, fixing the placement of all the arrays beforehand will
do, but it may increase tc excessively. Considering td only is what has been typically
done in previous approaches, which may fail to minimize the overall t, or the maximum
of tc and td. Moreover, data mapping should be emphasized only if the application is
memory-bound, which adds to the complexity of our problem. Thus, our CGRA map-
ping problem considering both computation and data mapping is more complicated
than the traditional CGRA mapping problem considering computation only, which is
already NP-hard [11]. Hence we propose a heuristic in this paper. We will also demon-
strate through our experiments that our heuristic can achieve near-optimal results for
many loops.

Our heuristic considers: i) minimizing duplicate arrays (or maximizing data reuse),
ii) balancing bank utilization, and iii) balancing tc and td. A unique feature of our
heuristic is that it merely defines some cost functions for those memory-related con-
siderations, rather than prescribing a whole new algorithm, so that our heuristic can
be easily integrated with other existing memory-unaware mapping algorithms. While
our technique is generally applicable to any modular scheduling algorithm considering
one operation at a time such as [8, 13], for the sake of the discussion we use the EMS
algorithm in this paper as it is one of the best known.

5.1 Balancing Computation and Data Transfer

To balance optimization effort for computation and data parts we first perform perfor-
mance bottleneck analysis. Performance bottleneck analysis determines whether it is
computation or data transfer that limits the overall performance. We define the data-
transfer-to-computation time ratio (DCR) as DCR = td/tc. For this we generate an
initial, memory-unaware mapping and compute tc and td. tc is equal to the II multi-
plied by the tile size, and td includes both, the time to bring the data needed for the
iteration, and also the time to writeback the data that needs to be committed back to the
memory, after each tile. A loop is memory-bound if DCR > 1, and roughly represents
the optimization opportunity for our memory-aware mapping.

5.2 Maximizing Data Reuse

Temporal reuse of data, or the use of the same data or array elements in different iter-
ations of a loop, is frequently found in many loop kernels. Temporal as well as spatial
reuse is automatically exploited by data caches for general purpose processors; how-
ever, for CGRAs everything must be explicitly controlled by compilers. Traditional
compilation flows for CGRA, which are memory unaware, do not treat specially arrays

178 Y. Kim et al.

with reuse. As a result, two load operations, even if they read from the same array,
will typically be mapped to different rows. Note that this is not an issue of functional
correctness, but of performance in NUMA CGRAs, since duplicating the arrays in mul-
tiple banks solves the correctness problem. An alternative approach is to realize reuse
by mapping to the same row all the load operations accessing the same array, which we
call reuse through the local memory.2

Reuse through the local memory has the benefit of lowering the local memory pres-
sure, but at the cost of constraining the computation mapping. Therefore whether and
how much reuse to realize should be decided carefully for optimal results. To guide the
decision we introduce data reuse opportunity cost (DROC). DROC is defined for an
operation and a PE, and measures the goodness of a reuse opportunity which will be
forfeited if the operation is mapped to the PE. Intuitively, if two load operations have
a reuse relation (i.e., they load from the same array), placing them on the same row
has merit, which is forfeited if they are placed to PEs on different rows. This reuse
opportunity is what DROC tries to quantify.

Data Reuse Analysis: Data reuse analysis finds the amount of potential data reuse
between every pair of memory operations. Our data reuse analysis first creates a Data
Reuse Graph (DRG) from the data flow graph of a loop. DRG is an undirected graph,
where nodes correspond to memory operations and edge weights approximate the
amount of reuse between two memory operations. Edges with zero weight are omit-
ted. If two memory operations access different arrays, then the edge weight is zero.
Otherwise, the edge weight is estimated to be TS − rd, where TS is the tile size, and
rd the reuse distance in iterations. Although the eventual tile size for the mapping can
only be determined after the loop has been mapped, and it depends on the amount of
reuse realized, even an approximate value will do. This is because, all we want by these
weights is that the memory operations that share more data should have greater chances
to be mapped to the same row. We approximate TS ≈ MS/Di, where MS is the size
of the local memory, and Di is the average amount of data that needs to be transferred
between the local memory and the external main memory for one iteration of our initial
memory-unaware mapping (DT = T · Di). MS/Di would have been the tile size for
the initial memory-unaware mapping on a single-bank memory architecture. The bigger
challenge is to estimate rd, and in general, it can be extremely hard to analyze, espe-
cially in the presence of pointers and aliases. Fortunately in many cases reuse takes a
very obvious form which can be found even by a very simple analysis. When the access
functions (or index expressions) of two references to the same array have an affine form
with the same coefficient, rd can be approximated to the difference in the constants
divided by the coefficient.3

2 When there is data reuse between two memory operations, the reuse can be realized by rout-
ing the data through either the register file (assuming it is rotating) , through routing PEs, or
through the memory. Routing data either through the register file or through routing PEs can be
wasteful since the involved PEs cannot perform any other operation. In addition, the number
of wasted PEs to route data using these schemes is proportional to II , and therefore can be
rather large. Therefore, we realize all the data reuse through the local memory.

3 Only if the coefficient divides the difference; otherwise, there is no reuse between the two
references.

Memory-Aware Application Mapping on Coarse-Grained Reconfigurable Arrays 179

Once the DRG is constructed, computing DROC is easy. Given scheduling context
information such as what operations have been already scheduled and which operation
is about to be scheduled, we first find the set of edges, called frontier edge set. For op-
eration u, which is about to be scheduled, the frontier edge set of u includes every edge
that connects u and another memory operation, v, in the DRG, and can be found very
easily. Then for each edge e in the frontier edge set, we compute its reuse opportunity
as roe = we ·DCR/su, where we is the nonzero weight of edge e in the DRG, DCR is
the data-transfer-to-computation time ratio of the loop, and su is the size of the frontier
edge set, or the number of edges in it. (Dividing by the number of edges is necessary
to prevent DROC from increasing disproportionately compared to other costs that may
exist.) Finally, the reuse opportunity of each edge e induces DROC of the same amount,
for all the load-store PEs other than the PE to which v is mapped. DROC induced by
all reuse opportunities are added up if the frontier edge set is larger than one. DROC is
zero if the frontier edge set is empty.

Example: Consider mapping the DFG shown in Figure 3(b) (dark nodes are mem-
ory load operations) onto the 2x2 CGRA shown in Figure 3(a) (dark PEs are load-store
PEs). The DRG for the DFG is shown in Figure 3(c). Figure 3(d)–(g) illustrate the map-
ping results in a tabular format, where the vertical direction represents time in cycles.
Suppose that we are about to schedule the edge connecting operations 7 and 8 after
having scheduled operations 0 through 6 as shown in Figure 3(d). Operation 7 is a load
operation B[i + 1], and operation 8 is an arithmetic operation.

The EMS algorithm works as follows: first the routing costs for each open PE slot
where the memory operation can be scheduled are updated as in Figure 3(d). Routing
cost is calculated by multiplying the unit routing cost (which is assumed to be 10) by
the number of routing PEs needed to map the edge. In this example, if we schedule
operation 7 in time slot 1 of PE3, at least two routing operations are needed to map
operation 8. Thus, routing cost in the time slot 1 of PE3 is 20. Considering these costs,
operation 7 will be mapped onto the time slot 3 of PE1, which has the minimum cost.
The final solution generated by EMS is shown in Figure 3(e). However, this mapping
requires array B to be duplicated in two banks.

DROC helps avoid duplicating reused arrays. In the same example the DROC cost
induced by the reuse relation between operations 1 and 7 is 30, assuming that the DCR
parameter is 3. This DROC cost is added to all the load-store PEs except for PE3, which
forces operation 7 to be scheduled onto the time slot 2 of PE3, as shown in Figure 3(g).
Though this new mapping results in the use of an extra PE as a routing PE, it increases
the utilization of array B, which may reduce the overall execution time.

5.3 Balancing Bank Utilization

The next important issue in application mapping onto a NUMA CGRA is that, if the
scheduler is not careful, it can skew the distribution of the data in the memory banks.
For example, the solution can result in mapping all the data to just one bank, and not
utilizing the other banks. This can happen, if the application mapping is unaware of
the banked memory architecture, but also if we apply our data reuse optimization too
aggressively and map all the arrays to the same bank. Such a mapping can reduce the
performance, since it decreases the effective local memory size, results in smaller tiling

180 Y. Kim et al.

Local Memory

Bank1

Bank2

0 1

3

5

2

6

8

A[i] B[i]

A[i+1]

4

7
B[i+1]

(a) CGRA Architecture (c) DRG

PE0 PE1 PE2 PE3

0

1 20

2 10

3 0 20

4 10 10

0 1

3

5

2

6

4

PE0 PE1 PE2 PE3

0

1

2

3 5

4

0 1

3

5

2

6

4

7

8

A[i],A[i+1],B[i+1] B[i]A[i],A[i+1] B[i]

(d) Cost values for operation 7 by EMS (e) Completed mapping by EMS

PE0 PE1 PE2 PE3

0

1 20

2 10

3 30 20

4 40 10

0 1

3

5

2

6

4

PE0 PE1 PE2 PE3

0

1

2

3

4

0 1

3

5

2

6

4 7

8

A[i],A[i+1] B[i],B[i+1]A[i],A[i+1] B[i]

(f) Cost values for operation 7 by Ours (g) Completed mapping by Ours

7r

PE Array

0 1

2

A[i] B[i]

A[i+1]
7

B[i+1]

(b) DFG

10 10
PE0 PE1

PE2PE3

Bank1 Bank2 Bank1 Bank2

Bank1 Bank2 Bank1 Bank2

Fig. 3. Data reuse example. Mapping operation 7 to PE3 allows the reuse of array B between
operations 1 and 7. Assuming: Base Routing Cost = 10, DCR = 3.

factor for the loop, and may cause very frequent buffer switching for hardware buffer-
ing. One desirable shape of the data placement is uniform distribution of the data among
the banks. This can be rather easily solved by adding an additional cost to the PEs to
which load/store operations have been mapped, called bank balancing cost. We define
the bank balancing cost for a PE p, as BBC(p) = b · m(p), where b is a design pa-
rameter called the base balancing cost, and m(p) is the number of memory operations
already mapped onto PE p.

Figure 4 illustrates our compilation flow. The two analyses, performance bottleneck
analysis and data reuse analysis, are performed before time-consuming modulo schedul-
ing. Memory-aware modulo scheduling refers to the EMS algorithm extended by adding
DROC and BBC to the existing cost function, which does not significantly increase the
complexity of the mapping algorithm. The partial shutdown exploration is explained in
Section 6.3.

Memory-Aware Application Mapping on Coarse-Grained Reconfigurable Arrays 181

DFG

P fPerformance
Bottleneck
Analysis

Data Reuse
Analysis

DCR DRG

Partial Shutdown
Memory-aware

Modulo Scheduling

Partial Shutdown
Exploration

M iMapping

Fig. 4. Application mapping flow. Note: DFG (Data Flow Graph), DCR (Data-transfer-to-
Computation time ratio), and DRG (Data Reuse Graph).

6 Experiments

6.1 Setup

We demonstrate the effectiveness of our memory-aware compilation heuristic on a set
of important kernels from the MiBench benchmark suite [21], multimedia benchmarks,
and SPEC 2000. Our target architecture is a 4x4 architecture, as illustrated in Fig-
ure 2(b), with load-store units alternating in the two middle columns. The 4x4 con-
figuration is the basic unit in many CGRA architectures including ADRES (4x4 tiles),
MorphoSys (4x4 quadrants), and also frequently used to evaluate various mapping al-
gorithms (e.g., [9, 12, 13]). For the PE array, we assume that a PE is connected to its
four neighbors and four diagonal ones. The local memory architecture has 4 banks,
each connected to each row (i.e., to the load-store unit of the corresponding row). The
detail of the local memory architecture is modeled after the RSPA architecture [3]. The
local memory is double buffered in hardware and the buffers can be switched in one
cycle. The size of each buffer is 768 bytes, or 384 16-bit words, and is connected to the
system memory through a high-performance 16-bit pipelined bus. The system memory
operates at half the frequency of the processor, thus the memory bandwidth is 16 bits
per 2 cycles.

In the literature mapping algorithms are often compared in terms of II, which is valid,
since CGRA processors are under a complete compile-time control; it is like a VLIW
processor without pipeline stall. However II captures the quality of the computation
mapping only, and cannot capture the possible delay due to the memory bottleneck.
We therefore use the CGRA runtime, which is computed by adding up tile execution
times, where tile execution time is the maximum of computation II multiplied by the
tile size and the memory access time for the tile. We assume that an array shared by two
references such as A[i] and A[i + 5] requires T + 5 elements per tile instead of just T ,
where T is the tile size. If an array is duplicated in multiple banks with different offsets,

182 Y. Kim et al.

we assume that the array is loaded twice from the system memory, which is the most
straightforward way to load them; otherwise, the DMA would have to be smart enough
to copy a part of the array from one bank to another, and manage the remaining part.

For the energy model of the CGRA, we consider both the dynamic power and the
leakage power of PEs and memory banks. The dynamic power model of a PE is derived
from RSPA, considering three operating states: ALU (including load/store), multipli-
cation, and routing. The dynamic power model of a memory bank is given by CACTI
5.1 [17]. The leakage power is assumed to be 20% of the dynamic power of an ALU
operation for a PE, and of a read operation for a memory bank.

6.2 Efficiency of Our Memory-Aware Mapping

Though our memory-aware mapping may reduce the total execution time of a loop (i.e.,
max(tc, td)), the computation time (tc) will be minimized in the case of traditional
memory-unaware mappings such as EMS. The minimum computation time could be
realized if single-bank memory were used, although it seems likely to have other neg-
ative effects such as increased cycle time, power, and area, and may cancel out the
benefit. Thus we compare three cases: Ideal (single-bank + EMS), EMS (multi-bank
+ EMS), and MA (multi-bank + our memory-aware extension of EMS). For a realistic
multi-bank local memory, the Ideal single-bank performance only serves as the upper
limit that a realistic multi-bank mapping could achieve. We compare the three cases in
terms of cycle count. In the case of Ideal, the possible cycle time increase is not taken
into account, nor is the memory bandwidth restriction (hence the name). In the case of
EMS, the array placement is determined in a straightforward manner after computation
mapping is done.

Figure 5 compares the runtime of the three cases (in cycle count), normalized to
that of EMS. Comparing Ideal and EMS indicates that for memory-bound loops, the
cost of not considering array placement early in the compilation flow is quite high. By
sequentially mapping computations and arrays, the runtime can increase by more than
40% on average compared to the Ideal case for memory-bound loops. On the other

Fig. 5. Runtime comparison

Memory-Aware Application Mapping on Coarse-Grained Reconfigurable Arrays 183

Fig. 6. Energy efficiency comparison

hand, if data mapping is considered proactively along with computation mapping as in
our heuristic, the runtime increase can be very effectively suppressed. Compared to the
EMS, our heuristic can reduce the runtime by as much as 30% on average for memory-
bound loops. This strongly motivates the use of less expensive multi-bank memories
for CGRAs rather than the more expensive and more power-dissipating single-bank
memories.

Reduced runtime by our heuristic also translates into reduced energy consumption
on the CGRA. Figure 6(a) compares the energy consumption by the base EMS vs.
our heuristic. While our heuristic can sometimes generate less efficient computation
mappings compared to the base EMS, for instance, by using more routing PEs, our
heuristic can effectively reduce the leakage energy by reducing the runtime, which leads
to significant energy reduction by our heuristic. Accordingly, the EDP, or the energy-
delay product, is also reduced significantly by our heuristic, as indicated by Figure 6(b).

6.3 Partial Shutdown Exploration

For a memory-bound loop, the performance is often limited by the memory bandwidth
rather than by computation, which will be increasingly the case as the number of PEs
increases. For such a case we can dramatically reduce the energy consumption of CGRA
by shutting down some of the rows of PEs and the memory banks, effectively balancing
computation and memory access. While this kind of optimization could be applied with
any mapping algorithm, it becomes more interesting with our memory-aware mapping
heuristic, as both our heuristic and partial shutdown try to exploit the same opportunity
existing in memory-bound loops; one by reducing the memory access load, the other by
reducing the computation rate.

We explore all the partial shutdown combinations on the PE rows and the memory
banks, to find the best configuration that gives the minimum EDP. The design space is
not large, with only 16 configurations to explore as there are 4 rows and 4 banks. The re-
sults are summarized in Figures 5 and 6 (the last bars). The results suggest that the partial
shutdown optimization can considerably reduce the energy consumption and the EDP,
by more than 35% on average, even after our memory-aware heuristic is applied. Com-
pared to previous memory-unaware technique without partial shutdown optimization,
our technique can achieve 62% reduction in the energy-delay product, which factors into

184 Y. Kim et al.

Table 1. Best configurations by partial shutdown exploration (r=#rows, m=#banks)

Mem BW form pred laplace sobel SOR swim calc1 swim calc2 wavelet *compress *GSR *lowpass
1w/2cyc 2r1m 2r1m 3r2m 2r1m 3r1m 3r1m 2r1m 1r1m 1r1m 2r2m
1w/1cyc 2r2m 3r2m 4r4m 2r2m 4r2m 3r2m 3r2m 2r2m 2r2m 2r2m

about 47% reduction in the energy consumption and 28% reduction in the runtime. For
this exploration we also vary the memory bandwidth. The runtime and energy reduction
shows a similar trend (not shown), but interestingly the best configurations (shown in
Table 1) tend to be larger as the memory bandwidth is increased.

Our partial shutdown exploration gives further justification for the multi-bank mem-
ory architecture, as it is more amenable to partial shutdown than the single-bank mem-
ory architecture. And it also reinforces the importance of developing memory-aware
mapping techniques for multi-bank or NUMA memory architectures, such as ours.

7 Conclusion

The promise of Coarse-Grained Reconfigurable Arrays (CGRAs) providing very high
power efficiency while being software programmable, critically hinges on the effec-
tiveness of application mapping. While previous solutions have focused on improving
the computation speed of the PE array, we motivate the need for considering the lo-
cal memory architecture and data placement to achieve higher performance and energy
efficiency for memory-bound loops on CGRAs. We propose an effective heuristic that
can be easily integrated with existing modular scheduling based algorithms, and which
considers various memory architecture parameters including the number of banks, lo-
cal memory size, and the communication bandwidth between the local memory and
the system memory. Our experimental results on memory-bound loops from MiBench,
multimedia, and SPEC benchmarks demonstrate that not only is our proposed heuristic
able to achieve near-optimal results as compared to single-bank memory mapping, it
can also achieve 62% reduction in the energy-delay product as compared to memory-
unaware mapping for multi-bank memory, which factors into 47% and 28% reductions
in the energy consumption and runtime, respectively. Further, our extensive experiments
show that our scheme scales across a range of applications, and memory parameters.

References

1. Bormans, J.: Reconfigurable array processor satisfies multi-core platforms. Chip Design
Magazine (2006)

2. Singh, H., Lee, M.-H., Lu, G., Bagherzadeh, N., Kurdahi, F., Filho, E.: Morphosys: An inte-
grated reconfigurable system for data-parallel and computation-intensive applications. IEEE
Trans. Comput. 49(5), 465–481 (2000)

3. Kim, Y., Kiemb, M., Park, C., Jung, J., Choi, K.: Resource sharing and pipelining in coarse-
grained reconfigurable architecture for domain-specific optimization. In: DATE 2005, Wash-
ington, DC, USA, pp. 12–17. IEEE Computer Society, Los Alamitos (2005)

Memory-Aware Application Mapping on Coarse-Grained Reconfigurable Arrays 185

4. Mei, B., Vernalde, S., Verkest, D., Lauwereins, R.: Design methodology for a tightly coupled
vliw/reconfigurable matrix architecture: A case study. In: DATE 2004, p. 21224 (2004)

5. Hartenstein, R.: A decade of reconfigurable computing: a visionary retrospective. In: DATE
2001, Piscataway, NJ, USA, pp. 642–649. IEEE Press, Los Alamitos (2001)

6. Lee, J., Choi, K., Dutt, N.: Compilation approach for coarse-grained reconfigurable architec-
tures. IEEE D&T 20, 26–33 (2003)

7. Lee, J., Choi, K., Dutt, N.: An algorithm for mapping loops onto coarse-grained reconfig-
urable architectures. ACM SIGPLAN Notices 38(7), 183–188 (2003)

8. Mei, B., Vernalde, S., Verkest, D., De Man, H., Lauwereins, R.: Dresc: a retargetable com-
piler for coarse-grained reconfigurable architectures, December 2002, pp. 166–173 (2002)

9. Park, H., Fan, K., Kudlur, M., Mahlke, S.: Modulo graph embedding: mapping applications
onto coarse-grained reconfigurable architectures. In: CASES 2006, pp. 136–146. ACM, New
York (2006)

10. Hatanaka, A., Bagherzadeh, N.: A modulo scheduling algorithm for a coarse-grain reconfig-
urable array template. In: IPDPS 2007, March 2007, pp. 1–8 (2007)

11. Ahn, M., Yoon, J., Paek, Y., Kim, Y., Kiemb, M., Choi, K.: A spatial mapping algorithm for
heterogeneous coarse-grained reconfigurable architectures. In: DATE 2006, 3001 Leuven,
Belgium, pp. 363–368. European Design and Automation Association (2006)

12. Yoon, J., Shrivastava, A., Park, S., Ahn, M., Jeyapaul, R., Paek, Y.: Spkm: a novel graph
drawing based algorithm for application mapping onto coarse-grained reconfigurable archi-
tectures. In: ASP-DAC 2008, pp. 776–782 (2008)

13. Park, H., Fan, K., Mahlke, S., Oh, T., Kim, H., Kim, H.: Edge-centric modulo scheduling for
coarse-grained reconfigurable architectures. In: PACT 2008, pp. 166–176. ACM, New York
(2008)

14. Venkataramani, G., Najjar, W., Kurdahi, F., Bagherzadeh, N., Bohm, W.: A compiler frame-
work for mapping applications to a coarse-grained reconfigurable computer architecture. In:
CASES 2001, pp. 116–125. ACM Press, New York (2001)

15. Lee, W., Barua, R., Frank, M., Srikrishna, D., Babb, J., Sarkar, V., Amarasinghe, S.: Space-
time scheduling of instruction-level parallelism on a raw machine. In: ASPLOS-VIII, pp.
46–57 (1998)

16. Bougard, B., De Sutter, B., Verkest, D., Van der Perre, L., Lauwereins, R.: A coarse-grained
array accelerator for software-defined radio baseband processing. IEEE Micro 28(4), 41–50
(2008)

17. Thoziyoor, S., Muralimanohar, N., Ahn, J., Jouppi, N.: Cacti 5.1. Technical report (2008)
18. Dimitroulakos, G., Galanis, M., Goutis, C.: Alleviating the data memory bandwidth bottle-

neck in coarse-grained reconfigurable arrays. In: ASAP 2005, Washington, DC, USA, pp.
161–168. IEEE Computer Society, Los Alamitos (2005)

19. Lee, J., Choi, K., Dutt, N.: Evaluating memory architectures for media applications on
coarse-grained reconfigurable architectures. In: Proc. ASAP, pp. 172–182. IEEE, Los Alami-
tos (2003)

20. Dimitroulakos, G., Georgiopoulos, S., Galanis, M., Goutis, C.: Resource aware mapping on
coarse grained reconfigurable arrays. Microprocess. Microsyst. 33(2), 91–105 (2009)

21. Guthaus, M., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.: Mibench: A
free, commercially representative embedded benchmark suite. In: IWWC, pp. 3–14 (2001)

Maestro: Orchestrating Lifetime Reliability in Chip
Multiprocessors

Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke

Advanced Computer Architecture Laboratory
University of Michigan, Ann Arbor, MI 48109

{shoe,shangupt,ansary,mahlke}@umich.edu

Abstract. As CMOS feature sizes venture deep into the nanometer regime,
wearout mechanisms including negative-bias temperature instability and time-
dependent dielectric breakdown can severely reduce processor operating lifetimes
and performance. This paper presents an introspective reliability management
system, Maestro, to tackle reliability challenges in future chip multiprocessors
(CMPs) head-on. Unlike traditional approaches, Maestro relies on low-level sen-
sors to monitor the CMP as it ages (introspection). Leveraging this real-time
assessment of CMP health, runtime heuristics identify wearout-centric job as-
signments (management). By exploiting the complementary effects of the natural
heterogeneity (due to process variation and wearout) that exists in CMPs and the
diversity found in system workloads, Maestro composes job schedules that intel-
ligently control the aging process. Monte Carlo experiments show that Maestro
significantly enhances lifetime reliability through intelligent wear-leveling, in-
creasing the expected service life of a population of 16-core CMPs by as much as
38% compared to a naive, round-robin scheduler. Furthermore, in the presence of
process variation, Maestro’s wearout-centric scheduling outperformed both per-
formance counter and temperature sensor based schedulers, achieving an order
of magnitude more improvement in lifetime throughput – the amount of useful
work done by a system prior to failure.

1 Introduction

In recent years, computer architects have accepted the fact that transistors become less
reliable with each new technology generation [4]. As technology scaling leads to higher
device counts, power densities and operating temperatures will continue to rise at an
alarming pace. With an exponential dependence on temperature, faults due to failure
mechanisms like negative-bias temperature instability (NBTI) and time-dependent di-
electric breakdown (TDDB) will result in ever-shrinking device lifetimes. Furthermore,
as process variation (random + systematic) and wearout gain more prominence in fu-
ture technology nodes, fundamental design assumptions will become increasingly less
accurate. For example, the characteristics of a core on one part of a chip multiprocessor
(CMP) may, due to manufacturing defects, only loosely resemble an identically de-
signed core on a different part of the CMP [23,26]. Even the behavior of the same core
can be expected to change over time as a result of age-dependent degradation [18,25].

In light of this uncertain landscape, researchers have begun investigating dynamic
thermal and reliability management (DTM and DRM). Such techniques hope to sustain

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 186–200, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Maestro: Orchestrating Lifetime Reliability in Chip Multiprocessors 187

current performance improvement trends deep into the nanometer regime, while main-
taining the levels of reliability and life-expectancy that consumers have come to expect,
by hiding a processor’s inherent susceptibility to failures and hotspots. Some recent
proposals rely on a combination of thread scheduling and dynamic voltage and fre-
quency scaling (DVFS) to recover performance lost to process variation [23,26]. Others
implement intelligent thermal management policies that can extend processor lifetimes
and alleviate hotspots by minimizing and bounding the overall thermal stress experi-
enced by a core [7,9,16,17]. There have also been efforts to design sophisticated cir-
cuits that tolerate faults and adaptive pipelines with flexible timing constraints [10,24].
Although many DTM schemes actively manipulate job-to-core assignments to avoid
thermal emergencies, most existing DRM approaches only react to faults, tolerating
them as they develop.

In contrast, Maestro takes a proactive approach to reliability. To the first order, Mae-
stro performs fine-grained, module-level wear-leveling for many-core CMPs. Although
analogous to wear-leveling in flash devices, the challenge of achieving successful wear-
leveling transparently in CMPs is considerably more difficult. Left unchecked, wearout
causes all structures within a core to age and eventually fail. However, due to process
variation, not all cores (or structures) will be created equal. Every core will invariably
possess some microarchitectural structures that are more “damaged” (more susceptible
to wearout) than others [23,24]. Performing post-mortems on failed cores (in simula-
tions) often reveals that a single microarchitectural module, which varies from core to
core, breaks down long before the rest. Maestro extends the life of these “weak” struc-
tures, their corresponding cores, and ultimately the CMP by ensuring uniform aging
with scheduling-driven wear-leveling across all levels of the hierarchy.

Maestro dynamically formulates wearout-centric schedules, where jobs are assigned
to cores such that cores do not execute workloads that apply excessive stress to their
weakest modules (i.e., a floating-point intensive thread is not bound to a core with a
weakened floating-point adder). This accomplishes local wear-leveling at the core level,
avoiding failures induced by a single weak structure. When two cores both have a strong
affinity for the same job, a heuristic, which enforces global wear-leveling at the CMP
level determines which core is given priority. Typically, unless there is a substantial
negative impact on local wear-leveling, deference is given to the weaker of the two
cores. This ensures that, when necessary, stronger cores are allowed to execute less
desirable jobs in order to postpone failures in weaker cores (details in Section 3.2).

By leveraging the natural, module-level diversity in application thermal footprints
(Section 2.1), Maestro has finer-grained control over the aging process than a standard
core-level DVFS approach, without any of the attendant hardware/design overheads.
Given the complex nature of wearout degradation, Maestro departs from the conven-
tional reliance on static analysis to project optimized schedules. Instead, the condition
of the underlying CMP hardware is continuously monitored, allowing Maestro to dy-
namically refine and adapt scheduling algorithms as the system ages. Architectures like
those envisioned in [22], with low-level circuit sensors, can readily supply this real-time
“health” monitoring.

Maestro offers two key benefits for future CMP systems. First, the fine-grained, lo-
cal wear-leveling prevents unnecessary core failures, maximizing the life of individual

188 S. Feng et al.

cores. Longer lasting cores translates to more work that can be done over the life of
the system. Second, it improves the ability of the system to sustain heavy workloads
despite the effects of aging. Enforcing global wear-leveling maximizes the number of
functional cores (throughout its useful life), which in turn maximizes the computational
horsepower available to meet peak demands. With higher degrees of process variation
on the horizon, premature core failures will make it increasingly more difficult to design
and qualify future CMPs. However, by harnessing the potential of Maestro, proactive
management will enable semiconductor manufacturers to provide chips with longer life-
times as well as ensure that system performance targets are consistently met throughout
that lifetime. The central contributions of this paper include:

• An evaluation of workload variability and its impact on reliability/wearout.
• An introspective system, Maestro, that utilizes low-level sensor feedback and

application-driven wear-leveling to proactively manage lifetime reliability.
• The design and evaluation of two reliability-centric job scheduling algorithms.

2 Scheduling for Damaged Cores and Dynamic Workloads

Scheduling, in the context of this paper, refers to the process of assigning jobs to cores
in a CMP, and is conceptually decoupled from the operating system (OS) scheduler. The
schedulers proposed by microarchitects in the past typically resided in a virtualization
layer (i.e., system firmware) that sits between the OS and the underlying hardware. At
each scheduling interval, the OS supplies a set of jobs, J , to this virtualization layer,
and it is the task of the low-level scheduler to bind the jobs to cores. Prior works have
investigated techniques that leverage intelligent job scheduling to manage on-core tem-
peratures or cope with process variation. However, none have studied the impact that
wearout-centric scheduling alone can have on the evolution of aging within a core.

Embracing process variation and workload diversity, Maestro can enhance lifetime
reliability without the extensive hardware support for adaptive body biasing (ABB) and
adaptive supply voltage (ASV) required by other approaches [25]. The remainder of
this paper targets TDDB and NBTI, which are expected to be the two leading causes
of wearout-related failures in future technologies, but can be easily extended to address
any progressive failure mechanisms that may emerge. Since both TDDB and NBTI are
highly dependent on temperature, it is important to understand the thermal footprints of
typical applications in order to appreciate the potential for reliability-centric scheduling.
Section 2.1 examines the module-level thermal diversity seen across a set of SPEC2000
applications and Section 2.2 presents preliminary results quantifying the impact of this
variation on processor lifetimes.

2.1 Workload Variation

Figure 1 shows the range of temperatures experienced by different structures within
an Alpha21364-like processor [1] across a set of 8 SPECINT (bzip2, gcc, gzip, mcf,
perlbmk, twolf, vortex, vpr) and 9 SPECFP benchmarks (ammp, applu, apsi, art, equake,
galgel, lucas, sixtrack, swim, wupwise). All temperatures are normalized to the peak
temperature, Tmax, seen across all modules and benchmarks, which corresponds to the

Maestro: Orchestrating Lifetime Reliability in Chip Multiprocessors 189

Fig. 1. Variation of module temperatures across SPEC2000 workloads. All temperatures are nor-
malized to Tmax, the peak temperature seen across all benchmarks and modules (83◦C).

(a) SPECFP v. SPECINT (b) SPECFP v. SPECFP (c) Variation despite compara-
ble peak temperatures

Fig. 2. Head-to-head comparisons of applu (SPECFP), vpr (SPECINT), and wupwise (SPECFP).
No one benchmark in (a), (b), or (c) strictly dominates the other (with respect to temperature)
across all modules.

temperature of the FPAdd module when running lucas (83◦C). Notice the significant
variation in temperature within nearly every module. Apart from the more than 40%
variation seen in FPAdd (a 37◦C swing), other structures (whose utilizations are not as
strongly correlated with the execution of floating-point and integer benchmarks) also
exhibit significant temperature shifts, 10-15% for Bpred and IntReg. These large
temperature ranges suggest that scheduling alone can be a powerful tool for manipulat-
ing aging rates.

Figure 2 selects a few representative applications and examines them in greater de-
tail. Figures 2(a) and 2(b) highlight how the traditional view of “hot” and “cold” appli-
cations is perhaps too simplistic. Without accounting for the module-level variation in
temperatures, one could incorrectly assume that applu is more taxing, from a reliability
perspective, than vpr or wupwise simply because it exhibits a higher peak operating
temperature (FPMul). However, this would neglect the fact that for many structures,
like IntReg, temperatures for applu are actually much lower than the other two ap-
plications. For completeness, Figure 2(c) is included to show that variations in module
temperatures exist even between applications with comparable peak temperatures. All
things considered, deciding where on the CMP to schedule a particular application, to
achieve the least reliability impact, requires additional information about the strength

190 S. Feng et al.

of individual structures within every core. Although the magnitude of the temperature
differences may not seem impressive at first, with peak deltas in module temperatures
around 10-20% in Figure 2(a), these modest variations in temperature can have dramatic
impacts on a processor’s mean time to failure (MTTF).

2.2 Implications for Mean Time to Failure

From Figure 2, one could expect a core consistently running applu to fail because of a
fault in the FPMul unit due to its high operating temperatures. However, in the pres-
ence of process variation other structures within the core could have been manufactured
with more defects (or tighter timing margins), and therefore even more susceptible to
failure despite not ever realizing the same peak temperatures as FPMul. In this en-
vironment, a reliability-centric job scheduler must take into consideration the extent
of damage present within a core in addition to the per-module thermal footprint of run-
ning applications. Figure 3 presents the expected lifetime of a core running applu or vpr
as a function of the module identified as the weakest structure. The lifetimes are pro-
jected based on well-known MTTF equations for NBTI and TDDB [15,21]. The values
are normalized to the best achievable MTTF, which in this comparison is attained if
FPMap is the weakest module in the core and the core is running vpr. The optimal job
to schedule on a particular core to maximize its lifetime is dependent not just on the
application mix currently available, but also on the strengths of individual structures
within that core. Scheduling applu on a core with a weak IntReg can nearly triple its
operating lifetime compared to naively forcing it to run vpr. Similarly, scheduling vpr
instead of applu on a core with a weak FPAdd improves its projected lifetime by more
than 4x.

To further highlight the need to address process and workload variation, a quick
examination of the processors simulated in Section 4.1 reveals that 35% of core failures
are the result of failing structures that never experience peak on-chip temperatures.
Furthermore, 22% of core failures are caused by modules that do not rank among the
top three most thermally active. By accounting for the impact of process variation and
module-level thermal variation of applications, Maestro can prevent premature core
failures and reap the opportunity left on the table by previous schedulers.

Fig. 3. Projected core lifetime based on execution of applu and vpr as a function of the module
identified as the weakest structure. Values are normalized to the best achievable MTTF.

Maestro: Orchestrating Lifetime Reliability in Chip Multiprocessors 191

Fig. 4. A high-level block diagram of the Maestro introspective reliability management system.
Dynamic monitoring of sensor feedback and detailed characterization of workload behavior en-
ables Maestro to improve lifetime system reliability with wearout-centric scheduling.

3 Maestro

Figure 4 presents a block diagram of Maestro, which consists of two main compo-
nents: 1) a health monitoring system (introspection) and 2) a virtualization layer that
implements wearout-centric job scheduling (management). Although this paper targets
reliability-centric scheduling, a broader vision of introspective reliability management
could use online sensor feedback to guide a range of solutions from traditional DVFS
to more radical approaches like system-level reconfiguration [14].

3.1 Health Monitoring

Tracking the evolution of wearout damage within a CMP (i.e., health monitoring) is
essential to forming intelligent reliability-centric schedules. Maestro assumes that the
underlying CMP is provisioned with circuit-level sensors like those described in [22].
Recognizing that the two mechanisms addressed in this work, NBTI and TDDB, both
impact physical device parameters as they evolve has led researchers to actively develop
circuit-level sensors that can track these changes. NBTI is known to shift threshold volt-
age (Vt) leading to slower devices and increased subthreshold/standby leakage current
(Iddq), while TDDB increases gate currents (Igs and Igd). Both result in statistically
measurable degradation in timing paths at the microarchitectural-level [3,6].

A runtime system collects raw data streams from the array of circuit-level sensors and
applies statistical filtering and trend analysis (similar to what is described in [3]) to con-
vert these streams into descriptions of system characteristics including, delay profiles,
leakage currents, and operating temperatures. These individual channels of informa-
tion are then processed to generate a comprehensive microarchitectural-level reliability
assessment of the CMP. This is shown in Figure 4 as a vector of per-module damage

192 S. Feng et al.

values (relative to the maximum damage sustainable prior to failure). Introducing the
additional analysis step allows the health monitoring system to account for things like
the presence of redundant devices within a structure, the influence of shifting envi-
ronmental conditions on sensor readings, and the interaction between different wearout
mechanisms. Ultimately, this allows the low-level sensor feedback to be abstracted with
each vector representing the effective damage profile for a particular core.

3.2 Maestro Virtualization Layer

The second portion of the Maestro framework resides in system firmware that serves as
the interface between the OS and the underlying hardware. The OS provides the virtu-
alization layer with a set of jobs that need to run on the CMP and other meta-data (op-
tional) that can guide Maestro in refining its scheduling policies (Section 3.2.3). Online
profiling of system workloads identifies application-specific thermal footprints, shown
in Figure 4 as a vector of per-module temperatures for each application. This thermal
footprint can either be generated by brief exploratory execution of jobs on the available
cores, similar to what is done in [26], or projected by correlating thermal behavior with
program phases (leveraging the existing body of work on runtime phase monitoring and
prediction). Given the prevalence of on-chip temperature sensors [13], Maestro assumes
low-overhead exploration is performed during each scheduling interval. Coupled with
the real-time health assessments, this detailed module-level application characterization
enables Maestro to create wearout-centric job schedules that intelligently manage CMP
aging.

As previously defined, scheduling in this paper will refer to the act of mapping
threads to cores and is initiated by two main events, 1) the OS issues new jobs for Mae-
stro to execute (pushes into a FIFO queue) or 2) the damage profile of the underlying
CMP has changed sufficiently (taking on the order of days/weeks) to warrant thread mi-
gration. The two reliability-centric scheduling policies evaluated in this work illustrate
two approaches to lifetime reliability. The greedy policy (Section 3.2.2) takes the posi-
tion that all core failures are unacceptable and aggressively preserves even the weakest
cores. The adaptive policy (Section 3.2.3) champions a more unconventional philoso-
phy that claims individual core failures are tolerable provided the lifetime reliability of
the CMP system is maximized.

Both wearout-centric policies, and the naive baseline scheduler, are presented be-
low along with corresponding pseudocode. Unless otherwise indicated, the following
definitions are common to all policies: m, a microarchitectural module (i.e., FPMul,
IntReg, etc.); LiveCores, the set of functional cores in the CMP, {c0, c1, ..., cN};
JobQueue, the set of all pending, uncompleted jobs issued from the OS; ActiveJobs,
the set of the N oldest, uncompleted, jobs, {j0, j1, ..., jN}; Dmg(m), the entry in the
CMP damage profile for module m; Temp(j, m), the entry for module m in the tem-
perature footprint for job j.

3.2.1 Naive Scheduler
A standard round-robin scheduler is used as the baseline policy. The least-recently-
used (LRU) core in the set of LiveCores is assigned the oldest job from the set of
ActiveJobs. This process is repeated until all jobs in ActiveJobs have been scheduled.

Maestro: Orchestrating Lifetime Reliability in Chip Multiprocessors 193

Algorithm 1. Greedy wearout-centric scheduler
Step 1:

foreach c ∈ LiveCores do
find cdmg , the damage present in core c , where

cdmg ←− Dmg(m′) | m′ ∈ c ∧ Dmg(m′) ≥ Dmg(m), ∀m ∈ c

end
sort LiveCores based on cdmg

end
Step 2:

until ActiveJobs is empty
cw ←− weakest core in LiveCores based on cdmg

mw ←− m′ | m′ ∈ cw ∧ Dmg(m′) ≥ Dmg(m), ∀m ∈ cw

foreach j ∈ ActiveJobs do
find costj,cw , the cost of executing job j on core cw , where

costj,cw ←− Temp(j,mw)
end
jopt ←− j′ | j′ ∈ ActiveJobs ∧ costj′,cw ≤ costj,cw , ∀j ∈ ActiveJobs
Assign job jopt to core cw

Remove cw from LiveCores and jopt from ActiveJobs

end
end

This policy maintains high-level load balancing by distributing jobs uniformly across
the cores. However, without accounting for core damage profiles or application thermal
footprints, the resulting schedule is effectively a random mapping (from a reliability
perspective).

3.2.2 Greedy Scheduler
This policy attempts to minimize the number of premature core failures by greedily
favoring the weakest cores (Algorithm 1). Cores are sorted based upon their damage
profiles and priority is given to the cores whose weakest modules possess the most
damage (Step 1 of Algorithm 1). These “weak” cores are greedily assigned jobs with
the most favorable thermal footprints with respect to their damage profiles (Step 2 of
Algorithm 1), minimizing their effective thermal stress. This local wear-leveling re-
duces the probability that these weak cores will fail due to a single damaged structure.
Scheduling the weak cores first maximizes the probability of finding jobs with favor-
able thermal footprints with respect to each weak core since there is a larger application
mix to choose from. However, this also forces the stronger cores to execute the remain-
ing, potentially less desirable, jobs. In practice, this means that the stronger cores in the
CMP actually sacrifice a portion of their lifetime to lighten the burden on their weaker
counterparts (global wear-leveling).

3.2.3 Adaptive Scheduler
The adaptive scheduler recognizes that many CMP systems are often underutilized,
provisioned with more cores than they typically have jobs to run (see Section 4.3).
The scheduler exploits this fact by allowing a few weak cores to be sacrificed in

194 S. Feng et al.

Algorithm 2. Adaptive wearout-centric scheduler
let GA(J, C) be the optimal schedule generated by the GA for jobs J and cores C
Step 1:

foreach c ∈ LiveCores do
find cdmg , the damage present in core c , where

cdmg ←− ∑c
mi

αiDmg(mi) and αi is a scaling factor biased toward mod-
ules with more damage

end
sort LiveCores in increasing order of cdmg

PrimaryCores ←− first n cores where n is set by the user through the OS
SecondaryCores ←− remaining N − n cores

end
Step 2:

let Sprimary, be the set of job-to-core assignments, (j, c), ∀c ∈ PrimaryCores
Sprimary ←− GA(ActiveJobs, PrimaryCores)
Assign jobs for PrimaryCores according to Sprimary

Remove assigned jobs from ActiveJobs

end
Step 3:

let Ssecondary, be the set of job-to-core assignments, (j, c), ∀c ∈ SecondaryCores
Ssecondary ←− GA(ActiveJobs, SecondaryCores)
Assign jobs for SecondaryCores according to Ssecondary

end

order to preserve the remaining stronger cores (Algorithm 2). Although being com-
plicit in core failures may seem non-intuitive, in systems that are underutilized, the
greedy scheduler can lead to CMPs that are overprovisioned early in the CMP’s
life (LiveCores >> JobQueue) while not assuring enough available throughput
(LiveCores < JobQueue) later on. This insight forms the basis of the adaptive policy.

Promoting a survival-of-the-fittest environment, this policy maximizes the functional
life of the strongest subset of cores (PrimaryCores in Step 1 of Algorithm 2), those
with the least amount of initial damage and the potential to have the longest lifetimes.
By assigning jobs to the PrimaryCores first, Maestro ensures that they execute ap-
plications with the most appropriate thermal footprints (Step 2 of Algorithm 2). The
remaining jobs are assigned amongst the SecondaryCores (Step 3 of Algorithm 2).
This can lead to some weak cores failing sooner than under a greedy policy. Note, how-
ever, in Step 3 of Algorithm 2, the scheduler is still looking amongst the remaining
jobs for the one with the best thermal footprint given a core’s damage profile. This
local wear-leveling, common to both the greedy and adaptive policies, ensures that
the weaker cores even under the adaptive policy survive longer than they would un-
der the naive policy. Ultimately, over the lifetime of the CMP, if PrimaryCores ≥
JobQueue consistently, while avoiding periods when PrimaryCores >> JobQueue
or PrimaryCores < JobQueue, then Maestro has maximized the total amount of
computation performed by the system. The proper size of PrimaryCores, n, is ex-
posed to the OS so that the behavior of the scheduler can be customized to the needs of
the end user.

Maestro: Orchestrating Lifetime Reliability in Chip Multiprocessors 195

Finally, note in Step 2 and Step 3 of Algorithm 2, the scheduler uses an optimization
scheme based on a genetic algorithm (GA) to identify the least-cost schedules for both
the PrimaryCores and SecondaryCores. This allows the adaptive scheduler to con-
sider the effect scheduling a job has on all structures within a core (unlike the greedy
scheduler which only looks at the weakest structure) for more effective local wear-
leveling. The optimization used in this work is derived from [8], a standard solution of
the generalized assignment problem. The cost function used by the GA is recalculated
at each scheduling interval, based on the CMP damage profile and application ther-
mal footprints, according to Equation 1, where Cost(S) is the cost of schedule S and
Cost(j, c) is the cost of scheduling job j on core c1.

Cost(S) =
S∑
j,c

Cost(j, c) =
S∑
j,c

(c∑
m

Dmg(m) · Temp(j,m)
)

(1)

4 Evaluation and Analysis

This section evaluates Maestro’s reliability-centric scheduling policies using lifetime
reliability simulations. A variety of system parameters including CMP size and sys-
tem utilization are varied to investigate their impact on Maestro’s performance. The
effectiveness of each wearout-centric policy is measured in terms of lifetime through-
put (LT), the number of cycles spent executing active jobs (real applications not idle
threads), summed across all cores, throughout the entire lifetime of the CMP. LT im-
provement metrics are the result of comparisons with the naive, round-robin scheduler
presented in Section 3.2.1.

Monte Carlo experiments are conducted using a simulation setup similar to the
framework in [12]. The standard toolchain of SimAlpha, Wattch [5], and Hotspot [20]
is used to simulate the thermal characteristics of workloads and Varius [19] is used
to model the impact of process variation. An adaptive simulation scheme is employed
that interleaves detailed and accelerated simulation phases, dramatically reducing sim-
ulation runtimes and minimizing error (addressed in greater detail by [11]). Results
presented in this section, unless otherwise indicated, are for a 16-core CMP with pro-
cessors modeled after the DEC Alpha 21264/21364 [1].

4.1 Lifetime Throughput Enhancement

Figure 5 shows the normalized LT improvement as a function of the scheduling policy,
CMP size, and failure threshold. In the context of this paper, failure threshold is defined
as the number of cores that must fail before a chip is considered unusable. This is
the point at which the risks/costs associated with maintaining a system with only a
fraction of its original computational capacity justifies replacing the chip. The CMP is
considered dead even though functional cores still remain. The results shown in Figure 5

1 The runtime overhead of the GA is negligible for long-running scientific and server workloads.
However, for shorter-running applications the GA optimization can be replaced by a greedy
version without severely impacting the effectiveness of the adaptive scheduler.

196 S. Feng et al.

Fig. 5. Performance of wearout-centric scheduling policies verses CMP size and failure threshold

are conducted for 2 to 16-core systems, and failure thresholds ranging from 1 core to all
cores. The value of the failure threshold is passed to the adaptive policy so that it can
optimize for the appropriate number of cores. Results are shown for CMP utilizations
of 100%, providing a lower-bound on the benefits of the adaptive policy (Section 4.3
examines the impact of CMP utilization).

As expected, both the greedy and adaptive policies perform well across all CMP
sizes and the majority of failure thresholds. As the size of the CMP grows, Maestro has
more cores to work with, increasing the chances of finding complementary job-to-core
mappings. This results in more effective schedules for both wearout-centric policies
improving their performance. Yet even with the lack of scheduling alternatives in a
2-core system, both policies can still achieve a respectable 30% improvement.

A strong dependence on failure threshold is also evident. By aggressively minimiz-
ing premature core failures, the greedy scheduler achieves large gains for small failure
thresholds. However, as the failure threshold nears the size of the CMP, the LT improve-
ment attenuates. This is expected since under the greedy policy, stronger cores sacrifice
a portion of their lifetime in order to preserve their weaker counterparts. The cost of this
sacrifice is most apparent when the failure threshold allows all the cores to fail. In these
systems, the increased contribution toward LT by the weak cores is offset by the loss in
LT resulting from the strong cores failing earlier. Notice also that the adaptive sched-
uler outperforms greedy by the largest margins when the failure threshold is roughly
half the size of the CMP. In these situations, the adaptive scheduler has the maximum
freedom to sacrifice SecondaryCores to preserve PrimaryCores (Section 3.2.3). At
either extreme for failure threshold, it performs similarly to greedy.

Lastly, it is important to note that, although the benefits of wearout-centric schedul-
ing are less impressive for these extreme values of failure threshold, the scenarios when
a user could actually afford to wait for all the cores within a system to fail are also quite
remote. For the remainder of the paper, all the experiments shown are for a 16-core
CMP with a failure threshold of 8 cores and 100% system utilization unless otherwise
indicated.

Maestro: Orchestrating Lifetime Reliability in Chip Multiprocessors 197

(a) Failure distribution (Core) (b) CMP failure distribution (CMP)

Fig. 6. Failure distributions for individual cores and the 16-core CMP with a failure threshold of
8 cores and 100% utilization. Trendlines are added (between markers) to improve readability.

4.2 Failure Distributions

Figure 6 presents the failure distributions for the individual cores, as well as the CMPs
that correspond to the results in Figure 5. Figure 6(a) illustrates the effectiveness of the
wearout-centric policies at distributing the workload stress appropriately. The distribu-
tion for the baseline naive policy reveals a bias towards early premature core failures.
The greedy scheduler, exploiting effective wear-leveling, produced a tighter distribu-
tion, lacking in both premature failures as well as cores that significantly outlasted their
peers. Lastly, the adaptive policy also delivers on its promises by preserving a subset of
cores for a longer period of time than either the naive or greedy schedulers.

Figure 6(b) tells a similar story, but with chip-level failures. As with the individual
core distributions, both wearout-centric policies are able to increase the mean failure
time of the CMP population. Note that because the failure time of a CMP is limited by
the weakest set of its constituent cores, the distributions in Figure 6(b) are considerably
tighter than those in Figure 6(a). The corresponding tables of expected lifetimes embed-
ded within the plots present the data slightly differently. From a product yield/warranty
perspective, intelligent wearout-centric scheduling can be thought of as an additional
means of ensuring that cores meet their expected reliability qualified lifetimes. For ex-
ample, the table in Figure 6(b) shows that the adaptive scheduler enabled 99% of the
chips to survive beyond 1.9 years, compared to just 1.4 years with the naive baseline, a
38% improvement. Granted, job assignment alone cannot make guarantees on lifetime,
but it can complement existing more aggressive techniques like thermal throttling.

4.3 Sensitivity to System Utilization

The utilization of computer systems can be highly variable, both within the same do-
main (e.g., variability inside data centers) and across domains. One might expect com-
putationally intensive scientific codes (e.g., physics simulations, oil exploration, etc.) to
consistently utilize the hardware. On the other hand, since designers build web servers
to accommodate peak loads (periodic by season, day, and hour), they are often over-
provisioned for the common case. Some reports claim average utilization as low as
20% of peak [2].

198 S. Feng et al.

Fig. 7. Impact of CMP utilization on reliability
enhancement

Fig. 8. Performance of wearout-centric
scheduling with different sensors

Figure 7 plots the performance of Maestro’s wearout-centric schedulers as a function
of system utilization. The results are shown for nominal utilizations ranging from 20%
(light duty mail server or embedded system) to 100% (scientific cluster)2. Note that
initially as average utilization drops, improvement in lifetime throughput actually in-
creases. A system that is slightly underutilized can be more aggressively load balanced
since some cores are allowed to remain idle. However, as utilization continues to drop
these gains are eventually lost, until finally improvements are actually worse than at
full utilization. In these highly over-provisioned systems, the efforts of wearout-centric
scheduling to prevent premature failures are partially wasted because so few cores are
actually necessary to sustain demand. Nevertheless, in the long run, the periodic spikes
in utilization do accumulate, and thanks to the longer overall core lifetimes (lower uti-
lization means less overall stress that translates to longer lifetimes), the greedy and
adaptive schedulers still manage to exhibit improvements.

4.4 Sensor Selection

Lastly, Figure 8 presents a comparison between the low-level damage sensors advocated
in this work and more conventional hardware like temperature sensors and performance
counters. Given that Maestro is targeting an environment with significant amounts of
process variation, it is not surprising that employing temperature and activity readings
as proxies for wearout/manufacturing induced damage is inadequate. They are unable
to account for the extent to which non-uniform, pre-existing damage within the CMP
responds to the same thermal stimuli. In the absence of variation, a scheduler relying
on only temperature might effectively enhance lifetime reliability by evenly distribut-
ing the thermal stress across the CMP. However, without any knowledge of CMP dam-
age profiles, as process variation is swept from one extreme (no variation) to the other
(100% expected variation at 32nm), thermal load balancing alone is insufficient and Fig-
ure 8 shows a dramatic plunge in the effectiveness of these temperature based schemes.
Similarly, the performance counter approach performed poorly across the spectrum of
variation.

2 Although the mean utilization per simulation run is fixed, the instantaneous utilization experi-
enced by the CMP is allowed to vary over time, sometimes peaking at 100% even for a system
nominally at 20% load. Furthermore, the average effective utilization is also changing as cores
on the CMP begin to fail.

Maestro: Orchestrating Lifetime Reliability in Chip Multiprocessors 199

5 Conclusion

As large CMP systems grow in popularity and technology scaling continues to exac-
erbate lifetime reliability challenges, the research community must develop innovative
ways for systems to dynamically adapt. Although issues like process variation are the
source of design and validation nightmares, this inherent heterogeneity in future systems
is also a source of potential opportunity. Maestro recognizes that although emerging re-
liability obstacles cannot be ignored, with the appropriate monitoring and intelligent
management, they can be overcome. By exploiting low-level sensor feedback, Maestro
was able to demonstrate the effectiveness of wearout-centric scheduling at preventing
premature core failures, improving expected CMP lifetimes by as much as 38%. For-
mulating wearout-centric schedules that achieved both local and global wear-leveling,
Maestro enhanced the lifetime throughput of a 16-core CMP by as much as 180%. Fu-
ture work that leverages sensor feedback to improve upon other traditional reliability
management mechanisms (e.g., DVFS) could demonstrate still more potential.

Acknowledgements

We thank the anonymous referees for their valuable comments and suggestions. We
also owe thanks to Jason Blome and Prabhakar Kudva for their feedback on initial
drafts of this work. This research was supported by National Science Foundation grants
CPA-0916689 and CCF-0347411, ARM Limited, and the Gigascale Systems Research
Center, one of five research centers funded under the Focus Center Research Program,
a Semiconductor Research Corporation program.

References

1. Alpha. 21364 family (2001), http://www.alphaprocessors.com/21364.htm
2. Andrzejak, A., Arlitt, M., Rolia, J.: Bounding the resource savings of utility computing mod-

els. HP Laboratories (December 2002),
http://www.hpl.hp.com/techreports/2002/HPL-2002-339.html

3. Blome, J., Feng, S., Gupta, S., Mahlke, S.: Self-calibrating online wearout detection. In: Proc.
of the 40th Annual International Symposium on Microarchitecture, pp. 109–120 (2007)

4. Borkar, S.: Designing reliable systems from unreliable components: The challenges of tran-
sistor variability and degradation. IEEE Micro 25(6), 10–16 (2005)

5. Brooks, D., Tiwari, V., Martonosi, M.: A framework for architectural-level power analysis
and optimizations. In: Proc. of the 27th Annual International Symposium on Computer Ar-
chitecture, June 2000, pp. 83–94 (2000)

6. Cabe, A., Qi, Z., Wooters, S., Blalock, T., Stan, M.: Small embeddable nbti sensors (sens) for
tracking on-chip performance decay, Washington, DC, USA. IEEE Computer Society, Los
Alamitos (2009)

7. Choi, J., Cher, C., Franke, H., Haman, H., Wedger, A., Bose, P.: Thermal-aware task schedul-
ing at the system software level. In: Proc. of the 2007 International Symposium on Low
Power Electronics and Design, August 2007, pp. 213–218 (2007)

8. Chu, P.C., Beasley, J.E.: A genetic algorithm for the generalised assignment problem 24(1),
17–23 (1997)

9. Donald, J., Martonosi, M.: Techniques for multicore thermal management: Classification
and new exploration. In: Proc. of the 33rd Annual International Symposium on Computer
Architecture (June 2006)

http://www.alphaprocessors.com/21364.htm
http://www.hpl.hp.com/techreports/2002/HPL-2002-339.html

200 S. Feng et al.

10. Ernst, D., Das, S., Lee, S., Blaauw, D., Austin, T., Mudge, T., Kim, N.S., Flautner, K.: Razor:
Circuit-level correction of timing errors for low-power operation. In: Proc. of the 37th Annual
International Symposium on Microarchitecture, pp. 10–20 (2004)

11. Feng, S., Gupta, S., Ansari, A., Mahlke, S.: Maestro: Orchestrating lifetime reliability in
chip multiprocessors. Technical Report CSE-TR-557-09, University of Michigan, Ann Arbor
(November 2009),
http://cccp.eecs.umich.edu/papers/CSE-TR-557-09.pdf

12. Feng, S., Gupta, S., Mahlke, S.: Olay: Combat the signs of aging with intropsective reliability
management. In: Proc. of the Workshop on Architectural Reliability (June 2008)

13. Friedrich, J., et al.: Desing of the power6 microprocessor. In: Proc. of ISSCC (February 2007)
14. Gupta, S., Feng, S., Ansari, A., Blome, J., Mahlke, S.: The stagenet fabric for construct-

ing resilient multicore systems. In: Proc. of the 41st Annual International Symposium on
Microarchitecture, pp. 141–151 (2008)

15. Li, X., Huang, B., Qin, J., Zhang, X., Talmor, M., Gur, Z., Bernstein, J.B.: Deep submicron
cmos integrated circuit reliability simulation with spice. In: Proc. of the 2005 International
Symposium on Quality of Electronic Design, March 2005, pp. 382–389 (2005)

16. Lu, Z., Lach, J., Stan, M.R., Skadron, K.: Improved thermal management with reliability
banking. IEEE Micro 25(6), 40–49 (2005)

17. Powell, M., Gomaa, M., Vijaykumar, T.: Heat-and-run: Leveraging smt and cmp to manage
power density through the operating system. In: 12th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, October 2004, pp.
260–270 (2004)

18. Roberts, D., Dreslinski, R., Karl, E., Mudge, T., Sylvester, D., Blaauw, D.: When homoge-
neous becomes heterogeneous: Wearout aware task scheduling for streaming applications.
In: Proc. of the Workshop on Operationg System Support for Heterogeneous Multicore Ar-
chitectures (September 2007)

19. Sarangi, S., Greskamp, B., Teodorescu, R., Nakano, J., Tiwari, A., Torrellas, J.: Varius: A
model of process variation and resulting timing errors for microarchitects. IEEE Transactions
on Semiconductor Manufacturing, 3–13 (February 2008)

20. Skadron, K., Stan, M.R., Sankaranarayanan, K., Huang, W., Velusamy, S., Tarjan, D.:
Temperature-aware microarchitecture: Modeling and implementation. ACM Transactions on
Architecture and Code Optimization 1(1), 94–125 (2004)

21. Srinivasan, J., Adve, S.V., Bose, P., Rivers, J.A.: The case for lifetime reliability-aware micro-
processors. In: Proc. of the 31st Annual International Symposium on Computer Architecture,
June 2004, pp. 276–287 (2004)

22. Sylvester, D., Blaauw, D., Karl, E.: Elastic: An adaptive self-healing architecture for unpre-
dictable silicon. IEEE Journal of Design and Test 23(6), 484–490 (2006)

23. Teodorescu, R., Torrellas, J.: Variation-aware application scheduling and power management
for chip multiprocessors. In: Proc. of the 35th Annual International Symposium on Computer
Architecture, June 2008, pp. 363–374 (2008)

24. Tiwari, A., Sarangi, S., Torrellas, J.: Recycle: Pipeline adaptation to tolerate process varia-
tion. In: Proc. of the 34th Annual International Symposium on Computer Architecture, June
2007, pp. 323–334 (2007)

25. Tiwari, A., Torrellas, J.: Facelift: Hiding and slowing down aging in multicores. In: Proc. of
the 41st Annual International Symposium on Microarchitecture, December 2008, pp. 129–
140 (2008)

26. Winter, J., Albonesi, D.: Scheduling algorithms for unpredictably heterogeneous cmp archi-
tectures. In: Proc. of the 2008 International Conference on Dependable Systems and Net-
works (June 2008) (to appear)

http://cccp.eecs.umich.edu/papers/CSE-TR-557-09.pdf

Combining Locality Analysis with Online Proactive Job
Co-scheduling in Chip Multiprocessors

Yunlian Jiang, Kai Tian, and Xipeng Shen

Computer Science Department,
The College of William and Mary, Williamsburg, VA, USA 23187

{jiang,ktain,xshen}@cs.wm.edu

Abstract. The shared-cache contention on Chip Multiprocessors causes perfor-
mance degradation to applications and hurts system fairness. Many previously
proposed solutions schedule programs according to runtime sampled cache per-
formance to reduce cache contention. The strong dependence on runtime sam-
pling inherently limits the scalability and effectiveness of those techniques.
This work explores the combination of program locality analysis with job co-
scheduling. The rationale is that program locality analysis typically offers a large-
scope view of various facets of an application including data access patterns and
cache requirement. That knowledge complements the local behaviors sampled by
runtime systems. The combination offers the key to overcoming the limitations
of prior co-scheduling techniques.

Specifically, this work develops a lightweight locality model that enables ef-
ficient, proactive prediction of the performance of co-running processes, offering
the potential for an integration in online scheduling systems. Compared to exist-
ing multicore scheduling systems, the technique reduces performance degrada-
tion by 34% (7% performance improvement) and unfairness by 47%. Its proac-
tivity makes it resilient to the scalability issues that constraints the applicability
of previous techniques.

1 Introduction

With the advent of Chip Multiprocessor (CMP) and Simultaneous Multithreading
(SMT), on-chip cache sharing becomes common on various computing systems, in-
cluding embedded architectures, desktop computers, clusters in data centers, and so on.
The sharing shortens inter-thread latency and allows flexible cache usage. However, it
also brings cache contention among co-running jobs, causing programs different de-
grees of performance degradation, hence impairing system fairness and overall perfor-
mance [3,6,7,8,9,11,19,29]. The problem is especially important for embedded systems
due to the more limited cache on them [20].

In operating systems (OS) research, the recent attempts in alleviating cache con-
tention mainly focus on reactive process scheduling1 [2, 4, 6, 7, 8, 18, 25]. These tech-
niques typically sample job executions periodically. During the sampling, they track
hardware performance counters to estimate the cache requirement of each process and

1 In this work, we concentrate on the schedule of independent jobs.

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 201–215, 2010.
© Springer-Verlag Berlin Heidelberg 2010

202 Y. Jiang, K. Tian, and X. Shen

derive a better schedule. (For a system containing multiple CMP chips, a better sched-
ule usually means a different assignment of jobs to processors or a different allocation
of CPU timeslices to processes.)

Although these techniques work well under certain conditions, the strong reliance on
runtime sampling imposes some limitations on their effectiveness and applicability. The
main obstacle is that the sampled behavior only reflects the behavior of a process during
a certain time period when it co-runs with a certain subset of processes. Whereas,
good scheduling need recognize the inherent cache requirement of a process and its
influence on and from all possible co-runners. As a result, most prior techniques require
both periodic re-sampling and frequent reshuffles of processes among different co-run
groups [8, 25].

These requirements not only cause more sampling overhead (cache performance
is often inferior during sampling periods) but also limit the applicability of previous
scheduling techniques. For instance, cache-fair scheduling needs the sampling of 10 dif-
ferent co-runs (i.e., runs with different co-runners) per process in every sampling phase,
and requires the system to contain a mix of cache-fair and best-effort processes [8];
symbiotic scheduling [4,25], which samples program performance under various sched-
ules and estimates the best schedule, is difficult to be applied to large problems—the
number of possible schedules increases exponentially with the numbers of jobs and
processors (e.g., there are 2 million ways to co-schedule 16 jobs on 8 dual-cores).

This work attempts to free prior techniques from those constraints by integrating
the knowledge of programming systems2. Our exploration combines program behav-
ior analysis with operating systems’ control of underlying resources. The motivation
for the combination is that program characteristics determine the cache requirement
of a program, and it is programming systems that have the best knowledge of those
characteristics.

To be beneficial, the combination must meet two requirements. First, it needs a
lightweight locality model to efficiently predict the cache requirement and co-run
performance of programs. Based on reuse distance analysis, this work develops a
lightweight co-run locality model—a unified sensitivity and competitiveness model—
to enable fast prediction of the influence that a process may impose on and receive from
its co-runners. The model is cross-input predictive. The second requirement is that the
system scheduler must effectively integrate the locality model into runtime scheduling.
This work presents the design of cache-contention aware proactive scheduling (CAPS),
which assigns processes to processors according to the predicted cache-contention sen-
sitivities. In our experiments, CAPS reduces performance degradation by 33.9% (7%
performance improvement) and unfairness by 47.5%.

This work is not the first one to combine program-level locality analysis with thread
or process scheduling. In time-sharing environment, there have been some studies
[31, 28] in exploiting footprint size of programs to help schedule threads to minimize
the influence on cache imposed by context switches. In traditional SMP (Symmetric
Multiprocessing) systems, there have been some work [18] transforming programs to
minimize cache false sharing. But none of those studies have tackled systems with

2 Programming systems is an expanded term for compilers, referring to both static and dynamic
systems for program behavior analysis.

Combining Locality Analysis with Online Proactive Job Co-scheduling 203

shared cache. To the best of our knowledge, this work is the first offering a lightweight
formulation of program-level data locality applicable for runtime CMP co-scheduling.

In the rest of this paper, we describe the background on co-run locality prediction
in Section 2, present a lightweight locality model for scheduling in Section 3, explain
the design of CAPS in Section 4, report results in Section 5, compare with previous
co-scheduling in Section 6, and summarize the paper in Section 7.

2 Background on Co-run Locality

Co-run locality analysis enables the prediction of the performance of co-running pro-
grams, laying the foundation for contention-aware proactive scheduling. This section
first introduces concurrent reuse distance, a concept closely related to shared-cache per-
formance, and then describes a theorem establishing the basis for the cache-contention
sensitivity model to be presented in the next section.

In the following discussion, we assume that the architecture is an SMP machine with
multiple CMP chips, the cores on a chip share an on-chip L2 cache, and each core
has a dedicated L1 cache. Since our focus is on cache sharing, by default, the memory
references in the discussion do not include the references that are L1 cache hits.

2.1 Reuse Distance

Underlying the co-run locality model is the concept of reuse distance or LRU stack
distance, defined as the number of distinct data items accessed between the current and
the previous reference to the same data item [16, 5]. Treating a cache block as a single
data item leads to cache-block reuse distance. Researchers have used cache-block reuse
distance histograms, also called reuse signatures [36], to predict the performance of
dedicated caches. Figure 1 illustrates the prediction: Every memory reference on the
right side of the cache-size line is considered a cache miss because too many other data
have entered the cache between two references to the same data item. The estimation is
precise for fully-associative cache, but also applicable for set-associative cache [15,35].

Cache size

Reuse distance (cache blocks)

5%Pe
rc

en
t o

f
re

fe
re

nc
es

10%

15%

20%

Fig. 1. An example of cache-block reuse signature

We use concurrent reuse distance to refer to the extension of reuse distance on
shared caches. It is defined as the number of distinct data items that are referenced by
all cache sharers (i.e., processes sharing a cache) between the current and the previ-
ous access to the same data item. For clarity, we use standalone reuse distance for the
traditional concept of reuse distance. The histograms are named as concurrent reuse

204 Y. Jiang, K. Tian, and X. Shen

signatures and standalone reuse signatures respectively. Using concurrent reuse signa-
tures, we can predict shared-cache misses in the manner similar to the prediction of
dedicated-cache misses.

2.2 Derivation of Concurrent Reuse Signatures

Concurrent reuse signatures, although good for corun-locality prediction, is hard to
measure. The main reason is that direct measurement requires detailed memory moni-
toring, which both disturbs the order of memory references conducted by cache sharers,
and slows down program executions by hundreds of times.

Fortunately, concurrent reuse signatures can be derived from the corresponding stan-
dalone reuse signatures through a statistical model [22, 23]. Furthermore, prior work
has shown that standalone reuse signatures of a program can be accurately predicted
across the program’s inputs [5]. These make concurrent reuse signature cross-input pre-
dictable: The concurrent reuse signatures of new executions of a group of co-running
programs can be derived from the executions of those programs on some training inputs.
Cross-input predictability is vital to the use in contention-aware scheduling because of
the strong dependence of cache contention on program inputs.

The cost of the statistical model increases quadratically in the length of an execu-
tion [22], infeasible to be used in runtime scheduling. We use distinct data blocks per
cycle (DPC) to simplify the process. The DPC of a process in a given interval is the
average number of distinct data blocks (typically in the size of a cache line) accessed by
the process in a CPU cycle through the interval. Roughly speaking, DPC is the average
footprint in a cycle. It reflects the aggressiveness of a process in competing for cache
resource. As an example, suppose a program accesses the following data blocks in 100
cycles: b1 b1 b3 b5 b3 b1 b4 b2. The corresponding DPC is 5/100 = 0.05 (foot-
print is 5). Correspondingly, the DPC of a set of processes, P , is defined as the number
of distinct data blocks that are accessed in a CPU cycle by all the processes in P , that
is, DPC(P) =

∑
q∈P DPC(q).

To ease explanation, we define the reuse interval of a reference as the interval be-
tween this and the previous reference to the same data item. The following theorem
more precisely characterizes the connection between DPC and cache contention.

Theorem 1. Suppose, process p shares a fully-associative cache of size L with a set of
processes P (p /∈ P). (No shared data among processes.) Consider a cache hit by p
that has standalone reuse distance of d (d < L). Let σ and σ′ be the average DPC of
p and P during the reuse interval of the reference. Then, if and only if d

L−d < σ
σ′ , the

reference remains a cache hit in the presence of cache competition from P .

The proof of this theorem is straightforward if it is noticed that the concurrent reuse
distance of the reference is (d + σ′d/σ).

This theorem suggests that along with standalone reuse signatures, knowing the DPC
of every reuse interval is enough to compute the miss rate of a co-run. It is however too
costly to get DPCs in such detail. We use the averaged value of the DPCs of all reuse
intervals of a program to obtain a suitable tradeoff between the accuracy and efficiency
of locality prediction. Although the theorem assumes fully-associative caches, its appli-
cation produces good estimation for set associative caches as well [22].

Combining Locality Analysis with Online Proactive Job Co-scheduling 205

3 Cache-Contention Sensitivity and Competitiveness

Theorem 1 provides a way to estimate concurrent reuse signatures and thus co-run per-
formance. It is lightweight enough for offline analysis and batch job scheduling [22],
but not for runtime uses: It takes more than 2,000 μs to predict the performance of 32
jobs co-running on dual-core processors. This work simplifies it to a competitiveness-
sensitivity model. Competitiveness and sensitivity respectively characterize the statisti-
cal expectation of the influence that a process may impose on and receive from random
co-runners. This model is important for making runtime proactive scheduling scalable.
As we will see in Section 5, CAPS capitalizes on the model to make sensitive processes
co-run with uncompetitive ones to achieve better performance.

3.1 Sensitivity

The definition of cache-contention sensitivity is as follows:

Sensitivity =
CPIco − CPIsi

CPIsi
(1)

where, CPIsi is the cycles per instruction (CPI) of a process’s single run, and CPIco

is the statistical expectation of the CPI of that process when it co-runs with random
processes.

The estimation of CPIsi is straightforward: As explained in Section 2.1, we can pre-
dict the cache miss rate of a process’s single run from its standalone reuse signatures;
the corresponding CPI (given the cache miss rate) can be estimated using existing tech-
niques (e.g. [26]).

To estimate CPIco in the same way, we have to obtain the statistical expectation
of the cache miss rates of the process’s co-runs. The number of co-run misses equals
the sum of single-run misses and the extra misses caused by co-run contention. Since
single-run misses are obtainable as mentioned in the previous paragraph, the problem
becomes the computation of the statistical expectation of the number of extra misses.
The following corollary of Theorem 1 offers the solution.

Corollary 1. Let F () be the cumulative distribution function of the DPCs of all pro-
grams, and L be the shared cache size. Suppose a process p has H memory references
whose standalone reuse distances, di, are smaller than L (i=1, 2, · · ·, H). Let σi rep-
resent the DPC of the corresponding reuse interval. When process p co-runs with some
randomly-picked programs that share no data with p, the expectation of the cache miss
rate of the H memory references is

δ = 1 − 1
H

H∑
i=1

F (σi(L − di)/di). (2)

Proof. Let σ′ represent the average DPC of the co-runners of p in the reuse inter-
val corresponding to σi. Theorem 1 tells us that if and only if σ′ < σi(L − di)/di,
reference i remains a hit. Since the probability for that condition to happen is
F (σi(L− di)/di), the expectation of the number of cache hits among the H references
is

∑H
i=1 F (σi(L − di)/di). The conclusion follows.

206 Y. Jiang, K. Tian, and X. Shen

With this corollary, we can compute the sensitivity of a process from its DPC and stan-
dalone reuse signature. Since references are grouped in bars in reuse signatures, the
computation uses a bar as a unit; H thus equals the number of bars whose reuse dis-
tances are smaller than L. For computing the F () items efficiently, we build a lookup
table for F by using 3.9 billion data reuses from a dozen randomly chosen SPEC
CPU2000 programs (included in Figure 2). The table contains 200 items corresponding
to 200 evenly-spaced points between 0 and 0.237.

3.2 Competitiveness

We initially intended to use a process’s average DPC as competitiveness. But our ex-
periments reveal the strong correlation between the influence a process imposes on and
receives from its co-runners. This observation leads to a unified competitiveness and
sensitivity model.

Figure 2 plots the performance degradation of all the 66 pair-wise co-runs of a dozen
SPEC CPU2000 programs (train runs) on an Intel Xeon 5150 processor (specified in
Section 5). In the graph, points on solid curves show the program’s own degradation
and points on broken curves show the degradation of its co-runner. For legibility, each
program’s data are sorted in ascending order of self degradation and then connected
into curves. The two curves corresponding to every program show similar trends. The
correlation coefficient between all the self and co-runner degradations is 0.75. (As an
extra evidence, the coefficient is 0.73 for the 13 SPEC programs shown in Figure 3.)

The intuition behind the strong correlation is that, a program that is sensitive to
cache contention tends to fetch data from a large portion of the shared cache frequently.
Hence, it tends to impose strong influence on its co-runners, that is, it tends to be com-
petitive. As an exception, stream programs are competitive but insensitive. Although
they access cache intensively, those programs have few data reuses and thus rely on no

−0.1

0

0.1

0.2

0.3

0.4

0.5

IP
C

 D
eg

ra
d

at
io

n

self
co-runner

applu lucas apsi mgrid swim gcc
fma3d omnetpp galgel sixtrack facerec wupwise

Benchmarks

Fig. 2. Each program has 11 pair-wise co-runs, respectively with each of the other 11 programs.
The points on the solid curve show the degradations of this program in those co-runs; the points
on the broken curve are of its co-runners. (The points are connected for legibility.) The similarity
between the two kinds of curves shows the strong correlations between the degradations of a
program and those of its co-runners.

Combining Locality Analysis with Online Proactive Job Co-scheduling 207

cache for performance. Fortunately in offline training, it is easy to detect stream pro-
grams thanks to their distinctive data access patterns. The scheduling process, CAPS,
treats those programs as competitive programs and pair them with other insensitive
programs (detailed next). For other programs, CAPS simply uses sensitivity for com-
petitiveness. This unified model simplifies the design of runtime scheduler.

4 Contention-Aware Proactive Scheduling (CAPS)

The principle of CAPS is to couple sensitive processes with insensitive (thus likely
uncompetitive) processes. This section uses Linux as an example to explain how CAPS
can be integrated in runtime schedulers.

In default Linux SMP scheduling (e.g., Linux 2.6.23), when a program is launched,
one of the CPUs will receive that signal and assign the process to the best available
CPU for execution. Each CPU has a scheduler managing the jobs assigned to it.

For CAPS, CPUs are classified evenly into two groups, Gs and Gi, dedicated to
sensitive and insensitive processes respectively. For the CPUs sharing a cache, half of
them belong to Gs and the others belong to Gi. The scheduler on each CPU maintains
a sensitivity threshold h, which is equal to the decayed average of the sensitivities of all
the processes that the scheduler has assigned (may or may not to this CPU). Formally,
h is computed as follows when the scheduler assigns the nth process:

hn = αhn−1 + (1 − α)Sn (3)

where, α is a decay factor (0 to 1), and Sn is the sensitivity of the newly launched
process. The use of the decay factor makes the scheduler adaptive to workload changes.
Similar to other factors in OS, its appropriate value should be determined empirically.

When a program is launched, the CPU that receives the launching signal computes
the sensitivity of the process, Sn. It then updates h using equation 3. If Sn > h, it
schedules the process to a CPU in Gs, otherwise, to a CPU in Gi. The way to select a
CPU inside a group is the same as in the default Linux scheme. (Stream programs are
assigned to Gs directly.) For processes without locality models, the scheduler falls back
to the Linux default scheduling.

Equation 3 attempts to obtain load balance by dynamically adjusting threshold h.
If unbalance still occurs due to certain patterns in the sensitivities of subsequent jobs,
the existing load balancer in Linux, which is invoked periodically, can rebalance the
workload automatically.

We note on two facts. First, the scheduler makes no change to the default manage-
ment of run-queues and timeslice allocation in Linux. This is essential for maintaining
the proper treatment to priorities. Second, although it is possible for different CPUs
to get different h values, some degrees of difference is tolerable for CAPS. Further-
more, during rebalance, the rebalancer can obtain the average of all CPUs’ h values and
update the h values for every CPU accordingly.

The sensitivity of a program is obtained from its predicted reuse signature and DPC,
both of which have shown to be cross-input predictable [5, 10]. But predictive mod-
els have to be constructed for each program through an offline profiling and learning

208 Y. Jiang, K. Tian, and X. Shen

process. This step, although being automatic, may still seem to be a burden to schedul-
ing. There are two ways to make it transparent to the users of CAPS. First, the learn-
ing step can occur during the typical performance tuning or correctness testing stage
in the development of a software. The program developers only need to run the pro-
gram on several of the inputs they have; whereas, the outcome is beneficial: Besides for
scheduling, the predictive locality model can also benefit data reorganization [5], cache
resizing [24], and cache partition [12]. In this case, the scheduler can use the model for
free. The second solution is to make the learning occur implicitly in the real runs of
an application through incremental learning techniques. Through multiple runs, online
learner learns the relation between memory behavior and program inputs, and builds
the predictive model for co-run locality prediction. Detailed studies are out of the scope
of this paper.

5 Evaluation

For evaluation, we employ 12 randomly chosen SPEC CPU2000 programs, as shown
in Table 1, and a sequential stream program (derived from [17] with each data element
covering one cache line) on a Dell PowerEdge 1850 server. The machine is equipped
with Intel Xeon 5150 2.66 GHz quad-core processors; every two cores have a 4MB
shared L2 cache (64B line, 4-way). Each core has a 32KB dedicated L1 data cache. The
information shown in Table 1 are collected on the ref runs of the benchmarks on the
Xeon machine. We use PIN as the instrumentation tool [14] for locality measurement,
and use the PAPI [1] library for hardware performance monitoring. In the collection of
co-run behavior, in order to avoid the distraction from program lengths, we follow Tuck
and Tullsen’s practice [33], wrapping each program to make it run 10 times consecu-
tively, and only collecting the behavior of co-runs—that is, the runs overlapping with
another program’s run.

Table 1. Performance Ranges of Benchmarks on Intel Xeon 5150

Program cycles per instruction L2 misses per mem. acc.(%)
single-run corun-min corun-max single-run corun-min corun-max

ammp 1.01 1.03 1.31 0.51 0.60 1.6
art 0.93 0.96 1.55 0.0028 0.095 3.8
bzip 0.49 0.49 0.66 0.11 0.18 0.76
crafty 0.72 0.73 0.80 0.00010 0.0028 0.21
equake 1.28 1.38 2.13 3.8 3.9 4.5
gap 0.91 0.91 1.16 1.3 1.5 1.6
gzip 0.72 0.72 0.77 0.078 0.079 0.14
mcf 2.47 2.70 4.84 4.4 5.0 8.6
mesa 0.51 0.52 0.56 0.23 0.26 0.38
parser 1.15 1.18 1.50 0.31 0.44 1.2
twolf 1.06 1.07 1.24 0.0014 0.0015 0.40
vpr 1.06 1.09 1.44 0.0053 0.0067 0.015

Combining Locality Analysis with Online Proactive Job Co-scheduling 209

The focus of our evaluation is the examination of the effectiveness of the unified
sensitivity model in serving as a locality model for shared-cache-aware scheduling. To
avoid distractions from the many random factors (e.g., job arriving time, load balance)
in online schedulers, we use offline measurement to uncover the full potential.

We compute the sensitivities of the programs from their reuse signatures and DPCs,
based on which, we separate the 12 SPEC programs into two equal-size classes shown
as the two sequences of caps-pred below. For comparison, we report the ideal separation
as caps-real. We obtain them by first running all possible pairs of the 12 programs, and
then taking the average co-run degradation of each program as its real sensitivity. In
both separation results, we list the programs in descending order of sensitivity.

caps-pred:
Sensitive: mcf art equake vpr parser bzip
Insensitive: twolf ammp crafty gap mesa gzip

caps-real:
Sensitive: mcf equake art vpr bzip ammp
Insensitive: parser gap crafty mesa twolf gzip

The sequences, although differing in the relative positions of the benchmarks, only
mismatch on two programs, parser and ammp. Two reasons cause the differences: local-
ity prediction errors and the difference between statistical expectation and a particular
problem instance. We note that CAPS has good tolerance to ordering difference: As
long as programs are put into the right sequences, the order inside a sequence has no ef-
fects on CAPS. This property is essential for making the lightweight locality prediction
applicable for CAPS.

We compare the performance result of CAPS on predicted sensitivities (denoted
as caps-pred) with the results of the default Linux scheduler (default) and CAPS on
real sensitivities (caps-real). We measure the performance of a program by degrada-
tion factor, defined as (CPIco − CPIsi)/CPIsi, where, CPIco and CPIsi are the
respective CPIs of the program’s co-run and single run. Following prior work [34],
we measure the fairness of a schedule by unfairness factor, defined as the coefficient
of variation (standard deviation divided by the mean) of the normalized performance
(IPCco/IPCsi) of all applications.

To prevent randomness from obscuring the comparison, we obtain a program’s per-
formance in a schedule by averaging the performance of all the program’s co-runs that
are allowed by the schedule. The default scheduler, for example, allows all 12 possi-
ble co-runs per program, whereas caps-pred and caps-real allow a program to run with
only the programs in a different class.

Figure 3 shows the performance of the three schedulers, with sensitive programs
(judged by caps-pred) on the left and insensitive programs on the right. For sensitive
programs, caps-pred reduces performance degradation by 4% to 30.2% (15.7% on av-
erage); as a tradeoff, insensitive programs have 1.4% to 8.1% more degradation (4.1%
on average). In comparison, caps-real shows 2.5% less reduction for sensitive programs
and 3.3% more for insensitive programs than caps-pred. It is important to note that the
goal of job co-scheduling is to increase the overall computing efficiency of the system

210 Y. Jiang, K. Tian, and X. Shen

default caps-pred. caps-real

0

10

20

30

40

50

 a

rt

b
zi

p

eq

u
ak

e

 m
c f

p
ar

se
r

 v
p
r

st
re

am

A
V
G

.

Pe
rf

.
D

eg
ra

d
.

(%
)

0

10

20

30

40

50

am
m

p

cr

af
ty

 g
ap

g
zi

p

m
es

a

 t

w
o
lf

A
V
G

.

Pe
rf

.
D

eg
ra

d
.

(%
)

(a) Perf. degrad. of sensitive programs (b) Perf. degrad. of insensitive programs

0

0.4

0.8

1.2

1.6

 a
rt

b
zi

p

eq

u
ak

e

 m
cf

p
ar

se
r

 v
p
r

st
re

am

A
V
G

.

N
o
rm

.
L2

 M
is

s
R
at

e
(%

)

0

0.4

0.8

1.2

1.6

am
m

p

cr

af
ty

 g
ap

g
zi

p

m
es

a

 t

w
o
lf

A
V
G

.

N
o
rm

.
L2

 M
is

s
R
at

e
(%

)

(c) L2 miss rates of sensitive programs (d) L2 miss rates of insensitive programs

Fig. 3. Performance degradation and normalized L2 miss rates by different scheduling

rather than maximize the performance of each individual program. So it is normal that
some programs (e.g. parser) perform better in caps-pred than in caps-real.

Table 2 reports the performance, normalized to the default performance, of each pro-
gram when they run in caps-real and caps-pred. The sensitive programs show 12% and
14% speedup on average. All of them have speedup over 11% except parser and stream.
In caps-real, parser has 6% slowdown because it is classified as insensitive programs
and co-runs with sensitive programs. The small speedup of stream is consistent with
our intuition conveyed in Section 3.2—such programs are competitive but insensitive
for their special memory access patterns. It is remarkable that the significant speedup
for sensitive programs comes with almost no slowdown of insensitive programs. The
average slowdown is 1% in caps-real and 3% in caps-pred. The small slowdown is no
surprise given that those program are insensitive to cache sharing. The program ammp
shows 10% speedup in caps-real because the scheduler labels the program as a sensitive
program and lets it co-run with insensitive programs.

The intuition behind the effectiveness of CAPS is that it successfully recognizes
the programs to which cache contention matters significantly. By giving an favorable
schedule to those programs, CAPS accelerates them without hurting the programs that
are not sensitive to cache contention.

Table 3 contains the overall performance degradation factors and unfairness fac-
tors of the schedules. The two reduction columns report the relative reduction ratios of
caps-pred and caps-real compared to default. Schedule caps-pred reduces degradation

Combining Locality Analysis with Online Proactive Job Co-scheduling 211

Table 2. Whole-Program Speedup Brought by CAPS

Sensitive Programs Insensitive Programs
Programs caps-real caps-pred Programs caps-real caps-pred
art 1.24 1.24 ammp 1.10 0.94
bzip 1.12 1.12 crafty 0.98 0.98
equake 1.13 1.13 gap 0.94 0.94
mcf 1.24 1.24 gzip 0.99 0.99
parser 0.94 1.09 mesa 0.98 0.98
vpr 1.11 1.11 twolf 0.97 0.97
stream 1.03 1.02 – – –
Average 1.12 1.14 Average 0.99 0.97

factor by 32.6% and unfairness factor by 46.9%, respectively 1.3% and 2.4% less than
caps-real.

Figure 3 (c) and (d) show the normalized L2 miss rates (L2 misses per memory ref-
erence) collected using PAPI library [1]. Although they roughly match the performance
results, the L2 miss rates impose different influence on the programs. For example, the
52% more L2 miss rates of twolf only cause 3.2% performance difference, while 3.3%
less miss rates of equake reduce 15% performance degradation. This difference is due
to bus-contention differences and the different significance of L2 misses. The L2 miss
rates of twolf are hundreds of times smaller than those of equake. This agrees with the
fact that both caps-pred and caps-real label twolf insensitive and equake sensitive.

Table 3. Overall Performance Degradation Factors and Unfairness Factors

Performance Deg. (%) Unfairness (%)
factor reduction factor reduction

default 20.0 – 11.6 –
caps-pred 13.5 32.6 6.2 46.9
caps-real 13.4 33.3 6.0 48.5

These results demonstrate the potential of the locality model in supporting job
co-scheduling. The performance of actual on-line schedulers depends on many other
factors, such as the job arrival time and order, system load balance and its dynamic
adjustment, job priorities, and so forth. Detailed discussion is out of the scope of this
paper.

Overhead of CAPS. The major runtime overhead of CAPS consists of the prediction of
standalone reuse signatures and the computation of sensitivities, both determined by the
granularity of standalone reuse signatures. Since reuse distances smaller than cache size
are more critical for CAPS, reuse signatures organize them in linear scale (1K distance
per bar), and use log scale for others. Because each bar in a signature corresponds to one
linear function, there are A + log(N/L) linear functions to solve in the reuse-signature

212 Y. Jiang, K. Tian, and X. Shen

prediction, where, A is the number of bars in the linear range, N is program data size
(the upper bound of reuse distance), and L is cache line width. The computation of
sensitivity relies on only reuse distances smaller than cache size, because only those
references can be the victims of cache contention. Thus, the time complexity is O(A).

In our experiments, L = 64, A is 64 and N is from 32,606 (crafty) to 4.1 million
(gap) with average of 1.0 million. The numbers of linear functions range from 79 to 86
per program. The computation cost of CAPS is negligible.

6 Comparison

Recent years have seen a number of studies on scheduling in CMP. Some concentrate
on scheduling threads in a single application. For example, thread clustering [30] tries
to recognize patterns of data sharing using hardware performance counters and locates
threads accordingly. The technique cannot apply to the problems tackled in this work
as no data are shared among jobs. Some studies [13] tackle the scalability and fairness
of scheduling on CMP, but without considering interferences on shared cache in the
fairness criterion. Some studies [11, 32] conduct theoretical analysis to uncover the
complexity of optimal co-scheduling on CMP. They are useful for offline analysis but
not for runtime scheduling.

This section concentrates on the studies that schedule independent jobs to reduce
the interferences on shared cache. Most of those studies have used simulators (e.g.,
[6, 8, 21, 25]), whereas, we use a real machine for all the experiments. Furthermore,
CAPS has applicability different from previous techniques (elaborated next). We hence
concentrate on qualitative comparisons.

First, the applicability of CAPS differs from prior techniques. Unlike techniques
based on cache activity vectors or other hardware extensions (e.g., [6, 21, 27]), this
work is a pure software solution applicable to existing systems. On the other hand, hard-
ware extensions may reveal fine-grained cache conflicts, complementary to the coarse-
grained locality information used in this work.

Previous explorations in scheduling for CMP or SMT rely on either hardware per-
formance counters or offline memory profiling, showing different applicability from
CAPS. The cache-fair scheduling [8] from Fedorova et al. is applicable when the pro-
cesses have various cache-access patterns and have already been labeled either cache-
fair or best-effort. Its main goal is performance isolation, accomplished by control-
ling CPU timeslice allocation instead of process assignment. Zhang et al. use hardware
counters to guide scheduling on SMP machines without shared caches [34]. Snavely
et al. have proposed symbiotic scheduling, which is based on sampling of various co-
runs [4, 25], suiting the problems having a small number of jobs and processors. Some
explorations use offline collected memory information to guide scheduling [3, 6]. They
use the same program inputs for training and testing, not applicable to input-sensitive
programs.

CAPS overcomes the above constraints, but requires each process of interest to be
equipped with a cross-input predictive locality model (whose construction, fortunately,
can be transparent to the users of CAPS as discussed in Section 4). The combination

Combining Locality Analysis with Online Proactive Job Co-scheduling 213

of CAPS with runtime sampling-based techniques may be beneficial: The former over-
comes scalability issues, and the latter offers on-line adaptivity. In addition, the combi-
nation of CAPS with locality phases [24] may add adaptivity to phase shifts as well.

Second, the program behavior models introduced in this work may benefit other
techniques as well. Essentially, the models offer an alternative way to estimate cache
requirement and co-run performance, which are exactly the major sources of guiding
information used by many cache management schemes.

7 Conclusion

This work, based on the concept of concurrent reuse distance, develops a lightweight
locality model for shared-cache contention prediction. The model offers the basis for a
runtime contention-aware proactive scheduling system. Experiments on a recent CMP
machine demonstrate the effectiveness of the technique in alleviating cache contention,
improving both system performance and fairness. On the high level, this work shows the
potential of combining program behavior analysis by programming systems and global
resource management by operating systems. Interactions between these two layers may
also help other issues in computing systems.

Acknowledgment

We are grateful to the anonymous reviewers for their helpful suggestions. We thank
Avi Mendelson at Microsoft for his help on the preparation of the final version of this
paper. This material is based upon work supported by the National Science Foundation
under Grant No. 0720499 and 0811791 and IBM CAS Fellowship. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation or
IBM.

References

1. Browne, S., Deane, C., Ho, G., Mucci, P.: PAPI: A portable interface to hardware perfor-
mance counters. In: Proceedings of Department of Defense HPCMP Users Group Confer-
ence (1999)

2. Bulpin, J.R., Pratt, I.A.: Hyper-threading aware process scheduling heuristics. In: 2005
USENIX Annual Technical Conference, pp. 103–106 (2005)

3. Chandra, D., Guo, F., Kim, S., Solihin, Y.: Predicting inter-thread cache contention on a
chip multi-processor architecture. In: Proceedings of the International Symposium on High
Performance Computer Architecture (HPCA), pp. 340–351 (2005)

4. DeVuyst, M., Kumar, R., Tullsen, D.M.: Exploiting unbalanced thread scheduling for energy
and performance on a cmp of smt processors. In: Proceedings of International Parallel and
Distribute Processing Symposium, IPDPS (2006)

5. Ding, C., Zhong, Y.: Predicting whole-program locality with reuse distance analysis. In:
Proceedings of ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, San Diego, CA, June 2003, pp. 245–257 (2003)

214 Y. Jiang, K. Tian, and X. Shen

6. El-Moursy, A., Garg, R., Albonesi, D.H., Dwarkadas, S.: Compatible phase co-scheduling
on a cmp of multi-threaded processors. In: Proceedings of the International Parallel and Dis-
tribute Processing Symposium, IPDPS (2006)

7. Fedorova, A., Seltzer, M., Small, C., Nussbaum, D.: Performance of multithreaded chip mul-
tiprocessors and implications for operating system design. In: Proceedings of USENIX An-
nual Technical Conference (2005)

8. Fedorova, A., Seltzer, M., Smith, M.D.: Improving performance isolation on chip multipro-
cessors via an operating system scheduler. In: Proceedings of the International Conference
on Parallel Architecture and Compilation Techniques (2007)

9. Hsu, L.R., Reinhardt, S.K., Lyer, R., Makineni, S.: Communist, utilitarian, and capitalist
cache policies on CMPs: caches as a shared resource. In: Proceedings of the International
Conference on Parallel Architecture and Compilation Techniques (2006)

10. Jiang, Y., Shen, X.: Exploration of the influence of program inputs on cmp co-scheduling. In:
Luque, E., Margalef, T., Benı́tez, D. (eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 263–273.
Springer, Heidelberg (2008)

11. Jiang, Y., Shen, X., Chen, J., Tripathi, R.: Analysis and approximation of optimal co-
scheduling on chip multiprocessors. In: Proceedings of the International Conference on Par-
allel Architecture and Compilation Techniques (PACT) (October 2008)

12. Kim, S., Chandra, D., Solihin, Y.: Fair cache sharing and partitioning in a chip multiprocessor
architecture. In: Proceedings of the International Conference on Parallel Architecture and
Compilation Techniques (2004)

13. Li, T., Baumberger, D., Hahn, S.: Efficient and scalable multiprocessor fair scheduling using
distributed weighted round-robin. In: Proceedings of ACM Symposium on Principles and
Practice of Parallel Programming, pp. 65–74 (2009)

14. Luk, C.-K., et al.: Pin: Building customized program analysis tools with dynamic instrumen-
tation. In: Proceedings of the ACM SIGPLAN conference on Programming language design
and implementation, Chicago, Illinois, June 2005, pp. 190–200 (2005)

15. Marin, G., Mellor-Crummey, J.: Cross architecture performance predictions for scientific
applications using parameterized models. In: Proceedings of Joint International Conference
on Measurement and Modeling of Computer Systems, New York City, June 2004, pp. 2–13
(2004)

16. Mattson, R.L., Gecsei, J., Slutz, D., Traiger, I.L.: Evaluation techniques for storage hierar-
chies. IBM System Journal 9(2), 78–117 (1970)

17. McCalpin, J.D.: Memory bandwidth and machine balance in current high performance com-
puters. IEEE TCCA Newsletter (1995), http://www.cs.virginia.edu/stream

18. Parekh, S., Eggers, S., Levy, H., Lo, J.: Thread-sensitive scheduling for smt processors. Tech-
nical Report 2000-04-02, University of Washington (June 2000)

19. Rafique, N., Lim, W., Thottethodi, M.: Architectural support for operating system-driven
cmp cache management. In: Proceedings of the International Conference on Parallel Archi-
tecture and Compilation Techniques (2006)

20. Sarkar, S., Tullsen, D.: Compiler techniques for reducing data cache miss rate on a mul-
tithreaded architecture. In: Proceedings of The HiPEAC International Conference on High
Performance Embedded Architectures and Compilation (2008)

21. Settle, A., Kihm, J.L., Janiszewski, A., Connors, D.A.: Architectural support for enhanced
smt job scheduling. In: Proceedings of the International Conference on Parallel Architecture
and Compilation Techniques, pp. 63–73 (2004)

22. Shen, X., Jiang, Y., Mao, F.: Caps: Contention-aware proactive scheduling for cmps with
shared caches. Technical Report WM-CS-2007-09, Computer Science Department, The Col-
lege of William and Mary (2007)

23. Shen, X., Shaw, J., Meeker, B., Ding, C.: Locality approximation using time. In: Proceedings
of the ACM SIGPLAN Conference on Principles of Programming Languages, POPL (2007)

http://www.cs.virginia.edu/stream

Combining Locality Analysis with Online Proactive Job Co-scheduling 215

24. Shen, X., Zhong, Y., Ding, C.: Locality phase prediction. In: Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating Systems,
Boston, MA, pp. 165–176 (2004)

25. Snavely, A., Tullsen, D.M.: Symbiotic jobscheduling for a simultaneous multithreading pro-
cessor. In: Proceedings of ASPLOS (2000)

26. Solihin, Y., Lam, V., Torrellas, J.: Scal-tool: Pinpointing and quantifying scalability bottle-
necks in dsm multiprocessors. In: Proceedings of the 1999 Conference on Supercomputing
(1999)

27. Suh, G., Rudolph, L., Devadas, S.: Dynamic partitioning of shared cache memory. Journal
of Supercomputing 28, 7–26 (2004)

28. Suh, G.E., Devadas, S., Rudolph, L.: Analytical cache models with applications to cache
partitioning. In: Proceedings of the 15th international conference on Supercomputing (2001)

29. Suh, G.E., Devadas, S., Rudolph, L.: A new memory monitoring scheme for memory-aware
scheduling and partitioning. In: Proceedings of the 8th International Symposium on High-
Performance Computer Architecture (2002)

30. Tam, D., Azimi, R., Stumm, M.: Thread clustering: sharing-aware scheduling on smp-cmp-
smt multiprocessors. SIGOPS Oper. Syst. Rev. 41(3), 47–58 (2007)

31. Thiebaut, D., Stone, H.S.: Footprints in the cache. ACM Transactions on Computer Sys-
tems 5(4) (1987)

32. Tian, K., Jiang, Y., Shen, X.: A study on optimally co-scheduling jobs of different lengths on
chip multiprocessors. In: Proceedings of ACM Computing Frontiers (2009)

33. Tuck, N., Tullsen, D.M.: Initial observations of the simultaneous multithreading Pentium 4
processor. In: Proceedings of International Conference on Parallel Architectures and Compi-
lation Techniques, New Orleans, Louisiana (September 2003)

34. Zhang, X., Dwarkadas, S., Folkmanis, G., Shen, K.: Processor hardware counter statistics
as a first-class system resource. In: Proceedings of the 11th Workshop on Hot Topics in
Operating Systems (2007)

35. Zhong, Y., Dropsho, S.G., Shen, X., Studer, A., Ding, C.: Miss rate prediction across program
inputs and cache configurations. IEEE Transactions on Computers 56(3), 328–343 (2007)

36. Zhong, Y., Orlovich, M., Shen, X., Ding, C.: Array regrouping and structure splitting using
whole-program reference affinity. In: Proceedings of ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, June 2004, pp. 255–266 (2004)

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 216–231, 2010.
© Springer-Verlag Berlin Heidelberg 2010

RELOCATE: Register File Local Access Pattern
Redistribution Mechanism for Power and Thermal
Management in Out-of-Order Embedded Processor

Houman Homayoun1, Aseem Gupta2, Alex Veidenbaum1,
Avesta Sasan (M.A. Makhzan)3, Fadi Kurdahi3, and Nikil Dutt1

1 Department of Computer Science, University of California, Irvine, CA, USA
2 Freescale Semiconductor Inc. Austin, TX 78729, USA

3 Department of Electrical Engineering and Computer Science, University of California,
Irvine, CA 92697-3435, USA

{hhomayou,aseemg,mmakhzan,alex.veidenbaum,kurdahi,dutt}@uci.edu

Abstract. In order to reduce register file's peak temperature in an embedded
processor we propose RELOCATE: an architectural solution which redistributes
the access pattern to physical registers through a novel register allocation
mechanism. RELOCATE regionalizes the register file such that even though
accesses within a region are uniformly distributed, the activity levels are spread
over the entire register file in a deterministic pattern. It partitions the register file
and uses a micro-architectural mechanism to concentrate the accesses to a single
or a subset of such partitions through a novel register allocation mechanism. The
goal is to keep some partitions unused (idle) and cooling down. The temperature
of idle partitions is further reduced by power gating them into destructive sleep
mode to reduce their leakage power. The redistribution mechanism changes the
active region periodically to modulate the activity within the register file and
prevent the active region from heating up excessively. Our approach resulted in
an average reduction of 8.3°C in the register file's peak temperature for standard
benchmarks.

Keywords: Register file, Temperature, Power, Local Activity Redistribution,
Out of Order Embedded Processor.

1 Introduction

Continued CMOS process technology scaling has led to designs of much more complex
embedded processors with significantly higher computational power. The high level of
integration in SoC designs today has, however, led to correspondingly higher power
densities (Watt per mm2) which in turn lead to higher operating temperatures. High
operating temperatures have many unfavorable consequences: (i) Increased probability
of timing violations because of higher signal propagation delay and switching time, (ii)
Reduced lifetime because of phenomena such as electromigration, (iii) Lower clock
frequencies of designs because of higher device and interconnect delays, (iv) Increased

 RELOCATE: Register File Local Access Pattern Redistribution Mechanism 217

leakage power due to super-linear relationship with temperature, (v) need for expensive
cooling mechanisms, such as fans, and (vi) Overall increase in design effort and cost.

Components within a processor operate at different temperatures as function of
their circuit design and activity levels. One of the hottest components is the integer
register file. Recent embedded processors such as MIPS-74K or IBM PowerPC
750FX, use a large register file to support out-of-order execution. The register file is
accessed every cycle, unless the processor is stalled, for both reads and writes. In
addition, multiple instruction issue further increases the number of register file
accesses per cycle. Thus in these processors the register file is one of the most active
components which also makes it the hottest unit. Numerous academic and industrial
papers have pointed out this fact [1,15,19]. For example, Koren et al. [19] show that
the register file is hotter by as much as 20°C than any other block in a processor. This
peak temperature determines the “design temperature”, i.e., the reference temperature,
which is used to characterize the performance of the design. Therefore, there is a
critical need to reduce the peak operating temperature of the register file.

One general approach to reduce temperature of a given processor unit, including
the register file, is to reduce its activity level by activity migration. This approach
requires a replicated unit to be available in the system [16]. Once the unit reaches a
critical temperature, its activity is migrated to the replicated unit and the hot unit
becomes idle, allowing it to cool down.

While activity migration is effective in reducing the temperature of the register file
it requires a replicated register file [16], which is expensive and complex (30% area
overhead [16]). It can also lead to performance degradation (3~12% [16]), because of
migration overhead. For instance, in [16] copying registers from a register file to its
replica requires the pipeline to be drained and multiple additional reads and writes to
be performed.

This paper introduces the idea of local activity migration to manage register file
temperature in embedded out-of-order processors. It proposes a REgister file LOCal
Access paTtern rEdistribution mechanism (or, in brief, RELOCATE). RELOCATE
redistributes the access to physical registers through a novel register allocation
mechanism. By “local” we mean that a replicated register file is not required; instead
the register file access activity is “migrated” or redistributed from one part of the
register file to another. This is accomplished without a noticeable impact on register
usage and has no performance degradation.

RELOCATE uses a register file partitioned into multiple regions. This partitioning
allows the RF access activity to be distributed in a non-uniform pattern over the
regions. This pattern is such that the regions accessed are spatially and temporally
apart allowing the opportunity for other regions to cool-down. The goal is to keep
some regions unused and cooling down while other regions are active. This requires a
new micro-architecture because in current micro-architectures the accesses are fairly
uniformly distributed over the RF.

RELOCATE is based on the observation that only a small subset of physical
registers is used (mapped) at any given time during the course of program execution.
Therefore there is room for the migration (redistribution) within the RF itself instead
of migrating the activity to a replicated unit. The micro-architectural solution to
redistribute the physical registers and their access pattern is based on a novel register
renaming mechanism. The new register renamer attempts to allocate new registers

218 H. Homayoun et al.

from a given RF region and thus to concentrate the accesses in this region. The
renamer partitions the free list to correspond to regions in the register file. After a
partition is used for a period of N clocks, the renamer switches to a new partition.
Choosing a large enough N (10K cycles) allows the RF regions to cool down if they
can be kept idle (not accessed).

Successful local activity migration keeps some RF regions idle and this lack of
activity is the reason why these regions can cool down. However, such idle partitions
still dissipate leakage power, slowing down their cooling. Our approach further
reduces the temperature by power-gating an idle region. This should be doable since
an idle region has no accesses.

The experimental evaluation of the proposed mechanism is performed using an
integrated architectural/temperature simulator. The results show that a 64-entry
physical register file with 4 partitions performs best and achieves an average peak
temperature reduction of 8.3°C and 6.9°C for SPEK2K and MiBench benchmarks
respectively. The temperature is reduced without any impact on performance with
minimal area and hardware overhead.

2 Background

2.1 On-Chip Thermal Behavior

Today’s chips are operating at very high temperatures due to high power densities.
Within a processor, regions operate at different temperatures due to their varying
activity levels. The temperature of a region in a VLSI chip does not depend only on its
own power dissipation. At any given time there are two phenomena, that determine the
temperature of a region: spatial and temporal. Due to thermal diffusion, the temperature
of a region also depends on the temperature of neighboring regions. This is the spatial
phenomenon. Unlike power dissipation, the temperature of a region cannot change very
quickly. It can take up to several milliseconds for a region's temperature to rise or cool
down. This temporal phenomenon is characterized by the thermal resistance and thermal
capacitance of the material. For any thermal management solution to be effective, it
must consider both the spatial and temporal phenomena.

2.2 Conventional Register File Organization

An out-of-order embedded processor uses a larger register file with logical to physical
register renaming and a dynamic physical register allocation policy. The same
approach has been used in high performance superscalar processors such as Alpha
21264 [5] and MIPS R10000 [6].

The pipeline of an out-of-order embedded processors is capable of fetching,
decoding, renaming several instructions per processor clock cycle. The processor can
also execute and later commit up to as many instructions in each cycle as the issue
width. This type of out-of-order multiple-issue processor accesses the register file
very frequently. Up to 2*N reads and N writes can be issued to the register file per
clock cycle, where N is processor issue width. Thus the register file is one of the most
active components in a processor.

 RELOCATE: Register File Local Access Pattern Redistribution Mechanism 219

Due to frequent accesses the register file is one of the hottest units in an embedded
processor. The physical register file is typically designed as a SRAM structure with as
many write and twice as many read ports as the maximum number of instructions the
processor can issue in each cycle.

The register renamer in these processors is implemented either as a CAM (IBM
POWER4 [22] and Alpha 21264[5]) or a RAM (MIPS R10K[6]). This paper
discusses issues assuming a RAM based register renaming mechanism similar to the
one used in the MIPS R10K processor [6]. However, the techniques proposed in this
work also can be applied to a CAM based renamer.

2.3 Activity Migration

One general approach to reduce the temperature of a given processor block is to
modulate (or vary) its activity level. One such method is activity migration, where the
heat is spread by moving an activity to another block with the same functionality.
This technique requires availability of redundant blocks in the system [16]. Once a
block reaches a critical temperature, its activity is migrated and it becomes idle
allowing it to cool down and reduce its temperature as shown in Figure 1(a). Notice
that both temperature increase and decrease are non-linear functions of time.

Activity migration was used in [16] for different units in a processor. It was shown
that to benefit the most from this technique the migration period should be
significantly smaller than the time constant of the equivalent thermal RC circuit
(shown in Figure 1(a)). While short migration periods can result in larger temperature
decrease, they incurred large power/performance overhead, as reported in [16].

(a) (b)

Active Period Idle Period

Cooling due to
inactivity Cooling due to

inactivity and
power gating

time

Fig. 1. Thermal benefit of (a) activity migration and (b) combination of activity migration and
power gating

2.3.1 AM and Power Gating
Once the activity is migrated completely to a redundant block the base block can be
put into a low-power mode to further reduce its temperature. The main reason for this
is the reduction in idle leakage power, as described below. The decrease in
temperature ΔT is given by:

t

C

P

CR

T
T

ththth

old Δ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

×
=Δ

(1)

220 H. Homayoun et al.

where Δt is the time interval, P is total power dissipation (P total = P dynamic + P leakage),
Told is the original temperature, and Rth and Cth are the thermal resistance and
capacitance, respectively. From EQ.1 the rate of cooling is faster if P total becomes
smaller. This is shown in Figure 1(b) where cooling accelerates due to base block
inactivity as well as due to turning off the unused regions. The difference between the
two curves (marked d) is the additional temperature reduction on account of leakage
power saving.

3 Analysis of Register File Operation

In this section we examine the register file access pattern and register file occupancy.
This analysis allows us to propose a solution which reduces register file temperature
without any performance degradation and at a minimal cost.

3.1 Register File Occupancy

Figure 2 shows the register file occupancy results for the MiBench and SPEC2K
integer benchmarks. We observe that for nearly 60% of the time only half of all
register file entries are occupied across the MiBench benchmarks. For SPEC2K only
half of all register file entries are occupied for about 80% of the time. For 35% of the
time only a quarter of the register file is occupied in MiBench benchmarks. This ratio
is 60% for SPEC2K benchmarks. Such low register file occupancy raises the
question: why do we need such a large register file in the first place? To answer this
question, consider Figure 3 which shows the performance degradation as a result of
using a smaller register file --with 16, 32, and 48 registers, instead of the original size
of 64. We observe significant performance degradation across most SPEC2K and
MiBench benchmarks. The performance impact is up to 36% and 19% in SPEC2K
and MiBench benchmarks respectively when a register file with half its size (32
entries) is used. An even larger performance impact is observed as we shrink the size
of the register file further.

(a)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

bas
icm

ath bc
crc

dijk
s tra

djpeg fft gs
gsm

lam
e

mad

patr
ici

a
qso

rt

se
arc

h sh
a

su
sa

n_c
orn

er
s

su
sa

n_e
dges

tiff
2b

w

av
era

ge

RF_ocuupancy < 16 16 < RF_ocuupancy < 32
32 < RF_ocuupancy < 48 48 < RF_ocuupancy < 64

(b)

0%

10%
20%

30%

40%
50%

60%

70%

80%
90%

100%

bzip
2

cra
fty eo

n

galg
el gap gcc

gzip m
cf

pars
er

per
lbmk

tw
olf

vo
rte

x vp
r

av
era

ge

RF_ocuupancy < 16 16 < RF_ocuupancy < 32
32 < RF_ocuupancy < 48 48 < RF_ocuupancy < 64

Fig. 2. Register file occupancy results for (a) MiBench and (b) SPEC2K integer benchmarks

 RELOCATE: Register File Local Access Pattern Redistribution Mechanism 221

(a)

0%

5%

10%

15%

20%

25%

30%

35%

Basic
Math bc

crc

dijk
stra

djpeg fft gs
gsm

lam
e

mad

patr
ici

a
qso

rt

se
arc

h sh
a

su
sa

n_c
orn

ers

su
sa

n_e
dges

tiff
2b

w

av
era

ge

%
 p

er
fo

rm
an

ce
 d

eg
ra

d
at

io
n

48-entry 32-entry 16-entry

(b)

0%

10%

20%

30%

40%

50%

60%

bzip
2

cra
fty eo

n

galg
el gap gcc

gzip mcf

pars
er

perl
bmk

tw
olf

vo
rte

x vp
r

av
era

ge

%
 p

er
fo

rm
an

ce
 d

eg
ra

d
at

io
n

48-entry 32-entry 16-entry

Fig. 3. Performance degradation as a result of using a smaller register file -with 16, 32, and 48
registers for (a) MiBench and (b) SPEC2K integer benchmarks

Thus in spite of low average occupancy, using a smaller register file degrades the
performance noticeably. In fact, a smaller register file fills up faster when a long
latency operation occurs. For instance, after a load instruction miss in L2 cache it stays
on top of the ROB and doesn’t allow the subsequent instructions to be committed.
Therefore the dependent instruction’s corresponding physical registers can not be
released until the cache miss is serviced. During every cycle the processor fills up the
register file with up to 2 physical registers whereas it releases registers at a slower
rate. Consequently, the register file occupancy grows until it gets filled completely.

3.2 Register File Access Pattern

In this section we study how accesses to physical registers are distributed. We used
coefficient of variation (CV) as a metric to indicate the distribution of accesses to
physical registers. The coefficient of variation of accesses to the physical registers is a
normalized measure of dispersion of registers access distribution. It is defined as the
ratio of the standard deviation (σ) to the mean (μ).

na

nana
N

CV

n

i
i

access

2

1

)(
1 −

=
∑

= (2)

where na i is the number of accesses (read or write) to the physical registers i during a
specific period (10K cycles). N is the total number of physical registers.

As shown in Figure 4, most benchmarks have a uniformly distributed access
pattern to register file. It was also observed that register file occupancy is low for a
large portion of program execution time. Put together, while only a small number of
registers are occupied at any given time, the total accesses are uniformly distributed
over the entire physical register file during the course of execution.

222 H. Homayoun et al.

(a)

0%

2%

4%

6%

8%

10%

12%

bas
icmath bc

crc

dijk
stra

djpeg fft gs
gsm

lame
mad

patr
icia

qso
rt

searc
h sha

susan_c
orn

ers

susan_e
dges

tiff
2bw

avera
ge

%
 c

o
ef

fi
ci

en
t

o
f

va
ri

at
io

n

(b)

0%

2%

4%

6%

8%

10%

12%

14%

bzip
2

cra
fty eo

n

galg
el gap gcc

gzip mcf

pars
er

perl
bmk

tw
olf

vo
rte

x vp
r

av
era

ge

%
 c

o
ef

fi
ci

en
t

o
f

va
ri

at
io

n

Fig. 4. Coefficient of variation of accesses to physical register file for (a) MiBench and (b)
SPEC2K benchmarks

4 RELOCATE: Local Activity Redistribution within a Register
File

Activity migration is effective in reducing temperature but it typically requires
replicated units. As shown above, only a small subset of physical registers is in use at
any given time during program execution. Therefore, instead of migrating the activity
of this set of active registers to a replicated register file, one can do it within a single
register file (activity redistribution). This paper proposes to partition the (single)
register file into multiple regions and to spread the register allocation and therefore
their access activity in a deterministic pattern over these regions. Activity of a region
will be migrated after a certain amount of time to limit its temperature rise as such
idle regions (or partitions) will be cooling off. To further improve the temperature
reduction benefit of the proposed activity redistribution, one can power gate the idle
regions of the register file.

Let us assume that, on average, 16 registers are being used at any given time.
Results in the previous section showed that a small subset of active registers is
distributed fairly uniformly over the entire register file during any time interval. The
logical view of the baseline register file activity shown in Figure 5(a) represents 16
active registers distributed almost uniformly during a specific timing interval (4*τc).
This makes it impossible to perform any activity redistribution.

Now let us assume a register file is partitioned into four equal sized regions
(partitions) with 16 entries each. Assuming that the 16 active registers are allocated
such that they are concentrated in one partition for a certain period (we refer to this as a
convergence period or τc as shown in Figure 5(b)), other register regions can be kept
idle and cooling off. The activity needs to be moved to another partition after τc.
There are a number of ways to modulate the activity within the register file, e.g., in a
round-robin in-order pattern (AP1—AP2 —AP3 —AP4 as shown in Figure 5(b)). The
activity is modulated to another region after every convergence period. Note that
within a convergence period the activities are uniformly distributed within the active
region, similar to the baseline register file. Once the activity is modulated to a new

 RELOCATE: Register File Local Access Pattern Redistribution Mechanism 223

τc

τc

τc

Fig. 5. Examples of register activity distribution (a) baseline, (b) in-order (c) distant patterns

region (active region) all other regions (idle regions) are cooling down. The in-order
pattern spaces accesses in time, but there is not enough spatial separation (See Section
2 on Background). An access pattern with spatial as well as temporal separation
between active regions would further reduce the temperature. The following
redistribution pattern shown in Figure 5(c) can be used to achieve this: AP2 — AP4 —
AP1 — AP3 (round-robin distant pattern). When a region becomes active and
dissipates power, other regions get an opportunity to cool down. For instance, when
AP1 is active, regions AP2 and AP4 are cooling down. AP4 is spatially distant from
AP1 while AP2 is temporally distant from AP1.

4.1 The Architectural Mechanism to Support Activity Redistribution

This section introduces an architectural mechanism that attempts to concentrate active
physical registers (live registers) in one register file region. This is accomplished
through a novel register allocation mechanism that “concentrates” all register
allocations during renaming in a given time period (convergence period) in one
partition. It partitions the free register list into multiple consecutive partitions and
allocates all new physical registers from one partition. Each partition of the free
register list corresponds to a certain region in the register file. If there are no more
registers in a given partition then the next partition is “activated”, even if the time
period (convergence period) is not over yet. We refer to the partition(s) currently
participating in register renaming as active partitions and the rest as idle partitions.

The following terms will be used in the rest of the paper:

• Active partition: a register renamer partition which participates in register
renaming.

• Idle partition: a register renamer partition which does not participate in
renaming.

• Active region: a region of the register file corresponding to a register
renamer partition (whether active partition or idle) which has live registers.

• Idle region: a region of the register file corresponding to a register renamer
partition (whether active partition or idle) which has no live registers.

The activity concentration and redistribution in the register file occur via two
techniques described next.

224 H. Homayoun et al.

The concentration mechanism: At any given time registers are allocated from only
one partition, referred as the default active partition (DAP), for instance P1 in the
example of Figure 6. While our goal is to concentrate all live physical registers in one
region, the default partition may run out of free registers before the convergence
period is over. Once the free list of the DAP (P1) is empty, the next partition
(according to some algorithm) is activated (referred to as additional active partitions
or AAP) and is used for register renaming along with the default active partition. In
Figure 6 the second and fourth partitions are idle (and power gated) and are activated
only when the first and third partitions’ free lists are empty, in that order. To facilitate
physical register concentration in DAP, if two or more partitions are active and have
free registers, allocation is performed in the same order in which partitions were
activated. By doing this the default active partition gets the highest priority to allocate
physical registers if it has any free registers, thus further concentrating the accesses in
the DAP. For instance, if AAPs P2 and P3 were activated in this order, a new register
will be allocated from P2.

The redistribution mechanism: The default active partition is changed once every
N cycles (we used N=10K) to redistribute the activity within the register file
(according to some algorithm). For instance, one can use a round-robin distant
pattern algorithm (P2 — P4 — P1 — P3) to maximize the distance between regions.
Once a new default partition (NDP) is selected, all active partitions (DAP+AAP)
become idle. While these idle partitions do not participate anymore in register
renaming, their corresponding regions in the register file are kept active (powered
up) until their active list becomes empty. At this time the corresponding physical
registers become idle and are power gated as well. Recall that an idle partition does
not participate in register renaming. However, it is possible that a physical register
belonging to an idle partition may need to be read as a source register of a scheduled
instruction. An active region of the RF corresponding to an idle register renaming
partition can be powered down provided that all of its physical registers have been
released (no live registers left).

Fig. 6. Partitioned register renaming

 RELOCATE: Register File Local Access Pattern Redistribution Mechanism 225

We assume a two-cycle delay to wakeup a power gated physical register (the
detailed wakeup power/delay overhead will presented later). It should be noted that
after this wakeup delay is paid, there is no further effect on the register file access.
Thus our technique has no performance penalty in this case. This can be explained as
follows: the register renaming occurs in the front end of the microprocessor pipeline
whereas the register access occurs in the back end. There is a delay of at least two
pipeline stages between renaming and accessing a physical register file. These two
cycles allow us to wake up the physical register’s region without incurring any
performance penalty at the time of access.

The mechanism described above can be implemented by partitioning the circular
FIFO free list into multiple smaller size circular FIFOs dynamically adjusting the
circular FIFO size. A design proposed in [21] can be used for this, which has no
impact on queue performance. A CAM-based renamer [22] can also be similarly
partitioned.

5 Experimental Setup

We used the following experimental setup for evaluating this work. We used an
extensively modified version of MASE (SimpleScalar 4.0) [13] to model an
architecture similar to the MIPS-74K embedded processor [14]. Table 1 describes the
processor architecture in detail, which operates at 800 MHz frequency. MiBench and
SPEC2K benchmarks were compiled with the O4 flag using the Compaq compiler
and executed with reference data sets. The benchmarks were simulated for 1 billion
instructions or until completion.

Table 1. Processor Architecture

L1 I-cache 8KB, ,4 way, 2
cycles

L1 D-cache 8KB, 4 way, 2
cycles

L2-cache 128KB, 15 cycles

Fetch, dispatch 2 wide
Register file 64 entry

Memory 50 cycles
Instruction fetch
queue

2

Load/store
queue

16 entry

Arithmetic units 2 integer
Complex unit 2 INT

Pipeline 12 stages
Processor speed 800 MHz
Issue Out-of-order

Table 2. RF Design specification

Process
45nm-CMOS
9 metal layers

Register
file layout
area

0.009mm2

Operating Modes Active:R/W
Sleep: no data
retention

Operating
Voltage 0.6V~1.1V

Read Access
Cycle 200MHz

to 1.1GHz

Access time
typical corner
(0.9V, 45°)

0.32ns

Active Power
(Total) in typical
corner (0.9V, 45°)

66mW
@ 800MHz

Active
Leakage
Power typical
corner (0.9V,
45°)

15mW

Sleep Leakage
Power in typical
corner (0.9V, 45°)

2mW
Wakeup
Delay 0.42ns

Wakeup Energy
per register file
row (64bits)

0.42nJ

226 H. Homayoun et al.

To accurately model the register file, an industrial memory compiler was used to
generate a dual read and single write port, 64-entry, 64bit single-ended SRAM
memory in TSMC 45nm technology. The design including the wordline drivers, the
wordline pulse generator circuit, the memory bit-cells and the output drivers is then
scaled to model a 4-read, 2-write port SRAM. The register file operates in two modes:
an active mode where it can be accessed, and a deep sleep mode where it does not
keep the bit-cell data and can not be accessed. Table 2 shows the design specification
of this 6-port 64x64 bits SRAM memory. All measurements are done using Spice
simulation. The register file access time is 0.32 ns for a typical corner (0.9V and
45°C). The total power in typical corner is 66mw while the active leakage power is
15mw (for the entire register file). The deep sleep data-destructive state leakage is
2mw, almost 86% lower than the active leakage.

The power and delay overhead of transition from low leakage sleep mode to active
mode are presented in Table 2. The area overhead for implementing the power gating
technique is fairly small, almost 1% of the RF size (using one sleep transistor per
register file entry). Total dynamic power of the register file was computed as
N*Eaccess/Texec, where N is the total number of accesses (obtained from simulation)
and Eaccess is the single-access energy (from Table 2). Leakage power computations
are similar, but leakage energy is dissipated on every cycle. If the RF entry is put into
sleep mode the sleep leakage power is dissipated, otherwise the active leakage power
is dissipated. We used HotSpot [15] to estimate thermal profiles for the register file.
We integrated HotSpot into our simulator. The temperature trace is obtained every
10K cycles. Once the temperature is calculated it is reported back to the simulator for
the next interval leakage power computation. Since the leakage power is a function of
temperature, the power simulator includes a lookup table for leakage power
dissipation as a function of temperature in the range from 45°C to 120°C in
increments of 5°C.

6 Experimental Results

Figure 7 shows the average register file power reduction over the course of execution
of different benchmarks as a result of applying RELOCATE and for different number
of RF partitions. We used the experimental setup described in Section 5. We observe
that on average there is a reduction of 15% and 25% in the total power of MiBench
and SPEC2K benchmarks, respectively. We also observe that many benchmarks, such
as patricia (MiBench), eon and vortex (SPEC2K) have a power reduction of about
40%. However, it should be noted that the goal of our work is to reduce the peak
temperature of the register file. Usually, the peak temperature is attained as a result of
sustained peak power dissipation over a period of time. A workload can have a low
overall average power but a very high peak temperature or vice versa due to variation
in activity levels. The reduction in the average power does not have a direct
correlation with the reduction in the peak temperature of register file. Overall,
increasing the number of RF partitions provides more opportunity to capture and
cluster unmapped registers to a partition, indicating that the wakeup overhead is
amortized for larger number of partitions. There are some benchmarks (highlighted in
Figure 7) in which increasing the number of partitions results in smaller power

 RELOCATE: Register File Local Access Pattern Redistribution Mechanism 227

(a)

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%

BasicMath bc
crc

dijk
s tra

djpeg fft gs
gsm

lame
mad

patri
cia

qsort

search sha

susan_corn
ers

susan_edges
tiff

2bw

average

P
o

w
er

 R
ed

uc
tio

n
 %

num_partition=2 num_partition=4 num_partition=8

(b)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

bzip
cra

fty eo
n

galgel
gap

gcc
gzip mcf

pars
er

perlb
mk

tw
olf

vorte
x vpr

average

P
ow

er
 R

ed
u

ct
io

n
%

num_partition=2 num_partition=4 num_partition=8

Fig. 7. Register file power reduction for (a) MiBench and (b) SPEC2K integer benchmark

Table 3. Peak temperature reduction for MiBench
benchmarks

temperature
reduction for
different number
of partition (C°)

base
temperature
(C°)
 2P 4P 8P

basicMath 94.3 3.6 4.8 5.0

bc 95.4 3.8 4.4 5.2

crc 92.8 5.3 6.0 6.0

dijkstra 98.4 6.3 6.8 6.4

djpeg 96.3 2.8 3.5 2.4

fft 94.5 6.8 7.4 7.6

gs 89.8 6.5 7.4 9.7

gsm 92.3 5.8 6.7 6.9

lame 90.6 6.2 8.5 11.3

mad 93.3 3.8 4.3 2.2

patricia 79.2 11.0 12.4 13.2

qsort 88.3 10.1 11.6 11.9

search 93.8 8.7 9.3 9.1

sha 90.1 5.1 5.4 4.5

susan_corners 92.7 4.7 5.3 5.1

susan_edges 91.9 3.7 5.8 6.3

tiff2bw 98.5 4.5 5.9 4.1

average 92.5 5.6 6.8 6.9

Table 4. Peak temperature reduction for
SPEC2K integer benchmarks

temperature
reduction for
different
number of
partition (C°)

base
temperature
(C°)
 2P 4P 8P

bzip2 92.7 4.8 3.9 3.1

crafty 83.6 9.5 11 10.4

eon 77.3 10.6 12.4 12.5

galgel 89.4 6.9 7.2 5.8

gap 86.7 4.8 5.9 7.1

gcc 79.8 7.9 9.4 10.1

gzip 95.4 3.2 3.8 3.9

mcf 85.8 6.9 8.7 9.4

parser 97.8 4.3 5.8 4.8

perlbmk 85.8 10.6 12.3 12.6

twolf 86.2 8.8 10.2 10.5

vortex 81.7 11.3 12.5 12.9

vpr 94.6 4.9 5.2 4.4

average 87.4 7.2 8.3 8.2

reduction. In fact in these benchmarks the overall power overhead associated with
waking up an idle region is become larger as the number of partition increases. This is
in fact due to frequent but ineffective power gating and its overhead as the number of
partition increases. Table 3 and Table 4 show the peak temperature reduction result.

228 H. Homayoun et al.

We observe that benchmarks from both MiBench and Spec2K show a noticeable
reduction in the register file’s peak temperature. While increasing the number of
partitions in all benchmarks provides more opportunity to capture and cluster
unmapped registers, it does not always result in additional temperature reduction. This
is especially noticeable in djpeg, mad and tiff2wb (MiBench) and galgel and parser
(SPEC2K). In these cases increasing the number of partitions results in larger power
density in each partition because RF access activity is concentrated in a smaller
partition. While capturing more idle partitions and power gating them may potentially
result in higher power reduction, larger power density due to smaller partition size
results in overall higher temperature. The average reduction in the register file’s peak
temperature across all the benchmarks is 6.9 °C for MiBench benchmark and 8.2 °C
for SPEC2K benchmark. This is very significant in light of the fact that the register
file is the hottest block in an embedded processor. The peak temperature of register
file determines the design temperature for which the embedded system is designed.
Thus the proposed technique can reduce the design temperature by 8°C.

6.1 Additional Benefits of Temperature Reduction

Let us try to quantify the design gains as a result of reduction in the design temperature
by 8°C:

(i) The Mean Time To Failure (MTTF) of an electrical interconnect depends on
temperature because of electromigration. Depending on the base temperature, a 8°C
decrease in the operating temperature can increase the MTTF of an interconnect by up
to 2 years.

(ii) A reduction of 8°C in the design temperature means a lower switching delay of
transistors. The rated frequency of the design is increased. Based on [20] we estimate
that at 45nm technology, a circuit’s rated frequency can be increased from 800 MHz
to 880 MHz because of the 8°C reduction in peak operating temperature.

(iii) The leakage power has a super linear dependency on temperature. Depending
on the process parameters, the leakage power of a cell can be lower by as much as
18% as a result of lowering of temperature by 8°C.

A 8°C reduction also delivers additional power savings since the fan can be run

slower by reducing its duty cycle. However, these are difficult to estimate.

7 Related Work

Processor thermal characteristics at the architectural level have been studied
extensively in recent years [15].

Several techniques have been proposed to reduce chip temperature. Many of these
techniques are reactive in nature in response to a thermal emergency detected by
temperature sensors. These techniques either migrate the processor activity [16] or
adapt processor resources to reduce temperature [15]. Brooks et al. [3] introduced
dynamic thermal management (DTM) in reaction to thermal measurements. They
applied techniques such as stalling execution or migrating activity to reduce
temperature. Among DTM techniques, clock gating was shown to be effective in

 RELOCATE: Register File Local Access Pattern Redistribution Mechanism 229

reducing temperature across the chip in response to a thermal emergency. This
technique has been used in many processors including Intel’s Pentium M [25].

Leveraging the redundancy in a processor pipeline, several techniques have been
proposed for temperature reduction. In [15] the power density is controlled by
balancing the utilization of register file, issue queues, and functional units. Fetch
throttling was also shown to be effective in reducing the temperature [15].

Dynamic voltage and frequency scaling in response to thermal emergency has been
studied in [15, 24]. Temperature-aware task scheduling has been investigated at both
architectural level and operating system levels for multiprocessors [11]. Ku et al. [23]
proposed techniques for reducing cache temperature through power density
minimization. They introduced a cache block permutation to maximize the distance
between blocks with consecutive addresses. Several thermal management techniques
for multi-core architectures are explored in [27]. Various core throttling policies were
applied at core and processor level for chip thermal management. Heo et al. [16] have
introduced a power density minimization through computational activity migration.
They applied this technique to many processor blocks including the register file. This
technique is effective, but incurs into a large area overhead since it requires
replicating processor blocks.

Many recent works have focused mainly on reducing the power density and peak
temperature of a processor. They specifically target the register file as it has been
shown to be one of the hottest units in a processor [1, 15, 17, 19]. Previous work on
the register file’s power has mainly attempted to reduce the number of access to the
register file, reduce the number of ports [10], or reduce the number of entries [8,9].
The algorithm we proposed in this work can be combined with these algorithms for
further power and a potentially larger temperature reduction. Replication or banking
register file has been studied in [2, 4, 12, 16,17, 26]. This work does not rely on either
register file replication or banking, and as a result no significant area overhead is
incurred except for region power down. However the benefit of our proposed
approach can be improved in presence of replicated register file. Register assignment
algorithm for low-power, low temperature VLIW register files were also introduced in
[7]. These algorithms are applied at compiler level to an architecture where no
renaming exists.

8 Conclusion

The register file is the most active and the hottest unit in an embedded processor. In
this paper we proposed RELOCATE, an architectural solution to reduce the peak
temperature of the register file. We analyzed the register file accesses and observed
that while only a small number of physical registers are occupied at any given time,
the total accesses are uniformly distributed over the entire physical register file during
the course of execution. Our solution redistributes the access pattern to physical
registers through a novel register allocation mechanism. We regionalize the register
file such that even though accesses within a region are uniformly distributed, the
activity levels are spread over the entire register file in a deterministic pattern. This
allows us to power gate the unused regions of the register file. This resulted in a
reduction of an average of 8.3°C in register file's peak temperature for standard
benchmarks.

230 H. Homayoun et al.

References

1. Mesa-Martinez, F.J., Nayfach-Battilana, J., Renau, J.: Power model validation through
thermal measurements. In: International Symposium on Computer Architecture (2007)

2. Homayoun, H., Pasricha, S., Makhzan, M.A., Veidenbaum, A.: Dynamic register file
resizing and frequency scaling to improve embedded processor performance and energy-
delay efficiency. In: Design Automation Conference (2008)

3. Brooks, D., Martonosi, M.: Dynamic thermal management for high-performance
microprocessors. In: High-Performance Computer Architecture (2001)

4. Tseng, J.H., Asanović, K.: Banked Multiported Register Files for High-Frequency
Superscalar Microprocessors. In: International Symposium on Computer Architecture
(2003)

5. Kessler, R.: The Alpha 21264 Microprocessor. IEEE Micro (March/April 1999)
6. Yeager, K.: The MIPS R10000 Superscalar Microprocessor. IEEE Micro (April 1996)
7. Zhou, X., Yu, C., Petrov, P.: Compiler-driven register re-assignment for register file

power-density and temperature reduction. In: Design Automation Conference (2008)
8. Balasubramonian, R., Dwarkadas, S., Albonesi, D.H.: Reducing the complexity of the

register file in dynamic superscalar processors. Micro (2001)
9. Borch, E., Tune, E., Manne, S., Emer, J.: Loose loops sink chips. In: HPCA (2002)

10. Park, I., Powell, M.D., Vijaykumar, T.N.: Reducing register ports for higher speed and
lower energy. In: International Symposium on Microarchitecture (2002)

11. Murali, S., Mutapcic, A., Atienza, D., Gupta, R., Boyd, S., Benini, L., Micheli, G.D.:
Temperature control of high-performance multicore platforms using convex optimization.
In: Design, Automation and Test in Europe (2008)

12. Chaparro, P., Magklis, G., Gonzalez, J., Gonzalez, A.: Distributing the Frontend for
Temperature Reduction. In: High-Performance Computer Architecture (2005)

13. SimpleScalar4 tutorial, SimpleScalar LLC,
 http://www.simplescalar.com/tutorial.html

14. MIPS Technologies MIPS32® 74KTM Licensable Processor Core,
 http://www.mips.com/media/files/74k/FINAL_BDTI_MIPS_74k.pdf

15. Skadron, K., Stan, M.R., Huang, W., Velusamy, S., Sankaranarayanan, K., Tarjan, D.:
Temperature-aware microarchitecture. In: ISCA 2003 (2003)

16. Heo, S., Barr, K., Asanović, K.: Reducing Power Density through Activity Migration. In:
International Symposium on Low Power Electronics and Design (2003)

17. Patel, K., Lee, W., Pedram, M.: Active Bank Switching for Temperature Control of the
Register File. In: GLSVLSI 2007 (2007)

18. Powell, M., Yang, S., Falsafi, B., Roy, K., Vijaykumar, T.N.: Gated Vdd: A circuit
technique to reduce leakage in deep-submicron cache memories. In: International
Symposium on Low Power Electronics and Design (2000)

19. Han, Y., Koren, I., Moritz, C.A.: Temperature Aware Floorplanning. In: Workshop on
Temperature Aware Computer Systems (June 2005)

20. Kumar, R., Kursun, V.: Impact of temperature fluctuations on circuit characteristics in 180
nm and 65nm CMOS technologies. In: International Symposium on Circuits and Systems
2006 (2006)

21. Dynamically adjustable load-sharing circular queues, US patent 6782461
22. Buti, T.N., McDonald, R.G., Khwaja, Z., Amdedkar, A., Le, H.Q., Burky, W.E., Williams,

B.: Organization and implementation of the register-renaming mapper for out-of-order
IBM POWER4 processors. IBM Journal of Research and Development (2005)

 RELOCATE: Register File Local Access Pattern Redistribution Mechanism 231

23. Ku, J.C., Ozdemir, S., Memik, G., Ismail, Y.: Thermal Management of On-Chip Caches
Through Power Density Minimization. In: International Symposium on Microarchitecture
2005 (2005)

24. Donald, J., Martonosi, M.: Techniques for multicore thermal management: Classification
and new exploration. In: International Symposium on Computer Architecture (2006)

25. Rotem, E., Naveh, A., Moffie, M., Mendelson, A.: Analysis of Thermal Monitor Features
of the Intel Pentium M Processor. In: TACS Workshop at ISCA-31 (June 2004)

26. Homayoun, H., Pasricha, S., Makhzan, M.A., Veidenbaum, A.V.: Improving performance
and reducing energy-delay with adaptive resource resizing for out-of-order embedded
processors. In: Conference on Languages, Compilers and Tools for Embedded Systems
(2008)

27. Donald, J., Martonosi, M.: Leveraging simultaneous multithreading for adaptive thermal
control. In: Second Workshop on Temperature-Aware Computer Systems (2005)

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 232–246, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Performance and Power Aware CMP Thread Allocation
Modeling

Yaniv Ben-Itzhak, Israel Cidon, and Avinoam Kolodny

Electrical Engineering Department, Technion, Haifa, Israel
yanivbi@tx.technion.ac.il, {cidon,kolodny}@ee.technion.ac.il

Abstract. We address the problem of performance and power-efficient thread
allocation in a CMP. To that end, based on analytical model, we introduce a
parameterized performance/power metric that can be adjusted according to a
preferred tradeoff between performance and power. We introduce an iterative
threshold algorithm (ITA) for allocating threads to cores in the case of a single
application with symmetric threads. We extend this to a simple and efficient
heuristic for the case of multiple applications. We compare the performance/power
metric value of ITA with constrained nonlinear optimization, pattern search
algorithm and genetic algorithm. ITA outperforms the best of these methods by
9%, while consuming on average 0.01% and at most 2.5% of the computational
effort.

Keywords: thread allocation algorithm, performance power metric, Chip Multi-
Processor, CMP, coarse grain multi-threading, many core.

1 Introduction

The inherent scalability limitations of a single processor design combined with the
advancement of VLSI technology drove the introduction of chip multi-processors
(CMP). CMPs promise higher power efficiency, better performance and lower design
complexity. However, CMP architectures introduce new challenges associated with
thread level parallelism [1],[2]. Today’s CMPs carry parallelism beyond the
traditional super-computing markets to notebooks, PDAs and other mobile devices
running a mix of applications and involving complex energy saving requirements.

In this paper, we address the problem of efficient allocation of applications and
threads to cores in a CMP, taking into account the desired tradeoff between
performance and power, unlike works which are limited to performance [5]-[7] or
power [8].

Our system includes a number of cores with a shared cache interconnected by a
network on chip (NoC) [2] (e.g., Piranha [3] and Nahalal [4]). The CMP executes
multiple multi-threaded applications and its cores perform coarse-grain multithreading.
For reducing power consumption, unused cores are shut down. Varying conditions and
battery levels may dynamically change the preferred balance between performance and
power and dictate changing targets for the threads allocation solution.

 Performance and Power Aware CMP Thread Allocation Modeling 233

To maximize the performance threads should be spread over many cores, which in
turn increases power consumption. On the other hand, running all threads in a single
core minimizes the power (since other cores are shut-down), but greatly impairs the
performance. Our algorithm for thread allocation utilizes the CMP resources in a way
that maximizes a performance/power metric that can be adjusted according to the
preferred balance between performance and power.

Fig. 1 presents a 9-cores CMP example (each core includes a private first-level
cache), connected by a NoC to a shared second-level cache. The CMP concurrently
executes four multi-threaded applications that need to be allocated to single-pipe
coarse-grain multi-threaded cores. Naturally, only a single thread can run at each core
at a given time. We assume that such a thread runs until it incurs a miss in its private
cache and then waits for the shared cache response. At that time, the core may
perform context switching to another ready thread (i.e., a thread that already received
its response from the shared cache). It is clear that the shared cache response time has
a major effect on the thread performance. The response time is the sum of the shared
cache access time and the NoC latency, which depends on the distance between the
corresponding core and the shared cache. Therefore, both the number of threads
allocated to each core and the location of these cores in respect to the shared cache are
important for the system performance.

Fig. 1. Example of the thread allocation problem

Our goal is to find a thread allocation that maximizes a given performance/power
metric. Our performance model considers both communication delays between the
cores and the shared cache, and the core performance dependence on the number of the
threads it executes. Our power model considers both active and idle power of the cores.
Based on these models, a parameterized performance/power metric is defined, which
can be adjusted to the relative importance of performance versus power consumption.
We introduce an Iterative Threshold based thread allocation Algorithm (ITA) that
maximizes the performance/power metric for the case of a single application with
symmetric threads and is extended for the case of multiple applications. ITA achieves
better and faster results than standard optimization algorithms.

234 Y. Ben-Itzhak, I. Cidon, and A. Kolodny

Previous works have addressed somewhat related problems: [9] proposed thread
allocation that maximizes a performance/power metric while considering process
variations in the cores. However, their model is restricted to a single thread in each
core while our work deals with multi-threaded cores. Furthermore, unlike [9], our
work deals with shared memory architecture and considers the cache miss rate. [10]
introduced performance and power aware thread allocation for NoC-based CMP,
which attempts to optimize a "locality metric" of data accesses. In contrast, our work
uses explicit power and performance models, and introduces an adjustable metric for
thread allocation according to the relative importance of performance versus power.

The rest of this paper is structured as follows: Section 2 presents the performance
and power models and the performance/power metric. Section 3 introduces the single
application problem and the iterative algorithm for thread allocation and extends the
problem into the multiple applications problem. Section 4 presents numerical results
for both problems and demonstrate the efficiency of the algorithm for the case of
multiple applications relative to several standard optimization algorithms. Section 5
concludes the paper.

2 Power and Performance Models

[13] proposed a coarse-grain multi-threaded core model which we extend for our
analysis. We define n(c) as the number of threads executed by a multi-threaded core c
with a first-level private cache and assume that all threads are independent of each
other. We define as the average number of core cycles between private cache
misses for thread j, i.e., 1 , m. r⁄ , where , is the ratio of memory access
instructions out of the total instruction mix and m. r is the cache miss rate for thread
j. Also, we define as the cycles of core c required to satisfy such a request from
the shared cache. For simplicity, at this point, we assume that is fixed for all
threads. On average, thread j executes instructions for cycles until it incurs a
private cache miss, and then waits for cycles for the miss request to be satisfied
before it can execute more instructions. For simplicity, we assume that context
switches happen only at private cache misses and ignore the thread-switching cycles
and their associated power.

Generally, as the number of threads allocated over a core increases their miss rates
also increase due to the sharing effect. In this paper, for the sake of simplicity, we
assume that sharing does not affect the miss rates of the threads. This assumption is
reasonable in cases where the entire footprints of the threads are located on the private
cache and thus hold for a relatively small number of threads per core. In order to
quantify the validity range of this assumption, for each of the benchmarks presented
in [16] we simulated a single thread, measured its miss rate versus cache size by PIN
tool and obtained its footprint size. Our results show that blackscholes has footprint of
3kB, fluidanimate 7kB and freqmine 8kB. Therefore, such benchmarks satisfy our
assumption. Future work will address the case where the cache sharing effect cannot
be ignored.

Coarse-grain multi-threaded cores utilize cache access time by running other
threads. Fig. 2(b) shows that while thread 1 is waiting for its cache response, other
(n(c)-1) threads are executed, and the total idle period decreases compared to Fig. 2(a).

 Performance and Power Aware CMP Thread Allocation Modeling 235

Fig. 2(c) presents the case where thread 1 cannot be executed immediately when its
cache response arrives, because the other (m(c)-1) threads didn't finish their execution.
This case is denoted as saturation of the core.

Fig. 2. A single threaded core (a) vs. multi threaded core (b,c). Saturation of the core(c).

[13] assumes that all threads are symmetric (i.e., all threads have the same fixed
number of cycles between private cache misses). In this paper, we extended the model
for asymmetric threads. Under the assumption that a context switch happens only at
private cache misses, when threads with different cache miss rates run in a multi-
threaded core, a cache response may arrive while another thread is running and waits for
its execution until the core becomes available. Assuming that thread 1 has the largest
value among all threads, we prove in [17] that the execution order of the threads
eventually reach a periodic steady state, in which thread 1 runs first and all the other
threads run after it with no gaps (see Fig. 3(a)). In the steady state, if the core is not
saturated, then thread 1 runs immediately after its cache response arrives, and any other
thread has to wait for its execution although its cache response has already arrived.

Fig. 3. (a) Steady state and the period time, (b) saturation threshold case

236 Y. Ben-Itzhak, I. Cidon, and A. Kolodny

We define Δ max , as the largest value of among all threads

which are executed by core c. Therefore, in the unsaturated steady state, the time
between executions of any thread j is .Core saturation happens when
thread 1 has to wait for execution after its cache response arrives. Therefore,

saturation threshold is defined as Δ .Fig. 3(b) presents the saturation
threshold case. In saturation, the time between executions of thread j is ∑ , and it

exceeds .
We define the performance of thread j in core c as the percentage of time the thread

is executed and the utilization of core c, , as the busy time percentage of the core.

Thread Performane ; ∑
∑ ; ∑ . (1)

∑ ; ∑1 ; ∑ .
(2)

The power consumption of core c depends on its utilization, such as:

CorePower 1 ; 0 10 ; 0 . (3)

 is the power consumption of a fully utilized core. In our model we also take
into account a possibly lower idle power consumption, , that may results from
power saving mechanisms in the processor during the idle time, such as clock gating
[14]. We assume that when the core has no active threads (i.e., its utilization equals
zero) it is shut down so its power consumption becomes zero. Therefore, the thread
allocation algorithm should shut down as many cores as possible and properly
utilizing all other cores in order to maximize the performance/power metric.

Our example for a NoC based CMP is depicted in Fig. 1. The system has several
cores with different distances from the shared cache. The distance from a core to the
shared cache affects the value of , the number of cycles required to obtain a
response from the shared cache. Assuming that each hop has a constant latency
denoted by , we get: Δ Δ . (4)

Where, is the number of NoC hops from core c to the shared cache and is
the shared cache latency.

Our definition of the tradeoff between performance and power follows definitions
used in logic circuit design. If E is the energy and is the delay, [11] introduces the · and · metrics, extended by [12] to the metric · , where becomes larger
as the performance becomes more important.

The general performance/power ratio metric is: .

 Performance and Power Aware CMP Thread Allocation Modeling 237

Given a CMP with M cores and N threads, our goal is to find the optimal threads
allocations which allocate each thread j to core c such that the performance/power
metric is maximized. It can be easily shown that if , the optimal allocation is to
allocate all threads in a single core. Therefore, similar to [12], we use 1 and 1, is made larger as the performance becomes more significant. Consequently, PPM . PPM stands for Performance Power Metric.

3 Problems Statements and Allocation Algorithms

3.1 The Single Application Problem

Given: A CMP with M identical cores and a shared-cache, which executes an
application with N symmetric threads ,).

 is the hop distance between

core c and the shared cache. – represents the relative importance of performance
compared to power consumption (as the performance is more important as a becomes
larger)

Find: Optimal thread allocation, the number of threads are executed by core c.

Which: maximizes PPM .

Subject to: ∑ , 0.

Where: α 1

 Average Performance ∑ · .
 (Thread Performance is defined by equation (6)) Consumed Power ∑ · 1 ·: .
 (is defined by equation (7))

With the assumptions above, the saturation threshold of core c, , and the
performance of each thread j running in core c can be written as:

 . (5)

Thread Performane ;; . (6)

Where indicates the number of threads executed by core c.

When , the core can execute more threads without performance reduction.

When , the core is saturated and achieves its maximum total performance.

238 Y. Ben-Itzhak, I. Cidon, and A. Kolodny

The core utilization is calculated by:

In the following we develop an efficient algorithm for the single application
problem termed Iterative Threshold Algorithm (ITA). ITA computes the (discrete)
number of threads that are executed by each core.

First, we assume that is a continuous variable. While this formulation is not
realistic, as threads cannot be split, it leads to a good approximation for a large
numbers of threads. This continuous version is entitled Continuous ITA (CITA).
CITA results should be discretized in order to get the ITA results.

We define a Distance Core Cluster (in short, a cluster) of distance d, noted as ,
to be the group of all cores located d hops from the shared cache . i. e.,

). The number of cores in is | |. The algorithm starts to allocate
threads in cores that belong to the closest cluster (i.e., smallest d) and continues to
allocate threads to the closest unallocated clusters till the last iteration. In each
iteration, the algorithm allocates threads to a core only if its final utilization exceeds a
minimum utilization value termed MU.

The need for such a minimum utilization value stems from the following reason:
When a core is brought into operation it causes a minimal increase of in the
power consumption (see equation (3)) that results in a reduction of the PPM.
Therefore, in order to justify this new core operation, an appropriate minimal increase
in the performance metric is required. In order to compute MU, we compare the PPM
value of two cases. The two cases are either m over-saturated cores or m saturated
cores in exactly the saturation threshold and the (m+1)th core utilization equals MU.

This results in the following equation:

 ·
 · · . (8)

MU · . (9)

Using Taylor series approximation, we get: MU MU MU , and finally: MU . (10)

Fig. 4 presents the PPM of the two cases in a CMP with two cores (c and c’) and

symmetric threads. The steep drop in the value of PPM for / threads in the 2nd
case is due to the increase of power by (i.e. turning on the second core). When
the second core utilization equals MU, the PPM values for the two cases are equal.
Therefore, the second core is brought to operation only if its utilization exceeds MU.

η ;1 ; . (7)

 Performance and Power Aware CMP Thread Allocation Modeling 239

Fig. 4. PPM for the 2 cases using two cores

Generally, MU depends on m, the number of already operating cores, (equation
(9)) however the value of MU varies by no more than 8% as m increases. Therefore,
the approximated MU of equation (10) is sufficient and offers a fast calculation
alternative for decreasing the allocation algorithm overhead. As increases, the
weight of the performance metric increases that in turn decreases the value of MU.
This means that the algorithm brings cores into operation at a lower utilization and
therefore increases the performance at the expense of increasing the power.

Fig. 5. Flowchart of CITA for single application problem

240 Y. Ben-Itzhak, I. Cidon, and A. Kolodny

Fig. 5 depicts a flowchart of CITA for the single application problem. The concept
of CITA is to allocate threads a cluster by cluster, starting from the cluster which is
closest to the cache. Within each cluster CITA allocates threads to each core up to the
threshold saturation of the cores. Once a core is saturated, another core is assigned
only if its utilization would be at least MU. If it does not hold, the remaining threads
may be allocated to any of the operating cores .A pseudo code is presented in [17].

3.2 The Multiple Applications Problem

Given: A CMP with M cores and a shared-cache, which execute P multi-threaded
applications with 1 symmetric threads in each application, respectively
(i.e., the threads of application i have a constant number of cycles between private
cache misses,). The hop distance between core c and the shared cache is .As
before, represents the relative importance of performance compared to power
consumption, and is made larger as the performance becomes more significant.

Find: Optimal allocation of threads to cores, the number of threads of
application i are executed by core c.

Which: maximizes PPM .

Subject to: ∑ , 0 ; 1 , 1 .

Where: α 1 Average Performance ∑ ∑ · Thread Performance∑ .
 (Thread Performance is defined by equation (12))
 Consumed Power · 1 ·:∑ .
 (is defined by equation (13))

The saturation threshold, thread performance and utilization for each core c in this
case are: max 0 . (11)

Thread Performane ; ∑
· ; ∑ . (12)

∑ ; ∑1 ; ∑ . (13)

 Performance and Power Aware CMP Thread Allocation Modeling 241

As in the single application case, we first use the continuous thread allocation
approximation. We calculate the minimum utilization required in order to justify
operation of a core, MU, in a similar way as in the single application problem
(section 3.1).

Unlike CITA for a single application, which is based on the fact that is the

same for all cores Ω , in the multiple-application problem, depend both on
the hop distance to the shared cache and on the application with the lowest cache miss

rate allocated in core c max 0 , equation 11 . Therefore, unlike the

single application case, in each iteration, CITA for the multiple applications problem
allocates threads in a single core. The solution space of the multiple application
problem is very large and increases exponentially with M, P and . It can be shown
that the optimization problem is not convex.

Fig. 6 depicts a flowchart of CITA for the multiple applications problem. CITA
concept is to allocate applications according to their cache miss rate such that
applications with a high miss rate are allocated to cores which are close to the shared
cache. The algorithm allocates threads a core by core, starting from the cores which
are closest to the cache. Once a core is saturated, another core is assigned only if its
utilization would surpass MU. A pseudo code for this procedure is presented in [17].

The rationale for allocating applications with higher miss rate closer to the shared
cache is to maximize the average performance. The higher the miss rate of the threads
is, the bigger is the gain in performance caused by allocating them closer to the shared

cache (see equations (11)&(12)). Moreover, is affected by the lowest miss rate
among all threads which are executed by the core c (see equation (11)). CITA
minimizes its value and thus maximizes performance by minimizing the differences
of the miss rates of threads which are executed by each core.

In addition, although our model does not consider the power consumption of the
NoC, this approach should minimize it as well. Threads with higher miss rate
introduce higher loads to the NoC. Therefore, reducing the number of NoC hops
between these threads to the shared cache minimizes the NoC power consumption.

3.3 Discretization of CITA Result

As mentioned, CITA produces a continuous , which is not a final solution to our
thread allocation problem, as threads cannot be split. Therefore we need to convert

every allocation vector of application i, , to a discrete vector. This process
converts the CITA results to the ITA results. We propose an example of a method to
convert the CITA results into a discrete allocation (i.e., ITA) by the following

iterative discretization method, the method result example denoted by .

 :
 round . round round ∑ ∑ ; 2 . (14)

The iterative algorithm above starts from the first core and in every iteration it
produces the discrete value of the threads are executed by the next core, it equals to
rounded value of the accumulated error between the continuous and the discrete

242 Y. Ben-Itzhak, I. Cidon, and A. Kolodny

vectors, as described in equation (14). This method is used for histogram specification
[15]. Of course, there are other possible methods to convert the CITA results into the
ITA results.

Fig. 6. Flowchart of CITA for multiple applications problem

4 Numerical Results

4.1 Single Application Results

Fig. 7 presents several results of CITA and ITA for different numbers of threads in a
single application problem. The CMP in this example includes three cores with 1, 2 and
3 hop distances to the shared cache, respectively. and values were selected
to be in the range of PowerPC440 and MIPS power consumption specifications. It can
be seen that when there are 6 or 11 threads to allocate (Fig. 7(a,c)), the CITA results do
not conform to discrete values and the final results are derived by finding discrete
allocations close to the CITA results. In both cases the PPM values of the discrete
allocations are within 2-4% from the CITA results. The discretized results for all cases
are also the optimal allocation (computed over all possible allocations). In the 9 threads
case (Fig. 7(b)) the CITA, ITA and optimal results are identical. In this case although
the first two cores are saturated, the third core is shut down since there are not enough

 Performance and Power Aware CMP Thread Allocation Modeling 243

Fig. 7. Single application results example

threads to execute at least MU · / threads by it, while the first two cores execute / and / threads respectively.

4.2 Multiple Applications Results

In order to evaluate our multiple-application solution, we compare CITA results and
run-time with several general-purpose optimization algorithms. The optimization
algorithms used are: a constrained nonlinear optimization, a pattern search algorithm
and a genetic algorithm (all from Matlab library). The optimizations algorithms were
executed for the continuous version of the problem and were not discretisized.

Fig. 8 presents the PPM ratio of CITA and the best result of the optimization
algorithms, for all cases in the range of 2-8 cores and applications. Each case was
simulated for 200 random instances of the problem and in each simulation the CMP
and applications parameters were selected according to the distributions included in
Fig. 8. On average, CITA outperforms the best optimization algorithms by 9%.

Fig. 8 also presents the average number of cores operating by CITA and by the best
among the optimization algorithms for several cases. It can be seen that the PPM ratio
is higher as the difference between these values is higher. This occurs as the CMP
load becomes lower (i.e., there are more cores and less applications). In these cases,
CITA operates significantly fewer cores in comparison to the optimization algorithms.

Fig. 9 demonstrates by an example the efficiency and the low computational
overhead of CITA. For a CMP with 8 cores and 4 applications, we calculated the
allocation using CITA, a constrained nonlinear optimization, a pattern search
algorithm and a genetic algorithm and compared them to a naïve approach which
obtains a uniform utilization of the cores. CITA achieves the highest PPM percentage
improvement relative to the naïve approach, with the fastest execution time.

Fig. 9(a) presents the allocation results and cores utilizations according to the
constrained nonlinear optimization and pattern search algorithm. The genetic algorithm

244 Y. Ben-Itzhak, I. Cidon, and A. Kolodny

 ~ 10,30 , ~ 10,40 , ~ 1,8 , ~ 1,40 , ~ 1,25 , ~ 1,6 500 , 200

Fig. 8. PPMCITA/max{PPMoptimization methods}

Fig. 9. (a) Legend: C- Constrained nonlinear optimization result, P- Pattern search result

allocation result allocates all applications to execute in the first core. Fig. 9(b) presents
the allocation results and cores utilizations according to CITA, where application 1
which has the highest cache miss rate is allocated to the core closest to the shared
cache and application 4 which has the lowest cache miss rate is allocated to the remote
core. Fig. 9(d) presents the PPM improvement relative to the naïve approach, and the
number of execution lines required for the allocation calculation in Matlab workspace.
It can be seen that CITA achieves the highest improvement relative to the naïve
approach with the lowest lines of execution.

 Performance and Power Aware CMP Thread Allocation Modeling 245

4.3 Discretization Results

ITA results are drived by the discretization of CITA results. We use the discretization
method described by equation (14). Fig. 10 presents the PPM ratio between ITA
results and CITA results, for all cases in the range of 2-8 cores and 2-8 applications.
Each case was simulated for 10,000 random instances of the problem and in each
simulation the CMP and applications parameters were selected according to the
distributions included in Fig. 8. On average, discretization of CITA results reduces the
PPM value by 5%.

Fig. 11(a) and Fig. 11(b) present an example of CITA and constrained nonlinear
optimization algorithm result discretization respectively. Fig. 11(d) presents the CITA
improvement relative to the optimization algorithms continuous results and also the
ITA improvement relative to the optimization algorithms discrete results. The relative
improvement doesn`t decrement by much due to the discretization and offers a
realistic and efficient thread allocation.

Fig. 10. PPMITA/ PPMCITA

Fig. 11. Example of results discretization. Legend: C-Continuous result, D-Discretization of the
continuous result.

246 Y. Ben-Itzhak, I. Cidon, and A. Kolodny

5 Conclusions

Assignment of threads to cores in a CMP according to desired performance/power
tradeoffs was accomplished by a computationally-efficient algorithm (ITA) which
achieves close to optimal results. ITA is guided by the characteristics of the problem,
such as core saturation threshold, core idle power, NoC hop delay, and the relative
importance of performance versus power.

References

1. Olukotun, K., Hammond, L.: The future of microprocessors. Queue 3, 26–29 (2005)
2. Spracklen, L., Abraham, S.G.: Chip Multithreading: Opportunities and Challenges. In:

High-Performance Computer Architecture, pp. 248–252 (2005)
3. Barroso, L.A., Gharachorloo, K., McNamara, R., Nowatzyk, A., Qadeer, S., Sano, B.,

Smith, S., Stets, R., Verghese, B.: Piranha: a scalable architecture based on single-chip
Multiprocessing. ACM SIGARCH Computer Architecture News, 282–293 (2000)

4. Guz, Z., Keidar, I., Kolodny, A., Weiser, U.: Nahalal: Memory Organization for Chip
Multiprocessors. IEEE Computer Architecture Letters 6(1) (2007)

5. McCann, C., Vaswani, R., Zahojan, J.: A dynamic processor allocation policy for multi
programmed shared memory multiprocessors. ACM Transactions on Computer Systems
(1993)

6. Fedorova, A., Seltzer, M., Small, C., Nussbaum, D.: Performance of multithreaded chip
multiprocessors and implications for operating system design. In: USENIX 2005 Annual
Technical Conference, pp. 395–398 (2005)

7. Kim, S., Chandra, D., Solihin, Y.: Fair Cache Sharing and Partitioning in a Chip
Multiprocessor Architecture. In: 13th International Conference on Parallel Architecture
and Compilation Techniques, pp. 111–122 (2004)

8. Yang, C., Chen, J., Kuo, T.: An Approximation Algorithm for Energy-Efficient
Scheduling on A Chip Multiprocessor. IEEE Computer Society, 468–473 (2005)

9. Ding, Y., Kandemir, M., Irwin, M.J., Raghavan, P.: Adapting Application Mapping to
Systematic Within-Die Process Variations on Chip Multiprocessors. LNCS, vol. 5409, pp.
231–247. Springer, Heidelberg (2009)

10. Chen, G., Li, F., Son, S.W., Kandemir, M.: Application mapping for chip Multiprocessors.
In: Proceedings of the 45th Annual Design Automation Conference, pp. 620–625 (2008)

11. Burd, T., Brodersen, R.W.: Energy efficient CMOS microprocessor design. In: 28th
Hawaii International Conference on System Sciences, pp. 288–297 (1995)

12. Penzes, P.I., Martin, A.J.: Energy-delay efficiency of VLSI computations. In: Proceedings
of the 12th ACM Great Lakes Symposium on VLSI, pp. 104–111 (2002)

13. Agarwal, A.: Performance tradeoffs in multithreaded processors. IEEE Transactions on
Parallel and Distributed Systems 3(5), 525–539 (1992)

14. Benini, L., Bogliolo, A., De Micheli, G.: A survey of design techniques for system- level
dynamic power management, pp. 231–248. Kluwer Academic Publishers, Dordrecht (2002)

15. Gonzalez, C.R., Woods, R.E.: Digital image processing, 3rd edn., pp. 128–138 (2008)
16. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC benchmark suite: characterization

and architectural implications. In: Proceedings of the 17th international Conference on
Parallel Architectures and Compilation Techniques, pp. 72–81 (2008)

17. Ben-Itzhak, Y., Cidon, I., Kolodny, A.: Performance and Power Aware CMP Thread
Allocation Modeling. Technical Report, CCIT #735 (2009)

Multi-level Hardware Prefetching Using Low
Complexity Delta Correlating Prediction Tables

with Partial Matching�

Marius Grannaes, Magnus Jahre, and Lasse Natvig

Norwegian University of Science and Technology

Abstract. This paper presents a low complexity table-based approach
to delta correlation prefetching. Our approach uses a table indexed by
the load address which stores the latest deltas observed. By storing deltas
rather than full miss addresses, considerable space is saved while making
pattern matching easier. The delta-history can predict repeating patterns
with long periods by using delta correlation. In addition, we propose L1
hoisting which is a technique for moving data from the L2 to the L1 using
the same underlying table structure and partial matching which reduces
the spatial resolution in the delta stream to expose more patterns.

We evaluate our prefetching technique using the simulator framework
used in the Data Prefetching Championship. This allows us to use the
original code submitted to the contest to fairly evaluate several alternate
prefetching techniques. Our prefetcher technique increases performance
by 87% on average (6.6X max) on SPEC2006.

1 Introduction

In 2004, Gracia Perez et al. [1] published a paper that evaluated several pre-
fetching techniques in a common framework. They found that several techniques
were not as good as the original authors claimed. This discrepancy was due to
researchers using different simulator infrastructure and benchmarks as well as
the difficulty in implementing other techniques due to a lack of documentation.
In this work, we avoid these problems by using the simulation infrastructure
and original code from the first Data Prefetching Championship (DPC-1). This
competition was similar to the earlier JILP Championship Branch Prediction
Competition (CBP). In order to ensure a fair comparison of prefetcher perfor-
mance, the organizers published a common simulator framework. Each prefetcher
could use a maximum of 4KB of storage, but there was no limit on prefetcher
complexity. Each contestant submitted their code to the competition for evalua-
tion. This code was later published. This allows us to do a fair comparison with
the top three DPC entries using their submitted code.

Our submission, Delta Correlating Prediction Tables (DCPT), used a table
indexed by the PC of the load [2]. Each table entry stores a large amount of
� This work was supported by the Norwegian Metacenter for Computational Science

(Notur).

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 247–261, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

248 M. Grannaes, M. Jahre, and L. Natvig

history per load instruction in the form of deltas. By storing deltas rather than
full miss addresses, we save a significant amount of memory and make pattern
matching easier. Pattern matching is done by using Delta Correlation, originally
proposed by Nesbit et al. [3]. This technique is very effective at detecting patterns
with periods shorter than the amount of history stored.

In this paper, we improve DCPT by proposing DCPT-P which incorporates
many of the lessons learned during DPC-1. We introduce the concept of L1
hoisting, which is a highly accurate and timely method for moving data into
the L1 cache. L1 hoisting does not require complex additions to the L1 cache
which could interfere with the critical path of the processor. The key idea in L1
hoisting is to first issue prefetches to the L2 cache with a high prefetch distance,
thus ensuring timeliness in the L2 cache. To further increase performance, we
predict when the prefetched data will soon be used and hoist it to the L1 cache.

Second, we introduce partial matching which is a technique to enhance delta
correlation in hard to predict cases such as pointer chasing. Partial matching
reduces the spatial resolution in the delta stream to reveal more possibilities
for prefetching. Thus, this technique increases coverage at the price of reduced
accuracy, for an overall increase in performance.

2 Previous Work

Because of the large gap between the latency of the processor and main memory,
prefetching has a large potential for increasing processor performance. Therefore,
it has been an active research topic for several decades. The simplest prefetcher
is sequential (next line) prefetching, which simply fetches the next line whenever
a cache line is accessed, thus exploiting spatial locality [4]. Its improvement,
tagged sequential prefetching, uses an extra bit per cache line to indicate that
this cache line was prefetched. When the processor subsequently hits in the cache
on a cache block with this bit set, it fetches the next block.

Reference prediction tables use a table to store the recent history of a single
load [5]. Each table entry is indexed by the address of the load and contains the
last miss address as well as the delta (the difference between the address of the
latest consecutive misses) as well as a state [6]. Then, on the next miss, the delta
between the first miss address and the current is computed and stored in the
table and the entry enters the training state. Finally, on the third miss, a new
delta is computed. If that delta matches the one found in the table, the entry
enters the prefetching state and prefetches are issued by using the computed
delta.

The use of a Global History Buffer (GHB) was proposed by Nesbit et al. [3].
A GHB is essentially a FIFO containing the last misses observed by the memory
system. Each entry in the GHB is linked to the previous entry of its class by a
pointer. Because of the versatility of the GHB, a class can be defined in multiple
ways such as belonging to the same memory region (C/DC) or originating from
the same load (PC/DC) [7]. In PC/DC the entries in the GHB belong to the
same class if they originate from the same load instruction.

Multi-level Hardware Prefetching 249

By traversing the linked list, a miss history can be obtained for that load. This
operation can be expensive in terms of energy and latency as the GHB structure
is read multiple times to generate the miss history. In PC/DC, the deltas between
consecutive misses are computed and stored in a delta table. This operation is
repeated every time a L2 miss occurs. After the history of deltas are computed,
delta correlation begins. Delta correlation means searching for the most recent
pair of deltas in the delta history. If a corresponding pair is found in the delta
history, the deltas after the match is used to predict future deltas.

During the first Data Prefetching Championship (DPC-1) several novel pre-
fetcher designs were presented. Second place was awarded to GHB-LDB (Global
History Buffer - Local Delta Buffer) which was proposed by Dimitrov et al. [8].
GHB-LDB improves upon the PC/DC prefetcher by also including global corre-
lation (as opposed to the local correlation directed by the PC of the load) and
most common stride prefetching. Furthermore, their prefetcher issues prefetches
directly into the L1 cache.

Third place was awarded to Ramos et al. [9] for their multi-level prefetcher
based on the PC/DC concept. Their PDFCM (Prefetching based on a Differential
Finite Context Machine) prefetcher uses a hash-based approach with two tables.
The History Table is indexed by the PC which contains a hashed representation
of the recent history of that entry. This hash points to an entry in the Delta
Table which contains the predicted delta. By computing new hashes based on
the predicted deltas, an arbitrary prefetch degree and distance can be used.

Finally, the winner was the AMPM (Access Map Pattern Matching) prefetcher
proposed by Ishii et al. [10]. Their prefetcher divides memory into hot zones
similar to Czones [7]. Each hot zone is tracked by using a 2-bit vector for each
cache line in that zone. This vector is then analyzed to see if there are any
constant stride patterns in that zone. If there are any patterns, the predicted
pattern is prefetched.

3 Delta Correlating Prediction Tables

3.1 Overview

The core of our prefetching heuristic is a table indexed by the PC of the load.
Each entry has the format shown in Figure 1. In addition to the PC tag, each
entry holds the last miss address, the address of the last prefetch that was issued
in addition to a circular buffer containing the last n deltas. The circular buffer
is managed by the delta pointer. This field points to the most recently added
delta.

This organization has a number of advantages. Each entry holds a compara-
tively large history which can be used to predict any repeating pattern as long
as the period is shorter than n−2. In addition, entries do not compete for space,
thus ensuring that the amount of history per entry is monotonically increasing,
which reduces the risk that prefetches are issued for the same line. Finally, by
storing deltas, rather than full miss addresses it is possible to save considerably
memory space.

250 M. Grannaes, M. Jahre, and L. Natvig

PC Last
Address

Last
Prefetch

Delta
1

Delta
n

Delta
Pointer

Fig. 1. Format of a single DCPT-P entry

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30
 1

 1.25

 1.5

 1.75

 2

P
o

rt
io

n
 o

f
d

e
lt
a

s
 r

e
p

re
s
e

n
ta

b
le

S
p

e
e

d
u

p

Bits used

Deltas covered
Speedup

Fig. 2. Impact of increasing the num-
bers of bits used to represent a delta

 0

 0.1

 0.2

 0.3

 0.4

 0 5 10 15 20

P
ro

b
a

b
ili

ty

Match position

Fig. 3. Position in the circular buffer
where a match is found

In Figure 2, we show the portion of deltas we observed that can be represented
as a function of the number of bits used to represent each delta in the table.
By far, the most common delta is one which is to be expected as this represents
the common sequential pattern. As the number of bits per delta increases, the
portion of the deltas we can represent increases monotonically.

Figure 2 also plots the performance impact of increasing the number of bits
used to represent a single delta. Interestingly, the speedup has a much steeper
slope than the coverage. Performance rises sharply as one increases the number
of bits up to 12, and then trails off. Although more bits increases the information
content, performance degrades because of false matches (high delta values are
often generated by pointer chasing codes). Thus, performance can be improved
and the memory footprint reduced by limiting the number of bits used.

3.2 DCPT-P Implementation

A basic implementation of the DCPT-P pipeline is shown in Figure 4. When
there is an access to the L2 cache the same request enters the pipeline. The first
step is to look up the PC of the load in the table. If a corresponding entry is
not found, an old entry is replaced using a LRU replacement policy. This new
entry is initialized with the miss address and the rest of the entry is initialized
to zero.

If a corresponding entry is found, we first compute the delta between the
current access and the value stored in last address. If the delta is not zero,
then the delta is stored in the circular buffer and the delta pointer and last
address is updated. In our experiments, the L2 cache uses 128 byte cache blocks.
To conserve space we mask out the lower six bits (64). Thus, a delta of two
represents an increment of a single cache block. As shown by Hur et al. [11],

Multi-level Hardware Prefetching 251

Load address
& PC

Pattern Matching

Table look-up

Use deltas to compute prefetch candidates

Filter prefetches

Issue prefetches & Update table

PCDC entry

PCDC entry
& match posit ion

Prefetch
candidates

Filtered prefetch
candidates

Fig. 4. DCPT-P Pipeline

Delta
1

Delta
2

Delta
3

Delta
n - 1

Delta
n

= = = = = =

1 2 n-2 n-1

1

Match Position

Priority Encoder

Fig. 5. Pattern matching implementa-
tion

many streams are short (2-4 cache lines). By using deltas that are smaller than
a cache block we enable DCPT-P to start prefetching without waiting for too
many misses to the L2. If we cannot represent a delta with the available bits,
we store a zero instead (not valid). Finally, the entry is passed on to the pattern
matching step.

The pattern matching logic is similar to the logic used in PC/DC [3]. In
essence, we search for the first occurrence of the last pair of deltas in the cir-
cular stream. In Figure 3, we show the distribution of match locations in a 20
entry circular delta buffer. There are two peaks. The first peak is at the first
possible position (the last two deltas in the circular buffer matches the first
two deltas). This position represents constant strides or repeating patterns (for
example 1-2-1-2-1-2). However, a match in the first possible position does not
necessarily mean that the other stored deltas are redundant. Consider a blocking
implementation of a matrix multiply. In this situation, the access pattern would
be a series of sequential accesses followed by a large stride when the blocking
algorithm moves to the next row, which in turn would be followed by a series
of sequential accesses. By storing multiple deltas in this manner, this behaviour
can be effectively captured by DCPT-P. The last peak (at 19) represent situa-
tions where the pattern is not found. This data point is included to illustrate
the amount of times no pattern is found. Our implementation of the pattern
matching step uses several comparators working in parallel in combination with
a priority encoder as shown in Figure 5.

The next step is to generate prefetch candidates. The first prefetch candidate
is generated by adding the first delta after the match to the current miss address.
The second prefetch candidate is generated by adding the second delta after the
match to the previous miss address. This is done for all deltas after the match.
Thus, by increasing the number of deltas per table entry the prefetch distance
is also increased.

252 M. Grannaes, M. Jahre, and L. Natvig

Table 1. Example delta stream

Address: 10 11 20 21 30
Deltas: 1 9 1 9

As an example, consider the stream shown in Table 1. In this example, time
increases to the right (i.e. the most recent address observed is 30). The last pair
of deltas is thus (1,9) (Marked with boldface). We search for this pair of deltas
and find the same pair of deltas in the beginning of the stream (Marked with
italics). The next delta after this match is 1. We then add 1 to the last last
address (30) and obtain 31. This is our first prefetch candidate. The next delta
is 9. In a similar manner we add 9 to the previous prefetch candidate and obtain
40. We repeat this procedure for all the deltas in the circular buffer.

This approach generates several redundant prefetches so prefetch filtering is
needed. The most important mechanism is the last prefetch field in each entry.
This entry keeps the address of the last prefetch issued by that entry. If a can-
didate is made that matches the last prefetch field during prefetch candidate
generation, all previous prefetch candidates are dropped. In the steady state,
this ensures that only a single prefetch is issued.

We use a 32 entry pending prefetch buffer to store the prefetches that have
been issued. This table serves a dual purpose; first it is checked prior to issuing a
prefetch request, thus eliminating redundant prefetches. Second, by only allowing
32 outstanding prefetch requests we limit the amount of bandwidth used by the
prefetcher and the probability of severe bandwidth contention.

3.3 L1 Hoisting

Although the greatest latency is from the last level cache to the main memory,
there is a significant performance potential to prefetching into the L1 cache.
However, due to its limited capacity, cache pollution becomes a significant prob-
lem. To avoid this, highly accurate and timely prefetches are needed. In addition,
because the L1 cache is on the critical path it becomes much more difficult to
construct large and complex prefetch heuristics that interact with the L1 access
stream without degrading overall performance.

To overcome this problem we propose L1 hoisting. L1 hoisting is a natural
addition to DCPT-P. DCPT-P is highly accurate, but issuing prefetches directly
into the L1 cache brings the data in too early and displaces data that is currently
needed, which in turn reduces overall performance. Our solution is prefetch hoist-
ing. The first prefetch candidate that is generated is treated as a candidate for
prefetch hoisting as well. This candidate is predicted to be the next required by
the processor. In the steady state, this candidate has already been prefetched
into the L2 by an earlier miss by the same load. Thus, we check if this block
is present in the L2. If it is present, then the block is moved (hoisted) into the
L1. Even though prefetch distance is low (only one block) it is enough to be
timely, because the latency from the L1 cache to L2 cache is much lower than
the latency from L1 to main memory.

Multi-level Hardware Prefetching 253

1 for (i = x.size (); i-- > 0; ++xi) {

2 svec = const_cast <SVector *>(& A[*xi]);

3 elem = &(svec ->element (0));

4 last = elem + svec ->size ();

5 y = vl[*xi];

6 for (; elem < last; ++elem)

7 v[elem ->idx] += y * elem ->val;

8 }

Listing 1.1. Loop from 450.Soplex

 2.45

 2.5

 2.55

 2.6

 2.65

 2.7

 2.75

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Masked bits

Fig. 6. Speedup of Sphinx as a function of LSB masked in partial matching

3.4 Partial Matching

DCPT captures most regular repeating patterns. However, many programs ex-
hibit more complex and irregular patterns. Consider the code from soplex shown
in Listing 1.1. Although the load in line 7 might seem hard to predict there is
some structure to the addresses issued. One pattern of deltas we observed was
-2, -1, 4, -2, -3, -3, -1, 3. In this case, there are no repeating pair of deltas, but
most deltas are small. Because the observed deltas are so small, using previous
deltas to issue new prefetches might be beneficial. Another pattern we observed
was 9, 9, 9, 9, 9, -54, 73, 9, 9, 9. In this case, a regular pattern is interrupted
by an abrupt jump. Simply prefetching using the most common delta (9) would
be preferable.

In this work, we propose a general approach to exposing such patterns called
partial matching. If a pattern is not found using the exact match, we try partial
matching. In essence, we reduce the spatial resolution by masking out the least
significant bits and try to find a match using only the MSB’s of the delta. This
allows us to issue prefetches in both of the cases above.

In Figure 6, we show the speedup of the benchmark sphinx as a function of
the number of LSB masked. Increasing the number of masked bits increases the
number of prefetches issued. In the case of Sphinx, many of these prefetches are
hits, but in other benchmarks increasing the number of masked bits increases
the probability of cache pollution and wasted bandwidth.

254 M. Grannaes, M. Jahre, and L. Natvig

4 Methodology

Gracia Perez et al. [1] showed that the choice of simulator and benchmarks as
well as the implementation of other data cache mechanisms can severely bias
the results when evaluating prefetcher performance. Therefore, to evaluate our
prefetcher proposal we have used the Data Prefetching Championship (DPC-1)
simulator framework [12] as well as the code submitted by the contestants to the
competition.

The simulator framework is based on the CMP$im simulator [13]. This frame-
work models a simple 15 stage, 4 wide out-of-order core with a 128-entry instruc-
tion window. The core can issue a maximum of two loads and a single store each
cycle. The framework models a two level cache hierarchy, consisting of a 32KB,
8-way L1 cache with 64B cache lines. The L2 is a 2MB 16-way set-associative
cache with 128 Byte cache lines and a LRU replacement policy. The second level
cache has a 20 cycle latency, while main memory has a 200-cycle latency. Each
cache is coupled with a queue for storing outstanding requests to the next level
in the hierarchy. These queues issues requests in FIFO order and does not pri-
oritize demand requests over prefetch requests [12]. The queue to main memory
issues one request per 10 clock cycles, while the queue to the L2 issues 1 per
clock cycle. This simulator setup was referred to as configuration 2 in DPC-1.

For our experiments we have generated traces for the SPEC2006 [14] bench-
mark suite. Each benchmark was fast forwarded by 40 billion instructions and
then executed for 100 million instructions. The benchmarks were compiled with
the Intel C Compiler version 10.0.

To evaluate the performance of our prefetching heuristic we have selected 5
state-of-the-art prefetchers. In the study by Gracia Perez et al. [1] mentioned
earlier, Reference Prediction Tables [5] and PC/DC using a GHB [3] were found
to give the highest performance. Therefore, we have implemented these two
approaches with the same 4KB limitation. In addition, we have selected the
top three performers from DPC-1. The contestants’ prefetching code was made
public after the competition so we have used their code without modification.
The top performers were AMPM [10], PDFCM (Maxperf) [9] and GHB-LDB [8].

To keep within the same 4KB limit imposed on the other prefetcher imple-
mentations we have used a 95 entry table with 20 12-bit deltas. On the pattern
matching pass with partial matching we mask the low 8 bits of the delta. The
pending prefetch buffer can hold a maximum of 32 requests.

5 Results

We begin our evaluation by comparing the performance of our prefetcher to the
top three DPC-1 prefetchers, Reference Prediction Tables and PC/DC with the
SPEC2006 benchmark suite. The results are shown in Figure 7 and 8. In all of
the results presented in this paper, speedup refers to a speedup compared to
a baseline where no prefetching is performed. Because there is a wide range of
speedups (up to 6.6X) we have opted to use two graphs to increase readability.

Multi-level Hardware Prefetching 255

 0

 1

 2

 3

 4

 5

 6

 7

milc
GemsFDTD

libquantum

leslie3d

lbm sphinx3

S
p

e
e

d
u

p

DCPT-P
AMPM

GHB-LDB
PDFCM

RPT
PC/DC

Fig. 7. 2 MB L2 cache. Benchmarks with large speedups.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

bwaves

cactusADM

calculix

soplex
hmmer

bzip2
h264ref

zeusmp

gcc
gromacs

wrf
astar

xalancbmk

mcf
omnetpp

geomean

average

S
p

e
e

d
u

p

DCPT-P
AMPM

GHB-LDB
PDFCM

RPT
PC/DC

Fig. 8. 2 MB L2 cache. Benchmarks with small speedups.

In addition, we do not show the benchmarks dealII, gobmk, tonto, perlbench,
sjeng, gamess, namd, povray. In all of these benchmarks, the performance im-
pact of prefetching was less than 5% for all the prefetchers. In cases where the
simulation did not terminate within 48 hours we show an speedup of 0, rather
than tampering with the original code.

Overall, DCPT-P shows good performance across all benchmarks. DCPT-P
is the best performing prefetcher on 11 of the 21 benchmarks shown. The good
performance of both soplex and sphinx3 is due to partial matching. Leslie3d and
milc benefits greatly from the L1 hoisting technique. Also, it is worth noting
that GHB-LDB performs very well on xalncbmk, mcf and omentpp. This is
due to the global (intra-PC) analysis done by this type of prefetcher. However,
GHB-LDB performs worse than it’s predecessor, PC/DC, on GemsFDTD and
libquantum. Although both GHB-LDB and PDFCM both extends PC/DC, their
performance is on average almost equal. Although AMPM prefetching is not
the best prefetcher for any single benchmark, it nevertheless achieves signifcant
speedups across the entire benchmark suite. On average, DCPT-P provides an
arithmetic mean speedup of 87%. AMPM, GHB-LDB and PDFCM has speedups
of 50%, 32% and 44% respectively.

In Figure 9 and 10 we reduce the L2 capacity to 512KB. This is the same
configuration as config 3 in DPC-1. Overall, we observe the same general trends.
The most significant changes from reducing the size of the L2 can be observed

256 M. Grannaes, M. Jahre, and L. Natvig

 0

 1

 2

 3

 4

 5

 6

 7

milc
GemsFDTD

libquantum

leslie3d

lbm sphinx3

S
p

e
e

d
u

p

DCPT-P
AMPM

GHB-LDB
PDFCM

RPT
PC/DC

Fig. 9. 512KB L2 cache. Benchmarks with large speedups.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

bwaves

cactusADM

calculix

soplex
hmmer

bzip2
h264ref

zeusmp

gcc
gromacs

wrf
astar

xalancbmk

mcf
omnetpp

geomean

average

S
p

e
e

d
u

p

DCPT-P
AMPM

GHB-LDB
PDFCM

RPT
PC/DC

Fig. 10. 512KB L2 cache. Benchmarks with small speedups.

on leslie3d, calculix, bzip2 and h264ref. In this configuration PDFCM causes
performance degradation on astar and omnetpp. Surprisingly, RPT prefetching
is the best prefetcher on astar. On this benchmark, most of the other prefetchers
has very high miss rates, especially when prefetching into the L1 cache. Thus, the
more conservative prefetcher performs well. Additionally, the benefits of GHB-
LDB on mcf, omnetpp and xalncbmk increases.

Figure 11 and 12 provides insight into the relative performance benefits of the
three techniques proposed in this work. Undoubtedly, the basic DCPT design
is responsible for most of the performance gain. This is because it is respon-
sible for bridging the last level cache to main memory gap and thus has the
most potential. Both Partial matching and L1 hoisting contribute to the overall
performance. Interestingly, the effects of the two does not seem to be cumula-
tive, but rather synergistic. For instance, on libquantum, switching off partial
matching reduces performance somewhat. Switching off L1 hoisting reduces per-
formance even more, but there is no difference between this configuration and
switching both L1 hoisting and partial matching off. On both omnetpp and astar
we see that partial matching actually causes a performance degradation. This
effect is due to the much lower accuracy of partial matching, which in turn causes
bandwidth saturation.

Multi-level Hardware Prefetching 257

 0

 1

 2

 3

 4

 5

 6

 7

milc
GemsFDTD

libquantum

leslie3d

lbm sphinx3

S
p

e
e

d
u

p

DCPT-P
DCPT + L1 hoisting

DCPT + Partial matching
DCPT

Fig. 11. Breakdown of performance contribution of DCPT-P. Benchmarks with large
speedups.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

bwaves

cactusADM

calculix

soplex
hmmer

bzip2
h264ref

zeusmp

gcc
gromacs

wrf
astar

xalancbmk

mcf
omnetpp

geomean

average

S
p

e
e

d
u

p

DCPT-P
DCPT + L1 hoisting

DCPT + Partial matching
DCPT

Fig. 12. Breakdown of performance contribution of DCPT-P. Benchmarks with small
speedups.

5.1 Area and Performance Trade-Offs

So far, we have focused our attention on performance. However, it is possible to
optimize for area as well. The largest structure in DCPT-P is the table holding
the entries. In this section, we explore the area and performance trade-off of
changing some of the key table parameters. In Figure 13, we show the perfor-
mance impact of increasing the number of deltas in each entry. The speedups
are reported relative to the same case with no prefetching. Although the unlim-
ited bandwidth case has higher absolute performance, the relative speedup of
prefetching is lower. Increasing the number of deltas has three distinct effects.
Firstly, it increases the probability of a match, thus the number of prefetches in-
creases. Secondly, it increases the effective prefetch distance. Finally, it increases
power and area as the number of comparators has to be increased. Although
DCPT-P is highly accurate, a large prefetch distance can cause problems, be-
cause blocks are fetched too soon. This poses a problem because the blocks may
be either evicted before they are used and/or displace other data that is cur-
rently needed. This effect can be seen by examining the difference between the
2MB and 512K cases in Figure 13. In the 512K case, performance starts to drop
after about 18 deltas, and declines faster than in the 2MB case. Additionally, the

258 M. Grannaes, M. Jahre, and L. Natvig

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25 30 35 40

S
p

e
e

d
u

p

Deltas per Table Entry

2MB cache, unlimited bandwidth
2MB cache, limited bandwidth

512K cache, limited bandwidth

Fig. 13. Average speedup as a function
of the number of deltas in each entry

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 50 100 150 200 250

S
p

e
e

d
u

p

Number of Table Entries

2MB cache, unlimited bandwidth
2MB cache, limited bandwidth

512K cache, limited bandwidth

Fig. 14. Average speedup as a function
of the number of table entries

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 5 10 15 20

Number of deltas

Fig. 15. Distribution of the number of deltas registered in a table entry upon replace-
ment

knee in the graph in the bandwidth unlimited case is shifted to the left compared
to the bandwidth limited cases. This suggests that a higher prefetching distance
can mask some transient bandwidth contention as well.

In Figure 14, we show the average speedup as a function of the number of
entries in the DCPT-P table. Performance increases as the number of entries is
increased. After roughly 100 entries there is no performance gain in increasing
the size of the table.

6 Discussion

In the design of DCPT-P we have omitted several interesting design ideas, either
because they provide little performance benefit or that they will increase the
overall complexity of the design and obscure the more central mechanisms in
DCPT-P. In this section, we will discuss some of these design options.

In Figure 15, we show the distribution of the number of deltas that has been
registered in a entry when it is replaced. DCPT-P requires at least three deltas
before it can begin prefetching. As such, the wast majority of table entries are
never used for actual prefetching. Thus, much of the table space is wasted on

Multi-level Hardware Prefetching 259

inactive table entries. A possible solution is to use two tables. The first table is a
smaller version of the DCPT table, that can hold up to two deltas. If the entry
produces more deltas, then that table entry is promoted into the larger table. A
second approach is to modify the simple LRU replacement policy in the table to
give increased weight to entries with more deltas.

We observed that several of the patterns are simple repeating patterns with a
short period. It is possible to capture much of the benefit of DCPT-P by using
fewer deltas and analyze the delta pattern to see if it repeats. If it does, then the
pattern can be extrapolated. In addition to decreasing the storage requirements
by requiring fewer deltas, this approach also gives the possibility of varying the
prefetch distance dynamically [15,16].

The pattern matching step is at the core of the DCPT-P heuristic. It is possi-
ble to implement this step in a variety of ways depending on the performance and
area requirements. Our implementation uses several comparators to examine ev-
ery possible match location in parallel. To reduce the number of comparators, it
is possible to split this step into multiple stages. Consequently, pattern matching
can be performed in an iterative fashion by reusing the comparators. As previ-
ously shown in Figure 3, the probability of finding a match in the beginning of
the delta stream is high. This is because of the prevalence of repeating patterns
with short periods. Thus, the probability of finding a match during the first few
iterations is high, reducing the average latency.

Another possibility is to limit the search to a subset of the deltas, thus reduc-
ing the number of comparators or iterations needed. We investigated limiting
the number of deltas searched for a match. As expected, reducing the probabil-
ity of finding a match decreases overall performance because patterns with long
periods are not detected.

Partial matching increases coverage at the cost of decreased prefetcher accu-
racy. In our implementation we treat prefetches generated by full and partial
matching equally. In a more bandwidth-constrained environment it might be
beneficial to not treat them equally and only issue prefetches generated by par-
tial matching if there is ample off-chip bandwidth available [17].

Finally, we looked at allowing partial matching to issue multiple prefetches
per delta. Because partial matching reduces spatial resolution, the deltas after
the match also have reduced resolution. It is possible to compensate for this
reduced resolution by issuing multiple prefetches covering the range of possible
LSBs. However, because partial matching reduces overall accuracy, we found that
issuing multiple prefetches quickly saturated off-chip bandwidth which resulted
in reduced performance.

The simulation framework we have opted to use has some limitations. For
instance, the look-up time of the predictor is not accounted for. Furthermore, a
very simple DRAM model is used, the 4KB storage limit is somewhat arbitrary
and techniques which can deal with large off-chip meta-data has been devel-
oped [18]. Overall, we chose to use this framework so that a fair comparison
with previously proposed prefetchers could be conducted.

260 M. Grannaes, M. Jahre, and L. Natvig

7 Conclusion

In this paper, we have presented a novel low-complexity prefetching heuristic
called DCPT-P. DCPT-P uses a table indexed by the PC of the load. Each table
entry stores a large amount of history per load instruction in the form of deltas.
By storing deltas rather than full miss addresses, we save a significant amount of
memory and make pattern matching easier. Pattern matching is done by using
Delta Correlation, originally proposed by Nesbit et al. [3]. This technique is very
effective at detecting patterns with periods shorter than the amount of history
stored.

We also introduce the concept of L1 hoisting. L1 hoisting is a technique that
combines with DCPT-P to issue highly accurate and timely prefetches into the
L1 cache. To deal with several real-world problems with prefetching, we have
introduced a mechanism called partial matching which reveals previously hidden
patterns by reducing spatial resolution.

Our technique builds upon and expands several ideas presented during the first
data prefetching championship (DPC-1). We have examined the top performers
extensively and extracted key properties of these prefetchers and improved upon
their ideas and synthesised them into a low complexity, storage efficent and
high performance prefetcher. By using the code submitted to the DPC-1 contest
we can be confident that the comparison with other prefetching techniques is
accurate. On average, DCPT-P provides an arithmetic mean speedup of 87% on
the SPEC2006 benchmark suite.

References

1. Perez, D.G., Mouchard, G., Temam, O.: Microlib: A case for the quantitative com-
parison of micro-architecture mechanisms. In: MICRO 37: Proceedings of the 37th
annual IEEE/ACM International Symposium on Microarchitecture, Washington,
DC, USA, pp. 43–54. IEEE Computer Society, Los Alamitos (2004)

2. Grannaes, M., Jahre, M., Natvig, L.: Storage efficient hardware prefetching using
delta correlating prediction tables. In: Data Prefetching Championships (2009)

3. Nesbit, K.J., Smith, J.E.: Data cache prefetching using a global history buffer.
In: International Symposium on High-Performance Computer Architecture, p. 96
(2004)

4. Smith, A.J.: Cache memories. ACM Comput. Surv. 14(3), 473–530 (1982)
5. Chen, T.F., Baer, J.L.: Effective hardware-based data prefetching for high-

performance processors. IEEE Transactions on Computers 44, 609–623 (1995)
6. Dahlgren, F., Stenstrom, P.: Evaluation of hardware-based stride and sequential

prefetching in shared-memory multiprocessors. IEEE Transactions on Parallel and
Distributed Systems 7(4), 385–398 (1996)

7. Nesbit, K.J., Dhodapkar, A.S., Smith, J.E.: AC/DC: An adaptive data cache pre-
fetcher. In: Proceedings of the 13th International Conference on Parallel Architec-
ture and Compilation Techniques, pp. 135–145 (2004)

8. Dimitrov, M., Zhou, H.: Combining local and global history for high performance
data prefetching. In: Data Prefetching Championship-1 (2009)

Multi-level Hardware Prefetching 261

9. Ramos, L.M., Briz, J.L., Ibáñez, P.E., Viñals, V.: Multi-level adaptive prefetching
based on performance gradient tracking. In: Data Prefetching Championship-1
(2009)

10. Ishii, Y., Inaba, M., Hiraki, K.: Access map pattern matching prefetch: Optimiza-
tion friendly method. In: Data Prefetching Championship-1 (2009)

11. Hur, I., Lin, C.: Feedback mechanisms for improving probabilistic memory pre-
fetching. In: HPCA 2009: Proceedings of the 15th International Symposium on
High-Performance Computer Architecture, pp. 443–454 (2009)

12. DPC-1: Data prefetching championship rules,
http://www.jilp.org/dpc/framework.html

13. Jaleel, A., Cohn, R.S., Luk, C.K., Jacob, B.: CMP$im: A pin-based on-the-fly
multi-core cache simulator. In: MoBS (2008)

14. SPEC: Spec 2006 benchmark suites (2006), http://www.spec.org
15. Srinath, S., Mutlu, O., Kim, H., Patt, Y.N.: Feedback directed prefetching: Improv-

ing the performance and bandwidth-efficiency of hardware prefetchers. Technical
report, University of Texas at Austin, TR-HPS-2006-006 (May 2006)

16. Grannaes, M., Natvig, L.: Dynamic parameter tuning for hardware prefetching us-
ing shadow tagging. In: CMP-MSI: 2nd Workshop on Chip Multiprocessor Memory
Systems and Interconnects (2008)

17. Grannaes, M., Jahre, M., Natvig, L.: Low-cost open-page prefetch scheduling in
chip multiprocessors. In: IEEE International Conference on Computer Design,
ICCD (2008)

18. Wenisch, T., Ferdman, M., Ailamaki, A., Falsafi, B., Moshovos, A.: Practical off-
chip meta-data for temporal memory streaming. In: High Performance Computer
Architecture, HPCA (2009)

http://www.jilp.org/dpc/framework.html
http://www.spec.org

Scalable Shared-Cache Management by
Containing Thrashing Workloads

Yuejian Xie and Gabriel H. Loh

Georgia Institute of Technology
College of Computing

{corvarx,loh}@cc.gatech.edu

Abstract. Multi-core processors with shared last-level caches are vulner-
able to performance inefficiencies and fairness issues when the cache is not
carefully managed between the multiple cores. Cache partitioning is an
effective method for isolating poorly-interacting threads from each other,
but designing a mechanism with simple logic and low area overhead will be
important for incorporating such schemes in future embedded multi-core
processors. In this work, we identify that major performance problems
only arise when one or more “thrashing” applications exist. We propose
a simple yet effective Thrasher Caging (TC) cache management scheme
that specifically targets these thrashing applications.

1 Introduction

Modern multi-core processors often employ a large last-level cache (LLC) shared
between all of the cores. In particular, a core with a high LLC access rate can
quickly cause cachelines used by other cores to be evicted, which can have a
negative impact on the performance of other cores, overall system throughput,
quality-of-service and fairness. As a result, many researchers have proposed a
variety of techniques to manage the LLC to provide better performance and
fairness [2, 3,4, 9, 10, 12, 18, 19,21,22,23,25].

As multi-core processors move into the embedded domain, effective man-
agement of shared resources will still be important. In this work, we demon-
strate that the performance benefits of explicit cache partitioning can indeed be
achieved with simpler mechanisms that are more amenable to implementation
in future multi-core embedded platforms. In particular, we observe that most
performance-degrading cache contention scenarios are caused by the presence
of one or more threads exhibiting thrashing behaviors characterized by a large
number of overall accesses resulting in a large number of cache misses. By simply
keeping these few disruptive threads under control, we can achieve the benefits
of more complex cache partitioning schemes with significantly simpler hardware.

1.1 Review of Related Work

There have been many recent efforts to develop hardware techniques to manage
the shared last-level cache (LLC) between multiple competing cores [2, 3, 4, 8,

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 262–276, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Scalable Shared-Cache Management by Containing Thrashing Workloads 263

9, 10, 12, 18, 19, 21, 22, 23, 25]. In this section, we focus primarily on one recent
proposal called Utility-based Cache Partitioning (UCP) [18].

The UCP mechanism consists of two primary components. The first is the
Utility Monitor (UMON) that observes cache access patterns for each core and
determines how much additional benefit or utility could be gained by assigning
that core more ways in the cache. In principle, UCP augments the cache’s tag
array with shadow tags that track what the contents of the cache would be if
one core had sole access to the entire LLC, as illustrated in Figure 1(a). Each
core also maintains a set of w counters (for a w-way cache) that are updated
as follows. Each time a core has a hit in way i in the core’s shadow tags, then
the ith counter gets incremented. That is, the ith counter records the number
of cache hits that would have occurred if the core had the entire cache to it-
self and the cacheline that provided the hit was currently the ith-most recently
used line (assuming an LRU replacement policy). These counters are also called
marginal gain counters [23] since they record the number of additional hits that
could be achieved for each additional way allocated to the core. Finally, UCP
uses the counters to find a partitioning of the cache that minimizes the total
number of misses. In the example in Figure 1(b), we have considered all possible
partitionings where each core receives at least one way of the cache, and in this
case an allocation of five lines to core-0 and three lines to core-1 minimizes the
overall number of misses. As the number of cores increases, UCP is faced with
a combinatorial explosion in the number of possible partitionings, as illustrated
in Figure 1(c) for N=4 cores.

To implement the shadow tags, UCP requires that the tag array for the cache
be replicated for each core. That is, for an N -core system, the cache requires
its original tag array plus N additional copies. The shadow tag overhead also
increases directly proportionally to the number of cores and the number of ways
in the LLC. To help cut down on the cost of these shadow tag arrays, Qureshi
and Patt made use of Dynamic Set Sampling (DSS) [17] as shown in Figure 1(d).
In this scenario, only some fraction α of the sets of the cache are tracked in the
shadow tags.

There are two primary scaling parameters that impact the overhead and com-
plexity of the UCP approach. The first is that more cores requires more sets of
shadow tags, thereby increasing storage overhead. The second parameter is the
set-associativity of the cache. If the set associativity of the cache is doubled, then
the UMON overhead also doubles. The complexity of the partitioning logic also
increases with these parameters. To find the optimal partitioning for N cores and
w ways, there are O(wN) possible partitionings that must be considered if the
optimal solution is to be found. Approximations such as incrementally increas-
ing or decreasing allocations are not always effective because in some situations
multiple ways must be added before any significant gains be can observed. To
address this problem, Qureshi and Patt proposed the Lookahead approximation
algorithm that performs close to optimal, and has a reduced running time of
O(w2N) operations. It is important to note that UCP only attempts to repar-
tition the cache once every few million cycles, and so the latency of making the

264 Y. Xie and G.H. Loh

Final Partitioning Decision/Allocation

25 15 9 5 5 2 0 0Core 1

(2,6) 141
(3,5) 159
(4,4) 166

(6,2) 170
(7,1) 161

Final Partitioning Decision/Allocation

Core 0 Core 1 Core 2 Core 3

Per−Core Shadow Tag Arrays

Se
t−

Sa
m

pl
ed

 S
ha

do
w

 T
ag

s

Partitioning Algorithm(1,1,1,5)
(1,1,5,1)
(1,5,1,1)
(5,1,1,1)
(1,1,2,4)
(1,2,1,4)
(2,1,1,4)

127
161
152
190
153
142
157

(1,1,4,2)
(1,2,4,1)
(2,1,4,1)
(1,4,1,2)
(1,4,2,1)
(2,4,1,1)
(4,1,1,2)

166
173
188
155
173
177
188

(4,1,2,1)
(4,2,1,1)
(1,2,2,3)
(2,1,2,3)
(2,2,1,3)
(1,2,3,2)
(2,1,3,2)

206
195
168
183
172
174
189

(2,2,3,1)
(1,3,2,2)
(2,3,1,2)
(2,3,2,1)
(3,1,2,2)
(3,2,1,2)
(3,2,2,1)

196
176
180
198
202
191
209

(1,1,3,3)
(1,3,1,3)
(3,1,1,3)
(1,3,3,1)
(3,1,3,1)
(3,3,1,1)
(2,2,2,2)

160
151
177
175
201
192
197

Best partitioning

50 30 20 10 8 6 412Core 0

13 8 1 0 0 0 0 0Core 3

30 26 7 7 3 0 0 0Core 2

25 15 9 5 5 2 0 0Core 1

Core 0 cacheline (data)

Core 1 cacheline (data)

Core 2 cacheline (data)

Core 3 cacheline (data)

Core 0 tag

Core 1 tag

Core 2 tag

Core 3 tag

Cache Data Array Tag Array

Per−Core
UMON
Counters

Core 0 Core 1 Core 2 Core 3

Per−Core Shadow Tag Arrays

Partitioning Algorithm

50 30 20 10 8 6 412

Misses avoided with one way

Additional misses avoided with 2nd way

Core 0

U
M

O
N

 C
ou

nt
er

s

All possible partitionings and misses avoided:

(a)

(c)

(1,7) 111

(b)

(5,3) 171 Best partitioning

(d)

Fig. 1. (a) Data and tag arrays for an eight-way set-associative cache, along with
the structures for implementing Utility-based Cache Partitioning (UCP). (b) Example
UMON marginal gain counter values for two cores with an enumeration of the utilities
for all possible partitionings, and (c) the same but for four cores. (d) Modification to
the UCP overhead when Dynamic Set Sampling is employed.

partitioning decision is not crucial. The number of required operations provides
a measure of the complexity of implementing the partitioning algorithm in hard-
ware. If nothing else, the verification effort for the partitioning algorithm would
be extremely challenging.

Another limitation of cache partitioning approaches is that strict partitioning
can lead to underutilization of cache capacity (i.e., if a core receives a larger
allocation than it needs). Other works have taken advantage of this in differ-
ent ways [19,25]; the approach proposed in this paper also leverages non-strict
allocation.

The discussion in this section does not try to claim that UCP is impractical;
there are simply some costs and overheads associated with UCP that increase
with the number of cores and the set-associativity of the LLC. Chip designers
may decide that the performance benefits outweigh the overheads. In this work,
however, we propose a partitioning scheme that delivers the performance bene-
fits of traditional cache partitioning with much simpler hardware. There are a
variety of other previous cache management proposals, many of which we feel
are orthogonal to this work.

2 When Does Partitioning Help?

Several past studies have presented a variety of approaches to classify programs’
cache behaviors in a multi-core context [2, 12, 15,18]. In this section, we provide

Scalable Shared-Cache Management by Containing Thrashing Workloads 265

a simple classification for separating programs into cache-thrashing or non-
thrashing applications. Our classification is not meant to be exhaustive and
cover all possible memory access patterns, but we focus on simply determin-
ing when partitioning helps compared to when a conventional sharing-oblivious
policy like LRU works about as well.

We observe the behavior of a program over an interval of T cycles. During
this time, we track the total number of Accesses to the LLC, what the total
number of Missessolo would be if the core had the entire cache to itself, and
MissRatesolo = Missessolo

Accesses . The Missessolo metric is tracked by the per-core
shadow tags just like in UCP. Based on these metrics, we apply the following
simple rule:

If
(
(Accesses ≥ θacc) AND ((MissRatesolo > θMR) OR (Missessolo > θmiss))

)
Classification := Thrasher

Else
Classification := Non-Thrasher

For our initial experiments, we used T=1 million cycles, θacc=4000, θmiss=1000,
and θMR=0.1; we have experimented with some other thresholds but the overall
trends are consistent. The intuition for this classification rule is that if a program
does not access the cache very much at all (low Accesses), then it does not have a
way to greatly impact the cache contents of any other cores. If the MissRatesolo

is too high, then that means that the lines that are being cached exhibit relatively
low locality, and therefore are likely to provide low utility as well. If the raw
number of Missessolo is high, then even though many of the cached lines may
provide a lot of hits for the core, the large miss count indicates a large working set
which will tend to cause the eviction of other cores’ cache lines. Note that we re-
evaluate the classification every T cycles, and so some benchmarks may exhibit
thrashing behaviors during some phases, but not for others. Our classification
rule is admittedly ad hoc, but it is sufficient for our purpose of classifying when
cache partitioning will be useful.

2.1 Simulation Methodology

For our simulations, we used the SimpleScalar toolset for the x86 ISA [13].
Table 1 lists the simulated processor configuration. Hardware prefetchers are
used for all levels of the cache hierarchy. For dual-core workloads, we simulate
a 4MB, 16-way cache, whereas for quad-core workloads, we use a 8MB, 32-
way cache. While a 32-way cache may be aggressive, especially in the embedded
domain, part of the goal of this work is to demonstrate that our simple techniques
scale with increasing cache complexity.

We use a variety of benchmarks from SPEC2000 and SPEC2006 from both
the integer and floating point suites, PhysicsBench [26], MediaBench [5, 11],
MineBench [16], MiBench [6] and BioPerf [1]. For SPEC, We use reference inputs.
Table 2 lists the applications and their baseline statistics. Most applications with
very low DL1 miss rates were not considered for workload creation because they
have practically no impact on sharing/contention in the LLC.

266 Y. Xie and G.H. Loh

Table 1. Baseline 4-wide processor configuration. All caches use 64-byte lines.

Parameter Value Parameter Value
ROB Size 96 entries RS Size 32 entries

LDQ/STQ Size 32/20 entries IL1/DL1 32KB/8-way/3-cyc
Shared L2 (dual-core) 4MB/16-way/9-cyc Shared L2 (quad-core) 8MB/32-way/9-cyc

Function Units 3 IALU, 1 IMul, 1 FAdd, 1 Div, 1 FMul, 1 Load, 1 STA, 1 STD
Main Memory SDRAM, 800MHz bus (DDR), 6-6-6, 3.2GHz CPU speed

Table 2. Benchmark classification. APKI stands for accesses per thousand instruc-
tions. Codes: F0 (SpecFP’00), F6 (SpecFP’06), I0 (SpecInt’00), I6 (SpecInt’06), MI
(MiBench), MD (MediaBench), MN (MineBench), PB (PhysicsBench), BI (BioPerf).
Benchmarks N6-N18 spend <0.5% of the time thrashing.

Benchmark Base 4M/1M APKI % Time
Name IPC Slowdown Thrashing

T0 F6-milc 0.28 0.4% 60.9 100.0%
T1 F6-lbm 0.23 0.0% 14.1 100.0%
T2 F6-soplex 0.26 5.5% 87.5 99.4%
T3 F0-equake 0.32 45.8% 129.2 98.6%
T4 F6-sphinx3 0.40 3.1% 69.8 96.2%
T5 I6-gcc 0.60 0.6% 30.0 92.8%
T6 I6-libquantum 0.28 0.0% 149.5 63.2%
N0 MN-semphy 1.06 5.4% 1.3 37.5%
N1 I6-perl 1.04 14.8% 10.0 19.9%
N2 I6-bzip2.1 1.08 35.7% 11.6 5.6%
N3 I6-bzip2.2 1.00 24.3% 11.7 1.2%
N4 I6-sjeng 0.92 0.4% 2.8 0.7%
N5 MI-dijkstra 1.23 17.1% 18.9 0.5%

Benchmark Base 4M/1M APKI
Name IPC Slowdown

N6 MD-g721-enc 1.23 0.0% 0.0
N7 I6-h264ref 1.07 16.7% 10.0
N8 I6-astar 1.08 8.2% 6.7
N9 I6-bzip2.3 0.99 0.9% 1.5
N10 F0-art 0.47 75.0% 129.3
N11 PB-continuous 0.82 45.9% 13.6
N12 I0-eon 1.20 0.0% 2.6
N13 MD-jpeg.d 1.34 0.7% 0.6
N14 MI-rijndael 1.74 0.0% 0.6
N15 BI-predator 1.24 0.0% 0.0
N16 MN-bayes 1.11 0.0% 0.0
N17 MI-adpcm.e 1.01 0.0% 0.0
N18 MD-adpcm.e 0.86 0.0% 0.0

We use SimPoint 3.2 to select representative samples of each benchmark [7].
We warm the caches for 500 million instructions per core and then simulate 250
million instructions per benchmark, thus ensuring at least one billion committed
instructions for our four-core evaluations.

When reporting performance results, we make use of three performance met-
rics: overall throughput (ΣIPCi), weighted speedup (Σ IPCi

SingleIPCi
) [20], and

the harmonic mean of weighted IPC or fair speedup (N/Σ SingleIPCi

IPCi
) [14], where

IPCi is the IPC of programi when running with the rest of the workload, and
SingleIPCi is the IPC of programi when running on the processor alone.

2.2 Classification Results

We run each benchmark and observe the fraction of time each is classified as
exhibiting thrashing behavior. These results are tabulated in Table 2 along with
some other basic information such as the baseline IPC, cache access frequency,
and the performance difference between providing a 4MB cache versus only a
1MB cache. The list is sorted from the most-frequently thrashing to the least.
Note that due to the simplicity of our classification scheme, we do not distinguish
between applications that are moderately thrashing (e.g., ε more misses than
θmiss) and extremely thrashy (e.g., much more misses than θmiss). Likewise,

Scalable Shared-Cache Management by Containing Thrashing Workloads 267

this classification does not differentiate between thrashing behavior caused by
large working sets versus those exhibiting streaming behaviors. Figure 2(a) shows
one example of two different benchmarks running together and how they exhibit
different thrashing phases during their execution.

We then created several workloads with different combinations of thrashing
(T) and non-thrashing (N) applications, listed in Table 3. For the sake of work-
load creation, we consider any benchmark that spends >50% of the time exhibit-
ing thrashing behavior as thrashing. In addition to the one thrasher with three
non-thrasher (1T3N) workloads listed above, we also evaluated several more
1T3N workloads (F–I) that incorporate a few applications with small working
sets to ensure that the proposed technique does not inadvertently hurt perfor-
mance in such a situation. These additional “small” applications are taken from
the MediaBench and MiBench suites which are more geared toward embedded
environments and tend to have smaller working sets.

For each workload, we observed the performance for an LRU-based 4MB 16-
way L2 cache and the same again with a UCP-managed cache. Figure 2(b) shows
the performance for the LRU cache and the UCP cache for the T:N, T:T and N:N
workloads. These results show that the only situation where UCP consistently
provides a strong performance benefit is for the T:N workloads. UCP effectively
“quarantines” the thrashing application into a relatively small partition that
provides performance isolation for the other non-thrashing program.

For the N:N workloads, UCP is still able to find partitions that do not harm
performance. The reason why there is no significant performance benefit over

Table 3. Multi-programmed workloads used in this paper. Refer to Table 2 for indi-
vidual benchmark names.

Dual-Core
Name Apps
T:N-A T3,N11
T:N-B T1,N5
T:N-C T0,N3
T:N-D T4,N7
T:N-E T5,N7
T:N-F T2,N9

Dual-Core
Name Apps
T:T-A T3,T1
T:T-B T0,T4
T:T-C T5,T2
T:T-D T0,T3
T:T-E T4,T6
T:T-F T0,T2
T:T-G T3,T4

Dual-Core
Name Apps
N:N-A N13,N14
N:N-B N0,N12
N:N-C N9,N8
N:N-D N5,N11
N:N-E N5,N0
N:N-F N3,N12
N:N-G N11,N2

Quad-Core
Name Apps
1T3N-A T3,N11,N13,N18
1T3N-B T1,N5,N14,N17
1T3N-C T0,N0,N3,N16
1T3N-D T4,N6,N7,N12
1T3N-E T5,N4,N7,N15

F–I see text

Quad-Core
Name Apps
2T2N-A T0,T2,N8,N9
2T2N-B T0,T3,N2,N11
2T2N-C T1,T4,N5,N10
2T2N-D T0,T6,N8,N9
2T2N-E T1,T2,N1,N9

(a) (b)

Fig. 2. (a) Timing example of two programs from SPEC2006 and their time-varying
thrashing behaviors (top: cactusADM, bottom: soplex). Each sample point covers one
million cycles, (b) Speedup of UCP over LRU on dual-core workloads.

268 Y. Xie and G.H. Loh

LRU for these cases is that the combined access patterns of these applications
is such that LRU’s replacement decisions do not systematically punish one pro-
gram over the other. For the T:T workloads where both programs are thrashing
consistently, partitioning generally provides little help because both workloads
have so many misses that even the best partitioning only increases the number
of hits by a small amount relative to the total number of accesses. In this case
LRU works about just as well as the partitioning approach.

The main observation that we make here is that the only benchmarks that
appear to cause any major problems with respect to the shared cache resources
are those that exhibit thrashing behaviors. Our hypothesis is that one does not
need to conduct completely general partitioning of the cache among all cores,
but instead one only needs to control or contain the thrashing subset.

3 Containing Thrashing Workloads

In this section, we present a simple yet effective cache management scheme that
scales gracefully with both the number of cores and the cache’s set associativity,
and in the process also completely eliminates the need for all of UCP’s shadow
tag overhead and partitioning logic.

3.1 Thrasher Caging

From our experiments that evaluated UCP applied to a workload consisting of
one thrasher and one non-thrasher (T:N), we observed that in most cases, the
thrashing application is only allocated a small number of ways. The idea is that
instead of attempting to explicitly compute the optimal partition size for all
threads, we can instead simply assign a fixed-sized partition, or cage, for each
thrashing application. This Thrasher Caging approach is very similar to tradi-
tional way-partitioned cache schemes, except that only thrashing applications
get sequestered away. Any non-thrashing cores will continue to share all of the
remaining cache capacity.

More precisely, for N cores and a w-way set-associative cache, each thrashing
core receives a fixed allocation of c ways; no more, no less. The cage size c
is typically less than a “fair” allocation where every thread receives the same
amount of space, i.e., c < w

N . Most of our results make use of c=2. If there
are T thrashing applications, then a total of Tc ways will be allocated to the
T separate partitions or cages. The remaining w − Tc ways will be completely
shared by the remaining N − T cores. This caging approach can be thought of
as a partial-partitioning where some cache space is explicitly managed (i.e., the
cages) while the remaining space is unmanaged (i.e., the other ways are regulated
by traditional LRU). This is a very simple mechanism, but it also turns out to
be very effective. If there are no thrashing applications present, then the entire
cache is treated as a conventional LRU cache. If all threads are thrashing, then
each program receives w

N ways so as not to waste any of the cache space.

Scalable Shared-Cache Management by Containing Thrashing Workloads 269

From an implementation perspective, this Caging approach is much more
lightweight than the UCP approach. The complex partitioning mechanism can
effectively be completely eliminated as the partition sizes are a fixed function of
the programs’ thrashing classifications. As a result, all of the UMON counters
can also be eliminated, too. The only significant remaining overhead are the
per-core shadow tags used for classifying whether a program exhibits thrashing
behavior. Note that the partitioning mechanism is where most of the complexity
lies when the number of cores or the set-associativity increases. Thrasher Caging
reduces the number of operations from O(w2N) (for Lookahead) to effectively
zero regardless of the number of cores or the cache’s set associativity.

3.2 Approximate Thrasher Detection (ATD)

The Thrasher Caging approach’s only substantial overhead is from the per-core
shadow tags used for the Thrasher classification. Note also, that the only role
served by the shadow tags for Thrasher Caging is to identify when programs
exhibit thrashing behaviors. One would suspect that the fine-grained per-way
marginal utility-tracking capabilities of the per-core shadow tags is an overkill.
This is in fact the case, and we describe a simple alternative to approximate this
information, which we call Approximate Thrasher Detection (ATD).

Our approach is simple: we only track the absolute number of misses such
that if a core causes more than θ̃miss misses, then the core is considered to be
thrashing.1 Considering only misses without considering hits could potentially
lead to cases where an application is unfairly punished (i.e., it has a high average
hit rate over many memory accesses, but it still results in more than θ̃miss

misses). Our intuition is that counting only misses should still work for the
aggregate system performance (as measured by, for example, overall throughput
or weighted speedup) because whatever benefit those misses provide for the one
application, the remaining > θ̃miss misses would still wreak havoc for the other
non-thrashing programs. The selection of the exact values for these thresholds
are discussed in Section 4. We also considered a version where we use the miss
rate rather than the absolute number of misses, but it turns out that tracking
only misses performs better while being easier to implement.

Note that for our ATD, we only track the miss statistics on the actual misses
observed on the real cache contents, independent of whether these accesses would
have been hits in an unshared cache. The intuition for why this is still accurate is
that for a thrashing workload, whether it receives a few ways or the entire cache,
the majority of its accesses will be misses and therefore the number of misses
observed in the real cache or an unshared cache will still be very similar (i.e.,
providing the entire cache for this application still will not significantly increase
the number of hits). ATD completely removes all shadow tags, rendering the total
storage overhead for our simplified partitioning scheme to only one counter per
core to track per-core misses. Figure 3(b) illustrates the final design of Thrasher
Caging with ATD.
1 We use the notation θ̃ instead of θ to emphasize that this threshold corresponds to

an approximation of the previous classification approach.

270 Y. Xie and G.H. Loh

TT N T N

Se
t−

Sa
m

pl
ed

Sh
ad

ow
 T

ag
s

(a) (b)
Core 0 Core 1 Core 2 Core 3

Final Partitioning Decision

Per−Core Shadow Tag Arrays

Search Space: 0
Operations: 0

Partitioning Algorithm N T N

Hit/Miss from real cache

No Shadow Tags

Final Partitioning Decision

>θ̃? >θ̃?>θ̃? >θ̃?>θ? >θ? >θ? >θ?

Fig. 3. (a) Shadow tag, thrasher detection logic, and example partitioning for the
Thrasher Caging approach, and (b) hardware changes when using Approximate
Thrasher Detection

3.3 Performance of TC and ATD

We evaluated Thrasher Caging (TC) on a variety of four-core workloads listed
in Table 3. We simulated workloads with 4T0N (four thrashing programs, no
non-thrashing), 3T1N, 2T2N, 1T3N, and 0T4N. Figure 4 only shows the results
for 1T3N and 2T2N; the other workloads showed very little benefit from the
baseline UCP, and so they are omitted for brevity. We also considered dual-core
1T1N applications with similar results [24]. Figure 4 shows the performance of
these approaches compared to an LRU-based unmanaged cache for four-core
workloads, with sub-plots (a), (b) and (c) showing the results for the weighted
speedup, IPC throughput, and harmonic mean fairness metrics, respectively.
Figure 4 also includes the performance results for TADIP-F, another recently
proposed cache management scheme that does not explicitly partition the shared
cache but instead dynamically adjusts per-thread insertion policies [9]. Across
our simulated workloads, TADIP performs slightly better than UCP (with a
lower implementation overhead). On average, our TC approach performs better
than both UCP and TADIP, although there are individual workloads where UCP
or TADIP is the best approach. Only for the fair speedup metric does TC not
perform as strongly as the other approaches, but it still achieves fair speedup
results close to the others and significantly better than an unmanaged LRU
cache.

While TC was proposed to simplify/eliminate the complex partitioning deci-
sion logic, Figure 4 shows that TC also provides a slight performance improve-
ment over UCP. At first, this may seem counter-intuitive that an approximation
to optimal partitioning may perform better, but the optimal partitioning ap-
proach (UCP) assumes disjoint partitions for each thread. In TC, all of the non-
thrashing threads share the same cache space without any further enforcement.
As a result, threads may “steal” capacity from other threads in the sense that
at any given moment, a thread may occupy more space than it would otherwise
be allowed in a strictly partitioned approach. The benefits of relaxing the strict
partitioning requirement have also been demonstrated in other studies [19,25].

Scalable Shared-Cache Management by Containing Thrashing Workloads 271

(a)

(b) (c)

Fig. 4. Performance comparisons of Thrasher Caging (TC) and TC with Approximate
Thrasher Detection. All results are speedups over an unmanaged LRU cache, using the
(a) weighted speedup, (b) IPC throughput and (c) harmonic mean of weighted IPC
metrics.

TADIP and TC actually provide similar benefits in different guises. When
a thrashing application is present, TADIP effectively isolates this thread by
forcing the thread’s cache lines to be inserted at the LRU position. The non-
thrashing threads will be inserted at the MRU position, and as a result, the
overall scheme behaves similar to thrasher caging where the cage size is one, and
all thrashing programs share the same cage. There are a few scenarios where
TADIP’s approach may break down. First, TADIP does not perform strict LRU
insertion, but rather performs a probabilistic insertion where MRU insertion
occurs with a probability p = 1

32 and LRU insertion otherwise. For an application
with extreme thrashing that inserts lines into the cache at a very high rate
relative to the access frequencies of other cores, even the one out of 32 lines being
inserted at the MRU position is enough to cause many other lines to be evicted.
Second, there are some cases where maintaining some level of isolation, even
between thrashing applications, is still beneficial. For example, many thrashing
applications simply stream through memory in a sequential access pattern. For
such programs, hardware prefetchers can easily predict the pattern and prefetch
data into the cache. If these are inserted at the LRU position, however, the
prefetched lines may be evicted before the corresponding core even has a chance
to make use of the line. With separate per-thrasher partitions, TC avoids this
situation. This may be part of the reason why the relative benefits of TADIP
are reduced in a environment where prefetching is enabled [9].

Figure 4 includes the performance of TC with approximate thrasher detection
(ATD). For the majority of benchmarks, the absolute number of misses serves as

272 Y. Xie and G.H. Loh

an accurate proxy for thrasher detection. There are a few individual workloads
where the ATD approach actually performs better than shadow-tag-based TC.
The reason for this is that the thrasher-classification criteria is itself a heuristic
where the best threshold for thrasher classification will vary from one workload to
the next (but we use a fixed threshold for all workloads). The “error” introduced
by ATD could in fact push the effective thrasher classification to more closely
mimic the classification results that would occur for a better selection of the
threshold for that workload.

The performance results for TC+ATD are very positive; they demonstrate
that the benefits of UCP for managing a shared cache can be obtained with a
hardware implementation that is much simpler and scalable. Table 4 summa-
rizes the storage overheads required to implement different cache management
schemes. In particular, note that for most of the approaches, the storage overhead
is measured in kilobytes (KB), whereas for TC+ATD, the storage overhead is
only a few bytes. It is also important to point out that the overheads in Table 4 do
not account for the logic and state required to implement the partition-decision
logic (e.g., the Lookahead algorithm) where necessary, i.e., UCP. While TADIP’s
storage overhead is the same as TC+ATD’s, our proposed approach appears to
perform slightly better according to our simulations.

Table 4. Summary of overheads for different cache management schemes. Example
storage overhead assumes s=4096 sets, w=16 ways, N=4 cores, t=36 bits per shadow
tag entry, α= 1

128
(DSS sampling rate), m=2 (Way Merging rate), UMON counters,

ATD miss counters and TADIP PSEL counters are b=10 bits each.

Shadow Counters Search Storage
Tag (UMON/miss Space 4MB/16-way

Storage ctrs/PSEL) Size L2, 4 cores

UCP (no DSS) swtN wNb O(wN) 1.1 MB
UCP (w/ DSS) αswtN wNb O(wN) 9.1 KB

Thr. Caging (w/ DSS) αswtN 0 0 9.0 KB
TADIP 0 Nb 0 5.0 B

TC+ATD 0 Nb 0 5.0 B

4 Scaling and Sensitivity Analysis

4.1 Scaling to More Cores

Figure 5(a) shows the weighted speedups for 8-core configurations using an 8MB,
32-way LLC (the other metrics show similar trends and are omitted for brevity).
The workloads feature different mixes of the same thrashing and non-thrashing
applications from Table 2, although the specific workload compositions are omit-
ted due to space constraints. The overall results are similar to the four-core
results presented earlier in that TC provides some performance gain primar-
ily due to allowing non-thrashing applications to share the same partition. In
these workloads, the ATD approach introduces more performance degradation
than before. It is important to note that we have not re-optimized the θ̃miss

Scalable Shared-Cache Management by Containing Thrashing Workloads 273

(a) (b)

(c)

Fig. 5. (a) Weighted speedup results for 8-core workloads, (b) Weighted speedup re-
sults for smaller and lower-associativity caches, (c) Thrasher Caging performance for
different cage sizes.

threshold for these simulations (i.e., this uses the threshold optimized for the
four-core case). Overall, Thrasher Caging is an effective approach to managing
a shared cache among many cores. With ATD, TC can on average still provide
the performance benefits of UCP but with a trivial hardware overhead.

4.2 Sensitivity to Cache Configurations

Our results thus far have shown that Thrasher Caging with ATD works well
for 4 and 8 cores on a processor with a shared 8MB, 32-way LLC. This cache
configuration may be somewhat aggressive compared to current processors, so
we also present results with 8MB/16-way and 4MB/16-way LLC’s. Figure 5(b)
shows the weighted speedup results for the four-core workloads. The overall
results are similar to the earlier 8MB/32-way results, showing that our approach
is also effective for less aggressive cache organizations.

4.3 Parametric Sensitivity

Our Thrasher Caging approach makes use of a few parameters that need to be
tuned. In particular, the size of the per-thrasher cage and the various thrasher-
detection thresholds all need to be chosen appropriately. Figure 5(c) shows the
weighted speedup of TC (without ATD) for various cage sizes, along with the
performance of UCP for reference. While we have used a cage size of c=2 through-
out this paper, choosing a cage size of three or four does not have much impact
on per-workload and overall performance. For a few workloads, having a cage
too small (c=1) or too large (c=6) does adversely affect the performance. For the
four-core results in this section, we have only conducted the sensitivity analysis

274 Y. Xie and G.H. Loh

on a subset of our workloads due to the large number of simulations required as
well as to reduce problems associated with over-tuning.

The original thrasher classification criteria described in Section 4 uses two
thresholds: θmiss and θMissRate. For our four-core workloads with a 8MB/32-
way cache, we found that the best values for these thresholds were θmiss=100
and θMissRate=0.5% (accounting for DSS). While these values may seem low, we
found that for this cache size, program behaviors were very bimodal in that they
either exhibited many misses or very few misses, but seldom had behaviors in
between. Note also that this is a dynamic metric in that we collect these based
on the number of cycles of execution rather than the number of instructions
executed. That means a program could have a high MPKI rate, but a low IPC
rate could still result in few observed misses within a fixed time interval. We
experimented with a wide range of threshold values, and even using θmiss=4000
and θMissRate=6.0% we achieved average weighted speedups within 1.8% of those
achieved with the best threshold values. So while the thresholds might be viewed
as somewhat arbitrary, the performance results are not very sensitive to the exact
choices.

For the approximate thrasher detection threshold θ̃miss we used a value of
2000 misses. Changing the threshold by ±1000 results in less than 2.4% loss
in the performance benefit over LRU. Overall, the proposed technique does not
exhibit any exceptional negative sensitivity to the exact threshold value.

5 Conclusions

In this work, we have shown that cache sharing problems are generally caused
by a few applications that generate a large number of misses that end up dis-
placing the cachelines used by the other programs. By simply containing and
controlling these few programs, our Thrasher Caging technique can achieve bet-
ter performance than UCP with a simpler implementation, and using Approx-
imate Thrasher Detection we can completely eliminate all of the shadow tag,
utility monitor and partitioning logic overheads. Finding simple, low-overhead
mechanisms is critical for the adoption of such techniques in more constrained
embedded multi-core processor designs. Modern processors contain other shared
resources such as off-chip bandwidth and power; a possible avenue for future
research is to explore whether simple management schemes similar in spirit to
the techniques proposed in this paper can also provide most of the benefits of
more complex approaches.

Acknowledgments

This research is supported by the National Science Foundation under Grant
No. 0702275.

Scalable Shared-Cache Management by Containing Thrashing Workloads 275

References

1. Bader, D.A., Li, Y., Li, T., Sachdeva, V.: BioPerf: A Benchmark Suite to Evalu-
ate High-Performance Computer Architecture of Bioinformatics Applications. In:
Proc. of the IEEE Intl. Symp. on Workload Characterization, Austin, TX, USA,
October 2005, pp. 163–173 (2005)

2. Chandra, D., Guo, F., Kim, S., Solihin, Y.: Predicting Inter-Thread Cache Con-
tenton on a Chip Multi-Processor Architecture. In: Proc. of the 11th Intl. Symp. on
High Performance Computer Architecture, February 2005, pp. 340–351 (2005)

3. Chang, J., Sohi, G.: Cooperative Cache Partitioning for Chip Multiprocessors. In:
Proc. of the 21st Intl. Conf. on Supercomputing, June 2007, pp. 242–252 (2007)

4. Dybdahl, H., Stenström, P., Natvig, L.: A Cache-Partitioning Aware Replacement
Policy for Chip Multiprocessors. In: Proc. of the Intl. Conf. on High Performance
Computing, Bangalore, India (December 2006)

5. Fritts, J.E., Steiling, F.W., Tucek, J.A.: MediaBench II Video: Expediting the Next
Generation of Video Systems Research. In: Embedded Processors for Multimedia
and Communications II, Proceedings of the SPIE, March 2005, vol. 5683, pp. 79–93
(2005)

6. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown,
R.B.: MiBench: A Free, Commerically Representative Embedded Benchmark Suite.
In: Proc. of the 4th Workshop on Workload Characterization, Austin, TX, USA,
December 2001, pp. 83–94 (2001)

7. Hamerly, G., Perelman, E., Lau, J., Calder, B.: SimPoint 3.0: Faster and More
Flexible Program Analysis. In: Proc. of the Workshop on Modeling, Benchmarking
and Simulation (June 2005)

8. Hsu, L., Reinhardt, S., Iyer, R., Makineni, S.: Communist, Utilitarian, and Capi-
talist Cache Policies on CMPs: Caches as a Shared Resource. In: Proc. of the 15th
Intl. Conf. on Parallel Architectures and Compilation Techniques, September 2006,
pp. 13–22 (2006)

9. Jaleel, A., Hasenplaugh, W., Qureshi, M., Sebot, J., Steely Jr., S., Emer, J.:
Adaptive Insertion Policies for Managing Shared Caches. In: Proc. of the 17th
Intl. Conf. on Parallel Architectures and Compilation Techniques (September 2007)

10. Kim, S., Chandra, D., Solihin, Y.: Fair Cache Sharing and Partitioning in a Chip
Multiprocessor Architecture. In: Proc. of the 13th Intl. Conf. on Parallel Architec-
tures and Compilation Techniques, September 2004, pp. 111–122 (2004)

11. Lee, C., Potkonjak, M., Mangione-Smith, W.H.: MediaBench: A Tool for Evalu-
ating and Synthesizing Multimedia and Communication Systems. In: Proc. of the
30th Intl. Symp. on Microarchitecture, Research Triangle Park, NC, USA, Decem-
ber 1997, pp. 330–335 (1997)

12. Lin, J., Lu, Q., Ding, X., Zhang, Z., Sadayappan, P.: Gaining Insights into Multi-
core Cache Partitioning: Bridging the Gap between Simulation and Real Systems.
In: Proc. of the 14th Intl. Symp. on High Performance Computer Architecture,
February 2008, pp. 367–378 (2008)

13. Loh, G.H., Subramaniam, S., Xie, Y.: Zesto: A Cycle-Level Simulator for Highly
Detailed Microarchitecture Exploration. In: Proc. of the Intl. Symp. on Perfor-
mance Analysis of Systems and Software, Boston, MA, USA (April 2009)

14. Luo, K., Gummaraju, J., Franklin, M.: Balancing Throughput and Fairness in SMT
Processors. In: Proc. of the 2001 Intl. Symp. on Performance Analysis of Systems
and Software, Tucson, AZ, USA, November 2001, pp. 164–171 (2001)

276 Y. Xie and G.H. Loh

15. Moreto, M., Cazorla, F., Ramirez, A., Valero, M.: Explaining Dynamic Cache Par-
titioning Speed Ups. Computer Architecture Letters 6 (2007)

16. Narayanan, R., Ozisikyilmaz, B., Zambreno, J., Memik, H., Choudhary, A.:
MineBench: A Benchmark Suite for Data Mining Workloads. In: Proc. of the IEEE
Intl. Symp. on Workload Characterization, October 2006, pp. 182–188 (2006)

17. Qureshi, M., Lynch, D., Mutlu, O., Patt, Y.: A Case for MLP-Aware Cache Re-
placement. In: Proc. of the 33rd Intl. Symp. on Computer Architecture, June 2006,
pp. 167–178 (2006)

18. Qureshi, M., Patt, Y.: Utility-Based Cache Partitioning: A Low-Overhead, High-
Performance, Runtime Mechanism to Partition Shared Caches. In: Proc. of the
39th Intl. Symp. on Microarchitecture, December 2006, pp. 423–432 (2006)

19. Rafique, N., Lin, W.-T., Thottethodi, M.: Architectural Support for Operating
System-Driven CMP Cache Management. In: Proc. of the 15th Intl. Conf. on Par-
allel Architectures and Compilation Techniques, September 2006, pp. 2–12 (2006)

20. Snavely, A., Tullsen, D.: Symbiotic Job Scheduling for a Simultaneous Multithread-
ing Processor. In: Proc. of the 9th Symp. on Architectural Support for Program-
ming Languages and Operating Systems, November 2000, pp. 234–244 (2000)

21. Srikantaiah, S., Kandemir, M., Irwin, M.J.: Adaptive Set-Pinning: Managing
Shared Caches in Chip Multiprocessors. In: Proc. of the 13th Symp. on Architec-
tural Support for Programming Languages and Operating Systems, Seattle, WA,
USA (March 2009)

22. Stone, H., Tuerk, J., Wolf, J.: Optimal Paritioning of Cache Memory. IEEE Trans-
actions on Computers 41(9), 1054–1068 (1992)

23. Suh, G.E., Rudolph, L., Devadas, S.: Dynamic Partitioning of Shared Cache Mem-
ory. Journal of Supercomputing 28(1), 7–26 (2004)

24. Xie, Y., Loh, G.H.: Dynamic Classification of Program Memory Behaviors in
CMPs. In: Proc. of the Workshop on Chip Multiprocessor Memory Systems and
Interconnects, Beijing, China (June 2008)

25. Xie, Y., Loh, G.H.: PIPP: Promotion/Insertion Pseudo-Partitioning of Multi-Core
Shared Caches. In: Proc. of the 36th Intl. Symp. on Computer Architecture, Austin,
TX, USA (June 2009)

26. Yeh, T.Y., Faloutsos, P., Patel, S.J., Reinman, G.: ParallAX: an Architecture for
Real-Time Physics. In: Proc. of the 34th Intl. Symp. on Computer Architecture,
June 2007, pp. 232–243 (2007)

SRP: Symbiotic Resource Partitioning of the
Memory Hierarchy in CMPs�

Shekhar Srikantaiah and Mahmut Kandemir

Department of Computer Science and Engineering
Pennsylvania State University, University Park PA 16802, USA

{srikanta,kandemir}@cse.psu.edu

Abstract. There have been many recent works in the context of Chip Multi-
processors (CMPs) investigating the need of intelligent shared cache partitioning
which is believed to reduce the pressure on the off-chip bandwidth. Management
of the off-chip memory bandwidth to improve system performance and/or miti-
gate performance volatility of applications has itself received considerable atten-
tion. Coordinated resource management schemes treat the interactions between
cache allocation and bandwidth management as a black-box. This hinders the
ability of these schemes from exploiting the intricate inter-relationships between
the resource management strategies. In a multiprogrammed scenario, given the
limited availability of the on-chip cache, it is not feasible to entirely eliminate
off-chip accesses. However, it is possible to mitigate the impact of additional
queueing delays associated with the memory controller by avoiding multiple
applications from exercising the off-chip bandwidth simultaneously. Therefore,
from the point of view of improving system performance, it is more important to
have a symbiotic resource partitioning scheme that performs partitioning of each
resource based on feedback it receives from the partitioning of the other.

Symbiotic resource partitioning (SRP) proposed in this paper avoids the sce-
narios of multiple applications exercising the off-chip memory bandwidth simul-
taneously by appropriately controlling the cache partitioning. In order to control
the cache partitioning, SRP employs an empirical model that relies on a metric
(last level cache misses per cycle) that represents the off-chip memory bandwidth
demand of the applications and models the impact of cache partitioning on band-
width demand by representing the last level cache misses per cycle metric as a
function of the cache allocation per application. This model is dynamically up-
dated to account for the phase behavior of the applications. Moreover, SRP is an
iterative approach wherein each iteration of the approach consists of an update to
the model, cache partitioning and bandwidth partitioning with a feedback from
bandwidth partitioning that updates the model. Extensive simulations with a full
system simulator and applications from the MiBench benchmark suite shows that
SRP leads to a significant overall improvement in system performance as com-
pared to a state-of the-art cache and bandwidth management schemes.

� This research is supported in part by NSF grants CNS #0720645, CCF #0811687, CCF
#0702519, CNS #0202007 and CNS #0509251, a grant from Microsoft Corporation and sup-
port from the Gigascale Systems Research Focus Center, one of the five research centers
funded under SRC’s Focus Center Research Program.

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 277–291, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

278 S. Srikantaiah and M. Kandemir

1 Introduction

As the performance imperative of Moore’s Law is approaching an upper limit for in-
creasing processing power simply by increasing clock speeds, all major chip manufac-
turers have turned to chip multiprocessors (CMPs) to boost performance and improve
thermal characteristics while reducing area and power requirements. Consequently, al-
most all computer systems today, from embedded devices to petascale computing sys-
tems, are being constructed using CMPs. Advancing into the CMP era has elevated the
importance of the performance of the shared memory hierarchy in CMPs. Contention
for resources in the shared memory hierarchy with limited resources like on-chip cache
[1], [2], [3] and off-chip bandwidth [4] can significantly hamper the performance of
applications resulting in degradation of the overall system throughput and fairness. Ide-
ally, a CMP would perform off-chip communication as rarely as possible as off-chip
memory accesses are not only slower but are also more energy consuming compared
to on-chip accesses. Further, increasing number of cores would only exacerbate the
problem of managing the limited off-chip bandwidth.

There have been many recent works investigating the need of intelligent shared
cache partitioning [2], [5], [6], [7], [8], [9], [10], which is believed to reduce the pres-
sure on the off-chip bandwidth. Management of the off-chip memory bandwidth [11],
[12], [13], [14], [15], [16] to improve system performance and/or mitigate performance
volatility of applications has itself received considerable attention due to the growing
significance of the problem. Coordinated resource management schemes [17], [18] treat
the interactions between cache allocation and bandwidth management as a black-box.
This hinders the ability of these schemes from exploiting the intricate inter-relationships
between the resource management strategies. In a multiprogrammed scenario, given the
limited availability of the on-chip cache, it is not feasible to entirely eliminate off-chip
accesses. However, it is possible to mitigate the impact of additional queueing delays as-
sociated with the memory controller by avoiding multiple applications from exercising
the off-chip bandwidth simultaneously. Therefore, from the point of view of improv-
ing system performance, it is more important to have a symbiotic resource partitioning
scheme that performs partitioning of each resource based on feedback (reinforcement)
it receives from the partitioning of the other.

Modeling the interaction between cache partitioning and off-chip memory bandwidth
demand can take us a long way in implementing such a symbiotic resource partition-
ing scheme. Although some previous works [4], [19] have indicated that metrics like
cache miss rates, instructions per cycle (IPC) and misses per instruction (MPI) are not
good metrics for measuring the system performance, many shared cache management
approaches proposed in the literature [2], [7], [8], [9] continue to use them. Partition-
ing the off-chip memory bandwidth has an influence on the system performance and
therefore influences the last level cache misses per cycle (MPC) as observed by the
application. Therefore, the model also needs to be reinforced through feedback from
bandwidth partitioning.

In order to address the above mentioned problems, in this paper, we propose such
a symbiotic partitioning for resource partitioning across the memory hierarchy as an
important step towards transcending the everlasting memory wall problem. Symbiotic
resource partitioning (SRP) avoids the scenarios of multiple applications exercising the

SRP: Symbiotic Resource Partitioning of the Memory Hierarchy in CMPs 279

off-chip memory bandwidth simultaneously by appropriately controlling the cache par-
titioning. In order to control the cache partitioning, SRP employs an empirical model
that relies on a metric (last level cache misses per cycle) that represents the off-chip
memory bandwidth demand of the applications and models the impact of cache par-
titioning on bandwidth demand by representing the last level cache misses per cycle
metric as a function of the cache allocation per application. This model is dynamically
updated to account for the phase behavior of the applications. Moreover, SRP is an it-
erative approach wherein each iteration of the approach consists of (i) an update to the
model (modeling the impact of cache partitioning on bandwidth demand); (ii) cache
partitioning in order to reduce the overall demand on off-chip memory bandwidth; (iii)
bandwidth partitioning based on the cache partitioning to improve overall system per-
formance; and (iv) feedback from the bandwidth partitioning that reinforces the model
used for cache partitioning.

The rest of the paper is structured as follows. The motivation for a symbiotic resource
partitioning scheme is presented in Section 2. We describe the symbiotic resource parti-
tioning approach including modeling and the iterative partitioning approach in Section
3. Our experimental setup is described in Section 4 followed by results in Section 5.
The related work is described in Section 6, followed by our conclusions in Section 7.

2 Motivation

2.1 Choice of an Observable Metric

�

�

�

�

�

��

��

��

��

��

	�

��

�

���

� �� �� �� �� �� �� 	� ��
� ���

�
��
�
�
��
�	

	
��
�
�
�
�
	
�

��
�
��
�
�	

�
��
�
�
�
�
��
��
��
��
��
�
�
��
�
�

�������	
��	����

������������������� �������������

Fig. 1. Variations of percentage of peak-
bandwidth demanded by adpcm with the last
level (L2) cache miss rates

Many emerging CMPs employ shared
last level caches which can be partitioned
among concurrently executing applica-
tions. It is not very hard to see that the
memory bandwidth requirement of an
application depends on its shared cache
allocation. To a certain extent, it is true
that an increase in the cache allocation
of an application results in a decrease in
its off-chip bandwidth requirement (un-
til the working set size completely fits in
the cache). An increased cache space al-
location can be used to retain additional
memory blocks required by the appli-
cation in the future on-chip, leading to
reduced off-chip accesses. An increased
cache space allocation also leads to re-

duction in the cache miss rate. Therefore, it is tempting (for optimization schemes that
target to reduce the off-chip memory bandwidth) to assume that a reduction in cache
miss rate is a good optimization metric to be targeted, i.e., to assume that minimizing the
last level cache miss rate would minimize the off-chip bandwidth demand and thereby
improve system performance.

280 S. Srikantaiah and M. Kandemir

Figure 1 shows a dual-axes graph that plots the percentage of the peak off-chip mem-
ory bandwidth demanded by application adpcm (from MiBench [20]) on the primary
y-axis along with the last level cache miss rates on the secondary y-axis with execution
progress on the x-axis. Two important observations can be made from this plot. Firstly,
the bandwidth demand is not uniform and the peak bandwidth demand of an application
is significantly higher than the average bandwidth demanded. The maximum demanded
bandwidth by adpcm is 70.8%, while the median bandwidth demand is 51.2% of the
peak available bandwidth. Such peaks in the bandwidth demand increase the queu-
ing delays in the memory controller. Therefore, it is important to address the peaks in
bandwidth demands along with reducing the average bandwidth demand. Secondly, and
more importantly, there is no correlation between the variations in the bandwidth de-
mand and the variations in the last level cache miss rate. To quantify the relationship
between the two metrics, we compute the statistical correlation between the bandwidth
demand (B) of an application and the last level cache miss rates (M) as:

Corr(B,M) =
Cov(B,M)
σ(B)σ(M)

,

where σ(B) and σ(M) are the standard deviations ofB andM, respectively. Cov(B,M)
is the covariance defined as:

Cov(B,M) = E(B.M) − E(B).E(M),

where E(B) and E(M) denote the expected values of B andM, respectively. The value
of Corr(B,M) ranges from -1 to 1, where 1 indicates a perfect correlation, 0 indicates
no correlation, and -1 indicates negative correlation. A small correlation between B and
M indicates that last level cache miss rates cannot be used as a measure of the reduction
in the off-chip memory bandwidth. The correlation coefficient for adpcm (from Figure
1) is 0.12 which is a small value. This small correlation can be explained by noticing
that cache miss rate is the ratio of number of cache misses to the number of accesses,
while bandwidth is only dependent on the rate at which misses occur and not the ac-
cesses. Consequently, in programs where the number of accesses per unit time varies a
lot, the correlation between miss rate and bandwidth demand is poor. Therefore, cache
miss rate is not always a good indicator of the bandwidth demands of an application.
A system’s internal state (bandwidth demand) is said to be “observable” by a metric
(like cache miss rate) if it is possible to infer (determine) the system state by measuring
the metric alone. As seen from Figure 1, cache miss rate is clearly not an observable
metric. Ideally, we can infer the extent to which we can improve the off-chip memory
bandwidth demand from a metric like “traffic inefficiency” proposed in [4]. Traffic inef-
ficiency is defined as the ratio of traffic produced by the cache (usually managed using
a policy like LRU) to that of a perfectly managed cache. However, it is hard to mea-
sure such a metric online in real systems. A more measurable and observable metric for
inferring the off-chip memory bandwidth demand (in unit time) is the average number
of last level cache misses per cycle (MPC). As the bandwidth demand is proportional
(linearly related) to the average MPC of the last level cache and the cache line size (as-
sumed to be a constant for a specified architecture), MPC can be used as an observable
metric for symbiotic resource partitioning.

SRP: Symbiotic Resource Partitioning of the Memory Hierarchy in CMPs 281

2.2 Bandwidth Awareness of State-of-the-art Cache Partitioning

Fig. 2. Variations of percentage of peak-
bandwidth demanded by patricia and FFT as the
execution progresses. The two benchmarks are
executed along with susan and basicmath on a 4
core CMP (see Section 1 for details).

A significant consequence of using non-
observable metrics in cache partition-
ing schemes is that they are oblivious
to bandwidth demand. As shown above,
focussing on improving non-observable
metrics like cache miss rate, IPC or MPI
does not necessarily translate to reduc-
ing off-chip memory bandwidth. Specif-
ically, such approaches do not address
the problem of excessive queuing delays
in the memory controllers due to mul-
tiple applications exercising the off-chip
memory bandwidth simultaneously lead-
ing to contention in the memory con-
troller queues.

Figure 2 plots the variations in percentage of peak bandwidth demanded by two
applications, patricia and FFT, for a duration of 100 Million cycles. We use a state-of-
the-art cache partitioning scheme (similar to utility cache partitioning [8]) with a total
of four applications (patricia, FFT, susan, and basicmath) running on a 4-core CMP
with our baseline configuration (details in Section 4). We plot the bandwidth demand
of only the two most bandwidth-sensitive applications for the sake of clarity along with
the total bandwidth demanded by the two applications. As we can see from Figure 2, the
total demanded bandwidth by only two of the four applications exceeds the available
peak bandwidth (100%) five times within an interval of 100 Million cycles. Note that
the maximum demand that can be satisfied is 100% and each time this is crossed, it
leads to significant queuing delays. An important observation that can be made from
this plot is that the total demanded bandwidth increases to more than 100% of the peak
available bandwidth mostly when individual application’s peaks overlap on one another.
A cache partitioning scheme that manages the cache in a bandwidth oblivious manner
can result in such simultaneous increases in the demanded bandwidth. However, a more
intelligent cache partitioning scheme can address the problem in two ways: (i) We can
displace or control the peaks in demanded bandwidth by allocating additional cache
space to an application that reduces its bandwidth demand by a greater degree; and (ii)
We can utilize bandwidth partitioning in order to guarantee additional bandwidth to
an application that is penalized in its cache allocation. Symbiotic resource partitioning
performs both the above mentioned functions with an objective of improving the overall
system performance.

3 Symbiotic Resource Partitioning

Symbiotic Resource Partitioning (SRP) determines per-application resource quotas in
terms of the last level cache allocation and the off-chip memory bandwidth allocation,
on the fly, in a transparent manner. Towards this objective, we use an online bandwidth
estimation algorithm to dynamically determine the mapping between any given cache

282 S. Srikantaiah and M. Kandemir

allocation and the corresponding application bandwidth requirement. While designing
and implementing a symbiotic model for guiding the resource partitioning search is
non-trivial, our key insight is to design a model with sufficient expressiveness to incor-
porate (i) tracking of dynamic memory access patterns, and (ii) minimal assumptions
about the inner mechanisms of the the system as a whole, i.e., not assuming the in-
teractions between shared cache partitioning and bandwidth partitioning to be a black
box. In order to achieve this, we use a bandwidth-aware cache model based on mini-
mal statistics collection in order to approximate a near-optimal allocation of resources
to applications, and an online sampling and statistical interpolation technique that re-
fines the initial model. In the following sections, we first introduce the bandwidth aware
cache model and provide an overview of how we fine-tune the model based on online
sampling (measurements of the effectiveness of the cache and bandwidth partitioning).

3.1 Bandwidth Aware Cache Model

Fig. 3. Variations in misses per cy-
cle (measure of off-chip bandwidth
demand) with allocation of different
ways of a shared cache

Partitioned shared cache lends itself to accurate
and better modeling (over an uncontrolled shared
cache) as cache behavior of each application can
be modeled independently in the absence of inter-
thread interferences. Figure 3 plots the variations
in the measured misses-per-cycle (MPC) of vari-
ous applications on our baseline processor config-
uration (details in Section 4) by varying the num-
ber of cache ways allocated to the application in
a 16-way associative shared cache. The generic
shape of the curves clearly shows the non-linear
dependence of the bandwidth demand of applica-
tions measured in MPC on the number of cache
ways allocated to it in the way-partitioned shared
cache. The saturating non-linear behavior of the
MPC of each benchmark (ϕi) observed in the plot

can be modeled as a function of the number of cache ways (ωi) allocated to it in the
following general form:

ϕi = ϕ∞
i + ϕ◦

i .e
−αi.ωi , (1)

where ϕ∞
i , ϕ◦

i , and αi are the model parameters. Specifically, ϕ∞
i is the misses per

cycle (MPC) of the application i when it is allocated maximum number of cache ways
(theoretically, ωi = ∞). αi is a parameter that roughly determines the utility of each
additional cache way that may be allocated to application i. Also, ϕ◦

i is the difference
in MPC of the application when it is allocated no cache and ϕ∞

i (MPC with maximum
cache). Note that, the model given in Eq. (1) very well captures the initial exponential
decrease and the saturating behavior of the decrease in MPC with the increase in the
number of cache ways.

It is important to emphasize that symbiotic resource partitioning can be extended to
handle any irregularities in applications response to increasing cache (ways) by increas-
ing the number of parameters in our model (by having a vector of parameters for each

SRP: Symbiotic Resource Partitioning of the Memory Hierarchy in CMPs 283

Algorithm 1: SYMBIOTIC PART(C, B, k, QoST h)

comment: Partitions C cache ways and peak bandwidth B among k applications.

//Main iteration performing symbiotic partitioning

while true

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B C Enf Ratio ← Bandwidth EnforcementInterval
Cache EnforcementInterval

for i ← 1 to B C Enf Ratio

do

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

COLLECT NEW BANDWIDTH DEMAND SAMPLES(Current partition)
RECALIBRATE MODEL(New bandwidth demand samples)
CACHE PART(C, k, model)
//minimizes the total demanded bandwidth
SLEEP(Cache EnforcementInterval)

BANDWIDTH PART(P, k, QoST h)

concave curve). The model needs periodic recalibration in order to account for phase
changes in application behavior. This recalibration involves taking new samples of the
off-chip memory bandwidth demand for each application in a few cache configurations.
We enhance the accuracy of the model through statistical regression to re-approximate
the model by interpolating between the pre-computed and experimentally gathered sam-
ple points. A recalibration is necessary only if the application access pattern changes.
If a new application is co-scheduled on the same infrastructure, we need to sample and
compute the model parameters only for the new application. We have thoroughly ana-
lyzed the accuracy of the model. The average error between the predicted MPC and the
observed MPC is less than 1.4% during multiple recalibrations through the execution
across all applications.

3.2 Iterative Bandwidth Aware Symbiotic Resource Partitioning Algorithm

Based on the per-application cache model described above, we find the resource parti-
tioning setting which gives the optimum, i.e., lowest combined bandwidth demand in
our case. The symbiotic resource partitioning approach is iterative in nature. The parti-
tioning of cache and bandwidth happens in a series of iterations as shown in
Algorithm 1. Cache partitioning at the end of one iteration influences the bandwidth
partitions in the same iteration and the bandwidth partitioning at the end of the cur-
rent iteration influences the cache partitions to be selected dynamically in the follow-
ing iteration. This iterative execution of our approach enables (i) adaptive behavior of
both bandwidth and cache partitioning approaches; and (ii) inter-adaptability between
bandwidth and cache partitioning. The statistical regression based bandwidth predictor
described in the previous section is used to perform cache and bandwidth partitioning.
Each cache partitioning iteration collects new samples of bandwidth usage for a given
cache allocation. These new samples are used to recalibrate the prediction model as
described in the previous section. The cache partitions determined are enforced for an
interval of Cache EnforcementInterval. This is lesser than the duration for which
each bandwidth partition is enforced (Bandwidth EnforcementInterval) due to the
coarser phases observed in changes in the bandwidth demands.

This brings us to the important topic of overheads involved in symbiotic resource
partitioning. There are perceivably two kinds of overheads involved with our approach:
(i) The cost of regression analysis based prediction and search of the configuration to

284 S. Srikantaiah and M. Kandemir

Table 1. Baseline configuration

Processor Cores 2 GHz, 4/8 cores with private L1 data and instruction caches
Private L1 D–Caches Direct mapped, 16KB, 64 bytes block size, 3 cycle access latency
Private L1 I–Caches Direct mapped, 16KB, 64 bytes block size, 3 cycle access latency
Shared L2 Cache 16–way set associative, 512KB per core, 64 bytes block size, 15 cycle access latency
DRAM controller on-chip; 128-entry req. buffer, FR-FCFS/open-page policy, 32-entry write data buffer, reads

prioritized over writes
DRAM chip parame-
ters

based on Micron DDR2-800 timing parameters [21]

DIMM configuration single-rank, 8 DRAM chips put together on a DIMM (dual in-line memory module) to provide
a 64-bit wide data interface to the DRAM controller

Round-trip L2 miss la-
tency

For a 64-byte cache line, uncontended: row-buffer hit: 150 cycles, closed: 200 cycles, conflict:
300 cycles

DRAM channels Scaled with cores: 1, 2 parallel lock-step 64-bit wide channels for respectively 4, 8 cores (each
channel has 6.4 GB/s peak bandwidth)

be enforced and (ii) The cost of repartitioning either the bandwidth or the cache. We
use a simple iterative search algorithm that moves towards the direction of increasing
combined utility value for all valid configurations at each iteration. To avoid reaching a
local optimum, we conduct searches from different points chosen randomly until each
search reaches an optimum. We use the best result obtained from all searches. This low
overhead method costs around 2400 cycles for our experiments, which is an insignif-
icant fraction (0.024%) of the interval at which it executes. In general, the model has
complexity that is proportional to the number of resources and number of applications.
The overheads due to system calls to modify bandwidth partitions is minimal due to
coarser granularity of bandwidth partitioning (comparable to scheduler time slice). Our
OS interface for enforcement of cache partitioning is similar to that in [9]. A detailed
discussion about timing and area overheads of the necessary hardware implementation
can be found in [9]. We would like to emphasize here that all the experimental results
discussed in Section 5 includes each of these overheads as we perform our simulations
on a full system simulator.

4 Experimental Setup

4.1 Base System Configuration

We evaluate the proposed SRP on 4-core and 8-core CMPs. The first-level instruction
cache and data cache are private to the processor core. All the cores share a level-two
data cache with LRU replacement. We simulate the complete system using Simics full-
system simulator augmented with accurate timing models similar to RUBY module
of GEMS [22]. As our study deals with the memory bandwidth, we model the mem-
ory system in detail. DRAM bank conflicts and bus queuing delays are modeled. The
DRAM parameters are modeled to resemble the Micron DDR2-800 [21]. The baseline
configuration of our target CMP and the parameters used for the simulated memory
hierarchy is as shown in Table 1.

4.2 Benchmarks

To quantitatively evaluate the effectiveness of our symbiotic resource partitioning
approach on CMPs, we used multiprogrammed workloads of programs consisting of

SRP: Symbiotic Resource Partitioning of the Memory Hierarchy in CMPs 285

Table 2. Benchmarks and their characteristics. MCPI stands for Memory Cycles Per Instruction
(the number of cycles spent waiting for memory divided by number of instructions), L2MR(%)
stands for the percentage L2 cache miss rate, and L2MPKI stands for Misses per Kilo Instructions
in the L2 cache.

Benchmark Category MCPI L2MR(%) L2MPKI Type
FFT (F) Telecomm 1.22 5.46 19.06 II
patricia (P) Network 1.17 6.5 12.38 IV
qsort (Q) Auto/Industrial 1.12 9.55 31.36 IV
crc32 (C) Telecomm 1.12 12.58 25.79 IV
adpcm (A) Telecomm 1.09 18.75 51.41 IV
bitcount (B) Auto/Industrial 1.08 7.16 4.77 III
susan (S) Auto/Industrial 0.99 6.82 7.69 III
basicmath (H) Auto/Industrial 0.96 4.02 6.64 I
mad (M) Consumer 0.94 2.8 9.29 I
lame (L) Consumer 0.91 3.45 11.86 II
pgp (G) Security 0.86 5.92 14.76 II
blowfish (W) Security 0.81 8.28 8.76 III
dijkstra (D) Network 0.74 1.31 5.30 I
jpeg (J) Consumer 0.66 2.47 6.25 I

applications (from the MiBench benchmark suite [20]) with diverse computational and
memory access characteristics. MiBench is a set of commercially representative em-
bedded programs from many different categories of application domains. All fourteen
benchmarks used in our evaluation along with the categories to which they belong and
their L2 cache and memory access characteristics are shown in Table 2. In particular,
the characteristics presented include the memory cycles per instruction (MCPI) which
is a measure of the program’s memory intensiveness, the L2 miss rate (L2MR), and
Misses per Kilo Instructions in the L2 (L2MPKI). Our applications are ordered based
on their memory intensiveness in Table 2. Further, we divide the applications into four
categories based on their (L2MR, L2MPKI) characteristics. The four types represent
I(low, low), II(low, high), III(high, low), and IV(high, high). The classification of the
applications into these four types is also shown in Table 2. We evaluate combinations
of multiprogrammed workloads running on 4-core, and 8-core CMPs. Obviously, eval-
uating each combination of 4 benchmarks on a 4-core system requires an enormous
amount of simulation time. Therefore, we have evaluated combinations of benchmarks
from different categories. The alphabet next to each application in the table indicates a
unique identifier used to represent the application in a multiprogrammed workload. In
all our experiments, all the benchmark programs use the large input set. We warm up
caches for approximately 100 Million cycles before collecting any statistics.

5 Experimental Results

5.1 Schemes for Comparison

Cache Only. In this scheme, only the shared last level cache is managed using a par-
titioning scheme similar to utility cache partitioning [8], while the bandwidth is shared
among the cores with a conventional first-ready first-come-first-serve scheme [23].

286 S. Srikantaiah and M. Kandemir

Bandwidth Only. This scheme employs an un-partitioned (shared) last level cache
while memory bandwidth management is performed using a scheme similar to stall-
time fair memory scheduler [13].

Fair Share. This scheme tries to improve the fairness among applications by managing
both the shared last level cache and the off-chip memory bandwidth. We use a cache
management scheme similar to that proposed in [7] for partitioning the L2 cache among
applications and use a fair memory bandwidth management scheme proposed in [15]
for managing the scheduling of off-chip memory accesses.

5.2 Performance Metrics

The Fair Speedup metric (FS) of a workload using a partitioning scheme is defined as
the harmonic mean of per application speedup using the scheme with respect to a base-
line equal share case. We use equal sharing of cache ways and memory bandwidth for
the base case. Fair speedup achieved by a scheme can be expressed as FS(scheme) =
N/

∑N
i=1

Execution Timeappi(scheme)

Execution Timeappi(base)
, where N is the number of applications in the

workload, i.e., the set of applications that execute together. Note that FS is an indi-
cator of the overall improvement in execution time gained across the applications. It is
also a metric of fairness.

The Weighted Speedup metric (WS) of the workload using a partitioning scheme is de-
fined as the sum of per application speedups using the scheme with respect to the baseline

equal resource share case, i.e., WS(scheme) = 1
N

∑N
i=1

Execution Timeappi(base)

Execution Timeappi(scheme)
,

where N is the number of applications in the workload.

5.3 Comparison of Fair Speedup Metric

Fig. 4. Fair speedup results for the different mixes of
applications. Each application mix is represented by
a set of four alphabets, each representing one appli-
cation (see Table 2).

Figure 4 plots the fair speedup met-
ric of various schemes with re-
spect to the Equal share partition-
ing scheme on different workloads.
We observe that in all cases, the
SRP scheme performs better than all
the other schemes. The base case
partitioning statically enforces equal
sharing of the cache and bandwidth
across applications with varying de-
mands. The Cache only scheme, on
the other hand, dynamically adapts
to varying cache demands and parti-

tions the shared last level cache of a CMP with the objective of reducing cache misses.
We can observe from the figure that application mixes with applications that have a high
cache miss rate (like PQCA, CABS, and PQCM) achieve significant benefits with the
cache only scheme. But, as shown in Figure 2, this can still lead to excessive queuing
delays in the memory controller. SRP avoids such delays and therefore performs better

SRP: Symbiotic Resource Partitioning of the Memory Hierarchy in CMPs 287

than cache only scheme. Similarly, many application mixes with applications that are
memory bandwidth intensive (like FLGD, PQCA, LGDJ, and FASH) achieve a signif-
icant benefit with the bandwidth only scheme. The remaining application mixes that
have a relatively more uniform mix of application characteristics (like HMDJ, AHMD,
FPSH, and PBLD) tend to benefit more from the fair share scheme as this scheme
manages both cache and bandwidth. However, the fair share scheme lacks coordination
between the two management schemes, and therefore, SRP outperforms the fair share
scheme in all cases. Overall, SRP achieves an average of 29.1%, 12.9%, 11.8%, and
10.3% improvement over the equal share, cache only, bandwidth only, and fair share
schemes respectively, on the fair speedup metric.

5.4 Comparison of Weighted Speedup Metric

Fig. 5. Weighted speedup results for the different
mixes of applications. Each application mix is rep-
resented by a set of four alphabets, each representing
one application (see Table 2).

Figure 5 plots the normalized
weighted speedup metric of vari-
ous schemes with respect to the
equal share partitioning scheme.
One of the important problems ad-
dressed by symbiotic resource parti-
tioning is the simultaneous increase
in bandwidth demands of multiple
applications in a multiprogrammed
workload. Therefore, as seen from
Figure 5, the maximum benefits
from SRP are obtained in case
of FPSH, which is constituted of

benchmarks that are relatively more bandwidth sensitive. We observed that this is due to
the increased number of conflicting (simultaneous) increases in bandwidth demand by
the applications involved, which SRP is able to address that no other scheme can. An-
other important observation from Figure 5 is that the fair share scheme does not even
perform as well as processor partitioning or cache partitioning alone in some cases,
while SRP outperforms all the other schemes. Therefore, it is not only important to
adopt an integrated cache and memory bandwidth partitioning scheme in order to adapt
to changing demands of applications, but also to have a symbiosis between them. Over-
all, SRP achieves an average of 37.4%, 15.6%, 14.1%, and 12.9% improvement over
the equal share, cache only, bandwidth only, and fair share schemes respectively, on the
weighted speedup metric.

5.5 Discussion

The results so far clearly show that our approach is able to improve overall system
performance. To study the reason for this in more detail, we also collected some more
statistics. As we observed in Section 2 (Figure 2), the total demanded bandwidth by
only two of the four applications (in the FPSH workload) exceeded the available peak
bandwidth (100%) five times within an interval of 100 Million cycles when executed

288 S. Srikantaiah and M. Kandemir

with a state-of-the-art cache partitioning scheme. The maximum demand that can be
satisfied is 100% and each time this is crossed, it leads to significant queuing delays.

Fig. 6. Variations in percentage of peak-
bandwidth demanded by patricia and FFT
as the execution progresses with our symbi-
otic resource partitioning scheme. The two
benchmarks are executed along with susan and
basicmath on the baseline 4 core CMP (see
Section 1).

Figure 6 plots the variations in per-
centage of peak-bandwidth demanded by
patricia and FFT as the execution pro-
gresses with our symbiotic resource par-
titioning scheme. In order to make the
comparison easier, we plot the same two
applications as in Figure 2. Note that, the
bandwidth demand of the other two ap-
plications (susan and basicmath) are neg-
ligible in comparison in both cases. As
can be observed from Figure 6, the to-
tal demanded bandwidth by patricia and
FFT is always below the peak available
bandwidth. The bandwidth-aware nature
of cache partitioning performed by sym-
biotic resource partitioning reduces the
total bandwidth demanded by the appli-

cations. For instance, careful observation of the behavior of applications in the interval
60-70 Million cycles in Figure 2 and Figure 6 shows that, the peaks of the bandwidth
demand of the two applications do not overlap. Although in some instances, the band-
width demand of one application increases it results in a much larger decrease in the
bandwidth demand of the other. This results in overall reduction in the queuing delays
faced by the application resulting in an improvement in overall system performance.

5.6 Sensitivity Analysis

Sensitivity to enforcement interval. Recall that both cache partitioning and bandwidth
partitioning are enforced dynamically for a duration of EnforcementInterval. This in-
terval parameter decides the frequency at which partitions are reconfigured. We studied
the impact of varying this parameter from its default value of 10 Million cycles used for
cache partitioning and 50 Million cycles used for bandwidth partitioning in all our re-
sults. The results of varying the EnforcementInterval for the bandwidth partitioning of
the workloads are presented in Figure 7(a). It is observed that we obtain better improve-
ments as we reduce the reconfiguration interval from 100 Million to 50 Million cycles,
as seen from Figure 7(a), as this provides a finer grain control on partitioning. However,
further decreasing the interval (to 10 Million cycles) does not lead to additional bene-
fits due to overheads involved in repeated reconfigurations. In a similar manner, Figure
7(b) plots results of varying the EnforcementInterval for cache partitioning of the same
application mixes in the range of 1 Million - 100 Million cycles. It can be observed that
the best trade-offs between repartitioning overheads and performance improvements are
achieved at 10 Million cycles interval.

Sensitivity to number of cores. The ability of symbiotic resource partitioning ap-
proach to scale to higher number of cores and larger caches (higher associativity for a

SRP: Symbiotic Resource Partitioning of the Memory Hierarchy in CMPs 289

����

����

����

����

����

����

����

����

����

��
��
��
�
	
	

�
�

���	 ��	
�	 ��	

(a) Sensitivity to en-
forcement interval of
bandwidth partitioning

����

����

����

����

����

����

����

����

����

��
��
��
�
	
	

�
�

���	 ��	 ��	 �	

(b) Sensitivity to en-
forcement interval of
cache partitioning

����

����

����

����

����

����

��	�

��
��
��
�
	
	

�
�

�������� ������������� �������� ���

(c) Improvements in the
fair speedup metric with
8 core CMP.

Fig. 7. Results of sensitivity analysis

way partitioned cache) is critical for its success and needs to be evaluated. Note that
the per-application model used in SRP is highly scalable and can easily scale to higher
number of processors and cache sizes. We evaluated the performance of our SRP ap-
proach with a 8 core system against that obtained on our default configuration of 4 cores
(see Table 1). The results with respect to fair speedup metric are plotted in Figure 7(c).
Note that the fair speedup metric is computed with equal partitioning on the respective
systems. We observe that SRP performs better with respect to the equal share case on
an 8 core CMP than that achieved on an 4 core CMP. On an average, in the 8 core case,
we see an improvement of 28.8% on the fair speedup metric over the equal share case
as opposed to a 29.1% improvement obtained averaged across the workloads in the 4
core case.

6 Related Work

Recently, many researchers have explored CMP cache partitioning designs that attempt
to alleviate inter-thread conflicts at the shared last level cache [3], [5], [7], [8], [9], [10],
[17], [24]. Suh et al. [10] proposed a dynamic partitioning technique that partitions
the last level cache at the granularity of cache ways to improve system throughput.
Later, Qureshi and Patt [8] proposed a utility based cache partitioning scheme where
the share received by an application was proportional to the utility rather than its de-
mand. Our approach can be viewed as a utility based approach, where the relative util-
ity of cache/bandwidth is directly measured based on the feedback from performance
counters after bandwidth partitioning. Chang and Sohi [5] have proposed cooperative
cache partitioning, wherein they use multiple time sharing partitions to resolve cache
contention. They use similar metrics as ours (fair speedup and QoS metric) to quantify
the benefits from their approach. All these studies are oblivious to bandwidth partition-
ing and thereby susceptible to suffering from excessive queuing delays due to multiple
applications simultaneously exercising the off-chip memory bandwidth.

Nesbit et al. [15] showed that the commonly used FR-FCFS memory scheduling can
lead to QoS and fairness problems if used in the context of multiprogrammed work-
loads, and propose the Fair Queueing Memory Scheduler (FQMS) to address these
limitations. FQMS partitions a available off-chip DRAM bandwidth of a CMP among

290 S. Srikantaiah and M. Kandemir

applications by providing an OS-specified minimum service guarantee to each thread.
Policies for allocating the off-chip bandwidth to meet system level performance ob-
jectives are not explored, and allocation decisions are left to the OS. Mutlu et al. [13]
proposed stall time fair memory scheduling (STFM), a technique that provides QoS
to applications sharing the DRAM by equalizing the slowdowns that are observed by
equal-priority threads. Later, the same authors improve upon STFM via batch schedul-
ing [14], in which groups of outstanding DRAM requests from a given thread form the
fundamental unit of scheduling. Neither of these works addresses the dynamic partition-
ing of off-chip bandwidth, and similar to FQMS, they leave allocation decisions to the
OS. None of these schemes consider the impact of cache partitioning on the bandwidth
demand of applications.

Bitirgen et al. [18] propose a framework that manages multiple shared CMP re-
sources in a coordinated fashion to enforce higher-level performance objectives. Re-
source allocation is modeled as a machine learning problem and it treats the relationship
between cache partitioning and off-chip memory bandwidth as a black box. In contrast,
SRP exploits this relationship by modeling it to reduce excessive queuing delays in the
memory controller.

7 Conclusion

The proposed symbiotic resource partitioning achieves significant improvements over
partitioning of either the shared L2 cache or the off-chip bandwidth in isolation. We pro-
posed a statistical regression based prediction model to predict the bandwidth demand
of applications and techniques to find the most suitable bandwidth and cache partitions
to reduce the total bandwidth demand. Extensive simulations using a full system simu-
lator and a set of diverse multiprogrammed workloads show that our symbiotic resource
partitioning approach performs, on an average, 28.8% and 29.1% better than equal par-
titioning on the fair speedup metric on 4-core and 8-core CMP systems respectively.

References

1. Chandra, D., Guo, F., Kim, S., Solihin, Y.: Predicting inter-thread cache contention on a
chip multi-processor architecture. In: Proc. of the 11th International Symposium on High-
Performance Computer Architecture (2005)

2. Srikantaiah, S., Kandemir, M., Irwin, M.J.: Adaptive set pinning: managing shared caches in
chip multiprocessors. In: Proc. of the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems (2008)

3. Hsu, L.R., Reinhardt, S.K., Iyer, R., Makineni, S.: Communist, utilitarian, and capitalist
cache policies on CMPs: caches as a shared resource. In: Proc. of the 15th International
Conference on Parallel Architectures and Compilation Techniques (2006)

4. Burger, D., Goodman, J.R., Kägi, A.: Memory bandwidth limitations of future microproces-
sors. In: Proceedings of the International Symposium on Computer Architecture (1996)

5. Chang, J., Sohi, G.S.: Cooperative cache partitioning for chip multiprocessors. In: Proc. of
the 21st Annual International Conference on Supercomputing (2007)

6. Guo, F., Solihin, Y., Zhao, L., Iyer, R.: A framework for providing quality of service in chip
multi-processors. In: Proceedings of the 40th Annual IEEE/ACM International Symposium
on Microarchitecture (2007)

SRP: Symbiotic Resource Partitioning of the Memory Hierarchy in CMPs 291

7. Kim, S., Chandra, D., Solihin, Y.: Fair cache sharing and partitioning in a chip multiprocessor
architecture. In: Proc. of the 13th International Conference on Parallel Architectures and
Compilation Techniques (2004)

8. Qureshi, M.K., Patt, Y.N.: Utility-based cache partitioning: A low-overhead, high-
performance, runtime mechanism to partition shared caches. In: Proc. of the 39th Annual
International Symposium on Microarchitecture (2006)

9. Rafique, N., Lim, W.T., Thottethodi, M.: Architectural support for operating system-driven
CMP cache management. In: Proc. of the 15th International Conference on Parallel Archi-
tectures and Compilation Techniques (2006)

10. Suh, G.E., Rudolph, L., Devadas, S.: Dynamic partitioning of shared cache memory. J. Su-
percomput. 28(1) (2004)

11. Ipek, E., Mutlu, O., Martı́nez, J.F., Caruana, R.: Self-optimizing memory controllers: A rein-
forcement learning approach. In: Proceedings of the 35th International Symposium on Com-
puter Architecture (2008)

12. Lee, C.J., Mutlu, O., Narasiman, V., Patt, Y.N.: Prefetch-aware DRAM controllers. In: Pro-
ceedings of the International Symposium on Microarchitecture (2008)

13. Mutlu, O., Moscibroda, T.: Stall-time fair memory access scheduling for chip multiproces-
sors. In: Proceedings of the 40th Annual IEEE/ACM International Symposium on Microar-
chitecture (2007)

14. Mutlu, O., Moscibroda, T.: Parallelism-aware batch scheduling: Enhancing both performance
and fairness of shared DRAM systems. In: Proceedings of the 35th International Symposium
on Computer Architecture (2008)

15. Nesbit, K.J., Aggarwal, N., Laudon, J., Smith, J.E.: Fair queuing memory systems. In: Pro-
ceedings of the International Symposium on Microarchitecture (2006)

16. Rafique, N., Lim, W.T., Thottethodi, M.: Effective management of DRAM bandwidth in
multicore processors. In: Proc. of the 16th International Conference on Parallel Architecture
and Compilation Techniques (2007)

17. Iyer, R., Zhao, L., Guo, F., Illikkal, R., Makineni, S., Newell, D., Solihin, Y., Hsu, L., Rein-
hardt, S.: QoS policies and architecture for cache/memory in CMP platforms. SIGMETRICS
Perform. Eval. Rev. 35(1) (2007)

18. Bitirgen, R., Ipek, E., Martinez, J.F.: Coordinated management of multiple interacting re-
sources in chip multiprocessors: A machine learning approach. In: Proceedings of the Inter-
national Symposium on Microarchitecture (2008)

19. Alameldeen, A.R., Wood, D.A.: Ipc considered harmful for multiprocessor workloads. IEEE
Micro 26(4) (2006)

20. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.: Mibench:
A free, commercially representative embedded benchmark suite. In: Proceedings of the IEEE
International Workshop on Workload Characterization (2001)

21. Micron: 1GB DDR2 SDRAM component: MT47H128M8HQ-25 (May 2007),
http://download.micron.com/pdf/datasheets/
dram/ddr2/1GbDDR2.pdf

22. Martin, M.M.K., Sorin, D.J., Beckmann, B.M., Marty, M.R., Xu, M., Alameldeen, A.R.,
Moore, K.E., Hill, M.D., Wood, D.A.: Multifacet’s general execution-driven multiprocessor
simulator (gems) toolset. SIGARCH Comput. Archit. News 33(4) (2005)

23. Rixner, S., Dally, W.J., Kapasi, U.J., Mattson, P., Owens, J.D.: Memory access scheduling.
SIGARCH Comput. Archit. News 28(2) (2000)

24. Iyer, R.: CQoS: a framework for enabling QoS in shared caches of CMP platforms. In: Proc.
of the 18th annual International Conference on Supercomputing (2004)

http://download.micron.com/pdf/datasheets/dram/ddr2/1GbDDR2.pdf
http://download.micron.com/pdf/datasheets/dram/ddr2/1GbDDR2.pdf

DIEF: An Accurate Interference Feedback
Mechanism for Chip Multiprocessor Memory

Systems

Magnus Jahre, Marius Grannaes, and Lasse Natvig

Norwegian University of Science and Technology

Abstract. Chip Multi-Processors (CMPs) commonly share hardware-
controlled on-chip units that are unaware that memory requests are is-
sued by independent processors. Consequently, the resources a process
receives will vary depending on the behavior of the processes it is co-
scheduled with. Resource allocation techniques can avoid this problem
if they are provided with an accurate interference estimate. Our Dy-
namic Interference Estimation Framework (DIEF) provides this service
by dynamically estimating the latency a process would experience with
exclusive access to all hardware-controlled, shared resources. Since the
total interference latency is the sum of the interference latency in each
shared unit, the system designer can choose estimation techniques to
achieve the desired accuracy/complexity trade-off. In this work, we pro-
vide high-accuracy estimation techniques for the on-chip interconnect,
shared cache and memory bus. This DIEF implementation has an av-
erage relative estimate error between -0.4% and 4.7% and a standard
deviation between 2.4% and 5.8%.

1 Introduction

Chip Multi-Processors (CMPs) commonly share parts of the memory system.
While some CMPs have private caches and only share off-chip bandwidth, other
CMPs share an on-chip interconnect and cache space between cores. This re-
source sharing is often beneficial since it can improve resource utilization com-
pared to a private design and facilitates efficient inter-core communication. How-
ever, sharing may also adversely affect performance when the system resources
are insufficient for co-scheduled processes. This is due to the use of rudimen-
tary hardware policies like First Come First Served (FCFS) and Least Recently
Used (LRU) which were primarily designed for use in single-core processors.
These policies do not provide predictable resource allocations because processes
with higher access frequencies receive a larger part of the shared resource [1,2].
Since CMPs often run multiprogrammed workloads, the performance of a single
process can be heavily influenced by the processes it is co-scheduled with.

Resource allocation techniques that attempt to alleviate interference prob-
lems, commonly aim their effort at improving fairness and/or Quality of Service
(QoS). A memory system is fair if the performance reduction due to interfer-
ence between threads is distributed across all processes in proportion to their

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 292–306, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

DIEF: An Accurate Interference Feedback Mechanism 293

priorities [3]. QoS is provided if it is possible to put a limit on the maximum
slowdown a process can experience when co-scheduled with any other process [4].
Nesbit et al. [5] propose a high-level architecture for resource allocation systems
which divide the system into three independent, cooperating modules. Here, the
feedback mechanisms provide measurements of the current resource utilization
and/or the performance of the running programs. Then, the allocation policy
decides on a new and improved resource allocation and implements this with
the allocation mechanisms. Since resource allocations do not change very often,
allocation policies should be implemented in software to achieve flexibility. On
the other hand, allocation and feedback mechanisms that interact closely with
the hardware resources, must be implemented in hardware for efficiency.

In this work, we provide the first detailed implementation of a unified feedback
mechanism for the hardware-managed, shared memory system called the Dy-
namic Interference Estimation Framework (DIEF). DIEF dynamically estimates
the average memory latency a process would experience if it had exclusive access
to all shared resources. In addition, DIEF measures the actual shared memory
latency to establish the relative latency impact from sharing effects. Choosing
average memory latency as the interference metric has the advantage that the
total interference latency is the sum of the interference latency of each shared
unit. Consequently, the system designer can choose interference estimation tech-
niques that achieve the appropriate accuracy/complexity trade-off. Since pro-
cessing cores can hide latency, an allocation policy needs a performance-oriented
feedback mechanism to complement DIEF which can be provided by well-known
techniques like performance counters [6].

In this work, we aim our efforts at providing an accurate DIEF implementa-
tion. To accomplish this, we develop interference measurement mechanisms for
ring and crossbar interconnects, shared caches and a multi-channel DDR2 mem-
ory bus. These mechanisms are tested on a variety of CMP architectures with
4, 8 or 16 cores, 2 or 3 cache levels and 1, 2 or 4 memory bus channels. DIEF is
very accurate for these architectures and has an average relative estimate error
between -0.4% and 4.7% and a standard deviation between 2.4% and 5.8%.

2 Background

2.1 Interference Definition and Metrics

When evaluating CMP memory system fairness, it is convenient to compare
to a baseline where interference does not occur. One way of creating such a
baseline is to let the process run in one processing core of the CMP and leave
the remaining cores idle [7,8]. Consequently, the process has exclusive access to
all shared resources, and we will refer to this configuration as the private mode.
Conversely, all processing cores are active and the processes compete for shared
resources in the shared mode. We refer to a baseline created in this way as a
Single Program Baseline (SPB).

It is also possible to create a fairness baseline by statically partitioning all
shared resources equally among the processors [4]. We refer to this baseline type

294 M. Jahre, M. Grannaes, and L. Natvig

as a Multiprogrammed Baseline (MPB). The main advantage of MPB is that it
exists in the shared mode. Consequently, it is easy to ensure that a fairness tech-
nique does not perform worse than the baseline. However, MPB also has three
major disadvantages. Firstly, it only accounts for interference in the resources
that have been statically and equally partitioned. This can lead to erroneous
results if important interference sources are missed. Secondly, static and equal
division of DRAM bandwidth does not lead to a static and equal division of
latency [1]. The reason is that the latency of a request depends heavily on which
requests was issued before it. Consequently, it may be difficult to implement a
good static and equal sharing baseline for the memory interface. Finally, the
relationship between performance and resource allocation is rarely linear [2].
Consequently, a process may experience severe performance degradation in the
statically shared baseline. If a fairness technique then removes this degradation,
one might be lead to believe that the technique also improves throughput when
the degradation in fact was due to the baseline’s suboptimal resource allocation.

These problems can be avoided by using the Single Program Baseline (SPB).
Unfortunately, SPB does not exist in the shared mode. By definition, it requires
that the performance in the shared mode is compared to the interference-free
private mode. In this work, we provide a feedback mechanism that estimates
SPB latency at runtime. We define the interference Ii experienced by a request i
as the difference between the shared mode latency Li and private mode latency
Li (i.e. Ii = Li−Li). This definition is an extension of the interference definition
by Mutlu and Moscibroda [1].

The shared mode estimate of the private mode latency L̂i may be different
from the actual private mode latency Li. Consequently, it is important that a
feedback mechanism minimizes the difference between these values. We define
the measurement error for request i to be Ei = L̂i − Li. Since the interference
estimate Î is related to the private mode latency estimate L̂ by the formula
L̂i = Li − Îi, the feedback mechanism can choose to estimate either L̂i or Îi

and compute the other. A dynamic resource allocation technique will use L̂ to
establish the relative impact of interference on the different running processes.
Consequently, the impact of the error depends on the shared mode latency L. To
account for this we define the relative error Ei = Ei/Li. We aggregate multiple
errors by using the arithmetic mean, standard deviation and root mean squared
error of E and E .

2.2 Modern Memory Bus Interfaces

Memory bus scheduling is a challenging problem due to the 3D structure of
DRAM consisting of rows, columns and banks. Commonly, a DRAM read trans-
action consists of first sending the row address, then the column address and
finally receiving the data. When a row is accessed, its contents are stored in a
register known as the row buffer, and a row is often referred to as a page. If the
row has to be activated before it can be read, the access is referred to as a row
miss or page miss. It is possible to carry out repeated column accesses to an open
page, called row hits or page hits. This is a great advantage as the latency of a

DIEF: An Accurate Interference Feedback Mechanism 295

Table 1. Memory System Latency Taxonomy

Module Type Description SM PM Int.

In
te

rc
o
n
n
e
c
t Entry (ie)

The number of cycles a request is kept in the private
cache MSHR before it is accepted into an interconnect
queue

Lie
i Lie

i I ie
i

Queue (iq) The number of cycles spent in the interconnect queue Liq
i Liq

i I iq
i

Transfer (it) The number of cycles spent on transferring the request
from source to destination Lit

i Lit
i I it

i

Delivery (id)
The number of cycles a request was delayed because a
shared cache bank could not accept requests due to in-
sufficient buffer space

Lid
i Lid

i I id
i

S
h
a
re

d
C

a
ch

e

Capacity (cc)
The number of cycles used to service a miss that would
not occur if the process had exclusive access to the shared
cache

- - Icc
i

M
e
m

o
ry

C
o
n
tr

o
ll
e
r Entry (me)

The number of cycles a request was delayed in a shared
cache MSHR before it was accepted into a memory con-
troller queue

Lme
i Lme

i Ime
i

Queue (mq) The number of cycles a request spent in the memory
controller queue Lmq

i Lmq
i Imq

i

Transfer (mt) The number of cycles the request occupied the memory
data bus Lmt

i Lmt
i Imt

i

S
h
a
re

d
M

e
m

o
ry

S
y
st

e
m

Total The total number of cycles a request uses through the
entire hardware-controlled, shared memory system Li Li Ii

row hit is much lower than the latency of a row miss. The situation where two
consecutive requests access the same bank but different rows is known as a row
conflict and is very expensive in terms of latency. DRAM accesses are pipelined,
so there are no idle cycles on the memory bus if the next column command is
sent while the data transfer is in progress. Furthermore, command accesses to
one bank can be overlapped with data transfers from a different bank.

Rixner et al. [9] proposed the First Ready - First Come First Served (FR-
FCFS) algorithm for scheduling DRAM requests. Here, memory requests are
reordered to achieve high page hit rates which result in increased memory bus
utilization. This algorithm prioritizes requests according to three rules: prioritize
ready commands over commands that are not ready, prioritize column commands
over other commands and prioritize the oldest request over younger requests.

3 Shared Memory System Latency Taxonomy

The main advantage of measuring interference in terms of average round trip
latency through the shared memory system is that the total interference of a
single request is the sum of the interference it experiences in each of the shared

296 M. Jahre, M. Grannaes, and L. Natvig

units. Consequently, it is possible to independently implement and validate the
feedback mechanism for each source of interference. In this work, we develop a
comprehensive view of memory system interference which is shown in Table 1.

The hardware-controlled, shared memory system commonly consists of three
types of units. Firstly, an interconnect is needed to connect the private caches
to one or more shared caches. Secondly, there can be one or more levels of
shared caches with varying sharing degrees. Finally, off-chip bandwidth can be
shared between cores. Although the organization of these shared units will vary
from CMP to CMP, we believe that this model captures the essential types of
interference in the hardware-controlled, shared memory system.

Within these units, the shared resources are either bandwidth or capacity.
In the memory bus and interconnects, bandwidth is the main shared resource.
However, memory requests are kept in finite buffers while waiting for access to
the shared transmission channels. Consequently, there are also different forms
of capacity interference in these units. We divide the latency through the units
where bandwidth is the main shared resource into four parts. The entry latency
is the latency the request experiences while waiting to be accepted into the input
queue. Then, the queue latency is the number of cycles it spends in the queue
before it is granted access to the resource. The next latency type is the transfer
latency which is the number of cycles it takes to transfer the request from source
to destination. Finally, it might not be possible to deliver the request if the
destination lacks sufficient buffer space. In this case, the request experiences an
additional delivery latency. There is no delivery latency in the memory bus since
the last level cache must be able to receive responses to avoid deadlocks.

To provide system-wide, latency-based interference measurements, the latency
cost of shared cache interference misses must be established. This problem can
be solved by observing that interference misses are associated with the latency
penalty of retrieving the data from the next cache level or memory. If we assume
one level of shared caches, the cache capacity interference experienced by request
i is the sum of request i’s memory bus entry, queue and transfer latency (Icc

i =
Lme

i +Lmq
i +Lmt

i). For convenience, we use the first letter of the shared unit (i.e.
i, c or m) and the first letter of the latency type (i.e. e, q, t, d or c) to produce
a two-letter identifier (e.g. interconnect entry is ie).

4 The Dynamic Interference Estimation Framework

The purpose of a dynamic interference estimation technique is to provide a reli-
able measure of how memory system interference affects the running processes. In
this work, we propose the Dynamic Interference Estimation Framework (DIEF)
that continuously monitors all shared units to provide accurate interference es-
timates. Figure 1 shows DIEF’s high-level architecture where each shared unit
is augmented with extra functionality (not on the unit’s critical path) that mea-
sures interference and/or latencies at runtime. These measurements are contin-
uously communicated to the Interference Manager which uses it to measure the
shared mode average round trip latency L and create an estimate L̂ of the private

DIEF: An Accurate Interference Feedback Mechanism 297

CPU 0 L1

CPU 1 L1

CPU 2 L1

CPU 3 L1

L2

L2

L2

L2 Bank 3

Interference Manager

R
ing Interconnect

M
em

ory
C

ontroller 0
M

em
ory

C
ontroller 1

Bank 2

Bank 1

Bank 0

Shared and Private
Average Round Trip

Latencies 4

4

Shared L3Private L2

Fig. 1. Dynamic Interference Esti-
mation Framework (DIEF) Archi-
tecture

Bank 0

Oldest Request
Pointer 0

Last Scheduled
Pointer 0

Bank 1

Bank 7

...

Bank 0

Bank 1

Bank 7

...

...

Open Page Emulation Registers
CPU 0 CPU n

Memory Latency Estimation Buffers (MLEB)

CPU 0

Oldest Request
Pointer 1

Last Scheduled
Pointer 1CPU 1

Oldest Request
Pointer n

Last Scheduled
Pointer nCPU n

...

... ...
Memory Latency Estimation Entry

64 Entries

Oldest Valid
Pointer 0

Oldest Valid
Pointer 1

...

...

... Oldest Valid
Pointer n

Head (6) Previous (6)Next (6)

S (1) L (1)

Address (42)

W (1)

Latency (3)

P (1) V (1)
Storage: 68 bits

6 bits 6 bits 6 bits

Total Storage per CPU: 4706 bits

42 bits 42 bits

Fig. 2. Private Memory Bus Emulation

mode latency L. Since memory bus interference is the interference type with the
largest impact, most of our efforts are directed at estimating this latency type
[10]. The operating system must inform DIEF of context switches to ensure that
the measurements are not polluted by the actions of other processes. In the case
of multi-threaded applications, the operating system also needs to instruct DIEF
to treat the application’s set of processing cores as one entity. Without loss of
generality, we consider the situation where each core runs one single-threaded
application in the remainder of this work.

4.1 Estimating Private Memory Bus Latency (L̂mt, L̂mq and L̂me)

Estimating Transfer and Queue Latencies (L̂mt and L̂mq). Modern mem-
ory bus scheduling algorithms reorder requests to improvememory bus throughput
[9]. Therefore, the execution order of memory requests depend on the memory bus
queue contents and canbe verydifferent in the shared and private modes. However,
the arrival order of requests is very similar. Consequently, it is possible to estimate
the private mode execution order by emulating the private scheduling algorithm on
the shared mode requests. Then, the private execution order and bank state deter-
mine the transfer latency estimate L̂mt. The queue latency L̂mq can be estimated
by following the private execution order and accumulating transfer latencies.

Figure 2 shows the hardware support needed to emulate a private memory
bus. This hardware is not on the critical path and consists of n Memory Latency
Estimation Buffers (MLEB) (one for each processor). Each time the memory
controller receives a request from a certain CPU, it is added to the corresponding
MLEB. When the request is serviced by the memory controller, the state stored
in this buffer is used to estimate its private mode queue latency L̂mq and transfer
latency L̂mt. This calculation can be allowed to take on the order of tens of
processor cycles since the memory bus is commonly clocked at a much lower
frequency than the processing core.

298 M. Jahre, M. Grannaes, and L. Natvig

Table 2. Status Bits

S Transfer latency estimation L̂mt is valid

L L̂mq and L̂mt has been computed

W The request is a write

P Entry is private mode only

V Entry is valid

Table 3. L̂mt Estimates

Next State

Prev. State Read
Bank i

Write
Bank i

Hit (any bank) 40 40

Miss (any bank) 120 110

Conflict Read Bank i 200 190

Conflict Write Bank i 260 250

Conflict Read Bank j 170 160

Conflict Write Bank j 260 250

Each estimation entry has a head pointer, a next pointer and a previous
pointer. The previous/next pointers store the private execution order by point-
ing to the element that was scheduled before/after the request in the private
mode. The head pointer points to the estimation entry that was the next to be
serviced when the request was added, and it is used to estimate queue latency.
Furthermore, each entry contains five status bits: S, L, W , P and V . These are
explained in Table 2. Finally, the Oldest Valid Pointer points to the oldest valid
MLEB entry, the Oldest Request Pointer points to the oldest non-serviced entry
and the Last Scheduled Pointer points to the most recently scheduled entry.

To improve estimation accuracy, we add the Open Page Emulation Registers.
These where originally proposed by Mutlu and Moscibroda [1] and are used to
estimate whether a request is a page hit, miss or conflict. Here, each register
holds the address of the last accessed memory page. These registers are also
used to schedule requests according to the FR-FCFS scheduling algorithm [9].

Generally, there are more queued requests in the MLEB than in the private
mode memory bus queue since competition for the bus is more severe in the
shared mode. This can result in overestimating the number of page hits if the
process has sufficient page locality. To account for this, we add a parameter called
the Page Locality Factor. This factor determines the number of estimation entries
that should be examined while looking for a page hit. Setting the page locality
factor to 1 assumes no reordering in the private memory system.

If we ignore the effects of shared cache interference, the requests that reach
the memory bus are the ones that are not filtered out by the on-chip caches.
Since we use the same cache hierarchy in the shared configuration and the
baseline, the order of the memory request are nearly identical but their tim-
ing will be different. However, there may be differences resulting from the in-
terleaving of writebacks and reads since the memory controller may reorder
requests differently in the two configurations. When cache interference is taken
into account, the request stream can be very different. Consequently, the shared
cache interference technique should identify both private- and shared-only re-
quests and communicate this information to the memory bus interference
technique.

Finally, we need to produce estimates of the shared mode queue latency. This
can be accomplished by adding a register for all queue entries and increment-
ing it with the memory bus transfer latency every time a request is finished.

DIEF: An Accurate Interference Feedback Mechanism 299

Algorithm 1. Private Memory Bus Queue and Transfer Latency Estimation
procedure estimatePrivateLatencies(Memory request r)

while r not serviced do
Emulate FR-FCFS scheduling of elements within horizon given by the Page Locality Factor

Initialize request pointer c to point to head(r) and queue latency L̂mq
r to 0

while c is not equal to r and c is scheduled before r do
Increment queue latency L̂mq

r with the transfer latency L̂mt
c of request c

Update c by following the next pointer of c

Invalidate any entries that are no longer needed to compute queue and transfer latencies
return transfer latency L̂mt

r and queue latency L̂mq
r of request r

Arrival Order
(Buffer Order)
Head Pointer
Execution Order
(Next/Previous Pointers)

B
120

D
-

E
40

C
40

A
120

Oldest Request Last Scheduled

O
ldest V

alid

Fig. 3. Memory Bus Queue and Transfer Latency Estimation Example

Alternatively, a request can be assigned a timestamp on arrival and this times-
tamp can then be compared to the value of a counter when the request is issued.

The Latency Estimation Algorithm. Algorithm 1 summarizes the estimation al-
gorithm for the private memory bus transfer latency L̂mt and queue latency L̂mq.
We illustrate the estimation procedure with the example in Figure 3. There are
five queued requests, and request E has just been serviced by the shared mode
memory controller. To determine the transfer latency L̂mt

E of E, the estimation
algorithm emulates scheduling requests within the limit given by the Page Lo-
cality Factor. In this example, request A is serviced first and its transfer latency
is estimated. Then, request C is serviced before B since it is a private mode page
hit. Finally, request E is serviced before D since it accesses the same page as B
which gives L̂mt

E = 40. Then, we can estimate L̂mq
E by following E’s head pointer

to A and accumulating the transfer latencies of all elements between A and E
in the private execution order. Consequently, the queue latency estimate for E
is L̂mq

E = L̂mt
A + L̂mt

C + L̂mt
B = 120 + 40 + 120.

There are a number of possible transfer latencies due to different active pages,
overlapping of commands with data transfers from other banks and timing con-
straints regarding when a bank can be precharged. However, we observed that
only a small number of these possible latencies occur frequently in the private
mode. Consequently, it is possible to store the most common transfer latencies
in a lookup table. Then, the latency is determined by whether the previous and
next requests are to the same bank and whether they are reads or writes. This
lookup table is created at design time by analyzing the private mode access be-
havior for the chosen memory bus type. Table 3 shows the lookup table of the
DDR2 memory bus used in this work.

A private-only entry (P bit set) can be invalidated when its latency is not
needed to compute the queue latency of any other element. For shared mode

300 M. Jahre, M. Grannaes, and L. Natvig

entries, the latency of the entry must also be computed before it can be deleted.
In addition, we require that the most recently scheduled element is not invali-
dated. The deletion algorithm is based on the observation that the head pointer
of the oldest undeletable element e in the arrival order will point to the oldest
head element h in the arrival order. Consequently, we know that all elements
after h in the execution order are needed to compute the queue latency for e.
If an entry has been removed due to insufficient buffer space, we use the last
computed transfer and queue latency.

Estimating Memory Bus Entry Interference Îme. When the memory bus
queue becomes full, the memory controller blocks and the requests remain in
the shared cache MSHRs. We account for this interference by observing that the
maximum number of requests a processor core can issue simultaneously is the
sum of MSHRs and writeback buffers in the last-level private cache. Furthermore,
the shared buffers will be dimensioned to handle roughly c times this number of
requests (c = number of cores) since too few buffers will lead to frequent perfor-
mance bottlenecks. The effect of this observation is that a single core will not be
able to fill the buffers in the shared part of the memory system. Consequently,
any shared mode latency due to memory bus blocking is interference.

4.2 Estimating Cache Capacity Interference Îcc

To identify shared cache interference misses, we use an Auxiliary Tag Directory
(ATD) [11,12] per core. Each time a request is received in the shared cache, the
request is inserted into the ATD belonging to the processor that sent the request.
Consequently, the ATD contains the tags the processor would have had in the
shared cache if it was running alone. On each access, we compare the output
from the ATD with the output from the actual cache. If the request is a hit in
the ATD and a miss in the real cache, we store a timestamp and tag the request
as a shared mode only cache miss. This bit is used to keep the request out of
the memory bus private mode latency estimation. When the request has been
serviced in the memory bus and returned to the cache, we retrieve its latency
and communicate it to the Interference Manager as cache capacity interference.
We also record if an ATD entry would have been written to in the private mode.
In this case, a replacement would have triggered a writeback in the private mode.
When this happens, we insert a private mode only writeback request into the
memory bus private mode latency estimation.

In this work, our aim is to accurately measure interference. Consequently, we
are willing to invest a fair bit of area into making the estimates accurate. We
use CACTI version 5.3 [13] to establish that the size of each ATD is roughly 4%
of the shared cache area. Qureshi et al. [11] showed that sampling as few as 16
to 32 sets can be sufficient to represent cache behavior. With 32 sets, the area
of each ATD is reduced to around 0.01 % of the shared cache area. In DIEF,
using set sampling is not straight forward since the memory bus interference
estimation mechanism needs to know which misses are shared-only interference
misses. This problem can likely be avoided at the cost of reduced accuracy by

DIEF: An Accurate Interference Feedback Mechanism 301

Table 4. CMP Models

Interconnect #CPUs Process Private Cache Shared Cache Memory Bus

Crossbar, 8/16/30
cycles end-to-end
transfer latency, 32
entry queue

4 65 nm 2-way 64KB L1
Data, 2-way 64KB
L1 Inst.

16-way 8MB L2 DDR2-800,
4-4-4-12 timing, 8
banks, 1KB pages,
64 entry read
queue, 64 entry
write queue,
FR-FCFS, Open
Page Policy

8 45 nm 16-way 16MB L2

16 32 nm 16-way 32MB L2

Ring, 4/4/8 cycles
per hop transfer
latency, 32 entry
queue

4 65 nm 2-way 64KB L1
Data, 2-way 64KB
L1 Inst., 4-way
1MB Unified L2

16-way 8MB L3

8 45 nm 16-way 16MB L3

16 32 nm 16-way 32MB L3

using an estimated interference miss probability to select requests for the memory
bus interference estimation. The area overhead can be further reduced at the cost
of accuracy and measurement latency by time multiplexing the ATDs. Work in
this direction is underway.

4.3 Estimating Interconnect Interference (Îie, Îiq, Îit and Îid)

The main component of interconnect interference is due to requests having to
wait for access to the shared transmission medium (Î iq). It is easy to measure
interference in the ring and crossbar interconnects used in this work since latency
is independent of access order. If a processor i is not able to issue a request
because a request r from processor j is being transferred, we add the number of
cycles request r occupied the transmission medium for each delayed request from
processor i to the interference estimate. Since the interconnects may be pipelined,
the number of cycles a processor delays another processor may be less than the
transfer latency. In the ring interconnect, the transfer latency depends on which
core the process is scheduled on and this needs to be taken into account when
estimating interference. Again, we assume that all blocking due to full buffers is
interference.

5 Methodology

We use the system call emulation mode of the cycle-accurate M5 simulator [14]
for our experiments and have extended M5 with crossbar and ring intercon-
nects as well as a detailed DDR2-800 memory bus and DRAM model [15]. We
model two CMP architectures that are similar to current general-purpose, high-
performance CMP implementations and identify these models by the name of
the on-chip interconnect (i.e. crossbar or ring). Table 4 summarizes the CMP
models used in this work, and a further discussion of the models is provided by
Jahre et al. [10]. The only difference between Jahre et al.’s configuration and
ours is that we use an open page policy in the memory controller. We also use
Jahre et al.’s 40 4-core workloads, 20 8-core workloads and 10 16-core work-
loads that were generated by picking benchmarks at random from the full SPEC

302 M. Jahre, M. Grannaes, and L. Natvig

10000
0
10000
20000
30000

0 %
5 %

10 %

ve
Er
ro
r

Average Error (left axis) Number of Estimates (right axis)

30000
20000
10000

10 %
5 %

1C 2C 4C 1C 2C 4C 1C 2C 4C 1C 2C 4C 1C 2C 4C 1C 2C 4C

4 Cores 8 Cores 16 Cores 4 Cores 8 Cores 16 CoresA
ve
ra
ge

Re
la
ti
v

Crossbar Ring

Fig. 4. Relative Estimation Errors and Number of Estimates

CPU2000 benchmark suite [16]. The only requirement given to the random selec-
tion process is that a benchmark can only appear once in each workload. These
workloads are fast-forwarded for 1 billion clock cycles before we run detailed
simulation for 100 million clock cycles. To achieve synchronized measurements
of L and L, it is critical to minimize the difference between the memory requests
in the shared and private modes. To ensure this, we use static cache partitioning
and an infinite bandwidth interconnect and memory bus during fast forwarding
such that the simulation sample starts on a similar instruction in both modes.
Furthermore, we run the shared mode experiments first and then retrieve the
number of instructions the benchmark committed. Then, we run the private
mode simulation for the exact same number of instructions.

6 Results

In this section, we present the results from our experiments with DIEF. When not
otherwise stated, we use our best performing configuration with 8192 requests
per sample, a page locality factor of 3 and a 64 entry bus estimation buffer.
These values were found empirically by extensive simulation.

6.1 Estimation Accuracy

Figure 4 shows the average relative error and one standard deviation of all esti-
mates produced by DIEF. In addition, Figure 4 contains the number of estimates
used to compute these statistics. We use the abbreviations 1C, 2C and 4C to
represent 1 memory bus channel, 2 memory bus channels and 4 memory bus
channels, respectively. The main observation is that the average error is close to
zero in all cases. Furthermore, the standard deviation is at most 5.8%.

Figure 5 breaks down the average root mean squared (RMS) error for all ar-
chitectures used in this work. We have removed all interference types where the
average RMS error is less than 2 clock cycles to improve readability. Further-
more, cache capacity interference is not included since it has no corresponding
private mode latency. Figure 5 shows that most of the measurement error is
due to the memory bus queue estimate L̂mq. This is not surprising as our queue
latency estimation model does not cover the case where a request is delayed

DIEF: An Accurate Interference Feedback Mechanism 303

40
60
80

100
Pe

r
ni
t
RM

S
le
s)

Bus Queue Bus Service Interconnect Request Queue

0
20
40

1 C 2 C 4 C 1 C 2 C 4 C 1 C 2 C 4 C 1 C 2 C 4 C 1 C 2 C 4 C 1 C 2 C 4 C

4 Cores 8 Cores 16 Cores 4 Cores 8 Cores 16 CoresSu
m

of
A
ve
ra
ge

nc
hm

ar
k
Pe

r
U
n

Er
ro
r(
cl
oc
k
cy
c

Crossbar Ring

Be

Fig. 5. Interference Estimation Error Breakdown

3 %

2 %

1 %

0 %

1 %

2 %

3 %

4 %

el
at
iv
e
Sh
ar
ed

Ca
ch
e
M
is
s

Es
ti
m
at
e
Er
ro
r

4 %

1C 2C 4C 1C 2C 4C 1C 2C 4C 1C 2C 4C 1C 2C 4C 1C 2C 4C

4 8 16 4 8 16

Crossbar Ring

Re

Fig. 6. ATD Estimation Error

0,1

1

10

100

1000

ve
ra
ge

RM
S
Er
ro
r

ck
cy
cl
es
)

Ring 1C Ring 2C Ring 4C

Crossbar 1C Crossbar 2C Crossbar 4C

0,001

0,01

1
%

6
%

12
 %

18
 %

23
 %

29
 %

34
 %

40
 %

46
 %

51
 %

57
 %

63
 %

68
 %

74
 %

79
 %

85
 %

91
 %

96
 %

M
ax
im

um
A
v

(c
lo
c

Percentage of Benchmarks

Fig. 7. 4-core Bus Queue Error

by page hits that arrive after it. Furthermore, our model does not accurately
predict the difference between the number of simultaneously queued requests in
the two models. However, given the good average accuracy shown in Figure 4,
the measurements are likely accurate enough to be used by a dynamic fairness
technique. Another observation is that the absolute measurement error is larger
in the ring architectures. This is due to poor utilization of the L3 cache because
the private L2 caches reduce the access frequency. Consequently, a cache thrash-
ing process is able to evict a larger amount of the data needed by a less cache
intensive thread which in turn puts a larger strain on the memory bus.

To quantify the accuracy of the ATD interference miss estimates, we count the
number of actual misses and the number of interference misses. Here, the shared
mode miss count estimate is computed by subtracting the number of additional
shared cache misses identified by the ATD from the shared mode miss count.
Then, we adapt the relative error metric to cache misses by using the estimated
number of misses M̂, the actual private mode number of misses M and the
shared mode number of misses M (E = (M̂ −M)/M). Figure 6 shows that our
ATD-based interference miss estimation has an average relative estimation error
of at most 0.8% and maximum standard deviation of 3.4%.

Figure 7 shows the distribution of the memory bus queue RMS errors for the
4-core CMP models. Here, we represent the measurement error for each instance
of a benchmark by the average RMS error of the estimates for this benchmark.
Then, we sort the average RMS errors such that each point in the figure rep-
resents the maximum average RMS error observed for a certain percentage of
benchmarks. Figure 7 shows that the memory bus queue estimates are very

304 M. Jahre, M. Grannaes, and L. Natvig

0 %
50 %

100 %
150 %
200 %
250 %
300 %
350 %
400 %

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44

A
ve
ra
ge

Re
la
ti
ve

RM
S
Er
ro
r

Sample Size (Number of Memory Requests)

Crossbar 1C Crossbar 2C Crossbar 4C

Ring 1C Ring 2C Ring 4C

(a) Root Mean Squared Error

100
1000

10000
100000

1000000
10000000

ve
ra
ge

La
te
nc
y

Crossbar 1C Crossbar 2C Crossbar 4C

Ring 1C Ring 2C Ring 4C

1
10

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44

A
v

Sample Size (Number of Memory Requests)

(b) Average Latency Between Estimates

Fig. 8. 8-core CMP Sample Size Accuracy Impact

0

20

40

60

80

100

120

1C 2C 4C 1C 2C 4C

Crossbar Ring Average

A
ve
ra
ge

RM
S
Er
ro
r(
cl
oc
k
cy
cl
es
)

FCFS (1 Request) 3 Requests 5 Requests

10 Requests 20 Requests Unlimited

Fig. 9. 4-core Page Locality Factor

100

150

200

250

300
M
S
Er
ro
r
(c
lo
ck

cy
cl
es
)

16 Entries 32 Entries 64 Entries 128 Entries 256 Entries

0

50

1C 2C 4C 1C 2C 4C

Crossbar Ring Average

A
ve
ra
ge

RM

Fig. 10. 4-core Bus Buffer Size

accurate. When 60% of the benchmarks are taken into account, the worst aver-
age RMS error observed for any architecture is 20 clock cycles. However, there is
a short tail where the measurement error is significant. Since the average round
trip memory latency is high in these cases, the values are most likely good enough
to be used by dynamic resource allocation techniques. Finally, the lines stop at
82% for the ring architecture and 97% for the crossbar architecture because some
benchmarks have too few memory requests to produce any estimates.

6.2 DIEF Parameters

In this section, we provide an empirical analysis of DIEF’s main parameters:
sample size, page locality factor and memory bus estimation buffer size. The
choice of sample size is a trade-off between achieving low variability and receiving
new estimates often enough to make high quality resource allocation decisions.
Figure 8 shows the average relative RMS error and average latency between
estimates for the 8-core architectures. Our choice of 8192 requests per sample is
on the flat part of the error plot and has an acceptable average latency.

Figure 9 shows the average RMS error for different page locality factors. The
general trend is that the page locality factor should be low because there is
usually more locality in the shared mode estimation buffer than in the private
memory bus queues. This is because a larger number of requests are available

DIEF: An Accurate Interference Feedback Mechanism 305

to the scheduler in the shared mode due to more competition. A page locality
factor of 3 is the best overall. Finally, Figure 10 shows the error resulting from
varying the memory bus estimation buffer size. Here, 64 entries are necessary to
achieve low error for the ring architecture.

7 Related Work

A few researchers have addressed the issue of dynamic interference measurement
in CMPs. Cache Scouts [17] is a shared cache interference measurement technique
that estimates interference by counting the number of cache blocks that are
evicted by different processors. Consequently, they assume that all blocks evicted
by a different processor would have been reused which may lead to measurement
errors. Mutlu and Moscibroda [1] propose a run-time interference measurement
technique that they use to guide a memory bus scheduling algorithm in a system
with private caches.

Most previous studies that aim to improve resource sharing in CMP memory
systems, have focused on a single component of the entire system. For example,
techniques have been proposed to reduce cache capacity interference (e.g. [3,4]),
cache bandwidth interference [18] and memory bus interference [1,8,19]. In addi-
tion, a few researchers have investigated how a chip-wide resource management
technique can be designed. Iyer et al. [20] proposed a high-level framework for
implementing a QoS-aware memory system, while Nesbit et al. [5] proposed the
Virtual Private Machines framework where a private virtual machine is created
by dividing the available physical resources among applications. In addition,
Bitirgen et al. [21] showed how machine learning can be applied to the resource
allocation problem.

8 Conclusion

Accurate feedback mechanisms are needed to implement robust resource alloca-
tion systems in future CMPs. In this work, we propose the Dynamic Interference
Estimation Framework (DIEF) which is the first detailed implementation of a
unified feedback mechanism for CMP memory systems. DIEF is a collection of
techniques that cooperate to estimate the average memory latency a process
would experience if it had exclusive access to all shared resources. Choosing the
average memory latency as the unit of interference has the advantage that the
total memory latency is the sum of the latency in each shared unit. Consequently,
CMP designers can choose estimation techniques that achieve the desired accu-
racy/complexity trade-off for each shared unit. In this work, we describe a high
accuracy DIEF implementation which has an average relative estimate error
between -0.4% and 4.7% and a standard deviation between 2.4% and 5.8%.

Acknowledgments. This project was supported in part by the Norwegian
Metacenter for Computational Science (NOTUR). Lasse Natvig is a member of
HiPEAC2 NoE.

306 M. Jahre, M. Grannaes, and L. Natvig

References

1. Mutlu, O., Moscibroda, T.: Stall-Time Fair Memory Access Scheduling for Chip
Multiprocessors. In: MICRO 40: Int. Symp. on Microarchitecture (2007)

2. Qureshi, M.K., Patt, Y.N.: Utility-Based Cache Partitioning: A Low-Overhead,
High-Performance, Runtime Mechanism to Partition Shared Caches. In: MICRO
39: Proc. of the 39th An. IEEE/ACM Int. Symp. on Microarch., pp. 423–432 (2006)

3. Kim, S., Chandra, D., Solihin, Y.: Fair Cache Sharing and Partitioning in a Chip
Multiprocessor Architecture. In: PACT 2004: Proc. of the 13th Int. Conf. on Par-
allel Architectures and Compilation Techniques, pp. 111–122 (2004)

4. Chang, J., Sohi, G.S.: Cooperative Cache Partitioning for Chip Multiprocessors.
In: ICS 2007: Proc. of the 21st Annual Int. Conf. on Supercomputing, pp. 242–252
(2007)

5. Nesbit, K., Moreto, M., Cazorla, F., Ramirez, A., Valero, M., Smith, J.: Multicore
Resource Management. IEEE Micro 28(3), 6–16 (2008)

6. Sprunt, B.: The Basics of Performance-Monitoring Hardware. IEEE Micro 22(4),
64–71 (2002)

7. Eyerman, S., Eeckhout, L.: System-Level Performance Metrics for Multiprogram
Workloads. IEEE Micro 28(3), 42–53 (2008)

8. Mutlu, O., Moscibroda, T.: Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems. In: ISCA 2008: Proc. of the
35th An. Int. Symp. on Comp. Arch., pp. 63–74 (2008)

9. Rixner, S., Dally, W.J., Kapasi, U.J., Mattson, P., Owens, J.D.: Memory Access
Scheduling. In: ISCA 2000: Int. Symp. on Comp. Arch., pp. 128–138 (2000)

10. Jahre, M., Grannaes, M., Natvig, L.: A Quantitative Study of Memory System
Interference in Chip Multiprocessor Architectures. In: HPCC 2009: 11th IEEE Int.
Conf. on High Performance Computing and Communications, pp. 622–629 (2009)

11. Qureshi, M.K., Lynch, D.N., Mutlu, O., Patt, Y.N.: A Case for MLP-Aware Cache
Replacement. In: ISCA 2006: Int. Symp. on Comp. Arch., pp. 167–178 (2006)

12. Dybdahl, H., Stenstrom, P., Natvig, L.: An LRU-based Replacement Algorithm
Augmented with Frequency of Access in Shared Chip-Multiprocessor Caches. In:
MEDEA2006:Proc. of the 2006workshop onMEmory performance, pp. 45–52 (2006)

13. Thoziyoor, S., Muralimanohar, N., Ahn, J.H., Jouppi, N.P.: CACI 5.1. Technical
report, HP Laboratories Palo Alto (2008)

14. Binkert, N.L., Dreslinski, R.G., Hsu, L.R., Lim, K.T., Saidi, A.G., Reinhardt, S.K.:
The M5 Simulator: Modeling Networked Systems. IEEE Micro 26(4), 52–60 (2006)

15. JEDEC Solid State Tech. Association: DDR2 SDRAM Specification (May 2006)
16. SPEC: SPEC CPU (2000), http://www.spec.org/cpu2000/
17. Zhao, L., Iyer, R., Illikkal, R., Moses, J., Makineni, S., Newell, D.: CacheScouts:

Fine-Grain Monitoring of Shared Caches in CMP Platforms. In: PACT 2007: Proc.
of the 16th Int. Conf. on Parallel Arch. and Comp. Tech., pp. 339–352 (2007)

18. Nesbit, K.J., Laudon, J., Smith, J.E.: Virtual private caches. In: ISCA 2007: Proc.
of the 34th An. Int. Symp. on Comp. Arch., pp. 57–68 (2007)

19. Nesbit, K.J., Aggarwal, N., Laudon, J., Smith, J.E.: Fair Queuing Memory Systems.
In: MICRO 39: Int. Symp. on Microarchitecture, pp. 208–222 (2006)

20. Iyer, R., Zhao, L., Guo, F., Illikkal, R., Makineni, S., Newell, D., Solihin, Y.,
Hsu, L., Reinhardt, S.: QoS Policies and Architecture for Cache/Memory in CMP
Platforms. In: SIGMETRICS 2007, pp. 25–36 (2007)

21. Bitirgen, R., Ipek, E., Martinez, J.F.: Coordinated Management of Multiple Re-
sources in Chip Multiprocessors: A Machine Learning Approach. In: MICRO 41:
Proc. of the 41th IEEE/ACM Int. Symp. on Microarchitecture (2008)

http://www.spec.org/cpu2000/

Tagged Procedure Calls (TPC): Efficient
Runtime Support for Task-Based Parallelism on

the Cell Processor

George Tzenakis�, Konstantinos Kapelonis, Michail Alvanos�,
Konstantinos Koukos�, Dimitrios S. Nikolopoulos�, and Angelos Bilas�

Institute of Computer Science (ICS)
Foundation for Research and Technology - Hellas (FORTH)

100 N. Plastira Av. Vassilika Vouton, Heraklion, GR-70013, Greece
{tzenakis,kkapelon,alvanos,koukos,dsn,bilas}@ics.forth.gr

Abstract. Increasing the number of cores in modern CPUs is the main
trend for improving system performance. A central challenge is the run-
time support that multi-core systems ought to use for sustaining high
performance and scalability without increasing disproportionally the ef-
fort required by the programmer. In this work we present Tagged Proce-
dure Calls (TPC), a runtime system for supporting task-based
programming models on architectures that require explicit data access
specification by the programmer. We present the design and implemen-
tation of TPC for the Cell processor and examine how the runtime
system can support task management functions with on-chip commu-
nication only. Through minimizing off-chip transactions in the runtime,
we achieve sub-microsecond task initiation latency and minimum null
task initiation/completion latency of 385 ns. We evaluate TPC with
several kernels and applications, demonstrating that TPC achieves scal-
able on-chip execution of codes previously parallelized and optimized for
shared-memory multiprocessors, can exploit additional fine-grain par-
allelism in codes previously parallelized at coarse levels of granularity,
and performs competitively to existing task-based parallel programming
frameworks that statically optimize data layout and task placement.

1 Introduction

Technology trends dictate that future high-performance, general-purpose and em-
bedded systems will be built using heterogeneous chip multi-processors (CMPs)
with many cores and tightly-coupled interconnects. Heterogeneous many-core
CMPs require a large degree of parallelism in applications as well as dealing with
heterogeneity, without significantly increasing programming effort.

For this reason, the role of the programming model is significant for future
CMPs. The two main, explicitly parallel programming models used today are

� Also, with the Department of Computer Science, University of Crete, P.O. Box 2208,
Heraklion, GR 71409, Greece.

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 307–321, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

308 G. Tzenakis et al.

shared memory and message passing. Shared memory requires programs to spec-
ify synchronization information for memory accesses. Message passing on the
other hand requires programs to deal with data placement and communication
buffer management. In both cases, application and system designers have been
tantalized by the effort required to program and debug such systems for over
two decades. The main issue appears to be drawing a different balance between
the mechanisms that are available in the underlying system and the abstraction
that is exposed to the applications.

We believe that task-based programming models have the potential to achieve
this balance. At a high level, explicitly parallel, task-based programming models
have two advantages: On one hand they force the programmer to consider code
complexity and data transfers at design time without worrying about the under-
lying mechanisms for communication and synchronization. On the other hand
they provide the underlying system (runtime and architecture) with extensive
information for efficient execution and runtime optimization. Thus, tasks as an
abstraction, present the potential for achieving efficient execution and reducing
programmer effort.

Although task-based programming models have been proposed in the past,
modern CMPs present new opportunities. Previous efforts with task-based pro-
gramming models had to deal with coarse-grained tasks due to task management
overhead. Task management operations, such as initiation, completion, queuing,
and scheduling, in traditional parallel systems cost in the order of tens of thou-
sands of cycles, relative to the clock cycle time of modern processors, due to
communication and memory management overheads [14]. In turn, coarse-grained
tasks make it hard for the programmer to identify and delineate tasks and, even
more so, task and data dependencies. In contrast, fine-grained tasks are easier to
identify in sequential codes by inspection as they require analyzing and resolv-
ing fewer data and control dependencies. Modern CMPs have the potential of
significantly reducing the required task size and achieve efficient execution while
reducing the associated effort to identify parallelism.

In this paper we introduce a runtime system for the Cell processor [8], Tagged
Procedure Calls (TPC), that aims at supporting task-based programming mod-
els. The notion of a task is general and can be interpreted in various ways. In our
work we consider a task to be a piece of code that can execute in parallel as well
as the data that will be accessed by the code. Despite their advantages, fine-
grained tasks impose significant challenges for the runtime system. They require
efficient basic mechanisms for task management, in particular, task initiation
and completion that now become common-path operations. In this work we fo-
cus on better understanding and minimizing these basic overheads associated
with task management.

We first examine the overhead associated with task management operations
on a real system. We focus on task initiation, task completion, task queuing,
and task data transfer. Our implementation of TPC achieves null task initiation
latency from 180 to 380 cycles on the 3.2 GHz Cell processor, depending on
the size of the argument list. This represents a significant improvement over

Tagged Procedure Calls (TPC): Efficient Runtime Support 309

task initiation latencies reported in earlier work on task-level parallel execution
systems on the Cell [14]. The null task round-trip overhead in TPC is about
385 ns, when the ideal DMA round-trip latency of the Cell is just under 312 ns [2].

We examine the performance of TPC using both kernels and real applica-
tions. We port two applications from the SPLASH-2 [18] suite (FFT and LU)
and demonstrate that porting applications written and optimized for shared-
memory multiprocessors to TPC requires mostly simple and mechanical code
changes. TPC achieves nearly perfect scaling of these codes on the Cell cores.
We further port two applications written previously to exploit coarse-grain paral-
lelism on multi-processors and clusters, PBPI [7] and an H.264 video encoder [17].
We demonstrate that TPC enables the exploitation of further fine-grain on-chip
parallelism in these applications, with manageable programming effort. Lastly,
we port and evaluate several benchmarks distributed with the Sequoia program-
ming language [6]. This effort demonstrates that TPC performs competitively
to existing task-based parallel programming models for the Cell.

The rest of this paper is organized as follows. Section 2 presents the design and
implementation of TPC and its runtime system on the Cell processor. Section 3
presents the hardware and software environment we used for our performance
evaluation. Section 4 presents our experimental results. In Section 5 we discuss
the advantages of TPC over previous efforts and related work. Finally, we draw
our conclusions in Section 6.

2 TPC Design and Implementation

The Cell processor contains a general purpose PowerPC Processing Element
(PPE) and eight special purpose Synergistic Processing Elements (SPEs) with
their own instruction set. Each SPE has 256 KBytes of local memory without
any other cache between this memory and the SPE core. The PPE has a coher-
ent memory hierarchy with two levels of cache prior to the single global external
memory. DMAs in the Cell are capable of scatter/gather functions and can have
multiple (16 per SPE) outstanding transfers. Moreover, the PPE can access the
local memories of SPEs with remote load/store operations as they are mapped to
the main memory address space (MMIO). The PPE and SPEs can also commu-
nicate with messages via small mailbox registers. These options create trade-offs
that need to be understood before the runtime system is able to take advan-
tage of them. Finally, all communication in the Cell processor happens over an
on-chip element interconnect bus (EIB) that consists of four bi-directional rings.

TPC uses program annotations to identify certain procedure calls as concur-
rent tasks. Currently, annotations occur at the procedure level. Programmer can
encapsulate blocks of code or groups of loop iterations in TPC procedures. TPC
procedure calls execute in the same or another core, as asynchronous tasks, with
the current core continuing execution. In this work, procedure arguments can be
in, out, or inout. The issuing task can wait for tasks using point-to-point or bar-
rier synchronization. When issuing an asynchronous task, the runtime returns a
handle that can be used later for managing the specific instance of the issued

310 G. Tzenakis et al.

task, while the issuing task continues with program execution. When a task
completes, it notifies the issuer for its completion. TPC procedures have no re-
turn values and all arguments are passed by reference. TPC arguments and their
sizes are determined at runtime before task initiation. TPC supports continuous
and fixed-stride arguments. We expect that programming interface extensions
for specifying memory layout for task arguments will play an important role on
programmer effort.

The TPC runtime library consists of two main parts, the initiator and the
target. Although any core can play the role of the initiator or target, currently,
and due to the Cell architecture, we only support task initiation from the PPE.
Similarly, only SPEs can execute tasks as targets. Each task consists of a de-
scriptor. Task descriptors are prepared by the initiator and they are placed in
task queues for execution. There is one task queue per target, located in its
local storage. The task descriptor contains the function id and the list of ar-
guments. For every argument, the descriptor specifies the argument’s address in
main memory, the argument size, a flag indicating if it is in, out, or inout, and
for stride arguments the stride between the elements.

TPC uses a private task queue for each SPE. The task queue itself is an array
of task descriptors. Since our goal is to eliminate off-chip operations, we place
each task queue in the local storage of the corresponding SPE. In addition to
the task queue, the runtime maintains a completion queue for each SPE (Fig-
ure 1(a)). The PPE polls each completion queue for task status notifications
from the SPEs. When a completion is received the task entry in the correspond-
ing task queue is released. Since tasks run to completion in each SPE, tasks
complete in order. The task completion status consists of a flag and a task id.

An important architectural aspect for implementing a task-based runtime
is the available mechanisms for communication among different memories and
cores. Although DMA performance on the Cell has been thoroughly analyzed in
previous work [2], low-latency control transfer mechanisms have not been fully
explored. In this work we examine PPE to SPE round-trip latency with various
mechanisms. We use the PPE as initiator, so the available options are: mailbox
messages, remote stores to SPE’s local store (MMIO), and PPE-initiated DMAs.

SPEs can communicate with the PPE via mailbox messages, DMA, or a
variant of DMA using the Atomic Cache Unit (ACU). A simple, non-atomic
DMA transfer writes results to main memory and invalidates the PPE’s cache,
thus requiring off-chip accesses. The ACU is intended for implementing high-
performance atomic synchronization primitives between SPEs and the PPE in
the global address space, using direct cache-to-cache transfers that remain on-
chip. This mechanism supports reserve-line (load-locked), conditional-store, and
unconditional-store operations.

Task initiation. Mailboxes are not appropriate mechanisms for initiating tasks.
First, the mailbox register resides in the SPE’s MFC. Sending mailbox messages
incurs in the PPE the same cost as a remote store operation because the SPE
mailbox register is memory mapped to the PPE in the same way as the SPE
local memory. In addition, to safely use the mailbox register a remote load is

Tagged Procedure Calls (TPC): Efficient Runtime Support 311

required first to check the status of the mailbox register and to ensure that
previous mailbox messages have been consumed by the SPE. This introduces
a network round-trip latency before posting the mailbox message. Using PPE-
initiated DMA requires five remote store operations to special SPE registers.
Then, the DMA controller of the SPE performs the actual DMA from main
memory to the local SPE memory. Thus, after preparing a task descriptor in
(cached) memory, the only two realistic options for the PPE to initiate a task
are: (a) issuing remote stores to post the descriptor to the SPE task queue or (b)
issuing fewer stores to indicate the existence of a new task descriptor, which then
the SPE can pull using DMA. Note that the first approach requires a number of
MMIO stores from the PPE that depend on the size of the task descriptor for
each task. The second approach requires a fixed number of remote stores at the
PPE but introduces an additional DMA transfer in the SPE. Assuming the task
descriptor is not evicted from the PPE cache, both approaches result in on-chip
traffic only. In all cases, PPE stores to SPEs are cache inhibited and complete in
program order. The PPE can use vector store instructions to reduce the number
of stores required to post a single task descriptor. The final store instruction
sets the active flag of the task descriptor in the task queue to notify the SPE of
a new task arrival, while the SPE polls its local memory. In our evaluation we
examine both options for task initiation.

Task pre-fetching and execution. Once a new task has been posted to the SPE’s
task queue, the SPE extracts the task descriptor, fetches in arguments, executes
the designated function, and writes back out arguments. The main challenge
in executing these steps is to maximize overlapping of data transfers with task
execution. To achieve this, TPC pipelines the different stages of task execution
and uses pre-fetching to overlap argument transfers and task execution.

Each task can be in one of the states ACTIVE, FETCH, READY, WRITE-
BACK, COMPLETE. Before executing a task that is ready, the SPE prepares
and issues the DMA commands for as many active tasks as possible from its
task queue, depending on the available space in the local storage, and places
these tasks in the fetch state. Then, it turns to executing the first task in the
queue whose arguments are available. When a task is done executing, the SPE
will initiate the write-back of out arguments and task completion status. Write-
back is asynchronous; The SPE places the task in write-back state and during
write-back it tries to pre-fetch data for the next active tasks in the queue. When
write-back finishes, the task turns to the complete state. If there are no more
active tasks in the task queue or the data of the next task has arrived, the next
task starts execution. Multiple write-backs and pre-fetches might be outstanding
and being overlapped with task execution.

Task completion. When a task completes, the SPE sends its completion status
to the SPE’s completion queue that is placed in main memory. The transfer of
the completion status is ordered with respect to the write-back of the task’s
results. The PPE polls these queues for completed tasks from each SPE. A task
completion informs the PPE that an entry in the corresponding task queue is

312 G. Tzenakis et al.

now free and that it can issue a new task. Thus, the PPE polls the completion
queue when: (a) there is no more space in the task queues (b) the application
waits on task completion for synchronization purposes. We indicate the first type
of wait as queue stall time and the second as synchronization wait time.

The SPE can signal completion via a mailbox register or DMA transfer. Al-
though the writing of the mailbox register incurs very low overhead in the SPE,
it requires the PPE to poll the status of the register via remote loads that gen-
erate unnecessary EIB traffic. Thus, it is preferable for the SPE to use a DMA
transfer to a memory location. Then the PPE can poll using cached loads. In
this case, to avoid the cache invalidation and the resulting off-chip transfer, we
use the “putqlluc” atomic DMA command to unconditionally update the PPE’s
cache. Finally, each completion queue entry is padded and aligned to cache line
boundaries (128-bytes) for optimal DMA performance.

Based on these observations the main task management operations in TPC
are shown in Figure 1(a). Overall, task management operations in TPC require
only on-chip transfers. Next, we discuss our evaluation methodology and the
applications we use.

3 Experimental Platform and Methodology

In our experiments we use a Playstation3 (PS3) game console system, equipped
with a 3.2 GHz Cell processor and 256 MBytes of main memory. On the PS3,
applications are allowed to access only six of the eight SPEs in the Cell processor.

In our evaluation we use both application kernels as well as full applications.
The applications we use are: FFT and LU from SPLASH-2 [18], PBPI [7], and
an H.264 Encoder [1]. We re-implemented LU and FFT with single precision
floating point arithmetic, replacing the original double precision version, because
the SPEs exhibit significantly higher performance with single precision floating
point operations. Using single-precision floating point arithmetic requires higher
communication to computation ratios and results in a more realistic evaluation.

LU. We maintain the original algorithm [18] and modify the execution control
structure of LU to employ a single master and multiple worker cores. Phases
between barriers in the original code are translated to tasks, with the master
core waiting between phases for all tasks to complete. Porting LU to TPC es-
sentially involves converting three compute-intensive functions to TPC : bdiv(),
bmod(), and bmodd(). The main modification to these functions is the identifi-
cation of shared memory accesses in their body and conversion of these updates
to a task argument list. We use the contiguous blocks version of LU from the
SPLASH-2 suite, therefore we avoid stride arguments.

FFT. The SPLASH-2 version of FFT uses a six-step algorithm that involves
alternating phases of transpose and FFT calculations. In our porting, we re-
organize the code as follows: We merge steps two and three in a single asyn-
chronous call to reduce data transfers, as both steps modify the same data. We

Tagged Procedure Calls (TPC): Efficient Runtime Support 313

modify the transpose step to transpose the matrix in place. We split the orig-
inal matrix into blocks in a similar way as the original SPLASH-2 FFT but
we use the local storage of SPEs as an intermediate buffer to transpose each
block. Although certain aspects of porting FFT to TPC require understanding
the existing code beyond syntactic modification, eventually the changes required
are simple structural changes that do not require modifying data structures or
re-writing the code. Similarly to LU, this is because FFT has been optimized
to avoid fine-grain accesses to shared memory, which hinder scalability in tradi-
tional shared memory multiprocessors.

PBPI. Parallel Bayesian Phylogenetic Inference [7] constructs phylogenetic trees
from aligned homologous DNA sequences. The original code is implemented in
MPI. The TPC version of PBPI aims at exploiting fine-grain parallelism in each
MPI process by using TPC tasks. We use TPC tasks to parallelize three loops
that compute the likelihood on each node of the phylogenetic tree. The three
loops are separated by barriers. Each node has enough data to produce tasks for
all SPEs with argument sizes that result in efficient DMA transfers. Additionally,
loop portions that each task executes are unrolled and vectorized. We introduce
a user-defined parameter that specifies task size in terms of loop iterations. We
implement a static load balancing scheme to ensure that all SPEs execute the
same number of tasks, while adjusting their size to be as close as possible to the
user-defined size.

H.264 Encoder. A typical H.264 video encoder consists of three components:
prediction, transformation, and entropy encoding [17]. We port an existing par-
allel encoder, x264 [1], originally written for shared-memory multiprocessors, to
the Cell using TPC . Although parallelization of x264 can occur at different gran-
ularities, the limited on-chip memory leads to parallelization at the macro-block
level, which allows a single frame to be processed in parallel by all SPEs. This re-
quires satisfying macro-block dependencies in an antidiagonal-based manner [16].
We port the analyze, encode and Context-based Adaptive Variable Length Cod-
ing phases to the SPEs, leaving the rest of the code on the PPE. This allows for
parallelizing about 85% of the serial execution time. Finally, we vectorize certain
kernels of motion estimation for the SPEs: sum of absolute differences, sum of
absolute transformed differences, and pixel average. The remaining application
code that runs on the PPE is vectorized using the PowerPC Altivec extensions.

Kernels. We port SAXPY, SGEMV, and CONV2D directly from their original
implementation in Sequoia [6] to TPC , with no structural or algorithmic mod-
ifications in the kernel code. SAXPY and SGEMV are communication bound.
CONV2D is computation bound. CONV2D uses convolution to apply a mask
to a 2D image. The initial image of size M × N , is decomposed into a set of
parallel 2D convolution subproblems, each computing a non-overlapping region
of the output image of size S × T .

For each application, we present execution time breakdowns for both the PPE
and the SPEs. We break down the execution of the PPE in three parts: time
spent in the TPC runtime, time waiting for SPEs to complete, and time spent

314 G. Tzenakis et al.

F A I I II W E
Task Queue

W
Completion Queue
C W W W C C C

Task 1
Data (W)

Task 3
Data (F)

Task 2
Data

Task 2

Task 3

Data

Data (F)

Task 1
Data (W)

L2 cache Local Store

PPE SPE

atomic DMA

MMIO

Main Memory

DMA out DMA in

(a)

0 2 4 6 8
TPC arguments

0

1000

2000

3000

4000

cy
cl

es

MMIO/atomic
MMIO/DMA
DMA/atomic
DMA/DMA

(b)

0 1 4 8
TPC arguments

0

1000

2000

3000

cy
cl

es

SPE DMA list
SPE buffer alloc
SPE compl issue
SPE task detect
PPE issue
NoC

(c)

Fig. 1. (a) TPC runtime operations. (b) Null task latency for the different initiation
and completion mechanism. (c) Null task round-trip breakdown for MMIO initiation
and atomic DMA completion.

in application code. SPE breakdowns consist of task compute time, library time
(including data transfer time), and idle time. Also, as a reference point, we show
application execution time for a single PPE, where this is possible. Finally, in
this work we assume that the code to be executed by each task is already present
on the target SPE and PPE distributes tasks round-robin across SPEs.

4 Experimental Results

4.1 Basic Task Overheads

In this section we examine the basic overheads associated with task operations
in TPC using null tasks, which perform no computation. Furthermore, we set
the task queue size to a single entry to avoid overlapping of runtime overheads.

In Figure 1(b) we see the total latency for initiation and completion of a null
task. We evaluate two methods for initiation and two methods for completion.
The PPE can initiate a TPC task with remote stores directly to an SPE’s local
storage. We refer to this mechanism as MMIO initiation. Alternatively, the PPE
can build the task descriptor locally in its L2 cache and initiate a DMA command
in the SPE’s DMA controller to fetch the descriptor to the local storage of the
SPE. We refer to this mechanism as DMA initiation. Completion status from
SPE can be sent with a simple DMA command or an atomic DMA command.
We refer to these methods as DMA and atomic (ACU) completion respectively.
We use zero-byte arguments to show how the overhead of the runtime varies
with the number of TPC arguments without including the DMA transfer costs
that are not affected by the design of the runtime system. First, we see that
minimum round-trip latency is about 1230 cycles or 385 ns. Second, we note
that using MMIO for task initiation and the ACU for task completion results in
the lowest overhead. Using DMA instead of MMIO for task initiation adds about
1000 cycles, whereas replacing the ACU with regular DMA for task completion
adds about 200 cycles.

Tagged Procedure Calls (TPC): Efficient Runtime Support 315

Figure 1(c) shows the breakdown of null-task latency in the best case, when us-
ing MMIO and atomic DMA, for a varying number of zero-byte arguments. PPE
initiation includes building the task descriptor and issuing the remote stores.
The PPE initiation overhead increases slowly with the number of arguments
from 180 to 380 cycles. The EIB round-trip latency is about 800 cycles. We
should note that both PPE and SPE are dual-issue, in-order processors. This
makes them vulnerable to register dependencies and poor instruction scheduling.
For this reason, in the PPE, we use a separate tpc callN() function for tasks
with N arguments. In these versions of tpc callN() functions, as the number of
TPC arguments is fixed, we perform loop-unrolling and appropriate instruction
scheduling to help the compiler produce more efficient code. However, we can
not apply the same method for run-time operations in the SPE as they depend
not only on the number of TPC arguments but also on the types of these ar-
guments. We expect that compilers will be able to deal with these issues when
generating code for the TPC runtime.

The SPE portion of the round-trip overhead, excluding DMA transfers for
task data, involves four steps: SPE task detection recognizes the user function
to be invoked and sets up internal structures; SPE DMA list builds the DMA list
elements for input and output arguments, as described in the task descriptor;
SPE buffer allocation allocates the required space for task data in the local
storage; SPE completion builds the completion status and issues the atomic
DMA command to signal completion. The processing of tasks in the SPE is
dominated by the time needed to create the DMA list for fetching inputs and
writing back results. The cost for a single argument is 650 cycles and increases
to 1450 cycles for eight arguments. On the other hand, the time needed for task
detection, buffer allocation, and issuing the DMA for the completion status is
about 280 cycles and is not affected by the number of TPC arguments.

4.2 Impact of Queue Size

Figure 2 shows the impact of task queue size on null task latency and throughput,
when using a single argument of varying size, with the generic version of the
tpc call() function. The minimum average latency for null task with a zero-
byte argument is about 900-1000 cycles, when using more than two SPEs and
queue size of two or four, due to overlapping of tasks on multiple SPEs. Larger
queue sizes increase the average latency to about 1100 cycles when using more
than one SPEs. We observe similar behavior in the case of non-zero arguments
for null tasks. However, latency increases when queue size increases above four.

When looking at throughput in Figure 2, we see that a single argument of 8
KBytes or more can reach maximum throughput with queue sizes of two or more
on three or more SPEs. A queue size of one can reach maximum throughput only
when using all six SPEs. An argument size of 4 KBytes approaches half of the
maximum throughput for two SPEs and a queue size of four. The maximum
throughput achieved with a single 1-KByte argument is about 3 GBytes/s (12%
of the theoretical peak of 25.6 GBytes/s) with four SPEs and a queue size of
two or four.

316 G. Tzenakis et al.

1 2 4 8 16 32
queue size

0

500

1000

1500

2000

2500

co
re

 c
yc

le
s

(a) 0 Bytes

1 2 4 8 16 32
queue size

0

1000

2000

3000

co
re

 c
yc

le
s

(b) 128 Bytes

1 2 4 8 16 32
queue size

0

1000

2000

3000

co
re

 c
yc

le
s

(c) 1 KB

1 2 4 8 16 32
queue size

0

1000

2000

3000

4000

5000

co
re

 c
yc

le
s

1 SPE
2 SPE
3 SPE
4 SPE
5 SPE
6 SPE

(d) 8 KB

1 2 4 8 16 32
queue size

0

1

2

3

G
B

/s

(e) 1 KB

1 2 4 8 16 32
queue size

0

5

10

G
B

/s

(f) 4 KB

1 2 4 8 16 32
queue size

0

5

10

15

20

G
B

/s

(g) 8 KB

1 2 4 8 16 32
queue size

0

5

10

15

20

G
B

/s

1 SPE
2 SPE
3 SPE
4 SPE
5 SPE
6 SPE

(h) 16 KB

Fig. 2. Impact of queue size on null-task latency (top) and throughput (bottom) for
different number of TPC arguments

Overall, we expect that a small task queue size of up to four will be enough for
achieving all possible overlap of communication and computation in the SPEs.

4.3 Application Scaling

LU. Figure 3 shows LU execution time breakdowns for both PPE and SPEs
with a 4K × 4K input matrix, using 64 × 64 and 16 × 16 blocks. LU, though a
shared memory application has already been optimized to avoid scattered, fine-
grain accesses to shared data structures. For both block sizes, execution time
scales with the number of SPEs. Maximum speedup for six SPEs is 5.98 and
5.87 for 16×16 and 64×64 blocks respectively. However, note that using 16×16
blocks is about 105% slower than using 64 × 64 blocks when using one SPE.
With 64 × 64 blocks compute time dominates, as there are significantly fewer
and larger DMA transfers and the larger task compute time allows the runtime
to effectively pre-fetch future tasks.

FFT. Figure 3 shows the execution time breakdowns for the PPE and SPEs for
4M and 64K elements. The larger FFT problem size of 4M complex reals requires
about 64 MBytes of memory. FFT exhibits good performance and scalability.
For 4M FFT, TPC achieves speedup of 5.05 in 6 SPEs and for 64K FFT TPC
achieves speedup of 5.1. The number of TPC tasks depends only on the problem
size, as the task granularity is fixed to a single row of the matrix. For the 4M
problem size there are enough tasks to fill the task queue of every SPE. On the
other hand, the 64K problem size does not create enough tasks to take advantage
of task pre-fetching and incurs higher sync wait times on the PPE for more than
four SPEs. On the SPE side, compute time dominates the total execution time,

Tagged Procedure Calls (TPC): Efficient Runtime Support 317

1 2 3 4 5 6

SPUs

0

5000

10000

15000

 m
se

co
nd

s

PPE issue
Queue stall
Sync Wait
Application

SPU Idle
SPU Lib
SPU Task

(a) LU,B=64

1 2 3 4 5 6

SPUs

0

10000

20000

30000

40000

 m
se

co
nd

s

PPE issue
Queue stall
Sync Wait
Application

SPU Idle
SPU Lib
SPU Task

(b) LU,B=16

1 2 3 4 5 6

SPUs

0

200

400

600

800

 m
se

co
nd

s

PPE issue
Queue stall
Sync Wait
Application

SPU Idle
SPU Lib
SPU Task

(c) FFT,4M

1 2 3 4 5 6

SPUs

0

5

10

 m
se

co
nd

s

PPE issue
Queue stall
Sync Wait
Application

SPU Idle
SPU Lib
SPU Task

(d) FFT,64K

Fig. 3. LU and FFT execution times. LU uses 4K×4K matrix, with block sizes 64×64
and 16 × 16. FFT computes 4M and 64K complex elements respectively.

whereas argument transfer overheads are less than 4% and 7% for the 64K and
4M problem sizes respectively. Overall, scalability of FFT is currently limited
mainly by the transpose steps of the algorithm. Table 1 shows that for 4M FFT
the computation and transpose times scale differently. Computation time alone
scales by a factor of 5.98 over 6 SPEs while the transpose time scales only by a
factor of 1.93 because memory throughput is saturated for more than two SPEs.
However, the time of the transpose step varies between 8.8% and 23% of the
total execution time and has a lower impact on scalability.

H.264 Encoder. In our experiments we use a number of full high definition
(1920×1088) video inputs taken from the HD-VideoBench [3]. Although the size
of a single macro-block is the same for every task, the amount of computation
involved in processing is different. Figures 4(a) and 4(b) present execution time
breakdowns for both PPE and SPEs for two different videos. Each video has
different computational complexity. We have set the queue size to two slots for
this application due to the high memory requirements for code in the SPEs
(about 150 KBytes of code). In our experiments we use three B-frames and one
reference frame with 128 × 128 motion vector search window. The achievable
speedup depends on the complexity of the input video sequence, since the input
stream affects the required computations. Overall, using 6 SPEs results in a
speedup of up to 5.0 compared to the initial version of the encoder running on
the PPE.

4.4 Comparison to Sequoia

Finally, we compare TPC to Sequoia using the SAXPY, SGEMV, and CONV2D
kernels that come with Sequoia. We port them to TPC using the same compu-
tation functions and the same data partitioning schemes. We also port PBPI to
TPC and compare with its Sequoia implementation [15]. SAXPY and SGEMV
are both communication bound kernels and saturate memory bandwidth with
more than two or three SPEs. For CONV2D, in order to achieve better DMA
performance, we split the 4K × 4K image into 32 × 64 blocks where each task
processes one block. The matrix is constructed in row-wise form, therefore we

318 G. Tzenakis et al.

PPE 1 2 3 4 5 6

SPUs

0

50

100

 s
ec

on
ds

single PPE
PPE issue
Queue stall
Sync Wait
Application

SPU Idle
SPU Lib
SPU Task

(a) x264:riverbed

PPE 1 2 3 4 5 6

SPUs

0

20

40

60

80

 s
ec

on
ds

single PPE
PPE issue
Queue stall
Sync Wait
Application

SPU Idle
SPU Lib
SPU Task

(b) x264:blue sky

1 2 3 4 5 6

SPUs

0

50

100

150

200

250

 m
se

co
nd

s

PPE issue
Queue stall
Sync Wait
Application

SPU Idle
SPU Lib
SPU Task
Sequoia

(c) CONV2D

1 2 3 4 5 6

SPUs

0

100

200

300

 s
ec

on
ds

PPE issue
Queue stall
Sync Wait
Application

SPU Idle
SPU Lib
SPU Task
Sequoia

(d) PBPI

Fig. 4. TPC execution time breakdowns for x264, 2D convolution and PBPI

Table 1. FFT speedup

Speedup

SPEs Trans-
pose
fraction

Compu-
tation

Trans-
pose

Total

1 08.8% 1.00 1.00 1.00
6 23.0% 5.98 1.93 5.05

1 2 3 4 5 6

SPUs

0

10

20

30

40
 m

se
co

nd
s

PPE issue
Queue stall
Sync Wait
Application
SPU Idle
SPU Lib
SPU Task
Sequoia

(a) SAXPY

1 2 3 4 5 6

SPUs

0

5

10

15

20

 m
se

co
nd

s

PPE issue
Queue stall
Sync Wait
Application

SPU Idle
SPU Lib
SPU Task
Sequoia

(b) SGEMV

Fig. 5. SAXPY and SGEMV breakdowns

use stride arguments. Computation time dominates the SPE execution time in
CONV2D. Figures 5 and 4(c) show that TPC and Sequoia scale similarly with
both communication bound and compute bound kernels. The performance dif-
ference between TPC and Sequoia for SAXPY and SGEMV when the kernels
use more than one SPEs is about 3%. TPC performs about 5% better than
Sequoia in CONV2D due to better overlapping of DMA transfers in the TPC
runtime.

For PBPI we use various task sizes in TPC . We find that tasks with argument
sizes larger than 4 KBytes reach almost maximum speedup at queue sizes of 4
or higher. Figure 4(d) shows that with 6 SPEs we achieve a maximum speedup
of 5.6 while Sequoia achieves a maximum speedup of 4.2 with the same setup.
TPC benefits from dynamic task execution and better load balancing in PBPI.

5 Related Work

The introduction of multi-core processors in mainstream computing environ-
ments has given rise to numerous proposals and associated research efforts on
parallel programming models. We concentrate our discussion of related work on
task-level parallel programming models targeting heterogeneous multi-core pro-
cessors with explicitly managed local memories and cover briefly other related
work due to space considerations.

Tagged Procedure Calls (TPC): Efficient Runtime Support 319

Sequoia [6] is a programming language which relies on explicit data accesses
and is similar to TPC in that locality is exploited through annotation of data
with in-out clauses. Sequoia follows a static execution model where the program-
mer statically optimizes the mapping of data and tasks relatively to the memory
hierarchy. TPC implements a dynamic execution model where the programmer
expresses parallelism and locality without considering the mapping of tasks and
data to cores. TPC is optimized towards achieving low-overhead dynamic task
management mechanisms in order to exploit fine-grain task-level parallelism,
whereas Sequoia is optimized for explicit, static locality management.

CellSs [13] is a programming model for expressing task-level parallelism with
code annotations. Contrary to TPC ’s RPC-style programming model, CellSs
uses compiler directives to annotate tasks and data with in-out clauses. The
distinguishing feature of CellSs is the use of a helper thread that dynamically
analyzes dependencies between tasks and schedules tasks dynamically after re-
solving their input dependencies. Dynamic dependence analysis incurs high over-
head, which can be amortized if the analysis can increase the degree of available
parallelism. TPC does not perform runtime dependence analysis although this
is not precluded by its design. TPC ’s task queues enable aggressive lookahead
optimizations, such as pre-fetching via multi-buffering, similarly to CellSs. On
the other hand, CellSs’s scheduling model assumes coarse task granularity to
mask the overhead of runtime data dependence analysis, whereas TPC targets
fine-grain task-parallel execution. TPC ’s measured task initiation/completion
times are one order of magnitude lower than those currently reported for CellSs.

OpenMP has been extended to support task parallelism [12]. OpenMP tasks
require the programmer to specify only the code region that will execute in paral-
lel as a task. Instead, TPC requires specification of both code and data accessed
by the task. The XLC [11] compiler for the Cell offers an OpenMP abstraction
for loop level parallelism, using DBDB [9]. XLC splits loop iterations across
SPEs and predicts statically the ideal number of grouped iterations in order to
overlap communication with computation. On the other hand, TPC generates
tasks dynamically and uses task queues to overlap DMA transfers of upcoming
tasks with current task execution. Our evaluation shows that TPC is success-
ful in hiding DMA latencies. Furthermore, TPC maps non-contiguous accesses
always to DMA-list elements to minimize DMA initiation overheads in the run-
time. On the other hand, DBDB uses an analytical model to predict whether
those accesses should be mapped to a single DMA, including unnecessary data,
multiple individual DMAs, or a single DMA list. The authors of DBDB find that
DMA lists offer the best performance in most applications. Overall, TPC aims
at minimizing the runtime overhead for preparing and initiating task and data
transfers on both the PPE and SPEs, whereas DBDB aims at optimizing data
transfer time.

Related work targeting heterogeneous multi-core architectures outside the
context of task-level parallel programming models includes data-parallel pro-
gramming models, such as RapidMind [10], and libraries for expressing and
managing communication between heterogeneous components, such as IBM ALF

320 G. Tzenakis et al.

and DaCs [5]. Other commonly used programming models for shared-memory
multiprocessors, such as Cilk [4], do not provide support for heterogeneous sys-
tems with explicitly managed local memories, although there are ongoing efforts
for extending these models to support heterogeneous systems in the future.

6 Conclusions

We present Tagged Procedure Calls (TPC) a programming model for the Cell
processor, designed to exploit fine-grain parallelism and reduce programmer ef-
fort for scaling to large numbers of cores. TPC requires the programmer to
annotate programs at the procedure level for specifying parallel tasks and their
data accesses.

TPC implements task management using only on-chip operations for task
creation, initiation, assignment, and completion. TPC achieves null task initi-
ation and completion in 385 ns on the Cell, which is close to the round-trip
DMA latency. We find that applications previously implemented and optimized
for shared-memory multiprocessors can be ported with manageable effort that
involves mostly mechanical code changes and achieve high parallel efficiency us-
ing TPC . In addition, our results show that TPC enables the exploitation of
additional fine-grain parallelism on-chip in applications parallelized previously
at coarse granularity. Through a comparison with the Sequoia programming
language and its runtime we demonstrate that TPC performs competitively to
existing task-level parallel programming frameworks.

Finally, based on our experience with TPC , runtime support for future CMPs
will need to deal with three additional, broad issues: Mapping of the natural
task sizes of applications to fine-grained tasks for memory efficiency, scheduling
of fine-grained tasks, and code management. We believe that addressing these
issues at the runtime and architectural levels can result in efficient and scalable
task-based programming models for future CMPs.

Acknowledgments. We would like to thank Manolis Katevenis for discussions
at early stages of the work. We are thankful to the Barcelona Supercomputing
Center (BSC) and the Polytechnic University of Catalonia (UPC) for making
available the QS21 boards for performance debugging experiments. Finally, we
thankfully acknowledge the support of the European Commission through the
SARC IP (Contract No. SARC-27648), HiPEAC NoE (Contract No. IST-004408
and IST-217068) and the MCF IRG project I-Cores (Contract No. IRG-224759).

References

1. VideoLAN - x264, http://www.videolan.org/developers/x264.html
2. Abellán, J., Fernández, J., Acacio, M.: Characterizing the Basic Synchronization

and Communication Operations in Duall Cell-Based Blades. In: Proc. of the 8th
International Conference on Computational Science, June 2008, pp. 456–465 (2008)

http://www.videolan.org/developers/x264.html

Tagged Procedure Calls (TPC): Efficient Runtime Support 321

3. Alvarez, M., Salami, E., Ramirez, A., Valero, M.: HD-VideoBench. A Benchmark
for Evaluating High Definition Digital Video Applications. In: Proceedings of the
IEEE Workload Characterization Symposium, pp. 120–125 (2007)

4. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: An Efficient Multithreaded Runtime System. In: PPOPP 1995: Proceed-
ings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 207–216 (1995)

5. Crawford, C.H., Henning, P., Kistler, M., Wright, C.: Accelerating Computing with
the Cell Broadband Engine Processor. In: CF 2008: Proceedings of the 5th ACM
Conference on Computing frontiers, Ischia, Italy, pp. 3–12 (2008)

6. Fatahalian, K., Knight, T.J., Houston, M., Erez, M., Horn, D.R., Leem, L., Park,
J.Y., Ren, M., Aiken, A., Dally, W.J., Hanrahan, P.: Sequoia: Programming the
Memory Hierarchy. In: Proceedings of ACM/IEEE Supercomputing 2006 (2006)

7. Feng, X., Cameron, K.W., Sosa, C.P., Smith, B.E.: Building the Tree of Life on
Terascale Systems. In: Proceedings of the 21st International Parallel and Dis-
tributed Processing Symposium, mar 2007, pp. 1–10 (2007)

8. Hofstee, H.P.: Power Efficient Processor Architecture and The Cell Processor. In:
Proceedings of the 11th International Symposium on High-Performance Computer
Architecture, pp. 258–262 (2005)

9. Liu, T., Lin, H., Chen, T., O’Brien, K., Shao, L.: DBDB: Optimizing DMA Transfer
for the Cell BE Architecture. In: ICS, pp. 36–45 (2009)

10. McCool, M.D.: Data-Parallel Programming on the Cell BE and the GPU using the
RapidMind Development Platform. In: GSPx Multicore Applications Conference,
Santa Clara, CA (October 2006)

11. O’Brien, K., O’Brien, K., Sura, Z., Chen, T., Zhang, T.: Supporting OpenMP on
Cell. International Journal of Parallel Programming 36(3), 289–311 (2008)

12. OpenMP Architecture Review Board. Draft version 3.0 for public comments (Jan-
uary 2008), http://www.openmp.org/mp-documents/spec30_draft.pdf

13. Perez, J.M., Bellens, P., Badia, R.M., Labarta, J.: CellSs: Making it easier to
program the Cell Broadband Engine processor. IBM Journal of Research and De-
velopment 51(5), 593 (2007)

14. Rico, A., Ramirez, A., Valero, M.: Available Task-level Parallelism on the Cell BE.
Scientific Programming 17, 59–76 (2009)

15. Schneider, S., Yeom, J.-S., Rose, B., Linford, J.C., Sandu, A., Nikolopoulos, D.S.:
A Comparison of Programming Models for Multiprocessors with Explicitly Man-
aged Memory Hierarchies. In: PPOPP 2009: Proceedings of the 14th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, pp. 131–
140 (2009)

16. van der Tol, E., Jaspers, E., Gelderblom, R.: Mapping of H.264 Decoding on a
Multiprocessor Architecture. In: Image and Video Communications and Processing
(2003)

17. Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the
H.264/AVC Video Coding Standard. Circuits and Systems for Video Technology,
July 2003, vol. 13, pp. 560–576 (2003)

18. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 programs:
Characterization and methodological considerations. In: Proceedings of the 22nd
International Symposium on Computer Architecture, pp. 24–36 (1995)

http://www.openmp.org/mp-documents/spec30_draft.pdf

Analysis of Task Offloading for Accelerators

Roger Ferrer1, Vicenç Beltran1, Marc Gonzàlez1,2, Xavier Martorell1,2,
and Eduard Ayguadé1,2

1 Barcelona Supercomputing Center, Jordi Girona, 29
2 Departament d’Arquitectura de Computadors, Univ. Politècnica de Catalunya,

Jordi Girona, 1–3, Barcelona, Spain
{roger.ferrer,vbeltran,marc.gonzalez,xavier.martorell,

eduard.ayguade}@bsc.es

Abstract. As an answer to the forthcoming heterogeneous multicore
and accelerator–based architectures, we have proposed some syntactic
extensions to C in the form of C pragmas, based on OpenMP, that make
easier for programmers to offload parts of their applications to the aux-
iliary processors. Offloaded tasks can be made more profitable using a
simple blocking strategy. And the runtime system is used to better sup-
port computation and communication overlap, while moving data to and
from accelerators.

In order to prove the feasibility and usefulness of our proposal, we have
considered the IBM Cell architecture. The performance of the whole sys-
tem has been evaluated using HPCC STREAM Triad and several NAS
benchmarks. We present their evaluation and a detailed performance
breakdown at the level of parallel regions. We also classify the paral-
lel regions according to their suitability to be exploited in accelerators.
Overall, our performance is better compared to the results obtained from
the IBM compiler for the Cell processor.

1 Introduction

Heterogeneous multicore architectures available today add an extra difficulty
to programming. The process of writing or porting applications has to take
into account that the algorithms must be thought or adapted to use the new
architectural features and accelerators. Otherwise, the performance obtained is
far from the peak performance offered by the hardware.

Programmers have been struggling to achieve high performance in heteroge-
neous multicore architectures. For that, they have to write code in different ways,
with respect to what they are used to. It is common now to program on top of
a vendor provided SDK on various architectures, like the Cell BE processor[1]
and the NVIDIA GPU cards[2,3].

In this work, we are taking a higher–level approach, also thought to overcome
the limitations of current compiler technology, while more powerful compilers are
developed. We propose to extend the OpenMP[4,5] annotations to provide the
compiler with more information about how the program can be transformed[6].

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 322–336, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Analysis of Task Offloading for Accelerators 323

The main contributions of this paper are:

– The ability of defining parallel tasks that can be offloaded to accelerators.
The approach allows for incremental parallelization as OpenMP supports.
In this work we have focused on the Cell BE processor, although we believe
that the approach is general enough and can be applied to other sorts of
heterogenous multicore architectures.

– The automatic generation of DMA transfers guided by the annotations in-
serted by the programmer. In addition, double buffering techniques are im-
plemented and demonstrated by means of the CellMT library, supporting
threaded execution inside the Cell SPUs.

– Provide the parallelization of three NAS benchmarks[7,8] (CG, FT, and BT)
using the extensions proposed in the SARC programming model, including
the analysis of the performance obtained in the individual parallel regions
in these benchmarks, determining which are good characteristics of parallel
regions to be exploited in such heterogeneous environments.

We have developed the SARC transformations in the Mercurium C/C++ compi-
lation infrastructure[9]. Results show that the transformations are feasible, and
the performance reaches close to peak when using optimized kernels and is also
better compared to the performance obtained by the IBM compiler.

The rest of the paper is structured as follows: Section 2 presents relevant
related work. Section 3 presents our proposal. Section 4 presents the porting of
applications and their evaluation. Finally, Section 5 outlines the conclusions and
our future work.

2 Related Work

New processor designs based on heterogeneous multicores have raised the ques-
tion about their programmability. General purpose computation on graphics
processors has received a lot of attention as it delivers high performance com-
puting at rather low cost. Major processor vendors have shown their intent
to integrate GPUs as a GPU–core in the CPU chip [10,11]. CUDA [2], Com-
pute Unified Device Architecture, proposed by the GPU vendor NVIDIA, is a
programming model based on C and C++ for General Purpose Graphic Pro-
cessor Units (GPGPU) computing. It is based on kernels that are run n times
in parallel by n CUDA threads. Brook for GPUs [12] is a compiler and run-
time implementation of the Brook [13] stream programming language that runs
on GPUs. The Khronos group is developing a new standard, OpenCL [14], to
take the power of GPUs and make it available for general–purpose computing.
OpenCL standardizes the characteristics of various heterogeneous architectures,
from GPUs to the Cell/B.E. processor. Compared to them, our approach can
be used to automatically obtain the kernels from the applications source code,
and OpenCL will give the low–level support to efficiently execute them in the
accelerators.

324 R. Ferrer et al.

Many programming models suitable for heterogeneous multicores express
some form of task based parallelism. OpenMP 3.0 [4], introduces a task suit-
able for parallelization of irregular applications [15]. Cell Superscalar [16] is a
programming model based on dependences among tasks designed to ease Cell
programming. Recently, in [17], expressing dependences has also been proposed
for OpenMP 3.0 tasks.

The CAPS HMPP [18] toolkit is a set of compiler directives, tools and soft-
ware runtime that supports multi–core processor parallel programming in C and
Fortran on Unix platforms. HMPP works based on codelets, that define func-
tions that will be run in a hardware accelerator. These codelets can either be
hand–written for a specific architecture or be generated by a compiler.

IBM provides the IBM XL C/C++ for Multicore Acceleration [19] (formerly
known as Octopiler [20]). It is composed of a single source compiler, and its
associated runtime environment. The compiler takes OpenMP applications, and
transforms the code accordingly to the parallelization pragmas to be exploited
in the Cell SPUs. When the compiler can determine that the data access pattern
is regular, it uses a tiling transformation to inject the DMA transfers embedded
in the code. For regions in which regularity cannot be established, the compiler
code generation falls back on the use of a software cache [21], whose performance
is lower than the tiling transformations. We have used the IBM compiler to
compare some of our results to a commercial platform.

The PGI compilers [22] support regions of code to be outlined to accelera-
tors, and copyin and copyout clauses to indicate data movement hints to the
compiler.

Techniques such as double–buffering or multi–buffering have been widely used
in the Cell BE to hide DMA latencies. Although both techniques are very effec-
tive, they must be used on a case–by–case basis, because these techniques require
non–trivial code modifications. In [23], authors propose a prefetching technique
for I/O intensive applications which is effective for applications with huge work-
ing sets that do not fit in main memory. In [24] a software cache is proposed
for irregular accesses. The SPENK [25] nano–kernel provides a micro–threading
model to increase the utilization of the Cell/B.E. resources. The SPENK kernel
implements a preemptive threading model that allows the execution of com-
plex multithreaded applications inside the SPUs. In this work, we have used
the CellMT library [26] because it uses a highly optimized cooperative multi-
threading model that provides a low context switch overhead mechanism that
can overlap even small DMA transfers with computation.

3 Proposal

Our proposal is an extension to the OpenMP task construct[4] so we can express
work to be offloaded to the accelerators. Besides of the part of the code we want to
run in the accelerator, and since most of accelerators feature disjoint memories,
expressing the flow of data going in and coming out to/from the accelerator is
also required, specifically for those situations where the current compiler analysis
technology is unable to determine accurately such flow of data.

Analysis of Task Offloading for Accelerators 325

3.1 Program Annotations

In this subsection we describe the program annotations that we use to better
express data usage and work coarsening for the tasks outlined to accelerators.

Task outlining. In the context of a parallel region, OpenMP 3.0 allows to
define a deferrable unit of work by means of #pragma omp task. This task can
be executed at any time but OpenMP defines several synchronization points
where task finalization is guaranteed.

Since accelerators may provide better performance for some specific codes,
we may be interested in specifying that the task be run in one kind of ac-
celerator. As an extension to current task syntax, we introduce the clause
device(accelerator-kind-list), where accelerator-kind-list is a
comma-separated list of accelerator kinds feasible to execute the task.

Listing 1 shows a simple vector addition suitable for running in a SPU of the
Cell.

Listing 1. Simple example of a task feasible for a SPU

#pragma omp task device(spu)
{

int i;
for (i = 0; i < N; i++)
{

a[i] = b[i] + c[i];
}

}

Data movement hints. Accelerators often have their own memory banks,
disjoint to the main memory of the processor. Data used in tasks that run in ac-
celerators must be transferred from the main memory to the accelerator memory
and viceversa.

In order to express this data movement we introduce #pragma omp data di-
rective. This directive is paired with two clauses copy_in(data-variable-list)
and copy_out(data-variable-list) which express the flow of data going to
and coming from the accelerator respectively. Argument data-variable-list
is a comma-separated list of variable names or array-sections1 of the form
data-variable[lower:upper], meaning all elements from lower to upper (both
included).

Listing 2 shows an example where we copy to the accelerator the two added
arrays and we copy out the resulting array of the addition.

Listing 2. Moving data to and from the SPU

#pragma omp task device(spu)
{
#pragma omp data copy_in (b[0:N-1], c[0:N-1])

int i;
for (i = 0; i < N; i++)
{

a[i] = b[i] + c[i];
}

#pragma omp data copy_out (a[0:N-1])
}

1 This is a concept borrowed from Fortran 90.

326 R. Ferrer et al.

Blocking hint. Accelerators not only feature disjoint memories, they are also
much smaller than the main memory. This poses a problem when the data used
by the task does not fit wholly in the accelerator memory. While we could always
reduce the amount of data used in each task, like in Listing 3, this results in low
performance caused by a low ratio between computation and number of data
transfers.

Listing 3. Inefficient data transfer

int i;
for (i = 0; i < N; i++)
{
#pragma omp task device(spu)

{
#pragma omp data copy_in (b[i], c[i])

a[i] = b[i] + c[i];
#pragma omp data copy_out (a[i])

}
}

Blocking loops can be a simple way to allow loops to run in accelerators with
small memories, but it requires a manual transformation by the programmer. In
order to alleviate all the problems related with handmade transformations, we
provide a hint to the compiler to block the loop. The compiler will adjust appropi-
ately all #pragma omp datawhen performing the blocking. To achieve this effect,
we use #pragma omp for loop_blocking factors(factor1,. . .,factorN) in
the outermost body of a N -depth perfect loop nest (see Listing 4).

Listing 4. Simple loop blocking

int i;
#pragma omp for loop_blocking factors (BlockSize)
for (i = 0; i < N; i++)
{
#pragma omp task device(spu)

{
#pragma omp data copy_in (b[i], c[i])

{
a[i] = b[i] + c[i];

}
#pragma omp data copy_out (a[i])

}
}

4 Evaluation

In this section, we present the results obtained in the Cell/B.E. architecture, from
the HPCC STREAM Triad, and a subset of the NAS benchmarks. The goal is
to show how flexible the program transformations, and runtime optimizations
are. As a case study, a Cell/B.E. blade has been used for the evaluation, with
no loose of generality.

4.1 Execution Environment

The Cell Broadband Engine Architecture[1] (CBEA) is a heterogeneous multi-
core processor designed by IBM, Sony and Toshiba, see Figure 1. The Cell is

Analysis of Task Offloading for Accelerators 327

Fig. 1. Architecture of Cell Broadband Engine Architecture

built on top of a Power processor element (PPE). The PPE consists of a Power
Processor Unit (PPU) and it is connected to a 512 KBytes L2 cache. The PPU
is a dual issue in-order PowerPC64[27] with dual-thread support. Cell BE also
features eight Synergistic Processor Elements (SPEs). Each SPE is composed of
a Synergistic Processor Unit (SPU) and a Memory Flow Controller (MFC), the
latter being a programmable memory controler of each SPE. SPEs have a local
storage of 256 KBytes for data and code. An element interconnect bus (EIB) is
used to interconnect all elements.

For this evaluation, we have used the Cell machines available at the Barcelona
Supercomputer Center. They are QS20 blades powered with two Cell processors
clocked at 3.2 GHz with 1 GB of RAM memory. They have the IBM Cell SDK 3.0
installed. In this environment, we have up to 16 SPUs available. All experiments
have been done within the default Linux (version 2.6.24.7-92.fc8) execution en-
vironment, with the default virtual page size of 4096 bytes. All experiments
have been executed 4 times and means and standard deviations calculated. We
present the resulting means of the results, and we have ensured that the standard
deviation of the experiments is very low. The machines were used in a dedicated
mode.

We have extended the Mercurium C/C++ source-to-source compiler to im-
plement the constructs presented in Section 3 and in [9,6]. Mercurium is an
extensible source–to–source compiler targeted at code transformations. This
compiler supports multiple file generation, making it suitable for multiple ar-
chitecture compilation. After getting the transformed source code, we compile

328 R. Ferrer et al.

the PPU/SPU sides, each with the corresponding GCC 4.1.1, from the toolchain
coming with the SDK 3.0, except when otherwise indicated. The parallel code
generated runs on our CellMP runtime system, supporting such extensions in the
Cell processor. The runtime system takes care of task spawning, synchronization,
and DMA transfers. Besides, we address the issue of overlapping computation
and communication with the use of the CellMT[26] threading library. This user
level library enables the concurrent execution of multiple threads inside each
SPE processor. The library allows each SPE processor to overlap the task com-
putation and transfer times in a natural way. The CellMT library provides a
cooperative multi-threading model, so it relies on the threads themselves to re-
linquish control once they are at a waiting–for–data point in their execution.
This cooperative multi–threading model is a perfect fit for any processor with
a managed local store, such as the Cell processor, because the context switch
points are easily identified. In fact, all applications written for the Cell have
these points explicitly identified by the memory flow control (MFC) operations
used to wait for DMA request or mailbox messages.

4.2 Selected Applications

We have selected to evaluate our approach with several parallel applications
exploiting regular and some irregular memory accesses. In the first place, we
have taken the HPCC STREAM Triad benchmark to show the performance
obtained in regular applications. Then, we have also selected three of the NAS
benchmarks (CG, FT and BT). In the case of CG and FT, both benchmarks
exhibit irregular memory accesses in one of their parallel regions. This is useful
to see how our proposal behaves in these situations. In the following sections we
explain how we have done the evaluation on all these applications, and what is
the performance obtained.

4.3 Results Obtained from the HPCC STREAM Triad

We have coded the HPC Challenge STREAM benchmark [28] with our OpenMP
extensions. In this section, we present the results obtained in the Triad algorithm.
Listing 4.3 shows the code annotated. Observe the blocked parallel loop in lines
4–5, and how the tasks are labeled to be exploited in the Cell SPUs (line 7).
Each task is getting a block of vectors b and c (line 9), computing, and putting
the results (c) back to memory (line 11).

Figure 2 shows the results. It presents the GBytes per second obtained when
STREAM Triad runs from 1 to 16 SPUs, and when using 1 memory module (sets
of bars on the left hand side) and 2 memory modules (sets of bars on the right
hand side). We reach 22.2 Gbytes/s on 8 SPUs, and 40.8 Gbytes/s on 16 SPUs
when running with 2 SPU threads (thus fully exploiting double buffering), using
one and two memory modules respectively. We exploit double buffering in the
application code by using threading in the SPUs [26]. With this configuration,
our numbers are equivalent to 86% of peak (25.6 Gbytes/s) on 8 SPUs and 79%
of peak (51.2 Gbytes/s) on 16 SPUs.

Analysis of Task Offloading for Accelerators 329

1 void tuned_STREAM_Triad(double scalar)
2 {
3 int j;
4 #pragma omp parallel for loop_blocking factors (2048)
5 for (j=0; j<N; j++)
6 {
7 #pragma omp task device (spu)
8 {
9 #pragma omp data copy_in (b[j], c[j])

10 a[j] = b[j]+scalar *c[j];
11 #pragma omp data copy_out (a[j])
12 }
13 }
14 }

It is interesting to comment that the performance on 1 to 4 SPUs is better
when using a single memory module (bars on the left hand side of the figure).
This is because our SPU allocation algorithm starts at SPU 0 and continues
sequentially up to SPU 15. This means that when using up to 8 SPUs we are
using the SPUs in the Cell chip number 0. At 8 SPUs, the pressure on the
memory module has gone too high and it is worthwhile to use the two memory
modules to hold the data. In this case, it is noticeable the difference from 22.2
Gbytes/s using a single memory module, to 29.8 Gbytes/s when using the two
memory modules. When running on 12 and 16 SPUs, the performance is also
better when using the two memory modules. The reason why when using two
memory modules, the performance with 12 SPUs is reduced compared to that of
running on 8 SPUs needs to be further investigated. At this point, we attribute
it to the fact that some of the SPUs in the Cell chip number 0 are accessing
the memory module close to Cell chip number 1, and this causes conflicts in
the interconnection network between the chips. This is something that does not
happen when running on 16 SPUs and the two memory modules, as in this case
the memory accessed is perfectly split between the two Cell chips.

If we compare these results with recently published results from the Intel Xeon
5500 Nehalem processor family, we can see that currently we are still competitive
with our results on the Cell blade. A box with two Intel Xeon 5570 processors
(for a total of 8 cores) achieves in this same benchmark 37.12 Gbytes/s [29,30].

4.4 Results Obtained from NAS CG

We have annotated NAS CG with the proposed extensions. All parallel loops
expose regular accesses, except the one shown (annotated) in Listing 5.

In this loop, the inner–most copy_in directive in line 11 cannot be issued
before the array section from colidx has been transferred, and accessed, getting
the irregular index (irreg_index).

We have experimented with two different transformations for such irregu-
lar accesses. First, the naive translation to a DMA transfer initiated when the
copy_in directive is found. A second transformation consists of generating an
inspector[31] code that builds a DMA list (a feature of the Cell SPUs), then
issuing the DMA list transfer to collect the irregular data, and finally, doing the
computation on the collected data.

330 R. Ferrer et al.

Listing 5. Annotated loop with an irregular data access in CG

1 #pragma omp for loop_blocking factors (block_size)
2 for (j = 1; j <= lastrow -firstrow +1; j++) {
3 #pragma omp task device(spu)
4 {
5 double sum = 0.0;
6 #pragma omp data copy_in (rowstr [j:j+1])
7 int lowk = rowstr [j], upk = rowstr[j+1];
8 #pragma omp data copy_in (colidx[lowk:upk], a[lowk:upk])
9 for (k = rowstr[j]; k < rowstr [j+1]; k++) {

10 int irreg_index = colidx[k];
11 #pragma omp data copy_in (p[irreg_index])
12 sum = sum + a[k]*p[irreg_index];
13 }
14 w[j] = sum;
15 #pragma omp data copy_out (w[j])
16 }
17 }

1 2 4 8 12 16 1 2 4 8 12 16

0

5

10

15

20

25

30

35

40

45

1 SPU thread
2 SPU threads

Single memory module Two memory modules
Number of SPUS

G
B

yt
es

/s

Fig. 2. Performance reported by
STREAM Triad in a Cell blade

8 12 16
0

5

10

15

20

25

30

35

40

45

50

CellMP / 1

CellMP / 2

CellMP / 3

CellMP-irreg / 1

CellMP-irreg / 2

CellMP-irreg / 3

Number of SPUs

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

Fig. 3. Benefits of the irregular
access transformation ans use of
CellMT in NAS CG

Figure 3 shows the evaluation of the CG CLASS A benchmark from 8 to 16
threads when using both transformations, and from 1 to 3 CellMT threads per
SPU. It can be observed that the transformation of irregular accesses to DMA
lists (labelled CellMP-irreg) is very effective, and also that the best results are
achieved when using 2 CellMT threads. The reason why 3 CellMT threads are
not giving better results is that the DMA transfer times are shorter than the
computation times across most of the parallel regions, as in the STREAM Triad
case. In this situation, an extra thread is only adding overhead.

We have compared these results with the ones obtained with the IBM cbexlc
compiler[32,20], version 1.0, for CLASS A in Figure 4, and CLASS B in Figure 5.
The speedup shown is measured against the serial execution of the benchmark
in the PPU, to have a common reference for all experiments. As a result, our
program transformations and runtime system optimizations give better results
than the IBM compiler, showing that the techniques used in the transformations
are interesting to achieve better performance in this kind of accelerator–based
architectures. Notice that the scalability of CG Class B is higher than that of
Class A, similarly to what happens in plain SMP machines. This is because

Analysis of Task Offloading for Accelerators 331

1 2 4 8 12 16
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6 cbexlc

CellMP-irreg / 1

CellMP-irreg / 2

Number of SPUs

S
pe

ed
up

 w
ith

 re
sp

ec
t e

xe
cu

tio
n

in
 P

P
U

Fig. 4. Speedup obtained in NAS
CG Class A

1 2 4 8 12 16

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

cbexlc

CellMP-irreg / 1
CellMP-irreg / 2

Number of SPUs

S
pe

ed
up

 w
ith

 re
sp

ec
t e

xe
cu

tio
n

in
 P

P
U

Fig. 5. Speedup obtained in NAS
CG Class B

the higher the Class, the higher the data structures in the NAS benchmarks.
Although each task DMA transfers have the same size, each task has also more
work to do, it transfers-computes more times, and the overhead of spawning and
joining parallel regions has less impact on the overall performance. In any case,
for small tasks, we also notice that our CellMP execution environment still has
some overhead, as it does not scale beyond 12 SPUs for CG Class A. This will
be investigated in our future work.

4.5 Results Obtained from NAS FT

We have also used our OpenMP extensions to annotate the NAS FT benchmark.
There are 4 main loops to be annotated. With this benchmark we do not see
benefits from using CellMT threads. The reason is that in order to exploit 2
threads, the block size in which the benchmark operates has to be reduced.
This causes an extra overhead to spawn parallelism from the PPU, and it is not
worthwhile.

We present the results obtained in each individual parallel loop in the Class
A of the FT benchmark in Figure 6. Class B gives similar results. Observe that
loops scale well. Also, it is noticeable the benefit of the irregular support in the
performance of the loop in function evolve, referred to as evolve-lists in the
graph. Figure 7 shows the execution times obtained in the execution of NAS FT
using the cbexlc compiler and our CellMP environment without (label CellMP)
and with the irregular transformation (label CellMP-irreg). Notice also that in
the three executions with a single SPU (and also in 2 SPUs), the performance
obtained is worse than that obtained in the PPU. The fact that no parallel loop
has been vectorized by the SPU compiler can be a good reason for this effect,
but further investigation needs to be done to better determine the reasons of
such poor performance of the FT code on the SPU.

4.6 Results Obtained from NAS BT

We have also annotated NAS BT with our OpenMP extensions. In this applica-
tion we have faced a new issue: the code size outlined for the SPUs does not fit

332 R. Ferrer et al.

evolve
evolve-

lists
cffts1

cffts2
cffts3

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4 1 SPU

2

4

8

12

16

Parallel region

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

Fig. 6. Execution times obtained FT
Class A parallel loops

PPU-
serial

1 2 4 8 12 16
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160 cbexlc

CellMP

CellMP-irreg

Number of SPUs

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

Fig. 7. Execution time obtained in FT
Class A

in their local store. To solve this, we have used the IBM compiler (through the
spuxlc driver) to compile the code outlined for the SPUs, with overlay support.

We have annotated the 18 parallel loops offering better performance. They
have been outlined by the Mercurium compiler automatically. The IBM compiler
has generated the overlays, and we have obtained detailed timings for each of
them. As with NAS FT, we have not seen benefits from using CellMT threads,
as the block sizes are then reduced. Also, NAS BT has no irregular memory
accesses that could be improved by using the irregular support in CellMP.

Figure 8 shows the evaluation of the NAS BT (Class A) application when
executed in the PPU, and from 1 to 16 SPUs. As it can be observed, the appli-
cation suffers a loose in performance when going from the PPU to 1 or 2 SPUs.
With 4 SPUs, the performance is mostly equivalent to the PPU. For 8 and 16
SPUs, a slight increase in performance is still achieved.

Evaluated independently, we have found the following types of loops in NAS
BT, with these characteristics:

Serial 1 2 4 8 16

0

200

400

600

800

1000

1200

1400

1600

1800

2000 CellMP

Serial / Number of SPUs

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

Fig. 8. Execution time obtained in
NAS BT (Class A)

ad
d

co
m

pu
te

_r
hs

3
co

m
pu

te
_r

hs
9

co
m

pu
te

_r
hs

15

0

2.5

5

7.5

10

12.5

15

17.5

20

1
24

816

Parallel region

S
pe

ed
up

Number
of SPUs

Fig. 9. Scalability of par-
allel regions with good
properties in NAS BT

Analysis of Task Offloading for Accelerators 333

– Parallel regions fitting in the local store and with good DMA properties.
Regions Add, compute_rhs3, compute_rhs9, and compute_rhs15 have the
nice properties of having their code fitting well in the local store, and having
large consecutive DMAs of more of 2 Kbytes per DMA transfer. Because
of this, their performance in a single SPU is already comparable to the
performance on the PPU. And when going to multiple SPUs, their scalability
is very good, achieving speedups of above 12 in 16 SPUs (see Figure 9).

– Parallel regions fitting in the local store, with short DMA transfers. Regions
identified by lhsx, lhsy, and lhsz still have their code fitting in the local
store, but they do have short DMA transfers. Such short DMA transfers
are caused by convolution-like memory accesses, where in some transfers
less elements than the full inner dimensions are moved. This way, data is
transferred in small chunks, and the cost of the initiation of the DMAs
is the penalty that reduces performance (see regions labeled as lhsan in
Figure 10). Their speedup compared to the execution in the PPU does not
go over 4.5.

– Parallel regions that do not fit in the local store and with short DMA trans-
fers. The rest of regions shown in Figure 10 (labeled x_solven, y_solven,
and z_solven) have very limited performance caused by a large penalty
of overlay replacement during execution. All of them have a call to a large
function (binvchrs) that goes to a different overlay section. In addition,
their DMA transfers are short, due to the same reasons than in the previous
case. In this case, their performance in a single SPU is much worse (3 to 4
times worse) than in the PPU, so the performance in 8 SPUs cannot be more
than an speedup of 1.5 or 2. In addition, due to the extra DMA transfers
caused by the overlay management, their scalability from 8 to 16 SPUs is
very limited.

We think that future development, and porting, of applications for heteroge-
neous multicore processors will need to achieve a large portion of code fitting in
the first category. Otherwise, the performance obtained will be severely limited,
as it happens with the overall performance of NAS BT.

lh
sx

lh
sy

1
lh

sy
2

lh
sz

1
lh

sz
2

x_
so

lve
_c

el
l1

x_
so

lv
e_

ce
ll2

x_
so

lv
e_

ce
ll3

y_
so

lv
e_

ce
ll1

y_
so

lve
_c

el
l2

y_
so

lv
e_

ce
ll3

z_
so

lv
e_

ce
ll1

z_
so

lv
e_

ce
ll2

z_
so

lv
e_

ce
ll3

0
0.5

1
1.5

2

2.5

3

3.5

4

4.5

1
2

4
8 16

Parallel region

S
pe

ed
up

Number
of SPUs

Fig. 10. Scalability of parallel regions with bad properties in NAS BT

334 R. Ferrer et al.

5 Conclusions and Future Work

We have shown the feasibility of defining tasks to be offloaded to accelerators
and the generation of automatic DMA transfers. By means of annotations in the
source code the programmer defines those tasks and specifies the intended data
movement. Blocking, also specified by directives, can be used as way to overcome
the local storage limitations of heterogeneous multicore processors with local
stores, allowing to increase the granularity of offloaded tasks.

Our evaluation has used the Cell/B.E. processor as a case study. We show
that our transformations effectivelly allow to exploit the computation and com-
munication resources of the Cell using the CellMT SPU threading library. We
have presented the evaluation of STREAM Triad and the NAS benchmarks CG,
FT, and BT. With STREAM Triad we show how we can obtain 79% of peak
bandwidth when using 16 SPUs, and 86% of peak when running on 8 SPUs.
A detailed analysis of the parallel regions in CG, FT, and BT shows that it is
important to have them fit in the local stores of the SPUs, and to have DMA
transfers of consecutive data, and as large as possible. Our overall performance
is competitive with the IBM compiler for the Cell/B.E.

We have observed that our CellMP runtime system has some overhead, spe-
cially when running on a large number of SPUs. As future work, we will investi-
gate what are the sources of such overhead, and better tune the runtime system to
support fine–grain tasks. We will continue coding applications with our OpenMP
extensions, in order to further demonstrate their usability, and also trying to in-
fluence comercial compilers to incorporate some of the techniques to improve the
static analysis of the compilers to be able to generate better code automatically.

Our long term plan includes extending this model also to FPGAs and GPUs
as well. For FPGAs, our idea is to use the same task annotations to describe
which is the code that should be implemented in the FPGA. In this context, data
movement coul d be automatically generated from the copy_in and copy_out
directives.

Acknowledgements

We would like to thank the Barcelona Supercomputing Center (BSC) for the use
of their machines. This work has been supported by the Ministry of Education
of Spain under contracts TIN2007-60625 and CSD2007-00050, the Generalitat
de Catalunya (2009-SGR-980), the European Commission in the context of the
SARC integrated project #27648 (FP6), the HiPEAC-2 Network of Excellence
(FP7/IST-217068), and the Mare Incognito project under the BSC-IBM collab-
oration agreement.

References

1. Chen, T., Raghavan, R., Dale, J., Iwata, E.: Cell Broadband Engine Architecture
and its first implementation. IBM Developer Works (November 2005)

2. NVIDIA corporation: NVIDIA CUDA Compute Unified Device Architecture Ver-
sion 2.0 (2008)

Analysis of Task Offloading for Accelerators 335

3. NVIDIA corporation: NVIDIA Tesla GPU Computing Technical Brief (2008)
4. OpenMP Architecture Review Board: OpenMP Application Program Interface.

Version 3.0 (May 2008), http://www.openmp.org
5. Ayguadé, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Teruel, X.,

Unnikrishnan, P., Zhang, G.: The Design of OpenMP Tasks. IEEE Transactions
on Parallel and Distributed Systems 20(3), 404–418 (2009)

6. Ayguadé, E., Badia, R.M., Cabrera, D., Duran, A., Gonzalez, M., Igual, F.,
Jimenez, D., Labarta, J., Martorell, X., Mayo, R., Perez, J.M., Quintana-Orti,
E.: A Proposal to Extend the OpenMP Tasking Model for Heterogeneous Archi-
tectures. In: Fifth International Workshop on OpenMP, IWOMP (2009)

7. Jin, H., Frumkin, M., Yan, J.: The OpenMP Implementation of NAS Parallel
Benchmarks and Its Performance. Technical Report NAS-99-011, NASA Ames Re-
search Center (1999)

8. Kusano, K., Satoh, S., Sato, M.: Performance evaluation of the Omni OpenMP
compiler. In: Third International Symposium on High Performance Computing,
pp. 403–414 (2000)

9. Ferrer, R., Gonzalez, M., Silla, F., Martorell, X., Ayguadé, E.: Evaluation of Mem-
ory Performance on the Cell BE with the SARC Programming Model. In: Pro-
ceedings of the 9th Workshop on Memory Performance: Dealing with Applications,
systems, and architecture (MEDEA 2008) (October 2008)

10. Intel Corporation: Intel Corporation’s Multicore Architecture Briefing (March
2008), http://www.intel.com/pressroom/archive/releases/20080317fact.htm

11. AMD Corporation: AMD 2007 Technology Analyst Day,
http://www2.amd.com/us-en/assets/content_type/DownloadableAssets/

FinancialA-DayNewsSummary121307FINAL.pdf
12. Stanford University: BrookGPU,

http://graphics.stanford.edu/projects/brookgpu/
13. Stanford University: Brook Language, http://merrimac.stanford.edu/brook/
14. Group, K.O.W.: The OpenCL Specification (February 2009),

http://www.khronos.org/registry/cl/
15. Ayguadé, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Su, E.,

Unnikrishnan, P., Zhang, G.: A Proposal for Task Parallelism in OpenMP. In:
Chapman, B., Zheng, W., Gao, G.R., Sato, M., Ayguadé, E., Wang, D. (eds.)
IWOMP 2007. LNCS, vol. 4935, pp. 1–12. Springer, Heidelberg (2008)

16. Perez, J.M., Bellens, P., Badia, R.M., Labarta, J.: CellSs: Making it easier to
program the Cell Broadband Engine processor. IBM Journal of Research and De-
velopment 51(5), 593–604 (2007)

17. Duran, A., Pérez, J.M., Ayguadé, E., Badia, R.M., Labarta, J.: Extending the
OpenMP Tasking Model to Allow Dependent Tasks. In: Eigenmann, R., de Supin-
ski, B.R. (eds.) IWOMP 2008. LNCS, vol. 5004, pp. 111–122. Springer, Heidelberg
(2008)

18. Dolbeau, R., Bihan, S., Bodin, F.: HMPP: A Hybrid Multi-core Parallel Program-
ming Environment. In: Workshop on General Processing Using GPUs (2006)

19. IBM Corporation: XL C/C++ for Multicore Acceleration (January 2009),
http://www-01.ibm.com/software/awdtools/xlcpp/multicore/

20. O’Brien, K., O’Brien, K., Sura, Z., Chen, T., Zhang, T.: Supporting OpenMP on
Cell. International Journal of Parallel Programming (2008)

21. Balart, J., Gonzalez, M., Martorell, X., Ayguadé, E., Sura, Z., Chen, T., Zhang, T.,
O’Brien, K., O’Brien, K.: A Novel Asynchronous Software Cache Implementation
for the CELL/BE Processor. In: Adve, V., Garzarán, M.J., Petersen, P. (eds.)
LCPC 2007. LNCS, vol. 5234, pp. 125–140. Springer, Heidelberg (2008)

http://www.openmp.org
http://www.intel.com/pressroom/archive/releases/20080317fact.htm
http://www2.amd.com/us-en/assets/content_type/DownloadableAssets/FinancialA-DayNewsSummary121307FINAL.pdf
http://www2.amd.com/us-en/assets/content_type/DownloadableAssets/FinancialA-DayNewsSummary121307FINAL.pdf
http://graphics.stanford.edu/projects/brookgpu/
http://merrimac.stanford.edu/brook/
http://www.khronos.org/registry/cl/
http://www-01.ibm.com/software/awdtools/xlcpp/multicore/

336 R. Ferrer et al.

22. Group, T.P.: PGI Fortran & C Accelerator Programming Model (December 2008),
http://www.pgroup.com/lit/whitepapers/pgi_whitepaper_accpre.pdf

23. Rafique, M.M., Butt, A.R., Nikolopoulos, D.S.: Dma-based prefetching for i/o-
intensive workloads on the cell architecture. In: CF 2008: Proceedings of the 2008
conference on Computing frontiers, pp. 23–32. ACM, New York (2008)

24. Chen, T., Zhang, T., Sura, Z., Gonzalez, M.: Prefetching irregular references for
software cache on cell. In: CGO 2008: Proceedings of the sixth annual IEEE/ACM
international symposium on Code generation and optimization, pp. 155–164. ACM,
New York (2008)

25. Ahmed, M.F., Ammar, R.A., Rajasekaran, S.: SPENK: Adding Another Level of
Parallelism on the Cell Broadband Engine. In: IFMT 2008: Proceedings of the
1st international forum on Next-generation multicore/manycore technologies, pp.
1–10. ACM, New York (2008)

26. Beltran, V., Carrera, D., Torres, J., Ayguadé, E.: CellMT: A Cooperative Multi-
threading Library for the Cell/B.E. In: HiPC 2009: Proceedings of the 16th Annual
IEEE International Conference on High Performance Computing. IEEE Computer
Society, Los Alamitos (2009)

27. Weltzer, J., Silha, E., May, C., Frey, B., Furukawa, J., Frazier, G.: PowerPC Ar-
chitecture Book V. 2.02. IBM Corporation (2005)

28. McCalpin, J.D.: STREAM: Sustainable Memory Bandwidth in High Performance
Computers (2008), http://www.cs.virginia.edu/stream

29. Corder, S., Sheumaker, K.: STREAM Benchmarking: Intel Xeon 5500 Nehalem
vs AMD Opteron 2400 Istanbul (2009), http://www.advancedclustering.com/

company-blog/stream-benchmarking.html

30. Corporation, I.: Intel Xeon Processor 5000 Sequence (2009), http://www.intel.
com/p/en_US/products/server/processor/xeon5000

31. Balart, J., Gonzalez, M., Martorell, X., Ayguadé, E., Labarta, J.: Runtime Address
Space Computation for SDSM Systems. In: Almási, G.S., Caşcaval, C., Wu, P.
(eds.) LCPC 2006. LNCS, vol. 4382, pp. 330–344. Springer, Heidelberg (2007)

32. Chen, T., Sura, Z., O’Brien, K., O’Brien, J.K.: Optimizing the Use of Static Buffers
for DMA on a CELL Chip. In: Almási, G.S., Caşcaval, C., Wu, P. (eds.) LCPC
2006. LNCS, vol. 4382, pp. 314–329. Springer, Heidelberg (2007)

http://www.pgroup.com/lit/whitepapers/pgi_whitepaper_accpre.pdf
http://www.cs.virginia.edu/stream
http://www.advancedclustering.com/company-blog/stream-benchmarking.html
http://www.advancedclustering.com/company-blog/stream-benchmarking.html
http://www.intel.com/p/en_US/products/server/processor/xeon5000
http://www.intel.com/p/en_US/products/server/processor/xeon5000

Offload – Automating Code Migration to
Heterogeneous Multicore Systems

Pete Cooper1, Uwe Dolinsky1, Alastair F. Donaldson2, Andrew Richards1,
Colin Riley1, and George Russell1

1 Codeplay Software Ltd., Edinburgh, UK
2 Oxford University Computing Laboratory, Oxford, UK

Abstract. We present Offload, a programming model for offloading parts of a
C++ application to run on accelerator cores in a heterogeneous multicore system.
Code to be offloaded is enclosed in an offload scope; all functions called indi-
rectly from an offload scope are compiled for the accelerator cores. Data defined
inside/outside an offload scope resides in accelerator/host memory respectively,
and code to move data between memory spaces is generated automatically by
the compiler. This is achieved by distinguishing between host and accelerator
pointers at the type level, and compiling multiple versions of functions based on
pointer parameter configurations using automatic call-graph duplication. We dis-
cuss solutions to several challenging issues related to call-graph duplication, and
present an implementation of Offload for the Cell BE processor, evaluated using
a number of benchmarks.

1 Introduction

In this paper, we contribute towards the goal of programming heterogeneous multi-
core processors like the Cell Broadband Engine (BE) [1] using a familiar threading
paradigm. To this end, we present Offload, a programming model and implemented
system for offloading portions of large C++ applications to run on accelerator cores.
Code to be offloaded is wrapped in an offload block, indicating that the code should
be compiled for an accelerator, and executed asynchronously as a separate thread. Call
graphs rooted in an offload block are automatically identified and compiled for the
accelerator; data movement between host and accelerator memories is also handled au-
tomatically. The Offload approach allows the development of portable multi-threaded
applications for homogeneous and heterogeneous platforms: the language extensions
we propose are minimal, and preprocessor macros can be used to select between, for
example, a POSIX thread and an Offload thread on a homogeneous or heterogeneous
platform respectively. The advantages to this approach are evident: large source bases
can be incrementally migrated to heterogeneous platforms with relatively little change;
portability across heterogeneous and homogeneous platforms is possible, and the bur-
den of writing data movement and accelerator start-up and clear-down code is lifted
from the programmer.

After discussing the challenges of heterogeneous multicore programming we make
the following contributions. We present the Offload language extensions, and describe

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 337–352, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

338 P. Cooper et al.

automatic call-graph duplication, where multiple versions of a function1 are compiled
for an accelerator, based on the contexts in which the function is called. We then dis-
cuss our solutions to challenging problems associated with call-graph duplication in
the presence of pointer types for separate memory spaces, function pointers and virtual
methods, and multiple compilation units. Finally, we present experimental results for a
Cell BE implementation of Offload, evaluated using several benchmarks.

2 Programming Heterogeneous Multicore Processors

Processor manufacturers are increasingly opting to deliver performance improvements
by implementing processors consisting of multiple cores due to problems in obtaining
further performance increases from single core processors. Multicore processors may
be homogeneous, consisting of n identical cores, or heterogeneous, where some or all of
the cores differ in specialisation. In principle, a homogeneous multicore processor with
n cores connected to shared memory can offer a factor of n-times execution speedup
over a single-core processor at the same clock rate. However, contention for access
to shared memory may lead to a performance bottleneck, known as the memory wall,
where adding further cores quickly leads to diminishing returns.

The memory wall problem has led to a recent mainstream shift towards heteroge-
neous multicore processors in the host with accelerators pattern, where a host core con-
nected to main memory coordinates a number of possibly diverse processing element
(PE) cores each equipped with private “scratch-pad” memory. Independent calculations
can be processed in parallel by separate cores with reduced contention for shared mem-
ory. The PE cores need only access shared main memory via direct memory access
(DMA) to read input data, write results, and communicate with one another. The Cell
BE [1] is one such processor design, consisting of a Power Processor Element (PPE)
host with 8 Synergistic Processor Element (SPE) accelerator cores.

The use of scratch-pad memories can boost performance, but increases the complex-
ity of concurrent programming. The programmer can no longer rely on the hardware
and operating system to seamlessly transfer data between levels of the memory hierar-
chy, and must manually orchestrate data movement using DMA. Experience writing and
debugging industrial software for heterogeneous multicore processors has identified the
following key problems:

Separate programs are required for different cores. Distinct cores may have entirely
different instruction set architectures, making it necessary to write, compile and main-
tain separate versions of functions for each type of core, as well as platform-specific
“glue” code, to start up and clear down accelerator threads.

Data movement is untyped and unsafe. Low level data movement primitives operate
on untyped bytes and data words. Mistakes in interpretation of untyped data or misuse
of DMA primitives can lead to nondeterministic bugs that are hard to reproduce and fix.

Furthermore, many large applications have already been successfully parallelized for
homogeneous multicore processors using POSIX or Windows threads. In this case the
problem is not to find potential parallelism, but rather exploit already identified potential

1 We use function to refer to functions and methods in general.

Offload – Automating Code Migration to Heterogeneous Multicore Systems 339

by offloading threads to accelerator cores with minimal disruption to an existing code-
base. The Offload approach aims to ease the programming of heterogeneous multicore
systems via a conservative extension to the C++ language.

We focus on systems where there is one type of accelerator core, equipped with a
small scratch-pad memory, and with sufficient functionality to be programmed in C.
The approach could be naturally extended to support multiple types accelerator.

3 Offload Language Extensions

3.1 Offload Scopes

The central construct of the Offload system is the offload block, a block prefixed by the
offload keyword. Code outside an offload block executes on the coordinating host
core; code inside an offload block executes on an accelerator core in a separate thread.

Offload blocks extend the syntax of C++ expressions as follows:

Expr ::= . . . || offload Domain? Args? { Compound -Stmt }

Args ::= (list of variable names) Domain ::= (list of function names)

An offload block evaluates to a value of type offload_handle_t, an opaque type
defined in header files supplied with the Offload system. The expression has the side-
effect of launching a thread on an accelerator core. This offload thread executes
Compound -Stmt , with standard sequential semantics. Host execution continues in par-
allel. The host can wait for the offload thread to complete by calling library function
offload_join, passing as an argument the handle obtained on creating the offload
thread. Multiple offload threads can be launched to run in parallel, either via multiple
offload blocks, or by enclosing an offload block in a loop.

An offload thread can access global variables, as well as variables in the scope en-
closing the associated offload block. Additionally, an offload block may be equipped
with an argument list – a comma-separated list of variables names from the enclosing
scope. Each variable in this list is copied to a local variable in the offload thread with the
same name; references to this name inside the offload block refer to the local variable.
An offload block may also be equipped with a domain, which we discuss in §5.2.

These concepts are illustrated by the following example:
int main() {

int x = ...;
int y = ...;
offload_handle_t handle = offload(y) {

// runs on accelerator, ’y’ passed by value
... = x; x = ...; // ’x’ accessed in enclosing scope
... = y; y = ...; // local copy of ’y’ accessed

};
... // host runs in parallel with accelerator
y = ...; // changes to ’y’ do not affect offload thread
...
offload_join(handle); // wait for offload thread

}

340 P. Cooper et al.

For brevity, we omit details of parameters and handles in the examples that follow.
The offload keyword can also be used as a function qualifier. A function with the

offload qualifier is called an offload function, and function names can be overloaded
using offload. We refer to offload functions and offload blocks as offload scopes.
Offload functions can only be called from offload scopes, but it is permissible to call a
non-offload function from an offload scope; this is discussed in detail in §4. We illustrate
offload functions using the following example:

void f() { ... } // (1)
offload void f() { ... } // (2)
offload void g() { ... } // (3)
void h() { ... } // (4)

int main() {
f(); // calls (1) on host
g(); // error, ’g’ is an offload function
offload {

f(); // calls (2) on accelerator
g(); // calls (3) on accelerator
h(); // calls (4) on accelerator

}
}

3.2 Outer Pointers and Data Movement

Data declared inside an offload scope resides in accelerator memory. We distinguish
pointers to local memory from pointers to host memory, referring to the latter as outer
pointers. An additional qualifier for pointers and references,2 the outer qualifier, spec-
ifies that a pointer refers to host memory. Pointers outside an offload scope have the
outer qualifier by default. Assignment between outer and non-outer pointers is illegal;
this ensures that an outer/non-outer pointer does not refer to data residing in accelera-
tor/host memory.

Dereferencing an outer pointer in an offload scope causes data to be moved between
host and accelerator memory. Data movement may be achieved via direct memory ac-
cess (DMA). However, unless synchronization primitives are used to guard access to
host memory, non-volatile data can be cached locally, so data movement may be im-
plemented using a software cache, or via double-buffered streaming DMA if accesses
have a regular pattern. Our Cell BE implementation (see §6) uses a software cache by
default, and provides library functions to flush or invalidate the cache. These functions
can be used in conjunction with mutexes to allow sharing of data between host and
offload threads.

Consider the following listing, where a -> b indicates data movement from a to b:

offload void f(outer float * p) {

*p = *p + 42.0f; // host -> accelerator, accelerator -> host
}

2 Henceforth we will only talk about pointers; everything we say about pointers applies to ref-
erences also.

Offload – Automating Code Migration to Heterogeneous Multicore Systems 341

Fig. 1. Examples illustrating the outer qualifier for pointers

float a;

int main() {
offload {

outer float * p = &a;
float b = *p; // host -> accelerator

*p = b + 42.0f; // accelerator -> host
float c = a; // host -> accelerator
a = c; // accelerator -> host
p = &b; // error! ’&b’ is not outer
f(p); // legal function call
f(&b); // error! ’&b’ is not outer

}
}

Taking the address of global variable a obtains an outer pointer p, through which
data can be transferred between host and accelerator memory. Accessing host variable
a directly from an offload scope also results in data movement. The listing illustrates
illegal assignment between outer and non-outer pointers.

Outer pointers allow data transfers to be expressed without exposing the programmer
to low-level, non-portable operations. By regarding outer and local pointers as incom-
patible, the compiler is able to ensure that transfers are well typed. Fig. 1 provides
further illustration of the use of outer pointers in memory-space separation.

C++ permits overloading on the basis of const and volatile qualifiers. The Of-
fload language extends this to the outer qualifier, allowing functions to be overloaded
with different combinations of outer pointers. For an instance method on a class, the
outer qualifier can be applied to the this pointer by placing outer after the closing
bracket of the parameter list for the method; an example of this is given in §4.1.

4 Call-Graph Duplication

Suppose we require that only offload functions can be called from offload scopes. We
call this the strict requirement. In this case, the compiler knows exactly which func-
tions to compile for the accelerator (the offload functions) and host (the non-offload
functions). Furthermore, the pointer signature for an offload function specifies exactly
those pointers for which dereferences correspond to data movement operations (the
outer pointers). The drawback is that the programmer may have to manually dupli-
cate functionality to match the contexts in which a function is called. We illustrate the

342 P. Cooper et al.

process of manual function duplication with the strict requirement, then show how au-
tomatic call-graph duplication can be used to handle programs that do not satisfy this
requirement.

4.1 Manual Function Duplication

Consider the following class:
class SecretKeeper {

int[SIZE] secrets;
public:

int getSecret(int * p) const { return secrets[*p]; }
};

Listing 1. A simple C++ “secret keeper” class.

The following listing declares a SecretKeeper object both outside and inside an
offload block, and calls the getSecret method on each object with a combination of
outer and local pointers:

int main() { ...
SecretKeeper outKeeper;
int x; ...
// normal method call on host
int secretSum = outKeeper.getSecret(&x);
offload {

SecretKeeper inKeeper;
int y; ...
secretSum +=
inKeeper.getSecret(&y) // (1) local ’this’, local ’p’

+ inKeeper.getSecret(&x) // (2) local ’this’, outer ’p’
+ outKeeper.getSecret(&y) // (3) outer ’this’, local ’p’
+ outKeeper.getSecret(&x) // (4) outer ’this’, outer ’p’

}; ...
}

Listing 2. Calling getSecret with various pointer configurations.

To satisfy the strict requirement, the programmer must define additional offload ver-
sions of getSecret for the four contexts in which the method is called inside the
offload block:

class SecretKeeper {
// as before, with additional methods:
offload int getSecret(int * p) {

return secrets[*p]; // matches context (1)
}
offload int getSecret(outer int * p) {

return secrets[*p]; // matches context (2)

Offload – Automating Code Migration to Heterogeneous Multicore Systems 343

}
offload int getSecret(int * p) outer {

return secrets[*p]; // matches context (3)
}
offload int getSecret(outer int * p) outer {

return secrets[*p]; // matches context (4)
}

};

Listing 3. Manually duplicating the getSecret method.

Although the bodies of these methods are syntactically identical, their compilation
results in different data movement code. For example, in case (2), dereferencing outer
pointer p results in a host-to-accelerator data movement operation, while indexing into
local member secrets is a normal array lookup; in case (4) both dereferencing p and
indexing into secrets require host-to-accelerator data movement operations: the outer
this pointer means that the secrets member is located in host memory.

Manual function duplication with the strict requirement is time-consuming and re-
sults in many similar versions of the same function, which must all be maintained.
However, when a program satisfies the strict requirement it can be compiled appro-
priately for the host and accelerator cores. We now show how a program that does not
satisfy the strict requirement can be automatically translated into a form where the strict
requirement is satisfied, from which it can be successfully compiled.

4.2 Automating the Duplication Process

Suppose a function f has been declared with the following signature:

T0 f(T1 p1, . . . , Tn pn) { body }
Note that f is not an offload function. Now suppose f is invoked from an offload scope,
violating the strict requirement, in the following context:

e0 = f(e1, . . . , en);

For 0 ≤ i ≤ n, let Ui denote the type of expression ei (where e0 evaluates to an lvalue),
and suppose that Ui and Ti are identical if outer qualifiers are ignored. In other words,
the function application is well-typed if we ignore outer pointers. Then we can generate
an overloaded version of f as follows:

offload U0 f(U1 p1, . . . , Un pn) { body }
Let f ′ denote the newly generated version of f . Functions f and f ′ are identical, except
that f ′ has the offload qualifier, and pointer parameters of f ′ may have the outer

qualifier if they are passed outer pointers as actual arguments. The call to f from the
offload scope now obeys the strict requirement, since it refers to the offload version of
f , i.e. f ′.

If body itself contains calls to non-offload functions then function duplication will
be applied to these calls, with respect to the version of body appearing in f ′, so that f ′

344 P. Cooper et al.

only calls offload functions. This process continues until function duplication has been
applied to all call-graphs rooted in offload scopes, hence the term automatic call-graph
duplication. The result is a program which obeys the strict requirement, and can thus be
compiled appropriately for the host and accelerators. Compilation may fail if duplicated
functions misuse outer pointers, as in the following example:

void f(int * x, int * y) { x = y; ... }

int main() {
int a = 5;
offload {

int b; f(&a, &b); // ’&a’ is outer, ’&b’ is not
}

}

Function duplication produces a duplicate of f where the first parameter is an outer
pointer. However, this duplicate is not well-typed as it makes an assignment between an
outer pointer and a non-outer pointer:

offload void f(outer int * x, int * y)
{ x = y; ... } // type error! ’x’ is outer, ’y’ is not

If outer pointers are used correctly then, in the absence of other general errors, all
duplicated functions can be compiled for the accelerators, with data movement code
generated corresponding to accesses via outer pointers.

Note that a function is only duplicated with a given signature at most once, meaning
that call-graph duplication works in the presence of recursion. Also note that duplication
is performed on demand: although a function with n pointer parameters has 2n possible
duplicates, only those actually required by an application will be generated. The above
discussion explains how call-graph duplication works for functions; the approach easily
extends to instance methods with a this pointer. In particular, the code of Listing 1 can
be compiled with respect to the class definition of Listing 2; the duplicated methods of
Listing 3 are generated automatically.

We have presented call-graph duplication as a source-to-source translation, followed
by regular compilation. In a practical implementation the technique would most likely
be implemented at the call-graph level – this is the case with our implementation (§6).
In particular, the programmer never needs to see the duplicated functions generated by
the compiler.

4.3 Offload Functions Are Still Useful

If a function should behave differently on the accelerator with a particular configuration
of outer pointers, the required variant can be explicitly overloaded using the offload
keyword. Suppose the getSecret method of §4.1 should return a pre-defined error
constant when called on an outer this pointer with an outer pointer parameter. This
can be specified by adding an offload version of getSecret to the secretKeeper

class of Listing 1:
offload int getSecret(outer int * p) outer { return ERR; }

This version of getSecret will be called whenever the method is invoked on an
outer object with an outer pointer parameter; otherwise call-graph duplication will be
used to compile the standard version of the method appropriately.

Offload – Automating Code Migration to Heterogeneous Multicore Systems 345

A common use of offload functions is to allow specialised versions of performance-
critical functions to be tuned in an accelerator-specific manner, e.g. to exploit accelera-
tor features such as SIMD instructions.

5 Issues Raised by Call-Graph Duplication

While call-graph duplication is conceptually simple, its implementation is challenging
in the presence of the full complexity of C++. We discuss the way type inference can
increase the extent to which call-graph duplication can be automatically applied (§5.1)
and our solutions to the issues raised by function pointers and virtual methods (§5.2),
and multiple compilation units (§5.3).

5.1 Type Inference for Outer Pointers

The driving factor in the design of Offload is the extent to which existing code can
be offloaded to an accelerator without modification. Disallowing assignments between
inner and outer pointers in the type system provides a useful degree of type-checking
across the host/accelerator boundary. However, when applying call-graph duplication
to large examples, it is convenient to design the type system so that the outer qualifier
is automatically applied in two circumstances:

– When a pointer variable p is initialised upon declaration to an outer pointer, p is
given the outer qualifier

– If a cast is applied to an outer pointer then the destination type in the cast is auto-
matically given the outer qualifier

We present two small examples to illustrate why these methods of inferring outer point-
ers are useful. The following example finds the smallest element in a list of non-negative
integers, where the list is terminated by the value -1:

int findMin(int * intList) {
int result = *intList;
for(int * p = intList+1; *p != -1; p++)

if(*p < result) result = *p;
return result;

}

int arrayOfIntegers[100] = { ... };

offload { int smallest = findMin(arrayOfIntegers); ... }

Because findMin is invoked with the outer pointer arrayOfIntegers, the com-
piler will attempt to compile a version of findMin which accepts an outer pointer.
Without type inference, the compiler would reject the input program for attempting to
assign an outer pointer intList+1 to an inner pointer p and the call-graph duplication
attempt would fail. With type inference, the initialisation of p to an outer pointer means
that p is given the outer qualifier implicitly.

The following function, which returns the floating point number corresponding to a
machine word given by a pointer, illustrates type inference with casts:

346 P. Cooper et al.

float reinterpretInt(int * i) { return *((float *)i); }

Without type inference, if reinterpretInt is called from an offload scope with an
outer pointer, the program would be rejected for attempting to cast an outer pointer into
an inner pointer. Automatically adding the outer qualifier to the cast means that the
code compiles un-problematically.

Inference of outer pointers minimizes the extent to which the outer keyword prop-
agates throughout a large base of source code; in many practical examples, code can be
enclosed in an offload block with no outer annotations whatsoever.

5.2 Function Pointers and Virtual Methods

Consider the following type definition for functions which accept an integer argument
and return no value:

typedef void (* int_to_void) (int);

Assuming multiple functions have been declared with this type, consider a function
pointer variable in host memory, followed by an offload block which makes a call via
the function pointer:

int_to_void f_ptr;
...
offload { f_ptr(25); }

The problem is that, assuming f_ptr has been initialised to a valid address, the call
via f_ptr invokes some function matching the function type int_to_void, but we do
not know which one until run-time. For the call to succeed, it is necessary for a version
of the function to which f_ptr is assigned to have been compiled for the accelerator,
and loaded into local store. A similar problem applies when virtual methods are invoked
from an offload scope.

In general, statically determining the precise set of functions to which a given func-
tion pointer may refer is intractable. A safe over-approximation would be to compile all
functions matching the int_to_void signature for the accelerator. This would, how-
ever, significantly increase compile time and accelerator code size.

Our solution is to use function domains – annotations to an offload block listing the
names of functions that the block may invoke via function pointers or virtual calls.
A domain for an offload block may be specified immediately following the offload

keyword, as shown in the grammar of §3.1.
Function domains are implemented on the accelerator by a lookup table. The value of

the function pointer is used to obtain the address of the corresponding duplicated routine
on the accelerator, which is then invoked in place of the host routine whose address
was taken by the function pointer. An attempt to invoke a function not specified in the
domain results in a run-time error and diagnostic message. There is scope for extending
the compiler with heuristics to deduce domains automatically in many practical cases.

The following games-related example (derived from industrial source code) uses an
array of function pointers for collision response between game entities, and illustrates
that domains occur naturally in practical examples:

typedef void (* collisionFunction_t) (Entity *, Entity *);
collisionFunction_t collisionFunctions[3][3] =

Offload – Automating Code Migration to Heterogeneous Multicore Systems 347

Fig. 2. Example of call-graph duplication over multiple compilation units

{ fix_fix, fix_mov, ..., dead_dead }; // 2d function table
...
// domain annotation on offload block
offload [fix_fix, fix_mov, ..., dead_dead] {

for(...i, j...)
// apply appropriate function according to status
collisionFunctions [status[i]] [status[j]] (...);

}

Each entity has a status: fix, mov or dead, for fixed, moving or dead entities re-
spectively. The array collisionFunctions provides a collision response function
for each combination of object statuses, e.g. function fix_mov is invoked for collision
response between a fixed and a moving object. By equipping the offload block with
a named list of collision functions, the call via the collisionFunctions array will
succeed.

5.3 Multiple Compilation Units

Automatic call-graph duplication depends on the compiler having access to the source
code for all invoked functions. For large applications this is not the case, as source code
is split into multiple files for separate compilation. Suppose source code is not available
for method collides, called from an offload scope in compilation unit Physics.cpp.
The compiler cannot perform call-graph duplication and simply generates code to call
collides with the pointer signature required by the call site. Suppose collides is
implemented in compilation unit Box.cpp. The programmer must mark the implemen-
tation with a duplication obligation, so that when Box.cpp is processed the compiler
will duplicate the required version of collides, even if collides is not called from
an offload scope in Box.cpp. This is illustrated in Fig. 2.

Annotating source code with duplication obligations is not too onerous – if the
collides method of Box calls other functions that are defined in Box.cpp then since
Box::collides is marked for duplication, these functions will be automatically du-
plicated appropriately. Thus, programmer annotations for duplication obligations are
restricted to the boundaries of compilation units.

348 P. Cooper et al.

6 A Cell BE Implementation of Offload

We have implemented Offload for the Cell BE processor under Linux.3 A C++ appli-
cation with offload blocks is compiled to intermediate C program text targeting the
PPE and SPE cores. A makefile and linker script are also generated; these use the PPE
and SPE GCC compilers to generate a Cell Linux PPE executable with embedded SPE
modules, one per offload block.

A small run-time system implements the target-specific glue code required to use
an accelerator, such as handling the transfer of parameters from the host and setup
of a software cache through which access to the host memory is provided. The run-
time also permits offloaded code to invoke routines on the host, e.g. to call malloc/free
on host pointers, and for mutex-based synchronization via the POSIX threads API.
Our implementation includes header files with definitions of SPE-specific intrinsics,
allowing their use in programs where some SPE hand-tuning is desired.

Given a multi-threaded C++ application, we propose the following method for of-
floading threads to run on SPEs:

1. Profile application to identify a computationally expensive host thread
2. Replace this thread with an offload block, adding outer pointer annotations, func-

tion domains and duplication obligations where necessary for correctness
3. Replace performance-critical functions with offload functions, specialised with

SPE-specific optimizations where necessary for performance
4. Repeat this process until all appropriate host threads are offloaded

By (2) we mean that a call to create a thread running function f should be replaced with
an offload block which calls f. It is straightforward to define thread creation macros that
allow an application to use either POSIX or offload threads, depending on the available
support for a particular platform.

Basic offloading achieves the goal of getting code to run on SPEs, freeing the PPE to
perform other useful work. This can provide a performance benefit even if performance
of offloaded code is non-optimal. To achieve higher performance, it may be necessary
to write offload versions of performance-critical functions, hand-optimized for SPEs.
The main barrier to performance for the Cell BE is data movement. The Offload system
includes a set of header files to optimize access of contiguous data in host memory.
These header files define templated iterator classes, to be used in offload functions,
that optimize reading/writing of data from/to host memory using double-buffering. The
compiler generates advice messages, based on static analysis, to guide the programmer
towards refactorings to improve performance.

7 Experimental Results

We have developed a set of examples to investigate the performance improvement over
serial code which can be achieved using Offload for the Cell BE processor, and the ease
with which the language extensions can be applied:

3 In addition, an implementation of Offload for Sony PlayStation 3 consoles is available to SCE-
licensed game developers.

Offload – Automating Code Migration to Heterogeneous Multicore Systems 349

 0

 1

 2

 3

 4

 1 2 3 4 5 6

Sp
ee

du
p

w
.r

.t.
 P

PE

Number of active SPEs

with shadows
no shadows

Fig. 3. Scaling of SphereFlake offload across multiple SPEs

– A Mandelbrot fractal generator, generating a 640 × 480 pixel image
– SphereFlake: a ray tracer generating a 1024× 1024 pixel image [2]
– A set of five image processing filters operating on a 512 × 512 pixel image, per-

forming: embossing, noise reduction, sharpening, Laplacian edge detection, and
greyscale conversion

Experiments are performed on a Sony PlayStation 3 console, for which 6 SPEs are
available to the programmer. We compare the performance of the computations as fol-
lows. The original code executing on a single hardware thread of the Cell PPE is used
as a baseline against which to compare successive versions where computation is of-
floaded to between 1 and 6 SPEs. For a configuration with N SPEs, the benchmarks
are multi-threaded to spawn N offload threads, each of which computes 1/N of the
problem size.

Mandelbrot. The generator computes the Mandelbrot set value for each pixel using
scalar operations. Offloading this sequential computation on to a single SPE yields a
1.6× performance increase over the PPE baseline. When 6 SPEs are utilised the per-
formance increase is 13.5×. By hand-optimizing the offloaded code to buffer output
pixels, writing back to the host a line at a time, a performance increase of 14× over
the serial baseline is achieved. This modest improvement over the non-optimized case
indicates the program is compute bound.

SphereFlake. SphereFlake [2] is a fractal ray tracer for generating and ray tracing a
procedural model of spheres. We have applied Offload to this third party application,
offloading parts of the ray tracer to run in parallel across Cell SPEs. Thanks to auto-
matic call-graph duplication, it was possible to use the core of the ray tracer without
modification. We applied some modest refactorings to improve performance, ensuring
that procedural model generation is performed in SPE local store, and buffering output
pixel values in local store, to be written to main memory by DMA a row at a time.

We benchmark the ray tracer with and without support for shadows. Performance
scales linearly with the number of SPEs used, as shown in Fig. 3. With one SPE, perfor-
mance is around 0.5× that of the PPE baseline; with two SPEs, performance slightly ex-
ceeds that of the PPE. Maximum performance is achieved with six SPEs, with speedups
of 3.47× and 3.16× PPE performance with and without shadows respectively.

Image processing filters. Fig. 4 shows the performance of our image processing fil-
ters, offloaded using either a single SPE, or all six available SPEs. For each offloaded

350 P. Cooper et al.

Filter Emboss Noise Sharpen Laplacian Greyscale
no manual opt. no manual opt. buffered output buffered I/O fully optimized

Speedup: 1 SPE 0.6× 0.85× 0.76× 3.13× 3.06×
Speedup: 6 SPEs 3.27× 2.76× 2.96× 6.51× 3.44×

Fig. 4. Speedups for offloaded image processing filters, with one and six SPEs

benchmark, the figure indicates whether we have performed no additional manual op-
timization, optimizations to buffer output, input and output, or extensive manual opti-
mizations, including vectorization.

For the Laplacian filter, which computes output pixels using a 5 × 5 kernel, we
find significant improvements can be gained by avoiding use of the software cache via
explicit pre-fetching of input data. By using explicit DMA intrinsics to maintain a copy
of five rows of input pixels in SPE local store, and buffering output for transfer to main
memory a row at a time, offloading to a single SPE out-performs the PPE version by
3.13×. The price for this is increased source code complexity, and loss of portability.
However, we were able to apply these manual optimizations incrementally, starting with
a simple, non-optimized offload and gradually working towards a finely tuned version.

Performance scales only modestly for the greyscale benchmark as SPEs are added,
due to the lightweight nature of the computation. This is an example where offloading
a single thread to an accelerator can provide a useful speedup.

Discussion of performance. Our investigation of the performance of offloaded code
identifies three categories of benchmarks, distinguished by the ease with which perfor-
mance increases are obtained, and the steps required to achieve such increases. Compu-
tationally intensive algorithms, such as Mandelbrot and SphereFlake, result in increased
performance by offloading, requiring little programmer effort, as execution times are
dominated by computation rather than data access. Less straightforward are applica-
tions such as our image filter examples, that perform relatively little computation per
data item on a large volume of data, but access contiguous data using a regular stride.
In this case, basic offloading typically results in a performance decrease, which can
easily be ameliorated using simple DMA operations which can be hidden in templated
classes. A third category of applications, for which we do not present results, access
large volumes of input data in an unpredictable manner, or in a manner not amenable to
efficient DMA operations. This type of application may require significant restructuring
for high performance to be achieved.

8 Related Work

Programming models. Of the recent wealth of programming models for multicore ar-
chitectures, closest to Offload are Sequoia [3] and CellSs [4]. The Sequoia language
abstracts both parallelism and communication through side-effect free methods known
as tasks, which are distributed through a tree of system memory modules. When a task
is called on a node, input data is copied to the node’s address space from the parent’s
address space, and output is copied back on task completion. This provides a clean way

Offload – Automating Code Migration to Heterogeneous Multicore Systems 351

to distribute algorithms that operate on regularly-structured data across heterogeneous
multicore processors. However, tasks to be accelerated must be re-written using the be-
spoke Sequoia language, and the approach is only applicable when the data required by
a task (its working set) is known statically. The latter requirement has its advantages,
allowing aggressive data movement optimizations. CellSs is similar to Sequoia, involv-
ing the identification of tasks to be distributed across SPEs, and requiring the working
set for a task to be specified upfront.

The idea of optimizing data movement based on regularly structured data is the ba-
sis for stream programming languages such as StreamIt [5] and Brook [6], and more
recently HMPP [7] and OpenCL [8]. These models encourage a style of programming
where operations are described as kernels – special functions operating on streams of
regularly structured data – and are particularly suitable for programming compute de-
vices such as GPUs. As with Sequoia and CellSs, exploiting regularity and restricting
language features allows effective data movement optimizations. The drawback is that
these languages are only suitable for accelerating special-purpose kernels that are fea-
sible to re-write in a bespoke language. In contrast, Offload allows portions of general
C++ code to be offloaded to accelerator cores in a heterogeneous system with few modi-
fications. The flexible notion of outer pointers does not place restrictions on the working
set of an offload thread. The price for this flexibility is that it is difficult to automatically
optimize data movement for offload threads.

Call-graph duplication. Our notion of call-graph duplication is related to function
cloning [9], used by modern optimizing compilers for inter-procedural constant propa-
gation [10], alignment propagation [11], and optimization of procedures with optional
parameters [12]. Automatic call-graph duplication applies function cloning in a novel
setting, to handle multiple memory spaces in heterogeneous multicore systems. Call-
graph duplication is related to C++ template instantiation, and faces some of the same
challenges. Call-graph duplication across compilation units (§5.3) is similar to template
instantiation across compilation units, which is allowed in the C++ standard via the
export keyword, but supported by very few compilers.

Memory-space qualifiers. The idea of using qualifiers to distinguish between shared
and private memory originated in SIMD array languages [13], and is used in PGAS
languages such as Titanium [14], Co-array Fortran and Unified Parallel C [15]. Similar
storage qualifiers are used by CUDA and OpenCL to specify data locations in acceler-
ators with hierarchical memory.

9 Conclusions and Future Work

Our experimental evaluation with a Cell BE implementation of Offload give a promis-
ing indication that the techniques presented in this paper allow performance benefits
of accelerator cores to be realised with relative ease, requiring few modifications to
existing code bases.

While Offload is more flexible than alternative approaches for programming het-
erogeneous systems, this flexibility means data movement for offload threads is hard
to optimize. We plan to extend Offload with facilities for annotating an offload block

352 P. Cooper et al.

with information about expected data usage, which the compiler can use to apply more
aggressive optimizations.

Call-graph duplication can potentially lead to a significant blow-up in code size, if
a function with several pointer arguments is called with many configurations of lo-
cal/outer pointers. This can be problematic when accelerator memory is limited. We
plan to investigate tool support for providing feedback as to the extent to which call-
graph duplication is required, and opportunities for reducing duplication.

Acknowledgements

We are grateful to Anton Lokhmotov, Paul Keir, Philipp Rümmer, and the anonymous
reviewers, for their insightful comments on an earlier draft of this work. Alastair F.
Donaldson is supported by EPSRC grant EP/G051100.

References

1. Hofstee, H.P.: Power efficient processor architecture and the Cell processor. In: HPCA,
pp. 258–262. IEEE, Los Alamitos (2005)

2. Hoines, E.: A proposal for standard graphics environments. IEEE Comput. Graph. Appl. 7,
3–5 (1987)

3. Fatahalian, K., Horn, D.R., Knight, T.J., Leem, L., Houston, M., Park, J.Y., Erez, M., Ren,
M., Aiken, A., Dally, W.J., Hanrahan, P.: Sequoia: programming the memory hierarchy. In:
Supercomputing, p. 83. ACM, New York (2006)

4. Bellens, P., Perez, J.M., Badia, R.M., Labarta, J.: CellSs: a programming model for the Cell
BE architecture. In: Supercomputing, p. 86. ACM, New York (2006)

5. Thies, W., Karczmarek, M., Amarasinghe, S.P.: Streamit: A language for streaming applica-
tions. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 179–196. Springer, Heidelberg
(2002)

6. Buck, I.: Brook specification v0.2., http://merrimac.stanford.edu/brook/
7. CAPS Enterprise: HMPP, http://www.caps-entreprise.com/hmpp.html
8. Khronos Group: The OpenCL specification, http://www.khronos.org/opencl
9. Cooper, K.D., Hall, M.W., Kennedy, K.: A methodology for procedure cloning. Comput.

Lang. 19, 105–117 (1993)
10. Metzger, R., Stroud, S.: Interprocedural constant propagation: An empirical study. LO-

PLAS 2, 213–232 (1993)
11. Bik, A.J.C., Kreitzer, D.L., Tian, X.: A case study on compiler optimizations for the Intel

Core 2 Duo processor. International Journal of Parallel Programming 36, 571–591 (2008)
12. Das, D.: Optimizing subroutines with optional parameters in F90 via function cloning. SIG-

PLAN Notices 41, 21–28 (2006)
13. Lokhmotov, A., Gaster, B.R., Mycroft, A., Hickey, N., Stuttard, D.: Revisiting SIMD pro-

gramming. In: LCPC, Revised Selected Papers, pp. 32–46. Springer, Heidelberg (2008)
14. Yelick, K.A., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishnamurthy, A., Hilfin-

ger, P.N., Graham, S.L., Gay, D., Colella, P., Aiken, A.: Titanium: A high-performance Java
dialect. Concurrency - Practice and Experience 10, 825–836 (1998)

15. Coarfa, C., Dotsenko, Y., Mellor-Crummey, J.M., Cantonnet, F., El-Ghazawi, T.A., Mohanti,
A., Yao, Y., Chavarrı́a-Miranda, D.G.: An evaluation of global address space languages: Co-
array Fortran and Unified Parallel C. In: PPOPP, pp. 36–47. ACM, New York (2005)

http://merrimac.stanford.edu/brook/
http://www.caps-entreprise.com/hmpp.html
http://www.khronos.org/opencl

Computer Generation of Efficient
Software Viterbi Decoders∗

Frédéric de Mesmay, Srinivas Chellappa,
Franz Franchetti, and Markus Püschel

Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh PA 15213, USA

{fdemesma,schellap,franzf,pueschel}@ece.cmu.edu

Abstract. This paper presents a program generator for fast software
Viterbi decoders for arbitrary convolutional codes. The input to the gen-
erator is a specification of the code and a single-instruction multiple-data
(SIMD) vector length. The output is an optimized C implementation of
the decoder that uses explicit Intel SSE vector instructions. At the heart
of the generator is a small domain-specific language called VL to express
the structure of the forward pass. Vectorization is done by rewriting VL
expressions, which a compiler then translates into actual code in addition
to performing further optimizations specific to the vector instruction set.
Benchmarks show that the generated decoders match the performance
of available expert hand-tuned implementations, while spanning the en-
tire space of convolutional codes. An online interface to the generator is
provided at www.spiral.net.

Keywords: Library generation, high performance software, vectoriza-
tion, domain-specific language, Viterbi algorithm.

1 Introduction

The Viterbi algorithm is a maximum likelihood sequence decoder introduced
by Andrew Viterbi [1], and finds wide usage in communications, speech recog-
nition, and statistical parsing. In the past, the high throughput requirements
for decoding demanded dedicated hardware implementations [2]. However, the
dramatically growing processor performance has started to change this situa-
tion: intensive processing is now often done in software for reasons of cost and
flexibility. A prominent example is software defined radio [3].

Unfortunately, developing a generic high-throughput software Viterbi decoder
is difficult. The reason is that the best performance can only be achieved by using
vector instructions (such as Intel’s Streaming SIMD Extensions, SSE), which
most modern processors provide. To take advantage of these instructions, the
programmer has to explicitly issue them using an intrinsics interface or directly
∗ This work was supported by NSF through awards 0325687 and 0702386, and by

DARPA through the Department of Interior grant NBCH1050009.

Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 353–368, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

354 F. de Mesmay et al.

write assembly code. Achieving performance gains with these instructions first
requires proper restructuring of the dataflow of the decoder with respect to
the vector length. Then, the programmer must deal with the intricacies of the
instruction sets as the available instructions differ between platform vendors
and vector lengths. Finally, because the total vector length in bits is fixed, there
is a degree of freedom arising from the tradeoff between speed and precision
(e.g., 4-way vectorization implies 32 bits per element while the faster 16-way
vectorization implies only 8 bits per element).

Because of the difficulty in handling these issues, existing approaches are based
on manually writing specific assembly routines for each decoder (e.g., [4]), which
involves considerable effort given the large set of different codes and platforms
used in real-world applications.

Contribution of this paper. In this paper, we present a method to automati-
cally generate fast implementations of software Viterbi decoders. Our generator
takes as input, a specification of the convolutional code and the vector length to
be used. The output is a C program for the corresponding Viterbi decoder im-
plemented using SSE. Note that the methods presented in this paper are generic
enough to apply to other instruction sets. Only the performance critical forward
pass of the decoder is actually generated – the infrastructure and the traceback
stages are reused from the high-performance decoders by Karn [4].

Our generator consists of three components:

1. A domain specific language, called VL, to describe the forward pass at a
high level of abstraction. The language is a generalization of the Kronecker
product formalism used to describe fast Fourier transforms [5].

2. A VL rewriting system that restructures the forward pass depending on the
target vector length.

3. A compiler that takes VL as input, outputs C code including SSE intrinsics,
and performs various low level optimizations.

As we will show, our generator can handle arbitrary convolutional codes, ar-
bitrary vector length, and produces decoders with excellent performance. It is
implemented as part of the Spiral program generation system [6]. An online
interface is provided at www.spiral.net/software/viterbi.html.

Related work. Our approach is similar to the one taken by Spiral to generate
programs for linear transforms [6]. Spiral uses the domain-specific language SPL
[7] to explore alternative algorithms for a given transform, and vectorize and
parallelize fast Fourier transform algorithms (FFTs) [8,9]. While our VL is closely
related to SPL due to the inherent similarities between Viterbi decoding and
FFTs (which were already noted in [10,11]), a significant difference with previous
work is that the selection between alternative algorithms is not present. However,
the wide range of convolutional codes that one would want to generate still offers
a compelling case for on-demand generation of high-performance code.

VL is a subset of the Operator Language (OL) that aims at generalizing SPL
to capture more general computations. [12] presents the general OL framework
while this this paper focuses on issues specific to Viterbi decoding.

www.spiral.net/software/viterbi.html

Computer Generation of Efficient Software Viterbi Decoders 355

To achieve high performance, other decoding algorithms for convolutional
codes also exist. Examples include the lazy Viterbi (efficient for long constraint
lengths) and the Fano algorithm (efficient for good signal-to-noise ratios) [13,14].
This paper only considers “standard” Viterbi decoders.

Organization of this paper. In Section 2 we provide background on convolu-
tional codes and the Viterbi decoding algorithm. In Section 3, we introduce the
language VL to describe the forward pass of Viterbi decoding and explain how
to generate scalar code. Vectorization through VL rewriting is covered in Sec-
tion 4. In Section 5, we benchmark the performance of our generated decoders,
and conclude in Section 6.

2 Background: Viterbi Decoders

In this section, we provide background on convolutional codes and Viterbi de-
coders. We then introduce the butterfly representation for Viterbi decoders.

2.1 Encoding Convolutional Codes

The purpose of forward error-correcting codes (FEC) is to prevent corruption
of a message by adding redundant information before the message is sent over a
noisy channel. At the receiving side, the redundant data is used to reconstruct
the original message despite errors. In this paper, we focus only on a single type
of FEC, namely convolutional codes. These codes are heavily used in telecom-
munications standards such as GSM and CDMA.

A convolutional encoder takes as input a bit stream and convolves it with a
number of fixed bit sequences to obtain the output bit stream. Since convolution
is equivalent to polynomial multiplication, each of these fixed bit sequences is
called a (binary) polynomial although it is represented by a single integer.

Formally, a convolutional code is specified by N integers smaller than 2K ,
denoted with p1, . . . , pN . Such a code is said to have a constraint length K and
a rate 1/N , i.e., for each input bit, the encoder produces N output bits.

Finite State Machine (FSM) representation.. The encoding process can be
described using a FSM with 2K−1 states that outputs N bits on each transition
(Fig. 1). The precise layout depends on the convolutional code itself but each
state always has a 0-transition (input bit is 0) and a 1-transition (input bit is
1) to other states. The initial encoding state is assumed to be 0 and the input
stream is padded with K − 1 trailing zeros which guarantees that the final state
is also 0.

More precisely, there exists a 0-transition between states n and m if m ≡
2n mod 2K−1. Similarly, there exists a 1-transition between states n and m if
m ≡ (2n + 1) mod 2K−1. Denoting the bit-wise AND as &, the bit-wise XOR
as ⊕ and the XOR on all bits by

⊕
, the output bit b�

n→m, corresponding to the
polynomial p� when transitioning from state n to state m is computed as

b�
n→m =

⊕ (
p�&

(
2n ⊕ (m&1)

))
.

356 F. de Mesmay et al.

01

00 11

10

0/00

1/11 1/01

1/10

0/010/11

0/10

1/00

input
bit

output
bits

Fig. 1. FSM representa-
tion of the encoder r =
1/2, K = 3 with polyno-
mials 7 and 5

00

11

11

00
10

01

01

10

00

11

10

01

00

11

00

11

11

00
10

01

01

10

00

11

10

01

00

11

stages

states
00 00 00 00 00 00 00

10 10 10 10

01 01 01 01

11 11 11
1-transition

0-transition

Fig. 2. Viterbi trellis corresponding to the encoder of
Fig. 1. The highlighted path shows that the message
1010 2 (first padded to 101000 2 to guarantee that the
final state is 0) is encoded as 11 10 00 10 11 00 2.

Viterbi trellis. An equivalent representation of the encoding process “unrolls”
the finite state machine in time to yield the Viterbi trellis, as shown in Fig. 2.
Each path from the initial state to the final state represents a possible message.
Note that the number of vertical stages, called the frame length F , is independent
of the convolutional code but agreed upon by the two communicating parties.

The different states of the encoder are placed vertically, the different time
steps, or stages are placed horizontally. The initial state (first stage) when start-
ing a frame is 0. The zero padding explained previously implies that the last
K − 1 transitions are 0-transitions, guaranteeing that the final state is also 0.

2.2 Viterbi Decoding

The Viterbi algorithm is a dynamic programming method that performs maxi-
mum likelihood sequence decoding (MLSD) on a convolutionally encoded stream.
Intuitively, the decoder receives a bit stream and has to find the path in the
Viterbi trellis that best corresponds to it, which would ideally be the same path
the encoder originally took. The best visualization of the Viterbi algorithm again
uses the Viterbi trellis but its purpose is now reversed: the incoming message
is fixed and the path is to be found. It is composed of three phases, the branch
metric computation, the path metric computation, and the traceback.

Branch metrics computation. In the first phase, the Viterbi algorithm assigns
a cost, called the branch metric, to each edge in the trellis. This value represents
how well the received bits would match if we knew the encoder took the transition
corresponding to a given edge. It is computed by taking the Hamming distances
between the bits the transition should output and the actually received ones
(Fig. 3).

Path metrics computation. After the previous phase, the problem is equiv-
alent to finding the shortest path between the entry and the exit vertices on
a directed acyclic graph with weighted edges. Therefore, the second phase is a
breadth-first forward traversal of the graph. It progressively computes the path

Computer Generation of Efficient Software Viterbi Decoders 357

101011 00 11 00

12 0 2 01

10 21

2 0 21

01

0 1 10

2 12
1 12

10

Fig. 3. Branch metrics computation. As-
suming the decoder just received the mes-
sage 11 10 10 00 11 00 2 which is the previ-
ous example message with two bit flips
(corresponding to injected errors), the
Hamming distance between the bits ac-
tually received and the output bits corre-
sponding to each arrow (shown in Fig. 2)
is computed.

12 0 0

10 2

01

1

0 10

2 1
1

0

2 30 1 1 2 2

2 2 2

0 3 1 3

0 3 2 2

Fig. 4. Path metrics computation and
traceback. Using the branch metric, the
shortest path from the initial state to all
states is computed, leaving only one pre-
decessor for each node. Finally, only one
complete path remains: it can be simply
read off by starting in the final state and
going backwards. Here, this path corre-
sponds to the original message: 101000 2 .

metric, which is the shortest path to get from the root to each vertex. If a state
has the path metric π, there exists one message that ends in the state with π
corrupted bits and this message is less or equally corrupted than all other possi-
ble messages. While computing this, the predecessor of each node is remembered
as a decision bit1 (Fig. 4).

Traceback. The decision bits describe the ancestor of each vertex. Given this
information and the final state, one can reconstruct the shortest path, called the
survivor path by reading off predecessors.

In a software Viterbi decoder, it is important to perform branch and path
metrics computations simultaneously to improve the ratio of operations over
memory accesses. The fusion of these two phases is called the forward pass.

2.3 Viterbi Butterflies

The trellis shown on Fig. 2 has a regular structure except for the initial and
final stages. The initial stage can be handled like all other stages by inserting
prohibitively high path metrics as appropriate. Handling the final stage like all
other stages simply involves computing all path metrics—the useless ones are
automatically discarded.

Closer inspection of the trellis structure now shows that each stage of the for-
ward pass can be decomposed in two phases: a fixed permutation called a perfect
shuffle and a parallel operation on 2K−2 2-by-2 substructures called butterflies
(Fig. 5). In the following, we denote the states of a butterfly as shown below:

A

B

U

V

1 The structure of the FSM guarantees that there are exactly two incoming edges into
each vertex, except for the leftmost nodes in the trellis where there is only one.

358 F. de Mesmay et al.

00

01

10

11

00

10

01

11

00

01

10

11

00

10

01

11

00

01

10

11

00

10

01

11

00

01

10

11

00

10

01

11

00

01

10

11

00

10

01

11

00

01

10

11

00

10

01

11

00

10

01

11

one stage one butterfly

Fig. 5. Each stage in the Viterbi trellis consists of a perfect shuffle and 2K−2 parallel
butterflies (here K = 3 and F = 6)

During the path metric computation, each butterfly does two Add-Compare-
Select operations to compute the path metrics πU and πV from the path metrics
πA and πB and the branch metrics βA→U , βA→V , βB→U and βB→V :{

πU = mindU (πA + βA→U , πB + βB→U)
πV = mindV (πA + βA→V , πB + βB→V) .

(1)

Note that the minimum operator mind(a, b) actually performs both the compare
and select operations simultaneously. It returns the actual minimum of a and b
and stores the binary decision in the decision bit d.

Simplification. Other effects, notably polynomial symmetries and soft deci-
sions, actually modify the above expression. However, for reasons of brevity, we
will not elaborate on them here.

3 Generating Scalar Code

The goal of this paper is to enable computer generation of efficient software
implementations of the Viterbi decoder for arbitrary convolutional codes. To
achieve this, we introduce a domain-specific language, called Viterbi language
(VL), to concisely describe the (most critical) forward pass of the decoder and
its associated compiler that translates the description into actual C code. Both
are described in this section.

There are two main reasons for using a domain-specific language. First, it
structures and simplifies the implementation of our software generator. Second,
it enables the SIMD vectorization of the forward pass through rewriting VL
expressions rather than optimizing C code. The vectorization is explained in
Section 4.

For reasons that will become clear, VL is closely related to the signal process-
ing language (SPL), a domain-specific language that was designed to generate
high performance implementations of linear transforms [6,7]. We start with a
brief introduction to SPL, motivate VL and explain the compilation process.

3.1 Fast Transform Algorithms: SPL

Linear transforms in signal processing are usually presented as summations, but
can be equivalently viewed as a matrix. A linear transform computes y = Tx,

Computer Generation of Efficient Software Viterbi Decoders 359

where x is the complex input vector, y the complex output vector, and T the
fixed transform matrix. For example, the n-point Fourier and Walsh-Hadamard
transforms are defined by the following n × n matrices [5]:

DFTn = [e−2πkl
√−1/n]0≤k,l<n ,

WHTn =
[
WHTn/2 WHTn/2
WHTn/2 −WHTn/2

]
, WHT1 = [1] .

A fast algorithm for a transform T reduces the number of operations required
for computing Tx and can be viewed as a factorization of T into a product of
sparse structured matrices.

SPL. SPL is the language used to describe such algorithms. It is based on matrix
algebra and captures structured matrices. Parametrized symbols are used to
represent frequently occurring matrices:

– The n × n identity matrix is denoted with In.
– The stride permutation matrix Ln

k reads the input at stride k and stores it
at stride 1. In particular Ln

n/2 is the perfect shuffle that interleaves the first
half of a vector with the second half.

– The butterfly2 matrix F2 corresponds to a DFT on two points: F2 =
(1 1

1 −1

)
– The n×n bit-reversal permutation is denoted with Rn and the twiddle matrix

T n
i is a particular diagonal matrix. Their exact form is not important here.

Further, SPL uses matrix constructs to build matrices from other matrices. An
example is the product AB which effectively composes two matrix vector mul-
tiplications: (AB)x = A(Bx). The product can be indexed as in

∏n
i=0 Ai =

A1A1 . . .An.
Finally, the Kronecker product (also called tensor product) of two matrices

and its indexed variant are defined as
A ⊗ B = [ak,lB] , A ⊗j Bj = [ak,lBj] , A = ak,l .

Most importantly,
In ⊗A =

(
A

. . .
A

)
.

Pease algorithms. The SPL expressions for the Pease O(n log n) algorithms
for the Fourier and Walsh-Hadamard transforms is shown below:

WHT2n →
n−1∏
i=0

(
(I2n−1 ⊗F2) L2n

2n−1

)
, (2)

DFT2n →R2n

n−1∏
i=0

(
T n

i (I2n−1 ⊗F2) L2n

2n−1

)
. (3)

The associated dataflow for the Pease WHT is shown in Fig. 6 (the Pease DFT
is very similar). Note the similarity to the Viterbi trellis shown in Fig. 5, but
remember that the butterflies operate differently. The resemblance between the
DFT, the WHT and the Viterbi forward pass was already noted in [10,11].
Omega networks also share this dataflow [15].
2 The Viterbi and DFT butterflies are different but related as we will see.

360 F. de Mesmay et al.

Fig. 6. Dataflow of the Pease algorithm for the WHT4

3.2 Representing the Viterbi Algorithm

The Viterbi algorithm is not a linear transform and therefore, does not fit the
earlier framework. However, as discussed above, the forward pass (branch and
path metric computation, excluding the traceback) is closely related to the Pease
algorithms (2) and (3).

From now on, we will only consider the forward pass, excluding the trace-
back. The reason is that the traceback is both trivial and computationally much
cheaper than the forward pass, requiring O(F) operations versus O(2KF) for
the forward pass. Hence, in practice, except for very short constraint lengths, a
generic traceback is not the performance bottleneck.

Butterflies similarities. The DFT butterfly F2 is an operator that takes two
inputs x0 and x1 and produces two outputs y0 and y1:{

y0 = x0 + x1
y1 = x0 − x1 .

Similarly, we view the j-th Viterbi butterfly decoding the i-th codeword as
an operator Bi,j that consumes and produces two path metrics as in (1). The
difference between F2 and Bi,j is that, depending on its position, the Viterbi
butterfly uses values from some external arrays to compute the branch metrics,
and it also writes values to an external decision bit array (through the “select”
part of the minimum operator).

Viterbi language (VL). In Table 1, we give the grammar in Backus-Naur
form of a domain specific language called VL tailored to describe the opera-
tions performed during the forward pass of the Viterbi algorithm. VL uses parts
of SPL but also includes the Viterbi butterfly. In SPL, the composition opera-
tion is equivalent to matrix multiplication, but this is not true of VL. We will
occasionally refer to elements of VL as operators.

Forward pass algorithm. Using VL, The forward pass of a Viterbi decoder
with constraint length K, frame length F , denoted FK,F can be expressed in a
way that is similar to the Pease algorithms (2) and (3):

FK,F →
F∏

i=1

(
(I2K−2 ⊗jBF−i,j) L2K−1

2K−2

)
. (4)

3.3 Compiler

The VL compiler is responsible for producing efficient code from an algorithm
expressed in VL. By translating an operator A into code, we mean creating the

Computer Generation of Efficient Software Viterbi Decoders 361

Table 1. Definition of the Viterbi Language in Backus-Naur form

<op> ::= FK,F Viterbi forward pass
| In identity
| Lmn

n stride permutation
| Bi,j Viterbi butterfly
| <op> <op> composition
| ∏

<op> iterative composition
| <op> ⊗ <op> tensor product

Table 2. Translating VL expressions to code. x denotes the input and y the output
vector. C and D are generic operators optionally parametrized by their superscript
and of domain and range optionally specified by their subscript. x[b:e] denotes the
sub-vector of x starting at b and ending at e.

construct code

y = (CD)x t = D(x);

y = C(t);

y =
∏l−1

i=0
Cix y = C(l-1, x);

for (i=l-2;i>=0;i--)

y = C(i, y);

y = (Im ⊗jC
j
n)x for (j=0;j<m;j++)

y[j*n:j*n+n-1] =

C(j, x[j*n:j*n+n-1]);

y = Lmn
m x for (i=0;i<m;i++)

for (j=0;j<n;j++)

y[i+m*j]=x[n*i+j];

y = Bi,jx see equation (1)

code for the function A that takes the input vector x and the output vector y as
parameters and performs y = A(x).

To generate the code, the compiler traverses the VL expression tree top-down,
matching sub-trees with the templates shown in Table 2 and specializing them
if needed. Plugging this code inside the generic traceback would yield a correct,
albeit unoptimized implementation.

In practice, various optimizations are performed such as loop unrolling, array
scalarization, strength reduction, copy propagation, precomputation and com-
mon sub-expression elimination. While some of these optimizations may be left
to a C compiler, performing them inside the VL compiler typically yields better
results, as C compilers generally have conservative aliasing assumptions. Most
importantly, it also performs loop merging which means that perfect shuffles are
never explicitly performed but merged (i.e., translated into readdressing) with
the subsequent computation.

362 F. de Mesmay et al.

4 Generating Vector Code

The vast majority of current processors provide additional instructions working
on vector registers, often branded as “multimedia” extensions like Intel’s MMX
and SSE or AMD’s 3DNow!. The speedups for suitably structured applications
like Viterbi decoders can be significant: for example, [4] achieves up to a 16x
speedup using SSE. We first provide some background on these instructions, then
show how to automatically take advantage of them by rewriting VL expressions.
Finally we tackle overflows, a side effect of vectorizing the Viterbi algorithm.

4.1 Background: Short-Vector Instructions

Single-instruction multiple-data (SIMD) vector instructions instructions perform
operations on short vectors in parallel. We call the length of the vector ν and
the instructions ν-way. For instance, if ν = 4, a point-wise addition of 4 scalars
could be done with a single vector instruction instead of four scalar instructions.
Also, vector instruction sets offer ways to reorganize (shuffle) the data within a
short vector.

The vector length ν depends on the exact instruction set. The larger ν,
the more operations can be performed simultaneously. In general, the expected
speedup of efficiently vectorized code over its scalar counterpart can be up to the
order of ν which makes it critical in high-performance applications. For example,
Intel-compatible processors offer integer vector instructions for ν = 4 − 16.

The drawback of these instructions is that they add complexity at various lev-
els. First, they only operate on ν contiguous elements, which means algorithms
have to be restructured to expose this parallelism. This step involves algorith-
mic knowledge, and compilers often fail at doing it automatically. Second, since
compilers fail, it has to be done by hand which is complex and time-consuming.
Third, vector instructions are processor specific, so using them requires precise
knowledge and reduces portability.

4.2 Generating Vectorized Decoders: Overview

Fig. 7 gives an overview of our approach to generating a vectorized Viterbi
decoder. The user specifies as input the convolutional code (i.e., the rate 1/N ,
K, the polynomials p� and the frame length F) and the vector length ν. The
generator outputs a ν-way vectorized Viterbi decoder, implemented using SSE.

As shown in Fig. 7, first, the generator instantiates the appropriate VL ex-
pression (4) and generates a scalar decoder (Section 3). This decoder is then
executed to obtain the normalization factors needed to prevent overflows (Sec-
tion 4.4). The ν-way vectorization is then performed by first rewriting the scalar
VL algorithm. The result is then compiled into source code using the previous
template matching system. Finally, a peephole optimizer ensures the features
available in the instruction set are fully exploited. The resulting implementation
of the forward pass is inserted into a generic framework to obtain the complete
decoder.

Computer Generation of Efficient Software Viterbi Decoders 363

Vectoriza�on by Rewri�ng

Scalar Decoder Generator

metric spread
normaliza�on factors

Vectorized Decoder

Convolu�onal
Code

Vector
Length

Execu�on

VL Compila�on

Peephole Op�miza�on

Integra�on into Framework Viterbi Decoder
Generator

Fig. 7. Automatic generation of vectorized Viterbi decoders

Our implementation targets 4 to 16-way Intel SSE but the generic principles
behind the generator makes it easy to retarget to another instruction set.

4.3 Vectorizing Rewriting System

In this section we explain how to automatically vectorize the forward pass of the
Viterbi decoding using VL. First we identify some VL expressions, called vector
base cases, that can directly be mapped into vector code. Vectorization is then
achieved by rewriting the forward pass algorithm (equation (4)) into an equiva-
lent VL expression that consists exclusively of vector base cases. This expression
is then mapped into vector code and further optimizations are performed. The
details are explained next.

Base cases. For the vectorization of the Viterbi algorithm, three types of base
cases are required.

– One construct that can be implemented with all ν-way short vector instruc-
tion sets is C ⊗ Iν with C being any side-effect free VL operator. When
implementing C ⊗ Iν , the template system first implements C with its cor-
responding scalar template (Table 2) and then replaces all scalar variables
and scalar operations inside the code by their ν-way vector counterparts.
For instance, L4

2 is a permutation of four elements whereas L4
2 ⊗ Iν is a per-

mutation of four vectors of ν elements each. To denote that the construct is
a base case, we write C⊗̄Iν .

– The Viterbi kernel has side effects and thus does not fall into the previous
category. We denote by �Bν

i,l the vector code that executes ν Viterbi kernels
over contiguous elements.

364 F. de Mesmay et al.

– Another class of vector base cases is the perfect shuffle of 2ν elements, written
as �L

2ν

ν . We use the method in [16] to automatically generate efficient vector
code for these permutations from the definition of the instruction sets.

Vector tags. The vectorization subsystem first tags a given VL expression
with the vector length ν, which is denoted like this: A ν . The full expression is
then rewritten using algorithms, manipulation and tag propagation rules until
all tags disappear. At this point, the expression only consists of vector base
cases that can be implemented using the template system. The same approach
has been successfully applied with linear transforms for vectorization [9] and
parallelization3 [8].

Rules. There are three different kinds of rules:

– The algorithms describe how to implement a specification using VL. In this
paper, we only use the Viterbi algorithm (4).

– The manipulation rules (Table 3 left) are basic mathematical identities that
can be proved from the definitions of the symbols.

– The tag propagation rules (Table 3 right) describe how the tags interact with
the other symbols.

Viterbi vectorization. Using all the manipulation rules, the system automat-
ically derives the following equality, which we call the partial tensor flip, that
holds for any parametrized operator Cj and integers m, n and ν such that ν
divides m:

(Im ⊗jC
j) Lmn

m =
(
Im/ν ⊗j1 Lnν

ν

(
Cj1ν+j2 ⊗j2 Iν

))
(Lmn/ν

m/ν ⊗ Iν) .

Because of this transformation, the rewriting systems returns the following vec-
torized form of the algorithm in (4) and consists exclusively of base cases that
can be mapped to code as explained above:

FK,F
ν
→

F∏
i=1

[(
I2K−2/ν ⊗j1

�L
2ν

ν
�Bν

F−i,j1

)
(L2K−1/ν

2K−2/ν
⊗̄ Iν)

]
.

In words, at each stage, this algorithm first permutes full vectors then it-
eratively (i = 1, . . . , F) computes 2K−2/ν independent Viterbi butterflies and
performs in-vector permutations L2ν

ν on each result. Remember that in the final
code, the initial permutation in each i-step is never performed but merged with
the subsequent butterfly computations.

Code generation. Using the previously explained template system, code can
be generated for the algorithm above. In practice though, an additional pass
with a peephole optimizer is inserted to handle the specifics of the instruction
set which is unfortunately very irregular.
3 This paper does not handle the parallelization of the Viterbi algorithm because,

in traditional settings, it is not relevant. Even in multi-core systems, the cost of
exchanging data over the interconnect is too high to split the trellis handling over
multiple cores. It is more practical to parallelize by assigning different frames to
different cores.

Computer Generation of Efficient Software Viterbi Decoders 365

Table 3. Manipulation (left) and vectorization (right) rules. C and D are generic
operators optionally parametrized by their superscript.

Imk ⊗jC
j = Im ⊗j1(Ik ⊗j2Cj1k+j2)

Lkmn
km = (Ik ⊗Lmn

m)(Lkn
k ⊗ Im)

(Im ⊗C)(Im ⊗D) = (Im ⊗CD)

(Im ⊗jC
j
n) Lmn

m = Lmn
m (Cj

n ⊗j Im)

CD ν → C ν D ν∏
C

ν

→
∏

C ν

Im ⊗j Cj

ν
→ Im ⊗j Cj

ν

C ⊗ Iν ν
→ C⊗̄ Iν

Bi,lν+j ⊗j Iν
ν
→ �Bν

i,l

L2ν
ν ν

→ �L
2ν

ν

4.4 Overflows

The path metrics increase on average with the stage number. For implementation
however, they must stay within a finite window of representable values. The
precision offered by short vector instructions might not be sufficient to guarantee
the absence of overflows so the algorithm must sometimes be slightly modified.

For instance, with Intel’s SSE, all vector operations are performed in 128 bits
vector registers. Therefore, in 4-way mode, elements are 32-bits long whereas in
16-way mode, elements are 8-bits long. In this last case, metrics are likely to
overflow the window of 256 “legal” values.

There are known methods to help rescaling these metrics (see [17]) but they
are based on empirical properties of the code which is why we need to first gen-
erate a scalar version of the decoder (i.e., in which overflows will not occur) and
only then generate the vectorized version once these properties are determined.
We will not detail this process further even though it is fully automated.

5 Results

In this section, we analyze the performance of our generated Viterbi decoders.
We compare against existing optimized implementations, show the generality of
our generator, and show the speedup obtained by vectorization.

Experimental Setup. All experiments are performed on an Intel Core 2 Ex-
treme X9650. All code is compiled using the Intel Compiler (icc) 10.1 with per-
formance flags (-fast -fomit-frame-pointer -fno-alias). The performance
in each case is measured by entirely decoding (forward pass and traceback) mul-
tiple frames. Initialization and precomputation (one time costs) are excluded.

Our generator supports any valid combination of rate, polynomials, frame
length, and constraint length K ≥ 64. Vectorization is available for all convolu-
tional codes and for processors that are SSE-compatible through 4-way, 8-way
and 16-way intrinsics.
4 The limitation is an artifact of the actual implementation. The methods presented

in this paper are applicable for all constraint lengths.

366 F. de Mesmay et al.

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000

scalar 4-way 8-way 16-way

Karn

Generated

Performance (kbit/s)
Decoder comparison for rate 1/2 K=7
Performance (kbit/s)

0

5,000

10,000

15,000

20,000

25,000

scalar 4-way 8-way 16-way

Karn

Generated

Performance (kbit/s)
Decoder comparison for rate 1/2 K=9
Performance (kbit/s)

0

5,000

10,000

15,000

20,000

scalar 4-way 8-way 16-way

Karn

Generated

Performance (kbit/s)
Decoder comparison for rate 1/3 K=9
Performance (kbit/s)

0

50

100

150

scalar 4-way 8-way 16-way

Karn

Generated

Performance (kbit/s)
Decoder comparison for rate 1/6 K=15

Fig. 8. Performance comparison between the generated and hand-optimized decoders

Benchmarking. We first compare our generated decoders against Karn’s hand-
written decoders [4]. Karn’s forward error correction software supports four codes
(1/2, K = 7 nicknamed “Voyager”, 1/2, K = 9, 1/3, K = 9 and 1/6, K = 15
nicknamed “Cassini”) available for different vector lengths. Not all vector lengths
are supported for all codes. The forward pass in [4] is written separately in
assembly for each combination of code and vector length.

In Fig. 8, we show the performance results for these four codes and for all
vector lengths. A missing bar signifies that the implementation is not provided
by Karn. Analysis of the plots shows that our generated decoders have roughly
equal performance compared to Karn’s software.

Performance of supported codes. To show the generality of our generator
and the consistent performance, we generated decoders for known “good” codes
(see [18]) of rate 1/2 collected and all four vector lengths 1, 4, 8, 16. Fig. 9a
shows the performance results and, as expected, the lines show the exponential
decay in performance when the constraint length increases. Similar graphs are
observed for other rates.

Quality of Vectorization. Fig. 9b shows the speedup achieved by vectorization
in Fig. 9a. The baselines are the non-vectorized scalar decoders. We observe
a consistent speedup of about 3.5 for 4-way, 6 for 8-way, and 10 for 16-way
vectorization. The smaller gains for longer vectors is expected since they require
more involved shuffle operations. The peak for both 16-way and 8-way with short
constraint length is caused by the reduction of the memory footprint due to the
use of shorter data types.

Computer Generation of Efficient Software Viterbi Decoders 367

1

10

100

1,000

10,000

100,000

6 7 8 9 10 11 12 13 14 15 16

16-way

8-way

4-way

scalar

Performance (kbit/s)
Decoders for rate 1/2

Constraint length K

(a) Performance

0

4

8

12

16

20

6 7 8 9 10 11 12 13 14 15 16
Constraint length K

Speedup over scalar code
Quality of vectoriza�on for decoders of rate 1/2

8-way

4-way

scalar

16-way

(b) Normalized perf. over scalar code

Fig. 9. Performance of various generated decoders for rate 1/2. Note that each point
on these graphs actually replace one manually tuned assembly code.

Code Generation Time. Note that, in the previous graphs, we present 40
different optimized decoders, all of which were generated in less than one hour.
We estimate that it would take an expert more than a day to produce each
one of the forward passes in assembly, which implies an improvement in the
development time in the range of three orders of magnitude.

6 Conclusion

We presented a framework and its implementation that completely automates
the implementation of fast software Viterbi decoders for modern computing plat-
forms with SIMD instruction sets by generating the performance critical forward
pass. The basic idea is to construct a domain specific mathematical language to
express the forward pass, to vectorize by rewriting in this language, and to use
a backend for low level optimizations. The same approach could be used for
parallelization but it is more efficient (and trivial) to parallelize across frames.

Our framework enables the instant generation of any decoder across a wide
spectrum of parameters. The generated decoders’ performance is on-par with
specialized expert implementations. Further, it enables fast porting to new ar-
chitectures as only small changes are needed to support a new instruction set.

We invite the reader to visit the online interface to our generator at
www.spiral.net/software/viterbi.html.

References

1. Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Transactions on Information Theory 13(2) (April 1967)

2. Gemmeke, T., Gansen, M., Noll, T.: Implementation of scalable power and area
efficient high-throughput viterbi decoders. Solid-State Circuits 37(7) (July 2002)

3. Mitola III, J.: Software Radio Architecture. John Wiley & Sons, Chichester (2002)

www.spiral.net/software/viterbi.html

368 F. de Mesmay et al.

4. Karn, P.: FEC library version 3.0.1 (August 2007),
http://www.ka9q.net/code/fec/

5. Van Loan, C.: Computational frameworks for the fast Fourier transform. Society
for Industrial and Applied Mathematics, Philadelphia (1992)

6. Püschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M., Singer, B., et al.:
SPIRAL: Code generation for DSP transforms. Proc. of the IEEE 93(2) (2005)

7. Xiong, J., Johnson, J., Johnson, R., Padua, D.: SPL: a language and compiler for
DSP algorithms. SIGPLAN Not. 36(5), 298–308 (2001)

8. Franchetti, F., Voronenko, Y., Püschel, M.: FFT program generation for shared
memory: SMP and multicore. In: Supercomputing, SC (2006)

9. Franchetti, F., Voronenko, Y., Püschel, M.: A rewriting system for the vectorization
of signal transforms. In: Daydé, M., Palma, J.M.L.M., Coutinho, Á.L.G.A., Pacitti,
E., Lopes, J.C. (eds.) VECPAR 2006. LNCS, vol. 4395, pp. 363–377. Springer,
Heidelberg (2007)

10. Forney Jr., G.D.: The viterbi algorithm. Proc. of the IEEE 61(3) (March 1973)
11. Rader, C.: Memory management in a viterbi decoder. IEEE Transactions on Com-

munications [legacy, pre - 1988] 29(9), 1399–1401 (1981)
12. Franchetti, F., de Mesmay, F., McFarlin, D., Püschel, M.: Operator language: A

program generation framework for fast kernels. In: IFIP Working Conference on
Domain Specific Languages (DSL WC). LNCS, vol. 5658. Springer, Heidelberg
(2009)

13. Feldman, J., Abou-Faycal, I., Frigo, M.: A fast maximum-likelihood decoder for
convolutional codes. In: Proc. of Vehicular Technology Conference, pp. 371–375
(2002)

14. Fano, R.: A heuristic discussion of probabilistic decoding. IEEE Transactions on
Information Theory 9(2), 64–74 (1963)

15. Lawrie, D.: Access and alignment of data in an array processor. IEEE Transactions
on Computers C-24(12), 1145–1155 (1975)

16. Franchetti, F., Püschel, M.: Generating SIMD vectorized permutations. In: Hen-
dren, L. (ed.) CC 2008. LNCS, vol. 4959, pp. 116–131. Springer, Heidelberg (2008)

17. Hekstra, A.: An alternative to metric rescaling in viterbi decoders. IEEE Transac-
tions on Communications 37(11), 1220–1222 (1989)

18. Chambers, W.: On good convolutional codes of rate 1/2, 1/3, and 1/4. In: Singapore
ICCS/ISITA 1992. Communications on the Move, November 1992, vol. 2, pp. 750–
754 (1992)

http://www.ka9q.net/code/fec/

Author Index

Agarwal, Anant 3
Alvanos, Michail 307
Ansari, Amin 186
Ansari, Mohammad 35
Avetisyan, Arutyun 111
Ayguadé, Eduard 96, 322

Bahar, Iris 50
Beltran, Vicenç 322
Ben-Itzhak, Yaniv 232
Bilas, Angelos 307
Brisk, Philip 126
Burri, Samuel 126

Carpenter, Paul M. 96
Cavazos, John 66
Charbon, Edoardo 126
Chellappa, Srinivas 353
Cidon, Israel 232
Cohen, Albert 66
Cooper, Pete 337

Dayan, Alon 81
de Mesmay, Frédéric 353
Diouf, Boubacar 66
Dolinsky, Uwe 337
Donaldson, Alastair F. 337
Dutt, Nikil 216

Edelsohn, David 81
Espasa, Roger 2

Feng, Shuguang 186
Ferrer, Roger 322
Ferri, Cesare 50
Franchetti, Franz 353

Golovanevsky, Olga 81
Gonzàlez, Marc 322
Grannaes, Marius 247, 292
Gupta, Aseem 216
Gupta, Shantanu 186

Herkersdorf, Andreas 156
Herlihy, Maurice 50

Hoffmann, Henry 3
Homayoun, Houman 216

Iannucci, Bob 1
Ienne, Paolo 126

Jahre, Magnus 247, 292
Jiang, Yunlian 201

Kandemir, Mahmut 277
Kapelonis, Konstantinos 307
Khan, Behram 35
Kim, Yongjoo 171
Kirkham, Chris 35
Kluter, Theo 126
Kolodny, Avinoam 232
Kotselidis, Christos 35
Koukos, Konstantinos 307
Kumar, Rakesh 18
Kurdahi, Fadi 216

Lee, Jongeun 171
Loh, Gabriel H. 262
Lokhmotov, Anton 111
Luján, Mikel 35

Mahlke, Scott 186
Martorell, Xavier 322
Meitinger, Michael 156
Monakov, Alexander 111
Moreshet, Tali 50
Moussalli, Roger 141

Najjar, Walid 141
Natvig, Lasse 247, 292
Nikolopoulos, Dimitrios S. 307

Ohlendorf, Rainer 156

Paek, Yunheung 171
Püschel, Markus 353

Ramirez, Alex 96
Rastello, Fabrice 66
Richards, Andrew 337
Riley, Colin 337
Russell, George 337

370 Author Index

Salloum, Mariam 141
Sartori, John 18
Sasan (M.A. Makhzan), Avesta 216
Shen, Xipeng 201
Shrivastava, Aviral 171
Srikantaiah, Shekhar 277

Tian, Kai 201
Tsotras, Vassilis 141
Tzenakis, George 307

Veidenbaum, Alex 216

Watson, Ian 35
Wentzlaff, David 3
Wild, Thomas 156
Wood, Samantha 50

Xie, Yuejian 262

Yoon, Jonghee 171

Zaks, Ayal 81

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Program
	Embedded Systems as Datacenters
	Larrabee: A Many-Core Intel Architecture for Visual Computing

	Architectural Support for Concurrency
	Remote Store Programming A Memory Model for Embedded Multicore
	Introduction
	The Remote Store Programming Model
	Implementation of the RSP Model
	Evaluation Methodology
	The TILEPro64
	Benchmark Applications

	Performance Evaluation
	Speedup Evaluation
	Locality Evaluation

	Related Work
	Conclusion
	References

	Low-Overhead, High-Speed Multi-core Barrier Synchronization
	Introduction
	Hardware-Supported Mapping of Virtual Barrier Topologies
	Implementation
	Benefits and Overheads
	Map Optimization
	Platform Adaptability

	Barrier Implementation Using Hybrid Networks
	Implementation
	Benefits and Overheads
	Mapping Considerations for Barrier Bolstering
	Platform Adaptability

	Reducing Virtual Link Latency with Router Bypassing
	Implementation
	Benefits and Overheads
	Mapping Considerations
	Platform Adaptability

	Methodology
	Analysis of Results
	Traditional Barrier Mechanisms in the Context of CMPs
	Performance Benefits of CMP-Specific Barriers
	Implications for Performance and Design of Parallel Applications

	Related Work
	Conclusion
	References

	Improving Performance by Reducing Aborts in Hardware Transactional Memory
	Introduction
	Steal-on-Abort Hardware Implementation
	SOA-HTM-PURE
	SOA-HTM-UTLZN

	Impact of SOA
	Processor Architecture
	Transactional Execution
	OS Context Migration
	OS Virtual Memory Paging

	Evaluation
	Methodology
	Workloads
	Evaluated CMP Configurations
	Results

	Related Work
	Conclusions
	References

	Energy and Throughput Efficient Transactional Memory for Embedded Multicore Systems
	Introduction
	Background and Previous Work
	Energy-Efficient HTM for Embedded Systems
	Experimental Results
	Software
	Hardware
	Experimental Data

	Conclusions
	References

	Compilation and Runtime Systems
	Split Register Allocation: Linear Complexity Without the Performance Penalty
	Introduction
	A Case for Split Compilation
	Outline of the Paper

	Split Register Allocation
	Optimization Problem and Baseline Algorithm
	The ILP Model
	Annotation Semantics
	The Offline Procedure
	The Online Procedure

	Experimental Evaluation
	Methodology
	Performance Results
	Portability Across Variations of the Register Count

	Looking Forward
	Portability of the Annotation
	Separate Compilation

	Related Work
	Conclusion
	References

	Trace-Based Data Layout Optimizations for Multi-core Processors
	Motivation
	Methodology
	Trace Generation
	Trace Traversal Algorithm
	Records Comparison Characteristics
	Calculating Affinity Coefficients

	Experimental Results
	The lighttpd Webserver
	Platform
	The Experimental Procedure
	Performance Results

	Conclusions and Future Work
	References

	Buffer Sizing for Self-timed Stream Programs on Heterogeneous Distributed Memory Multiprocessors
	Introduction
	Motivation
	The ACOTES Stream Compiler
	Formalisation of the Problem
	Description of the Algorithms
	Cycle Detection Algorithms
	Buffer Size Update Algorithms

	Evaluation
	Related Work
	Conclusions
	References

	Automatically Tuning Sparse Matrix-Vector Multiplication for GPU Architectures
	Introduction
	Background
	Sparse Matrix-Vector Multiplication
	Sparse Matrix Storage Formats
	The CUDA Programming Model

	Sliced ELLPACK
	Implementation of SpMV Using Sliced ELLPACK
	Matrix Reordering for Avoiding Storage Overhead
	Variable-Height Slices

	Experimental Results
	Performance Evaluation
	Tuning Is Device-Dependent
	Space Requirements

	Related Work
	Future Work
	References

	Reconfigurable and Customized Architectures
	Virtual Ways: Efficient Coherence for Architecturally Visible Storage in Automatic Instruction Set Extensions
	Introduction
	Related Work
	Virtual Ways
	AVS Segment States
	Prefetching Operation
	Maintaining Coherence After the ISE Executes
	Multiple AVS Memories

	Experimental Setup
	Experimental Results
	Conclusion
	References

	Accelerating XML Query Matching through Custom Stack Generation on FPGAs
	Introduction
	Related Work
	XPath Matching Hardware Architecture
	SAX Parser and Tag Decoder Implementation
	Matching XPaths Using Path Specific Stacks
	Applied Optimizations for PSS Reduced Resource Utilization
	Supporting Wildcards and Ancestor-Descendant Relationships
	System Architecture
	Addressing Inner and Outer Fan-Outs via Clustering.
	Reporting Matches.

	Experimental Results
	Design Space Exploration
	Performance Evaluation

	Conclusions and Future Work
	References

	An Application-Aware Load Balancing Strategy for Network Processors
	Introduction
	Prior Art
	Load Balancing Schemes in Network Processors
	FlexPath NP Architecture

	Application-Aware Load Balancing for FlexPath NP
	Support for Stateless Processing Applications
	Support for Stateful Processing Applications

	Simulation Model
	Experiments
	Best-Effort Forwarding Scenario
	FlexPath Scenario with QoS Forwarding and IPSec
	Results for Different Traces

	Conclusion
	References

	Memory-Aware Application Mapping on Coarse-Grained Reconfigurable Arrays
	Introduction
	Why Consider Data Placement?
	Background: Architecture and Application Mapping
	CGRA Architecture
	Application Mapping

	Related Work
	Architecture
	Compilation

	Our Approach
	Balancing Computation and Data Transfer
	Maximizing Data Reuse
	Balancing Bank Utilization

	Experiments
	Setup
	Efficiency of Our Memory-Aware Mapping
	Partial Shutdown Exploration

	Conclusion
	References

	Multicore Efficiency, Reliability, and Power
	Maestro: Orchestrating Lifetime Reliability in Chip Multiprocessors
	Introduction
	Scheduling for Damaged Cores and Dynamic Workloads
	Workload Variation
	Implications for Mean Time to Failure

	Maestro
	Health Monitoring
	Maestro Virtualization Layer

	Evaluation and Analysis
	Lifetime Throughput Enhancement
	Failure Distributions
	Sensitivity to System Utilization
	Sensor Selection

	Conclusion
	References

	Combining Locality Analysis with Online Proactive Job Co-scheduling in Chip Multiprocessors
	Introduction
	Background on Co-run Locality
	Reuse Distance
	Derivation of Concurrent Reuse Signatures

	Cache-Contention Sensitivity and Competitiveness
	Sensitivity
	Competitiveness

	Contention-Aware Proactive Scheduling (CAPS)
	Evaluation
	Comparison
	Conclusion
	References

	RELOCATE: Register File Local Access Pattern Redistribution Mechanism for Power and Thermal Management in Out-of-Order Embedded Processor
	Introduction
	Background
	On-Chip Thermal Behavior
	Conventional Register File Organization
	Activity Migration

	Analysis of Register File Operation
	Register File Occupancy
	Register File Access Pattern

	RELOCATE: Local Activity Redistribution within a Register File
	The Architectural Mechanism to Support Activity Redistribution

	Experimental Setup
	Experimental Results
	Additional Benefits of Temperature Reduction

	Related Work
	Conclusion
	References

	Performance and Power Aware CMP Thread Allocation Modeling
	Introduction
	Power and Performance Models
	Problems Statements and Allocation Algorithms
	The Single Application Problem
	The Multiple Applications Problem
	Discretization of CITA Result

	Numerical Results
	Single Application Results
	Multiple Applications Results
	Discretization Results

	Conclusions
	References

	Memory Organization and Optimization
	Multi-level Hardware Prefetching Using Low Complexity Delta Correlating Prediction Tables with Partial Matching
	Introduction
	Previous Work
	Delta Correlating Prediction Tables
	Overview
	DCPT-P Implementation
	L1 Hoisting
	Partial Matching

	Methodology
	Results
	Area and Performance Trade-Offs

	Discussion
	Conclusion
	References

	Scalable Shared-Cache Management by Containing Thrashing Workloads
	Introduction
	Review of Related Work

	When Does Partitioning Help?
	Simulation Methodology
	Classification Results

	Containing Thrashing Workloads
	Thrasher Caging
	Approximate Thrasher Detection (ATD)
	Performance of TC and ATD

	Scaling and Sensitivity Analysis
	Scaling to More Cores
	Sensitivity to Cache Configurations
	Parametric Sensitivity

	Conclusions
	References

	SRP: Symbiotic Resource Partitioning of the Memory Hierarchy in CMPs
	Introduction
	Motivation
	Choice of an Observable Metric
	Bandwidth Awareness of State-of-the-art Cache Partitioning

	Symbiotic Resource Partitioning
	Bandwidth Aware Cache Model
	Iterative Bandwidth Aware Symbiotic Resource Partitioning Algorithm

	Experimental Setup
	Base System Configuration
	Benchmarks

	Experimental Results
	Schemes for Comparison
	Performance Metrics
	Comparison of Fair Speedup Metric
	Comparison of Weighted Speedup Metric
	Discussion
	Sensitivity Analysis

	Related Work
	Conclusion
	References

	DIEF: An Accurate Interference Feedback Mechanism for Chip Multiprocessor Memory Systems
	Introduction
	Background
	Interference Definition and Metrics
	Modern Memory Bus Interfaces

	Shared Memory System Latency Taxonomy
	The Dynamic Interference Estimation Framework
	Estimating Private Memory Bus Latency ("705ELmt, "705ELmq and "705ELme)
	Estimating Cache Capacity Interference "705EIcc
	Estimating Interconnect Interference ("705EIie, "705EIiq, "705EIit and "705EIid)

	Methodology
	Results
	Estimation Accuracy
	DIEF Parameters

	Related Work
	Conclusion
	References

	Programming and Analysis of Accelerators
	{\it Tagged Procedure Calls (TPC):} Efficient Runtime Support for Task-Based Parallelism on the Cell Processor
	Introduction
	TPC Design and Implementation
	Experimental Platform and Methodology
	Experimental Results
	Basic Task Overheads
	Impact of Queue Size
	Application Scaling
	Comparison to Sequoia

	Related Work
	Conclusions
	References

	Analysis of Task Offloading for Accelerators
	Introduction
	Related Work
	Proposal
	Program Annotations

	Evaluation
	Execution Environment
	Selected Applications
	Results Obtained from the HPCC STREAM Triad
	Results Obtained from NAS CG
	Results Obtained from NAS FT
	Results Obtained from NAS BT

	Conclusions and Future Work
	References

	Offload – Automating Code Migration to Heterogeneous Multicore Systems
	Introduction
	Programming Heterogeneous Multicore Processors
	Offload Language Extensions
	Offload Scopes
	Outer Pointers and Data Movement

	Call-Graph Duplication
	Manual Function Duplication
	Automating the Duplication Process
	Offload Functions Are Still Useful

	Issues Raised by Call-Graph Duplication
	Type Inference for Outer Pointers
	Function Pointers and Virtual Methods
	Multiple Compilation Units

	A Cell BE Implementation of Offload
	Experimental Results
	Related Work
	Conclusions and Future Work
	References

	Computer Generation of Efficient Software Viterbi Decoders
	Introduction
	Background: Viterbi Decoders
	Encoding Convolutional Codes
	Viterbi Decoding
	Viterbi Butterflies

	Generating Scalar Code
	Fast Transform Algorithms: SPL
	Representing the Viterbi Algorithm
	Compiler

	Generating Vector Code
	Background: Short-Vector Instructions
	Generating Vectorized Decoders: Overview
	Vectorizing Rewriting System
	Overflows

	Results
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

