
An ER-Based Framework for
Declarative Web Programming�

Michael Hanus and Sven Koschnicke

Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany
mh@informatik.uni-kiel.de, sven@koschnicke.de

Abstract. We describe a framework to support the implementation of web-based
systems to manipulate data stored in relational databases. Since the conceptual
model of a relational database is often specified as an entity-relationship (ER)
model, we propose to use the ER model to generate a complete implementation in
the declarative programming language Curry. This implementation contains op-
erations to create and manipulate entities, supports authentication, authorization,
session handling, and the composition of individual operations to user processes.
Furthermore and most important, the implementation ensures the consistency of
the database w.r.t. the data dependencies specified in the ER model, i.e., updates
initiated by the user cannot lead to an inconsistent state of the database. In or-
der to generate a high-level declarative implementation that can be easily adapted
to individual customer requirements, the framework exploits previous works on
declarative database programming and web user interface construction in Curry.

1 Motivation

Many web applications are in essence interfaces on top of standard web browsers to ma-
nipulate data stored in databases. The use of web browsers demands for access control,
e.g., users must be authenticated, the authentication must the stored in a session across
various web pages, the access to various parts of the data must be authorized, etc. These
requirements makes the implementation of such applications a non-trivial and often
error-prone task [8]. In order to support the programmer in the design and implemen-
tation of such web-based applications, various web frameworks had been developed for
different implementation languages. For instance, the popular Ruby on Rails frame-
work1 supports the implementation of web applications in the object-oriented language
Ruby. An interesting idea of this framework to enable the quick construction of an ini-
tial system, which can be stepwise modified or extended, is scaffolding, i.e., the code
of an initial implementation is generated from the data model. This initial code gives
the programmer a good idea how to structure and organize the code of the system under
development.

Our work presented in this paper is based on a similar idea but exploits declarative
programming to obtain a compact implementation and provides reliability in various

� This work was partially supported by the German Research Council (DFG) under grant Ha
2457/5-2.

1 http://www.rubyonrails.org/

M. Carro and R. Peña (Eds.): PADL 2010, LNCS 5937, pp. 201–216, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.rubyonrails.org/

202 M. Hanus and S. Koschnicke

aspects (type safety, database consistency, etc). For this purpose, we use the declarative
multi-paradigm language Curry [3,7] as an implementation language and exploit previ-
ous works on declarative database programming [1] and declarative construction of web
user interfaces [5]. Our framework, called “Spicey”, supports the following features:

ER-based: The framework is based on a specification of the data model as an entity-
relationship (ER) model. Thus, the complete source code of an initial system is
generated from an ER model.

Web-based: The generated system is web-based, i.e., all data can be manipulated (i.e.,
created, shown, modified, deleted) via standard web browsers. The initial system
provides operations to insert new entities, show entities, modify or delete existing
entities as specified in the ER model. Relations between entities are manipulated
together with the corresponding entities. For instance, if there is a one-to-many
relation between E and E′, an instance of E′ can be created only if a corresponding
instance of E is selected.

Typed: The source code is statically typed so that many programming errors are de-
tected at compile time (in contrast to applications implemented in Perl, PHP, Ruby,
etc). Moreover, the data types specified in the ER model are also respected, i.e., it
is not possible to submit web forms containing ill-typed data.

Sessions: Since HTTP is a stateless protocol, our framework provides a session con-
cept so that any kind of data (e.g., the contents of a virtual shopping basket) can
be stored in a user session. Sessions are also used to store login information or
navigate the user through a sequence of interactions.

Authentication: The generated application contains an initial structure for authentica-
tion, i.e., login/logout operations. Since the concrete authentication methods usu-
ally depend on the application (e.g., kind of login names, passwords), this initial
structure must be extended by the programmer.

Authorization: The generated application has methods for authorization, i.e., each
controller that is responsible for showing or modifying data is authorized before
execution. A central authorization module is generated where the programmer can
easily specify authorization rules based on login or similar information.

User processes: Individual operations provided by the framework can be composed
to user processes that can be selected to initiate longer interaction sequences. For
instance, if it is necessary to create various entities in a database, the individual
“create” operations can be connected to a complex user process. Such processes
are specified as graphs using functional logic programming techniques.

Routing: The routes (i.e., URLs to call some functionality of the system) are decou-
pled from the physical structure of the source code. This enables simple URLs and
bookmarking of URLs that persist restructurings of the implementation. Therefore,
our framework generates applications that contain a specification of a mapping
from URLs into controllers of the application.

In the remainder of the paper, we present the ideas of our framework and show how
declarative programming is useful to get a compact and maintainable implementation
of web-based applications. Due to lack of space, we omit many details that are described
in the full version of this paper available at
http://www.informatik.uni-kiel.de/˜pakcs/spicey/.

http://www.informatik.uni-kiel.de/~pakcs/spicey/

An ER-Based Framework for Declarative Web Programming 203

2 Web Programming with Curry

We briefly survey the basic concepts of Curry and their use for high-level web program-
ming as required to understand the main part of this paper. More details of Curry can
be found in a recent survey [6] and in the definition of Curry [7].

The design of the declarative multi-paradigm language Curry is an attempt to in-
tegrate the most important features of functional and logic languages in a seamless
way in order to provide a variety of programming concepts to the programmer. From a
conceptual point of view, Curry combines demand-driven evaluation, parametric
polymorphism, and higher-order functions from functional programming with logic
programming features like computing with partial information (logic variables), uni-
fication, and non-deterministic search for solutions. As shown in previous works on
database programming [1] or web programming [4,5], this combination enables better
abstractions in application programs. Curry has a Haskell-like syntax2 [11] and con-
cepts (e.g., “IO α” denotes the type of an I/O action that returns values of type α) but
additionally supports “don’t-know” non-determinism and the inclusion of free (logic)
variables in conditions and right-hand sides of defining rules.

To support basic web programming in Curry, [4] proposes an HTML library that
defines a type HtmlExp to represent HTML structures:
data HtmlExp = HtmlText String

| HtmlStruct String [(String,String)] [HtmlExp]

Thus, an HTML expression is either a plain string or a structure consisting of a tag, a
list of attributes (name/value pairs), and a list of HTML expressions contained in this
structure. A dynamic web page is an HTML document that is computed by a program
at the time when the page is requested by a client (e.g., a web browser). Dynamic web
pages usually process user inputs, placed in various input elements (e.g., text fields, text
areas, check boxes) of an HTML form, in order to generate a user-specific result. For
this purpose, the HTML library of Curry [4] provides an abstract programming model
that can be characterized as programming with call-back functions. A web page with
user input and submit buttons is modeled by attaching an event handler to each submit
button that is responsible for computing the answer document. For instance, the HTML
library defines an operation to represent submit buttons in an HTML page:
button :: String -> HtmlHandler -> HtmlExp

In order to access the user input, the event handler (of type HtmlHandler) has an envi-
ronment containing the actual user input as a parameter and computes a new web page.
We omit further details here since our framework is mainly based on a more abstract
layer to construct web user interfaces (WUIs) [5]. Such WUIs are constructed in a type-
oriented manner, i.e., for each type in the application program one can construct a WUI
that is an implementation of a web-based interface to manipulate values of this type.
Thus, the (tedious) code for checking the validity of values in the input fields and pro-
viding appropriate error messages is automatically derived from the WUI specification.
The corresponding WUI library [5] contains predefined WUIs to manipulate strings

2 Variables and function names usually start with lowercase letters and the names of type and
data constructors start with an uppercase letter. The application of f to e is denoted by juxta-
position (“f e”).

204 M. Hanus and S. Koschnicke

(wString) or to select a value (wSelect) from a given list of values (where the first
argument shows a value as a string):
wString :: WuiSpec String
wSelect :: (a -> String) -> [a] -> WuiSpec a

Here, “WuiSpec a” denotes the type of a WUI to modify values of type a. To construct
WUIs for complex data types, there are WUI combinators that are mappings from sim-
pler WUIs to WUIs for structured types. For instance, there is a family of WUI combi-
nators for tuple types:
wPair :: WuiSpec a -> WuiSpec b -> WuiSpec (a,b)
wTriple :: WuiSpec a -> WuiSpec b -> WuiSpec c -> WuiSpec (a,b,c)
w4Tuple ...

Hence, “wPair wString (wSelect show [1..100])” defines a WUI to manipu-
late a pair of a string and a number between 1 and 100. An important feature of WUIs
is their easy adaptation to specific requirements. For instance, there is an operator
withCondition that combines a WUI and a predicate on values so that the resulting
WUI accepts only values satisfying the predicate. Thus,
wRequiredString = wString ‘withCondition‘ (not . null)

defines a WUI that accepts only non-empty strings. Similarly, there are combinators to
change the default rendering of WUIs (withRendering) or to change the default error
messages. This allows a compact and declarative description of complex user interfaces.

Note that the functional as well as logic features of Curry are exploited to implement
this high-level abstraction: event handlers and environments are functions attached to
data structures (HTML documents), input elements in a document have logic variables
as references [4], and static type checking is used to ensure type-safe web forms [5].

3 Entity-Relationship Models and Database Programming

The entity-relationship model [2] is an established framework to specify the structure
and specific constraints of data stored in a database. It is often used with a graphical
notation, called entity-relationship diagrams (ERDs), to visualize the conceptual model.
The ER framework proposes to model the part of the world that is interesting for the
application by entities that have attributes and relationships between the entities. The
relationships have cardinality constraints that must be satisfied in each valid state of the
database, e.g., after each transaction.

Braßel et al. [1] developed a technique to generate high-level and safe database op-
erations (i.e., the cardinality constraints of the ER model hold after database updates)
from a given ERD. In order to be largely independent of a specific ER modeling tool,
[1] defines a representation of ERDs in Curry so that graphical modeling tools can be
connected by implementing a translator from the tool format into the Curry represen-
tation. Since this representation is also the starting point of our framework, we briefly
describe it in the following.

The representation of ERDs as data types in Curry is straightforward. An ERD con-
sists of a name and lists of entities and relationships:
data ERD = ERD String [Entity] [Relationship]

An ER-Based Framework for Declarative Web Programming 205

Fig. 1. An ER diagram of a web log

Instead of showing the detailed definition of all ER data types (which can be found in
[1]), we show the ER specification of an example which we use throughout this paper: a
web log. The structure of our “blog” is visualized as an ERD in Fig. 1. A blog consists
of Entry articles having title, text, author, and date as attributes, and Comments to each
entry. Furthermore, there are a number of Tags to classify Entry articles. One can
generate from the ERD a data term specifying the details of the blog structure:

ERD "Blog"
[Entity "Entry"

[Attribute "Title" (StringDom Nothing) Unique False,
Attribute "Text" (StringDom Nothing) NoKey False,
Attribute "Author" (StringDom Nothing) NoKey False,
Attribute "Date" (DateDom Nothing) NoKey False],

Entity "Comment" ..., Entity "Tag" ...]
[Relationship "Commenting"

[REnd "Entry" "commentsOn" (Exactly 1),
REnd "Comment" "isCommentedBy" (Range 0 Nothing)],

Relationship "Tagging"
[REnd "Entry" "tags" (Range 0 Nothing),
REnd "Tag" "tagged" (Range 0 Nothing)]]

Each attribute specification consists of the attribute name, the domain type of the at-
tribute values together with a possible default value, and specifications of the key and
null value property. For instance, the Title attribute of the entity Entry is a string that
is unique in each valid state of the database. Furthermore, Commenting is a one-to-
many relationship between Entry and Comment entities, i.e., each Entry article has an
arbitrary number of comments and each Comment belongs to exactly one Entry, and
Tagging is a many-to-many relationship between Entry and Tag entities.

As mentioned above, [1] proposed a method to generate database operations from an
ERD specification that ensures the integrity of the database (w.r.t. the constraints present
in the ERD) after performing update operations. For instance, there is an operation
newEntry :: String -> String -> String -> Date -> Transaction Entry

that takes values of the Entry attributes and inserts a new Entry entity into the
database. The return type is a transaction (see [1]), i.e., the insertion might fail (without

206 M. Hanus and S. Koschnicke

Fig. 2. The web interface of an application generated by Spicey

changing the database state but returning some informative error message) if the value
of the title attribute is not unique. Similarly, there is a generated operation of type
newCommentWithEntryCommentingKey
:: String -> String -> Date -> EntryKey -> Transaction Comment

that takes values of the attributes of a new Comment entry and a key of an existing Entry
entity since each comment is related to a unique Entry entity. In the following sections,
we describe the generation of a web application that implements a user-friendly inter-
face to these database operations.

4 Scaffolding

In this section, we present the basic scaffolding of Spicey, i.e., the generation of an ini-
tial executable system that provides access to the data via standard web browsers. As
an example, consider the ER description of the blog presented in the previous section.
From this description, Spicey automatically generates the Curry source code of an ap-
plication that implements the interface shown in Fig. 2. As one can see, the interface
has buttons to create new entities and list existing ones, as well as buttons to show, edit,
or delete any existing entity.

However, generating a standard interface is not sufficient for real applications since
there are many requirements that are not present in the ER description. For instance,
one might want to choose a different table layout or show only the first 30 characters
of the Text attribute in the list of entries. One could extend the ER descriptions to add
specifications of these requirements, but there are so many of these requirements in real
applications so that this leads to a complex specification structure that is difficult to
manage. As an alternative, we propose to use the high abstraction level of declarative

An ER-Based Framework for Declarative Web Programming 207

programming for this purpose. Instead of putting any possible customer requirement in
the specification language of the data model, we generate high-level declarative code
from the ER descriptions. Thanks to the works on high-level database programming and
web user interface construction sketched above, the generated source code is compact
and comprehensible so that it can be easily adapted to individual customer require-
ments, as demonstrated below.

An important issue in the design and development of a complex system is the
distribution of the functionality in an appropriate module structure. The model-view-
controller (MVC) paradigm [9] provides a well-established structure for interactive sys-
tems. Therefore, Spicey’s scaffolding uses the same structure for the generated source
code, i.e., if we execute Spicey to generate a web application from an ER descrip-
tion, the generated code is distributed in directories like models (containing the Curry
module implementing the access to the database), controllers, views, etc. In the
following, we sketch some parts of the generated code.

In order to obtain a compact and maintainable code, the views to create or update
entities exploit WUIs (see Section 2) to implement type-safe web forms in a high-
level declarative manner. Thus, Spicey generates for each entity a WUI specification
of a web form to manipulate the attributes of this entity (e.g., see Fig. 3). However,
the internal primary database keys of an entity should not be changed and, thus, they
are not part of the WUI specification. Moreover, if an entity is related to other enti-
ties, this relation should be modifiable in the web form. For instance, each comment
in our blog example is related to a unique Entry entity. Hence, a single Entry entity
must be selected in the form to insert or change a comment (see the lower selection
box in Fig. 3). As a consequence, we have to pass related entities to the web form
in order to enable their selection. In the generated code, we do not pass all associ-
ated entities (e.g., it is not reasonable to select the associated comments when editing
an Entry entity) but only the uniquely related entities from one-to-many relationships
and “one side” of many-to-many relationships. More precisely, if E is an entity with
attributes A1, . . . , An, (E1, E), . . . , (Ek, E) are all one-to-many relationships (to E)
and (E, E′

1), . . . , (E, E′
l) are all many-to-many relationships (with E as the first com-

ponent), then the form generated to edit an E entity contains input fields for editing
A1, . . . , An and selection fields for E1, . . . , Ek, E′

1, . . . , E
′
l (where the latter l fields

are multiple selection fields). Thus, one could select in our blog example an Entry en-
tity in a form to edit a Comment (due to the one-to-many relationship Commenting) and
a set of Tag entities in a form to edit an Entry (due to the many-to-many relationship
Tagging).

Hence, Spicey generates from the Blog ERD the following WUI specification for
Comment entities:
wComment :: [Entry] -> WuiSpec (String,String,Date,Entry)
wComment entries =
(w4Tuple wRequiredString wRequiredString wDateType

(wSelect entryToShortView entries))
‘withRendering‘ (renderLabels commentLabelList)

Thus, wComment takes a list of available entries and returns a web form to manipulate
the three attributes of a Comment entity together with the uniquely associated Entry

208 M. Hanus and S. Koschnicke

Fig. 3. An edit form for blog comments generated by Spicey

entity. The available entries are shown in a selection box (wSelect) where each entry
is shown as a short string by the transformation function entryToShortView. As a
default, the first unique attribute is used for this purpose (if present), i.e., in case of an
Entry entity, the title of the corresponding entry is shown.

We want to remark that this and other defaults used in the standard web form created
by this WUI specification (see Fig. 3) can be easily adapted by changing this declara-
tion. For instance, one can use another interface for manipulating dates by replacing
wDateType by another WUI for dates, or if the name of the author is not required
(i.e., if comments are accepted with an empty Author string), one can replace the sec-
ond wRequiredString by wString. Moreover, the complete default rendering can be
changed by using another rendering function than renderLabels (see also [5]).

The WUI operation wComment is used to implement the views to insert or update a
Comment entity. For instance, for editing comments, Spicey generates an operation
editCommentView :: Comment -> Entry -> [Entry]

-> (Comment -> IO [HtmlExp]) -> [HtmlExp]

that takes the current comment, the Entry entity related to this comment, a list of
available Entry entities, and an I/O operation (a controller) to update the modified
comment in the database (note that the Comment data type contains the foreign key
of the associated Entry entity so that it need not be explicitly passed to the update
operation, see also [1]).

The main view to browse and manipulate entities is the list view as shown in Fig 2.
Since the list view contains buttons (show/edit/delete) associated to individual entities,
the controllers implementing the functionality of these buttons are passed as arguments
to the view. For instance, the operation implementing the list view for Comment entities
has the type
listCommentView :: [Comment]

-> (Comment -> IO [HtmlExp])

An ER-Based Framework for Declarative Web Programming 209

-> (Comment -> IO [HtmlExp])
-> (Comment -> IO [HtmlExp]) -> [HtmlExp]

where the arguments are the list of comments and the controllers to show, edit, and
delete a comment entity.

Following the MVC paradigm, controllers are responsible to react on user requests
and call the corresponding views supplied with data contained in the model. For in-
stance, the list controller for comments retrieves all comments from the model (i.e.,
the database) and calls the operation listCommentView with these comments and the
controllers to process individual comments:
listCommentController :: [String] -> IO [HtmlExp]
listCommentController args = do
comments <- runQ (queryAll (\c -> let key free in comment key c))
return (listCommentView comments showCommentController

editCommentController deleteCommentController)

The argument args contains the possible parameters passed with the URL. This enables
the implementation of listing a restricted set of comments according to the parameters.

The other controllers are similarly defined. Note that controllers to create or modify
entities require a second controller, passed to the view (e.g., see editCommentView
above), that is responsible to perform the actual modification of the model. All con-
trollers for an entity generated by Spicey are put into a module, e.g., the module
CommentController contains the various controllers associated to Comment entities.

As shown in Fig. 2, some controllers (like new or list) can be directly called by spe-
cific URLs in the application. In order to decouple the structure of URLs from the struc-
ture of the implementation, Spicey generates a routing module containing the names of
the available controllers and their URLs. Altogether, a Spicey application performs a
request for a web page as follows. First, the path component of the URL is extracted.
Then, a dispatcher matches this path against the list of controllers specified in the rout-
ing module. Finally, the code of this controller is executed and the computed HTML
contents is decorated with the standard layout of the application.

5 Sessions, Authentication, Authorization, Processes

In a web-based application, one needs a concept of a session in order to pass information
between different web pages. For instance, the login name of a user or the contents of
a virtual shopping basket should be stored across several web pages. Therefore, Spicey
supports a general concept to store arbitrary information in a user session.

Typically, sessions are implemented in web-based systems via cookies stored in the
client’s browser. For security and performance reasons, these cookies should not con-
tain the information stored in the session but only a unique session identifier that is
passed to the web server in any interaction. Therefore, a Spicey application implements
sessions by managing a session identifier in each web page. If a session identifier does
not exist (i.e., the browser did not send a corresponding cookie), a fresh session identi-
fier is created and stored in a cookie sent with any subsequent web page. However, the
application programmer has not to deal with session identifiers since Spicey provides

210 M. Hanus and S. Koschnicke

the following operations to manipulate session information (where the type variable “a”
denotes the type of the session information):

getSessionData :: Global (SessionStore a) -> IO (Maybe a)
putSessionData :: a -> Global (SessionStore a) -> IO ()
removeSessionData :: Global (SessionStore a) -> IO ()

getSessionData retrieves information of the current session (and returns Nothing if
there is no information stored), putSessionData stores information in the current ses-
sion, and removeSessionData removes such information. “SessionStore a” is an
abstract type to represent session information containing data of type a. This interface
is based on the concept of “globals” (available through the Curry library Global3) that
implements objects having a globally declared name in some module of the program.
The values associated to the name can be modified by IO actions.

For instance, consider the implementation of “page messages” that are shown in the
next page (e.g., error messages, status information), like the “Logged in as” message
shown in Fig. 2. In order to enable the setting of such messages in any part of a Spicey
application, we define the page message as session data by the following definition of a
global entity:
pageMessage :: Global (SessionStore String)
pageMessage = global emptySessionStore Temporary

“global v Temporary” denotes a global entity with initial value v that is not persis-
tently stored, and emptySessionStore denotes a session store that does not contain
any information. Using the session operations above, we can define an operation to set
the page message in any part of a Spicey application:
setPageMessage :: String -> IO ()
setPageMessage msg = putSessionData msg pageMessage

The current page message is retrieved and then removed by the following operation:
getPageMessage :: IO String
getPageMessage = do msg <- getSessionData pageMessage

removeSessionData pageMessage
return (maybe "" id msg)

This operation can be used by the main operation that wraps a view output with the
standard layout containing the page message, global menu etc.

Due to this general session concept, one can easily attach any information entities to
a session. For instance, one can store the login name in order to support authentication:
sessionLogin :: Global (SessionStore String)
sessionLogin = global emptySessionStore Temporary

and use the session data operations to set, retrieve, or delete a login name. These oper-
ations can be used in specific login/logout web pages. Since authentication is required
in almost any web-based system keeping some data, Spicey provides an initial imple-
mentation (see Fig. 2) that is intended for extension during the adaption of the system.

An equally important aspect of web-based systems is authorization, i.e., the check-
ing whether a user is allowed to call a distinct functionality, like showing or updating

3 http://www.informatik.uni-kiel.de/˜pakcs/lib/CDOC/Global.html

http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/Global.html

An ER-Based Framework for Declarative Web Programming 211

particular entities. In our framework, this check can be performed before starting a con-
troller. In order to avoid the distribution of these checks over the entire implementation
and to keep the authorization rules at a centralized place, Spicey decorates the code of
each controller with a call to some authorization code. For this purpose, there is a data
type
data AccessResult = AccessGranted | AccessDenied String

and an operation
checkAuthorization :: IO AccessResult-> IO [HtmlExp]-> IO [HtmlExp]

which takes an IO operation for authorization checking (returning an AccessResult)
and a controller as arguments. If the authorization returns AccessGranted, the con-
troller is executed, otherwise an error message is displayed. In order to define concrete
authorization rules for the various controllers, Spicey generates a data type to classify
the controllers:
data AccessType a = NewEntity | ListEntities | ShowEntity a

| UpdateEntity a | DeleteEntity a

Now, the execution of each controller is protected by adding an authorization check
to the controller’s code. For instance, the generated code of the controller to list all
Comment entities (see Section 4) is extended as follows:
listCommentController args =
checkAuthorization (commentOperationAllowed ListEntities) $ do
comments <- runQ ...

Thus, the actual authorization rules are collected in a single module containing the
definition of all operations used in the calls to checkAuthorization. For instance,
the default definition of commentOperationAllowed is
commentOperationAllowed :: AccessType Comment -> IO AccessResult
commentOperationAllowed _ = return AccessGranted

authorizing all Comment operations. By refining this definition, one can specify restric-
tions on the controllers depending on the various operations, specific entities, or login
information of the user. Note that the logic programming features of Curry can be quite
useful here to specify authorization policies in a rule-oriented manner.

A web-based application generated by Spicey supports individual interactions to in-
sert, show, and change any entity. If the data model is complex and consists of many
entity types, it might be necessary to combine single interactions to longer interaction
sequences. For instance, if one wants to insert new data where different entities are
involved, it is reasonable to define an interaction sequence where the controllers to in-
sert the various new entities are sequentially activated. Thus, one wants to offer user
processes (which can be also considered as parts of complex business processes) that
are structured compositions of elementary interactions. For this purpose, a generated
Spicey application has an infrastructure to define and execute such processes. Since
a process can be considered as a sequence of calls to controllers, Spicey allows the
weaving of processes into the default structure of controllers. For this purpose, each
controller which terminates an individual interaction has a “continuation” controller
that is called in the next step. For instance, a controller responsible for creating a new

212 M. Hanus and S. Koschnicke

entity calls the list controller of the same entity type, as in the controller which adds a
new Tag entity:
createTagController name = runT (newTag name) >>=
either (_ -> nextInProcessOr listTagController Nothing)

(\error -> displayError ...)

Thus, the execution (runT) of the transaction (newTag name), that should insert a
new Tag name into the database, calls, if successful, the listTagController, or dis-
plays an error message if the transaction fails (e.g., since the new name already exists).
However, the next controller is not directly called but indirectly through the operation
nextInProcessOr. This operation checks whether the system executes a process. If no
process is active, the given controller is called, otherwise the controller specified in the
next process state is executed. In order to make the selection of the next process state
dependent on some information provided by the previous controller (this is useful to
implement loops or branches in processes), the second argument of nextInProcessOr
might contain such information. Thus, the application programmer can replace the de-
fault value Nothing by some information available in the previous controller.

The concrete structure of processes is defined in a distinguished module
UserProcesses as data of the following type:
data Processes st = ProcSpec [(String,st)]

(st -> ControllerFunctionReference)
(st -> Maybe ControllerResult -> st)

The type parameter st is the type of the states of a process, which could be a number
or some more informative enumeration type. Hence, a process specification consists of
a list of start states together with a textual description (these start states can be selected
in the process menu), a mapping of each state into a corresponding controller to be
executed in this state, and a state transition function that maps a state into a new state
depending on some optional result provided by the previous controller (the type of these
results is ControllerResult, which is identical to String in the default case).

We can use all features available in Curry to define processes. For instance, one
can compute the next state in a process based on solving constraints w.r.t. the data in
the model. In general, the state transition function is partial, i.e., if a process state has
no successor, the process will be terminated. If a state has more than one successor, the
first one is selected (multiple successor states can occur in situations like the insertion of
several entities in an arbitrary order). As a concrete example, consider a simple process
to insert a new tag followed by the creation of a new Entry entity and terminated with
showing the list of all tags. If we use numbers as state identifiers, we can specify this
process as follows:
let controllerOf 0 = NewTagController

controllerOf 1 = NewEntryController
controllerOf 2 = ListTagController

next 0 _ = 1
next 1 _ = 2

in ProcSpec [("Insert new tag and entry",0)] controllerOf next

If this specification is contained in the module UserProcesses, the process can be
selected and stepwise executed in the web application.

An ER-Based Framework for Declarative Web Programming 213

6 Related Work

Although Spicey is the first web programming framework for a declarative language
based on ER models and with support for typical requirements in the area (e.g., safe
transactions, sessions, authentication, authorization, processes), there are many related
approaches. The relation of Spicey to some of them are discussed in the following.

In contrast to other systems implemented in scripting languages like Perl, PHP, or
Ruby, our implementation is statically typed so that many programming errors that eas-
ily occur in such complex systems are detected at compile time. Compared to Ruby on
Rails, a framework with similar objectives, Spicey can be considered as an approach to
show that declarative programming allows the compact construction of web-based sys-
tems with static type checking (thus, supporting programming safety) without the need
for (unreliable) dynamic meta-programming techniques. In order to obtain this result,
some design difficulties had to be solved, like avoiding mutual module dependencies
by passing continuation controllers to views, routing, etc.

The Web Application Maker4 (WAM) is a framework with similar goals as Spicey.
The WAM generates a web interface from the meta-data of a relational database and has
opportunities to adapt the interface to specific user requirements. In contrast to WAM,
Spicey uses ER models, which usually contain more structural information, to generate
the database schema and the corresponding web interface.

The iData toolkit [12] is a framework, implemented with generic programming tech-
niques in the functional language Clean, to construct type-safe web interfaces to data
that can be persistently stored. In contrast to our framework, the construction of an ap-
plication is done by the programmer who defines the various iData elements, where we
generate the necessary code from an ER description. Hence, integrity constraints ex-
pressed in the ER description are automatically checked in contrast to the iData toolkit.

Turbinado5 is a web framework for Haskell. It is based on similar ideas as Ruby
on Rails but exploits static type checking for more reliable programming, similarly to
Spicey. In contrast to our framework, Turbinado supports scaffolding only to implement
an object-relational mapping of the models, and it is not based on an ER specification
to ensure integrity constraints in the application.

Seam [13] is a complex framework for developing enterprise applications in Java. It
integrates many other projects to support a wide range of technologies. The database
abstraction is provided by an Enterprise Java Beans 3.0 implementation, Hibernate by
default, which enables the programmer to generate the database schema directly from
the model classes. In contrast to the ERD library used by Spicey, there is no graphical
way to create the models of the application. Another disadvantage of Seam is the ab-
sence of a single place to define consistency rules for data. There are three places where
consistency and validation rules may be defined. The first two are the code of the mod-
els and the generated database schema. Some, but not all, rules which are defined in the
models through annotations are put into the database schema, but often the programmer
has to assure database consistency by himself. Seam supports the definition of standard
relationship types but provides no good way to enforce ranges for the multiplicity of

4 http://www.declarativa.com/wam/
5 http://www.turbinado.org/

http://www.declarativa.com/wam/
http://www.turbinado.org/

214 M. Hanus and S. Koschnicke

those relationships as Spicey does. For example, a one-to-one relationship does not en-
sure that there is always an entity on the other side of the relation but that there may be
an entity or null. As a consequence, a programmer in Seam has to check for the presence
of an entity by himself. Hibernate provides an annotation for that, but it is not fully inte-
grated into Seam yet. The third place to define validation rules are the views, for which
Seam uses Java Server Faces. Rules defined in the model are not automatically reflected
in the views, simple validation rules like required fields have to be defined again in the
view, which leads to inconsistency if those rules for a model are defined differently in
different views. Seam integrates the jBPM6 project for modeling business processes.
jBPM defines the process in XML format where a graphical editor exists. Similarly to
Spicey, the coupling of the process with the code is achieved by connecting controller
methods with the process. For authorization another tool may be used in Seam, namely
JBoss Rules7, which provides a logical language for defining authorization rules. This
aspect is directly integrated into Spicey by the logic programming features of Curry.

The web framework Seaside8 is based on the object-oriented language Smalltalk.
Seaside is one of the few frameworks that use the Transform-View pattern for views.
This enables the compiler to check the integrity of the views because they are defined as
program code instead of HTML templates. Spicey uses the same approach but provides
for stronger code checks due to the static type system of Curry. Seaside supports process
modeling by providing a stateful environment over multiple requests and enable the
programmer to span a controller method over more than one page. In contrast to Spicey,
processes are not decoupled from the controller logic so that a high abstraction level of
processes as in Spicey is not obtained.

Django9 is a popular web framework for the language Python which has features very
similar to Ruby on Rails. The implementation of routes for Spicey was inspired by the
way Django handles routes. While Django offers only regular expressions for matching
URLs, Spicey generalizes this concept and supports arbitrary computable functions for
determining the controllers associated to URLs.

7 Conclusions

We have presented the tool Spicey to generate web applications for data models that are
specified as entity-relationship models. Spicey enables the generation of a fully func-
tional system from an ER description in a few seconds. This initial system is not only
good for the evaluation of the feasibility of the data model. Due to the use of a declar-
ative target language, the generated code is compact and comprehensible so that it can
be easily extended and adapted to specific customer requirements. This has been also
achieved by the use of previous works on declarative database and web programming
that supports a compact executable description of web interfaces. Furthermore, the gen-
erated system has an infrastructure for many aspects related to web-based systems, like

6 http://www.jboss.com/products/jbpm/
7 http://www.jboss.com/products/rules/
8 http://www.seaside.st/
9 http://www.djangoproject.com/

http://www.jboss.com/products/jbpm/
http://www.jboss.com/products/rules/
http://www.seaside.st/
http://www.djangoproject.com/

An ER-Based Framework for Declarative Web Programming 215

transactions that are safe w.r.t. the ER constraints, sessions, authentication, authoriza-
tion, user-oriented processes, or routing.

To get an idea of the size of the generated source code that might be inspected by
the application programmer to adapt the initial system, we counted the lines of code of
the application generated for the Blog data model shown in Section 3. The generated
views contain 280 lines of code, the generated controllers contain 180 lines of code,
and the configuration files (e.g., routing, default authorization) contain 55 lines of code.
Of course, the complete executable has much more code, like system libraries, specific
Spicey libraries, generated database code etc. However, this code is usually irrelevant
when adapting the system to specific layout requirements. As usual in current web-
based systems, many layout details are specified in a global style sheet file so that the
views generate only the basic structure of each web page.

Spicey is completely implemented in Curry. The implementation is freely avail-
able.10 Apart from some example applications, it has also been used to provide web-
based interfaces to existing databases by the definition of appropriate ER descriptions.
For future work, it would be interesting to develop a concept for migration, i.e., to sup-
port changes in the ER model that might entail changes in the generated and possibly
adapted application code. Furthermore, it would be useful to implement a tool that al-
lows to mix Curry code with HTML code fragments (e.g., as shown with the Haskell
Server Pages [10]) in order to allow an easier integration of layouts developed by HTML
designers into the application programs.

References

1. Braßel, B., Hanus, M., Müller, M.: High-Level Database Programming in Curry. In: Hudak,
P., Warren, D.S. (eds.) PADL 2008. LNCS, vol. 4902, pp. 316–332. Springer, Heidelberg
(2008)

2. Chen, P.P.-S.: The Entity-Relationship Model—Toward a Unified View of Data. ACM Trans-
actions on Database Systems 1(1), 9–36 (1976)

3. Hanus, M.: A Unified Computation Model for Functional and Logic Programming. In: Proc.
of the 24th ACM Symposium on Principles of Programming Languages, Paris, pp. 80–93
(1997)

4. Hanus, M.: High-Level Server Side Web Scripting in Curry. In: Ramakrishnan, I.V. (ed.)
PADL 2001. LNCS, vol. 1990, pp. 76–92. Springer, Heidelberg (2001)

5. Hanus, M.: Type-Oriented Construction of Web User Interfaces. In: Proceedings of the 8th
ACM SIGPLAN International Conference on Principles and Practice of Declarative Pro-
gramming (PPDP 2006), pp. 27–38. ACM Press, New York (2006)

6. Hanus, M.: Multi-paradigm Declarative Languages. In: Dahl, V., Niemelä, I. (eds.) ICLP
2007. LNCS, vol. 4670, pp. 45–75. Springer, Heidelberg (2007)

7. Hanus, M. (ed.): Curry: An Integrated Functional Logic Language, Vers. 0.8.2 (2006),
http://www.curry-language.org

8. Huseby, S.H.: Innocent Code: A Security Wake-Up Call for Web Programmers. Wiley,
Chichester (2003)

9. Krasner, G., Pope, S.: A Cookbook for using the Model-View-Controller User Interface in
Smalltalk-80. Journal of Object-Oriented Programming 1(3), 26–49 (1988)

10 http://www.informatik.uni-kiel.de/\char126pakcs/spicey/

http://www.curry-language.org
http://www.informatik.uni-kiel.de/\char 126pakcs/spicey/

216 M. Hanus and S. Koschnicke

10. Meijer, E., van Velzen, D.: Haskell Server Pages: Functional Programming and the Battle for
the Middle Tier. In: Proc. ACM SIGPLAN Haskell Workshop, Montreal (2000)

11. Peyton Jones, S. (ed.): Haskell 98 Language and Libraries—The Revised Report. Cambridge
University Press, Cambridge (2003)

12. Plasmeijer, R., Achten, P.: iData for the World Wide Web - Programming Interconnected
Web Forms. In: Hagiya, M., Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945, pp. 242–258.
Springer, Heidelberg (2006)

13. Yuan, M.J., Orshalick, J., Heute, T.: Seam Framework: Experience the Evolution of Java EE,
2nd edn. Prentice Hall, Englewood Cliffs (2009)

	An ER-Based Framework for Declarative Web Programming
	Motivation
	Web Programming with Curry
	Entity-Relationship Models and Database Programming
	Scaffolding
	Sessions, Authentication, Authorization, Processes
	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

