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Abstract. A lazy-evaluation based top-down parsing algorithm has
been implemented as a set of higher-order functions (combinators) which
support directly-executable specifications of fully general attribute gram-
mars. This approach extends aspects of previous approaches, and allows
natural language processors to be constructed as modular and declarative
specifications while accommodating ambiguous context-free grammars
(including direct and indirect left-recursive rules), augmented with se-
mantic rules with arbitrary attribute dependencies (including dependen-
cies from right). This one-pass syntactic and semantic analysis method
has polynomial time and space (w.r.t. the input length) for processing
ambiguous input, and helps language developers build and test their
models with little concern for the underlying computational methods.

Keywords: Parser combinators, Lazy evaluation, Top-down parsing, At-
tribute grammars, Natural-language processing.

1 Introduction

Attribute grammar (AG, [1]) systems have been constructed primarily as com-
pilable parser-generators for formal languages. Little work has been done where
fully-general AGs have been used to offer a platform for declaratively specify-
ing directly-executable specifications of natural languages (NL) to construct NL
interfaces or NL database query processors. Although it is highly modular, gen-
eral top-down parsing is often ignored as it has been traditionally categorized as
expensive, and non-terminating while processing left-recursive grammars. Also,
no existing approach supports arbitrary attribute dependencies (including de-
pendencies from the right) in one-pass within a modular top-down system.

A platform that supports executable and declarative specifications of general
AGs, offers two benefits. From a practical viewpoint, application developers can
specify and execute their language descriptions directly without worrying about
underlying evaluation methods. Individual parts of descriptions can be efficiently
tested piecewise, and modularity enables systematic and incremental develop-
ment. From a theoretical perspective, general AGs accommodate ambiguity and
left-recursion, which are needed for natural language processing. As illustrated
by Warren [2] and Frost et al. [3], transforming a left-recursive CFG to a weakly
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equivalent non-left-recursive form may introduce loss of parses and lack of com-
pleteness in semantic interpretation. AGs with arbitrary attribute dependencies
provide unrestricted construction of declarative semantic rules, facilatating ex-
pression of complex linguistic theories such as Montague semantics.

Frost et al. explained at PADL’08 [4] how top-down parsers can be constructed
as unconstrained executable CFGs. This paper describes an extension to accom-
modate semantics with arbitrary attribute dependencies. We have achieved our
objective by defining a set of combinators for constructing modular, declarative
and executable language processors, similar to the denotational semantics text-
book AG notation. Our combinators (e.g., <|> and *> correspond to alternating
and sequencing, rule_s and rule_i for synthesized and inherited semantic rules,
parser and nt for AG formation) are pure, higher-order and lazy functions that
ensure fully declarative specifications (Section 3.2 and 3.3).

We define attributes in terms of expressions (as our method is referentially
transparent and non-strict) that represent operations on syntax symbols, and
these expressions are computed from the surrounding environment when re-
quired (Section 3.4). We execute syntax and semantics in polynomial time using
memoization to ensure that results for a particular parser at a particular input
position are computed at most once, and are reused when required. We repre-
sent potentially exponential results for ambiguous input in a compact and shared
polynomial tree structure (Section 4).

We have provided a platform by implementing our algorithm in terms of
higher-order functions in Haskell. The declarative notation, arbitrary dependen-
cies and non-strict evaluation have the potential to allow us to discard unwanted
parses using linguistic features such as grammatical, semantic and number agree-
ments, and this could extend the AG paradigm by capturing characteristics
of unification grammars, combinatory-categorical grammars and type-theoretic
grammars while being computationally efficient.

An Example. We illustrate our approach with a simple artificial repmax
example [5,6] which we have extended to accommodate ambiguity, left-recursion
and arbitrary attribute dependencies in semantic rules. Our goal is to parse
inputs such as “1 5 2 3 2” with the ambiguous left-recursive CFG tree ::=
tree tree num | num, num ::= 1|2|3|4|5|..., and to extract all possible trees
with all terminals replaced by the maximum value of the sequence using sets of
declarative semantics. The following example illustrates most of the aspects of
general AGs :

start(S0) :: = tree(T0)
{RepV al.T0 ↓ = MaxV al.T0 ↑}

tree(T0) :: = tree(T1) tree(T2) num(N1)
{MaxV al.T0↑ = Max(MaxV al.T1 ↑, MaxV al.T2 ↑, MaxV al.N1 ↑),
RepV al.T1 ↓ = RepV al.T0 ↓, RepV al.T2 ↓= RepV al.T0 ↓,
RepV al.N1 ↓ = RepV al.T0 ↓}

| num(N2)
{MaxV al.T0↑ = MaxV al.N2 ↑, RepV al.N2 ↓= RepV al.T0 ↓}

num(N0) :: = 1 {MaxV al.N0 ↑= 1}| ... |5{MaxV al.N0 ↑= 5}
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According to this AG, there are two ambiguous outputs when start is applied
to the input sequence “1 5 2 3 2”:
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Using our method, an “almost verbatim” executable specification of the above
AG’s representation can be constructed in Haskell as follows:

start = memoize Start parser (nt tree T0)
[rule_i RepVal Of T0 Is findRep [synthesized MaxVal Of T0]]

tree = memoize Tree parser
(nt tree T1 *> nt tree T2 *> nt num T3)
[rule_s MaxVal Of LHS Is

findMax [synthesized MaxVal Of T1,synthesized MaxVal Of T2,synthesized MaxVal Of T3]
,rule_i RepVal Of T1 Is findRep [inherited RepVal Of LHS]
........
<|> parser (nt num N1)
[rule_i RepVal Of N1 Is findRep [inherited RepVal Of LHS]
,rule_s MaxVal Of LHS Is findMax [synthesized MaxVal Of N1]]

num = memoize Num terminal term "1" [MaxVal 1] <|> ... <|> terminal term "5" [MaxVal 5]

When the executable specification of start is applied to “1 5 2 3 2”, a
compact representation of ambiguous parse trees is generated with appropriate
semantic values for respective grammar symbols. For example, tree parses the
whole input (starting at position 1 and ending at position 6) in two ambiguous
ways. The tree’s inherited and synthesized attributes (represented with I and
S) are associated with its start and end positions respectively. The attributes
are of the form attribute_type value e.g. RepVal 5. The compact results
have pointing sub-nodes (as node-name, unique-id pairs e.g. (Tree,T1)) with
inherited and synthesized attributes:

Tree START at 1 ; Inherited atts: T0 RepVal 5
END at 6 ; Synthesized atts: T0 MaxVal 5

Branch
[SubNode (Tree,T1) ((1,[((I,T1),[RepVal 5])]),(4,[((S,T1),[MaxVal 5])]))
,SubNode (Tree,T2) ((4,[((I,T2),[RepVal 5])]),(5,[((S,T2),[MaxVal 3])]))
,SubNode (Num, T3) ((5,[((I,T3),[RepVal 5])]),(6,[((S,T3),[MaxVal 2])]))]

END at 6 ; Synthesized atts: T0 MaxVal 5
Branch
[SubNode (Tree,T1) ((1,[((I,T1),[RepVal 5])]),(2,[((S,T1),[MaxVal 1])]))
,SubNode (Tree,T2) ((2,[((I,T2),[RepVal 5])]),(5,[((S,T2),[MaxVal 5])]))
,SubNode (Num, T3) ((5,[((I,T3),[RepVal 5])]),(6,[((S,T3),[MaxVal 2])]))]

..................
Num START at 1 ; Inherited atts: N1 RepVal 5

END at 2 ; Synthesized atts: N1 MaxVal 1
Leaf (ALeaf "1",(S,N1))..................
START at 5 ; Inherited atts: N1 RepVal 5
END at 6 ; Synthesized atts: N1 MaxVal 2

Leaf (ALeaf "2",(S,N1))

This example illustrates that complex semantic rules can be accommodated.
Our semantic rules declaratively define arbitrary actions on the syntax symbols.
For example, the second semantic rule of tree is an inherited rule for the second
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parser T2, which depends on its ancestor T0’s inherited attribute RepVal. The
T0’s RepVal is dependent on its own synthesized attribute MaxVal, and eventually
this RepVal is threaded down as every num’s inherited attribute.

2 General AGs and Parser Combinators

In an attribute grammar, syntax rules of a context-free grammar are augmented
with semantic rules to describe the meaning of the sentences of a context-free
language. Although different definitions have been given [6,7,8, etc.], we prefer to
define a general AG by imposing minimal restrictions on attribute dependencies:
a CFG is 4-tuple G = (N, T, P, S), where N is a finite set of non-terminals, T
is a finite-set of terminals, P is a finite-set of syntax rules, S is the start non-
terminal , N ∩ T = φ and (∀pi ∈ P ) pi is of the form a ::= b where a ∈ N and
b ∈ (N ∪ T )∗.

An AG can be formed from G as a 3-tuple AG = (G, A, R), where A is a finite
set of attributes and R is a finite set of semantic rules. Each X ∈ (N ∪T ) is asso-
ciated with a set of attributes A(X) ⊂ A, and each a ∈ A(X) can be described
by a function r ∈ R. The set A(X) can be partitioned into two sets Ai(X)
and As(X), which represents inherited and synthesized attributes respectively.
A synthesized attribute is an attribute for the LHS symbol of a production rule,
and an inherited attribute is associated with a symbol that resides at the RHS of
the production rule. We define the inherited and synthesized expressions rai and
ras (w.r.t. a syntax rule X0 ::= X1X2 . . .Xn), that generate each ai ∈ Ai(X)
and as ∈ As(X) respectively as:

rai : P(
⋃

A(X)) → Ai(Xx)

α �→ operations on α

ras : P(
⋃

A(X)− A(X0)) → As(X0)

α �→ operations on α

where 0 < x ≤ n and P is the power set

In functional programming, parser combinators have been used extensively
[9,10,11, etc.] to prototype top-down backtracking recognizers, which provide
modular and executable specifications of grammars that accommodate ambi-
guity. In basic recursive-descent top-down recognition, rules are constructed as
mutually-recursive functions, and after an alternative rule has been applied, the
recognizer backtracks to try another rule. Such recognizers can be constructed as
a set of higher order functions, each of which takes an index j as argument and
returns a set of indices. Each index in the result set corresponds to a position at
which the parser successfully finished recognizing a sequence of tokens (input)
that began at position j. An empty result set indicates that the recognizer has
failed. The result for an ambiguous input contains repetition of one or more
ending indices. Using the following basic combinators (termrec and emptyrec for
terminals and empty symbols, and <|>rec and *>rec for alternative rules and
sequencing of symbols respectively) as infix operators, recognizers for a subset
of CFGs can be constructed as executable specifications:
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termrec (t, j) =

⎧
⎪⎨

⎪⎩

{} , j ≥ #input

{j + 1}, jth token of input = t

{} , otherwise

emptyrec j = {j}
(p <|>rec q) j = (p j) ∪ (q j)

(p *>rec q) j =
⋃

(map q (p j))

However, recognizers constructed with these basic combinators share the
shortcomings of naive top-down parsing: 1) they do not terminate for the left-
recursive grammars 2) they require exponential time and space for ambiguous
input in the worst case These problems have been addressed in [3,4] by use of
memoization and a technique that restricts the depth of left-recursion.

3 Executable Specifications of General AGs

3.1 Preliminaries

We have extended the work of Frost et al. [4] to declaratively construct modular
and executable specifications of fully-general AGs by providing new combina-
tors. Our executable specifications map an input’s start position to a set of end
positions with tree structures. We also thread attributes (i.e. purely-functional
and lazy expressions) along with the start and end positions so that they are
available for dependencies that are specified in the semantic rules.

We begin by defining some fundamental data structures. Note that from now
on, we use the term parser for an executable specification of an attribute gram-
mar rule. At any point in the computation, a parser may have a list of synthesized
and inherited attributes Atts of any user-defined type. A parser, represented by a
label (e.g. Tree, Num etc.), may have multiple occurrences in a syntax rule, and
each occurrence may have different synthesized and/ or inherited attributes. For
correct identification, we declare each multiple occurrences as an Instance, which
is a pair of synthesize/inherited indicator and a unique parser id. For example,
an instance of parser Tree could be the pair (Synthesized or Inherited, T 0).

All parsers except the root parser may have a list of inherited attributes for a
start position j, and a list of synthesized attributes associated with each success-
ful end position. To accommodate these attributes, we define data-type Start
and End for a parser by pairing the respective indices with a list of instances
and attributes. By definition, a parser produces parse-trees based on syntax rules
to indicate correct derivations. We use a recursive data-type PTree that com-
pactly represents parse-trees with each component’s attribute values and pointer
for where to go next. The Result of a parser’s execution is a mapping from Start
to a list of Ends where each of the End results a list of PTree structures. A
memoization technique (section 4) is used to prevent redundant computations
in order to achieve polynomial time for ambiguous input. The memo-table State



172 R. Hafiz and R.A. Frost

represents a memory space with Results for parsers which have succeeded or
failed. This table is systematically threaded through parser executions using the
standard state-monad [12].

data Atts = MaxVal {getAVAL :: Int}

| Binary_OP {getB_OP :: (Int -> Int -> Int)} ...

type InsAttVals = [(Instance, [Atts])]

type Start/End = (Int,InsAttVals)

type Result = [((Start, End),[PTree Label])]

data PTree v = Leaf (v,Instance) | Branch [PTree v]

| SubNode ((Label, Instance), (Start,End))

In the following sections, we describe our approach by defining some higher-
order functions with segments of Haskell code. The definitions’ syntax is straight-
forward in nature, and can be followed by using a standard literature on Haskell
syntax e.g., [13]. We have defined the functions in a declarative manner so that
it would be easier to follow for general audience. The full prototype Haskell
implementation can be found at the website mentioned in section 6.

3.2 Combinators for Syntax

We use two basic concepts from [4] to accommodate syntax rules including direct
and indirect left-recursion :

– To accommodate direct left-recursion, a left-recursive Context is used, which
keeps track of the number of times a parser has been applied to an input
position j. For a left-recursive parser, this count is increased on recursive
descent, and the parser is curtailed whenever the “left-recursive count of
parser at j exceeds the number of remaining input tokens”.

– To accommodate indirect left-recursion, a parser’s result is paired with a set
of curtailed non-terminals at j within its current parse path, which is used
to determine the context at which the result has been constructed at j.

To maintain the flow of attributes when a parser is re-written by its definition,
in addition to being executed on the current Start and Context, we require that
it must pass down its unique id and a list of its own inherited attributes so that
they can be used when executing the succeeding parsers’ semantic definitions.
These inherited attributes are defined in terms of semantic rules when the current
parser is part of its predecessor’s syntax definition.

The current parser’s alternative definitions are formed with the combinator
<|>, which not only accommodates alternative syntax rules but also a list of
semantic rules associated with each syntax rule. The semantic rules include syn-
thesize rules for the current parser and inherit rules for parsers in alternative
syntax rules. Threading appropriate rules to appropriate parsers is carried out
by a combinator called parser (section 3.3). Both alternative rules p and q are
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applied to the current position j and the current context, and the id and in-
herited attributes of the current parser are also passed down so that they are
available to the parsers in both alternatives. All results from p and q are merged
together at the end. The operation of the combinator <|> can be expressed with
the type (<|>) :: NTType -> NTType -> NTType, where :

type M a = Start -> Context -> StateMonad a

type ParseResult = (Context, Result)

type NTType = Id -> InsAttVals -> M ParseResult

In each of the alternative of the current parser, multiple parsers can be se-
quenced with the sequencing combinator *>. In the definition of *> for parsers
p and q, p is first applied to the current start position and the current context.
Then *> enables p to compute its inherited attributes using a combinator nt
(section 3.3) from an environment of type SemRule that consists of p’s precur-
sor’s attributes, and the results of all parsers in sequence with p. This Result
contains sequencing parsers’ synthesized and inherited attributes that are em-
bedded in PTree structures. Because the attributes are treated as lazy and pure
expressions, p’s inherited attribute (or any other parser’s synthesized or inher-
ited attribute) computations take place only when they are required somewhere
else. The next parser q is then sequentially applied to the set of end positions
returned by p. q also computes inherited attributes from the same environment.
A result from p is joined with all subsequent results from q to form new branch
nodes in the tree. The combinator *>’s input-output relation can be expressed
as type (*>) :: SeqType -> SeqType -> SeqType, where :

type SemRule = (Instance,(InsAttVals, Id) -> InsAttVals)

type SeqType = Id -> InsAttVals -> [SemRule] -> Result -> M ParseResult

The definitions of the AG combinators term token and empty that define
the terminals in the AG rules are analogous to their basic recognizer defini-
tions (section 2.2). The only difference is that the terminals are provided with
static synthesized attributes. The term token makes sure that these attributes
are passed up with the end positions with a tree of type Leaf , only if the ter-
minal successfully consumes an input token. In case of empty, the synthesized
attributes are passed upwards regardless.

3.3 Accommodating Arbitrary Dependencies in Semantics

Our syntax-directed evaluation allows semantic rules for a parser to be defined
in terms of potentially unevaluated attributes from the current parser, and its
predecessor, successors and sibling parsers. We map synthesized and inherited
semantic rules associated with parsers in a syntax rule to the starting and ending
positions respectively in the parsers’ result-sets. Our method of constructing a
result for a parser allows us to establish full call-by-need based arbitrary depen-
dencies between attributes - including dependencies from the right and top. For
example, when a parser pi with a syntax pi = pm *> pn is applied to position 1
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and successfully ends at position 5, one of pi’s input/output attribute relations
could be :

SubNode pi (inhpi1, synpi5) =
[..Branch[SubNode pm (inhpm1, synpm3) , SubNode pn (inhpn3, synpn5)]..]

where, assuming pm starts at 1 and ends at 3, pn starts at 3 and ends at 5,
inhxy and synxy represent inherited and synthesized attributes of parser x at
position y respectively. From this structure, semantic functions with arbitrary
attribute dependencies such as inhpmi ← f(inhpnj , synpik), (where f is a desired
operation on the attributes) can derive input arguments when required. Note
that the output of the example AG from section 1 shows actual result structure.
An approach based on strict evaluation, rather than lazy, would not achieve this
as it maintains a strict evaluation order.

Each AG rule is formed with a higher order wrapper function parser, which
primarily maps current parser’s synthesized rules to all ending points of the syn-
tax result, and assists each parser in the syntax rule to pass down their inherited
rules for future use. A parser’s synthesized rules are grouped with the identifier
(Syn, LHS) from a set of semantics that is associated with the current syntax.
Assuming the syntax would eventually produce a result-set newRes, the grouped
synthesized rules are mapped to this result using a function mapSynthesize.
This function computes synthesized attributes by applying the semantic speci-
fications on the succeeding parsers’ inherited and/ or synthesized attributes for
all PTree entries in the result:

parser :: SeqType -> [SemRule] -> Id -> InsAttVals -> M ParseResult

parser syntax semantics id inhAtts j context

= do s <- get

let ((e,res),s’) =

let sRule = groupRule (Syn, LHS) semantics

tempRes = syntax id inhAtts semantics res

((l,newRes),st) = unState (tempRes j context) s

groupRule id rules = [rule | (ud,rule) <- rules, id == ud]

in ((l, mapSynthesize sRule newRes inhAtts id),st)

put s’

return (e,res)

All parsers in a rule pass down their own identification and a list of inherited
attributes so that they can be computed or used in their own definition’s seman-
tic rules, if required. This task is done with a higher order function nt, which
groups the inherited rules for the current parser based on the pair (Inh, idx)
(where idx is the unique Id of the parser x) from semantics of current syntax.
Then nt facilitates computations of inherited attributes with a mapping function
mapInherited by applying the grouped rules on a parser-provided environment
that consists of the predecessor idp’s and surrounding parsers’ synthesized and
inherited attributes. These attributes are to be collected from newRes. A parser
may have more than one inherited attribute for a particular starting position,
which may result from different alternatives. When these attributes are used in
any succeeding parser’s semantic calculation, they are grouped together under
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the current parser’s single identification so that they are available to carry out
desired tasks in the semantic definitions that may require inter-alternative or
local result dependencies.

nt :: NTType -> Id -> SeqType

nt currentParser idx idp inhAtts semantics newRes

= let inhRules = groupRule (Inh, idx) semantics

ownInAtts = mapInherited inhRules newRes inhAtts idp

groupRule id rules = [rule | (ud,rule) <- rules, id == ud]

in currentParser idx ownInAtts

3.4 Declarative Executable Specifications of Semantic Rules

We follow a declarative format for the semantic specification which states that
synthesized or inherited attribute expressions of a parser can be formed by
applying a desired operation on any of the synthesized and/or inherited at-
tributes of any of its surrounding parsers. We define synthesized and inherited
semantic expressions with a higher-order function rule, which eventually applies
user-defined function userFunction on lists of attribute values. rule is the gen-
eralized version of the synthesised and inherited expression constructing com-
binators rule_s and rule_i respectively, and would ultimately return a value
of type SemRule = (Instance,(InsAttVals, Id) -> InsAttVals) after at-
taching appropriate type and id. The argument attributes for userFunction are
also declaratively specified as synthesized or inherited expressions in listOfExpr.
These expressions are evaluated with the help of a function valueOf , which iden-
tifies specified parsers in the user-defined function’s argument-expressions either
by LHS (i.e., when the current parser’s attribute is used in the semantics) or
by any other parser’s unique id in the syntax.

rule sORi typ idp userFunction listOfExp

= let formAtts id spec = (id, forNode id . spec)

forNode id atts = [(id, atts)]

newVal = userFunction (map valueOf listOfExp)

in formAtts (sORi,idp) (setAtt typ. newVal)

valueOf sORi typ id_specified id_current environment

| pIDspec == LHS = getAttVals (sORi , id_current ) environment typ

| otherwise = getAttVals (sORi , id_specified) environment typ

The user-defined function’s argument-expressions are applied to an
environment of attributes using a recursive function getAttV als to collect the
specified parsers’ respective attributes. As mentioned in the previous section the
environment is formed and provided with the help of combinators parser and
nt. The getAttV als function collects these attributes by comparing the speci-
fied parser’s id, synthesized/inherited instance and the desired attribute’s type
with the similar categories from the environment. These comparison factors are
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threaded down through the current syntax-directed execution path as unevalu-
ated instructions, and the actual comparison takes place only when the attribute
values are requested through user-defined functions.

getAttVals :: Instance -> InsAttVals -> (a -> AttValue) -> [AttValue]

getAttVals x ((i,v):ivs) typ =

let getAtts typ (t:tvs) = if (typ undefined) == t

then (t :getAtts typ tvs)

else getAtts typ tvs

getAtts typ [] = []

in if (i == x) then getAtts typ v else getAttVals x ivs typ

getAttVals x [] typ = [ErrorVal "ERROR no id found"]

The returned attributes are fed into the operations mentioned in the orig-
inal semantic rules. These operations are straightforward to define. The only
requirement for the construction is that these functions perform the desired task
on a list of specifications, which are eventually transformed to a list of attribute
values. One example of these functions could be findRep, which converts the
specified synthesized maximum value (computed from the predecessor’s alterna-
tives’ result-set) to the current parser’s inherited replacement value:

findRep specs = \(atts,i) ->

RepVal (foldr (max) 0 (map (applyMax atts i) (x:xs)))

applyMax y i x = getAVAL (foldr (getMax)(MaxVal 0) (x y i))

getMax x y = MaxVal (max (getAVAL x) (getAVAL y))

Using these combinators and functions, we can now declaratively con-
struct executable language specifications as fully general attribute rules.
For instance, all rules for the section 1’s example AG are formed
with combinators *>, <|>, parser, nt and rule. One alternative syn-
tax for tree(T0) ::= tree(T1) tree(T2) num(T3) is expressed with
tree = parser (nt tree T1 *> nt tree T2 *> nt num T3), and one of the inher-
ited semantics for this syntax RepV al.T1 ↓= RepV al.T0 ↓ is represented with
rule_i RepVal Of T1 Is findRep [inherited RepVal Of LHS].

4 Use of Memoization

Norvig [14] first showed that Earley-like [15] polynomial time complexity can be
achieved in mutually-recursive top-down parsing by using memoization. Frost
et al. [16,3,4] also employed similar techniques to parser combinators. We uti-
lize a related memoization technique to achieve polynomial time complexity
for recursive grammars. We use a state-monad [12] to systematically thread
a memo-table of type [(Label,[(Start, (Context,Result))])] through all
parser executions whilst maintaining pure functionality.

All of our parsers are executed with a wrapper function memoize. If the
current parser passes the direct left-recursion depth-check test then a lookup
is performed based on the parser’s Label and current position j (which resides
in Start) to retrieve the previously saved Result. If there exists a saved result,
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then that is returned if the indirect left-recursion context-comparison test is
satisfied. Otherwise, a new result-set is constructed by applying the parser at
j with an increased context and its own inherited semantics so that they are
available for succeeding parsers. The memoize function updates the memo-table
with this new result, inherited semantics and a subset of the current left-rec
context corresponding to curtailed non-terminals at the current j. The update
operation overwrites any previous entry for the current Label and j, since the
current entry would subsume all of the previously computed entries. memoize
also groups local syntactic ambiguities under j in a newly-formed result for a
Tomita-like [17] polynomial compact representation, and only returns a reference
to this packed entry to the caller, instead of the complete result.

The other task of memoize is that, whenever a memoized parser returns a
result (either through a lookup or by constructing a new result), it makes sure
that the parser’s inherited attributes are integrated with the starting point and
the synthesized attributes are accompanied with a correct parser id at the ending
points in the result-set. When we group the local syntactic ambiguities, we also
merge synthesized attributes under the current parser’s identifier.

5 Complexity Analysis

Here we informally discuss the worst-case time and space requirements of our
algorithm with respect to the length of the input n. Memoization ensures that
a non left-recursive parser is applied to a start position only once. But a left-
recursive parser can be applied to the same start position at most n times due
to the depth-check. According to [3], the sequencing combinator *> performs
O(n2) operations when applying the second parser to every end position re-
turned by the first parser. Therefore, if there were no semantics involved, then
a non left-recursive and a left-recursive parser would require O(n3) and O(n4)
time in the worst-case. While accommodating semantics, we have altered the
ambiguity-grouping requirement by collecting distinct attributes resulting in a
common end position. This assures the fact the syntactic ambiguity may not
necessarily represent semantic ambiguity. In theory, a semantic rule may result
in unambiguous attribute values when applied to a group of syntactically am-
biguous results, each of whose identical syntactic component may have distinct
attribute values. One of the alternative syntax rules r ::= p *> q may have at
most n syntactic ambiguities, because two parsers’ ending positions can be cho-
sen from n start positions in n ways. Overall, the number of multiset results for
r is increased from n to n2. The number of ambiguities arising from a single
alternative rule with multiple parsers would depend on the number of parsers in
sequence, not only on n. Hence this factor has not been considered in our anal-
ysis. If the above parser r is associated with m semantic rules, then *> needs to
perform extra m ∗ n2 operations. Although p or q’s all start-end position pairs
may be partitioned into multiple multisets, they depend on p or q’s syntactic
definitions, which are not considered here as operations related to current parser
r. Given a fixed number of semantics, and the highest degree of operation under
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r is still n2, the time complexities of non left-recursive and left-recursive parsers
remain at O(n3) and O(n4) respectively.

Our PTree structure allows us to save results as a list of one-level-depth
branches with attribute values attached to pointing sub-nodes. In the memo-
table, for each parser’s n input positions, we can store n branches corresponding
to n end positions. As mentioned earlier, for a branch p *> q, there are n possible
ambiguities. Hence, we need O(n3) space in the worst-case w.r.t. the length of
the input. The time and space requirements can be reduced further if we generate
only the final semantic value, instead of all possible decorated parse trees, be-
cause lazy evaluation would only evaluate those parts of the parse space that are
required by the current semantic expression. We suspect that many applications
(similar to the one in the next section) would fall under this category.

6 Implementation and an Example Application

We have implemented our one-pass top-down AG evaluation algorithm by con-
structing a set of combinators (as discussed in section 3) in a lazy and purely
functional language - Haskell. Using these combinators, declarative specifications
can be constructed and executed directly without knowing much about Haskell.
To test the usability of our system, we have developed a simplified natural lan-
guage interface. The syntax of the underlying AG is a fully general CFG that has
15 non-terminals and 32 AG rules, and all syntax rules are associated with a sub-
set of a set-theoretic version of Montague semantics that we have extracted from
Frost and Fortier [18]. Our interface is able to answer hundreds of thousands of
questions about a particular domain - the solar system. More information about
the implementation and this application, and a version of demo code can be
found at http://cs.uwindsor.ca/~hafiz/fullAg.html.

We define an attribute type as a set of alternative attributes, where each
has its own function type. These attributes are the type-definitions of semantic
expressions, which propagate up or down during parser executions. For example:

data Att = TERMPHJOIN_VAL {getTJVAL :: ((ES -> Bool) ->

(ES -> Bool) -> (ES -> Bool))}

| QUEST_VAL {getQUVAL :: String}....

Next we construct a dictionary to define syntactic categories and their mean-
ings e.g.,

dictionary = [("man", Cnoun, [NOUNCLA_VAL set_of_men])

,("orbit", Tverb, [VERB_VAL (tran_verb rel_orbit)]),

,("human", Cnoun, meaning_of nouncla "man or woman" Nouncla)

,...]

Then we modularly define a complete AG specification for the solar system
application. For example, part of the definitions of term-phrase and noun-clause
are:

http://cs.uwindsor.ca/~hafiz/fullAg.html
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jointermph =

memoize Jointermph

parser (nt jointermph S1 *> nt termphjoin S2 *> nt jointermph S3)

[rule_s TERMPH_VAL Of LHS Is

appjoin1 [synthesized TERMPH_VAL Of S1

, synthesized TERMPHJOIN_VAL Of S2

, synthesized TERMPH_VAL Of S3]]

<|>

parser (nt termph S4)

[rule_s TERMPH_VAL Of LHS Is

copy [synthesized TERMPH_VAL Of S4]]

snouncla =

memoize Snouncla

parser (nt adjs S1 *> nt cnoun S2)

[rule_s NOUNCLA_VAL Of LHS Is

intrsct1 [synthesized ADJ_VAL Of S1

, synthesized NOUNCLA_VAL Of S2]]

<|> ...

Being right and left recursive, the parser jointermph expands to both right and
left. The semantic expressions are declaratively defined e.g., jointermph’s first se-
mantic rule expresses that jointermph’s synthesised attribute TERMPH_VAL is formed
by joining the synthesized attributes of the r.h.s parsers S1,S2 and S3. The oper-
ations, which are applied to syntactic symbols’ attributes, are defined based on
a set-theoretic version of Montague semantics. For example, snouncla’s attribute
NOUNCLA_VAL is obtained by intersecting sets of adjectives and common-nouns.

An example session with our interface is as follows:

which moons that were discovered by hall orbit mars => [phobos deimos]

every planet is orbited by a moon => [false]

how many moons were discovered by hall or kuiper => [4]

did hall discover deimos or phobos and miranda => [no, yes]

etc.

Note that the last answer is ambiguous due to the right and left branching of
jointermph, hence are separated by a comma.

7 Related Work

The primary use of AGs has mostly been the specification and construction of
compilable parser-generators for programming languages [19]. The classical defi-
nition of an AG has often been modified to support the needs of such languages.
Swierstra et al. introduced the idea of higher order attributes [20,21] by treating
syntax as a part of semantic functions’ input and output in a semantics-driven
analysis. De Moor et al. [6] achieved semantic modularity by treating attributes
as first-class objects. Boyland [22], described an efficient method - collections
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for remote attribute dependencies. JustAdd [23] is a compiler-compiler AG sys-
tem for Java that supports circular referential dependencies with conditional
rewriting of ASTs using lazy-evaluation. The Silver specification language [24]
has been developed primarily based on forwarding (a concept similar to higher-
order attributes) and other extensions mentioned above. Kats et al. [25] describe
attribute decorators that support many AG extensions. Similar to JustAdd, they
use memoization for efficient attribute evaluation.

Our approach differs from these approaches by offering a platform that strictly
preserves the syntactic structure of ambiguous CFGs (which includes direct and
indirect left-recursions). Our top-down syntax-driven parsing strategy provides a
set of non-strict combinators for constructing fully declarative semantic expres-
sions with arbitrary dependencies. In addition to eliminating redundant compu-
tations, our use of memoization technique has been specialized to perform extra
tasks such as keeping track of non-terminals’ context information, merging syn-
tactic ambiguity, mapping and grouping attributes etc.

Even though use of lazy-evaluation to build AG systems has been around
for a long time [26,27, etc.], little work has been done using AGs for natural
language processing tasks: Levison and Lessard [28] used AGs to impose some
degree of grammatical and semantic agreement by propagating only inherited
attributes downwards while generating natural language text. In the template-
based natural language generating system YAG [29], AGs have been used to cor-
rect partially-specified input by imposing grammatical/number restrictions [30].
Their multi-pass evaluating process begins by initializing inherited attributes
with values from the input, then evaluating the rest of the input.

Our approach differs from the last two approaches by being a complete one-
pass parsing system that can return either compactly-represented parse trees
with attribute values in nodes or just the final answer(s). This is in contrast to
the template-based text generators which receive structured input, not natural
languages sentences, and don’t use AGs for full-blown parsing. By being lazy, we
achieve general attribute dependencies by providing more flexible input/output
attribute relations. Also, along with declarative semantics, our syntax is highly
modular because of the systematic use of parser-combinators as basic building
blocks.

8 Concluding Comments

We have developed a framework where general CFGs (including ambiguous and
left-recursive grammars) can be integrated with semantic rules with arbitrary
attribute dependencies as directly-executable and modular specifications. Our
approach is based on a top-down parsing method implemented as a set of non-
strict combinators resulting in declarative specifications. We utilize a memo-
ization technique for polynomial time and space complexities. In the future we
aim to process syntactic and semantic ambiguities based on grammatical and
number agreement, type checking and conditional restrictions. By taking ad-
vantage of arbitrary attribute dependencies, we plan to model NL features that
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can be characterized by other grammar formalisms such as unification gram-
mars, combinatory-categorical grammars and type-theoretic grammars. We are
constructing formal correctness proofs, and optimizing the implementation for
using with very large grammars. We believe that our work will help computa-
tional linguists build and test their theories and specifications without worrying
about the underlying computational methods, and will also help non-exparts
create NL interfaces to their applications.

Acknowledgements

The authors would like to thank the referees for their constructive criticisms
and helpful suggestions. Richard Frost and Rahmatullah Hafiz thank the Nat-
ural Sciences and Engineering Research Council of Canada (NSERC), and the
Government of Ontario, respectively, for their support.

References

1. Knuth, D.: Semantics of context-free languages. Theory of Computing Sys-
tems 2(2), 127–145 (1968)

2. Warren, D.: Programming the ptq grammar in xsb. In: Workshop on Programming
with Logic Databases, pp. 217–234 (1993)

3. Frost, R., Hafiz, R., Callaghan, P.: Modular and efficient top-down parsing for
ambiguous left-recursive grammars. In: 10th IWPT, pp. 109–120. ACL (2007)

4. Frost, R., Hafiz, R., Callaghan, P.: Parser combinators for ambiguous left-recursive
grammars. In: Hudak, P., Warren, D.S. (eds.) PADL 2008. LNCS, vol. 4902, pp.
167–181. Springer, Heidelberg (2008)

5. Bird, R.: Intro. to Functional Programming using Haskell. Prentice Hall, Engle-
wood Cliffs (1998)

6. De Moor, O., Backhouse, K., Swierstra, D.: First-class attribute grammars. In:
Third Workshop on Attribute Grammars and their Applications, pp. 245–256
(2000)

7. Tienari, M.: On the definition of attribute grammar. Semantics-Directed Compiler
Generation 94, 408–414 (1980)

8. Vogt, H.H., Swierstra, S.D., Kuiper, M.F.: Higher order attribute grammars. In:
PLDI, pp. 131–145. ACM, New York (1989)

9. Frost, R., Launchbury, J.: Constructing natural language interpreters in a lazy
functional language. The Computer Journal 32(2), 108–112 (1989)

10. Hutton, G., Meijer, E.: Monadic parser combinators. J. Funct. Program. 8(4), 437–
444 (1998)

11. Wadler, P.: How to replace failure by a list of successes. In: Jouannaud, J.-P. (ed.)
FPCA 1985. LNCS, vol. 201, pp. 113–128. Springer, Heidelberg (1985)

12. Wadler, P.: Monads for functional programming. In: Jeuring, J., Meijer, E. (eds.)
AFP 1995. LNCS, vol. 925, pp. 24–52. Springer, Heidelberg (1995)

13. Hudak, P., Peterson, J., Fasel, J.: A gentle introduction to haskell 98. Technical
report (1999)

14. Norvig, P.: Techniques for automatic memoization with applications to context-free
parsing. Computational Linguistics 17(1), 91–98 (1991)



182 R. Hafiz and R.A. Frost

15. Earley, J.: An efficient context-free parsing algorithm. Commun. ACM 13(2), 94–
102 (1970)

16. Frost, R., Szydlowski, B.: Memoizing purely functional top-down backtracking lan-
guage processors. Science of Computer Programming 27(3), 263–288 (1996)

17. Tomita, M.: Efficient Parsing for Natural Language: A Fast Algorithm for Practical
Systems. Kluwer Academic Publishers, Boston (1986)

18. Frost, R., Fortier, R.: An efficient denotational semantics for natural language
database queries. In: Applications of NLDB, pp. 12–24 (2007)

19. Paakki, J.: Attribute grammar paradigms a high-level methodology in language
implementation. ACM Comput. Survey 27(2), 196–255 (1995)

20. Swierstra, S.D., Alcocer, P., Saraiva, J.: Designing and implementing combinator
languages. In: 3rd Summer School on Advanced FP, pp. 150–206 (1998)

21. Swierstra, S.D., Vogt, H.: Higher order attribute grammars. In: Alblas, H.,
Melichar, B. (eds.) SAGA School 1991. LNCS, vol. 545, pp. 256–296. Springer,
Heidelberg (1991)

22. Boyland, J.: Remote attribute grammars. Journal of the ACM 52(4), 627–687
(2005)

23. Ekman, T.: Extensible Compiler Construction. PhD thesis, Comp Science, Lund
University (2006)

24. Van Wyk, E., Bodin, D., Gao, J., Krishnan, L.: Silver: an extensible attribute
grammar system. In: LDTA, pp. 103–116 (2007)

25. Kats, L., Sloane, A., Visser, E.: Decorated attribute grammars. attribute evalua-
tion meets strategic programming. In: 18th International Conference on Compiler
Construction, pp. 142–157 (2009)

26. Augusteijn, L.: The elegant compiler generator system. In: Deransart, P., Jourdan,
M. (eds.) Attribute Grammars and their Applications. LNCS, vol. 461, pp. 238–
254. Springer, Heidelberg (1990)

27. Johnsson, T.: Attribute grammars as a functional programming paradigm. In:
Kahn, G. (ed.) FPCA 1987. LNCS, vol. 274, pp. 154–173. Springer, Heidelberg
(1987)

28. Levison, M., Lessard, G.: Application of attribute grammars to natural language
sentence generation. In: Deransart, P., Jourdan, M. (eds.) Attribute Grammars
and their Applications. LNCS, vol. 461, pp. 298–312. Springer, Heidelberg (1990)

29. Mcroy, S., Channarukul, S., Ali, S.: An augmented template-based approach to
text realization. Natural Language Engineering 9(4), 381–420 (2003)

30. Channarukul, S., Mcroy, S., Ali, S.: Enriching partially-specified representations for
text realization using an attribute grammar. In: 1st International Natural Language
Generation Conference, pp. 163–170 (2000)


	Lazy Combinators for Executable Specifications of General Attribute Grammars
	Introduction
	General AGs and Parser Combinators
	Executable Specifications of General AGs
	Preliminaries
	Combinators for Syntax
	Accommodating Arbitrary Dependencies in Semantics
	Declarative Executable Specifications of Semantic Rules

	Use of Memoization
	Complexity Analysis
	Implementation and an Example Application
	Related Work
	Concluding Comments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




