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Preface

This volume contains the proceedings of the 12th International Symposium
on Practical Aspects of Declarative Languages, (PADL 2010), held in Madrid
during January 18–19, 2010. As in previous years, PADL 2010 was collocated
with POPL and other programming language-related events which, together,
made up an exciting week full of cross-fertilization possibilities.

The PADL series of symposia, in particular, focuses on declarative languages
and aims at highlighting how their theoretical foundations bring about a prac-
tical advantage when facing problems which arise from real-world applications.
Functional, logic, and constraint-based languages have classically been consid-
ered in the declarative realm. This year they were of course represented in PADL,
together with contributions from mathematical programming, non-monotonic
reasoning, and reasoning agents, among others. Additionally, two invited speak-
ers delivered talks on “Answer Set Programming in 2010: A Personal Perspec-
tive” (Enrico Pontelli) and “An Introduction to Maude and Some of Its Appli-
cations” (Narciso Mart́ı-Oliet).

PADL 2010 accepted both full technical papers and shorter application pa-
pers. In both categories, 58 papers were finally submitted. This large number of
submissions, compared with previous editions of PADL, also called for a larger
number of accepted papers: 22 papers were accepted, 4 of them being application
papers. This naturally implied an unexpected amount of work for the members
of the Program Committee, who nonetheless did a remarkable job in shaping
the final conference program, sometimes after long discussions. The Program
Committee also voted to give the “Most Practical Paper” award to the pa-
per “Skeleton Composition Using Remote Data”, by Mischa Dieterle, Thomas
Horstmeyer, and Rita Loogen. We want to express our gratitude to the Program
Committee members, as the conference would not have been possible without
their dedicated work.

This gratitude must be extended to Gopal Gupta, who gave us precious advice
in making the conference a successful event. We also want to thank ACM and the
POPL organizers, the University of Texas at Dallas, the Universidad Politécnica
de Madrid and the Universidad Complutense de Madrid for their support — and
EasyChair for making the life of the Program Committee Chairs easier.

November 2009 Manuel Carro Liñares
Ricardo Peña Maŕı
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Answer Set Programming in 2010:

A Personal Perspective

Enrico Pontelli

Department of Computer Science
New Mexico State University

epontell@cs.nmsu.edu

Abstract. In this talk, I will offer a brief overview of the foundations
of Answer Set Programming (ASP). Using some concrete application
examples as a reference, I will try to identify issues that current ASP
systems are still facing, and define avenues of research that I believe have
the potential to greatly enhance future applicability of ASP technology.

1 Answer Set Programming

In recent years, logic programming has been experiencing a new youth, thanks in
part to the fast growth of Answer Set Programming (ASP), a logic programming
framework capable of default and non-monotonic reasoning.

Answer Set Programming (ASP) arises from the research on using LP as
a language for declarative programming of systems exhibiting non-monotonic
behavior. ASP programs are expressed as collections of clauses of the form:

L0 ← L1 ∧ · · · ∧ Lm ∧ not Lm+1 ∧ · · · ∧ not Ln

where Li are atoms. The operator not denotes negation as failure and we refer
to the literals not Li as naf-literals.

The semantics of a program is expressed in terms of answer sets of the pro-
gram, where answer sets are selected minimal supported models of the underlying
logic theory. Answer set semantics can be summarized as follows. An interpreta-
tion is a set of atoms—identifying true atoms. An interpretation M is an answer
set of a program Π if M is the least Herbrand model of the program ΠM , ob-
tained by removing from Π all clauses containing a naf-literal not L such that
L ∈ M , and removing all naf-literals from the remaining clauses. Note that
ΠM is a standard logic program without negation, whose semantics sem(ΠM )
is characterized by the traditional least Herbrand model.

ASP programs may admit zero, one, or several answer sets. The traditional
approach used in modeling a problem P in ASP consists of developing a collection
of ASP clauses Π(P ), such that there exists a one-to-one correspondence between
the answer sets of Π(P ) and the solutions of P . In this sense, each solution to
a problem is modeled by a set of atoms (i.e., the elements of an answer set),
and the ASP clauses in Π(P ) can be naturally viewed as constraints on the
admissible answer sets.

M. Carro and R. Peña (Eds.): PADL 2010, LNCS 5937, pp. 1–3, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 E. Pontelli

ASP offers a number of advantages over traditional LP: (i) ASP offers a purely
declarative language, free of dependencies on operational issues (e.g., order of
clauses); (ii) it avoids issues like floundering and non-terminating computations;
(iii) ASP is as expressive as many other non-monotonic logics, yet it provides a
simpler syntax and well-developed and efficient implementations; (iv) ASP is more
expressive than propositional and first-order logic, allowing us to elegantly encode
causality and transitive closure; (iv) there is a large body (larger than any other
knowledge representation language) of support structure built for ASP, including
knowledge building blocks, laying the foundations for systematic development of
programs. ASP has been successfully employed in building large reasoning sys-
tems, e.g., in the areas of diagnosis, web services, and bioinformatics.

1.1 Some Practical Issues and Interesting Directions

Experiences in the development of practical applications have highlighted several
shortfalls of ASP, which are being actively addressed by current research. I will
try to summarize next what I feel are important practical issues to be addresses
and describe preliminary steps that have been taken to solve them.

1.2 Expressiveness: Constraints

The simplicity of the clausal language has much appeal, but it leads to large and
cumbersome encodings in several practical situations—e.g., when dealing with
the encoding that require manipulation of numbers. Several implementations of
ASP addressed this problem through the introduction of language extensions
that offer various forms of aggregates (e.g., aggregate atoms in DLV, choice
atoms in Smodels). Although elegant, these extensions have been fairly unre-
lated and biased by the choice of incompatible semantics.

An important step is to provide a language and semantical foundation to
these extensions, ensuring a broader coverage of the spectrum of extensions and
a uniform and well-understood semantics. We will overview the use of abstract
constraints as a solution to address this problem.

1.3 Raw Performance: Parallelism

Applications in domains like planning and combinatorial optimizations have
highlighted that even the most modern ASP systems are not up-to-par in terms
of search speed and efficiency. Even though great improvements have been re-
cently achieved (as witnessed by the outstanding results obtained by clasp in
the recent SAT competitions), there is still significant scope for improvement.

The purely declarative nature of ASP place this paradigm well ahead of other
declarative languages (e.g., CLP and traditional Prolog) for transparent exploita-
tion of parallelism—since the language is completely free of sequential dependen-
cies. We will overview some recent results in this area, highlighting the lessons
learned and the current direction of research.
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1.4 Scalability: Non-ground Computations

ASP systems allows the programmer to encode clauses that contain variables—
yet, virtually all existing ASP systems are capable of computing answer sets
only for ground programs. Grounding is achieved through the use of a grounding
preprocessor (e.g., lparse or gringo). Modern grounders are fast and capable of
optimizing the produced ground program—yet, it is not uncommon to encounter
situations where the resulting ground program is infeasibly large, to the point of
causing the crashing of the grounder or preventing the ASP solver from loading
the large ground program.

This has prompted researchers to investigate solutions for non-ground com-
putation of ASP. Research in this field is very preliminary, but it is moving along
some promising directions, some of which will be discussed in this presentation.

1.5 Integration: Multi-context Systems

The success of paradigms like CLP showed the importance of integrating differ-
ent languages and semantics (e.g., Prolog and CSP) within a single framework.
ASP has the potential of providing powerful inferential features that could be
beneficial within the context of larger applications. Recent work has started ex-
ploring the role of ASP in multi-context systems—i.e., systems where different
monotonic and non-monotonic logics are combined in the construction of single
solutions to a problem.

We will explore some general ideas in this context and illustrate some prelim-
inary results.



An Introduction to Maude and Some of Its

Applications�

Narciso Mart́ı-Oliet

Departamento de Sistemas Informáticos y Computación
Facultad de Informática

Universidad Complutense de Madrid
28040 Madrid, Spain
narciso@sip.ucm.es

1 Foundations and Main Features

Maude [7] is a high-level language and high-performance system supporting both
equational and rewriting logic computation for a wide range of applications. It
is a declarative language because Maude modules correspond in general to spec-
ifications in rewriting logic [20], a simple and expressive logic which allows the
representation of many models of concurrent and distributed systems. This logic
is an extension of equational logic; in particular, Maude functional modules cor-
respond to specifications in membership equational logic (MEL) [1,21], which,
in addition to equations, allows the statement of membership assertions charac-
terizing the elements of a sort. In this way, Maude makes possible the faithful
specification of data types (like sorted lists or search trees) whose data are de-
fined not only by means of constructors, but also by the satisfaction of additional
properties.

More specifically, Maude functional modules are executable (i.e., confluent
and terminating) MEL specifications, so that, by orienting the equations from
left to right, each term can be reduced to a unique canonical form, and semantic
equality of two terms can be checked by reducing both of them to their respec-
tive canonical forms and checking that they coincide. In a functional module we
can declare sorts; subsort relations between sorts; operators (with user-definable
syntax) for building values of these sorts, giving the sorts of their arguments and
result, and which may have attributes such as being associative or commutative,
for example; memberships asserting that a term has a sort; and equations iden-
tifying terms. Moreover, both memberships and equations can be conditional.

Rewriting logic extends equational logic by introducing the notion of rewrites,
corresponding to transitions between states in a concurrent system; that is,
while equations are interpreted as equalities and therefore they are symmetric,
rewrites denote changes which can be irreversible. A rewriting logic specification,
or rewrite theory, has the form R = (Σ, E, R), where (Σ, E) is an equational
specification and R is a set of rules as described below. From this definition, one
� Research supported by MEC Spanish project DESAFIOS (TIN2006-15660-C02-01)

and Comunidad de Madrid program PROMESAS (S-0505/TIC/0407).

M. Carro and R. Peña (Eds.): PADL 2010, LNCS 5937, pp. 4–9, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



An Introduction to Maude and Some of Its Applications 5

can see that rewriting logic is built on top of equational logic, so that rewriting
logic is parameterized with respect to the version of the underlying equational
logic; as already mentioned, Maude is based on MEL. Then a rule in R has the
general conditional form

t ⇒ t′ ⇐
n∧

i=1

ui = u′
i ∧

m∧
j=1

vj : sj ∧
l∧

k=1

wk ⇒ w′
k

where the head is a rewrite and the conditions can be equations, memberships,
or rewrites. From these rewrite rules, one can deduce rewrites of the form t ⇒ t′

by means of general deduction rules introduced in [20] (see also [2]).
Maude system modules are executable rewrite theories and can contain all

the declarations of a functional module and, in addition, declarations for rules
and conditional rules. The executability requirements for equations and member-
ships in a system module are the same as those of functional modules, namely,
confluence and termination. With respect to rules, they are also used to com-
pute by rewriting from left to right, but their meaning is that of local transition
rules in a possibly concurrent system. The satisfaction of all the conditions in
a conditional rewrite rule is attempted sequentially from left to right, solving
rewrite conditions by means of search; for this reason, we can have new vari-
ables in such conditions but they must become instantiated along this process
of solving from left to right. Furthermore, the strategy followed by Maude in
rewriting with rules is to compute the normal form of a term with respect to
the equations before applying a rule. This strategy is guaranteed not to miss
any rewrites when the rules are coherent with respect to the equations. In a way
quite analogous to confluence, this coherence requirement means that, given a
term t, for each rewrite of it using a rule in R to some term t′, if u is the normal
form of t with respect to the equations and memberships in E, then there is a
rewrite of u with some rule in R to a term u′ such that u′ =E t′.

The search command provided by Maude on system modules can be used to
model check invariant properties of concurrent systems specified as such system
modules, but, in addition, Maude also provides a model checker for linear tem-
poral logic (LTL). This procedure can be used to prove properties when the set
of states reachable from an initial state in a system module is finite; when this
is not the case, it may be possible to use an equational abstraction technique for
reducing the size of the state space [22].

Although in principle object systems can be specified as a particular style of
Maude system modules in which object interactions, either through messages or
directly between objects, are expressed by means of rewrite rules, Maude also
provides special support for object-based programming and for fair execution of
object-based applications.

Maude modules can be combined by means of a module algebra supporting
summation and renaming of module expressions, parameterized modules based
on theories and views, and the definition of module hierarchies, i.e., acyclic
graphs of module importations.
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2 Semantic Framework, Reflection, and Tools

Maude’s rewriting logic is simple, yet very expressive. This gives Maude good
representational capabilities as a semantic framework [17] to formally represent a
wide range of systems, including models of concurrency, distributed algorithms,
network protocols, semantics of programming languages, and models of cell biol-
ogy. Rewriting logic is also an expressive universal logic, making Maude a flexible
logical framework [17] in which many different logics and inference systems can
be represented and mechanized. Furthermore, exploiting the fact that rewriting
logic is reflective [4,9], a key distinguishing feature of Maude is its systematic
and efficient use of reflection through its predefined META-LEVEL module, a fea-
ture that makes Maude remarkably extensible and powerful, and that allows
many advanced metaprogramming and metalanguage applications. This makes
Maude a useful metatool to build many other tools. In particular, Full Maude is
an extension of Maude, written in Maude itself, that endows the language with
an even more powerful and extensible module algebra and also provides special
syntax for object-oriented modules supporting object-oriented concepts such as
objects, messages, classes, and multiple class inheritance.

Full Maude itself can be used as a basis for further extensions, by adding
new functionality; it is possible both to change the syntax or the behavior of
existing features, and to add new features. In this way Full Maude becomes a
common infrastructure on top of which one can build tools for Maude itself, such
as, e.g., Church-Rosser and coherence checkers [8,10], or declarative debuggers
[27,28], as well as environments for other languages, such as, e.g., the Real-
Time Maude tool for specifying and analyzing real-time systems [25,26], and the
Maude MSOS tool for modular structural operational semantics [24,3]. Recently
added features such as support for unification (at the core level) and narrowing
(at the Full Maude level) [5,6] have increased the facilities available in Maude for
building other tools; for example, unification provides a basis for implementing
narrowing which, in turn, provides a basis for symbolic reachability analysis [13].

3 A Couple of Application Areas

As already mentioned, a wide variety of models of computation can be naturally
and directly expressed as rewrite theories in rewriting logic and can be executed
as system modules in Maude, including: equational programming, lambda cal-
culi, several variants of Petri nets, CCS and the π calculus, actors, real-time
systems, and probabilistic systems (see [18,7] for more information and appro-
priate references). The above specifications of models of computation as rewrite
theories are typically executable in Maude, establishing that rewriting logic is
a very flexible operational framework in which to specify the semantics of such
models. In the same way, rewriting logic provides an executable semantic frame-
work for formally specifying the semantics of programming languages as rewrite
theories, including big-step and small-step structural operational semantics [31],
but also many other styles of semantics [23,30]. Many languages have already
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been given semantics in this way; the language definitions can then be used as
interpreters, and Maude’s search command and its LTL model checker can be
used to formally analyze programs in those languages. For example, large frag-
ments of Java and the JVM have been specified in Maude, with the rewriting
logic semantics being used as the basis of Java and JVM program analysis tools
[15,14]. This line of research has also led to the development of the K semantic
framework by Grigore Roşu and his collaborators at UIUC [29,16].

Because of its flexibility to model distributed objects with different modes
of communication and interaction, Maude and its extension Real-Time Maude
are very well suited to specify and analyze communication protocols, including
cryptographic protocols. Maude has also been successfully applied to analyze
security properties, including both secrecy and availability, for a wide range of
systems. Among others, Escobar, Meadows, and Meseguer [11] use rewriting
logic and narrowing to give a precise rewriting semantics to the inference system
of one of the most effective analysis tools for cryptographic protocols, namely
the NRL Analyzer [19]. More recently, this work has led to the development
of the Maude-NPA protocol analyzer [12], where cryptographic protocols are
specified as rewrite theories of the form R = (Σ, E, R) and the reachability
analysis is performed in a backwards way, from an attack state to an initial
state. The equational theory E typically specifies the algebraic properties of the
cryptographic functions used in the given protocol, e.g., public key encryption
and decryption, exclusive or, modular exponentiation, and so on. Reasoning
modulo such algebraic properties is very important, since it is well-known that
some protocols that can be proved secure under the standard Dolev-Yao model,
in which the cryptographic functions are treated as a “black box,” can actually
be broken by an attacker that makes clever use of the algebraic properties of the
cryptographic functions of the protocol.

Note: Most of this paper is a summary of much more detailed information
available in both the Maude book [7] and the Maude manual [6], where the read-
ers are referred for complete details. All my coauthors in those two documents
and many papers are gratefully acknowledged for all the great work they keep
doing on Maude and its applications.

References

1. Bouhoula, A., Jouannaud, J.-P., Meseguer, J.: Specification and proof in member-
ship equational logic. Theoretical Computer Science 236, 35–132 (2000)

2. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theoretical Computer Science 360(1), 386–414 (2006)

3. Chalub, F., Braga, C.: Maude MSOS tool. In: Denker, G., Talcott, C. (eds.)
Proceedings Sixth International Workshop on Rewriting Logic and its Applica-
tions, WRLA 2006, Vienna, Austria, April 1-2, 2006. Electronic Notes in The-
oretical Computer Science, vol. 176(4), pp. 3–17. Elsevier, Amsterdam (2007),
http://www.sciencedirect.com/science/journal/15710661

4. Clavel, M.: Reflection in Rewriting Logic: Metalogical Foundations and Metapro-
gramming Applications. CSLI Publications (2000)

http://www.sciencedirect.com/science/journal/15710661


8 N. Mart́ı-Oliet

5. Clavel, M., Durán, F., Eker, S., Escobar, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer,
J., Talcott, C.L.: Unification and narrowing in Maude 2.4. In: Treinen, R. (ed.) RTA
2009. LNCS, vol. 5595, pp. 380–390. Springer, Heidelberg (2009)

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: Maude Manual (Version 2.4) (February 2009),
http://maude.cs.uiuc.edu/maude2-manual

7. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C. (eds.): All About Maude - A High-Performance Logical Framework. LNCS,
vol. 4350. Springer, Heidelberg (2007)

8. Clavel, M., Durán, F., Eker, S., Meseguer, J.: Building equational proving tools by
reflection in rewriting logic. In: Futatsugi, K., Nakagawa, A.T., Tamai, T. (eds.)
CAFE: An Industrial-Strength Algebraic Formal Method. Elsevier, Amsterdam
(2000), http://maude.cs.uiuc.edu/papers/

9. Clavel, M., Meseguer, J., Palomino, M.: Reflection in membership equational logic,
many-sorted equational logic, Horn logic with equality, and rewriting logic. Theo-
retical Computer Science 373(1-2), 70–91 (2007)

10. Durán, F., Meseguer, J.: A Church-Rosser checker tool for Maude equational spec-
ifications. Manuscript, Computer Science Laboratory, SRI International (2000),
http://www.lcc.uma.es/~duran/CRC/

11. Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for
the NRL Protocol Analyzer and its meta-logical properties. Theoretical Computer
Science 367(1-2), 162–202 (2006)

12. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: Cryptographic protocol anal-
ysis modulo equational properties. In: Aldini, A., Gorrieri, R. (eds.) FOSAD 2007.
LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2007)

13. Escobar, S., Meseguer, J.: Symbolic model checking of infinite-state systems using
narrowing. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 153–168. Springer,
Heidelberg (2007)

14. Farzan, A., Cheng, F., Meseguer, J., Roşu, G.: Formal analysis of Java programs in
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Abstract. An information integration system combines data residing at different
sources, providing the user with a unified view of them, called global schema.
When some constraints are imposed on the quality of the global data, the inte-
gration process becomes difficult and, in some cases, it may be unable to pro-
vide consistent results to user queries. The database community has spent many
efforts in this area, relevant research results have been obtained to clarify se-
mantics, decidability, and complexity of data-integration under constraints (often
called consistent query answering - CQA). However, while efficient systems are
already available for simple data integration scenarios, scalable solutions have not
been implemented yet for advanced data-integration under constraints. This pa-
per provides a contribution in this setting: it starts from state of the art techniques
to carry out consistent query answering and proposes optimized solutions; these
have been implemented in a efficient system based on Answer Set Programming
(a purely declarative logic programming formalism). Experimental activities con-
ducted in a real world scenario and reported in the paper confirm the effectiveness
of the approach.

1 Introduction

The task of an information integration system is to combine data residing at different
sources, providing the user with a unified view of them, called global schema. Users can
formulate queries in a transparent and declarative way over the global schema, they do
not need to know any information about the sources. The information integration system
automatically retrieves the relevant data from the sources, and suitably combines them
to provide answers to user queries.

Recent developments in IT, such as the expansion of the Internet, have made avail-
able to users a huge number of information sources, generally autonomous, heteroge-
neous and widely distributed. As a consequence, information integration has emerged
as a crucial issue in several application domains, e.g., distributed databases, cooperative
information systems, data warehousing, or on-demand computing.

In many cases the application domain requires to impose some constraints on the
integrated data. For instance, it may be at least desirable to impose some keys on global
relations (i.e., on the relations of the global scheme).
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As an example, suppose one needs to merge the lists of students from two different
universities, the set of their IDs may overlap since they have been assigned indepen-
dently by the two universities. This may cause ID duplications in the global database
after that the merging process has been carried out. If the student ID must be a key
in the global database, then some corrective actions must be carried out in order to
avoid the generation of an inconsistent global database (i.e., in the database over the
global scheme, resulting from the integration). Such corrective actions are usually called
database repairs in the literature [1,2,3,4]. An information integration system should be
able to return all and only the consistent answers, that is the answers which are true in
every repair of the database (this is called Consistent Query Answering - CQA) [1].
The bad news is that, in most cases, several repairs are possible for each violation of a
constraint, making information integration a computationally difficult task: consistent
query answering is co-NP-hard even in very simple settings, like the example above,
where only a single key constraint is present on the global scheme. Moreover, it has
been shown that mixing different kinds of constraints (e.g. denial constraints, inclusion
and exclusion dependencies) on the same global database may easily make the query
answering process undecidable [5].

The database community has spent many efforts in this area, relevant research results
have been obtained to clarify semantics, decidability, and complexity of data-integration
under constraints.

However, while efficient systems are already available for simple data integra-
tion scenarios, scalable solutions have not been implemented yet for advanced
data-integration under constraints, mainly due to the fact that handling inconsistencies
arising from constraints violations is inherently hard.

This paper provides a contribution in this setting. Specifically, it starts from practical
applications of state-of-the-art approaches to provide well-tuned optimizations tech-
niques aiming at “localizing” and limiting the inefficient computation, due to the han-
dling of inconsistencies, to a very small fragment of the input, yet allowing interesting
classes of constraints.

The presented work takes advantage from the experience we gained in the IN-
FOMIX [6] project, and overcomes some limitations we experienced in real-world sce-
narios. In fact, our main goal is to provide a purely declarative, logic-based solution to
the problem of data integration under constraint, which is efficient and can be profitably
used also in real-world applications.

The main characteristics of the proposed approach are the following:

– It supports a powerful and comprehensive information integration model, which
is based on a formal and purely declarative semantics. The knowledge about the
integration domain can be easily specified. In particular, it allows: (i) the possibility
of defining expressive integrity constraints (ICs) over the global schema, (ii) the
precise characterization of the relationship between global schema and the local
data sources, (iii) the formal definition of the underlying semantics, (iv) as well as
the use of a powerful query language.

– It is based on Answer Set Programming (ASP) and exploits datalog-based methods
for answering user queries, which are sound and complete with respect to the se-
mantic of query answering. The problem of consistent query answering is reduced
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to cautious reasoning on disjunctive datalog programs; this allows to effectively
compute the query results precisely, by using a state-of-the-art disjunctive datalog
system. The formal query semantics is captured also in presence of inconsistent
data.

– It allows to obtain fast query-answering, even in such a powerful data-integration
framework, thanks to the novel combination of a number of optimization techniques
that tend to minimize the inefficient computation.

– In order to handle large amounts of data, usually involved in real-world integration
scenarios, it adopts as internal query evaluation engine the disjunctive datalog sys-
tem DLVDB [7,8] which allows for mass-memory evaluations and distributed data
management features.

In order to asses the effectiveness of the proposed optimizations, we carried out a thor-
ough experimental activity on a real world scenario. Obtained results, reported in the
paper, are encouraging and confirm our intuitions.

The plan of the paper is as follows. Section 2 formally introduce the data inte-
gration model and the consistent query answering problem considered in the paper.
Section 3 first introduces a standard approach to handle CQA with ASP and then
presents some optimizations. Section 4 outlines some of the features of the system
we developed on the proposed approach whereas Section 5 introduces the benchmark
framework we adopted in the tests and presents obtained results. Finally, in Section 6
we draw some conclusions.

2 The Data Integration Context

2.1 The Data Integration Model

In our setting, a data integration system [1] I is a triple 〈G, S, M〉, where G is the global
schema, which provides a uniform view of the information sources to be integrated, S is
the source schema, which comprises the schemas of all the sources to be integrated, and
M is the mapping establishing a relationship between G and S. G may contain integrity
constraints (ICs). M is a Global-As-View (GAV) mapping [1], i.e., M is a set of logi-
cal implications ∀x1 · · · ∀xn.ΦS(x1, . . . , xn) ⊃ gn(x1, . . . , xn), where gn is a relation
from G, n is the arity of gn, ΦS is a conjunction of atoms on S and x1, . . . , xn are the
free variables of ΦS . Each global relation is thus associated with a union of conjunctive
queries (UCQs). Both G and S are assumed to be represented in the relational model,
whereas M is represented as a set of datalog rules.

As an example consider a bank association that desires to unify the databases of two
branches. The first database models managers by using a table man(code, name) and
employees by a table emp(code, name), where code is a primary key for both tables.
The second database stores the same data in table employees(code, name, role). Sup-
pose that the data has to be integrated in a global schema with two tables: m(code),
and e(code, name), having both code and name as keys and the inclusion dependency
m[code] ⊆ e[code], indicating that manager codes must be employee codes. GAV map-
pings are defined as follows:1

1 In the examples we denote mappings by datalog rules. For instance e(C, N) :− emp(C,N).
stands for ∀C∀Ne(C, N) ⊃ emp(C,N).
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e(C, N) :− emp(C, N). e(C, N) :− employee(C, N, ).

m(C) :− man(C, ). m(C) :− employee(C, , ‘manager′).

If emp stores (e1, john), (e2, mary), (e3, willy), man stores (e1, john), and
employees stores (e1, ann, man), (e2, mary, man), (e3, rose, emp), it is easy to
verify that, while the source databases are consistent w.r.t. local constraints, the global
database obtained by evaluating the mappings violates the key constraint on e (e.g. both
john and ann have the same code e1 in table e). Basically, when data are combined in
a unified schema with its own integrity constraints the resulting global database might
be inconsistent; any query posed on an inconsistent database would then produce an
empty result.

In this context, user queries must be re-modelled according to the mappings and vi-
olated constraints, in order to compute consistent answers, i.e. answers which consider
as much as possible of correct input data.

2.2 Consistent Query Answering

In the field of data-integration several notions of consistent query answering have been
proposed (see [3] for a survey), depending on whether the information in the database
is assumed to be correct or complete. Basically, the incompleteness assumption coin-
cides with the open world assumption, where facts missing from the database are not
assumed to be false. In our approach, we assume that sources are complete; as argued
in [4], this choice strengthens the notion of minimal distance from the original informa-
tion.2 Moreover, there are two important consequences of this choice: database repairs
can be obtained by only deleting tuples and, thus, computing CQA for conjunctive
queries remains decidable even for arbitrary sets of denial constraints and inclusion
dependencies [4] which are the most common schema constraints.

More formally, given a global schema G and a set C of integrity constraints, let DB
and DBr be two global database instances. DBr is a repair [4] of DB w.r.t. C, if DBr

satisfies all the constraints in C and the instances in DBr are a maximal subset of the
instances in DB. Basically, given a conjunctive query Q, consistent answers are those
query results that are not affected by constraint violations and are true in any possible
repair [4]. Thus, given a database instance DB and a set of constraints C, a conjunctive
query Q is consistently true in DB w.r.t. C if Q is true in every repair of DB w.r.t.
C. Moreover, if Q is non-ground, the consistent answers to Q are all the tuples t such
that the ground query Q[t] obtained by replacing the variables of Q by constants in t is
consistently true in DB w.r.t. C.

Following the example introduced in the previous Section, the global database has
the following four repairs:

DBr
1 = {e(e2, mary), e(e1, john), e(e3, willly), m(e1), m(e2)}

DBr
2 = {e(e2, mary), e(e1, john), e(e3, rose), m(e1), m(e2)}

DBr
3 = {e(e2, mary), e(e1, ann), e(e3, willly), m(e1), m(e2)}

DBr
4 = {e(e2, mary), e(e1, ann), e(e3, rose), m(e1), m(e2)}

2 It is worth noting that, in relevant cases like denial constraints, query results coincide for both
correct and complete information assumptions.
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Moreover, the query Q = m(X)?, asking for the list of manager codes, has both e1 and
e2 as consistent answers.

In the next section, we show how Answer Set Programming (ASP) can be exploited
for efficiently computing consistent answers to user queries. We assume that the reader
is familiar with ASP.

3 Consistent Query Answering via ASP

Answer Set Programming [9,10] is a powerful logic programming paradigm allowing
(in its general form) for disjunction in rule heads [11] and nonmonotonic negation in
rule bodies. ASP is a purely declarative language that can represent every problem in the
complexity class ΣP

2 and ΠP
2 (under brave and cautious reasoning, respectively [12]).

The suitability of ASP for implementing CQA has been already recognized in the
literature [3,6]. The idea is to produce an ASP program Πcqa having an answer set for
each repair, so that the problem of computing CQA corresponds to cautious reasoning
on Πcqa. Formally, given a global database DB, a set of integrity constraints C and a
conjunctive query Q,3 we produce an ASP program Πcqa and a query Qcqa, such that:
Q is consistently true in DB w.r.t. C iff Qcqa is true in every answer set of Πcqa, in
symbols: Πcqa |=c Qcqa. In other words, Q is consistently true iff Qcqa is a cautious
consequence of Πcqa.

In our setting, the most common schema constraints can be expressed in ASP as
follows:

(c1 ) :− a1(t1), · · · , an(tn), σ(t1, . . . , tn).
(c2 ) :− a1(t),not auxa2(t)(t). auxa2(t)(t) :− a2(t, t′).

where ti is a tuple and σ(t1, . . . , tn) is a conjunction of comparison literals of the
form XθY with θ ∈ {<, >, =, 	=}, and auxa2(t)(t) is a fresh new auxiliary predicate
defining a projection on a2. Constraints of type c1 are called denial constraints; whereas
constraints of type c2 model inclusion dependencies under the assumption of complete
sources. In particular, we allow only acyclic4 inclusion dependencies, which are the
most common ones, to limit the complexity of CQA to co-NP, see [4]. Moreover, note
that key constraints are special cases of denial ones.

For instance, in the example of Section 2, we considered the following three global
constraints:

:− e(X, Y ), e(X, Z), Y 	= Z. :− e(X, Y ), e(Z, Y ), X 	= Z.
:− m(X),not code(X). code(X) :− e(X, Y ).

respectively requiring that both code and name are keys for e and that m[c] ⊆ e[c]; code
is an auxiliary predicate computing the projection of e on its first attribute.

3 As usual, a conjunctive query of arity n is a closed formula the form
q(x1, . . . , xn) :− conj(x1, . . . , xn, y1, . . . , yk). where conj is a conjunction of
atoms involving variables x1, . . . , xn, y1, . . . , yk; sometimes if k = 0 we write only
conj(x1, . . . , xn)?

4 Informally, a set of inclusion dependencies is acyclic if no attribute of a relation R transitively
depends (w.r.t. inclusion dependencies) on an attribute of the same R.
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In the following we introduce two algorithms that take as input a data integration
system and a query and produce an ASP program that can be exploited for computing
CQA. First we describe a standard algorithm producing a general encoding of a CQA
problem in ASP; then we propose a new “optimized” method that is able to produce
programs complexity-wise optimal according to the complexity classification of con-
straints and queries of [4].

Standard Solution. Given a global schema having a set of constraints C and a query Q,
a general algorithm for building the program Πcqa and the query Qcqa is composed by
the following steps:

1- for each constraint of the form c1 in C, insert the following rule into Πcqa:
a1(t1) ∨ · · · ∨ an(tn) :− a1(t1), · · · , an(tn), σ(t1, . . . , tn).

2- for each atom a(t) occurring in some constraint of C, insert into Πcqa a rule:
a∗(t) :− a(t),not a(t).

3- for all constraints of the form c2 in C, insert the following rules in Πcqa:
a1(t) :− a∗

1(t),not auxr
a2(t)

(t). auxr
a2(t)

(t) :− ar
2(t, t

′).
4- for each a(t) occurring in some constraint of C insert into Πcqa the following rule:

ar(t) :− a∗(t),not a(t),not a(t).
5- build Qcqa form Q by replacing each a(t) by ar(t) whenever a(t) occurs in some

constraint in C.

Intuitively, the disjunctive rules (step 1) guess the tuples to be deleted (step 2) for sat-
isfying denial constraints. Rules generated by step 3, remove tuples violating also ref-
erential integrity constraints; eventually, step 4 builds repaired relations. Note that the
minimality of answer sets guarantees that deletions are minimized.

In our ongoing example, the program obtained by applying the algorithm above is:

e(X, Y ) ∨ e(X, Z) :− e(X, Y ), e(X, Z), Y 	= Z.
e(X, Y ) ∨ e(Z, Y ) :− e(X, Y ), e(Z, Y ), X 	= Z.
e∗(t) :− e(t),not e(t). m∗(X) :− m(X),not m(X).
coder (X) :− er (X,Y).
m(X) :− m∗(X),not coder(X).
er(X, Y ) :− e(X, Y ),not e(X, Y ),not e(X, Y ).
mr(X) :− m(X),not m(X),not m(X).
mr(X)?

When this program is evaluated on the database facts we obtain four answer sets. It
can be verified that, all the answer sets contain mr(e1) and mr(e2), (i.e., they are
cautious consequences of Πcqa) and, thus, m(e1) and m(e2) are consistent answers to
the original query.

It can be shown that this algorithm always finds a repair for the database (and thus is
able to compute query answer) which can possibly be, in the worst case, empty.

Optimized Solution. The algorithm reported above is a general solution for solving the
CQA problem, but, in several cases, more efficient ASP programs can be produced.
First of all note that the general algorithm blindly considers all the constraints on the
global schema, including those that have no effect on the specific query. Consequently,
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redundant logic rules might be produced which slow down program evaluation. Note
also that, there are a number of cases in which, according to [4], the complexity of CQA
stays in P ; but disjunctive programs, for which cautious reasoning is an hard task [12],
are generated in presence of denial constraints. This means that, the evaluation of the
produced logic programs might be much more expensive than required in those “easy”
cases. In more detail, depending on the types of both schema constraints and queries,
CQA is tractable in the following cases:

– Quantifier-free queries and either:
• denial constraints only, or
• at most one key per relation;

– Simple Conjunctive queries and either:
• at most one functional dependency per relation, or
• at most one key per relation

– Conjunctive queries and:
• inclusion dependencies only

where quantifier free queries are those that do not contain projections operations, sim-
ple conjunctive queries are those without repeated relation symbols and with limited
variable sharing (joins are not admitted).

In the following we provide an optimized version of the standard algorithm that is
capable of identifying tractable (sub-)cases for a generic input query and that produces
ASP programs for CQA which are non-redundant and complexity-wise optimal.

Given a global schema G, a set of constraints C on G and a query Q, the optimized
algorithm analyzes both C and Q and: (i) singles out only the constraints affecting
query results, and (ii) employs positive non-disjunctive rules for dealing with denial
constraints in known tractable cases.

Specifically, a directed labelled graph Gc = 〈N, E〉, called constraint graph, is first
built. Gc contains a node n ∈ N for each relation in G, and an arc e = (p, q, c) for
each pair of relations 〈p, q〉 involved in a global constraint c ∈ C. In more detail, Gc is
built from G and C as follows: for each c ∈ C: if c is a denial constraint of the form
:− p1(t1), · · · , pk(tk), σ(t1, . . . , tk) an arc (pi, pj, c) is added to E for each i, j ∈ [1, k]

with i 	= j; whereas, if c is an inclusion dependency of the form :− p(t),not q(t) then
an arc (p, q, c) is added to E.

After analyzing and classifying the query (to recognize whether it is either quantifier-
free, or simple conjunctive, or conjunctive), the constraint graph Gc is visited several
times starting from each relation in the query. The visited nodes of Gc correspond to
the relations involved in the query process, whereas the arcs traversed during the visits
correspond to the constraints that might influence the query results. Thus, the corre-
sponding relations and constraints are marked to be considered for further process-
ing; unmarked constraints will be discarded. At the same time, the algorithm tags each
marked constraint to be either easy or hard, depending on whether the above-reported
conditions on the complexity of CQA are satisfied or not. In particular, the tag associ-
ated to a given constraint is set (or updated) during each visit depending on query kind,
number and type of encountered constraints. The tag of each constraint c corresponding
to a traversed arc e is set to “easy” if both (i) c was not previously tagged as “hard”,
and (ii) at least one of the following conditions holds (otherwise c is tagged as “hard”):
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1. if the query is quantifier-free, and either
a. all the arcs belonging to the connected component of Gc containing e are la-

beled by denial constraints, or
b. all the nodes belonging to the connected component of Gc containing e have at

most one outgoing arc labelled by a key constraint
2. if the query is simple-conjunctive, and either

a. all the nodes belonging to the connected component of Gc containing e have at
most one outgoing arc labelled by a functional dependency constraint, or

b. all the nodes belonging to the connected component of Gc containing e have at
most one outgoing arc labelled by a key constraint

3. if the query is conjunctive, and:
a. all the arcs belonging to the connected component of Gc containing e are la-

beled by inclusion dependencies

At this point, the ASP program Πcqa is generated as follows:

1- for each denial constraint of the form c1 which is marked as “hard”, insert the
following rule into Πcqa:
a1(t1) ∨ · · · ∨ an(tn) :− a1(t1), · · · , an(tn), σ(t1, . . . , tn).

2- for each denial constraint of the form c1 which is marked “easy”, insert the follow-
ing n rules into Πcqa:
a1(t1) :− a1(t1), · · · , an(tn), σ(t1, . . . , tn),
a2(t2) :− a1(t1), · · · , an(tn), σ(t1, . . . , tn),
. . .
an(tn) :− a1(t1), · · · , an(tn), σ(t1, . . . , tn).

3- for each atom a(t) occurring in some marked denial constraint, insert into Πcqa a
rule: a∗(t) :− a(t),not a(t).

4- for all marked constraints of the form c2 in C, insert the following rules in Πcqa:
a1(t) :− a∗

1(t),not auxr
a2(t)

(t). auxr
a2(t)

(t) :− ar
2(t, t

′).
5- for each a(t) occurring in some marked constraint insert into Πcqa the following

rules: ar(t) :− a∗(t),not a(t),not a(t).
6- build Qcqa from Q by replacing each a(t) by ar(t) whenever a(t) occurs in some

marked constraint.

First of all, note that the new algorithm produces only non-redundant rules (i.e. the rules
encoding constraints that influence the query answering process). Moreover, it is worth
noticing that the rules produced by step 2, corresponding to “easy” constraints are non-
disjunctive,5 while, those produced by step 1, corresponding to “hard” constraints are
disjunctive. This is a pay-as-you-go technique where the usage of complex evaluation
algorithms is limited to either intractable cases or to cases in which tractability results

5 In the “easy” cases the original database can be repaired by simply removing all the conflicting
tuples. This can be done because each repair can be obtained from the original database by
removing a single tuple among the ones that violate the same constraint. When rules of this
kind are employed the answer sets do not correspond to repairs, but CQA still corresponds to
cautious reasoning.
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are not known. Moreover, note that the same query may involve both easy and hard
constraints, but disjunctive rules are used only for the hard ones.

For example, suppose that we add to the global schema of our ongoing example a
new binary relation c(code,name) representing the list of customers, and that code is a
key for c. Moreover, suppose that we ask for the query Q = c(X,Y), e(X,Y)? retrieving
the customers that are also employees of the bank. In this case, the query is quantifier
free, and only denial constraints are marked visiting the constraint graph. Indeed, it is
easy to see that there is no way to reach m in the constraint graph starting from the query
atoms since the arc generated for the inclusion dependency between m and e goes from
m to e. This means that condition 1.a is verified, all marked constraints are “easy”, and
the produced program is:

e(X, Y ) :− e(X, Y ), e(X, Z), Y 	= Z.
e(X, Z) :− e(X, Y ), e(X, Z), Y 	= Z.
e(X, Y ) :− e(X, Y ), e(Z, Y ), X 	= Z.
e(Z, Y ) :− e(X, Y ), e(Z, Y ), X 	= Z.
c(X, Y ) :− c(X, Y ), c(X, Z), Y 	= Z.
c(X, Z) :− c(X, Y ), c(X, Z), Y 	= Z.
e∗(t) :− e(t),not e(t).
c∗(t) :− c(t),not c(t).
er(X, Y ) :− e(X, Y ),not e(X, Y ),not e(X, Y ).
cr(X, Y ) :− c(X, Y ),not c(X, Y ),not c(X, Y ).
cr(X, Y ), er(X, Y )?

Note that the obtained program is non-disjunctive and stratified and it can be evalu-
ated in polynomial time. In this case, the only answer set of the program contains the
consistent answers to the original query.

4 The Integration System

The general architecture of the system incorporating the proposed approach is shown in
Figure 1. It is intended to simplify both the integration system design and the querying
activities by exploiting a user-friendly GUI. Specifically, at design time, the user can:

• Graphically design the global schema and the mappings (which we recall are ex-
pressed by UCQs) between global relations and source schemas.
• Specify data transformation rules on source data; these can be implemented by suit-
able functions defined in the working database as stored functions.
• Specify global constraints, in order to define quality parameters that global inte-
grated data must satisfy.

At query time, the user can exploit a QBE-like interface to express queries over the
global schema; these are internally expressed in datalog as UCQs. The “plain” query
is then elaborated by the CQA Rewriter which takes into account both mappings and
global constraints to express the query over the sources and to handle inconsistencies
possibly involving the query answers; the output of the CQA Rewriter is then a (possibly
disjunctive) datalog program which is fed to the Optimizer for further elaboration. The
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Fig. 1. System Architecture

Optimizer applies rewriting strategies which aim at pushing down selections directly
onto the sources and at “localizing” over conflicting data as much as possible of the
needed reasoning. Finally, the optimized program is fed to the Query Evaluator which
executes the grounding phase totally on the DBMS and loads in main-memory only
data strictly necessary to resolve conflicts. The output of this evaluation is then the
query answer, which is proposed graphically back to the user. More in detail, the Query
Evaluator engine of our integration system is DLVDB [7]. It is a DLP evaluator born as
a database oriented extension of the well known DLV system [13]. It has been recently
extended [8] for dealing with unstratified negation, disjunction and external function
calls. The main peculiarities of DLVDB related to the data integration system are: (i) it
allows the handling of (possibly distributed) large amounts of data stored in autonomous
databases; (ii) GAV mappings defining the integration system can be directly evaluated
on the database where data resides, without further elaboration; (iii) it embodies some
query-oriented optimization strategies, like magic-sets.

5 Experiments

In this section we present some of the experiments we carried out to asses the effective-
ness of our approach to consistent query answering.

5.1 Data Set

We exploited the real-world data integration framework developed in the INFOMIX
project (IST-2001-33570) [6] which integrates data from a real university context. In par-
ticular, considered data sources were available at the University of Rome “La Sapienza”.
These comprise information on students, professors, curricula and exams in various
faculties of the university. This data is dispersed over several databases in various (au-
tonomous) administration offices.
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There are about 35 data sources in the application scenario, which are mapped into
14 global schema relations with about 20 GAV mappings and 29 integrity constraints.
We call this data set Infomix in the following.

Besides the original source database instance (which takes about 16Mb on DBMS),
we obtained bigger instances artificially. Specifically, we generated a number of copies
of the original database; each copy is disjoint from the other ones but maintains the same
data correlations between instances as the original database. This has been carried out
by mapping each original attribute value to a new value having a copy-specific prefix.

Then, we considered two further datasets, namely Infomix-x-10 and Infomix-x-50
storing 10 copies (for a total amount of 160Mb of data) and 50 copies (800Mb) of the
original database, respectively; clearly, in both cases one of the copies is the original
database itself.

5.2 Tested Queries

As previously pointed out, standard rewriting for CQA makes the time complexity of
query evaluation to be in co-NP in most cases; however, our optimization allows in
many relevant cases to simplify the rewriting in such a way that the complexity of the
evaluation of the corresponding program can be in P.

In order to carry out a comprehensive performance analysis, we designed a set of
queries spanning over the following perspectives:

– As for the computational complexity perspective we designed queries whose:

• evaluation complexity with standard rewriting stays in co-NP and evaluation
complexity with optimized rewriting stays in P;

• evaluation complexity with standard rewriting stays in co-NP and evaluation
complexity with optimized rewriting remains in co-NP;

– As for the constraints perspective we designed queries involving:

• Arbitrary Denial constraints only (D in the following)
• Key constraints only (K in the following)
• Inclusion dependencies only (I in the following)
• Arbitrary Denial and Inclusion dependencies (D+I in the following)
• Key constraints and Inclusion dependencies (K+I in the following)

– As for the query class perspective we designed:

• Unrestricted Conjunctive queries (UC in the following)
• Quantifier-free queries (QF in the following)
• Simple Conjunctive queries (SC in the following)

– As for the query design perspective we considered:

• queries with different arities (i.e. different number columns in the result)6

• queries with and without constants

We designed and ran several queries. Table 1 summarizes the characteristics of a repre-
sentative set of them. Here Number of source tuples indicates the number of tuples of
all source relations involved by the query.

6 An arity equal to 0 indicates that the query asks only if some assertion is true or false in the
database.
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Table 1. Summary of tested queries

Q1 Q2 Q3 Q4 Q5 Q6

Optimized Query co-NP co-NP P P P P
Evaluation
Query Class QF SC SC QF SC SC
Involved Constraints K D D D K K
Query arity 7 1 0 0 1 2
N. of source tuples
infomix 45575 37546 20575 67272 204 61723
infomix-x-10 455750 375460 205750 672720 2040 617230
infomix-x-50 2278750 1877300 1028750 3363600 10200 3086150

Q7 Q8 Q9 Q10 Q11 Q12

Optimized Query P co-NP P co-NP P P
Evaluation
Query Class SC SC SC UC QF SC
Involved Constraints K K+I K K+I I D+I
Query arity 2 3 6 2 3 0
N. of source tuples
infomix 104818 17266 16148 3749 17725 37831
infomix-x-10 1048180 172660 161480 37490 177250 378310
infomix-x-50 5240900 863300 807400 1873950 886250 1891550

5.3 Compared Methods

In order to asses the characteristics of the proposed optimizations, we measured the exe-
cution time of each query with both the standard and our optimized rewriting. Moreover,
since the magic sets technique has been recently extended to support also disjunctive
programs [15], we considered interesting to evaluate execution times of both rewritings
with the addition of magic sets on them; query rewriting for CQA and magic sets have
been applied in cascade.

Note, however, that the magic sets technique can be applied only on queries involving
constants; indeed, the aim of the technique is to “push down” constants in the query onto
source relations, thus allowing to reduce the amount of data to reason about. Moreover,
the magic sets method may add several rules (and possibly unstratified negation) to the
original program, thus introducing some overhead in the computation.

Our intuition is that magic sets optimization and our optimizations are complemen-
tary and, consequently, their benefits may be summed up if the query involves some
constant. It is also interesting to evaluate the impact of the overhead introduced by the
approaches on the overall response time.

Summarizing, we tested four methods: (i) Standard Rewriting, (ii) Optimized Rewrit-
ing, (iii) Standard Rewriting with Magic Sets, (iv) Optimized Rewriting with Magic
Sets.7

7 Magic sets have been tested only on queries Q1, Q2, Q3, and Q4, since the other queries are
constant-free.
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Fig. 2. Query Evaluation Execution Times
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5.4 Results and Discussion

All tests have been carried out on an Intel Core 2 Duo T7300, 2.0 GHz, with 2 Gb Ram,
running Windows 7 Operating System. We set a time limit of 30 minutes after which
query execution has been killed. Results obtained for tested queries (showing times in
seconds) are illustrated in Figure 2. The bar for a method is absent in the graphs if query
answering time was higher than the limit8.

From the analysis of the figures and the characteristics of the queries reported in
Table 1, we may draw the following observations: The optimized rewriting almost al-
ways provides important improvements in query performance. The only exception is
for query Q11 for which no optimization was possible and, consequently, standard and
optimized rewritings coincide. Performance improvements of the optimized rewriting
w.r.t. the standard one have been registered up to 86%9 with a quantifier free query over
denial constraints. Note also that the best times are always registered when the proposed
optimization is active.

Our intuition about the “additivity” of the magic sets over our optimization has
been confirmed by experimental results. In fact, the application of magic sets always
improves its performance, at least on big data sets. As for the smallest data set, the
overhead introduced by magic sets is sensible and the (initially small) response time
increases in some cases. It is interesting to observe that the application of our opti-
mization and the magic sets allowed performance improvements up to 95% w.r.t. the
standard rewriting.

Finally, it is worth pointing out that the scaling of the optimized algorithm over the
three data sets is generally better than the standard one.

6 Conclusion and Ongoing Work

In this paper we presented an approach that allows to efficiently handle consistent query
answering under a wide variety of integrity constraints. The effectiveness of the ap-
proach is obtained by the assumption of complete sources and an optimized algorithm
which is capable to identify both tractable queries and portions of the queries that may
be treated efficiently. The approach is part of a complete system for data integration
based on ASP whose query evaluator engine allows to carry out querying directly on
the databases where data reside even in an ASP context. Results of our experimental
activity demonstrate the effectiveness of the approach. As far as ongoing work, we are
investigating for further optimizations that can be included in the algorithm to further
improve query answering performances.
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Abstract. Ontologies and rules are usually loosely coupled in knowledge rep-
resentation formalisms. In fact, ontologies use open-world reasoning while the
leading semantics for rules use non-monotonic, closed-world reasoning. One ex-
ception is the tightly-coupled framework of Minimal Knowledge and Negation as
Failure (MKNF), which allows statements about individuals to be jointly derived
via entailment from an ontology and inferences from rules. Nonetheless, the prac-
tical usefulness of MKNF has not always been clear, although recent work has
formalized a general resolution-based method for querying MKNF when rules
are taken to have the well-founded semantics, and the ontology is modeled by a
general Oracle. That work leaves open what algorithms should be used to relate
the entailments of the ontology and the inferences of rules. In this paper we pro-
vide such algorithms, and describe the implementation of a query-driven system,
CDF-Rules, for hybrid knowledge bases combining both (non-monotonic) rules
under the well-founded semantics and a (monotonic) ontology, represented by a
CDF (ALCQ) theory.

1 Introduction

Ontologies and rules offer distinctive strengths for the representation and transmission
of knowledge over the Semantic Web. Ontologies offer the deductive advantages of
first-order logics with an open domain while guaranteeing decidability. Rules employ
non-monotonic (closed-world) reasoning that can formalize scenarios under locally in-
complete knowledge; rules also offer the ability to reason about fixed points (e.g. reach-
ability) which cannot be expressed within first-order logic.

Several factors influence the decision of how to combine rules and ontologies into a
hybrid knowledge base. The choice of semantics for the rules, such as the answer-set
semantics [5] or the well-founded semantics (WFS) [14], can greatly affect the behavior
of the knowledge base system. The answer set semantics offers several advantages: for
instance, description logics can be translated into the answer set semantics providing a
solid basis for combining the two paradigms [9,11]. WFS is weaker than the answer-
set semantics (in the sense that it is more skeptical), having the advantage of a lower
complexity, and that it can be evaluated in a query-oriented, Prolog-like, fashion and
having, in fact, been integrated in Prolog systems.

Several formalisms have concerned themselves with combining ontologies with
WFS rules [3,4,7]. Among these, the Well-Founded Semantics for Hybrid MKNF
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knowledge bases (MKNFWFS), introduced in [7] and overviewed in Section 2 below,
is the only one which allows knowledge about instances to be fully inter-definable be-
tween rules and an ontology that is taken as a parameter of the formalism. MKNFWFS

assigns a well founded semantics to Hybrid MKNF knowledge bases, is sound w.r.t.
the original semantics of [10] and, as in [10], allows the knowledge base to have both
closed- and open-world (classical) negation.

Example 1. The following fragment, adapted from an example [10], concerning car
insurance premiums illustrates several properties of MKNFWFS . The ontology consists
of the axioms:
nonMarried ≡ ¬married ¬married � highRisk ∃Spouse.T � married

while the rule base consists of the rules:
K nonMarried(X) ← K person(X),not married(X).
K discount(X) ← not spouse(X, Y ),K person(X),K person(Y ).
K surcharge(X) ← K highRisk(X),K person(X).

Note that married and nonMarried are defined both by axioms in the ontology and by
rules. Within the rule bodies, literals with the K or not operators (e.g. K highRisk(X))
may require information both from the ontology and from other rules; other literals are
proven directly by the other rules (e.g. person(X)).

Suppose person(john) were added as a fact (in the rule base). Under closed-world
negation, the first rule would derive nonMarried(john). By the first ontology axiom,
¬ married(john) would hold, and by the second axiom highRisk(john) would also hold.
By the third rule, surcharge(john) would also hold. Thus the proof of surcharge
(john) involves interdependencies between the rules with closed-world negation, and
the ontology with open-world negation. At the same time the proof of surcharge(john)
is relevant in the sense that properties of other individuals do not need to be considered.

In the original definition of MKNFWFS , the inter-dependencies of the ontology and
rules were captured by a bottom-up fixed-point operator with multiple levels of iter-
ations. Recently, a query-based approach to hybrid MKNF knowledge bases, called
SLG(O), has been developed using tabled resolution [1]. SLG(O) is sound and com-
plete, as well as terminating for various classes of programs (e.g. datalog). In addition
SLG(O) is relevant in the sense of Example 1. This relevancy is a critical requirement
for scalability in real domains application (e.g. in the area of Semantic Web): without
relevance a query about a particular individual I may need to derive information about
other individuals even if those individuals were not connected with I through rules or
axioms. SLG(O) serves as a theoretical framework for query evaluation of MKNFWFS

knowledge bases, but it models the inference mechanisms of an ontology abstractly, as
an oracle. While this abstraction allows the resolution method to be parameterized by
different ontology formalisms in the same manner as MKNFWFS , it leaves open details
of how the ontology and rules should interact and these details must be accounted for
in an implementation.

This paper describes, in Section 4, the design and implementation of a working pro-
totype query evaluator1 for MKNFWFS , called CDF-Rules, which fixes the ontology

1 The implementation is freely available from the XSB CVS repository.
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part to ALCQ theories, and makes use of the prover from XSB’s ontology manage-
ment, the Coherent Description Framework (CDF) [12] (overviewed in Section 3). To
the best of our knowledge, this implementation is the first working query-driven im-
plementation for Hybrid MKNF knowledge bases, combining rules and ontology and
complete w.r.t. the well-founded semantics.

2 MKNF Well-Founded Semantics

Hybrid MKNF knowledge bases as introduced in [10] are essentially formulas in the
logics of minimal knowledge and negation as failure (MKNF) [8], i.e. first-order log-
ics with equality and two modal operators K and not, which allow inspection of the
knowledge base. Intuitively, given a first-order formula ϕ, Kϕ asks whether ϕ is known
while notϕ is used to check whether ϕ is not known. A Hybrid MKNF knowledge base
consists of two components, a decidable description logic (DL) knowledge base, trans-
latable into first-order logic, and a finite set of rules of modal atoms.

Definition 1. Let O be a DL knowledge base built over a language L with distinguished
sets of countably infinitely many variables NV , along with finitely many individuals
NI and predicates (also concepts) NC . An atom P (t1, . . . , tn) where P ∈ NC and
ti ∈ NV ∪ NI is called a DL-atom if P occurs in O, otherwise it is called non-DL-
atom. An MKNF rule r has the following form where Hi, Ai, and Bi are atoms: (1)
KH ← KA1, . . . ,KAn,notB1, . . . ,notBm. H is called the (rule) head and the sets
{KAi}, and {notBj} form the (rule) body. Atoms of the form KA are also called
positive literals or modal K-atoms while atoms of the form notA are called negative
literals or modal not-atoms. A rule r is positive if m = 0 and a fact if n = m = 0. A
program P is a finite set of MKNF rules and a hybrid MKNF knowledge base K is a
pair (O, P).

For decidability DL-safety is applied which basically constrains the use of rules to
individuals actually appearing in the knowledge base under consideration. Formally, an
MKNF rule r is DL-safe if every variable in r occurs in at least one non-DL-atom KB
occurring in the body of r. A hybrid MKNF knowledge base K is DL-safe if all its rules
are DL-safe (for more details we refer to [10]).

The well-founded MKNF semantics as presented in [7] is based on a complete three-
valued extension of the original MKNF semantics. However, here, as we are only in-
terested in querying for literals and conjunctions of literals, we limit ourselves to the
computation of what is called the well-founded partition in [7]: basically the atoms
which are true and false. For that reason, and in correspondence to logic programming,
we will name this partition the well-founded model. At first, we recall some notions
from [7] which will be useful in the definition of the operators for obtaining that well-
founded model.

Definition 2. Consider a hybrid MKNF knowledge base K = (O, P). The set of K-
atoms of K, written KA(K), is the smallest set that contains (i) all modal K-atoms
occurring in P , and (ii) a modal atom Kξ for each modal atom notξ occurring in K.
Furthermore, for a set of modal atoms S, SDL is the subset of DL-atoms of S, and
Ŝ = {ξ | Kξ ∈ S}.
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Basically all modal atoms appearing in the rules are collected in KA(K). The other
notions are useful below when defining an operator on hybrid MKNF KB’s.

To guarantee that all atoms that are false in the ontology are also false by default
in the rules, we introduce new positive DL atoms which represent first-order false DL
atoms, and a program transformation making these new modal atoms available for rea-
soning in the respective rules.

Definition 3. Let K be a DL-safe hybrid MKNF knowledge base. We obtain K+ from
K by adding an axiom ¬P � NP for every DL atom P which occurs as head in at least
one rule in K where NP is a new predicate not already occurring in K. Moreover, we
obtain K∗ from K+ by adding not NP (t1, . . . , tn) to the body of each rule with a DL
atom P (t1, . . . , tn) in the head.

By K+, NP represents ¬P (with its corresponding arguments) and K∗ introduces a
restriction on each rule with such a DL atom in the head saying intuitively that the rule
can only be used to conclude the head if the negation of its head cannot be proved2.

We continue now by recalling the definition in [7] of an operator TK which allows
conclusions to be drawn from positive hybrid MKNF knowledge bases.

Definition 4. For K a positive DL-safe hybrid MKNF knowledge base, RK, DK, and
TK are defined on the subsets of KA(K∗) as follows:

RK(S) = S ∪ {KH | K contains a rule of the form (1) such that KAi ∈ S
for each 1 ≤ i ≤ n}

DK(S) = {Kξ | Kξ ∈ KA(K∗) and O ∪ ŜDL |= ξ} ∪ {KQ(b1, . . . , bn) |
KQ(a1, . . . , an) ∈ S \ SDL, KQ(b1, . . . , bn) ∈ KA(K∗), and
O ∪ ŜDL |= ai ≈ bi for 1 ≤ i ≤ n}

TK(S) = RK(S) ∪ DK(S)

RK derives consequences from the rules while DK obtains knowledge from the ontol-
ogy O, both from non-DL-atoms and the equalities occurring in O. The ≈ operator
defines a congruence relation between individuals.

The operator TK is shown to be monotonic in [7] so, by the Knaster-Tarski theorem,
it has a unique least fixpoint, denoted lfp(TK), which is reached after a finite number of
iteration steps.

The computation follows the alternating fixpoint construction [13] of the well-
founded semantics for logic programs which necessitates turning a hybrid MKNF
knowledge base into a positive one to make TK applicable.

Definition 5. Let KG = (O, PG) be a ground DL-safe hybrid MKNF knowledge base
and let S ⊆ KA(KG). The MKNF transform KG/S = (O, PG/S) is obtained by
PG/S containing all rules H ← A1, . . . , An for which there exists a rule KH ←
KA1, . . . ,KAn,notB1, . . . ,notBm in PG with KBj 	∈ S for all 1 ≤ j ≤ m.

This resembles the transformation known from answer-sets [5] of logic programs and
the following two operators are defined.

2 Note that K+ and K∗ are still hybrid MKNF knowledge bases, so we only refer to K+ and K∗

explicitly when it is necessary.
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Definition 6. Let K = (O, P) be a nondisjunctive DL-safe hybrid MKNF knowledge
base and S ⊆ KA(K∗). We define: ΓK(S) = lfp(TK+

G/S), and Γ ′
K(S) = lfp(TK∗

G/S).

Both operators are shown to be antitonic [7], hence their composition is monotonic
and form the basis for defining the well-founded MKNF model. Here we present its
alternating computation.

T0 = ∅ TU0 = KA(K∗)
Tn+1 = ΓK(TUn) TUn+1 = Γ ′

K(Tn)
Tω =

⋃
Tn TUω =

⋂
TUn

Note that by finiteness of the ground knowledge base the iteration stops before reaching
ω. It was shown in [7] that the sequences are monotonically increasing, decreasing
respectively, and that Tω and TUω form the well-founded model:

Definition 7. Let K = (O, P) be a DL-safe hybrid MKNF knowledge base and let
TK,TUK ⊆ KA(K) with TK being Tω and TUK being TUω, both restricted to the
modal atoms only occurring in KA(K). Then MWF = {KA | A ∈ TK}∪{Kπ(O)}∪
{notA | A ∈ KA(K) \ TUK} is the well-founded MKNF model of K, where π(O)
denotes the first order logic formula equivalent to the ontology O (for detail on the
translation of O into first order logic see [10]) .

All modal K-atoms in MWF are true, all modal not-atoms are false and all other modal
atoms from KA(K) are undefined.

As shown in [7], the well founded model is sound with respect to the original seman-
tics of [10], i.e. all atoms true (resp. false) in the well founded model are also true (resp.
false) according to [10]. In fact, the relation between the semantics of [7] and [10], is
tantamount to that of the well founded semantics and the answer-sets semantics of logic
programs.

3 XSB Prolog and the Coherent Description Framework

Our implementation makes use of XSB Prolog (xsb.sourceforge.net) to imple-
ment MKNFWFS for two reasons. First, XSB’s tabling engine evaluates rules according
to WFS, and ensures rule termination for programs with the bounded term-size property.
Second, the implementation directly uses the prover from XSB’s ontology management,
the Coherent Description Framework (CDF) [12].

CDF has been used in numerous commercial projects, and was originally developed
as a proprietary tool by the company XSB, Inc although significant portions of it have
been made open source, and are available in the standard XSB package release. Over
the last 6 years CDF has been used to support extraction of information about aircraft
parts from free-text data fields, about medical supplies and electronic parts from web-
sites and electronic catalogs, and about the specifics of mechanical parts from scanned
technical drawings. Also, CDF is used to maintain models of graphical user interfaces
that are driven by XSB and its graphics package, XJ. Next, we discuss a few features of
CDF that are relevant to the implementation described in Section 4.
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Commercial use has driven CDF to support efficient query answering from Prolog.
As a result, ontologies in CDF can have a restricted, tractable form. Type-0 ontolo-
gies do not allow representation of negation or disjunction within the ontology itself,
and implicitly use the closed-world assumption. As such, Type-0 ontologies resemble a
frame-based representation more than a description logic, and do not add any complex-
ity to query evaluation beyond that of WFS. Type-1 ontologies use open-world negation
and support ALCQ description logics. The vast majority of knowledge used by XSB,
Inc. is maintained in Type-0 ontologies; Type 1 ontologies are used for small projects
in XSB, Inc. and for research.

Regardless of the type of the ontology, primitive classes in CDF are represented
by terms cid(Identifier, Namespace), instances by terms oid(Identifier, Namespace), and
relations by terms rid(Identifier, Namespace). The atom isa/2 is used to state inclusion:
whether the inclusion is a subclass, element of, or subrelation depends on the type of
the term, and not all combinations of types of terms are allowed in a CDF program.
Relational atoms in CDF have the form hasAttr(Term1, Rel1, T erm2) which has
the meaning Term1 � ∃Rel1.Term2; allAttr(Term1, Rel1, T erm2) which has the
meaning Term1 � ∀Rel1.Term2, along with other forms that designate cardinality
constraints on relations. Query answering to Type-0 ontologies is supported by tabling
to implement inheritance and by tabled negation so that only the most specific answers
to a query are returned to a user.

Unlike Type-0, Type-1 ontologies also allow atoms necessCond(Term1, CE)
where CE can be any ALCQ class expression over CDF terms. Because they use open-
world negation, atoms for Type-1 ontologies cannot be directly queried; rather they are
queried through goals such as allModelsEntails(Term, ClassExpr), succeeding if
Term � ClassExpr is provable in the current state of the ontology. Type-1 ontologies
deduce entailment using a tableau prover written in Prolog.

Regardless of the type of the ontology, atoms such as isa/2, hasAttr/2, etc. can
be defined extensionaly via Prolog facts, or intensionaly via Prolog rules. Intensional
definitions are used in Type-0 database so that atoms can be lazily defined by querying
a database or analyzing a graphical model: their semantics is outside that of CDF. At the
same time, intensional definitions in a Type-1 ontology provides a basis for the tableau
prover to call rules, as is required to support the interdependencies of MKNFWFS .

4 Goal-Driven MKNF Implementation

In this section we describe the algorithms and the design of a goal driven implemen-
tation for Hybrid MKNF Knowledge Bases under the Well Founded Semantics. Our
solution makes use of XSB’s SLG Resolution [2] for the evaluation of a query, together
with tableaux mechanisms supported by CDF theorem prover to check entailment on
the ontology. In this section we assume a general knowledge of tabled logic programs.

4.1 A Query-Driven Iterative Fixed Point

At an intuitive level, a query to CDF-Rules is evaluated in a relevant (top-down like)
manner with tabling, through SLG resolution [2], until the selected goal is a literal l
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formed over a DL-atom. At that point, in addition to further resolution, the ontology
also uses tableau mechanisms to derive l. However, as a tableau proof of l may re-
quire propositions (literals) inferred by other rules, considerable care must be taken to
integrate the tableau proving with rule-based query evaluation.

In its essence, a tableau algorithm decides the entailment of a formula f w.r.t. an
ontology O by trying to construct a common model for ¬f and O, sometimes called a
completion graph. If such a model can not be constructed, O |= f ; otherwise O does not
entail f . Similar to other description logic provers, the CDF theorem prover attempts
to traverse as little of an ontology as possible when proving f . As a result, when the
prover is invoked on an atom A, the prover attempts to build a model for the underlying
individual(s) to which A refers, and explores other individuals only as necessary.

Now, given the particular interdependence between the rules and the ontology in
MKNFWFS , the prover must consider the knowledge inferred by the rules in the pro-
gram for the entailment proof, as a DL-atom can be derived by rules, which in turn may
rely on other DL-atoms proven by the ontology. Thus, for a query to a DL-atom p(o),
the idea is to iteratively compute a model for o, deriving at each iteration new infor-
mation about the roles and classes of o, along with information about other individuals
related to o either in the ontology (via CDF’s tableau algorithm) or in the rules (via SLG
procedures) until a fixed point is reached.

We start by illustrating the special case of positive knowledge bases without default
negation in the rules.

Example 2. Consider the following KB (with the program on the left and the ontology
on the right3) and the query third(X):

K third(X) ← p(X),K second(X).
K first(callback). First � Second
p(callback).

The query resolves against the rule for third(X), leading to the goals p(X) and
second(X). The predicate p, although not a DL-atom, assures DL-safety, restricting
the application of the rules to known individuals. The call p(X) returns true for X =
callback. However, now the call third(callback) (since X was bound to callback by
p) depends on the DL-atom second(callback), corresponding in the ontology to the
proposition Second. So the computation calls the CDF theorem prover which starts
to derive a model for all the properties of the individual callback. Yet, in this com-
putation, the proposition Second itself depends on a predicate defined in the rules –
First. It is intuitive that the evaluation of the query third(callback) must be done
iteratively – the (instantiated) goal third(callback) should suspend (using tabling) un-
til second(callback) is resolved. Furthermore, second(callback) needs first to prove

3 To simplify reading we use the usual notation for the ontology, where the argument variable
of a unary predicate is not displayed, and the first letter of the predicate’s name is capitalized.
For rules we use the usual logic programming notation, and omit the K before non-DL atoms.
In fact, in the implementation the ontology must be written according to CDF syntax, and in
the rules the modal operators K and not are replaced by (meta-)predicates known/1 and
dlnot/1, respectively (see Section 4.2).
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first(callback) from the rules. In general, goals to DL-atoms may need to suspend in
order to compute an iterative fixed point, after which they may either succeed or fail.

We formalize the actions in Example 2 on the special case of definite programs as
follows.

Definition 8. Let K = (O, P) be a DL-safe hybrid MKNF knowledge base, where
P does not contain default negation. Let I be a fixed set of individuals. The function
Tableaux(O) computes for a theory O the entailments of O for I, disregarding the rules
component. The function SLG(P) computes via tabling the set of DL-atoms true in the
minimal model of P for a set of individuals, I, disregarding the ontology component.
The model is obtained as the least fixed point of the alternative sequence:

D0 = Tableaux(O) R0 = SLG(P)
D1 = Tableaux(O ∪ R0) R1 = SLG(P ∪ D0)
. . . . . .

Dn = Tableaux(O ∪ Rn−1) Rn = SLG(P ∪ Dn−1)

where n is odd and ≥ 2. The iteration stops when a fixed point in Rn is reached.

Definition 8 resembles Definition 4 of the operator TK in Section 2. As in Definition 4,
since it considers only positive rules, the operators SLG and Tableaux are monotonic
and thus a least fixed point is guaranteed to exist. Furthermore, the program respects
DL-safety, which means that MKNF rules are lazily grounded with respect to the set of
individuals (constants). Thus the program is finite and the fixed point can be obtained
in a finite number of steps.

Definition 8 captures certain aspects of how the rules and ontology use each other as
a way to derive new knowledge in CDF-Rules, via an alternating computation. How-
ever it does not capture cases in which the relevant set of individuals changes, or the
presence of default negation in rule bodies. With regard to relevant individuals, since it
is possible to define n-ary predicates in rules along with roles in the ontology, the query
may depend on a set of several individuals. Therefore, the fixed point computation must
take into account the entire set of individuals that the query depends on. This is done by
tabling information about each individual in the set of individuals relevant to the query.
This set may increase throughout the fixed point iteration as new dependency relations
between individuals (including equality) are discovered. The iteration stops when it is
not possible to derive anything more about these individuals, i.e., when all individuals
in the set have reached a fixed point.

Example 3. Regarding default negation, consider the following knowledge base:

K third(X) ← p(X),K second(X). K first(callback). First � Second
K fourth(X) ← p(X),not third(X). p(callback). Fourth � Fifth

In this example a predicate fourth(X) is defined at the expense of the negation of
third(X). Since fourth(X) is defined in the rules, the negation is closed world, that is,
fourth(X) should only succeed if it is not possible to prove third(X). Consequently, if



Implementing Query Answering for Hybrid MKNF Knowledge Bases 33

we employed SLG resolution blindly, an iteration where the truth of second(callback)
had not been made available to the rules from the ontology might mistakenly fail the
derivation of third(callback) and so succeed fourth(callback). Likewise, the rules
may pass to the ontology knowledge, that after some iterations, no longer applies – in
this case if the ontology were told that fourth(callback) was true, it would mistakenly
derive Fifth.

Example 3 shows a need to treat default negation carefully, as it requires re-evaluation
when new knowledge is inferred. Recall how in Definition 6, operators ΓK and Γ ′

K are
defined in order to address the problem of closed-world negation. Roughly, one step in
ΓK (or Γ ′

K) is defined as the application of TK until reaching a fixed point. Applying
Γ ′
K followed by ΓK is a monotonic operation and thus is guaranteed to have a least

fixed point. In each dual application of ΓK and Γ ′
K two different models follow – a

monotonically increasing model of trues (i.e. true predicates and propositions), and a
monotonically decreasing model of trues and undefineds.

In a similar way, the implementation of CDF-Rules makes use of two fixed points:
an inner fixed point where we apply Definition 8 corresponding to TK; and an outer
fixed point for the evaluation of nots, corresponding to ΓK (and Γ ′

K). In the outer op-
eration, the evaluation of closed-world negation is made by a reference to the previous
model obtained by ΓK. Thus in CDF-Rules, not(A) succeeds if, in the previous outer
iteration, A was not proven.

Example 4. As an illustration of the need for the application of the two fixed points,
consider the knowledge base below and the query c(X):

K c(X) ← p(X),K a(X),not b(X) p(object). K a(object). A � B

When evaluating the query c(X), X is first bound to object by p, and then the iteration
process of Definition 8 begins. Note that Definition 8 refers only to definite programs.
To treat a rule like that for c(X) as positive, each negative body literal is evaluated
according to its value in the previous outer fixed point, or is simply evaluated as true in
the first outer iteration. As will be seen, this is done lazily by CDF-Rules. Accordingly,
the rules infer a(object), p(object) and c(object) for R0. However in the first inner
iteration the set of ontological entailments, D0, is empty since O 	|= A. In the second
inner step the rules achieve the same fixed point as in the first, so R1 = R0, but the
ontology derives B for object in D1. After sharing this knowledge, there is nothing
more to infer by either components, and we achieve the first inner fixed point with:

T1 = {a(object), b(object), c(object), p(object)}

So now, the second outer iteration will start the computation of the inner iteration again
and, in this iteration, nots are evaluated with respect to T1. As a consequence, c(object)
fails, since b(object) ∈ T1. The fixed point of the second inner iteration contains
p(object), a(object) and b(object), which is in fact the correct model for the object
object. Afterwards, the outer iteration needs one more computational step to determine
that a fixed point has been reached, and returns the model described. Since c(object) is
in the model, the query c(X) succeeds for X = object.
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The procedure for a lazily invoked iterative fixed point described above is summarized
in Figure 1 using predicates that are described in detail in Section 4.2. The tabled pred-
icate known/3 is used in each inner iteration to derive knowledge from the rules com-
ponent, while allModelsEntails/3 infers knowledge from the ontology via a tableau
proof. Within rules evaluated by known/3, the default negation of a DL-atom A is ob-
tained by the predicate dlnot(A), which succeeds if A was not proven in the last outer
iteration. Whenever a role is encountered for an individual, a check is made to determine
whether the related individual is already in the list of individuals in the fixed point, and
the individual is added if not. The predicates definedClass/2 and definedRole/3
are used to obtain the relevant classes and roles defined for a given individual over a
DL-safe MKNF Hybrid Knowledge Base. We assume that these predicates are defined
explicitly by the compiler or programmer, but they can also be inferred via the DL-safe
restriction. In fact, by bounding our program to DL-Safe rules, every rule in the hybrid
knowledge base must contain a positive predicate that is only defined in the rules. This
predicate limits the evaluation of the rules to known individuals, so that CDF-Rules can
infer the set of individuals that are applicable to a given rule, that is, its domain.

The algorithm shown in Figure 1 creates two different sets corresponding to the
application of the operator Γ of the MKNFWFS [7]. A credulous set, containing the
atoms that are true or undefined; and a skeptical set of the atoms that are true (cf.
Definition 7). As in the application of Γ , the T set is monotonically increasing, while
TU set is monotonically decreasing. Finally, after computing the sets and achieving
the fixed point, our algorithm returns the evaluation of known(Query, Iteration−1),
where Iteration represents the iteration where the outer fixed point was accomplished.
Since the first outer set obtained corresponds to the first iteration in the TU set, this
outer fixed point will be obtained in a TU iteration. Thus to check if Query is true, we
need to check if it is contained in the set inferred in Iteration − 1. If this is not the
case, Query is evaluated as undefined if it derived in Iteration, and as false otherwise.

4.2 Implementing MKNFW F S Components

We now provide a description of the various predicates in the algorithm of Figure 1,
discuss the manner in which the rule and ontology components exchange knowledge,
and how the fixed point is checked.

Rules Component. As mentioned, inferences from rules are obtained using the pred-
icate known/1 corresponding to K and dlnot/1 corresponding to not. Cf. Figure 2,
the call known(A) with A = p(O) first calls computeF ixedPoint(p(O)) which be-
gins the fixed point computation for O. computeF ixedPoint/1 was summarized in
Figure 1 and calls the lower-level known/3 and dlnot/3. Once the fixed point has
been reached, the final iteration indices for O are obtained from a global store us-
ing get object iter(p(O),Outer,Inner), and known/3 will be called again to determine
whether p(O) is true. This post-fixed point call to known/3 will simply check the ta-
ble, and so will not be computationally expensive. known/3 is always called with the
iteration indices in its head bound, and if p(O) is true in the current iteration, the table
entry will contain the iteration indices. p(O) is known if it can be derived from the
rules, calling it directly. Alternately, p(O) is true if O ∈ P was entailed by the the on-
tology in the last inner iteration step, as determined by the call allModelsEntails/3,
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Input: A query Query to a DL-Atom
Output: Value of the input query in MKNFWF S

addIndividuals(Query,IndividualList);1

foreach Individual in IndividualList do2

OutIter, InIter = 0;3

S = S1 = {};4

P = P1 = {};5

repeat6

P = P1;7

repeat8

S = S1;9

foreach Class in definedClass(Individual,Class) do10

Term = Class(Individual);11

S1 = S1∪ known(Term, OutIter, InIter);12

S1 = S1∪ allModelsEntails(Term, OutIter, InIter);13

S1 = S1∪ allModelsEntails(not Term, OutIter, InIter);14

end15

foreach Role in definedRole(Individual,Individual1,Role) do16

Term = Role(Individual,Individual1);17

add Individual1 to IndividualList if necessary18

S1 = S1∪ known(Term, OutIter, InIter);19

S1 = S1∪ allModelsEntails(Term, OutIter, InIter);20

S1 = S1∪ allModelsEntails(not Term, OutIter, InIter);21

end22

InIter++;23

until S = S1 ;24

P = S;25

OutIter++;26

until P = P1 ;27

end28

if known (Query,Final-1,Final) then29

return true30

else31

if known(Query,Final,Final) then32

return undefined33

else34

return false35

end36

end37

Fig. 1. The Top-Level Algorithm: ComputeFixedPoint(Query)

which checks for the entailment of O ∈ P in the previous inner iteration. In both cases,
care must be taken so that it is guaranteed that if ¬A holds, then not A holds as well.
In Definition 3 this is guaranteed by considering the addition of notNP in bodies of
rules with head P in one of the alternating operators. Identically, when we try to derive
known(A, OutIter, InIter) and the iteration OutIter is even (i.e. corresponding to a
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step where Γ ′
K, rather than ΓK, is being applied) , we further check if the ontology de-

rived ¬A in the last set. If so, then known(A, OutIter, InIter) fails. This restriction
is imposed by the predicate no prev neg/3:

known(A):-
computeFixedPoint(A), get_object_iter(A,OutIter,InIter),
known(A,OutIter,InIter).

:- table known/3.
known(A,OutIter,InIter):-

( call(A),
;

InIter > 0, LastIter is InIter - 1,
allModelsEntails(A,OutIter,LastIter) ),

( OutIter mod 2 =:= 1 -> true;
no_prev_neg(A,OutIter, LastIter) ).

no_prev_neg(_A,_OutIter, LastIter) :- LastIter < 0,!.
no_prev_neg(A,OutIter, LastIter) :-

tnot(allModelsEntails(not(A),OutIter, LastIter)).

Fig. 2. Prolog Implementation of K for Class Properties

On the other hand, the predicate dlnot(A) which uses closed world assumption,
succeeds if A fails. As discussed in Example 4, the evaluation of dlnot/2 must take
into account the result of the previous outer iteration. Accordingly, in Figure 3 the
call dlnot(A) with A = p(O) gets the current iteration for O, and immediately calls
dlnot/2. The second clause of dlnot/2 simply finds the index of the fixed point of the
previous outer iteration, and determines whether A was true in that fixed point. Since
the call to known/3 in tnot/1 is tabled, none of the predicates for not need to be
tabled themselves. As described before, each outer iteration represents an iteration in
T and TU sets of Definition 7 for MKNFWFS . As a result, T sets are monotonically
increasing whilst TU sets are monotonically decreasing. To assure that the first TU set
is the largest set, we compel all calls to dlnot/1s to succeed in the first outer iteration,
as represented by the first clause of dlnot/2.

dlnot(A):-
computeFixedPoint(A),
get_object_iter(A,OutIter,_InIter), dlnot(A,OutIter).

dlnot(_A,0):- !.
dlnot(A,OutIter):-

LastIter is OutIter - 1, get_final_iter(A,LastIter,
FinIter),

tnot(known(A,LastIter,FinIter)).

Fig. 3. Implementation of not for Class Properties
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:- table allModelsEntails/3.
allModelsEntails(not(Atom),_OutIter,_InIter):- !,

/* transform Atom to CDF to an object identifier and
class expression*/

/* add individuals to current fixed point list */
(rec_allModelsEntails(Id,CE) -> fail ; true).

allModelsEntails(Atom,_OutIter,_InIter):-
/* transform Atom to CDF to an object identifier and

class expression*/
/* add individuals to current fixed point list */
(rec_allModelsEntails(Id,not(CE)) -> fail ; true).

Fig. 4. Prolog Clauses for allmodelsEntails/3

Ontology Component. The tabled predicate allModelsEntails/3 provides the interface
to CDF’s tableau theorem prover (Figure 4). It is called with an atom or its negation
and with the indices of its outer and inner iterations both bound. The predicate converts
the atomic form of a proposition to one used by CDF. It translates a 1-ary DL-atom
representing an individual’s class membership to the CDF predicate isa/2, a 2-ary DL-
atom representing an individual’s role to the CDF predicate hasAttr/3 (see Section 3).
In addition, if Atom is a 2-ary role, the target individual may be added to the fixed point
set of individuals.

The tableau prover, called by rec allModelsEntails/2, ensures that it obtains all
information inferred by the rules during the previous inner iteration, in accordance with
Definition 8. This is addressed via the CDF intensional rules. In general, the architec-
ture of a CDF instance can be divided into two parts – extensional facts and intensional
predicates. Extensional facts define CDF classes and roles as simple Prolog facts; in-
tensional rules allow classes and roles to be defined by Prolog rules which are outside
of the MKNFWFS semantics. In our case, the intensional rules support a programming
trick to check rule results from a previous iteration. As shown in Figure 5 they directly
check the known/3 table for a previous iteration using the predicate lastKnown/1 (not
shown). If roles or classes are uninstantiated in the call from the tableau prover, all de-
fined roles and classes for the individual are instantiated, and called using lastKnown/1
against the last iteration of the rules.

Discussion. As described, CDF-Rules implements query answering to hybrid MKNF
knowledge bases, and tries to reduce the amount of relevance required in the fixed
point operation. Relevance is a critical concept for query answering in practical sys-
tems, however a poorly designed ontology or rules component can work against one
another if numerous individuals depend on one another through DL roles. In such a
case the relevance properties of our approach will be less powerful; however in such
a case, a simple query to an ontology about an individual will be inefficient in itself.
The approach of CDF-Rules cannot solve such problems; but it can make query an-
swering as relevant as the underlying ontology allows. Optimizations of the described
approach are possible. First is to designate a set of atoms whose value is defined only in
the ontology: such atoms would require tableau proving, but could avoid the fixed point
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isa_int(oid(Obj,NS),cid(Class,NS1)):-
ground(Obj),ground(Class),!,
Call =.. [Class,Obj], lastKnown(Call).

isa_int(oid(Obj,NS),cid(Class,NS)):-
ground(Obj),var(Class),!,
definedClass(Call,Class,Obj), lastKnown(Call).

hasAttr_int(oid(Obj1,NS),rid(Role,NS1),oid(Obj2,NS2)):-
ground(Obj1), ground(Obj2), ground(Role),!,
Call =.. [Role,Obj1,Obj2],
last_known(Call).

hasAttr_int(oid(Obj1,NS),rid(Role,NS1),oid(Obj2,NS2)):-
ground(Obj1), ground(Obj2), var(Role),!,
definedRole(Call,Role,Obj1,Obj2),
last_known(Call).

Fig. 5. Callbacks from the ontology component to the rules component

check of computeF ixedPoint/1. Within computeF ixedPoint/1 another optimiza-
tion would be to maintain dependencies among individuals. Intuitively, if individual I1

depended on individual I2 but not the reverse, a fixed point for I2 could be determined
before that of I1. However, these optimizations are fairly straightforward elaborations
of CDF-Rules as presented.

5 Conclusions

In this paper we described the implementation of a query-driven system, CDF-Rules,
for hybrid knowledge bases combining both (non-monotonic) rules and a (monotonic)
ontology. The system answers queries according to MKNFWFS [7] and, as such, is
also sound w.r.t. the semantics defined in [10] for Hybrid MKNF knowledge bases. The
definition of MKNFWFS is parametric on a decidable description logic (in which the
ontology is written), and it is worth noting that, as shown in [7], the complexity of rea-
soning in MKNFWFS is in the same class as that in the decidable description logic;
a complexity result that is extended to a query-driven approach in [1]. In particular, if
the description logic is tractable then reasoning in MKNFWFS is also tractable. Our
implementation fixes the description logic part to CDF ontologies that, in its Type-1
version, supports ALCQ description logic. CDF Type-0 ontologies are simpler, and
tractable and, when using Type-0 ontologies only our implementation exhibits a poly-
nomial complexity behavior. This fact derives from the usage of tabling mechanisms,
as defined in SLG resolution and implemented in XSB Prolog, though the proof of such
is beyond the scope of this paper. For space reasons it was impossible to include here
a proof of correctness of the implementation by relating it to the MKNFWFS tabling
framework of [1], SLG(O): however this can be done by formally relating the iterative
fixed point in Section 4 to the ORACLE RESOLUTION operation of SLG(O). We also
omit here comparisons between MKNF and other proposals for combining rules and
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ontologies, as we focus on the implementation rather than on the definition of a seman-
tics. For a survey on these proposals, see [6], and [10,7] for comparisons to MKNF.

CDF-Rules serves as a proof-of-concept for querying MKNFWFS knowledge bases.
As discussed, XSB and tractable CDF ontologies have been used extensively in com-
mercial semantic web applications; the creation of CDF-Rules is a step toward under-
standing whether and how MKNFWFS can be used in such applications. As XSB is
multi-threaded, CDF-Rules can be extended to a MKNFWFS server in a fairly straight-
forward manner. Since XSB supports CLP, further experiments involve representing
temporal or spatial information in a hybrid of ontology, rules, and rule-based con-
straints. In addition, since the implementation of Flora-2 [15] and Silk are both based on
XSB, CDF-Rules forms a basis for experimenting with MKNFWFS on these systems.
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Abstract. We have developed a system based on Answer Set Programming
(ASP) for the automatic generation of the teams of employees in the seaport of
Gioia Tauro. The problem here is to generate a correct allocation of the available
personnel of the international seaport of Gioia Tauro in such a way that the right
processing of the shoring cargo boats is guaranteed. To this end several constraints
have to be satisfied. Depending on the size and the load of cargo boats, an appro-
priate number of employees of different skills is required. The selection of the
employees and the role they play in the team (each employee might cover several
roles according with his/her skills) are subject to many conditions (e.g., fair dis-
tribution of the working load, tournament of the heavy/dangerous roles, etc.). The
system can build new teams, complete the allocation automatically when some
key employees are fixed manually, and check the correctness of manually gener-
ated team, providing proper explainations if no correct team can be generated. In
this application, the domain is modeled by exploiting ASP and implemented by
using the ASP system DLV. A set of suitably defined logic programs is exploited
for finding the desired allocation. The pure declarative nature of the language al-
lowed us for refining and tuning both problem specifications and encodings to-
gether while interacting with the stakeholders of the seaport. It is worth noting
that the possibility of modifying (by editing text files) in a few minutes a complex
reasoning task (e.g. by adding new constraints), and testing it “on-site” together
with the customer was a great advantage of our approach. The system is currenty
exploited by the ICO BLG company at the seaport of Gioia Tauro.

1 Scenario

The seaport of Gioia Tauro (http://www.portodigioiatauro.it) is the largest transship-
ment terminal of the Mediterranean Sea. Historically, container transshipments are the
main activity of the seaport (related problems were subject of extensive research [4]);
recently, Gioia Tauro has become also an automobile hub. Automobile logistics is car-
ried out by the company ICO B.L.G. (a subsidiary of the B.L.G. Logistics Group -
http://www.blg.de). Several ships of different size shore the port every day, transported
vehicles are handled, warehoused, if necessary technically processed and then delivered
to their final destination. The goal is to serve them as soon as possible. Data regarding
the shoring boats (arrival/departure date, number and kind of vehicles, etc.), is available
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Fig. 1. The Team-builder Graphic User Interface

at least one day in advance; and, suitable teams of employees have to be arranged for the
purpose. Teams are subject to many conditions. Some constraints are imposed by the
contract (e.g. an employee cannot work more than 36 hours per week, etc.), some other
by the required skills. Importantly, heavy/dangerous roles have to be turned over, and a
fair distribution of the workload has to be guaranteed. Once the information regarding
shoring boats is received, the management easily produces a meta-plan specifying the
number of employees required for each skill; but a more difficult task is to assign the
available employees to shifts and roles (each employee might cover several roles ac-
cording with his/her skills) in such a way that the above-mentioned constrains can be
satisfied every day. The impossibility of allocating teams to incoming boats might cause
delays and/or violations of the contract with shipping companies, with consequent pe-
cuniary sanctions for B.L.G. Thus, team building is a crucial management task.

2 ASP-Based Team Builder

Answer Set Programming (ASP) [1] is a purely-declarative logic programming lan-
guage allowing for disjunction and nonmonotonic negation. We exploited ASP for de-
veloping a team builder and, in this Section, we give a flavor of its working principles.
A simplified version of the kernel part of the employed ASP program is reported below:
(r) assign(Em, Sh, Sk) ∨ nAssign(Em, Sh, Sk) :− skill(Em, Sk), metaP lan(Sh, Sk, , D), not absent(Em),

not manuallyExcluded(Em), workedHours(Em, Wh), W h + D ≤ 36.
(c1) :− metaP lan(Sh, Sk, EmpNum, ), #count{Em : assign(Em, Sh, Sk)} �= EmpNum.
(c2) :− assign(Em, Sh, Sk1), assign(Em, Sh, Sk2), Sk1 �= Sk2.
(c3) :− wstats(Em1, Sk, , LastT ime1), wstats(Em2, Sk, , LastTime2), LastTime1 > LastTime2,

assign(Em1, Sh, Sk), not assign(Em2, Sh, Sk).
(c4) :− workedHours(Em1, W h1), workedHours(Em2, Wh2), threshold(T r), Wh1 + Tr < Wh2,

assign(Em1, Sh, Sk), not assign(Em2, Sh, Sk).

(raux)workedHours(Em, Wh) :− skill(Em, ), #count{H, Em : wstats(Em, , H, )} = Wh.

The inputs are: the employees and their skills (predicate skill(employee, skill); a meta-
plan specification (predicate metaPlan(shift, skill, neededEmployees, duration)); weekly
statistics specifying for each employee both the number of worked hours per skill and the
last allocation date (predicate wstat(employee, skill, hours, lastTime)); absent employ-
ees (predicate absent(employee); and employees excluded by a management decision
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(predicate manuallyExcluded(employee)). Following the guess&check programming
methodology [2], the disjunctive rule r generates the search space by guessing the assign-
ment of a number of available employees to the shift in the appropriate roles. Absent or
manually excluded employees, together with employees exceeding the maximum num-
ber of weekly working hours are automatically discarded. Then, admissible solutions
are selected by means of constraints: c1 discards assignments with an wrong number of
employees in some skill; c2 avoids that an employee covers two roles in the same shift;
c3 implement the tournament of roles; and c4 guarantees a fair distribution of the work-
load. raux computes the total number of worked hours per employee. (If no plan can be
generated, then the system suggests the user to relax some constraints). Note that, only
the kernel part of the employed logic program is reported here (in a simplified form),
and many other constraints were developed, tuned and tested.

3 The System

The team-building system integrates the ASP system DLV [2] and features a Graphi-
cal User Interface (GUI) developed in Java. In particular, the GUI is based on the Rich
Client Platform (RCP) technology; whereas, reasoning services and and data-storage
features are implemented with OntoDLV [3], an ontology management and reason-
ing system based on DLV. The GUI combines in a single frame all the controls (see
Figure 1). A tree-shaped calendar (displayed on the left) allows for browsing and schedul-
ing working activities. Meta-plans specifications, usually identified by the name of the
corresponding cargo boats (e.g. Velasquez, Autoroute), are the leafs of the tree, which can
be added or removed by right-clicking on their name and selecting the proper command
from a context-menu. Meta-plans information (ship arrival and departure date, available
processing time and requested skills) is displayed in (and is modified by editing) the “Lo-
gistics” panel. Below, the “Inclusion” and “Exclusion” panels allows for pre-assinging
(or excluding) specific employees from the team. To run the system the user selects a
meta-plan (from the tree), right-clicks on it (a context-menu appears) and chooses the
“run” item. Input information and personnel statistics are fed into the DLV system and
the result is displayed on the top-right panel (“Team Properties”). The computed team
can be also modified manually, and the system is able to verify if the manually-modified
team still satisfies the constraints. In case of errors, causes are outlined and suggestion for
fixing a problems proposed. The interface gives full control on the status o the seaport-
staff: available/unavailable personnel is listed on the bottom-right panel, and the alloca-
tion statistics are reported in the bottom panel.
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José Iborra

DSIC, Universidad Politecnica de Valencia, Spain
pepeiborra@gmail.com

Abstract. We describe a monad for checked, explicitly typed excep-
tions, which provides as a simple Haskell library what for other lan-
guages is a native feature. Multi parameter type classes and overlapping
instances are the only essential extensions to Haskell 98 required.

1 Introduction

Even well-typed programs may on occasions fail. Error handling is a time-
consuming programming task as for every function call, the programmer must
write code to check whether the result is an error and handle it appropriately.
As our running example we will use a tiny interpreter of arithmetic addition and
division.

data Expr = Add Expr Expr | Div Expr Expr | Val Double

eval0 :: Expr -> Double
eval0 (Val x) = x
eval0 (Add e1 e2) = eval0 e1 + eval0 e2
eval0 (Div e1 e2) = eval0 e1 / eval0 e2

main0 :: Double
main0 = eval0 (Div (Val 6.0) (Val 2.0))

When done naively, error handling results in a cascade of nested if/case expres-
sions which obscure the essential intention of the code. This is demonstrated in
Figure 1 by extending the interpreter to check for division by zero.

Now every call to eval1 can result in an error and the code must check whether
this is the case before continuing. Because this requieres q lot of extra boiler-
plate which ultimately obscures the essential intent of the code, most modern
programming languages feature a mechanism based on the notion of exceptions.
Arguably in Haskell the need is much less pressing, thanks to the widespread
use of monads [13] to hide the noise introduced by error handling and even pro-
vide exceptions as a library. A monad is a parameterized type constructor m of
computations that support the following two operations.
� This work has been partially supported by the EU (FEDER) and Spanish
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data ArithError = DivByZero | ...

eval1 :: Expr -> Either ArithError Double

eval1 (Val x) = Right x

eval1 (Add e1 e2) = case eval1 e1 of

Left e -> Left e

Right x1 -> case eval1 e2 of

Left e -> Left e

Right x2 -> Right(x1 + x2)

eval1 (Div e1 e2) = case eval1 e2 of

Left e -> Left e

Right 0 -> Left DivByZero

Right x2 -> case eval1 e1 of

Left e -> Left e

Right x1 -> Right(x1 / x2)

main1 :: Either ArithError Double

main1 = case eval1 (Div (Val 6.0) (Val 2.0)) of

Left DivByZero -> putStrLn "division by zero"

Right v -> print v

Fig. 1. Eval with explicit error handling

return :: Monad m => a -> m a
>>= :: Monad m => m a -> (a -> m b) -> m b

return x creates the unit computation that returns a value x, and >>= (pro-
nounced bind) applies a monadic function to a computation creating a new
computation. Monads are extremely useful to model a number of computational
effects. For instance, MonadError is a standard extension to the Monad interface
to model exceptions via two additional operations throwError and catchError.

throwError :: MonadError e m => e -> m a
catchError :: MonadError e m => m a -> (e -> m a) -> m a

Haskell includes the so-called do notation, syntactic sugar to simplify pro-
gramming with monads. The use of bind is implicit in do notation; for instance,
the expression getContents >>= \x -> return (length x) is written more
conveniently as do {x <- getContents; return (length x);}. Using do no-
tation and the MonadError operations we can rewrite eval1 in monadic style
succesfully hiding the error handling noise, as seen in figure 2. For a number
of reasons however, MonadError has never been very popular among Haskell
programmers. We blame this to the fact that it is not easy to combine computa-
tions throwing different types of exceptions. One must introduce a new datatype
to carry every possible exception type. Suppose we want to pair eval2 with a
parser for expressions which can throw a ParseError.

parseExpr :: MonadError ParseError m => String -> m Expr
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eval2 :: MonadError ArithError m => Expr -> m Double

eval2 (Val x) = return x

eval2 (Add a1 a2) = do

v1 <- eval2 a1

v2 <- eval2 a2

return (v1 + v2)

eval2 (Div a1 a2) = do

v1 <- eval2 a1

v2 <- eval2 a2

if v2 == 0 then throwError DivByZero else return (v1 / v2)

main2 :: MonadError ArithError m => m Double

main2 = eval2 (Div (Val 6.0) (Val 2.0) )

‘catchError‘ \DivByZero -> putStrLn "division by zero"

Fig. 2. Eval in the Error Monad

To combine parsing and evaluation, we are forced to introduce a new datatype
modelling the sum of ParseError and ArithError, and then lift all the monadic
operations to use this new error type.

data PAError = ParseError ParseError | ArithError ArithError
liftParse :: MonadError PAError m => String -> m Expr
liftParse = ...
liftEval :: MonadError PAError m => Expr -> m Double
liftEval = ...

Aside from the extra boilerplate code and naming overhead, now the pro-
grammer is expected to handle both parse errors and arithmetic errors every
time catchError is used in such a computation, even if the parsing stage has al-
ready been completed and thus parsing errors cannot arise anymore. In general,
with this approach the programmer is expected by the compiler pattern match
checker to handle every exception type in the sum, even in situations when it is
known that certain kind of exceptions cannot arise anymore.

A more refined option would be to employ an extensible sum type, in the
style of [8], to handle the combination of exceptions from different kinds of
computations. While this option would help in reducing the amount of boilerplate
code needed, the programmer would still be expected to handle every exception
type in the sum, even the ones the computation cannot possibly throw.

Let us remark this point again before considering the next alternative. The
programmer should be warned at compile time if the program does not han-
dle all the possible exception types. No exception should be allowed to escape
a program, since this constitutes an unhandled runtime error equivalent to a
pattern matching error in a functional language or a null pointer exception in
an imperative language. The Java programming language introduces checked
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exceptions [3], providing exception coverage via exception-specific type annota-
tions produced by the compiler, which result in type errors if exceptions are
not eventually handled. The MonadError class provides exception coverage via
the totality checking of pattern matching in the handlers, but this solution is
strictly inferior since in Java one can handle a subset of the exceptions thrown
by a computation, while in a MonadError computation a handler must have a
case for every exception in the set, as shown in the previous example. Therefore
we claim that the need to monolithically combine different exception types in
MonadError amounts to giving up exception coverage.

Since the introducion of monadic IO, Haskell has also supported native excep-
tions inside the IO monad. These are not modeled by a monad; it is the actual
runtime which handles them directly, as done traditionally in most programming
languages. In Haskell native exceptions the Exception type is abstract and fixed,
and the primitives throwIO and catchIO have the following signatures.

throwIO :: Exception -> IO a
catchIO :: IO a -> (Exception -> IO a) -> IO a

Native exceptions as shown above suffer from several shortcomings which limit
their usefulness, including poor extensibility and null exception coverage.

In its current version (6.10), the Glasgow Haskell Compiler features a new
library for extensible hierarchical exceptions [9], which solves the composability
problem by introducing dynamically typed exceptions and exception handlers,
but in the process it also gives up on exception coverage, as we will see in the
next section.

1.1 Plan

In this paper, we examine one way to restore exception coverage, accomplished
by computing the list of the exceptions a computation can throw and showing it
in its type. The scheme is based in the extensible exceptions of Marlow [9], and
employs type class constraints to track the exceptions. Moreover, the scheme is
purely static and involves absolutely no performance penalties at runtime.

We summarise extensible exceptions in Section 2, then in Section 3 our scheme
is introduced and applied to extensible exceptions in the IO monad. Section 4
takes advantage of the fact that there is nothing IO specific in our approach to
provide generally useful explicit exceptions as a monad transformer. We discuss
unchecked exceptions in Section 5 and mechanisms for preventing the user from
overriding the scheme in Section 6. Section 7 concludes.

2 Extensible Hierarchical Exceptions

In [9], Marlow identifies several deficiencies including the lack of exception cov-
erage in Haskell 98 native exceptions. The main deficiency pointed by Marlow
is that since the Exception type is fixed to roughly a string type, program-
mers are forced to fall back to nasty hacks, e.g. serialization techniques, if they
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want to have their own exception types. From there, Marlow constructs a list
of desirable requirements, and designs an encoding of exceptions which satisfies
them. The requirements can be summed up as extensibility and the ability to
manipulate exceptions in sets or hierarchically. That is, in addition to an exten-
sible exception type, one also wants it to be hierarchical; it is very natural to
model exceptions as a hierarchy and define handlers which catch entire sets of
exceptions. Unfortunately exception coverage is not included in Marlow’s list of
requirements.

In the following we summarize the essential aspects of the encoding, in order
to make apparent why it gives up exception coverage.

Firstly the fixed Exception type is replaced by a class of types.

class (Typeable a, Show a) => Exception a where

Types which wish to instantiate this class need to also belong to the Show and
Typeable classes. That is, they must be equipped with an operation to serialize
a value to a string, and they must support dynamic typing (Typeable is the
standard encoding of dynamic typing in Haskell, providing operations to reify a
type as well as type casting). As an example, in order to make ArithError an
instance of Exception we declare it as follows.

data ArithError = DivOverflow | ... deriving (Show,Typeable)
instance Exception ArithError

Throwing and catching exceptions is straightforward, the only thing to note is
that since exceptions are now dynamically typed, a type annotation is included
to pin down the type of the handler.

throw DivOverflow ‘catch‘ \(e :: ArithError) -> print e

Exceptions are boxed in the existential container SomeException, and the
underlying implementation works with this single, fixed type. SomeException
also serves as the root of the exception hierarchy: every exception type introduced
by the user is a subclass, as we will see in section 3.2.

data SomeException = forall e. Exception e => SomeException e

throw and catch handle the boxing and unboxing on top of the primitives
provided for native exceptions in the implementation. They are defined (at least
conceptually) as follows:

throw :: Exception e => e -> IO a
throw e = primThrow (SomeException e)

catch :: Exception e => IO a -> (e -> IO a) -> IO a
catch m handler = primCatch m h’ where
h’ e = case cast e of

Just e’ -> handler e’
Nothing -> throw e
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newtype EIO l a = EIO {runEIO::IO a} deriving Monad

class Exception e => Throws e s

throwEIO :: (Throws e l, Exception e) => e -> EIO l a

throwEIO e = EIO (Control.Exception.throw e)

data Caught e l

instance Exception e => Throws e (Caught e l)

instance Throws e l => Throws e (Caught e1 l)

instance Exception e => Throws e (Caught SomeException l)

catchEIO :: Exception e =>

EIO (Caught e l) a -> (e -> EIO l a) -> EIO l a

catchEIO (EIO action) h = EIO (primCatch action (runEIO . h))

where primCatch = Control.Exception.catch

Fig. 3. The EIO Monad

where the function cast is part of the Typeable library for dynamic casts:

cast :: (Typeable a, Typeable b) => a -> Maybe b

And now it should be clear why exception coverage is lost. Since the type
checker does not know anything about the type of exceptions being thrown by
a computation -and for good reason, as this is the core feature which allows
the library to provide extensible exceptions- cheking for completeness of pattern
matching cannot help with coverage checking any more.

3 Explicitly Typed Exceptions

Our position is that the list of requirements given in [9] is missing two essential
points.

• It should be possible to determine statically the exceptions a computation
can throw.

• The compiler should check that every exception is eventually handled.

In this section we discuss a lightweight extension to the extensible exceptions
framework in order to cover these two requirements. The main idea is to track the
list of exceptions that a function can raise in its own type. This directly satisfies
the first point above, but also the second one, at least indirectly, since now one
can express what a exception-free computation is in the type system, and thus
can construct a run function which accepts only exception-free computations.
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In order to track the list of exceptions we will unsurprisingly be using a monad,
the EIO monad of IO computations with explicit exceptions. Figure 3 contains
all the code related to the EIO monad. EIO is declared as a newtype wrapper
around IO1, with an extra phantom [6] type parameter.

The throwEIO function is defined exactly in the same way as the throw prim-
itive for extensible exceptions. But its type signature additionally attaches a
Throws constraint to the type of the resulting computation. Let us see an ex-
ample of the types returned by the Haskell compiler for expressions involving
throwEIO.

> e1 = throwEIO DivByZero
e1 :: Throws ArithError l => EIO l a

> f x = if x == (0::Int) then throwEIO DivByZero else return x
f :: Throws ArithError l => Int -> EIO l Int

The crux of the approach is the addition of the l phantom type parameter,
used to carry Throws constraints denoting the exceptions that can be thrown by
the EIO l computation. They are encoded as Throws e l type constraints, where
Throws e l is a type class with no methods. It can be seen as a binary relation
on types, although a more practical intuition is that it expresses a property of a
computation EIO l, namely the fact that it can throw an exception e.

Now, we need a definition of catch that, in addition to capturing the exception
at run time, removes it from the set of constraints at type checking time. We
introduce a datatype Caught with no constructors as a witness of the fact that
an exception is captured and thus can be removed from the constraint set. The
instances of Throws explain this story to the type checker. The first instance
states that Caught e l removes exception e, the second one states that any
other exception e1 remains, and the third one states that SomeException is the
root of the hierarchy and capturing it removes all exceptions. As with throwEIO,
catchEIO is nothing more than vanilla catch for extensible exceptions with only
more structure at the type level.

Finally, the runEIO function executes a EIO computation m returning a plain
IO computation. The typechecker ensures that m cannot fail with an uncaught
exception. As an example, we can modify the code for eval2 to replace the
use of throwError by throwEIO, as shown in figure 4. Now the type of main3
rightly states that it throws no exception, as opposed to the type of main2 in
the previous example.

If we try to run a computation with eval3 without handling ArithError, we
get a compile time error.

> :type runEIO (eval3 (..))
Error: No instance for (Throws ArithError l)

The new encoding for explicitly typed exceptions does not affect the good
compositionality features of Marlow’s exceptions. For example, we can easily
combine a parsing function with our evaluator.
1 And hence is a monad too by construction.
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eval3 :: Throws ArithError l => Expr -> EIO l Double

eval3 (Val x) = return x

eval3 (Add a1 a2) = ...

eval3 (Div a1 a2) = do

v1 <- eval3 a1

v2 <- eval3 a2

if v2 == 0 then throwEIO DivByZero else return (v1 / v2)

main3 :: EIO l Double

main3 = eval3 (Div (Val 6.0) (Val 2.0) )

‘catchEIO‘ \DivByZero -> putStrLn "division by zero"

Fig. 4. Eval in the EIO monad

parseExpr1 :: Throws ParseError l => String -> EIO l Expr

f :: (Throws ParseError l, Throws ArithError l) => EIO l Double
f = do {x <- getContents; p <- parseExpr1 x; eval3 p}

3.1 Generalizing Our Approach

One of Marlow’s requirements is that the primitives for throwing and handling
exceptions are always the same, regardless of the types involved. In this section
we introduce overloaded versions of throw and catch which work with a family
of monads, including the EIO monad and the regular IO monad. Thanks to these
functions one can write code which works with any exceptions framework.

For each overloaded primitive we introduce a type class and two instances for
EIO and IO. The MonadThrow class is defined without much effort below.

class (Monad m, Exception e) => MonadThrow e m where
throw :: e -> m a

instance Exception e => MonadThrow e IO where
throw = Control.Exception.throw

instance Throws e l => MonadThrow e (EIO l) where
throw = throwEIO

The situation is quite more involved for the catch primitive. It is possible to
define the MonadCatch class, but the Haskell 98 system is simply not expresive
enough, even when extended when multi parameter type classes. Either func-
tional dependencies (FDs) [5] or associated types (ATs) [1] are required in order
to preserve type inference. Figure 5 shows an encoding of MonadCatch using FDs
and the two instances for IO and EIO.

The details of the encoding of MonadCatch are not discussed here for the sake
of simplicity, as it is not essential to the scheme, but notice how defining the
instances themselves is rather simple. We also point out that the use of the
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class (Exception e, Monad m, Monad m’) =>

MonadCatch e m m’ | e m -> m’, e m’ -> m where

catch :: m a -> (e -> m’ a) -> m’ a

instance Exception e => MonadCatch e IO IO where

catch = Control.Exception.catch

instance Exception e => MonadCatch e (EIO (Caught e l)) (EIO l)

where catch = catchEIO

Fig. 5. MonadCatch with Functional Dependencies

overloaded catch method can be less convenient in practice. Consider a new
version of eval using the overloaded version of throw. The type inferred will be

eval4 :: MonadThrow ArithError m => Expr -> m Double

This type is the most desirable one. It tells us that eval4 may fail with an
arithmetic error in any monad m which supports throw. However, the types
inferred in presence of the overloaded version of catch are not so crisp.

main4 :: (MonadThrow ArithError m, MonadCatch ArithError m m’) =>
Expr -> m’ Double

main4 = eval4 (Div (Val 6.0) (Val 2.0))
‘catch‘ \DivByZero -> putStrLn "division by zero"

The MonadThrow ArithError constraint is not discharged automatically. In-
stead the constraint is propagated, and a new MonadCatch constraint is intro-
duced, leading to a rather long type context. On the other hand, it is still possible
to instantiate m’ to a concrete monad and recover the standard types. Instan-
tiating to IO will always eliminate the constraints, by definition. Instantiating
to EIO will make them go away in this case too, since indeed main4 can throw
no exception. In general, instantiating to EIO computes the list of remaining
unhandled exceptions and makes them explicit as Throws constraints.

3.2 Dealing with the Hierarchy of Exceptions

The design proposed by Marlow allows for a limited form of exception subtyping
based on a hierarchy of layers of existential type wrappers. For instance, we may
wish to keep track of whether an overflow exception comes from a sum or from
a division, by defining an exception Overflow and two subclasses SumOverflow
and DivisionOverflow. This is done by creating a new existential wrapper
Overflow which will be used as an intermediate layer before SomeException.

data OverflowException -- left abstract for our purposes

data SumOverflow = SumOverflow deriving (Show, Typeable)
data DivisionOverflow = DivisionOverflow deriving (Show, Typeable)
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It is not essential to describe the encoding here in any further detail. The only
relevant bit is that it is not possible to learn from the types any information about
the subtyping relation, as the relation is encoded at the value level and not at
the type level. That is, when an exception e is handled, the Throws e constraint
should be discharged together with any Throws constraints corresponding to a
subclass of e. Unfortunately, there is no way to find out which are the subclasses
of an exception.

Since this information is not readily available at the type level, the program-
mer will have to “introduce” it manually. This is far from ideal, but fortunately
not too hard and could be automated using a macro system like CPP or Tem-
plate Haskell. A Throws instance must be introduced for every ancestor-child
relation. For the overflow example, this means that two Throws instances are
needed.

instance Throws SumOverflow (Caught OverflowException l)
instance Throws DivisionOverflow (Caught OverflowException l)

At this point it becomes more apparent that the Throws type class is encoding
a relation, at the type level, between exception types and their handlers. To
simplify the treatment of multi level hierarchies it would be desirable to declare
that Throws is a transitive relation.

instance ( Throws parent (Caught grandparent l)
, Throws child (Caught parent l)
) => Throws child (Caught grandparent l)

But this instance clearly conflicts with the second instance for Caught defined
before in figure 3, as both have the same head modulo variable names. It should
not be surprising that it is not possible to encode transitivity directly in this
way, since after all the Haskell type checker is not a theorem prover. So even
though with due effort there may be a more indirect way to encode transitivity
indeed, we don’t discuss that problem here. It is likely that the price paid would
be too high, in the form of unreadable error messages or poor robustness of the
encoding.

4 General Purpose Explicitly Typed Exception Monads

There is nothing specific to the IO Monad in our scheme. In fact we can com-
bine it with the extensible exceptions of Marlow in order to obtain a general
purpose monad for exceptions. We identified the main problem with the existing
MonadError encoding as the inability to compose code throwing exceptions of
different types. As Marlow has already solved the composability problem and our
scheme recovers exception coverage, all we need to do is to put them together.
We package the result as a monad transformer, which can then be used to add
explicitly typed exceptions to any existing monad.

A monad transformer [8] is a type-level function that takes a monad as in-
put and creates another monad. Monad transformers can be stacked, and every
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newtype EMT l m a = EMT {unEMT :: m(Either SomeException a)}

runEMT :: Monad m => EMT l m a -> m a

runEMT (EMT m) = liftM fromRight m where fromRight (Right x) = x

instance Monad m => Monad (EMT l m) where

return = EMT . return . Right

EMT emt >>= f = EMT (do v <- emt

case v of

Left e -> return (Left e)

Right x -> unEMT (f x))

instance MonadTrans (EMT l) where

lift = EMT . liftM Right

throwEMT :: (Monad m, Exception e, Throws e l) -> e -> EMT l m a

throwEMT = EMT . return . Left . toException

instance (Monad m,Exception e,Throws e l) => MonadThrow e (EMT l m) where

throw = throwEMT

catchEMT (Monad m, Exception e) =>

EMT l m a -> (e -> EMT (Caught e l) m a) -> EMT l m a

catchEMT (EMT m) h = EMT (do v <- unEMT m

case v of Right x -> return (Right x)

Left e -> case fromException e of

Nothing -> EM (Left e)

Just e’ -> h e’)

instance (Monad m, Exception e) =>

MonadCatch e (EMT (Caught e l) m) (EMT l m) where

catch = catchEMT

Fig. 6. A monad transformer for checked, explicit exceptions

transformer adds zero or more effects to the stack. In this way a monad can be
constructed piecemeal from a library of monad transformers. A monad trans-
former is represented in Haskell as a type constructor equipped with an instance
of MonadTrans. The lift method lifts a computation in the underlying monad
to the transformed monad.

class MonadTrans t where lift :: m a -> t m a

The monad transformer EMT of computations with checked, explicit exceptions
is defined in figure 6. The code for the Monad instance follows from the Either
monad studied at the beginning of the paper, only extended to deal with an
underlying monad. The meaning of the MonadThrow and MonadCatch instances
should be clear from the EIO monad defined in the previous section. Finally, the
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newtype Identity a = Identity {runIdentity :: a}

instance Monad Identity where

return = Identity

Identity m >>= k = k m

Fig. 7. The Identity Monad

runEMT function safely removes the Right constructor and returns the
computation inside; no test for a Left constructor is necessary since it is
guaranteed that the result cannot be an exception.

The EMT transformer can be instantiated with the standard Identity monad
(figure 7) to obtain a exceptions monad. Using it it is possible can produce a
version of our arithmetic evaluator which is guaranteed to never terminate with
an unhandled exception and, as opposed to eval3, does not require running
in the IO monad. We could define a new version eval5 using the throwEMT
primitive, but actually eval4 can be reused directly, thanks to the MonadThrow
instance of EMT. The compiler will infer the type Double for main5 below.

main5 = let runEM = runIdentity . runEMT
in runEM (eval4 (..) ‘catch‘ \DivByZero -> ..)

The EMT monad and the MonadThrow and MonadCatch classes are available
for experimentation in the control-monad-exception package in Hackage [4]
released as a companion of this paper.

5 Unchecked Exceptions

Checked exception mechanisms often include a facility to escape the rigidness of
the mechanism in a controlled way. For instance, in Java every exception which
is a subclass of RuntimeException is not checked. Our scheme is flexible enough
to offer

• turning off the checking altogether.
• selective unchecked exceptions, by defining an exception to be unchecked.
• provide maximum static coverage checking even unchecked exceptions.

Checking can be turned off by introducing a function tryEMT (resp. tryEIO) that
will accept any computation regardless of the Throws constraints associated to
it, and will return either a result or an exception. tryEMT can be defined with
the help of a type flag AnyException with a Throws instance that discharges
any existing Throws constraint.

data AnyException
instance Throws e AnyException

tryEMT :: EMT AnyException m a -> m (Either SomeException a)
tryEMT (EMT m) = m
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To turn an exception into an unchecked exception, all that is needed is to
define an unconditional Throws instance, i.e. one which is trivially satisfied. For
example, ArithError can be turned into an unchecked exception as follows.

instance Throws ArithError l

Although this is very simple and convenient, and even though the fact that
an exception e is unchecked is documented in the type system (by its Throws
instance), it might be better to make this fact more explicit. We can do better by
using an auxiliary type class UncheckedException to declare that an exception
is unchecked.

class Exception e => UncheckedException e

Now, if we do nothing more, unchecked exceptions are still checked. If we wish
to turn off the checking of unchecked exceptions, we instantiate the phantom
type of our monad, be it EIO or EMT, with a type flag WithUnchecked.

data WithUnchecked
instance UncheckedException e => Throws e (WithUnchecked l)

runEMTWithUnchecked :: EMT WithUnchecked m a -> m a
runEMTWithUnchecked = runEMT

Thanks to the accompanying Throws instance, exceptions which are instances
of UncheckedException see their Throws constraints discharged when the flag
is enabled. In effect, they are still explicitly typed, but runEMTWithUnchecked2

will not complain if they escape without being handled.

6 Closing the Throws Class

Defining the EMT (resp. EIO) type as an abstract datatype by not exporting its
contructors and the type flags defined in the previous section is not enough
to ensure that there is no way to bypass the type checker and disable checked
exceptions. Even without access to the constructors, the user can work around
the scheme by conjuring a Forgetful type flag similar to the AnyException flag
used before to disable checked exceptions.

unsafeRunEMT :: EMT Forgetful m a -> m a
unsafeRunEMT = runEMT

In order to patch this hole, the ability of the user to define new type flags
must be restricted. The only way to do this is to close the Throws type class
using one of the existing techniques (see e.g. [10]). Closing the Throws type class
is apparently at odds with the problem of handling exception hierarchies, where
2 Although runEMTWithUnchecked is naively defined as a synonym of runEMT, in prac-

tice one would add a default handler to capture any unchecked exceptions and avoid
a pattern match failure error at runtime.
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user defined Throws instances encoding hierarchical relations are needed, but it
turns out that it is possible to selectively close the second type parameter of
Throws, allowing instantiations to Caught e, while leaving the first one open.

Following [10] we define a new type class Allowed, which is not exported, and
add a Allowed constraint on the second parameter l in the declaration of the
class Throws l.

class Allowed l
instance Allowed l => Allowed (Caught e l)

class (Exception e, Allowed l) => Throws e l

Trying to define instance Throws Forgetful l will now fail with a type
error, since the Allowed constraint is not satisfied.

No instance for (Allowed Forgetful)
Possible fix: add an instance ... for (Allowed Forgetful)

Since the user has no way of manufacturing a new Allowed instance, the net
effect is that the second parameter of the Throws class is closed.

7 Discussion

Exceptions are a feature of most programming languages nowadays. Haskell
supports them either via the IO or the MonadError monad, but both encodings
are still missing an important feature: static coverage checking of exceptions.

This paper shows a way to recover static coverage when extensible exceptions
are used, providing self-documenting, explicitly typed exceptions. Most of the
tricks used in the article are part of the functional programming folklore, but the
reader will agree that they are put together with great effect: our scheme provides
explicitly typed, checked and unchecked exceptions, is easy to understand, fits
in a few lines of code, and best of all, comes for free: the implementation is
purely static and imposes no extra runtime cost at all. Finally, all this is publicly
available in Hackage in the package control-monad-exception [4].

Related work. We have already mentioned the work of Marlow. The next closest
work is by Teller et al. [12] on the excellent Catch Me library of type-safe,
monadic exceptions for Ocaml. They analyze an error monad like the one used
in the introduction of this article, and point out the shortcomings we identified:
lack of compositionality and loss of coverage. Their library uses polymorphic
variants [2] (extensible sum types) to improve compositionality by eliminating
the boilerplate needed to combine different exception types. This goes a long
way towards getting coverage exception too, although it does not completely
solve the problem as one is still expected to handle every exception type in the
sum. As a side note, they mention that the use of the dynamic facilities provided
by Typeable would forbid any automatic coverage check. We just showed that
actually the use of Typeable is no obstacle at all.
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On a broader scope, the Catch tool [11] for Haskell uses static analysis to
guarantee that a program cannot fail with a pattern match failure, even in the
presence of non exhaustive pattern matches. Similarly, the OcamlExc [7] tool
uses static analysis to infer the exceptions an Ocaml computation can produce
and to provide coverage. It is unclear how well these would interact with the
dynamic mechanism used by the extensible exceptions of Marlow.

Acknowledgements. The author would like to express his gratitude to Bernie
Pope for his valuable feedback on a draft version of the article.
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Abstract. We show how testing convertibility of two types in depen-
dently typed systems can advantageously be implemented instead un-
typed normalization by evaluation, thereby reusing existing compilers
and runtime environments for stock functional languages, without peek-
ing under the hood, for a fast yet cheap system in terms of implementa-
tion effort.

Our focus is on performance of untyped normalization by evaluation.
We demonstrate that with the aid of a standard optimization for higher
order programs (namely uncurrying), the reuse of native datatypes and
pattern matching facilities of the underlying evaluator, we may obtain a
normalizer with little to no performance overhead compared to a regular
evaluator.

1 Introduction

The objective here is to achieve efficient strong reduction (or full normalization)
of terms in the λ-calculus. By strong reduction we mean the β-reduction of all
redexes in a term, including inside functional values. By efficient we mean speedy
execution on stock hardware.

Most implementations of the λ-calculus, such as those underpinning many
functional languages, only implement weak reduction (also called evaluation).
That is, reduction never occurs inside function bodies until these functions are
applied to actual arguments. But for our purposes, weak reduction is not always
enough.

Dependently typed theories underlie many proof assistants such as Agda, Coq,
or Epigram. Such theories allow one to use a different type in lieu of another
type so long as the two are convertible. Type checking a term therefore entails
checking the convertibility of arbitrary terms (usually, this means deciding β-
equivalence). This is typically captured by the following conversion rule:

Γ � a : τ τ ≡ τ ′ : s
Γ � a : τ ′

It is therefore the case that type checking (or equivalently proof checking) in such
systems incurs the need to carry out arbitrary β-reductions. Efficient (full) nor-
malization is particularly important when checking types entails a large amount
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of computation, as can often be the case, notably in proofs by reflection. Gré-
goire and Mahboubi [14] and Gonthier [12] provide ideal examples of such proofs.
Other heavy users of normalization include partial evaluation, since specializing
a function to statically known arguments amounts to fully normalizing this par-
tially applied function.

Of late, functional languages have seen their influence considerably increase
and their scope of application in the industry and in academia reach previously
unforeseen niches. An enabling ingredient to this success has been the availability
of efficient evaluation mechanisms for programs written in these languages, con-
tending even with lower level imperative languages for the performance crown.
A particularly elegant idea, normalization by evaluation (NbE), proposes to ex-
ploit off-the-shelf evaluators to implement normalization, rather than rolling out
a custom built normalizer from scratch [2, 3, 4, 7, 10, 11]. All the better for speedy
execution on stock hardware: some evaluators for functional languages have ben-
efited from dozens of man years spent pouring over complex optimizations and
tweaking the execution paths on a multitude of computer architectures.

Unfortunately, all flavors of NbE proposed so far have, to the best of our
knowledge, achieved one or the other of the following two goals, but never both:

1. generalize to well typed terms in arbitrarily complex type systems.
2. Avoid making the cost of each reduction significantly higher than that of the

underlying evaluator.

Starting from a normalizing interpreter for the λ-calculus with constants, we it-
eratively improve the performance of the evaluator through equational reasoning
and the introduction of higher order abstract syntax (HOAS), ultimately deriv-
ing a form of normalization by evaluation. In contrast to usual approaches to
NbE, where the normalization is type driven, and along the same lines as Aehlig
et al. [1] and Filinski and Rohde [11], we shunt the first problem by deriving
an untyped variant of NbE that finds the normal form of all λ-terms if there is
one (Section 2). We then show how to improve on this naive implementation to
the point where the time cost of β-reduction is typically within a few percent-
age points of that of the underlying evaluator. We demonstrate this using a few
benchmarks whose results we discuss in Section 4.

Our main contribution is to show how to derive an efficient yet lightweight
method for normalizing arbitrary λ-terms by enlisting the help of a few standard
optimizations, further reaffirming that beyond the theoretical interest in NbE,
it is also a realistic execution technique whose performance is on par with the
best (albeit weak) reduction devices available.

2 Untyped NbE

2.1 The Framework

Consider normalization of the pure λ-calculus with constants. By iteratively and
exhaustively applying the β-rule one can of course find the normal form of some
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arbitrary term. This is a directed notion of normalization. But an alternative
view of normalization is to consider normalization as a term equivalence relation.
Then, the normal form of a term is just a representative of the equational theory
formed by the reflexive, transitive and symmetric closure of the β-reduction
relation. A normalization function finds the normal form t′ of a term t with t
and t′ equivalent. This is a reduction-free view of normalization [11].

The normalization function does not have to be β-reduction based. Suppose
we can construct a denotational model of the λ-calculus with the following two
properties:

1. if t1 ↔βη t2 then [[t1]] = [[t2]] (soundness);
2. if t1 is in normal form then a term t2 can be extracted from a denotation

[[t1]], such that t1 ↔α t2 (reproduction).

Then a normalization function taking as input a closed term t can be given as

⇓ t = ↓ ([[t]] ∅),

where ↓ is the extraction function, which we will call reification, and ∅ is the
empty set. For any t1 in normal form, by soundness of the model ↓ ([[t1]] ∅) = ↓
([[t2]] ∅) for all t2 such that t1 ↔βη t2. Since by reproduction ↓ ([[t1]] ∅) ↔α t1,
we have ⇓ t1 ↔βη t2 as expected.

2.2 Towards Reduction-Free Normalization

Consider the following representation of the syntax1 using de Bruijn levels. The
grammar for the syntax is given by the Term production in Figure 1.

data Term = Var Int | App Term Term | Abs Term

A normal order normalization is usually implemented along the lines of2

norm1 :: Term → Term
norm1 (App t1 t2) =

case norm1 t1 of
Abs x t′1 → norm1 (subst x t2 t1)
t′1 → App t′1 (norm1 t2)

norm1 (Abs x t) = Abs x (norm1 t)
norm1 t = t

We can aim for a much simpler implementation by using higher order abstract
syntax (HOAS), whereby binders of the term language are represented as func-
tions in the metalanguage. This allows us to dispense with managing scopes,
1 For notational clarity, we will underline in what follows the syntax of terms, writing

applications explicitly as @, and denote the implementation language (or metalan-
guage) using the more convenient Haskell syntax.

2 The definition of subst is elided for conciseness.
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Var � x, y, z

Term � t ::= x | λ. t | t t

Term ⊃ TermN � te ::= x | te t

Term ⊃ TermNF � tn ::= ta | λ. tn

Term ⊃ TermA � ta ::= x | ta tn

Fig. 1. Grammar and subgrammars of terms. Variables are encoded using de Bruijn
levels.

variables and capture avoiding substitutions ourselves. That work is offloaded to
a contraption capable of doing it far more efficiently and correctly than we are:
the metalanguage runtime. Moving to HOAS requires a few tweaks on the Term
datatype:

data Term = Const String | Abs (Term → Term)
| App Term Term

Syntax variables are represented by metalanguage variables. We can therefore
dispense with the Var constructor and introduce in its place the Const con-
structor, which stands in lieu of uninterpreted constants — or equivalently, free
variables. For example, the term using named variables (λx. (λy. y x)) z parses
to the expression

App (Abs (λx → Abs (λy → App y x ))) (Const "0")

The datatype Term represents the universe of all λ-terms, normalization of which
is achieved by the following code, taking meta-level terms to object-level terms:

norm2 n (App t1 t2) =
case norm2 n t1 of

Abs t′1 → norm2 n (t′1 t2)
t′1 → t′1 @ (norm2 n t2)

norm2 n (Abs t) =
λ. (norm2 (n + 1) (t (Const (show n))))

norm2 n (Const c) = c

One can see here how the problem with shifting bindings to the metalanguage is
that we can no longer descend under abstractions; they have become black boxes.
But descending under abstractions is needed to normalize, so let us deconstruct
these abstractions, thus turning the variable bound by some abstraction free.
Remember that we already have a way to represent free variables, using Const .
So normalizing an abstraction simply requires applying the abstraction to a
fresh3 (unbound) variable and normalizing the result.
3 In practice one can opt for one of a variety of strategies for freshness. For simplicity,

in this paper we get away with a simple integer counter by using de Bruijn levels in
the term syntax.
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After deconstructing and normalizing under the abstraction comes the time
to reconstruct this abstraction. Rather than reconstructing an opaque metalan-
guage term, we can simply reify the abstraction into a term of the syntax. Our
normalization function is no longer an endomorphism on Term : its result is a
syntactic term in normal form.

The next step is to split out of norm2 the code dealing with applications
into an app function. By appeal to the semantics of the metalanguage, we can
offload yet more work to the metalanguage runtime. Insofar as evaluation order
of the normalizer and metalanguage correspond, all App nodes can be removed
from terms and replaced with calls to the app function. The App constructor is
still needed, but only to represent neutral terms 4 (i.e. TermN of Figure 1). The
previous example then becomes

app (Abs (λx → Abs (λy → app y x ))) (Const "0")

This leads to the final definition of our normalizer:

app (Abs t1) t2 = t1 t2
app t1 t2 = App t1 t2

norm n (App t1 t2) = (norm n t1) @ (norm n t2)
norm n (Abs t) = λ. (norm (n + 1) (t (Const (show n))))
norm n (Const c) = c

After this final step, notice that all forms in the syntax are now interpreted
directly with their corresponding (tagged) forms in the metalanguage, as shown
in Figure 2. norm matches the specification of a reification function. Indeed,
parsing a term to the metalanguage, then unparsing the resulting construct
with norm , is an untyped, reduction-free, normalization by evaluation function,
in the sense of Section 2.

[[x]] n = x̂ if x < n

[[x]] n = Const x otherwise
[[λ. t]] n = Abs (λn̂ → [[t]] (n + 1))

[[t1 t2]] n = app ([[t1]] n) ([[t2]] n)

Fig. 2. Translation of the syntax into the metalanguage. ·̂ maps naturals to variable
names.

3 Optimizations

In this section we will focus on offloading yet more work to the metalanguage
runtime by exploiting intrinsic features of most higher order programming lan-
guages that go beyond the pure λ-calculus. One such feature is the uncurrying
of function applications, the other is pattern matching on algebraic datatypes.
4 Neutral terms are variables or applications of a neutral term to a term. Substituting

a neutral term anywhere in another term will not create additional redexes.
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3.1 Minimizing Closures

Functional values in functional programming languages are typically represented
as closures, a pairing of code and an environment assigning values to all free
variables appearing in the code. Consider a church encoding of lists and a right
fold in a syntax where functions can be applied to multiple arguments in one go.

nil ≡ λfg. f

cons ≡ λhtfg. g h (t f g)

map ≡ λfl. l nil (λht. cons (f h) t)

Y is the usual call-by-name fixed-point combinator. The notation λx1 . . . xn. []
is syntactic sugar for (λx1. . . . (λxn. []) . . .). That is, the higher-order functions
above take multiple arguments, but are encoded in terms of unary functions that
return functions. This encoding is called currying.

Note however that currying has a cost. Applying a function to multiple argu-
ments entails the creation of many short-lived intermediate closures, one for each
function returned as a result of the application to one argument. In general, one
will need to allocate (and then deallocate soon thereafter) n − 1 closures during
the consecutive application of a function to n arguments. For instance,

[[map id nil]]
= app (app map id) nil
= app (app (Abs (λf → Abs (λl → ...))) id) nil
→β app (Abs (λl → ...)) nil
→β nil

Here, map is applied to two arguments, therefore one intermediate Abs structure
is constructed. But an alternative encoding of n-ary functions could avoid this.

The literature abounds with various encodings of n-ary functions (i.e. calling
conventions) targeted by compilers to avoid costly closure allocation. Marlow
and Peyton-Jones [19] propose the Push/Enter and Eval/Apply dichotomy to
describe them. We pick the Eval/Apply model here for its very cheap implemen-
tation cost and good performance in the common case [19]. That is, assuming
a syntax where consecutive λ’s have been folded into multiple argument ab-
stractions, we can forgo many Abs constructions by means of a family apn of
application operators and the addition of a number of Absn constructors, as
shown in Figure 3. Note that most functions appearing in terms of the syntax
will typically have low arity, so that one could reap most of the benefit of this
approach even if bounding the number of apn operators and Absn constructors
to a small number such as 4 or 5. Though uncommon, applications of functions
with higher arity is still possible, but at a slight performance cost due to extra
closure construction.

Parsing the above terms to the metalanguage now gives:

nil = Abs2 (λf g → f )
cons = Abs4 (λh t f g → ap2 g h (ap2 t f g))
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1. apn (Absm f ) t1 . . . tn = Absm−n (f t1 . . . tn)
2. apn (Absm f ) t1 . . . tn = f t1 . . . tn

3. apn (Absm f ) t1 . . . tn = apn−m (f t1 . . . tm) tm+1 . . . tn

where conditions on (1) are if n < m, on (2) if n = m, on (3) if n > m.

Fig. 3. A family of ap operators

map = Abs2 (λf l →
ap2 l nil (Abs2 (λh t → ap2 cons (ap1 f h) t)))

For small n, n-ary functions in the syntax are encoded using n-ary functions
in the metalanguage. Beyond economizing data structure allocations, this op-
timization permits us to reap the benefits of closure allocation strategies typi-
cally found in compilers to reduce the cost and frequency of extending closure
environments. For example, many execution environments such as the OCaml
interpreter can avoid any allocation of environments on the heap in the common
case of n-ary functions applied to n arguments, instead pushing all arguments
on the stack [16].

3.2 Specialized Constructors

Representing all datatypes as functions via Church encodings induces need-
lessly many β-reductions and wastes opportunities for optimization. Haskell and
many other statically typed functional programming languages feature algebraic
datatypes and pattern matching facilities on these datatypes, enabling more nat-
ural and more efficient data manipulation. Compiling complex pattern matches
to decision trees or to backtracking automata [15] can drastically reduce the
amount of computation needed to access and manipulate algebraic structures.

With the current definition of Term, it is already possible to parse patterns
in the syntax to case analysis constructs in the metalanguage, but currently a
metalanguage representation of a pattern p1 can become quite a bit larger than
p1. Assume for instance constants nil and cons, constructors of the list type,
and take the definition of append in the metalanguage:

append = Abs2 (λxs ys → case xs of
Const "nil" → ys
App (App (Const "cons") x ) xs ′ →

ap2 (Const "cons") x (ap2 append xs ′ ys)

Replacing the constructor names with integers rather than strings to avoid string
comparison cost does spare some computation, but it is better to avoid the
Const constructor altogether. Rather than representing a datatype as an in-
memory tree, with App constructors at branch nodes and Const constructors
at the leaves, each in its own memory cell, it is much more memory efficient to
add all data constructors found in the syntax as additional constructors to the
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metalanguage interpretation, effectively flattening the representation in memory.
That is, for constructors nil and cons, add

data Term = ... | Nil | Cons Term Term

As shall be detailed in Section 4, a flatter structure means less indirection when
performing pattern matches, hence better performance.

The downside of mirroring syntax level constructors as constructors in Term
is that doing so breaks modularity. Since the Term datatype is the universe of
all syntax terms, breaking up definitions in the syntax into modules requires
that all constructors in all modules need to be coalesced into the term Term
datatype. Encoding modules in the syntax with modules in the metalanguage is
useless, because introducing a new constructor means modifying Term, which in
turn means recompiling all modules because they all depend on Term.

A solution to recover modularity is to hardcode a set of constructors in the
Term datatype, much as we hardcoded the set Absn of n-ary functions. This
means that constructors with small arity in the source language can be repre-
sented using a single constructor in the metalanguage. Larger (less common)
constructors in the source language can of course be represented as the compo-
sition of smaller constructors.

data Term = ... | Const0 Int | Const0 Int Term
| ... | Constn Int Term ... Term

In languages that feature first class arrays, in particular allowing pattern match-
ing on arrays (such as OCaml), one could also replace the definition of Const
with

type term = ... | Const of name * term array

The effect of removing Const is to build in a closed world assumption on
constructors of the syntax. Some languages allow the definition of extensible
datatypes, which we can use to break the closed world assumption. Recent ver-
sions of OCaml feature polymorphic variants and Standard ML’s exn exception
datatype is extensible. Terms applied to a constant would simply be accumu-
lated in the array. The array size is known in advance because all constructors
have a fixed number of fields.

In summary, the appropriate option will be contingent on the runtime envi-
ronment chosen to execute the normalizer. As always, the objective here is to
make do with existing runtime environments without modification, whilst ob-
serving that the penalty of this constraint can be made close to negligible — an
observation substantiated in the following section.

4 Benchmarks

Our use of untyped NbE is as a cheap contraption to efficiently perform the
conversion test in dependent type theories. In this section we examine the effect
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of various optimizations presented previously on a small set of benchmarks and
compare them to earlier work on untyped NbE by Aehlig et al. [1]. In these
benchmarks, the object language is Haskell. The interpretation stage of NbE then
becomes a source-to-source transformation on programs, which we implement
using Template Haskell. The transformed source is then compiled to native code
by the GHC compiler.

We compare 6 flavors of NbE:

ahn. This is untyped NbE as described in [1]. All functions are interpreted
as unary functions. All function arguments are packed into lists that the
function pattern matches over to extract individual arguments.

singlearity. This interpretation takes every function to a unary closure. Func-
tions taking multiple arguments are curried and are represented using mul-
tiple embedded closures.

evalapply. The optimization described in 3.1.
constructors. Every constructor appearing in terms of the object language

become additional constructors Term , as in 3.2.
ucea. Combination of “evalapply” and “constructors”.
whnf. The identify interpretation, where terms of the object language are in-

terpreted as themselves.

We run the following benchmarks for each of the flavors:

append. Concatenation of two large lists of integers of size 50,000.
even. Test whether an input list is even or odd. Lists are represented using a

Church encoding, so that no pattern matching occurs in this benchmark. It
is meant to test performance of applications.

sort. Sorting of large lists of integers encoded using constructors. This bench-
mark is meant to be rather more sensitive to pattern matching performance.
The implementation is mergesort found in the base package of the Haskell
libraries.

exp3-8. A tiny benchmark appearing in the nofib suite: taking 3 to the power
of 8, in Peano arithmetic.

queens. Enumerate the solutions to this classic constraint satisfaction problem:
find a way to place 10 queens on a 10x10 chess board such that no two queens
are on the same column or row.

The results are shown in Figure 4 and Table 1. Note immediately how the vast
majority of the performance benefits comes from interpreting constructors as
constructors; this greatly reduces the size of the patterns to match and help
allocate fewer objects on the heap. An overview of the heap usage and garbage
collection on each of the above benchmarks shows that using constructors typi-
cally halves total heap allocation during the lifetime of the program.

Currying functions, rather than grouping the arguments into lists that are
frequently deconstructed and reconstructed, affords a gain in most benchmarks.
The eval/apply optimization allows a further halving of execution time on bench-
marks with functions with high arity, such as queens and its heavy use of foldr .
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Fig. 4. Visual representation of the data in Table 1

Table 1. Absolute execution times (seconds) and relative to execution time of whnf

flavor append % even % sort % exp3-8 % queens %
ahn 3.61 1031 3.17 253 1.04 433 1.23 261 1.34 670
evalapply 3.21 917 1.50 120 1.03 429 1.05 223 0.35 175
singlearity 3.49 997 2.29 183 1.03 429 1.37 191 0.76 380
constructors 0.44 125 2.26 180 0.53 220 0.66 140 0.68 340
ucea 0.45 128 1.50 120 0.28 116 0.47 100 0.25 120
whnf 0.35 100 1.25 100 0.24 100 0.47 100 0.20 100

The main observation, however, is that untyped normalization by evaluation
with the addition of the eval/apply optimization and the use of metalanguage
constructors is hardly any slower on these benchmarks than the execution of
these benchmarks by evaluation alone. In pathological cases where none of the
execution time is spent in pattern matching, such as the “even” benchmark, we
observe a penalty of about 20%. However, pattern matching or garbage collection
and heap allocation dominates the runtime of many functional programs. In such
cases the extra cost of tagging closures is often negligible.

4.1 Proofs by Reflection

A popular style of proof consists in reusing the proof language provided by the
theorem prover as a programming language. For some predicate P ranging over
terms of type T , rather than proving directly the property

forall t : T, P t

one instead introduces a decision procedure f , along with a proof fcorrect that
f is correct. In Coq, this would go something along the lines of

Variable P : T -> Prop.
Variable f : T -> true.
Variable x : T.
Variable f_correct : forall x:T, f x = true -> P x.
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Table 2. Solving formulae of n variables with Cooper’s quantifier elimination

variables 1 % 2 % 3 % 4 % 5 %
no conv 0.63 94 0.68 94 1.40 93 2.25 77 3.92 3.11
nbe 0.64 95 0.70 97 1.42 94 2.30 79 27.27 20.02
Coq VM 0.67 100 0.72 100 1.50 100 2.92 100 136.2 100

Now we have that the term

fun t:T => f_correct t (refl_equal true):P t

is a proof of forall t : T, P t. For some x : T , the conversion test here con-
sists in verifying that the function f applied to x : T reduces to true. The
Ssreflect proof language encourages this style of proof in the small as well as
in the large, so that typical properties such as the symmetry of the proposition
disjunction operator might be proved more efficiently and concisely using reflec-
tion. In effect, reflection rephrases the problem so as to shift much of the burden
of proof to mere calculation, avoiding tedious deductive reasoning.

As more proofs adopt this style of reasoning, computation starts dominating
the time needed for proof checking. Using a prototype implementation inside the
kernel of Coq of the normalization scheme of Section 2, we briefly report on the
impact of using normalization by evaluation for the conversion test on a tactic
that generates proofs in the reflexive style: Cooper’s quantifier elimination for
Presburger arithmetic (unpublished work by Salil Joshi and Assia Mahboubi).

Figure 2 shows the computational blowup as the formulae to solve increase in
the number of variables. Starting from 6 variables, the problem is so large that
the runtime exhausts all available memory after over 30 minutes. For each for-
mula, we record two markers for our performance measurements. The reference
time is the time needed by the kernel to verify the proof generated by the tactic
when compiling the proof to Coq’s existing virtual machine. The best we can
hope to do is the time required to check the proof when the conversion test is
unplugged, i.e. the time spent in other proof checking tasks save conversion. As
evidenced by the last column, speedup compared to the already existing virtual
machine based reduction scheme is a fivefold increase in the purely computa-
tional part of the proof (which dominates the entire proof checking time on even
short formulae), as can be expected from moving from a bytecode based envi-
ronment to execution of native code. We expect similar gains for other (large
and small) proofs by reflection, such as [12]. However, for very small proofs the
overhead associated with compiling everything in the environment might not
pay its worth. The default conversion routine of Coq should fare better in these
cases.

5 A Note on Correctness

A detailed treatment of the correctness of the normalization algorithm presented
here is beyond the scope of this paper. We note, however, that the conversion
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tested is implemented in the trusted base of most any theorem prover. High
assurance of correctness is hence a very desirable property. Previous work on
other variants of untyped normalization by evaluation has already established
partial correctness properties [1] and soundness (the output term, if any, is β-
equivalent to the input term), standardization (β-equivalent terms are mapped
to the same result) and completeness (normal forms are found for all terms that
have a normal form) [11]. For instance, a meaning preserving embedding of terms
as represented in Section 2 into terms of the form found in [1] is straightforward
(arguments to functions are boxed into lists), by which means we may port the
results found therein.

Correctness may alternatively be derived via meaning preserving transforma-
tions from preexisting normalizers, in the style of [6].

6 Related Work

Our work is a continuation of many other contributions regarding normalization
by evaluation and its applications. Whilst many treatments of NbE do discuss
computational efficiency, few quantify empirically performance on select bench-
marks. [1] is one work on which we build upon, being closely related both in
its attention to the performance side of the coin and in the essence of their
scheme. They too map terms of the object language to tagged equivalents in
the metalanguage by embedding functions, free variables and constants into a
datatype. Our approach differs from theirs in that we treat functions of arbitrary
arity uniformly by currying. In their approach functions of the object language
are mapped to single arity functions within the metalanguage, encapsulating all
arguments of the functions inside lists. The body of the functions then pattern
match on the input list to extract arguments. Whilst appealing in its simplic-
ity, their approach suffers performance-wise from allocating many lists during
function application time that are then immediately deconstructed. In addition,
encapsulating arguments inside lists breaks the optimization described in Section
3.1. For simplicity, constructors in the object language are not translated to con-
structors in the metalanguage but rather represented with a special constructor
for constants. Lindley [18] also considers untyped normalization by evaluation
in a performance sensitive context, giving a quantitative analysis of the per-
formance of a number of algorithms and variants compared to reduction based
approaches. Optimizations for higher order programs and data constructors are
not considered, however.

Filinski and Rohde [11] propose a similar algorithm for untyped normalization
by evaluation. Whilst Aehlig et al. prove only partial correctness, namely that if
their algorithm returns a term then that term is in normal form and convertible
to the input (soundness and standardization properties), Filinski and Rohde
further prove completeness. However, the focus there is on a precise semantic
study, rather than an evaluation of performance.

Of particular note in the work of Aehlig et al. [1] is their generalization of
NbE to the symbolic normalization of terms with regards to arbitrary
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user-provided rewrite rules. For conciseness, we do not discuss this matter further
in this paper, but their translation of rewrite rules as pattern matching func-
tions in the metalanguage can readily be adapted to the normalization scheme
presented here. This generalization is not required for the conversion test in the
Calculus of Inductive Constructions used by Coq for instance, but it is useful
for reduction in Isabelle/HOL and for the conversion test in formalisms such as
λΠ-modulo [8]. Blanqui et al. [5] independently propose a similar translation of
rewrite rules into OCaml though in the context of finding canonical forms for
non-free algebraic datatypes rather than applied to normalization.

A variety of virtual machines have been proposed for normalization. Notably,
Crégut [9] proves correct a normalizer for the λ-calculus. The code can be ex-
ecuted by expansion to Motorola 68000 assembly code, resulting in an efficient
but more heavyweight (in the sense of implementation effort) and less portable
execution model compared to NbE based approaches. The machine of Grégoire
and Leroy [13] that Coq sometimes uses for the conversion test should also
be mentioned here. Theirs is a modified and formalized version of a bytecode
interpreter for OCaml (the ZAM), to do normalization via reduction to weak
head normal form along with a readback phase to restart weak reduction under
binders. Whilst offering striking similarities to NbE, including in its reuse of
existing evaluators, one important difference lies in the fact that the implemen-
tation of the underlying evaluator needs to be modified, whereas the objective
of NbE, here and elsewhere, is to get away without looking under the hood. As
a side effect, NbE affords more freedom of choice regarding which evaluator to
choose, allowing for instance to trade off minimizing the trusted base for better
performance.

The principal extension made to the ZAM to normalize Coq terms is the
introduction of accumulators, which represent applications of free variables to a
number of terms. Embedding this construct within the virtual machine avoids
having to do case analysis at every application to discriminate between function
applications and applications of neutral terms. We show that with the simple
optimization of Section 3.1, the overhead of this case analysis is very small in
practise.

These approaches can be seen as complementary to the one exposed here in
that these normalizers are abstract machines whose correctness is more read-
ily established, hence avoiding extending the trusted base of a theorem prover
with code as large as that of a full scale compiler and the associated runtime
environment for the chosen metalanguage. They may also reduce the cost of
compilation, which for small terms can far exceed the time needed to normalize
them.

7 Conclusion

Just as moving from a naive interpreter to an optimizing compiler can mean
moving from the intractable to the feasible for the evaluation of programs, so too
does compiling the costly components of the type checking problem in dependent
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type theories may reap enormous benefits. Others have shown how it is possible
to bring to bear the power of existing compiler technology in proof assistants with
little implementation effort. We have shown that to get excellent performance
rivalling that of stock runtime systems for popular programming languages, the
implementation effort is nearly trivial: parse the object language and pretty print
it to tagged terms in the form of a functional program. We can have our cake
and eat it too.

A limitation of normalization by evaluation is that terms are always evaluated
to weak head normal forms before normalizing under binders. When strongly
normalizing a term, this may not be the best strategy: in fact [17] has shown
that this could lead to redundant copying of exponentially many λ-terms, which
an optimal strategy might avoid. But seeking the optimal strategy may intro-
duce far too much overhead to be viable in practice. As in [13], the approach
presented here seeks to minimize the cost of each reduction, at some expense
on the total number of reductions performed. It would be interesting however,
to allow for short-circuiting of normalization when reduction so far has yielded
enough information to decide the convertibility of two terms, whilst retaining
the conceptual and implementation simplicity of normalization by evaluation.

The normalization algorithm presented here is at the heart of a new proof
checker for the λΠ-calculus modulo called Deduki5, but transferring this tech-
nology to full-fledged proof assistants would be of benefit. We have also imple-
mented this scheme inside the kernel of Coq that works in the common case
of comparing non-functional closed values, but a full treatment of terms of the
Calculus of Inductive Constructions requires careful attention to the reductions
rules of that calculus when in the presence of free variables.
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Abstract. Skeletons simplify parallel programming by providing gen-
eral patterns of parallel computations. When several skeletons are used
inside the same program, skeleton composition usually leads to aggre-
gation and redistribution of the intermediate data on a single process.
Though the programmer can overcome the performance loss at a lower
level of abstraction by altering the existing skeletons or not using them
at all. A high-level concept like skeleton-based programming, however,
calls for a more general solution.

Remote data provides runtime mechanisms that allow declaratively
specified processes to access other processes’ data via remote handles.
This enables the programmer to easily build complex skeletons by com-
bining simpler ones. Skeletons can be composed without the drawback
of collecting and then redistributing the data in between two skeleton
instances. Another advantage is that skeletons which inherently depend
on their inner communication patterns are easily implemented using re-
mote data. We present the implementation of remote data in the parallel
functional language Eden and show the definition of some example skele-
tons with a remote data interface.

Keywords: Skeletons, composition, parallel, functional.

1 Introduction

Algorithmic skeletons [5] capture common patterns of parallel evaluations like
task farms, pipelines, divide-and-conquer schemes etc. The application program-
mer only needs to instantiate a skeleton appropriately, thereby concentrating on
the problem-specific matters and trusting on the skeleton with respect to all
parallel details. Skeletons should be small and simple to instantiate to increase
the ease and flexibility of their use. In particular, it should be possible to com-
pose and nest skeleton instantiations arbitrarily. This means for the case of a
distributed memory setup and structured data that must be passed from one
skeleton to the next that the result of the first skeleton is gathered in a single
process and redistributed for the following skeleton execution. This causes un-
necessary communication and holds the danger of a communication bottleneck
in the caller process (see Fig. 1 (a)). A typical example is the composition of two
parallel maps (parallel task farms) producing a two dimensional matrix with an
intermediate transpose.
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Skel1 Skel2 Skel1 Skel2

(a) collection and redistribution (b) direct redistribution

Fig. 1. Data transfer between composed skeleton instances

There exist several proposals to avoid the gathering and redistribution of dis-
tributed data. One could introduce a new distributed data type as common in
languages with a data-parallel concept [7,6] where data can be passed in a dis-
tributed manner. In this case, one needs special transformation and conversion
functions to redistribute the distributed data or to switch between distributed
and common data types. Another simple alternative would be to design a new in-
tegrated skeleton for the composition by merging the two skeleton instantiations
and organising the redistribution explicitly within the new skeleton context. This
approach has the disadvantage that the programmer has to go into the internals
of skeleton design and that the clarity of the original composition is lost.

In this paper, we present an alternative approach that allows the direct passing
of distributed result data from one skeleton instance to the next one (see Fig. 1
(b)). The main idea is to replace the data by handles to it, called remote data,
which are gathered and redistributed instead. The handles can then be used to
pull the real data directly to the target. This concept which has independently
been suggested by Alt and Gorlatch [2,3,1] can be easily used: normal data is
replaced by the corresponding remote data handles and skeletons that operate
on the new remote data can be composed as before. Only that now the gathering
and redistribution of complex data is replaced by the gathering and exchange of
small remote data handles which are used for the direct data exchange between
processes within different skeleton instances. Thus, remote data handles for data
which may be located elsewhere can be used like the original data but cause only
low communication costs. They can occur everywhere where ordinary data may
occur, e.g. in lists or trees to model distributed data structures. As we will show,
this concept is flexible to use and still type-safe.

We develop the concept of remote data in the context of our parallel func-
tional language Eden, although the concept itself is language-independent. It
could equally well be added to other parallel languages, see [2,3,1] for a realisa-
tion in Java. The realisation in a declarative language has the advantage that
the beauty and elegance of declarative programming is maintained for parallel
skeleton-based programming. In functional languages, skeletons are realised as
higher order functions. Skeleton instantiation reduces to function application
and skeleton composition is nothing else than function composition.

We will introduce a new data type RD a representing a handle for remote
data of type a and provide interface functions release :: a → RD a and
fetch :: RD a → a. The function release yields a remote data handle that
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can be passed to other processes, which will in turn use the function fetch

to access the remote data. The data transmission occurs automatically from
the processes that released the data to the process which uses the handle to
fetch the remote data. Skeleton composition skel2 ◦ skel1 of type a → c

where skel2 of type b → c and skel1 of type a → b will now be replaced
by skel2’ ◦ skel1’ of type a → c where skel2’ is of type RD b → c and
skel1’ is of type a → RD b. The modified skeleton definitions differ from the
original ones only in additional applications of release in skel1’ and fetch in
skel2’. These small modifications solve our problem while preserving the orig-
inal program structure. We will show that complex communication structures
like an all-to-all scheme can easily and elegantly be defined using remote data.

Plan of the paper. In Section 2 we give a introduction to the language Eden.
Section 3 presents the implementation of the new data type constructor RD with
interface functions fetch and release in Eden. Section 4 shows how to use
remote data for skeleton composition and the definition of complex communi-
cation patterns. Section 5 compares with related work while Section 6 finally
concludes.

2 Eden in a Nutshell

The parallel Haskell dialect Eden [9] extends Haskell with an explicit notion of
processes (function applications evaluated remotely in parallel). The program-
mer has direct control over evaluation site, process granularity, data distribu-
tion and communication topology, but does not have to manage synchronisation
and data exchange between processes. The latter are performed by the parallel
runtime system through implicit communication channels, transparent to the
programmer.

The essential two coordination constructs of Eden are process abstraction and
instantiation:

process :: (Trans a, Trans b) ⇒ (a → b) → Process a b
( # ) :: (Trans a, Trans b) ⇒ Process a b → a → b

The function process embeds functions of type a → b into process abstractions
of type Process a b where the context (Trans a, Trans b) states that both
a and b must be types belonging to the Trans class of transmissible values.
Evaluation of an expression (process funct) # arg leads to the creation of a
new process for evaluating the application of the function funct to the argument
arg.

For immediately instantiating a list of process abstractions with appropri-
ate inputs, Eden provides a (predefined) function spawn, and a variant spawnAt
which additionally locates the created processes on given processor elements. Ne-
glecting demand control, spawn is denotationally specified, and could be defined,
by the following equation.

spawn :: (Trans a, Trans b)⇒ [Process a b] → [a] → [b]
spawn = zipWith (#)
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Eden further provides functions to create and use explicit connections between
arbitrary processes.

new :: Trans a ⇒ (ChanName a → a → b) → b
parfill :: Trans a ⇒ ChanName a → a → b → b

They can be used to shortcut the tree-shaped topologies created by the basic
functions. The function new is used at the receiver side to created a receiver
port of a unidirectional channel connection. It works in continuation passing
style, new’s parameter function’s first parameter is the “name” of the channel
(type ChanName a) whose incoming port is created as a side effect. The second
parameter is the value that will be received via the channel. The parameter
function’s output is the result of the function new. The sender of the connection
is still not determined. The channel’s “name” can be passed to another process.
The connection gets established when parfill is used at the sender side us-
ing the “name” of the channel (containing the receivers process ID and port).
The function parfill takes the value to be written in the channel, parfill’s
third argument is returned unchanged after forking a thread that sends the data
through the channel.

These two function are quite complicated to use for people new to Eden. Their
signatures interplay well in some circumstances, but they are not intuitive at all.
The main problem when using dynamic channels is the change of direction in
the communication: when Process 1 wants to send data directly to Process 2
using a dynamic channel, this channel must first be generated by Process 2 and
sent from Process 2 to Process 1 before the proper data transfer from Process 1
to Process 2 can take place. Thus, the dynamic channel must be communicated
in the opposite direction in which the data is to be transferred. This complicates
the use of dynamic channels. The remote data approach keeps the direction
of the communication by introducing another channel transfer from Process 1
to Process 2. This transfer sends a channel via which Process 2 can send its
data channel to Process 1. Thus, an exchange of dynamic channels takes place
between Process 1 and Process 2 which automatically establishes a data channel
connection from Process 1 to Process 2. In the following, we implement the
remote data concept using Eden’s dynamic channels. Note that this concept
provides the same expressive power as dynamic channels, but in a more natural
and easier-to-use way.

3 Eden Implementation of Remote Data

The implementation of remote data in Eden (Figure 2) is simple and elegant.
To release a local data x of type a we create – using the function new –
a channel name cc of type ChanName (ChanName a) via which a channel c
of type ChanName a will be received. Using parfill a thread is forked that
subsequently sends the local data x via the channel c. The result of the release
function is the newly created channel cc :: ChanName (ChanName a). Note
that the remote data type RD a is a synonym of cc’s type. Data of type RD a
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-- remote data
type RD a = ChanName (ChanName a)

-- convert local data into corresponding remote data
release :: Trans a ⇒ a → RD a
release x = new (λcc c → parfill c x cc)

-- convert remote data into corresponding local data
fetch :: Trans a ⇒ RD a → a
fetch cc = new (λc x → parfill cc c x)

Fig. 2. Remote data definition

r1

f g
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b b
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release . f g . fetch

a

RD b RD b

c

b

Fig. 3. Using remote data

is merely a channel name and thus very lightweight with low communication
costs. To access remote data we need to fetch it by again creating a channel
c :: ChanName a using the function new. This channel is sent via the remote
data handle, i.e. the channel cc of type RD a. The proper data is then received
via channel c and returned as the result of the fetch function.

A problem arises when remote data needs to be duplicated. Channel names
(of type ChanName a) cannot be used more than once to retain referential trans-
parency [9]. As remote data is implemented as a specialized channel name, it
must not be duplicated and fetched several times in parallel. A manual work-
around to duplicate remote data on a node would be to fetch the data and re-
lease it again repeatedly. We considered more sophisticated versions which make
the use of remote data more comfortable, but they expose nondeterminism and
should therefore not be implemented in the actual version of Eden.

Our new way of communication creates a slight overhead. In comparison to the
common way of defining explicit communication we have an additional channel
per direct connection that is used only before the transmission of the actual
data begins. However, as this channel only transports a value of type ChanName a

which is quite small the increase in communication cost should not be noticeable
in most cases.

Example. We show a small example where the remote data concept is used to
establish a direct channel connection between sibling processes. Given functions
f and g, one can calculate (g ◦ f) a in parallel creating a process for each
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function. Figure 3 shows two different ways to implement this. Simply replacing
the function calls by process instantiations

r1 a = process g # (process f # a)

leads to the following behaviour (visualised in the left part of Fig. 3): Function
r1 instantiates the first process calculating f, passes its input to this process and
receives the remotely calculated result. It instantiates a second process calculat-
ing g and passes the result of process f to this new process. The output of the
second process is also sent back to the caller. The drawback of this approach is
that the result of the first process will not be sent directly to the second process.
This causes unnecessary communication costs.

We use remote data RD a in the second implementation

r2 a = process (g ◦ fetch) # (process (release ◦ f) # a).

It uses function release to produce a handle of type RD a for data of type a.
Calling fetch with remote data returns the value released before. Function r2 is
identical to r1 except for the conversion of the result type of f’s process and the
input type of g’s process to remote data. The use of remote data leads to a direct
communication of the actual data between the processes of f and g (see the right
part of Fig. 3). The remote data handles are treated like the original data in the
first version and the basic structure of the program, i.e. the composition of two
process instantiations, remains the same.

4 Composing Predefined Skeletons

Before handling the composition of skeletons using the remote data concept, we
show the lifting of a simple parallel map skeleton to a remote data interface.
Then we define a parallel all-to-all skeleton which generates a number of pro-
cesses each of which exchanges data with any of the others. Using these skeletons
with their remote data interfaces enables us to define a sequence consisting of
a parallel map, a parallel transpose (realised using the all-to-all skeleton) and
a second parallel map. This can be useful in an implementation of a parallel
FFT skeleton [8] or a Google Map-Reduce skeleton [4]. In [4,8], correspond-
ing parallel map-transpose skeletons have been defined as monolithic skeletons
without composing simpler skeletons. With the remote data interface, we can
define the same skeleton as a composition of the three component skeletons.
This leads to a much better understandable definition while achieving the same
performance. Finally, we present another elegant and concise definition of an
even more complex communication pattern: a butterfly scheme which is used to
define an all-reduce-skeleton.

4.1 The parmapDC Skeleton

A parallel map creates a process for each element of the input list. In Eden, it can
easily be defined using the function spawn (see Fig. 4). Note that this definition
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parmap :: (Trans a,Trans b) ⇒ (a→b) → [a] → [b]
parmap f xs = spawn pfs xs

where pfs = repeat (process f)

parmapDC :: (Trans a,Trans b) ⇒ (a→b) → [RD a] → [RD b]
parmapDC f xs = spawn pfs xs

where pfs = repeat (process (liftRD f))

liftRD :: (Trans a, Trans b) ⇒ (a→b) → RD a → RD b
liftRD f = release ◦ f ◦ fetch

Fig. 4. The parmap and parmapDC skeletons

implies that the process evaluating parmap creates as many processes as there are
elements in the input list and sends each of theses elements to the correspond-
ing process. Using a remote data interface, each process only gets a handle to
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Fig. 5. Visualization of the parmapDC
skeleton

its list element. It can then use this
handle to fetch the element directly
from the remote place where this ele-
ment is located. In order to achieve this
behaviour, we simply replace the
parameter function f in the pro-
cess abstraction by its lifted pendant
liftRD f (see Fig. 4). The function
liftRD is used to lift functions act-
ing on data to functions performing
the same computation on remote data.
This leads to the skeleton parmapDC

where the ending DC stands for Directly
Composable due to the remote data in-
terface. This interface makes it possible
for skeletons to receive distributed in-
put and to produce distributed output
which is crucial for an efficient composition of skeletons. Fig. 5 visualises the
behaviour and communication paths of the parmapDC skeleton. The upper circle
represents the process evaluating the parmapDC instantiation. It generates the
other processes whose task is to apply the parameter function f to input of type
a and produce output of type b. Note that only remote data handles for the
input and the output values are communicated between the generator process
and its child processes. The proper data is communicated via dynamic channel
connections indicated by dashed lines.

4.2 The allToAllDC Skeleton

In Figure 6 we present an all-to-all skeleton allToAllDC. This skeleton depends
inherently on its inner communication pattern which we will implement using
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allToAllDC :: forall a b i. (Trans a, Trans b, Trans i) ⇒
--(#Elements, data in, data out)

(Int→a→[i]) → -- transform before transpose
([i]→b) → -- transform after transpose
[RD a] → [RD b]

allToAllDC t1 t2 xs = res where
t1’ = t1 (length xs) --same amount of procs as #xs
(res,iss) = unzip $ spawn procs inp
inp = lazy2Zip xs (transpose iss)

procs = repeat $ process $ uncurry p
p :: (Trans a,Trans b,Trans i)⇒ RD a→ [RD i]→ (RD b,[RD i])
p x theirIs = (res, myIs) where
res = (release ◦ t2 ◦ fetchAll) theirIs
myIs = (releaseAll ◦ t1’ ◦ fetch) x

--lazy in second argument
lazy2Zip (x:xs) ˜(y:ys) = (x,y): lazy2Zip xs ys
lazy2Zip [] _ = []

spawn

releaseAll.t1’.fetch

transpose

release.t2.fetchAll

res

function process

0 0’

1

2

3

1’

2’

3’

RD a [RD i] [RD i] RD b
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a b

b

b

i
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Fig. 6. The allToAllDC skeleton: code and visualisation. (The darker shading of
the arrows from the uppermost child process emphasizes the connectivity of a single
process.)

remote data. We need the following variants of the remote data interface func-
tions in order to fetch or release a list of remote data:

– releaseAll :: [a] → [RD a] is defined as map release.
– fetchAll :: [RD a] → [a] is semantically equivalent to map fetch, but

needs a special eager implementation which initiates to fetch each input list
element without waiting for the result of this action.
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The input of the allToAllDC skeleton is a list of remote data with, say, n
elements and two transformation functions t1 and t2 to allow the processes to
transform the input data before sending data to all other processes and after
receiving data from all other processes, respectively. The length of the input list
determines the number of processes to be created by spawn. Every process will
fetch its remote input x and transform it with the transformation function t1.
This yields a list of intermediate data for each child process which is released
element-wise by releaseAll, giving the list myIs :: [RD i] with remote data
handles. Note that this list must have the same number n of elements as the
input list. This list of remote data handles is returned to the root process in
the second component of each process’s result tuple. The root process receives
one such list from each of its child processes resulting in the n × n matrix
iss :: [[RD i]]. It transposes this matrix and sends the result back to the
processes as its second, lazily supplied parameter theirIs. Each process gets
thus one remote intermediate value of type RD i of each sibling process and
of itself. The values are gathered using fetchAll, transformed by the second
parameter function t2 to the output type b and released. The visualisation
in Fig. 6 again shows the exchange of remote data handles between the root
process the child processes and using dashed arrow the direct communication of
data between the processes.

4.3 Composing Skeletons with Remote Data Interface

The allToAllDC skeleton can be used to express arbitrary data exchange that re-
quires an all-to-all network. A common special case is the transposition of a ma-
trix which is distributed over several processes. The way the matrix is distributed
over the processes can be manifold. Each process might be assigned e.g. to one
row or — more general — to several rows of the matrix. In the example skeleton
parTransposeDC of Fig. 7, we implement the more general case. Thus, we are not
restricted to 1:1 relations between rows andprocesses.Weassume that rows are dis-
tributed round robin over the processes.The advantage against a block distribution

mtmDC :: (Trans a, Trans b, Trans c)
⇒ (a→[[b]]) → ([[b]]→c) → [RD a] → [RD c]

mtmDC f g = parmapDC g ◦ parTransposeDC ◦ parmapDC f

parTransposeDC :: Trans b ⇒ [RD [[b]]]→[RD[[b]]]
parTransposeDC = allToAllDC (λ n → unshuffleN n ◦ transpose)

(map shuffle ◦ transpose)

-- round robin / segmented distribution
unshuffleN , splitEvery :: Int → [a] → [[a]]
unshuffleN n xs = transpose $ splitEvery n xs
shuffle :: [[a]] → [a] -- inverse function
shuffle = concat ◦ transpose

Fig. 7. Composition of parmap and transpose skeletons
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is that the matrix can be assigned partially to the processes without knowledge of
the overall number of rows. Hence, the transposition skeleton has to assign the
columns of the overall matrix (rows of the transposed matrix) round robin to the
processes. The first transformation function of type Int → [[b]] → [[[b]]]

first transposes a list of rows to get the list of the former columns. In a second
step, these are round robin distributed to sublists, one for each process. Process
i will consequently receive one row-sliced and column-sliced partial matrix from
each process. The second transformation of type [[[b]]] → [[b]] will shuffle
the row-slices (transposed column-slices) into each other to recover the rows of
the overall transposed matrix. This is done by flipping the outer dimension (the
list of partial matrices) with the row-dimension using transpose. Thus every
outer list element contains all partial rows belonging to the same row of the
overall matrix. The transformation map shuffle re-establishes each row.

Now, we can combine the parmapDC skeleton of Fig. 4 and the parallel trans-
pose skeleton parTransposeDC in the function mtmDC (cf. Fig. 7), a parallel
version of the function composition map g ◦ transpose ◦ map f. Without re-
mote data a naive parallel implementation would be

parmap g ◦ unshuffleN n ◦ transpose ◦ shuffle ◦ parmap f

This version gathers the data for the intermediate transposition step in the caller
process.

We compared runtime activity profiles of the mtmDC skeleton with the naive
version. In our example executions, the parameter functions f and g have been
set to the dummy function map (scanl1 (+)) which creates rows of prefix
sums. The input matrix contained the number 1 in each position.

In order to focus on communications in the middle part of the composed
skeletons, input and output communications have been suppressed in the runtime
traces underlying the activity profiles. Moreover, the default streaming mode of
the communication has been replaced by a single message mode to reduce the
number of messages exchanged between the processes.

Each skeleton was instantiated with an input matrix of size 800 × 800 and
evaluated on 8 Intel Core 2 Duo machines with a Fast Ethernet connection,
where each processor core hosted two virtual machines of the Eden runtime
system. In Fig. 8, we present the activity profiles of the corresponding runtime
traces for the two skeletons. The trace visualisations show the activity of each
machine on a horizontal bar. The different activity phases of the virtual machines
(runnable, running, blocked) are indicated by different colours explained in the
traces legend. Messages are depicted by black lines with an arrow (black dot) on
the receiver side. The x-axis shows the time in seconds.

The upper left trace in Fig. 8 clearly reveals the distributed transposition by
the multitude of messages exchanged right after the initial data generation phase
and the first map-phase, which is depicted “running” in the trace. The exchange
of remote data starts very early overlapping the map-phase and forming dense
bundles of messages. The second map-phase at the end of the program execution
is rather short. Note that the overall runtime was less than 0.5 seconds.
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Fig. 8. Runtime behaviour of the skeleton mtmDC in the global view(left), the zoomed
process on Machine 16 (bottom) vs. the local transposition version (right).
(Note the different scaling of the x-axes in the upper traces and that the zoomed view
has been taken from a processes-per-machine view, here showing the activity bars of
the three processes on Machine 16.)

We have placed the ith process of every skeleton on the same machine, such
that communication costs are low. The lower zoomed view of the figure shows
the activity bars of the three processes located on the virtual machine 16. The
lowest bar belongs to a child of the first parmapDC-instantiation. The upper two
bars show the processes of the parallel transpose skeleton and the second parmap

instantiation. With this information, we can easily identify the different types
of messages. During phase 1 the process of the first parmapDC skeleton sends its
results to the parTransposeDC process. In the second phase the intermediate
data is exchanged with the processes on the other machines. Finally, in phase 3,
the result of the transposition is passed on to the second parmapDC process.

The upper right trace in Fig. 8 belongs to the naive version which performs a lo-
cal transposition in the root process. As expected, this version is much slower with
an overall runtime of approximately 3 seconds.The conspicuously fast communica-
tion between machine 1 and machine 10 is because the two virtual machines share
the same physical machine. Further tests with varying input sizes (not shown) con-
firmed the enormous runtime advantages of the distributed version.

4.4 The allReduceDC Skeleton

The all-reduce skeleton combines distributed data using a binary reduction func-
tion. It leaves the result duplicated on all processes involved in the reduction.
Usually, it is implemented using the classical butterfly scheme which is also a
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bitFlipF :: Int → [a] → [a]
bitFlipF step xs = (shuffle ◦ flipAtHalfF ◦ unshuffleN d) xs where

d = (2 ˆ step)
flipAtHalfF xs = let (xs1, xs2) = splitAt (d ‘div‘ 2) xs

in xs2 ++ xs1

Fig. 9. Flip of values at bit ldi

common way to efficiently synchronise data between parallel processes. As for
the allToAllDC skeleton, it is crucial for the all-reduce skeleton that data is
transferred to and from the skeleton in a distributed way. The butterfly reduc-
tion for n processes is done in logn parallel communication and local reduction
steps. In each step, the communication partner of process k is usually calculated
with the boolean function k xor 2step−1.

Fig. 9 shows the definition of the function bitFlipF which applies a trans-
formational way to determine the communication partner for the current step.
The input list xs contains at position j the value of process j. xs is distributed
round robin to d=(2ˆstep) sublists. The values to be exchanged are in the same
columns of the transformed matrix. Their indexes differ by 2step−1 which equals
d ‘div‘ 2 or half the number of inner lists. We flip the first half of inner lists
with the second half and achieve the desired value exchange. A function call to
shuffle re-establishes the original list structure.

The allReduceDC (see Figure 10) skeleton uses the function bitFlipF to
rearrange lists of remote data in the caller process which represent the results of

allReduceDC :: forall a b. (Trans a, Trans b) ⇒
(a → b) → --initial transform function
(b → b → b) → --reduce function
[RD a] → [RD b]

allReduceDC initF redF rdAs = rdBss !! steps where
steps = (floor ◦ logBase 2 ◦ fromIntegral ◦ length) rdAs
rdAs’ = take (2ˆsteps) rdAs --cut input to power of 2

-- topology, inputs and instantiation
rdBss = (transpose ◦ spawn procs) inp --steps in rows
bufly = zipWith bitFlipF [1..steps] rdBss --only init rdBss
inp = lazy2Zip rdAs’ (transpose bufly) --steps in cols

-- process functionality and abstraction
procs = repeat $ process $ uncurry p
p :: (Trans a, Trans b) ⇒ RD a → [RD b] → [RD b]
p rdA theirReds = (releaseAll ◦ scanl1 redF) toReduce where
toReduce = (initF ◦ fetch) rdA : fetchAll theirReds’
theirReds’= lazy2ZipWith (curry snd) [0..steps] theirReds

Fig. 10. The allReduceDC skeleton
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the intermediate reduction steps of the skeleton’s processes. The rearranged lists
are sent back to the processes. Thus, each process gets the remote values released
by one partner in every step. Fetching these values establishes the butterfly
communication topology.

The skeleton’s input is a list with 2steps remote data handles1. For each han-
dle a process will be instantiated. The skeleton takes two parameter functions:
function initF :: a → b is used to transform the initial remote value of each
process after it is fetched. This transformation allows to work with different types
for the input values and the reduction function inputs. The reduction function
redF :: b → b → b which should be associative and commutative is applied
in each step to the results of the previous step of a process and of its partner.
This behaviour can concisely be expressed with scanl1 redF applied to the
stream toReduce of values to be reduced. The stream toReduce is composed of
the initial value and the stream input theirReds. The latter contains the part-
ners’ values for all steps. Note that the complete list structure of theirReds is
already built in theirReds’ even before its first element is received. Thus the
request for all remote values can be eagerly initiated by the function fetchAll

which would otherwise block on an incomplete list structure. The result of the
scanl1 application is element-wise released in every process, resulting in a list
of remote data which is also generated in advance. This happens because the
evaluation of releaseAll equally depends only on its parameter list’s structure.
Thus the exchange of remote data handles via the root process can happen in
advance, independently of the parallel reduction steps.

The caller process gathers the result streams of all processes in a nested list.
We transpose this list to have all remote values of a step in each inner list of
rdBss. Applying the function bitFlipF to the first steps lists permutes these
according to the butterfly scheme. We transpose this permutation bufly such
that each process’s input is located in one inner list. This transposed list is
lazily zipped with the initially supplied input list rdAs using lazy2Zip and
passed back to the processes. The final result consists of the results of the last
reduction step, i.e. the last element of the list rdBss.

We have tested the allReduceDC skeleton with a dummy example which we
executed on an 8 core Intel Xeon machine. The initial transformation function
initF serves as generator and generates the list [1..nElems], where nElems is
a parameter of the program and in our example set to 200000. The trace visuali-
sation in Fig. 11 reveals interchanging computation and communication phases.
The butterfly interconnection scheme can clearly be recognised in the messages
exchanged between the processes. The generation of elements is depicted as the
first “running” phase. The reduction network has been set up before, by ex-
changing the remote data messages via the root process on Machine 1 (initial
messages). Three reduction phases follow. First the direct neighbours exchange
their lists leading to the typical butterfly pattern of messages. The processes re-
duce their lists using the reduction function redF which is set to zipWith (+).

1 The allToAllDC skeleton only works for input lists where the length is a power of
two. Other lists are cut to the next smaller power of two.
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Fig. 11. Runtime behaviour of the allReduceDC skeleton

For the next steps, the distance to the partner process is doubled every time.
Finally, a parmapDC skeleton is called to consume the data and return an empty
list to the root process.

5 Related Work

Alt and Gorlatch [1,2,3] introduced a concept similar to remote data called
remote references in the context of optimisations of Java RMI. They concentrated
on what they called lazy RMI, localised RMI and future-based RMI. Lazy RMI
describes the basic functionality. Future-based RMI allows to create and pass
remote references before the corresponding values are computed. We get this
in Eden for free because of Haskell’s laziness. An optimization for data passed
locally on the same machine, like localised RMI, would be a good optimisation
of the Eden runtime system, but is currently not implemented.

Alternative approaches to skeleton composition are based on the use of dis-
tributed data structures. Kuchen and Cole [7] describe a skeleton library based
on C++ and MPI which integrates task and data parallel skeletons. Darlington
[6] uses an imperative base as well but describes the composition of (predefined)
skeletons itself functionally in the structured coordination language (SCL).

Although programming with distributed data structures is comfortable and
efficient, the number of predifined data structures is limited and their use is
thus not as flexible as working with remote data. Remote data can be nested in
arbitrary algebraic data structures and manipulated by standard functions on
those structures.

6 Conclusions and Future Work

The remote data concept uses an existing communication topology to build di-
rect connections between different processes. Existing bottlenecks are thereby
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circumvented and the total communication amount is reduced. Although being
language-independent the concept enrolls its power and expressive elegance espe-
cially in the context of a declarative host language like Eden, where the concept
itself is implemented with small effort and only minor changes to existing code
are needed to lift functional results to the new data type.

Algorithmic skeletons that define process networks with complex communi-
cation patterns can be defined in an elegant and concise way. Composition of
skeletons with a remote data interface enables direct communication between
processes within the different skeleton instances. Communication overhead is
substantially reduced and skeleton compositions do not suffer anymore from the
performance penalty caused by the collection and redistribution of distributed
data in ordinary settings. Thus, the remote data concept enhances modularity of
skeleton-based parallel programming, especially by promoting easily composable
skeletons.

With remote data the explicit channel handling using new and parfill can
in most cases be abandoned. This improves the the elegance and usability of
Eden even more. We think that there is room for improvements in other parts
of the language as well. One of the topics that has been brought up many times
is the question whether the Eden functions should get an IO-interface or remain
unchanged. We plan an intensive study of the benefits and drawbacks of an
language specification that makes the side effects explicit.
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Abstract. We propose a rule-based language, Netlog, to express dis-
tributed applications such as communication protocols or P2P appli-
cations in a declarative manner. The language extends Datalog with
communication primitives, as well as aggregation and non-deterministic
constructs, standard in network applications. Our contribution is twofold.
First we define a sound distributed fixpoint semantics, which takes ex-
plicitly into account the in-node behavior as well as the communication
between nodes, and solves semantic problems raised in declarative net-
working. Second, we show that syntactic restrictions over the programs
can ensure polynomial bounds on the complexity (time and message) of
the distributed execution. The language has been implemented and runs
over a virtual machine, Netquest, which relies on a DBMS. Netlog pro-
grams are partly compiled into SQL queries, which makes them portable
over heterogeneous architecture.

1 Introduction

The trend towards ubiquitous environment is accelerated with wireless tech-
nologies interconnecting an increasing number of heterogeneous devices. Their
intermittent availability, the dynamicity of the networks, as well as the data
intensive applications envisioned raise considerable challenges. One of the fun-
damental barriers today to their development is the lack of programming
abstraction [15].

The declarative networking approach, initially proposed in [12] has been shown
to offer a nice paradigm to express in a declarative manner network applications.
Nevertheless, as shown in particular in [16], its semantics has not been formally
defined and suffers from severe ambiguities. In this paper, we propose a new
rule-based language that (i) integrates a collection of rich primitives required
in networking applications, (ii) admits a well-defined distributed fixpoint se-
mantics, (iii) has been implemented on the Netquest system, and tested over
simulated networks, and finally (iv) supports optimization and allows to bound
the complexity of the distributed execution.

Smart devices are usually dedicated systems based on ad hoc models, which
are not generic enough to support the needs of future applications (flexibility,

M. Carro and R. Peña (Eds.): PADL 2010, LNCS 5937, pp. 88–103, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Netlog, a Rule-Based Language for Distributed Programming 89

scalability, ease to produce and maintain, etc.). The deployment of a sensor net-
work for instance is a tedious task which requires an expertise in the underlying
OS and hardware.

The separation of a logical level, accessible to users and applications, from
the physical layers constitutes the basic principle of Database Management
Systems. It is at the origin of their technological and commercial success [17].
This fundamental contribution of Codd in the design of the relational model of
data, has lead to the development of universal high level query languages, that
all vendors recognize, as well as to query processing techniques that optimize
the declarative queries into (close to) optimal execution plans.

Declarative query languages have already been used in the context of net-
works. Several systems for sensor networks, such as TinyDB [14] or Cougar [7]
offer the possibility to write queries in SQL. These systems provide solutions to
perform energy-efficient data dissemination and query processing. A distributed
query execution plan is computed in a centralized manner with a full knowl-
edge of the network topology and the capacity of the constraint nodes, which
optimizes the placement of subqueries in the network [19]. Declarative methods
have been used also for unreliable data cleaning based on spatial and temporal
characteristics of sensor data [9] for instance.

Another application of the declarative approach has been pursued at the net-
work layer. The use of recursive query languages has been initially proposed to ex-
press communication network algorithms such as routing protocols [13] and
declarative overlays [12]. This approach, known as declarative networking is
extremely promising. It has been further pursued in [11], where execution tech-
niques for Datalog are proposed. Distributed query languages thus provide new
means to express complex network problems such as node discovery [3], route find-
ing, path maintenance with quality of service [6], topology discovery, including
physical topology [5], secure networking [1], or adaptive MANET routing [10].

The problems of semantics raised by declarative networking, motivated us to
introduce a new language. As NDlog [11] for instance, it relies on the deductive
languages [18] developed in the 80’s in the field of databases, but with important
differences that facilitate both execution and semantics. One of the fundamental
characteristics of the proposed language is that Netlog programs are local.
One node cannot access the memory of another node neither for write nor for
read instructions. This simplifies greatly the semantics of negation. It also facil-
itates the design of secure protocols. Netlog also extends classical recursive rule
languages with arithmetic, aggregate functions, as well as a non-deterministic
choice, which are required for many distributed problems, such as those involved
in networking protocols.

Fixpoint logics and rule-based languages have been widely studied in the clas-
sical centralized setting [2]. The main originality of the distributed fixpoint
semantics proposed in this paper is to take explicitly into account the com-
munication between nodes, and in particular the routing issue. Programs can
generate messages to arbitrary destinations, which have to be routed to some
neighbor following a routing strategy.
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The distributed fixpoint semantics is defined for asynchronous systems. On
each node, a local round consists of a computation phase followed by a com-
munication phase. During the computation phase, the program updates the lo-
cal data and produces messages to send. During the communication phase, the
router transmits the incoming messages to the program, and routes the outgo-
ing messages. In the present setting, a message can be routed if a route is found
in the data on the node, otherwise it is discarded. Other choices can of course
equally be made.

It has been widely shown now that rule-based languages allow to obtain code
about two orders of magnitude more concise than standard imperative program-
ing languages. But at this stage, this code is not necessarily simple to write. The
main challenge for declarative networking is to develop techniques for rewriting
programs which are simple to write into equivalent programs, which admits ef-
ficient execution. This means optimizing the programs, making them adapt to
their context, with different execution schemes.

In this paper, we concentrate on the complexity, and show that syntactic
restriction on the rules can enforce complexity bounds on their execution. We
consider three complexity measures, the distributed time and the message com-
plexity, which are classical in distributed computing, and the in-node complexity,
which is interesting for restricted terminals. We show that a restricted class of
programs, namely the well-behaved programs, admit polynomial complex-
ity bounds for these three measures.

We have developed a virtual machine, Netquest, which runs Netlog programs
according to the distributed fixpoint semantics. It relies on an embedded DBMS,
which stores the data as well as the programs on the nodes of the network.
The Netlog programs are essentially compiled into SQL queries, which are then
executed by the DBMS. The Engine manages the iteration of the queries. This
choice of implementation was motivated by the fact that an increasing number
of devices now support embedded DBMS’s. It simplifies the development, makes
the Netquest system easily portable over heterogeneous devices and networks,
and supports data intensive applications.

We have used Netlog to program a large set of problems from classical dis-
tributed algorithms to networking, from sensor networks to P2P games. They
confirmed the conciseness of the code, validated our semantics, as well as the
expected behavior derived from the syntactic form of the rules.

The paper is organized as follows. In the next section, we present the compu-
tation model. The Netlog language is presented through examples in Section 3.
Section 4 is devoted to the distributed fixpoint semantics. In Section 5, we study
the complexity of Netlog programs. A brief presentation of the implementation
is done in Section 6.

2 The Computation Model

We next introduce the computational model on which the Netlog rules are
executed. We consider a message passing model for distributed computation
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[4], based on a communication network whose topology is given by a graph
G = (VG , Link), where VG is the set of nodes, and Link denotes the set of bidirec-
tional communication links between nodes. The nodes have a unique identifier,
Id, taken from 1, 2, · · · , n, where n is the number of nodes. Each node has dis-
tinct local ports for distinct links incident to it. The control is fully distributed
in the network, and there is no shared memory.

The communication between nodes rely on messages which have the following
format: message :=< content, destination >. We thus distinguish between two
parts in each message: (i) the content of the message, and (ii) its destination.
The content is restricted to facts derived by the Netlog rules. The destination
is either a node Id; or nil (the message is sent to neighbor nodes); or all (the
message is broadcasted to all nodes).

We distinguish between computation events, performed in a node, and commu-
nication events, performed by nodes which cast their messages to their neighbors.
On one node, a computation phase followed by a communication phase is called
a local round of the distributed computation.

All the nodes have the same architecture and the same behavior. We make
in general no particular assumption on the distributed system, which might be
asynchronous, have failure, and rely on moving nodes. The architecture of
each node is composed of three main components, (i) a router, handling the
communication with the network; (ii) an engine, executing the Netlog programs;
and (iii) a local data store to maintain the information (data and programs)
local to the node.

The modules of the system on a node α at local round � behave as follows:

- Router. During the computation phase, the router queues the incoming mes-
sages on the reception queue, Rα(�), and the messages to push produced by
the Engine on the emission queue, Pα(�).

Fig. 1. The node architecture
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When the communication phase starts, the messages on the reception queue,
Rα(�), are sorted according to their destination. (i) If their destination is α
(the node Id), nil, or all, their content, grouped in Lα(�), is transfered to
the Engine. (ii) If their destination is another node Id, or all, the messages,
grouped in Fα(�), are put on the emission queue, Pα(�). The reception queue
is then emptied.

Then, each message on the emission queue, Pα(�), is handled. Either its
destination is nil or all, and the message is sent to all neighbors. Otherwise,
a route to the desired destination is queried in the Route relation in the data
store. The message is sent to the next hop on that route if it is found, and
otherwise discarded1.

- Deductive Engine. It processes the programs during the computation phase.
First, the programs, that can be activated by the new facts in Lα(�), are
loaded. The rules are then run till no rules can be executed to derive new
facts, new derived facts (in Iα(� + 1)) are stored in the data store, and
messages produced are pushed to the emission module, Pα(�), of the router.
The behavior of the Engine follows the semantics of the language presented
in the sequel.

- Local Datastore. It handles two sorts of information: all the data of the
node, whether related to networking issues (e.g. network topology, routes,
bandwidth, etc.) or applications, as well as the rules of the protocols.

The Datastore contains all data, which are all modeled as relations. Some pre-
defined relations are used by the system. It is the case of the two relations Link
of arity 2 and Route of arity 3:

Link = (Source, Destination) : N × N

Route = (Source, Nexthop, Destination) : N × N × N

The relation Link is read-only. It is maintained by the underlying network mon-
itoring. Each node has the fragment of the relation Link with its neighbors.
The relation Route on the other hand is computed by programs, and is used by
the Emission module of the Router. It therefore plays a particular role in the
semantics of Netlog programs. If no routes are available, the communication is
restricted to neighbors. Note that in some examples, we use relations of larger
arity for links and routes with their costs for instance. The two built-in relations
Link and Route, are then defined as views over more complex links and routes.

A Netlog program starts with declarations which include the data formats
(relations) used, as well as some initial facts to store in the local store. They are
installed on the data stores when programs are loaded.

3 The Netlog Language

We introduce the language and its primitives through the fundamental example
of route computation. Netlog relies on recursive rules, of the form head : − body,
1 Other strategies can be implemented, such as search for a route, forward to other

nodes, or failure messages.
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which informally mean that if the body is true then the head can be derived.
Let us recall the recursive rules which define the transitive closure of Link in a
centralized environment:

TC(x, y) : − Link(x, y). (1)
TC(x, z) : − Link(x, y); TC(y, z). (2)

The rules are applied in parallel, and the order of the literals in the body is
irrelevant. The transitive closure is computed by iterating the rules over an
instance of Link, that represents a given graph. For each tuple (α, β) such that
Link(α, β) holds, the first rule allows to derive TC(α, β), and similarly for the
second rule. The rules are recursively applied till a least fixpoint is obtained, in
this case in a number of steps proportional to the diameter of the graph.

The time complexity can be optimized, by replacing rule (2) by the following
rule, which converges in a logarithmic number of steps.

TC(x, z) : − TC(x, y); TC(y, z). (3)

In this paper, we are interested in networks, where the nodes have initially only
the knowledge of their neighbors. The Link relation is thus distributed over the
network such that each node has only a fragment of it.

The Netlog programs are installed on each node, where they run concurrently.
The computation is distributed and the nodes exchange information. The facts
deduced from rules can be stored on the node, on which the rules run, or sent
to other nodes. The following rules specify TC distributively:

� TC(x, y) : − Link(x, y). (4)
� TC(x, z) : − TC(x, y); TC(y, z). (5)

The affectation operator in front of rules determines where the results are
affected. The effect of ”↓” is to store the results of the rule on the node where
it runs; ”↑”, to push them to its neighbors; and ”�”, to both store and push
them.

The previous program computes the transitive closure in a distributed fashion
as follows. The results of the rules are both (�) stored locally and pushed to
neighbors. When it converges (after a number of rounds proportional to the
diameter in a synchronous system), the transitive closure is distributed over the
network, each node deriving in particular the nodes reachable from itself.

Let us consider more closely the semantics of the affectation operators. Assume
in the sequel that rule (4) is installed on each node, and let’s focus on the
recursive rule. In rule (5), it is important that results are both stored and pushed
(�). The following store rule would compute paths in the direct neighborhood
of each node, without communication.

↓ TC(x, z) : − TC(x, y); TC(y, z). (6)

The next push rule, on the contrary, would lead to an infinite loop of commu-
nication, with no result stored.

↑ TC(x, z) : − TC(x, y); TC(y, z). (7)
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Indeed, ↓ is the only ”write” instruction in the language. Facts that are received
by a node are only used to trigger rules.

Let us now consider the locations on which the rules run, and where the results
are sent. Consider again rule (2). The following rule stores and pushes its result.

� TC(x, z) : − Link(x, y); TC(y, z). (8)

Given that nodes store only their neighbors in Link, rule (8) instantiates either
x or y by the node Id, say α, on which it is executed. Suppose first that α
instantiates x. Then, the node α will store (and push) facts TC(α, γ) for any
γ, reachable from α. Suppose instead that α instantiates y. Then α stores and
pushes facts TC(β, γ) for β, neighbor of α, and γ reachable from (β through) α.

Such facts although irrelevant for α, can be useful for β, to which they can
be sent by the following rule, which unicast the facts, using the destination
instruction ”@”, on a variable of the head, instead of pushing them to all
neighbors.

� TC(@x, z) : − Link(x, y); TC(y, z). (9)

The destination instruction can apply to a node Id, all or nil. If the deduced
fact contains @β, @all or @nil, then its destination is respectively node β, each
node in the network, or each neighbor. If its destination is not a neighbor, we will
see in the sequel to which neighbor the message containing the fact is pushed,
according to the knowledge the node has of the Route relation.

To avoid computing irrelevant facts, it is as well possible to force the computa-
tion to take place on the node instantiating x. This is expressed in the following
rules, using the location instruction ”@” in front of a unique variable in the
body of the rule, so that this variable is instantiated by the node’s Id where the
rule runs.

� TC(x, y) : − Link(@x, y). (10)
� TC(x, z) : − Link(@x, y); TC(y, z). (11)

Rules (10) and (11) essentially partition the results of TC on relevant nodes.
Let us now consider routes, which for each destination give the next hop on the

path to that destination. The relation Route(Src, Hop, Dst) extends TC, with
an attribute for the next hop. Routes are stored in the routing table, Route, and
are used by the Router for passing messages to their destination. Rules (10) and
(11) can be adapted easily to define routes as follows.

� Route(x, y, y) : − Link(@x, y). (12)
� Route(x, y, z) : − Link(@x, y); Route(y, u, z). (13)

As above, assume now that rule (12) is stored on each node. Note that rule (13)
is very naive and results in all possible routes. The following rule avoids recom-
puting routes, when a route is already known.

� Route(x, y, z) : − Link(@x, y); Route(y, u, z);¬Route(x, , z). (14)
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It makes use of a universal literal, ”¬Route(x, , z)”, which is interpreted by a
universal quantification: there is no route from x to destination z, for any value
of the next hop. The first route discovered is then stored and pushed.

Netlog also contains standard arithmetic and aggregation functions, as illus-
trated below. Routes can be compared according to their length for instance.
The following program computes such weighted routes.

� WRoute(x, y, y, 1) : − Link(@x, y). (15)
� WRoute(x, y, z, n) : − Link(@x, y); WRoute(y, u, z, n′);

¬WRoute(x, , z, ); n := n′ + 1. (16)

Rule (16) stores the first route discovered and sends it to its neighbors. It uses
an assignment literal (:=) together with arithmetic operations. Alternatively,
the nodes can send the minimal routes, which can be defined using aggregation
as follows.

↓ WRoute(x, y, y, 1) : − Link(@x, y). (17)
� SLength(x, z, Min(n)) : − WRoute(@x, y, z, n). (18)

↓ WRoute(x, y, z, n) : − Link(@x, y); SLength(y, z, n′); n := n′ + 1. (19)

Rule (18) groups the weighted routes by (Src, Dst), and selects the one with
the minimal length. As a side effect, it deletes the facts SLength(x, z, n′) with
a value n′ > Min(n) from the local data store.

We next introduce a construct, the consumption operator, !, whose effect
is to delete the facts that are used in the body of the rules from the local data
store. The effect of the following rule is to delete the oversized WRoute facts.

� SLength(x, z, Min(n)) : − WRoute(@x, y, z, n);
!WRoute(@x, y′, z, n′); n′ > n (20)

The consumption operator is the only explicit deletion available in the language,
and it applies only to the local store, since the language is local. The above
program (rules (17)-(20)) produces the minimal length route between each pair
of source and destination. In case of plurality, one route can be chosen non-
deterministicaly using the choice operator, �.

↓ CRoute(x, �y, z, n) : − SLength(x, z, n); WRoute(@x, y, z, n). (21)

Rule (21) groups the routes with minimal length for each pair of source (the
node’s Id) and destination, and selects one route (next hop) randomly.

Note that the aggregation and the choice operator can be used together in the
head of a rule. The following rule chooses a neighbor associated with its degree.

Neighbor(@x, �y, #z) : − Link(x, y); Link(y, z). (22)

The variable y is interpreted by a value such that Link(x, y) holds, and the
expression #z is interpreted by the count over all values z such that Link(y, z),
for the previously chosen y value.
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4 Distributed Fixpoint Semantics

Netlog programs are running on the nodes of the network. They produce facts
to store as well as facts to sent to other nodes. Their semantics on one node is
defined by fixpoint in a way which is classical for rule-based languages such as
Datalog. We extend the fixpoint operators to take all the constructs (arithmetic,
aggregation, non-deterministic choice) into account.

We distinguish between two sorts, an uninterpreted sort (N,≤), and an arith-
metic sort (R,≤, +,×). Assume we are given a set of relations S, called a rela-
tional schema, which contains relation Link. Given a finite set V of variables,
a valuation over V is a mapping from V to N ∪ R. Let V ar(r) be the set of
variables of some rule r over schema S. Let V(V ar(r)) be the set of valuations
σ over V ar(r) which respect the sorts.

Let I be an instance over schema S. The satisfaction of the literals in the
body of rule r by instance I and valuation σ is defined in a classical way, but for
the universal literal, where: (I, σ) |= ¬R(t1, . . . ,−, . . . , tn) iff for any constant
C, R(σ(t1), . . . , C, . . . , σ(tn)) /∈ I. Assume the body of r, bodyr, is L1, . . . , L�.
We have (I, σ) |= bodyr iff (I, σ) |= Li, for each i ∈ [1, �].

Now we define the valuation of the head, headr, of rule r. In Netlog, ag-
gregate functions and �-operators can only occur in the head of rules. Let
V ar��Agg��(headr) be the simple variables in the head, which are neither arguments
of aggregate functions nor of �-operators, and V ar��Agg(headr) be the variables
in the head which are not arguments of aggregate functions.

Let τ ∈ V(V ar��Agg��(headr)). We extend τ to V(V ar(r)) with respect to inter-
pretation I, as:

[τ ]I,r ={σ|σ ∈ V(V ar(r)), σ(x) = τ(x), for all x∈dom(τ), and (I, σ) |= bodyr}.

In the sequel, we assume that [τ ]I,r 	= ∅. We define τ(headr) as follows:

– If headr contains only simple variables and is of the form R(x1, . . . , xn),
τ(headr) = R(τ(x1), . . . , τ(xn)).

– If headr is of the form R(x1, . . . , xn, Aggr(y1), . . . , Aggr(ym)), without �-
terms, then τ(headr) =

R(τ(x1), . . . , τ(xn), Aggr{{σ(y1)|σ ∈ [τ ]I,r}}, . . . , Aggr{{σ(ym)|σ ∈ [τ ]I,r}}).

where {{ }} denotes multi-set and Aggr, an aggregate function on multi-sets.

If the head contains �-terms, let τ� ∈ V(V ar��Agg(headr)) be a valuation. Simi-
larly, we have [τ�]I,r defined as above, and we assume [τ�]I,r 	= ∅.

– If headr is of the form R(x1, . . . , xn, Aggr(y1), . . . , Aggr(ym), �(z1), . . . ,
�(zl)), with �-terms, then τ(headr) is an element α of the set:

{R(τ(x1), ..., τ(xn), Aggr{{σ′(y1)|σ′ ∈ [τ�]I,r}}, ..., Aggr{{σ′(ym)|σ′ ∈ [τ�]I,r}},
τ�(z1), ..., τ�(zl)) | i ∈ [1, n], τ�(xi) = τ(xi)}.
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For simplicity, we write: τ(headr) � α, where � denotes a non-deterministic
mapping.

We can now define the set of positive consequences of a program P over an
instance I, Δ+

P (I), as well as the set of consumed facts, Δ−
P (I). First, the set of

the possible derived facts of a program P over an instance I is defined by:

FactsP (I) = {τ(headr)|r ∈ P, τ ∈ V(V ar��Agg��(headr)), [τ ]I,r 	= ∅}.

We are interested in subsets of FactsP (I) which satisfy a functional dependency
x1, . . . , xn → z1, . . . , z�, that is those subsets of facts where a single choice was
made for all variables of diamond operators. Let PP (I) be the set of such subsets
of FactsP (I). Then,

Δ+
P (I)� J , where J ∈ PP (I);

Δ−
P (I) = {R(σ(t1), . . . , σ(tn))|r ∈ P, (I, σ) |= bodyr, !R(t1, . . . , tn) in bodyr}

∪{R(α1, . . . , αn, β1, . . . , βm, γ1, . . . , γl)|r ∈ P, headr =
R(x1, . . . , xn, Aggr(y1), . . . , Aggr(ym), �(z1), . . . , �(zl)),

R(α1, . . . , αn, β′
1, . . . , β

′
m, γ1, . . . , γl) ∈ Δ+

P (I),
R(α1, . . . , αn, β1, . . . , βm, γ1, . . . , γl) ∈ I}.

It is not hard to see that Δ−
P (I) ⊆ I.

We can now introduce the semantics of Netlog programs in a distributed
setting. We assume that a program P has been installed on each node of the
network. We denote by P↓ the subset of store rules, and P↑ of push rules in P .
Note that store-and-push rules belong to both sets.

We monitor the activity, computation and communication, on one node, say
α. At each local round, on each node, the program takes as input the local data
and the data pushed by other nodes, and produces updated local data, and
data to be pushed. The node also forwards messages, that are not used in the
local computation. Its interaction with the rest of the network is defined by the
communication function: Rα(�), which maps � to the set of incoming messages
on node α at local round �.

Note that at each local round, the router sorts the incoming messages into
two sets Lα(�), of received facts, and Fα(�), of messages to forward to other
nodes depending upon their destination: Lα(�) contains the facts extracted from
messages received from other nodes, with destination α, ”all”, or ”nil”. Fα(�)
contains the messages received from other nodes, with a destination different
from α or destination ”all”, which will be forwarded further to other nodes.

Fα(�) =
{
(fact, dest)| (fact, dest) ∈ Rα(�); dest /∈ {α, nil}.

}
;

Lα(�) =
{
fact

∣∣ (fact, dest) ∈ Rα(�); dest ∈ {α, nil, all}.
}
, for � ≥ 0.

The computation relies on two operators, associated to program P , (i) for the
data to store locally, Ψ↓

P , and (ii) for the data to push to other nodes, Ψ↑
P . They

take as input the local instance I, and the received facts L.

– Ψ↓
P (I, L)� Δ+

P↓(I∪L)∪(I\Δ−
P (I∪L)) defines the store operator, producing

facts to store.
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– Ψ↑
P defines the push operator, producing messages to push:

Ψ↑
P (I∪L)�

⎧⎨
⎩(fact, dest)

∣∣∣∣∣∣
fact ∈ Δ+

P↑(I ∪ L); and
if fact contains an address term @β or @all,
then resp. dest = β or all; otherwise dest = nil.

⎫⎬
⎭

We use the notation ”�” instead of equality to denote the non-determinism of
the result. During one local round, the following computation takes place on
each node.

Definition 1. Given a Netlog program P , an instance I on node α, a set of
incoming facts L, a one-round execution of P on α wrt I and L, is given by
a sequence (Iα

i ,Pα
i )i≥0 such that:

– Iα
0 � Ψ↓

P (I, L),
– Iα

i+1 � Ψ↓
P (Iα

i , ∅), for i ≥ 0;
– Pα

0 � Ψ↑
P (I ∪ L),

– Pα
i+1 � Ψ↑

P (Iα
i ) ∪ Pα

i , for i ≥ 0.

Note that the facts received L are used in the computation, but not stored on
the node, while the facts to be sent are accumulated in the Pα

i ’s without being
used in the computation on α.

The one-round computation of a program on a node consists of any possible
one-round execution.

Definition 2. Given a program P , an instance I on node α, a set of incoming
facts L, a one-round computation of P on α wrt I and L terminates if
all its non-deterministic one-round executions converge to a fixpoint, i.e., every
sequence (Iα

i ,Pα
i ) has a limit (Iα, Pα) for i → ∞. Such a limit is called a one-

round fixpoint of the program P on node α wrt I and L.

When a local round � starts, the node α has a local instance Iα(�), and has
received facts Lα(�), and messages to forward Fα(�). It then starts its compu-
tation, and produces a new local instance Iα(� + 1) � limi→∞Iα

i and a set of
messages to push Pα(�)� limi→∞Pα

i ∪ Fα(�) if the limits exist.
Let us now consider the communication between nodes. The messages to push

are accumulated in Pα(�). Their routes will be computed according to the knowl-
edge node α has of the Link and Route relations (see the Router description in
Section 2).

In the case of synchronous systems without failure, there is an explicit corre-
spondence between the incoming and outgoing sets of messages.

Proposition 1. For synchronous systems without failure, we have for l ≥ 0:
Rα(0) = ∅,

Rα(� + 1) =
{

(fact, dest)
∣∣∣∣∃β s.t. Link(β, α) ∈ Iβ(�); (fact, dest) ∈ Pβ(�);and

if dest /∈ {α, nil, all}, then Route(β,α, dest) ∈ Iβ(�)

}
.

The proof is straightforward.
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In the case of asynchronous systems, the function Rα depends upon the dis-
tributed system, and in general might differ between two executions. The seman-
tics is thus defined up to the system of communication function Rα for each node
α. We next define the termination of programs which relies on the convergence
of the sequence of fixpoints.

Definition 3. Given a program P , running on a network G with an instance I
distributed on each node, and a system of communication function (Rα)α∈VG , a
computation of P on G wrt I and the Rα’s terminates if on each node α, and
at each round � all the one-round computations of P converge to a fixpoint, i.e.
all sequences (Iα

i (�),Pα
i (�)) have a limit (Iα(�),Pα(�)) for i → ∞, and moreover

all sequences (Iα(�),Pα(�)) have a limit (Iα,Pα) for � → ∞. The collection of
limits (Iα)α∈VG is called a distributed fixpoint of the program P.

5 Complexity

In this section we investigate the complexity of Netlog programs. Their termi-
nation is of course undecidable. Nevertheless, for restricted classes of programs,
we can obtain bounds on their complexity. We consider three complexity mea-
sures. Two are classical in distributed computing, the distributed time and the
message complexity. The last one, the in-node complexity, is generally ignored
for distributed systems, but it is interesting in this context since it admits nice
bounds as well.

– The distributed time complexity, is the maximum number of rounds of any
local execution of any node till the termination;

– The per-node message complexity, is the maximum number of messages sent
by any node till the termination;

– The per-round in-node computational complexity, is the time complexity of
the in-node computation in one round.

Several factors can cause the non-termination of a program. (i) A program can
generate an unbounded number of new values, by using arithmetic functions for
instance. Even if the domain in which the program ranges is bounded, (ii) the
sequences of instances Iα

i (�) can very well not converge at some round �. Or,
(iii) the sequences (Iα(�),Pα(�)) do not have limits.

By controlling these three causes of non-termination, we can obtain well-
behaved programs, which admit polynomial complexity bounds. To solve the
first problem, range restrictions can be imposed on the variables in the rules to
guarantee that they range over some finite set of values. The main problem is
to prevent arbitrary recursion over the creation of new values.

A program P is range-restricted, if for each input instance, there is a domain
of size polynomial in the instance (for a polynomial depending upon P ), such
that the fixpoint of the program can be computed over this restricted domain,
that is with all variables ranging over the restricted domain, while producing the
same result. Although undecidable, this property can be enforced by syntactic
restrictions.
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For lack of space, we only illustrate such restrictions on two examples of
Section 3. In rule (16), the fourth attribute of WRoute, with variable n, say
Lth, is a new-value attribute. The literal ¬WRoute(x, , z, ) in the body of the
rule guarantees a functional dependency from (Src, Dst) to Lth, and thus a
bound on the value of Lth. In rules (18) and (19), there is a recursion between
SLength and WRoute. The aggregation function in rule (18) ensures a functional
dependency from the first and second attributes of SLength to the third, and a
linear bound on these values. It follows that the number of values in WRoute is
also linearly bounded.

Let us tackle now the second problem. We say that a program P is inflation-
ary if I ⊆ Ψ↓

P (I, L) for any set of facts L. Programs without consumption nor
aggregate function are inflationary. However, this is a very restrictive condition
but it can be relaxed, by allowing to replace monotonically, at each iteration
of the fixpoint operator, facts with an aggregate attribute (with the aggregated
value continuously either increasing or decreasing). Such programs are called
quasi-inflationary. Rules (18) and (19) define a quasi-inflationary program for
instance adding continuously facts in relation WRoute and updating SLength
with continuously smaller values.

The third problem can be tackled by guarded communication. A push
rule is guarded if its body can only be instantiated using facts from the local
instance, not from the incoming messages. At the syntactic level, this can be
enforced easily by forbidding recursion over head relations in P ↑. Consequently,
if L is a set of facts over the head relations of P ↑, Ψ↑

P (I ∪L) = Ψ↑
P (I). Rule (18)

for instance is guarded.
A program is well-behaved if it is a range restricted, quasi-inflationary pro-

gram with guarded communication. We can prove the following result.

Theorem 1. Well-behaved programs have distributed time complexity, per-node
message complexity, and per-round in-node computational complexity polynomial
in the size of the input instance.

Netlog programs can be transformed into equivalent programs which admit more
efficient execution. We have considered several aspects of the optimization
as well as the adaptive behavior of programs. First, the implementation of
Netlog is based on a semi-naive evaluation, which triggers only rules over
inputs where one of the relations in the body of the rule has been updated
since the previous iteration of the fixpoint. Second, the implemented version
of Netlog supports modules of rules. Programs are decomposed into distinct
modules, which model specific tasks and trigger one another after completing
their fixpoints.

6 The Netquest System

The Netquest virtual machine presented in Section 2 has been implemented. It
relies on an embedded DBMS, with which the Engine is coupled.
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We choose to rely on an embedded DBMS, to simplify the programing of the
system, increase its portability, and allow the extension to data intensive ap-
plications. This choice is by no means a limitation since an increasing number
of small devices have now embedded DBMSs such as smart phones or iMote
devices, for which we carried out experiments. The Netlog programs are com-
piled into SQL queries, which are then loaded on the embedded databases. Our
compiler can currently produce queries for either MySQL or SQL Server.

The main component is the Engine which computes the fixpoints Iα and Pα

on each node α. It loads the queries corresponding to a program and runs them
against the database, till a fixpoint is reached. Most of the computation is thus
performed by the DBMS. The Engine has some additional functionalities, not
developed in the present paper, such as timers, necessary for networking pro-
tocols. Programs are organized into modules to ease programming. Netquest
also uses optimization techniques, such as the triggering of rules by new facts,
which avoid unnecessary re-computation, when there are no changes in the in-
put of rules. Netquest also relies on a more complex type system standard for
programming languages, and integrates aggregate functions available in SQL.

The router handles the queues of incoming and outgoing messages, and works
according to the semantics presented in this paper. This implies to revisit the
functionalities of standard routers.

Netquest has been installed and tested over two platforms: the network simu-
lator WSNet [8], as well as a network emulator developed in the project. A large
set of protocols from different areas have been programmed in Netlog and tested
over these two experimental platforms, while a visualization tool allows to follow
the network activity, the communication, as well as the execution of individual
rules.

7 Conclusion

Declarative languages for distributed programming are very promising, but they
raise technical difficulties. In this paper, we have proposed a new rule-based
language, that on one hand is well suited for programming network applications
and protocols, but meanwhile admits a well defined semantics, which solves
problems raised by previous proposals.

Our objectives are to produce code which is (i) easy to write because it relies
on declarative statements; (ii) adaptive, can be compiled into different algorithms
depending upon the dynamic context; and (iii) verifiable formally. All these
objectives require a formal semantics.

We are currently far though from declarative languages for networking. In-
deed, in current proposals, most of the distributed optimization techniques has
to be expressed in the rules. We are currently working on automatic transla-
tion of rule programs to equivalent programs which are optimized, can adapt to
changes in the network, much like query optimization techniques in the context
of databases.
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We choose to implement Netlog on top of a DBMS, to allow data intensive ap-
plications, and increase the portability of the system over heterogeneous devices
and networks. Our first experiment on devices are rather conclusive.
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Abstract. A well-known bad code smell in refactoring and software
maintenance is duplicated code, that is the existence of code clones,
which are code fragments that are identical or similar to one another.
Unjustified code clones increase code size, make maintenance and com-
prehension more difficult, and also indicate design problems such as a
lack of encapsulation or abstraction.

This paper describes an approach to detecting ‘similar’ code based on
the notion of anti-unification, or least-general common abstraction. This
mechanism is used for detecting code clones in Erlang programs, and is
supplemented by a collection of refactorings to support user-controlled
automatic clone removal. The similar code detection algorithm and refac-
torings are integrated within Wrangler, a tool developed at the University
of Kent for interactive refactoring of Erlang programs. We conclude with
a report on case studies and comparisons with other tools.

Keywords: Anti-unification, Code clone detection, Erlang, Program
analysis, Program transformation, Refactoring, Similar code, Wrangler.

1 Introduction

Duplicated code, or the existence of code clones, is one of the well-known bad
‘code smells’ when refactoring and software maintenance is concerned. The term
‘duplicated code’, in general, refers to program fragments that are identical or
similar to one another; the exact meaning of ‘similar code’ might be substantially
different between different application contexts.

While some code clones might have a sound reason for their existence [1],
most clones are considered harmful to the quality of software, since code dupli-
cation increases the probability of bug propagation, the size of the source and
executable, and most importantly the cost of maintenance [2,3].

The most obvious reason for code duplication is the reuse of existing code,
typically by a sequence of copy, paste and modify actions. Duplicated code in-
troduced in this way often indicates program design problems such as a lack of
encapsulation or abstraction. This kind of design problem can be corrected by
refactoring out the existing clones at a later stage [4,5,6], but it could also be
avoided by first refactoring the existing code to make it more reusable, and then
reusing it without duplicating the code [5].

M. Carro and R. Peña (Eds.): PADL 2010, LNCS 5937, pp. 104–118, 2010.
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In the last decade, substantial research effort has been put into the detection
and removal of clones from software systems; however, few such tools are avail-
able for functional programming languages, and there is a particular lack of tools
that are integrated with existing programming environments, thus supporting
clone removal as a part of the programmer’s normal work pattern.

This paper describes an approach to detecting ‘similar code’ in Erlang pro-
grams based on the notion of anti-unification [7,8], as well as a mechanism for
automatic clone elimination under the user’s control. The anti-unifier of two
terms denotes their least-general common abstraction, therefore captures the
common syntactic structure of the two terms.

In general, we say two expressions or expression sequences, A and B, are sim-
ilar if there exists a non-trivial least-general common abstraction, C, and two
substitutions σA and σB which take C to A and B respectively. By ‘non-trivial’
we mean that the size of the least-general common abstraction should be above
some threshold, but certain other conditions can be specified, and this is under
active investigation.

The approach presented in this paper is able, for example, to spot that the
two expressions ((X+3)+4) and (4+(5-(3*X))) are similar as they are both
instances of the expression (Y+Z), and so both instances of the function

add(Y,Z) -> Y+Z.

Our approach uses as the representation of an Erlang program the Abstract
Syntax Tree (AST) for the parsed program annotated with static semantic in-
formation. Scalability, one of the major challenges faced by AST-based clone
detection approaches, is achieved by a two-phase clone detection technique. The
first phase uses a more efficient syntactic technique to identify candidates which
might be clones, which are then assessed by means of an AST-based analysis
to give only genuine clones. While the paper shows this approach being imple-
mented for Erlang in particular, we see no reason why it should not be applicable
to similar code detection in any other programming language.

The application of the approach of this paper to a substantial case study
is discussed in [9]; the account here concentrates on the underling theory and
implementation of the technology.

The remainder of the paper is organised as follows. Section 2 gives an overview
of Erlang and Wrangler, and in particular our earlier mechanism for clone de-
tection and elimination, while clarifying the motivation and goal of this paper.
Section 3 introduces some terminology to be used; Section 4 describes the sim-
ilar code detection algorithm. The elimination of code clones is discussed in
Section 5, and initial experimental results are reported in Section 6. Section 7
gives an overview of related work, and finally, Section 8 concludes the paper and
briefly discusses future work.

2 Erlang and Wrangler

Erlang. [10,11] is a strict, impure, dynamically typed functional programming
language with support for higher-order functions, pattern matching, concurrency,
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communication, distribution, fault-tolerance, and dynamic code loading. Unlike
other functional programming languages such as Haskell [12], Erlang does not
have built-in support for type classes, inheritance or polymorphism. Erlang al-
lows static scoping of variables, in other words, matching a variable to its binding
only requires analysis of the program text, however some variable scoping rules
in Erlang are rather different from other functional programming languages.

The Erlang language comes with libraries containing a large set of built-in
functions. Erlang has also been extended by the Open Telecom Platform (OTP)
middleware platform, which provides a number of ready-to-use components and
design patterns, such as finite state machines, generic servers, etc, embodying a
set of design principles for fault-tolerant robust Erlang systems.

Wrangler. [13,14] is a tool that supports interactive refactoring of Erlang pro-
grams. It is integrated with Emacs as well as with Eclipse, through the ErlIDE
plugin. Wrangler itself is implemented in Erlang. Wrangler supports a variety
of refactorings, as well as a set of ‘code smell’ inspection functionalities, and
facilities to detect and eliminate code clones. Wrangler supports a number of
basic structural refactorings such as renaming, function generalisation, function
extraction, folding, move a function definition to another module, tuple function
arguments, etc, as well as a sets of macro- and process-related refactorings. Sig-
nificant effort has been put to improve usability of the tool, and Wrangler is
aimed to be used by real-world Erlang programmers from beginners to experts.

A clone detection and elimination framework was first added to Wrangler in
2007 [15]. In contrast to the approach proposed here, Wrangler’s original clone
detector reports syntactically well-formed code fragments that are identical up
to consistent renaming of variables and substitution of literals. A hybrid clone
detection technique which makes use of both the token stream and the AST
was used to achieve performance and efficiency. Three refactorings, function
extraction, function generalisation and folding, can together be used to remove
clones from the program. More about this approach can be found in [15].

Wrangler’s original clone detection mechanism is rather limited:

– The clone detector cannot detect code fragments that are similar but not
identical, such as X+Y and X+(Y+1).

– The user needs to figure out which of the literals contained in a cloned code
fragment need to be generalised in order to capture the commonality of all
duplications.

– Moreover, the user needs to identify which of variables locally declared in
the cloned code fragment are used by the code following it, so that their
values can be returned by the generalised function.

– To get these two sorts of information identified above, a manual inspection
and comparison of every clone occurrence is needed, an impractical propo-
sition in a system of any size.

To overcome these limitations, we have designed a new approach which can
detect not only identical code but also code fragments that are similar through
anti-unification. The clone elimination process has been greatly simplified so
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that the user no longer needs to work out the common abstraction and the set
of variables to be returned, as these are identified automatically by the tool.
With the new approach, we aim to spot more code clones, and make the clone
removal process practically applicable.

3 Terminology

3.1 Anti-unfication

The idea of anti-unification was first proposed by Plotkin [7] and Reynolds [8]
in 1970. Anti-unification applies the process of generalisation on pairs, or sets,
of terms. The resulting term captures all the commonalities of the input terms.

A substitution is a mapping from variables to terms, and is in general rep-
resented as a set of bindings {x1 �→ e1, ..., xn �→ En}. Applying a substitution
σ to a term E = E(x1, ..., xn) gives the term Eσ = E(e1, ..., en) in which each
variable xi is replaced by the corresponding term ei.

Given terms E1...En, we say that E is a generalisation of E1, ..., En if there
exist substitutions σi for each Ei, 1 ≤ i ≤ n, such that Ei = Eσi. E is the least-
general common generalisation of E1...En if for each E′ which is also a common
generalisation of E1, ..., En, there exists a substitution θ such that E = E′θ.
The least-general common generalisation of E1, ..., En is called the anti-unifier
of E1, ..., En, and the process of finding the anti-unifier is called anti-unification.

To apply anti-unification techniques to ASTs of Erlang programs, restrictions
as to which kinds of subtrees can be replaced by a variable, and which cannot,
need to be taken into account. For instance, objects of certain syntactic cate-
gories, such as operators, guard expressions, record names, cannot be abstracted
and passed in as the values of function parameters, and therefore should not
be replaced by a variable during anti-unification. Furthermore, an AST subtree
which exports some of its locally declared variables should not be replaced by a
variable either. On the other hand, it is perfectly fine to substitute the function
name in a function application with a variable because higher order functions
are supported by Erlang.

3.2 Similarity Score

Anti-unification provides a concrete way of measuring the structural similarity
between terms by showing how both terms can be made equal. In order to mea-
sure the similarity between terms in a quantitative way, we defined the similarity
score between terms.

Let E be the anti-unifier of sub-trees E1, ..., En, the similarity score of E1, ...,
En is computed by the following formula:

Similarity Score = min{SE/SE1 , ..., SE/SEn}
where SE , SE1 ... SEn represent the number of nodes in E, E1... En respectively.
The similarity score allows the user to specify how similar two sub-trees should
be to be considered as clones. Given a similarity score as the threshold, we say
that a set of sub-trees are similar if their similarity score is above the threshold.
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3.3 Definition of Clones

Common terminology for clone relations between two or more code fragments
are the phrases clone pair and clone class [16]. A clone pair is a pair of code
fragments which are identical or similar to each other. A clone class is a set of
code fragments in which any two of the code fragments form a clone pair.

In the context of this paper, each member of a clone pair/class is a sequence
of Erlang expressions. Note that sub-sequences of expression sequences in each
clone pair/class could also make clone pairs/classes. Suppose we have a clone
class with 3 class members: {[a1, a2, ..., an], [b1, b2, ..., bn], [c1, c2, ..., cn]}, then

{[ai, ...aj ], [bi, , ...bj], [ci, ..., cj ]}(1=<i=<j=<n))

could also be clone classes. For ease of description, we use Ci,j to represent the
clone class whose class member are formed by the sub-sequence, starting from
index i and ending at index j, of each class member of clone class C.

While only those maximal clone classes whose similarity score is above the
threshold specified are reported to the user, sub-sequence clone classes are used
by the clone detection process; further details of this are given in Section 4.

4 The Similar Code Detection Algorithm

The similar code detector takes a project (or just a set of Erlang modules) as
input, performs clone detection, and reports clone classes in the project. Each
clone class is reported by giving the number of instances of the cloned code, each
instance’s start and end locations in the program source, as well as the least-
general common generalisation represented as an Erlang function definition. The
entire clone detection process is shown in Fig. 1. The process consists of seven
steps as described in the rest of this section.

Three parameters can be used to specify the granularity of clone classes re-
ported, and they are:

– the minimum number of expressions included in a cloned code fragment,
which is a sequence of expressions;

– the minimum number of class members of a clone class, and
– the similarity score threshold.

Parse Program and Generate AST. Erlang files are first lexed and parsed
into ASTs. The lexer and parser used are modified versions of the standard
Erlang lexer and parser, so that both line and column numbers of identifiers
are kept in the AST. Location information makes it possible to map between
different representations of the same piece of code. In order to reflect the original
program text, the Erlang pre-processor is bypassed to avoid macro expansion,
file inclusion, conditional compilation, etc.

Annotate AST with Static Semantic Information. Binding information
of variables and function names is annotated to the AST in terms of defining
and use locations. Unlike some other AST representation approaches which use a



Similar Code Detection and Elimination for Erlang Programs 109

Parse Program

AST Annotation

AAST Generalisation

Serialise and Hash AAST

Formatting

Examination of Clone
Candidates using
Anti-Unification

Clone Detection using
Suffix Tree

Source Erlang Programs Clone Classes

AST

Annotated AST (AAST)

Generalised AAST

Hashed AAST

Initial Clone Candidates

Final Clones

Fig. 1. An Overview of the Clone Detection Process

single leaf node to represent all the occurrences of the same variable, the AST
representation used by Wrangler does not allow node-sharing between different
occurrences of the same variable. In this case, we use location information to ex-
press the binding structure of identifiers. For instance, each occurrence of a vari-
able or function name in the AST is annotated with its occurrence location in the
source and the location(s) where it is defined. Binding information allows us to
check whether two variable or function names refer to the same object by looking
at their defining locations; this is required during the anti-unification process.

Being static-semantics-aware, our clone detection tool is able to achieve the
degree of accuracy that cannot be achieved by language-independent clone de-
tection tools, or indeed tools that rely on the lexical structure alone.

Generalise and Hash the AST. A major challenge faced by AST-based clone
detection approaches is scalability. Näıve anti-unification of every subtree with
every other subtree involves a prohibitively large amount of computation and
memory usage, and is not feasible in practice. Scalability is achieved by our
approach using a two-phase clone detection. The first phase carries out a quick,
semantics-unaware clone detection over a generalised version of the program,
and reports initial clone candidates to be further examined by the second phase.
This second phase examines the initial clone candidates in the context of the
original program by means of anti-unification, getting rid of false positives, and
reports the final clone classes.

The first phase makes use of suffix tree techniques to collect initial candidates.
Suffix tree analysis [17] is the technique used by most text or token-based clone
detection approaches because of its speed [18,16]. A suffix tree is a representation
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of a string as a tree where every suffix is represented by a path from the root to a
leaf. The edges are labelled with the substrings, and paths with common prefixes
share an edge. The suffix tree analysis itself is only able to report duplications of
strings that are identical. To make use of the suffix tree techniques, while being
able to report similar code fragments, the AST needs to be pre-processed before
being passed on for suffix tree construction. The pre-processing is carried out in
two steps. Firstly, the AST is generalised so that only a structural skeleton of
each expression statement is kept; secondly, a hash function is applied to each
expression statement to map it to a number. This is covered next.

The aim of structural generalisation is to capture as much structural simi-
larity between expressions as possible while keeping each expression’s original
structural skeleton. This process traverses each expression statement subtree in
a top-down order, and replace certain kinds of subtrees with a single node repre-
senting a placeholder. A subtree is replaced by a placeholder only if syntactically
it is legal to replace that subtree with a node representing a variable, and the
subtree does not represent a pattern, a match expression or a compound ex-
pression such as a conditional expression, a receive expression, a try...catch
expression, etc.

Taking the following code as an example, the generalisation process will turn
the function definition on the left-hand side into the pseudo function definition on
the right-hand side. As a design decision, our clone detector does not attempt to
detect similar patterns simply because generalisation of a function over patterns
could make the function much harder to understand in practice. Therefore in
this example, the literal pattern one is not changed.

foo(X) -> foo(X) ->

Y = case X of ? = case ? of

one -> 12; one -> ?;

Others -> 196 ? -> ?

end, end,

X + Y. ?.

(a) original code (b) generalised code

Expression sequences in the AST are then pretty-printed and serialised into a
single sequence of expressions with a delimiter to separate each sub expression
sequence. After that, a hash function is applied to each expression statement in
the sequence returning a hash value. Expression statements that are textually
the same get the same hash value. All hash values are stored in an indexed table
without duplication. This way, we are able to map a sequence of expressions into
a sequence of numbers. To save space and make the algorithm more efficient, the
actual implementation represents an expression using its start and end locations
in the program source, and a hash value using its index in the table as an integer
is much short than the hash value itself. The mapping is represented as a list of
two-element tuples, whose first elements are locations and second elements are
index values.
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S1 = "This", S1 ="This" D1= [1], D1=[X+1],

S2 = " is a ", S2 ="is another", D2= [2], D2=[5],

S3 = "string", S3 ="String", D3 =[3], D3=[6],

[S1,S2,S3] [S3,S2,S1] [D1,D2,D3] [D3,D2,D1]

(E1) (E2) (E3) (E4)

Fig. 2. An initial clone class candidate with four class members

Initial Clone Detection using a Suffix Tree. This step fetches the index
values from each tuple in the list returned from the previous step, and con-
centrates them into a single string; a delimiter character is inserted after every
index value during the concatenation. A suffix tree is then built on the string
generated, and clone classes of index sequences are collected from the suffix tree.
Location information is used to map clone classes in terms of indexes back to
clone classes in terms of expression sequences. The suffix tree algorithm used
is part of Wrangler’s original clone detection algorithm, the implementation of
which is reported in [15].

Examine Clone Candidates using Anti-unification. The previous step
returns a collection of clone classes whose class members are structurally similar,
but which do not necessary share a non-trivial anti-unifier; even so it helps to
reduce the amount of comparisons needed significantly. This step examines the
initial clone class candidates one by one using anti-unification and removes those
false positives. It takes one clone class as input each time, and returns none, one
or more clone classes that satisfy the thresholds. Together with each final clone
class, the anti-unifier of the class members is returned. Due to space restrictions,
the anti-unification algorithm is not discussed in this paper.

For each clone class candidate, C say, the clone detector takes a class member,
A say, as the first member of a new clone class, C1 say, and try pairwise anti-
unification with each of the other class members. A class member from C is
added to C1 only if doing so does not make the similarity score of C1 go under
the threshold specified. When no more new members can be added to C1, the
clone detector checks whether the number of clone members in C1 is above the
parameter specified by the user, and discards it if the answer is ‘no’. After this,
another class member is selected from the remaining members of C, and the
process is repeated until no more new clone classes can be found.

In the case that none or more than one maximal clone class is returned from the
candidate clone class, i.e. the candidate clone class is not anti-unifiable as a whole,
its sub-portion clone classes are examined too. As an example, the class candidate
shown in Fig. 2 has four class member E1, E2 E3 and E4. By anti-unification this
class is divided into two new clone classes C1 = {E1, E3} and C2 = {E2, E4}.
Clone members of C1 are not anti-unifiable with class members of C2 because of
their different binding structure of variables. Suppose the minimum length of a
cloned expression sequence to be reported is 3, then the clone detector will con-
tinue to examine the two sub-portion clone classes C1,3 and C2,4. Examination of
C1,3 will return the whole clone class, while examination of C2,4 returns two new
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classes, but because the two new clone classes are subclones of C1 and C2, they
are discarded. Therefore the examination of clone class C results in three new
clone classes: C1, C2 and C1,3.

This step dominates the overall cost of the clone detection algorithm. Ex-
amination of a candidate clone class of n members has a worst case of O(n2)
complexity.

Discussion. More constraints can be applied during the anti-unification process
so that certain kinds of node are not replaced by variables even if doing so is
theoretically correct. For example, generalisation over expressions that contain
locally declared free variables is possible, but doing so makes the program harder
to understand, and may well not be of interest to the user. Another constraint
would be the maximal number of new variables introduced during the anti-
unification process, so as to avoid the generation of functions with too many
variables, which represents another kind of bad code smell. We are currently
working towards making the clone detector a customizable tool so that the user
could specify which kinds of generalisation are preferred or not preferred.

Fig. 3. A snapshot showing similar code detection
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Formatting. Final clone classes are sorted and displayed in two different orders,
first by the number of duplications, then by the length of expression sequences.
The location of each clone member, identified by the combination of source file
name, line and column numbers, is mouse clickable. Associated with each clone
class is the least-general common abstraction of the clone class in form of a
function definition. The function name and variable names of the form NewVar i
are generated by the clone detector. Variables that are declared locally but used
elsewhere are included in the tuple returned by the function.

Fig. 3 shows the clone detection in action. The buffer above is an Erlang mod-
ule consisting of four functions whose bodies correspond to the class members
in Fig. 2, and the buffer below shows the result of running the clone detector on
this buffer, illustrating the clones C1,3, C2, and C1, as well as their anti-unifiers.

5 Refactoring Support for Similar Code Elimination

The primary purpose of clone detection is to identify them so that they can be
eliminated. A number of Wrangler refactorings, together with the least-general
common abstractions suggested by the clone detector, make clone elimination
straightforward. With the current framework, the clone removal process involves
the following steps:

1. select a clone class, copy and paste the least-general common abstraction
into the proper Erlang module;

2. rename variable names if necessary;
3. re-order the function parameters if necessary;
4. rename the function to some suitable name;
5. apply the refactoring ‘fold expressions against a function definition’ to the

new function.

Both renaming and folding are refactorings supported by Wrangler. Reordering
of function parameters is not supported by Wrangler yet, but this does not add
any overhead to the clone removal process as long as the reordering of parameters
is done before ‘folding’ is applied, i.e. before the function is actually used.

Folding expressions against a function definition is the refactoring which ac-
tually removes code clones from the program. This refactoring searches the pro-
gram for instances of the right-hand side of the function clause selected, and
replaces them with applications of the function to actual parameters under the
user’s control. This refactoring can not only detect instances where parameters
are replaced by variables or literals, but also instances where parameters are re-
placed by arbitrary expressions. Expressions with side effects or locally declared
variables are wrapped in a fun expression (or closure) to preserve the seman-
tics. When this refactoring is initiated to a function clause selected, Wrangler
automatically searches for code fragments that are clones of this function clause.
Once clone instances have been found, the user can indicate whether to fold a
particular clone instance or not. Folding is not performed within the selected
function clause itself, since doing this will change the program’s semantics.
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Fig. 4. A snapshot of Wrangler showing folding

Fig. 4 shows a snapshot of this refactoring in action. The user has chosen
to apply ‘folding’ to the function foo. The expression sequence highlighted is
one of the clone instances found by this refactoring, and the text shown in the
minibuffer asks the user whether this clone instance should be removed. We
should point out that the fact that Erlang is a weakly typed language and does
not support polymorphism has made the clone detection and elimination process
easier. For example, with Erlang programs we can be sure that X+Y and A+B are
clones without carrying out complex type analysis, whereas this is not in general
possible in strongly-typed programming languages like Haskell.

6 Clone Detection Applied

The clone detector has been applied to various Erlang applications and test code.
Our case studies show that test code written under the Erlang/OTP Test Server
framework has a much higher percentage of duplicated code than normal Erlang
applications or test code written under other testing frameworks. This was not
very surprising given the fact that all Erlang/OTP Test Server test functions
follow a predefined coding pattern, and the copy, paste, then modify style of
editing can be very tempting to testers.

One of test suites we have examined contains 4 Erlang modules, 9189 lines of
code. This test suite is actually used by industry, and at the time we examined
this test code more testing functions were still being added. With the default
parameter settings, i.e. 5 for the minimum number of expressions, 2 for the
minimum number of repeats, and 0.8 for the similarity score, it takes the clone
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detector less than 2 minutes to report 354 initial clone class candidates and 150
final clone classes. This was run on a laptop with Intel(R) 2.00 GHz processor,
2015MB RAM, and running Windows Vista. Of the 150 clone classes, the largest
clone class, whose least-general common generalisation is shown below, contains
a sequence of five match expressions with 75 instances across 3 modules.

new_fun(NewVar_1, NewVar_2, NewVar_3) ->

FilterName_1 = "F_1",

Pos = 1,

FilterRuleSetList = [{FilterName_1, Pos, NewVar_1}],

NetSide = NewVar_2,

Dir = NewVar_3,

NetDirFilterList = [{NetSide, Dir, FilterName_1}],

{FilterRuleSetList, NetDirFilterList}.

The clone class with the longest expression sequence reports an expression se-
quence of 89 lines occurring twice in the same module with only two literal
strings being different.

Working together with programmers familiar with the test suite and the ap-
plication being tested, we looked to eliminate clones from the code. We took
one of the test modules, containing 2600 lines of code, as an example: the clone
detector reports 31 clone classes for this module. We started by removing clones
with the largest number of repeats, thus working bottom up. Instead of devoting
time to the details of the removal process, we were able to concentrate on its
higher-level aspects, such as choosing how to name the functions representing
the cloned code.

This experiment also showed the importance of user inspection during the
clone elimination process. We have the Wrangler support for identifying candi-
dates for clones but they may well need further analysis and insight from users
to identify what should be done. For example, a clone might contain some ex-
pressions whose functionality belongs to the next part of the code, and should
be removed from the least-general common generation before clone removal is
applied, if the extracted function is to represent a meaningful operation.

7 Related Work

A typical clone detection process first transforms source code into an internal
representation which allows the use of a comparison algorithm, then carries out
the comparison and finds out the matches. A recent survey of existing techniques
by Roy and Cordy can be found in [2]. Overall there are

– text-based approaches [19,2,20], which consider the target program as se-
quence of lines/strings;

– token-based approaches [21,18,22], which apply comparison techniques to
the token representation of programs.

– AST-based approaches [23,24,25,26,27], which search for similar subtrees in
the AST with some tree matching techniques; and
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– program dependency graph based approaches [21], which look for isomorphic
subgraphs to find clones.

Our approach presented in this paper uses the AST-based approach. AST-based
approaches in general could report more clones than text-based and/or token-
based approaches, but since näıve comparison of subtrees for equality does not
scale, various techniques are needed to make them scalable.

The most closely related work to ours is by Bulychev et al. [26] who also use
the notion of anti-unification to perform clone detection in ASTs. Their approach
consists of three steps, first identify similar statements using anti-unification and
classify them into clusters, this is done by attempting anti-unification of each
statement with each potentially matching cluster; then find identical sequences
of cluster IDs, corresponding to statement sequences within a compound state-
ment; after that anti-unification is used again to refine the candidate sequences
identified previously for overall similarity. Anti-unification distance, which can
be seen as the total size of subtrees to be replaced, is used to check the similarity
of clone pairs.

Our approach is different from Bulychev et al.’s in several aspects. First, we
use a different approach, which is faster but reports more false positives, to get
the initial clone candidates; second, their approach reports only clone pairs, while
our approach reports clone classes as well as their anti-unifiers; third, Bulychev
et al.’s approach is programming language independent, and the quality of the
algorithm depends on whether the occurrence of the same variable (in the same
scope) refers to one leaf in the AST; whereas our tool is for Erlang programs,
though the idea also applies to other languages, and static semantics information
is taken into account to disallow inconsistent substitutions.

Another related work is by Evans et. al [24] who search for large common
patterns in ASTs. It is based on heuristics and works in a bottom-up manner,
specifying and increasing the patterns step-by-step. The disadvantage of this is
that it can only find duplicated statements, not sequences of statements.

In [23], Baxter et al. use a hash function to place each full subtree of the AST
into a bucket, then every two full subtrees with a bucket are compared. The
hash function is chosen to be insensitive to identifier names so that these can be
parameters in a procedural abstraction. In [23], Baxter et al. also suggest a mech-
anism for the removal of code clone with the help of macros. DECKARD [25]
is another AST-based language independent clone detection tool, whose main
algorithm is to compute certain characteristic vectors to approximate struc-
tural information within ASTs and then cluster similar vectors, and thus code
clones.

Most of the above mentioned clone detection tools target large legacy pro-
grams, and none of them is closely integrated with an existing programming en-
vironment, not to mention support for interactive automatic clone elimination.
Without applying deeper knowledge of the scoping rules of the target program-
ming language, language-independent clone detection tools tend to have a lower
precision, and are not very suitable for mechanical clone refactoring.
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8 Conclusions and Future Work

In this paper, we have presented a similar code detection and elimination tech-
nique based on the notion of anti-unification, or least-general common abstrac-
tion, as well as techniques taken to improve performance and efficiency. The
tool is able to detect more clones than Wrangler’s original code detection tool,
which only reports code fragments that are identical after consistent variable
renaming and substitution of literals. The tool reports not only clones, but also
the least-general common abstraction of each clone class in form of an Erlang
function definition. The least-general common abstraction helps the user decide
whether the clone is worth elimination or not, and also makes the clone removal
process much easier. The clone detector tool is built on top of the infrastructure
of Wrangler, the Erlang refactorer, and also integrated within the Wrangler en-
vironment. User-controlled automatic elimination of clones was made possible
with Wrangler’s refactoring support. Case studies carried out with real-world
industrial code demonstrated the usefulness of the tool.

Our future work goes in a number of directions. While this paper lays out the
infrastructure of the tool, in the future we are going to do an empirical study of
clones detected from different Erlang systems with different parameter settings.
Our current similar code detection tool cannot detect expression sequences which
are similar up to a single insertion or deletion of an expression, or similar up to a
number of expression-level edits, and we are trying to extend the tool to detect
this kind of more general similarity. We would also like to explore the application
of the approach to other functional programming languages like Haskell, in which
case a type-aware anti-unification is needed.

This research is supported by EU FP7 collaborative project ProTest (http://
www.protest-project.eu/), grant number 215868; we thank our funders and
colleagues for their support and collaboration.
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Abstract. We address the problem of detecting some commonly oc-
curring kinds of race conditions in Erlang programs using static analy-
sis. Our analysis is completely automatic, fast and scalable, and avoids
false alarms by taking language characteristics into account. We have
integrated our analysis in dialyzer, a commonly used tool for detecting
software defects in Erlang programs which is part of Erlang/OTP, and
evaluate its effectiveness and performance on a suite of widely used in-
dustrial and open source programs of considerable size. The analysis has
detected a significant number of previously unknown race conditions.

1 Introduction

Concurrency is fundamental in computer programming, both as a method to
better structure programs and as a means to speed up their execution. Nowadays
concurrent programming is also becoming a necessity in order to take advantage
of multi-core machines which are ubiquitous. The only catch is that concurrent
programming is harder and more error-prone than its sequential counterpart.

To make concurrent programming simpler and better suited for some tasks,
different programming languages support different concurrency models. Some of
them totally avoid some hazards associated with concurrent execution. One such
language is Erlang, a language whose concurrency model is based on user-level
processes that communicate using asynchronous message passing [1]. Erlang con-
siderably simplifies the programming of some tasks and has been proven very
suitable for some kinds of highly-concurrent applications. However, it does not
avoid all problems associated with concurrent execution. In particular, the lan-
guage currently provides no atomicity construct and its implementation in the
Erlang/OTP system allows for many kinds of race conditions in programs, i.e.,
situations where one execution thread accesses some data value while some other
thread tries to update this value [2]. In fact, there is documented evidence that
race conditions are a serious problem when developing and troubleshooting large
industrial Erlang applications [3].

To ameliorate the situation and building upon successful prior work on de-
tecting software defects on the sequential part of Erlang [4,5], we have embarked
on a project aiming to detect concurrency errors in Erlang programs using static
analysis. In this paper we take a very important first step in that direction by
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presenting an effective analysis that detects race conditions in Erlang. So far,
analyses for race detection have been developed for languages that support con-
currency using lock-based synchronization and their techniques rely heavily on
the presence of locking statements in programs. Besides tailoring the analysis to
the characteristics of concurrency in Erlang, the main challenges for our work
have been to develop an analysis that: 1) is completely automatic and requires
no guidance from its user; 2) strikes a proper balance between soundness and
precision; 3) is fast and scalable and thus able to handle large and possibly open
programs; and 4) integrates smoothly with the existing defect detection analyses
of the underlying tool. As we will see, we have achieved these goals.

The contributions of this paper are as follows:

– It documents the most important kinds of data races in Erlang programs;
– it presents an effective and scalable analysis that detects these races, and
– it demonstrates the effectiveness of the analysis by running it against a suite

of widely used industrial and open source applications of significant size and
reports on the number of race conditions that were detected.

The next section overviews the Erlang language and the defect detection tool
which is the vehicle for our work. Section 3 describes commonly occurring kinds
of data races in Erlang programs, followed by Sect. 4 which presents in detail
the analysis we use to detect them. The effectiveness and performance of our
analysis is evaluated in Sect. 5 and the paper ends by reviewing related work
and some final remarks.

2 Erlang and Dialyzer

Erlang [1] is a strict, dynamically typed functional programming language with
support for concurrency, communication, distribution, fault-tolerance, on-the-fly
code reloading, automatic memory management and support for multiple plat-
forms. Erlang’s primary application area has been in large-scale embedded con-
trol systems developed by the telecom industry. The main implementation of
the language, the Erlang/OTP (Open Telecom Platform) system from Ericsson,
has been open source since 1998 and has been used quite successfully both by
Ericsson and by other companies around the world to develop software for large
commercial applications. Nowadays, applications written in the language are
significant, both in number and in code size, making Erlang one of the most
industrially relevant declarative languages.

Erlang’s main strength is that it has been built from the ground up to support
concurrency. In fact, its concurrency model differs from most other programming
languages out there. Processes in Erlang are extremely light-weight (lighter than
OS threads), their number in typical applications is quite large and their allo-
cated memory starts very small (currently, 233 bytes) and can vary dynamically.
Erlang’s concurrency primitives spawn, ! (send) and receive allow a process
to spawn new processes and communicate with others through asynchronous
message passing. Any data can be sent as a message and processes may be lo-
cated on any machine. Each process has a mailbox, essentially a message queue,
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where each message sent to the process will arrive. Message selection from the
mailbox occurs through pattern matching. To support robust systems, a pro-
cess can register to receive a message if another one terminates. Erlang provides
mechanisms for allowing a process to timeout while waiting for messages and a
try/catch-style exception mechanism for error handling.

In Erlang, scheduling of processes is primarily the responsibility of the runtime
system of the language. In the single-threaded version of the runtime system,
there is a single scheduler which picks up processes from a single ready queue.
The selected process gets assigned a number of reductions to execute. Each time
the process does a function call, a reduction is consumed. A process gets sus-
pended when the number of remaining reductions reaches zero, or when the
process tries to execute a receive statement and there are no matching mes-
sages in its mailbox, or when it gets stuck waiting for I/O. In the multi-threaded
version of the system, which nowadays is more common and the default on
multi-core architectures, there are multiple schedulers (typically one for each
core) each having its own ready queue. On top of that, the runtime system of
Erlang/OTP R13B (the version released on March 2009) also employs a redistri-
bution scheme based on work stealing when some scheduler’s run queue becomes
empty. A side-effect of all this is that the multi-threaded version of Erlang/OTP
makes many more process interleavings possible and more likely to occur than
in earlier versions. Indeed, in some applications written long ago, concurrency
bugs that have laid hidden for a number of years have recently been exposed.

Since 2007 the Erlang/OTP distribution includes a static analysis tool, called
dialyzer [4,5], for finding software defects (such as type errors, exception-raising
code, code which has become unreachable due to some logical error, etc.) in
single Erlang modules or entire applications. In fact, dialyzer has been surpris-
ingly effective in locating software bugs even in heavily used, well-tested code.
Dialyzer1 is totally automatic, extremely easy to use and supports various modes
of operation: command-line vs. GUI, starting the analysis from source vs. byte
code, focussing on some kind of defects only, etc. The details of dialyzer’s anal-
yses are beyond the scope of this paper — we refer the interested reader to the
relevant publications [4,6] — but notable characteristics of its core analysis are
that it is sound for defect detection (i.e., it produces no false positives), fast
and scalable. The core analysis is supported by various components for creat-
ing and manipulating function call graphs for a higher-order language (which
also requires escape analysis), taking control-flow into account, efficiently repre-
senting sets of values and computing fixpoints, etc. Nowadays, dialyzer is used
extensively in the Erlang programming community and is often integrated in
the build environment of many applications.2 However, we note that dialyzer’s
analysis was restricted to detecting defects in the sequential part of Erlang when

1 DIscrepancy AnaLYZer for ERlang; www.it.uu.se/research/group/hipe/dialyzer.
2 A survey of tools for developing and testing Erlang programs [7], published in the

fall of 2008, showed that dialyzer is by a wide margin the software tool which is the
most widely known (70%) and used (47%) by Erlang developers.

www.it.uu.se/research/group/hipe/dialyzer
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we started this work. Before we see how we extended its analysis to also detect
data races, let us first see the kinds of race conditions that exist in Erlang.

3 Race Conditions in Erlang

Näıvely, one may think that race conditions are impossible in Erlang. After all,
the language is often advertized as supporting a shared nothing concurrency
model [1]. A Google search on the term might even convince some readers that
this is indeed the case. For example, the Wikipedia article on concurrent com-
puting currently mentions that “Erlang uses asynchronous message passing with
nothing shared”.3 If nothing is shared between processes, how can there be
race conditions? In reality, the “shared nothing” slogan is an oversimplification:
both of the language’s copying semantics, which e.g. allows for a shared mem-
ory implementation of processes, and of its actual implementation by Ericsson.
While it is indeed the case that the Erlang language does not provide any con-
structs for processes to create and modify shared memory, applications written
in Erlang/OTP often employ — and rely upon — system built-ins which allow
processes to share data, make decisions based on the values of this data and
destructively update them.

This is exactly what leads to data races in programs and the definition of race
conditions we adopt in this paper: “a race occurs when two threads (or processes)
can access (read or write) a data variable simultaneously, and at least one of the
two accesses is a write”. Intuitively, we think of race conditions occurring when
a process reads some variable and then decides to take some action based on the
value of that variable. If it is possible for another process to succeed in changing
the value stored on that variable in between the read and the action in such a
way that the action about to be taken is no longer appropriate, then we say that
our program has a race condition.

In the context of Erlang programs, use of certain Erlang/OTP built-ins leads
to data races between processes. Let’s first see the simplest of them.

3.1 Data Races in the Process Registry

In Erlang, each created process has a unique identifier (known as its “pid”),
which is dynamically assigned to the process upon its creation. To send a message
to a process one must know its pid. Besides addressing a process by using its pid,
there is also a mechanism, called the process registry, which acts as a node-local
name server, for registering a process under a certain name so that messages
can be sent to this process using that name. Names of processes are currently
restricted to atoms. The virtual machine of Erlang/OTP provides built-ins:

register(Name,Pid) which adds a table entry associating a certain Pid with a
given Name and generates a run-time exception if the Name already appears
in the registry,

3 http://en.wikipedia.org/wiki/Concurrent_computing (September 2009).

http://en.wikipedia.org/wiki/Concurrent_computing
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proc_reg(Name) ->

...

case whereis(Name) of

undefined ->

Pid = spawn(...),

register(Name,Pid);

Pid -> % already

true % registered

end,

...

P1 P2

proc_reg(gazonk)

. . . proc_reg(gazonk)

whereis(gazonk)

. . .
Pid1 = spawn(...)

whereis(gazonk)

register(gazonk,Pid1)

Pid2 = spawn(...)

register(gazonk,Pid2)

Fig. 1. A function manipulating the process registry which contains a race condition
(left) and an interleaving of two processes that shows the race (right)

registered() which returns the list of names of all registered processes, and
whereis(Name) which returns the pid associated with Name or the special value

undefined if no process is currently registered under the given Name.

The registry holds only live processes; processes that finish their execution or
crash (e.g., due to some uncaught exception) get automatically unregistered.

Many programs manipulating the process registry are written in a defensive
programming style similar to the code shown on the left box of Fig. 1. This code
contains a race condition if executed concurrently by two or more processes. The
right box of the same figure shows an interleaving of the concurrent execution
of two processes running the code of the proc reg function. This interleaving
will result in a runtime exception at the point where P2 will attempt to register
the process with pid Pid2 under a name which has already been inserted in the
process registry by process P1. As a result of this exception, P2 will crash.

That process P2 will crash is unfortunate, but this is not the only problem of
this code. Another problem here is that any action that P2 has taken between
the whereis and register calls which affects the state needs to be undone.
In our example run, Pid2 is now a ghost process. In more involved examples,
many more actions affecting the state may have occurred in code that executed
between these two calls.

The real problem with the program of Fig. 1 is that the code that lays between
the whereis and the register calls needs to execute atomically but Erlang
currently lacks a construct that allows programmers to express this intention.
Not only is there currently no construct like atomic in Erlang, but there is also
nothing that can be conveniently used as a mutex to protect blocks containing
sequences of built-in function calls. In the single-threaded implementation of
Erlang/OTP, the probability of a process exhausting its reductions somewhere
between the whereis and register calls is small, especially if the two calls are
as close to each other as in our example, thus the race condition is there alright
in the program but the actual race is quite unlikely to occur in practice. Not
so in the multi-threaded version of Erlang/OTP which nowadays is more or less
ubiquitous. Similar problems exist in code that uses a call to the registered
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run() ->
Tab = ets:new(some_tab_name,[public]),
Inc = compute_inc(),
Fun = fun () -> ets_inc(Tab,Inc) end,
spawn_some_processes(Fun).

ets_inc(Tab,Inc) ->
case ets:lookup(Tab,some_key) of

[] ->
ets:insert(Tab,{some_key,Inc});

[{some_key,OldValue}] ->
NewValue = OldValue + Inc,
ets:insert(Tab,{some_key,NewValue})

end.

-export([table_func/2]).

table_func(...) ->
create_time_stamp_table(), ...

create_time_stamp_table() ->
Props = [{type,set}, ...],
create_table(time_stamp,Props,ram_copies,false),
NRef =

case mnesia:dirty_read(time_stamp,ref_count) of
[] -> 1;
[#time_stamp{data = Ref}] -> Ref + 1

end,
mnesia:dirty_write(#time_stamp{data = NRef}).

Fig. 2. Programs containing race conditions related to ETS and Mnesia

built-in to make a decision whether to register some process under a name or
not, although such code is considerably less common.

3.2 Data Races in the Erlang Term Storage

The second category of data races are those related to the Erlang Term Storage
(ETS) facility of Erlang/OTP. This facility provides the ability to store very
large quantities of data, organized as a set of dynamic tables in memory, and to
have effectively constant time access to this data. Each ETS table is created by
a process using the ets:new(Name,Options) built-in and is given a Name which
then can be used to refer to this table (in addition to the table identifier, “tid”,
which is the return of the ets:new/2 built-in). Access rights can also be specified
for the table by declaring it in Options as private, protected, or public. Any
process can read from or write to tables that are public. Reading and writing
happens primarily with the built-ins:4

ets:lookup(Table,Key) which returns a list of objects currently associated
with the given Key in the Table (which is a name or a tid), and

ets:insert(Table,Object) which inserts an Object (a tuple with its first po-
sition designated as a key) to a given Table.

The program on the left box of Fig. 2 shows a made up example of Erlang code
which contains an ETS-related race condition. Note that function ets inc has
a race condition only if the ETS table, which is created outside this function, is
designated as public.

3.3 Data Races in the Mnesia Database

The last category of race conditions we examine are those related to mnesia [8],
the distributed Database Management System of Erlang/OTP. Being a database
4 The ets module contains more built-ins for reading from and updating ETS tables,

e.g., ets:lookup element(Table,Key,Pos) and ets:insert new(Table,Object),
but we do not describe them here as their treatment is similar to lookup and insert.
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system, mnesia actually contains constructs for enclosing series of table manip-
ulation operations into atomic transactions and support to automatically deal
with data races which take place within a transaction. However, for performance
reasons, mnesia also provides a whole bunch of dirty operations — among them
mnesia:dirty read(Table,Key) and mnesia:dirty write(Table,Record) —
which, as their name suggests, perform database reads and writes without any
guarantees that they will not cause data races when executed concurrently. De-
spite the warning in their name, these dirty operations are used by programmers
more often than they really need to in applications. The right box of Fig. 2 shows
a function from the code of the snmp application of Erlang/OTP R13B01.

Having presented the most commonly occurring kinds of race conditions in
Erlang, which also are the categories of race conditions that our tool currently
detects, let us now present the static analysis that we use to detect them.

4 Detecting Race Conditions Using Static Analysis

No doubt the reader has noticed that all the examples of race conditions we
presented in the previous section have some characteristics in common. They all
involve a built-in that reads a data item, some decision is then taken based on the
value which was read, and execution continues with a built-in performing a write
operation of the same data item on either some (Fig. 1) or on all execution paths
(Fig. 2) following the read. Of course, that our examples follow this pattern is not
a coincidence. After all, this pattern reflects the definition of race conditions we
gave in the beginning of Sect. 3. However, one should not conclude that detecting
this small code pattern is all that our analysis needs to do. In the programs we
want to handle, the built-ins performing the reads and writes may be spatially
far apart, they may be hidden in the code of higher-order functions, or even be
located in different modules. In short, race detection in Erlang requires control-
flow analysis. Also, the race detection needs to be able to reason about data-flow :
if at some program point the analysis locates a call to say whereis(N) and from
that point on control reaches a program point where a call to register(M,Pid)
appears, the analysis has to determine whether N and M can possibly refer to
the same process name or not. If they can, we have detected a possible race
condition; otherwise, there is none. Finally, to avoid false alarms, the analysis
has to take language characteristics into account. For example, the fact that in
Erlang only escaping functions (i.e., functions that are exported from a module
or function closures returned as results) can be used in some spawn.

Conceptually, the analysis has three distinct phases: an initial phase that
scans the code to collect information needed by the subsequent phases, a phase
where all code points with possible race conditions are identified as suspects, and
a phase where suspects that are clearly innocent are filtered out. For efficiency
reasons, the actual implementation blurs the lines separating these phases and
also employs some optimizations. Let’s see all these in detail.
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4.1 Collecting Information for the Analysis

We have integrated our analysis in dialyzer because many of the components that
it relies upon were already available or could be easily extended to provide the
information that the analysis needs. The analysis starts by the user specifying a
set of directories/files to be analyzed. Rather than operating directly on Erlang
source, all of dialyzer’s passes operate at the level of Core Erlang [9], the language
used internally by the Erlang compiler. Core Erlang significantly eases analysis
and optimization by removing syntactic sugar and by introducing a let construct
which makes the binding occurrence and scope of all variables explicit.

As the source code is translated to Core Erlang, dialyzer constructs the control-
flow graph (CFG) of each function or function closure and then uses a simpli-
fied version of the escape analysis of Carlsson et al. [10] to determine closures
that escape their defining function. For example, for the code on the left box
of Fig. 2 the escape analysis will determine that function run defines a func-
tion closure that escapes this function as it is used as an argument to function
spawn some processes, which presumably uses this argument in some spawn.
Given this information, dialyzer also constructs the inter-modular call graph of
all functions and closures, so that subsequent analyses can use this information
to speed up their fixpoint computations. For the example in the same figure, the
call graph will contain three nodes for functions whose definitions appear in the
code (functions run, ets inc, and the closure) and an edge from the node of the
function closure to that of ets inc.

Besides control-flow, the analysis also needs data-flow information and more
specifically it needs information whether variables can possibly refer to the same
data item or not. Without race detection this information is not explicitly main-
tained by dialyzer, so we added a sharing/alias analysis component that com-
putes and maintains this information. The precision of this analysis is often
helped by the fact that dialyzer computes type information at a very fine-grained
level. For example, different atoms a1, . . . , an are represented as different single-
ton types in the type domain and their union a1| . . . |an is mapped to the super-
type atom() only when the size of the union exceeds a relatively high limit [6].
We will see how this information is used by the race analysis in Sect. 4.3.

4.2 Determining Code Points with Possible Race Conditions

The second phase of the analysis collects pairs of program points possibly in-
volved in a race condition. These pairs are of the form 〈P1, P2〉 where P1 is a
program point containing a read built-in (e.g., whereis, ets:lookup, . . . ) and P2

is a program point containing a write built-in (e.g., register, ets:insert, . . . )
and such that there is a control-flow path from P1 to P2.

In order to collect these pairs, we need to inspect every possible execution path
of the program. To this end, we find the root nodes in the inter-modular call graph
and start by traversing their CFGs using depth-first search. This depth-first search
starts by identifying program points containing a read built-in and then tries to
find a program point “deeper” in the graph containing a write built-in. In case
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a call to some other function is encountered and this function is statically
known, the traversal continues by examining its CFG. The case of unknown
higher-order calls, as in the code on the right where the Fun(N) call is a call to

foo(Fun, N, M) ->

...

case whereis(N) of

undefined ->

...,

Fun(M);

Pid -> ...

end,

...

some unknown closure, gives us an implementation
choice. One option is to ignore such calls. This gives
an analysis which is sound for defect detection (i.e.,
an analysis that completely avoids false alarms). The
other option, which gives an analysis sound for cor-
rectness (i.e., an analysis that finds all data races but
may also produce some false alarms), is to continue the
traversal starting from all root nodes corresponding to
a function of arity one and continue the analysis until
every path is traversed. This exhaustive traversal cre-
ates the complete set of pairs of program points where
race conditions are possible. Loops require special attention. A pre-processing
step detects cycles in the call graph and checks whether a write built-in is fol-
lowed by a read built-in in some path in that cycle.

4.3 Filtering False Alarms

There are two main problems in what we have just described. There is an obvi-
ous performance problem related to the search being exhaustive and there is a
precision problem in that the candidate set of race conditions may contain false
alarms. We deal with the latter problem in this section.

False alarms are avoided by taking variable sharing, type information, and the
characteristics of the race conditions we aim to detect into account. Suppose we
opt for an analysis that finds all data races. Then, for the case of function foo
above, consider the set of functions that Fun can possibly refer to which directly
or indirectly lead to a call to register. The set of possible race conditions will
consist of pairs 〈Pw, Pri〉 where Pw denotes the program point corresponding to
the whereis call in foo and Pri denotes the program points corresponding to
the register calls. For simplicity, let us assume that in all these register calls
their first argument is a term which shares with M (i.e., it is M or a variable which
is an alias of M). Finally let AN and AM denote the set of atoms that type analysis
has determined as possible values for N and M respectively. If AN ∩ AM = ∅ then
all these race conditions are clearly false alarms and can be filtered out. Note
that what we have just described is actually the complicated case where the call
leading to the write built-in is a call to some unknown function. In most cases,
function calls are to known functions which makes the filtering process much
simpler. Similarly, AN or AM are often singleton sets, which also simplifies the
process. Similar filtering criteria, regarding the name of the table, are applied
to race conditions related to ETS and mnesia. In addition, ETS-related possible
data races which do not involve a public table or that involve objects associated
with different keys are also filtered out in this analysis phase.

The method we have described has the following property. In programs where
the function call graph is precise (i.e., when there are no unknown calls or when
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the escape analysis offers precise information about these calls) the analysis
produces no false alarms.

4.4 Some Optimizations

Although we have described the computing and filtering phases of the analysis
as being distinct, our implementation blurs this distinction, thereby avoiding the
exhaustive search and speeding up the analysis. In addition, we also employ the
following optimizations:

Control-flow graph and call graph minimization. The CFGs that dialyzer con-
structs by default contain the complete Core Erlang code of functions. This
makes sense as most of its analyses, including the type and sharing analyses, need
this information. However, note that the path traversal procedure of Sect. 4.2
requires only part of this information. For example, in the program illustrated
on the right box of Fig. 2, both the Props variable assignment and the list con-
struction on the same line, as well as the complete code of the case statement
are irrelevant for determining the candidate set of race conditions. Our analysis
takes advantage of this by a pre-processing step that removes all this code from
the CFGs and by recursively removing CFGs of leaf functions that do not con-
tain any calls to the built-ins we search for. In the same spirit, CFGs of functions
that are not reachable from some escaping function (i.e., from a root node of the
traversal) are also removed.

Avoiding repeated traversals and benefiting from temporal locality. After the call
graph is minimized as described above, the depth-first CFG traversal starts from
some root. The traversal of all paths from this root often encounters a split in
the CFG (e.g., a point where a case statement begins) which is followed by a
CFG join (the point where the case statement ends). All the straight-line code
which lies between the join point and the next split, including any straight-line
code in CFGs of functions called there, does not need to be repeatedly traversed
if it is found to contain no built-ins during the traversal of its first depth-first
search path. This optimization effectively prunes common sub-paths by condens-
ing them to a single program point. Another optimization is to collect, during
the construction of the CFGs of functions, the set of program points containing
read and write built-ins that result in race conditions and perform a search fo-
cussed around these points, effectively exploiting the fact that in most programs
pairs of program points that are involved in race conditions are temporally close
to each other (i.e., not necessarily in the same function but only a small number
of function calls apart).

Making unknown function calls less unknown. When we described how unknown
higher-order calls like Fun(N) could be handled, we made the pessimistic assump-
tion that Fun can refer to any function with arity one. This is correct but way
too conservative. By taking into account information about the type of N and of
the return value of the function, the set of these functions is reduced, often sig-
nificantly so. Even though in Erlang there is no guarantee that calls will respect
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the type discipline, calls that do not do so will result in a crash which is a defect
that dialyzer will report to its user anyway, albeit in another defect category.
The user can correct these defects first and re-run the race analysis.

5 Experimental Evaluation

The analysis we described in the previous section has been implemented and
incorporated in the development version of dialyzer. We have paid special atten-
tion to integrate it smoothly with the existing analyses, reuse as much of the
underlying infrastructure as possible, and fine-tune the race detection so that
it incurs relatively little additional overhead to dialyzer’s default mode of use.
The main module of the race analysis is about 2,200 lines of Erlang code and
the user can turn on race detection either via a GUI button or a command-line
option. Another analysis option controls whether the analysis will examine calls
to unknown functions or not (Sect. 4.2).

With this option off, we have measured the effectiveness and performance
of the analysis by applying it on a corpus of Erlang code of significant size:
more than a million lines of code. In this paper we restrict our attention to
Erlang/OTP libraries and open source applications which were found to contain
race conditions in their code. A short description of the code bases we focus on
appears in Table 1. All of them are heavily used. For open source applications
we used the code from their public repositories at the end of August 2009.

Table 1. Brief description of applications found to contain race conditions

Application libraries from the Erlang/OTP R13B01 distribution

asn1 Provides support for Abstract Syntax Notation One
common test A portable framework for automatic testing
gs A Graphics System used to write platform independent user interfaces
kernel Functionality necessary to run the Erlang/OTP system itself
otp mibs SNMP Management Information Base for Erlang/OTP nodes
percept A concurrency profiler tool
runtime tools Tools to include in a production system
snmp Simple Network Management Protocol (SNMP) support including a

Management Information Base compiler and tools for creating agents
stdlib The Erlang standard libraries
tv An Erlang term store and mnesia graphical Table Visualizer

Open source Erlang applications

ejabberd A distributed, fault-tolerant Jabber/XMPP application server
Erlang Web A framework for applications based on HTTP protocols
yaws (Yet another web server) An HTTP, high-performance 1.1 web server,

particularly well-suited for dynamic-content web applications
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Table 2. Effectiveness and performance of the race analysis

Num Race Conditions Time (mins) Space (MB)

Application LOC Total ProcR ETS Mnesia w/o race w race w/o race w race

asn1 38,965 2 2 - - 3:30 4:04 182 282
common test 15,573 1 1 - - 0:22 0:22 74 78
gs 15,819 2 2 - - 1:00 2:01 111 170
kernel 36,618 6 4 2 - 1:00 1:05 86 130
otp mibs 196 2 - - 2 0:00 0:00 32 33
percept 4,457 3 3 - - 0:11 0:11 40 43
runtime tools 8,277 2 2 - - 0:28 0:28 62 71
snmp 52,071 6 - 3 3 1:54 2:00 141 192
stdlib 72,297 1 1 - - 6:23 6:45 189 310
tv 20,050 1 1 - - 0:13 0:13 71 72

ejabberd 72,788 6 1 4 1 0:39 0:40 113 142
Erlang Web 22,229 7 - 7 - 0:33 0:35 115 122
yaws 37,270 3 3 - - 1:33 1:39 167 245

Table 2 shows the lines of code (LOC) of each application, the number of
race conditions detected (total and categorized as being related to the process
registry, to ETS or to Mnesia), and the elapsed wall clock time (in minutes) and
memory requirements (in MB) for running dialyzer without and with the analysis
that detects race conditions on these programs. The performance evaluation was
conducted on a machine with a dual processor Intel Pentium 2GHz CPU with
3GB of RAM, running Linux. (Currently, the analysis utilizes only one core.)

In analyzing these results, first notice that the number of race conditions
is significant, especially considering that our technique currently tracks only
some specific categories of possible data races in Erlang. Since the analysis does
not examine execution paths starting from statically unknown function calls,
it produces no false alarms. In fact, we have manually examined all these race
conditions and confirmed that indeed all are possible. Regarding performance,
in most cases, data race detection adds only a small overhead, both in time
and in space, to dialyzer’s default analysis. The only outliers are gs where the
analysis time is doubled and stdlib where analysis with race condition detection
on requires 66% more space than analysis without. Still, viewed in absolute
terms, both the time and the space overhead are reasonable given the size of
these applications. Since the analysis is totally automatic, we see very little
reason not to use it regularly when developing Erlang programs.

6 Related Work

The problem of detecting data races and other concurrency errors in programs is
fundamental and well studied. In the literature one can find various approaches,
which can be broadly classified as static, dynamic, or hybrid.
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Dynamic race detectors instrument the program and monitor its execution
during runtime either using some variant of the lockset algorithm [11,12] to see
whether the locking discipline (i.e., the assumption that all shared variables
must be accessed within the protection of a lock) is violated or by checking
whether Lamport’s happens-before relation between thread accesses to a given
piece of data holds. State-of-the-art dynamic detectors are scalable and easy
to use but cannot guarantee the absence of races and require comprehensive
test suites. Their efficiency and precision can be improved with static analysis,
thereby yielding hybrid race detectors [13]. For more information on dynamic and
hybrid approaches to race detection we refer the reader to a recent survey [14].

Static approaches either prevent some kinds of races completely by imposing
a type system to the language that guarantees the absence of these races if
the program type checks, or use path sensitive model checkers or flow sensitive
static analyzers to detect them. The latter techniques are more related to what
we do, so we examine them more closely. Model checkers find race conditions
by considering all possible interleavings in a model of the software which is
under scrutiny and try to fight combinatorial explosion by using various clever
representations of the search space and heuristics to cut down the number of
interleavings that need to be explored. The key advantage of model checkers
is that they detect actual data races and often also produce counterexamples
for them. On the other hand, existing software model checkers do not scale
to the size of programs we need to handle. Moreover, it is not clear what the
property to check should be since the kinds of atomicity violations that our tool
detects are not easily expressible in the language of most model checkers. Static
analyzers have been shown to be more scalable. They either employ a static
version of the lockset algorithm [15,16], flow sensitive analysis [17,18,19], or are
based on abstract interpretation [20]. A big challenge for static analyzers is to
strike a proper balance between soundness and precision. Soundness is often
threatened by how well they abstract certain nasty features of the language [16]
or by the effectiveness of the alias and escape analyses that they employ [17,18].
Most analyzers try to reduce the number of false alarms either using heuristics
inspired from common programming idioms [16] or by using a carefully thought
out sequence of analysis stages and taking context sensitivity into account [18].
In this respect they are very much related to what we do. However, all these
approaches have been developed and investigated in the context of imperative
languages (C, C++, and Java), where the implementation of multi-threading
is via locks and synchronization, so naturally the techniques on which they are
based differ significantly from ours.

Very recently, Claessen et al. proposed a method to detect race conditions in
Erlang programs by employing property-based testing using QuickCheck and a
special purpose randomizing user-level scheduler for Erlang called PULSE [21].
Their method is only semi-automatic as it relies on the user to specify, using a
special QuickCheck module (eqc par statem) that models a parallel state ma-
chine, the properties for which to test for possible atomicity violations. As a case
study, the method was applied to a small (200 line) Erlang program detecting two
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race conditions. While we prefer our method because it is completely automatic
and more scalable, the two methods are complementary to each other. Dialyzer
cannot detect one of the two race conditions in that program because this race
depends on the semantics of the operations which are supplied by the user (in
the form of QuickCheck properties that should hold). The other race condition
is detectable by dialyzer when enhancing its analysis with information about the
behaviour of the gen server module of Erlang/OTP. More generally, it is clear
that in both tools the more the information which is supplied to them about
which operations and built-ins can cause atomicity violations, the more the race
conditions that the tools can detect. But a fundamental difference between them
is that in our tool the responsibility for supplying this information lies in the
hands of the tool implementor while in QuickCheck’s case in the programmer’s.

7 Concluding Remarks

In this paper we showed kinds of data races that Erlang programs can exhibit
and presented an effective static analysis technique that detects them. By im-
plementing this analysis in a publicly available and commonly used tool for
detecting software defects in Erlang programs not only were we able to measure
its effectiveness and performance by applying it to several large applications,
but we also contribute in a concrete way to raising the awareness of the Erlang
programming community on these issues and helping programmers fix the corre-
sponding bugs. Data races are subtle and notoriously difficult for programmers
to avoid and reason about, independently of language. In Erlang there are fewer
potential race conditions and they are less likely to manifest themselves during
testing, which unfortunately also makes it less likely that programmers will be
paying special attention to be watching out for them when programming. De-
spite the restricted nature of data races in Erlang, our experimental results have
shown that the number of race conditions is not negligible even in widely used
applications. Tools to detect them definitely have their place in the developer’s
tool suite.
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Abstract. Mathematical programs (MPs) are a class of constrained op-
timization problems that include linear, mixed-integer, and disjunctive
programs. Strategies for solving MPs rely heavily on various transfor-
mations between these subclasses, but most are not automated because
MP theory does not presently treat programs as syntactic objects. In
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widely used MP transformations, most notably the big-M and convex
hull methods for converting disjunctive constraints. We use an embedded
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technology—finding that no one technique is always best—and also to
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1 Introduction

The equations governing engineering systems rarely dictate a unique solution.
Usually, a designer needs to find the optimal solution amongst a space of feasible
ones. Such constrained optimization problems are often expressed as mathemat-
ical programs (MPs), which consist of a numerical objective that is to be maxi-
mized (or minimized) subject to some constraints. Solving MPs efficiently is an
important problem across science and engineering. The nature of the constraints
allowed is a key issue affecting both the kinds of systems that can be represented
and the efficiency of algorithms. An MP is more specifically called a linear pro-
gram (LP) when the constraints and the objective are linear algebraic equations
and inequalities on the reals. A mixed-integer linear program (MILP) addition-
ally allows restricting variables to be integer valued, which allows expressing
problems not possible in LP. Disjunctive programming (DP) is an extension of
LP which allows disjunctive constraints. We will discuss a superset of these that
also allows Boolean expressions.
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Throughout this work, the term disjunctive constraint refers to a disjunction
over (in)equations involving reals, such as x ≤ 0 ∨ y ≤ 0, and is unrelated to
Boolean disjunction which is a statement purely over Boolean variables. Both
are an important modeling tool. Unfortunately, most MP solvers cannot directly
accept programs with Booleans or disjunctions as input. The currently best-
known strategies reformulate the program into an equivalent MILP, for which
there are good solvers.

One such efficient reformulation technique is Balas’ convex-hull method [1].
Unfortunately, this technique presents some mechanization challenges: new vari-
ables need to be introduced, constraints must be modified, and new equations
must be added. Balas’ theory requires each disjunct to be bounded, which often is
attained by adding a lower and upper bound for every variable in each disjunct;
this increases the number of inequalities to be manipulated. In addition, one
must decide how to handle nested disjunctions. The reformulation is error-prone
not just because of the tedious algebra, but also because the resulting equations
are non-intuitive. Even on small problems, it is challenging to recognize how the
output represents the original constraint. Finally, one must of course be familiar
with the reformulation methods to apply them. Automation is clearly called for.

The reformulations we present have been widely used by experts for many
years. However, there has been limited to no support for them in MP software
tools. We believe this is because current MP theory focuses on the study of
the numerical behavior of algorithms and does not treat programs as syntactic
objects. MPs are defined in a canonical matrix form, which does not support
basic operations required for automating transformations such as variable intro-
duction and compositional construction of programs. We demonstrate that the
formal methods of language design capably address long standing needs in the
mathematical programming community. Our contributions are the following:

– We provide the first, to our knowledge, formalization of the syntax, type
system, and semantics of an MP language. The core theory contains useful
constructs such as Boolean expressions and disjunctive constraints that al-
low practitioners to formulate programs in a more natural style and, more
importantly, enables higher-level analysis.

– Enabled by this, we automate some important program transformations from
our richer language to forms accepted by modern solvers. This is the primary
contribution of the paper, and we hope to convince the reader that imple-
menting them without a formal methods perspective would be difficult. The
convex-hull and big-M methods are the most interesting, and we also provide
others that are of practical importance.

– Finally, we provide an OCaml embedded domain-specific language (EDSL)
for succinct construction of MPs, and a framework for applying the various
reformulations. Our software outputs programs in standard formats, for use
with existing solvers. We find that our software generates programs compa-
rable to what a human expert would produce, and that no one technique
always produces the most efficient reformulation, making it important to
have a system that allows open experimentation.
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2 Mathematical Programming

The standard definition of a linear program is

max
{
cT x | Ax ≤ b, x ∈ R

n
}

(1)

where c is a n × 1 dimensional coefficient vector, x is an n × 1 vector of real
valued variables, A is an m × n coefficient matrix, and b is an m × 1 vector of
constants. Thus, cT x is a scalar, and the matrix inequality Ax ≤ b represents m
individual inequalities. The inequalities represent a polyhedron, such as either
region R1 or R2 in Figure 1a, and is called the feasible space of the LP.

Representing discrete choices requires a more expressive language than LP.
We need a language that allows expressing not just R1 or R2 separately but their
union R1 ∪ R2. There are two rather distinct methods for accomplishing this.
The first is to enrich LP with a discrete type, as is done with mixed-integer linear
programming. In MILP, variables may be integer or real valued. The standard
definition [2] is

max{cT x + hT y | Ax + Gy ≤ b, x ∈ R
n, y ∈ Z

p} (2)

where x and y represent vectors of real and integer variables, respectively.
However, integers are often not an intuitive model of discrete choice, and

become prohibitively difficult for larger problems. Alternatively, DP enriches LP
with disjunctive constraints, which leads to more compact and comprehensible
models [1,3]. The canonical matrix form of a disjunctive constraint is[

A1x ≤ b1
]
∨

[
A2x ≤ b2

]
(3)

We still do not have Boolean expressions, nor disjunctive constraints that are not
in disjunctive normal form (DNF), nor an obvious way to insert new constraints
or extract specific ones to manipulate. In short, these definitions do not provide
an abstract syntax that can be operated on formally. These shortcomings are
addressed in the following section.

3 A Language for Mathematical Programming

Our mathematical programming language consists of refined types ρ, expres-
sions e, constraints c (called propositions in logic), and programs p:

ρ ::= [rL, rU ] | [rL,∞) | (−∞, rU ] | real | 〈rL, rU 〉 | 〈rL,∞) | (−∞, rU 〉
| int | {true} | {false} | bool (4a)

e ::= x | r | true | false | not e | e1 or e2 | e1 and e2

| −e | e1 + e2 | e1 − e2 | e1 ∗ e2 (4b)
c ::= T | F | isTrue e | e1 = e2 | e1 ≤ e2 | c1 ∨ c2 | c1 ∧ c2 | ∃x :ρ � c (4c)
p ::= maxx1:ρ1,...,xm:ρm {e | c} (4d)
Υ ::= • | Υ, x :ρ (4e)

A full discussion of the straightforward type system and semantics is available
in [4]; here we present a high-level overview.
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Programs. A mathematical program p consists of an objective e that must
be maximized subject to a constraint c. Minimizing is equivalent to maximizing
−e. This definition is similar to (2) but the objective and constraint are not in
a matrix form.

Expressions. Expressions are either numeric or Boolean. They include variables,
rational constants r, Boolean constants, and the usual numeric and Boolean op-
erators. We wish only to support linear terms, and so the restriction on e1 ∗ e2

is that e1 has no free variables. Nonlinear programs are certainly important, but
the transformations we are focusing on apply only to linear constraints.

Constraints. The most common constraints are conjunctions or disjunctions
over (in)equations on the reals. Disjunction c1∨c2 is the key novelty. Conjunction
alone provides a language for expressing what is normally referred to as a system
of linear equations in linear algebra.

In addition, we allow Boolean constraints in the form isTrue e, where e
must be an expression of type bool. We distinguish between Boolean truth
versus truth of numeric propositions (true and false versus T and F). This
type distinction, embodied as a syntactic distinction in our definition, is essential
since the algorithms for solving these classes of propositions are entirely different.
The convex-hull and big-M methods are useful only for the disjunctive constraint
c1∨c2 and should not be applied to the Boolean expression e1 or e2. Additionally,
Boolean expressions can be negated, but there is no negation at the constraint
level because MPs do not allow strict inequalities.

Although it is not common in the MP literature, we require that variables be
explicitly introduced with an existential quantifier. This clarifies the semantics
and provides the practical benefit of locally scoped variables. Universal quanti-
fiers would extend our language to include semi-infinite programs, an interesting
but less developed class of problems. Variables introduced at the program level
behave as existentially quantified; the only distinction being that they can also
be used in the objective.

Refined Types. We use refined types—instead of simply using bool and
real—so that we can provide a treatment of bounds (needed for both the convex-
hull and big-M methods) and to be able to represent integers classically (integers
are a subset of the reals in conventional mathematics). Square brackets denote
real intervals; angle brackets denote integer intervals.

Context. We keep track of variable bounds with a refined type context, which
is a list of variables associated with their bounds. This is more informative than
the usual context used in typing judgments. It provides not just variables’ types
but also retains knowledge of restrictions on the variables’ values.

Finally, we define free variables and capture-avoiding substitution for expressions
and constraints in the usual way.

Computation with Real Numbers. Mathematical programs involve real
numbers, which raises the issue of computing over them. This is a fundamental
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challenge being pursued by others in various contexts [5,6]. It does not however
affect the transformations we provide because they are purely syntactic manipu-
lations, and all real expressions are carried through unaltered. We were careful to
include only rational constants instead of reals in the syntax, but this is due to
an unrelated issue: it is a specification of MILPs that constants be rational, else
an optimum may not exist [2]. Despite the MP community’s classical treatment
of reals, it is interesting to note that their desired interpretation of disjunction
and existential quantification is certainly constructive. Users expect any MP
solver to explain how the constraints are satisfied by providing witnesses for all
variables and information on which disjoint region the optimum was found in.

4 Transforming Syntactic Constructs

The class of programs covered by p include disjunctive constraints and Booleans,
but the best solvers accommodate only mixed-integer linear programming (MILP)
constraints which do not allow either of these forms. We pursue the standard
strategy of transforming the richer constraint forms to lower-level MILP con-
straints, with the important distinction that our definitions lead to a software
implementation.

We first turn our attention to transformations for disjunctive constraints c1 ∨
c2. The methods make no use of standard logical laws, such as DeMorgan’s
(recall constraints cannot be negated). The general idea is that the dichotomy
expressed by disjunction is embodied instead in the discrete nature of integer
variables. An integer binary variable yi ∈ {0, 1} is associated with each ith

disjunct of a disjunction, and the disjunction is replaced by conjunction. Just
one yi is required to be 1 and only the constraints of the corresponding disjunct
are enforced. Disjuncts j 	= i are then reduced to tautologies. We now consider
some specific methods; all preserve constraint linearity, which is important for
solver efficiency.

Big-M Transformation. The big-M method states that (3) can be reformu-
lated into the equivalent mixed-integer linear constraints

A1x − b1 ≤ M1(1 − y1)
A2x − b2 ≤ M2(1 − y2)

y1 + y2 = 1
(5)

where yi ∈ {0, 1} and M i are the so called big-M parameters. These are known
upper bounds on Aix − bi. Consider y1 = 1 and y2 = 0. The second inequality
reduces to A2x − b2 ≤ M2, which is trivially satisfied because, by definition,
M2 is an upper bound of its left-hand side. Effectively, the second disjunct is
disregarded. The first inequality reduces to A1x − b1 ≤ 0, which is the original
first disjunct. Conversely, only the second disjunct is enforced when y1 = 0.

The computational efficiency of this method is crucially dependent on the
choice of the big-M parameters, of which there are quite a few since M1 and
M2 are vectors. Casual users often set them to some arbitrarily large value to
avoid the effort of computing them. Even experts often resort to this because
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it preserves model modularity: changes to a variable’s bounds would require
searching through their entire program to verify that all the M ’s are still valid.
A liberally large value mitigates this issue. In contrast, our automated solution
preserves modeling simplicity while providing computational efficiency. We use
interval arithmetic to compute tight big-M parameters automatically.

Our definition of the big-M method requires two auxiliary judgments to be
first introduced. First, we need an operation for computing big-M parameters.
Let Υ � e� [r̄L, r̄U ] be the judgment that computes lower and upper bounds r̄L

and r̄U for the expression e in the refined context Υ , where r̄L and r̄U are from
the affinely extended rationals; they may take on the values of −∞ and ∞. Its
definition uses interval arithmetic over unary negation and the binary operators
+, −, and ∗ by propagating derived bounds from subterms to enclosing terms.
For example, under the context x : [−1, 2], y : [0, 100], the expression −5 ∗ x + y
generates the interval [−10, 105].

Second, we define an operation to convert an inequality to its big-M form. Let
Υ � e ⊗ c ⇀ c′ be the judgment that rewrites constraint c to its big-M form c′,
where the e will supply the necessary 1 − y term. Its definition is

Υ � e1 − e2 � [r̄L, rU ]
Υ � e ⊗ e1 ≤ e2 ⇀ e1 ≤ e2 + e ∗ rU

(6a){
Υ � e ⊗ cj ⇀ c′j

}
j∈{A,B}

Υ � e ⊗ cA ∧ cB ⇀ c′A ∧ c′B
(6b)

Υ, x : ρ � e ⊗ c ⇀ c′

Υ � e ⊗ ∃x : ρ � c ⇀ ∃x : ρ � c′ (6c)

The first rule is the interesting one. It converts the inequality e1 ≤ e2 by comput-
ing bounds for e1 − e2, where the upper bound is the desired big-M parameter.
The lower bound is not needed. This upper bound multiplied by e, which will
be of the form 1 − y, is then added to the appropriate side of the inequality.
Conjunctive constraints and existential constraints recurse into their subterms,
where in the latter case we add the introduced variable to the context. The other
cases are not needed as they will be compiled away beforehand. A finite upper
bound on e1−e2 must exist. Our software assures this and prints an informative
message when a finite bound cannot be computed.

Finally, we define the main big-M compiler. Let Υ � c
bigm�−→ c′ be a judgment

converting a disjunctive constraint c to an MILP constraint c′ via the big-M
method:{

Υ � cj
prop�−→ c′j

}
j∈{A,B}

Υ
ctxt�−→ Υ ′ {

Υ ′ � (1 − yj) ⊗ c′j ⇀ c′′j
}

j∈{A,B}

Υ � cA ∨ cB
bigm�−→ ∃yA : 〈0, 1〉 � ∃yB : 〈0, 1〉 � (yA + yB = 1) ∧ (c′′A ∧ c′′B)

(7)
First, the disjuncts themselves are compiled using the overall constraint compiler
prop�−→, which merely recurses on subterms bottom-up, converting any Boolean
expressions and disjunctions to MILP form using the transformations described
in this section. Then, we convert the context with the context compiler, which
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replaces occurrences of bool with 〈0, 1〉. This is necessary for the transformation
of Boolean expressions and is motivated subsequently. For each disjunct cj we
introduce a corresponding binary variable and rewrite cj to a big-M form. Finally,
the overall result is constructed with appropriate introduction of the y’s, the
equation forcing the sum of y’s to be 1, and the original disjunction cA ∨ cB

replaced with c′′A ∧ c′′B.

Indicator Constraint Transformation. Recently, the CPLEX system has
been extended to natively handle a new constraint form known as an indicator
constraint. They are of the form (y = k) ⇒ (e1 op e2) where y is a binary
variable, k ∈ {0, 1}, and op ∈ {≤, =,≥} A disjunctive constraint can be written
as two indicator constraints whose heads are mutually exclusive.

Though we find indicator constraints less natural than disjunction in many
cases (e.g. they cannot be nested), CPLEX can handle them in a way that avoids
numerical problems when users choose liberally large big-M parameters. Both
numerical accuracy and computation times are substantially improved in many
problems1. To utilize this feature, we have implemented a variant of our big-M
transformation which generates indicator constraints from disjunction.

Convex-Hull Transformation. We mentioned that the big-M parameters sig-
nificantly affect the computational efficiency of the resulting program. This is
because of a basic step in MILP algorithms involving relaxation, a term that
refers to allowing integer variables to take any continuous value. The big-M
parameter affects the size of the feasible space for these relaxations, and thus
computational efficiency. Figure 1b shows this space for the big-M reformulation
of an example constraint R1∨R2 with the best possible values for the big-M pa-
rameters. The convex-hull method is able to produce an even tighter relaxation,
shown in Figure 1c. Indeed this is the tightest possible convex relaxation, the
convex-hull of the original disjunctive space, and hence the name of the method.
This often leads to even more computationally efficient programs, but is unfor-
tunately substantially more involved. In fact, the number of new variables and
equations that must be generated can be so large that it offsets the benefits of its
tighter reformulation in some problems. Thus, it is important for MP software
to support a breadth of transformations, as there is no single best choice.

The convex-hull method states that (3) can be transformed into the equivalent
mixed-integer constraints

A1x̄1 ≤ b1y1

A2x̄2 ≤ b2y2

y1 + y2 = 1
x = x̄1 + x̄2 (8)

where yi ∈ {0, 1}. There is a mild precondition that is traditionally enforced
by requiring every variable in (3) to be bounded [7]. Our software checks for
this and rejects programs not meeting the requirement. The method appears
speciously simple when stated on a canonical matrix form. However, in practice

1 Based on comments from the ILOG company’s website. We are not aware of any
published literature on indicator constraints.
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Fig. 1. A disjunctive region and two reformulations

models are never written in matrix form, and there is no uniform structure to
the equations involved Additionally, various details are omitted such as the need
to declare the new variables and add constraints bounding each variable within
disjuncts.

The basic idea is to disaggregate the disjuncts. In each of the ith disjuncts,
vector x has been replaced with a new vector of variables x̄i. This causes the in-
equalities of each disjunct to be disaggregated, meaning they have no variables in
common. For this reason, the x̄i’s are called the disaggregated variables. Finally,
the original x is defined to be a sum of the new x̄i’s, and the y’s are required
to sum to 1. We will have to provide judgments for each of these operations, as
well as for the above mentioned omissions in this informal definition.

Since our compiler works on non-DNF forms and allows Booleans, we should
more precisely state that it is motivated by the convex-hull method. When the
disjuncts are each a conjunction of linear equations and inequalities on the reals,
it is Balas’ convex-hull method. It is so only for each disjunction separately,
although Balas has discussed more complex techniques for producing the convex-
hull overall [8].

We begin with the main judgment Υ � c
cvx�−→ c′, followed by the several

auxiliary judgments required. The rule is{
Υ � cj

prop�−→ c′j
}

j∈{A,B}
Υ

ctxt�−→ Υ ′{
Υ ′ � c′j �xj

1,...,xj
m

c′′j
}

j∈{A,B}

{
yj �

{
xj/x

}
c
′′
j ↪→ c′′′j

}
j∈{A,B}

Υ � cA ∨ cB
cvx�−→

(
∃xA :ρ � ∃xB :ρ � ∃yA :〈0, 1〉 � ∃yB :〈0, 1〉�(

x = xA + xB
)
∧

(
yA + yB = 1

)
∧ (c′′′A ∧ c′′′B )

) (9)

The notation used assumes the context Υ is x1 : ρ1, . . . , xm : ρm. For each xj ,
two disaggregated variables xA

j and xB
j are created, which must not be free in

cA ∨ cB . Also, two binary variables yA and yB are created, such that the chosen
names are not free in cA ∨ cB and are also unique from the xA

j ’s and xB
j ’s. We

have also used vector notation in the meta-language: ∃x :ρ refers to a sequence
of existential quantifiers introducing multiple variables each with their own type,



142 A. Agarwal et al.

x = xA + xB refers to the conjunction of equations for each individual x, and
{xj/x}c′′

j refers to the substitution of a vector of variables xj for their respective
variables in c′′j . The constraint output by (9) can roughly be seen to correspond
to the matrix reformulation (8).

First, the disjuncts are themselves transformed, producing the MILP con-
straints c′A and c′B, and then the context is transformed. Next, bounding con-
straints are added to each disjunct using �, and the disaggregated constraints
are created by using ↪→. These themselves require some auxiliary judgments that
we define next.

To add constraints bounding a variable, we introduce a judgment that converts
a refined type declaration to a constraint. Let x : ρ � c return the bounding
information provided by x : ρ in the form of a constraint c. The definition of �
is by case on the form of ρ,

x : [rL, rU ] � rL ≤ x ∧ x ≤ rU

x : [rL,∞) � rL ≤ x
x : (−∞, rU ] � x ≤ rU

x :real � T

x :〈rL, rU 〉 � rL ≤ x ∧ x ≤ rU

x :〈rL,∞) � rL ≤ x
x : (−∞, rU 〉 � x ≤ rU

x :int � T

(10)

The first rule states that the declaration x : [rL, rU ] corresponds to specifying
bounds with the constraint rL ≤ x ∧ x ≤ rU . There is just a single inequality
when the variable is bounded on only one side. The type declaration x : real
generates the propositional truth constant T, which means this declaration does
not constrain the values of x. Definitions for integer types are similar, and the
Boolean cases are omitted as they will not be needed.

Let Υ �x1,...,xm c � c′ be a quaternary judgment adding to c bounding
constraints for all the given variables, returning the result as c′. Its definition is

{xj :ρj � cj}m
j=1

Υ �x1,...,xm c� (c1 ∧ · · · ∧ cm ∧ c)
(11)

where Υ (xj) = ρj for j = 1, . . . , m.
Finally, let e� e1 ↪→ e2 be a judgment that multiplies e to the constant part

of e1, producing e2. For example, (1 + 2) ∗ (3 + 4 + (5 + 6) ∗ x) gets converted to
(1+2)∗ (3∗e+4∗e+(5+6)∗x). The judgment e�c1 ↪→ c2 is the corresponding
judgment for constraints, recursing on subterms in a straightforward way. These
judgments correspond to the multiplication of the right hand sides of the matrix
inequations by binary variables in (8).

Boolean Expressions. We convert Boolean expressions to linear inequalities
involving only binary variables by first converting them to conjunctive normal
form (CNF), then rewriting the clauses—which are in disjunctive literal form
(DLF)—as integer constraints in the usual way, and finally lifting Boolean and to
constraint-level ∧. For example, (y and z) or not x becomes (y or not x) and (z
or not x) in CNF, which is then converted to the constraint (y + 1 − x ≥ 1) ∧
(z + 1− x ≥ 1). The types of the variables are changed from bool to 〈0, 1〉 with
the refined context compiler ctxt�−→.
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Program Transformation. The objective of a MP must be of type real, so
it is already in MILP form and need not be transformed. The types and con-
straints are transformed using their respective procedures. Essentially, Boolean
expressions and disjunctive constraints are replaced by pure MILP equivalents
in a bottom-up fashion.

5 Results

We now present examples from chemical process engineering and operations
research that we model using the intuitive Boolean and disjunctive constraints
supported by our software. We compare our automated transformations to both
manually performed transformations, and an existing automated solution. We
find that our automated transformations are comparable to those done by a
human expert. We also find that no single transformation always produces the
most efficient reformulation, so it is advantageous to have a system such as
ours in which the high-level MP can be stated once, and then different solution
strategies can be pursued.

Implementation. We have implemented our object language as an embedded
domain-specific language (EDSL) in OCaml. Once a program is specified in our
EDSL, one of the various constraint transformations we have defined can be
applied selectively or to the whole program. The transformed program, whether
a pure MILP or one enhanced with indicator constraints, can be printed to the
industry-standard MPS format or the AMPL modeling language. All source code
is freely available from the first author’s website.

Performance Metrics. We look at the following metrics:

– Number of continuous variables, number of constraints. These give a rough
picture of the potential computational difficulty of the program. Indexed
variables are distinct from each other, e.g. x1, . . . , xn counts as n variables.

– Number of discrete variables. This is especially relevant to computational
complexity because solvers spend a large portion of their time branching on
different possible values of discrete variables.

– CPU time needed for solving. This of course is the primary metric of interest.
However, the other metrics give a better picture of what the transformations
are actually doing. All experiments were run on a machine running Linux
2.6.18 with 8GB of RAM, 4GB of swap space, and eight 2.6GHz Intel Xeon
processors with 4MB caches.

5.1 Comparison of Automated Solutions

First we compare our transformations to one of only a few existing automated
means of solving MPs that use Booleans and disjunction. We use an example
inspired by problems from chemical process engineering.
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Consider a simple switched flow process: a tank is being filled by two pumps,
α and β, whose flow rates switch depending on the mode the pump is in, which
is affected by other requirements of the system. Running each pump incurs
different costs in each mode. In addition, the tank is being emptied continuously
at a constant rate. There are several constraints: the material level in the tank
must remain between the minimum and maximum levels; pump α must not be
run longer than a certain length of time to avoid over-heating; and so on. We
wish to study how the material level changes over time and to minimize the cost
of running the system for T max time units. The most natural formulation of the
problem involves disjunctive constraints and Boolean variables. For instance, we
have constraints that govern the transition dynamics of pump α and enforce the
definition of “dummy” transitions (where the pump actually does not change
mode):

(* disjunction over transitions of α *)

conj(I−n, λi →
(isTrue(Y Y (α,i)) ∧ ĉ(α,i) = 0.0 ∧ r̂(α,i) = 0.0)

∨ (isTrue(Z(α,on,off ,i)) ∧ ĉ(α,i) = 0.0 ∧ r̂(α,i) = -R(e,i))

∨ (isTrue(Z(α,off ,on,i)) ∧ ĉ(α,i) = 50.0 ∧ r̂(α,i) = -R(e,i)

∧ R(e,i) ≥ 2.0) )

(* definition of Y Y , which indicates dummy transitions *)

conj(I−n,λi →
isTrue(Y Y (α,i) ⇔ Z(α,on,on,i) || Z(α,off ,off ,i)))

∧ conj(I−n,λi →
isTrue(Y Y (β,i) ⇔ Z(β,hi,hi,i) || Z(β,lo,lo,i)))

This code is directly from our EDSL; only operators, literals, and variable names
have been replaced with more mathematical typesetting for readability. The conj
function implements a meta-level indexed conjunction operator. The constraint
for the transition dynamics has several cases; one of them is a special case for
when a dummy transition occurs. Modeling such logical conditions between dis-
juncts of real inequations would be unwieldy without Booleans or disjunction.
Full details on the example can be found in [4].

To examine computational efficiency, we will take the MP for the switched
flow process and reformulate it to MILP form using the different techniques
and then solve the resulting MILP programs using ILOG’s CPLEX solver—a
widely used, efficient solver for, among other things, LP and MILP problems.
We compare four transformation strategies:

– Three are our automations of the big-M, convex-hull, and indicator con-
straint transformations. Only one input specification, coded in our EDSL
and compiled with different options, is needed to produce all three.

– The fourth is CPLEX’s Concert Technology. CPLEX offers a C++ API to
their solver which allows the use of objects and overloaded operators to write
models in an intuitive manner. Booleans and logical conditions over linear
inequalities are automatically transformed into equivalent forms that use
indicator constraints. The software is proprietary and their conversion to
indicator constraints likely differs from the one we described in Section 4.
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Table 1. Running times and program sizes of MPs compiled via different methods.
Transformations: IC = indicator constraint, BM = big-M, CH = convex-hull, Concert
= CPLEX Concert, expert = human expert. Examples: flow = switched flow process,
packN = strip packing with N rectangles.

Method #vars (#binary) #constr. (#IC) solve time (sec)

flow-Concert 1061 (874) 1080 (718) 36.85
flow-IC 477 (291) 1001 (438) 11.60
flow-BM 477 (291) 1198 3.37
flow-CH 1194 (631) 2747 1.09

pack12-IC 289 (264) 342 (264) 1.83
pack12-BM 289 (264) 342 1.22
pack12-CH 1345 (264) 2718 168.38
pack12-BM-expert 289 (264) 342 1.82
pack12-CH-expert 1345 (264) 1662 149.57

pack21-IC 883 (840) 1071 (840) 24.44
pack21-BM 883 (840) 1071 55.01
pack21-CH 4243 (840) 8631 991.68
pack21-BM-expert 883 (840) 1071 29.56
pack21-CH-expert 4243 (840) 5271 ≥ 3600.00

We do not compare to other software because either they do not support Boolean
and disjunctive constraints or they call out to CPLEX making the comparison
redundant. Mosel, another popular MP software, has an extension called Kalis
that does support disjunctions, but only over finite domain variables.

The methods perform largely as expected: tighter formulations are solved
faster (Table 1). Indeed, convex-hull is the fastest formulation despite gener-
ating the largest number of constraints. As expected, the big-M method uses
the same number of binary variables as the indicator constraint transformation,
but needs a larger number of constraints because it handles equality constraints
as a pair of inequalities, while the indicator constraint transformation handles
equalities directly. Curiously, the Concert formulation introduces more binary
variables than the convex hull method, more indicator constraints than our indi-
cator constraint transformation, and is the slowest. Overall, we can see that for
this example our transformations generate reasonable formulations that in fact
outperform an existing automated transformation provided by a state-of-the-art
solver.

5.2 Comparison of Human Expert vs. Automated Solutions

The convex-hull method can perform poorly on problems with a large number of
disjunctions. We investigate this with the strip packing problem. Strip packing
involves packing n rectangles without rotation or overlap into a strip of width
W that is unbounded to the right while attempting to minimize the length of
the strip needed to pack the rectangles. This is a frequently studied problem and
we have available reformulations done manually by experts, which allows us to
compare our automatically generated programs with expertly generated ones.
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The constraints in strip packing ensure that the length of the strip extends past
the end of each rectangle and that the rectangles do not overlap (i.e. at least
one of: are to the left/right of one another or above/below one another):

conj(I, λi → length ≥ x(i) + l(i)) ∧
conj(I, λj → conj (1--(j-1), λi →

x(i) + l(i) ≤ x(j) ∨ x(j) + l(j) ≤ x(i) ∨
y(i) - h(i) ≥ y(j) ∨ y(j) - h(j) ≥ y(i) ))

For our experiments, we implemented the MP form of strip packing with our
EDSL and compared it to reformulations manually performed by an expert of
both the big-M and convex-hull methods. The manual reformulations were taken
from [9], and we used them verbatim, with no modifications. We then ran the
reformulations on a medium problem consisting of 12 rectangles and a large
problem consisting of 21 rectangles.

The results show that convex-hull is indeed not the optimal solution technique
in all scenarios. The number of constraints and variables outweighs any benefits
from having a tight formulation per disjunction. Also, we can see that the au-
tomatic versions of the big-M and convex-hull transformations are on par with
the expertly coded versions. The number of binary variables is equal across all
methods because they all introduce one binary variable per disjunct, and there
are no Boolean variables in the source program. Many of the numbers are iden-
tical between the expertly coded and automated versions, as expected with the
simple program structure of strip packing. Also, the expertly coded convex-hull
method contains fewer constraints because the expert is able to reason that some
constraints are redundant given their bounds, e.g. 0 ∗ y ≤ xi is redundant if xi

has been declared to be nonnegative.
In general, it is hard to tell a priori which methods will work well on a given

program, so it is useful to have a tool such as ours that enables experimentation
without the manual overhead. In fact, anecdotal evidence suggests that once the
object language has been properly formalized, adding reformulations is quite
easy, so there is a lower barrier to trying new ideas.

6 Related and Future Work

Egon Balas first described the convex-hull method in a technical report [1], which
was made available in published form much later [8]. The theory presented there
has had significant impact on MILP algorithms. Although Balas acknowledged
that disjunctive constraints are useful for modeling, the focus has been on the
insights they provide to more computationally efficient formulations. Thus, those
working on MP theory have had little motivation to automate transformations
and have not considered the differences arising from programs written in non-
matrix forms. Raman and Grossmann popularized this method amongst the
chemical processing industry and demonstrated that complex real-world prob-
lems could be modeled effectively [3]. They also included the use of Boolean
constraints, and provided a method for tying these to disjunctive constraints.
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Vecchietti and Grossmann describe an implementation of this alternative for-
mulation with similar goals to this work in a software called LogMIP [10], imple-
mented as an extension of the GAMS language. They support the convex-hull
method, but it is not difficult to find examples where the software provides
erroneous answers [4] because the semantics of the input language are rather
unclear. It is our hope that the theory developed in this work can be employed
as a foundation for future development of LogMIP.

Numerous transformations for MPs exist in addition to the big-M and convex-
hull methods [9,11]. Nemhauser and Wolsey, among others, discuss the impor-
tance of cuts [2], which our framework can support elegantly. Recent work
demonstrated how a logical approach to MP provides an improved implemen-
tation of Gomory cuts [12]. Hooker discusses the promising idea of employing
constraint programming (CP) techniques to solve MPs [13]. Brand et al. describe
a system for exploring alternate linearizations of constraint programs, including
the big-M method, but they only consider finite-domain variables [14]. CP over
the reals has also been studied [15], and it will be important to integrate the
inference algorithms of CP with those presented here.

We have compared our software to CPLEX2, which is considered the state-of-
the-art MILP solver. In addition, with respect to the language features we are
considering, its API is the most expressive. It supports Booleans and disjunctive
constraints to the full generality that we do. It also provides a syntactic conver-
sion of these (to indicator constraints) and was thus the most appropriate tool
for comparing our transformations to. Note however that CPLEX has numerous
other features making it an effective algorithm. Our goal is to supplement those
capabilities with operations benefiting from a syntactic perspective.

There are other works that focus specifically on language design. The most
widely used are GAMS [16], AMPL [17], Mosel [18], and OPL [19]. Kallrath
provides a comprehensive overview [20]. All these support indexing, an essential
requirement of any good MP language. It is interesting that although these are
the leading languages, they have limited or no support for important features
such as Booleans and disjunctive constraints. Although our goal in this work
was not to provide a superior object language, we believe our use of formal
programming language methods can lead to better languages.

Acknowledgments. We thank Robert Harper (Computer Science, Carnegie
Mellon University) for his essential contributions to this work.
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Abstract. A Prolog implementation of an In-lined Reference Monitor-
ing system prototype for Adobe ActionScript Bytecode programs is pre-
sented. Prolog provides an elegant framework for implementing IRM’s.
Its declarative and reversible nature facilitate the dual tasks of binary
parsing and code generation, greatly simplifying many otherwise diffi-
cult IRM implementation challenges. The approach is demonstrated via
the enforcement of several security policies on real-world Adobe Flash
applets and AIR applications.

1 Introduction

In-lined Reference Monitors (IRM’s) [4] enforce software security policies by
injecting runtime guard code directly into untrusted binaries. The guard code
decides at runtime whether an impending operation violates the security policy;
if so, the IRM intervenes to prevent the operation. The approach can enforce
policies not precisely enforceable by any static analysis [3] without requiring
changes to the operating system or cooperation from code-producers.

Correct and efficient IRM implementation is often difficult, motivating certi-
fying IRM systems (e.g., [2]) that automatically verify that rewritten binaries
produced by an IRM system are policy-adherent. IRM certifiers use program ver-
ification technology (e.g., model-checking) to statically prove that the inserted
guard code suffices to prevent a runtime policy violation. This shifts the binary-
rewriter(s) out of the trusted computing base in favor of a certifier that is not
policy-specific and is less subject to change.

Our experience building a certifying IRM system for ActionScript indicates
that Prolog provides an unusually elegant framework that eases many otherwise
difficult implementation challenges. In particular, Prolog’s declarative nature
allows for concise expression of both the policy-enforcing IRM code and the
model-checking analysis that certifies it; and the reversibility of Prolog predicates
allows both binary parsing and code generation to be elegantly expressed as
a single module. Our resulting binary-rewriters are approximately 400 lines of
Prolog code per security policy family, 900 lines of shared parser/generator code,
and 2000 of certifier code.
� This research was supported by AFOSR YIP award number FA9550-08-1-0044.
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Fig. 1. Certified in-lined reference monitoring framework

Figure 1 shows the system architecture. Each rewriter automatically transforms
untrusted ActionScript Bytecode (ABC) extracted from ShockWave Flash (SWF)
binary archives into self-monitoring bytecode. The parser converts extracted byte-
code into an annotated abstract syntax tree (AST) using a Definite Clause Gram-
mar [5]. The reversibility of Prolog predicates allows the same code to serve as a
code generator that produces self-monitoring ABC binaries from modified AST’s.
The verifier consists of a model-checker that certifies the resulting IRM against the
original security policy; its design using co-logic programming is the subject of two
prior works [1, 6]. Finally, the ABC Injector reconstructs a modified SWF file by
replacing the original bytecode with the modified code.

2 Implementation

We used our implementation to enforce and certify three different policies on a
collection of real-world Flash applets and AIR applications. Experimental results
are shown in Fig. 2. All tests were performed on an Intel Pentium Core 2 Duo
machine running Yap Prolog v5.1.4.

The redir policy prohibits malicious URL-redirections by ABC ad applets.
Redirections are implemented at the bytecode level by navigateToURL system
calls. The policy requires that method check url(s) must be called to validate
destination s before any redirection to s may occur. Method check url has a
trusted implementation provided by the ad distributor and/or web host, and
may incorporate dynamic information such as ad hit counts or webpage context.
Our IRM enforces this policy by injecting calls to check url into untrusted

Program

Tested

Policy

Enforced

Size

Before

Size

After

Rewriting

Time

Verification

Time

countdownBadge redir 1.80 KB 1.95 KB 1.429s 0.532s
NavToURL redir 0.93 KB 1.03 KB 0.863s 0.233s
fiona redir 58.9 KB 59.3 KB 15.876s 0.891s
calder redir 58.2 KB 58.6 KB 16.328s 0.880s
posty postok 112.0 KB 113.0 KB 54.170s 2.443s
fedex flimit 77.3 KB 78.0 KB 39.648s 1.729s

Fig. 2. Experimental results
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applets. For better runtime efficiency, it positions some of these calls early in the
program’s execution (to pre-validate certain URL’s) and injects runtime security
state variables that avoid potentially expensive duplicate calls by tracking the
history of past calls.

Policy postok sanitizes strings entered into message box widgets. This can be
helpful in preventing cross-site scripting attacks, privacy violations, and buffer-
overflow exploits that affect older versions of the ActionScript VM. We enforced
the policy on the Posty AIR application, which allows users to post messages
to social networking sites such as Twitter, Jaiku, Tumblr, and Friendfeed.

Policy flimit enforces a resource bound that disallows the creation of more
than n files on the user’s machine. We enforced this policy on the FedEx Desktop
AIR application, which continuously monitors a user’s shipment status and sends
tracking information directly to his or her desktop. The IRM implements the
policy by injecting a counter into the untrusted code that tracks file creations.

3 Conclusion

We have presented an elegant Prolog implementation of a certifying IRM system
for ActionScript. The IRM system augments Adobe Flash’s sandboxing security
model with support for enforcing system-specific, consumer-specified, safety poli-
cies. The certifier uses model-checking to prove that each IRM instance satisfies
the original policy. Using Prolog has resulted in faster development and simpler
implementation due to code reusability from reversible predicates and succinct
program specifications from declarative programming. This results in a smaller
trusted computing base for the overall system.

Acknowledgments

The authors thank Peleus Uhley at Adobe Research for providing real-world
SWF applets of interest for testing and certification.

References

1. DeVries, B.W., Gupta, G., Hamlen, K.W., Moore, S., Sridhar, M.: ActionScript
bytecode verification with co-logic programming. In: Proc. of the ACM SIGPLAN
Workshop on Prog. Languages and Analysis for Security, PLAS (2009)

2. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Certified in-lined reference monitor-
ing on .NET. In: Proc. of the ACM SIGPLAN Workshop on Prog. Languages and
Analysis for Security, PLAS (2006)

3. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Computability classes for enforce-
ment mechanisms. ACM Trans. Prog. Languages and Sys. 28(1), 175–205 (2006)

4. Schneider, F.B.: Enforceable security policies. ACM Trans. on Information and Sys-
tem Security 3, 30–50 (2000)

5. Shapiro, L., Sterling, E.Y.: The Art of PROLOG: Advanced Programming Tech-
niques. The MIT Press, Cambridge (1994)

6. Sridhar, M., Hamlen, K.W.: Model-checking in-lined reference monitors. In: Proc.
Verification, Model-Checking and Abstract Interpretation (to appear, 2010)



An Ode to Arrows

Hai Liu and Paul Hudak

Department of Computer Science
Yale University

New Haven, CT 06520, U.S.A.
{hai.liu,paul.hudak}@yale.edu

Abstract. We study a number of embedded DSLs for autonomous or-
dinary differential equations (autonomous ODEs) in Haskell. A naive
implementation based on the lazy tower of derivatives is straightforward
but has serious time and space leaks due to the loss of sharing when
handling cyclic and infinite data structures. In seeking a solution to fix
this problem, we explore a number of DSLs ranging from shallow to
deep embeddings, and middle-grounds in between. We advocate a so-
lution based on arrows, an abstract notion of computation that offers
both a succinct representation and an effective implementation. Arrows
are ubiquitous in their combinator style that happens to capture both
sharing and recursion elegantly. We further relate our arrow-based DSL
to a more constrained form of arrows called causal commutative arrows,
the normalization of which leads to a staged compilation technique im-
proving ODE performance by orders of magnitude.

1 Introduction

Consider the following stream representation of the “lazy tower of derivatives”
[10] in Haskell:

data D a = D {val :: a, der :: D a } deriving (Eq ,Show)

Mathematically it represents an infinite sequence of derivatives f(t0), f ′(t0),
f ′′(t0), . . . , f (n)(t0), . . . for a function f that is continuously differentiable at
some value t0. This representation has been used frequently in a technique called
Functional Automatic Differentiation [10, 5]. The usual trick in Haskell is to
make D a an instance of the Num and Fractional type classes, and overload
the mathematical operators to simultaneously work on all values in the tower of
derivatives:

instance Num a ⇒ Num (D a) where
D x x ′ + D y y ′ = D (x + y) (x ′ + y ′)
u@(D x x ′) ∗ v@(D y y ′) = D (x ∗ y) (x ′ ∗ v + u ∗ y ′)
negate (D x x ′) = D (−x ) (−x ′)
...

M. Carro and R. Peña (Eds.): PADL 2010, LNCS 5937, pp. 152–166, 2010.
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1.1 Autonomous ODEs and the Tower of Derivatives

Our first contribution is a simple but novel use of the “lazy tower of deriva-
tives” to implement a domain specific language (DSL) for autonomous ordinary
differential equations (autonomous ODEs). Mathematically, an equation of the
form:

f (n) = F (t, f, f ′, . . . , f (n−1))

is called an ordinary differential equation of order n for an unknown function
f(t), with its nth derivative described by f (n), where the types for f and t are
R → R and R respectively. A differential equation not depending on t is called
autonomous. An initial value problem of a first order autonomous ODE is of the
form:

f ′ = F (f) s.t. f(t0) = f0

where the given pair (t0, f0) ∈ R×R is called the initial condition. The solution
to a first-order ODE can be stated as:

f(t) =
∫

f ′(t)dt + C

where C is the constant of integration, which is chosen to satisfy the initial
condition f(t0) = f0.

In Haskell we represent the above integral operation as init that takes an
initial value f0:

init :: a → D a → D a
init = D

As an example, consider the simple ODE f ′ = f , whose solution is the well
known exponential function, and can be defined in terms of init :

e = init 1 e

which is a valid Haskell definition that evaluates to a concrete value, namely, a
recursively defined tower of derivatives, starting from an initial value of 1, with
its derivative equal to itself.

In general, by harnessing the expressive power of recursive data types and
overloaded arithmetic operators, we can directly represent autonomous ODEs
as a set of Haskell definitions. We give a few more examples in Figure 1. Note
that in the sine wave and damped oscillator examples, we translate higher-order
ODEs into a system of first-order equations.

The solution to the initial value problem of an ODE can often be approximated
by numerical integration. Here is a program that integrates a tower of derivatives
at t0 to its next step value at t0 + h using the Euler method:

euler :: Num a ⇒ a → D a → D a
euler h f = D (val f + h ∗ val (der f )) (euler h (der f ))
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Sine wave y′′ = −y y = init y0 y ′

y ′ = init y1 (−y)

Damped oscillator y′′ = −cy′ − y y = init y0 y ′

y ′ = init y1 (−c ∗ y ′ − y)

Lorenz attractor x′ = σ(y − x) x = init x0 (σ ∗ (y − x))
y′ = x(ρ − z) − y y = init y0 (x ∗ (ρ − z) − y)
z′ = xy − βz z = init z0 (x ∗ y − β ∗ z)

Fig. 1. A few ODE examples

The function euler lazily traverses and updates every value in the tower of deriva-
tives by their next step values. By repeatedly applying euler , we can sample the
approximate solution to an ODE:

sample :: Num a ⇒ a → D a → [a ]
sample h = map val . iterate (euler h)

For instance, evaluating sample 0.001 e generates an infinite sequence of the
exponential function exp(t) sampled at a 0.001 interval starting from t = 0:

[1.0, 1.001, 1.002001, 1.003003001, 1.004006004001, ...

1.2 Time and Space Leaks

Thus far, we have designed a DSL embedded in Haskell for autonomous ODEs.
However, our DSL, despite its elegant implementation, has but one problem: the
numerical solver has serious time and space leaks. For instance, unfolding the
sequence sample 0.001 e in GHCi exhibits a quadratic time behavior instead of
linear. Evaluating more complex definitions than e can exhibit even worse leaks.

The problem is that data sharing is lost when we update a recursive structure
[11]. In a lazy and pure functional setting, cyclic and infinite data structures are
indistinguishable when they semantically denote the same value, as illustrated
in Figure 2. Usually an implementation of a lazy language allows one to “tie

(a) cyclic structure (b) infinite structure

Fig. 2. Two structural diagrams for e
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the knot” using recursive definitions such as e = init 1 e, which would create
an internal data structure as pictured in Figure 2(a). This kind of knot tying,
however, is very limited, and even the simplest traversal like the one below loses
sharing:

id (D v d) = D v (id d)

When evaluating id e, a lazy (call-by-need) strategy fails to recognize that in the
unfolding of id e = id (D 1 e) = D 1 (id e), the last and first occurrences of id e
could share the same value, and therefore produces something like in Figure 2(b).
Repeatedly evaluating an update function such as euler on a recursively defined
value of type D a will force unfolding the structure indefinitely, and hence create
leaks both in space and time.

In the remainder of this paper we embark on a journey seeking the best way to
implement our DSL for ODEs with varying degrees of embedding. Specifically,
our paper makes the following contributions:

1. We study the problem of handling cyclic and infinite structures by analyzing
different DSL representations and implementations, from shallow to deep
embeddings, and mid-grounds in between.

2. We present an arrow-based DSL that captures sharing implicitly but without
the usual deficiency of having to observe and compare equivalences using tags
or references. Additionally the use of arrow notation [16] enables succinct
syntax for ODEs.

3. We illustrate that sharing and recursion in an object language can be better
captured by arrows than higher-order abstract syntax (HOAS), even though
both are mixing shallow and deep embeddings.

4. We make use of the arrow properties, and specifically the normal form of
causal commutative arrows (CCA) [12], to compile our DSL and eliminate
all overhead introduced by the abstraction layer.

2 Sharing of Computation

2.1 A Tagged Solution

To distinguish cyclic from infinite data structures, we can make the sharing of
sub-structures explicit by labeling them with unique tags [15]. The traversal of
a tagged structure must keep track of all visited tags and skip those that are
already traversed in order to avoid endless loops.

It must be noted, however, that not all infinite data structures can be made
cyclic. This can be demonstrated by the multiplication of two towers of deriva-
tives x, x′, . . . , x(m−1), . . . and y, y′, . . . , y(n−1), . . . , which produces the following
sequence:

xy
x′y + xy′

x′′y + x′y′ + x′y′ + xy′′

. . .
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Even if both sequences of x and y are cyclic (x(i) = x(i mod m), y(j) = y(j mod n),
for all i ≥ m, j ≥ n), the resulting sequence does not necessarily have a repeating
pattern that loops over from the beginning, or any part in the middle. Therefore
merely adding tags to the tower of derivatives is not enough; we need to represent
mathematical operations symbolically so that they become part of the data
structure and hence subject to traversal as well. For instance:

data C a = CI a (T a) -- init operator
| C1 Op (T a) -- unary arithmetic
| C2 Op (T a) (T a) -- binary arithmetic

type T a = Tag (C a)
data Tag a = Tag Int a
type Op = String

This is a simple DSL that supports initialization (CI ) in addition to both unary
(C1 ) and binary (C2 ) operations. Since every node in a (T a) structure is
tagged, we can easily detect sharing or cycles by comparing tags. There are
different ways to generate unique tags; we follow [2] and use a state monad:1

type M a = State Int (T a) -- monad that returns T a
newtag :: State Int Int -- to get fresh new tag
newtag = modify (+1) >> get
tag :: C a → M a -- tag a node with new tag
tag x = newtag >>= λi → return (Tag i x )
initT :: a → T a → M a -- init with a new tag
initT v d = tag (CI v d)

Since our DSL now represents all operations as part of its data structure, we
no longer need the chain rule to evaluate multiplication, and instead we just
represent it symbolically. Such a technique is often called deep embedding in
contrast to our first DSL, which is a shallow embedding since all its operators
are ordinary Haskell functions. We leave the rest of the implementation to our
readers.

With the same exponential example now defined as e = mfix (initT 1),2

repeatedly sample its value in GHCi now exhibits linear time behavior, and runs
in constant space as one would have expected. By moving from shallow to deep
embedding, and with the help of tags, we are now able to recover sharing in the
interpretation of our tagged DSL.

2.2 Higher Order Abstract Syntax

Although the tagged solution successfully avoids space leaks, it is cumbersome
due to the overhead of generating and maintaining unique tags. One way to avoid
1 The State type and functions like modify and get are from the standard Haskell

module Control .Monad .State .
2 Function mfix computes the fixed point of a monad, and is of type MonadFix m ⇒

(a → m a) → m a.
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dealing with tags is to mimic Let-expressions for sharing, and Letrec for recur-
sion. However, Let -expressions in the object language require variable bindings
and their interpretations. Indeed, variables are just lexically scoped tags, and
they are remembered in an environment instead of a state monad.

An alternative solution that avoids variable bindings in the object language is
to use higher-order abstract syntax (HOAS). For example, we may modify our
DSL to include both Let and Letrec as follows:

data H a = HI a (H a) -- init operator
| H1 Op (H a) -- unary operator
| H2 Op (H a) (H a) -- binary operator
| Let (H a → H a) (H a)
| LetRec (H a → H a)
| Var Int -- for internal use only

Where Let f x introduces the sharing of x in the result of f x , and LetRec f
introduces an explicit cycle in computing the fixed point of f . When traversing
Let and LetRec, however, we have to remember shared values for later lookups
in an environment. For this reason we need to use Var i to represents an index
i in such an environment. We leave the actual implementation of this DSL to
our readers.

Now we can define the same exponential ODE as LetRec (init 1) where init =
HI . But the real trouble comes when we want to update it in the euler function.
Here is a sample code snippet that updates a Let structure:

update env (Let f x ) =
let x ′ = update env x

i = length env
f ′ y = update ((i , (y, valH env x )) : env) (f (Var i))

in Let f ′ x ′

The function update remembers shared values in an environment variable env
during a traversal. To update a value of Let f x is to create a new function f ′

out of f in some way, and return Let f ′ x ′. In computing f ′ it must reference
the environment to get the shared value of x using valH env x . Therefore f ′ is
really a new closure. Since our host language Haskell is not able to introspect or
evaluate under lambdas, repeatedly updating HOAS structures in this way will
result in building larger and larger closures, and hence creating a new kind of
space leak. A possible remedy to this situation is memoization [13]. For example,
we can have a pair of conversion functions between the HOAS language and the
tagged language:

toT :: H a → T a
fromT :: T a → H a

Computation over H a can then be expressed in terms of computations over T a.
As a result of toT , the intermediate tagged structure is of fixed size (relative to
the input), and hence fromT will create a HOAS structure also of fixed size.
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Unfortunately, this approach introduces considerably more runtime overhead
and begins to feel just as cumbersome as tagging. Therefore we consider HOAS
inadequate as a technique for object languages that require careful sharing.

For our next and final DSL, we represent then computation between deriva-
tives in an ODE as arrows. But before doing so, we first give an introduction to
arrows. Readers familiar with this topic may skip to Section 4.

3 An Introduction to Arrows

Arrows [9] are a generalization of monads that relax the stringent linearity im-
posed by monads, while retaining a disciplined style of composition. Arrows have
enjoyed a wide range of applications, often as an embedded DSL, including signal
processing [14], graphical user interface [4], and so on.

3.1 Conventional Arrows

Like monads, arrows capture a certain class of abstract computations, and offer
a way to structure programs. This is achieved through the Arrow type class:

class Arrow a where
arr :: (b → c) → a b c
(≫) :: a b c → a c d → a b d
first :: a b c → a (b, d) (c, d)

The combinator arr lifts a function from b to c to a “pure” arrow computation
from b to c, namely a b c where a is the arrow type. The output of a pure arrow
entirely depends on the input (it is analogous to return in the Monad class).
≫ composes two arrow computations by connecting the output of the first to
the input of the second (and is analogous to bind ((>>=)) in the Monad class).
But in addition to composing arrows linearly, it is desirable to compose them in
parallel – i.e. to allow “branching” and “merging” of inputs and outputs. There
are several ways to do this, but by simply defining the first combinator in the
Arrow class, all other combinators can be defined. The combinator first applies
an arrow to the first part of the input, and the result becomes the first part of
the output. The second part of the input is fed directly to the second part of the
output.

Other combinators can be defined using these three primitives. For example,
the dual of first can be defined as:

second :: Arrow a ⇒ a b c → a (d , b) (d , c)
second f = arr swap ≫ first f ≫ arr swap

where swap (a, b) = (b, a)

Parallel composition can be defined as a sequence of first and second :

(���) :: Arrow a ⇒ a b c → a b′ c′ → a (b, b′) (c, c′)
f ��� g = first f ≫ second g
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(a) arr f (b) f ≫ g (c) first f

(d) f ��� g (e) loop f

Fig. 3. Commonly used arrow combinators

To model recursion, we can introduces a loop combinator [16], which is cap-
tured in the ArrowLoop class.

class Arrow a ⇒ ArrowLoop a where
loop :: a (b, d) (c, d) → a b c

We find that arrows are best viewed pictorially. Figure 3 shows some of the basic
combinators in this manner, including loop. A mere implementation of the arrow
combinators, of course, does not make it an arrow – the implementation must
additionally satisfy a set of Arrow and ArrowLoop laws, which are omitted here
for the lack of space. See [9, 16] for further details.

3.2 Arrow Notation

Arrow expressions we have seen so far maintain a point-free style that requires
explicit “plumbing” using arrow combinators, and may be obscure and inconve-
nient in some cases. [16] devises a set of arrow notation that help users to ex-
press arrows in a “point-ful” style with improved presentation. Programs written
in such special syntax can be automatically translated by a pre-processor back to
the combinator form. GHC in fact has built-in support for arrow notations.

For space reasons we omit translation rules of arrow notation, and instead we
briefly explain through the example of the parallel composition ��� as follows:

(���) :: Arrow a ⇒ a b c → a b′ c′ → a (b, b′) (c, c′)
f ��� g = proc (x , y) → do

x ′ ← f −≺ x
y ′ ← g−≺ y
returnA−≺ (x ′, y ′)

returnA :: Arrow a ⇒ a b b
returnA = arr (λx → x )

The proc keyword starts an arrow expression whose input is a pair (x , y), and
whose output is the output of the last command in the do-block. The do-
block allows one to use variable bindings as “points” to interconnect arrows,
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Sine wave y′′ = −y proc () → do
rec y ← init y0−≺ y ′

y ′ ← init y1−≺ −y
returnA−≺ y

Damped oscillator y′′ = −cy′ − y proc () → do
rec y ← init y0−≺ y ′

y ′ ← init y1−≺ −c ∗ y ′ − y
returnA−≺ y

Lorenz attractor x′ = σ(y − x) proc () → do
y′ = x(ρ − z) − y rec x ← init x0−≺ σ ∗ (y − x)
z′ = xy − βz y ← init y0−≺ x ∗ (ρ − z) − y

z ← init z0−≺ x ∗ y − β ∗ z
returnA−≺ (x , y , z)

Fig. 4. ODE examples in arrow notation

e.g., x ′ ← f−≺ x passes a value x through an arrow f and names the result x ′.
So the proc expression is really just another way to express arrow compositions
by naming the “points”, in contrast to the point-free style.

4 ODE and Arrows

We begin with an abstract view of ODE programs without committing to a
particular arrow implementation. Here is the exponential ODE example written
in arrow notation:

e = proc () → do
rec e ← init 1−≺ e
returnA−≺ e

In the above program, the rec keyword indicates a recursive definition, We give
more examples in Figure 4 by re-writing in arrow notation the same ODEs given
in Figure 1.

In the actual implementation, we simply lift all arithmetic operations to pure
arrows, and the only domain specific operator needed is an init arrow. Following
our previous two DSL designs, we have to traverse the internal structure of our
DSL and update all initial values. Hence a natural choice is to implement our
arrow to reflect this kind of traversal:

newtype ODE s a b = ODE (Updater s → a → (b,ODE s a b))
type Updater s = s → s → s

The ODE type is parameterized by the type of initial value s , and implemented
as a function that takes an Updater and an input value of type a, and returns a
pair: output value of type b, and an updated ODE. The only place we actually
apply the Updater is in the init combinator, where both the initial value and
the current input are given to the Updater to produce an updated initial value:



An Ode to Arrows 161

init :: s → ODE s s s
init i = ODE h

where h f x = (i , init (f i x ))

All other arrow combinators simply pass the Updater around to complete a
full traversal. Then we can perform numerical integrations by passing the euler
function as the Updater , and implement the sample function in a similar way as
we have seen before:

instance Arrow (ODE s) where
arr f = ODE h where h u x = (f x , arr f )
ODE f ≫ ODE g = ODE h where h u x = let (y, f ′) = f u x

(z , g ′) = g u y
in (z , f ′≫ g ′)

first (ODE f ) = ODE h where h u (x , z ) = let (y, f ′) = f u x
in ((y, z ),first f ′)

instance ArrowLoop (ODE s) where
loop (ODE f ) = ODE h where h u x = let ((y, z ), f ′) = f u (x , z )

in (y, loop f ′)
euler :: Num s ⇒ s → Updater s
euler h i x = i + h ∗ x
sample :: Num s ⇒ s → ODE s () c → [c ]
sample h (ODE f ) = y : sample h f ′

where (y, f ′) = f (euler h) ()

This approach is not only elegant, it is also efficient – there are no space leaks.
For example, unfolding sample 0.001 e in GHCi executes correctly and exhibits
a linear time behavior. This is because

1. The representation of an ODE is composed from a fixed number of arrows
with no cycles, and thus the traversal will always terminate.

2. Although the arrow itself is implemented as a higher-order function, unlike
the HOAS implementation, it makes no references to environment values,
and hence it is not a closure.

3. The traversal of all arrows returns new arrows of the same size, which can
be proved by a structural induction as follows:

(a) The traversal of a pure arrow always returns a pure arrow of the same
size.

(b) The traversal of all arrow compositions (≫, first , and loop) always re-
turns a composition of the same structure, and of the same size.

(c) The update of initial values is only within the init arrow, which also
returns a new arrow of the same size.

Of course the above is only an informal proof; a formal proof would depend on a
more precise definition of size, and the lazy (call-by-need) semantics of the host
language. We omit such proofs here. It must be noted, however, that much of
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Fig. 5. Arrow diagram of damped oscillator

the above reasoning has little to do with the actual implementation of the arrow
and its combinators. In other words, arrows capture sharing by design.

This intuition becomes more evident when we look at arrow programs writ-
ten using combinators. As a slightly more complex example, we translate the
program for a damped oscillator given in Figure 4 to combinators below:

loop (arr snd ≫ loop (arr f ≫ init y1 ≫ arr dup)≫ init y0 ≫ arr dup)
where dup x = (x , x )

f (y, y ′) = −c ∗ y ′ − y

It is obvious that the above program consists of a fixed number of arrows that
are easy to traverse or manipulate. The same program is presented pictorially in
Figure 5 where the loops represent the values of y (outer) and y ′ (inner) being
fed back to the inputs. Their values are shared at all the “points”. For instance,
the function dup only evaluates its argument once.

Both HOAS and arrow-based DSLs can be viewed as middle grounds between
shallow and deep embeddings. We advocate the use of arrows because, Unlike
HOAS, lambdas in the object language are represented as compositions of arrow
combinators, which lends to easy program manipulation. Also, We no longer
have to deal with variable bindings, environments or open terms since all arrows
translate to combinators that are always closed, and do not require memoization.

5 ODE and CCA

The use of the init arrow combinator is interesting – it introduces an inter-
nal state that is subject to both intentional computation (for being an arrow)
and extensional examination (for being part of a traversal). If we ignore the
monomorphism restriction of the ODE arrow for a moment, we can make a
further abstraction by defining a new type class:

class Arrow a ⇒ ArrowInit a where
init :: b → a b b

The ArrowInit class actually represents a more constrained arrow called Causal
Commutative Arrow (CCA) [12] that builds on top of a simply typed lambda
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calculus (with a few extensions), and must satisfy two additional laws besides
the arrow and arrow loop laws:

commutativity first f ≫ second g = second g ≫ first f
product init i ��� init j = init (i , j )

Based on the abstract arrow laws, an important property of CCA is that they
enjoy a canonical form called Causal Commutative Normal Form (CCNF) that is
either a pure arrow of the form arr f , or loop (arr f ≫ second (second (init i)))
for some initial state i and a pure function f . Furthermore if we relax the con-
dition and allow recursions in the pure function, we end up with an optimized
CCNF of the form loop (arr g ≫ second (init i)). For example, the arrow
program for damped oscillator is translated to the optimized CCNF below:

loop (arr g ≫ second (init i))
where i = (y0, y1)

g ( , (y, y ′)) = let y ′′ = −c ∗ y ′ − y
in (y, (y ′, y ′′))

This kind of normalization can be seen as a stated compilation that turns an
arrow program into a pair (i, g) where

– The stat i is a nested tuple that can be viewed as a vector since all states
in our ODEs are of the same numerical types.

– The pure function g computes the derivative the state vector.

With this result in mind, we implement a new sampling function as follows:

class VectorSpace v a where
(∗ˆ) :: v → a → a

instance Num a ⇒ VectorSpace a a where
x ∗ˆ y = x ∗ y

instance (VectorSpace v a,VectorSpace v b)⇒VectorSpace v (a, b) where
k ∗ˆ (x , y) = (k ∗ˆ x , k ∗ˆ y)

instance (Num a,Num b) ⇒ Num (a, b) where
negate (x , y) = (negate x ,negate y)
(x , y) + (u, v) = (x + u, y + v)
(x , y) ∗ (u, v) = (x ∗ u, y ∗ v)
...

euler :: (VectorSpace v a,Num a) ⇒ v → a → a → a
euler h i i ′ = i + h ∗ˆ i ′

sample :: (VectorSpace v a,Num a)⇒v →(a, ((), a)→(b, a))→ [b ]
sample h (i , f ) = aux i

where aux i = x : aux j
where (x , i ′) = f ((), i)

j = euler h i i ′
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The VectorSpace class captures state vectors with a scalar multiplication oper-
ator ∗ˆ, and also regains the homogeneous type required by euler . Such tuples
are made instances of the Num class, where arithmetic operators are overloaded
point-wise. The sample function then takes the tuple (i , g) we obtain from the
optimized CCNF of an arrow program, uses function g to calculate the derivative
of i , and computes its next step value using euler .

Now it becomes even clearer that there is no leak because only the state
vector is updated during the repeated sampling, while the pure function remains
unchanged. In addition, it runs very fast when compiled with GHC thanks to
the normalization of CCA.

6 Benchmark

We compare the DSL performance of the tagged solution, the ODE arrow and
CCA-based staged compilation by running ODE examples listed in Figure 1 and
Figure 4. We do not consider the very first DSL and the HOAS version because
they both have space leaks, and neither do we include results from the memoized
HOAS version since it is always slower than the tagged DSL. The benchmarks
were run on an Intel Pentium 4 machine running a 32-bit Linux OS. All programs
are compiled to compute 105 samples using GHC 6.10.4 with compilation flag
-O2 -fvia-C. The results are given in Figure 6, where all numbers are speed-up
ratios measured in CPU time normalized to the speed of the first column. We
make the following observations:

1. As the ODE gets more complex (from sine to oscillator, and to Lorenz), the
tagged version becomes slower since it incurs more overhead interpreting the
DSL, as well as remembering and comparing visited tags.

2. The Arrow version is slower than the tagged version for simpler ODEs, which
is attributed to the overhead of interpreting the arrow combinators.

3. The CCA version is orders of magnitude faster since it is free of all arrow
and arrow notation overhead. The intermediate Core program generated by
GHC also confirms that the CCA optimization leads to very efficient target
code in a tight loop.

Tagged Arrow CCA

Sine wave 1 0.31 14.06

Damped oscillator 1 0.75 35.48

Lorenz attractor 1 1.79 48.79

Fig. 6. Benchmark of DSLs for ODE (normalized speed)
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7 Discussion

Before discussing the sharing problem in general, one may ask why we take the
long road implementing a DSL for ODEs, when they can be directly represented
in Haskell as a function that computes derivatives. For example, the damped
oscillator ODE in Figure 1 can be described as follows:

f (y, y ′) = let y ′′ = −c ∗ y ′ − y
in (y ′, y ′′)

Coupled with a set of initial values (y0, y1), we have a pair from which numerical
solutions to the ODE can be computed. A major drawback, however, is that
such a pair is at too low level because it is unable to:

1. express the function represented by an ODE as a single value;
2. express compositions such as y ∗ y where y is defined by the above ODE;
3. make room for new extensions.

The lack of abstraction renders such a direct representation a poor choice for a
DSL. Moreover, the purpose of this paper is not to solve differential equations,
but to explore the design space of embedded DSLs that preserves sharing of
computation. It is also worth noting that our staged compilation through CCA
yields a similar pair of function and state.

Memoization [13] caches previous computation results and later re-uses in-
stead of re-computes them. A generic memo function builds an internal lookup
table that may interfere with garbage collection, and the prompt release of cached
data is critical to the success of this technique.

The sharing problem discussed in this paper is of course not new. A majority of
efforts have focused on detecting cycles and properly representing them. [15] uses
integer tags for explicit labelling, while [3] suggest a non-conservative extension
using references. [8] introduces type-safe observable sharing using stable names
within the IO monad. These techniques usually translate a lazy cyclic structure
into an equivalent graph representation, but are inefficient at handing updates.

Introducing variable bindings to denote sharing or recursion in an algebraic
data type is not new either. [6] adopt HOAS, while [7] employ de Bruijn indices
in a nested data type [1].

Historically the normal order reduction of a combinator program is known
to preserve sharing in a similar way to lazy (call-by-need) evaluation [17], but
such a style has rarely been used to represent sharing or cycles in algebraic
data types despite having less overhead than both variable bindings and de
Bruijn indices. The arrow abstraction gives rise to a rich algebra in a combinator
style, which makes it a suitable candidate for traversals and updates, as well as
transformations using the set of arrow laws. The abstract properties of arrows are
powerful enough that they lead to the discovery of a normal form for CCA [12],
and a staged compilation technique that eliminates all interpretive overhead.
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Abstract. A lazy-evaluation based top-down parsing algorithm has
been implemented as a set of higher-order functions (combinators) which
support directly-executable specifications of fully general attribute gram-
mars. This approach extends aspects of previous approaches, and allows
natural language processors to be constructed as modular and declarative
specifications while accommodating ambiguous context-free grammars
(including direct and indirect left-recursive rules), augmented with se-
mantic rules with arbitrary attribute dependencies (including dependen-
cies from right). This one-pass syntactic and semantic analysis method
has polynomial time and space (w.r.t. the input length) for processing
ambiguous input, and helps language developers build and test their
models with little concern for the underlying computational methods.

Keywords: Parser combinators, Lazy evaluation, Top-down parsing, At-
tribute grammars, Natural-language processing.

1 Introduction

Attribute grammar (AG, [1]) systems have been constructed primarily as com-
pilable parser-generators for formal languages. Little work has been done where
fully-general AGs have been used to offer a platform for declaratively specify-
ing directly-executable specifications of natural languages (NL) to construct NL
interfaces or NL database query processors. Although it is highly modular, gen-
eral top-down parsing is often ignored as it has been traditionally categorized as
expensive, and non-terminating while processing left-recursive grammars. Also,
no existing approach supports arbitrary attribute dependencies (including de-
pendencies from the right) in one-pass within a modular top-down system.

A platform that supports executable and declarative specifications of general
AGs, offers two benefits. From a practical viewpoint, application developers can
specify and execute their language descriptions directly without worrying about
underlying evaluation methods. Individual parts of descriptions can be efficiently
tested piecewise, and modularity enables systematic and incremental develop-
ment. From a theoretical perspective, general AGs accommodate ambiguity and
left-recursion, which are needed for natural language processing. As illustrated
by Warren [2] and Frost et al. [3], transforming a left-recursive CFG to a weakly
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equivalent non-left-recursive form may introduce loss of parses and lack of com-
pleteness in semantic interpretation. AGs with arbitrary attribute dependencies
provide unrestricted construction of declarative semantic rules, facilatating ex-
pression of complex linguistic theories such as Montague semantics.

Frost et al. explained at PADL’08 [4] how top-down parsers can be constructed
as unconstrained executable CFGs. This paper describes an extension to accom-
modate semantics with arbitrary attribute dependencies. We have achieved our
objective by defining a set of combinators for constructing modular, declarative
and executable language processors, similar to the denotational semantics text-
book AG notation. Our combinators (e.g., <|> and *> correspond to alternating
and sequencing, rule_s and rule_i for synthesized and inherited semantic rules,
parser and nt for AG formation) are pure, higher-order and lazy functions that
ensure fully declarative specifications (Section 3.2 and 3.3).

We define attributes in terms of expressions (as our method is referentially
transparent and non-strict) that represent operations on syntax symbols, and
these expressions are computed from the surrounding environment when re-
quired (Section 3.4). We execute syntax and semantics in polynomial time using
memoization to ensure that results for a particular parser at a particular input
position are computed at most once, and are reused when required. We repre-
sent potentially exponential results for ambiguous input in a compact and shared
polynomial tree structure (Section 4).

We have provided a platform by implementing our algorithm in terms of
higher-order functions in Haskell. The declarative notation, arbitrary dependen-
cies and non-strict evaluation have the potential to allow us to discard unwanted
parses using linguistic features such as grammatical, semantic and number agree-
ments, and this could extend the AG paradigm by capturing characteristics
of unification grammars, combinatory-categorical grammars and type-theoretic
grammars while being computationally efficient.

An Example. We illustrate our approach with a simple artificial repmax
example [5,6] which we have extended to accommodate ambiguity, left-recursion
and arbitrary attribute dependencies in semantic rules. Our goal is to parse
inputs such as “1 5 2 3 2” with the ambiguous left-recursive CFG tree ::=
tree tree num | num, num ::= 1|2|3|4|5|..., and to extract all possible trees
with all terminals replaced by the maximum value of the sequence using sets of
declarative semantics. The following example illustrates most of the aspects of
general AGs :

start(S0) :: = tree(T0)
{RepV al.T0 ↓ = MaxV al.T0 ↑}

tree(T0) :: = tree(T1) tree(T2) num(N1)
{MaxV al.T0↑ = Max(MaxV al.T1 ↑, MaxV al.T2 ↑, MaxV al.N1 ↑),
RepV al.T1 ↓ = RepV al.T0 ↓, RepV al.T2 ↓= RepV al.T0 ↓,
RepV al.N1 ↓ = RepV al.T0 ↓}

| num(N2)
{MaxV al.T0↑ = MaxV al.N2 ↑, RepV al.N2 ↓= RepV al.T0 ↓}

num(N0) :: = 1 {MaxV al.N0 ↑= 1}| ... |5{MaxV al.N0 ↑= 5}
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According to this AG, there are two ambiguous outputs when start is applied
to the input sequence “1 5 2 3 2”:

tree

tree

num

5

tree

tree

num

5

tree

num

5

num

5

num

5

tree

tree

tree

num

5

tree

num

5

num

5

tree

num

5

num

5

Using our method, an “almost verbatim” executable specification of the above
AG’s representation can be constructed in Haskell as follows:

start = memoize Start parser (nt tree T0)
[rule_i RepVal Of T0 Is findRep [synthesized MaxVal Of T0]]

tree = memoize Tree parser
(nt tree T1 *> nt tree T2 *> nt num T3)
[rule_s MaxVal Of LHS Is

findMax [synthesized MaxVal Of T1,synthesized MaxVal Of T2,synthesized MaxVal Of T3]
,rule_i RepVal Of T1 Is findRep [inherited RepVal Of LHS]
........
<|> parser (nt num N1)
[rule_i RepVal Of N1 Is findRep [inherited RepVal Of LHS]
,rule_s MaxVal Of LHS Is findMax [synthesized MaxVal Of N1]]

num = memoize Num terminal term "1" [MaxVal 1] <|> ... <|> terminal term "5" [MaxVal 5]

When the executable specification of start is applied to “1 5 2 3 2”, a
compact representation of ambiguous parse trees is generated with appropriate
semantic values for respective grammar symbols. For example, tree parses the
whole input (starting at position 1 and ending at position 6) in two ambiguous
ways. The tree’s inherited and synthesized attributes (represented with I and
S) are associated with its start and end positions respectively. The attributes
are of the form attribute_type value e.g. RepVal 5. The compact results
have pointing sub-nodes (as node-name, unique-id pairs e.g. (Tree,T1)) with
inherited and synthesized attributes:

Tree START at 1 ; Inherited atts: T0 RepVal 5
END at 6 ; Synthesized atts: T0 MaxVal 5

Branch
[SubNode (Tree,T1) ((1,[((I,T1),[RepVal 5])]),(4,[((S,T1),[MaxVal 5])]))
,SubNode (Tree,T2) ((4,[((I,T2),[RepVal 5])]),(5,[((S,T2),[MaxVal 3])]))
,SubNode (Num, T3) ((5,[((I,T3),[RepVal 5])]),(6,[((S,T3),[MaxVal 2])]))]

END at 6 ; Synthesized atts: T0 MaxVal 5
Branch
[SubNode (Tree,T1) ((1,[((I,T1),[RepVal 5])]),(2,[((S,T1),[MaxVal 1])]))
,SubNode (Tree,T2) ((2,[((I,T2),[RepVal 5])]),(5,[((S,T2),[MaxVal 5])]))
,SubNode (Num, T3) ((5,[((I,T3),[RepVal 5])]),(6,[((S,T3),[MaxVal 2])]))]

..................
Num START at 1 ; Inherited atts: N1 RepVal 5

END at 2 ; Synthesized atts: N1 MaxVal 1
Leaf (ALeaf "1",(S,N1))..................
START at 5 ; Inherited atts: N1 RepVal 5
END at 6 ; Synthesized atts: N1 MaxVal 2

Leaf (ALeaf "2",(S,N1))

This example illustrates that complex semantic rules can be accommodated.
Our semantic rules declaratively define arbitrary actions on the syntax symbols.
For example, the second semantic rule of tree is an inherited rule for the second



170 R. Hafiz and R.A. Frost

parser T2, which depends on its ancestor T0’s inherited attribute RepVal. The
T0’s RepVal is dependent on its own synthesized attribute MaxVal, and eventually
this RepVal is threaded down as every num’s inherited attribute.

2 General AGs and Parser Combinators

In an attribute grammar, syntax rules of a context-free grammar are augmented
with semantic rules to describe the meaning of the sentences of a context-free
language. Although different definitions have been given [6,7,8, etc.], we prefer to
define a general AG by imposing minimal restrictions on attribute dependencies:
a CFG is 4-tuple G = (N, T, P, S), where N is a finite set of non-terminals, T
is a finite-set of terminals, P is a finite-set of syntax rules, S is the start non-
terminal , N ∩ T = φ and (∀pi ∈ P ) pi is of the form a ::= b where a ∈ N and
b ∈ (N ∪ T )∗.

An AG can be formed from G as a 3-tuple AG = (G, A, R), where A is a finite
set of attributes and R is a finite set of semantic rules. Each X ∈ (N ∪T ) is asso-
ciated with a set of attributes A(X) ⊂ A, and each a ∈ A(X) can be described
by a function r ∈ R. The set A(X) can be partitioned into two sets Ai(X)
and As(X), which represents inherited and synthesized attributes respectively.
A synthesized attribute is an attribute for the LHS symbol of a production rule,
and an inherited attribute is associated with a symbol that resides at the RHS of
the production rule. We define the inherited and synthesized expressions rai and
ras (w.r.t. a syntax rule X0 ::= X1X2 . . .Xn), that generate each ai ∈ Ai(X)
and as ∈ As(X) respectively as:

rai : P(
⋃

A(X)) → Ai(Xx)

α �→ operations on α

ras : P(
⋃

A(X) − A(X0)) → As(X0)

α �→ operations on α

where 0 < x ≤ n and P is the power set

In functional programming, parser combinators have been used extensively
[9,10,11, etc.] to prototype top-down backtracking recognizers, which provide
modular and executable specifications of grammars that accommodate ambi-
guity. In basic recursive-descent top-down recognition, rules are constructed as
mutually-recursive functions, and after an alternative rule has been applied, the
recognizer backtracks to try another rule. Such recognizers can be constructed as
a set of higher order functions, each of which takes an index j as argument and
returns a set of indices. Each index in the result set corresponds to a position at
which the parser successfully finished recognizing a sequence of tokens (input)
that began at position j. An empty result set indicates that the recognizer has
failed. The result for an ambiguous input contains repetition of one or more
ending indices. Using the following basic combinators (termrec and emptyrec for
terminals and empty symbols, and <|>rec and *>rec for alternative rules and
sequencing of symbols respectively) as infix operators, recognizers for a subset
of CFGs can be constructed as executable specifications:
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termrec (t, j) =

⎧⎪⎨
⎪⎩
{} , j ≥ #input

{j + 1}, jth token of input = t

{} , otherwise

emptyrec j = {j}
(p <|>rec q) j = (p j) ∪ (q j)

(p *>rec q) j =
⋃

(map q (p j))

However, recognizers constructed with these basic combinators share the
shortcomings of naive top-down parsing: 1) they do not terminate for the left-
recursive grammars 2) they require exponential time and space for ambiguous
input in the worst case These problems have been addressed in [3,4] by use of
memoization and a technique that restricts the depth of left-recursion.

3 Executable Specifications of General AGs

3.1 Preliminaries

We have extended the work of Frost et al. [4] to declaratively construct modular
and executable specifications of fully-general AGs by providing new combina-
tors. Our executable specifications map an input’s start position to a set of end
positions with tree structures. We also thread attributes (i.e. purely-functional
and lazy expressions) along with the start and end positions so that they are
available for dependencies that are specified in the semantic rules.

We begin by defining some fundamental data structures. Note that from now
on, we use the term parser for an executable specification of an attribute gram-
mar rule. At any point in the computation, a parser may have a list of synthesized
and inherited attributes Atts of any user-defined type. A parser, represented by a
label (e.g. Tree, Num etc.), may have multiple occurrences in a syntax rule, and
each occurrence may have different synthesized and/ or inherited attributes. For
correct identification, we declare each multiple occurrences as an Instance, which
is a pair of synthesize/inherited indicator and a unique parser id. For example,
an instance of parser Tree could be the pair (Synthesized or Inherited, T 0).

All parsers except the root parser may have a list of inherited attributes for a
start position j, and a list of synthesized attributes associated with each success-
ful end position. To accommodate these attributes, we define data-type Start
and End for a parser by pairing the respective indices with a list of instances
and attributes. By definition, a parser produces parse-trees based on syntax rules
to indicate correct derivations. We use a recursive data-type PTree that com-
pactly represents parse-trees with each component’s attribute values and pointer
for where to go next. The Result of a parser’s execution is a mapping from Start
to a list of Ends where each of the End results a list of PTree structures. A
memoization technique (section 4) is used to prevent redundant computations
in order to achieve polynomial time for ambiguous input. The memo-table State
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represents a memory space with Results for parsers which have succeeded or
failed. This table is systematically threaded through parser executions using the
standard state-monad [12].

data Atts = MaxVal {getAVAL :: Int}

| Binary_OP {getB_OP :: (Int -> Int -> Int)} ...

type InsAttVals = [(Instance, [Atts])]

type Start/End = (Int,InsAttVals)

type Result = [((Start, End),[PTree Label])]

data PTree v = Leaf (v,Instance) | Branch [PTree v]

| SubNode ((Label, Instance), (Start,End))

In the following sections, we describe our approach by defining some higher-
order functions with segments of Haskell code. The definitions’ syntax is straight-
forward in nature, and can be followed by using a standard literature on Haskell
syntax e.g., [13]. We have defined the functions in a declarative manner so that
it would be easier to follow for general audience. The full prototype Haskell
implementation can be found at the website mentioned in section 6.

3.2 Combinators for Syntax

We use two basic concepts from [4] to accommodate syntax rules including direct
and indirect left-recursion :

– To accommodate direct left-recursion, a left-recursive Context is used, which
keeps track of the number of times a parser has been applied to an input
position j. For a left-recursive parser, this count is increased on recursive
descent, and the parser is curtailed whenever the “left-recursive count of
parser at j exceeds the number of remaining input tokens”.

– To accommodate indirect left-recursion, a parser’s result is paired with a set
of curtailed non-terminals at j within its current parse path, which is used
to determine the context at which the result has been constructed at j.

To maintain the flow of attributes when a parser is re-written by its definition,
in addition to being executed on the current Start and Context, we require that
it must pass down its unique id and a list of its own inherited attributes so that
they can be used when executing the succeeding parsers’ semantic definitions.
These inherited attributes are defined in terms of semantic rules when the current
parser is part of its predecessor’s syntax definition.

The current parser’s alternative definitions are formed with the combinator
<|>, which not only accommodates alternative syntax rules but also a list of
semantic rules associated with each syntax rule. The semantic rules include syn-
thesize rules for the current parser and inherit rules for parsers in alternative
syntax rules. Threading appropriate rules to appropriate parsers is carried out
by a combinator called parser (section 3.3). Both alternative rules p and q are
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applied to the current position j and the current context, and the id and in-
herited attributes of the current parser are also passed down so that they are
available to the parsers in both alternatives. All results from p and q are merged
together at the end. The operation of the combinator <|> can be expressed with
the type (<|>) :: NTType -> NTType -> NTType, where :

type M a = Start -> Context -> StateMonad a

type ParseResult = (Context, Result)

type NTType = Id -> InsAttVals -> M ParseResult

In each of the alternative of the current parser, multiple parsers can be se-
quenced with the sequencing combinator *>. In the definition of *> for parsers
p and q, p is first applied to the current start position and the current context.
Then *> enables p to compute its inherited attributes using a combinator nt
(section 3.3) from an environment of type SemRule that consists of p’s precur-
sor’s attributes, and the results of all parsers in sequence with p. This Result
contains sequencing parsers’ synthesized and inherited attributes that are em-
bedded in PTree structures. Because the attributes are treated as lazy and pure
expressions, p’s inherited attribute (or any other parser’s synthesized or inher-
ited attribute) computations take place only when they are required somewhere
else. The next parser q is then sequentially applied to the set of end positions
returned by p. q also computes inherited attributes from the same environment.
A result from p is joined with all subsequent results from q to form new branch
nodes in the tree. The combinator *>’s input-output relation can be expressed
as type (*>) :: SeqType -> SeqType -> SeqType, where :

type SemRule = (Instance,(InsAttVals, Id) -> InsAttVals)

type SeqType = Id -> InsAttVals -> [SemRule] -> Result -> M ParseResult

The definitions of the AG combinators term token and empty that define
the terminals in the AG rules are analogous to their basic recognizer defini-
tions (section 2.2). The only difference is that the terminals are provided with
static synthesized attributes. The term token makes sure that these attributes
are passed up with the end positions with a tree of type Leaf , only if the ter-
minal successfully consumes an input token. In case of empty, the synthesized
attributes are passed upwards regardless.

3.3 Accommodating Arbitrary Dependencies in Semantics

Our syntax-directed evaluation allows semantic rules for a parser to be defined
in terms of potentially unevaluated attributes from the current parser, and its
predecessor, successors and sibling parsers. We map synthesized and inherited
semantic rules associated with parsers in a syntax rule to the starting and ending
positions respectively in the parsers’ result-sets. Our method of constructing a
result for a parser allows us to establish full call-by-need based arbitrary depen-
dencies between attributes - including dependencies from the right and top. For
example, when a parser pi with a syntax pi = pm *> pn is applied to position 1
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and successfully ends at position 5, one of pi’s input/output attribute relations
could be :

SubNode pi (inhpi1, synpi5) =
[..Branch[SubNode pm (inhpm1, synpm3) , SubNode pn (inhpn3, synpn5)]..]

where, assuming pm starts at 1 and ends at 3, pn starts at 3 and ends at 5,
inhxy and synxy represent inherited and synthesized attributes of parser x at
position y respectively. From this structure, semantic functions with arbitrary
attribute dependencies such as inhpmi ← f(inhpnj , synpik), (where f is a desired
operation on the attributes) can derive input arguments when required. Note
that the output of the example AG from section 1 shows actual result structure.
An approach based on strict evaluation, rather than lazy, would not achieve this
as it maintains a strict evaluation order.

Each AG rule is formed with a higher order wrapper function parser, which
primarily maps current parser’s synthesized rules to all ending points of the syn-
tax result, and assists each parser in the syntax rule to pass down their inherited
rules for future use. A parser’s synthesized rules are grouped with the identifier
(Syn, LHS) from a set of semantics that is associated with the current syntax.
Assuming the syntax would eventually produce a result-set newRes, the grouped
synthesized rules are mapped to this result using a function mapSynthesize.
This function computes synthesized attributes by applying the semantic speci-
fications on the succeeding parsers’ inherited and/ or synthesized attributes for
all PTree entries in the result:

parser :: SeqType -> [SemRule] -> Id -> InsAttVals -> M ParseResult

parser syntax semantics id inhAtts j context

= do s <- get

let ((e,res),s’) =

let sRule = groupRule (Syn, LHS) semantics

tempRes = syntax id inhAtts semantics res

((l,newRes),st) = unState (tempRes j context) s

groupRule id rules = [rule | (ud,rule) <- rules, id == ud]

in ((l, mapSynthesize sRule newRes inhAtts id),st)

put s’

return (e,res)

All parsers in a rule pass down their own identification and a list of inherited
attributes so that they can be computed or used in their own definition’s seman-
tic rules, if required. This task is done with a higher order function nt, which
groups the inherited rules for the current parser based on the pair (Inh, idx)
(where idx is the unique Id of the parser x) from semantics of current syntax.
Then nt facilitates computations of inherited attributes with a mapping function
mapInherited by applying the grouped rules on a parser-provided environment
that consists of the predecessor idp’s and surrounding parsers’ synthesized and
inherited attributes. These attributes are to be collected from newRes. A parser
may have more than one inherited attribute for a particular starting position,
which may result from different alternatives. When these attributes are used in
any succeeding parser’s semantic calculation, they are grouped together under
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the current parser’s single identification so that they are available to carry out
desired tasks in the semantic definitions that may require inter-alternative or
local result dependencies.

nt :: NTType -> Id -> SeqType

nt currentParser idx idp inhAtts semantics newRes

= let inhRules = groupRule (Inh, idx) semantics

ownInAtts = mapInherited inhRules newRes inhAtts idp

groupRule id rules = [rule | (ud,rule) <- rules, id == ud]

in currentParser idx ownInAtts

3.4 Declarative Executable Specifications of Semantic Rules

We follow a declarative format for the semantic specification which states that
synthesized or inherited attribute expressions of a parser can be formed by
applying a desired operation on any of the synthesized and/or inherited at-
tributes of any of its surrounding parsers. We define synthesized and inherited
semantic expressions with a higher-order function rule, which eventually applies
user-defined function userFunction on lists of attribute values. rule is the gen-
eralized version of the synthesised and inherited expression constructing com-
binators rule_s and rule_i respectively, and would ultimately return a value
of type SemRule = (Instance,(InsAttVals, Id) -> InsAttVals) after at-
taching appropriate type and id. The argument attributes for userFunction are
also declaratively specified as synthesized or inherited expressions in listOfExpr.
These expressions are evaluated with the help of a function valueOf , which iden-
tifies specified parsers in the user-defined function’s argument-expressions either
by LHS (i.e., when the current parser’s attribute is used in the semantics) or
by any other parser’s unique id in the syntax.

rule sORi typ idp userFunction listOfExp

= let formAtts id spec = (id, forNode id . spec)

forNode id atts = [(id, atts)]

newVal = userFunction (map valueOf listOfExp)

in formAtts (sORi,idp) (setAtt typ. newVal)

valueOf sORi typ id_specified id_current environment

| pIDspec == LHS = getAttVals (sORi , id_current ) environment typ

| otherwise = getAttVals (sORi , id_specified) environment typ

The user-defined function’s argument-expressions are applied to an
environment of attributes using a recursive function getAttV als to collect the
specified parsers’ respective attributes. As mentioned in the previous section the
environment is formed and provided with the help of combinators parser and
nt. The getAttV als function collects these attributes by comparing the speci-
fied parser’s id, synthesized/inherited instance and the desired attribute’s type
with the similar categories from the environment. These comparison factors are
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threaded down through the current syntax-directed execution path as unevalu-
ated instructions, and the actual comparison takes place only when the attribute
values are requested through user-defined functions.

getAttVals :: Instance -> InsAttVals -> (a -> AttValue) -> [AttValue]

getAttVals x ((i,v):ivs) typ =

let getAtts typ (t:tvs) = if (typ undefined) == t

then (t :getAtts typ tvs)

else getAtts typ tvs

getAtts typ [] = []

in if (i == x) then getAtts typ v else getAttVals x ivs typ

getAttVals x [] typ = [ErrorVal "ERROR no id found"]

The returned attributes are fed into the operations mentioned in the orig-
inal semantic rules. These operations are straightforward to define. The only
requirement for the construction is that these functions perform the desired task
on a list of specifications, which are eventually transformed to a list of attribute
values. One example of these functions could be findRep, which converts the
specified synthesized maximum value (computed from the predecessor’s alterna-
tives’ result-set) to the current parser’s inherited replacement value:

findRep specs = \(atts,i) ->

RepVal (foldr (max) 0 (map (applyMax atts i) (x:xs)))

applyMax y i x = getAVAL (foldr (getMax)(MaxVal 0) (x y i))

getMax x y = MaxVal (max (getAVAL x) (getAVAL y))

Using these combinators and functions, we can now declaratively con-
struct executable language specifications as fully general attribute rules.
For instance, all rules for the section 1’s example AG are formed
with combinators *>, <|>, parser, nt and rule. One alternative syn-
tax for tree(T0) ::= tree(T1) tree(T2) num(T3) is expressed with
tree = parser (nt tree T1 *> nt tree T2 *> nt num T3), and one of the inher-
ited semantics for this syntax RepV al.T1 ↓= RepV al.T0 ↓ is represented with
rule_i RepVal Of T1 Is findRep [inherited RepVal Of LHS].

4 Use of Memoization

Norvig [14] first showed that Earley-like [15] polynomial time complexity can be
achieved in mutually-recursive top-down parsing by using memoization. Frost
et al. [16,3,4] also employed similar techniques to parser combinators. We uti-
lize a related memoization technique to achieve polynomial time complexity
for recursive grammars. We use a state-monad [12] to systematically thread
a memo-table of type [(Label,[(Start, (Context,Result))])] through all
parser executions whilst maintaining pure functionality.

All of our parsers are executed with a wrapper function memoize. If the
current parser passes the direct left-recursion depth-check test then a lookup
is performed based on the parser’s Label and current position j (which resides
in Start) to retrieve the previously saved Result. If there exists a saved result,
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then that is returned if the indirect left-recursion context-comparison test is
satisfied. Otherwise, a new result-set is constructed by applying the parser at
j with an increased context and its own inherited semantics so that they are
available for succeeding parsers. The memoize function updates the memo-table
with this new result, inherited semantics and a subset of the current left-rec
context corresponding to curtailed non-terminals at the current j. The update
operation overwrites any previous entry for the current Label and j, since the
current entry would subsume all of the previously computed entries. memoize
also groups local syntactic ambiguities under j in a newly-formed result for a
Tomita-like [17] polynomial compact representation, and only returns a reference
to this packed entry to the caller, instead of the complete result.

The other task of memoize is that, whenever a memoized parser returns a
result (either through a lookup or by constructing a new result), it makes sure
that the parser’s inherited attributes are integrated with the starting point and
the synthesized attributes are accompanied with a correct parser id at the ending
points in the result-set. When we group the local syntactic ambiguities, we also
merge synthesized attributes under the current parser’s identifier.

5 Complexity Analysis

Here we informally discuss the worst-case time and space requirements of our
algorithm with respect to the length of the input n. Memoization ensures that
a non left-recursive parser is applied to a start position only once. But a left-
recursive parser can be applied to the same start position at most n times due
to the depth-check. According to [3], the sequencing combinator *> performs
O(n2) operations when applying the second parser to every end position re-
turned by the first parser. Therefore, if there were no semantics involved, then
a non left-recursive and a left-recursive parser would require O(n3) and O(n4)
time in the worst-case. While accommodating semantics, we have altered the
ambiguity-grouping requirement by collecting distinct attributes resulting in a
common end position. This assures the fact the syntactic ambiguity may not
necessarily represent semantic ambiguity. In theory, a semantic rule may result
in unambiguous attribute values when applied to a group of syntactically am-
biguous results, each of whose identical syntactic component may have distinct
attribute values. One of the alternative syntax rules r ::= p *> q may have at
most n syntactic ambiguities, because two parsers’ ending positions can be cho-
sen from n start positions in n ways. Overall, the number of multiset results for
r is increased from n to n2. The number of ambiguities arising from a single
alternative rule with multiple parsers would depend on the number of parsers in
sequence, not only on n. Hence this factor has not been considered in our anal-
ysis. If the above parser r is associated with m semantic rules, then *> needs to
perform extra m ∗ n2 operations. Although p or q’s all start-end position pairs
may be partitioned into multiple multisets, they depend on p or q’s syntactic
definitions, which are not considered here as operations related to current parser
r. Given a fixed number of semantics, and the highest degree of operation under
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r is still n2, the time complexities of non left-recursive and left-recursive parsers
remain at O(n3) and O(n4) respectively.

Our PTree structure allows us to save results as a list of one-level-depth
branches with attribute values attached to pointing sub-nodes. In the memo-
table, for each parser’s n input positions, we can store n branches corresponding
to n end positions. As mentioned earlier, for a branch p *> q, there are n possible
ambiguities. Hence, we need O(n3) space in the worst-case w.r.t. the length of
the input. The time and space requirements can be reduced further if we generate
only the final semantic value, instead of all possible decorated parse trees, be-
cause lazy evaluation would only evaluate those parts of the parse space that are
required by the current semantic expression. We suspect that many applications
(similar to the one in the next section) would fall under this category.

6 Implementation and an Example Application

We have implemented our one-pass top-down AG evaluation algorithm by con-
structing a set of combinators (as discussed in section 3) in a lazy and purely
functional language - Haskell. Using these combinators, declarative specifications
can be constructed and executed directly without knowing much about Haskell.
To test the usability of our system, we have developed a simplified natural lan-
guage interface. The syntax of the underlying AG is a fully general CFG that has
15 non-terminals and 32 AG rules, and all syntax rules are associated with a sub-
set of a set-theoretic version of Montague semantics that we have extracted from
Frost and Fortier [18]. Our interface is able to answer hundreds of thousands of
questions about a particular domain - the solar system. More information about
the implementation and this application, and a version of demo code can be
found at http://cs.uwindsor.ca/~hafiz/fullAg.html.

We define an attribute type as a set of alternative attributes, where each
has its own function type. These attributes are the type-definitions of semantic
expressions, which propagate up or down during parser executions. For example:

data Att = TERMPHJOIN_VAL {getTJVAL :: ((ES -> Bool) ->

(ES -> Bool) -> (ES -> Bool))}

| QUEST_VAL {getQUVAL :: String}....

Next we construct a dictionary to define syntactic categories and their mean-
ings e.g.,

dictionary = [("man", Cnoun, [NOUNCLA_VAL set_of_men])

,("orbit", Tverb, [VERB_VAL (tran_verb rel_orbit)]),

,("human", Cnoun, meaning_of nouncla "man or woman" Nouncla)

,...]

Then we modularly define a complete AG specification for the solar system
application. For example, part of the definitions of term-phrase and noun-clause
are:

http://cs.uwindsor.ca/~hafiz/fullAg.html
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jointermph =

memoize Jointermph

parser (nt jointermph S1 *> nt termphjoin S2 *> nt jointermph S3)

[rule_s TERMPH_VAL Of LHS Is

appjoin1 [synthesized TERMPH_VAL Of S1

, synthesized TERMPHJOIN_VAL Of S2

, synthesized TERMPH_VAL Of S3]]

<|>

parser (nt termph S4)

[rule_s TERMPH_VAL Of LHS Is

copy [synthesized TERMPH_VAL Of S4]]

snouncla =

memoize Snouncla

parser (nt adjs S1 *> nt cnoun S2)

[rule_s NOUNCLA_VAL Of LHS Is

intrsct1 [synthesized ADJ_VAL Of S1

, synthesized NOUNCLA_VAL Of S2]]

<|> ...

Being right and left recursive, the parser jointermph expands to both right and
left. The semantic expressions are declaratively defined e.g., jointermph’s first se-
mantic rule expresses that jointermph’s synthesised attribute TERMPH_VAL is formed
by joining the synthesized attributes of the r.h.s parsers S1,S2 and S3. The oper-
ations, which are applied to syntactic symbols’ attributes, are defined based on
a set-theoretic version of Montague semantics. For example, snouncla’s attribute
NOUNCLA_VAL is obtained by intersecting sets of adjectives and common-nouns.

An example session with our interface is as follows:

which moons that were discovered by hall orbit mars => [phobos deimos]

every planet is orbited by a moon => [false]

how many moons were discovered by hall or kuiper => [4]

did hall discover deimos or phobos and miranda => [no, yes]

etc.

Note that the last answer is ambiguous due to the right and left branching of
jointermph, hence are separated by a comma.

7 Related Work

The primary use of AGs has mostly been the specification and construction of
compilable parser-generators for programming languages [19]. The classical defi-
nition of an AG has often been modified to support the needs of such languages.
Swierstra et al. introduced the idea of higher order attributes [20,21] by treating
syntax as a part of semantic functions’ input and output in a semantics-driven
analysis. De Moor et al. [6] achieved semantic modularity by treating attributes
as first-class objects. Boyland [22], described an efficient method - collections
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for remote attribute dependencies. JustAdd [23] is a compiler-compiler AG sys-
tem for Java that supports circular referential dependencies with conditional
rewriting of ASTs using lazy-evaluation. The Silver specification language [24]
has been developed primarily based on forwarding (a concept similar to higher-
order attributes) and other extensions mentioned above. Kats et al. [25] describe
attribute decorators that support many AG extensions. Similar to JustAdd, they
use memoization for efficient attribute evaluation.

Our approach differs from these approaches by offering a platform that strictly
preserves the syntactic structure of ambiguous CFGs (which includes direct and
indirect left-recursions). Our top-down syntax-driven parsing strategy provides a
set of non-strict combinators for constructing fully declarative semantic expres-
sions with arbitrary dependencies. In addition to eliminating redundant compu-
tations, our use of memoization technique has been specialized to perform extra
tasks such as keeping track of non-terminals’ context information, merging syn-
tactic ambiguity, mapping and grouping attributes etc.

Even though use of lazy-evaluation to build AG systems has been around
for a long time [26,27, etc.], little work has been done using AGs for natural
language processing tasks: Levison and Lessard [28] used AGs to impose some
degree of grammatical and semantic agreement by propagating only inherited
attributes downwards while generating natural language text. In the template-
based natural language generating system YAG [29], AGs have been used to cor-
rect partially-specified input by imposing grammatical/number restrictions [30].
Their multi-pass evaluating process begins by initializing inherited attributes
with values from the input, then evaluating the rest of the input.

Our approach differs from the last two approaches by being a complete one-
pass parsing system that can return either compactly-represented parse trees
with attribute values in nodes or just the final answer(s). This is in contrast to
the template-based text generators which receive structured input, not natural
languages sentences, and don’t use AGs for full-blown parsing. By being lazy, we
achieve general attribute dependencies by providing more flexible input/output
attribute relations. Also, along with declarative semantics, our syntax is highly
modular because of the systematic use of parser-combinators as basic building
blocks.

8 Concluding Comments

We have developed a framework where general CFGs (including ambiguous and
left-recursive grammars) can be integrated with semantic rules with arbitrary
attribute dependencies as directly-executable and modular specifications. Our
approach is based on a top-down parsing method implemented as a set of non-
strict combinators resulting in declarative specifications. We utilize a memo-
ization technique for polynomial time and space complexities. In the future we
aim to process syntactic and semantic ambiguities based on grammatical and
number agreement, type checking and conditional restrictions. By taking ad-
vantage of arbitrary attribute dependencies, we plan to model NL features that
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can be characterized by other grammar formalisms such as unification gram-
mars, combinatory-categorical grammars and type-theoretic grammars. We are
constructing formal correctness proofs, and optimizing the implementation for
using with very large grammars. We believe that our work will help computa-
tional linguists build and test their theories and specifications without worrying
about the underlying computational methods, and will also help non-exparts
create NL interfaces to their applications.
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Abstract. This paper describes a domain-specific language embedded
in Haskell, IPS, for the implementation of protocol stacks for embedded
systems. IPS profits from Haskell’s features and generates C implemen-
tations by embedded compilation.

Keywords: DSL, Communication Software, Network Programming.

1 Introduction

As embedded systems increase in number and ubiquity, embedded network soft-
ware takes a central role for their development. New communication services with
new demands lead to the design of new protocols that have to be implemented.
Also, new hardware platforms require reimplementations of well known infras-
tructure protocols. As with other systems software, embedded network software
is traditionally programmed in low-level languages. It requires a high degree of
optimization and machine-oriented coding, rendering implementations that are
hard to maintain and adapt to new requirements.

We address these problems via a domain-specific compilation-based approach.
Our first steps resulted in IPS, a small domain-specific language (DSL) embed-
ded in Haskell. In IPS, protocols are specified in a modular way, with packet
processing code generated automatically from packet specifications, and using
combinators for putting together protocol stacks and graphs. Good performance
and portability is achieved via compilation into C. Our implementation makes
use of established techniques for embedding a compiler, and various features of
Haskell such as type classes, combinators, ad-hoc polymorphism, and phantom
types [1] to achieve type-safety of the embedded language. In this short paper,
we briefly describe IPS and its embedding in Haskell.

2 The IPS Language

IPS is a small language that captures several core features of protocol stack
implementation. Essential parts of IPS are: a packet description language from
which packet processing code is generated, and combinators for overlaying pro-
tocols in a stack and for building a protocol graph.

M. Carro and R. Peña (Eds.): PADL 2010, LNCS 5937, pp. 183–185, 2010.
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p1 :: Protocol stack0 =
p1 = protocol{ stack 0 (protocol p3)

name = "P1", <|>
packet = header0:header1:payload, (protocol p2)
send = p1_send, <|>
receive = end (protocol p1) <&&> [(header 0 p1)|* (\x->x==*0)]

}where stack1 =
header0 = int 0 2 |* constraint stack 1 (protocol p4)
constraint x = (x==*0)||*(x==*1) <|>
header1 = int 1 6 (protocol p1) <&&> [(header 0 p1)|* (\x->x==*1)]
p1_send = header1 =* 0x0272

:end graph = stack0 <-> stack1

Fig. 1. An IPS example: protocol definition and overlay specification

Packets are semi-structured data and packet specification is a fundamental
element in a protocol specification. Physical packet organization, dependencies
among header field contents, and constraints over the values of the header fields,
can be concisely described using a data description language, which is embedded
in Haskell in the case of IPS. Like in other approaches, e.g. [2], the IPS compiler
automatically generates packet processing code from the data description. The
example of protocol p1 in Fig. 1 contains an IPS packet format specification, a
sequence of header fields (header0 and header1) followed by the payload. Both
syntactic and semantic properties can be specified. In the example, header0 has
type int, id 0 and size 2 (bits). The 2 bits allow for 4 values, i.e., 0 to 3, but
the specification constraints its possible values to 0 or 1.

A protocol description (like the one for p1) has to specify how to transmit its
packets via its lower-layer protocols (send), and how to pass incoming packets
to the upper-layer protocols (receive). In IPS, packet fields can be named in
these operations. For instance, protocol p1 adds the sender’s local address as a
header field (header0 =* 0x0272). This liberates protocol logic implementation
from low-level data manipulation related to the wire format of packets.

The right side of Fig. 1 shows how IPS uses a set of combinators to overlay
individually developed protocols into protocol stacks (graphs) in a structured
manner. The basic combinator <|> overlays several protocols in a top-down
protocol stack. In our example, a stack stack0 is constructed which overlays
protocol p3 above p2, and p2 above p1. Additional assumptions made about the
protocols organization in the stack can be declared explicitly, using combinator
<&&>. Finally, combinator <-> combines two of these protocol stacks, merging
duplicate instances of the same protocol (in our example, p1 at the bottom).

3 IPS and Haskell

IPS makes use of Haskell’s module system. Each protocol in an IPS specifica-
tion will be defined in its own module, and can be imported for any number
of protocol stack overlays. Specifying such overlays and the constraints imposed
on their parts is a nice application for Haskell combinators, leading to concise
code and an intuitive workflow. In IPS, a collection of base protocol classes
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are provided (using type classes, defaults, and overloading), and refined by the
programmer for concrete protocol implementations. Besides detecting logical
errors by static type checking, the type system and some default definitions
help to avoid writing boilerplate code for a particular protocol type. For exam-
ple, IPS provides the type RetransmissionProtocol used to describe protocols
with timer-controlled repeated send operation. The programmer has to specify a
retransmissiontimer and a retransmission function, which will then be used
inside generic code parts to trigger retransmissions when generating the code for
this type of protocol. The resulting different protocol types can be overlaid as
Protocols by virtue of being an instance of a type class ProtocolType. Com-
mon functionality needed for every protocol, as well as the overlay mechanism
itself, is implemented by class functions of this type class.

In addition to this hierarchical one-stage inheritance, Haskell’s ad-hoc poly-
morphism by type classes allows to use polymorphism in IPS helper functions.
For instance, an operation f x y = (x+1)*y can be used in any numeric con-
text, f::(Num a)=>a->a->a. By defining instances of Num for all syntax elements
which represent numeric values (phantom types and embedded compilation [1]),
the programmer can use, and the compiler can type-check, the polymorphic f
at call sites. Later, C code will be generated for all types which actually occur
in calls, for instance for 32-bit int and 16-bit unsigned short types. IPS thus
inherits Haskell’s type-safety.

4 Conclusions

A broad range of DSLs for various domains have used Haskell as host language.
We can confirm that Haskell is a convenient host language for an embedded
DSL, and profit from its strict typing and modularity. In the domain of protocol
stacks for embedded systems there are special challenges, like the demand for
minimal code footprint and good performance. Our results [3] so far have allowed
us to implement the Rime protocol stack [4] for an embedded systems OS. The
performance of our IPS programs can compete with hand-crafted C code while
drastically reducing source code length. The static code footprint is slightly
bigger, but further optimization is possible. Our future work will concentrate on
consolidating the language and cross layer compiler optimizations.
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Abstract. Interactive programming is a method for implementing pro-
gramming languages that supports an interactive, exploratory style of
program development and debugging. The basic idea is to reify the steps
of a computation into a persistent data structure which can be explored
interactively, and which reacts to changes to inputs like a spreadsheet.
Reifying the computation associates the computed value with provenance
information, which is essential to effective program comprehension and
debugging. Making the data structure persistent means that it can evolve
incrementally, preserving existing structure where possible, allowing the
programmer to apply fixes to a program in the middle of a complex de-
bugging activity without having to restart the program and lose browsing
context. Interactive programming lies at the intersection of incremental
computation, software visualisation and reactive programming.

Keywords: Functional debugging, reactive programming, incremental
computation, software visualisation.

1 Programming as an Interactive Dialogue

One model of programming is as an ongoing dialogue between programmer and
development environment. Programming activities – tweaking code, writing new
test cases, stepping through a computation in a debugger, and so on – play the
role of questions, and the feedback provided by the programming environment
the role of responses. The questions fall into two basic categories. What if ques-
tions concern computations other than the “current” one, and thus involve a
hypothetical change in either code or data. What value would the program pro-
duce for a different input? What value would a different program produce for the
same input? Provenance questions, on the other hand, concern the current com-
putation. How did that get to be zero? Why was that true rather than false? The
emphasis of the ongoing dialogue often shifts between constructive, diagnostic
and remedial.

This “interactive” model of programming may be appealing in its simplic-
ity, but is poorly supported by traditional programming environments. In this
paper we present a technique for implementing programming languages that
supports this model directly. Our contribution is to show how combining some
well-understood notions in a novel way can yield a substantially different end-
user experience. §2 motivates our work by describing a common programming
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scenario poorly supported in existing tools. §3 introduces the main technical
concepts of our approach, using the scenario to illustrate the various notions.
§4 mentions some related work. An accompanying technical report [1] formalises
the toy language used in the example and its interactive counterpart.

2 The Whys and What Ifs of Programming

Provenance information is essential to debugging and program comprehension.
Unfortunately, by the time we observe a result, the provenance data associated
with it has usually been discarded. If we want it we must reconstruct it: by
manually instrumenting the code with trace statements, stepping through the
execution interactively in a breakpoint debugger, or using a visualisation tool to
inspect a previously-generated trace. Yet all we want is access to what has just
taken place in the interpreter.

Nevertheless, it is certainly possible to obtain provenance information with
current tools, even if it is somewhat laborious. The problem gets more com-
plicated when we consider that we rarely ask a single provenance question in
isolation. Instead, the system’s answer to our first question invites another, and
so on. This is what is going on when we step through a complex execution in a
debugger or obtain a very specific view in a tracing tool. The result is a complex
tree of provenance questions and answers that “explains” the result of interest.
This is a problem because what we are typically most interested in, once we have
obtained this intensional view of a computation, is what happens to that chain of
reasoning if we change something. Does this function now behave correctly for
the right reasons if I remove an element from the list? Does this change to a base
case of this recursive function fix it in the way I expected? The intensional view
remains important for as long as I am interested not only in what my program
does, but in how it does it.

In a nutshell, traditional debuggers cannot address a “what if” question in
the middle of a complex provenance-related inquiry. Instead, debugging ses-
sions are restricted to exploring single executions. Posing a “what if” question
requires restarting the debugging session and effectively forgetting the carefully
constructed chain of provenance questions. This is the problem we want to solve.

2.1 Motivating Example

We have put this in rather abstract terms so far. To make things more concrete,
we shall consider a programming scenario in a hypothetical development tool
where this kind of interwoven activity is explicitly provided for. This will moti-
vate the particular technical solution we discuss in §3. The four main steps of
the scenario are shown in Fig. 2; the annotations in yellow boxes explain various
aspects of the UI required to understand the example.

The conceptual model presented to the user in our hypothetical tool is that
of a nested spreadsheet, in which formulae are themselves spreadsheets. This UI
concept is not itself part of our proposal, but is intended to be suggestive of
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what one might build on top of such a system. To frame a provenance question
is to browse into a formula and observe the intermediate computations; to pose
a “what if” question is to modify a value or a formula and observe how the
structure changes. (Like a spreadsheet, one navigates between computations by
editing; each step in Fig. 2 corresponds to one such edit.) The unique feature of
our system is that the programmer can navigate whilst in a complex view state,
allowing testing, debugging and bug-fixing to be interleaved efficiently.

The language used in the example, and described more formally in [1], is a
pure, first-order, call-by-value (CBV) functional language with inductive data
types. Our example program assumes the types Bool and Nat, with the usual in-
ductive definitions, plus the type List, representing lists of Nat, with constructors
Nil and Cons(Nat,List). We will investigate the applicability of our approach to
higher-order, lazy, polymorphic languages in later work.

The scenario starts with the programmer loading the source code from Fig. 1,
which compares two lists of natural numbers for equality, into the tool. The pro-
gram contains two bugs. However, the UI initially shows the program computing
the value False, which leads the programmer to suppose that the program is cor-
rect. (In Fig. 2, this is the state shown in the top-left corner of the figure.) The
scenario then progresses through four transitions from this initial state.

Edit 1. Test. The programmer tests her initial hypothesis that the program
is correct by trying it out at another data point, changing the first list to be
Cons(Zero,Nil). The UI updates to show the new computation also having the
value False, which is incorrect, so she starts tracking down the source of the
error. Observing that equal_nat correctly determines that the heads of the two

define

equal(x,y) = case x of

Nil -> case y of

Nil -> False

Cons(a,b) -> False

Cons(x’,y’) -> case y of

Nil -> False

Cons(a,b) -> case equal_nat(a,x’) of

True -> equal(b,y’)

False -> False

equal_nat(x,y) = case x of

Zero -> case y of

Zero -> True

Succ(a) -> False

Succ(x’) -> case y of

Zero -> True

Succ(a) -> equal_nat(a,x’)

in

equal(Nil,Cons(Zero,Nil))

Fig. 1. Buggy program comparing two lists
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Fig. 2. Interwoven test-diagnose-fix scenario
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lists are equal, she deduces that the fault lies within the True branch of the
case expression which switches on the result of equal_nat.1 In this branch, the
computation recurses into equal with the tails of the two lists, which in this case
are Nil. Browsing further, she can see that the problem lies in the definition of
equal, where equal(Nil,Nil) is defined to be the constant False.

Edit 2. Fix. She fixes the problem by changing the appropriate constant in
the body of equal from False to True. (We suppose that this edit is possible
from any invocation of equal, but otherwise we will not concern ourselves with
the details of how this happens.) Having fixed this problem, the computation
updates automatically, and again the programmer sees what appears to be a
correct result. The update of the computation does not affect the particular
view configuration obtained after Edit 1.

Edit 3. Test. Supposing again that her program is correct, the programmer selects
another test case, this time changing the first list so that the two lists differ
only in their head values. Again the structure of the view is unchanged. But
the computed value does not change to False as she expects, inviting another
diagnostic foray. Visual inspection reveals the source of the problem this time
to be equal_nat, since equal_nat(Succ(Zero),Zero) is True. By expanding this
sub-computation, she can see a similar problem to the first one, except that this
time the constant True in the body of equal_nat should be False.

Edit 4. Fix. She makes the required fix to equal_nat, which this time has some
effect on the view. The recursive call to equal has become a dead branch, con-
firming her intuition that if the heads of the two lists differ, no comparison of the
tails is required. The other branch of the case, which simply consists of the lit-
eral False, has become active. The structure of the equal_nat call is unchanged,
except that it now computes False, as expected, as does the overall computation.

3 Execution as a Persistent, Reactive Data Structure

The scenario just described is a simple one, but one we take to be representa-
tive of programming “in the large”. To support this interactive form of program-
ming, we dispense with the traditional conception of execution as a transient pro-
cess. The approach we propose combines three notions. The first is reified exe-
cution. This is based on the observation that “what happens” during execution
– the information required to answer a provenance question – can be precisely
characterised by a suitably chosen big-step operational semantics. The seman-
tics in effect determines a data type of executions: the data type whose inhab-
itants are the proof trees for the evaluation judgment. Supporting provenance
inquiries is simply a matter of making such data structures available for inter-
active inspection.
1 This diagnostic method, which can be partly automated, is called algorithmic debug-

ging [2]. The idea is to locate incorrect sub-computations whose child computations
are correct. These necessarily contain errors.
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We achieve this by deriving from our chosen big-step semantics a reifying
semantics which assigns to each evaluated term not a plain value, but an eval-
uation, an instance of the data type characterised by the original big-step se-
mantics. The reifying semantics makes evaluation with respect to the original
interpreter “transparent”, by transcribing its dynamic behaviour into a static
data structure. By choosing a suitable semantics to reify, we can make observ-
able those aspects of the evaluation we wish to expose, such as the substitution
of arguments for formal parameters, while keeping others hidden. Our derivation
of the reifying semantics is currently a manual process. In the future, we hope
to explore a “semantics-directed” approach, such as the one used by Kishon and
Hudak [3] for execution monitoring.

So reification is how we support provenance questions. For “what if” ques-
tions, we add a second notion: reactivity, where the evaluation (qua data struc-
ture) reacts to changes in inputs by adjusting into a new configuration, like a
spreadsheet. Our eventual intention is to permit the modification of code as well
as data, thus providing what Tanimoto calls “level 4 liveness” [4], and thereby
accommodating the full generality of “what if” questions. For now, we restrict
ourselves to modification of data, which naturally suggests a first-order, CBV
setting, where there is a clear distinction between code and data. Lifting this
restriction is another topic for future study.

To allow the programmer to explore alternative executions without having to
discard a potentially complex browsing context, we need a third notion: persis-
tence. This means that prior versions of the data structure are retained rather
than discarded when it changes state [5], allowing nodes from the previous con-
figuration to be reused if they recur in subsequent states. It requires representing
the reified evaluation not as a simple tree-structured value, but as a graph of
mutable nodes that can vary independently. Preserving the identity of evalua-
tions across edits allows the identity of views (with their associated browsing
state) to be preserved too, as our motivating example requires.

We now apply the three notions of reification, reactivity and persistence to
the toy language introduced earlier, and show how they can be used to derive
an “interactive” version of the language. The interactive language fully supports
the interwoven test-diagnose-fix scenario of Fig. 2, except for the UI aspect. The
formal treatment in [1] is rather detailed, and consists mainly of definitions;
here we focus how the key technical ideas fit together. We have implemented the
interactive version of the language in F	.2

3.1 Interactive Syntax

To allow changes to program data to be made after the program has executed,
we use a mutable representation of a term called an interactive term. In our re-
stricted first-order setting, “data” just means constants occurring in the original
program, namely terms built purely out of constructors of inductive data types.
An interactive term is simply a term where each constant has been replaced by

2 Source code available at http://code.google.com/p/interactive-programming/.
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a reference to a location of the same type in a value store, which holds a repre-
sentation of that constant. Edits are then modelled as external changes to the
value store. As the program itself has no write access to the value store, the pure
functional semantics of the language is preserved in the “interactive” version.

To represent constants, a value store associates each location of type A in
its domain to a constructor c of A and a sequence of appropriately typed child
locations in the same store, one for each parameter of c. Value stores are acyclic;
we exploit this acyclicity (and the smallness of our examples) in a notation which
omits the types of locations and flattens descendant locations into a string. Thus
we write v10:Cons(v8:Zero,v9:Nil) to indicate that (in some value store) v10 is
set to Cons and has children v8:Zero and v9:Nil.

The process of producing an interactive term and a suitable initial value store
from a term is called lifting. Lifting our example program might yield the fol-
lowing value store:

v0:False v4:True v8:Zero

v1:False v5:False v9:Nil

v2:False v6:True v10:Cons(v8:Zero,v9:Nil)

v3:False v7:Nil

and the following interactive version of equal:

equal(x,y) = case x of

Nil -> case y of

Nil -> val v3

Cons(a,b) -> val v2

Cons(x’,y’) -> case y of

Nil -> val v1

Cons(a,b) -> case equal_nat(a,x’) of

True -> equal(b,y’)

False -> val v0

with equal_nat lifted similarly, and the program body lifted to
equal(val v7,val v10). (We say might, because lifting is deterministic
only up to permutation of locations.) The syntactic construct val v appears
only in interactive terms, and is used to refer to the location v of a lifted
constant. Lifting is inverted by unlifting: the unlifting of the interactive term
val v10 recovers the constant Cons(Zero,Nil).

3.2 Interactive Semantics

By referring to a set of locations, an interactive term is associated with a family of
evaluations, indexed by value stores which assign constants to those locations:
for each such value store, there is a potentially different evaluation for that
interactive term. Evaluating the lifted program with its initial value store does
not simply reduce it to a final result, but instead yields a transition system which
allows the programmer to explore interactively the family of evaluations for that
program by making changes to the value store. Roughly speaking, each state
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ρ, x ⇓ ρ(x)

ρ,
−→
M ⇓ −→

V

ρ, c(
−→
M) ⇓ c(

−→
V )

The type of M has a set C of constructors:

ρ, M ⇓ c(
−→
V ) (ρ,

−−−−−→
xc �→ V ), Nc ⇓ V ′

ρ,case M of {c(−→xc) -> Nc}c∈C ⇓ V ′

f has parameters −→x and body N :

ρ,
−→
M ⇓ −→

V (·,−−−−→x �→ V ), N ⇓ V ′

ρ, f(
−→
M) ⇓ V ′

Fig. 3. Traditional (non-interactive) evaluation judgment

contains a reification, viz. a representation of the proof tree, of the evaluation of
the program’s unlifted counterpart at that state.

Reification. We start by defining the evaluation relation whose derivations we
intend to reify. Taking ρ to range over environments, x over identifiers, M and
N over terms, V over constants, c over constructors, and f over functions, the
definition is given in Fig. 3. The notation · means the empty environment, and
(ρ,

−−−−→
x 	→ V ) the environment ρ extended with a frame

−−−−→
x 	→ V which binds each

identifier in −→x to the corresponding constant in
−→
V . We use environments, rather

than substitution, to preserve the occurrences of identifiers in the source code.
The pair ρ, M of a term M and a closing environment ρ we call an evaluand.3

To a first approximation, a reified evaluation is just a proof tree for the ⇓
relation of Fig. 3. However, the reification must record the final result of the
computation in a location, rather than simply represent it as a constant, so that
it can be updated when a location the result depends on changes. For a similar
reason, we need a notion of environment, called an interactive environment,
which maps identifiers to locations, rather than constants. The pair ρ, M of an
interactive term M and a closing interactive environment ρ we call an interactive
evaluand. From now on, by “environment” we shall generally mean “interactive
environment”, and similarly for evaluands, unless otherwise stated.

Not only may an interactive term compute different results in different value
stores, but the sub-computations used to compute it may change also. These
considerations mean we cannot store reified evaluations as simple tree-structured

3 We can think of an evaluand as the tuple of arguments that uniquely identifies a
call to the interpreter. Child evaluands identify recursive calls. Thus an alternative
interpretation of the proof tree is as a call tree for the interpreter. This was the
intuition we used to explain Fig. 2.
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values, but must maintain them in a map which associates to every evaluand
in its domain an output location, where the result of the computation is stored,
plus a sequence of children, evaluands in the same trace identifying immediate
sub-computations. We call such a map an evaluation trace, and the pair of an
evaluation trace and a suitably typed value store an evaluation store. The output
location is fixed, once allocated, whereas the child evaluands and the contents
of the output location may change as a direct or indirect result of an edit.

The structure of an evaluand in the evaluation store is constrained in certain
ways that make it conform to the structure of the evaluation relation being
reified. For a reference val v, it must output to v and have no children. For an
identifier x, it must output to the location to which x is bound, and again have
no children. For a constructor c, it must have a child for each sub-expression,
and must output to a fresh location v:c(−→u ), where −→u are the output locations
of its children. For a function f applied to n arguments, its first n children must
be evaluands for the arguments, and its last child an evaluand for the body of f
in an environment extended by a frame −−−→x 	→ u, where −→x are the parameters of
f and −→u the output locations of the first n children. It must share an output
location with its last child, corresponding to the tail-call optimisation. For a
case analysis, the constraints are somewhat weaker. It must have exactly two
children: one for the expression being pattern-matched, and one corresponding
to one of the case-clauses (which we call the active clause), in an environment
that binds the associated pattern variables to locations of the right type. It must
output to a fresh location of the right type.

From the definition in Fig. 3, we then derive a procedure called reification,
which for an evaluation store and an evaluand ρ, M fresh in the trace, builds
a record of the evaluation of the unlifted counterpart of ρ, M in the evaluation
store. We do not give a definition of reification here, since the constraints on
the structure of the evaluation store just given for the most part determine
its behaviour. The only exception is for a case analysis evaluand, which the
evaluation store permits to be unstable, in a sense which will be made precise
later, but which reification ensures is initially stable. Permitting the evaluation
store to contain unstable evaluands allows states which are intermediate between
two reifications.

States 1 through 5 in Figs. 4 onwards show an evaluation store as it tran-
sitions through the five states of our original scenario. The contents of any
locations referenced by the trace are shown “inline”, using the flattened no-
tation for locations we introduced in §3.1. State 1 is the initial state of the store,

equal = v12:False

+- val v7 = v7:Nil

+- val v10 = v10:Cons(v8:Zero,v9:Nil)

+- [x: v7, y: v10] case_List = v12:False

+- x = v7:Nil

+- [] case_List = v11:False

+- y = v10:Cons(v8:Zero,v9:Nil)

+- [a: v8, b: v9] val v2 = v2:False

(a) State 1 (stable)

equal = v12:False

+- val v7 = v7:Cons(v13:Zero,v14:Nil)

+- val v10 = v10:Cons(v8:Zero,v9:Nil)

+- [x: v7, y: v10] case_List = v12:False

+- x = v7:Cons(v13:Zero,v14:Nil)

+- [] case_List = v11:False

+- y = v10:Cons(v8:Zero,v9:Nil)

+- [a: v8, b: v9] val v2 = v2:False

(b) State 1′ (unstable)

Fig. 4. Evaluation store, states 1 & 1′
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corresponding to the initial state of Fig. 2. The trace contains a single root
evaluand ·, equal(val v7,val v10), called the program root. In the figure this is
elided to equal. The program root outputs to location v12:False, and has three
children: two for the evaluation of the arguments in ·, and one for the body of
equal evaluated in · extended by the frame [x: v7, y: v10].

The evaluation of the body of equal is a case-analysis with children for the
identifier x, bound to v7:Nil, and for the clause for Nil. There are no pattern
variables to bind, and so the clause is evaluated in an environment extended by
the empty frame []. The evaluation of the clause involves another case analysis,
with children for the identifier y, bound to v10:Cons(v8:Zero,v9:Nil), and for
the Cons clause, which consists simply of the lifted constant val v2. The inner
clause is evaluated in an environment extended by the frame [a: v8, b: v9],
which binds the pattern variables to the child locations of v10, although neither
of these bindings happens to be used.

It should be clear how the information in the evaluation store supports prove-
nance inquiries. We can see that there are precisely three facts which contribute
to the call to equal having the value False: that the first argument is Nil; that
the second is a Cons; and that equal of Nil and a Cons is defined to be False.

Reactivity. We support “what if” questions by having the system react to
changes to locations corresponding to the lifted constants. Locations where in-
termediate results are stored cannot be modified directly. When a change occurs,
the program root may become unstable, in that program has a different unlifting,
for which the trace may no longer represent a valid reified evaluation. We define
an idempotent procedure called synchronisation which transitions to a config-
uration that incorporates the change. Here we give only an informal definition.
To synchronise an evaluand ρ, M which has output location v:

– if M is a case expression:

• synchronise the first child of ρ,M ;
• let v’:c(−→u ) be the output location of the first child;
• let M ′ be the clause for c, with pattern variables −→x ;
• let ρ′ be (ρ,−−−→x �→ u);
• if ρ′, M ′ is fresh in the trace, synchronise ρ′, M ′; otherwise, reify ρ′, M ′.
• copy u to v, where ρ′, M ′ has output location u.

– otherwise, synchronise each child of ρ,M .

This definition exploits the constraints on the evaluation store given earlier. For
example, the evaluand for a function application shares an output location with
the evaluation of the body. Thus to synchronise the evaluation of an application
it suffices to synchronise the evaluation of the body.

We can now make precise our notion of stability by defining a stable evalu-
and to be one for which synchronisation leaves the evaluation store unchanged.
Stability and synchronisation are illustrated by the transition from state 1′ in
Fig. 4 to state 2 in Fig. 5. “Accepted” changes to be incorporated by synchro-
nisation are shown in green; the unstable fringes of the evaluation are shown
in red. State 1′ is identical to state 1 except that the first argument to equal
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equal = v12:False

+- val v7 = v7:Cons(v13:Zero,v14:Nil)

+- val v10 = v10:Cons(v8:Zero,v9:Nil)

+- [x: v7, y: v10] case_List = v12:False

+- x = v7:Cons(v13:Zero,v14:Nil)

+- [x’: v13, y’: v14] case_List = v20:False

+- y = v10:Cons(v8:Zero,v9:Nil)

+- [a: v8, b: v9] case_Bool = v19:False

+- equal_nat = v16:True

| +- a = v8:Zero

| +- x’ = v13:Zero

| +- [x: v8, y: v13] case_Nat = v16:True

| +- x = v8:Zero

| +- [] case_Nat = v15:True

| +- y = v13:Zero

| +- [] val v6 = v6:True

+- [] equal = v18:False

+- b = v9:Nil

+- y’ = v14:Nil

+- [x: v9, y: v14] case_List = v18:False

+- x = v9:Nil

+- [] case_List = v17:False

+- y = v14:Nil

+- [] val v3 = v3:False

[] case_List = v11:False

+- y = v10:Cons(v8:Zero,v9:Nil)

+- [a: v8, b: v9] val v2 = v2:False

(a) State 2 (stable)

equal = v12:False

+- val v7 = v7:Cons(v13:Zero,v14:Nil)

+- val v10 = v10:Cons(v8:Zero,v9:Nil)

+- [x: v7, y: v10] case_List = v12:False

+- x = v7:Cons(v13:Zero,v14:Nil)

+- [x’: v13, y’: v14] case_List = v20:False

+- y = v10:Cons(v8:Zero,v9:Nil)

+- [a: v8, b: v9] case_Bool = v19:False

+- equal_nat = v16:True

| +- a = v8:Zero

| +- x’ = v13:Zero

| +- [x: v8, y: v13] case_Nat = v16:True

| +- x = v8:Zero

| +- [] case_Nat = v15:True

| +- y = v13:Zero

| +- [] val v6 = v6:True

+- [] equal = v18:True

+- b = v9:Nil

+- y’ = v14:Nil

+- [x: v9, y: v14] case_List = v18:True

+- x = v9:Nil

+- [] case_List = v17:True

+- y = v14:Nil

+- [] val v3 = v3:True

[] case_List = v11:False

+- y = v10:Cons(v8:Zero,v9:Nil)

+- [a: v8, b: v9] val v2 = v2:False

(b) State 2′ (unstable)

Fig. 5. Evaluation store, states 2 & 2′

has been modified as per Edit 1 of our scenario. The program root is unstable
because the outer case analysis requires synchronisation: the first child of the
case analysis outputs to v7, which is now set to Cons instead of Nil, and yet the
Nil clause is still active. We say that an evaluand is reachable if it is a descen-
dant of the program root. To accommodate the change into a new stable state,
we must activate the Cons clause instead, and splice the evaluation of the Nil

clause out of the reachable trace. The evaluation of the Cons clause is a fresh
region of the trace which did not arise in an earlier state, so synchronisation
must invoke reification to build it. State 2 shows the resulting stable state, with
all the incorporated changes shown in green. In particular, we can see that the
evaluation of the Cons clause makes a call to equal_nat and also a recursive call
to equal, as per state 2 in our UI mock-up.

The transition to state 2 was straightforward, as resolving the first instability
immediately yielded a stable state. Most of the work was done by reification,
in creating the fresh trace for the Cons clause. The transition from state 2 to
state 3 shows a more involved synchronisation. The transition is initiated by an
edit corresponding to the first bug-fix of our scenario, where equal(Nil,Nil) is
corrected to True. The resulting unstable state (not shown) is identical to state 2
except that v3 is True rather than False. The first synchronisation step involves
setting v17 to True as well, to stabilise the parent case analysis. Incorporating
this change in turn requires setting v18 to True, resulting in state 2′, which is
still unstable. Then we must set v19 to True, to synchronise the case analysis for
Bool, and so on. The “wavefront” of synchronisation proceeds bottom-up until
it reaches an evaluand which is already stable, at which point all reachable parts
of the trace must be stable and all changes incorporated (state 3). States 4 and
5 are obtained similarly, by introducing an instability in the form of a change to
a location corresponding to a lifted constant, and then synchronising.
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equal = v12:True

+- val v7 = v7:Cons(v13:Zero,v14:Nil)

+- val v10 = v10:Cons(v8:Zero,v9:Nil)

+- [x: v7, y: v10] case_List = v12:True

+- x = v7:Cons(v13:Zero,v14:Nil)

+- [x’: v13, y’: v14] case_List = v20:True

+- y = v10:Cons(v8:Zero,v9:Nil)

+- [a: v8, b: v9] case_Bool = v19:True

+- equal_nat = v16:True

| +- a = v8:Zero

| +- x’ = v13:Zero

| +- [x: v8, y: v13] case_Nat = v16:True

| +- x = v8:Zero

| +- [] case_Nat = v15:True

| +- y = v13:Zero

| +- [] val v6 = v6:True

+- [] equal = v18:True

+- b = v9:Nil

+- y’ = v14:Nil

+- [x: v9, y: v14] case_List = v18:True

+- x = v9:Nil

+- [] case_List = v17:True

+- y = v14:Nil

+- [] val v3 = v3:True

[] case_List = v11:False

+- y = v10:Cons(v8:Zero,v9:Nil)

+- [a: v8, b: v9] val v2 = v2:False

(a) State 3 (stable)

equal = v12:True

+- val v7 = v7:Cons(v13:Zero,v14:Nil)

+- val v10 = v10:Cons(v8:Succ(v21:Zero),v9:Nil)

+- [x: v7, y: v10] case_List = v12:True

+- x = v7:Cons(v13:Zero,v14:Nil)

+- [x’: v13, y’: v14] case_List = v20:True

+- y = v10:Cons(v8:Succ(v21:Zero),v9:Nil)

+- [a: v8, b: v9] case_Bool = v19:True

+- equal_nat = v16:True

| +- a = v8:Succ(v21:Zero)

| +- x’ = v13:Zero

| +- [x: v8, y: v13] case_Nat = v16:True

| +- x = v8:Succ(v21:Zero)

| +- [x’: v21] case_Nat = v22:True

| +- y = v13:Zero

| +- [] val v4 = v4:True

+- [] equal = v18:True

+- b = v9:Nil

+- y’ = v14:Nil

+- [x: v9, y: v14] case_List = v18:True

+- x = v9:Nil

+- [] case_List = v17:True

+- y = v14:Nil

+- [] val v3 = v3:True

[] case_List = v11:False

+- y = v10:Cons(v8:Succ(v21:Zero),v9:Nil)

+- [a: v8, b: v9] val v2 = v2:False

[] case_Nat = v15:True

+- y = v13:Zero

+- [] val v6 = v6:True

(b) State 4 (stable)

Fig. 6. Evaluation store, states 3 & 4

Persistence. After synchronisation, there may be fragments of the trace which
are no longer reachable. We see this in state 5, where the recursive call to equal

on the tails of the lists is no longer required, as the heads of the lists differ. These
fragments will be reused whenever a state arises in which they become reachable
again. This is the mechanism via which states share sub-structure with prior
states whenever possible.

Over time, these unreachable fragments can become unstable, since only the
reachable parts of the trace are kept in sync. This arises in state 6, which extends
our original scenario. This is a stable state, created by modifying the tail of one
of the lists to include an extra element, and then synchronising. The recursive
call to equal is unstable, since the wrong case clause is active. But this part of
the trace is unreachable, and therefore allowed to remain unstable. Modifying
state 6 to put the head of the second list back to Zero introduces a reachable
instability (state 6′) which when synchronised forces a comparison of the tails.
The recursive call is incorporated again and re-synchronised, resulting in stable
state 7.

Synchronisation and reification thus enjoy a mutually recursive relationship.
When recursively constructing a child evaluand, reification may determine that it
already exists and need only be synchronised. When activating the child evaluand
for a case clause, synchronisation may determine that it is fresh and needs to be
reified. The trace thus serves as something like a memo-table [6] for reification,
but one where the reused result may be stale and require refreshing. Rather
than being used to improve performance within a single computation, the role
of memoisation here is to force the sharing of computational structure between
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equal = v12:False

+- val v7 = v7:Cons(v13:Zero,v14:Nil)

+- val v10 = v10:Cons(v8:Succ(v21:Zero),v9:Nil)

+- [x: v7, y: v10] case_List = v12:False

+- x = v7:Cons(v13:Zero,v14:Nil)

+- [x’: v13, y’: v14] case_List = v20:False

+- y = v10:Cons(v8:Succ(v21:Zero),v9:Nil)

+- [a: v8, b: v9] case_Bool = v19:False

+- equal_nat = v16:False

| +- a = v8:Succ(v21:Zero)

| +- x’ = v13:Zero

| +- [x: v8, y: v13] case_Nat = v16:False

| +- x = v8:Succ(v21:Zero)

| +- [x’: v21] case_Nat = v22:False

| +- y = v13:Zero

| +- [] val v4 = v4:False

+- [] val v0 = v0:False

[] case_List = v11:False

+- y = v10:Cons(v8:Succ(v21:Zero),v9:Nil)

+- [a: v8, b: v9] val v2 = v2:False

[] case_Nat = v15:True

+- y = v13:Zero

+- [] val v6 = v6:True

[] equal = v18:True

+- b = v9:Nil

+- y’ = v14:Nil

+- [x: v9, y: v14] case_List = v18:True

+- x = v9:Nil

+- [] case_List = v17:True

+- y = v14:Nil

+- [] val v3 = v3:True

(a) State 5 (stable)

equal = v12:False

+- val v7 = v7:Cons(v13:Zero,v14:Nil)

+- val v10 = v10:Cons(v8:Succ(v21:Zero),v9:Cons(v23:Zero,v24:Nil))

+- [x: v7, y: v10] case_List = v12:False

+- x = v7:Cons(v13:Zero,v14:Nil)

+- [x’: v13, y’: v14] case_List = v20:False

+- y = v10:Cons(v8:Succ(v21:Zero),v9:Cons(v23:Zero,v24:Nil))

+- [a: v8, b: v9] case_Bool = v19:False

+- equal_nat = v16:False

| +- a = v8:Succ(v21:Zero)

| +- x’ = v13:Zero

| +- [x: v8, y: v13] case_Nat = v16:False

| +- x = v8:Succ(v21:Zero)

| +- [x’: v21] case_Nat = v22:False

| +- y = v13:Zero

| +- [] val v4 = v4:False

+- [] val v0 = v0:False

[] case_List = v11:False

+- y = v10:Cons(v8:Succ(v21:Zero),v9:Cons(v23:Zero,v24:Nil))

+- [a: v8, b: v9] val v2 = v2:False

[] case_Nat = v15:True

+- y = v13:Zero

+- [] val v6 = v6:True

[] equal = v18:True

+- b = v9:Cons(v23:Zero,v24:Nil)

+- y’ = v14:Nil

+- [x: v9, y: v14] case_List = v18:True

+- x = v9:Cons(v23:Zero,v24:Nil)

+- [] case_List = v17:True

+- y = v14:Nil

+- [] val v3 = v3:True

(b) State 6 (stable)

Fig. 7. Evaluation store, state 6

states. Repeated equality checking can be avoided by also adopting a persistent
representation for interactive terms and environments (cf. hash-consing [7]).

In conclusion, it should be clear that our system fully supports the problem
scenario. Dead branches are not explicitly represented, but their presentation
can be derived easily. We suggest that it would be relatively straightforward to
implement a UI like the one proposed, where the view state is preserved across
edits, on top of our system.

An important practical consideration that we have ignored is incremental
performance. As presented, synchronisation proceeds top-down and thus must
traverse the entire reachable trace. An efficient implementation would proceed
bottom-up, ignoring unaffected parts of the trace, exploiting the fact that the
trace represents precisely the dependencies between sub-computations.

4 Related Work

Reified evaluation arises in Acar’s self-adjusting computation [8] (SAC), as well
as in program visualisation and debugging tools. Reactivity is central to visual
programming, spreadsheet languages, functional reactive programming (FRP)
[9], and again, SAC. Persistence also arises in SAC, which is therefore of special
importance, since it is the only prior work which combines all three notions. A
detailed analysis of prior work on spreadsheet languages remains to be done.
Subtext [10] is also similar, although based on copying rather than sharing.

Self-adjusting computation. SAC is a language and runtime system for incre-
mental computation. After an initial evaluation, the inputs of a program can be
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equal = v12:False

+- val v7 = v7:Cons(v13:Zero,v14:Nil)

+- val v10 = v10:Cons(v8:Zero,v9:Cons(v23:Zero,v24:Nil))

+- [x: v7, y: v10] case_List = v12:False

+- x = v7:Cons(v13:Zero,v14:Nil)

+- [x’: v13, y’: v14] case_List = v20:False

+- y = v10:Cons(v8:Zero,v9:Cons(v23:Zero,v24:Nil))

+- [a: v8, b: v9] case_Bool = v19:False

+- equal_nat = v16:False

| +- a = v8:Zero

| +- x’ = v13:Zero

| +- [x: v8, y: v13] case_Nat = v16:False

| +- x = v8:Zero

| +- [x’: v21] case_Nat = v22:False

| +- y = v13:Zero

| +- [] val v4 = v4:False

+- [] val v0 = v0:False

[] case_List = v11:False

+- y = v10:Cons(v8:Zero,v9:Cons(v23:Zero,v24:Nil))

+- [a: v8, b: v9] val v2 = v2:False

[] case_Nat = v15:True

+- y = v13:Zero

+- [] val v6 = v6:True

[] equal = v18:True

+- b = v9:Cons(v23:Zero,v24:Nil)

+- y’ = v14:Nil +- [x: v9, y: v14] case_List = v18:True

+- x = v9:Cons(v23:Zero,v24:Nil)

+- [] case_List = v17:True

+- y = v14:Nil

+- [] val v3 = v3:True

(a) State 6′ (unstable)

equal = v12:False

+- val v7 = v7:Cons(v13:Zero,v14:Nil)

+- val v10 = v10:Cons(v8:Zero,v9:Cons(v23:Zero,v24:Nil))

+- [x: v7, y: v10] case_List = v12:False

+- x = v7:Cons(v13:Zero,v14:Nil)

+- [x’: v13, y’: v14] case_List = v20:False

+- y = v10:Cons(v8:Zero,v9:Cons(v23:Zero,v24:Nil))

+- [a: v8, b: v9] case_Bool = v19:False

+- equal_nat = v16:True

| +- a = v8:Zero

| +- x’ = v13:Zero

| +- [x: v8, y: v13] case_Nat = v16:True

| +- x = v8:Zero

| +- [] case_Nat = v15:True

| +- y = v13:Zero

| +- [] val v6 = v6:True

+- [] equal = v18:False

+- b = v9:Cons(v23:Zero,v24:Nil)

+- y’ = v14:Nil

+- [x: v9, y: v14] case_List = v18:False

+- x = v9:Cons(v23:Zero,v24:Nil)

+- [x’: v23, y’: v24] case_List = v25:False

+- y = v14:Nil

+- [] val v1 = v1:False

[] case_List = v11:False

+- y = v10:Cons(v8:Zero,v9:Cons(v23:Zero,v24:Nil))

+- [a: v8, b: v9] val v2 = v2:False

[x’: v21] case_Nat = v22:False

+- y = v13:Zero

+- [] val v4 = v4:False

[] val v0 = v0:False

[] case_List = v17:True

+- y = v14:Nil

+- [] val v3 = v3:True

(b) State 7 (stable)

Fig. 8. Evaluation store, states 6′ & 7

repeatedly modified, and the resulting changes to the output observed. During
the initial evaluation, the runtime records a trace identifying how parts of the
computation depend on other parts. When an input is modified, the output is
re-calculated by a bottom-up change propagation algorithm, which exploits the
information in the trace to perform the update efficiently. The main differences
are in the extent and nature of the reification. SAC only captures the aspects
of evaluation relevant to efficient incremental update, whereas our system reifies
the entire evaluation. Partial reification means that SAC must re-execute of code
fragments to synchronise the state of adaptive computations when the modifi-
ables they read have changed. This interacts poorly with imperative features
such as I/O and memory allocation, since effects may be re-executed during
change propagation. On the other hand, it is unclear how to recover traditional
imperative features at all with our approach. Our system is also potentially very
inefficient.

Tracing debuggers. A common debugging technique is to augment the interpreter
to produce a trace or reification of the interpreter’s behaviour alongside the
original behaviour. Tracing interpreters are often used with functional languages,
where there is a requirement to deal with call-by-need in a user-friendly way.
An example is Nilsson and Sparud’s evaluation dependence tree (EDT) [11].
The EDT represents sharing explicitly, but omits details of when particular
redexes were demanded. The authors only informally relate their data structure
to a semantics, noting in passing that it resembles a proof tree for a “pseudo-
CBV” interpreter able to determine whether arguments are eventually needed
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or not. “Time-travel” debuggers for imperative languages [12], which allow the
programmer to debug backwards in time, use a similar trace-based approach.
As we mentioned in §2, the main difference between these efforts and ours is
that they are not reactive: they do not allow online modification of data or code.
Instead, experimenting with a different initial configuration requires regenerating
the trace and re-loading it into the offline browser.

Acknowledgments. Sam Davis, Jeff Foster, Kevlin Henney, Paul Levy, Robin
Message, Tom Stuart, John Zabroski and three anonymous reviewers all provided
helpful comments on earlier drafts.
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Abstract. We describe a framework to support the implementation of web-based
systems to manipulate data stored in relational databases. Since the conceptual
model of a relational database is often specified as an entity-relationship (ER)
model, we propose to use the ER model to generate a complete implementation in
the declarative programming language Curry. This implementation contains op-
erations to create and manipulate entities, supports authentication, authorization,
session handling, and the composition of individual operations to user processes.
Furthermore and most important, the implementation ensures the consistency of
the database w.r.t. the data dependencies specified in the ER model, i.e., updates
initiated by the user cannot lead to an inconsistent state of the database. In or-
der to generate a high-level declarative implementation that can be easily adapted
to individual customer requirements, the framework exploits previous works on
declarative database programming and web user interface construction in Curry.

1 Motivation

Many web applications are in essence interfaces on top of standard web browsers to ma-
nipulate data stored in databases. The use of web browsers demands for access control,
e.g., users must be authenticated, the authentication must the stored in a session across
various web pages, the access to various parts of the data must be authorized, etc. These
requirements makes the implementation of such applications a non-trivial and often
error-prone task [8]. In order to support the programmer in the design and implemen-
tation of such web-based applications, various web frameworks had been developed for
different implementation languages. For instance, the popular Ruby on Rails frame-
work1 supports the implementation of web applications in the object-oriented language
Ruby. An interesting idea of this framework to enable the quick construction of an ini-
tial system, which can be stepwise modified or extended, is scaffolding, i.e., the code
of an initial implementation is generated from the data model. This initial code gives
the programmer a good idea how to structure and organize the code of the system under
development.

Our work presented in this paper is based on a similar idea but exploits declarative
programming to obtain a compact implementation and provides reliability in various

� This work was partially supported by the German Research Council (DFG) under grant Ha
2457/5-2.

1 http://www.rubyonrails.org/

M. Carro and R. Peña (Eds.): PADL 2010, LNCS 5937, pp. 201–216, 2010.
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aspects (type safety, database consistency, etc). For this purpose, we use the declarative
multi-paradigm language Curry [3,7] as an implementation language and exploit previ-
ous works on declarative database programming [1] and declarative construction of web
user interfaces [5]. Our framework, called “Spicey”, supports the following features:

ER-based: The framework is based on a specification of the data model as an entity-
relationship (ER) model. Thus, the complete source code of an initial system is
generated from an ER model.

Web-based: The generated system is web-based, i.e., all data can be manipulated (i.e.,
created, shown, modified, deleted) via standard web browsers. The initial system
provides operations to insert new entities, show entities, modify or delete existing
entities as specified in the ER model. Relations between entities are manipulated
together with the corresponding entities. For instance, if there is a one-to-many
relation between E and E′, an instance of E′ can be created only if a corresponding
instance of E is selected.

Typed: The source code is statically typed so that many programming errors are de-
tected at compile time (in contrast to applications implemented in Perl, PHP, Ruby,
etc). Moreover, the data types specified in the ER model are also respected, i.e., it
is not possible to submit web forms containing ill-typed data.

Sessions: Since HTTP is a stateless protocol, our framework provides a session con-
cept so that any kind of data (e.g., the contents of a virtual shopping basket) can
be stored in a user session. Sessions are also used to store login information or
navigate the user through a sequence of interactions.

Authentication: The generated application contains an initial structure for authentica-
tion, i.e., login/logout operations. Since the concrete authentication methods usu-
ally depend on the application (e.g., kind of login names, passwords), this initial
structure must be extended by the programmer.

Authorization: The generated application has methods for authorization, i.e., each
controller that is responsible for showing or modifying data is authorized before
execution. A central authorization module is generated where the programmer can
easily specify authorization rules based on login or similar information.

User processes: Individual operations provided by the framework can be composed
to user processes that can be selected to initiate longer interaction sequences. For
instance, if it is necessary to create various entities in a database, the individual
“create” operations can be connected to a complex user process. Such processes
are specified as graphs using functional logic programming techniques.

Routing: The routes (i.e., URLs to call some functionality of the system) are decou-
pled from the physical structure of the source code. This enables simple URLs and
bookmarking of URLs that persist restructurings of the implementation. Therefore,
our framework generates applications that contain a specification of a mapping
from URLs into controllers of the application.

In the remainder of the paper, we present the ideas of our framework and show how
declarative programming is useful to get a compact and maintainable implementation
of web-based applications. Due to lack of space, we omit many details that are described
in the full version of this paper available at
http://www.informatik.uni-kiel.de/˜pakcs/spicey/.

http://www.informatik.uni-kiel.de/~pakcs/spicey/
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2 Web Programming with Curry

We briefly survey the basic concepts of Curry and their use for high-level web program-
ming as required to understand the main part of this paper. More details of Curry can
be found in a recent survey [6] and in the definition of Curry [7].

The design of the declarative multi-paradigm language Curry is an attempt to in-
tegrate the most important features of functional and logic languages in a seamless
way in order to provide a variety of programming concepts to the programmer. From a
conceptual point of view, Curry combines demand-driven evaluation, parametric
polymorphism, and higher-order functions from functional programming with logic
programming features like computing with partial information (logic variables), uni-
fication, and non-deterministic search for solutions. As shown in previous works on
database programming [1] or web programming [4,5], this combination enables better
abstractions in application programs. Curry has a Haskell-like syntax2 [11] and con-
cepts (e.g., “IO α” denotes the type of an I/O action that returns values of type α) but
additionally supports “don’t-know” non-determinism and the inclusion of free (logic)
variables in conditions and right-hand sides of defining rules.

To support basic web programming in Curry, [4] proposes an HTML library that
defines a type HtmlExp to represent HTML structures:
data HtmlExp = HtmlText String

| HtmlStruct String [(String,String)] [HtmlExp]

Thus, an HTML expression is either a plain string or a structure consisting of a tag, a
list of attributes (name/value pairs), and a list of HTML expressions contained in this
structure. A dynamic web page is an HTML document that is computed by a program
at the time when the page is requested by a client (e.g., a web browser). Dynamic web
pages usually process user inputs, placed in various input elements (e.g., text fields, text
areas, check boxes) of an HTML form, in order to generate a user-specific result. For
this purpose, the HTML library of Curry [4] provides an abstract programming model
that can be characterized as programming with call-back functions. A web page with
user input and submit buttons is modeled by attaching an event handler to each submit
button that is responsible for computing the answer document. For instance, the HTML
library defines an operation to represent submit buttons in an HTML page:
button :: String -> HtmlHandler -> HtmlExp

In order to access the user input, the event handler (of type HtmlHandler) has an envi-
ronment containing the actual user input as a parameter and computes a new web page.
We omit further details here since our framework is mainly based on a more abstract
layer to construct web user interfaces (WUIs) [5]. Such WUIs are constructed in a type-
oriented manner, i.e., for each type in the application program one can construct a WUI
that is an implementation of a web-based interface to manipulate values of this type.
Thus, the (tedious) code for checking the validity of values in the input fields and pro-
viding appropriate error messages is automatically derived from the WUI specification.
The corresponding WUI library [5] contains predefined WUIs to manipulate strings

2 Variables and function names usually start with lowercase letters and the names of type and
data constructors start with an uppercase letter. The application of f to e is denoted by juxta-
position (“f e”).
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(wString) or to select a value (wSelect) from a given list of values (where the first
argument shows a value as a string):
wString :: WuiSpec String
wSelect :: (a -> String) -> [a] -> WuiSpec a

Here, “WuiSpec a” denotes the type of a WUI to modify values of type a. To construct
WUIs for complex data types, there are WUI combinators that are mappings from sim-
pler WUIs to WUIs for structured types. For instance, there is a family of WUI combi-
nators for tuple types:
wPair :: WuiSpec a -> WuiSpec b -> WuiSpec (a,b)
wTriple :: WuiSpec a -> WuiSpec b -> WuiSpec c -> WuiSpec (a,b,c)
w4Tuple ...

Hence, “wPair wString (wSelect show [1..100])” defines a WUI to manipu-
late a pair of a string and a number between 1 and 100. An important feature of WUIs
is their easy adaptation to specific requirements. For instance, there is an operator
withCondition that combines a WUI and a predicate on values so that the resulting
WUI accepts only values satisfying the predicate. Thus,
wRequiredString = wString ‘withCondition‘ (not . null)

defines a WUI that accepts only non-empty strings. Similarly, there are combinators to
change the default rendering of WUIs (withRendering) or to change the default error
messages. This allows a compact and declarative description of complex user interfaces.

Note that the functional as well as logic features of Curry are exploited to implement
this high-level abstraction: event handlers and environments are functions attached to
data structures (HTML documents), input elements in a document have logic variables
as references [4], and static type checking is used to ensure type-safe web forms [5].

3 Entity-Relationship Models and Database Programming

The entity-relationship model [2] is an established framework to specify the structure
and specific constraints of data stored in a database. It is often used with a graphical
notation, called entity-relationship diagrams (ERDs), to visualize the conceptual model.
The ER framework proposes to model the part of the world that is interesting for the
application by entities that have attributes and relationships between the entities. The
relationships have cardinality constraints that must be satisfied in each valid state of the
database, e.g., after each transaction.

Braßel et al. [1] developed a technique to generate high-level and safe database op-
erations (i.e., the cardinality constraints of the ER model hold after database updates)
from a given ERD. In order to be largely independent of a specific ER modeling tool,
[1] defines a representation of ERDs in Curry so that graphical modeling tools can be
connected by implementing a translator from the tool format into the Curry represen-
tation. Since this representation is also the starting point of our framework, we briefly
describe it in the following.

The representation of ERDs as data types in Curry is straightforward. An ERD con-
sists of a name and lists of entities and relationships:
data ERD = ERD String [Entity] [Relationship]
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Fig. 1. An ER diagram of a web log

Instead of showing the detailed definition of all ER data types (which can be found in
[1]), we show the ER specification of an example which we use throughout this paper: a
web log. The structure of our “blog” is visualized as an ERD in Fig. 1. A blog consists
of Entry articles having title, text, author, and date as attributes, and Comments to each
entry. Furthermore, there are a number of Tags to classify Entry articles. One can
generate from the ERD a data term specifying the details of the blog structure:

ERD "Blog"
[Entity "Entry"

[Attribute "Title" (StringDom Nothing) Unique False,
Attribute "Text" (StringDom Nothing) NoKey False,
Attribute "Author" (StringDom Nothing) NoKey False,
Attribute "Date" (DateDom Nothing) NoKey False],

Entity "Comment" ..., Entity "Tag" ... ]
[Relationship "Commenting"

[REnd "Entry" "commentsOn" (Exactly 1),
REnd "Comment" "isCommentedBy" (Range 0 Nothing)],

Relationship "Tagging"
[REnd "Entry" "tags" (Range 0 Nothing),
REnd "Tag" "tagged" (Range 0 Nothing)] ]

Each attribute specification consists of the attribute name, the domain type of the at-
tribute values together with a possible default value, and specifications of the key and
null value property. For instance, the Title attribute of the entity Entry is a string that
is unique in each valid state of the database. Furthermore, Commenting is a one-to-
many relationship between Entry and Comment entities, i.e., each Entry article has an
arbitrary number of comments and each Comment belongs to exactly one Entry, and
Tagging is a many-to-many relationship between Entry and Tag entities.

As mentioned above, [1] proposed a method to generate database operations from an
ERD specification that ensures the integrity of the database (w.r.t. the constraints present
in the ERD) after performing update operations. For instance, there is an operation
newEntry :: String -> String -> String -> Date -> Transaction Entry

that takes values of the Entry attributes and inserts a new Entry entity into the
database. The return type is a transaction (see [1]), i.e., the insertion might fail (without
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Fig. 2. The web interface of an application generated by Spicey

changing the database state but returning some informative error message) if the value
of the title attribute is not unique. Similarly, there is a generated operation of type
newCommentWithEntryCommentingKey
:: String -> String -> Date -> EntryKey -> Transaction Comment

that takes values of the attributes of a new Comment entry and a key of an existing Entry
entity since each comment is related to a unique Entry entity. In the following sections,
we describe the generation of a web application that implements a user-friendly inter-
face to these database operations.

4 Scaffolding

In this section, we present the basic scaffolding of Spicey, i.e., the generation of an ini-
tial executable system that provides access to the data via standard web browsers. As
an example, consider the ER description of the blog presented in the previous section.
From this description, Spicey automatically generates the Curry source code of an ap-
plication that implements the interface shown in Fig. 2. As one can see, the interface
has buttons to create new entities and list existing ones, as well as buttons to show, edit,
or delete any existing entity.

However, generating a standard interface is not sufficient for real applications since
there are many requirements that are not present in the ER description. For instance,
one might want to choose a different table layout or show only the first 30 characters
of the Text attribute in the list of entries. One could extend the ER descriptions to add
specifications of these requirements, but there are so many of these requirements in real
applications so that this leads to a complex specification structure that is difficult to
manage. As an alternative, we propose to use the high abstraction level of declarative
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programming for this purpose. Instead of putting any possible customer requirement in
the specification language of the data model, we generate high-level declarative code
from the ER descriptions. Thanks to the works on high-level database programming and
web user interface construction sketched above, the generated source code is compact
and comprehensible so that it can be easily adapted to individual customer require-
ments, as demonstrated below.

An important issue in the design and development of a complex system is the
distribution of the functionality in an appropriate module structure. The model-view-
controller (MVC) paradigm [9] provides a well-established structure for interactive sys-
tems. Therefore, Spicey’s scaffolding uses the same structure for the generated source
code, i.e., if we execute Spicey to generate a web application from an ER descrip-
tion, the generated code is distributed in directories like models (containing the Curry
module implementing the access to the database), controllers, views, etc. In the
following, we sketch some parts of the generated code.

In order to obtain a compact and maintainable code, the views to create or update
entities exploit WUIs (see Section 2) to implement type-safe web forms in a high-
level declarative manner. Thus, Spicey generates for each entity a WUI specification
of a web form to manipulate the attributes of this entity (e.g., see Fig. 3). However,
the internal primary database keys of an entity should not be changed and, thus, they
are not part of the WUI specification. Moreover, if an entity is related to other enti-
ties, this relation should be modifiable in the web form. For instance, each comment
in our blog example is related to a unique Entry entity. Hence, a single Entry entity
must be selected in the form to insert or change a comment (see the lower selection
box in Fig. 3). As a consequence, we have to pass related entities to the web form
in order to enable their selection. In the generated code, we do not pass all associ-
ated entities (e.g., it is not reasonable to select the associated comments when editing
an Entry entity) but only the uniquely related entities from one-to-many relationships
and “one side” of many-to-many relationships. More precisely, if E is an entity with
attributes A1, . . . , An, (E1, E), . . . , (Ek, E) are all one-to-many relationships (to E)
and (E, E′

1), . . . , (E, E′
l) are all many-to-many relationships (with E as the first com-

ponent), then the form generated to edit an E entity contains input fields for editing
A1, . . . , An and selection fields for E1, . . . , Ek, E′

1, . . . , E
′
l (where the latter l fields

are multiple selection fields). Thus, one could select in our blog example an Entry en-
tity in a form to edit a Comment (due to the one-to-many relationship Commenting) and
a set of Tag entities in a form to edit an Entry (due to the many-to-many relationship
Tagging).

Hence, Spicey generates from the Blog ERD the following WUI specification for
Comment entities:
wComment :: [Entry] -> WuiSpec (String,String,Date,Entry)
wComment entries =
(w4Tuple wRequiredString wRequiredString wDateType

(wSelect entryToShortView entries))
‘withRendering‘ (renderLabels commentLabelList)

Thus, wComment takes a list of available entries and returns a web form to manipulate
the three attributes of a Comment entity together with the uniquely associated Entry
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Fig. 3. An edit form for blog comments generated by Spicey

entity. The available entries are shown in a selection box (wSelect) where each entry
is shown as a short string by the transformation function entryToShortView. As a
default, the first unique attribute is used for this purpose (if present), i.e., in case of an
Entry entity, the title of the corresponding entry is shown.

We want to remark that this and other defaults used in the standard web form created
by this WUI specification (see Fig. 3) can be easily adapted by changing this declara-
tion. For instance, one can use another interface for manipulating dates by replacing
wDateType by another WUI for dates, or if the name of the author is not required
(i.e., if comments are accepted with an empty Author string), one can replace the sec-
ond wRequiredString by wString. Moreover, the complete default rendering can be
changed by using another rendering function than renderLabels (see also [5]).

The WUI operation wComment is used to implement the views to insert or update a
Comment entity. For instance, for editing comments, Spicey generates an operation
editCommentView :: Comment -> Entry -> [Entry]

-> (Comment -> IO [HtmlExp]) -> [HtmlExp]

that takes the current comment, the Entry entity related to this comment, a list of
available Entry entities, and an I/O operation (a controller) to update the modified
comment in the database (note that the Comment data type contains the foreign key
of the associated Entry entity so that it need not be explicitly passed to the update
operation, see also [1]).

The main view to browse and manipulate entities is the list view as shown in Fig 2.
Since the list view contains buttons (show/edit/delete) associated to individual entities,
the controllers implementing the functionality of these buttons are passed as arguments
to the view. For instance, the operation implementing the list view for Comment entities
has the type
listCommentView :: [Comment]

-> (Comment -> IO [HtmlExp])
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-> (Comment -> IO [HtmlExp])
-> (Comment -> IO [HtmlExp]) -> [HtmlExp]

where the arguments are the list of comments and the controllers to show, edit, and
delete a comment entity.

Following the MVC paradigm, controllers are responsible to react on user requests
and call the corresponding views supplied with data contained in the model. For in-
stance, the list controller for comments retrieves all comments from the model (i.e.,
the database) and calls the operation listCommentView with these comments and the
controllers to process individual comments:
listCommentController :: [String] -> IO [HtmlExp]
listCommentController args = do
comments <- runQ (queryAll (\c -> let key free in comment key c))
return (listCommentView comments showCommentController

editCommentController deleteCommentController)

The argument args contains the possible parameters passed with the URL. This enables
the implementation of listing a restricted set of comments according to the parameters.

The other controllers are similarly defined. Note that controllers to create or modify
entities require a second controller, passed to the view (e.g., see editCommentView
above), that is responsible to perform the actual modification of the model. All con-
trollers for an entity generated by Spicey are put into a module, e.g., the module
CommentController contains the various controllers associated to Comment entities.

As shown in Fig. 2, some controllers (like new or list) can be directly called by spe-
cific URLs in the application. In order to decouple the structure of URLs from the struc-
ture of the implementation, Spicey generates a routing module containing the names of
the available controllers and their URLs. Altogether, a Spicey application performs a
request for a web page as follows. First, the path component of the URL is extracted.
Then, a dispatcher matches this path against the list of controllers specified in the rout-
ing module. Finally, the code of this controller is executed and the computed HTML
contents is decorated with the standard layout of the application.

5 Sessions, Authentication, Authorization, Processes

In a web-based application, one needs a concept of a session in order to pass information
between different web pages. For instance, the login name of a user or the contents of
a virtual shopping basket should be stored across several web pages. Therefore, Spicey
supports a general concept to store arbitrary information in a user session.

Typically, sessions are implemented in web-based systems via cookies stored in the
client’s browser. For security and performance reasons, these cookies should not con-
tain the information stored in the session but only a unique session identifier that is
passed to the web server in any interaction. Therefore, a Spicey application implements
sessions by managing a session identifier in each web page. If a session identifier does
not exist (i.e., the browser did not send a corresponding cookie), a fresh session identi-
fier is created and stored in a cookie sent with any subsequent web page. However, the
application programmer has not to deal with session identifiers since Spicey provides
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the following operations to manipulate session information (where the type variable “a”
denotes the type of the session information):

getSessionData :: Global (SessionStore a) -> IO (Maybe a)
putSessionData :: a -> Global (SessionStore a) -> IO ()
removeSessionData :: Global (SessionStore a) -> IO ()

getSessionData retrieves information of the current session (and returns Nothing if
there is no information stored), putSessionData stores information in the current ses-
sion, and removeSessionData removes such information. “SessionStore a” is an
abstract type to represent session information containing data of type a. This interface
is based on the concept of “globals” (available through the Curry library Global3) that
implements objects having a globally declared name in some module of the program.
The values associated to the name can be modified by IO actions.

For instance, consider the implementation of “page messages” that are shown in the
next page (e.g., error messages, status information), like the “Logged in as” message
shown in Fig. 2. In order to enable the setting of such messages in any part of a Spicey
application, we define the page message as session data by the following definition of a
global entity:
pageMessage :: Global (SessionStore String)
pageMessage = global emptySessionStore Temporary

“global v Temporary” denotes a global entity with initial value v that is not persis-
tently stored, and emptySessionStore denotes a session store that does not contain
any information. Using the session operations above, we can define an operation to set
the page message in any part of a Spicey application:
setPageMessage :: String -> IO ()
setPageMessage msg = putSessionData msg pageMessage

The current page message is retrieved and then removed by the following operation:
getPageMessage :: IO String
getPageMessage = do msg <- getSessionData pageMessage

removeSessionData pageMessage
return (maybe "" id msg)

This operation can be used by the main operation that wraps a view output with the
standard layout containing the page message, global menu etc.

Due to this general session concept, one can easily attach any information entities to
a session. For instance, one can store the login name in order to support authentication:
sessionLogin :: Global (SessionStore String)
sessionLogin = global emptySessionStore Temporary

and use the session data operations to set, retrieve, or delete a login name. These oper-
ations can be used in specific login/logout web pages. Since authentication is required
in almost any web-based system keeping some data, Spicey provides an initial imple-
mentation (see Fig. 2) that is intended for extension during the adaption of the system.

An equally important aspect of web-based systems is authorization, i.e., the check-
ing whether a user is allowed to call a distinct functionality, like showing or updating

3 http://www.informatik.uni-kiel.de/˜pakcs/lib/CDOC/Global.html

http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/Global.html
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particular entities. In our framework, this check can be performed before starting a con-
troller. In order to avoid the distribution of these checks over the entire implementation
and to keep the authorization rules at a centralized place, Spicey decorates the code of
each controller with a call to some authorization code. For this purpose, there is a data
type
data AccessResult = AccessGranted | AccessDenied String

and an operation
checkAuthorization :: IO AccessResult-> IO [HtmlExp]-> IO [HtmlExp]

which takes an IO operation for authorization checking (returning an AccessResult)
and a controller as arguments. If the authorization returns AccessGranted, the con-
troller is executed, otherwise an error message is displayed. In order to define concrete
authorization rules for the various controllers, Spicey generates a data type to classify
the controllers:
data AccessType a = NewEntity | ListEntities | ShowEntity a

| UpdateEntity a | DeleteEntity a

Now, the execution of each controller is protected by adding an authorization check
to the controller’s code. For instance, the generated code of the controller to list all
Comment entities (see Section 4) is extended as follows:
listCommentController args =
checkAuthorization (commentOperationAllowed ListEntities) $ do
comments <- runQ ...

Thus, the actual authorization rules are collected in a single module containing the
definition of all operations used in the calls to checkAuthorization. For instance,
the default definition of commentOperationAllowed is
commentOperationAllowed :: AccessType Comment -> IO AccessResult
commentOperationAllowed _ = return AccessGranted

authorizing all Comment operations. By refining this definition, one can specify restric-
tions on the controllers depending on the various operations, specific entities, or login
information of the user. Note that the logic programming features of Curry can be quite
useful here to specify authorization policies in a rule-oriented manner.

A web-based application generated by Spicey supports individual interactions to in-
sert, show, and change any entity. If the data model is complex and consists of many
entity types, it might be necessary to combine single interactions to longer interaction
sequences. For instance, if one wants to insert new data where different entities are
involved, it is reasonable to define an interaction sequence where the controllers to in-
sert the various new entities are sequentially activated. Thus, one wants to offer user
processes (which can be also considered as parts of complex business processes) that
are structured compositions of elementary interactions. For this purpose, a generated
Spicey application has an infrastructure to define and execute such processes. Since
a process can be considered as a sequence of calls to controllers, Spicey allows the
weaving of processes into the default structure of controllers. For this purpose, each
controller which terminates an individual interaction has a “continuation” controller
that is called in the next step. For instance, a controller responsible for creating a new
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entity calls the list controller of the same entity type, as in the controller which adds a
new Tag entity:
createTagController name = runT (newTag name) >>=
either (\_ -> nextInProcessOr listTagController Nothing)

(\error -> displayError ...)

Thus, the execution (runT) of the transaction (newTag name), that should insert a
new Tag name into the database, calls, if successful, the listTagController, or dis-
plays an error message if the transaction fails (e.g., since the new name already exists).
However, the next controller is not directly called but indirectly through the operation
nextInProcessOr. This operation checks whether the system executes a process. If no
process is active, the given controller is called, otherwise the controller specified in the
next process state is executed. In order to make the selection of the next process state
dependent on some information provided by the previous controller (this is useful to
implement loops or branches in processes), the second argument of nextInProcessOr
might contain such information. Thus, the application programmer can replace the de-
fault value Nothing by some information available in the previous controller.

The concrete structure of processes is defined in a distinguished module
UserProcesses as data of the following type:
data Processes st = ProcSpec [(String,st)]

(st -> ControllerFunctionReference)
(st -> Maybe ControllerResult -> st)

The type parameter st is the type of the states of a process, which could be a number
or some more informative enumeration type. Hence, a process specification consists of
a list of start states together with a textual description (these start states can be selected
in the process menu), a mapping of each state into a corresponding controller to be
executed in this state, and a state transition function that maps a state into a new state
depending on some optional result provided by the previous controller (the type of these
results is ControllerResult, which is identical to String in the default case).

We can use all features available in Curry to define processes. For instance, one
can compute the next state in a process based on solving constraints w.r.t. the data in
the model. In general, the state transition function is partial, i.e., if a process state has
no successor, the process will be terminated. If a state has more than one successor, the
first one is selected (multiple successor states can occur in situations like the insertion of
several entities in an arbitrary order). As a concrete example, consider a simple process
to insert a new tag followed by the creation of a new Entry entity and terminated with
showing the list of all tags. If we use numbers as state identifiers, we can specify this
process as follows:
let controllerOf 0 = NewTagController

controllerOf 1 = NewEntryController
controllerOf 2 = ListTagController

next 0 _ = 1
next 1 _ = 2

in ProcSpec [("Insert new tag and entry",0)] controllerOf next

If this specification is contained in the module UserProcesses, the process can be
selected and stepwise executed in the web application.
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6 Related Work

Although Spicey is the first web programming framework for a declarative language
based on ER models and with support for typical requirements in the area (e.g., safe
transactions, sessions, authentication, authorization, processes), there are many related
approaches. The relation of Spicey to some of them are discussed in the following.

In contrast to other systems implemented in scripting languages like Perl, PHP, or
Ruby, our implementation is statically typed so that many programming errors that eas-
ily occur in such complex systems are detected at compile time. Compared to Ruby on
Rails, a framework with similar objectives, Spicey can be considered as an approach to
show that declarative programming allows the compact construction of web-based sys-
tems with static type checking (thus, supporting programming safety) without the need
for (unreliable) dynamic meta-programming techniques. In order to obtain this result,
some design difficulties had to be solved, like avoiding mutual module dependencies
by passing continuation controllers to views, routing, etc.

The Web Application Maker4 (WAM) is a framework with similar goals as Spicey.
The WAM generates a web interface from the meta-data of a relational database and has
opportunities to adapt the interface to specific user requirements. In contrast to WAM,
Spicey uses ER models, which usually contain more structural information, to generate
the database schema and the corresponding web interface.

The iData toolkit [12] is a framework, implemented with generic programming tech-
niques in the functional language Clean, to construct type-safe web interfaces to data
that can be persistently stored. In contrast to our framework, the construction of an ap-
plication is done by the programmer who defines the various iData elements, where we
generate the necessary code from an ER description. Hence, integrity constraints ex-
pressed in the ER description are automatically checked in contrast to the iData toolkit.

Turbinado5 is a web framework for Haskell. It is based on similar ideas as Ruby
on Rails but exploits static type checking for more reliable programming, similarly to
Spicey. In contrast to our framework, Turbinado supports scaffolding only to implement
an object-relational mapping of the models, and it is not based on an ER specification
to ensure integrity constraints in the application.

Seam [13] is a complex framework for developing enterprise applications in Java. It
integrates many other projects to support a wide range of technologies. The database
abstraction is provided by an Enterprise Java Beans 3.0 implementation, Hibernate by
default, which enables the programmer to generate the database schema directly from
the model classes. In contrast to the ERD library used by Spicey, there is no graphical
way to create the models of the application. Another disadvantage of Seam is the ab-
sence of a single place to define consistency rules for data. There are three places where
consistency and validation rules may be defined. The first two are the code of the mod-
els and the generated database schema. Some, but not all, rules which are defined in the
models through annotations are put into the database schema, but often the programmer
has to assure database consistency by himself. Seam supports the definition of standard
relationship types but provides no good way to enforce ranges for the multiplicity of

4 http://www.declarativa.com/wam/
5 http://www.turbinado.org/

http://www.declarativa.com/wam/
http://www.turbinado.org/
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those relationships as Spicey does. For example, a one-to-one relationship does not en-
sure that there is always an entity on the other side of the relation but that there may be
an entity or null. As a consequence, a programmer in Seam has to check for the presence
of an entity by himself. Hibernate provides an annotation for that, but it is not fully inte-
grated into Seam yet. The third place to define validation rules are the views, for which
Seam uses Java Server Faces. Rules defined in the model are not automatically reflected
in the views, simple validation rules like required fields have to be defined again in the
view, which leads to inconsistency if those rules for a model are defined differently in
different views. Seam integrates the jBPM6 project for modeling business processes.
jBPM defines the process in XML format where a graphical editor exists. Similarly to
Spicey, the coupling of the process with the code is achieved by connecting controller
methods with the process. For authorization another tool may be used in Seam, namely
JBoss Rules7, which provides a logical language for defining authorization rules. This
aspect is directly integrated into Spicey by the logic programming features of Curry.

The web framework Seaside8 is based on the object-oriented language Smalltalk.
Seaside is one of the few frameworks that use the Transform-View pattern for views.
This enables the compiler to check the integrity of the views because they are defined as
program code instead of HTML templates. Spicey uses the same approach but provides
for stronger code checks due to the static type system of Curry. Seaside supports process
modeling by providing a stateful environment over multiple requests and enable the
programmer to span a controller method over more than one page. In contrast to Spicey,
processes are not decoupled from the controller logic so that a high abstraction level of
processes as in Spicey is not obtained.

Django9 is a popular web framework for the language Python which has features very
similar to Ruby on Rails. The implementation of routes for Spicey was inspired by the
way Django handles routes. While Django offers only regular expressions for matching
URLs, Spicey generalizes this concept and supports arbitrary computable functions for
determining the controllers associated to URLs.

7 Conclusions

We have presented the tool Spicey to generate web applications for data models that are
specified as entity-relationship models. Spicey enables the generation of a fully func-
tional system from an ER description in a few seconds. This initial system is not only
good for the evaluation of the feasibility of the data model. Due to the use of a declar-
ative target language, the generated code is compact and comprehensible so that it can
be easily extended and adapted to specific customer requirements. This has been also
achieved by the use of previous works on declarative database and web programming
that supports a compact executable description of web interfaces. Furthermore, the gen-
erated system has an infrastructure for many aspects related to web-based systems, like

6 http://www.jboss.com/products/jbpm/
7 http://www.jboss.com/products/rules/
8 http://www.seaside.st/
9 http://www.djangoproject.com/

http://www.jboss.com/products/jbpm/
http://www.jboss.com/products/rules/
http://www.seaside.st/
http://www.djangoproject.com/
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transactions that are safe w.r.t. the ER constraints, sessions, authentication, authoriza-
tion, user-oriented processes, or routing.

To get an idea of the size of the generated source code that might be inspected by
the application programmer to adapt the initial system, we counted the lines of code of
the application generated for the Blog data model shown in Section 3. The generated
views contain 280 lines of code, the generated controllers contain 180 lines of code,
and the configuration files (e.g., routing, default authorization) contain 55 lines of code.
Of course, the complete executable has much more code, like system libraries, specific
Spicey libraries, generated database code etc. However, this code is usually irrelevant
when adapting the system to specific layout requirements. As usual in current web-
based systems, many layout details are specified in a global style sheet file so that the
views generate only the basic structure of each web page.

Spicey is completely implemented in Curry. The implementation is freely avail-
able.10 Apart from some example applications, it has also been used to provide web-
based interfaces to existing databases by the definition of appropriate ER descriptions.
For future work, it would be interesting to develop a concept for migration, i.e., to sup-
port changes in the ER model that might entail changes in the generated and possibly
adapted application code. Furthermore, it would be useful to implement a tool that al-
lows to mix Curry code with HTML code fragments (e.g., as shown with the Haskell
Server Pages [10]) in order to allow an easier integration of layouts developed by HTML
designers into the application programs.
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Abstract. Explanations are a technique for reasoning about constraint
propagation, which have been applied in many learning, backjumping
and user-interaction algorithms for constraint programming. To date ex-
planations for constraints have usually been recorded “eagerly” when con-
straint propagation happens, which leads to inefficient use of time and
space, because many will never be used. In this paper we show that it
is possible and highly effective to calculate explanations retrospectively
when they are needed. To this end, we implement “lazy” explanations
in a state of the art learning framework. Experimental results confirm
the effectiveness of the technique: we achieve reduction in the number of
explanations calculated up to a factor of 200 and reductions in overall
solve time up to a factor of 5.

Keywords: Constraint programming, explanations, learning.

1 Introduction

Constraints are a powerful and natural means of knowledge representation and
inference in many areas of industry and academia. Consider, for example, the pro-
duction of a university timetable. This problem’s constraints include: the maths
lecture theatre has a capacity of 100 students; art history lectures require a venue
with a slide projector; and no student can attend two lectures simultaneously.
Constraint solving of a combinatorial problem proceeds in two phases. First, the
problem is modelled as a set of decision variables, and a set of constraints on those
variables that a solution must satisfy. In our example one might have two decision
variables per lecture, representing the time and the venue. For each class of stu-
dents, the time variables of the lectures they attend may have an alldiff constraint
on them to ensure that the class is not timetabled to be in two places at once. The
second phase consists of using a constraint solver to search for solutions: assign-
ments of values to decision variables satisfying all constraints.

Typically, constraint solvers use backtracking search supplemented by con-
straint propagation, which is a form of inference. Propagation usually involves
removing domain values that cannot be involved in any solution. This can dra-
matically reduce the space of assignments searched. Search can be further im-
proved by the use of constraint learning where previously unknown constraints
are uncovered during search and used to speed up search subsequently. Discov-
ering these new constraints requires reasoning about why propagation removes
values, which is why we need explanations for what it does.
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This paper describes improvements to existing techniques for producing ex-
planations, which in turn improves Katsirelos’ g-nogood learning [15, 16, 17]
and other CSP algorithms that use explanations. Our main contributions are as
follows:

– To introduce the idea of lazy explanations for constraints, similar to a suc-
cessful idea from satisfiability modulo theories (SMT) solvers. To our knowl-
edge this technique has never been applied to the CSP before. The technique
reduces the time and space overhead of propagation by calculating explana-
tions only when they are needed.

– To show how to implement the technique in a state of the art learning solver.
– To describe for the first time how to produce explanations for various com-

mon global constraints lazily (i.e., only when needed). Currently the SMT
community are incorporating constraint propagation algorithms into their
tools (see SAT 09 invited talk [22]), so these new algorithms can be incorpo-
rated into SMT solvers as well as CSP solvers. We also prove that laziness can
be implemented for any propagator by providing a lazy generic explanation
algorithm.

– To demonstrate improvement in CSP learning technology by up to a factor
of two decrease in overall solve time on a large set of benchmark problems,
as well as showing that number of explanations computed are universally
decreased up to a factor of 200.

We finish by describing related work and suggesting future directions for re-
search.

2 Background: Constraints, Search and Explanations

It is necessary for us to provide some background describing the constraint sat-
isfaction problem (CSP), CSP solvers and explanations in this section.

2.1 CSP and CSP Solvers

A CSP is a triple (V, D, C) where V is the sequence (v1, . . . , vn) of variables, D
is the sequence (d1, . . . , dn) of finite domains, where ∀i, di ⊂ Z, and C is the
set {c1, . . . , ce} of constraints. Each constraint ci is over a subset {vc1 , . . . , vck

}
of the variables (the constraint’s scope) and the allowed combinations of values
are specified by a relation Ri ⊆ dc1 × . . . × dck

. However, usually a constraint
will be specified in intension, i.e., the relation is implicit in the definition of the
constraint. When a constraint c in included in C, we say that c is posted.

Usually, the aim is to find one or more solutions to the CSP, each of which
is an assignment to all of the variables from their respective domains, such that
the values in the scope of each constraint form an allowed combination (satisfy
the constraint).

Our reference search solver in this paper can be characterised as depth first
search with propagation, ordering heuristics and chronological backtracking.
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Hence the solver repeatedly assigns a variable vi to a value v ∈ di, we call these
branching decisions decision assignments. After each value is assigned, constraint
propagation is carried out, whereby values that cannot be in any solution are
removed:

Example 1. If constraint v2 �= v3 is posted and v2 is assigned to 3 then propa-
gation will remove 3 from d3, since assigning 3 to v3 will result in failure.

The propagation procedure is repeated to a fixpoint. Now provided that no in-
consistency has been discovered (i.e., a domain with no possible values) search
will proceed to assign another variable, otherwise search will backtrack by re-
tracting the most recent decision and continuing. Once a complete assignment
is reached a solution has been found.

We use the notation vi ← a as a shorthand for “vi assigned to a”, i.e., all
other values are removed from di. Similarly vi � a for a pruning (alternatively,
disassignment) where domain di loses value a.

A propagator is an implementation of a particular constraint; roughly, it must
not prune any value that can be part of a satisfying assignment for the constraint.
A propagator usually prunes according to a defined level of consistency. The
most common one is generalised arc consistency (GAC) [19]. GAC propagation
ensures that for every variable vi and value a ∈ di there is an assignment to the
scope of the constraint that satisfies the constraint and assigns vi ← a. If the
variable/value pair cannot be part of such an assignment it is pruned.

2.2 Explanations

One of the most notable and up to date CSP algorithms that uses explanations
is Katsirelos et al ’s [15, 16, 17] g-nogood learning (g-learning). For this reason
we will use g-learning as a framework in which to present our progress with
explanations. Unless alternative citation is given, all material in this review
section is based on that work.

We describe the g-learning scheme by contrasting it with the standard solver
described in the previous section. The first significant way that a learning solver
differs is that whenever a propagator assigns or prunes a value it must store an
explanation for the action:

Definition 1. An explanation for pruning x � a is a set of assignments and
disassignments that are sufficient for a propagator to infer x � a. Similarly an
explanation for assignment y ← b is a set of (dis-)assignments that are sufficient
for a propagator to infer that y ← b.

Example 2. Suppose that a propagator x �= y is informed that x ← a, hence it
determines that y cannot also be assigned to a. The propagator will carry out
pruning y � a. The explanation for y � a is {x ← a}, intuitively because the
latter set is sufficient for the propagator to carry out the former pruning, i.e.,
y � a because x ← a.
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Explanations must be stored for all assignments and prunings, except decision
assignments, which are labelled with NULL to denote that they are unconnected
with other decisions and inferences. To ensure that all (dis-)assignments are
labelled correctly, the solver will also generate explanations for cases where (i) a
variable is set because only one value remains and (ii) a value is pruned because
the variable has been assigned to a different value.

Next, learning differs from the standard solver because a depth is stored for
every assignment and pruning in the format d.s where d is the decision depth
(i.e., how many decision assignments made so far?), and s is a sequence number
within the decision depth (i.e., i for the ith (dis-)assignment, starting at 0).
For example, 2.0 for the decision assignment at depth 2 and 0.7 for the eighth
(dis-)assignment at the root node (depth 0).

The final difference between learning and the standard solver is the way that
conflicts are handled. Rather than backtracking, a conflict analysis procedure will
run and this is when the explanations are exploited. The aim is to obtain a new
constraint that is added to the constraint store after backtracking, to prevent
similar conflicts occuring again. The analysis procedure used in g-learning is
quite similar to that used in conflict clause learning SAT solvers (e.g. [32]). That
is, starting with a clause (i.e., disjunction of (dis-) assignments), selected (dis-)
assignments are replaced by their explanation until a suitable new clause is
derived. Finally the new clause is posted into the solver and search continues.
Search now avoids entering certain unnecessary branches of search because the
new clause boosts inference.

A more detailed discussion of the g-learning algorithm is, unfortunately, be-
yond the scope of this paper, however it is important to emphasise certain essen-
tial properties of the explanations used to label (dis-)assignments (see [23] for
equivalent properties used in SMT solvers). Suppose explanation {d1, . . . , dk}
labels pruning v � a:

Property 1. At least one of d1, . . . , dk must have become true at the same deci-
sion depth as v � a occurred.

Remark 1. Intuitively it means that once the (dis-)assignments in the explana-
tion become true, the pruning must be carried out at that decision depth. The
property is true of GAC propagators, for example, but not bounds consistency Z
propagators [3]. In a proof of correctness of g-learning it ensures that a firstUIP
[32] cut exists.

Property 2. None of d1, . . . , dk may have a depth greater than or equal to v � a.

Remark 2. Ensures that causes must precede effects1.

Now we proceed to describe our new work: Section 3 introduces a way of working
out explanations for propagations lazily when they are needed, instead of eagerly
as the propagations are done. In Section 4 we show how to specialise this for
specific propagators. Finally in Section 5, we show empirically that laziness saves
time and space because many explanations stored eagerly are never used.
1 Avoiding cycles in the g-learning implication graph[20, 15].
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3 Lazy Explanations

Conventionally a propagator will store a set of (dis-)assignments eagerly when-
ever a pruning is done. An alternative is to store only enough data to allow the
explanation to be reconstructed efficiently later in the same branch of the search
tree, this we call laziness.

Specifically, when a propagator carries out a pruning (or assignment), it must
provide a data record, along with a pointer to a function that takes such an object
as a parameter2. The record and function are stored by the runtime system for
later retrieval. Later in search, when an explanation is requested by conflict
analysis (or some other procedure), the function will be invoked on the record,
and it must return a valid explanation for the earlier pruning. In a g-learning
framework, Properties 1 and 2 must also be satisfied to ensure correctness. It is
likely that the function will access propagator state and variable domain state to
carry out this task, and it may perform arbitrary computation. Contrast this with
an explanation recorded eagerly: the propagator will calculate the explanation
at the time of pruning and it will be stored; later on it will be fetched from
storage.

In Section 4 we will describe lazy explanation functions for various useful
constraints. Of course, explanations can be still done eagerly with no loss of
efficiency when it is hard or inconvenient to work out explanations retrospectively
for a particular constraint.

The ability to create explanations lazily is only intended to be available later
in the same branch, while the (dis-)assignment is still valid. This is because
domain information for earlier states in the same branch can be reconstructed,
and some lazy explainers described in Section 4 will make use of this information.

Since constraint solvers spend most of their time propagating, an overhead at
propagation-time is very damaging to the solver as a whole. This is the reason
why computing and storing the explanation lazily is attractive. Hence, we seek to
store the minimum amount of data that will suffice to calculate the explanation
efficiently later.

We now describe the execution of a solver implementing lazy explanations:

Example 3. Suppose that our CSP consists of variables v, w, x, y and z, each with
domain {1, . . . , 5}; and the set of constraints includes alldiff(v, w, x, y, z), mean-
ing that all the variables must take different values. Suppose that the domains
of variables v and w are reduced to {1, 2}, then the alldiff is able to propagate: v
and w have the possibility of values 1 and 2 between them, and since each needs
a distinct value both are required. Hence 1 and 2 should be removed from the
domains of x, y and z. An eager solver will compute and store the explanation
{v � 3, v � 4, v � 5, w � 3, w � 4, w � 5} for each pruning. A lazy solver
will instead store only a function pointer and a small object containing a pointer
to the alldiff propagator; in this way the effort of producing an explanation is
delayed and may never need to happen. Suppose that, later in search, the prun-
ing x � 1 is involved in a domain wipeout. The conflict analysis procedure may
2 Alternatively, objects with a polymorphic method could be used.
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request an explanation for the pruning. At this stage an eager solver will fetch it
from storage. A lazy solver will instead invoke the stored function on the small
object stored earlier, which will execute code to retrospectively compute an ex-
planation (this procedure is described in Section 4.4). The clause the conflict
analysis procedure produces, however the explanations are derived, can now be
posted into the solver.

Lazy explanations are intended to reduce the overhead that learning places on
propagators. To our knowledge, this is the first application of lazy explanations
to a CP solver. As we shall say in more detail in Section 6, at least one SAT
modulo theories (SMT) solver uses a similar technique, whereby inference engines
for specialised theories such as integer linear arithmetic guarantee to provide an
explanation for an inference lazily when it is requested. Also a similar technique
has been used before in a solver for jobshop problems [31]. Previously techniques
like g-learning and CBJ [25] required potentially a lot of data to be collected
during search, however now in many cases we need only store two pointers. This
brings CP solvers more in line with SAT solvers, which need only store a single
pointer per propagation to enable learning [20].

4 Lazy Explanations for Constraint Propagators

In this section we describe how specific constraint propagators can be made to
produce lazy explanations, specifically, what they need to store at propagation-
time and what they need to do later if and when the explanation is requested.
We include propagators for clauses, less than, table/extensional and alldiff con-
straints.

Between them, these propagators range from the simplest (clause) to among
the most complex (alldiff). This sample of the available constraints serves to
expose the core ideas needed to integrate lazy learning into other propagators.

Finally we describe a generic procedure that will work for an arbitrary con-
straint, to prove that a propagator can always be lazy, whatever constraint it
implements.

4.1 Explanations for Clauses

If clause a ← 1 ∨ b ← 2 ∨ c ← 3 ∨ d ← 4 causes assignment d ← 4, in order to
calculate an explanation later it is sufficient to note only which constraint did
it, i.e., to store a pointer to the clause. Before explaining why, we need to define
unit propagation which is the consistency level used to propagate clauses:

Definition 2. When all but one (dis-)assignment ei in a clause e1∨e2∨ . . .∨er

are false, unit propagation will set ei to be true.

Example 4. Suppose that a � 1, b � 2 and c � 3, then the propagator for
the clause a ← 1 ∨ b ← 2 ∨ c ← 3 ∨ d ← 4 will set d ← 4, as the remaining
disjuncts are all false. This is necessary because at least one disjunct must be
true to satisfy the clause.
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Now suppose later we are asked to generate an explanation lazily: we know that
the pruning was by unit propagation and can use this fact to infer that all of
a ← 1, b ← 2 and c ← 3 were false at that point. Hence the explanation is
{a ← 1, b ← 2, c ← 3} or informally the negative of the clause itself with d ← 4
removed.

This form of lazy learning is very familiar because it is what SAT solvers do
[20]. It is natural for SAT solvers to do lazy learning, but we will show that it is
also possible and advantageous for CP solvers.

4.2 Explanations for Inequalities

Suppose that constraint v1 < v2 causes pruning v1 � a; it is sufficient to store
only a pointer to the constraint v1 < v2 to later reconstruct the explanation. a is
pruned if and only if all values in v2 greater than a are removed, since these are
the potential supports for a. Hence explanation {v2 � a+1, . . . , v2 � max(d2)}
can be computed when required.

In the next example it will be necessary to reconstruct the domain state at
the time when the pruning was made, and as we will show these operations can
be implemented in O(1) time with the aid of the stored (dis-)assignment depths.

4.3 Explanations for Table

The extensional or “table” constraint is an important part of a constraint library.
The user lists the allowed tuples. Hence it can mimic any other constraint, or
be used to express an arbitrary relation in a straightforward way where in many
cases it would be awkward to express otherwise. For example the relation “mar-
ried to”, {(tom, sally), (bob, marie), (sean, jenny)}.

Assume we are using an implementation of table [7] where tuples are stored
as an array of tries, one per variable, so that all tuples involving a particular
variable and value (varval) are readily accessible, as illustrated in Figure 1. For
example, the trie at the top of Figure 1 represents every tuple involving d = 1,
meaning that the set of tuples is {(d = 1, a = 0, b = 1, c = 1), (d = 1, a = 0, b =
2, c = 2), (d = 1, a = 0, b = 2, c = 3), (d = 1, a = 2, b = 2, c = 1), (d = 1, a =
2, b = 2, c = 4), (d = 1, a = 2, b = 3, c = 5)}.

We say that a varval x = a is pruned when x � a. We say that a tuple is
valid when none of its component varvals are pruned. The propagator works by
ensuring that each varval vi = a s.t. a ∈ di has at least one support, i.e., there
exists at least one valid tuple containing vi = a. If any component of the support
is pruned either a new support can be found in the trie, or the vi = a is pruned.

Such a constraint will prune the varval vi = a if and only if every tuple con-
taining vi = a has at least one component varval pruned. We will say that a
pruning vi � a is a cover for tuple t iff vi = a is a component of t. Hence the
explanation for vi � a is a set containing at least one cover for each tuple con-
taining vi = a. We demonstrate explanations for GAC-schema using Katsirelos’
naïve scheme [15] which was arguably the most successful of the techniques he
tried. The algorithm simply picks any pruned component from each tuple.



224 I.P. Gent, I. Miguel, and N.C.A. Moore

d = 1

a = 0 a = 2

b = 1 b = 2

c = 1 c = 2 c = 3

b = 2 b = 3

c = 1 c = 4 c = 5

Fig. 1. (Top) Trie with pruned values shown as triangles, greyed nodes are those in-
cluded in the explanation and nodes visited in the traversal are bold. (bottom) Same
trie but values pruned between the original pruning (at depth 3.9) and the explana-
tion being produced are in double triangles. Pruning depths are shown: permissible
prunings have depth < 3.9, disallowed prunings have depth > 3.9.

This can easily be implemented with tries: perform an inorder traversal of the
trie but whenever a node corresponding to a pruned varval is visited add the
corresponding pruning to the set and don’t recurse any further. Each prun-
ing covers all the tuples beneath the point in the trie when it was added.
Figure 1 (top) illustrates this process: when an explanation for d ← 1 is re-
quired, the traversal produces {b � 1, c � 2, c � 3, a � 2}. Note that b � 3
and b � 4 are not included in the traversal because all supports are covered
without them.

Lazily, we are presented with the same trie, but with at least as many pruned
values. We cannot be sure of satisfying Property 2 by applying the same traversal,
for later additional prunings could be wrongly used when they could have had
no effect on the earlier propagation. Instead, we adapt the algorithm to add to
the set only values that were made at that time; i.e., to explain a pruning at
depth a.b, we would consider only nodes for varvals pruned at a depth less than
a.b. Such a situation is illustrated in Figure 1 (bottom) where the double lined
triangular nodes are not used.



Lazy Explanations for Constraint Propagators 225

w 1

2x

y 3

z

5

4

z 5

4

y 3

w 1

x 2

Fig. 2. (Left)Variable value graph at time of original pruning (right) Same graph at
time of explanation

An explanation could be built eagerly with no increase in asymptotic time
complexity since the propagators must traverse the entire trie anyway prior to
doing any pruning. By being lazy we incur at most one extra trie traversal per
explanation because we might have to repeat the traversal when the explanation
is requested. However fewer traversals will be needed overall if fewer than half
of the explanations are needed.

The previous examples illustrate that the time and space complexity of lazy
explanation generation can match eager evaluation in the worst case, but with
the additional advantage that it may never become necessary. The next example
will show that lazy explanations can be efficient even for complex propagators
like GAC alldiff.

4.4 Explanations for Alldifferent

The alldifferent (alldiff) constraint (see [8] for a review) ensures that the variables
in its scope take distinct values. For example, consider the variable value graph
in Figure 2, where we have 4 variables and 5 values. The current domains are
illustrated by having an edge from variable vi to value a whenever a ∈ di.

In the following, let r denote the size of an alldiff’s scope and d the size of
the largest domain. Régin’s GAC alldiff propagation algorithm [27] first creates
a maximum matching (size 4 matching shown with bold lines in the figure) in
O(r1.5d) time and then uses Tarjan’s algorithm to find Hall sets in O(rd) time.
Hall sets are sets of k variables such that the union of their current domains has
size k (we refer to this union as the combined domain). Clearly the variables
in a Hall set must consume the combined domain and so the values can be
removed from the domains of all other variables. In the figure an unsupported
value 2 ∈ dom(z) is shown with a dotted line, it is unsupported because 2 is
used by the Hall set {w, x, y}.

To enable explanations to be produced later, a pointer to the constraint is
stored for each pruning. Later, an explanation can be produced as follows:

1. The alldiff propagator maintains a maximum matching as domains are nar-
rowed. The most recent complete matching would have been valid when
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the pruning was done, since edges are only ever removed as domains are
narrowed. Notice that the matching in Figure 2 (right) is also valid for
Figure 2 (left).

2. Find the Hall set that earlier consumed the pruned value, by running Tar-
jan’s algorithm, but using earlier domain state reconstructed by inspecting
pruning depths, as described in Subsection 4.3.

3. The explanation is the conjunction of all the prunings from variables in the
Hall set (except the values in the combined domain), since the removal of
these values ensured that the Hall set HS’s combined domains consisted of
|HS| values. This operation is O(rd).

Hence, in the example of Figure 2 the explanation is {w � 4, w � 5, x � 4, x �

5, y � 4, y � 5}. These prunings are enough to ensure only 3 values remain in
{x, y, z}’s combined domain.

Contrast this with eager explanations, where the Hall set is known when the
pruning is done, and the explanation can then be built in O(rd) time. Hence,
when we consider prunings individually, lazy learning’s worst case time com-
plexity of O(rd) matches the eager approach, with the additional advantage
that some of them will never be built. Note that there is an additional advan-
tage for eagerness, which is that the same explanation could be used for several
values and hence built only once; lazily it may be built several times. This means
laziness is theoretically worse if the number of prunings per propagation is not
bounded by a constant. It is not clear which variant will win in practice.

4.5 Explanations for Arbitrary Propagators

We have now described how to apply the lazy approach to a variety of constraints.
Katsirelos’ GAC-Generic-Nogood [15] is a procedure for finding explanations for
an arbitrary propagator with unknown implementation: the explanation of a
(dis-)assignment is just the set of all prunings from other variables in the scope
of the constraint. It can easily be evaluated lazily by including only prunings
that were made before the propagation happened, a similar trick to Sections 4.3
and 4.4. In this way we can be sure that a generic explanation can always be
produced lazily, although by specialising for each propagator as described above
we will obtain smaller explanations and/or reduce the time taken to compute
them.

5 Experiments

We evaluated the effectiveness of lazy explanations in a g-learning solver.

5.1 Implementation

Our g-learning solver is based on the minion solver3, a highly optimised solver
that didn’t originally contain any learning or explanation mechanisms [6]. We
3 Specifically revision number 1885.
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make implementation decisions so that compared to the experiments in [15] we
are varying only the method used to produce explanations. Hence we choose
to implement our solver with d-way branching, dom/wdeg variable ordering [1]
and far backtracking as described in [15]. Our solver tries to use a firstUIP cut,
but in case the firstUIP doesn’t propagate the firstDecision cut is tried next and
must cause a pruning. We believe that Katsirelos’ solver uses firstDecision once
a loop is detected but the details are unpublished [14]. Finally node counts are
not directly comparable because we do not know how they were calculated.

To produce explanations we store an small object with a polymorphic function
that produces an explanation. For eager, the stored explanation is returned im-
mediately; for lazy, the function implements an algorithm to calculate the expla-
nation. Explanations are not memoized, hence they may be calculated multiple
times. This decision has no effect on the eager implementation, although it may
be to the detriment of the lazy implementation. Learned clauses are propagated
by the 2-watch literal scheme [21].

5.2 Benchmarks

We used a large and varied set of benchmarks, consisting of:

– crossword problems,
– antichain problem,
– peg solitaire instances, and
– every extensional instance from the 2006 CSP Solver Competition.

With the exception of antichain, these were all produced by Tailor [9] using
instances from the CSPXML repository [18] and those described in [11]. We
chose these instances because we have to date implemented lazy explanations
for constraints =, �=, <, literal, not literal, disjunction (of arbitrary constraint),
table and negative table.

5.3 Experimental Methodology

Each of the 1418 instances was executed three times with a 10 minute timeout,
on a Red Hat Linux server kernel 2.6.18-92.1.13.el5xen with 8 Intel Xeon E5430
cores at 2.66 GHz. Each run was identical, and we use the minimum time for each
in our analysis, in order to approximate the run time in perfect conditions (i.e.,
with no system noise) as closely as possible. Each instance was run on its own
core, each with 996MB of memory. Minion was compiled statically (-static)
using g++ with flag -O3.

5.4 Results – Lazy Learning vs. No Learning

First we will briefly give some results comparing lazy learning with no learning
at all, i.e., ordinary minion with d-way branching. Figure 3 shows that learning
is effective on certain classes of benchmark, but more work remains to be done to
make it robust across a larger range of benchmarks. Some of these results differ
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Fig. 3. Scatterplot showing runtime comparison for minion versus minion-lazy. Each
point is a result for a single instance. The x-axis is the solve time for minion (i.e.,
excluding set up time which is identical for both). The y-axis gives the speedup from
using minion-lazy instead of minion. A ratio of 1 means they were the same, above 1
means minion-lazy was faster and below 1 that minion was faster. Subsequent graphs
are the same style.

from Katsirelos’ [15]. This is because minion is a very highly optimised solver
(it explores a much greater number of nodes per second) and hence in order to
compensate for the overhead of learning a larger reduction in nodes is required.
However, we do not know of faster solution times for peg solitaire [11] and other
classes achieve speedups of up to 10000x.

5.5 Results – Lazy Learning vs. Eager Learning

Now we turn our attentions to the subject of this paper: are lazy explanations
effective in reducing the runtime of the g-learning framework? The answer is
yes. Figure 4 shows an overall reduction in number of explanations generated in
all cases, up to a factor of 200 reduction. This proves that the rationale behind
lazy learning is correct—many explanations are never used and hence we should
try to avoid calculating them. For example a point with y-axis 20 needed just
1/20th of the explanations.

Next we exhibit Figure 5, which confirms that, on the whole, time is saved by
using lazy explanations: lazy explanations can double our solver’s search speed,
without affecting the search tree traversed significantly4. Note that this speedup
4 Sometimes lazy and eager make different choices between suitable explanations.
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lazy versus minion-eager, fewer for instances above the line
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is the whole solver, not just the learning engine. This is an particularly significant
because the solver spends only part of its time computing explanations. In fact,
on some instances we approach the maximum possible speedup, i.e., time to
generate explanations approaches 0. In other solvers where learning is less of an
overhead the speed increase may be less, but we have been careful to optimise
both lazy and eager learning in our solver. We carried out a non-parametric
t-test (Wilcoxon signed ranked test) and found that the difference between lazy
and eager is statistically significant at the 1% level.

Lazy learning is detrimental to a small number of instances. Note that the
SAT instances which are below the line are probably noise, because their runtime
is very small and furthermore for SAT clauses lazy and eager learning are the
same. The quasigroup instances below the line are interesting: Figure 4 shows
that most explanations are eventually used in the learning process for these
instances. The increase is search time reflects the fact that lazy explanations for
the table and negative table constraints require additional traversals of the trie
data structure compared with eagerness (see Section 4.3).

6 Related Work

We now review earlier research involving learning and/or explanations, to show
that explanations are common in CSP algorithms and to convince the reader
that lazy explanations are a new idea for CSP solvers. Some of the earliest CP-
specific work was by Frost and Dechter [5, 4] on value- and graph-based learning;
and jump-back learning. Value- and graph-based begin with the failing partial
assignment. Assignments are removed selectively while maintaining the property
that it cannot be extended to a solution. Rather than using explanations to do
this, a precomputed table is used to establish if a value is compatible with all val-
ues in another variable. The jump-back scheme piggy-backs on conflict-directed
backjumping (CBJ) [25, 26]. CBJ collects explanations eagerly so it can later
work out the reasons for failures. Ginsberg’s dynamic backtracking [10] builds
“eliminating explanations” eagerly to provide knowledge of which assignments
were the cause of inconsistent values in other variables. Schiex et al. [29] describe
how to build and use generic explanations that are not made by the propagator.
Jussien et al. [28, 12, 13] described how to produce explanations (consisting of as-
signments only) for global constraints for various purposes including integrating
MAC and dynamic backtracking, user interaction and learning constraints. They
were produced eagerly by propagators. Cambazard et al. [2] used eagerly built
explanations for variable and value ordering heuristics. G-learning (see Section
2.2) is a significant improvement on previous learning schemes as it makes the
insight that g-explanations, i.e., explanations containing dis-assignments as well
as assignments, are far superior in terms of compactness and propagation power
when combined to create new constraints. As described above it too uses eager
explanations. Lazy clause generation [24] makes use of explanations in order to
derive so-called propagation rules which are then posted into a SAT solver. Ex-
planations are derived eagerly; indeed it would not make sense to derive them
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lazily as they are always propagated immediately. Explanations have also been
computed eagerly for constraints implemented as BDDs [30].

Hence to the best of our knowledge the idea of lazy explanations are unex-
ploited in CSP algorithms, although they have potential in many areas. We now
summarise similar ideas from related fields.

Satisfiability modulo theories (SMT) solvers use a form of lazy explanations
[23], whereby theories are able to retrospectively produce explanations for the
assignments they make to SAT variables. The motivation for this technique is
the same as our motivation: to reduce the number of unnecessary explanations
produced. [23] gives empirical results proving the effectiveness of the technique in
SMT solvers. We have shown that the technique is also valid and effective in CSP
solvers. Currently, the SMT community are incorporating constraint propagation
algorithms into their tools (see SAT 09 invited talk [22]). Hence this paper also
contributes to SMT by describing how to produce lazy explanations for several
key global constraints that are currently being integrated into SMT solvers.

In [31] explanations (called justifications) are computed lazily in a specialised
solver for the jobshop problem involving only specialised scheduling constraints.
They are used to implement conflict directed backjumping. Empirical results
show that between 25 and 80% of explanations are never needed, but the paper
does not empirically justify that time is saved by their use.

7 Conclusions and Future Work

We have introduced lazy explanations for constraint propagation, in which ex-
planations are computed as needed, rather than stored eagerly. This approach
conveys the twin advantages, confirmed experimentally, of reducing storage re-
quirements and avoiding wasted effort for explanations that are never used.

In future work, we will create lazy explainers for constraints other than those
featured herein. A further important item of future work is to investigate for
specific propagators whether laziness is advantageous.
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Abstract. The last few years have seen great interest in developing
models that can describe real-life large-scale structured systems. A pop-
ular approach is to address these problems by using logic to describe the
patterns or structure of the problems, and by using a calculus of prob-
abilities to address the uncertainty so often found in real life situations.
The CLP(BN ) language is an extension of Prolog that allows the rep-
resentation, inference, and learning of bayesian networks. The language
was inspired on Koller’s Probabilistic Relational Models, and is close to
other probabilistic relational languages based in Prolog, such as Sato’s
PRISM.

We present the implementation of CLP(BN ), showing how bayesian
networks are represented in CLP(BN ) and presenting the implementa-
tion of three different inference algorithms: Gibbs Sampling, Variable
Elimination, and Junction Trees. We show that these algorithms can be
implemented effectively by using a matrix library and a graph manipula-
tion library, and study how the system performs on real-life applications.

1 Introduction

The last few years have seen great interest in developing models that can describe
real-life large-scale structured systems. A popular approach is to address these
problems by using logic to describe the patterns or structure of the problems,
and by using a calculus of probabilities to address the uncertainty so often found
in real life situations. Examples include ICL [1], PRISM [2], Probabilistic Re-
lational Models [3], Stochastic Logic Programs [4], Markov Logic Networks [5],
Problog [6], and CLP(BN ) [7,8], among many others [9,10].

These languages differ in a number of ways, including the logic used, the
graphical (probabilistic) model followed, and the way the two are combined
together. Arguably, a key difference is whether the language consists of a set
of true statements about objects whose properties are only partially known, as
in PRISM or CLP(BN ), or if the language allows uncertainty about the truth
the statements, as in MLNs. Languages also differ on the formalism being used,
Prolog being a popular option, and on the underlying graphical model: whether
it is discrete or continuous, and whether it is directed or undirected.
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Ultimately, the usefulness of these languages strongly depends on their ability
to answer complex queries. Inference in Bayesian Networks is known to be NP-
hard, and can be quite expensive even in traditional (propositional) networks.
Models that combine logic and probabilities have the ability to easily construct
very large graphical networks, and can arguably make the problem even harder.

Next, we present how these problems are addressed in the context of the
CLP(BN ) language. In this language, uncertainty about the value of a variable
is represented as a constraint on the variable [8]. Inference on the logic pro-
gram naturally constructs a network of random variables and provides a natural
method for constructing bayesian networks.

CLP(BN ) was implemented in Prolog, Our motivation was threefold. First, we
wanted to address the licensing and practical issues associated with using exter-
nal tool-kits. At the time we developed the system most stable implementations
of bayesian networks either were commercial, relied on commercial systems, or
had significant scalability and/or licensing issues. Second, we wanted to have
the flexibility that one can only achieve with its own implementation. This has
proven most valuable in supporting learning, and we believe it will prove useful
as we experiment novel algorithms in the future. Third, we wanted to experi-
ment with using logic programming for this purpose: Gibbs sampling, say, is not
a typical Prolog application.

The literature reports a very large number of inference models for graphical
models [9]. The CLP(BN ) implementation supports three widely used inference
methods. Gibbs sampling [11] is a popular method for approximate inference. It
is often used for complex networks, say, in the BUGS system [12]. Variable elimi-
nation [13] is a relatively simple inference model that answers queries by reducing
the number of random variables one by one. Last, junction tree construction is
a popular method where queries are answered by using believe propagation over
a “junction tree” that represents the network.

2 CLP(BN )

The CLP(BN ) language is an extension to Prolog where variables with undefined
values are represented as a constraint. As an example, consider the definition for
a coin-flip:

flip(X) :-
{ X = flip with p([h,t],[0.5,0.5]) }.

The constraint includes two components: the left-hand side of the with is a key
that uniquely references the random variable; the right-hand side of the key is a
term describing the probability distribution of the values. Using a key allows one
to identify different logical variables with the same random variable. The term
includes X ’s domain and probability values of every element in the domain.

Querying this procedure returns a constrained object. Prolog then outputs
statements about the probabilities entailed by the constraints:
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?- flip(X).
p(X=h)=0.5,p(X=t)=0.5

CLP(BN ) uses the key flip to represent identity across different calls to
flip(X). That is, every constraint with the same key refers to the random vari-
able. Thus, the call:

?- flip(X), flip(Y), flip(Z).

entails X = Y = Z, as shown in the actual answer given by CLP(BN ):

X = Y = Z,
p(X=h)=0.5,p(X=t)=0.5

A sequence of independent coin-throws can be represented as a list of random
variables:

flips(0, []).

flips(I, [F|Fs]) :-

I > 0,

flip(I, F),

I1 is I-1,

flips(I1, Fs).

flip(I,X) :-

{ X = flip(I) with p([h,t],[0.5,0.5]) }.

As expected, querying this procedure returns a list of random variables:

?- flips(5, L).
L = [_A,_B,_C,_D,_E],
p((_E=h,_D=h,_C=h,_B=h,_A=h))=0.03125,
... ?

CLP(BN ) returns the joint distribution, which in this case is uniform. Notice
that because of space considerations we do not show the whole output.

Last, a bayesian network can be used to represent conditional dependencies
between the different random variables.

flips(0, _, []).

flips(I, F, [F|Fs]) :-

I > 0,

flip(I, F, F1),

I1 is I-1,

flips(I1, F1, Fs).

flip(1, X, _) :- !,

{ X = flip(1) with p([h,t],[0.5,0.5]) }.

flip(I, X, X0) :-

{ X = flip(I) with p([h,t],[0.6,0.4,0.4,0.6],[X0]) }.
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The first clause for flip/3 implements the base case, or prior, which is still
uniform. The second clause implements a conditional probability distribution.
Each value in the list of floating point numbers is a conditional probability.
In this case, it states that the probability of having the same value as in the
previous flip is 60%, and the probability of having a different value is 40%. The
joint probability distribution is quite different in this case:

?- flips(5, _, L).
X = [_A,_B,_C,_D,_E],
p((_E=h,_D=h,_C=h,_B=h,_A=h))=0.0648,
... ?

Quite often, in probabilistic networks we have information on some random
variables, and our goal is to find out how probabilities for other variables (the
marginals) change. If the value of a random variable is known in advance, we say
that we have evidence on the variable. CLP(BN ) uses unification as a natural
mechanism for introducing evidence:

?- flips(5, _, L), nth(2,L,h).
L = [_A,_B,_C,_D,_E],
_B=h,
p((_E=h,_D=h,_C=h,_A=h))=0.1296,... ?

3 The Implementation

The current implementation of CLP(BN ) works in two steps. In a first step,
execution creates a network of constraints. In a second step, this network is sent
to a constraint solver that computes the joint probability of the possible values
of the query variables.

Figure 1 shows the structure of the CLP(BN ) implementation. As shown in
the examples above, execution starts in Prolog style, by launching a query. Dur-
ing execution, the predicate {}/2 will be called a number of times, creating a set
of random variables. Random variables are represented as attributed variables.
The main attributes are

– the reference to the random variable, or key;
– the unique identifier for the distribution, or id ;
– the set of parent variables, or parents.

The identifier id refers to a table of distributions, that stores the domain and
the probability tables for each different distribution.

Query execution terminates by calling the clpbn:project attributes/2
predicate. The predicate receives two arguments: one is a list of query vari-
ables, Qs, and the other a list of all attributed variables, As. The task of
clpbn:project attributes/2 is to compute the joint distribution of the ran-
dom variables in Qs, given the network of constraints that connects together
the variables in As. The predicate first performs simplification and calls one
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Fig. 1. Structure of the CLP(BN ) system

of the three solvers. The solvers ultimately output the distribution over the
query variables, or marginals. The distribution is exported as an extra constraint,
posterior. The top-level calls clpbn display:attribute goal/2 to transform
the posterior constraint into a set of goals, shown in the examples above.

Figure 1 shows the three current solvers. Note that originally, CLP(BN ) used
as solver an interface that sent the network to the Bayesian Network Toolbox
(BNT) [14], a toolkit written in Matlab. Unfortunately, this solution offered a
number of limitations, leading us to implement specific solvers for CLP(BN ).

Experience showed that to implement the solvers require extensive matrix op-
erations as they manipulate tables for discrete distributions. Algorithms such as
junction trees further require extensive graph manipulation. Our implementation
thus relies on two support libraries.

Matrices. The matrix library is C-code that implements multidimensional ma-
trices of integers or floating point numbers. The library provides straightforward
matrix operations and the operations required to support the solvers. The dist
library is responsible to transform a probability distribution from the initial list
format into a matrix.

Matrices reside on the Prolog global stack as blobs. The blob mechanism was
originally implemented to support very large numbers, but has since been shown
useful for a variety of purposes. Each blob can be seen as variant of compound
term with a special functor, a tag identifying the type of blob, the size of the
blob, and the actual data itself. In the case of matrices data is matrix type,
number of dimensions, a linear array with the size of each dimension, and the
actual matrix.

Graphs. Bayesian Networks are graphs, therefore it is unsurprising that the
algorithms described next require a number of graph operations.

We believe Prolog is an excellent language for graph manipulation, as it allows
sophisticated pattern matching, and high-level description of graph operations.
We therefore implemented a number of Prolog libraries for graph manipulation.
The libraries implement graphs over association lists, that themselves are imple-
mented as red-black trees. The dgraphs library implements the basic operation
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over directed graphs. This library is then reused by the undgraphs library, as
this one implements undirected graphs by transporting them into directed graphs
with edges in both directions. Last, weighted versions are implemented on top
of these two libraries. The libraries take advantage of the reexport module
directive to avoid code duplication.

4 Variable Elimination

As the name says, the variable elimination procedure [13] executes by eliminating
random variables until only the query variables remain. The (simplified) main
procedure is shown next:

solve_ve(QVs, AllVs, Ps) :-
random_vars_to_graph(AllVs, Graph),
process(Graph, QVs, Dist),
normalise_CPT(Dist,MPs),
export(MPs, Ps).

The first step of the algorithm is to generate a graph from the random variables.
The graph is accessible through two data structures: a list of factors or tables,
and a list of variables, or nodes. Factors store a table and corresponding variables.
Variables maintain a list of every factor they participate in.

The random vars to graph/2 generates the initial factors from each vari-
able’s probability tables, and associates each variable with the factors it par-
ticipates in. Variables with evidence must also be eliminated before variable
elimination starts. This requires discarding every entry that is not compatible
with the evidence, and is implemented as a single matrix operation.

The process/3 predicate is the core of the algorithm. It operates as follows:

process(Vs, QVs, Out) :-
find_best(Vs, V, WorkTables, LVI, QVs), !,
multiply_tables(WorkTables, Table, Parents),
project_from_CPT(V,Table,NewTable),
include(Vs, Parents, NewTable, NewVs),
process(NewVs, InputVs, Out).

process(Vs, _, Out) :-
fetch_tables(LV0, WorkTables),
multiply_tables(WorkTables, Out).

The procedure first finds a variable that can be eliminated. If one such variable
is found, it “multiplies” all tables where the variable participates, projects the
variable out of the joint table, and makes the parents replace their previous table
by a new table. Unification is used to simplify the latter task.

Notice that multiplication operation is not actual matrix multiplication. The
operation is implemented through the matrix library. Notice also that the output
matrix is not an actual probability table, as the columns are not guaranteed to
add to one.
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If no such variable can be found, the remaining variables must be the query
variables. The algorithm multiplies the remaining factors, and normalises them
in order to obtain a true probability table.

The performance of the algorithm strongly depends on finding the best se-
quence of variables: if we have a variable with N binary neighbors, table size
will be 2N+1. CLP(BN ) follows the standard approach and uses a greedy al-
gorithm where one chooses the variable with the smallest number neighbors at
each point.

5 Junction Trees

A popular algorithm for inference in bayesian networks is junction tree construc-
tion. The intuition of the algorithm is to transform a general bayesian network,
a directed acyclic graph, into a tree. Bayesian inference in trees is much simpler
than in the general case. The algorithm therefore proceeds in two steps:

1. Construct a junction tree, a representation of the graphical network. Each
node in the tree is a factor obtained from nodes that are strongly connected.

2. Apply belief propagation to the junction-tree. This executes as two steps:
first, an upward step propagates information from the leaf-nodes (e.g., evi-
dence). Second, a downward step propagates the joint values to the individual
variables.

Junction trees are popular because constructing the junction tree, although ex-
pensive, is independent of the query variables and of any evidence. Thus, as soon
as we construct the junction tree for a network we can use it for different query
variables and for different evidence.

The CLP(BN ) implementation is as follows:

build_jt(BayesNets, CPTs, Tree) :-
init_undgraph(BayesNet, Moral0),
moralised(BayesNet, Moral0, Markov),
undgraph_vertices(Markov, Vertices),
triangulate(Vertices, Markov, Markov, _, Cliques0),
cliques(Cliques0, EndCliques),
wundgraph_max_tree(EndCliques, J0Tree, _),
root(J0Tree, JTree),
populate(CPTs, JTree, Tree).

The junction-tree algorithm [15] essentially tries to construct a tree from a di-
rected acyclic graph. It does so by adding edges until the graph is triangulated,
constructing a graph from the cliques in the triangulated graph, and obtaining
a tree:

1. Create a moral graph, an undirected graph where the parents of every node
are always connected together, by introducing edges between parents.
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2. Perform triangulation, that is it ensure that the graph is chordal by intro-
ducing edges so that every cycle that has more than 3 nodes has at a least
a chord.

3. Detect all cliques in the undirected graph, and construct a new weighted
undirected graph, where each node is a clique of variables. Nodes have edges
if they share a variable. The weight of each edge is given by the number of
variables shared between the nodes.

4. Select an arbitrary node as a root of the clique tree.
5. Construct a maximal covering tree of the clique tree. Call that weighted

directed tree the junction tree.
6. Fill each node of the tree with the factor obtained from multiplying all tables

where the variables belong to the clique.

Two steps of the algorithm are not deterministic: there are different ways to
perform triangulation, and any node can be chosen as a tree root. CLP(BN ) uses
a version of the algorithm where one does not explicitly perform triangulation.
Instead, one first searches for simplicial nodes, that is, nodes such that the node
and all its neighbors form a clique, and removes that node (this is based on the
observation that a triangulated graph always has a simplicial node). If no such
node exists, it searches for the node that could be made a simplicial node with
the smallest clique.

The implementation strongly relies on the graph library. Although the al-
gorithm is rather complex, most operations are little more than transforming
directed into undirected or weighted undirected graphs, and then adding or re-
moving edges.

The second step of the algorithm perform belief propagation in four steps:

1. simplify cliques with evidence;
2. do message passing upwards;
3. do message passing downwards;
4. select a clique with the query variables, and marginalise.

Belief propagation can be seen as a sequence of matrix multiplications (in the
style of variable elimination), and its implementation thus relies heavily on the
matrix library. As an example, a simplified version of upward message propaga-
tion is shown next:

upward([], _, Tab, [], Tab).
upward([t(CVars,CTab,CKids)|Sibs],Vars,Tab,

[t(CVars,UpdCTab,UpdCKids)|UpdSibs],NTab) :-
upward(CKids, CVars, CTab, NTabKids, UpdCTab),
ord_intersection(CVars, Vars, Int),
sum_out_from_CPT(Int, NewTab1, CVars, Tab1),
multiply_CPTs(Tab, Tab1, ITab),
upward(Kids, Vars, ITab, NKids, NTab).

Each node in the tree is represented as a term t/3, where the arguments are
the random variables in the clique, the factor table, and a list of children. The
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algorithm constructs a new tree recursively by calling upward message propaga-
tion for each child, summing out the variables not in the intersection, and then
multiplying the child’s table (the message) by the current table. The process
repeats until messages from all children have been received. Downward propa-
gation executes in the opposite fashion.

6 Gibbs Sampling

The last inference method we use is the well-know Gibbs sampler. This is an
example of a Markov Chain Monte Carlo method. The method works as follows:

1. Start from a random initial setting of the random variables.
2. For N steps:

(a) For every variables v:
i. Compute the current distribution of v based on the current value of

its neighbors;
ii. Sample a new value vi for v according to this distribution;

3. For the query variable q, compute the probability of each qi as the number
of times q = qi over N .

It is often the case that we discard the first M steps, or burn-in steps. Also, often
one runs several iterations of this algorithm, or chains, in parallel. The advantage
is that by comparing the current estimates from the different chains, one can
estimate how close to convergence the algorithm is. The number of burn-in steps,
M , chains, C, and maximum number of steps, N , are the main parameters to
this algorithm.

Implementing this algorithm in Prolog is reasonably straightforward. Unfor-
tunately, we did found that computing the current distribution of v is quite
expensive because we need to generate the variable’s Markov blanket. It requires:

1. Finding all neighbors of the variable (the so-called Markov Blanket);
2. Multiplying all probability tables in the Markov Blanket;
3. Eliminating according to evidence.

In order to speed-up this process, CLP(BN ) performs a pre-processing step
where it constructs a table with the distributions for all possible alternatives of
the Markov Blanket for each variable. CLP(BN ) benefits from the multi-way
indexing in YAP to guarantee efficient access even for reasonably large Markov
blankets. [16]. The key code is:

do_var(I,Sample,Sample0,Graph) :-
arg(I,Graph,var(_,_,_,_,_,CPTs,Parents,_,_)),
fetch_parents(Parents,I,Sample,Sample0,Bindings),
( compiled(I) ->
recorded(mblanket,m(I,Bindings,Vals),_)
;
multiply_all_in_context(Parents,Bindings,CPTs,Graph,Vals)
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),
X is random,
pick_new_value(Vals,X,0,Val),
arg(I,Sample,Val).

If the variable I has been preprocessed, it is fetches the current value of the
parents and consults the data-base. We use the YAP internal database for com-
pactness, as YAP can index sub-terms within this database. Otherwise, we need
to multiply the tables. Next, we take a value from the distribution. We then set
this value by simply unifying the argument I of a compound term. In this case,
we take advantage of YAP’s ability to manipulate large arity compound terms.

7 Evaluation

Our experience in implementing CLP(BN ) shows that Prolog is a much better
tool for these tasks than what we expected. It also seems to indicate it could be
an even better tool.

In our experience, the main advantages of using Prolog are flexibility and
compactness. Regarding compactness, the final code we needed to write for each
algorithm was remarkably small: around 300 lines for variable elimination, and
less than 600 for junction trees and the gibbs sampler. The glue libraries that
connect to the matrix and the graph libraries are even smaller: less 300 lines for
the matrix interface, and a bit over 300 for the dist library (that encapsulates
distributions).

Prolog also makes it possible to write and change code quite easily. The code
is mostly side-effects free, which makes it possible to easily debug by redoing
computations. In general, the ability to quickly specify a procedure in a top-
down fashion, and then debug and refine it incrementally is a major advantage
of Prolog.

On the other hand, we found a number of drawbacks. The first drawback
we noticed is the limited number of libraries and toolboxes currently available.
For example, graph manipulation is natural to implement in Prolog. Unfortu-
nately, when we started this project there was a single free library for graph
manipulation, written 30 years ago. This was helpful, but not sufficient and we
had to write our own code. Fortunately, we believe that this lesson has been
well learned by the Prolog community. Initiatives such as Prolog Commons are
trying to address this problem.

The matrix library is a second case in point. Originally, we represented
multi-dimensional matrices as lists. Unfortunately, lists lose structure and force
sequential access. Our second implementation used compound terms. This imple-
mentation allowed direct access but ultimately we still found it hard to maintain
and understand code that performed matrix transposition, summing out, and sim-
ilar operations. In the end, we felt it was just more natural to write this code in C,
and more efficient. We believe that the lesson is that it is important to be able to
connect easily to languages written in other languages: we simply cannot expect to
do everything in Prolog.
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One major problem we found in designing the system is that Prolog is a hard
language for software engineering. As an example, changing the implementation
of probability tables from lists to compound terms, and then to C-code exposed
a number of structural problems in the system. There are two problems:

– Prolog makes it easy to state a first solution and refine it, but it does not
make it easy to add meta-information and structure the program;

– Without this information, it becomes very hard to obtain encapsulation,
which makes the programs unnecessary brittle.

The single tool Prolog has to provide structure is the module system. There has
been some interest in trying to address these problems, by introducing type sys-
tems [17,18]. We believe that even simpler solutions, such as a macro expansion
mechanism that could encapsulate access to a data structure may be useful.

7.1 Experiments

In order to obtain a feeling about the performance of the system, we apply
CLP(BN ) to a typical learning task. The goal is to learn the parameters of
a structured bayesian network representing a simulated school with students,
professors, grades, and courses. We assume that we know the structure of the
network, given as CLP(BN ) clauses. For example, registration grade depends
on the value of the course difficulty and the student’s intelligence:

registration_grade(RegKey, Grade) :-
registration(RegKey, CKey, SKey),
course_difficulty(CKey, Dif),
student_intelligence(SKey, Int),
grade_table(Int, Dif, Table),
{ Grade = grade(Key) with Table }.

Our goal is to find out the parameters in Table. In this example, we need to learn
the parameters for 6 different CLP(BN ) predicates. We have 32 professors, 64
courses, 256 students, and 856 registrations in the database. The database was
actually generated by sampling from the CLP(BN ) program, so our goal can be
seen as simply trying to recover the parameters.

If all the information for the database is available (there is no missing data),
then the parameters can be computed by using the maximum likelihood esti-
mator. In other words, the parameters can be computed by simply counting
the numbers of the different cases, and normalising. No Bayesian inference is
required in this case.

If data is missing, we need to estimate what are the most likely values for the
missing values. CLP(BN ) implements a version of the Expectation Maximisation
(EM) algorithm. The algorithm iterates by computing the expected values for
the missing data, and then using these values, weighted by their probabilities, to
obtain new estimates of missing data. The process is guaranteed to eventually
converge to a local maximum. In practice, we impose a maximum number of
iterations and/or stop if the improvement is below some threshold.
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Table 1. Performance on School DataSet. For each method, the table shows running
times in msec, log-likelihood of the data given the parameters found (LL), and number
of iterations of the EM algorithm.

Missing Variable Elimination Junction Trees Gibbs Sampling
Data Run Time LL Iters Run Time LL Iters Run Time LL Iters

0% 294 2085 0
5% 330 2079 2 425 2133 2 2688 2118 2
10% 629 2100 3 4971 2133 2 5436 2138 2
20% 912 2117 3 19607 2104 3 13503 2158 2
30% 3477 2159 3 89450 2134 3 56099 2163 3
50% 43702 2141 5 313770 2098 5 128328 2161 5
90% 2319 2543 1 5165 2533 1 136929 2536 1

Clearly, the more data is missing, the more inference we should have to per-
form. In fact, the problem is compounded by the fact that missing data tends to
result in larger networks per query: as we have less evidence we need to consult
more variables to obtain an accurate answer.

The CLP(BN ) implementation of EM learning therefore can call the inference
routine a large number of times on large networks. To reduce overheads, the ac-
tual implementation performs two separate calls: an initialization call constructs
the network, and preliminary data-structures. For example, with the junction-
tree solver, junction trees are constructed only once. In a second call, variables
are marginalised against the current parameters.

Table 1 shows performance on a MacBookPro with a 2.5 GHz Intel Core2
Duo running OSX 10.5.8, with 4GB of installed memory. We present the log-
likelihood of the data, that is, the logarithm of the probability of the observed
data given the learned parameters, and the number of iterations that the EM
algorithm took to obtain the parameters. We vary the missing data between 0%
(base-line) and 90% of all data. In this dataset, variable elimination performs
very well, significantly better than the other methods. Performance tends to vary
linearly with the number of marginalised variables and iterations, except for 50%
noise, where one creates very large networks.

Gibbs Sampling performs second. Performance is independent on evidence:
it depends only on the number of iterations and on the number of variables
to marginalise. This shows one of the best advantages of Gibbs sampling: it is
robust to complex dependency graphs that can result from different evidence.
Unfortunately, even with pre-compilation running Gibbs sampling is slower.

Our hope in implementing junction trees was that the same structure would
occur with different queries. This does not seem to be the case. Thus, we have
to compile lots of different networks into different junction trees, cancelling out
the benefit from using junction trees. The problem is particularly severe when
there is much missing evidence, and we may have large networks. On the other
hand, belief propagation is very fast, so after compilation junction trees are
usually faster than variable elimination. This may make an important difference
if converge is very slow.
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Fig. 2. A Bird’s Eye View of a Bayesian Network Induced by evidence in the School
Database. The picture clearly depicts the linear nature of the bayesian network graph.

We also observe that the EM algorithm seems to be doing quite well at recov-
ering the original parameters: although likelihood tends to degrade as we remove
more data, it is close to the one with full data almost up to 50% of missing data.
The method cannot achieve miracles, and cannot recover the parameters if only
given 10% of the full data.

Although these results show a significant advantage of variable elimination,
they should be taken carefully. Fig 2 shows a bird’s eye view of a graph induced
by this application with 30% missing evidence (evidence nodes are shown in red,
the query node in green). The graph is almost perfectly linear, making it perfect
for variable elimination.

For our second experiment, we use Gene Expression Data. In this case, we
have a collection of time-series data for yeast expression, and we want to generate
probabilistic rules that predict gene activity [19]. We use the ILP system Aleph
to generate rules. The ILP Prolog rules are then adapted to CLP(BN ), which
then uses the Expectation Maximisation algorithm to learn the parameters. The
problem includes both learning parameters and rules.

We use the same platform as before. We have 2940 examples of time expres-
sion, corresponding to 19 different genes/proteins in yeast and to 23 different
time series. In practice, learning proceeds by finding a rule for the first gene,
and then adding the rules for each new gene until all genes are explained. Thus,
the rules initially construct a mostly empty network, but as learning proceeds the
networks will grow more and more complex. About 10% of the data is missing,
but the distribution of the missing data is often not random (e.g., an experiment
may be missing the time-series for a gene).

Table 2 shows performance in this example. Again, variable elimination does
quite well, although junction trees do quite close, and in fact perform better in

Table 2. Performance on Yeast DBN. We show results after gene 1, 4, 8, 12, and
16, and total execution. For each method, he table shows running times in sec, and
likelihood of the data given the parameters found. Notice that the final row exhibits
the total execution time.

Missing Variable Elimination Junction Trees Gibbs Sampling
Gene Run Time Likelihood Run Time Likelihood Run Time Likelihood

1 9.78 2285 10.30 2285 298 2285
4 4.60 2281 5.10 2281 175 2133
8 8.81 2272 8.96 2272 248 2133
12 68.37 2264 56.66 2264 1085 2264
16 4.26 2249 9.40 2249 144 2249
Total 397.51 2237 406.79 2237 7851 2234
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Fig. 3. An Example Dynamic Bayesian Network induced by evidence in the Yeast
Expression Dataset. Yellow nodes are evidence nodes, and the two pink nodes are the
query nodes.

some cases. Gibbs sampling pays a large overhead and ends up being up to an
order of magnitude slower than the other two approaches.

Figure 3 shows an example network. The network has the layered structure
typical of time series and dynamic bayesian networks. The yellow boxes indicate
evidence: the results show that the network was induced by missing evidence on
expression of the genes such as YML027W when trying to estimate expression at
the end of the time series.

8 Conclusions

We present a logic programming based implementation of a statistical relational
learning system, CLP(BN ), available as part of the YAP Prolog development
distribution. Our results show that the system can be applied effectively to large
problems, such as estimating gene pathways from gene expression data. This
was possible by implementing the most expensive operations in a C library. We
therefore benefit from the expressiveness of Prolog, while maintaining what we
believe is reasonable efficiency.

The area of Statistical Relational Learning is an exciting area, and we hope
that CLP(BN ) will be able to contribute. Recently, there has been much interest
in novel inference methods that take advantage of the relational nature of the
problem [9]. We believe that CLP(BN ) may be very well suited for this task.
Implementing novel, complex, algorithm will also require re-factoring existing
code. We believe how best to do so is an exciting problem, and hope CLP(BN )
will benefit from the progress in Prolog development technology.
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Abstract. A critical component in the implementation of an efficient
tabling system is the design of the data structures and algorithms to
access and manipulate tabled data. Arguably, the most successful data
structure for tabling is tries, which is regarded as a very compact and
efficient data structure for term representation. Despite these good prop-
erties, we found that, for list terms, we can design even more compact
and efficient representations. We thus propose a new representation of
list terms for tries that avoids the recursive nature of the WAM repre-
sentation of list terms in which tries are based. Our experimental results
using the YapTab tabling system show a significant reduction in the
memory usage for the trie data structures and considerable gains in the
running time for storing and loading list terms.

Keywords: Tabling, Table Space, Implementation.

1 Introduction

Tabling [1] is an implementation technique that overcomes some limitations of
traditional Prolog systems in dealing with redundant sub-computations and re-
cursion. Tabling has become a popular and successful technique thanks to the
ground-breaking work in the XSB Prolog system [2] and in particular in the
SLG-WAM engine [3]. The success of SLG-WAM led to several alternative im-
plementations that differ in the execution rule, in the data-structures used to
implement tabling, and in the changes to the underlying Prolog engine. Im-
plementations of tabling are now widely available in systems like Yap Prolog,
B-Prolog, ALS-Prolog, Mercury and more recently Ciao Prolog.

A critical component in the implementation of an efficient tabling system
is the design of the data structures and algorithms to access and manipulate
tabled data. Arguably, the most successful data structure for tabling is tries [4].
Tries are trees in which common prefixes are represented only once. The trie
data structure provides complete discrimination for terms and permits lookup
and possibly insertion to be performed in a single pass through a term, hence
resulting in a very compact and efficient data structure for term representation.

When representing terms in the trie, most tabling engines, like XSB Prolog,
Yap Prolog and others, try to mimic the WAM [5] representation of these terms
in the Prolog stacks in order to avoid unnecessary transformations when stor-
ing/loading these terms to/from the trie. Despite this idea seems straightforward

M. Carro and R. Peña (Eds.): PADL 2010, LNCS 5937, pp. 249–263, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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for almost all type of terms, we found that this is not the case for list terms (also
known as pair terms) and that, for list terms, we can design even more compact
and efficient representations.

In Prolog, a non-empty list term is formed by two sub-terms, the head of the
list, which can be any Prolog term, and the tail of the list, which can be either a
non-empty list (formed itself by a head and a tail) or the empty list. WAM based
implementations explore this recursive nature of list terms to design a very simple
representation at the engine level that allows for very robust implementations
of key features of the WAM, like the unification algorithm, when manipulating
list terms. However, when representing terms in the trie, the recursive nature of
the WAM representation of list terms is negligible as we are most interested in
having a compact representation with fast lookup and insertion capabilities.

In this paper, we thus propose a new representation of list terms for tabled
data that gets around the recursive nature of the WAM representation of list
terms. In our new proposal, a list term is simply represented as the ordered
sequence of the term elements in the list, i.e., we only represent the head terms
in the sub-lists and avoid representing the sub-lists’ tails themselves. Our ex-
perimental results show a significant reduction in the memory usage for the trie
data structures and considerable gains in the running time for storing and load-
ing list terms with and without compiled tries. We will focus our discussion on a
concrete implementation, the YapTab system [6], but our proposals can be easy
generalized and applied to other tabling systems.

The remainder of the paper is organized as follows. First, we briefly introduce
some background concepts about tries and the table space. Next, we introduce
YapTab’s new design for list terms representation. Then, we discuss the implica-
tions of the new design and describe how we have extended YapTab to provide
engine support for it. At last, we present some experimental results and we end
by outlining some conclusions.

2 Tabling Tries

The basic idea behind tabling is straightforward: programs are evaluated by
storing answers for tabled subgoals in an appropriate data space, called the
table space. Repeated calls to tabled subgoals1 are not re-evaluated against the
program clauses, instead they are resolved by consuming the answers already
stored in their table entries. During this process, as further new answers are
found, they are stored in their tables and later returned to all repeated calls.

Within this model, the table space may be accessed in a number of ways: (i)
to find out if a subgoal is in the table and, if not, insert it; (ii) to verify whether
a newly found answer is already in the table and, if not, insert it; and (iii) to
load answers to repeated subgoals. With these requirements, a correct design of
the table space is critical to achieve an efficient implementation. YapTab uses
tries which is regarded as a very efficient way to implement the table space [4].

1 A subgoal repeats a previous subgoal if they are the same up to variable renaming.
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A trie is a tree structure where each different path through the trie data
units, the trie nodes, corresponds to a term described by the tokens labelling the
nodes traversed. For example, the tokenized form of the term f(X, g(Y, X), Z) is
the sequence of 6 tokens < f/3, V AR0, g/2, V AR1, V AR0, V AR2 > where each
variable is represented as a distinct V ARi constant [7]. An essential property of
the trie structure is that common prefixes are represented only once. Two terms
with common prefixes will branch off from each other at the first distinguishing
token. Figure 1 shows an example for a trie with three terms. Initially, the trie
contains the root node only. Next, we store the term f(X, a) and three trie nodes
are inserted: one for the functor f/2, a second for variable X (V AR0) and one
last for constant a. The second step is to store g(X, Y ). The two terms differ on
the main functor, so tries bring no benefit here. In the last step, we store f(Y, 1)
and we save the two common nodes with f(X, a).

f/2

VAR0

a1

root

g/2

VAR0

VAR1

Fig. 1. Representing terms f(X, a), g(X,Y ) and f(Y, 1) in a trie

To increase performance, YapTab implements tables using two levels of tries:
one for subgoal calls; the other for computed answers. More specifically:

– each tabled predicate has a table entry data structure assigned to it, acting
as the entry point for the predicate’s subgoal trie.

– each different subgoal call is represented as a unique path in the subgoal trie,
starting at the predicate’s table entry and ending in a subgoal frame data
structure, with the argument terms being stored within the path’s nodes.
The subgoal frame data structure acts as an entry point to the answer trie.

– each different subgoal answer is represented as a unique path in the answer
trie. Contrary to subgoal tries, answer trie paths hold just the substitution
terms for the free variables which exist in the argument terms of the corre-
sponding subgoal call. This optimization is called substitution factoring [4].

An example for a tabled predicate t/2 is shown in Fig. 2. Initially, the subgoal trie
is empty2. Then, the subgoal t(X, f(1)) is called and three trie nodes are inserted:
one for variable X (V AR0), a second for functor f/1 and one last for constant 13.
2 In order to simplify the presentation of the following illustrations, we will omit the

representation of the trie root nodes.
3 Note that for subgoal tries, we can avoid inserting the predicate name, as it is already

represented in the table entry.
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subgoal frame for
t(VAR0,f(1))

f/1

VAR0

VAR1

subgoal
trie

:- table t/2.

t(X,Y) :- term(X),
          term(Y).

term(f(1)).
term(f(Z)). 1

table entry for t/2

answer
trie

f/1

1VAR0

subgoal frame for
t(VAR0,VAR1)

answer
trie

f/1

1VAR0

f/1

1VAR1

f/1

1VAR1

f
i
r
s
t
 
a
n
s
w
e
r

l
a
s
t
 
a
n
s
w
e
r

Fig. 2. YapTab table organization

The subgoal frame is inserted as a leaf, waiting for the answers. Next, the subgoal
t(X, Y ) is also called. The two calls differ on the second argument, so we need an
extra node to represent variable Y (V AR1) followed by a new subgoal frame. At
the end, the answers for each subgoal are stored in the corresponding answer trie
as their values are computed. Subgoal t(X, f(1) has two answers, X = f(1) and
X = f(Z), so we need three trie nodes to represent both: a common node for
functor f/1 and two nodes for constant 1 and variable Z (V AR0)4. For subgoal
t(X, Y ) we have four answers, resulting from the combination of the answers
f(1) and f(Z) for variables X and Y , which requires nine trie nodes.

Leaf answer trie nodes are chained in a linked list in insertion time order, so
that we can recover answers in the same order they were inserted. The subgoal
frame points to the first and last answer in this list. Thus, a repeated call only
needs to point at the leaf node for its last loaded answer, and consumes more an-
swers by just following the chain. To load an answer, the trie nodes are traversed
in bottom-up order and the answer is reconstructed.

On completion of a subgoal, a strategy exists that avoids answer recovery
using bottom-up unification and performs instead what is called a completed
table optimization. This optimization implements answer recovery by top-down
traversing the completed answer tries and by executing dynamically compiled
WAM-like instructions from the answer trie nodes. These dynamically compiled
instructions are called trie instructions and the answer tries that consist of these
4 The way variables are numbered in a trie is specific to each trie and thus there is no

correspondence between variables sharing the same number in different tries.
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f/1

1VAR0

f/1

1VAR1

f/1

VAR1

try_var

do_struct

try_var

do_struct

trust_atom

trust_atom

do_struct

try_var 1trust_atom

Fig. 3. Compiled trie for subgoal call t(V AR0, V AR1) in Fig. 2

instructions are called compiled tries [4]. Compiled tries are based on the obser-
vation that all common prefixes of the terms in a trie are shared during execution
of the trie instructions. Thus, when backtracking through the terms of a trie that
is represented using the trie instructions, each edge of the trie is traversed only
once. Figure 3 shows the compiled trie for subgoal call t(V AR0, V AR1) in Fig. 2.

Each trie node is compiled accordingly to its position in the list of sibling
nodes and to the term type it represents. For each term type there are four
specialized trie instructions. First nodes in a list of sibling nodes are compiled
using try ? instructions, intermediate nodes are compiled using retry ? instruc-
tions, and last nodes are compiled using trust ? instructions. Trie nodes without
sibling nodes are compiled using do ? instructions. For example, for atom terms,
the trie instructions are: try atom, retry atom, trust atom and do atom. As the
try ?/retry ?/trust ? instructions denote the choice possibilities when travers-
ing top-down an answer trie, at the engine level, they allocate and manipulate
a choice point in a manner similar to the generic try/retry/trust WAM instruc-
tions, but here the failure continuation points to the next sibling node. The do ?
instructions denote no choice and thus they don’t allocate choice points.

The implementation of tries requires the following fields per trie node: a first
field (token) stores the token for the node, a second (child), third (parent) and
fourth (sibling) fields store pointers respectively to the first child node, to the
parent node, and to the next sibling node. For the answer tries, an additional
fifth field (code) is used to support compiled tries.

3 Representation of List Terms

In this section, we introduce YapTab’s new design for the representation of list
terms. In what follows, we will refer to the original design as standard lists and
to our new design as compact lists. Next, we start by briefly introducing how
standard lists are represented in YapTab and then we discuss in more detail the
new design for representing compact lists.

3.1 Standard Lists

YapTab follows the seminal WAM representation of list terms [5]. In YapTab,
list terms are recursive data structures implemented using pairs, where the first
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(a) WAM Representation

PAIR

PAIR

1

PAIR

3

[]

1

PAIR

...

2

PAIR

...

2

3

[]

PAIR

...

(b) Original Trie Design

1

PAIR

...

2

3

...

PAIR

...

List Term
[1,2,3]

List Term
[1,2|3]

PAIR

3

1

PAIR

2

List Term
[1,2,3]

List Term
[1,2|3]

Fig. 4. YapTab’s WAM representation and original trie design for standard lists

pair element, the head of the list, represents a list element and the second pair
element, the tail of the list, represents the list continuation term or the end of
the list. In YapTab, the end of the list is represented by the empty list atom [ ].
At the engine level, a pair is implemented as a pointer to two contiguous cells,
the first cell representing the head of the list and the second the tail of the list.
In YapTab, as we will see next, the tail of a list can be any term. Figure 4(a)
shows YapTab’s WAM representation for lists in more detail.

Alternatively to the standard notation for list terms, we can use the pair
notation [H |T ], where H denotes the head of the list and T denotes its tail. For
example, the list term [1, 2, 3] in Fig. 4 can be alternatively denoted as [1|[2, 3]],
[1|[2|[3]]] or [1|[2|[3|[ ]]]]. The pair notation is also useful when the tail of a list
is neither a continuation list nor the empty list. See, for example, the list term
[1, 2|3] in Fig. 4(a) and its corresponding WAM representation. In what follows,
we will refer to these lists as term-ending lists and to the lists ending with the
empty list atom as empty-ending lists.

Regarding the trie representation of lists, the original YapTab design, as most
tabling engines, including XSB Prolog, tries to mimic the corresponding WAM
representation. This is done by making a direct correspondence between each
pair pointer at the engine level and a trie node labelled with the special token
PAIR. For example, the tokenized form of the list term [1, 2, 3] is the sequence
of 7 tokens < PAIR, 1, PAIR, 2, PAIR, 3, [ ] >. Figure 4(b) shows in more detail
YapTab’s original trie design for the list terms represented in Fig. 4(a).

3.2 Compact Lists

In this section, we introduce the new design for the representation of list terms.
The discussion we present next tries to follow the different approaches that we
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have considered until reaching our current final design. The key idea common to
all these approaches is to avoid the recursive nature of the WAM representation
of list terms and have a more compact representation where the unnecessary
intermediate PAIR tokens are removed.

Figure 5 shows our initial approach. In this first approach, all intermediate
PAIR tokens are removed and a compact list is simply represented by its term
elements surrounded by a begin and a end list mark, respectively, the BLIST
and ELIST tokens. Figure 5(a) shows the tokenized form of the empty-ending
list [1, 2, 3] that now is the sequence of 6 tokens < BLIST, 1, 2, 3, [ ], ELIST >
and the tokenized form of the term-ending list [1, 2|3] that now is the sequence
of 5 tokens < BLIST, 1, 2, 3, ELIST >.

Our approach clearly outperforms the standard lists representation when rep-
resenting individual lists (except for the base cases of list terms of sizes 1 to
3). It requires about half the nodes when representing individual lists. For an
empty-ending list of S elements, standard lists require 2S + 1 trie nodes and
compact lists require S +3 nodes. For a term-ending list of S elements, standard
lists require 2S − 1 trie nodes and compact lists require S + 2 nodes.

Next, in Fig. 5(b) we try to illustrate how this approach behaves when we
represent more than a list in the same trie. It presents three different situations:
the first situation shows two lists with the first element different (a kind of worst
case scenario); the second and third situations show, respectively, two empty-
ending and two term-ending lists with the last element different (a kind of best
case scenario).

Now consider that we generalize these situations and represent in the same trie
N lists of S elements each. Our approach is always better for the first situation,
but this may not be the case for the second and third situations. For the second
situation (empty-ending lists with last element different), standard lists require
2N + 2S − 1 trie nodes and compact lists require 3N + S nodes and thus, if

BLIST

[]

1

2

ELIST

3

BLIST

ELIST

1

2

3

BLIST

[]

1

2

ELIST

3

BLIST

ELIST

1

2

3

[]

ELIST

4

ELIST

4

BLIST

[]

1

2
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3
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List Term
[1,2|3]
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[2,3,4]
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List Terms
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(a) (b)

Fig. 5. Trie design for compact lists: initial approach
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N > S − 1 then standard lists is better. For the third situation (term-ending
lists with last element different), standard lists require N + 2S − 2 trie nodes
and compact lists require 2N + S nodes and again, if N > S − 2 then standard
lists is better.

The main problem with this approach is that it introduces an extra token in
the end of each list, the ELIST token, that do not exists in the representation
of standard lists. To avoid this problem, we have redesigned our compact lists
representation in such a way that the ELIST token appears only once for lists
with the last element different. Figure 6 shows our second approach for the
representation of compact lists.

In this second approach, a compact list still contains the begin and end list
tokens, BLIST and ELIST, but now the ELIST token plays the same role of
the last PAIR token in standard lists, i.e., it marks the last pair term in the
list. Figure 6(a) shows the new tokenized form of the empty-ending list [1, 2, 3]
that now is < BLIST, 1, 2, ELIST, 3, [ ] >, and the new tokenized form of the
term-ending list [1, 2|3] that now is < BLIST, 1, ELIST, 2, 3 >.

Figure 6(b) illustrates again the same three situations showing how this second
approach behaves when we represent more than a list in the same trie. For the
first situation, the second approach is identical to the initial approach. For the
second and third situations, the second approach is not only better than the
initial approach, but also better than the standard lists representation (except
for the base cases of list terms of sizes 1 and 2).

Consider again the generalization to represent in the same trie N lists of S
elements each. For the second situation (empty-ending lists with last element
different), compact lists now require 2N + S + 1 trie nodes (the initial approach
for compact lists require 3N + S nodes and standard lists require 2N + 2S − 1
nodes). For the third situation (term-ending lists with last element different),
compact lists now require N +S +1 trie nodes (the initial approach for compact
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Fig. 7. Trie design for compact lists: final approach

lists require 2N +S nodes and standard lists require N +2S−2 nodes). Despite
these better results, this second approach still contains some drawbacks that
can be improved. Figure 7 shows our final approach for the representation of
compact lists.

In this final approach, we have redesigned our previous approach in such a
way that the empty list token [ ] was avoided in the representation of empty-
ending lists. Note that, in our previous approaches, the empty list token is what
allows us to distinguish between empty-ending lists and term-ending lists. As we
need to maintain this distinction, we cannot simply remove the empty list token
from the representation of compact lists. To solve that, we use a different end
list token, EPAIR, for term-ending lists. Hence, the ELIST token marks the last
element in an empty-ending list and the EPAIR token marks the last element
in an term-ending list. Figure 7(a) shows the new tokenized form of the empty-
ending list [1, 2, 3] that now is < BLIST, 1, 2, ELIST, 3 >, and the new tokenized
form of the term-ending list [1, 2|3] that now is < BLIST, 1, 2, EPAIR, 3 >.

Figure 7(b) illustrates again the same three situations showing how this fi-
nal approach behaves when we represent more than a list in the same trie.
For the three situations, this final approach clearly outperforms all the other

Table 1. Number of trie nodes to represent in the same trie N list terms of S elements
each, using the standard lists representation and the three compact lists approaches

List Terms
Standard Compact Lists

Lists Initial Second Final

First element different
N [E1, ..., ES−1, ES ] 2NS + 1 NS + 2N + 1 NS + 2N + 1 NS + N + 1
N [E1, ..., ES−1|ES ] 2NS − 2N + 1 NS + N + 1 NS + N + 1 NS + N + 1

Last element different
N [E1, ..., ES−1, ES ] 2N + 2S − 1 3N + S 2N + S + 1 N + S + 1
N [E1, ..., ES−1|ES ] N + 2S − 2 2N + S N + S + 1 N + S + 1
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representations for standard and compact lists. For lists with the first element
different (first situation), it requires NS + N + 1 trie nodes for both empty-
ending and term-ending lists. For lists with the last element different (second
and third situations), it requires N + S + 1 trie nodes for both empty-ending
and term-ending lists. Table 1 summarizes the comparison between all the ap-
proaches regarding the number of trie nodes required to represent in the same
trie N list terms of S elements each.

4 Compiled Tries for Compact Lists

We then discuss the implications of the new design in the completed table opti-
mization and describe how we have extended YapTab to support compiled tries
for compact lists.

We start by presenting in Fig. 8(a) the compiled trie code for the standard
list [1, 2, 3]. For standard lists, each PAIR token is compiled using one of the
? list trie instructions. At the engine level, these instructions create a new pair
term in the heap stack to be bound to the term being constructed.

Figure 8(b) shows the new compiled trie code for compact lists. In the new
representation for compact lists, the PAIR tokens were removed. Hence, we need
to include the pair terms creation step in the trie instructions associated with
the elements in the list, except for the last list element. To do that, we have
extended the set of trie instructions for each term type with four new specialized
trie instructions: try ? in list, retry ? in list, trust ? in list and do ? in list. For
example, for atom terms, the new set of trie instructions is: try atom in list,
retry atom in list, trust atom in list and do atom in list. At the engine level,
these instructions create a new pair term in the heap stack to be bound to the
term being constructed and then they bind the head of the new pair to the
sub-term corresponding to the ? in list instruction at hand. Last list elements
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are treated as before and ELIST tokens are compiled using a new ? ending list
trie instruction. At the engine level, the ? ending list instructions also create a
new pair term in the heap stack to be bound to the term being constructed and,
in order to denote the end of the list, they bind the tail of the new pair to the
empty list atom [ ]. Finally, the BLIST and EPAIR tokens are compiled using
? void instructions. At the engine level, the ? void instructions do nothing. Note
however that the trie nodes for the tokens BLIST and EPAIR cannot be avoided
because they are necessary to distinguish between a term t and the list term
whose first element is t, and to mark the beginning and the end of list terms
when traversing the answer tries bottom-up.

Next we present in Fig. 9, two more examples showing how list terms includ-
ing compound terms, the empty list term and sub-lists are compiled using the
compact lists representation. The tokenized form of the list term [f(1, 2), [ ], g(a)]
is the sequence of 8 tokens < BLIST, f/2, 1, 2, [ ], ELIST, g/1, a > and
the tokenized form of the list term [1, [2, 3], [ ]] is the sequence of 8 tokens
< BLIST, 1, BLIST, 2, ELIST, 3, ELIST, [ ] >. To see how the new trie in-
structions for compact lists are associated with the tokens representing list ele-
ments, please consider a tokenized form where the tokens representing common
list elements are explicitly aggregated:

[f(1, 2), [ ], g(a)]: < BLIST, < f/2, 1, 2 >, [ ], ELIST, < g/1, a >>
[1, [2, 3], [ ]]: < BLIST, 1, < BLIST, 2, ELIST, 3 >, ELIST, [ ] >.

The tokens that correspond to first tokens in each list element, except for
the last list element, are the ones that need to be compiled with the new
? in list trie instructions (please see Fig. 9 for full details). For example, in
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Fig. 9. Compiled trie code for the compact lists [f(1, 2), [ ], g(a)] and [1, [2, 3], [ ]]
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list [f(1, 2), [ ], g(a)], the tokens to be compiled with the new ? in list trie in-
structions are the tokens f/2 and [ ]. Token f/2 because it is the first token in
the aggregated representation < f/2, 1, 2 > of the first list element and token [ ]
because it is the single token representing the second list element. For the second
example, list [1, [2, 3], [ ]], as the second list element is itself a list, the same idea
is applied not only to the tokens in the aggregated representation of the main list
but also to the tokens in the aggregated representation < BLIST, 2, ELIST, 3 >
of the sub-list.

5 Experimental Results

We next present some experimental results comparing YapTab with and without
support for compact lists. The environment for our experiments was an Intel(R)
Core(TM)2 Quad 2.66GHz with 2 GBytes of main memory and running the
Linux kernel 2.6.24-24-generic with YapTab 6.0.0.

To put the performance results in perspective, we have defined a top query
goal that calls recursively a tabled predicate list terms/1 that simply stores in
the table space list terms facts. We experimented the list terms/1 predicate
using 50,000, 100,000 and 200,000 list terms of sizes 60, 80 and 100 for empty-
ending and term-ending lists with the first and with the last element different.

Table 2. Table memory usage (in KBytes) and store/load times (in milliseconds) for
empty-ending lists using YapTab with and without support for compact lists

Empty-Ending Lists
YapTab YapTab+CL / YapTab

Mem Store Load Cmp Mem Store Load Cmp

First element different
50, 000 [E1, ..., E60] 117,188 480 58 52 0.51 0.50 0.76 0.75

100, 000 [E1, ..., E60] 234,375 1036 111 105 0.51 0.52 0.71 0.69
200, 000 [E1, ..., E60] 468,750 2151 209 211 0.51 0.54 0.72 0.61

50, 000 [E1, ..., E80] 156,250 673 73 72 0.51 0.48 0.71 0.68
100, 000 [E1, ..., E80] 312,500 1383 135 128 0.51 0.52 0.73 0.64
200, 000 [E1, ..., E80] 625,000 2806 277 246 0.51 0.54 0.71 0.64

50, 000 [E1, ..., E100] 195,313 850 81 78 0.51 0.55 0.67 0.67
100, 000 [E1, ..., E100] 390,625 1732 166 170 0.51 0.53 0.67 0.55
200, 000 [E1, ..., E100] 781,250 3605 319 309 0.51 0.52 0.65 0.59

Last element different
50, 000 [E1, ..., E60] 1,956 64 23 2.4 0.50 0.78 0.69 0.67

100, 000 [E1, ..., E60] 3,909 138 50 7.2 0.50 0.75 0.64 0.56
200, 000 [E1, ..., E60] 7,815 285 110 25.6 0.50 0.76 0.62 0.34

50, 000 [E1, ..., E80] 1,956 82 30 2.4 0.50 0.79 0.68 0.67
100, 000 [E1, ..., E80] 3,909 171 71 8.0 0.50 0.81 0.61 0.40
200, 000 [E1, ..., E80] 7,816 375 178 24.8 0.50 0.70 0.50 0.32

50, 000 [E1, ..., E100] 1,957 101 44 1.6 0.50 0.81 0.60 1.00
100, 000 [E1, ..., E100] 3,910 211 82 7.2 0.50 0.76 0.62 0.44
200, 000 [E1, ..., E100] 7,817 426 195 24.8 0.50 0.79 0.55 0.32
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Table 3. Table memory usage (in KBytes) and store/load times (in milliseconds) for
term-ending lists using YapTab with and without support for compact lists

Term-Ending Lists
YapTab YapTab+CL / YapTab

Mem Store Load Cmp Mem Store Load Cmp

First element different
50, 000 [E1, ..., E59|E60] 115,235 494 58 61 0.52 0.50 0.78 0.68

100, 000 [E1, ..., E59|E60] 230,469 1028 113 97 0.52 0.54 0.67 0.64
200, 000 [E1, ..., E59|E60] 460,938 2115 206 189 0.52 0.55 0.71 0.65

50, 000 [E1, ..., E79|E80] 154,297 637 72 66 0.51 0.52 0.73 0.70
100, 000 [E1, ..., E79|E80] 308,594 1402 138 134 0.51 0.53 0.69 0.63
200, 000 [E1, ..., E79|E80] 617,188 2804 266 254 0.51 0.56 0.68 0.62

50, 000 [E1, ..., E99|E100] 193,360 889 82 79 0.51 0.51 0.68 0.68
100, 000 [E1, ..., E99|E100] 386,719 1695 162 163 0.51 0.55 0.66 0.60
200, 000 [E1, ..., E99|E100] 773,438 3535 322 319 0.51 0.51 0.64 0.57

Last element different
50, 000 [E1, ..., E59|E60] 979 58 22 2.4 1.00 0.88 0.71 0.67

100, 000 [E1, ..., E59|E60] 1,956 121 45 4.0 1.00 0.86 0.82 0.80
200, 000 [E1, ..., E59|E60] 3,909 238 92 10.4 1.00 0.89 0.73 0.85

50, 000 [E1, ..., E79|E80] 980 78 34 2.4 1.00 0.84 0.62 0.67
100, 000 [E1, ..., E79|E80] 1,956 150 59 4.0 1.00 0.88 0.72 1.00
200, 000 [E1, ..., E79|E80] 3,909 298 118 8.0 1.00 0.91 0.72 1.00

50, 000 [E1, ..., E99|E100] 981 92 36 1.6 1.00 0.85 0.73 1.00
100, 000 [E1, ..., E99|E100] 1,957 194 96 4.0 1.00 0.88 0.53 1.00
200, 000 [E1, ..., E99|E100] 3,910 378 177 9.6 1.00 0.86 0.61 0.83

Tables 2 and 3 show the table memory usage (columns Mem), in KBytes,
and the running times, in milliseconds, to store (columns Store) the tables (first
execution) and to load from the tables (second execution) the complete set of
answers without (columns Load) and with (columns Cmp) compiled tries for
YapTab using standard lists (column YapTab) and using the final design for
compact lists (column YapTab+CL / YapTab). For compact lists, we only
show the memory and running time ratios over YapTab using standard lists. The
running times are the average of five runs.

As expected, the memory results obtained in these experiments are consistent
with the formulas presented in Table 1. The results in Tables 2 and 3 clearly
confirm that the new trie design based on compact lists can decrease significantly
memory usage when compared with standard lists. In particular, for empty-
ending lists, with the first and with the last element different, and for term-
ending lists with the first element different, the results show an average reduction
of 50%. For term-ending lists with the last element different, memory usage is
almost the same. This happens because the memory reduction obtained in the
representation of the common list elements (respectively 59, 79 and 99 elements
in these experiments) is residual when compared with the number of different
last elements (50,000, 100,000 and 200,000 in these experiments).
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Regarding running time, the results in Tables 2 and 3 indicate that compact
lists can achieve impressive gains for storing and loading list terms. In these
experiments, the storing time using compact lists is around 2 times faster for
list terms with the first element different, and around 1.1 to 1.4 times faster
for list terms with the last element different. Note that this is the case even for
term-ending lists, where there is no significant memory reduction. This happens
because the number of nodes to be traversed when navigating the trie data
structures for compact lists is considerably smaller than the number of nodes for
standard lists.

These results also indicate that compact lists can outperform standard lists
for loading terms, both with and without compiled tries, and that the reduction
on the running time seems to decrease proportionally to the number of list terms
and to the size of the list terms being considered. The exception is compiled tries
for term-ending lists with the last element different, but the execution time in
these experiments is too small to be taken into consideration.

6 Conclusions

We have presented a new and more compact representation of list terms for
tabled data that avoids the recursive nature of the WAM representation by
removing unnecessary intermediate pair tokens. Our presentation followed the
different approaches that we have considered until reaching our current final
design. We focused our discussion on a concrete implementation, the YapTab
system, but our proposals can be easy generalized and applied to other tabling
systems. Our experimental results are quite interesting, they clearly show that
with compact lists, it is possible not only to reduce the memory usage overhead,
but also the running time of the execution for storing and loading list terms,
both with and without compiled tries.

Further work will include exploring the impact of our proposal in real-world
applications, such as, the recent works on Inductive Logic Programming [8] and
probabilistic logic learning with the ProbLog language [9], that heavily use list
terms to represent, respectively, hypotheses and proofs in trie data structures.
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Abstract. Newer Prolog implementations commonly offer support for multi-
threading, and many also offer support for tabling. However, most implemen-
tations do not yet integrate tabling with multi-threading, and in particular do
not support the sharing of a tabled computation among threads. In this pa-
per we present algorithms to share completed tables among threads based on
Concurrent Local SLG evaluation (SLGCL). SLGCL is based on the Local
scheduling strategy, and is designed to support applications in which threads con-
currently share tabled evaluations. Version 3.2 of XSB implements SLGCL in the
SLGCLWAM, which fully supports well-founded tabled negation, construction
of residual programs, tabled constraints and answer subsumption. The implemen-
tation of SLGCL requires significant additions to a single tabling operation only.
As a result, SLGCL should be implementable by any tabling systems that uses
Local evaluation based on the SLG-WAM or Chat engine, and may also be appli-
cable to those using linear tabling.

1 Introduction

A number of Prologs have become multi-threaded, while at the same time several Pro-
logs also support tabling, including XSB, YAP [11], B-Prolog [15], Mercury [13],
ALS [7] and Ciao [8]. Although there has been work in combining tabling with par-
allel Prologs, most notably [11], little work has been done to extend tabling to multi-
threaded engines and the types of concurrent applications they support. In this paper,
we describe algorithms that allow concurrently executing threads to share tables and
that are based on a popular scheduling strategy for tabling called Local evaluation [4].
The general idea behind Local evaluation is to fully evaluate each mutually dependent
set of tabled subgoals before returning answers to other subgoals outside of that set. As
a result, Local evaluation requires less space than other scheduling strategies for many
programs. In addition, since it postpones the return of answers outside of a mutually
dependent set of subgoals until that set is completely evaluated, Local evaluation can
reduce the amount of delay and simplification operations required for tabled negation.
For the same reason, the method is efficient for applications that benefit from answer
subsumption: in which a computation retains only the join of answers over an upper
semi-lattice, or only answers that are maximal for a partial order. Local evaluation is
supported by several tabling systems including XSB, YAP, B-Prolog and Ciao.

M. Carro and R. Peña (Eds.): PADL 2010, LNCS 5937, pp. 264–278, 2010.
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Our approach is based on an operational semantics called Concurrent Local SLG
(SLGCL) [9], which allows concurrently executing threads to share tables while main-
taining a Local evaluation. We describe the algorithms needed to implement SLGCL

on XSB’s SLG-WAM [12] creating the SLGCLWAM. This engine is supported in the
current version of XSB (3.2) and has been fully tested for well-founded tabled negation
with residual programs, for tabled constraints, and for answer subsumption. Beyond
the overhead of a multi-threaded emulator, the implementation of SLGCL imposes no
overhead on Prolog execution or on evaluations that use thread-private tabling.

SLGCL is designed primarily for concurrent applications that use shared tables to
amortize the time for queries, rather than for parallelism based on tabling: a choice that
is determined in part by the nature of Local evaluations. Examples of concurrent appli-
cations that would benefit from this engine are multi-threaded servers based on hybrid
MKNF knowledge bases [1,5] or on the object logic FLORA-2 [14], along with seman-
tic web agents using the SILK language [6]. All of these frameworks are implemented
in XSB and make heavy use of advanced features such as tabled negation, but do not yet
make use of multi-threading. In such servers or agents, shared tables construct T-box or
schema information, and interface with external reasoners and databases; thread-private
tables support A-box or object level information that is less likely to need to be shared.
The decision to support concurrency over parallelism enables a simplicity of imple-
mentation that has helped lead to the robustness indicated above. The extensions for the
SLGCLWAM are nearly all made to a single instruction: tabletry (which is executed
upon the call of a tabled subgoal) and can nearly all be inserted as a function call. While
we describe our implementation in terms of the SLG-WAM, the algorithms are not spe-
cific to this engine. In fact, since most tabling methods execute an operation analogous
to tabletry when calling a tabled subgoal, SLGCL should not be hard to implement
in other tabling systems that support Local evaluation. Section 2 reviews SLGCL and
aspects of the SLG-WAM that are most relevant to this paper. Section 3 describes algo-
rithms for the SLGCLWAM, arguing their correctness from theorems of SLGCL, and
Section 4 provides an indication of complexity and performance of the SLGCLWAM.

2 Background

Due to space limitations, our presentation assumes a general knowledge of tabled eval-
uation and of the WAM. In this section, we briefly and sometimes informally review
aspects of tabling that pertain to definite programs, and aspects of the SLG-WAM that
directly relate to the implementation of SLGCL. Discussion of negation in the formal-
ism and implementation is postponed until Section 3.1.

2.1 SLG and Local Evaluation for Definite Programs

Our presentation of SLG [3] and its extensions makes use of a forest of trees model (see
e.g. [9]). In this model, an SLG evaluation is a sequence of forests of SLG trees. Each
SLG tree is associated with a tabled subgoal encountered in the evaluation (variant
subgoals are considered identical), and consists of nodes of the form Head:-Goals
in which Head carries the bindings found in a proof of a tabled subgoal and Goals
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contains the list of goals remaining for the proof. A node with empty Goals is termed
an answer. The literal selection strategy in Goals is fixed-order; in this paper we assume
it to be left-to-right. If a node in a forest has a selected atom A that is not associated
with an SLG tree, a NEW SUBGOAL operation is applicable to allow the creation of a
new tree with root A:-A. Children of the root of a tree are produced by the PROGRAM

CLAUSE RESOLUTION operation; children of other nodes are produced by ANSWER

RESOLUTION. For definite programs this operation is equivalent to considering the
answer as a fact and resolving it against the selected literal of Goals.

The above three operations continue until no more operations are possible for a set
of mutually dependent subgoals. To make more precise the notion of dependency, we
say that S1 directly depends on a non-completed subgoal S2 in a forest F iff S2 is
the selected atom of some node in the tree for S1 in F . Then, for a given forest F
the Subgoal Dependency Graph of F , SDG(F ) = (V,E), is a directed graph in which
(Si, Sj) ∈ E iff subgoal Si directly depends on subgoal Sj , while V is the underlying
set of E. The above definition relies on the notion of a subgoal being completed. To
explain this, we first state that within a finite SLG evaluation, a set S of subgoals is
completely evaluated in F if S forms a maximal SCC in SDG(F) and all applicable
NEW SUBGOAL and resolution operations have been performed on all nodes of every
tree in the set. A COMPLETION operation is applicable to a set of completely evaluated
subgoals, and explicitly marks each tree with the token complete.

For a given forest there may be many applicable SLG operations. Formalisms that
restrict the number of applicable SLG operations in a given forest without sacrificing
completeness are called scheduling strategies. Local evaluation is a scheduling strategy
that makes use of the definition of an independent SCC. We call a strongly connected
component S independent if it is maximal and ∀S ∈ S, if S depends on some S′,
then S′ ∈ S. Informally, a Local evaluation is one in which for any forest F , NEW

SUBGOAL, ANSWER RESOLUTION and PROGRAM CLAUSE RESOLUTION operations
are applied only to trees whose subgoals are in an independent SCC of F , and that
COMPLETION operations are applied to all subgoals in an independent SCC at once.
Several properties of Local evaluation are proved in [9]. The implementation in this
paper makes direct use of the following theorem:

Theorem 1 ([9]). Let EL be a finite Local SLG evaluation. For each F in EL there is
at most one incoming edge for each SCC in SDG(F).

2.2 SLGcl

SLGCL [9] formalizes the actions of several threads of computation on a set of atomic
queries, where each thread performs a Local evaluation. In SLGCL a tree can be marked
with a thread identifier (tid) in addition to the token complete. SLGCL then adds thread
compatibility restrictions to those of Local evaluation. If a NEW SUBGOAL operation
is performed by a thread T , the newly created tree is marked with the thread identifier
T 1. Next, an answer A can be returned to a tree marked with T only if the tree in which
A occurs is completed or also marked with T . And finally, a COMPLETION operation is
applicable to a set of subgoals only if they are all marked with the same tid. When the

1 In this paper we do not distinguish between a thread and its identifier.
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COMPLETION operation is applied, all completed trees have their tid overridden with
complete. By themselves, the thread compatibility restrictions prevent completeness,
as a forest may be deadlocked. A set S of non-completed subgoals in a forest F is in
deadlock if: for each S ∈ S there are no applicable SLGCL operations in any node in
the tree for S. A new SLGCL operation resolves a deadlock for a forest and preserves
completeness:

USURPATION: Given a set of subgoals S in deadlock mark all trees of S with
marking(S) for some S ∈ S.

With the USURPATION operation, SLGCL can be proved complete, and it can be
proved that each thread performs a Local evaluation regardless of whether it suspends
or has a subgoal usurped [9]. The algorithm of Section 3 relies on properties about
thread dependencies. In a forest F let an active thread be a tid T such that there exists
a tree, Tr ∈ F , such that marking(Tr) = T . Then for two active threads, T1 and
T2 in a SLGcl forest F , T1 directly depends on T2 if there exist a subgoal in T1 that
directly depends on a subgoal in T2 (according to the definition of SDG(F)). The
Thread Dependency Graph TDG(F ) = (V,E) of F is a directed graph where V is the
set of active threads in F and (ti, tj) ∈ E iff active thread ti directly depends on active
thread tj . For a forest F it is not hard to see that TDG(F) is a graph homomorphism
of SDG(F), leading to the following theorem, which is used in Section 3.

Theorem 2. [9] Let F be a forest in a SLGcl evaluation. Then for each node in
TDG(F) there is at most one outgoing edge.

Example 1. To illustrate the USURPATION operation and other concepts of SLGCL con-
sider program P1 (Figure 1) and let there be three threads with identifiers 1,2 and 3 ex-
ecuting the initial queries ?- t1(X), ?- t2(X), ?- t3(X), respectively. Assume
that thread 1 calls t1(X) which calls a(X) and then d(X), while meanwhile thread
2 calls t2(X) and b(X). Immediately after this sequence thread 1 also calls b(X);
because b(X) is marked by thread 2, thread 1 has no applicable operations (in a Local
evaluation) — informally we say thread 1 is suspended. The SDG and TDG for the
forest at this point are shown in Figure 2a. There is not yet deadlock, because thread
2 can still call d(X). Thread 2 then does call d(X), and determines that there is a
deadlock. Thread 2 usurps d(X) from thread 1 arriving at the state shown in Figure 2b.
Proceeding onward, thread 2 calls a(X), and again determines that there is a deadlock.
The subgoal a(X) is usurped from thread 1 and marked as belonging to thread 2. At
this point let thread 3 call t3(X) and c(X), while just afterward in thread 2, a(X)

:- table a/1, b/1, c/1, d/1.

t1(X):- a(X) t2(X):- b(X). t3(X):- c(X).

a(X) :- d(X). b(X) :- d(X). c(X) :- a(X). d(X) :- b(X).
a(X) :- c(X). b(b). c(y). d(X) :- a(X).
a(x). d(d).

Fig. 1. Program P1
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Fig. 2. Concurrent execution of P1

also calls c(X). As c(X) belongs to thread 3 and as there is no deadlock, thread 2 sus-
pends. Immediately after, thread 3 calls a(X) a state shown in Figure 2c. Now thread 3
detects a deadlock and usurps the SCC that was being computed by thread 2, as shown
in Figure 2d. Threads 1 and 2 continue to be suspended. and both depend on thread 3,
Eventually thread 3 completes the SCC. Only then are ANSWER RESOLUTION opera-
tions applicable for threads 1 and 2 using answers from the usurped SCC.

2.3 Review of Relevant Portions of the SLG-WAM

We briefly review aspects of the SLG-WAM that are affected by or support the addition
of concurrency to SLG. Aspects directly relevant to SLGCL are presented in fuller detail
in Section 3.

Table Space. The SLG-WAM maintains table space to store the tabled subgoals with
their answers [10]. The relevant data structures include the following. The Table Infor-
mation Frame or TIF is the top-level structure for each tabled predicate and contains
information about the predicate, information for memory management, and a pointer to
a subgoal trie which stores all current subgoals for a tabled predicate. When encoun-
tering a tabled subgoal, a subgoal check insert() function is called, which checks
whether a subgoal is present in a trie and inserts it if not. Each leaf node of the subgoal
trie corresponds to a subgoal S and points to a subgoal frame which contains informa-
tion about S. Two fields of the subgoal frame are relevant for our purposes. A marking
field indicates whether or not S has been completed. An ansTrieRoot field points to the
root node (if any) for the trie of answers for S. When a derivation produces an answer
A, A is inserted into the answer trie if needed by an answer check insert() function.
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Nodes in the answer trie contain executable instructions, so that if S is completed, a call
to S branches to the answer trie root to begin returning answers.

The Completion Stack. XSB’s SLG-WAM keeps a completion stack where each frame
represents a pointer to a non-completed tabled subgoal in the current forest, along with
dependency information used to construct a safe (over-) approximation of the indepen-
dent SCC of the current SDG 2. The completion stack is also used for scheduling in
Local evaluation, where the oldest subgoal in the independent SCC is called the leader
of the SCC (cf. [12,4]).

SLG-WAM instructions. The SLG-WAM contains several instructions not in the
WAM, the more important of which we briefly cover. The new answer instruction
adds answers to the table when an answer derivation succeeds The answer return
instruction corresponds to the SLG ANSWER RESOLUTION operation. Finally, the
check complete instruction checks for completion of an SCC and schedules an-
swer return and other instructions if subgoals in the SCC have not been completely
evaluated.

The tabletry instruction is the only significantly affected instruction in the
SLGCLWAM and its sequential version is shown in Figure 3. The tabletry instruction
for a subgoal subgoal has arguments (Arity, NextClause, TIF ). As in the WAM,
the representation of subgoal is implicit in the argument registers; Arity is the number
of registers to save and restore upon backtracking; and NextClause the failure con-
tinuation. A new argument, TIF , is used to access the subgoal trie through the table
information frame. When tabletry executes, a subgoal check insert() is performed
for subgoal in the subgoal trie for its predicate symbol. If subgoal is in the table and
has been marked as completed, tabletry branches directly to the answer trie of subgoal

Instruction tabletry(Arity, nextClause, TIF )
/* subgoal is in argument registers; Arity is arity of subgoal;

nextClause is failure continuation; TIF points to table information frame */
Perform the subgoal check insert(subgoal) operation in the trie for this predicate
If subgoal is not new

If subgoal has not been marked as completed
Create a consumer choice point for subgoal, and freeze stacks
Begin to backtrack through any answers for subgoal

Else /* subgoal is not new but is completed */
Branch to the answer trie to perform resolution of any answers for subgoal

Else /* subgoal is new */
Set up a subgoal frame for subgoal;
Set up a generator choice point to perform program clause resolution;
Push a new completion stack frame onto the Completion Stack;
Branch to the next instruction to perform program clause resolution;

Fig. 3. Summary of the tabletry instruction in the sequential SLG-WAM

2 In Local evaluation, this approximation is exact if Early Completion is not used.



270 R. Marques, T. Swift, and J. Cunha

if it has answers (failing if there are no answers). If subgoal is new, a subgoal frame
is created for subgoal, along with a generator choice point which will be used to per-
form PROGRAM CLAUSE RESOLUTION. If subgoal is not new and not completed, a
consumer choice point is created to return answers to the calling environment. In the
SLG-WAM stacks are also frozen so that computations that are waiting for an answer
and have been suspended can be resumed when answers are later available.

Extensions for Multi-Threading. In multi-threaded XSB, each thread of tabled exe-
cution has a structure called a thread context in which thread-specific information is
maintained. Thus, for instance the E register for a thread is accessed as a field of its
context structure. When a thread is suspended, any other thread can safely examine,
and in some cases change, data in its context. In XSB, tables can be thread-shared or
thread-private, although in this paper we restrict our attention to thread-shared tables.
For shared tables, there is a lock on the subgoal trie when inserting a (shared) tabled
predicate, but as will be seen no lock is required for answer tries (other than that re-
quired by the underlying memory management system).

3 Implementing SLGCL in the SLG-WAM

The main addition needed to implement SLGCL in the SLG-WAM is the USURPATION

operation: its implementation mainly affects the tabletry instruction, and is summarized
in Figure 4. The tabletry instruction for the SLGCLWAM differs from that of the SLG-
WAM only if the called subgoal is not new and is currently marked by another thread
(and therefore not marked as completed). In this case deadlock detection is performed
and if a deadlock is not found the thread suspends, as it does not have any applicable
SLGCL operations; otherwise the thread performs a USURPATION operation. When a
thread usurps subgoals in this implementation of SLGCL, any partial computations for
the usurped subgoals are lost, and will be recomputed by the usurping thread. This
design decision allows SLGCL to be added to a tabling engine in a simple manner,
though, as shown below, the abstract complexity of evaluation for the well-founded
semantics is not affected.

Before discussing implementation of the USURPATION operation, we discuss two
small changes. First, the tid marking for an incomplete tabled subgoal is kept in the
marking field of the subgoal frame, while for completed tables the field continues to
contain the term complete. Second, the check complete instruction is changed to wake
any suspended threads waiting on the completing subgoals; as discussed below, this is
done through a condition variable associated with each TIF frame.

Detecting Deadlock. The definition of deadlock used in the SLGCLWAM differs from
that of Section 2.2 in that the implementation considers an independent SCC to be
deadlocked even if there are applicable PROGRAM CLAUSE RESOLUTION or DELAY-
ING operations while the formalism does not. In the SLGCLWAM there is no reason
to perform these operations since the partial computations of usurped subgoals will
be discarded. Checking for deadlock is performed by the check deadlock() function
(Figure 5). check deadlock() has a simple form: if the current thread calls a non-
completed subgoal marked by another thread, it determines whether adding the depen-
dency from the calling subgoal to the called subgoal would give rise to a deadlock.
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Instruction tabletry(Arity, nextClause, TIF )
/* subgoal is in argument registers; Arity is arity of subgoal;

nextClause is failure continuation; TIF points to table information frame */
Perform the subgoal check insert(subgoal) operation in the trie for this predicate
If subgoal is not new and is marked by another thread

If waiting for subgoal to complete would produce a deadlock
/* all other threads in the independent SCC are suspended at deadlock */
Perform the usurpation operation:

Mark all subgoals in the independent SCC as usurped
For each thread T with an usurped subgoal ST

reset T to perform its call to ST

/* T will be awakened when ST is completed */
Else suspend the thread until subgoal completes

Proceed as in the sequential case; if subgoal was usurped, treat it as a new subgoal

Fig. 4. Summary of the changes to the tabletry instruction

check deadlock( subgoal thread, current thread )
/* subgoal thread marks the subgoal called by current thread */
while( subgoal thread �= NULL )

if( subgoal thread = current thread ) return true;
else subgoal thread ← subgoal thread.suspended on thread);

return false;

Fig. 5. The check deadlock function

Dependencies in the TDG are maintained by a new suspended on thread field in the
thread’s context.3 If creating such a dependency would cause the calling thread to de-
pend on itself, then a deadlock is detected and a USURPATION operation will be neces-
sary. Otherwise, if there is no present deadlock, the calling thread can simply suspend,
waiting for the called subgoal to be completed. The correctness of check deadlock()
relies on the fact that any thread self-dependencies in the TDG are simple cycles with-
out any subcycles: a corollary of Theorem 2 which states that each thread can depend
on at most one other thread.

Gaining Control of Usurped Subgoals. The fact that the thread dependencies for dead-
locked threads form a simple cycle also underlies the control flow of the usurp() func-
tion (Figure 6) which consists of two traversals of the deadlocked TDG cycle. In the
first traversal, Tusurper updates the TDG, setting the suspended on thread field of each
usurped thread to its own id. Adjusting the TDG must be performed under global mu-
tual exclusion: otherwise two usurping threads concurrently adjusting the TDG might
produce an incoherent TDG. Exclusion is enforced by the usurpation mutex, which
is set earlier in the tabletry instruction (see Figure 8) and is unset immediately after
the TDG is updated in usurp(). In the second traversal, the execution stacks in each
usurped thread are examined and manipulated through the function mark and reset()

3 In this presentation, we do not distinguish between a thread’s id and its context.
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usurp( dep SF , first usurped, Tusurper )
/* Tusurper called a subgoal with frame dep SF , marked by first usurped */
Tusurped ← first usurped;
while( Tusurped �= Tusurper ) /* first reset the TDG */

Tusurped.next ← Tusurped.suspended on thread;
Tusurped.suspended on thread ← Tusurper;
Tusurped ← Tusurped.next;

unlock( usurpation mutex ); /* locked in tabletry */
Tusurped ← first usurped;
while( Tusurped �= Tusurper ) /* now reset stacks for usurped */

reset sf ← mark and reset( Tusurper, Tusurped, dep SF );
/* reset sf is true value of Ssusp for Tusurped */
dep SF ← Tusurped.suspended on subgoal;
/* dep SF is the dependency to be propagated from Tusurped to Tusurped.next */
Tusurped.suspended on subgoal ← reset sf ;
Tusurped ← Tusurped.next;

Fig. 6. The usurp procedure

(Figure 7). This stack manipulation is safe since each usurped thread is suspended on the
completion of a subgoal. In addition to resetting stacks, mark and reset() propagates
subgoal dependencies among threads. The dependency propagation is based in part on a
corollary of Theorem 1 that each thread can depend on at most one subgoal, Ssusp, in its
independent SCC, the value for which is maintained in the new suspended on subgoal
field in the thread context. To characterize Ssusp, observe that when a thread, Tusurped,
is involved in deadlock, all threads in the deadlock share the same independent SCC,
SCCdlock and Tusurped should be suspended on the first subgoal in SCCdlock that it
encountered during its evaluation. At deadlock, however, Tusurped may not know the
true value of Ssusp because it may not know the true extent of SCCdlock as dependen-
cies from other threads may not have been propagated to Tusurped. In fact, there is only
one dependency that must be propagated to Tusurped. To see this, recall that because
a deadlock is a cycle in the TDG, any Tusurped has exactly one thread, Tdep depend-
ing on it, and by Theorem 1, Tdep is suspended on exactly one subgoal in Tusurped.
This dependency is passed into mark and reset() which determines the true value of
Ssusp for Tusurped in a manner discussed below. When mark and reset() succeeds, it
returns the true value of Ssusp to usurp(), which sets the suspended on subgoal field
of Tusurped. Before doing so, the old suspended subgoal of Tusurped is obtained to be
propagated to the next thread in the TDG cycle.

In addition to dependency propagation, mark and reset() also marks the subgoal
frames for usurped subgoals, and resets the execution stacks for the thread Tusurped

so that it will no longer compute its usurped subgoal, but rather will return answers
once the usurped subgoal has been completed. The details are as follows. The func-
tion first checks whether the subgoal frame marked by Tusurped has already had its
information reset, by checking a new usurped field in the subgoal frame. For a pre-
viously usurped subgoal, the marking field need only be set with the id of Tusurper

and mark and reset() can return immediately. Otherwise if the subgoal has not been



A Simple and Efficient Implementation of Concurrent Local Tabling 273

mark and reset( Tusurper, Tusurped, dep SF )
/* The dependency dep SF is propagated to Tusurped during usurpation*/
if( dep SF.marking �= Tusurped ) /* usurped was previously usurped */

return Tusurped.suspended on subgoal;
/* Find the oldest subgoal deadlocking SCC and mark subgoal frames */
CSF ← Tusurped.CmplStkReg; found dep SF ← false;
while( not (found dep SF and is scc leader(CSF )) )

if ( CSF.subg ptr = dep SF ) found dep SF ← true;
SF ← CSF.subg ptr;
SF.usurped ← true; SF.marking ← Tusurper;
reset subgoal frame cells in SF having to do with computation state in the stacks
decrement(CSF );

/* Finally, reset the stacks of Tusurped */
Tusurped.ComplStkReg ← CSF ; /* pop the completion stack */
Tusurped.B ← SF.generator cp; /* get the generator cp */
use the information in the generator cp to reset usurped’s stacks;
Tusurped.P ← Tusurped.B.reset pcreg; /* set forward continuation */
Tusurped.B ← Tusurped.B.prevbreg; /* delete the generator cp */
return CSF.subg ptr;

Fig. 7. The mark and reset() procedure

previously usurped, the function uses a while loop to traverse the completion stack of
Tusurped to find its portion of SCCdlock (as mentioned in Section 2.3 an independent
SCC is represented by a segment on the top of the completion stack). However, as dis-
cussed above, the dependency from Tdep to Tusurped is not propagated until a thread is
actually usurped. Accordingly, in Figure 7, the completion stack is traversed from the
top of stack, represented by usurped.CmplStkReg to the true leader of the revised
SCC. More precisely, the completion stack is traversed until the first leader is found
that is at least as old as the new dependency, dep SF . This is essentially the same prop-
agation as if Tusurped itself had called the subgoal represented by dep SF (see [12] for
the actual computation of leaders in the SLG-WAM).

For each completion stack frame traversed in the while loop, the appropriate subgoal
frame is obtained, its usurped field set, its marking field set to Tusurper , and other
fields re-initialized. Once the while loop is exited, CSF is the completion stack frame
associated with the proper suspended subgoal, Ssusp. Next, the state of Tusurped is set
to call Ssusp. This is done by obtaining the generator choice point for Ssusp, which pro-
vides information to reset stack and freeze registers of Tusurped in a manner analogous
to failing. A small difference from failing is that the argument registers of Tusurped are
reset to their state at the call of Ssusp rather than to a failure continuation. In order to
do this, a generator choice point contains a new reset pcreg field which points to the
original tabletry instruction for Ssusp, which is used to set the P register of Tusurped.
Upon awakening Tusurped will re-execute the tabletry instruction, but this time it will
determine that Ssusp has been completed, and will simply return any answers in the
completed table for Ssusp.

The tabletry Instruction. The tabletry instruction (Figure 8) detects deadlock, and
ensures that if there is deadlock one and only one thread performs usurpation. We
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describe the actions of a thread T calling a subgoal subgoal for a shared tabled predicate
Pred, ignoring at first concurrency issues. In addition to the Arity and nextClause
pointer of a WAM try, tabletry contains a pointer to the predicate-level (TIF) (Sec-
tion 2.3). The TIF field contains a pointer to the subgoal trie, but also information on
whether Pred is thread shared or thread private — Figure 8 includes pseudo-code only
for shared tables. The function subgoal check insert() determines whether subgoal
resides in the subgoal trie: it returns a pointer to its subgoal frame if so and Null if not.
If subgoal is new, actions proceed as usual, although the marking field of the subgoal
frame is set to the executing thread’s id, T (case α). Otherwise if subgoal is not new
(case β), if subgoal has been usurped by Tusurper (case β.1), computation of subgoal
must be started afresh by T so the normal steps for a new tabled subgoal are taken, a
step ensured by setting the new subgoal flag. In case β.2 if subgoal is not marked by T
(and not completed) a determination must be made whether to suspend T or to perform
a USURPATION operation. As discussed above, check deadlock() is called and if there
is a deadlock usurp() is called; afterwards control will jump to the sequential portion
of tabletry where the usurped subgoal will be treated as new. If there is no deadlock,
the suspended on thread and suspended on subgoal fields of T ’s subgoal frame are set,
and T suspends on a condition variable associated with the TIF for subgoal. The se-
quential portion of tabletry works as in the SLG-WAM, with the minor exception that
a subgoal is treated as new if the new subgoal flag has been set.

Returning to the concurrency issues for tabletry, it must be ensured that one and only
one thread will create a new tabled subgoal, and if any deadlock occurs, one and only
one thread will usurp the deadlocked SCC — while at the same time allowing as much
concurrency as possible. The first issue is to ensure mutual exclusion for the (predicate-
level) subgoal trie during the subgoal check insert() function. Each subgoal trie (for
thread-shared tables) has its own mutex. This mutex locked by subgoal check insert()
and unlocked as soon as possible — immediately after the frame is created for subgoal
if subgoal was new. Next, a global usurpation mutex is locked to ensure exclusion of
check deadlock() and part of the usurp() functions; as discussed above this is nec-
essary to prevent two threads from concurrently updating the TDG and possibly mak-
ing it incoherent. If T suspends, it will wait on a condition variable associated with
the predicate-level TIF of subgoal. When T is awakened, it must recheck whether
subgoal was actually completed, as different subgoals may share the same predicate-
level condition variable.

Summary of Changes. The changes to SLG-WAM data structures include the sus-
pended on thread and suspended on subgoal fields of the thread context, which are
used to maintain the thread dependency graph and parts of the subgoal dependency
graph; a next field is also needed for TDG cycle traversal by usurp(). In addition there
is the usurped field in the subgoal frame and the reset pcreg field in the generator choice
point, both of which are required for usurpation. Since any shared table is marked by
a single thread, no locks are required for answer tries. Finally, a condition variable is
added to each TIF , and a global usurpation mutex is required. At the instruction level,
there is a minor change to the check complete instruction to wake up threads that
may be suspended on completing subgoals. The tabletry instruction has the additions
described in this section. However, no changes are needed to tabletry code beyond
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Instruction tabletry(Arity, Clause, TIF )
/* subgoal is in argument registers; T is executing thread */
lock(TIF.subgoal trie mutex); /* Handle shared tables */
SF ← subgoal check insert(subgoal, TIF );

α if ( SF = NULL ) /* subgoal is not in the table */
SF ← CreateSubgoalFrame(subgoal);
/* sets SF.usurped ← false; SF.marking ← T ; */
unlock(TIF.subgoal trie mutex);
new subgoal ← true;

β else /* subgoal is already in the table */
unlock(TIF.subgoal trie mutex);

β.1 if( SF.marking = T and SF.usurped ) /* subGoal was usurped by T*/
new subGoal ← true; SF.usurped ← false;

else new subGoal ← false;
β.2 if(SF.marking �= T and SF.marking �= completed)

lock(usurpation mutex);
while ( SF.marking �= completed )

if( check deadlock( SF.marking, T ) )
usurp(SF ,SF.marking,T ); /* unlocks usurpation mutex */
new subgoal ← true; SF.usurped ← false;
goto seq tabletry;

T.suspended on subgoal ← SF ;
T.suspended on thread ← SF.marking;
cond wait(TIF.cond var,usurpation mut);

unlock(usurpation mutex);
T.suspended on subgoal ← NULL; T.suspended on thread ← NULL;
T.usurping ← false;
Branch to instruction in P register;

seq tabletry: Execute as in sequential SLG-WAM; treat subgoal as new iff new subgoal is true

Fig. 8. The tabletry instruction for the SLGCLWAM

factoring out the subgoal check insert() operation and subgoal frame creation as
shown in the first few lines of Figure 8.

3.1 Extensions for Negation, Constraints and Answer Subsumption

The discussion has so far focussed exclusively on tabled evaluation of definite pro-
grams. Because SLGCL differs from SLG essentially only in the USURPATION opera-
tion it should not be surprising that the SLGCLWAM requires few changes beyond those
already indicated in order to implement the well-founded semantics. Consider first the
case of stratified programs. In the sequential SLG-WAM, if the underlying (tabled) sub-
goal S of a selected negative literal is not new and not complete, the computation path
“suspends” and resumes only when S has been completed. These operations are the
same as the interactions between threads so far described.4 In the case of non-stratified
negation the first new operation to consider is the SLG DELAYING operation. Delaying
is handled in the SLG-WAM essentially as with stratified negation. If S is involved in

4 A minor difference is that threads suspended on negative literals need to be reset to the begin-
ning of tnot/1, rather than to the tabletry instruction.
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a loop through negation, the resumption mechanism is the same except that a bit in the
subgoal frame of S is set to indicate that S was delayed rather than completed. Several
cycles of delaying may be needed before S is finally completed, but these may all be
handled using the thread suspension and usurpation mechanisms described. When S
is completed, any SIMPLIFICATION operations for its SCC are also performed before
awakening any threads suspended on S, so that SIMPLIFICATION is not affected by the
concurrency mechanisms.

Tabling constraints also carries over to the SLGCLWAM in a simple manner. In
XSB, constraints are tabled by copying attributed variables into and out of tables for
subgoals and answers. The actual mechanism for this copying is encapsulated in the
subgoal check insert() and answer check insert() operations and is therefore unaf-
fected by the changes to tabletry. Similarly, implementations of answer subsumption
are performed as extensions to the SLG-WAM new answer operation which is also
unaffected by the changes for SLGCL.

4 Complexity and Performance

Despite its advantages, the described implementation has to recompute answers for
usurped subgoals. To understand this effect on complexity, we denote a SLGCL eval-
uation that recomputes answers for usurped subgoals as an SLGCL evaluation with
restart. In [9] it is shown that the maximal number of USURPATION operations in a
SLGCL evaluation is linear in atoms(P ), the number of atoms in a program P . Now
assuming perfect indexing, all SLG operations can be considered to be constant, except
for COMPLETION and USURPATION, which have worst-case complexity of atoms(P ),
and ANSWER COMPLETION which has worst-case complexity of size(P ), the size
of P . Because completely evaluated SCCs cannot be usurped, and because ANSWER

COMPLETION need only be performed on completed tables, USURPATION affects only
constant-time operations, and occurs O(atoms(P )) times, giving rise to the following:

Theorem 3. Let E be a finite SLGcl evaluation with restart of a query to a program
P . Then E has worst-case complexity of O(atoms(P )size(P )).

Theorem 3 is significant, since known computation methods of the well-founded se-
mantics have the same complexity for unrestricted normal programs (cf. [2]).

Performance. A full performance analysis of the SLGCLWAM cannot be presented
here, so we focus on illustrating extremal behavior with respect to deadlocking
and USURPATION. Table 1 shows scalability on left-recursive transitive closure for
randomly generated graphs. Each graph is designated by the notation V ertices ×
Edges per vertex: for instance, the first row measures a graph of 256 vertices, each of
which have 128 edges per vertex. The columns indicate elapsed time and speedup for
N threads to each perform V ertices/N queries of the form path(bound,free).
These queries show nearly linear speedup on up to 8 threads, which is not surpris-
ing as these evaluations do not require either USURPATION or thread suspension.
On the other hand, executing right-recursive transitive closure on these graphs pro-
vides a situation where USURPATION is expected to occur heavily. Table 2 shows the
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Table 1. Scalability for left-transitive closure in random graphs using N threads

N Threads: 1 2 Speedup 4 Speedup 8 Speedup

256x128 1.46s 0.73s 2.0 0.38s 3.8 0.19s 7.7
512x8 0.60s 0.31s 1.9 0.16s 3.8 0.10s 6.0
2048x2 4.62s 2.38s 1.9 1.27s 3.6 1.03s 4.5
8192x1 1.30s 0.67s 1.9 0.36s 3.6 0.20s 6.5

Table 2. Number of deadlocks for transitive closure with right recursion for N threads

N. Threads 1 2 4 8 16 32 64 128 256

256x128 0 0 2 3 7 8 7 12 16
512x8 0 1 0 3 3 9 21 4 8
2048x2 0 1 6 8 20 33 26 16 36
8192x1 0 0 0 0 0 0 0 1 1

Table 3. Scalability for right-transitive closure in random graphs using N threads

N Threads: 1 2 Speedup 4 Speedup 8 Speedup

256x128 1.64s 1.64s 1.0 1.62s 1.0 1.65s 1.0
512x8 0.61s 0.58s 1.1 0.57s 1.1 0.56s 1.1
2048x2 3.20s 2.68s 1.2 2.44s 1.3 2.23s 1.4
8192x1 0.65s 0.34s 1.9 0.20s 3.3 0.12s 5.4

number of deadlocks for the randomly generated graphs with from 1 to 256 threads
on an 8-core machine each evaluating a random right recursive query of the form
path(bound,free). Given the number of vertices in the graphs, a relatively high
number of threads need to be concurrently invoked to obtain more than than 10 dead-
locks or so, which is observed only on the moderately dense graphs. Table 3 shows
the times and speedups for right recursion. While there is little speedup for the three
more densely connected graphs, the repeated USURPATION operations do not slow the
times down, and the evaluations degenerate into behavior similar to a sequential eval-
uation. Of course, having a large number of threads simultaneously querying small
densely connected graphs using right recursion is arguably a “worst”-case situation for
the SLGCLWAM, but in these cases, the cost of restarting a usurped SCC does not
appear to be high.

5 Summary

While they are conceptually complex at times, the algorithms for deadlock detection
and USURPATION are based on a formal semantics for SLGCL, so they can be concisely
stated, their correctness clearly argued and can support a number of tabling features.
In addition, only actions upon the call of a tabled subgoal are significantly changed:
no changes are made to the mechanism that an engine uses to suspend and resume,
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the mechanism that differs the most among tabling engines. Accordingly, the approach
should be adaptable to a variety of engines. Substantiation for this claim is provided by
the fact that implementation of SLGCL in XSB required approximately 300 lines of
code including code for negation. SLGCL is thus a simple and effective way to extend
a tabling engine for concurrency.
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Abstract. Tabling is a technique of resolution that overcomes some
limitations of traditional Prolog systems in dealing with recursion and
redundant sub-computations. We can distinguish two main categories
of tabling mechanisms: suspension-based tabling and linear tabling. In
suspension-based tabling, a tabled evaluation can be seen as a sequence of
sub-computations that suspend and later resume. Linear tabling mech-
anisms maintain a single execution tree where tabled subgoals always
extend the current computation without requiring suspension and re-
sumption of sub-computations. In this work, we present a new and ef-
ficient implementation of linear tabling, but for that we have extended
an already existent suspension-based implementation, the YapTab en-
gine. Our design is based on dynamic reordering of alternatives but it
innovates by considering a strategy that schedules the re-evaluation of
tabled calls in a similar manner to the suspension-based strategies of
YapTab. Our implementation also shares the underlying execution envi-
ronment and most of the data structures used to implement tabling in
YapTab. We thus argue that all these common features allows us to make
a first and fair comparison between suspension-based and linear tabling
and, therefore, better understand the advantages and weaknesses of each.

Keywords: Linear Tabling, Design, Implementation.

1 Introduction

Tabling [1] is an implementation technique that overcomes some limitations of
traditional Prolog systems in dealing with redundant sub-computations and re-
cursion. Tabling consists of storing intermediate answers for subgoals so that they
can be reused when a repeated subgoal appears during the resolution process.
Implementations of tabling are currently available in systems like XSB Prolog,
Yap Prolog, B-Prolog, ALS-Prolog, Mercury and more recently Ciao Prolog. In
these implementations, we can distinguish two main categories of tabling mech-
anisms: suspension-based tabling and linear tabling.

Suspension-based tabling mechanisms need to preserve the computation state
of suspended tabled subgoals in order to ensure that all answers are correctly
computed. A tabled evaluation can be seen as a sequence of sub-computations
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c© Springer-Verlag Berlin Heidelberg 2010



280 M. Areias and R. Rocha

that suspend and later resume. The environment of a suspended computation is
preserved either by freezing the execution stacks, as in XSB [2] and Yap [3], by
copying the execution stacks to separate storage, as in Mercury [4] and in the
CAT model [5], or by using a mixed strategy as in the CHAT model [6]. Two
more recent approaches, implemented in Yap [7] and Ciao Prolog [8], feature a
higher-level implementation of suspension-based tabling. They apply source level
transformations to a tabled program and then use external tabling primitives to
provide direct control over the search strategy. In these proposals, suspension is
implemented by leaving a continuation call [9] for the current computation in
the table entry corresponding to the repeated call being suspended.

On the other hand, linear tabling mechanisms use iterative computations of
tabled subgoals to compute fix-points. The main idea of linear tabling is to
maintain a single execution tree where tabled subgoals always extend the current
computation without requiring suspension and resumption of sub-computations.
Two different linear tabling proposals are the SLDT strategy of Zhou et al. [10],
as originally implemented in B-Prolog, and the DRA technique of Guo and
Gupta [11], as originally implemented in ALS-Prolog. The key idea of the SLDT
strategy is to let repeated calls execute from the backtracking point of the former
call. The repeated call is then repeatedly re-executed, until all the available
answers and clauses have been exhausted, that is, until a fix-point is reached.
Current versions of B-Prolog implement an optimized variant of this strategy
which tries to avoid re-evaluation of looping subgoals [12]. The DRA technique
is based on dynamic reordering of alternatives with repeated calls. This technique
tables not only the answers to tabled subgoals, but also the alternatives leading
to repeated calls, the looping alternatives. It then uses the looping alternatives
to repeatedly recompute them until reaching a fix-point.

Arguably, suspension-based mechanisms are considered to be more compli-
cated to implement but, on the other hand, they are considered to obtain better
results in general. A commonly referred weakness of linear tabling is the ne-
cessity of re-computation for computing fix-points. However, to the best of our
knowledge, no rigorous and fair comparison between suspension-based and lin-
ear tabling was yet been done in order to better understand the advantages and
weaknesses of each mechanism. The reason for this is that no single Prolog system
simultaneously supports both mechanisms and thus, the available comparisons
between both mechanisms cannot be fully dissociated from the strengths and
weaknesses of the base Prolog systems on top of which they are implemented.

In this work, we present a new and efficient implementation of linear tabling,
but for that we have extended an already existent suspension-based implementa-
tion, the YapTab engine [3], the tabling engine of Yap Prolog. Our linear tabling
implementation is based on the DRA technique but it innovates by considering
a strategy that schedules the re-evaluation of tabled calls in a similar manner to
the suspension-based strategies of YapTab.

Our new implementation shares the underlying execution environment of the
Yap Prolog system and most of the data structures used to implement tabling
in YapTab. In particular, a critical component in the implementation of an
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efficient tabling system is the table space. Here we took advantage of YapTab’s
efficient table space data structures based on tries [13], that in our linear tabling
proposal are used with minimal modifications. Our current design is also based
on a scheduling strategy, local scheduling [14], supported by YapTab. We thus
argue that all these common support features allows us to make a first and fair
comparison between suspension-based and linear tabling and, therefore, better
understand the advantages and weaknesses of each.

The remainder of the paper is organized as follows. First, we briefly describe
the DRA technique and introduce its execution model. Next, we discuss our
design decisions and provide the details for our implementation on top of the
YapTab engine. At last, we present a detailed performance study and we end by
outlining some conclusions.

2 Dynamic Reordering of Alternatives

The DRA linear tabling mechanism as proposed by Guo and Gupta [11] is based
on the dynamic reordering of alternatives with repeated calls for incorporating
tabling into an existing logic programming system. The DRA technique not
only memorizes the answers for the tabled subgoal calls, but also the alterna-
tives leading to repeated calls, the looping alternatives. It then uses the looping
alternatives to repeatedly recompute them until a fix-point is reached. During
evaluation, a tabled call can be in one of three possible states: normal, looping
or complete. Figure 1 shows the state transition graph for DRA evaluation.

Finding
all looping
alternatives

Finding
fix-point

Looping
state

Complete
state

Normal
state

Fig. 1. State transition graph for DRA evaluation

Consider a tabled subgoal call C. Initially, C enters in normal state where it
is allowed to explore the matching clauses as in standard Prolog. In this state,
while exploring the matching clauses, the model checks for looping alternatives.
If a repeated call is found1 then the current clause for the first call to C will be
memorized as a looping alternative. Essentially, the alternative corresponding to
this call will be reordered and placed at the end of the alternative list for the
call. As in a tabled evaluation repeated calls are not re-evaluated against the
program clauses because they can potentially lead to infinite loops, the repeated
call to C is then resolved by consuming the answers already available for the call
1 A call repeats a previous call if they are the same up to variable renaming.
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in the table space. In what follows we will refer to first calls to tabled subgoals
as generator calls and to repeated calls to tabled subgoals as consumer calls.

Next, after exploring all the matching clauses, C goes into the looping state.
From this point, it keeps trying the looping alternatives repeatedly until reaching
a fix-point. If no new answers are found during one cycle of trying the looping al-
ternatives, then we have reached a fix-point and we can say that C is completely
evaluated. However, if a number of calls is mutually dependent, thus forming a
Strongly Connected Component (or SCC ), then completion is more complex and
we can only complete the calls in a SCC together. SCCs are usually represented
by the leader call. More precisely, the generator call which does not depends
on older generators is the leader call. A leader call defines the next completion
point, i.e., if no new answers are found during one cycle of trying the looping
alternatives for the leader call, then we have reached a fix-point and we can say
that all calls in the SCC are completely evaluated.

2.1 An Evaluation Example

We next illustrate in Fig. 2 the original principles of DRA tabled evaluation
through an example. At the top, the figure shows the program code (the left
box) and the final state of the table space (the right box). The program specifies
a tabled predicate t/2 defined by five clauses (alternatives c1 to c5). The bottom
sub-figure shows the evaluation sequence for the query goal t(1,X). Generator
calls are depicted by black oval boxes and consumer calls by white oval boxes.

The evaluation starts by inserting a new entry in the table space representing
the generator call t(1,X) (step 1). Then, t(1,X) is resolved against the first
matching clause, alternative c1, calling t(2,X) in the continuation. As this is a
first call to t(2,X), we insert a new entry in the table space representing t(2,X)
and proceed as shown in the middle tree (step 2). t(2,X) is also resolved against
the first matching clause, alternative c3, calling again t(2,X) in the continuation
(step 3). Since t(2,X) is now a consumer call, we mark the clause in evaluation
for the generator call, alternative c3, as a looping alternative for t(2,X). Then,
we try to consume answers but, as no answers are available for t(2,X), the
execution fails (step 4).

Next, we try the second matching clause for t(2,X), alternative c4, thus
calling t(1,X) (step 5). Since t(1,X) is also a consumer call, we mark the
clauses in evaluation up to the generator call for t(1,X) as looping alternatives.
This includes alternative c1 for t(1,X) and alternative c4 for t(2,X). Then, we
try to consume answers but, because no answers are available for t(1,X), we fail
(step 6). The last matching clause for t(2,X), alternative c5, is then tried and
we obtain a first answer for t(2,X). The answer is inserted in the table space
and, as we are following a local scheduling strategy, the execution fails (step 8).

We then backtrack again to the generator call for t(2,X) and because we have
already explored all matching clauses, t(2,X) moves into the looping state. We
have found a new answer for t(2,X), so we must re-execute the looping alterna-
tives c3 and c4 (step 9). In alternative c3, t(2,X) is called again as a consumer
call (step 10). The answer X=a is forward to it but in the continuation the
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c3 c4

c3 c4
c3 c4

c2c2
c1

c5

c1

23. re-execute looping alternatives
26. complete scc

21. partial fix-point

:-table t/2.
t(1,X):-t(2,X),fail.      (c1)
t(1,X):-t(2,X).           (c2)
t(2,X):-t(2,X),fail.      (c3)
t(2,X):-t(1,X).           (c4)
t(2,a).                   (c5)

1. t(1,X)

2. t(2,X)
 8. X=a
26. complete

Call Answers Looping Alternatives

 5. t(1,X):-t(2,X),fail.   (c1)
19. t(1,X):-t(2,X).        (c2)

1. t(1,X).

22. X=a
26. complete

 3. t(2,X):-t(2,X),fail.   (c3)
 5. t(2,X):-t(1,X).        (c4)

2.t(2,X),fail. 16.t(2,X).

X=a

15. fail.

X=a

X=a

22. X=a
(fail)

24.t(2,X),fail.

...

25.t(2,X).

...

 9. re-execute looping alternatives
14. partial fix-point2. t(2,X).

7.t(2,a).

8. X=a
(fail)

5.t(1,X).

6. fail.

3.t(2,X),fail.

4. fail.

12.t(1,X).

13. fail.

10.t(2,X),fail.

11. fail.

16. t(2,X).

X=a

19.t(1,X).

20. fail.

17.t(2,X),fail.

18. fail.

Fig. 2. A DRA tabled evaluation

execution fails (step 11). In alternative c4, we repeat the situation in steps 5 to
6 and we fail for the same reasons (steps 12 to 13). The evaluation then back-
tracks to the generator call for t(2,X) and, because we have reached a partial
fix-point (i.e., no answers were found when trying the looping alternatives), we
check whether t(2,X) can complete (step 14). It cannot, because it depends on
t(1,X) and thus it is not a leader call.

Next, as we are following a local scheduling strategy, the answer for t(2,X)
should now be propagated to the context of the previous call. We thus propagate
the answer X=a to the context of subgoal call t(1,X) but the execution fails in
the continuation (step 15). Then, we try the second matching clause for t(1,X),
alternative c2, thus calling t(2,X). Because t(2,X) has already reached the
looping state, we proceed as shown in the bottommost tree with t(2,X) being
resolved again against its looping alternatives (step 16). The evaluation then
repeats the same sequence as in steps 10 to 14 (now steps 17 to 21), but now when
the answer X=a is propagated to the context of t(1,X), it originates a first answer
for t(1,X) (step 22). We then backtrack to the generator call for t(1,X) and
because we have already explored all matching clauses, t(1,X) moves into the
looping state. We have found a new answer for t(1,X), so we must re-execute the
looping alternatives c1 and c2 (step 23). The re-execution of these alternatives
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do not finds new answers for t(1,X) or t(2,X). Thus, when backtracking again
to t(1,X) we have reached a partial fix-point and because t(1,X) is a leader
call, we can declare the two subgoal calls to be completed (step 26).

2.2 Re-computation Issues

One advantage of the original DRA technique is that only the looping alterna-
tives are recomputed. However, repeatedly retrying these alternatives may cause
redundant computations: non-tabled calls are recomputed every time a looping
alternative is tried, and repeated tabled calls re-consume all tabled answers ev-
ery time they are called. Figure 3 shows the choice point stack at different steps
of the DRA tabled evaluation of Fig. 2.

(a) At step 3

Generator
1.t(1,X)

Generator
2.t(2,X)

Consumer
3.t(2,X)

(b) At step 5

Generator
1.t(1,X)

Generator
2.t(2,X)

Consumer
5.t(1,X)

(c) At step 10

Generator
1.t(1,X)

Generator
2.t(2,X)

Consumer
10.t(2,X)

(d) At step 12

Generator
1.t(1,X)

Generator
2.t(2,X)

Consumer
12.t(1,X)

(e) At step 17

Generator
1.t(1,X)

Generator
16.t(2,X)

Consumer
17.t(2,X)

(f) At step 19

Generator
1.t(1,X)

Generator
16.t(2,X)

Consumer
19.t(1,X)

Fig. 3. DRA’s choice point stack for the tabled evaluation of Fig. 2

Figures 3(c) and 3(d) reflect the decision made at step 9 in the evaluation
of Fig. 2 of re-executing the looping alternatives c3 and c4, and Figures 3(e)
and 3(f) reflect the same decision made at step 16. Remember that the goal
behind these decisions is to reach a partial fix-point in the evaluation of the cor-
responding tabled call. However, reaching a partial fix-point beforehand can be
completely useless for non-leader calls when later the leader call re-executes itself
its looping alternatives (which in turn leads the non-leader calls to re-execute
again their looping alternatives). In fact, in the case of multiple dependent calls,
reaching partial fix-points beforehand can cause a huge number of redundant
computations.

We innovate by considering a strategy that schedules the re-evaluation of
tabled calls in a similar manner to the suspension-based strategies of YapTab.
In YapTab, only first calls to tabled subgoals allocate generator choice points
and the fix-point check for completion is only done by leader calls (please refer
to [3] for full details). Figure 4 illustrates YapTab’s choice point stack for the
same tabled evaluation of Fig. 2. In particular, Fig. 4(c) shows us that the whole
evaluation requires just one generator choice point per call and only one and two
consumer choice points for evaluating t(1,X) and t(2,X), respectively.

Our proposal is thus to schedule the re-evaluation of non-leader tabled calls in
such a way that the number of generator and consumer choice points is the same
as in YapTab, i.e., only first calls to tabled subgoals allocate generator choice
points to execute alternatives and the fix-point check for completion is only done
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freeze 1

freeze 2

(a) At step 3

Generator
1.t(1,X)

Generator
2.t(2,X)

Consumer
3.t(2,X)

(b) At step 5

Generator
1.t(1,X)

Generator
2.t(2,X)

Consumer
3.t(2,X)

Consumer
5.t(1,X)

freeze 1

(c) At step 16

Generator
1.t(1,X)

Generator
2.t(2,X)

Consumer
3.t(2,X)

Consumer
5.t(1,X)

Consumer
16.t(2,X)

Fig. 4. YapTab’s suspension-based choice point stack for the tabled evaluation of Fig. 2

by leader calls (we get ride of the notion of partial fix-points). In particular, for
the tabled evaluation of Fig. 2, this means that we do not re-execute the looping
alternatives for t(2,X) at step 9 (t(2,X) is a non-leader call) and at step 16
(this call to t(2,X) is not the first call, the first one was at step 2). Instead, at
both steps, we must consume the available answers for t(2,X).

To correctly implement this strategy, note also that now the fix-point check
is only done at the level of the leader call. This means that a leader call must
re-execute its looping alternatives not only when new answers were found for it
during the last traversal of the looping alternatives, but when new answers were
found for any tabled call in the current SCC. Moreover, as in a DRA tabled
evaluation the choice points are not frozen as in YapTab, we now consider that
a tabled call is a first call every time we re-start a new round over the looping
alternatives for the leader call. In particular, for the tabled evaluation of Fig. 2,
this means that we re-execute the looping alternatives for t(2,X) only at step
24 (the call to t(2,X) at step 24 is the first call in the round over the looping
alternatives for the leader call t(1,X) started at step 23).

3 Implementation Details

In YapTab, a key data structure in the table space organization is the subgoal
frame. Subgoal frames are used to store information about each tabled call and
to act like entry points to the data structures where answers are stored. We next
enumerate the most relevant subgoal frame fields in our DRA implementation:

SgFr dfn: is the depth-first number of the call. Calls are numbered incrementally
and according to the order in which they appear in the evaluation.

SgFr state: indicates the state of the subgoal. A subgoal can be in one of the
following states: ready, evaluating, loop ready, loop evaluating or complete.

SgFr is leader: indicates if the call is a leader call or not. New calls are by
default leader calls.
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SgFr new answers: indicates if new answers were found during the normal state
or during the execution of the last round trying the looping alternatives.

SgFr current alt: marks the alternative being evaluated.
SgFr stop alt: marks the looping alternative where we should stop when in

looping state.
SgFr looping alts: is the pointer to the looping alternatives associated with

the subgoal or NULL if no looping alternatives exist.
SgFr next on scc: is the pointer to the subgoal frame corresponding to the

previous tabled call in evaluation (i.e., with SgFr state as evaluating or
loop evaluating) in the current SCC. It is used by the leader call to traverse
the subgoal frames in order to mark them for re-evaluation or as completed.
A global variable TOP SCC always points to the youngest subgoal frame in
evaluation in the current SCC.

SgFr next on branch: is the pointer to the subgoal frame corresponding to the
previous tabled call in the current branch that is in the normal state (i.e.,
with SgFr state as evaluating) or that is a leader call. It is used to traverse
the subgoal frames in order to detect looping alternatives and to detect non-
leader calls. A global variable TOP BRANCH always points to the youngest
subgoal frame on the current branch.

We next show the pseudo-code for the main tabling operations in our DRA
implementation. We start with Fig. 5 showing the pseudo-code for the new an-
swer operation. The new answer() procedure simply inserts the given answer
AW in the answer structure for the given subgoal frame SF and, if the answer is
new, it updates the SgFr new answers field to TRUE. We then implement a local
scheduling strategy and always fail at the end.

new_answer(answer AW, subgoal frame SF) {
if (answer_check_insert(AW,SF) == TRUE)

SgFr_new_answers(SF) = TRUE // new answer
fail() // local scheduling

}

Fig. 5. Pseudo-code for the new answer operation

Figure 6 shows the pseudo-code for the tabled call operation. New calls to
tabled subgoals are inserted into the table space by allocating the necessary
data structures. This includes allocating and initializing a new subgoal frame
to represent the given subgoal call (this is the case where the state of SF is
ready). In such case, the tabled call operation then updates the state of SF to
evaluating; saves the current alternative in the SgFr current alt field; adds SF
to the current SCC and to the current branch; pushes a new generator choice
point onto the local stack; and proceeds by executing the next instruction.

On the other hand, if the subgoal call is a repeated call, then the subgoal
frame is already in the table space, and three different situations may occur. If
the call is completed (this is the case where the state of SF is complete), the
operation consumes the available answers by implementing the completed table
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tabled_call(subgoal call SC) {
SF = call_check_insert(SC) // SF is the subgoal frame for SC
if (SgFr_state(SF) == ready) {

SgFr_state(SF) = evaluating
SgFr_current_alt(SF) = PC // PC is the program counter
SgFr_next_on_scc(SF) = TOP_SCC // add SF to current SCC
SgFr_next_on_branch(SF) = TOP_BRANCH // add SF to current branch
TOP_SCC = TOP_BRANCH = SF
store_generator_choice_point()
goto execute(next_instruction())

} else if (SgFr_state(SF) == loop_ready) {
SgFr_state(SF) = loop_evaluating
SgFr_current_alt(SF) = get_first_looping_alternative(SF)
SgFr_stop_alt(SF) = SgFr_current_alt(SF) // mark stop alternative
SgFr_next_on_scc(SF) = TOP_SCC // add SF to current SCC
TOP_SCC = SF
store_generator_choice_point()
goto execute(SgFr_current_alt(SF))

} else if (SgFr_state(SF) == evaluating ||
SgFr_state(SF) == loop_evaluating) {

mark_current_branch_as_a_looping_branch(SF)
store_consumer_choice_point()
goto consume_answers(SF)

} else if (SgFr_state(SF) == complete)
goto completed_table_optimization(SF)

}

mark_current_branch_as_a_looping_branch(subgoal frame SF) {
subgoal frame aux_sf = TOP_BRANCH
while (aux_sf && SgFr_dfn(aux_sf) > SgFr_dfn(SF)) {

SgFr_is_leader(aux_sf) = FALSE
mark_current_alternative_as_a_looping_alternative(aux_sf)
aux_sf = SgFr_next_on_branch(aux_sf)

}
if (aux_sf)

mark_current_alternative_as_a_looping_alternative(aux_sf)
}

Fig. 6. Pseudo-code for the tabled call operation

optimization which executes compiled code directly from the answer structure
associated with the completed call [13]. If the call is a first call in a new round
over the looping alternatives for the leader call (this is the case where the state
of SF is loop ready), the operation updates the state of SF to loop evaluating;
loads the first looping alternative and marks it as the stopping alternative; adds
SF to the current SCC; pushes a new generator choice point onto the local
stack; and proceeds by executing the first looping alternative. Otherwise, the
call is a consumer call (this is the case where the state of SF is evaluating or
loop evaluating). In such case, the operation marks the current branch as a
looping branch (in order to be able to re-execute that branch if new answers are
found for the current call); pushes a new consumer choice point onto the local
stack; and starts consuming the available answers. To mark the current branch
as a looping branch, we follow the subgoal frames in the TOP BRANCH chain up
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to the frame for the call at hand2 and we mark the alternatives being evaluated
in each frame as looping alternatives. Moreover, as the call at hand defines a
new dependency for the current SCC, all intermediate subgoal frames in the
TOP BRANCH chain are also marked as non-leader calls.

Finally, we discuss in more detail how completion is detected in our DRA im-
plementation. It proceeds as follows. After exploring the last program clause for
a tabled call, from then on, every time we backtrack to a generator choice point
for the call, we execute the fix-point check operation as shown next in Fig. 7.
The fix-point check operation starts by checking if there are looping alternatives
for the subgoal frame SF corresponding to the tabled call at hand. If so, it then
checks if this is the first execution of the fix-point check operation for the call
(the call is in normal state) or not (the call is in looping state). For first execu-
tions (this is the case where the state of SF is evaluating), the operation moves
the call to looping state by updating the state of SF to loop evaluating; removes
SF from the current branch if the call is non-leader (this is the optimization that
we mentioned in the previous footnote); loads the first looping alternative and
marks it as the stopping alternative. For repeated executions (this is the case
where the state of SF is loop evaluating) it loads the next looping alternative3.

Next, if we haven’t reached the stop alternative, then the loaded looping
alternative is executed. However, before doing that, we implement the following
optimization. If the call at hand is a leader call with new answers found during
the execution of the last alternative, we start a new round over the looping
alternatives and mark the current alternative as the new stop alternative. Note
that this is done even when the previous stop alternative wasn’t still reached.
The idea is to minimize the number of alternatives that need to be tried by
starting new rounds as soon as possible. For example, consider that we have
three looping alternatives and that the second looping alternative was the last
in which we have found news answers. In such case, there is no point in trying
again the third alternative in a new round over the looping alternatives because
it is safe to only try the first and the second alternatives. When starting a new
round, we need to reset the calls in the current SCC to the loop ready state in
order to allow their re-execution as first calls when called later.

Finally, if there is no more looping alternatives to try, we have reached a partial
fix-point. If the call at hand is a leader call, then we can perform completion
and mark all the calls in the current SCC as complete. At the end, as we are
implementing a local scheduling strategy, we need to consume the set of answers
that have been found. As the call is already completed, we can execute the
completed table optimization. On the other hand, if the call at hand is not a
leader call, we avoid re-executing the looping alternatives and, instead, we start

2 As an optimization, when a call is a non-leader call and moves to the looping state, it
is removed from the TOP BRANCH chain because there is no point in keeping it there.
Thus, when this happens for the call at hand, we follow the subgoal frames in the
TOP BRANCH chain up to the first frame with a smaller SgFr dfn value.

3 The next alternative after the last one is the first alternative. Thus, in the cases
where there is only one looping alternative, the next alternative is always the first.
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fix-point_check(subgoal frame SF){
if (SgFr_looping_alts(SF) != NULL) {

if (SgFr_state(SF) == evaluating) {
SgFr_state(SF) = loop_evaluating // move to looping state
if (SgFr_is_leader(SF) == FALSE)

TOP_BRANCH = SgFr_next_on_branch(SF) // remove SF from branch
SgFr_current_alt(SF) = get_first_looping_alternative(SF)
SgFr_stop_alt(SF) = SgFr_current_alt(SF) // mark stop alternative

} else // SgFr_state(SF) == loop_evaluating
SgFr_current_alt(SF) = get_next_looping_alternative(SF)

if (SgFr_is_leader(SF) && SgFr_new_answers(SF)) { // start new round
SgFr_new_answers(SF) = FALSE
SgFr_stop_alt(SF) = SgFr_current_alt(SF) // mark stop alternative
while (TOP_SCC != SF) { // reset calls in current SCC

SgFr_state(TOP_SCC) = loop_ready
TOP_SCC = SgFr_next_on_scc(TOP_SCC)

}
goto execute(SgFr_current_alt(SF))

}
if (SgFr_current_alt(SF) != SgFr_stop_alt(SF))
goto execute(SgFr_current_alt(SF))

}
if (SF == TOP_BRANCH)

TOP_BRANCH = SgFr_next_on_branch(SF) // remove SF from branch
if (SgFr_is_leader(SF)) {

while (TOP_SCC != SF) { // complete SCC
SgFr_state(TOP_SCC) = complete
TOP_SCC = SgFr_next_on_scc(TOP_SCC)

}
SgFr_state(SF) = complete
TOP_SCC = SgFr_next_on_scc(SF) // remove SF from SCC
goto completed_table_optimization(SF) // local scheduling

} else {
if (SgFr_new_answers(SF)) {
SgFr_new_answers(SF) = FALSE
SgFr_new_answers(TOP_BRANCH) = TRUE // propagate new answers info

}
goto consume_answers(SF) // local scheduling

}
}

Fig. 7. Pseudo-code for the fix-point check operation

acting like a consumer node. Before start consuming the available answers, we
check if new answers were found during the traversal of the looping alternatives
and, if this is the case, we propagate the new answers info to the previous subgoal
frame on the TOP BRANCH chain. By doing this, we ensure that the new answers
info will be recursively propagated until reaching the leader call.

4 Experimental Results

To the best of our knowledge, YapTab is now the first tabling engine to support
simultaneously suspension-based tabling and linear tabling. We have thus the
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conditions to make a first and fair comparison between both mechanisms. In
what follows, we present a set of experiments comparing our DRA implementa-
tion against the original YapTab suspension-based implementation, both sharing
the underlying execution environment of the Yap Prolog 6.0.0. To put the per-
formance of our DRA implementation in perspective, we also compare it against
the two most well-known tabling systems supporting suspension-based tabling
and linear tabling, respectively XSB (version 3.2) and B-Prolog (version 7.3#2).
The environment for our experiments was an Intel Core2 Quad CPU 2.83GHz
with 2 GBytes of main memory and running the Linux kernel 2.6.24-24.

We used six different versions of the well-known path/2 predicate, that com-
putes the transitive closure in a graph, combined with several different configu-
rations of edge/2 facts, for a total number of 54 programs. The six versions of
the path predicate include two right recursive, two left recursive and two double
recursive definitions. Each pair has one definition with the recursive clause first
and another with the recursive clause last. Regarding the edge facts, we used
three configurations: a pyramid, a cycle and a grid configuration (Fig. 8 shows
an example for each configuration). We experimented the pyramid and cycle
configurations with depths 500, 1000 and 1500 and the grid configuration with
depths 20, 30 and 40. We also experimented the left recursive definition of the
path/2 predicate with three different transition relation graphs usually used in
Model Checking (MC) applications: the i-protocol (IP), leader election (LE) and
sieve (SV) specifications4. All experiments find all the solutions for the problem.

Cycle (depth 3) Grid (depth 3)Pyramid (depth 3)

Fig. 8. Edge configurations for path definitions

Next, we show in Table 1 the running times ratios of YapTab, XSB and
B-Prolog over our DRA implementation (YapTab+DRA) for all these configu-
rations. YapTab+DRA, YapTab and XSB running times were all obtained using
a local scheduling strategy. B-Prolog running times were obtained using lazy
scheduling [12] (the local scheduling version of B-Prolog). The running times are
the average of three runs. The experiments marked with r.e. in Table 1 for XSB
mean that we got a run-time error.

Globally, the results obtained in Table 1 indicate that YapTab+DRA is com-
parable to the YapTab and XSB suspension-based implementations and that
YapTab+DRA clearly outperforms the B-Prolog linear tabling implementation.

4 We didn’t show results for the right and double recursive definitions because they
took more than 5 hours to execute in YapTab and thus we aborted their execution.
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Table 1. Running time ratios of YapTab, XSB and B-Prolog over YapTab+DRA

Predicate
Pyramid Cycle Grid MC

500 1000 1500 500 1000 1500 20 30 40 IP LE SV

YapTab / YapTab+DRA
left first 0.67 0.67 0.73 0.61 0.68 0.72 0.60 0.52 0.58 0.55 0.56 0.53
left last 0.59 0.63 0.62 0.60 0.64 0.67 0.64 0.54 0.52 0.56 0.51 0.54
right first 0.99 0.99 1.03 0.70 0.59 0.69 0.25 0.16 0.12 – – –
right last 1.05 1.00 0.99 0.83 0.72 0.74 0.26 0.17 0.13 – – –
double first 0.51 0.49 0.53 0.59 0.58 0.58 0.57 0.56 0.59 – – –
double last 0.52 0.51 0.51 0.57 0.57 0.58 0.57 0.56 0.56 – – –

XSB / YapTab+DRA
left first 0.61 0.56 0.58 0.83 0.78 0.69 0.71 0.66 0.65 1.05 1.52 0.80
left last 0.64 0.58 0.62 0.79 0.68 0.79 0.81 0.66 0.63 1.05 1.50 0.69
right first 1.26 1.32 1.44 1.01 1.05 1.03 0.39 0.29 0.23 – – –
right last 1.23 1.36 1.34 1.06 1.01 0.98 0.41 0.30 0.24 – – –
double first 0.92 0.89 0.90 1.00 0.98 r.e. 1.02 1.01 r.e. – – –
double last 0.92 0.90 0.89 1.00 0.97 r.e. 1.01 0.99 r.e. – – –

B-Prolog / YapTab+DRA
left first 1.53 1.93 2.62 1.64 1.70 2.20 2.81 2.71 3.65 3.61 10.52 9.61
left last 1.56 1.65 2.27 1.56 1.74 1.98 3.47 2.33 3.39 3.61 10.18 9.43
right first 1.43 1.66 1.96 1.79 1.84 2.15 1.53 1.42 1.47 – – –
right last 1.40 1.55 1.76 1.76 1.89 2.12 1.58 1.44 1.44 – – –
double first 2.50 3.20 4.21 2.25 2.93 3.73 2.13 2.81 4.00 – – –
double last 2.49 3.31 4.28 2.22 2.80 3.63 2.10 2.77 3.86 – – –

In general, YapTab is around 1.5 to 2 times faster than YapTab+DRA in
most experiments, including the three model checking specifications. The excep-
tion seems to be the right recursive definitions where for the pyramid config-
urations the running times are quite similar (with YapTab+DRA being faster
in some cases) and for the grid experiments where YapTab is around 4 to 8
times faster than YapTab+DRA. The results also indicate that YapTab+DRA
scales well when we increase the complexity of the problem being tested. In gen-
eral, YapTab’s ratio over YapTab+DRA is almost the same when we compare
the pyramid configurations (depths 500, 1000 and 1500), the cycle configura-
tions (depths 500, 1000 and 1500) or the grid configurations (depths 20, 30 and
40) between themselves. Again, the exception are the right recursive definitions
with the grid configurations where YapTab’s ratio over YapTab+DRA decreases
proportionally to the complexity of the problem. Globally, best performance is
achieved by the left recursive definitions. This is an interesting result because
left recursion is the usual and more correct away to define tabled predicates.
Note also that the path definitions that we have used are a kind of worst-case
scenarios because most of the time they are exclusively doing tabled compu-
tations. If we have used more real-world applications, were the percentage of
standard Prolog computation is higher, the ratios presented in Table 1 will be
also proportionally higher.
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The results for XSB are not so expressive as for YapTab and, in general,
the difference between XSB running times and YapTab+DRA is clearly smaller.
Globally, XSB achieves best performance for the right recursive definitions with
the grid configurations. For the double recursive definitions and for the right
recursive definitions with the cycle configurations the running times are quite
similar. Surprisingly, YapTab+DRA obtains better results than XSB for the right
recursive definitions with the pyramid configurations and for the left recursive
definitions with the model checking specifications.

Regarding B-Prolog, Table 1 shows that YapTab+DRA is always faster than
B-Prolog in these experiments and that, for almost all configurations, the ratio
over YapTab+DRA shows a generic tendency to increase as the complexity of the
problem also increases. In particular, for two of the model checking specifications,
B-Prolog shows the worst results, being around 10 times slower for the leader
election and the sieve specifications.

5 Conclusions

We have presented a new and very efficient implementation of linear tabling
that shares the underlying execution environment and most of the data struc-
tures used to implement suspension-based tabling in YapTab. To the best of our
knowledge, YapTab is now the first and single tabling engine to support simul-
taneously suspension-based tabling and linear tabling. Our linear tabling design
is based on dynamic reordering of alternatives but it innovates by considering a
strategy that schedules the re-evaluation of tabled calls in a similar manner to
the suspension-based strategies of YapTab.

The results obtained with our approach are very interesting and very
promising. Our experiments confirmed the idea that, in general, suspension-
based mechanisms obtain better results than linear tabling. However, the com-
monly referred weakness of linear tabling of doing a huge number of redundant
computations for computing fix-points was not such a problem in our experi-
ments. We thus argue that an efficient implementation of linear tabling can be
a good and first alternative to incorporate tabling into a Prolog system without
tabling support.

Further work will include exploring the impact of applying our proposal to
more complex problems, seeking real-world experimental results allowing us
to improve and consolidate our current implementation. Moreover, since lin-
ear tabling does not require stack freezing or copying, it has a memory space
advantage over suspension-based approaches and thus it would be interesting
to study that memory impact in more detail. We also plan to expand our
approach to support different linear tabling proposals like the SLDT strat-
egy [10], as originally implemented in B-Prolog, and to support other optimiza-
tions, such as, remembering alternatives of non-tabled predicates at time of
consumer calls to avoid the re-computation of the useless alternatives of non-
tabled predicates too.



An Efficient Implementation of Linear Tabling 293

Acknowledgements

This work has been partially supported by the FCT research projects STAMPA
(PTDC/EIA/67738/2006) and JEDI (PTDC/EIA/66924/2006).

References

1. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. Journal of the ACM 43(1), 20–74 (1996)

2. Sagonas, K., Swift, T.: An Abstract Machine for Tabled Execution of Fixed-Order
Stratified Logic Programs. ACM Transactions on Programming Languages and
Systems 20(3), 586–634 (1998)

3. Rocha, R., Silva, F., Santos Costa, V.: YapTab: A Tabling Engine Designed to
Support Parallelism. In: Conference on Tabulation in Parsing and Deduction, pp.
77–87 (2000)

4. Somogyi, Z., Sagonas, K.: Tabling in Mercury: Design and Implementation. In:
Van Hentenryck, P. (ed.) PADL 2006. LNCS, vol. 3819, pp. 150–167. Springer,
Heidelberg (2005)

5. Demoen, B., Sagonas, K.: CAT: the Copying Approach to Tabling. In: Palamidessi,
C., Meinke, K., Glaser, H. (eds.) ALP 1998 and PLILP 1998. LNCS, vol. 1490, pp.
21–35. Springer, Heidelberg (1998)

6. Demoen, B., Sagonas, K.: CHAT: The Copy-Hybrid Approach to Tabling. Future
Generation Computer Systems 16(7), 809–830 (2000)

7. Rocha, R., Silva, C., Lopes, R.: Implementation of Suspension-Based Tabling in
Prolog using External Primitives. In: Local Proceedings of the 13th Portuguese
Conference on Artificial Intelligence, pp. 11–22 (2007)

8. de Guzmn, P.C., Carro, M., Hermenegildo, M.V.: Towards a Complete Scheme for
Tabled Execution Based on Program Transformation. In: Gill, A., Swift, T. (eds.)
PADL 2009. LNCS, vol. 5418, pp. 224–238. Springer, Heidelberg (2009)

9. Ramesh, R., Chen, W.: Implementation of Tabled Evaluation with Delaying in
Prolog. IEEE Transactions on Knowledge and Data Engineering 9(4), 559–574
(1997)

10. Zhou, N.F., Shen, Y.D., Yuan, L.Y., You, J.H.: Implementation of a Linear Tabling
Mechanism. In: Pontelli, E., Santos Costa, V. (eds.) PADL 2000. LNCS, vol. 1753,
pp. 109–123. Springer, Heidelberg (2000)

11. Guo, H.F., Gupta, G.: A Simple Scheme for Implementing Tabled Logic Program-
ming Systems Based on Dynamic Reordering of Alternatives. In: Codognet, P. (ed.)
ICLP 2001. LNCS, vol. 2237, pp. 181–196. Springer, Heidelberg (2001)

12. Zhou, N.F., Sato, T., Shen, Y.D.: Linear Tabling Strategies and Optimizations.
Theory and Practice of Logic Programming 8(1), 81–109 (2008)

13. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access
Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38(1), 31–
54 (1999)

14. Freire, J., Swift, T., Warren, D.S.: Beyond Depth-First: Improving Tabled Logic
Programs through Alternative Scheduling Strategies. In: Kuchen, H., Swierstra,
S.D. (eds.) PLILP 1996. LNCS, vol. 1140, pp. 243–258. Springer, Heidelberg (1996)



Prospective Storytelling Agents
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Abstract. Prospective Logic Programming is a declarative framework support-
ing the specification of autonomous agents capable of anticipating and reason-
ing about hypothetical future scenaria. This capability for prediction is essential
for proactive agents working with partial information in dynamically changing
environments. The present work explores the use of state-of-the-art declarative
non-monotonic reasoning in the field of interactive storytelling and emergent
narratives and how it is possible to build an integrated architecture for embed-
ding these reasoning techniques in the simulation of embodied agents in virtual
three-dimensional worlds. A concrete graphics supported application prototype
was engineered, in order to enact the story of a princess saved by a robot imbued
with moral reasoning.

1 Introduction

Prospective Logic Programming (PLP) builds upon grounded theories of abduction and
non-monotonic reasoning, and laid the prior foundations for combined developments in
the fields of logic programming, AI, and cognitive science, so as to support an agent’s
prospection of its future and attending computational morality reasoning [3, 4].

Interactive storytelling and emergent narratives [1, 2] focuses on the automatic gen-
eration of non-linear dramatic storylines envolving characters embodied in rich, dy-
namic worlds. In the sequel we show how PLP handled the specific requirements and
challenges of the application mentioned in the Abstract.

2 Application Description

In order to test the basic PLP framework and the integration of a virtual environment for
interactive storytelling, a simplified scenario was developed. In this fantasy setting, an
archetypal princess is held in a castle awaiting rescue. The unlikely hero is an advanced
robot, imbued with a set of declarative rules for decision making and moral reasoning.
As the robot is asked to save the princess in distress, he is confronted with an ordeal.
The path to the castle is blocked by a river, crossed by two bridges. Standing guard at
each of the bridges are minions of the wizard which originally imprisoned the princess.
In order to rescue the princess, he will have to defeat one of the minions to proceed.

Prospective reasoning is the combination of pre-preference hypothetical scenario
generation into the future plus post-preference choices taking into account the imag-
ined consequences of each preferred scenario. By reasoning backwards from this goal,

M. Carro and R. Peña (Eds.): PADL 2010, LNCS 5937, pp. 294–296, 2010.
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the agent generates three possible hypothetical scenaria for action. Either it crosses one
of the bridges, or it does not cross the river at all, thus negating satisfaction of the res-
cue goal. In order to derive the consequences for each scenario, the agent has to reason
forwards from each available hypothesis. As soon as these consequences are known,
meta-reasoning techniques can be applied to prefer amongst the partial scenaria [3].

In this case, a specific utility value was associated with each available hypothesis,
quantifying the likelihood that the robot survives. Other things being equal, the robot
will prefer scenaria which both maximize the likelihood of survival and the satisfaction
of a greater number of goals. Also, as long as the likelihood of survival does not fall be-
low a specified threshold, the robot will prefer scenaria which satisfy a greater number
of goals. By relying on previous knowledge about the probability of defeating different
types of minion, the robot computes the utility of surviving the crossing of each of the
bridges. This knowledge store could be built incrementally by using past experiences
in a number of ways which fall outside the scope of the current work (e.g. learning or
case-based reasoning).

If the likelihood of survival is very low, the robot will choose not to rescue the
princess. At this point, another complication was introduced: the possibility of endow-
ing the robot with moral rules. The encoding of moral reasoning using declarative PLP
techniques has been previously addressed in [4]. In this way, it is possible to encode a
moral constraint that all princesses in distress must be saved. From this point on, the
moral constraint will defeat the scenario on which the goal to rescue the princess is
negated, regardless of survival utility.

Other moral constraints have also been explored. For instance, when choosing be-
tween facing a giant spider or a regular guard, the robot will choose the regular guard,
as it presents a scenario with a higher survival utility. But the princess can then become
angry that the robot has killed a man, and enforce a moral constraint that no humans can
be killed. If however, in the next reiteration of the setting, both minions are humans, the
constraint of always saving princesses in distress will conflict with that of never killing
humans. By default, the robot will reason to choose the scenario that minimizes the
number of violated constraints while maximizing the number of satisfied goals, so the
princess will still be saved. Other options available were exploited to solve these con-
flicts, including the use of preference rules or meta-reasoning techniques.

3 Architecture

The system1 exhibits a blend of imperative and declarative techniques. For graphics
rendering, the Ogre3D library was used. Reasoning was implemented in the ACORDA
framework [3] on top of XSB Prolog and Smodels. Additional implementation details
provided in [3] and [4]. Integration was performed using the C# programming language
and the .NET framework, by means of a wrapper2 around XSB’s external API.

1 http://centria.di.fct.unl.pt/˜lmp/software/MoralRobot.zip
demo:http://centria.di.fct.unl.pt/˜lmp/publications/slides/
padl10/moral_robot.avi

2 http://sourceforge.net/projects/xsbdotnet/

http://centria.di.fct.unl.pt/~lmp/software/MoralRobot.zip
http://centria.di.fct.unl.pt/~lmp/publications/slides/
padl10/moral_robot.avi
http://sourceforge.net/projects/xsbdotnet/
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Several procedural routines were implemented to handle basic agent locomotion and
perception. When necessary, the reasoning system was queried for goal satisfaction.
During the reasoning process itself, queries to the procedural perception modules can
be performed in order to probe the current state of the world. What is more, the robot
is able to query the user for moral advice when finding itself in a conundrum. Also,
actions chosen by declarative reasoning were procedurally simulated in the virtual en-
vironment. In this way, a full bidirectional coupling was achieved between simulation
and declarative reasoning.

4 Conclusions and Future Work

We believe the present work, even in its prototypical working state, is a significant
step forward in the application of state-of-the-art declarative reasoning techniques to
the automatic generation of dramatic narratives in dynamic virtual environments. The
coupling of sensors and actuators to a declarative non-monotonic reasoning model can
easily ensure that changes in the virtual environment perceived by the agent can be
incorporated in its knowledge base. PLP has been developed precisely for allowing
knowledge to be constantly revised and updated, so this will not present any impediment
as often happens when contradictory observations are updated to monotonic reasoning
systems.

This robustness to novelty makes the system particularly useful for interactive sto-
rytelling techniques. Non-linear stories can be expressed and generated easily by cou-
pling the knowledge updates to changing conditions, such as user determined actions
and parameters. By reasoning on such conditions, the agents will naturally generate dis-
tinct scenaria and their interplay can mature into branching novel storylines. Traditional
techniques used in interactive storytelling such as the integration of drama managers to
control dramatic tension and story consistency can also be incorporated by designing
their function around PLP rules.

This simple scenario already illustrates the interplay between different logic pro-
gramming techniques and demonstrates the advantages gained by combining their dis-
tinct strengths. Namely, the integration of top-down, bottom-up, hypothetical, moral and
utility-based reasoning procedures results in a flexible framework for dynamic agent
specification. The open nature of the framework embraces the possibility of expanding
its use to yet other useful models of cognition such as counterfactual reasoning and
theories of mind.
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Marques, Rui 264
Mart́ı-Oliet, Narciso 4
Miguel, Ian 217
Moore, Neil C.A. 217
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