
Towards a Scalable, Pragmatic Knowledge

Representation Language for the Web

Florian Fischer, Gulay Unel, Barry Bishop, and Dieter Fensel

Semantic Technology Institute (STI) Innsbruck,
University of Innsbruck, Austria
firstname.lastname@sti2.at

Abstract. A basic cornerstone of the Semantic Web are formal lan-
guages for describing resources in a clear and unambiguous way. Logical
underpinnings facilitate automated reasoning about distributed knowl-
edge on the Web and thus make it possible to derive only implicitly
available information.

Much research is geared to advancing very expressive formalisms that
add increasingly complex modelling constructs. However, this increase in
language expressivity is often intrinsically linked to higher computational
cost and often leads to formalisms that have high theoretical complexity
and that are difficult to implement efficiently.

In contrast, reasoning in the context of the Web has a distinct set
of requirements, namely inference systems that can scale to planetary-
size datasets. A reduced level of expressivity is often sufficient for many
practical scenarios and crucially, absolutely necessary when reasoning
with such massive datasets. These requirements have been acknowledged
by active research towards more lightweight formalisms and also by in-
dustrial implementations that often implement only tractable subsets of
existing standards.

In this paper we aim to explore this trend and formulate a basic lan-
guage, called L2, layered upon RDF as the data-model, that is inherently
tractable, easy to implement on common rule engines and motivated by
pragmatic considerations concerning the use of language constructs and
the means to implement them.

1 Introduction

The next evolutionary step for the Web, the Semantic Web [1], envisions human-
readable content enriched with meta-data that has machine-understandable se-
mantics for the purpose of sharing and interconnecting commercial, scientific,
personal, and other data. Using a well defined formal language for this purpose
enables machine interpretability and in turn automated processing. This vision
leads to a Semantic Web, in which content has a well defined meaning and can
be reasoned with in order to derive implicit knowledge.

The Web has made tremendous amounts of information available that can
be processed based on the formal semantics attached to it, e.g. as a product

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 124–134, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Towards a Scalable, Pragmatic Knowledge Representation Language 125

of the Linking Open Data (LOD)1 [2] community. A number of languages have
been developed that use logic for the purpose of defining these formal semantics.
However, the initial sets of standards for this purpose, e.g. OWL [3], have very
high worst-case complexity results for key inference problems (usually ExpTime
or higher).

The inherent trade-off between the expressiveness of a logical representation
formalism and scalability of reasoning has been clearly observed from a theoret-
ical point of view [4] and has also been shown to have a very practical impact on
possible use-cases. While worst-case complexity results might not always reflect
the practical behavior of an implementation they become increasingly important
when faced with the sheer size of the data that is involved in reasoning at a Web
scale. Furthermore, data found on the Web is not only special in terms of size,
but also in terms of diversity, and in turn inconsistency. Consequently, since
completeness in the traditional sense might be a hopeless endeavor, it makes
sense to focus only on a pragmatically selected subset of inferences that

– provide a useful level of additional semantics for end-users on the web, falling
in line with language constructs that are actually employed,

– are inherently tractable in terms of computational complexity,
– can be practically implemented without major obstacles, or that are already

supported by existing tools.

As a contribution towards this goal, we propose L2, a very lightweight formalism
that supports tractable inferences by both omitting “expensive” language con-
structs and in certain cases “weakening” the semantics of them. L2’s intended
semantics is defined as set of “entailment rules” that operate directly on RDF
triples, and are thus independent of any particular high level syntax.

This paper is structured as following: Section 2 motivates our approach and
describes related work. Section 3 outlines the features of L2. Section 4 extends
this high-level view with the relevant formal underpinnings in the form of en-
tailment rules that operate directly on a set of RDF triples, and specify L2’s
intended semantics. Finally, Section 5 concludes and summarizes this paper.

2 Motivation and Related Work

RDF as a data-model represents a labeled, directed multi-graph. Layered upon
this are more expressive languages such as RDF Schema [5] and OWL [3], which
were introduced to provide a greater degree of expressive power. A fundamental
result is that even small increases in the expressive power of a language can
have a severe impact on the associated reasoning complexity that leads to the
intractability of inference. However, as [6] and others point out, a large portion
of Semantic Web data is often only described using a limited subset of existing
standards, i.e. RDFS plus certain elements from OWL. Moreover, an important

1 http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/

LinkingOpenData

http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

126 F. Fischer et al.

observation is that while resources on the Web are likely to be annotated with
relatively lightweight ontologies, the number of resources annotated with these
ontologies is likely to be very large [7].

Practical computational efficiency is important and is reflected both by active
research on tractable, lightweight formalisms such as DL-Lite [8], EL++ [9],
pD∗ [10], ELP [11], . . . as well as the adoption of tractable profiles within the
upcoming OWL 2 standard [12].

Aside from the theoretical work in this area, it is notable that existing imple-
mentations of large-scale, RDF-based inference engines often support only a
specific subset of current standards in order to scale to very large data-sets. These
inference engines give an indication of what modeling primitives are useful and are
usually a combination of primitives with low complexity overhead or are based on
practical user requirements. In other words, language features are not considered
purely in terms of their theoretical characteristics, but also in terms of:

1. The relevance of specific language constructs for users.
2. The practicability of implementing certain language features efficiently.

The subsets implemented, e.g. in OWLIM2, Oracle 11g3, or AllegroGraph RDF-
Store4 all support a very similar set of language primitives, usually with the aim
of avoiding inferences that derive disjunctions or the existence of anonymous in-
dividuals. The features supported usually include support for the basic features
available in RDFS and additionally specific parts of the OWL vocabulary along
the lines of [10]. More particularly, all of these products support (to various
extents) class and property hierarchies, equivalence (of properties, classes and
individuals), and additional qualitative statements about properties (denoting
transitivity, symmetricity, etc).

3 Language Overview

In this section we describe the language primitives of L2, which are selected
based on (i) practical considerations outlined in the previous section, (ii) theo-
retical complexity results. This selection mostly consists of the RDFS vocabulary
and a limited sub-set of OWL that is still inherently tractable. As L2 could be
considered an OWL fragment, in the sense that it allows a restricted set of infer-
ences to be made, we can use the OWL 2 functional-style5 as high-level syntax.
However, any surface syntax with an appropriate mapping to the underlying
RDF primitives can be used, e.g. [13], because the fundamental design aspects
of the language are independent of the particular syntax employed. This achieves
two goals: First of all, it automatically aligns L2 with existing standards and at
the same time facilitates easy end-user adoption.

2 http://www.ontotext.com/owlim/index.html
3 http://www.oracle.com/technology/tech/semantic_technologies/index.html
4 http://agraph.franz.com/allegrograph/
5 http://www.w3.org/TR/owl2-syntax/

http://www.ontotext.com/owlim/index.html
http://www.oracle.com/technology/tech/semantic_technologies/index.html
http://agraph.franz.com/allegrograph/
http://www.w3.org/TR/owl2-syntax/

Towards a Scalable, Pragmatic Knowledge Representation Language 127

We will now briefly enumerate the features in L2, explain why they are in-
cluded and provide informal descriptions.

Class definitions. (rdfs:Class) A class defines a set of individuals that be-
long together because they share common properties. Only partial class def-
initions are supported and not complete class definitions, because they allow
the emulation of several other language features that are not explicitly in-
cluded, e.g. class intersection.

Subclass descriptions. (rdfs:subClassOf) L2 allows the definition of class
hierarchies in the same way as RDFS. Thus the intended meaning is exactly
the same: If class C1 is defined to be the subclass of a class C2 then the
set of individuals that “belong to” (are in the class extension of) C1 should
be a subset of those that belong to C2. Furthermore, subclass relations are
transitive and a class is a subclass of itself.

Property definitions. (rdf:Property) Properties can be used to state specific
relations, either between individuals or between individuals and plain data
values.

Subproperty descriptions. (rdfs:subPropertyOf) In the same fashion as
for classes it is also possible to organize properties in hierarchies by stating
that a property is a sub-property of a number of other properties. Obviously,
as subclassing, rdfs:subPropertyOf has transitive behavior.

Domain and Range restrictions. (rdfs:domain and rdfs:range) The do-
main of a property restricts what individuals the property can be applied
to, while the range restricts the set of values that a property can take. Both
domain and range restrictions impose global constraints on a property in-
dependently of which specific class a property is applied to. It needs to be
noted that for both domains and ranges, it is possible to give two different
kinds of interpretations, namely inferring and constraining. For example, as-
sume an individual x that is related to another individual y via a certain
property p, with a class C1 as domain and another class C2 as the range.
Applying an inferring interpretation, it is possible to conclude that x belongs
to C1 and furthermore that y belongs to C2. A constraining interpretation
on the other hand, would actually check that the individual is of the correct
type, as a condition, and otherwise raise this as an error. Both semantics of
domain and ranges are valid and a choice should be made depending on the
requirements of an application.

Class equivalence. (owl:equivalentClass) Two classes may be stated to be
equivalent, in which case they also have the same set of instances and more-
over also share common super and subclasses. This functionality is useful to
perform basic schema mapping. Class equivalence is a symmetric, reflexive,
and transitive property. Furthermore, class equivalence between two classes
C1 and C2 simply requires two implications stating that C1 is a subclass of
C2 and vice versa. In this sense it is cleanly layered on top of RDFS, where
this functionality is already available, but with no explicit syntax.

Transitive properties. (owl:TransitiveProperty) Transitivity of properties
has the usual meaning that if a property p holds for a pair of individuals
(x, y) and another pair (y, z), then it also holds for (x, z).

128 F. Fischer et al.

Symmetric properties. (owl:SymmetricProperty) A symmetric property is
a property that is true in both directions. L2 allows for the specification of
symmetric properties with the usual meaning; if a property p holds for a pair
(x, y), then it also holds for (y, x).

Inverse properties. (owl:inverseOf) Furthermore, properties can be stated
to be the inverse of another property, i.e. hasParent and hasChild. If p1 is
the inverse of p2 and an individual x is related to another individual y by
p1, then y is related by p2 to x.

Property equivalence. (owl:equivalentProperty) Two properties may be
stated to be equivalent in the same fashion as classes can. Equivalent prop-
erties relate one individual to the identical set of other individuals.

Individual equivalence. (owl:sameAs) Individual equality is included in the
language for practical purposes since two distinct URIs can identify the
same resource. While individual equality slightly raises the computational
complexity (see [14] for an in-depth treatment) it can still be dealt with in
practical implementations by various means.

4 Formal Semantics

4.1 Basic Definitions

In this section we give a formal definition of the language primitives outlined in
the previous section using specific entailment rules. To do so, we briefly recall
the required basic terminology as in [15], as a slight extension of the notions
in [16].

First, let U denote the set of URI references, B denote the (infinite) set of
blank nodes, and L denote the set of literals, i.e. data values such as strings,
booleans, or XML documents. L is partitioned into the set Lp of plain literals
and the set Lt of typed literals. A typed literal l consists of a lexical form s and a
datatype URI t; l can then be denoted as the pair l = (s, t). The sets U , B, Lp,
and Lt are pairwise disjoint. A vocabulary is a subset of U ∪L. Any symbol t in
U ∪ B ∪ L is called a RDF term and the set of RDF terms is denoted by T .

The basic notion of RDF graphs [17,16] only allows URI references in the place
of predicates, however, generalized RDF graphs, which also allow properties to
be blank nodes, were introduced in [15] to solve the problem that the standard
set of entailment rules for RDFS [17] is incomplete.

Definition 1 (Generalized RDF Graph). An RDF graph G is a subset of
the set (U ∪ B) × (U ∪ B) × (U ∪ B ∪ L).

The elements (s, p, o) of an RDF graph are called triples, which consist of a
subject s, a predicate (or property) p, and an object o, respectively. We write
triples as s p o .

The set T (G) of RDF terms of an RDF graph G is the set of all elements that
occur in the graph, and the set bl(G) of blank nodes of an RDF graph G is in
turn defined as bl(G) = T (G) ∩ B. A graph is ground if it does not contain any
blank nodes, that is if bl(G) = ∅.

Towards a Scalable, Pragmatic Knowledge Representation Language 129

Definition 2 (Vocabulary of an RDF graph). Based on this, the vocabulary
of an RDF graph G is defined by V (G) = T (G) ∩ (U × L).

An interpretation of an RDF graph is intrinsically tied to this notion of a specifc
vocabulary (RDF, RDFS, . . .), as in [17], starting with simple interpretation, as
following:

Definition 3 (Simple Interpretation). An interpretation I of a vocabulary
V is a tuple I = (RI , PI , EI , SI , LI , LVI), where RI is a nonempty set, called
the set of resources, PI is the set of properties (not required to be disjoint from
resources), LVI is the set of literal values, which is a subset of RI that contains
at least all plain literals in V , and where EI , SI and LI are functions:

– EI : PI → 2RI×RI

– SI : (V ∩ U) → (RI ∪ PI)
– LI : (V ∩ Lt) → RI

4.2 Entailment Rules

We then use entailment rules, as in [15]. An entailment rule is considered as a
pair of generalized RDF graphs where variables can occur as predicate, subject
and object in triples. In other words, a rule consists of two sets of triple patterns6.

For any rule ρ = (ρl, ρr), we call ρl the body of the rule ρ and ρl the head of
the rule. Syntactically such rules take the following simple form:

IF ρl THEN ρr

Informally, a proper entailment rule describes under which conditions ρl the
statements ρr must hold. From this, the statements ρr can be inferred whenever
we detect the situation specified by ρl – it characterizes the expected inferences
over a domain vocabulary.

Given a rule ρ, the set of variables of ρ is denoted by var(ρ) = var(ρl), the
set of blank nodes of ρ by bl(ρ) = bl(ρr), and the vocabulary of ρ by
V (ρ) = V (ρ) ∪ V (ρr).

If R is a set of rules, then V (R) =
⋃

ρ∈R V (ρ). An entailment rule ρ is said
to introduce blank nodes if bl(ρ) �= ∅. A rule ρ is called finite if the rule head ρr

and the rule body ρl are both finite. A rule ρ is called a proper rule if the rule
head ρr and the rule body ρl are both nonempty.

From the above, it is possible to define the meaning of entailment rules in a
model-theoretic sense, by defining when a rule is satisfied by an interpretation,
and secondly by defining what statements (triples) are entailed by a specific set
of rules R, i.e. the notion of simple R-entailment.

6 In the sense defined by the RDF Data Access Group, W3C, http://www.w3.org/
2001/sw/DataAccess/

http://www.w3.org/2001/sw/DataAccess/
http://www.w3.org/2001/sw/DataAccess/

130 F. Fischer et al.

4.3 Definition of L2 Language Features

We are now in a position to give a concise, formal definition of the semantics of
L2 by defining (i) its vocabulary, and (ii) the corresponding set of entailment
rules, as described in the previous sections. L2’s vocabulary is constructed as an
extension of the RDF and RDFS vocabulary (see [17]) and adds the following
selected constructs from OWL:

Definition 4 (L2 Vocabulary). VL2= { owl:sameAs,
owl:SymetricProperty, owl:TransitiveProperty, owl:inverseOf,
owl:equivalentClass, owl:equivalentProperty } ∪ VRDFS ∪ VRDF

L2’s set of entailment rules is then defined on top of RDFS entailment (omitting
literal generalization) and several additional rules covering the OWL primitives
as depicted in Table 1. The semantics defined for them via the listed entailment
rules are slightly weaker than their OWL counterparts, mostly for performance
reasons, and in this sense L2 is a semantic subset. In the following, we point out
some important characteristics of the chosen rule set.

– For performance reasons L2 has only “if-conditions” for e.g.
rdf:range, rdf:domain, rdf:subClassOf, rdf:subPropertyOf,
owl:TransitiveProperty, etc. instead of the stronger extensional
“if and only if conditions” as in OWL.

– In order to capture the intended semantics of class and property hierarchies,
including reflexivity and transitivity, rules are included to make this notion
explicitly visible.

– Axiomatic triples are not considered during inference.
– Class equivalence is cleanly layered on top of RDFS in the sense that two

classes are considered equivalent if and only if they are both a subclass of
each other, whereas in OWL only their extensions have to be equal. The
same reasoning applies for property equivalence. This style of modeling the
semantics of equivalence is rooted in the fact that equivalence, e.g. between
classes, can already be indirectly expressed in RDFS in this way, only the
vocabulary to make this explicit was not available.

– Furthermore OWL treats owl:sameAs strictly as equivalence whereas L2
slightly weakens its interpretation and only treats it as an equivalence re-
lation. In order to recapture a set of essential inferences several additional
rules are added.

Common reasoning tasks, such as query answering, reduce to entailment be-
tween two generalized RDF graphs. Due to its close relationship with pD∗ [10]
known complexity and tractability carry over to L2, i.e. ground entailment can
be checked in polynomial time. Moreover, we ensure tractability by restricting
entailment rules to Horn rules (see [18] for relevant complexity results).

For the specific rule-set of L2 we additionally give relevant complexity mea-
sures in Table 1. These include for each rule, the time complexity T for detecting
a required rule application and the space complexity Δ for the number of triples
inferred (the number of nodes needed to construct the closure graph in terms

Towards a Scalable, Pragmatic Knowledge Representation Language 131

Table 1. Intended semantics for L2 given by means of first-order implications /
entailment rules. Rule (1) and (2) cover symmetry and transitivity of properties. Rules
(3a) and (3b) formalize the notion that an individual can be considered to be equal
to itself. Rule (4) captures reflexivity and respectively and rule (5) transitivity of
individual equivalence. Rule (6) and (7) cover the semantics of inverse properties,
including its reflexivity. Rules (8) and (9) denote that individuals that are classes or
properties are considered sub-classes or sub-properties of themselves. These rules are
important to facilitate basic meta-modelling in the language. Rule (10) denotes that
existing relations are preserved when renaming nodes. Rules (11a), (11b) and (11c)
express the semantics of class equivalence, while (12a), (12b) and (12c) do the same
for property equivalence.

Rule No. IF THEN T Δ

1 ?p type SymmetricProperty ?w ?p ?v O(n2) O(n)
?v ?p ?w

2 ?p type TransitiveProperty ?u ?p ?w O(n3) O(n2)
?u ?p ?v
?v ?p ?w

3a ?v ?p ?w ?v sameAs ?v O(n) O(n)

3b ?v ?p ?w ?w sameAs ?w O(n) O(n)

4 ?v sameAs ?w ?w sameAs ?v O(n) O(n)

5 ?u sameAs ?v ?u sameAs ?w O(n2) O(n2)
?v sameAs ?w

6 ?p inverseOf ?q ?w ?q ?v O(n2) O(n)
?v ?p ?w

7 ?p inverseOf ?q ?w ?p ?v O(n2) O(n)
?v ?q ?w

8 ?v type Class ?v subClassOf ?w O(n2) O(n)
?v sameAs ?w

9 ?p type Property ?p subPropertyOf ?q O(n2) O(n)
?p sameAs ?q

10 ?u ?p ?v ?w ?p ?q O(n3) O(n)
?u sameAs ?w
?v sameAs ?q

11a ?v equivalentClass ?w ?v subClassOf ?w O(n) O(n)

11b ?v equivalentClass ?w ?w subClassOf ?v O(n) O(n)

11c ?v subClassOf ?w ?v equivalentClass ?w O(n2) O(n)
?w subClassOf ?v

12a ?v equivalentProperty ?w ?v subProperty ?w O(n) O(n)

12b ?v equivalentProperty ?w ?w subProperty ?v O(n) O(n)

12c ?v subPropertyOf ?w ?v equivalentProperty ?w O(n2) O(n)
?w subPropertyOf ?v

132 F. Fischer et al.

Table 2. Omitted rules and the associated scalability with respect to the to the increase
in the size of the computed closure and the effort needed to apply them

Rule No. IF THEN T Δ

N1 ?p type FunctionalProperty ?v sameAs ?w O(n3) O(n)
?u ?p ?v
?u ?p ?w

N2 ?p type InverseFunctionalProperty ?u sameAs ?w O(n3) O(n)
?u ?p ?w
?v ?p ?w

N3 ?v hasValue ?w ?u type ?w O(n3) O(n)
?v onProperty ?p
?u ?p ?w

N4 ?v hasValue ?w ?u ?p ?w O(n3) O(n)
?v onProperty ?p
?u type ?v

N5 ?v someValuesFrom ?w ?u type ?v O(n4) O(n)
?v onProperty ?p
?u ?p ?x
?x type ?w

N6 ?v allValuesFrom ?w ?x type ?w O(n4) O(n)
?v onProperty ?p
?u type ?v
?u ?p ?x

of the size of the initial graph). To contrast this with more computationally
expensive entailment rules, we show the same information for additional rules
from [10] in Table 2.

As shown the highest time complexity for the rules we included in L2 is
O(n3), whereas it is O(n4) for the omitted rules in Table 2. The most complex
rule covers transitive properties (Rule 2), which poses the same challenges as
existing RDFS vocabulary. As a practical solution, the application of this rule
on a graph can be mapped to a well studied problem, graph reachability, where
efficient optimization algorithms exist see [19] [20] [21].

5 Conclusion

In this paper we presented L2, a lightweight and tractable language for the de-
scription of resources on the Semantic Web for which rule based and efficient rea-
soning methods are directly applicable. For that purpose we considered related
work concerning theoretical research results as well as practical implementations
that are similar in spirit to our approach. We gave a high level explanation of the
modeling primitives supported, that (i) are implementable in a scalable way and
(ii) useful in practical settings. Lastly, we gave a formal definition of entailment
rules that capture the semantics of L2 and from which it is straightforward to
establish the tractability of L2.

Towards a Scalable, Pragmatic Knowledge Representation Language 133

It should be noted, that the definition of the formal semantics of L2 by re-
stricted entailment rules is not the only possible approach and should not nec-
essarily be taken as a direct algorithmic evaluation procedure. However, this
approach can be understood as a basis for defining a minimal, useful and imple-
mentable language that is in line with existing Web standards, and also allows
for extension with custom rule sets.

Acknowledgments

This research has been partially supported by the LarKC EU-funded project
(FP7-215535). For more information visit http://www.larkc.eu.

References

1. Berners-Lee, T., Hendler, J., Lassila, O., et al.: The Semantic Web. Scientific Amer-
ican 284(5), 28–37 (2001)

2. Bizer, C., Heath, T., Ayers, D., Raimond, Y.: Interlinking Open Data on the Web.
In: Demonstrations Track, 4th European Semantic Web Conference, Innsbruck,
Austria (2007)

3. McGuinness, D., van Harmelen, F., et al.: OWL Web Ontology Language Overview.
W3C Recommendation 10, 2004–03 (2004)

4. Brachman, R., Levesque, H.: The tractability of subsumption in frame-based de-
scription languages. In: Proc. of the 4th Nat. Conf. on Artificial Intelligence (AAAI
1984), pp. 34–37 (1984)

5. Brickley, D., Guha, R.: RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Recommendation 2 (2004)

6. Wang, T., Parsia, B., Hendler, J.: A Survey of the Web Ontology Landscape. In:
Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 682–694. Springer, Heidelberg
(2006)

7. Weithoner, T., Liebig, T., Luther, M., Bohm, S.: What’s Wrong with OWL Bench-
marks? In: Second International Workshop on Scalable Semantic Web Knowledge
Base Systems, SSWS 2006 (2006)

8. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite:
Tractable Description Logics for Ontologies. In: Proceedings of the National Con-
ference on Artificial Intelligence, vol. 20(2), p. 602 (2005)

9. Baader, F., Brandt, S., Lutz, C.: Pushing the EL Envelope Further. In: Proceedings
of the OWLED Workshop (2008)

10. ter Horst, H.J.: Combining RDF and part of owl with rules: Semantics, decidability,
complexity. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC
2005. LNCS, vol. 3729, pp. 668–684. Springer, Heidelberg (2005)

11. Krötzsch, M., Rudolph, S., Hitzler, P.: Elp: Tractable rules for owl 2. In: Sheth,
A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K.
(eds.) ISWC 2008. LNCS, vol. 5318, pp. 649–664. Springer, Heidelberg (2008)

12. Grau, B., Horrocks, I., Parsia, B., Patel-Schneider, P., Sattler, U.: Next Steps for
OWL. OWL Experienced and Directions (2006)

13. Horridge, M., Drummond, N., Goodwin, J., Rector, A., Stevens, R., Wang, H.: The
Manchester OWL Syntax

http://www.larkc.eu

134 F. Fischer et al.

14. Volz, R.: Web Ontology Reasoning with Logic Databases. PhD thesis, Universität
Karlsruhe (TH), Universität Karlsruhe (TH), Institut AIFB, D-76128 Karlsruhe
(2004)

15. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF
schema and a semantic extension involving the owl vocabulary. J. Web Sem. 3(2-3),
79–115 (2005)

16. Klyne, G., Carroll, J., McBride, B.: Resource Description Framework (RDF): Con-
cepts and Abstract Syntax. W3C Recommendation 10 (2004)

17. Hayes, P., McBride, B.: RDF Semantics. W3C Recommendation 10 (2004)
18. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power

of logic programming. ACM Computing Surveys (CSUR) 33(3), 374–425 (2001)
19. Schenkel, R., Theobald, A., Weikum, G.: Efficient Creation and Incremental Main-

tenance of the HOPI Index for Complex XML Document Collections. In: Proceed-
ings of the International Conference on Data Engineering, 1998, vol. 21, p. 360.
IEEE Computer Society Press, Los Alamitos (2005)

20. Schenkel, R., Theobald, A., Weikum, G.: HOPI: An Efficient Connection Index for
Complex XML Document Collections. In: Bertino, E., Christodoulakis, S., Plex-
ousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT
2004. LNCS, vol. 2992, pp. 237–255. Springer, Heidelberg (2004)

21. Wang, H., He, H., Yang, J., Yu, P., Yu, J.: Dual labeling: Answering graph reacha-
bility queries in constant time. In: Proceedings of the 22nd International Conference
on Data Engineering (ICDE), p. 75 (2006)

	Towards a Scalable, Pragmatic Knowledge Representation Language for the Web
	Introduction
	Motivation and Related Work
	Language Overview
	Formal Semantics
	Basic Definitions
	Entailment Rules
	Definition of L2 Language Features

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

